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Preface 

 

 
  
Adaptive control has been a remarkable field for industrial and academic research since 

1950s. Since more and more adaptive algorithms are applied in various control applications, 
it is considered as important for practical implementation. As it can be confirmed from the 
increasing number of conferences and journals on adaptive control topics, it is certain that 
the adaptive control is a significant guidance for technology development. 

Also adaptive control has been believed as a breakthrough for realization of intelligent 
control systems. Even with the parametric and model uncertainties, adaptive control enables 
the control system to monitor the time varying changes and manipulate the controller for 
desired performance. Therefore adaptive control has been considered to be essential for time 
varying multivariable systems. Moreover, now with the advent of high-speed microproces-
sors, it is possible to implement the innovative adaptive algorithms even in real time situa-
tion. 

With the efforts of many control researchers, the adaptive control field is abundant in 
mathematical analysis, programming tools, and implementational algorithms. The authors 
of each chapter in this book are the professionals in their areas. The results in the book 
introduce their recent research results and provide new idea for improved performance in 
various control application problems.  

The book is organized in the following way. There are 16 chapters discussing the issues 
of adaptive control application to model generation, adaptive estimation, output regulation 
and feedback, electrical drives, optical communication, neural estimator, simulation and 
implementation: 

 
Chapter One: Automatic 3D Model Generation based on a Matching of Adaptive 

Control Points, by N. Lee, J. Lee, G. Kim, and H. Choi 
Chapter Two: Adaptive Estimation and Control for Systems with Parametric and 

Nonparametric Uncertainties, by H. Ma and K. Lum 
Chapter Three: Adaptive Output Regulation of Unknown Linear Systems with 

Unknown Exosystems, by I. Mizumoto and Z. Iwai 
Chapter Four: Output Feedback Direct Adaptive Control for a Two-Link Flexible 

Robot Subject to Parameter Changes, by S. Ozcelik and E. Miranda 
Chapter Five: Discrete Model Matching Adaptive Control for Potentially In-

versely Non-Stable Continuous-Time Plants by Using Multirate Sampling, by S. 
Alonso-Quesada and M. De la Sen 

Chapter Six: Hybrid Schemes for Adaptive Control Strategies, by R. Ribeiro and K. 
Queiroz 



VI        

Chapter Seven: Adaptive Control for Systems with Randomly Missing Measure-
ments in a Network Environment, by Y. Shi and H. Fang 

Chapter Eight: Adaptive Control based on Neural Network, by S. Wei, Z. Lujin, Z. 
Jinhai, and M. Siyi 

Chapter Nine: Adaptive Control of the Electrical Drives with the Elastic Coupling 
using Kalman Filter, by K. Szabat and T. Orlowska-Kowalska 

Chapter Ten: Adaptive Control of Dynamic Systems with Sandwiched Hysteresis 
based on Neural Estimator, by Y. Tan, R. Dong, and X. Zhao 

Chapter Eleven: High-Speed Adaptive Control Technique based on Steepest De-
scent Method for Adaptive Chromatic Dispersion Compensation in Optical Com-
munications, by K. Tanizawa and A. Hirose 

Chapter Twelve: Adaptive Control of Piezoelectric Actuators with Unknown Hys-
teresis, by W. Xie, J. Fu, H. Yao, and C. Su 

Chapter Thirteen: On the Adaptive Tracking Control of 3-D Overhead Crane Sys-
tems 

Chapter Fourteen: Adaptive Inverse Optimal Control of a Magnetic Levitation 
System, by Y. Satoh, H. Nakamura, H. Katayama, and H. Nishitani 

Chapter Fifteen: Adaptive Precision Geolocation Algorithm with Multiple Model 
Uncertainties, by W. Sung and K. You 

Chapter Sixteen: Adaptive Control for a Class of Non-affine Nonlinear Systems 
via Neural Networks, by Z. Tong 

 
We expect that the readers have taken a basic course in automatic control, linear systems, 

and sampled data systems. This book is tried to be written in a self-contained way for better 
understanding. Since this book introduces the development and recent progress of the 
theory and application of adaptive control research, it is useful as a reference especially for 
industrial engineers, graduate students in advanced study, and the researchers who are re-
lated in adaptive control field such as electrical, aeronautical, and mechanical engineering. 

 
 

Kwanho You 
Sungkyunkwan University, Korea 
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Automatic 3D Model Generation based on a 
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2Center for Cognitive Robotics Research, Korea Institute of Sciene and Technology 

3School of Computing, Soongsil University 
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Abstract     
 

The use of a 3D model helps to diagnosis and accurately locate a disease where it is neither 
available, nor can be exactly measured in a 2D image. Therefore, highly accurate software 
for a 3D model of vessel is required for an accurate diagnosis of patients. We have generated 
standard vessel because the shape of the arterial is different for each individual vessel, 
where the standard vessel can be adjusted to suit individual vessel. In this paper, we 
propose a new approach for an automatic 3D model generation based on a matching of 
adaptive control points. The proposed method is carried out in three steps. First, standard 
and individual vessels are acquired. The standard vessel is acquired by a 3D model 
projection, while the individual vessel of the first segmented vessel bifurcation is obtained. 
Second is matching the corresponding control points between the standard and individual 
vessels, where a set of control and corner points are automatically extracted using the Harris 
corner detector. If control points exist between corner points in an individual vessel, it is 
adaptively interpolated in the corresponding standard vessel which is proportional to the 
distance ratio. And then, the control points of corresponding individual vessel match with 
those control points of standard vessel. Finally, we apply warping on the standard vessel to 
suit the individual vessel using the TPS (Thin Plate Spline) interpolation function. For 
experiments, we used angiograms of various patients from a coronary angiography in 
Sanggye Paik Hospital.  
Keywords: Coronary angiography, adaptive control point, standard vessel, individual 
vessel, vessel warping. 

 
1. Introduction 
 

X-ray angiography is the most frequently used imaging modality to diagnose coronary 
artery diseases and to assess their severity. Traditionally, this assessment is performed 
directly from the angiograms, and thus, can suffer from viewpoint orientation dependence 
and lack of precision of quantitative measures due to magnification factor uncertainty 
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(Messenger et al., 2000), (Lee et al., 2006) and (Lee et al., 2007). 3D model is provided to 
display the morphology of vessel malformations such as stenoses, arteriovenous 
malformations and aneurysms (Holger et al., 2005). Consequently, accurate software for a 
3D model of a coronary tree is required for an accurate diagnosis of patients. It could lead to 
a fast diagnosis and make it more accurate in an ambiguous condition.  
In this paper, we present an automatic 3D model generation based on a matching of 
adaptive control points. Fig. 1 shows the overall flow of the proposed method for the 3D 
modelling of the individual vessel. The proposed method is composed as the following 
three steps: image acquisition, matching of the adaptive control points and the vessel 
warping. In Section 2, the acquisitions of the input image in standard and individual vessels 
are described. Section 3 presents the matching of the corresponding control points between 
the standard and individual vessels. Section 4 describes the 3D modelling of the individual 
vessel which is performed through a vessel warping with the corresponding control points. 
Experimental results of the vessel transformation are given in Section 5. Finally, we present 
the conclusion in Section 6.  
 

 
Fig. 1. Overall flow of the system configuration 
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2. Image Acquisition 
 

We have generated a standard vessel because the shape of the arterial is different for each 
individual vessel, where the standard vessel can be adjusted to suit the individual vessel 
(Chalopin et al., 2001), (Lee et al., 2006) and (Lee et al., 2007). The proposed approach is 
based on a 3D model of standard vessel which is built from a database that implemented a 
Korean vascular system (Lee et al., 2006).  
We have limited the scope of the main arteries for the 3D model of the standard vessel as 
depicted in Fig. 2.  
 

 
Fig. 2. Vessel scope of the database for the 3D model of the standard vessel 

 
Table 1 shows the database of the coronary artery of Lt. main (Left Main Coronary Artery), 
LAD (Left Anterior Descending) and LCX (Left Circumflex artery) information. This 
database consists of 40 people with mixed gender information. 
 

Lt. main LAD LCX 
  age 

Os distal length Os distal length Os distal length 

below 60 years of 
old (male) 

48.4±5.9 4.3±0.4 4.1±0.5 9.9±4.2 3.8±0.4 3.6±0.4 17.0±5.2 3.5±0.4 3.3±0.3 19.2±6.1 

above 60 years of 
old (male) 

67.5±5.4 4.5±0.5 4.4±0.4 8.4±3.8 3.9±0.3 3.6±0.3 17.2±5.8 3.6±0.4 3.4±0.4 24.6±8.9 

below 60 years of 
old (female) 

44.9±19.9 3.7±1.8 3.4±1.6 10.6±6.2 3.3±1.5 3.1±1.4 14.1±5.5 2.9±1.3 2.8±1.2 21.3±9.2 

above 60 years of 
old (female) 

70.7± 4.4 4.3±0.7 4.1±0.6 12.5±7.9 3.5±0.6 3.4±0.5 22.3±7.3 3.3±0.4 3.1±0.3 27.5±3.7 

Table 1. Database of the coronary artery 
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To quantify the 3D model of the coronary artery, the angles of the vessel bifurcation are 
measured with references to LCX, Lt. main and LAD, as in Table 2. Ten individuals 
regardless of their gender and age were selected randomly for measuring the angles of the 
vessel bifurcation from six angiograms. The measurement results, and the average and 
standard deviations of each individual measurement are shown in Table 2.  
 

 
RAO30° 

CAUD30° 
RAO30° 
CRA30° 

AP0° 
CRA30° 

LAO60° 
CRA30° 

LAO60° 
CAUD30° 

AP0° 
CAUD30° 

1 69.17 123.31 38.64 61.32 84.01 50.98 

2 53.58 72.02 23.80 51.75 99.73 73.92 

3 77.28 97.70 21.20 57.72 100.71 71.33 

4 94.12 24.67 22.38 81.99 75.6 69.57 

5 64.12 33.25 31.24 40.97 135.00 61.87 

6 55.34 51.27 41.8 80.89 119.84 57.14 

7 71.93 79.32 50.92 87.72 114.71 58.22 

8 67.70 59.14 31.84 58.93 92.36 70.16 

9 85.98 60.85 35.77 54.45 118.80 78.93 

10 47.39 60.26 34.50 47.39 67.52 34.79 

Average 68.67 66.18 33.21 62.31 100.83 62.69 

Standard 
deviation 14.56 29.07 9.32 15.86 21.46 13.06 

Table 2. Measured angles of the vessel bifurcation from six angiographies 

 
Fig. 3 illustrates the results of the 3D model generation of the standard vessel from six 
angiographies: RAO (Right Anterior Oblique)30° CAUD (Caudal)30°, RAO30° CRA (Cranial 
Anterior)30°, AP (Anterior Posterior)0° CRA (Cranial Anterior)30°, LAO (Left Anterior 
Oblique)60° CRA30°, LAO60° CAUD30°, AP0° CAUD30°. 
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View RAO30° 
CAUD30° 

RAO30° 
CRA30° 

AP0° 
CRA30° 

Angiogram 

   

3D Model 

   

View LAO60° 
CRA30° 

LAO60° 
CAUD30° 

AP0° 
CAUD30° 

Angiogram 

   

3D Model 

   

Fig. 3. 3D model generation of the standard vessel from six angiographies 

 
Evaluating the angles of the vessel bifurcation from six angiographies can reduce the 
possible measurement error which occurs when the angle from a single view is measured.  
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It is difficult to transform the standard vessel into individual vessel in a 3D space (Lee et al., 
2006) and (Lee et al., 2007). Therefore, we projected the 3D model of the standard vessel into 
2D projection. Fig. 4 shows the projected images of the standard vessel on a 2D plane 
through the projection. The projection result can be view as vertices or polygons based. 
 

 
Fig. 4. Projection result for 2D image of standard vessel 

 
3. Matching of the Adaptive Control Points 
 

To transform a standard vessel into an individual vessel, it is important to match 
corresponding control points (Lee et al., 2006) and (Lee et al., 2007). In this paper, we 
extracted feature points of the vessel automatically and defined as control points (Lee et al., 
2006) and (Lee et al., 2007). Feature points mean is referred to the corner points of an object 
or points with higher variance brightness compared to the surrounding pixels in an image, 
which are differentiated from other points in an image. Such feature points can be defined in 
many different ways in (Parker, 1996) and (Pitas, 2000). They are sometimes defined as 
points that have a high gradient in different directions, or as points that have properties that 
do not change in spite of specific transformations. Generally feature points can be divided 
into three categories (Cizek et al., 2004). The first one uses a non-linear filter, such as the 
SUSAN corner detector proposed by Smith (Woods et al., 1993) which relates each pixel to 
an area centered by a pixel. In this area, it is called the SUSAN area; all the pixels have 
similar intensities as the center pixel. If the center pixel is a feature point (some times a 
feature point is also referred to as a "corner"), SUSAN area is the smallest one among the 
pixels around it. A SUSAN corner detector can suppress a noise effectively without 
derivating an image. The second one is based on a curvature, such as the Kitchen and 
Rosenfeld's method (Maes et al., 1997). This kind of method needs to extract edges in 
advance, and then elucidate the feature points using the information on the curvature of the 
edges. The disadvantage of this method is required more needs a complicated computation, 
e.g. curve on fitting, thus its processing speed is relatively slow. The third method is exploits 
a change of the pixel intensity. A typical one is the Harris and Stephens' method (Pluim et 
al., 2003). It produces a corner response through an eigenvalues analysis. Since it does not 
need to use a slide window explicitly, its processing speed is very fast. Accordingly, this 
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paper used the Harris corner detector to find the control points of standard and individual 
vessels (Lee et al., 2006) and (Lee, 2007). 

 
3.1 Extraction of the Control Points 
The Harris corner detector is a popular interest point detector due to its strong invariance 
such as rotation, scale, illumination variation and image noise (Schmid et al., 2000) and 
(Derpanis, 2004). It is based on the local auto-correlation function of a signal. The local auto-
correlation function measures the local changes of the signal with patches shifted by a small 
amount in different directions (Derpanis, 2004). However, the Harris corner detector has a 
problem where it can mistake those non-corner points.  
Fig. 5 shows extracted 9 control points in individual vessel by using the Harris corner 
detector. We noticed that some of the extracted control points are non-corner points. To 
solve this problem of the Harris corner detector, we extracted more control points of 
individual vessel than standard vessel. Fig. 6 shows the extraction of control points from 
individual and standard vessels. 
  

 
Fig. 5. Extracted 9 control points in individual vessel 

 
3.2 Extraction of Corner Points 
We performed thinning by using the structural characteristics of vessel to find the corner 
points among the control points of individual vessel which is extracted with the Harris 
corner detector (Lee, 2007). Fig. 7 shows the thinning process for detection of corner points 
in individual vessel.  
  

 
(a) Segmented vessel                                                                  (b) Thinned vessel 

Fig. 6. Thinning process for detection of corner points in individual vessel 

 
A vascular tree can be divided into a set of elementary components, or primitives, which are 
the vascular segments, and bifurcation (Wahle et al., 1994). Using this intuitive 
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representation, it is natural to describe the coronary tree by a graph structure (Chalopin et 
al., 2001) and (Lee, 2007). 
A vascular tree of thinned vessel consists of three vertices ( intpov ) and one bifurcation ( bif ) 

as the following equation (1). Here, vertices ( intpov ) are comprised a start point ( int_ postartv ) 

and two end points ( 2int_1int_ , poendpoend vv ).  

 

},{ int bifvI pothin =  

},,{ 2int_1int_int_int poendpoendpostartpo vvvv =  

 

     (1) 

 
If the reference point is a vertex, the closest two control points to the vertex are defined as 
the corner points.  If the reference point is a bifurcation, the three control points that are 
closest to it after comparing the distances between the bifurcation and all control points are 
defined as the corner points. As shown in Fig. 7, if the reference point is the vertex 
( int_ postartv ), 1v and 2v  become the corner points; if the reference point is the bifurcation 

( bif ), 116, vv and 15v  become the corner points (Lee, 2007).   
 

int_ postartv

1int_ poendv

bif

2int_ poendv

1v 9v

8v

7v

6v

5v

4v

3v2v

 
Fig. 7. Primitives of a vascular net 

 
3.3 Adaptive Interpolation of the Control Points between Corner Points 
Once the control points and corner points are extracted from an individual vessel, an 
interpolation for a standard vessel is applied. For an accurate matching, the control points 
are adaptively interpolated into the corresponding standard vessel in proportion to the 
distance ratio if there are control points between the corner points in an individual vessel 
(Lee, 2007).  
Fig. 8 shows the process of an interpolation of the control points. Control points of a 
standard vessel are adaptively interpolated by the distance rate between control point ( 3v ) 
and two corner points ( 42, vv ) of an individual vessel. Fig. 8 (a) shows the extracted control 
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points from an individual vessel, and (b) shows an example of control point interpolated 
between a standard vessel and the corresponding corner points from (a) image. 
 

 
(a) Individual vessel                                                (b) Standard vessel  

Fig. 8. Interpolation of the control points for a standard vessel 

 
Fig. 9 shows the result of extracting the control points by using the Harris corner detector to 
the segmented vessel in the individual vessel and an adaptive interpolation of the 
corresponding the control points in the standard vessel.  
 

Fig. 9. Result of an adaptive interpolation of the corresponding control points 

 
4. Vessel Warping 
 

We have warped the standard vessel with respect to the individual vessel. Given the two 
sets of corresponding control points, },{ 2,1 msssS K= and },{ 2,1 miiiI K= , the warping is applied 
the standard vessel to suit the individual vessel. Here, S is a set of control points in the 
standard vessel and I is a set of one in the individual vessel (Lee et al., 2006) and (Lee et al., 
2007). 
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Standard vessel warping was performed using the TPS (Thin-Plate-Spline) algorithm 
(Bentoutou et al., 2002) from the two sets of control points. 
The TPS is the interpolation functions that exactly represent a distortion at each feature 
point, and for defining a minimum curvature surface between control points. A TPS 
function is a flexible transformation that allows for a rotation, translation, scaling, and 
skewing. It also allows for lines to bend according by the TPS model (Bentoutou et al., 2002). 
Therefore, a large number of deformations can be characterized by the TPS model. 
The TPS interpolation function can be written as equation (2). 
 

∑
=

−++=
m

i
ii xxKWtAxxh

1
||)(||)(  

 
  (2) 

 
The variables A and t are the affine transformation parameters matrices, iW are the weights 
of the non-linear radial interpolation function K , and ix are the control points. The function 

)(rK is the solution of the biharmonic equation )0( 2 =Δ K  that satisfies the condition of a 

bending energy minimization, namely )(log)( 22 rrrK = . 
The complete set of parameters, the interpolating registration transformation is defined, and 
then it is used to transform the standard vessel. It should be noted that in order to be able to 
carry out the warping of the standard vessel with respect to the individual vessel, it is 
required to have a complete description of the TPS interpolation function (Lee et al., 2006) 
and (Lee et al., 2007).  
Fig. 10 shows the results of modifying the standard vessel to suit the individual vessel. 
 

                                                
(a) Individual vessel                        (b) Standard vessel                      (c) Warped vessel 

Fig. 10. Results of the warped vessel in standard vessel 

 
5. Results of the Vessel Transformation 
 

We simulated the system environment that  is  Microsoft  Windows XP on a  Pentium  3GHz, 
Intel Corp. and the compiler VC++ 6.0 is used. The image of 512× 512 is used for the 
experimentation. Each image has a gray-value resolution of 8 bits, i.e., 256 gray levels. 
Fig. 11 shows the 3D model of the standard vessel from six different angiographic views. 
The results of the standard vessel warping using TPS algorithm to suit the individual vessel 
is shown in Fig. 13. 
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Fig. 11. 3D model of the standard vessel in angiographic of six different views 

 

 
Fig. 12. Result of standard vessel warping 
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Fig. 13 shows the result for an automatically 3D model generation of individual vessel. 
 

 
Fig. 13. Result of 3D model generation for the individual vessel in six views 

 
6. Conclusion 
 

We proposed a fully automatic and effective algorithm to perform a 3D modelling of 
individual vessel from angiograms in six views. This approach can be used to recover the 
geometry of the main arteries. The 3D model of the vessel enables patients to visualize their 
progress and improvement for a disease. Such a model should not only enhance the level of 
reliability but also provide a fast and accurate identification. In order words, this method 
can be expected to reduce the number of misdiagnosed cases (Lee et al., 2006) and (Lee et al., 
2007). 
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Abstract 
 
Adaptive control has been developed for decades, and now it has become a rigorous and 
mature discipline which mainly focuses on dealing parametric uncertainties in control 
systems, especially linear parametric systems. Nonparametric uncertainties were seldom 
studied or addressed in the literature of adaptive control until new areas on exploring 
limitations and capability of feedback control emerged in recent years. Comparing with the 
approach of robust control to deal with parametric or nonparametric uncertainties, the 
approach of adaptive control can deal with relatively larger uncertainties and gain more 
flexibility to fit the unknown plant because adaptive control usually involves adaptive 
estimation algorithms which play role of “learning” in some sense. 
This chapter will introduce a new challenging topic on dealing with both parametric and 
nonparametric internal uncertainties in the same system. The existence of both two kinds of 
uncertainties makes it very difficult or even impossible to apply the traditional recursive 
identification algorithms which are designed for parametric systems. We will discuss by 
examples why conventional adaptive estimation and hence conventional adaptive control 
cannot be applied directly to deal with combination of parametric and nonparametric 
uncertainties. And we will also introduce basic ideas to handle the difficulties involved in 
the adaptive estimation problem for the system with combination of parametric and 
nonparametric uncertainties. Especially, we will propose and discuss a novel class of 
adaptive estimators, i.e. information-concentration (IC) estimators. This area is still in its infant 
stage, and more efforts are expected in the future for gainning comprehensive 
understanding to resolve challenging difficulties. 
Furthermore, we will give two concrete examples of semi-parametric adaptive control to 
demonstrate the ideas and the principles to deal with both parametric and nonparametric 
uncertainties in the plant. (1) In the first example, a simple first-order discrete-time nonlinear 
system with both kinds of internal uncertainties is investigated, where the uncertainty of 
non-parametric part is characterized by a Lipschitz constant L, and the nonlinearity of 
parametric part is characterized by an exponent index b. In this example, based on the idea 
of the IC estimator, we construct a unified adaptive controller in both cases of b = 1 and 
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b > 1, and its closed-loop stability is established under some conditions.  When the  
parametric part is bilinear (b = 1), the conditions given reveal the magic number 

2
2
3
+ which appeared in previous study on capability and limitations of the feedback 

mechanism. (2) In the second example with both parametric uncertainties and non-
parametric uncertainties, the controller gain is also supposed to be unknown besides the 
unknown parameter in the parametric part, and we only consider the noise-free case. For this 
model, according to some a priori knowledge on the non-parametric part and the unknown 
controller gain, we design another type of adaptive controller based on a gradient-like 
adaptation law with time-varying deadzone so as to deal with both kinds of uncertainties.  
And in this example we can establish the asymptotic convergence of tracking error under 
some mild conditions, althouth these conditions required are not as perfect as in the first 

example in sense that L < 0.5 is far away from the best possible bound 2
2
3
+ .  

These two examples illustrate different methods of designing adaptive estimation and 
control algorithms.  However, their essential ideas and principles are all based on the a 
priori knowledge on the system model, especially on the parametric part and the non-
parametric part. From these examples, we can see that the closed-loop stability analysis is 
rather nontrivial. These examples demonstrate new adaptive control ideas to deal with two 
kinds of internal uncertainties simultaneously and illustrates our elementary theoretical 
attempts in establishing closed-loop stability. 

 
1. Introduction 
 

This chapter will focus on a special topic on adaptive estimation and control for systems with 
parametric and nonparametric uncertainties. Our discussion on this topic starts with a very 
brief introduction to adaptive control. 

 
1.1 Adaptive Control 
As stated in [SB89], “Research in adaptive control has a long and vigorous history” since 
the initial study in 1950s on adaptive control which was motivated by the problem of 
designing autopilots for air-craft operating at a wide range of speeds and altitudes. With 
decades of efforts, adaptive control has become a rigorous and mature discipline which 
mainly focuses on dealing parametric uncertainties in control systems, especially linear 
parametric systems. 
From the initial stage of adaptive control, this area has been aiming at study how to deal 
with large uncertainties in control systems. This goal of adaptive control essentially means 
that one adaptive control law cannot be a fixed controller with fixed structure and fixed 
parameters because any fixed controller usually can only deal with small uncertainties in 
control systems. The fact that most fixed controllers with certain structure (e.g.  linear 
feedback control) designed for an exact system model (called nominal model) can also work 
for a small range of changes in the system parameter is often referred to as robustness, 
which is the kernel concept of another area, robust control. While robust control focuses on 
studying the stability margin of fixed controllers (mainly linear feedback controller), whose 
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design essentially relies on priori knowledge on exact nominal system model and bounds 
of uncertain parameters, adaptive control generally does not need a priori information 
about the bounds on the uncertain or (slow) time-varying parameters. Briefly speaking, 
comparing with the approach of robust control to deal with parametric or nonparametric 
uncertainties, the approach of adaptive control can deal with relatively larger uncertainties 
and gain more flexibility to fit the unknown plant because adaptive control usually 
involves adaptive estimation algorithms which play role of “learning” in some sense. 
The advantages of adaptive control come from the fact that adaptive controllers can adapt 
themselves to modify the control law based on estimation of unknown parameters by 
recursive identification algorithms. Hence the area of adaptive control has close connections 
with system identification, which is an area aiming at providing and investigating 
mathematical tools and algorithms that build dynamical models from measured data. 
Typically, in system identification, a certain model structure is chosen by the user which 
contains unknown parameters and then some recursive algorithms are put forward based 
on the structural features of the model and statistical properties of the data or noise.  The 
methods or algorithms developed in system identification are borrowed in adaptive control 
in order to estimate the unknown parameters in the closed loop. For convenience, the 
parameter estimation methods or algorithms adopted in adaptive control are often 
referred to as adaptive estimation methods.  Adaptive estimation and system identification 
share many similar characteristics, for example, both of them originate and benefit from 
the development of statistics. One typical example is the frequently used least-squares (LS) 
algorithm, which gives parameter estimation by minimizing the sum of squared errors (or 
residuals), and we know that LS algorithm plays important role in many areas including 
statistics, system identification and adaptive control. We shall also remark that, in spite of 
the significant similarities and the same origin, adaptive estimation is different from 
system identification in sense that adaptive estimation serves for adaptive control and 
deals with dynamic data generated in the closed loop of adaptive controller, which means 
that statistical properties generally cannot be guaranteed or verified in the analysis of 
adaptive estimation.  This unique feature of adaptive estimation and control brings many 
difficulties in mathematical analysis, and we will show such difficulties in later examples 
given in this paper. 

 
1.2 Linear  Regression Model and Least Square  Algorithm 
 

Major parts in existing study on regression analysis (a branch of statistics) [DS98, Ber04, 
Wik08j], time series analysis [BJR08, Tsa05], system identification [Lju98, VV07] and 
adaptive control [GS84, AW89, SB89, CG91, FL99] center on the following linear regression 
model 
 

kkk vz += φθτ
                                                   (1) 

 
where }{ kz , kφ , kv represent observation data, regression vector and noise disturbance (or 
external uncertainties), respectively. Here θ is the unknown parameter to be estimated.  
Linear regression models have many applications in many disciplines of science and 
engineering [Wik08g, web08, DS98, Hel63, Wei05, MPV07, Fox97, BDB95]. For example, as 
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stated in [web08], Linear regression is probably the most widely used, and useful, statistical 
technique for solving environmental problems. Linear regression models are extremely powerful, and 
have the power to empirically tease out very complicated relationships between variables. Due to the 
importance of model (1.1), we list several simple examples for illustration: 
• Assume that a series of (stationary) data (xk , yk ) (k = 1, 2, · · · , N ) are generated from the 
following model 
 

εββ ++= XY 10  
 

where β0 , β1  are unknown parameters, }{ kx are i. i. d. taken from a certain probability 

distribution, and ),0( 2σε Nk ≈  is random noise independent of X . For this model, let θ 

= [β0 , β1 ]τ , φk = [1, xk ]τ , then we have kkky εφθτ += . This example is a classic 

topic in statistics to study the statistical properties of parameter estimates θ̂N as the data size 

N grows to infinity. The statistical properties of interests may include )ˆVar(),ˆE( θθθ − , 
and so on.  
• Unlike the above example, in this example we assume that kx  and 1+kx  have close 
relationship modeled by 
 

kkk xx εββ ++=+ 101  
 

where β0, β1 are unknown parameters, and  ),0( 2σε Nk ≈  are i. i. d. random noise 
independent of {x1, x2, · · · , xk}. 
This model is an example of linear time series analysis, which aims to study asymptotic 
statistical properties of parameter estimates  under certain assumptions on statistical 
properties of kε . Note that for this example, it is possible to deduce an explicit expression 

of xk in terms of jε  ( 1,,1,0 −= kj L ).  

• In this example, we consider a simple control system 
 

kkkk buxx εββ +++=+ 101  
 
where b ≠ 0 is the controller gain, kε  is the noise disturbance at time step k. For this model, 

in case where b is known a priori, we can take; τββθ ],[ 10= , τφ ],1[ 1−= kk x , 

1−−= kkk buxz ;otherwise, we can take  τββθ ],,[ 10 b= , τφ ],1[ 1−= kk x , 1−−= kkk buxz .  
In both cases, the system can be rewritten as 
 

kkkz εφθτ +=  
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which implies that intuitively, θ can be estimated by using the identification algorithm since 
both data zk and kφ  are available at time step k. Let kθ̂  denote the parameter estimates at 

time step kθ̂ , then we can design the control signal ku  by regarding  as the real parameter 
θ: 
 

 
 

where { kr } is the known reference signal to be tracked, and  b̂ , 0β̂ , 1̂β  are estimates of b , 

0β , 1β , respectively. Note that for this example, the closed-loop system will be very 
complex because the data generated in the closed loop essentially depend on all history 
signals. In the closed-loop system of an adaptive controller, generally it is difficult to 
analyze or verify statistical properties of signals, and this fact makes that adaptive 
estimation and control cannot directly employ techniques or results from system 
identification. Now we briefly introduce the frequently-used LS algorithm for model (1.1) 
due to its importance and wide applications [LH74, Gio85, Wik08e, Wik08f, Wik08d]. The 
idea of LS algorithm is simply to minimize the sum of squared errors, that is to say, 
 

                            (1.2) 
 

This idea has a long history rooted from great mathematician Carl Friedrich Gauss in 1795 
and published first by Legendre in 1805. In 1809, Gauss published this method in volume 
two of his classical work on celestial mechanics, heoria Motus Corporum Coelestium in 
sectionibus conicis solem ambientium[Gau09], and later in 1829, Gauss was able to state that the 
LS estimator is optimal in the sense that in a linear model where the errors have a mean of 
zero, are uncorrelated, and have equal variances, the best linear unbiased estimators of the 
coefficients is the least-squares estimators. This result is known as the Gauss-Markov 
theorem [Wik08a]. 
By Eq. (1.2), at every time step, we need to minimize the sum of squared errors, which 
requires much computation cost. To improve the computational efficiency, in practice we 
often use the recursive form of LS algorithm, often referred to as recursive LS algorithm, 
which will be derived in the following. First, introducing the following notations 
 

                              (1.3) 
 

and using Eq. (1.1), we obtain that 
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Noting that 
 

 
 

where the last equation is derived from properties of Moore-Penrose pseudoinverse  
[Wik08h] 
 

 
 

we know that the minimum of  ][][ ςς τ
nnnn ZZ Φ−Φ−  can be achieved at 

 

                                            (1.4) 
 

which is the LS estimate of θ. Let 
 

 
 
and then, by Eq. (1.3), with the help of matrix inverse identity 
 

 
 
we can obtain that 
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Further, 
 



Adaptive Estimation and Control for Systems with Parametric and Nonparametric Uncertainties 

 

21 

 
 
Thus, we can obtain the following recursive LS algorithm 
 

 
 

where Pn−1 and θn−1 reflect only information up to step n − 1, while an, nφ  and 1−− nnnz θφττ  
reflect information up to step n. 
In statistics, besides linear parametric regression, there also exist generalized linear models 
[Wik08b] and non-parametric regression methods [Wik08i], such as kernel regression 
[Wik08c]. Interested readers can refer to the wiki pages mentioned above and the references 
therein. 

 
1.3 Uncertainties and Feedback Mechanism 
By the discussions above, we shall emphasize that, in a certain sense, linear regression 
models are kernel of classical (discrete-time) adaptive control theory, which focuses to cope 
with the parametric uncertainties in linear plants. In recent years, parametric uncertainties 
in nonlinear plants have also gained much attention in the literature[MT95, Bos95, Guo97, 
ASL98, GHZ99, LQF03]. Reviewing the development of adaptive control, we find that 
parametric uncertainties were of primary interests in the study of adaptive control, no 
matter whether the considered plants are linear or nonlinear. Nonparametric uncertainties 
were seldom studied or addressed in the literature of adaptive control until some new areas 
on understanding limitations and capability of feedback control emerged in recent years. 
Here we mainly introduce the work initiated by Guo, who also motivated the authors’ 
exploration in the direction which will be discussed in later parts.  
Guo’s work started from trying to understand fundamental relationship between the 
uncertainties and the feedback control. Unlike traditional adaptive theory, which focuses on 
investigating closed-loop stability of certain types of adaptive controllers, Guo began to 
think over a general set of adaptive controllers, called feedback mechanism, i.e., all possible 
feedback control laws. Here the feedback control laws need not be restricted in a certain 
class of controllers, and any series of mappings from the space of history data to the space of 
control signals is regarded as a feedback control law. With this concept in mind, since the 
most fundamental concept in automatic control, feedback, aims to reduce the effects of the 
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plant uncertainty on the desired control performance, by introducing the set F of internal 
uncertainties in the plant and the whole feedback mechanism U, we wonder the following 
basic problems: 
1. Given an uncertainty set F, does there exist any feedback control law in U which can 
stabilize the plant? This question leads to the problem of how to characterize the maximum 
capability of feedback mechanism. 
2. If the uncertainty set F is too large, is it possible that any feedback control law in U cannot 
stabilize the plant? This question leads to the problem of how to characterize the limitations 
of feedback mechanism. 
 
The philosophical thoughts to these problems result in fruitful study [Guo97, XG00, ZG02, 
XG01, LX06, Ma08a, Ma08b]. 
The first step towards this direction was made in [Guo97], where Guo attempted to answer 
the following question for a nontrivial example of discrete-time nonlinear polynomial plant 
model with parametric uncertainty: What is the largest nonlinearity that can be dealt with 
by feedback? More specifically, in [Guo97], for the following nonlinear uncertain system 
 

                        (1.5) 
 

where θ  is the unknown parameter, b characterizes the nonlinear growth rate of the 
system, and { tw } is the Gaussian noise sequence, a critical stability result is found — system 
(1.5) is not a.s. globally stabilizable if and only if b ≥ 4. This result indicates that there exist 
limitations of the feedback mechanism in controlling the discrete-time nonlinear adaptive 
systems, which is not seen in the corresponding continuous-time nonlinear systems (see 
[Guo97, Kan94]). The “impossibility” result has been extended to some classes of uncertain 
nonlinear systems with unknown vector parameters in [XG99, Ma08a] and a similar result 
for system (1.5) with bounded noise is obtained in [LX06]. 
Stimulated by the pioneering work in [Guo97], a series of efforts ([XG00, ZG02, XG01, 
MG05]) have been made to explore the maximum capability and limitations of feedback 
mechanism. Among these work, a breakthrough for non-parametric uncertain systems was 
made by Xie and Guo in [XG00], where a class of first-order discrete-time dynamical control 
systems 
 

                                 (1.6) 
 

is studied and another interesting critical stability phenomenon is proved by using new 
techniques which are totally different from those in [Guo97]. More specifically, in [XG00], 
F(L) is a class of nonlinear functions satisfying Lipschitz condition, hence the Lipschitz 
constant L can characterize the size of the uncertainty set F(L). Xie and Guo obtained the 

following results: if  2
2
3
+≥L , then there exists a feedback control law such that for any 

f  F(L), the corresponding closed-loop control system is globally stable; and if 

2
2
3
+<L , then for any feedback control law and any 1

0 Ry ∈ , there always exists 
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some )(LFf ∈ such that the corresponding closed-loop system is unstable. So for system 

(1.6), the “magic” number  2
2
3
+  characterizes the capability and limits of the whole 

feedback mechanism. The impossibility part of the above results has been generalized to 
similar high-order discrete-time nonlinear systems with single Lipschitz constant [ZG02] 
and multiple Lipschitz constants [Ma08a]. From the work mentioned above, we can see two 
different threads: one is focused on parametric nonlinear systems and the other one is 
focused on non-parametric nonlinear systems. By examining the techniques in these threads, 
we find that different difficulties exist in the two threads, different controllers are designed 
to deal with the uncertainties and completely different methods are used to explore the 
capability and limitations of the feedback mechanism. 

 
1.4 Motivation of Our Work 
From the above introduction, we know that only parametric uncertainties were considered 
in traditional adaptive control and non-parametric uncertainties were only addressed in 
recent study on the whole feedback mechanism. This motivates us to explore the following 
problems: When both parametric and non-parametric uncertainties are present in the 
system, what is the maximum capability of feedback mechanism in dealing with these 
uncertainties? And how to design feedback control laws to deal with both kinds of internal 
uncertainties? Obviously, in most practical systems, there exist parametric uncertainties 
(unknown model parameters) as well as non-parametric uncertainties (e.g. unmodeled 
dynamics). Hence, it is valuable to explore answers to these fundamental yet novel 
problems. Noting that parametric uncertainties and non-parametric uncertainties essentially 
have different nature and require completely different techniques to deal with, generally it 
is difficult to deal with them in the same loop. Therefore, adaptive estimation and control in 
systems with parametric and non-parametric uncertainties is a new challenging direction. In 
this chapter, as a preliminary study, we shall discuss some basic ideas and principles of 
adaptive estimation in systems with both parametric and non-parametric uncertainties; as to 
the most difficult adaptive control problem in systems with both parametric and non-
parametric uncertainties, we shall discuss two concrete examples involving both kinds of 
uncertainties, which will illustrate some proposed ideas of adaptive estimation and special 
techniques to overcome the difficulties in the analysis closed-loop system. Because of 
significant difficulties in this new direction, it is not possible to give systematic and 
comprehensive discussions here for this topic, however, our study may shed light on the 
aforementioned problems, which deserve further investigation. 
The remainder of this chapter is organized as follows. In Section 2, a simple semi-parametric 
model with parametric part and non-parametric part will be introduced first and then we 
will discuss some basic ideas and principles of adaptive estimation for this model. Later in 
Section 3 and Section 4, we will apply the proposed ideas of adaptive estimation and 
investigate two concrete examples of discrete-time adaptive control: in the first example, a 
discrete-time first-order nonlinear semi-parametric model with bounded external noise 
disturbance is discussed with an adaptive controller based on information-contraction 
estimator, and we give rigorous proof of closed-loop stability in case where the uncertain 
parametric part is of linear growth rate, and our results reveal again the magic number 
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2
2
3
+ ; in the second example, another noise-free semi-parametric model with 

parametric uncertainties and non-parametric uncertainties is discussed, where a new 
adaptive controller based on a novel type of update law with deadzone will be adopted to 
stabilize the system, which provides yet another view point for the adaptive estimation and 
control problem for the semi-parametric model. Finally, we give some concluding remarks 
in Section 5. 

 
2. Semi-parametric Adaptive Estimation: Principles and Examples 
 
2.1 One Semi-parametric System Model 
Consider the following semi-parametric model 
 

kkkk fz εφφθτ ++= )(                                              (2.1) 
 
where θ   Θ denotes unknown parameter vector, f(·)  F denotes unknown function and 

kk Δ∈ε denote external noise disturbance. Here Θ, F and ∆k represent a priori knowledge 

on possible θ , )( kf φ  and kε , respectively. In this model, let 

 
 

then Eq. (2.1) becomes Eq. (1.1). Because each term of right hand side of Eq. (2.1) involves 
uncertainty, it is difficult to estimate θ , )( kf φ  and kε  simultaneously. 
Adaptive estimation problem can be formulated as follows: Given a priori knowledge on θ, 
f(·) and kε , how to estimate θ and f(·) according to a series of data { nkzkk ,,2,1;, L=φ } 
Or in other words, given a priori knowledge on θ and vk, how to estimate θ and vk according 
to a series of data { nkzkk ,,2,1;, L=φ }. 
Now we list some examples of a priori knowledge to show various forms of adaptive 
estimation problem. 
 
Example 2.1 As to the unknown parameter θ, here are some commonly-seen examples of a priori 
knowledge: 
• There is no any a priori knowledge on θ  except for its dimension. This means that θ can be 
arbitrary and we do not know its upper bound or lower bound. 

• The upper and lower bounds of θ are known, i.e. θθθ ≤≤ , where θ  and θ  are constant vector 
and the relationship “≤” means element-wise “less or equal”. 
• The distance between θ and a nominal θ0 is bounded by a known constant, i.e. ||θ − θ0 || ≤ rθ, 
where rθ  ≥ 0 is a known constant and θ0 is the center of set Θ. 
• The unknown parameter lies in a known countable or finite set of values, that is to say, θ  { θ1, θ2, 
θ 3, · · · }. 
Example 2.2 As to the unknown function f(·), here are some possible examples of a priori knowledge: 
• f(x) = 0 for all x. This case means that there is no unmodeled dynamics. 
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• Function f is bounded by other known functions, that is to say, )()()( xfxfxf ≤≤ for any x. 

• The distance between f and a nominal f0 is bounded by a known constant, i.e. ||f − f0|| ≤ rf , 
where rf  ≥ 0 is a known constant and f0 can be regarded as the center of a ball F in a metric functional 
space with norm || · ||. 
• The unknown function lies in a known countable or finite set of functions, that is to say, f  {f1, f2, 
f3, · · · }. 
• Function f is Lipschitz, i.e. ||)()( 2121 xxLxfxf −≤−  for some constant L > 0. 
• Function f is monotone (increasing or decreasing) with respect to its arguments. 
• Function f is convex (or concave). 
• Function f is even (or odd). 
Example 2.3 As to the unknown noise term kε , here are some possible examples of a priori 
knowledge: 
• Sequence kε = 0. This case means that no noise/disturbance exists. 

• Sequence kε  is bounded in a known range, that is to say, εεε ≤≤ k  for any k. One special case 

is εε −= . 

• Sequence kε is bounded by a diminishing sequence, e.g, 
kk
1|| ≤ε  for any k . This case means 

that the noise disturbance converges to zero with a certain rate. Other typical rate sequences include 

}1{ 2k
, }{ kδ  ( 10 << δ ), and so on. 

• Sequence kε is bounded by other known sequences, that is to say,  for any k. 
This case generalizes the above 
cases. 
• Sequence kε is in a known finite set of values, that is to say, },,,{ 21 Nk eee L∈ε . This case 
may happen in digital systems where all signals can only take values in a finite set. 
• Sequence kε is oscillatory with specific patterns, e.g. kε > 0 if k is even and kε < 0 if k is odd. 

• Sequence kε has some statistical properties, for example, 0=kEe , 22 σ=kEe ;; for another 

example, sequence { kε } is i.i.d. taken from a probability distribution e.g. )1,0(Uk ≈ε . 
 
Parameter estimation problems (without non-parametric part) involving statistical 
properties of noise disturbance are studied extensively in statistics, system identification 
and traditional adaptive control. However, we shall remark that other non-statistic 
descriptions on a priori knowledge is more useful in practice yet seldom addressed in 
existing literature. In fact, in practical problems, usually the probability distribution of the 
noise/disturbance (if any) is not known and many cases cannot be described by any 
probability distribution since noise/disturbance in practical systems may come from many 
different types of sources. Without any a priori knowledge in mind, one frequently-used way 
to handle the noise is to simply assume the noise is Gaussian white noise, which is 
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reasonable in a certain sense. But in practice, from the point of view of engineering, we can 
usually conclude the noise/disturbance is bounded in a certain range. This chapter will 
focus on uncertainties with non-statistical a priori knowledge. Without loss of generality, in 
this section we often regard kkk fv εφ += )(  as a whole part, and correspondingly, a priori 

knowledge on kv , (e.g. kkk vvv ≤≤ ), should be provided for the study. 

 
2.2 An Example Problem 
 
Now we take a simple example to show that it may not be appropriate to apply traditional 
identification algorithms blindly so as to get the estimate of unknown parameter. 
Consider the following system 
 

kkkk kfz εφθφ ++= ),(                                                (2.2) 
 
where θ, f(·) and kε  are unknown parameter, unknown function and unmeasurable noise, 
respectively. For this model, suppose that we have the following a priori knowledge on the 
system: 
• No a priori knowledge on θ is known. 
• At any step k, the term  is of form . Here  is an 
unknown sequence satisfying 0 ≤  ≤ 1. 
• Noise kε  is diminishing with . 
And in this example, our problem is how to use the data generated from model (2.2) so as to 
get a good estimate of true value of parameter θ. In our experiment, the data is generated by 
the following settings (k = 1, 2, · · · , 50): 
 

5=θ , 
10
k

k =φ , )|sinexp(|),( kk kkf φφ = , )5.0(1
−= kk k

αε  

 
where }{ kα  are i.i.d. taken from uniform distribution U(0, 1). Here we have N = 50 groups 

of data . 
Since model (2.2) involves various uncertainties, we rewrite it into the following form of 
linear regression  
 

                                                          (2.3) 
 
by letting 
 

kkk kfv εφ += ),( . 
 
From the a priori knowledge for model (2.2), we can obtain the following a priori knowledge 
for the term vk 
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where 
 

 
 

Since model (2.3) has the form of linear regression, we can use try traditional identification 
algorithms to estimate θ. Fig. 1 illustrates the parameter estimates for this problem by using 
standard LS algorithm, which clearly show that LS algorithm cannot give good parameter 
estimate in this example because the final parameter estimation error 

68284.5ˆ~
≈−= θθθ k  is very large. 

 

 
Fig. 1. The dotted line illustrates the parameter estimates obtained by standard least-squares 
algorithm. The straight line denotes the true parameter. 

 
One may then argue that why LS algorithm fails here is just because the term kv  is in fact 
biased and we indeed do not utilize the a priori knowledge on vk. Therefore, we may try a 
modified LS algorithm for this problem: let 
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then we can conclude that kkk wy += φθτ and ],[ kkk ddw −∈ , where ],[ kk dd− is a 
symmetric interval for every k. Then, intuitively, we can apply LS algorithm to data 
{ ),( kk zφ , k = 1, 2, · · · ,N}. The curve of parameter estimates obtained by this modified LS 
algorithm is plotted in Fig. 2. Since the modified LS algorithm has removed the bias in the a 
priori knowledge, one may expect the modified LS algorithm may give better parameter 
estimates, which can be verified from Fig. 2 since the final parameter estimation error 

83314.1ˆ~
−≈−= θθθ NN . In this example, although the modified LS algorithm can 

work better than the standard LS algorithm, the modified LS algorithm in fact does not help 
much in solving our problem since the estimation error is still very large comparing with the 
true value of the unknown parameter. 
 

 
Fig. 2. The dotted line illustrates the parameter estimates obtained by modified least-squares 
algorithm. The straight line denotes the true parameter. 
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From this example, we do not aim to conclude that traditional identification algorithms 
developed in linear regression are not good, however, we want to emphasize the following 
particular point: Although traditional identification algorithms (such as LS algorithm) are very 
powerful and useful in practice, generally it is not wise to apply them blindly when the matching 
conditions, which guarantee the convergence of those algorithms, cannot be verified or asserted a 
priori. This particular point is in fact one main reason why the so-called minimum-variance 
self tuning regulator, developed in the area of adaptive control based on the LS algorithm, 
attracted several leading scholars to analyze its closed-loop stability throughout past 
decades from the early stage of adaptive control. 
To solve this example and many similar examples with a priori knowledge, we will propose 
new ideas to estimate the parametric uncertainties and the non-parametric uncertainties. 

 
2.3 Information-Concentration Estimator 
We have seen that there exist various forms of a priori knowledge on system model. With the 
a priori knowledge, how can we estimate the parametric part and the non-parametric part? 
Now we introduce the so-called information-concentration estimator. The basic idea of this 
estimator is, the a priori knowledge at each time step can be regarded as some constraints of 
the unknown parameter or function, hence the growing data can provide more and more 
information (constraints) on the true parameter or function, which enable us to reduce the 
uncertainties step by step. We explain this general idea by the simple model 
 

                                                         (2.4) 
 
with a priori knowledge that kk

d VR ∈⊆Θ∈ υθ , . Then, at k-th step (k ≥1), with the 

current data k, kk z,φ we can define the so-called information set Ik at step k: 
 

                                            (2.5) 
 

For convenience, let I0 = Θ. Then we can define the so-called concentrated information set Ck at 
step k as follows 
 

                                                             (2.6) 
 

which can be recursively written as 
 

                                                   (2.7) 
 

with initial set C0 = Θ. Eq. (2.7) with Eq. (2.5) is called information-concentration estimator 
(short for IC estimator) throughout this chapter, and any value in the set kC  can be taken as 

one possible estimate of unknown parameter θ  at time step k . The IC estimator differs 
from existing parameter identification in the sense that the IC estimator is in fact a set-
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valued estimator rather than a real-valued estimator. In practical applications, generally 

kC is a domain in dR , and naturally we can take the center point of  kC  as kθ̂ . 
Remark 2.1 The definition of information set varies with system model. In general cases, it can be 
extended to the set of possible instances of θ  (and/or f ) which do not contradict with the data at 
step k. We will see an example involving unknown f in next section. 
From the definition of the IC estimator, the following proposition can be obtained without 
difficulty: 
 
Proposition 2.1 Information-concentration estimator has the following properties: 
 
(i) Monotonicity: L⊇⊇⊇ 210 CCC  
 

(ii) Convergence: Sequence {Ck} has a limit set kk
CC

∞

=∞ ∩=
1

; 

 

(iii) If the system model and the a priori knowledge are correct, then  must be a non-empty set 
with property θ   and any element of  can match the data and the model; 
 

(iv) If ∅=∞C , then the data  },{ kk zφ  cannot be generated by the system model used by the IC 
estimator under the specified a priori knowledge. 

 
Proposition 2.1 tells us the following particular points of the IC estimator: property (i) 
implies that the IC estimator will provide more and more exact estimation; property (ii) 
means that the there exists a limitation in the accuracy of estimation; property (iii) means 
that true parameter lies in every kC  if the system model and a priori knowledge are correct; 
and property (iv) means that the IC estimator provides also a method to validate the system 
model and the a priori knowledge. Now we discuss the IC estimator for model (2.4) in more 
details. In the following discussions, we only consider a typical a priori knowledge on 

kkk vvv ≤≤  are two known sequences of vectors (or scalars). 

 
2.3.1 Scalar case: d = 1 
By Eq. (2.5), we have 
 

 
 
Solving the inequality in Ik, we obtain that 
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and consequently, if 0≠kφ , then we have 
 

 
 
where 
 

 
 
Here sign(x) denotes the sign of x: sign(x) = 1, 0,−1 for positive number, zero, and negative 
number, respectively. Then, by Eq. (2.7), we can explicitly obtain that 
 

 
 

where  and  can be recursively obtained by 
 

 
 

 
Fig. 3. The straight line may intersect the polygon V and split it into two sub-polygons, one 
of which will become new polygon V'. The polygon V' can be efficiently calculated from the 
polygon V. 
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2.3.2 Vector case: d > 1 
In case of d > 1, since θ and kφ  are vectors, we cannot directly obtain explicit solution of 
inequality 
 

                                          (2.8) 
 
Notice that Eq. (2.8) can be rewritten into two separate inequalities: 
 

 
 

we need only study linear equalities of the form cT ≤θφ . Generally speaking, the solution 
to a system of inequalities represents a polyhedral (or polygonal) domain in Rd, hence we 
need only determine the vertices of the polyhedral (or polygonal) domain. In case of d = 2, it 

is easy to graph linear equalities since every inequality cT ≤θφ represents a half-plane. In 

general case, let { }kik piv ,,2,1, L=/= υ denote the distinct vertices of the domain kC  

and kp denote the number of vertices of domain kC , then we discuss how to deduce kV  

from 1−kV . The domain kC  has two more linear constraints than the domain 1−kC  
 

 
 

with  
 

 
 

We need only add these two constraints one by one, that is to say,  
 

 
 
where  is an algorithm whose function is to add linear constraint 

cT ≤θφ  to the polygon represented by vertex set V and to return the vertex set of the new 
polygon with added constraint. 
 
Now we discuss how to implement the algorithm AddLinearConstraint. 
 

2D Case: In case of d = 2, cT ≤θφ  represents a straight line which splits the plane into two 
half-planes (see Fig. 3). In this case, we can use an efficient algorithm 
AddLinearConstraint2D which is listed in Algorithm 1. Its basic idea is to simply test each 
vertex of V to see whether to keep original vertex or generate new vertex. The time 
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complexity of Algorithm 1 is O(s), where s is the number of vertices of domain V. Note that 

it is possible that V' = Ø if the straight line L : cT ≤θφ does not intersect with the polygon 

V and any vertex iP  of polygon V does not satisfy cPi
T >φ . And the vertex number of 

polygon 'V  can in fact vary within the range from 0 to s according to the geometric 
relationship between the straight line L and the polygon V. 
 

 
 

High-dimensional Case: In case of d > 2, cT ≤θφ  represents a hyperplane which splits 
the whole space into two half-hyperplanes. 
Unlike in case of d = 2, the vertices in this case generally cannot be arranged in a certain 
natural order (such as clock-wise order). In this case, we can use an algorithm 
AddLinearConstraintND which is listed in Algorithm 2. The idea of this algorithm is to 
classify the vertices of V first according to their relationship with the hyperplane determined 

by hyperplane cT ≤θφ . 
 

Algorithm 2 AddLinearConstraintND(V, ", c): Add linear constraint cT ≤θφ  (" % Rd) to a 
polyhedron V 
 
2.3.3 Implementation issues 
In the IC estimator, the key problem is to calculate the information set Ik or the concentrated 
information set Ck at every step. From the discussions above, we can see that it is easy to 
solve this basic problem in case of d = 1. However, in case of d > 1, generally the vertex 
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number of domain kC  may grow as  ∞→k . Therefore, it may be impractical to 
implement the IC estimator in case of d > 1 since it may require growing memory as 

∞→k  To overcome this problem, noticing the fact that the domain Ck will shrink 
gradually as ∞→k  in order to get a feasible IC estimate of the unknown parameter 
vector, generally we need not use too many vertices to represent the exact concentrated 
information set Ck. That is to say, in practical implementation of IC estimator in high-
dimensional case, we can use a domain Ĉk with only a small number (say up to M) of 
vertices to approximate the exact concentrated information set Ck. With such an idea of 
approximate IC estimator, the issue of computational complexity will not hinder the 
applications of IC estimator. 
We consider two typical cases of approximate IC estimator. One typical case is that   

for any k, and the other case is that  for any k. Let  kk
CC ˆˆ

1

∞

=∞ ∩= , then in the 

former case (called loose IC estimator, see Fig. 4), we must have 
 

 
 
which means that we will never mistakenly exclude the true parameter from the 
concentrated approximate information sets; while in the latter case (called tight IC estimator, 
see Fig. 5), we must have 
 

 
 

which means that the true parameter may be outside of ∞Ĉ however any value in ∞Ĉ can 
be served as good estimate of true parameter. 
 

 
Fig. 4. Idea of loose IC estimator: The polygon P1P2P3P4P5 can be approximated by a triangle 
Q1P4Q2. Here M = 3. 
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Fig. 5. Idea of tight IC estimator: The polygon P1P2P3P4P5 can be approximated by a triangle 
P3P4P5. Here M = 3. 

 
Now we discuss implementation details of tight IC estimator and loose IC estimator. Without 
loss of generality, we only explain the ideas in case of d = 2. Similar ideas can be applied in 
cases of d > 2 without difficulty. 
 
Tight IC estimator: To implement a tight IC estimator, one simple approach is to modify 
Algorithm 1 so as it just keeps up to M vertices in the queue Q. To get good approximation, 
in the loop of Algorithm 1, it is suggested to abandon the generated vertex 'P (in Line 12 of 
Algorithm 1) which is very close to existing vertex Pj (let j = i if δi < 0 and δi−1 > 0 or j = i − 1 
if δi > 0 and δi−1 < 0). The closeness between P´ and existing vertex Pj can be measured by 
checking the corresponding weight w . 
Loose IC estimator: To implement a loose IC estimator, one simple approach is to modify 
Algorithm 1 so as it can generate M vertices which surround all vertices in the queue Q. To 
this end, in the loop of Algorithm 1, if the generated vertex 'P  (in Line 12 of Algorithm 1) is 
very close to existing vertex Pj (let j = i if δi < 0 and δi−1 > 0 or j = i − 1 if δi > 0 and δi−1 < 0), 
we can simply append vertex Pj instead of P´ to queue Q. In this way, we can avoid 
increasing the vertex number by generating new vertices. The closeness between P´ and 
existing vertex Pj can be measured by checking the corresponding weight w. 
Besides the ideas of tight or loose IC estimator, to reduce the complexity of IC estimator, we 
can also use other flexible approaches. For example, to avoid growth in the vertex number of 
Vk as , we can approximate Vk by using a simple outline rectangle (see Fig. 6) every 
certain steps. For a polygon Vk with vertices P1, P2, · · · , Ps, we can easily obtain its outline 
rectangle by algorithm FindPolygonBounds listed in Algorithm 3. Here for convenience, the 
operators max and min for vectors are defined element-wisely, i.e. 
 

 
 

where   are two vectors in Rn.  
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Fig. 6. Idea of outline rectangle: The polygon 54321 PPPPP  can be approximated by an 

outline rectangle. In this case, 11, BB  denote the lower bound and upper bound in the x-

axis (1st component of each vertex), and  22 , BB  denote the lower bound and upper bound 
in the y-axis (2nd component of each vertex) 

 
2.4 IC Estimator vs. LS Estimator 
 
2.4.1 Illustration of IC Estimator 
Now we go back to the example problem discussed before. For this example, kφ  and zk are 
scalars, hence we need only apply the IC estimator introduced in Section 2.3.1. Since IC 
estimator yields concentrated information set kC  at every step, we can take any value in 
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kC  as parameter estimate of true parameter. In this example, kC  is an interval at every 
step step. For comparison with other parameter estimation methods, we simply take 

)(
2
1ˆ

kkk bb +=θ , i.e. the center of interval kC , as the parameter estimate at step k. 

In Fig. 7, we plot three curves kb , kb and kθ̂ . From this figure, we can see that, for this 

particular example, with the help of a priori knowledge, the upper estimates kb  and lower 
estimates kb  given by the IC estimator converge to true parameter θ = 5 quickly, and 

consequently kθ̂  also converges to true parameter. 
 

 
Fig. 7. This figure illustrates the parameter estimates obtained by the proposed information-

concentration estimator. The upper curve and lower curve represent the upper bounds kb  
and lower bounds kb  for the parameter estimates. We use the center curve     

( )kkk bb +=
2
1θ̂  to yield the parameter estimates. 

 
We should also remark that the parameter estimates given by the IC estimator are not 
necessarily convergent as in this example. Whether the IC parameter estimates converge 
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largely depend on the accuracy of a priori knowledge and the richness of the practical data. 
Note that the IC estimator generally does not require classical richness concepts (like 
persistent excitation) which are useful in the analysis of traditional recursive identification 
algorithms. 

 
2.4.2 Advantages of IC Estimator 
We have seen practical effects of IC estimator for the simple example given above. Why can 
it perform better than the LS estimator? Roughly speaking, comparing with traditional 
identification algorithm like LS algorithm, the proposed IC estimator has the following 
advantages: 
 
1. It can make full use of a priori information and posterior information. And in the ideal 
case, no information is wasted in the iteration process of the IC estimator. This property is 
not seen in traditional identification algorithms since only partial information and certain 
stochastic a priori knowledge can be utilized in those algorithms. 
2. It does not give single parameter estimate at every step; instead, it gives a (finite or 
infinite) set of parameter estimates at every step. This property is also unique since 
traditional identification algorithms always give parameter estimates directly. 
3. It can gradually find out all (or most) possible values of true parameters; and this 
property can even help people to check the consistence between the practical data and the 
system model with a priori knowledge. This property distinguishes traditional identification 
algorithms in sense that traditional identification algorithms generally have no mechanism 
to validate the correctness of the system model. 
4. The a priori knowledge can vary from case to case, not necessarily described in the 
language of probability theory or statistics. This property enables the IC estimator to handle 
various kinds of non-statistic a priori knowledge, which cannot be dealt with by traditional 
identification algorithms. 
5. It has great flexibilities in its implementation, and its design is largely determined by the 
characteristics of a priori knowledge. The IC estimator has only one basic principle—information 
concentration! Any practical implementation approach using such a principle can be 
regarded as an IC estimator. We have discussed some implementation details for a certain 
type of IC estimator in last subsection, which have shown by examples how to design the IC 
estimator according the known a priori knowledge and how to reduce computational 
complexity in practical implementation. 
6. Its accuracy will never degrade as time goes by. Generally speaking, the more steps 
calculated, the more data involved, and the more accurate the estimates are. Generally 
speaking, traditional identification algorithms can only have similar property (called strong 
consistency) under certain matching conditions. 
7. The IC estimator can not only provide reasonably good parameter estimates but also tell 
people how accurate these estimates are. In our previous example, when we use 

( )kkk bb +=
2
1θ̂ as the parameter estimate, we know also that the absolute parameter 

estimation error  θθθ −= ˆ~   will not exceed ( )kk bb +
2
1 . In some sense, such a property 

may be conceptually similar to the so-called confidence level in statistics. 
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2.4.3 Disadvantages of IC Estimator 
Although the IC estimator has many advantages over traditional identification algorithms, it 
may have the following disadvantages: 
 
1. The proposed IC estimator is relatively difficult to incorporate stochastic a priori 
knowledge on noise term, especially unbounded random noise. In fact, in such cases 
without non-parametric uncertainties, traditional identification algorithms like LS algorithm 
may be more suitable and efficient to estimate the unknown parameter. 
2. The efficiency of IC estimator largely depends on its implementation via the 
characteristics of the a priori knowledge. Generally speaking, the IC estimator may involve a 
little more computation operations than recursive identification algorithms like LS 
algorithm. We shall remark also that this point is not always true since the numerical 
operations involved in the IC estimator are relatively simple (see algorithms listed before), 
while many traditional identification algorithms may involve costly numerical operations 
like matrix product, matrix inversion, etc. 
3. Although the IC estimator has simple and elegant properties such as monotonicity and 
convergence, due to its nature of set-valued estimator, no explicit and recursive expressions can 
be given directly for the IC parameter estimates, which may bring mathematical difficulties 
in the applications of the IC estimator. However, generally speaking, we also know that 
closed-loop analysis for adaptive control using traditional identification algorithms is not 
easy, too. 
 
Summarizing the above, we can conclude that the IC estimator provides a new approach or 
principle to estimate parametric and even non-parametric uncertainties, and we have shown 
that it is possible to design efficient IC estimator according to characteristics of a priori 
knowledge. 

 
3. Semi-parametric Adaptive Control: Example 1 
 
In this section, we will give a first example of semi-parametric adaptive control, whose 
design is essentially based on the IC estimator introduced in last section. 

 
3.1 Problem Formulation 
Consider the following system 
 

                                 (3.1) 
 

where yt, ut and wt are the output, input and noise, respectively; )()( LFf ∈⋅  is an 

unknown function (the set F(L) will be defined later) and θ  is an unknown parameter. To 
make further study, the following assumptions are used throughout this section: 
Assumption 3.1 The unknown function RRf →: belongs to the following uncertainty set 
 

                              (3.2) 
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where c is an arbitrary non-negative constant. 
Assumption 3.2 The noise sequence }{ tw is bounded, i.e. 
 

 
 
where w is an arbitrary positive constant. 

Assumption 3.3 The tracking signal }{ *
ty  is bounded, i.e. 

 

                                                   (3.3) 
where S is a positive constant. 
Assumption 3.4 In the parametric part tθφ , we have no any a priori information of the unknown 

parameter θ, but )( tt yg=φ is measurable and satisfies 
 

                                          (3.4) 
 

for any 21 xx ≠ , where M' ≤ M are two positive constants and 1≥b is a constant. 
Remark 3.1 Assumption 3.4 implies that function g(·) has linear growth rate when b = 1. Especially 
when g(x) = x, we can take M = M' = 1. Condition (3.4) need only hold for sufficiently large x1 and 
x2, however we require it holds for all x1 ≠ x2 to simplify the proof. We shall also remark that Sokolov 
[Sok03] has ever studied the adaptive estimation and control problem for a special case of model (3.1), 
where tφ  is simply taken as tay . 
Remark 3.2 Assumption 3.4 excludes the case where g(·) is a bounded function, which can be 
handled easily by previous research. In fact, in that case 11' ++ += ttt ww θφ  must be bounded, 

hence by the result of [XG00], system (3.1) is stabilizable if and only if  2
2
3
+<L . 

 
3.2 Adaptive Controller Design 
In the sequel, we shall construct a unified adaptive controller for both cases of b =1 and b >1.  
For convenience, we introduce some notations which are used in later parts. Let I = [a, b] be 

an interval, then )(
2
1)( baIm +=

Δ

 (a+ b) denotes the center point of interval I, and    

( ) abIr −=
Δ

2
1

denotes the radius of interval I. And correspondingly, we let    

( ) [ ]δδδ +−= xxxI ,,  denote a closed interval centered at Rx∈  with radius δ ≥ 0. 
 
Estimate of Parametric Part: At time t, we can use the following information: y0, y1, · · · , yt, 
u0, u1, · · · , ut−1  and tφφφ ,,, 21 L . Define 
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                                                       (3.5) 
 
and 
 

                    (3.6) 
 
where 
 

                              (3.7) 
 
then, we can take 
 

                                     (3.8) 
 

as the estimate of parameter θ at time t and corresponding estimate error bound, 

respectively. With  and δt defined above, ttt δθθ += ˆ  and ttt δθθ −= ˆ  are the 

estimates of the upper and lower bounds of the unknown parameter θ , respectively. 

According to Eq. (3.6), obviously we can see that }{ tθ  is a non-increasing sequence and 

}{ tθ  is non-decreasing. 
Remark 3.3 Note that Eq. (3.6) makes use of a priori information on nonlinear function f(·). This 
estimator is another example of the IC estimator which demonstrates how to design the IC estimator 
according to the Lipschitz property of function f(·). With similar ideas, the IC estimator can be 
designed based on other forms of a priori information of function f(·). 
Estimate of Non-parametric Part: Since the non-parametric part )( tyf may be unbounded 
and the parametric part is also unknown, generally speaking it is not easy to estimate the 
non-parametric part directly. To resolve this problem, we choose to estimate 
 

 
 

as a whole part rather than to estimate f(yt) directly. In this way, consequently, we can 
obtain the estimate of f(yt) by removing the estimate of parametric part from the estimate of 
gt. 
Define 
 

                                                   (3.9) 
 

then, we get 
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             (3.10) 
 

Thus, intuitively, we can take 
 

                (3.11) 
 

as the estimate of tg  at time t . 
 
Design of Control ut: Let 
 

                                     (3.12) 
 

Under Assumptions 3.1-3.4, we can design the following control law 
 

                        (3.13) 
 

where D is an appropriately large constant, which will be addressed in the proof later. 
Remark 3.4 The controller designed above is different from most traditional adaptive controllers in 
its special form, information utilization and computational complexity. To reduce its computational 
complexity, the interval It given by Eq. (3.6) can be calculated recursively based on the idea in Eq. 
(3.12). 

 
3.3 Stability of Closed-loop System 
In this section, we shall investigate the closed-loop stability of system (3.1) using the 
adaptive controller given above. We only discuss the case that the parametric part is of 
linear growth rate, i.e. b = 1. For the case where the parametric part is of nonlinear growth 
rate, i.e. b > 1, though simulations show that the constructed adaptive controller can stabilize 
the system under some conditions, we have not rigorously established corresponding 
theoretical results; further investigation is needed in the future to yield deeper 
understanding. 

 
3.3.1 Main Results 
The adaptive controller constructed in last section has the following property: 

Theorem 3.1 When 2
2
3

'
,1 +<=

M
MLb , the controller defined by Eqs. (3.5)— (3.13) can 

guarantee that the output {yt} of the closed-loop system is bounded. More precisely, we have  
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                                 (3.14) 
 

Based on Theorem 3.1, we can classify the capability and limitations of feedback mechanism 
for the system (3.1) in case of b = 1 as follows: 
Corollary 3.1 For the system (3.1) with both parametric and non-parametric uncertainties, the 
following results can be obtained in case of b = 1: 
 

(i) If 2
2
3

'
,1 +<=

M
MLb , then there exists a feedback control law guaranteeing that the closed-

loop system is stabilized. 

(ii) When tt y=φ  (i.e. xxg =)( ), the presence of uncertain parametric part tθφ  does not reduce 

the critical value 2
2
3
+ of the feedback mechanism which is determined by the uncertainties of 

non-parametric part. 
 
Proof of Corollary 3.1: (i) This result follows from Theorem 3.1 directly. (ii) When g(x) = x, we 
can take M = M´ = 1. In this case, the sufficiency can be immediately obtained via Theorem 
3.1; on the other hand, the necessity can be obtained by the “impossibility” part of Theorem 

1 in [XG00]. In fact, if 2
2
3
+≥L , for any given control law {ut}, we need only take the 

parameter θ = 0, then by [XG00, Theorem 2.1], there exists a function f such that system (3.1) 
cannot be stabilized by the given control law.  
Remark 3.5 As we have mentioned in the introduction part, system (1.6), a special case of system 
(3.1), has been studied in [XG00]. Comparing system (3.1) and system (1.6), we can see that system 
(3.1) has also parametric uncertainty besides nonparametric uncertainty and noise disturbance. 
Hence intuitively speaking, it will be more difficult for the feedback mechanism to deal with 
uncertainties in system (3.1) than those in system (1.6). Noting that M'≤  M, we know this fact has 
been partially verified by Theorem 3.1. And Corollary 3.1 (ii) indicates that in the special case of 

tt y=φ , since the structure of parametric part is completely determined, the uncertainty in non-
parametric part becomes the main difficulty in designing controller, and the parametric uncertainty 
has no influence on the capability of the feedback mechanism, that is to say, the feedback mechanism 

can still deal with the non-parametric uncertainty characterized by the set F(L) with 2
2
3
+<L . 

Remark 3.6 Theorem 3.1 is also consistent with classic results on adaptive control for linear systems. 
In fact, when L = 0, the non-parametric part f(yt) vanishes, consequently system (3.1) becomes a 
linear-in-parameter system 
 

11 ++ ++= tttt wuy θφ                                                 (3.15) 
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where θ  is the unknown parameter, and )( tt yg=φ  can have arbitrary linear growth rate because 

by Theorem 3.1, we can see that no restrictions are imposed on the values of M  and 'M when L = 
0. Based on the knowledge from existing adaptive control theory [CG91], system (3.15) can be always 
stabilized by algorithms such as minimum-variance adaptive controller no matter how large the θ  is. 
Thus the special case of Theorem 3.1 reveals again the well-known result in a new way, where the 
adaptive controller is defined by Eq. (3.13) together with Eqs. (3.5)—(3.12). 

Corollary 3.2 If b = 1, 0,2
2
3

'
==+< wc

M
ML

, then the adaptive controller defined by Eqs. 

(3.5)— (3.13) can asymptotically stabilize the corresponding noise-free system, i.e. 
 

                                               (3.16) 

 
3.3.2 Preliminary Lemmas 
To prove Theorem 3.1, we need the following Lemmas: 
Lemma 3.1 Assume {xn} is a bounded sequence of real numbers, then we must have 
 

                                             (3.17) 
 

Proof: It is a direct conclusion of [XG00, Lemma 3.4]. It can be proved by argument of 
contradiction.  

Lemma 3.2 Assume that 0,0),2
2
3,0( 0 ≥≥+∈ ndL . If non-negative sequence {hn, n ≥ 0} 

satisfies 
 

                      (3.18) 
 

where Rxxx ∈∀=
Δ

+ ),0,max( , then we must have 
 

                                                (3.19) 
 
Proof: See [XG00, Lemma 3.3].  

 
3.3.3 Proof of Theorem 3.1 
Proof of Theorem 3.1: We divide the proof into four steps. In Step 1, we deduce the basic 
relation between yt+1 and , and then a key inequality describing the upper bound of 

||
tit yy −  is established in Step 2. Consequently, in Step 3, we prove that 0|| →−

tit yy  
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as ∞→t  if yt is not bounded, and hence the boundedness of output sequence {yt} can be 
guaranteed. Finally, in the last step, the bound of tracking error can be further estimated 
based on the stability result obtained in Step 3. 
Step 1: Let 
 

                       (3.20) 
 

then, by definition of ut and Eq. (3.13), obviously we get 
 

                          (3.21) 
 

Now we discuss #
1+ty . By Eq. (3.11) and Eq. (3.1), we get 

 
 
 
 

(3.22) 
 
 
 
 
 
 
In case of 

tit φφ = , i.e. yt = yit , obviously we get 

 

                           (3.23) 
 
otherwise, we get 
 

                  (3.24) 
 

where 
 

      
 

Obviously jiij DD = . In the latter case, i.e. when 
tit φφ ≠ , for any tJji ∈),( , noting that 
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                       (3.25) 
 

we obtain that 
 

                      (3.26) 
 
Therefore 
 

            (3.27) 
 

where 
 

                                      (3.28) 
 

Step 2: Since 2
2
3

'
+<

M
ML

, there exists a constant 0>ε such that 2
2
3

'
+<+ε

M
ML

.  

 
Let 
 

                           (3.29) 
 
and consequently 
 

                    (3.30) 
 

By the definitions of  tb , tb  and tB , we obtain that 
 

           (3.31) 
 
By the definition of ti , obviously we get 
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                          (3.32) 
 

Step 3: Based on Assumption 3.4, for any fixed 0>ε , we can take constants D andD´ such 

that  
ε

φφ )2(4|| ' cwMDji
+

>>−  when Dyy
tit >− || . Now we are ready to show that for 

any s > 0, there always exists t > s such that Dyy
tit >− ||  . 

 
In fact, suppose that it is not true, then there must exist s > 0 such that Dyy

tit >− || for 

any t > s, correspondingly itt φφ − > D´. Consequently, by the definition of D, for 

sufficiently large t and j < t, we obtain that 
 

                                      (3.33) 
 

together with the definition of tθ̂ , we know that for any s < i < j < t, 
 

                           (3.34) 
 

hence for jiitjs =<< , , we get 

 

                        (3.35) 
 

Now we consider 
jt ijit DD ,, − . 

Let 
ninn Dd ,= , then, by the definition of Di,j , noting that Dyyyy

jijij >−≥− |||| for 

any j > s, we obtain that 
 

                          (3.36) 
 

so we can conclude that {dn, n > s} is bounded. Then, by Lemma 3.1, we conclude that 
 

                                       (3.37) 
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Consequently there exists s´ > s such that for any t > s´, we can always find a corresponding 
j=j(t) satisfying 
 

                                            (3.38) 
 

Summarizing the above, for any t > s´, by taking j = j(t), we get 
 
  
 
 

                            (3.39) 
 
 
 
 
Therefore 
 

              (3.40) 
 

Since |yt − yit | > D, we know that 
 

                                                (3.41) 
 

From Eq. (3.39) together with the result in Step 2, we obtain that 
 

              (3.42) 
 

Thus noting (3.40), we obtain the following key inequality: 
 

                            (3.43) 
 
where 
 

                    (3.44) 
 

Considering the arbitrariness of t > s´, together with Lemma 3.2, we obtain that 
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                                                           (3.45) 
 
and consequently { || tB } must be bounded. By applying Lemma 3.1 again, we conclude 
that 
 

                                           (3.46) 
 
which contradicts the former assumption! 
Step 4: According to the results in Step 3, for any s > 0, there always exists t > s such that 

Dyy
tit ≤− || . Then, we can easily obtain that { |~| tθ } is bounded, say '|~| Lt ≤θ . 

Considering that 
 

                 (3.47) 
 

we can conclude that 
 

                    (3.48) 
 

where . 
The proof below is similar to that in [XG00]. Let 
 

                   (3.49) 
 

Because of the result obtained above, we conclude that for any n ≥ 1, tn is well-defined and tn 
< ∞. Let 

ntn yv = , then obviously {vn} is bounded. Then, by applying Lemma 3.1, we get 

 

                                                       (3.50) 
 

as ∞→n . Thus for any 0>ε , there exists an integer n0 such that for any n > n0, 
  

                                                    (3.51) 
  

So 
 

               (3.52) 
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By taking ε  sufficiently small, we obtain that 
 

                     (3.53) 
 

for any n > n0. 
Thus based on definition of tn, we conclude that tn+1 = tn + 1! Therefore for any 

0ntt ≥ , 

 
                                                        (3.54) 

 
which means that the sequence {yt} is bounded. 
Finally, by applying Lemma 3.1 again, for sufficiently large t, ε≤− ||

tit yy consequently 

 

                        (3.55) 
 
Because of arbitrariness of ε , Theorem 3.1 is true.  

 
3.4 Simulation Study 
In this section, two simulation examples will be given to illustrate the effects of the adaptive 
controller designed above. In both simulations, the tracking signal is taken as 

10
sin10* tyt =  and the noise sequence is i.i.d. randomly taken from uniform distribution 

U(0, 1). The simulation results for two examples are depicted in Figure 8 and Figure 9, 
respectively. In each figure, the output sequence  and the reference sequence  are 

plotted in the top-left subfigure; the tracking error sequence *
ttt yye −=

Δ

 is plotted in the 

bottom-left subfigure; the control sequence tu  is plotted in the top-right subfigure; and the 
parameter θ together with its upper and lower estimated bounds is plotted in the bottom-
right subfigure. 
Simulation Example 1: This example is for case of b = 1, and the unknown plant is 
 

                     (3.56) 
 

with  xxgL =+<= )(,2
2
39.2  (i.e. 1',1 === MMb ) 

 
and 
 

                                  (3.57) 
 

For this example, we can verify that 
 



Adaptive Estimation and Control for Systems with Parametric and Nonparametric Uncertainties 

 

51 

           (3.58) 
 

consequently |||)()(| yxLyfxf −<− , i.e. )()( LFf ∈⋅ .. 
Simulation Example 2: This example is for case of b > 1, and the unknown plant is 
 

                  (3.59) 
 

with  9.2=L , 2)( xxg =  (i.e. 2=b , 1' == MM ), and 
 

                                                (3.60) 
 
For this example, we can verify that  2|||)()(| +−<− yxLyfxf , i.e. )()( LFf ∈⋅ . 
From the simulation results, we can see that in both examples, the adaptive controller can 
track the reference signal successfully. The simulation study verified our theoretical result 
and indicate that under some conditions, the adaptive control law constructed in this paper 
can deal with both parametric and non-parametric uncertainties, even in some cases when 
the parametric part is of nonlinear growth rate. In case of b = 1, the stabilizability criteria 
have been completely characterized by a simple algebraic condition; however, in case of b > 
1, it is very difficult to give complete theoretical characterization. Note that usually more 
accurate estimate of parameter can be obtained in case of b > 1 than in case of b = 1, 
however, worse transient performance may be encountered. 
 

 
Fig. 8. Simulation example 1: (g(x) = x, b = 1,M = M´ = 1) 
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Fig. 9. Simulation example 2: (g(x) = x2, b = 2,M = M´ = 1) 

 
4. Semi-parametric Adaptive Control: Example 2 
 
In this section, we shall give another example of adaptive estimation and control for a semi-
parametric model. Although the system considered in this section is similar to the model 
considered in last section, there are several particular points in this example: 
 
• The controller gain in this model is also unknown with a priori knowledge on its sign and 
its lower bound. 

• The system is noise-free, and correspondingly the asymptotic tracking is rigorously 
established in this example. 

• The algorithm in this example has a form of gradient algorithm, however, it partially 
makes use of a priori knowledge on the non-parametric part. 

• Due to the limitation of this algorithm and technical difficulties, unlike the algorithm in 
last section, we can only establish stability of the closed-loop system under condition 

5.00 << L  for the parametric part, which is much stronger than the condition 

2
2
30 +<≤ L

. 

 
This example is given here only for the purpose of demonstrating that there exist other 
possible ways to make use of a priori knowledge on the parametric uncertainties and non-
parametric uncertainties. By comparing the examples in this section and last section, the 
readers may get a deeper understanding to adaptive estimation and control problems for 
semi-parametric models. 
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4.1 Problem Formulation 
 
We consider the following system model 
 

                                 (4.1) 
  

where 1Ryk ∈  and 1Ruk ∈  are output and control signals, respectively. Here 1R∈θ is 

the unknown parameter, 1Rb∈ is the unknown controller gain, )(⋅Φ is a known function, 
and f(·) is the unknown function. We have the following a priori knowledge on the real 
system: 
 
Assumption 4.1 The nonparametric uncertain function f(·) is Lipschitz, i.e., 

RxxxxLxfxf ∈∀−≤− 212121 ,||,||||)()(|| , where L < 0.5. The known function )(⋅Φ is also a 
Lipschitz function with Lipschitz constant L. 
 
Assumption 4.2 The sign of unknown controller gain b is known. Without loss of generality, we 
assume that 0>≥ bb  where b is a known constant. 
 

Assumption 4.3 The reference signal *
ky is a known bounded deterministic signal. 

The control objective is to design the control law ku  such that the output signal yk 

asymptotically tracks a bounded reference trajectory *
ky  and all the closed-loop signals are 

guaranteed to be bounded. 

 
4.2 Adaptive Control Design 
To design the adaptive controller, the following notations will be used throughtout this 
section: 
 

                                        (4.2) 
 

Obviously, at time step k, with the history information {yj , j ≤ k} and the a priori knowledge, 
the index kl  and the tracking error ke  are available. Later we will see important roles of 

kl and ke in the controller design. 
 
Estimation of parametric part: The estimates of the parameter θ  and the controller gain b at 

time step k are denoted by  and , respectively. We design the following adaptive 
update law to update the parameter estimates recursively: 
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where 10 << γ  and the coefficient ka  is defined by a time-varying deadzone: 

 

                    (4.4) 
 
Estimation of non-parametric part: As in last section, we do not estimate the non-
parametric part directly. Instead, we try to estimate  the parametric  part  and  non-
parametric part  as a  whole part 
 

                                         (4.5) 
 

Noticing of the system model (4.1), we know that 
 

                                                  (4.6) 
 

consequently, from Eqs. (4.5) and (4.6), it is easy to derive 
 
  
 

                       (4.7) 
 
 
 
Since function f(·) is unknown and parameters θ  and b are unknown, we simply estimate 

#
ky  by the following eqution 

 

                 (4.8) 
 

where  and  are regarded as true parameters, and the unknown term 
)()(

klk yfyf −  in Eq. (4.7) is simply dropped off. 
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Adaptive control law: By Eq. (4.6), according to the certainty equivallence principle, we can 
design the following adaptive control law 
 

                                              (4.9) 
 

Where kb̂  and #ˆky are given by Eqs. (4.3) and (4.7). The closed-loop stability will be given 
later. 

 
4.3 Asymptotic Tracking Performance 
 
4.3.1 Main Results 
Theorem 4.1 In the closed-loop system (4.1) with control law (4.9) and parameters adaptation law 
(4.3), under Assumptions 4.1—4.3, all the signals in the closed-loop system are bounded and further 
the tracking error ke  will converge to zero. 

 
4.3.2 Preliminaries 
Definition 4.1 Let kx  and ky  ( 0≥k ) be two discrete-time scalar or vector signals. 
 
• We denote ][ kk yOx = , if there exist positive constants m1 and m2 such that 

1|||| mxk ≤  

2||||max my jkj +≤
, 0kk >∀  and k0 is the initial time step. 

 
• We denote ][ kk yox = , if there exists a sequence kα  satisfying 0lim →∞→ kk α  such that 

1|||| mxk ≤  
2||||max my jkj +≤
, 0kk >∀ . 

• We denote kk yx ~  if they satisfy ][ kk yOx =  and ][ kk xOy = . 
 
Lemma 4.1 Consider the following parameter update law 
 

                                                 (4.10) 
 

                                               (4.11) 
 

                   (4.12) 
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where R∈θ  is an unknown scalar, kθ̂  is its estimate at time step k , μ is the lower bound of θ, 

and Rk ∈η is any  sequence. Then, μθ ≥k̂  is guaranteed and the following properties hold: 
 

 
 

where θθθ −= '' ˆ~
kk  and θθθ −= kk

ˆ~
. 

Proof: According to Eqs. (4.10) and (4.11), it is obvious that μθ ≥k̂ always hold. From Eq. 

(4.12), we see that |||)(Proj| ˆ kk ηηθ = , hence 22
ˆ )(Proj kk ηη
θ

= . Further, we have 

 

 
 

From (4.10), we see that kk θθ ˆˆ' =  if μθ >'
k̂  such that 22' ~~

kk θθ =  when μθ >'
k̂ . Noticing 

that when μθ ≤'
k̂ , we have θμ ≤ , so that 

 

                       (4.13) 
 

Therefore, we always have 22' ~~
kk θθ ≥ . This completes the proof.  

 

Lemma 4.2 Given a bounded sequence m
k RX ∈ . Define 

 

 
 

Then, we have 
 

 
 
Proof: This lemma is an extension of Lemma 3.1. Its proof can be found in [Ma06].  
 
Lemma 4.3 (Key Technical Lemma)Let }{ ts  be a sequence of real numbers and { }tσ  be a sequence 
of vectors such that 
 



Adaptive Estimation and Control for Systems with Parametric and Nonparametric Uncertainties 

 

57 

 
 
Assume that 
 

           
 

where 0,0 21 >> αα . Then |||| tσ is bounded. 
 
Proof: This lemma can be found in [AW89, GS84].  

 
4.3.3 Proof of Theorem 4.1 

Define parameter estimate errors   and . From Eqs. (4.7) and (4.8), 
we have 
 

         (4.14) 
 

Then, we can derive the following error dynamics: 
 
  
 
 
(4.15) 
 
 
 

 
According to Assumption 4.1, we have 
 

                          (4.16) 
 

where λ  can be any constant satisfying . 
 
From the error dynamics Eq. (4.15), we have 
 

(4.17) 
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Choose Lyapunov function candidate as 
 

                                                        (4.18) 
 

From the adaptation laws (4.3), we obtain that 
 

(4.19) 
 
 

                                                            (4.20)                          
 
 

          
                                                                                                                                                                         (4.21) 
                                                                                                                                                                         

 
Together with the error dynamics Eq. (4.17), we can derive that the difference of Vk 
 

                          (4.22) 
 

Noting that 0 < ( < 1 and taking summation on both hand sides of Eq. (4.22), we obtain 
 

 
 
Which implies 
 

                                                 (4.23) 
 

and the boundedness of  and . Considering , we have 
 

 
 

where and C2 are some constants. From the definition of deadzone in Eq. (4.4), we have 
. 

 
Therefore, we have 
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       (4.24) 
 
 
 
 
Therefore, we have 
 

             (4.25) 
 

Note that λ < 0.5, we have 
 

           (4.26) 
 

holds for all λ < λ*, where C3 is some finite number. Note that inequality Eq. (4.26) means 
that ][1 kkk eaOy =− . Further we have 
 

 
 

Therefore, we can apply the Key Technical Lemma (Lemma 4.3) to Eq. (4.23) and obtain that 
 

                                                     (4.27) 
 

which guarantees the boundedness of yk from Eq. (4.26) and thus, the boundedness of 
output yk, tracking error ek. Therefore, applying Lemma 4.2 yields 
 

                                             (4.28) 
 

Next, we will show that 0lim →∞→ kkk eα  leads to 0lim →∞→ kk e . From the 

definition of deadzone in Eq. (4.4), we have )1,0[∈ka . Let us define the following sets: 
 

                             (4.29) 
 

which results in ∅=∩ ++
21 ZZ  and +++ =∪ ZZZ 21 . The following three cases need to 

be considered. In every case, we only need to discuss the case where k belongs to an infinite 
set. 
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Case i). +
1Z  is an infinite set and +

2Z  is a finite set. Let us discuss +∈ 1Zk  . From the 
definition in Eq. (4.29), it follows that ak = 0. Hence it is clear from the definition of deadzone 
(4.4) that ||||0

11 −
−≤≤ − klkk yye λ   which means 0lim →∞→ kk e  according to Eq. (4.28). 

Case ii). +
1Z  is a finite set and +

2Z  is an infinite set. Let us discuss +∈ 2Zk  . From the 
definition   in  (4.29),  it   follows  that   ak ≠ 0.  Hence  it  is  clear   from   deadzone   (4.4)  that 

|||||| 11 −− −+=
klkkkk yyeae λ  which means 0lim =∞→ kk e  due to Eqs. (4.27) and (4.28). 

Case iii). 
+

1Z  and +
2Z  are infinite sets. If +∈ 1Zk  then ak = 0. Following Case i) gives 

0lim =∞→ kk e . Otherwise, ak ≠ 0, it follows from Case ii) that 0lim =∞→ kk e . 

Based on the discussions for the above three cases, we can conclude that 0lim =∞→ kkk ea  

implies that 0lim =∞→ kk e . This completes the proof.  

 
5. Conclusion 
 
In this chapter, we have formulated and discussed the adaptive estimation and control 
problems for a class of semi-parametric models with both parametric uncertainty and non-
parametric uncertainty. For a typical semi-parametric system model, we have discussed new 
ideas and principles in how to estimate the unknown parameters and non-parametric part 
by making full use of a priori knowledge, and for a typical type of a priori knowledge on the 
non-parametric part, we have proposed novel information-concentration estimator so as to 
deal with both kinds of uncertainties in the system, and some implementation issues in 
various cases have been discussed with applicable algorithm descriptions. Furthermore, we 
have applied the ideas of adaptive estimation for semi-parametric model into two examples 
of adaptive control problem for two typical semi-parametric control systems, and discussed 
in details how to establish the closed-loop stability of the whole system with semi-
parametric adaptive estimator and controller. Our discussions have demonstrated that the 
topic in this chapter is very challenging yet important due to its wide 
background. Especially, for the closed-loop analysis problem of semi-parametric adaptive 
control, the examples given in this chapter illustrate different methods to overcome the 
difficulties. 
In the first example of semi-parametric adaptive control, we have investigated a simple first-
order nonlinear system with both non-parametric uncertainties and parametric 
uncertainties, which is largely motivated by the recent-year exploration of the capability and 
limitations of the feedback mechanism. For this model, based on the principle of the 
proposed IC estimator, we have constructed a unified adaptive controller which can be used 
in both cases of b = 1 and b > 1. When the parametric part is of linear growth rate (b = 1), we 
have proved the closed-loop stability under some assumptions and a simple algebraic 

condition 2
2
3

´
+<

M
ML

, which reveals essential connections with the known magic 



Adaptive Estimation and Control for Systems with Parametric and Nonparametric Uncertainties 

 

61 

number 2
2
3
+=L discovered in recent work [XG00] on the study of feedback 

mechanism capability.  
In the second example of semi-parametric adaptive control, we further assume that the 
control gain is also unknown, yet the system is noise-free, and we have designed an 
adaptive controller based on gradient-like estimation algorithm with time-varying deadzone 
according to the a priori knowledge on the non-parametric part and the unknown controller 
gain. In this example, although we cannot establish perfect results revealing the magic 

number 2
2
3
+  as in the first example, we can still establish good results of asymptotic 

tracking performance under some mild conditions. This example has demonstrated yet 
another method to deal with uncertainties in semi-parametric model. 
Finally, we shall remark that the discussed topic in this chapter is still in its infant stage, and 
many more chanlenging problems can be investigated in the future. These problems may 
root in wide practical background where the system model is only partially known a priori, 
that is to say, the major part of the system can be parameterized and the other part is 
unknown and non-parameterized with only limited a priori knowledge. Solving such 
problems can definitely improve our understanding to the whole feedback mechanism and 
help us gain more insights on the capability of adaptive control, especially non-traditional 
adaptive control methods which were not extensively addresed and studied in previous 
study. Therefore, we expect more theoretical study in this new topic, i.e. semi-parametric 
adaptive estimation and control. 
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1. Introduction 
 

The problems of the output regulations and/or disturbance reductions have attracted a lot 
of interest and have been actively researched in the consideration of the control problem for 
systems which are required to have servomechanism and for vibration attenuation in 
mechanical systems. It is well known that such problems are solvable using the Internal 
Model Principle in cases where the system to be controlled and the exosystem which 
generates the output reference signal and external disturbances are known. In the case 
where the controlled system is unknown and/or the exosystem is unknown, adaptive 
control strategies have played active roles in solving such problems for systems with 
uncertainties. For known systems with unknown exosystems, solutions with adaptive 
internal models have been provided in (Feg & Palaniswami, 1991), (Nikiforov, 1996) and 
(Marino & Tomei, 2001). In (Marino & Tomei, 2001), an output regulation system with an 
adaptive internal model is proposed for known non-minimum phase systems with 
unknown exosystems. Adaptive regulation problems have also been presented for time 
varying systems and nonlinear systems (Marino & Tomei, 2000; Ding, 2001; Serrani et al., 
2001). Most of these methods, however, assumed that either the controlled system or the 
exosystem was known. Only few adaptive regulation methods for unknown systems with 
unknown exosystems have been provided (Nikiforov, 1997a; Nikiforov, 1997b). The method 
in (Nikiforov, 1997a) is an adaptive servo controller design based on the MRAC strategy, so 
that it was essentially assumed that the order of the controlled system was known. The 
method in (Nikiforov, 1997b) is one based on an adaptive backstepping strategy. In this 
method, it was necessary to design an adaptive observer that had to estimate all of the 
unknown system parameters depending on the order of the controlled system. Further, the 
controller design based on the backstepping strategy essentially depends on the order of the 
relative degree of the controlled system. As a result, the controller's structure was quite 
complex in both methods for higher order systems with higher order relative degrees. 
 
In this paper, the adaptive regulation problem for unknown controlled systems is dealt with 
and an adaptive output feedback controller with an adaptive internal model is proposed for 
single input/single output linear minimum phase unknown systems with unknown 
exosystems. The proposed method is based on the adaptive output feedback control 



Adaptive Control 

 

66 

utilizing the almost strictly positive real-ness (ASPR-ness) of the controlled system and the 
controller is designed based on an expanded backstepping strategy with a parallel 
feedforward compensator (PFC) (Mizumoto et al., 2005). It is shown that, under certain 
assumptions, without a priori knowledge of the order of the controlled system and without 
state variables, one can design an adaptive controller with a single step backstepping 
strategy even when the system to be controlled has an unknown order and a higher order 
relative degree. Using the proposed method, one can not attain perfect output regulation, 
however, the obtained controller structure is relatively simple even if the system has a 
higher order and a higher order relative degree. 

 
2. Problem Statement 
 

Consider the following single input/single output LTI system. 
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( ) ( ) ( ),ttty

tCtutAt
TT

d

wdxc

wbxx

+=

++=&
                                                     (1) 

 
where [ ] nT

n1 Rx,,x ∈= Lx is the state vector and Ry,u ∈ are the input and the output, 

respectively. Further ( ) mRt ∈w  is an unknown vector disturbance. 
 
We assume that the disturbances and the reference signal which the output y is required to 
track are generated by the following unknown exosystem: 
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where mm

d RA ×∈  is a stable matrix with all its eigenvalues on the imaginary axis. It is also 
assumed that the characteristic polynomial of Ad is expressed by 
 

( ) .αλαλαλAλdet 01
1m

1m
m

d ++++=− −
− LI                                        (3) 

 
The objective is to design an adaptive controller that has the output y(t) track the reference 
signal ym(t) generated by an unknown exosystem given in (2) for unknown systems with 
unknown disturbances generated by the unknown exosystem in (2) using only the output 
signal under the following assumptions. 
 
Assumption 1 The system (1) is minimum-phase. 
 
Assumption 2 The system (1) has a relative degree of r. 
 
Assumption 3 0A 1rT >− bc , i.e. the high frequency gain of the system (1) is positive. 
 
Assumption 4 The output y(t) and the reference signal ym(t) are available for measurement. 
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3. System Representation 
 

From Assumption 2, since the system (1) has a relative degree of r, there exists a smooth 

nonsingular variable transformation: [ ] xηz Φ,
TTT = such that the system (1) can be 

transformed into the form (Isidori, 1995): 
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and rn

z R −∈c is an appropriate constant vector. From assumption 1, ηQ  is a stable matrix 
because ( ) ( )tQt ηηη =& denotes the zero dynamics of system (1). 

 
3.1 Virtual controlled system 

We shall introduce the following (r-1)th order stable virtual filter ( )sf1 with a state space 
representation: 
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With the following variable transformation using the filtered signal 

ifz given in (5): 
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Fig. 1.  Virtual controlled system with a virtual filter 
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the system (1) can be transformed into the following virtual system which has 

1fu given 
from a virtual input filter as the control input (Michino et al., 2004) (see Fig.1): 
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where [ ] [ ]T
r32

TTT
y ξ,,ξ,ξ,, L== ξηξη and [ ] [ ]TT
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T
1 1,0,,0,,0,,0,1 LL ccc == . 

1dc and 
ηdC

are a vector and a matrix with appropriate dimensions, respectively. Further, ηA is given by
 the form of 
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Since 
fuA and ηQ are stable matrices, ηA is a stable matrix. 

 
3.2 Virtual error system 
Now, consider a stable filter of the form: 
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1m10 ccc β,,β,β
−

L are chosen such that 
fcA is stable. 

 
Let's consider transforming the system (7) into a one with uf given in (8) as the input. Define 
new variables X1 and 2X as follows: 
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Since it follows from the Cayley-Hamilton theorem that 
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we have from (2) and (7) that 
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where 
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Further we have from (10) that 
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Therefore defining [ ]T)1(me,,ee, −= L&E , the following error system is obtained: 
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Obviously this error system with the input fu and the output e has a relative degree of  m+1 
and a stable zero dynamics (because ηA is stable). 
Furthermore, there exists an appropriate variable transformation such that the error system 
(14) can be represented by the following form (Isidori, 1995): 
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where [ ]T

eee 1m1
z,,z

+
= Lz and 1n

z R
e

−∈η . Since the error system (14) has stable zero 
dynamics, 

ezQ is a stable matrix. 
 
Recall the stable filter given in (8). Since we have from (8) that 
 

,uuαuαuαu

uβuβuβu

ff0f1
)1m(

f1m
)m(

f

fcfc
)1m(

fc
)m(

f

1111

011m

=++++=

++++
−

−

−
−

&L

&L
                                     (16) 

 
the filter's output signal uf can also be obtained from 
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by defining [ ]T)1m(
fffc u,,u,u

f

−= L&z .Using this virtual filter signal in the variable 
transformation given in (6), the error system (15) can be transformed into the following form, 
the same way as the virtual system (7) was derived, with uf as the input. 
 

( ) ( ) ( ) ( )
( ) ( ) ( ),tetQt

ttubteαte

ηeee

e
T
efee

bηη
ηc

+=
++=

&

&
                                               (17) 



Adaptive output regulation of unknown linear systems with unknown exosystems 

 

71 

where 
 
 
 
 
 
 
 
 
 
Fig. 2. Virtual error system with an virtual internal model 
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Since 

fcA and 
ezQ are stable matrices, Qe  is a stable matrix. Thus the obtained virtual error 

system (17) is ASPR from the input uf to the output e. 
 
The overall configuration of the virtual error system is shown in Fig.2. 

 
4. Adaptive Controller Design 
 

Since the virtual error system (17) is ASPR, there exists an ideal feedback gain ∗k  such that 
the control objective is achieved with the control input: ( ) ( )tektuf

∗−=  (Kaufman et al., 1998; 
Iwai & Mizumoto, 1994). That is, from (8), if the filter signal 

1fu can be obtained by 
 

( ) ( ) ( ),ttektu
f1 c

T
f zθ−−= ∗                                                   (18) 

 
one can attain the goal. Unfortunately one can not design 

1fu directly by (18), because 
1fu is 

a filter signal given in (8) and the controlled system is assumed to be unknown. In such 
cases, the use of the backstepping strategy on the filter (5) can be considered as a 
countermeasure. However, since the controller structure depends on the relative degree of 
the system, i.e. the order of the filter (5), it will become very complex in cases where the 
controlled system has higher order relative degrees. Here we adopt a novel design strategy 
using a parallel feedforward compensator (PFC) that allows us to design the controller 
through a backstepping of only one step (Mizumoto et al., 2005; Michino et al., 2004). 

 
4.1 Augmented virtual filter 

For the virtual input filter (5), consider the following stable and minimum-phase PFC with 
an appropriate order nf : 
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Fig. 3. Virtual error system with an augmented filter 

 
where Ryf ∈ is the output of the PFC. Since the PFC is minimum-phase Af  is a stable 
matrix. 
The augmented filter obtained from the filter (5) by introducing the PFC (19) can then be 
represented by 
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Here we assume that the PFC (19) is designed so that the augmented filter is ASPR, i.e. 
minimum-phase and a relative degree of one. In this case, there exists an appropriate 
variable transformation such that the augmented filter can be transformed into the following 
form (Isidori, 1995): 
 

( ) ( ) ( ) ( )

( ) ( ) ( ),tu
1

tAt

tubttuatu

f

2f1f

aaaa

aa
T
aaaa

⎥
⎦

⎤
⎢
⎣

⎡
+=

++=

0
ηη

ηa

&

&

 

 
where Aa is a stable matrix because the augmented filter is minimum-phase. 
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Using the augmented filter's output 
fau , the virtual error system is rewritten as follows (see 

Fig.3): 
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4.2 Controller design by single step backstepping 
[Pre-step] We first design the virtual input 1α  for the augmented filter output 

fau in (21) as 
follows: 
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where k(t)  is an adaptive feedback gain and ( )tθ̂  is an estimated value of θ , these are 
adaptively adjusted by 
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Further, ( )tΨ0  is given as follows: 
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where 

fyδ is any positive constant. 
Now consider the following positive definite function: 
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where 
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∗k  is an ideal feedback gain to be determined later and Pe is a positive definite matrix that 
satisfies the following Lyapunov equation for any positive definite matrix Re. 
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Since Qe is a stable matrix, there exists such Pe. 
The time derivative of V0 can be evaluated by 
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with any positive constant 1ρ to 3ρ . Where 1a1 αuω
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−= and 
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[Step 1] Consider the error system, 1ω -system, between 

fau and 1α . The 1ω -system is 
given from (21) by 
 

.1

11

1
αubua

αuω
aa

T
aaa

a

2f

f

&
&&&

−++=
−=

ηa                                                 (28) 

 
The time derivative of 1α is obtained as follows: 
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where T

e
T
1 b θθ = . Taking (28) and (29) into consideration, the actual control input is 

designed as follows: 
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where 0ε  to 3ε  and fγ  are any positive constants, and 1Ψ and 2Ψ are given by 
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where l is any positive constant and 11ee β̂,ˆ,b̂,α̂ θ  are estimated values of 11ee β,,b,α θ , 
respectively, and adaptively adjusted by the following parameter adjusting laws. 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )tβ̂σ
e
αtωγtβ̂

tˆσtω
e
αtΓtˆ

tb̂σtu
e
αtωγtb̂

tα̂σte
e
αtωγtα̂

1β

2
12

1β1

1θ1
1

cθ1

ebf
1

1be

eα
1

1αe

11

1f1

1

−⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=

−
∂
∂

−=

−
∂
∂

−=

−
∂
∂

−=

&

&

&

&

θzθ
                                           (31) 

 
where 

111 βθbαβbα σ,σ,σ,σ,γ,γ,γ are any positive constants and 0ΓΓ T
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4.3 Boundedness analysis 
For the designed control system with control input (30), we have the following theorem 
concerning the boundedness of all the signals in the control system. 
 
Theorem 1 Under assumptions 1 to 3 on the controlled system (1), all the signals in the 
resulting closed loop system with the controller (30) are uniformly bounded. 
 
Proof: Consider the following positive and continuous function V1. 
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where 
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and 

fyδ is any positive constant. 
 
From (26) and (32), the time derivative of V1 for 

fyf δy ≤ can be evaluated by 
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with any positive constants 0μ  to 4μ . Where 
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Here we have 
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with any positive constant 5μ . Furthermore, for 

fyf δy ≤ , since ( ) 0tΨ0 =&  is held, there 

exists a positive constant MΨ  such that ( ) ( ) M0f ΨtΨty ≤− . 
 
Therefore the time derivative of V1 can be evaluated by 
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For 

fyf δy > , the time derivative of V1 is evaluated as 
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and thus we have for 

fyf δy > that 
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Finally, for an ideal feedback gain ∗k  which satisfies 
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the time derivative of V1 can be evaluated by 
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Next, we show that the filter signal 
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Further, we have from (43), (44) and (8) that 
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with appropriate positive constants l1, l2. From the boundedness of ( )tw  and e(t), we have 

( )tξ1  is bounded and thus βz  is also bounded. 
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From (8) and (48), we obtain 
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Therefore ( ) ( )ttb βcz f

ηz && +  can be evaluated from (48) and the fact that f11f yαωu
1

−+=  by 
 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) .tt

tωbtytαb

ttbAttb

1

fff

dyξ

1zf1z

βczcβcz

wcηc

ηzηz

++

+−+

+≤+ &&

                            (50) 

 
Here, we have from (22) that 
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Since it follows from (19) and (24) that 
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we can conclude that ( )t
fcz  is uniformly bounded and then the control input u(t) is also 

uniformly bounded. Thus all the signals in the resulting closed loop system with the 
controller (30) are uniformly bounded. 

 
5. Simulation Results 
 

The effectiveness of the proposed method is confirmed through numerical simulation for a 
3rd order SISO system with a relative degree of 3, which is given by 
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where w  is an unknown disturbance which has the following form: 
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Before designing a controller, we first introduce the following pre-filter: 
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b
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in order to reduce the chattering phenomenon to be expected by switching the controller 
given in (30). Therefore, the considered controlled system has a relative degree of 4. 
 
Since the relative degree of the controlled system is 4, we consider a 3rd order input virtual 
filter in (5). Further we consider a stable internal model filter (8) of the order of 4. 
 
For the input virtual filter, in this simulation, we consider a first order PFC: 
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in order to make an ASPR augmented filter. 
 
The design parameters for the pre-filter (58), the input virtual filter (5) and the internal 
model filter (8) are set as follows: 
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and the PFC parameters are set by 
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Further design parameters in the controller given in (23), (24),  (30) and (31) are designed by 
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Figure 4 shows the simulation results with the proposed controller. In this simulation, the 
disturbance w is changed at 50 [sec]: 
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Figure 5 is the tracking error and Fig.6 shows the adaptively adjusted parameters in the 
controller. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Simulation results with the proposed controller 
 

 
Fig. 5. Tracking error with the proposed controller 
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Fig. 6. Adaptively adjusted parameters 

feedback gain k(t) 
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A very good control result was obtained and we can see that a good control performance is 
maintained even as the frequencies of the disturbances were changed at 50 [sec]. 
 
Figures 7 and 8 show the simulation results in which the adaptively adjusted parameters in 
the controller were kept constant after 40 [sec]. After the disturbances were changed, the 
control performance deteriorated. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. Simulation results without adaptation after 40 [sec]. 

 
input 

output 
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Fig. 8. Tracking error without adaptation 

 
6. Conclusions 
 

In this paper, the adaptive regulation problem for unknown controlled systems with 
unknown exosystems was considered. An adaptive output feedback controller with an 
adaptive internal model was proposed for single input/single output linear minimum phase 
systems. In the proposed method, a controller with an adaptive internal model was 
designed through an expanded backstepping strategy of only one step with a parallel 
feedforward compensator (PFC). 
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1. Introduction 
 

Robots today have an ever growing niche. Many of today’s robots are required to perform 
tasks which demand high level of accuracy in end effector positioning. The links of the robot 
connecting the joints are large, rigid, and heavy. These manipulators are designed with 
links, which are sufficiently stiff for structural deflection to be negligible during normal 
operation. Also, heavy links utilize much of the joint motor’s power moving the link and 
holding them against gravity. Moreover the payloads have to be kept small compared to the 
mass of the robot itself, since large payloads induce sagging and vibration in the links, 
eventually bringing about uncertainty in the end effector position. In an attempt to solve 
these problems lightweight and flexible robots have been developed. These lightweight 
mechanical structures are expected to improve performance of the robot manipulators with 
typically low payload to arm weight ratio. The ultimate goal of such robotic designs is to 
accurate tip position control in spite of the flexibility in a reasonable amount of time. Unlike 
industrial robots, these robot links will be utilized for specific purposes like in a space 
shuttle arm. These flexible robots have an increased payload capacity, lesser energy 
consumption, cheaper construction, faster movements, and longer reach. However, link 
flexibility causes significant technical problems. The weight reduction leads the manipulator 
to become more flexible and more difficult to control accurately. The manipulator being a 
distributed parameter system, it is highly non-linear in nature. Control algorithms will be 
required to compensate for both the vibrations and static deflections that result from the 
flexibility. This provides a challenge to design control techniques that: 

a) gives precise control of desired parameters of the system in desired time, 
b) cope up with sudden changes in the bounded system parameters, 
c) gives control on unmodeled dynamics in the form of perturbations, and 
d) robust performance. 

Conventional control system design is generally a trial and error process which is often not 
capable of controlling a process, which varies significantly during operation. Thus, the quest 
for robust and precise control led researchers to derive various control theories. Adaptive 
control is one of these research fields that is emerging as timely and important class of 
controller design. Area much argued about adaptive control is its simplicity and ease of 
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physical implementation on actual real-life systems. In this work, an attempt has been made 
to show the simplicity, ease and effectiveness of implementation of direct model reference 
adaptive control (DMRAC) on a multi input multi output (MIMO) flexible two-link system. 
The plant comprises of a planar two-link flexible arm with rotary joints subject only to 
bending deformations in the plane of motion. A payload is added at the tip of the outer link, 
while hub inertias are included at actuated joints. The goal is to design a controller that can 
control the distal end of the flexible links.  
Probably the first work done pertaining to the control of flexible links was presented by 
(Cannon & Schmitz, 1984). Considering a flexible link, which was only flexible in one 
dimension (perpendicular to gravity), a Linear Quadratic Gaussian controller was designed 
for the position control. Direct end point sensing was used and the goal was to execute a 
robot motion as fast as possible without residual vibrations in the beam. Also, experiments 
were carried out on end point control of a flexible one link robot. These experiments 
demonstrated control strategies for position of one end to be sensed and precisely 
positioned by applying torque at the other end. These experiments were performed to 
uncover and solve problems related to the control of very flexible manipulators, where 
sensors are collocated with the actuators.  
(Geniele et al., 1995) worked on tip-position control of a single flexible link, which rotates on 
a horizontal plane. The dynamic model was derived using assumed-modes method based 
on the Euler-Bernoulli beam theory. The model is then linearized about an operating point. 
The control strategy for this non-minimum phase linear time varying system consisted of 
two parts. The first part had an inner stabilizing control loop that incorporates a 
feedforward term to assign the system’s transmission zeros at desired locations in the 
complex plane, and a feedback term to move the system’s poles to the desire positions in the 
left half plane. In the second part, the other loop had a feedback servo loop that allowed 
tracking of the desired trajectory. The controller was implemented on an experimental test 
bed. The performance was then compared with that of a pole placement state feedback 
controller.  
(Park & Asada, 1992) worked on an integrated structure and control design of a two-link 
non-rigid robot arm for the purpose of high speed positioning. A PD control system was 
designed for the simple dynamic model minimizing the settling time. Optimal feedback 
gains were obtained as functions of structural parameters involved in the dynamic model. 
These parameters were then optimized using an optimization technique for an overall 
optimal performance. 
 (Lee et al., 2001) worked on the adaptive robust control design for multi-link flexible robots. 
Adaptive energy-based robust control was presented for both close loop stability and 
automatic tuning of the gains for desired performance. A two-link finite element model was 
simulated, in which each link was divided into four elements of same length. The controller 
designed was independent of system parameters and hence possessed stability robustness 
to parameter variations. 
Variations in flexible links have also been researched. Control of a two-link flexible arm in 
contact with a compliant surface was shown in (Scicliano & Villani, 2001). Here, for a given 
tip position and surface stiffness, the joint and deflection variables are computed using 
closed loop inverse kinematics algorithm. The computed variables are then used as the set 
points for a simple joint PD control, thus achieving regulation of the tip position and contact 
force via a joint-space controller. 
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(Ider et al., 2002) proposed a new method for the end effector trajectory tracking control of 
robots with flexible links. In order to cope with the non-minimum phase property of the 
system, they proposed to place the closed-loop poles at desire locations using full state 
feedback. A composite control law was designed to track the desired trajectory, while at the 
same time the internal dynamics were stabilized. A two-link planar robot was simulated to 
illustrate the performance of the proposed algorithm. Moreover the method is valid for all 
types of manipulators with any degree of freedom.  
(Green, A. & Sasiadek, J., 2004) presented control methods for endpoint tracking of a two-
link robot. Initially, a manipulator with rigid links is modeled using inverse dynamics, a 
linear quadratic regulator and fuzzy logic schemes actuated by a Jacobian transpose control 
law computed using dominant cantilever and pinned-pinned assumed mode frequencies. 
The inverse dynamics model is pursued further to study a manipulator with flexible links 
where nonlinear rigid-link dynamics are coupled with dominant assumed modes for 
cantilever and pinned-pinned beams. A time delay in the feedback control loop represents 
elastic wave travel time along the links to generate non-minimum phase response.  
An energy-based nonlinear control for a two-link flexible manipulator wasstudied in (Xu et 
al., 2005). It was claimed that their method can provide more physical insights in nonlinear 
control as well as provide a direct candidate for the Lyapunov function. Both simulation and 
experimental results were provided to demonstrate the effectiveness of the controllers 
A robust control method of a two-link flexible manipulator with neural networks based 
quasi-static distortion compensation was proposed in (Li et al., 2005). The dynamics 
equation of the flexible manipulator was divided into a slow subsystem and a fast 
subsystem based on the assumed mode method and singular perturbation theory. A 
decomposition based robust controller is proposed with respect to the slow subsystem, and 

∞H control is applied to the fast subsystem. The proposed control method has been 
implemented on a two-link flexible manipulator for precise end-tip tracking control.  
In this work a direct adaptive controller is designed and the effectiveness of this adaptive 
control algorithm is shown by considering the parametric variations in the form of additive 
perturbations. This work emphasizes the robust stability and performance of adaptive 
control, in the presence of parametric variations. This approach is an output feedback 
method, which requires neither full state feedback nor adaptive observers. Other important 
properties of this class of algorithms include: 

a) Their applicability to non-minimum phase systems, 
b) The fact that the plant (physical system) order may be much higher than the 

order of the reference model, and 
c) The applicability of this approach to MIMO systems. 

Its ease of implementation and inherent robustness properties make this adaptive control 
approach attractive. 

 
2. Mathematical Modeling of the System 
 

In this section mathematical model of the system is derived using Lagrange equations with 
the assumed-modes method. The links are assumed to obey Euler-Bernoulli beam model 
with proper boundary conditions. A payload has been added to the tip of the second link, 
while hub inertias are included at the actuator joints. 
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2.1 Kinematic Modeling 
A planar two-link flexible arm with rotary joints subject to only bending deformations in the 
plane of motion is considered. The following coordinate frames, as seen in Fig. 1,  are 
established: the inertial frame (

0 0,X Y ), the rigid body moving frame associated to link i 
( ,i iX Y ), and the flexible body moving frame associated with link i ( ˆ ˆ,i iX Y ) (Brook, 1984). 
 

 
Fig. 1. Planar Flexible Two-Link Arm 

 
The rigid body motion is described by the joint angle, iθ , while ( )i iy x  denoted the 
transversal deflection of link i at abscissa, 0 i ix l≤ ≤ , 

il being the link length. Let 

( ) ( , ( ))i T
i i i i ip x x y x= be the position of a point along the deflected link i with respect to frame 

( ,i iX Y ) and pi be the absolute position of the same point on frame ( 0 0,X Y ). Also, 
1 ( )i i

i i ir p l+ =  
indicates the position of the origin of frame ( 1 1,i iX Y+ +

) with respect to frame ( ,i iX Y ), and ri 
gives absolute positioning of the origin of frame ( ,i iX Y ) with respect to frame ( 0 0,X Y ). The 
rotation matrix Ai for rigid body motion and the rotation matrix Ei for the flexible mode are, 
respectively, 
 

A i = ⎥
⎦

⎤
⎢
⎣

⎡ −

ii

ii

θθ
θθ

cossin
sincos  E i = ⎥

⎦
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⎢
⎣

⎡ −
1

1
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ie

ie
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y  (1) 

 
where δ δ =′ = ( / )|

i iie yi xi x ly and for small deflections ′ ′�arctan( )ie iey y . Therefore, the previous 
absolute position vectors can be expressed as,  
 

p i  = r 1  + W i
i p i  E i = r 1i+  = r 1  + W i

i  r 1i+  (2) 
 
where, iW is the global transformation matrix from ( 0 0,X Y ) to ( ,i iX Y ), which obeys the 

recursive equation − − −= =1 1 1
ˆ

i i i i i iW W E A W A and =0Ŵ I  
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2.2. Lagrangian Modeling 
The equations of motion for a planar n-link flexible arm are derived by using the Lagrange 
equations. The total kinetic energy is given by the sum of the following contributions: 
 

1 1

n n

hi li p
i i

T T T T
− −

= + +∑ ∑  (3) 

 
where the kinetic energy of the rigid body located at the hub i of mass him and the moment 
of inertia hiJ is 
 

21 1
2 2hi hi i hi iT m r J α= +&  (4) 

 
where iα& is the (scalar) absolute angular velocity of frame ( ,i iX Y ) given by 
 

1 1

1 1

i

i j ke
j k

yα θ
−

= =

′= +∑ ∑&& &  (5) 

 
Moreover, the absolute linear velocity of an arm is 
 

i i
i i i i ip r W p W p= + +&& & &  (6) 

 
and 1 ( )i i

i i ir p l+ =& & . Since the links are assumed inextensible ( 0ix =& ) , then ( ) (0, ( ))i T
i i i ip x y x=& & . 

The kinetic energy pertaining to link i of linear density iρ is 
 

0

1 ( ) ( )
2

li T
li i i i i iT x p x dxρ= ∫ &  (7) 

 
and the kinetic energy associated to a payload of mass pm and moment of inertia pJ located 
at the end of link n is 
 

2
1 1

1 1 ( )
2 2

T
p p n n p n neT m r r J yα+ + ′= + +&& & &  (8) 

 
Now, in the absence of gravity (horizontal plane motion), the potential energy is given by 
 

22

2
1 1 0

( )1 ( ) ( )
2

lin n
i i

i i i i
i i i

d y xU U EI x dx
dx= =

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
∑ ∑ ∫  (9) 

 
Where  iU  is  the  elastic  energy  stored  in  link i,  and ( )iEI being  its  flexural  rigidity.  No  
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discretization of structural link flexibility has been made so far, so the Lagrangian will be a 
functional.  

 
2.3. Assumed Mode Shapes 
Links are modeled as Euler Bernoulli beams of uniform density ρi and constant flexural 
rigidity ( )iEI with the deformation ( , )i iy x t satisfying the partial differential equation 
 

( )
4 2

4 2

( , ) ( , ) 0, 1,..., .i i i i
ii

i

y x t y x tEI i n
x t

ρ∂ ∂
+ = =

∂ ∂
 (10) 

 
Boundary conditions are imposed at the base of and the end of each link to solve this 
equation. The inertia of a light weight link is small compared to the hub inertia, and then 
constrained mode shapes can be used. We assume each slewing link to be clamped at the 
base 
 

(0, ) 0, (0, ) 0, 1,...,i iy t y t i n′= = =  (11) 
 
For the remaining boundary conditions it is assumed that the link end is free of dynamic 
constraints, due to the difficulty in accounting for time-varying or unknown masses and 
inertias. However, we consider mass boundary conditions representing balance of moment 
and shearing force, i.e. 
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 (12) 

 
where, LiM and LiJ are the actual mass and moment of inertia at the end of link i. ( )iMD  
accounts for the contribution of masses of distal links, i.e. non-collocated at the end of link i. 
A finite-dimensional model of link flexibility can be obtained by assumed modes technique. 
Using this technique the link deflections can be expressed as 
 

1

( , ) ( ) ( )
im

i i ij i ij
j

y x t x tφ δ
=

=∑  (13) 

 
where ( )ij tδ  are the time varying variables associated with the assumed spatial mode 

shapes ( )ij ixϕ of link i. Therefore each term in the general solution of (10) is the product of a 

time harmonic function of the form 
 

( ) exp( )ij t ijj tδ ω=  (14) 
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and of a space eigenfunction of the form 
 

1, 2, 3, 3,( ) sin( ) cos( ) sinh( ) cosh( )ij i ij ij i ij ij i ij ij i ij ij ix C x C x C x C xφ β β β β= + + +  (15) 
 
In (14) ijω is the jth natural angular frequency of the eigenvalue problem for link i, and in 

(15) 2 /( )β ω ρ=ij ij i iEI . 

 
Application of the aforementioned boundary conditions allows the determination of the 
constant coefficients in (15). The clamped link conditions at the link base yield 
 

3, 1, 4, 2,,ij ij ij ijC C C C= − = −  (16) 
 
while, the mass conditions at the link end lead to homogeneous system of the form 
 

( ) 1,

2,

ij
ij

ij

C
F

C
β

⎡ ⎤⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (17) 

 
The so-called frequency equation is obtained by setting to zero the determinant of the (2×2) 
matrix ( )ijF β that depends on explicitly on the values of LiM , LiJ  , and ( )iMD . The first im  

roots of this equation give the positive values of ijβ  to be plugged in (15). Using this the 

coefficients 1,ijC and 2,ijC are determined up to a scale factor that is chosen via a suitable 

normalization. Further the resulting eigenfunctions ijϕ satisfy a modified orthogonality 

condition that includes the actual LiM , LiJ , and ( )iMD . In an open kinematic chain 

arrangement, LiM  is the constant sum of all masses beyond link i, but LiJ  and ( )iMD  
depend on the position of successive links. This will considerably increase the complexity of 
model derivation and overload the computational burden of on-line execution. Thus, some 
practical approximation leading to constant although nonzero boundary conditions at the 
link end is done. Thus, a convenient position is set to ( )iMD = 0 and compute LiJ  for a fixed 
arm configuration. In this case, it can be shown that det(F) = 0 results in the following 
transcendental equation  (De Luca & Scicliano, 1989) 
 

( ) ( )( ) ( ) ( ) ( ) ( )( )1 cos cosh sin cosh cos sinhLi ij
ij i ij i ij i ij i ij i ij i
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M
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2.4. Closed-Form Equations of Motion 
On the basis of the discretization introduced in the previous section, the Lagrangian L 
becomes a function of set of N generalized coordinates qi(t) the dynamic model is obtained 
satisfying the Lagrange-Euler equations 
 

, 1i
i i

d L L f i N
dt q q
⎛ ⎞∂ ∂

− = =⎜ ⎟∂ ∂⎝ ⎠
L

&
 (19) 

 
where, fi are the generalized forces performing work on qi(t). Under the assumption of 
constant mode shapes, it can be shown that spatial dependence present in the kinetic energy 
term (7) can be resolved by the introduction of a number of constant parameters, 
characterizing the mechanical properties of the (uniform density) links (De Luca, et. al. 1988, 
Cetinkunt, et. al., 1986) 
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i i i i im = dx = ρ lρ∫  

 
(20) 
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d = x x = l
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i i i i i iJ = x dx = m lρ∫  

 
(22) 

( )
0

li

ij i ij i iv = φ x dxρ∫  

 
(23) 

( )
0

li

ij i ij i i iw = φ x x dxρ∫  

 
(24) 

( ) ( )
0

li

ijk i ij i ik i iz = φ x φ x dxρ∫  

 
(25) 

( ) ( )
0

( )
li

ijk i ij i ik i ik = EI φ x φ x dx∫  

 
(26) 

where, im  is the mass of the link i, d is the distance of center of mass of link i from joint i 

axis, 0iJ is the inertia of link i about joint i axis, 
ijv  and 

ijω are the deformation moments of 

order zero and one of mode j of the link i. Also, 
ijkk  is the cross elasticity coefficient of 

modes j and k of link i. The actual numerical values of the previous parameters are 
calculated off-line. As a result of this procedure, the equations of motion for a planar n-link 
arm can be written in a familiar closed form 
 

( ) ( ) Qu=Kq+qq,h+qqB &&&  (27) 
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where ( )11 11 1, ,1 , n

T

n m n n mq θ θ δ δ δ δ=  is the N-vector of generalized coordinates (
ii

N n m= +∑ ), 

and u is the n-vector of joint actuator torques. B is the positive definite symmetric inertia 
matrix, h is the vector of Corriolis and centrifugal forces, K is the stiffness matrix and Q is 

the input weighting matrix that is of the form ( )

T

nxn nx N nI O −⎡ ⎤⎣ ⎦  due to the clamped link 

assumptions. Joint viscous friction and link structural damping can be added as Dq& , where 
D is a diagonal matrix. It is noted that orthonormalization of mode shapes implies 
convenient simplification in the diagonal blocks of the inertia matrix relative to the 
deflections of each link, due to the particular values attained by ijkz  in (25). Also the 

stiffness matrix becomes diagonal ( )1 10; , , 0n n NK K K K+= = = >L K  being 0ijkk =  for j k≠  

in (27). The components of h can be evaluated through the Christoffel symbols given by 
 

1 1

1
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N N
ij jk

i j k
j k k j

B B
h = q q

q q= =

⎛ ⎞∂ ∂
−⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

∑∑ & &  (28) 

 
2.5. Explicit Dynamic Model of Two-Link Flexible Arm 
Two assumed mode shapes are considered for each link ( 1 2 2m m= = ). Thus, the vector of 

Lagrangian coordinates reduces to ( )1 2 11 12 21 22
Tq θ θ δ δ δ δ= , i.e. N = 6. It can be shown 

(Brook, 1984, De Luca et. al. 1988) that the contributions of kinetic energy due to deflection 
variables are 
 

{ }2
1 11i ifactor of zδ =&  (29) 
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{ }2
2 22i ifactor of zδ =&  (31) 

 
where, , ( ) |

i iij e ij i x lxϕ ϕ ==  and , ( ) | , , 1,2
i iij e ij i x lx i jϕ ϕ =′ ′= = . The above equations are 

obtained expanding terms (7) and (8) by using (5) and (6). Accounting for separability (13) 
then leads to expressions for the factors of the quadratic deflection rate terms, in which 
parameters defined in (25) and the mass coefficients on the right hand side of (12) can be 
identified. It is found for link-1: 
 

2L1 h2 pM m m m= + +  (32) 
 

2
02 2L1 h2 p PJ J J J m l= + + +  (33) 

 
( ) ( ) ( ) ( )2 2 2 2 21 21, 21 22 22, 22 21

cos sinp p e p eMD = m d + m l θ v + m φ δ + v + m φ δ θ⎡ ⎤− ⎣ ⎦
 (34) 
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Note that in the case of only two links, 1LJ  is a constant. On the other hand for link-2: 
 

( )2 0L2 p L2 pM = m , J = J , MD =  (35) 
 
A convenient normalization of mode shapes is accomplished by setting: 
 

1,2iii iz = m , i, j =  (36) 
 
This also implies that the nonzero coefficients in the stiffness matrix K take on values 2

ij iw m . 

It is stressed that, if the exact values for the boundary conditions in (12) were used the 
natural orthogonality of the computed mode shapes would imply that {

11 122δ δ& &factor of } is 
zero for both links. For link-2 the use of (35) automatically ensures the ”correct” 
orthogonality of mode shapes. On the other hand, however for link-1, the off-diagonal term 

1( )MD  varies with arm configuration. This implies that the mode shapes– which are spatial 
quantities–would become implicit functions of time, thus conflicting with the original 
separability assumption. It is seen that for different positions of second link, (MD)1 results in 
variations of (34), so the actual mode shapes of the first link become themselves functions of 
time-varying variables describing the deflection of the second link. A common 
approximation in computing the elements of the inertia matrix for flexible structures is to 
evaluate kinetic energy in correspondence to the undeformed configuration. In our case, it is 
equivalent to neglecting the second term 

1( )MD  in (34), which is an order of magnitude 
smaller than the first term. Accordingly, 

1( )MD  is constant for a fixed arm configuration. 
Taking 

2 / 2θ π= ±  leads to 
1( )MD = 0 and thus the eigen-frequencies can be computed 

through (19). This is equivalent to having zeroed only that portion of the {
11 122δ δ& &factor of } 

generated by constant diagonal terms, i.e. 
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ϕ
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This will produce nonzero off-diagonal terms in the relative block of the inertia matrix. The 
resulting model is cast in a computational advantageous form, where a set of constant 
coefficients appear that depend on the mechanical properties of the arm. The inertia matrix 
as well as other derivations can be found in (Miranda, 2004). Once having obtained the 
expressions of the inertia matrix, the components of h can be evaluated using (28). Viscous 
friction and passive structural damping are included in matrix D for improvement in arm 
movement, and finally, the stiffness matrix K is of the form, 
 

{ }2m2
22w,2m2

21w1,m2
12w1,m2

11w0,0,diag=K  (38) 
 
Then the equations of motion is given in its standard form as 
 

( ) ( ) Qu=Kq+qD+qq,h+qqB &&&&  (39) 
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After tremendous of algebra and neglecting friction, (39) can be written as, 
 

1pu1h22δ16B21δ15B12δ14B11δ13B2θ12B1θ11B =++++++ &&&&&&&&&&&&   
2pu2h22δ26B21δ25B12δ24B11δ23B2θ22B1θ21B =++++++ &&&&&&&&&&&&   
011δ3K3h22δ36B21δ35B12δ34B11δ33B2θ32B1θ31B =+++++++ &&&&&&&&&&&&  
012δ4K4h22δ46B21δ45B12δ44B11δ43B2θ42B1θ41B =+++++++ &&&&&&&&&&&&  (40) 

021δ5K2h22δ56B21δ55B12δ54B11δ53B2θ52B1θ15B =+++++++ &&&&&&&&&&&&   
022δ6K2h22δ66B21δ65B12δ64B11δ63B2θ62B1θ61B =+++++++ &&&&&&&&&&&&   

 
where, up1 and up2 are input torques to joints 1 and 2, respectively. Plant outputs are 
considered to be link tip displacements y1 and y2. As seen from above equations, the system 
is highly nonlinear and of 12th order. For the flexible robot, the following physical 
parameters were considered 
 

1 2 0.2 /ρ = ρ = kg m   
m0.25=2dm,0.5=2l=1l   

kg1=h2mkg,0.1=pm=2m=1m  
2kgm0.0083=02J=01J  

(41) 

2 20.1 , 0.0005h1 h2 pJ = J = kgm J = kgm   
( ) ( ) 2Nm1=2EI=1EI   

 
The natural frequencies fij = wij/2π and the remaining parameters in the model coefficients 
are computed as (Miranda, 2004): 
 

11 120.48 1.80 ,f = Hz, f = Hz   

21 222.18 15.91 ,f = Hz, f = Hz   

11, 12,0.186, 0.215,e eφ = φ = 11, 12,0.657, 0.560,e eφ = φ =′ ′ −  

21, 22,0.883, 0.069,e eφ = φ = − 21, 22,2.641, 10.853,e eφ = φ =′ ′ −  (42) 

11 120.007, 0.013,v = v = 21 220.033, 0.054,v = v =   

11 120.002, 0.004,w = w = 21 220.012, 0.016w = w =   
 
In order to design the proposed adaptive controller, the plant needs to be linearized and the 
transfer function matrix be obtained. After linearization, neglecting higher order terms, and 
tremendous amount of algebra, it can be shown (Miranda, 2004) that the plant Gpo(s) = 
yp(s)/up(s) with nominal parameters can be obtained as, 
 

( )
( )

( )
( )

10 5 8 10 3 8

12 3 10 12 3 10

0 10 3 8 10 8

12 3 10 12 3 10

0.01641s 7.061 10 2.259s 1.362 10
3.68 10 3.68 10

( )
7.357s 9.636 10 1317 0.674s

3.68 10 3.68 10

p1 p1
p

p2 p2

+ s s
y s u ss + s s + s

G s
y s u ss s +

s + s s + s

− −

− −

−

− −

⎡ ⎤∗ − − ∗
⎢ ⎥⎡ ⎤ ⎡ ⎤∗ ∗⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎢ ⎥− − ∗⎣ ⎦ ⎣ ⎦⎢ ⎥

∗ ∗⎣ ⎦

 
(43) 
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where, Gpo(s) is the nominal plant transfer function matrix. Now, performing minimal 
realization, Gpo(s) can be reduced to 
 

( )

2 5 2 3

4 3 2 4 3 2

2 3 2

4 3 2 4 3 2

0.01641s 7.061 10 2.259s 1.362 10
3.68 10 3.68 10

7.357s 9.636 10 1317s 0.674
3.68 10 3.68 10

po

+
s + s s + s

G s =
+

s + s s + s

− −

− −

−

− −

⎡ ⎤∗ − − ∗
⎢ ⎥∗ ∗⎢ ⎥
⎢ ⎥− − ∗
⎢ ⎥

∗ ∗⎣ ⎦

 
(44) 

 
From (44), it is straight forward to obtain the actual plant in general form as 
 

( ) ( )
( )

11 2 11 12 2 12
1 0 1 0
4 11 2 4 12 2

2 2
21 2 21 22 2 22

1 0 1 0
4 21 2 4 22 2

2 2

p
p

p

C s + C C s + C
y s s + B s s + B s

G s = =
u s C s + C C s + C

s + B s s + B s

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 
(45) 

 
where, above coefficients of Gp(s) are functions of plant parameters and can vary with the 
range as defined below: 
 

1, 2, 1, 2
1, 2, 1, 2

ij ij ij
p j p j p j
ij ij ij
r j r j r j

C C C i j
B B B i j

− − −

− − −

⎧ ≤ ≤ = =⎪
⎨ ≤ ≤ = =⎪⎩

 (46) 

 
The values of the nominal plant parameters are defined in the following table. The range 
considered for each parameter is ±30%.  
 

Parameter Nominal Range 
11
1C  0.01641  0.011487 0.02133to  

11
0C  57.061*10−  5 54.9427*10 9.1793*10to− −  

11 12 21 22
2 2 2 2B B B B= = =  33.68*10−  3 32.576*10 4.784*10to− −  

12
1C  2.259  1.5813 2.9367to  

12
0C  31.362*10−  4 39.583*10 1.7797*10to− −  

21
1C  7.357  5.1499 9.5641to  

21
0C  39.636*10−  1 36.7452*10 12.5268*10to− −  

22
1C  1317  921.9 1712.1to  

22
0C  0.674  0.4718 0.8762to  

Table 1. Plant parameters, nominal values, and variation range. 
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For comparison reasons, uncompensated response of the nominal plant is given below 
 

 
Fig. 2. Uncompensated response of the nominal plant 

 
3. Controller Design 
 

Consider now that the plant given by (45) is represented by the following state-space 
equations: 
 

( ) ( ) ( )p p p p px t A x t B u t= +&  

( ) ( )txCty ppp =  
(47) 

 
where xp(t) is the (n ×1) state vector, up(t) is the (m×1) control vector, yp(t) is the (q × 1) plant 
output vector, and Ap, Bp and Cp are matrices with appropriate dimensions. The range of the 
plant parameters given by (46) is now given by 
 

( ) njiajiaa ijpij ,,1,,, K=≤≤  

( ) njibjibb ijpij ,,1,,, K=≤≤  
(48) 

 
where ap(i, j) is the (i, j)th element of Ap and bp(i, j) is the (i, j)th element of Bp. Consider also 
the following reference model, for which plant output is expected to follow the model 
output without explicit knowledge of Ap and Bp. 
 

( ) ( ) ( )tuBtxAtx mmmmm +=&  

( ) ( )txCty mmm =  
(49) 

 
In light of this objective, consider now the following output feedback adaptive control law, 
 

)()()()()()()( tutKtxtKtetKtu mumxyep ++=  (50) 
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where ey(t) = ym(t)−yp(t) and Ke(t), Kx(t), and Ku(t) are adaptive gains defined below. The 
control law consists of a feedback term from output error and a feedforward terms from 
model states and inputs. The adaptive gains Ke(t), Kx(t), and Ku(t) are combination of 
proportional and integral gains as given below, 
 

( ) ( ) ( ) , ,j pj ijK t K t K t j e x u= + =  (51) 
 
and they are updated according to the following adaptation law (Kaufman, et. al. 1998, 
Ozcelik & Kaufman, 1999) 
 

( ) ( )[ ( ) ( ) ( )] , , , 0pj y y m m p pK t e t e t x t u t T j e x u T= + + = ≥  (52) 
 
 

( ) ( )[ ( ) ( ) ( )] , , , 0ij y y m m i iK t e t e t x t u t T j e x u T= + + = >  (53) 
 
where Ti and Tp are constant proportional and integral weighting matrices, respectively. It is 
seen from (53) that the term Kij(t)  is a perfect integrator and may steadily increase whenever 
perfect following (ey(t) = 0) is not possible. The gain may reach unnecessarily large values, or 
may even diverge. Thus, a σ-term is introduced in order to avoid the divergence of integral 
gains (Ionnou & Kokotovic, 1983). With the σ -term, Ki(t) is now from a first-order filtering 
of ey(t)rT (t)Ti and therefore cannot diverge, unless ey(t) diverges. However, in this context, 
the σ -term does more for the concept of ‘adaptive control’. The gains increase only if high 
gains are needed and decrease if they are not needed any more. They are also allowed to 
change at any rate without affecting stability, such that the designer can adjust this rate to fit 
the specific needs of the particular plant. Thus, using σ -term we rewrite the equation (53) as 
follows, 
 

( ) ( )[ ( ) ( ) ( )] ( ) , ,ij y y m m i ijK t e t e t x t u t T K t j e x uσ= + + − =  (54) 
 
For this adaptive control to work and for asymptotic tracking to be achieved, the plant is 
required to be almost strictly positive real (ASPR) (Bar-Kana, 1994); that is, there exists a 
gain matrix Ke, not needed for implementation, such that the closed-loop transfer function 
 

)(])([)( 1 sGKsGIsG pepc
−+=  (55) 

 
is strictly positive real (SPR). And that it can be shown that (Kaufman, et. al., 1998) a MIMO 
system represented by a transfer function Gp(s) is ASPR if it: 

a) is minimum phase (zeros of the transfer function are on the left-half plane), 
b) has relative degree of m or zero (i.e., the difference in the degree of denominator 

and numerator, (n-m=m) or (n-m=0)), and 
c) has minimal realization with high frequency gain CpBp > 0 (positive definite). 

 
Obviously, the plant given by (45) does not satisfy the so-called ASPR conditions and that 
can not be applied. However, it has been shown in (Kaufman, et. al., 1998) and (Ozcelik, 
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2004) that there exist a feedforward compensator H(s) such that the augmented plant Ga(s) = 
Gp(s) + H(s) is ASPR and the proposed adaptive algorithm can be implemented confidently. 

 
3.1. Design of a Feedforward Compensator (FFC) for the Flexible Robot 
 

From the above restrictions it is obvious that the plant given by (45) is not ASPR and that an 
FFC has to be designed. Now consider the actual plant Gp(s) again, 
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
+

+
+

+
+

+
+

=

222
2

4

22
0

222
1

221
2

4

21
0

221
1

212
2

4

12
0

212
1

211
2

4

11
0

211
1

)(

sBs
CsC

sBs
CsC

sBs
CsC

sBs
CsC

sGp  (56) 

 
Assuming that the nominal plant parameters are known, the parametric uncertainty of the 
plant can be transformed into a frequency dependent additive perturbation of the plant by 
representing of the actual plant Gp(s) as Gp(s) = Gp0(s) + Δa(s), with Gp0(s) being a nominal 
plant and Δa(s) being a frequency dependent additive perturbation. Then, one can write 
 

0( ) ( ) ( )a p ps G s G sΔ = −  (57) 
 
From (57), the additive uncertainty transfer function can be obtained as 
 

⎥
⎦

⎤
⎢
⎣

⎡
=Δ

)()(
)()(

)(
2221

1211

ss
ss

sa λλ
λλ

 (58) 

 
where, 
 

 

( ) ( )
( ) 4311

2
611

2
38

211
2

511
0

3411
2

511
0

11
1

3611
1

11 10*68.310*68.3
10*710*68.301641.010*710*68.3)016411.0(

)(
sBsBs

sBCsBCCsC
s −−

−−−−

+++
−+−−++−

=λ   

( ) ( )
( ) 43

1
612

2
38

212
2

312
0

3412
2

312
0

12
1

3612
1

12 10*68.310*68.3
10*36.110*68.325.210*36.110*68.3)25.2(

)(
sbsBs

sBCsBCCsC
s −−

−−−−

+++
+++++++

=λ
 ( ) ( )

( ) 43
1

621
2

38

221
2

321
0

3421
2

321
0

21
1

3621
1

21 10*68.310*68.3
10*63.910*68.335.710*63.910*68.3)32.7(

)(
sbsBs

sBCsBCCsC
s −−

−−−−

+++
+++++++

=λ
 

(59) 

  

( ) ( )
( ) 4321

2
621

2
38

221
2

22
0

3421
2

22
0

22
1

3622
1

22 10*68.310*68.3
674.010*68.31317674.010*68.3)1317(

)(
sBsBs

sBCsBCCsC
s −−

−−

+++
−+−−++−

=λ
 

 

 
It is seen that the uncertainty is a function of plant parameters, which vary in a given range. 
Thus, in the design of a feedforward compensator, the worst case uncertainty should be 
taken into account. To this effect, the following optimization procedure is considered for 
determining the worst case uncertainty at each frequency (suitable number of discrete 
values). Define a vector whose elements are plant parameters, i.e. 
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[ ]ijij
r

ij
r

ijij
p

ij
p BBBCCCv 0101 LL −−=  (60) 

 
Then 
 

( )λ14243maximize ij
v

jw at each w  

−−−

−−−

⎧ ≤ ≤⎪
⎨
⎪ ≤ ≤⎩

:
ijij ij
p jp jp j

ijij ij
r jr jr j

C C C
subject to

B B B
 

(61) 

 
where λij is the ijth element of Δ(jw). In other words, this optimization is performed for each 
element of Δ(jw). After having obtained the worst case (maximum) perturbation, we will 
assume that the perturbation is not exactly known but its upper bound is known. In other 
words, there exists a known rational function as an upper bound of the worst case 
uncertainty. Now the upper bound is characterized by an element by element interpretation, 
where the upper bound means that each entry of λ(jw) is replaced by its corresponding 
bound. In other words, given the worst case uncertainty for each λ(jw), it is assumed that 
there exists a known rational function wij(s) Є RH∞ such that 
 

( ) ( ) wjwjww ijij ∀≥ λmax  (62) 

 
Knowing that the plant parameters can vary within their lower and upper bounds, this 
parametric uncertainty is formulated as an additive perturbation in the transfer function 
matrix. It is important to note that the controller be designed with respect to worst case 
uncertainty for each λij. This can be achieved by performing an optimization procedure 
given by (61) for 200 frequencies. Here an element by element uncertainty bound model is 
used for the characterization of upper bound of the uncertainty matrix. Then wij , which 
satisfies (62) for each λij  is given in matrix form as, 
 

( )
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+++

++++=

125.075.325
10*2

05.075.5150
10*425

05.0480
10*9

05.022800
10*7

2

9

2

3

2

4

2

2

ssss

sssssW  (63) 

 
The magnitude responses for each max(|λij|) and the corresponding (|wij|) are given in 
Figures 3-6. Having obtained the nominal plant and formulated unmodeled dynamics, let’s 
have the following assumptions on the plant, 
 
Assumption 1: 

a) The nominal plant parameters are known. 
b) The off-diagonal elements of Gpo(s) and Δa(s) are strictly proper. 
c) Δa(s)  Є RH∞mxm and satisfies (62) 
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Fig. 3. |λ11 (jw)| and |w11 (jw)|   Fig. 4. |λ12 (jw)| and |w12 (jw)| 
 

  
Fig. 5. |λ21 (jw)| and |w21 (jw)|   Fig. 6. |λ22 (jw)| and |w22 (jw)| 

 
Now, consider the augmented nominal plant with the parallel feedforward compensator 
 

( ) ( ) ( )sHsGsG poao +=  (64) 
 
and the following lemma 
 
Lemma 1: 
Let the feedforward compensator H(s) be of the form, 
 

( )
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

mmh

h
h

sH

K

MOMM

L

K

00

00
00

22

11

 (65) 

 
with each element hii(s) of a feedforward compensator being relative degree zero, then the augmented 
nominal plant Gao(s) = Gpo(s)+H(s) will have positive definite high frequency gain and relative 
McMillan degree zero (Ozcelik & Kaufman, 1999). 
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In other words, the new plant Gao(s) including H(s) becomes ASPR. Now that the ASPR 
conditions are satisfied for the nominal plant case, we next need to guarantee that the ASPR 
conditions are also satisfied in the presence of plant perturbations. To this effect, consider 
the following theorem 
 
Theorem 1: If H(s) is designed according to the following conditions, then the augmented plant 
Ga(s) = Gp(s)+H(s) with the plant perturbations will be ASPR. 

a) H(s) is stable with each hij (s) being relative degree zero 
b) H−1 (s) stabilizes the nominal closed loop system 
c) ( ) ( ) 1s RH and s∞ ∞
Δ ∈ Δ <% %  

where ( )sΔ% is the uncertainty of the augmented plant and given in the following (Ozcelik & 
Kaufman, 1999) 
 

( ) ( ) ( )( ) ( )sWsHsGs p
1

0
~ −+=Δ  (66) 

 
In light of the Theorem 1, we can readily determine the FFC as follows: 

a) The order of each element hii(s) of a feedforward compensator is chosen to be 
equal to the order of the corresponding diagonal element of the nominal plant 
Gp0(s). 
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ssss
hshshshsh

ssss
hshshshsh

sH  (67) 

 
Denominator of the compensator H(s) appears in the numerator of the closed-
loop transfer function and therefore, can be pre-determined such that its time 
constant is fast enough that its dynamics is negligible. 

b) Compensator parameters are determined from the following optimization 
procedure: 

 

∞
Δ%14243minimize ( )

X

jw  

[ ] <: Re ( ( )) 0subject to al roots Z s  
(68) 

 
where Z(s) is the characteristic polynomial of the nominal closed-loop system matrix and X 
is a vector composed of the parameters of each Hij(s). 
 

numerator of 43233444
11 0310.41650.15966.96805.47444.3 −−−−− ++++= eseseseseh  

numerator of 45243445
22 6472.59786.23495.27746.52748.9 −−−−− ++++= eseseseseh  

(69) 
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With this FFC, all the conditions of Theorem 1 are satisfied. Thus, the augmented plant 
satisfies the almost strictly positive real conditions over a wide range of plant parameter 
variations. It is expected that the DMRAC augmented with this feedforward compensator 
will be robust for the maximum deviations from the nominal plant. The block diagram of 
the overall control system is depicted in Figure 7. 
 

 
Fig. 7. DMRAC with Two-Link Arm 
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Fig. 8. Simulink Block Diagram of the overall control system with nonlinear plant. 

 
4. Simulation Results 
 

The nonlinear equations were used in building the plant in Simulink/MATLAB (Figure 8) 
and with the above described DMRAC algorithm, the following cases were simulated. 

 
4.1 Case 1 
 

• All initial conditions were set to zero. 
• For both links the reference models were set to = = +1 2( ) ( ) 1/(30 1)m mG s G s s  
• For both links tip displacements were set to=0.05m 
• Upper bound of plant parameters was used. 
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Fig. 9. Case 1: y1 and reference model (left), y2 and reference model (right) 
 

  
Fig. 10. Case 1: θ1 and θ2 (left), errors ez1 and ez2 (right) 
 

 
Fig. 11. Case 1: Control inputs, up1 and up2 

 
4.2. Case 2 
 

• All initial conditions were set to zero. 
• For both links the reference models were set to = = +1 2( ) ( ) 1/(15 1)m mG s G s s  
• For both links tip displacements were set to=0.05m 
• Lower bound of plant parameters was used. 
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Fig. 12. Case 2: y1 and reference model (left), y2 and reference model (right) 
 

  
Fig. 13. Case 2: θ1 and θ2 (left), errors ez1 and ez2 (right) 
 

 
Fig. 14. Case 2: Control inputs, up1 and up2 

 
From the Figures 9-11 of Case 1 and the Figures 12-14 of Case 2, we can see that the tips of 
both links in each case follow the reference input. In Case 2 we have used a faster reference 
model to show the effectiveness of the DMRAC. 

 
4.3. Case 3 

• θ θ= =o o
1 2(0) 5 , (0) 0  
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• For both links the reference models were set to = = +1 2( ) ( ) 1/(30 1)m mG s G s s  
• For both links tip displacements were set to=0.01m 
• Nominal set of plant parameters were used. 

 

  
Fig. 15. Case 3: y1 and reference model (left), y2 and reference model (right) 
 

 
Fig. 16. Case 3: θ1 and θ2 (left), errors ez1 and ez2 (right) 

 
From Figure 15 we see that at t=0, the tip position of link 2, y2 begins at zero, however due to 
the initial condition for θ1 tip position of first link, y1 is displaced with respect to the desired 
reference model at t=0. From Figure 16 it is seen that θ1 and θ2 come to steady-state, while 
errors approach to zero. 
 

 
Fig. 17. Case 3: Control inputs, up1 and up2 
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4.5. Case 4 
•θ θ= =o o

1 2(0) 0 , (0) 0  
• For both links the reference models were set to = = +1 2( ) ( ) 1/(50 1)m mG s G s s  
• For both links tip displacements were set to=± 0.01m 
• Nominal plant parameters were used 

 

  
Fig. 18. Case 4: y1 and reference model (left),  y2 and reference model (right) 
 

  
Fig. 19. Case 4: θ1 and θ2 (left), error ez (right) 
 

 
Fig. 20. Case 4: Control inputs, up1 and up2. 
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5. Conclusions 
 

Direct Model Reference Adaptive Control is utilized to control two-link flexible robot, 
whose parameters vary. The feedforward compensator was designed for the system and it 
was showed that the augmented plant satisfies the ASPR conditions over the range of 
parameter variations. As seen from the results of the tip position response, the system 
closely follows the reference model. During the simulations it was observed that DMRAC 
was capable of controlling the plant despite the changes in the plant parameters. The ease of 
its implementation and its robustness were demonstrated. 
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1. Introduction    
 

Adaptive control theory has been widely applied for stabilizing linear time invariant plants 
of unknown parameters (Goodwin & Sin, 1984). One of the more used methods for such a 
purpose is based on the model reference adaptive control (MRAC) problem (Aström & 
Wittenmark, 1997). Such a method requires some assumptions relative to the plant to be 
controlled in order to carry out the synthesis of a stable controller (Narendra & 
Annaswamy, 1989). One of them is that the plant has to be inversely stable, what means that 
its zeros have to be located within the stability domain. However, this information is not 
always available to the designer when the system under control contains unknown 
parameters. There are several alternatives to circumvent this drawback and carry out the 
stable adaptive control design. Some of them consist on relaxing the control performance 
from the model matching to that achievable from the closed-loop pole placement (Alonso-
Quesada & De la Sen, 2004 and Arvanitis, 1999). In this way, the stabilization of the closed-
loop system can be ensured although its transient behaviour cannot be fixed to a predefined 
one. 
 On one hand, the work (Alonso-Quesada & De la Sen, 2004) includes an estimates 
modification in the estimation algorithm to ensure the controllability of the estimated plant 
model without assuming any knowledge about the parameters of the plant to be controlled. 
This controllability property is crucial to avoid pole-zero cancellations between the 
estimated plant and the controller, which are both time-varying. In this context, a projection 
of the estimated plant parameters into a region in the parameter space where the closed-
loop system is free of pole-zero cancellations for all time can be alternatively used provided 
that the true plant is controllable and the knowledge of a region where the true plant 
parameters belong to (Goodwin & Mayne, 1987). 
 On the other hand, the research (Arvanitis, 1999) proposes an adaptive pole-placement 
control for linear systems using generalized sampled-data hold functions. Following such a 
technique, gain controllers essentially need to be designed. Concretely, a periodic piecewise 
constant gain controller is added in the feedback chain. In the non-adaptive case, such 
constant gain values are those required so that the discretized closed-loop model under a 
fundamental sampling period and a zero-order hold (ZOH) be stabilized. For such a 
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purpose, each sampling period is divided in a certain finite number of uniform subintervals 
and the controller gain takes a different value within each of them in order to locate the 
discretized poles at the stable desired locations. In other words, the controller consists of a 
constant vector of gains. In this sense, the controller works with a sampling rate faster than 
that used to discretize the plant to be controlled. In the adaptive case, an estimated model of 
the discretized plant is on-line updated by means of an estimation algorithm. Such a model 
is used to parameterize the controller gains vector which becomes time-varying and 
converges asymptotically to a constant one. 
 Another alternative, which does not relax the MRAC objective, to overcome the 
drawback of the unstable zeros in a continuous-time plant is the design of discrete-time 
controllers which are synthesized from the discretization of the continuous-time plant by 
means of a holder device combined with a multirate with fast input sampling rate (De la Sen 
& Alonso-Quesada, 2007 and Liang & Ishitobi, 2004). The main motivation of this method is 
that an inversely stable discretized model of the plant can be obtained with an appropriate 
choice of the multirate gains. In this way, an adaptive controller can be designed to match a 
discrete-time reference model since all the discretized plant zeros may be cancelled if suited. 
 In this context, a fractional-order hold (FROH) with a multirate input is used in this paper to 
obtain an inversely stable discretized plant model from a possible non-inversely stable and unstable 
time invariant continuous-time plant. Then, a control design for matching a discrete-time reference 
model is developed for both non-adaptive and adaptive cases. Note that a FROH includes as 
particular cases the ZOH and the FOH (first-order hold). In this way, the stabilization of the 
continuous-time plant is guaranteed without any assumption about the stability of its zeros 
and without requiring estimates modification in contrast with previous works on the 
subject. In this sense, this paper is an extension of the work (De La Sen & Alonso-Quesada, 
2007) where the same problem is addressed. The main contribution is related to the method used 
to built the continuous-time plant input from the discrete-time controller output. In the present 
paper, the FROH acts on the fundamental sampling period used to discretize the plant 
(plant output sampling) while in the aforementioned paper the FROH acted on the sampling 
period used to define the multirate device at the plant input. This later sampling period is 
an integer fraction of the plant output one, i.e. an integer number of input samples takes 
place within each output sampling period. Such an integer has to be suitably chosen for 
disposing of the enough freedom degrees being necessary to place the discretized plant 
zeros at desired locations, namely within the unity circle in order to guarantee the inverse 
stability of the discretized plant model. 
 The assumptions about the plant to guarantee the closed-loop stability of the adaptive 
control system are the following: (1) the stabilizability of the plant and (2) the knowledge of 
the continuous-time plant order. The motivation for using a multirate sampling input 
instead of the most conventional single rate one resides in the fact that the former, with the 
appropriate multirate gains, provides an inversely stable discretized plant model without 
requirements on either the stability of the continuous-time plant zeros or the size of the 
sampling period. In this sense, a single rate input can only provide an inversely stable 
discretized plant from an inversely stable continuous-time plant and, moreover, the 
fundamental sampling period to discretized the plant has to be sufficiently small (Blachuta, 
1999). Finally, the use of a FROH, instead of the most conventional ZOH, allows to 
accommodate better some discrete adaptive techniques to the transient response of discrete-
time controlled continuous-time plants (Bárcena et al., 2000 and Liang et al., 2003). 
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 The paper is organized as follows. Section 2 formulates a discrete state-space 
description under fast input sampling to then obtain an input-output discrete transfer 
function for the running slow sampling rate, namely, that acting on the output signal. The 
selection of the scalar gains that generate the fast sampled input so that the discrete plant 
zeros are stable is focused on depending on the continuous-time plant parametrization. 
Section 3 discusses the synthesis of a model-matching based controller with a possible 
potential free design of all the zeros of the reference model. The case of known plant 
parameters and the adaptive case for not fully known plant parameters are both considered. 
Two alternatives are proposed to update on-line the time-varying multirate gains in the 
adaptive case. The first one updates the multirate gains for all sampling instants in order to 
maintain the zeros of the estimated discretized plant fixed within the stability domain. On 
the contrary, the other one updates the multirate gains only when the change of gains is 
crucial to guarantee the stability of the estimated discretized plant zeros. In this way, the 
multirate gains are not updated for all sampling instants and then they became piecewise 
constant. As a result, the zeros of the estimated discretized plant become time-varying 
within the stability domain. Section 4 deals with the stability analysis of the adaptive control 
system. Simulated examples which highlight the proposed design philosophy are provided 
in Section 5. A comparison of the results obtained with the two different methods for 
updating the multirate gains is presented. Finally, conclusions end the paper in Section 6. 
 
2. Discretized Plant Representation 
 

Consider a linear time-invariant, single-input single-output and strictly proper continuous-
time plant described by the following state space equations: 

 
= + =&x(t) Ax(t) Bu(t)   ;    y(t) Cx(t)                                                (1) 

 
where u(t)  and y(t)  are, respectively, the input and output signals, ∈ℜnx(t)  denotes the 
state vector and A, B and C are constant matrices of suitable dimensions. A FROH and a 
multirate sampling on the fast input sampling will be used in order to obtain an inversely 
stable discretized plant model. The signal generated by such a device is given by, 
 

( )− −⎧ ⎫= α + β −⎨ ⎬
⎩ ⎭

j
u(k) u(k 1)u(t) u(k) t kT

T
                                        (2) 

 
for [ )′ ′∈ + − +t kT ( j 1)T ,kT jT , { }∈ Kj 1,  2, , N  and FROH correcting gain [ ) ( ]β∈ − ∪1,0 0,1 , 
where T is the sampling period (slow sampling) which is divided in N equal subperiods of 
length ′ = TT N  (fast sampling) to generate the multirate plant input, u(k)  denotes the 

value of a discrete-time controller output signal at the instant kT, for all non-negative 
integer k, and α j ’s are real constants. Note that the FROH device operates on the sequence 

{ }u(k)  defined at the slow sampling instants kT and then the input u(t)  is generated over 

each subperiod with the corresponding gain α j , for { }∈ Kj 1,  2, , N , via (2). By substituting 
(2) into (1) and sampling the plant output y(t)  over the sampling period T, the following 
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state space representation is obtained which corresponds to the discrete-time plant model 
that relates the sequences { }u(k)  and { }y(k) : 

 
+ = + + − =1 2x(k 1) F x(k) G  u(k) G  u(k 1)    ;    y(k) C x(k)                            (3) 

 
where = ψ = φ =N ATF (T) e  is the continuous-time state transition matrix computed for a 
slow sampling period and, 
 

− × − ×

= =

β β⎛ ⎞ ⎛ ⎞⎛ ⎞′ ′= α ψ Γ + Γ ∈ℜ = − α ψ Γ ∈ℜ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
∑ ∑l l

l l
l l

N N
N n 1 N n 1

1 2
1 1

G    ;   G
T T

                    (4) 

 
with, 
 

′ ′× ×′ ′ ′Γ = φ − ∈ℜ Γ = φ − ∈ℜ∫ ∫
T Tn 1 n 1

0 0
(T s) B ds    ;   (T s) B s ds                          (5) 

 
 The transfer function of this discrete-time plant model is, 
 

− ⎛ ⎞= − ψ + =⎜ ⎟
⎝ ⎠

N 1
n 1 2

1 B(z)H(z) C(zI ) G G
z A(z)

                                                (6) 

 
where, 
 

+
Δ − +

Δ
=

+ − +

=

⎡ ⎤− ψ
= −ψ = ⎢ ⎥−⎣ ⎦

= − ψ = +

∑

∑

N n 1
nN n i 1

n i
i 1

n
N n 1 n i 1

n i
i 1

zI C (z)g
B(z) C Adj(zI )C (z)g Det = b z

C 0

A(z) z Det(zI ) z a z
               (7) 

 
with ⋅Adj( )  and ⋅Det( )  denoting, respectively, the adjoint matrix and the determinant of the 
square matrix (.), nI  denoting the n-th order identity matrix, and 
 

[ ] [ ]
Γ

T
βΓ

T
βΓzΔ(z)

Δ(z)ψΔ(z)Δ(z)ψ(z)C;ααg nxN1N
Δ

1NT
N1

′−⎟
⎠
⎞

⎜
⎝
⎛ ′+=

ℜ∈ℜ∈= −+ LLL           (8) 

 
 Note that the coefficients ib , for { }∈ +Ki 1,  2,  ,  n 1 , of the polynomial B(z)  in (7) 
depend on the values α j , for { }∈ …j 1,  2,  ,  N , which define the multirate device. This fact 
lets to allocate the zeros of the discretized plant model at desired locations if a suitable 
number of multirate gains is provided. In this sense, the multirate gains α j , being the 
components of the vector g , are calculated to guarantee that such zeros are maintained 
within the stability domain, i.e., the unity circle. In particular, the coefficients ib  can be 
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expressed as: 
 

=

= α ⇔ =∑
N

i i , j j
j 1

b b v M g                                                           (9) 

 
where + ×⎡ ⎤= ∈ℜ⎣ ⎦

(n 1) N
i , jM b  and [ ]+= K

T
1 2 n 1v b  b b . The coefficients i , jb  depend on the 

parameters of the continuous-time plant, the sampling period T and the correcting gain β  of 
the FROH considered in the discretization process. 
 
Assumptions 1.  
(i) The plant is stabilizable, i.e. its transfer function does not possess unstable pole-zero 

cancellations, 
(ii) the plant order n  is known, and 
(iii) the correcting gain β  of the FROH device and the sampling period T  are chosen such 

that M  is a full rank matrix.       *** 
 
Remark 1. The multirate gains vector g  required to place the zeros of the discretized plant 
transfer function (6) at desired locations may be calculated from (9) provided Assumptions 1 
and that ≥ +N n 1 . In this sense, such locations are prefixed via a suitable choice of the 
vector v  composed by the coefficients of the desired polynomial for the transfer function 
numerator. If > +N n 1 , different solutions can be obtained for g . Otherwise, i.e. if 

= +N n 1 , there is a unique solution for the multirate gains vector from the linear algebraic 
system (9) which places the discretized zeros at desired locations.     *** 
 
 The discretized model (6) can be described by the following difference equation: 

 
+ +

= = = = =

+

= = =

= − − + − = − − + α −

= − − + − = θ ϕ −

∑ ∑ ∑ ∑∑

∑ ∑∑

n n 1 n n 1 N

i i i i , j j
i 1 i 1 i 1 i 1 j 1

n n 1 N
T

i i , j j
i 1 i 1 j 1

y(k) a  y(k i) b  u(k i) a  y(k i) b   u(k i)

       a  y(k i) b  u (k i)  (k 1)
         (10) 

 
where, 
 

[ ] [ ]
[ ]

+ ⎡ ⎤⎡ ⎤θ = θ θ θ θ ϕ − = ϕ − ϕ − ϕ − ϕ − −⎣ ⎦ ⎣ ⎦

θ = − − − ϕ − = − − −

θ = ϕ − = − − −⎡ ⎤⎣ ⎦
− =

K K

K K

K K

TTT T T T T T T T
a y u u ub,1 b,2 b,n 1

T T
a 1 2 n y

T T
i ,1 i ,2 i ,N u 1 2 Nb,i

j

   ;   (k 1) (k 1) (k 1) (k 2) (k n 1)

a a a    ;   (k 1) y(k 1) y(k 2) y(k n)

b b b    ;   (k i) u (k i) u (k i) u (k i)
u (k i) α −ju(k i)

(11) 

 
for all { }∈ +Ki 1,  2,  ,  n 1  and all { }∈ Kj 1,  2,  ,  N . In the rest of the paper, the case 

= +N n 1  will be considered for simplicity purposes. 
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3. Control Design 
 

The control objective in the case of known plant parameters is that the discretized plant 

model matches a stable discrete-time reference model = m
m

m

B (z)H (z)
A (z)

 whose zeros can be 

freely chosen, where z  is the Z-transform argument. Such an objective is achievable if the 
discretization process uses the multirate sampling input with the appropriate multirate 
gains, what guarantees the inverse stability of the discretized plant. Then, all the discretized 
plant zeros may be cancelled by controller poles. In this way, the continuous-time plant 
output tracks the reference model output at the sampling instants. The tracking-error 
between such signals is zero at all sampling instants in the case of known plant parameters 
while it is maintained bounded for all time while it converges asymptotically to zero as time 
tends to infinity in the adaptive case considered when the plant parameters are fully or 
partially unknown. A self-tuning regulator scheme is used to meet the control objective in 
both non-adaptive and adaptive cases. 

 
3.1 Known Plant 
The proposed control law is obtained from the difference equation: 

 
= −R(q) u(k) T(q) c(k) S(q) y(k)                                            (12) 

 
for all non-negative integer k, where { }c(k)  is the input reference sequence and q is the 
running sample rate advance operator being formally equivalent to the Z-argument used in 
discrete transfer functions. The reconstruction of the continuous-time plant input u(t) is 
made by using (2), with the control sequence { }u(k)  obtained from (12), with the 

appropriate multirate gains α j , for { }∈ Kj 1,  2,  ,  N , to guarantee the stability of the 
discretized plant zeros. 
 The discrete-time transfer function of the closed-loop system obtained from the 
application of the control law (12) to the discretized plant (6) is given by: 

 

= =
+ +

Y(z) B(z)T(z) T(z)
C(z) A(z)R(z) B(z)S(z) A(z) S(z)

                                         (13) 

 
where the second equality is fulfilled if the control polynomial =R(z) B(z) . In this way, the 
polynomial B(z) , which is stable, is cancelled. Then, the polynomials T(z) , R(z)  and S(z)  

of the controller (12) so that  = m

m

Y(z) B (z)
C(z) A (z)

 are obtained from: 

 
= = = −m s m sT(z) B (z)A (z)   ;   R(z) B(z)   ;   S(z) A (z)A (z) A(z)                      (14) 

 
where sA (z)  is a stable monic polynomial of zero-pole cancellations of the closed-loop 
system. The following degree constraints are satisfied in the synthesis of the controller: 
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[ ] [ ] [ ]

[ ] [ ]

[ ] [ ] [ ]

−
+

=

⎧ + = = +
⎪
⎪ = − = ⇒ =⎨
⎪
⎪ = + ≤⎩

∑
m s

n
n i

i 1
i 0

m s

Deg A (z) Deg A (z) Deg A(z) n 1

Deg S(z) Deg A(z) 1 n      S(z) s  z

Deg T(z) Deg B (z) Deg A (z) n

                          (15) 

 
3.2 Unknown Plant 
If the continuous-time plant parameters are unknown then the vector θ  in (11) composed of 
the discretized plant model parameters is also unknown. However, all the above control 
design in the previous subsection remains valid if such a parameter vector is estimated by 
an estimation algorithm. In this way, the controller parameterization can be obtained from 

= ˆR(z,k) B(z,k) , with B̂(z,k)  denoting the estimated of B(z)  at the current slow sampling 
instant kT, and equations similar to (14) by replacing the discretized plant polynomial A(z)  

by its corresponding estimated one Â(z,k)  (Alonso-Quesada & De la Sen, 2004). Note that 
T(z)  in (14) has to be calculated once for all since mB (z)  and sA (z)  are time-invariant while 

S(z)  is updated at each running sampling time since the polynomial Â(z,k)  is time-
varying. The coefficients of the unknown polynomial B(z)  depend, via (9), on the multirate 
input gains α j , for { }∈ Kj 1,  2,  ,  N , being applicable to calculate the input within the inter-
sample slow period. However, the estimation algorithm provides an adaptation of each 
parameter i , jb , namely i , jb̂ (k) , for { }∈ Ki,  j 1,  2,  ,  N  and all non negative integer k. Then, 
the α j -gains have to be also updated in order to ensure the stability of the zeros of the 

estimated discretized plant, i.e. the roots of B̂(z,k)  be stable. Then, the gains α j  become 
time-varying, namely α jˆ (k) . The estimation algorithm for updating the parameters vector 

θ̂(k) , which denotes the estimated of θ , and two different design alternatives for the 
adaptation of the multirate gains are presented below. Also, the main boundedness and 
convergence properties derived from the use of such algorithms are established. 

 
3.2.1. Estimation algorithm 
An ‘a priori’ estimated parameters vector is obtained at each slow sampling instant by using 
a recursive least-squares algorithm (Goodwin & Sin, 1984) defined by: 

 

 

− ϕ − ϕ − −
= − −

+ ϕ − − ϕ −

− ϕ −
θ = θ − +

+ ϕ − − ϕ −

T

T

0
0 0

T

P(k 1) (k 1) (k 1) P(k 1)P(k) P(k 1)
1 (k 1) P(k 1) (k 1)

P(k 1) (k 1) e (k)ˆ ˆ(k) (k 1)
1 (k 1) P(k 1) (k 1)

           (16) 

 

for all integer >k 0  where ( )= θ − θ − ϕ − = θ − ϕ −%
T T0 0 0ˆe (k) (k 1) (k 1) (k 1) (k 1)  denotes the ‘a 

priori’ estimation error and P(k)  is the covariance matrix initialized as = >TP(0) P (0) 0 . 
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Such an algorithm provides an estimation θ 0ˆ (k)  of the parameters vector by using the 
regressor ϕ −(k 1) , defined in (11), built with the output and input measurements with the 
multirate gains α −jˆ (k 1)  obtained at the previous slow sampling instant, i.e. 

− = α − −j jˆu (k i) (k 1) u(k i)  for all { }∈ Ki 1,  2,  ,  n+1 . Then, an ‘a posteriori’ estimates vector 
is obtained in the following way: 
 
Modification algorithm. 
This algorithm consists of three steps: 
Step 1: Built the matrix ×⎡ ⎤= ∈ℜ⎣ ⎦

0 0 N N
i , j

ˆM̂ (k) b (k) , for { }∈ Ki,  j 1,  2,  ,  N , from the ‘a priori’ 

estimates θ0
b,i

ˆ (k) , included in θ 0ˆ (k) , of the corresponding θb,i  defined in (11). 

Step 2: = 0ˆ ˆM(k) M (k)  

If ⎡ ⎤ ≥ δ⎣ ⎦ 0
ˆDet M(k)  then θ = θ0

b,i b ,i
ˆ ˆ(k) (k)  

                                            else while ⎡ ⎤ < δ⎣ ⎦ 0
ˆDet M(k)  

                                                          = + δ N
ˆ ˆM(k) M(k) I  

                                                    end; 
                                                    for =i 1  to N  
                                                          θ = ib ,i

ˆ ˆ(k) M (k)  
                                                   end 
             end. 

Step 3: ⎡ ⎤θ = θ θ θ θ⎣ ⎦K
TT0 T T T

a b,1 b,2 b,N
ˆ ˆ ˆ ˆ ˆ(k) (k) (k) (k) (k) , 

 
for some real positive constants δ << 1  and δ <<0 1 , and where iM̂ (k)  denotes the i-th row 

of M̂(k) .        *** 
 
Remark 2. Note that the estimate θ0

a
ˆ (k)  corresponding to the parameters of θa  is not 

affected by the modification algorithm. Also, note that the while instruction part of the 
second step is doing a finite number of times since there exists a finite integer number l  
such that ( ) ( )⎡ ⎤ ⎡ ⎤= + δ = δ + δ θ θ θ ≥ δ⎣ ⎦ ⎣ ⎦l l K

N0 0 0 0
N 0b,1 b,2 b,N

ˆ ˆ ˆ ˆ ˆDet M(k) Det M (k) I f ,  (k),  (k),  , (k) .  *** 

 
3.2.2. Updating of the time-varying multirate gains 
Once the estimated parameters vector is obtained at each slow sampling instant the 
multirate input gains have to be updated. Two alternative algorithms are considered to 
carry out such an operation. 

 
Algorithm 1. 
A vector of multirate gains is updated at all slow sampling instants in order to maintain the 
zeros of the estimated discretized plant fixed at desired locations within the stability domain 

<z 1 . Such desired zeros are the roots of a predefined polynomial ′B (z) . For such a 
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purpose, the required vector ĝ(k)  is obtained from the resolution of the following matrix 
equation: 

 
=ˆ ˆM(k) g(k) v                                                                (17) 

 
at each slow sampling instant, where [ ]′ ′ ′= K

T
1 2 Nv b b b  is composed by the coefficients 

of ′B (z) , ×⎡ ⎤= ∈ℜ⎣ ⎦
N N

i , j
ˆM̂(k) b (k) , with i , jb̂ (k)  denoting each of the ‘a posteriori’ estimated 

parameters corresponding to the components of the vectors θb,i  defined in (11), and 

[ ]= α α αK
T

1 2 Nˆ ˆ ˆ ˆg(k) (k) (k) (k) . In this way, ĝ(k)  is composed by the multirate gains 
which make the numerator of the estimated discretized plant model be equal to the desired 
polynomial ′B (z) . Note that the matrix equation (17) can be solved at all slow sampling 
instants since the parameters modification added to the estimation algorithm ensures the 
non-singularity of the matrix M̂(k) . 
 
Algorithm 2. 
It consists of solving the equation (17) only when it is necessary to modify the previous 
values of the multirate gains in order to guarantee the stability of the zeros of the estimated 
discretized plant model. i.e., the multirate gains remain equal to those of the preceding slow 
sampling instant if the zeros of the estimated discretized plant obtained with the current 
estimated parameters vector, θ̂(k) , and the previous multirate gains, α −jˆ (k 1) , are within 
the discrete-time stability domain. Otherwise, the multirate gains are updated by the 
resolution of the equation (17), which can be solved whenever it is necessary since the 
matrix M̂(k)  is invertible at all slow sampling instant due to the modification included in 
the estimation algorithm. In this way, the multirate gains are piecewise constant, the 
estimated discretized plant zeros are time-varying and the computational burden associated 
with the updating of the multirate gains is reduced with respect to that of Algorithm 1. 

 
3.2.3. Properties of the estimated models 
The parameter estimation algorithm, together with any of the considered adaptation 
algorithms for the multirate gains, possesses the properties given in the following lemma, 
whose proof is presented in Appendix A. 
 
Lemma 1. Main properties of the estimation and multirate gains adaptation algorithms  
(i) P(k)  is uniformly bounded for all non-negative integer k, and it asymptotically 

converges to a finite, at least semidefinite positive, limit as →∞k . 
(ii) θ 0ˆ (k)  and θ̂(k)  are uniformly bounded and they asymptotically converge to a finite 

limit as →∞k . 
(iii) The vector ĝ(k)  of multirate gains is bounded and converges to a finite limit as →∞k . 

(iv) 
( )

+ ϕ − − ϕ −

20

T

e (k)
1 (k 1) P(k 1) (k 1)

 is uniformly bounded and it asymptotically converges to 
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zero as →∞k . 
(v) 0e (k)  asymptotically converges to zero as →∞k . 
(vi) Assuming that the external input c(k)  is sufficiently rich such that ϕ −(k 1)  in (11) is 

persistently exciting, θ 0ˆ (k)  tends to the true parameters vector θ  as →∞k . Then, θ̂(k)  

tends to θ 0ˆ (k)  and ( )= θ − θ − ϕ −
Tˆe(k) (k 1) (k 1)  tends to zero as →∞k .   *** 

 
Remark 3. The convergence of the estimated parameters to their true values in θ  requires 
that ϕ −(k 1)  is persistently exciting. In this context, ϕ −(k 1)  is persistently exciting if there 

exists an integer l  such that 
+

=

ρ > ϕ − ϕ − > ρ∑
l0

0

k
T

1 m 2 m
k k

I (k 1) (k 1) I  where ρ >1 0 , ρ >2 0  and 

= + = + +2 2m n N n 3n 1  is the number of components of the regressor ϕ −(k 1) . Such a 
condition may be ensured by chosing an external input sufficiently rich of order m , i.e. it 
consists of at least m

2  frequencies in the frequency domain (Ioannou & Sun, 1996).  *** 

 
4. Stability Analysis 
 

The plant discretized model can be written as follows, 
 

+

= =

= + = θ − ϕ − + = − − − + − − +∑ ∑
n n 1

T
i i

i 1 i 1

ˆˆ ˆˆy(k) y(k) e(k) (k 1) (k 1) e(k) a (k 1)y(k i) b (k 1)u(k i) e(k)     (18) 

 
and the adaptive control law as, 
 

( ) ( )+ +
= =

+

+
=

⎧= − − − − − − − − + − −⎨
⎩

⎫− − − − − + − + − + δ⎬
⎭

∑ ∑

∑ i

n n

1 i i 1 1 i i 1
i 1 i 11

n 1
1

1 n 1 m
i 1 1

1 ˆ ˆˆ ˆ ˆ ˆu(k) s (k 1)a (k 1) s (k 1) y(k i) s (k 1)b (k 1) b (k 1) u(k i)
b̂ (k)

ŝ (k)ˆˆ                  s (k 1)b (k 1)u(k n 1) b c(k i 1) e(k) (k)
b̂ (k)

(19) 

 
where (12) has been used with R(q)  and S(q)  substituted, respectively, by time-varying 

polynomials =ˆ ˆR(z,k) B(z,k)  and Ŝ(z,k) , which is the solution of the equation (14) for the 
adaptive case, and, 
 

( ) ( )

( ) ( )
( )

+ +
=

+ +
=

+

⎧δ = ⎡ − − − − − − ⎤ −⎨ ⎣ ⎦⎩

⎡ ⎤− − − − + − − −⎣ ⎦

− − − −

∑

∑

n

1 1 i i 1 i 1
i 11

n

1 1 i i 1 i 1
i 1

1 1 n 1

1 ˆ ˆ ˆ ˆ ˆ(k) s (k) s (k 1) a (k 1) s (k) s (k 1) y(k i)
b̂ (k)

ˆ ˆ ˆˆ ˆ                      s (k) s (k 1) b (k 1) b (k) b (k 1) u(k i)

ˆˆ ˆ                      s (k) s (k 1) b (k }− −1)u(k n 1)

                  (20) 

 
 By combining (18) and (19), the discrete-time closed-loop system can be written as: 
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= Λ − − + Ψ + Ψ ϑ1 2x(k) (k 1) x(k 1) e(k) (k)                                             (21) 

 

where 
+

=

⎛ ⎞
ϑ = − + − + δ⎜ ⎟

⎝ ⎠
∑ i

n 1

m 1
i 11

1 ˆ(k) b c(k i 1) s (k) e(k) (k)
b̂ (k)

 and, 

 
[ ]

[ ] ( )
{

( )

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−−−

−−−−−−−−−−−−

=−

ℜ∈⎥⎦
⎤

⎢⎣
⎡=ℜ∈=

=

+

+−

+

+

+
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ˆ
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ˆ
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ˆ
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ˆ
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ˆ

ˆˆˆˆˆˆˆˆ  (22) 

 
with +− = − − − −i 1 i i 1

ˆ ˆ ˆ ˆf (k 1) s (k 1)a (k 1) s (k 1) , ( )+− = − − − + −i i i i 1
ˆ ˆ ˆˆh (k 1) s (k 1)b (k 1) b (k 1) , for 

{ }∈ …i 1,  2,  ,  n , and + +− = − − −n 1 1 n 1
ˆ ˆˆh (k 1) s (k 1)b (k 1) . 

 Note that −iâ (k 1)  and 
=

− = − α −∑
N

i i , j j
j 1

ˆ ˆ ˆb (k 1) b (k 1) (k 1)  are uniformly bounded from 

Lemma 1 (properties ii and iii). Also, ≠1b̂ (k) 0  since the adaptation of the multirate gains 
makes such a parameter fixed to a prefixed one which is suitably chosen and −iŝ (k 1)  is 
uniformly bounded from the resolution of a equation being similar to that of (14) replacing 
polynomials A(z)  and S(z)  by time-varying polynomials −Â(z,k 1)  and −Ŝ(z,k 1) , 
respectively. 
 The following theorem, whose proof is presented in Appendix B, establishes the main 
stability result of the adaptive control system. 
 
Theorem 1. Main stability result. 
(i) The adaptive control law stabilizes the discrete-time plant model (6) in the sense that 

{ }u(k)  and { }y(k)  are bounded for all finite initial states and any uniformly bounded 

reference input sequence { }c(k)  subject to Assumptions 1, 

(ii) { }y(k)  converges to { }my (k)  as k  tends to infinity, and 
(iii) the continuous plant input and output signals, u(t)  and y(t) , are bounded for all t.  *** 
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5. Simulations Results 
 

Some simulation results which illustrate the effectiveness of the proposed method are 
shown in the current section. A continuous-time unstable plant of transfer function 

−
=

− +
s 2G(s)

(s 1)(s 3)
 with an unstable zero, and whose internal representation is defined by 

the matrices 
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

3 0
A

0 1
, [ ]=

TB 1 1  and [ ]= −C 1.25 0.25 , is considered. A suitable 

multirate scheme with fast input sampling through a FROH device is used to place the zeros 
of the discretized plant within the stability region and a discrete-time controller is 
synthesized so that the discrete-time closed-loop system matches a reference model. The 
results for the case of known plant parameters are presented in a first example and then two 
more examples with the described adaptive control strategies are considered. The difference 
among such adaptive control strategies relies on the way of updating the multirate gains for 
ensuring the stability of the estimated discretized plant zeros. 

 
5.1. Known Plant Parameters 
The discretization of the continuous-time plant with a multirate, =N 3 , and a FROH device 
with β = 0.7  for a slow sampling time =T 0.3  is performed leading to the discrete transfer 

function + +
= =

− +

2
1 2 3

2

b (g)z b (g)z b (g)B(z)H(z)
A(z) z(z 1.7564z 0.5488)

 where = α + α + α1 1 2 3b (g) 0.0307 0.0693 0.13 , 

= − α + α + α2 1 2 3b (g) (0.0788 0.1488 0.2631 )  and = α + α + α3 1 2 3b (g) 0.0083 0.0343 0.0797  are the 
coefficients of the transfer function numerator of the discretized model. Such coefficients 
depend on the multirate gains αi , for { }∈i 1,  2,  3 , included as components in the vector g . 
The zeros of such a discretized plant can be fixed within the stability domain via a suitable 
choice of the multirate gains. In this example such gains are α = −1 621.8706 , α =2 848.4241  
and α = −3 297.4867  so that ′= = + +2B(z) B (z) z z 0.25  and then both zeros are placed at 

= −0z 0.5 . The control objective is the matching of the reference model defined by the 

transfer function + −
=

+

2

m 3

z z 0.272G (z)
(z 0.2)

. For such a purpose, the controller has to cancel the 

discretized plant zeros, which are stable, and add those of the reference model to the 
discrete-time closed-loop system. The values of the control parameters to meet such an 
objective are =1s 2.3564 , = −2s 0.4288  and =3s 0.008 . A unitary step is considered as 
external input signal. Figure 1 displays the time evolution of the closed-loop system output, 
its values at the slow sampling instants and the sequence of the discrete-time reference 
model output. Figure 2 shows the plant input signal. Note that perfect model matching is 
achieved, at the slow sampling instants, without any constraints in the choice of the zeros of 
the reference model mG (z) , in spite of the continuous-time plant possesses an unstable zero. 
Furthermore, the continuous-time output and input signals are maintained bounded for all 
time. 
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Fig. 1. Plant and reference model output signals 
 

 
Fig. 2. Plant input signal 
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5.2. Unknown Plant Parameters 
An adaptive version of the discrete-time controller designed in the previous example is 
considered with the parameters estimation algorithm being initialized with 

[ ]−θ = × − − − −
T0 2ˆ (0) 10 263.46 82.32 4.61 10.39 19.51 11.82 22.33 39.46 1.25 5.15 11.95  

and = ⋅ 11P(0) 1000 I . Furthermore, the values −δ = δ = 6
0 10  are chosen for the modification 

algorithm included in such an estimation process. Two different methods are considered to 
update the multirate gains. The first one consists of updating such gains at all the slow 
sampling instants so that the discretized zeros are maintained constant within the stability 
domain (Algorithm 1). The second one consists of changing the value of the multirate gains 
only when at least one of the discretized zeros, which are time-varying, is going out of the 
stability domain. Otherwise, the values for the multirate gains are maintained equal to those 
of the previous slow sampling instant (Algorithm 2). 

 
5.2.1. Algorithm 1: Discretized plant zeros are maintained constant 
Figure 3 displays the time evolution of the closed-loop adaptive control system output, its 
values at the slow sampling instants and the sequence of the discrete-time reference model 
output under a unitary step as external input signal. Note that the discrete-time model 
matching is reached after a transient time interval. Figures 4 and 5 show, respectively, the 
plant output signal and the input signal generated from the multirate with the FROH 
applied to the control sequence { }u(k) . It can be observed that both signals are bounded for 
all time. Finally, Figures 6 and 7 display, respectively, the time evolution of the multirate 
gains and the adaptive controller parameters. Note that the multirate gains and the adaptive 
control parameters are time-varying until they converge to constant values. 
 

 
Fig. 3. Plant and reference model output signals 
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Fig. 4. Plant output signal 

 

 
Fig. 5. Plant input signal 
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Fig. 6. Multirate gains 
 

 
Fig. 7. Adaptive control parameters 
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5.2.2. Algorithm 2: Discretized plant zeros are time-varying 
The multirate gains are maintained constant to their values at the previous slow sampling 
instant until at least one of the discretized plant zeros is going out of the stability domain. In 
this sense, note that the discretized zeros vary when the values of the multirate gains are 
maintained constant and eventually they can go out of the stability domain. When this 
happens such gains are again calculated to place both discretized zeros at = −0z 0.5 . The 
discrete-time model matching is reached after a transient time interval and the continuous-
time plant output and input signals are bounded for all time as it can be observed from 
Figures 8, 9 and 10 where the response to a unitary step is shown. The maximum values 
reached by both continuous-time output and input signals are larger than those obtained 
with the previous method (Algorithm 1) for updating the multirate gains. Figures 11 and 12 
display, respectively, the evolution of the multirate gains and the controller parameters. The 
adaptive control parameters are time-varying until they converge to constant values while 
the multirate gains are piecewise constant and also they converge to constant values. Note 
that this second method ensures a small number of changes in the values of the multirate 
gains compared with the first method since such gains only vary when it is necessary to 
maintain the zeros within the stability domain. This fact gives place to a less computational 
effort to generate the control law than that required with the first method. However, the 
behaviour of the continuous-time plant output and input signals is worse with the use of 
this second alternative in this particular example. Finally, the evolution of the modules of 
the discretized plant zeros and the coefficients of the time-varying numerator of such an 
estimated model are, respectively, shown in Figures 13 and 14. 
 

 
Fig. 8. Plant and reference model output signals 
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Fig. 9. Plant output signal 
 

 
Fig. 10. Plant input signal 
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Fig. 11. Multirate gains 
 

 
Fig. 12. Adaptive control parameters 
 

 
Fig. 13. Modules of the estimated discretized plant zeros 
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Fig. 14. Coefficients of the estimated discretized plant numerator 

 
6. Conclusion 
 

This paper deals with the stabilization of an unstable and possibly non-inversely stable 
continuous-time plant. The mechanism used to fulfill the stabilization objective consists of 
two steps. The first one is the discretization of the continuous-time plant by using a FROH 
device combined with a multirate input in order to obtain an inversely stable discretized 
model of the plant. Then, a discrete-time controller is designed to match a discrete-time 
reference model by such a discretized plant. There is not any restriction in the choice of the 
reference model since the zeros of the discretized plant model are guaranteed to be stable by 
the fast sampled input generated by the multirate sampling device. 
 An adaptive version of such a controller constitutes the main contribution of the 
present manuscript. The model matching between the discretized plant and the discrete-
time reference model is asymptotically reached in the adaptive case of unknown plant. Also, 
the boundedness of the continuous-time plant input and output signals are ensured, as it is 
illustrated by means of some simulation examples. In this context, the behaviour of the 
designed adaptive control system in the inter-samples period may be improved. In this 
sense, an improvement in such a behaviour has been already reached with a multi-
estimation scheme where several discretization/estimation processes, each one with its 
proper FROH and multirate device, are working in parallel providing different discretized 
plant estimated models (Alonso-Quesada & De la Sen, 2007). Such a scheme is completed 
with a supervisory system which activates one of the discretization/estimation processes. 
Such a process optimizes a performance index related with the inter-sample behaviour. In 
this sense, each of the discretization/estimation processes gives a measure of its quality by 
means of such an index which may measure the size of the tracking-error and/or the size of 
the plant input for the inter-sample period. The supervisor switches on-line from the current 
process to a new one when the last is better than the former, i.e. the performance index of 
the new process is smaller than that of the current one. Moreover, the supervisor has to 
guarantee a minimum residence time between two consecutive switches in order to ensure 
the stability of the adaptive control system. 
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7. Appendix A. Proof of Lemma 1 
 

(i) P(k)  is a monotonic non-increasing matrix sequence since − − ≤P(k) P(k 1) 0  for all 
integer >k 0  from (16). Moreover, if =1P(k ) 0  for any integer >1k 0  then 

+ − =1 1P(k 1) P(k ) 0  from (16) and then =P(k) 0  for all integer ≥ 1k k . Thus, 
≤ ≤0 P(k) P(0)  and P(k)  asymptotically converges to a finite limit as →∞k . 

(ii) By considering the non-negative sequence −= θ θ% %T0 1 0V(k) (k)P (k) (k)  and applying the 
matrix inversion lemma (Goodwin & Sin, 1984) to (16) it follows that, 

 

( )
− − = − ≤

+ ϕ − − ϕ −

20

T

e (k)
V(k) V(k 1) 0

1 (k 1)P(k 1) (k 1)
                            (23) 

 
where (16) and the definition of the estimation error have been used. Then, ≤V(k) V(0)  

and { }
{ }

λ
θ ≤ θ < ∞

λ
% %max0 0

min

P(0)
(k) (0)

P(0)
 where { }λmax P(0)  and { }λmin P(0)  denote the 

maximum and the minimum eigenvalues of P(0) , respectively. It implies that θ% 0(k) , 

and then also θ0ˆ (k) , is uniformly bounded. Then, θ̂(k)  is also bounded since the 

modification algorithm guarantees the boundedness of M̂(k)  provided that θ0ˆ (k)  is 
bounded. On other hand, V(k)  asymptotically converges to a finite limit as →∞k  from 
its definition and the fact that such a sequence is non-negative and monotonic non-
increasing. Then, θ% 0(k) , and also θ0ˆ (k) , converges to a finite limit as →∞k  since P(k)  

also converges as it has been proved in (i). Then, M̂(k)  and θ̂(k)  also converge to finite 
limits as →∞k . 

(iii) The boundedness and convergence of the estimation model parameters vector together 
with the non-singularity of the matrix M̂(k) , guaranteed by the modification algorithm, 
implies the boundedness and convergence of the vector ĝ(k)  obtained by resolution of 
equation (17). 

(iv) It follows that 
( )

=

= − ≤ < ∞
+ ϕ − − ϕ −∑

20k

T
i 1

e (i)
V(0) V(k) V(0)

1 (i 1)P(i 1) (i 1)
 from (23), then 

( )
+ ϕ − − ϕ −

20

T

e (k)
1 (k 1)P(k 1) (k 1)

 is uniformly bounded and it converges to zero as →∞k . 

(v) It follows that { }
→∞

=0

k
lim e (k) 0  irrespective of the boundedness of ϕ −(k 1)  from the fact 

that 
( )

→∞

⎧ ⎫⎪ ⎪ =⎨ ⎬
+ ϕ − − ϕ −⎪ ⎪⎩ ⎭

20

Tk

e (k)
lim 0

1 (k 1)P(k 1) (k 1)
. On one hand, if ϕ −(k 1)  is bounded then 
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( )
→∞

⎧ ⎫⎪ ⎪ =⎨ ⎬
+ ϕ − − ϕ −⎪ ⎪⎩ ⎭

20

Tk

e (k)
lim 0

1 (k 1)P(k 1) (k 1)
 implies directly that { }

→∞
=0

k
lim e (k) 0 . On the other 

hand, if ϕ −(k 1)  is unbounded then 
( )

→∞

⎧ ⎫⎪ ⎪ =⎨ ⎬
+ ϕ − − ϕ −⎪ ⎪⎩ ⎭

20

Tk

e (k)
lim 0

1 (k 1)P(k 1) (k 1)
 implies that 

→∞

⎧ ⎫θ −⎪ ⎪ =⎨ ⎬
−⎪ ⎪⎩ ⎭

% 20

2k

(k 1)
lim 0

P(k 1)
 since = θ − ϕ −% T0 0e (k) (k 1) (k 1)  and then { }→∞

θ − =% 20

k
lim (k 1) 0  from 

the fact that P(k)  is uniformly bounded. Thus, { }
→∞

=0

k
lim e (k) 0 . 

(vi) Provided that the external input sequence { }c(k)  is sufficiently rich such that ϕ −(k 1)  is 

persistently exciting, θ0ˆ (k)  tends to the true parameters vector θ  as →∞k  (Goodwin & 

Sin, 1984). Then, M̂(k)  tends to 0M̂ (k)  from the modification algorithm and, 

consequently, θ̂(k)  tends to θ0ˆ (k)  and e(k)  tends to zero as →∞k .   *** 

 
8. Appendix B. Proof of Theorem 1 
 

(i) Λ(k)  is bounded since the estimation model parameters iâ (k)  and jb̂ (k) , and the 

controller parameters jŝ (k) , for { }∈ Ki 1,  2,  ,  n  and { }∈ +Kj 1,  2,  ,  n 1 , are bounded 

thanks to the estimated parameters vector θ̂(k)  and the multirate gains vector ĝ(k)  are 
bounded for all integer ≥k 0 . The eigenvalues of Λ(k)  are in <z 1  since they are the 

roots of mA (z)  and sA (z) , due to the designed control law, and the roots of B̂(z,k)  
which are within the unit circle due to the suitable adaptation of the multirate gains. 
Besides, 

 

′= +

′ ′Λ − Λ − ≤ γ + γ −∑
0

k
2

0 1 0
k k 1

(k ) (k 1) (k k )                                     (24) 

 
for all integers k  and 0k  such that > ≥0k k 0 , and some sufficiently small positive real 
constants γ0  and γ1  (Bilbao-Guillerna et al., 2005). Note that (24) is fulfilled with a slow 
enough estimation rate via a suitable choice of P(0)  in (16) so that γ1  is sufficiently 
small. Thus, the time-varying homogeneous system = Λ − −x(k) (k 1) x(k 1)  is 

exponentially stable and its transition matrix 
−

′=

′φ = Λ∏
k 1

j k
(k,k ) ( j)  satisfies ′−′φ ≤ ρ σk k

1 0(k,k )  

for all ′≥k k  where ( )σ ∈0 0,1  and ρ1  is a non-dependent constant (Alonso-Quesada & 
De la Sen, 2004). It follows from (21) that: 
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( )
′=

′ ′ ′= φ + φ Ψ + Ψ ϑ∑
0

k

0 0 1 2
k k

x(k) (k,k ) x(k ) (k,k ) e(k ) (k )                             (25) 

for all integer ≥ ≥0k k 0 . Then, 
 

( )′− −

′=

′ ′= ρ σ + ρ σ ρ + ρ + ρ δ∑0

0

k
k k k k

1 0 0 1 0 2 3 4
k k

x(k) x(k ) e(k ) (k )                      (26) 

 
for some positive real constants ρ2 , ρ3  and ρ4 , provided that the input reference 
sequence { }c(k)  is bounded. It follows that 

→∞
− − =i ik

ˆ ˆlim a (k) a (k 1) 0  and 

→∞
− − =j jk

ˆ ˆlim b (k) b (k 1) 0  for all { }∈ Ki 1,  2,  ,  n  and { }∈ +Kj 1,  2,  ,  n 1  from the 

convergence property of the estimation algorithm. Then, 
→∞

− − =i ik
ˆ ˆlim s (k) s (k 1) 0  as it 

follows from the adaptive control resolution. Consequently, 
→∞

δ =
k
lim (k) 0 . Besides, 

→∞
=

k
lim e(k) 0  from the estimation algorithm. Then, x(k)  is bounded from (26), which 

implies that sequences { }u(k)  and { }y(k)  are also bounded. 

(ii) On one hand, the adaptive control law ensures that the estimated sequence { }ŷ(k)  

matches the reference model one { }my (k)  for all integer ≥k 0 . On the other hand, the 
estimation algorithm guarantees the asymptotic convergence of the estimation error 
e(k)  to zero. Then, the output sequence { }y(k)  tends to { }my (k)  asymptotically as 
→∞k . 

(iii) The adaptive control algorithm ensures that there is no finite escapes. Then, the 
boundedness of the sequences { }u(k)  and { }y(k)  implies that the plant input and 
output continuous-time signals u(t)  and y(t)  are bounded for all t. 
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1. Introduction    
 

The purpose of this chapter is to redesign the standard adaptive control schemes by using 
hybrid structure composed by Model Reference Adaptive Control (MRAC) or Adaptive Pole 
Placement Control (APPC) strategies, associated to Variable Structure (VS) schemes for 
achieving non-standard robust adaptive control strategies. The both control strategies is 
now on named VS-MRAC and VS-APPC. We start with the theoretical base of standard 
control strategies APPC and MRAC, discussing their structures, as how their parameters are 
identified by adaptive observers and their robustness properties for guaranteeing their 
stability. After that, we introduce the sliding mode control (variable structure) in each 
control scheme for simplifying their design procedure. These design procedure are based on 
stability analysis of each hybrid robust control scheme. With the definition of both hybrid 
control strategies, it is analyzed their behavior when controlling system plants with 
unmodeled disturbances and parameter variation. It is established how the adaptive laws 
compensates these unmodeled dynamics. Furthermore, by using simple systems examples it 
is realized a comparison study between the hybrid structures VS-APPC and VSMRAC and 
the standard schemes APPC and MRAC. As the hybrid structures use switching laws due to 
the sliding mode scheme, the effect of chattering is analyzed on the implementation and 
consequently effects on the digital control hardware where sampling times are limiting 
factor. For reducing these drawbacks it is also discussed possibilities which kind of 
modifications can employ. Finally, some practical considerations are discussed on an 
implementation on motor drive systems. 

 
2. Variable Structure Model Reference Adaptive Controller (VS-MRAC) 
 

The VS-MRAC was originally proposed in (Hsu et al., 1989) and extensively discussed in 
(Hsu et al., 1994). The main features of this control scheme are the robustness of parameters 
uncertainties and unmodeled disturbances, as well as good transitory response.  
Consider the following first order plant  
 

 ( ) p

p

y

u a

b
W s

s
=

+
=  ,                                                         (1) 
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where pb  and pa are unknown or known with limited uncertainties. Admitting a reference 

model given by 
 

 ( ) m m

m

y

r
M

a

b
s

s
= =

+
,                                                        (2) 

 
 in which 0mk >  and 0ma > , the following output error variable can be defined as  
 

0 me y y= − .                                                                (3)  
 

The control objective is to force ( )y t  to asymptotically track the reference output signal, 

( )my t , by regulating 0e  to be zero, while keeping all the closed-loop signals uniformly 
bounded. The control law used for accomplished this is  
 

1 2yu rθ θ+= ,                                                              (4)  
 

which is the same as used in traditional model reference adaptive control. However, instead 
of the integral adaptive laws for the controller parameters, switching laws are proposed in 
order to improve the system transient performance and its robustness.  

 If pb  and pa  are known, the ideal controller parameters ( *
1θ  and *

2θ ) can be founded using 

the following condition 
 

myy

r r
=  ,                                                                   (5) 

 
which means that our control objective is achieved, i.e., the closed-loop system behaves like 
the open-loop reference model. Consequently, the control law equation can be rewritten as 
 

* *
21yu rθ θ+= .                                                              (6) 

 
Analyzing (1) and (2) in the time domain, we get 
 

p py a y k u= − + ,                                                               (7) 

mm m my a y rk= − + .                                                          (8) 
 

Adding and subtracting terms related to the ideal control parameters in (4),  
 

* * * *
1 2 1 2 1 2y r y r y ru θ θ θ θ θ θ+ − − + += ,                                     (9) 



Hybrid Schemes for Adaptive Control Strategies 

 

139 

 
and then grouping some terms  
 

 * * * *
1 1 2 2 1 2( ) ( )yu r y rθ θ θ θ θ θ− + − + += ,                                  (10) 

 
we have 
 

                                           * *
1 2 1 2y r y ru θ θ θ θ+ + += ,                                                (11)  

 
in which terms 1θ  and 2θ  are deviations of ideal controller parameters 1θ  and 2θ . 
Substituting the resulting equation (11) in (7),  
 

 * *
1 2 1 2( )p pay y b y r y rθ θ θ θ+ + + += − ,                                     (12) 

 
we can rewrite this equation as 
 

* *
1 2 1 2( )p p p pa y b yy b r b y rθ θ θ θ= − + ++ + ,                                 (13) 

 
which results in 
 

* *
1 2 1 2) (( )p p p pa by y b r b y rθ θ θ θ+ + += − − .                                 (14) 

 
From (6), the model input r  can be defined as 
 

*
1

*
2

y
r

u θ

θ
=

−
.                                                               (15) 

 
Therefore, using (11) and (15) in (8), we get 
 

1 2*
2

( )m
m m my a y b r y r

b
θ θ

θ
= − + + + .                                        (16) 

 
Finally, comparing (14) and (16) due to the condition (5), we have the desired controller 
parameters 
 

*
1

p m

p

a

b

a
θ

−
= ,                                                            (17) 
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*
2

m

p

b

b
θ = .                                                                 (18) 

 
The above desired controller parameters assure that plant output converges to its reference 
model, because pb  and pa  are known.  This design criteria is named as The Matching 

Conditions. 
However, our interests are concerned with unknown plant parameters or with known plant 
parameters with uncertainties, which require the use of adaptive laws for adjusting 
controller parameters.  Derivating the output error equation given in (3),  
 

0 me y y= −                                                               (19) 
 

and using the condition  (5), with equations (8), (16) and (19), we get 
 

0 1 2*
2

( ) ( )m
m m m m m

b
e a y b r y r a y b rθ θ

θ
= − + + + − − + ,                       (20) 

 
which can be  rearranged as 
 

0 1 2*
2

)) (( m
m me a

b
y y y rθ θ

θ
= − + +− .                                        (21) 

 
Thus, 
 

0 0 1 2*
2

( )m
me a e y r

b
θ θ

θ
= − + + .                                             (22) 

 
Now, consider the Lyapunov function candidate given by 
 

2
0 0

1
( 0)

2
V e e >= ,                                                         (23) 

 
and its respective first time derivative 
 

0 0 0( )V e e e= .                                                                (24) 
 

By substituting (22) in (24), we obtain the following equation 
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0 0 1 2 0*
2

( ) ( )m
mV e a e r

b
y eθ θ

θ

⎡ ⎤
⎢ ⎥= − + +⎢ ⎥
⎢ ⎥⎣ ⎦

 ,                                         (25) 

 
that can be rewritten as  
 

( ) ( )2 * *
0 0 1 1 0 2 2 0*

2

( ) m
mV e e e y e r

b
a θ θ θ θ

θ
= − ⎡ ⎤+ − + −⎢ ⎥⎣ ⎦ .                         (26) 

 
Using the switching laws,  
 

1 1 0( )sgn e yθ θ= − ,                                                         (27) 

2 2 0( )sgn e rθ θ= − ,                                                         (28) 
 

we obtain, 
 

( ) ( )2 * *
0 0 1 0 1 0 2 0 2 0*

2

| |( ) | |m
mV e e y e y

b
ra r ee eθ θ θ θ

θ
= − ⎡ ⎤+ + +⎢ ⎥⎣− ⎦ .               (29) 

 

If the conditions  *
1 1| |θ θ>  and  2 2

*| |θ θ>  are satisfied, the terms with indefinite signals 
in (29) are dominated, and then 
 

2
0 0( ) 0mV e a e−≤ <                                                        (30) 

 
which guarantees that 0 0e =  is a globally asymptotically stable (GAS) equilibrium point, 
because (30) is a negative definite function. 

 
3. Variable Structure Adaptive Pole Placement Control (VS-APPC) 
 

As the VS-MRAC, the VS-APPC is the hybrid control structure obtained from the 
association of Pole Placement Control (PPC) together with Variable Structure (VS). 
Therefore, the theoretical development of this section starts from PPC control scheme and 
then we introduce the VS concepts for achieving the proposed VS-APPC. 
Considering the single input/single output (SISO) LTI plant 
 

( )y G s u= ,                                                               (31) 
 
in which 
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1
1 1 0

1
1 1 0

...( )
( )

( ) ...

n
n

n n
n

b s b s bZ s
G s

R s s a s a s a

−
−

−
−

+ + +
= =

+ + + +
 ,                         (32) 

 
there are, as plant parameters, 2n elements, which are the coefficients of the numerator and 

denominator of transfer function ( )G s . We can define the vector *θ as 
 

*
1 1 0 1 1 0. . . . . .

T

n nb b b a a aθ − −
⎡ ⎤= ⎢ ⎥⎣ ⎦ .                      (33) 

 
From this, the following constraints must be observed: 
S1. ( )R s  is a monic polynomial whose degree n  is known. 

S2. ( )Z s , ( )R s  are coprime and degree( )Z n< . 

Assumptions (S1) and (S2) allow ( )Z s , ( )R s  to be non-Hurwitz in contrast to the MRC 
(Model Reference Control) case, where ( )Z s  is required to be Hurwitz. 
We can also extend the PPC scheme for including the tracking objective, where output y  is 
required to follow a certain class of reference signals r , by using the internal model 
principle (Ioannou & Sun, 1996). The uniformly bounded reference signal is assumed to 
satisfy 
 

                                ( ) 0mQ s r = ,                                                              (34) 
       

where ( )mQ s , the internal model of r , is a known monic polynomial of degree q  with non-
repeated roots on the jω-axis and satisfies 

S3. ( )mQ s , ( )Z s  are coprime. 

Considering the control law given by 
 

                             ( ) ( ) ( ) ( )mQ s L s u P s y M s r= − + ,                                            (35) 
 

where ( )P s , ( )M s , ( )L s  are polynomials (with ( )L s  monic) of degree – 1q n+ , 

– 1q n+  e – 1n ,  respectively, and ( )mQ s  satisfies (34) and assumption (S3). 

Applying (35) to the plant (31), we obtain the closed-loop plant equation 
 

                     
( ) ( )

( ) ( ) ( ) ( ) ( )m

Z s M s
y r
Q s L s R s P s Z s

=
+

,                                            (36) 

 
whose characteristic equation is 
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                         ( ) ( ) ( ) ( ) ( ) 0mQ s L s R s P s Z s+ = ,                                             (37) 
 

and has order 2 1n q+ − . The objective now is chosen ( )P s , ( )L s  such that 
 

                      *( ) ( ) ( ) ( ) ( ) ( )mQ s L s R s P s Z s A s+ =                                           (38) 
 

is satisfied for a given monic Hurwitz polynomial  *( )A s  of degree 2 1n q+ − . Because of 

assumptions S2 e S3 which guarantee that ( )mQ s , ( )R s , ( )Z s  are coprime, there is a 

solution so that  ( )L s  and ( )P s  satisfy (38) and this solution is unique (Ioannou & Sun, 
1996). 
Using (38), the closed-loop is described by 
 

                                           
*

( ) ( )

( )

Z s M s
y r

A s
= .                                                           (39) 

 
Similarly, from the plant (31) and the control law (35) and (38), we obtain 
 
 

                                         
*

( ) ( )

( )

R s M s
u r

A s
= .                                                           (40) 

 

Because r  is uniformly bounded and 
*

( ) ( )

( )

Z s M s

A s
, 

*

( ) ( )

( )

R s M s

A s
 are proper with stable poles, 

y  and u  remain bounded whenever t →∞  for any polynomial ( )M s  of degree 
– 1 n q+ (Ioannou & Sun, 1996). Therefore, the pole placement objective is achieved by 

the control law (35) without having any additional restrictions in ( )M s  and ( )mQ s . When 
0r = , (39) and (40) imply that y  and u  converge to zero exponentially fast. On the other 

hand, when 0r ≠ , the tracking error e y r= −  is given by 
 

       
*

* * *

( ) ( ) ( ) ( ) ( ) ( )
[ ( ) ( )] ( )

( ) ( ) ( )
m

Z s M s A s Z s L s R s
e r M s P s r Q s r

A s A s A s

−
= = − − .            (41) 

 
In order to obtain zero tracking error, the equation above suggests the choice of 

( ) ( )M s P s=  to cancel its first term, while the second term can be canceled by using (34). 
Therefore, the pole placement and tracking objective are achieved by using the control law 
 

                           ( ) ( ) ( )( )mQ s L s u P s y r= − − ,                                                (42) 
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which is implemented as shown in Fig. 1 using – 1 n q+ integrators for the controller 
realization. An alternative realization of (42) is obtained by rewriting it as 
 

                     ( )
mLQ P

u u y r
Λ −

= − −
Λ Λ

,                                              (43) 

 
where Λ  is any monic Hurwitz polynomial of degree – 1n q+ . 
 

G(s)Qm(s)L(s)

P(s)r u y+

−

 
Fig.  1. Block diagram of pole placement control. 

 
The PPC design supposes that the plant parameters are known, what not always is true or 
possible. Therefore, integral adaptive laws can be proposed for estimating these parameters 
and then used with PPC schemes. This new strategy is called Adaptive Pole Placement 
Controller (APPC), where the certainty equivalence principle guarantees that the output plant 
tracks the reference signal r , if the estimates converge to the desired values.  In this section, 
instead of these traditional adaptive laws, switching laws will be used for the the first order 
plant case, according to (Silva et al., 2004). 
Consider the plant, 
  

                  
b

y u
s a

=
+

,                                                                (44) 

 
and its respective time domain equation, 
 

ay y bu= − + ,                                                            (45) 
 

where the parameters a  and b  are unknown or known with uncertainties. Let be ma a 

positive constant, we may write (45) by adding and subtracting the term ma y , 

 

( )m ma y a ay y bu= − + − + .                                              (46) 
 

A model for the plant may be written as 
 

ˆ ˆˆ ˆ( )m ma y ay a y bu= − + − + ,                                           (47) 
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where â  and b̂  are estimates for a  and b , respectively (Ioannou & Sun, 1996). 

We define the estimation error 0e  as 

 

                 0 ˆe y y= − ,                                                           (48) 
 

and with (46) and (47), we get 
 

                         00 ma e ay bue = − + − ,                                                    (49) 
 

where 
 

ˆa a a= −  ,                                                              (50) 
ˆb b b= −  .                                                              (51) 

 
Choosing the following Lyapunov function candidate,  
 

2
0 0

1
( ) 0

2
V e e= > ,                                                         (52)                          

 
we have                                                          
 

0 0 0( )V e e e=  ,                                                             (53) 

 
which can be rewritten using (49), 
 

2
0 0 00) ( ma e ae y be uV e = − + − .                                           (54) 

 
Expanding the above equation with (50) and (51), 
   

2
0 0 00

ˆˆ ( ) (( ) )ma e aV a e y b e ue b= − + − − − ,                                 (55)   

 
and then using the switching laws,  
 

              0ˆ sgn( )a a e y= − ,                                                          (56)   

0
ˆ sgn( )b b e u= ,                                                            (57) 

 
we get, 
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2

0 0 0 00 0 ( ) (( ) )ma e a e y ae y b e u beV e u= − − + − − .                        (58) 

 
Finally, if the conditions  a a>  and  b b>  are satisfied, 

 

0
2

0) 0( mV e a e≤ − < ,                                                      (59) 
 

which guarantees that 0 0e =  is a globally asymptotic stable (GAS) equilibrium point. 
Moreover, if we follow a similar procedure described in (Hsu & Costa, 1989), we can prove 
that 0 0e =  reaches the sliding surface in a finite time ft   ( 0 0e = , ft t∀ > ). 

 
4. Application on a Current Control Loop of an Induction Machine 
 

To evaluate the performance of both proposed hybrid adaptive schemes, we use an 
induction machine voltage x current model as an experimental plant.  The voltage equations 
of the induction machine on arbitrary reference frame can be presented by the following 
equations: 
 

   
g g

g gs s sd g s s g rd
sd s sd s g s sq r rq

r m r

l l di l l
v r i l l i

dt l

σ σ φ
σ ω σ ω φ

τ τ

⎛ ⎞⎛ ⎞ ⎛ ⎞− − ⎟⎜⎟ ⎟⎜ ⎜ ⎟⎜⎟ ⎟= + + − − +⎜ ⎜ ⎟⎟ ⎟⎜⎜ ⎜ ⎟⎟ ⎟⎜ ⎜ ⎜ ⎟⎜⎝ ⎠ ⎝ ⎠⎝ ⎠
,      (60)        

  
g g
sq rqg gg s s g s s

sq s sq s g s sd r rd
r m r

dil l l l
v r i l l i

dt l

φσ σ
σ ω σ ω φ

τ τ

⎛ ⎞⎛ ⎞ ⎛ ⎞− − ⎟⎜⎟ ⎟⎜ ⎜ ⎟⎜⎟ ⎟= + + + + − ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎟ ⎟⎜ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎟⎜⎝ ⎠
,      (61)   

    

where g
sdv , g

sqv , gsdi  and gsqi  are dq axis stator voltages and currents in a generic reference 

frame, respectively; sr , sl and ml  are the stator resistance, stator inductance and mutual 

inductance, respectively; gω  and rω  are the angular frequencies of the dq  generic reference 

frame and rotor reference frame, respectively; 2 /1 m s rl l lσ = −   and /r r rl rτ =  are the 
leakage factor and rotor time constant, respectively.  
The above model can be simplified by choosing the stator reference frame ( 0gω = ). 

Therefore, equations (60) and (61) can be rewritten as 
 

 
s

s s sd s
sd sr sd s sd

di
v r i l e

dt
σ= + +  ,                                                   (62) 
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s
sqs s s

sq sr sq s sq

di
v r i l e

dt
σ= + +  ,                                                   (63) 

 
where s  is the superscript related to the stator reference frame, ( ) /sr s s s rr r l lσ τ= + − , 
s
sde  and ssqe  are fcems of the dq machine phases given by 

 

( )s
s s rd s s
sd r rq

r m

l l
e

l

φ σ
ω φ

τ

⎛ ⎞ −⎟⎜ ⎟⎜= − + ⎟⎜ ⎟⎜ ⎟⎝ ⎠
,                                                (64) 

 
and 
 

( )s
rqs s s s

sq r rd
r m

l l
e

l

φ σ
ω φ

τ

⎛ ⎞ −⎟⎜ ⎟⎜= − ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
,                                                (65) 

 
The current x voltage transfer function of the induction machine can be obtained from (62) 
and (63) as 
 

( ) ( ) 1 /

1( ) ( )

s s
sd sd sr
s s

ssd sd

I s I s r

sV s V s τ′ ′
= =

+
,                                                   (66) 

 

where /s s srl rτ σ= , ( ) ( ) ( )s s s
sd sd sdV s V s E s′ = −  and '( ) ( ) ( )ss s

sq sq sqV s V s E s= − . The fcems 

( )s
sdE s and ( )s

sqE s  are considered unmodeled disturbances to be compensated by the 

control scheme. 
Analyzing the current x voltage transfer functions of a standard machine, we can observe 
that the time constant sτ  has parameters which vary with the dynamic behavior of 
machine. Moreover, this plant has also unmodeled disturbances. This justifies the use of this 
control plant for evaluating the performance of proposed control schemes.    

 
5. Control System 
 

Fig. 2 presents the block diagram of a standard vector control strategy, in which the 
proposed control schemes are employed for induction motor drive. Block RFO realizes the 

vector rotor field oriented control strategy. It generates the stator reference currents ssdi
∗  and 

s
sqi
∗ , angular stator frequency oω

∗  of stator reference currents from desired reference torque 

eT
∗ , and reference rotor flux rφ

∗ , respectively. Blocks VS-ACS implement the proposed 
robust adaptive current control schemes that could be the VS-MRAC strategy or the VS-
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APPC strategy. Both current controllers are implemented on the stator reference frame. 

Block / 123sdq  transforms the variables from sdq  stationary reference frame into 123  
stator reference frame.  
Generically, the current-voltage transfer function given by equation (66) can be rewritten as 
 

 
( )( )

( )
( ) ( )

ss
sqs sd s

isdq s s
ssd sq

I sI s b
W s

s aV s V s′ ′
= = =

+
,                                            (67) 

 

in which 1 /s sb lσ=  and 1 /s sa τ= . In this model, the fcems ssde  and ssqe  are considered 

unmodeled disturbances to be compensated by current controllers. The parameters sa  and 

sb  are known with uncertainties that can be introduced by machine saturation, temperature 
changes or loading variation.  
 

123/dq
s

s

IM

s

s

s

s

s

RFO

s

�
r
*

�o
*

VS-ACS

VS-ACS

 
Fig.  2. Block diagram of the proposed IM motor drive system. 

 
5.1 VS-MRAC Scheme 
Consider that the linear first order plant of induction machine current-voltage transfer 

function s
isdqW  given by (67) and a reference model characterized by transfer function 

 
( )

( )
( )

s m e
isdq m

m e

N s b
M s k

D s s a
= =

+
,                                             (68) 

 
which attends for the stability constraints that is the constant sb  in (67) and eb  should have 
positive sign, as mentioned before. The output error can be defined as 
 

0
s s s
sdq sdq mdqe i i= − ,                                                        (69) 
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where smdqi ( smdi  and smqi ) are the outputs of the reference model. The tracking of the model 

control signal ( s s
sd mdi i=  or s s

sq mqi i= ) is reached if the input of the control plant is defined 

as 
 

1 2   s s s
sdq dq sdq dq sdqv i iθ θ∗ ∗ ∗= +                                              (70) 

 

where 1dθ
∗ ( 1qθ

∗ ) and 2dθ
∗ ( 2qθ

∗ ) are the ideal controller parameters, that can be only 

determined if ( )s
isdqW s  is known. According to section 2, they can be determined as 

 

1 1
s e

d q
s

a a

b
θ θ∗ ∗ −

= = ,                                                        (71) 

 
and 
 

2 2
e

d q
s

b

b
θ θ∗ ∗= = .                                                              (72) 

Once ( )s
isdqW s  is not known, the controllers parameters 1 ( )dq tθ  and 2 ( )dq tθ  are updated by 

using switching laws as 
 

0( )s s
idq idq sdq isdqsgn e yθ θ= −                                                   (73) 

 

where [1,2]i =  and s
sdqy  is the reference currents ssdqi

∗  or the output currents ssdqi , and 

idq idqθ θ∗>  are upper bounds which are assumed to be known, and the signal-function 

sgn is defined as 
 

1 0
( )

1 0

if x
sgn x

if x

⎧ >⎪⎪= ⎨⎪− <⎪⎩
.                                                  (74) 

 

Introducing nominal values of controller parameters ( )idq nomθ (ideally ( )idq nom idqθ θ∗= ). It is 

convenient to modify the control plant input given by (70) for the following  
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1

2

dq
s s
sdq sdqs T T

sdq nom s
dq sdq
s
sdq

v

i i
v

v i

i

θ θ
∗

∗

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

,                                               (75) 

 

with 1 1 2 2
T

v dq s dq v dq s dqθ θ θ θ θ⎡ ⎤= ⎢ ⎥⎣ ⎦ , 1 ( ) 2 ( )
T
nom s dq nom s dq nomθ θ θ⎡ ⎤= ⎢ ⎥⎣ ⎦  and  

 

1 1

2 2

s
dq dq sdq

s
dq dq sdqv

v v

v i

v = Λ +

= Λ +
,                                                        (76) 

 
in which 
 

1 1 0 1 ( )

2 2 0 2 ( )

( )

( )

s s
s dq s dq sdq sdq s dq nom

s s
s dq s dq sdq sdq s dq nom

sgn e i

sgn e i

θ θ θ

θ θ θ∗

= − +

= − +
,                                    (77) 

 
and 
 

1 1 0 1

2 2 0 2

( )

( )

s
v dq v dq sdq dq

s
v dq v dq sdq dq

sgn e v

sgn e v

θ θ

θ θ

= −

= −
,                                                (78) 

 
where 1s dqθ , 2s dqθ , 1v dqθ  and 2v dqθ  are the controller parameters, 1 ( )s dq nomθ and 2 ( )s dq nomθ  

are the nominal parameters of the controller, and 1dqv and 2dqv  are the system plant input 

and output filtered signals, respectively. The constants 1s dqθ  or 2s dqθ  is chosen by 

considering that 
 

1 1 1 ( )

2 2 2 ( )

s dq s dq s dq nom

s dq s dq s dq nom

θ θ θ

θ θ θ

∗

∗

> −

> −
,                                                 (79) 

 
The input and output filters given by equation (76) are designed as proposed in (Narendra 
& Annaswamy, 1989). The filter parameter Λ  is chosen such that ( )mN s  is a factor of 

det( )sI − Λ . Conventionally, these filters are used when the system plant is the second 
order or higher. However, it is used in the proposed controller to get two more parameters 

for minimizing the tracking error 0
s
sdqe . 
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Fig.  3. Block diagram of proposed VS-MRAC current controller. 
 
The block diagram of the VS-MRAC control algorithm is presented in Fig. 3. The proposed 
control scheme is composed by VS for calculating the controller parameters and a MRAC for 
determining the system desired performance. The VS is implemented by the block Controller 
Calculation, in which Equations (77) and (78) together are employed for determining 1s dqθ , 

2s dqθ , 1v dqθ  and 2v dqθ . These parameters are used by Controller blocks for generating the 

control signals s
sdqv . To reduce the chattering at the output of controllers, input filters, 

represented by blocks ( )idV s  and ( )iqV s  are employed. They use filter model represented 

by Eqs. (76). These filtered voltages feed the IM which generates phase currents ssdqi  which 

are also filtered by filter blocks ( )odV s  and ( )oqV s  and then, compared with the reference 

model output s
mdqi  for generating the output error 0

s
sdqe . The reference models are 

implemented by two blocks which implements transfer functions (68). The output of these 

blocks is interconnected by coupling terms s
o mqIω−  and s

o mdIω , respectively. This 
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approach used to avoid the phase delay between the input ( s
sdqI
∗ ) and output ( s

mdqI
∗ ) of the 

reference model. 

 
5.1.1 Design of the Controller 
To design the proposed VS-MRAC controller, initially is necessary to choose a suitable 

reference model ( )s
isdqM s . Based on the parameters of the induction machine used in 

present study, given in Table 1, the reference model employed is  
 

550
( )

550
s
isdqM s

s
=

+
,                                                           (80) 

 
From this reference model, the nominal values can be determined by using equations (71) 
and (72) which results in 1 ( ) 1 ( ) 3.7sd nom sq nomθ θ= =  and 2 ( ) 2 ( ) 55sd nom sq nomθ θ= = . 

Considering the restrictions given by (79), the parameters 1s dqθ  and 2s dqθ , chosen for 

achieving a control signal with minimum amplitude are 1 0.37s dqθ =  and 2 5.5s dqθ = . It 

is important to highlight that choice criteria determines how fast the system converges to 
their references. Moreover, it also determines the level of the chattering verified at the 
control system after its convergence. As mentioned before the use of input and output filters 
are not required for control plant of fist order. They are used here for smoothing the control 
signal. Their parameters was determined experimentally, which results in 

1Λ = , 1 1 2.0v d v dθ θ= =  and 2 2 0.1v d v qθ θ= = . This solution is not unique and 

different adjust can be employed on these filters setup which addresses to different overall 
system performance. 

 
5.2 VS-APPC Scheme 
The first approach of VS-APPC in (Silva et al., 2004) does not deal with unmodeled 
disturbances occurred at the system control loop like machine fems. To overcome this, a 
modified VS-APPC is proposed here.  
Let us consider the first order IM current-voltage transfer function given by equation (67). 
The main objective is to estimate parameters sa  and sb  to generate the inputs sdv  and sqv  

so that the machine phase currents ssdi  and ssqi  following their respective reference currents 

s
sdi
∗  and ssdi

∗  and, the closed loop poles are assigned to those of a Hurwitz polynomials 

( )sA s
∗  given by 

 
3 2

2 1 0( )A s s s sα α α∗ ∗ ∗ ∗= + + +  ,                                            (81)                          
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where coefficients 2α
∗ , 1α

∗  and 0α
∗  determine the closed-loop performance requirements. 

To estimate the parameters sa  and sb , the respective switching laws are used 
 

0ˆ ( )s s
s s sdq sdqa a sgn e i= − ,                                                  (82) 

0
ˆ ( )s s
s s sdq sdqb b sgn e v=  ,                                                   (83) 

 
with the restrictions s sa a>  and s sb b>  satisfied, as mentioned before. The pole 

placements and the tracking objectives of proposed VS-APPC are achieved, if the following 
control law is employed 
 

( ) ( ) ( ) ( )( )s s s
m sdq sdq sdqQ s L s V s P s I I ∗= − −                                     (84) 

 
which addresses to the implementation of the controller transfer function 
 

( )
( ) ( )

( ) ( )sd sq
m

P s
C s C s

Q s L s
= = .                                              (85) 

 

The polynomial ( )mQ s  is choose to satisfy ( ) ( ) ( ) ( ) 0s s
m sd m sqQ s I s Q s I s∗ ∗= = . For the IM 

current-voltage control plant (see equation (67)) and considering that the VS-APPC control 
algorithms are implemented on the stator reference frame, which results in sinusoidal 

reference currents, a suitable choice for the controller polynomials are 2 2( )m oQ s s ω∗= +  

(internal model of sinusoidal reference signals sdi
∗  and sqi

∗ ), ( ) 1L s =  and 

2
2 1 0ˆ ˆ ˆ( )P s p s p s p= + + , where  oω

∗  is the angular frequency of reference currents. This 
choice results in a current controller with the following transfer functions 
 

2
2 1 0

2 2

ˆ ˆ ˆ
( ) ( )  sd sq

o

p s p s p
C s C s

s ω∗

+ +
= =

+
                                          (86) 

 

where angular frequency oω
∗  is generated by vector RFO control scheme and coefficients 2̂p , 

1̂p  and 0̂p  are determined by solving the Diophantine equation for desired Hurwitz 

polynomial sA
∗  (see equation (81)) as follows 

 

2
2

ˆ
ˆ

ˆ
s

s

a
p

b

α∗ −
=                                                                  (87) 
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2

1
1  ˆ  

ˆ
o

s

p
b

α ω∗ ∗−
=                                                             (88) 

2
0

0̂  
ˆ

ˆ
o s

s

a
p

b

α ω∗ ∗−
=                                                           (89) 

 
To avoid zero division on the equation (87)-(89), the switching law (83) is modified by 
 

0 ( )
ˆ ( )s s
s s sdq sdq s nomb b sgn e v b= +                                               (90) 

 
in which ( )s nomb  is the nominal values of sb  and the stability restriction 

becomes ( )s s s nomb b b> − . 

The control signals ssdv  and ssqv  generated at the output of the proposed controller VS-APPC 

can be derived from equation (86) which results in the following state-space model 
 

1 2 1̂
s s s
sdq sdq sdqx x p ε= +                                                        (91) 

2 2
2 1 0 2ˆ ˆ( )s s s
sdq o sdq o sdqx x p pω ω ε= − + −                                        (92) 

1 2̂
s s s
sdq sdq sdqv x p ε= +                                                          (93) 

 

where ( )s s s
sdq sdq sdqt i iε ∗= −  is the current error that is calculated from the measured 

quantities issued by data acquisition plug-in board as described next. Therefore, to generate 
the output signal of the controllers it is necessary to solve the equations (91)-(93). 
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Fig.  4. Block diagram of proposed VS-APPC current controller. 
 
The block diagram of the VS-APPC control algorithm for the machine current control loop is 
presented in Fig. 4. The proposed adaptive control scheme is composed a SMC parameter 
estimator and a machine current control loop subsystems. The SMC composed by blocks 
system controller and plant model identifies the dynamic of the IM current-voltage model. 

The output of this system generates the estimative of machine phase currents ŝsdi  and ŝ
sqi . 

The control loop subsystem composed by system controller and IM regulates the machine 

phase currents ssdi  and ssqi  and compensate the disturbances ssde  and s
sqe . The comparison 

between the estimative currents ( ŝsdi  and ŝ
sqi ) and the machine phase currents ( ssdi  and s

sqi ) 

determines the estimation errors 0
s
sde  and 0

s
sqe . These errors together with machine voltages 

s
sdv  and s

sqv , and VS-APPC algorithm set points sa , sb  and ( )s nomb  are used for calculating 

parameter estimative ŝa  and ˆ
sb , from the use of equations (82) and (90). These estimates 

update the plant model of the IM and are used by the controller calculation for together 

with, the coefficients of the desired polynomial sA
∗  and angular frequency oω

∗ , determine 

the parameters of the system controller 2̂p , 1̂p  and 0̂p . The introduction of the IMP  into 
the controller modeling avoids the use of stator to synchronous reference frame 
transformations. With this approach, the robustness for unmodeled disturbances is 
achieved. 

 
5.2.1 Design of the Controller 
To design the proposed VS-APPC controller is necessary to choose a suitable polynomial 
and to determine the controllers coefficients 2̂p , 1̂p , and 0̂p . A good choice criteria for 
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accomplishing the bound system conditions, is to define a polynomial which roots are 
closed to the control plant time constants. The characteristics of IM used in this work are 
listed in the Table 1. The current-voltage transfer functions for dq phases are given by 
 

( ) 10

587( )
 

s
sdq

s
sdq

I s

sV s
=

+
                                                          (94) 

 

A possible choice for suitable polynomial ( )sA s
∗ can be 

 
3( ) ( 587)  sA s s∗ = +                                                           (95) 

 
According to Equations (82), (90) and (87)-(89), and based on the desired polynomial (95), 
the estimative of the parameters of VS-APPC current controllers can be obtained as 
 

2

ˆ1761
ˆ

ˆ
s

s

a
p

b

−
=                                                                  (96) 

2

1

1033707
ˆ

ˆ
o

s

p
b

ω−
=                                                             (97) 

2

0

ˆ202262003
ˆ

ˆ
o s

s

a
p

b

ω−
=                                                        (98) 

 
To define the coefficients of the switching laws it is necessary to take into account together 
the stability restrictions s sa a>  and ( )s s s nomb b b> − . Based on the simulation and the 

theoretical studies, it can be observed that the magnitude of the respective switching laws 
( sa  and sb ) determine how fast the VS-APPC controllers converge to their respective 

references. However, the choice of greater values, results in controllers outputs ( sdv and sqv ) 

with high amplitudes, which can address to the operation of system with nonlinear 
behavior. Thus, a good design criteria is to choose the parameters closed to average values 
of control plant coefficients sa  and sb . Using this design criteria for the IM employed in this 

work, the following values are obtained ( ) 9s nomb = , 2sb =  and 600sa = . This solution is 

not unique and different design adjusts can be tested for different induction machines. The 
performance of these controllers is evaluated by simulation and experimental results as 
presented next. 
 

31.0sr = Ω  27.2rr = Ω  0.8042sl H=  0.7992rl H=  

0.7534ml H=  20.0133 .J kg m=  0.0146 .F kg m=  2P =  
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Table 1. IM nominal parameters 

 
6. Experimental Results 
 

The performance of the proposed VS-MRAC and VS-APPC adaptive controllers was 
evaluated by experimental results. To realize these tests, an experimental platform 
composed by a microcomputer equipped with a specific data acquisition card, a control 
board, IM and a three-phase power converter was used. The data of the IM used in this 
platform, are listed in Table 1. The command signals of three-phase power converter are 
generated by a microcomputer with a sampling time of 100 sμ . The data acquisition card 
employs Hall effect sensors and A/D converters, connected to low-pass filters with cutoff 
frequency of 2.5cf kHz= . Figures 5(a) and 5(b) show the experimental results of VS-
MRAC control scheme.  In these figures are present the graphs of the reference model phase 

currents smdi  and smqi  superimposed to the machine phase currents ssdi  and ssqi . In this 

experiment, the reference model currents are settled initially in 0.8s
mdqI A=  and 

30sf Hz= . At the instant 0.15t s= , each reference model phase currents is changed by 

0.2s
mdqI A= . In these results it can be observed that the machine phase currents follow the 

model reference currents with a good transient response and a current ripple 

of 0.05s
sdqi AΔ .  Figures 6-7 present the experimental results of VS-APPC control 

scheme. In the Fig. 6(a) are shown the graph of reference phase current ssdi
∗  superimposed 

by its estimation phase current ŝsdi . In this test, similar to the experiment realized to the VS-

MRAC, the magnitude of the reference current is settled in 0.8s
sdqI A∗ =  and at instant 

0.15t s= ,  it is changed by 0.2s
sdqI A∗ = .  These results show that the estimation scheme 

employed in the VS-APPC estimates the machine phase current with small current ripple. 

Figure 6(b) shows the graphs of the reference phase current s
sdi
∗  superimposed by its 

corresponded machine phase current ssdi . In this result, it can be verified that the machine 
phase current converges to its reference current imposed by RFO vector control strategy. 
Similar to the results presented before, Fig. 7(a) presents the experimental results of 

reference phase current ssqi
∗  superimposed by its estimation phase current ŝsqi  and Fig. 7(b) 

shows the reference phase current ssqi
∗  superimposed by its corresponded machine phase 

current ssqi . These results show that the VS-APPC also demonstrates a good performance. In 

comparison to the VS-MRAC, the machine phase currents of the VS-APPC present small 
current ripple.  
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(a) 

 
(b) 

Fig.  5. Experimental results of VS-MRAC phase currents smdi (a) and smqi (b) superimposed 

to IM phase currents ssdi (a) and ssdi (b), respectively.  

 
(a) 

 
(b) 

Fig.  6. Experimental results of VS-APPC reference phase current ssdi
∗  superimposed to 

estimation IM phase current ŝsdi (a) and IM phase current  ssdi (b). 

 
(a) 

 
(b) 

Fig.  7. Experimental results of VS-APPC reference phase current ssqi
∗  superimposed to 

estimation IM phase current ŝsqi (a) and IM phase current ssqi (b).  
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1. Introduction 
 

Networked control systems (NCSs) are a type of distributed control systems, where the 
information of control system components (reference input, plant output, control input, etc.) 
is exchanged via communication networks. Due to the introduction of networks, NCSs have 
many attractive advantages, such as reduced system wiring, low weight and space, ease of 
system diagnosis and maintenance, and increased system agility, which motivated the 
research in NCSs. The study of NCSs has been an active research area in the past several 
years, see some recent survey articles (Chow & Tipsuwan, 2001; Hespanha & Naghshtabrizi, 
2007; Yang, 2006) and the references therein. On the other hand, the introduction of 
networks also presents some challenges such as the limited feedback information caused by 
packet transmission delays and packet loss; both of them are due to the sharing and 
competition of the transmission medium, and bring difficulties for analysis and design for 
NCSs. The information transmission delay arises from by the limited capacity of the 
communication network used in a control system, whereas the packet loss is caused by the 
unavoidable data losses or transmission errors. Both the information transmission delay and 
packet loss may result in randomly missing output measurements at the controller node, as 
shown in Fig. 1. So far different approaches have been used to characterize the limited 
feedback information. For example, the information transmission delay and packet losses 
have been modeled as Markov chains (Zhang et al., 2006). The binary Bernoulli distribution 
is used to model the packet losses in (Sinopoli et al., 2004; Wang et al., 2005 a & 2005 b). 
The main challenge of NCS design is the limited feedback information (information 
transmission delays and packet losses), which can degrade the performance of systems or 
even cause instability. Various methodologies have been proposed for modeling, stability 
analysis, and controller design for NCSs in the presence of limited feedback information. A 
novel feedback stabilization solution of multiple coupled control systems with limited 
communication is proposed by bringing together communication and control theoretical 
issues in (Hristu & Morgansen, 1999). Further the control and communication codesign 
methodology is applied in (Hristu-Varsakelis, 2006; Zhang & Hristu-Varsakelis, 2006) – a 
method of stabilizing linear NCSs with medium access constraints and transmission delays 
by designing a delay-compensated feedback controller and an accompanying medium 
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access policy is presented. In (Zhang et al., 2001), the relationship of sampling time and 
maximum allowable transfer interval to keep the systems stable is analyzed by using a 
stability region plot; the stability analysis of NCSs is addressed by using a hybrid system 
stability analysis technique. In (Walsh et al., 2002), a new NCS protocol, try-once-discard 
(TOD), which employs dynamic scheduling method, is proposed and the analytic proof of 
global exponential stability is provided based on Lyapunov’s second method. In (Azimi-
Sadjadi, 2003), the conditions under which NCSs subject to dropped packets are mean 
square stable are provided. Output feedback controller that can stabilize the plant in the 
presence of delay, sampling, and dropout effects in the measurement and actuation 
channels is developed in (Naghshtabrizi & Hespanha, 2005). In (Yu et al., 2004), the authors 
model the NCSs with packet dropout and delays as ordinary linear systems with input 
delays and further design state feedback controllers using Lyapunov-Razumikhin function 
method for the continuous-time case, and Lyapunov-Krasovskii based method for the 
discrete-time case, respectively. In (Yue et al., 2004), the time delays and packet dropout are 
simultaneously considered for state feedback controller design based on a delay-dependent 
approach; the maximum allowable value of the network-induced delays can be determined 
by solving a set of linear matrix inequalities (LMIs). Most recently, Gao, et al., for the first 
time, incorporate simultaneously three types of communication limitation, e.g., 
measurement quantization, signal transmission delay, and data packet dropout into the 
NCS design for robust ∞H  state estimation (Gao & Chen, 2007), and passivity based 
controller design (Gao et al., 2007), respectively. Further, a new delay system approach that 
consists of multiple successive delay components in the state, is proposed and applied to 
network-based control in (Gao et al., 2008). 
However, the results obtained for NCSs are still limited: Most of the aforementioned results 
assume that the plant is given and model parameters are available, while few papers 
address the analysis and synthesis problems for NCSs whose plant parameters are 
unknown. In fact, while controlling a real plant, the designer rarely knows its parameters 
accurately (Narendra & Annaswamy, 1989). To the best of our knowledge, adaptive control 
for systems with unknown parameters and randomly missing outputs in a network 
environment has not been fully investigated, which is the focus of this paper. 
 

 
Fig. 1. An NCS with randomly missing outputs. 

 
It is worth noting that systems with regular missing outputs – a special case of those with 
randomly missing outputs – can also be viewed as multirate systems which have uniform 
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but various input/output sampling rates (Chen & Francis, 1995). Such systems may have 
regular-output-missing feature. In (Ding & Chen, 2004a), Ding, et al. use an auxiliary model 
and a modified recursive least squares (RLS) algorithm to realize simultaneous parameter 
and output estimation of dual-rate systems. Further, a least squares based self-tuning 
control scheme is studied for dual-rate linear systems (Ding & Chen, 2004b) and nonlinear 
systems (Ding et al., 2006), respectively. However, network-induced limited feedback 
information unavoidably results in randomly missing output measurements. To generalize 
and extend the adaptive control approach for multirate systems (Ding & Chen, 2004b; Ding 
et al., 2006) to NCSs with randomly missing output measurements and unknown model 
parameters is another motivation of this work. 
In this paper, we first model the availability of output as a Bernoulli process. Then we 
design an output estimator to online estimate the missing output measurements, and further 
propose a novel Kalman filter based method for parameter estimation with randomly 
output missing. Based on the estimated output or the available output, and the estimated 
model parameters, an adaptive control is proposed to make the output track the desired 
signal. Convergence of the proposed output estimation and adaptive control algorithms is 
analyzed. 
The rest of this paper is organized as follows. The problem of adaptive control for NCSs 
with unknown model parameters and randomly missing outputs is formulated in Section 2. 
In Section 3, the proposed algorithms for output estimation, model parameter estimation, 
and adaptive control are presented. In Section 4, the convergence properties of the proposed 
algorithms are analyzed. Section 5 gives several illustrative examples to demonstrate the 
effectiveness of the proposed algorithms. Finally, concluding remarks are given in Section 6. 
Notations: The notations used throughout the paper are fairly standard.’ E ’ denotes the 
expectation. The superscript ‘ T ’ stands for matrix transposition; λmax/min( )X  represents the 
Maximum/minimum eigenvalue of X ; =| | det( )X X  is the determinant of a square matrix 

X ; )(2 TXXtrX =  stands forthe trace of TXX . If δ +∃ ∈0 R  and +∈0 Zk , δ≤ 0| ( )| ( )f k g k  

for ≥ 0k k , then ( )=( ) ( )f k O g k ; if →( ) / ( ) 0f k g k  for →∞k , then ( )=( ) ( )f k o g k . 

 
2. Problem Formulation 
 

The problem of interest in this work is to design an adaptive control scheme for networked 
systems with unknown model parameters and randomly missing outputs. In Fig. 2, the 
output measurements ky could be unavailable at the controller node at some time instants 
because of the network-induced limited feedback information, e.g., transmission delay 
and/or packet loss. The data transmission protocols like TCP guarantee the delivery of data 
packets in this way: When one or more packets are lost the transmitter retransmits the lost 
packets. However, since a retransmitted packet usually has a long delay that is not desirable 
for control systems, the retransmitted packets are outdated by the time they arrive at the 
controller (Azimi-Sadjadi, 2003; Hristu-Varsakelis & Levine, 2005). Therefore, in this paper, 
it is assumed that the output measurements that are delayed in transmission are regarded as 
missed ones. 
The availability of ky can be viewed as a random variable γ k . γ k is assumed to have Bernoulli 
distribution: 
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( )γ γ γ γ

μ γ
γ

μ γ

= ≠

=⎧
⎨
⎩

=
− =

E E E for ,
, if 1,

Prob( )
1 , else if 0,

k s k s

k k
k

k k

k s
 

(1) 

 
where μ< ≤0 1k . 
Consider a single-input-single-output (SISO) process (Fig. 2): 
 

= = +A ,z k z k k k kx B u y x v  (2) 
 
where ku is the system input, ky the output and kv the disturbing white noise with variance 

vr . zA and zB are two backshift polynomials defined as 
 

−− −

−− −

= + + + +

= + + + +
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1 2
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The polynomial orders an and bn are assumed to be given. Eqn. (2) can be written 
equivalently as the following linear regression model: 
 

ϕ θ= +T
0 ,k k ky v  (3) 

 
where 
 

ϕ

θ

− − − − −⎡ ⎤= − − −⎣ ⎦

⎡ ⎤= ⎣ ⎦

L L

L L

T

0 1 2 1

T

1 2 0 1

,

.

a b

a b

k k k k n k k k n

n n

x x x u u u

a a a b b b
 

 

 
Vector ϕ0k  represents system’s excitation and response information necessary for parameter 
estimation, while vector θ  contains model parameters to be estimated. 
 

 
Fig. 2. Output-error (OE) model structure. 

 
For a system with the output-error (OE) model placed in a networked environment subject 
to randomly missing outputs, the objectives of this paper are: 

1. Design an output estimator to online estimate the missing output measurements. 
2. Develop a recursive Kalman filter based identification algorithm to estimate unknown 

model parameters. 
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3. Propose an adaptive tracking controller to make the system output track a given 
desired signal. 

4. Analyze the convergence properties of the proposed algorithms. 

 
3. Parameter Estimation, Output Estimation, and Adaptive Control Design 
 

There are two main challenges of the adaptive control design for a networked system as 
depicted in Fig. 1: (1) randomly missing output measurements; (2) unknown system model 
parameters. Therefore, in this section, we first propose algorithms for missing output 
estimation and unknown model parameter estimation, and then design the adaptive control 
scheme. 

 
3.1 Parameter estimation and missing output estimation 
Consider the model in (3). It is shown by (Cao & Schwartz, 2003) and (Guo, 1990) that the 
corresponding Kalman filter can be conveniently used for parameter estimation. In 
combination with an auxiliary model, the Kalman filter based parameter estimation 
algorithm for an OE model is given by 
 

θ θ ϕ θ− −= + − T
1 , , 1

ˆ ˆ ˆ( ),k k a k k a k kK y  
 

(4) 

ϕ
ϕ ϕ

−

−

=
+

, 1 ,
, T

, , 1 ,

,a k a k
a k

v a k a k a k

P
K

r P
 

 

(5) 

ϕ ϕ
ϕ ϕ

− −
−

−

−
+

=
T

, 1 , , , 1
, , 1 T

, , 1 0

,a k a k a k a k
a k a k

v a k a k k

P P
P P

r P
 

 

(6) 

φ θ= T
, ,

ˆ ,a k a k kx  
 

(7) 

ϕ − − − − −⎡ ⎤= − − −⎣ ⎦L L
T

, , 1 , 2 , 1 ,
a ba k a k a k a k n k k k nx x x u u u  

 

(8) 

where θ̂k represents the estimated parameter vector at time instant k . 
It is worth to note that the above algorithm as shown in (4)-(8) cannot be directly applied to 
the parameter estimation of systems with randomly missing outputs in a network 
environment, as ky in (4) may not be available. This motivates us to develop a new 
algorithm that can simultaneously online estimate the unavailable missing output and 
estimate system parameters under the network environment. The proposed algorithm 
consists of two steps. 
 
Step 1: Output estimation 
Albertos, et al. propose a simple algorithm that uses the input-output model, replacing the 
unknown past values by estimates when necessary (Albertos et al., 2006). Inspired by this 
work, we design the following output estimator: 
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γ γ= + − ˆ(1 ) ,k k k k kz y y  (9) 
 
with 
 

ϕ θ −= T
1

ˆˆ .k k ky   

 
In (9), γ k  is a Bernoulli random variable used to characterize the availability of ky at time 
instant k at the controller node, as defined in (1). With the time-stamp technique, the 
controller node can detect the availability of the output measurements, and thus, the values 
of γ k  (either 1 or 0) are known. The knowledge of their corresponding probability μk is not 
used in the designed estimator. The structure of the designed output estimator is intuitive 
and simple yet very effective, which will be seen soon from the simulation examples. 
 
Step 2: Model parameter estimation 
Replacing ky in the algorithm (4)-(8) by kz , defining a newϕk , and considering the random 
variable γ k , we readily obtain the following algorithm: 
 

θ θ ϕ θ− −= + − T
1 1

ˆ ˆ ˆ( ),k k k k k kK z  
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(12) 

ϕ θ= T
,

ˆ ,b k k kx  
 

(13) 

ϕ − − − − −⎡ ⎤= − − −⎣ ⎦L L
T

, 1 , 2 , 1 .
a bk b k b k b k n k k k nx x x u u u  

 

(14) 

Remark 3.1. Consider two extreme cases. If the availability sequence γ γL1{ , , }k constantly assumes 
1, then no output measurement is lost, and the algorithm above will reduce to the algorithm (4)-(6). 
On the other hand, if the availability sequence γ k constantly takes 0, then all output measurements 
are lost, and the parameter estimates just keep the initial values. 

 
3.2 Adaptive control design 
Consider the tracking problem. Let ,r ky be a desired output signal, and define the output 
tracking error 
 

ζ = − ,: .k k r ky y   
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If the control law ku is appropriately designed such that ϕ θ= T
, 0r k ky , then the average 

tracking error kz approaches zero finally. Replacing θ  by θ −1k̂  and ϕ0k by ϕk  yields 
 

ϕ θ θ θ− − − + + − −
= =

− − − − − − −

= = − +

= − − − + + +

∑ ∑
L L

T
, 1 , 1 1, 1

1 0

1, 1 , 1 , 1 , 0 , 1 , 1
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a b

a

a a b b

n n

r k k k i k k i n i k k i
i i

k b k n k b k n k k n k k n

y x u

a a b u b ux x
 

 

 
Therefore, the control law can be designed as 
 

− − − −
= =−

⎡ ⎤
= + −⎢ ⎥

⎣ ⎦
∑ ∑, , 1 , 1

1 10, 1

1 ˆˆ .ˆ
a bn n

k r k i k k i i k k i
i ik

u y a x b u
b

 
(15) 

 
The proposed adaptive control scheme consists of the missing output estimator [Equation 
(9)], model parameter estimator [Equations (10-14)], and the adaptive control law [Equation 
(15)]. The overall control diagram is shown in Fig. 3. 

 
4. Convergence Analysis 
 

This section focuses on the analysis of some convergence properties. Some preliminaries are 
first summarized to facilitate the following convergence analysis of parameter estimation in 
(10)-(12) and of output estimation in (9). Inspired by the work in (Chen & Guo, 1991; Ding & 
Chen, 2004a; Ding et al., 2006), the convergence analysis is carried out under the stochastic 
framework. 
 

 
Fig. 3. Adaptive control diagram. 

 
4.1 Preliminaries 
To facilitate the convergence analysis, directly applying the matrix inversion formula (Horn 
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& Johnson, 1991) 
 

− − − − − − −+ = − +1 1 1 1 1 1 1( ) ( ) ,A BCD A A B C DA B DA   
 
the proposed parameter estimation algorithm in Section 3.1 [(10)-(12] can be equivalently 
rewritten as: 
 

θ θ ϕ ϕ θ−
− −= + −1 T

1 1
ˆ ˆ ˆ( ),k k v k k k k kr P z  

 

(16) 

γ ϕ ϕ− − −
−= +1 1 1 T

1 .k k v k k kP P r  
 

(17) 

Suppose that kP is initialized by 0p I , where 0p is a positive real value large enough, and 
define −= 1tr( )k kr P . The relation between kr and −1| |kP can be established in the following 
lemma. 
Lemma 4.1. The following relation holds: 
 

( )− =1ln E| | ln E .k kP O r  (18) 

 
Proof: Using the formulae 
 

λ λ
= =

= =∑ ∏
1 1

tr( ) ( ) and| | ( ),
nn

i i
i i

X X X X  
 

 
where n is the dimension of X , we have 
 

− ≤1E| | (E ) .n
k kP r   

 
This completes the proof.              
The next lemma shows the convergence of two infinite series that will be useful later. 
Lemma 4.2. The following inequalities hold: 
 

( )μ ϕ ϕ− −
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≤ +∑ 1 T 1
0 0

1
E ln E| | ln a.s.,
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1
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ln E| |
i i i

i v c
i i

P
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(20) 

where > 1c . 
Proof: The proof can be done along the similar way as Lemma 2 in (Ding & Chen, 2004b) 
and is omitted here.            □ 
The following is the well-known martingale convergence theorem that lays the foundation 
for the convergence analysis of the proposed algorithms. 
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Theorem 4.1. (Goodwin & Sin, 1984) Let {X }k be a sequence of nonnegative random variables 
adapted to an increasing σ -algebras { }kF . If 
 

( ) α β+ ≤ + − +1E | (1 ) , a.s.,k k k k k kX XF ň   

 
where α ≥ 0k , β ≥ 0k , < ∞0EX , ∞<∑∞

= ii ε0  and β∞
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< ∞∑ 0 ii

 almost surely (a.s.), then X k  

converges a.s. to a finite random variable and 
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iN i
 

 

 
4.2 Convergence analysis 
To carry out the convergence analysis of the proposed algorithms, it is essential to 
appropriately construct a martingale process satisfying the conditions of Theorem 4.1. Main 
results on the convergence properties of the proposed algorithm are summarized in the 
following Theorem. 
Theorem 4.2. For the system considered in (3), assume that 

(A1) { , }k kv F is a martingale difference sequence satisfying 
 

( )− =1E | 0, a.s.,k kv F  
 

(21) 

( )− = < ∞2
1E | , a.s.;k k vv rF  

 

(22) 

(A2) −
1 1

2zA
is strictly positive real; 

(A3) zB  is stable; i.e., zeros o f zB are inside the closed unit disk. 
Suppose the desired output signal is bounded: < ∞,| |r ky . Applying the missing output estimator 
[Equation (9)], model parameter estimator [Equations (10-14)], and the adaptive control law 
[Equation (15)], then the output tracking error has the property of minimum variance, i.e., 
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Proof: As pointed out in (Goodwin & Sin, 1984; Chen & Guo, 1991), from (A2) it follows that 
 

                       
= =

⎛ ⎞
≤ + ⎜ ⎟

⎝ ⎠
∑ ∑2 21

1 1

1 (1) , a.s.
k k

i i
i i

cu O O y
k k

 
(23) 



Adaptive Control 

 

170 

 
Here, 1c is a positive constant. Define the following vectors: 
 

ϕ θ −= − T
1 ,ˆ

k k ke z  
 

 

η = − , ,k k b ky x  
 

 

η γ η= ,k k k  
 

 

τ = − +, ,k r k k ky y v  
 

 

τ γ τ= .k k k   
 
From (2), (3), (16) and (16), it follows that 
 

η γ= − +,( ),k k k b k kx x v  
 

(24) 

η ϕ ϕ− −
−= + 1 T 1
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(25) 

τ γ− += .k k k ke v  
 

(26) 

Also define the parameter estimation error vector and a Lyapunov-like function as 
 

θ θ θ= −% ˆ ,k k   

θ θ−= % %T 1 .k k k kV P   

 
From (9), (16) and (25), we obtain 
 

θ θ ϕ θ ϕ η− −
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With (17) and (27), kV  can be further evaluated as 
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Then we have 
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Note that ϕ θ −

%T
1k k , γ−k k ke v ,ϕ ϕT

k k kP andτ k are uncorrelated with kv and −1kF -measurable. Thus 
taking the conditional expectation of both sides of (28) with respect to −1kF  gives 
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Adding kS  to both sides of (29) yields 
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Define a new sequence: 
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From (12) we have 
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Also note that by Lemma 4.2 the summation of the third term in (33) from 0 to ∞  is finite. 
Therefore, Theorem 4.1 is applicable, and it gives 
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Further, Lemma 4.1 indicates 
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As ( )ϕ ϕ−⎡ ⎤−⎣ ⎦

1 T1 Ev k k kr P  is positive and nondecreasing, it holds that ( )ϕ ϕ−⎡ ⎤= −⎣ ⎦
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Since →∞ = ∞lim ln Ek kr , then from the Kronecker lemma [15] it follows that 
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By (22) we have 
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Substituting (37) into (38) gives 
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which implies together with (37) that 
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or equivalently 
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Since 
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and γ γ=k k k kz y , we have 
 

{ } { }μ μ− −→∞ →∞
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This completes the proof.             □ 

 
5. Illustrative Examples 
 

In this section, we give three examples to illustrate the adaptive control design scheme 
proposed in the previous sections. 
The OE model shown in Fig. 2 in the simulation is chosen as 
 

− −

− −

+ +
= +

+ +

1 2
0 1 2

1 2
1 2

,
1k k k
b b z b zy u v

a z a z
 

 

 
which is assumed to be placed in a network environment (Fig. 1) with randomly missing 
output measurements and unknown model parameters. { }kv  is a Gaussian white noise 
sequence with zero mean and variance = 20.05vr . The parameter vector θ = T

1 2 0 1 2[ ]a a b b b is 
to be estimated. Here, true values of θ  are 
 

θ = − T[ 0.3 0.6 0.5 0.2 0.34] .   
 
For simulation purposes, we assume that: (1) θ  is unknown and initialized by ones; (2) the 
output measurement { }ky is subject to randomly missing when transmitted to the controller 
node; (3) the availability of the output measurements ( ky ) at the controller node is 
characterized by the probability μk ; (4) The desired output signal to be tracked is a square 
wave alternating between -1 and 1 with a period of 1000. Mathematically, it is given by 
 

+
+ = − = =L1

,(500 ) ( 1) , 0,1,2, , 1,2,...500.i
r i jy i j   

 
In the following simulation studies, we carry out experiments for three different scenarios 
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regarding the availability of the output measurements at the controller node and the 
parameter variation, and examine the control performance, respectively. According to the 
proposed adaptive control scheme shown in Fig. 3, we apply the algorithms of the missing 
output estimator, model parameter estimator, and the adaptive control law to the 
networked control system. 
Example 1: μ = 0.85k . In the first example, 85% of all the measurements are available at the 
controller node after network transmission from the sensor to the controller. The output 
response is shown in Fig. 4, from which it is observed that the output tracking performance 
is satisfactory. In order to take a closer observation on the model parameter estimation and 
output estimation, we define the relative parameter estimation error as 
 

               

 

 
It is shown in Fig. 5 (solid blue curve) that δ %par  is becoming smaller with k increasing. 
Comparison between the estimated outputs and true outputs during the time range 

≤ ≤501 550t  is illustrated in Fig. 6: The dashed lines are corresponding to the time instants 
when data missing occurs, and the small circles on the top of the dashed lines represent the 
estimated outputs at these time instants. From Fig. 6 it can be found that the missing output 
estimation also exhibits good performance. 
 

 
Fig. 4. Example 1: Output response when μ = 0.85k . 
 

 
Fig. 5. Comparison of relative Parameter estimation errors for Example 1 and Example 2: 
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Blue solid line for Example 1; red dotted line for Example 2. 
Example 2: μ = 0.65k . In the second example, a worse case subject to more severe randomly 
missing outputs is examined: Only 65% of all the measurements are available at the 
controller node. The output response is shown in Fig. 7. Even though the available output 
measurements are more scarce than those in Example 1, it is still observed that the output is 
tracking the desired signal with satisfactory performance. The relative parameter estimation 
error, δ %par , is shown in Fig. 5 (dashed red curve). Clearly, it is decreasing when k is 
increasing. The estimated outputs and the true outputs are illustrated in Fig. 8, from which 
we can see good output estimation performance. 
For the comparison purpose, the relative parameter estimation errors of these two examples 
are shown in Figure 5. We can see that the parameter estimation performance when 
μ = 0.85k  is better than that when μ = 0.65k .It is no doubt that the estimation performance 
largely depends on data completeness that is characterized by μk . 
 

 
Fig. 6. Example 1: Comparison between estimated and true outputs when μ = 0.85k  (The 
dashed line represents output missing). 
 

 
Fig. 7. Example 2: Output response when μ = 0.65k . 
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Example 3: Output tracking performance subject to parameter variation. In practice, the model 
parameters may vary during the course of operation due to the change of load, external 
disturbance, noise, and so on. Hence, it is also paramount to explore the robustness of the 
designed controller against he influence of parameter variation. In this example, we assume 
that at = 2500k , model parameters are all increased by 50%. The output response is shown 
in Fig. 9. It can be seen that: At = 2500k , the output response has a big overshoot because of 
the parameter variation; however, the adaptive control scheme quickly forces the system 
output to track the desired signal again. 
Observing Figs. 4, 7, and 9 in three examples, we notice that the tracking error and 
oscillation still exist. This is mainly due to (1) the missing output measurements, and, (2) the 
relatively high noise-signal ratio (around 25%). On the other hand, it is desirable to develop 
new control schemes to further improve the control performance for networked systems 
subject to limited feedback information, which is worth to do extensive research. 
 

 
Fig. 8. Example 2: Comparison between estimated and true outputs when μ = 0.65k (The 
dashed line represents output missing). 
 

 
Fig. 9. Example 3: Output response subject to parameter variation: At time instant = 2500,k  
all parameters are increased by 50%. 
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6. Conclusion 
 

This paper has investigated the problem of adaptive control for systems with SISO OE 
models placed in a network environment subject to unknown model parameters and 
randomly missing output measurements. The missing output estimator, Kalman filter based 
model parameter estimator, and adaptive controller have been designed to achieve output 
tracking. Convergence performance of the proposed algorithms is analyzed under the 
stochastic framework. Simulation examples verify the proposed methods. It is worth 
mentioning that the proposed scheme is developed for SISO systems in this work, and the 
extension to multi-input-multi-output (MIMO) systems is a subject worth further 
researching 
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1. Introduction 
 

Neural network has good nonlinear function approximation ability. It can be widely used to 
identify the model of controlled plant. In this chapter, the theories of modeling uncertain 
plant by using two kinds of neural networks: feed-forward neural network and recurrent 
neural network are introduced. And two adaptive control strategies for robotic tracking 
control are developed. One is recurrent fuzzy neural network based adaptive control 
(RFNNBAC), and another is neural network based adaptive robust control (NNBARC). In 
RFNNBAC, a kind of recurrent fuzzy neural network (RFNN) is constructed by using 
recurrent neural network to realize fuzzy inference, In which, temporal relations are 
embedded in the network by adding feedback connections on the first layer of the network. 
Two RFNNs are used to identify and control plant respectively. Base on the Lyapunov 
stability approach, the convergence of the proposed RFNN is analyzed. In NNBARC, A 
robust controller and a neural network are combined into an adaptive robust robotic 
tracking control scheme. Neural network is used to approximate the modeling uncertainties 
in robotic system. Then the disadvantageous effects on tracking performance, due to the 
approximating error of the neural network and non-measurable external disturbances in 
robotic system, are attenuated to a prescribed level by robust controller. The robust 
controller and the adaptation law of neural network are designed based on Hamilton-Jacobi-
Issacs (HJI) inequality theorem. The weights of NN are easily tuned on-line by a simple 
adaptation law, with no need of a tedious and lengthy off-line training phase. 
This chapter is organized in the following manner. In the first section a robust robotic 
tracking controller based on neural network is designed and its effectiveness is proved by 
applying it to control the trajectories of a two-link robot. Secondly, a recurrent fuzzy neural 
network based adaptive control is proposed and simulation experiments are made by 
applying it on robotic tracing control problem to confirm its effectiveness. Finally, some 
conclusions are drawn. 

 
2. A robust robotic tracking controller based on neural network 
 

In the past decades, there has been much research on the applications of nonlinear control 
theory to control robots, and many useful properties of robot dynamics such as the skew-
symmetry property were discovered. There are basically two strategies to control such 
uncertain nonlinear systems: the robust control strategy and the adaptive control strategy. A 
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convenient point of robust control strategy is that it can attenuate disadvantageous effects of 
various uncertainties (e.g., structured parametric uncertainties and unstructured 
disturbances) to a required level, provided that the upper bound of uncertainties is well 
known (Abdallah et al. 1991). However, since this strategy use max-min method to design 
the controller, it can not yield good transient performance.  On the other hand, regressor 
matrixes are always used in the design of adaptive control systems for robot manipulators 
(Ortega & Spong 1989). In this situation, the unknown nonlinear dynamics of robotic 
systems are always assumed to be linearly parametrisable. However, there are some 
potential difficulties associated with this classical adaptive control design. For example, the 
unknown parameters may be quickly varying, the linear parametrisable property may not 
hold, computation of the regressor matrix is a time-consuming task, and implementation 
also requires a precise knowledge of the structure of the entire robot dynamic model (Saad 
et al. 1994; Sanner & Slotine 1998; Spooner & Passino 1996). 
It has been shown that multi-layer neural networks can approximate any continuous 
function as accurately as possible. Based on this universal approximation property, many 
important adaptive neural-network-based control schemes have been developed to solve 
highly nonlinear control problem (Sanner & Slotine 1998; Spooner & Passino 1996; Narenra 
& Parthasarathy 1990; Polycarpou 1996). But most of these schemes use grads-descent 
method to train the weights, which can not ensure the stability of whole closed-loop system. 
In the recent years, researchers began to develop the neural-network-based controller with 
closed-loop stability based on the Lyapunov method. A controller based on forward 
propagation network was developed in (Carelli et al. 1995), but it didn’t consider the effects 
of uncertainties. An adaptive neural network control strategy with guaranteed stability was 
proposed in (Behera et al. 1996) on the assumption that the approximation error of the 
neural network is known and bounded.  
In the first part of this chapter, we will propose a neural-network-based robust robotic 
tracking controller according to HJI inequation theorem presented by Shen in (Shen 1996). A 
neural network equipped with a robust learning algorithm is introduced firstly to learn the 
modeling uncertainties in robotic system. Then the disadvantageous effects on tracking 
performance caused by neural network approximating error and non-measurable external 
disturbances in robotic system will be attenuated to a prescribed level by the designing a 
robust controller.  
This section is organized as follows. In subsection 2.1, HJI inequation theorem is introduced. 
In subsection 2.2 the dynamics of robot system and its properties are described. The neural 
network based robust control strategy is proposed in subsection 2.3, where the structure of 
robust controller and the robust learning algorithm of neural network are derived. 
Simulations for a two-link robot are presented in subsection 2.4. 

 
2.1 HJI inequation theorem 
A system with non-measurable disturbance d can be formulated as: 
 

g(x)df(x)x +=&                                                                         (1) 
 

For evaluating the disturbance restraint performance of system (1), an evaluation signal 
h(x)z =  is introduced to represent the signals need to be concerned, such as error. And a 
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performance index signal can be defined as: 
 

2

2

02d d
z

supJ
≠

=                                                                       (2) 

 
Obviously, smaller J means better disturbance restraint performance. The robust design 
problem of system (1) can be solved by designing a controller to make J less than a 
prescribed level. 
HJI(Hamilton-Jacobi-Isaacs)InequationTheorem: Given an positive constant 0>γ , if there 
exists an derivable function, V(x)≥0, which satisfies the following HJI inequation: 
 

{ } d,zd
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= γ&&                                  (3) 

 
then the performance index signal of system (1) is less than γ , that is to say, γ≤J . 

 
2.2 Problem statement 
The kinetics equation of a robotic manipulator with uncertainties can be expressed as: 
 

Td)qT(q,G(q)q)qV(q,qM(q) R =+Δ+++ &&&&&                                         (4) 
 
where nRq,qq, ∈&&& is the joint position, velocity, and acceleration vectors; nnRM(q) ×∈  
denotes the moment of inertia; q)qV(q, && are the Coriolis and centripetal forces; G(q) includes 
the gravitational forces; T is the applied torque; )qΔT(q, &  represents the modelling 
uncertainties in robotic system, and Rd  is external non-measurable disturbance.  
It is well known that the robot dynamics has the following properties. 
Property 1— Boundedness of the Inertia matrix: The inertia matrix M(q) is symmetric and 
positive definite, and satisfies the following inequalities: 
 

ΙλM(q)Ιλ0 Mm ≤≤<                                                          (5) 
 
where mλ and Mλ are known positive constants. 
Property 2—Skew symmetry: The inertia and centripetal-Coriolis matrices have the 
following property: 
 

0)}ξq2V(q,(q)M{ξT =− && , nRξ∈∀                                               (6) 
 
Property 1 is very important in generating a positive definite function to prove the stability 
of the closed-loop system. Property 2 will help in simplifying the controller.  
The aim of this paper is to design a neural-network-based robust controller (NNBRC) for the 
robot system under uncertainties, such that closed-loop system is guaranteed to be stable 
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and the joint position q(t)  can track the desired trajectory (t)qd rapidly and accurately. 

 
2.3 Design of NNBRC 
A NNBRC is proposed in this section. In the proposed strategy, a neural network (NN) is 
firstly used for identifing modelling uncertainties )qΔT(q, & , then, a robust learning algorithm 
and a robust controller are designed based on HJI equation theorem to counteract the 
disadvantageous effects caused by approximation error of the NN and external disturbance 

Rd . 

 
2.3.1 Construction of the neural network 
A three-layer NN is shown in Fig.1.Using (1)

i
(1)
i o,u  to denote the input and output of the ith 

node in the lth layer separately, the signal propagation and the operation functions of the 
nodes in each layer are introduced as follows. 
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Fig. 1. Structure of three-layer NN 

 
Layer 1— Input Layer:  
 

i
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i xuo == , m,1,2,i L=                                                       (7) 

 
Layer 2— Hidden Layer: 
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])uexp([11σo (2)

jj
(2)
j −+== , k,1,2,j L=                                         (9) 

 



Adaptive Control Based On Neural Network 

 

185 

Layer 3— Output Layer: 
 

∑ ⋅===
=

k

1j

(2)
jhj

(3)
h

(3)
hh owuoy , n,1,2,h L=                                           (10) 

 
Let 

                                  

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

nkn2n1

2k2221

1k1211

www

www
www

W

L

MMMM

L

L

, 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

k

2

1

σ

σ
σ

σ
M

, 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

n

2

1

y

y
y

Y
M

    

 
then the outputs of the three-layer NN can be written as: 
 

σWY =                                                                (11) 
 
In this paper, the three-layer NN described above will be used to identify the modeling 
uncertainties )qΔT(q, &  in robotic system. Using Tε to denote the network approximation 
error, then the modeling uncertainties can be denoted by: 
 

)qT(q,W)q(q,ΔT  TTT && Δ+= εσ                                            (12) 
 
where TW is the weight matrix, Tσ is the activation function vector. 
Substitute (12) into (4), then the dynamics of the robot manipulator with a NN identifier can 
be formulated as: 
 

TdWG(q)q)qV(q,qM(q) RTTT =+++++ εσ&&&&                              (13) 
 
Regarding Tε  as another external disturbance of robotic system, and using RTR d+= εε , 
then (13) can be rewritten as: 
 

TWG(q)q)qV(q,qM(q) RTT =++++ εσ&&&&                                 (14) 
 
For attenuating disadvantageous effects caused by Rε  to a prescribed level, a robust 
learning algorithm of NN and a robust controller can be designed based on HJI equation as 
below 2.3.2. 

 
2.3.2 Robust controller and NN learning algorithm 
At first, we introduce a control signal u, which satisfies:  
 

TuG(q)q)qV(q,qM(q) dd =+++ &&&&                                       (15) 
 
where n

ddd Rq,q,q ∈&&&  is desired joint position, velocity, and acceleration vectors separately. 
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Thus, the closed-loop robot control system can be constructed by substituting (15) into (14). 
Let dqqe −= , the closed-loop system can be formulated as: 
 

uWe)qV(q,eM(q) RTT =+++ εσ&&&&                                          (16) 
 
By regarding Rε  as external disturbance and introducing the evaluation signal pezR = , 
where p is a positive constant, we can define the index signal as: 
 

2

2
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supJ
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R

R
R

z
εε ≠

=                                                          (17) 

 
The idea of NNBRC is to design controller u and the NN learning algorithm TW&  such that 

RJ is less than a prescribed level, γ . 
Define two state variables as:  
 

⎩
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eex
        ex

2
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α&

                                                           (18) 

 
where α  is an prescribed positive constant. Thus, system (16) can be rewritten as: 
 

⎩
⎨
⎧
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εσω
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where eVeMω αα += & , TW  is a kn× matrix that can be described as: 
 

[ ]TkT2T1

nkTn2Tn1T

2kT22T21T

1kT12T11T

T w    w  w

www

www
www

W L

L

MMMM

L

L

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=  

 
Theorem 1: Considering system (19), if the learning algorithm of NN is: 
 

TT WW η−=&                                                          (20) 
 
The controller u is designed as: 
 

222TT1 x
2Y

1Wxu ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+−−= εσω                                     (21) 

 
and the parameter p in the evaluation signal , 1R pxpez == , satisfies: 
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1
2p

2
1- εα =                                                               (22) 

 
where 21 ,εε  and η  are all prescribed positive constant, then the disturbance restraint index 
signal of system (19), RJ , is less than γ . 
Proof: Considering system (19), we define the following derivable function: 
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Thus, 
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According to Property 2 of the robot dynamics, the above equation can be rewritten as: 
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Substituting (20) into above equation, then 
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Regarding Rε as external disturbance, let  
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Substituting (21), (22) into above inequation, then  
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According to HJI equation theorem, we can conclude that the disturbance restraint 
performance index signal of system (19), RJ , is less than γ . The structure of the proposed 
neural network based robust control strategy is illustrated in Fig. 2. 
 

  
Fig. 2. Structure of the NN-based robust tracking control system 
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2.4 Simulation example 
In this section, the proposed control strategy will be applied to control the trajectory of a 
two-link robot (see Fig. 3) for proving its effectiveness. 
 

1t

2t 1m

2m

1l

2l

1θ

2θ

 
Fig. 3. Two-link robot 

 
In Fig.3, m1and m2 are masses of arm1 and arm2 respectively; l1 and l2 are lengths of arm1 
and arm2; t1 and t2 are torques on arm1 and arm2; 1θ and 2θ  are positions of arm1 and 
arm2.  The dynamics model of two-link robot is same as (4). 
Let  
 

[ ]T21 θ    θq = , [ ]T21 θ    θq &&& =                                            (24) 

 
[ ]T21 θ    θq &&&&&& = , [ ]T21 t    tT =                                             (25) 

 
ii cosθc ≡ , ii sinθs ≡ , )θcos(θc jiij +≡                                  (26) 

 

then M, V,G in (4) can de described as: 
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In this paper, the parameters of the two-link robot are 10m1 = kg, 2m 2 = kg, 1.1l1 = m, 

and 0.8l 2 = m. The Initial states are 0.5]0.5[q(0) = rad, T0]   [0(0)q =& rad/s, and 
T0]0[(0)q =&& rad/s2. The desired trajectories can be described as: 

 
[ ]Td t)cos(2  t)sin(2)t(q ππ= rad                                                 (30) 

 
        [ ]Td t)sin(22-    t)cos(22)t(q ππππ=&  rad/s                                      (31) 

 

     [ ]T22
d t)cos(24-    t)sin(24-)t(q ππππ=&& rad/s2                                (32) 

 
The model error due to friction is assumed as: 
 

⎥
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=
)]eexp()[0.2e(sign 

)]eexp()[0.1e(0.5sign 
ΔT

22

11
&&

&&
 N·m                                    (33) 

 
The external disturbance, [ ]T21R d  dd =  is a random signal which amplitude is less than 
10N·m.  In simulations, the NNBRC can be designed based on (21), in which 50=α , 

0.11 =ε , 0.12 =ε , 0.05=γ , 9p = . The NN learning algorithm is designed according to (20), 
where 0.1=η . 
Fig.4 and Fig.5 present the simulation experiment results, in which, proposed control 
strategy is compared to traditional robust control (TRC) strategy. From these results, we can 
conclude that the NN-based robust tracking control strategy proposed in this paper can 
counteract disadvantageous effects caused by uncertainties in robotic system efficiently, and 
can achieve better transient performance than traditional robust control.  
 

 
Fig. 4. Robot trajectories 
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Fig. 5. Robot tracking errors 

 
3. A Recurrent Fuzzy Neural Network Based Adaptive Control 
 

Recently, much research has been done on using neural networks (NN) to identify and 
control dynamic systems (Park et al. 1996; Narendra & Parthasarathy 1990; Brdys & 
Kulawski 1999). NN can be classified as feed forward neural networks and recurrent neural 
networks. Feed forward neural networks can approximate a continuous function to an 
arbitrary degree of accuracy. However, feed forward neural network is a static mapping; it 
can not represent a dynamic mapping. Although this problem can be solved by using 
tapped delays, feed forward neural network requires a large number of neurons to represent 
dynamical responses in the time domain. Moreover, since the weight updates of feed 
forward neural network is irrelative to the internal information of neural network, the 
function approximation is sensitive to the training data. On the other hand, recurrent neural 
networks (Ku & Lee 1995; Ma & Ji 1998; Sundareshan & Condarcure 1998; Liang & Wang 
2000) are able to represent dynamic mapping very well and store the internal information 
for updating weights later. Recurrent neural network has an internal feedback loop; it 
captures the dynamical response of a system without external feedback through delays. 
Recurrent neural network is a dynamic mapping and demonstrates good performance in the 
presence of uncertainties, such as parameter variations, external disturbance, unmodeled 
and nonlinear dynamics. However, the drawbacks of recurrent neural network, which are 
same as neural network, are that the function of the network is difficult to interpret and few 
efficient constructive methods can be found for choosing network structure and determining 
the parameters of neurons. 
As is widely known, both fuzzy logic systems and neural network systems are aimed at 
exploiting human-like knowledge processing capability. In recent years, researchers started 
to recognize that fuzzy control has some similarities to neural network (Jang & Sun 1993; 
Hunt et al. 1996; Buckley et al. 1993; Reyneri 1999). Fuzzy neural network (FNN), which uses 
NN to realize fuzzy inference, combines the capability of fuzzy reasoning in handling 
uncertain information and the capability of neural networks in learning from processes. It is 
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possible to train NN using the experience of human operators expressed in term of linguistic 
rules, and interpret the knowledge that NN acquired from training data in linguistic form. 
And it is very easy to choose the structure of NN and determine the parameters of neurons 
from linguistic rules. However, a major drawback of the FNN is that its application domain 
is limited to static problems due to its feed forward network structure.  
Recurrent fuzzy neural network (RFNN) is a modified version of FNN, which use recurrent 
network for realizing fuzzy inference and can be constructed from a set of fuzzy rules. It 
inherits all characteristics of FNN such as fuzzy inference, universal approximation and 
convergence properties. Moreover, with its own internal feedback connections, RFNN can 
temporarily store dynamic information and cope with temporal problems efficiently. For 
this ability to temporarily store information, the structure of RFNN is much simpler than 
FNN. Fewer nodes are required in RFNN for system identification. 
In this section, a recurrent fuzzy neural network structure is proposed, in which, the 
temporal relations are embedded by adding feedback connections on the first layer of FNN. 
Back propagation algorithm is used to train the proposed RFNN. To guarantee the 
convergence of the RFNN, the Lyapunov stability approach is applied to select appropriate 
learning rates. For control problem, an adaptive control scheme is proposed, in which, two 
proposed RFNN are used to identify and control plant respectively. Finally, simulation 
experiments are made by applying proposed adaptive control scheme on robotic tracking 
control problem to confirm its effectiveness. 
This section is organized as follows. In subsection 3.2, RFNN is constructed. The 
construction of RFNNBAC is presented in subsection 3.3. Learning algorithms of RFNN are 
derived in subsection 3.4. Stability of RFNN is analyzed in subsection 3.5. In subsection 3.6 
proposed RFNNBAC is applied on robotic tracking control and simulation results are given. 
Finally, some conclusions are drawn in subsection 3.7. 

 
3.1 Construction of RFNN 
The structure of the proposed RFNN is shown in Fig. 6, which comprises n input variables, 
m term nodes for each input variable, l rule nodes, and p output nodes. This RFNN thus 
consists of four layers and n + ( n × m ) + l + p nodes.  
Using k

iu , k
iO  to denote the input and output of the ith node in the kth layer separately, the 

signal propagation and the operation functions of the nodes in each layer are introduced as 
follows. 
Layer 1 (Input Layer): This layer accepts input variables. Its nodes transmit input values to 
the next layer. Feedback connections are added in this layer to embed temporal relations in 
the network. For every node in this layer, the input and output are represented as: 
 

( ) ( ) ( ) ( ) ( ) n,1,2,i ,kukO,1-kOwkxku 1
i

1
i

1
i

1
i

1
i

1
i L==+=                        (34) 

 
where k is the number of iterations; 1

iw is the recurrent weights.  
Layer 2 (Membership Layer): Nodes in this layer represent the terms of respective linguistic 
variables.  Each node performs a Gaussian membership function  
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)exp(uO,
)(b

)a-(O
u 2

ij
2
ij2

ij

2
ij

1
i2

ij =−=                                          (35) 

 
where n,1,2,i L= , m,1,2,j L= ; ija and ijb  are the mean and the standard deviation of the 

Gaussian membership function; the subscript ij indicates the jth term of the ith input 
variable. 
 

 
Fig. 6. Structure of four-layer RFNN 

 
Layer 3(Rule Layer): This layer forms the fuzzy rule base and realizes the fuzzy inference. 
Each node is corresponding to a fuzzy rule. Links before each node represent the 
preconditions of the corresponding rule, and the node output represents the “firing 
strength” of corresponding rule. 
If the qth fuzzy rule can be described as: 
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qth rule: if 1x  is q 
1A , 2x  is q 

2A , … , nx  is q 
nA  then 1y  is q 

1B , 2y  is q 
2B , … , py  is q 

pB ,  

where q 
iA is the term of the ith input in the qth rule; q 

jB is the term of the jth output in the 

qth rule. 
Then, the qth node of layer 3 performs the AND operation in qth rule. It multiplies the input 
signals and output the product.  
Using 2

iiqO to denote the membership of ix  to q 
iA , where { }m,1,2,qi L∈ , then the input 

and output of qth node can be described as: 
 

∏=
i

2
iiq

3
q Ou , l,1,2,qn;,1,2,i,uO 3

q
3
q LL ===                             (36) 

 
Layer 4(Output Layer): Nodes in this layer performs the defuzzification operation. the input 
and output of sth node can be calculated by: 
 

∑=
q

3
q

4
sq

4
s Owu ,  

∑
=

q

3
q

4
s4

s
O

u
O                                             (37) 

 
where p,1,2,s L= , l,1,2,q L= , 4

sqw is the center of q 
jB , which represents the output 

action strength of the sth output associated with the qth rule. 
From the above description, it is clear that the proposed RFNN is a fuzzy logic system with 
memory elements in first layer. The RFNN features dynamic mapping with feedback and 
more tuning parameters than the FNN. In the above formulas, if the weights in the feedback 
unit 1

iw are all equal to zero, then the RFNN reduces to an FNN. Since a fuzzy system has 
clear physical meaning, it is very easy to choose the number of nodes in each layer of RFNN 
and determine the initial value of weights. Note that the parameters 1

iw  of the feedback 
units are not set from human knowledge. According to the requirements of the system, they 
will be given proper values representing the memorized information. Usually the initial 
values of them are set to zero. 

 
3.2 Structure of RFNNBAC 
In this section, the structure of RFNNBAC will be developed below, in which, two proposed 
RFNN are used to identify and control plant respectively. 

 
3.2.1 Identification based on RFNN 
Resume that a system to be identified can be modeled by an equation of the following form: 

 

( ) ( ) ( ) ( ) ( )( )uy nku,,ku,nky,1kyfky −−−= LL                               (38) 
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where u is the input of the system, yn is the delay of the output, and un is the delay of the 

input. 
Feed forward neural network can be applied to identify above system by using y(k-1),… 
,y(k-n-1), u(k), … , u(k-m) as inputs and approximating the function f. 
For RFNN, the overall representation of inputs x and the output y can be formulated as  
 

(k))O,(k),g(Oy(k) 1
n

1
1 L=                                               (39) 

 
Where 
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Using the current input u(k) and the most recent output y(k-1) of the system as the inputs of 
RFNN, (39) can be modified as: 
 

( ) ( ) ( ) ( ) ( )( )0u,,ku,0y,,1kyf̂kŷ LL−=                                    (40) 
 
By training the RFNN according to the error e(k) between the actual system output and the 
RFNN output, the RFNN will estimate the output trajectories of the nonlinear system (38). 
The training model is shown in Fig.7. 
 

 
Fig. 7. Identification of dynamic system using RFNN 



Adaptive Control 

 

196 

From above description, For Using RFNN to identify nonlinear system, only y(k-1) and u(k) 
need to be fed into the network .This simplifies the network structure, i. e., reduces the 
number of neurons 

 
3.2.2 RFNNBAC 
The block diagram of RFNNBAC is shown in Fig. 8. In this scheme, two RFNNs are used as 
controller (RFNNC) and identifier (RFNNI) separately. The plant is identified by RFNNI, 
which provides the information about the plant to RFNNC. The inputs of RFNNC are e(k) 
and (k)e& . e(k)  is the error between the desired output r(t) and the actual system output 
y(k). The output of RFNNC is the control signal u(k), which drives the plant such that e(k) is 
minimized. In the proposed system, both RFNNC and RFNNI have same structure. 
 

 
Fig. 8. Control system based on RFNNs 

 
3.3 Learning Algorithm of RFNN 
For parameter learning, we will develop a recursive learning algorithm based on the back 
propagation method 

 
3.3.1 Learning algorithm for identifier 
For training the RFNNI in Fig.8, the cost function is defined as follows: 
 

( ) ( )( ) ( ) ( )( )∑ ∑ −==
= =

p

1s

p

1s

2
s Is

2
s II kykyke

2
1kJ                                  (41) 

 
where (k)ys  is the sth output of the plant, ( ) 4

ss I Oky = is the sth output of RFNNI, and 
( )ke s I  is the error between (k)ys  and ( )ky s I  for each discrete time k.  

By using the back propagation (BP) algorithm, the weights of the RFNNI is adjusted such 
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that the cost function defined in (41) is minimized. The BP algorithm may be written briefly 
as: 
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where Iη  represents the learning rate and IW  represents the tuning weights, in this case, 

which are 4
sq Iw , iiq Ia , iqi Ib , and 1

i Iw . Subscript I represents RFNNI.  

According to the RFNNI structure (34)~(37), cost function (41) and BP algorithm (42), the 
update rules of RFNNI weights are 
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3.3.2 Learning algorithm for controller 
For training RFNNC in Fig. 8, the cost function is defined as  
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where )k(rs  is the sth desired output, )k(ys is the sth actual system output and )k(es  is 
the error between )k(rs  and )k(ys . 
Then, the gradient of CJ  is 
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where ou  is the oth control signal, which is also the oth output of RFNNC, and 

( ) ( ) ( )kukykyu osso ∂∂=  denotes the system sensitivity. Thus the parameters of the RFNNC 
can be adjusted by 
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Note that the convergence of the RFNNC cannot be guaranteed until ( )kyuso is known. 
Obviously, the RFNNI can provide ( )kyuso  to RFNNC. Resume that the oth control signal 
is also the oth input of RFNNI, then ( )kyuso  can be calculated by  
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3.4 Stability analysis of the RFNN 
Choosing an appropriate learning rate η  is very important for the stability of RFNN. If the 
value of the learning rate η  is small, convergence of the RFNN can be guaranteed, however, 
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the convergence speed may be very slow. On the other hand, choosing a large value for the 
learning rate can fasten the convergence speed, but the system may become unstable. 

 
3.4.1 Stability analysis for identifier 

For choosing the appropriate learning rate for RFNNI, discrete Lyapunov function is 
defined as 
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Thus the change of the Lyapunov function due to the training process is  
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The error difference due to the learning can be represented by 
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So (52) can be modified as 
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To guarantee the convergence of RFNNI, the change of Lyapunov function ( )kΔLI  should 
be negative. So learning rate must satisfy the following condition:  
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For the learning rate of each weight in RFNNI, the condition (22) can be modified as 
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3.4.2 Stability analysis for controller 
Similar to (51), the Lyapunov function for RFNNC can be defined as 
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So, similar to (56)-(59), the learning rates for training RFNNC should be chosen according to 
the following rules: 
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3.5 Simulation Experiments 
Dynamics of robotic manipulators are highly nonlinear and may contain uncertain elements 
such as friction and load. Many efforts have been made in developing control schemes to 
achieve the precise tracking control of robot manipulators. Among available options, neural 
networks and fuzzy systems (Er & Chin 2000; Llama et al. 2000; Wang & Lin 2000; Huang & 
Lian 1997) are used more and more frequently in recent years. In the simulation experiments 
of this chapter, the proposed RFNNBAC is applied to control the trajectory of the two-link 
robotic manipulator described in chapter 2.4 to prove its effectiveness. 
In the simulation, the parameters of manipulator are 1m =4 kg, 2m =2 kg, 1l =1 m, 2l =0.5 

m, g =9.8 N/kg. Initial conditions are given as ( )0θ1 =0 rad, ( )0θ2 =1 rad, ( )0θ1
& =0, 

and ( )0θ2
& =0 rad/s. The desired trajectory is given by ( )tθ̂1 = ( )t2sin π  and ( )tθ̂2 = ( )t2cos π . 

The friction and disturbance terms in (4) are assumed to be 
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Simulation results are shown in Fig.9 ~Fig.14. Fig.9 and Fig.10 illustrate the trajectories of 
two joints; the two outputs of identifier (RFNNI) are shown in Fig.11 and Fig.12 separately; 
the cost function for RFNNC is shown in Fig.13; and Fig.14 shows the cost function for 
RFNNI.  
From simulation results, it is obvious that the proposed RFNN can identify and control the 
robot manipulator very well. 
 

 
                Fig. 9. Trajectory of joint1                                     Fig. 10. Trajectory of joint2 

 

 
         Fig. 11. Identifier (RFNNI) output1                Fig. 12. Identifier (RFNNC) output2 

 

 
             Fig. 13. Cost function for RFNNC                         Fig. 14. Cost function for RFNNI 
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4. Conclusion 
 

In this paper, the adaptive control based on neural network is studied. Firstly, a neural 
network based adaptive robust tracking control design is proposed for robotic systems 
under the existence of uncertainties. In this proposed control strategy, the NN is used to 
identify the modeling uncertainties, and then the disadvantageous effects caused by neural 
network approximating error and external disturbances in robotic system are counteracted 
by robust controller. Especially the proposed control strategy is designed based on HJI 
inequation theorem to overcome the approximation error of the neural network bounded 
issue. Simulation results show that proposed control strategy is effective and has better 
performance than traditional robust control strategy. Secondly, an RFNN for realizing fuzzy 
inference using the dynamic fuzzy rules is proposed. The proposed RFNN consists of four 
layers and the feedback connections are added in first layer. The proposed RFNN can be 
used for the identification and control of dynamic system. For identification, RFNN only 
needs the current inputs and most recent outputs of system as its inputs. For control, two 
RFNNs are used to constitute an adaptive control system, one is used as identifier (RFNNI) 
and another is used as controller (RFNNC). Also to prove the proposed RFNN and control 
strategy robust, it is used to control the robot manipulator and simulation results verified 
their effectiveness. 
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1. Introduction    
 

The control problem of the two-mass system originally derives from rolling-mill drives 
(Sugiura & Hori, 1996), (Ji & Sul, 1995), (Szabat & Orlowska-Kowalska, 2007). Large inertias 
of the motor, rolls and long shaft create an elastic system. The motor speed is different from 
the load side and the shaft undergoes large torsional torque. A similar problem exists in the 
field of conveyer drives (Hace et al.,  2005). Also the performance of the machines used in 
textile industry is reduced by the non-ideal characteristics of the shaft (Beineke et al.,  1997), 
(Wertz et al., 1999). An analogous problem appears in the paper machine sections 
(Valenzuela et al.,  2005) and in modern servo-drives (Vukosovic & Stojic, 1998), (O’Sullivan 
et al.,  2007), (Shen & Tsai, 2006). Moreover, torsional vibrations decrease the performance of 
the robot arms (Ferretti et al.,  2004), (Huang & Chen, 2004). This problem is especially 
important  in the field of space robot manipulators. Due to the cost of transport, the total 
weight of the machine must be drastically reduced. This reduces the stiffness of the 
mechanical connections which in turn influences the performance of the manipulator in a 
negative way (Katsura & Ohnishi, 2005), (Ferretti et al.,  2005). The elasticity of the shaft 
worsens the performance of the position control of deep-space antenna drives (Gawronski et 
al.,  1995). Vibrations affect the dynamic characteristics of computer hard disc drives (Ohno 
& Hara, 2006) and (Horwitz et al.,  2007).  
Torsional vibrations can appear in a drive system due to the following reasons: 
- changeability of the reference speed; 
- changeability of the load torque; 
- fluctuation of the electromagnetic torque; 
- limitation of the electromagnetic torque; 
- mechanical misalignment between the electrical motor and load machine; 
- variations of load inertia 
- unbalance of the mechanical masses; 
- system nonlinearities, such as friction torque and backlash. 
The simplest method to eliminate the oscillation problem (occurring while the reference 
speed changes) is a slow change of the reference velocity. Nevertheless, it causes the 
decrease of the drive system dynamics and does not protect it against oscillations appearing 
when the disturbance torque changes. The conventional control structure based on the PI 
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speed controller, tuned by the classical symmetric criterion, with a single feedback from the 
motor speed is not effective in damping the speed oscillations. One of the simplest ways to 
improve the torsional vibrations ability of the classical structure is presented in (Zhang & 
Furusho, 2000). It is based on the suitable selection of the system closed-loop poles. However, 
this method improves the drive performance only for a limited range of the system 
parameters.  
When the resonant frequency of the system excides hundreds of Hertz, the application of the 
digital filters is an industrial standard. The Notch-filter is usually mentioned as a tool 
ensuring the damping of the oscillations (Vukosovic & Stojic, 1998), (Ellis & Lorenz, 2000). 
Rarely a low-pass filter or Bi-filter is used. The digital filters can damp the torsional vibration, 
yet the dynamics of the system may be affected.  
To improve performances of the classical control structure with the PI controller, the 
additional feedback loop from one selected state variable can be used. The additional 
feedback allows setting the desired value of the damping coefficient, but the free value of the 
resonant frequency cannot be achieved simultaneously (Szabat & Orłowska-Kowalska, 2007). 
According to the literature, the application of the additional feedback from the shaft torque is 
very common (Szabat & Orłowska-Kowalska, 2007). The design methodology of that system 
can be divided into two groups. In the first framework the shaft torque is treated as the 
disturbance. The simplest approach relies on feeding back the estimated shaft torque to the 
control structure, with the gain less than one. The more advanced methodology, called 
Resonance Ratio Control (RRC) is presented in (Hori et al.,  1999). The system is said to have 
good damping ability when the ratio of the resonant to antiresonant frequency has a 
relatively big value (about 2). The second framework consists in the application of the modal 
theory. Parameters of the control structure are calculated by comparison of the characteristic 
equation of the whole system to the desired polynomial. To obtain a free design of the 
control structure parameters, i.e. the resonant frequency and the damping coefficient, the 
application of two feedbacks from different groups is necessary. The design methodology of 
this type of the systems is presented in (Szabat & Orłowska-Kowalska, 2007).  
The control structures presented so far are based on the classical cascade compensation 
schemes. Since the early 1960s a completely different approach to the analysis of the system 
dynamics has been developed – the state space methodology (Michels et al.,  2006). The 
application of the state-space controller allows to place the system poles in an arbitrary 
position so theoretically it is possible to obtain any dynamic response of the system. The 
suitable location of the closed-loop system poles becomes one of the basic problems of the 
state space controller application. In (Ji & Sul, 1995) the selection of the system poles is 
realized through LQ approach. The authors emphasize the difficulty of the matrices selection 
in the case of the system parameter variation. The influence of the closed-loop location on the 
dynamic characteristics of the two-mass system is analyzed in (Qiao et al.,  2002), (Suh et al.,  
2001). In (Suh et al.,  2001) it is stated that the location of the system poles in the real axes 
improve the performance of the drive system and makes it more robust against the parameter 
changing.  
In the case of the system with changeable parameters more advanced control concepts have 
been developed. In (Gu et al.,  2005), (Itoh et al.,  2004) the applications of the robust control 
theory based on the H∞ and μ-synthesis frameworks are presented. The implementation of 
the genetic algorithm to setting of the control structure parameter is shown in (Itoh et al.,  
2004). The author reports good performance of the system despite the variation of the inertia 
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of the load machine. The next approach consists in the application of the sliding-mode 
controller. For example, in paper (Erbatur et al.,  1999) this method is applied to controlling 
the SCARA robot. A design of the control structure is based on the Lyapunov function. The 
similar approach is used in (Hace et al.,  2005) where the conveyer drive is modelled as the 
two-mass system. The authors clam that the design structure is robust to the parameter 
changes of the drive and external disturbances. Other application examples of the sliding-
mode control can be found in (Erenturk,  2008). The next two frameworks of control 
approach relies on the use of the adaptive control structure. In the first framework the 
controller parameters are adjusted on-line on the basis of the actual measurements. For 
instance in (Wang & Frayman, 2004) a dynamically generated fuzzy-neural network is used to 
damp torsional vibrations of the rolling-mill drive. In (Orlowska-Kowalska & Szabat, 2008b) 
two neuro-fuzzy structures working in the MRAS structure are compare. The experimental 
results show the robustness of the proposed concept against plant parameter variations. In 
the other framework changeable parameters of the plant are identified and then the 
controller is retuned in accordance with the currently identified parameters. The Kalman 
filter is applied in order to identify the changeable value of the inertia of the load machine 
(Orlowska-Kowalska & Szabat, 2008a). This value is used to correct the parameters of the PI 
controller and two additional feedbacks. A similar approach is presented in (Hirovonen et 
al., 2006). In the paper (Cychowski et al.,  2008) the model predictive controller is applied o 
ensure the optimal control of the system states taking the system constrains into 
consideration. In order to reduce the computational complexity the explicit version of the 
controller is suggested to real-time implementation.  
This paper is divided into seven sections. After an introduction, the mathematical model of 
the two-mass drive system and utilised control structure are described. In section IV, the 
mathematical model of the NEKF is presented. The simulation results of the non-adaptive 
and adaptive NEKF are demonstrated in sections V. The proposed adaptation mechanism is 
described and the analysed algorithms are compared. After a short description of the 
laboratory set-up, the experimental results are presented in section VI. Conclusions are 
presented at the end of the paper. 

 
2. The mathematical model of the two-mass system and the control structure 
 

In technical papers there exist many mathematical models, which can be used for the 
analysis of the plant with elastic couplings. In many cases the drive system can be modelled 
as a two-mass system, where the first mass represents the moment of inertia of the drive and 
the second mass refers to the moment of inertia of the load side. The mechanical coupling is 
treated as an inertia free. The internal damping of the shaft is sometimes also taken into 
consideration. Such a system is described by the following state equation (Szabat & 
Orlowska-Kowalska, 2007) (with non-linear friction neglected): 
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where: Ω1- motor speed, Ω2- load speed, Me– motor torque, Ms– shaft (torsional) torque, ML– 
load torque, J1 – inertia of the motor, J2– inertia of the load machine, Kc– stiffness coefficient, 
D – internal damping of the shaft. 
The described model is valid for the system in which the moment of inertia of the shaft is 
much smaller than the moment of the inertia of the motor and the load side. In other cases a 
more extended model should be used, such as the Rayleigh model of the elastic coupling or 
even a model with distributed parameters. The suitable choice of the mathematical model is 
a compromise between the accuracy and calculation complexity. As can be concluded from 
the literature, nearly in all cases the simplest shaft-inertia-free model has been used. 
To simplify the comparison of the dynamical performances of the drive systems of different 
power, the mathematical model (1) is expressed in per unit system, using the following 
notation of new state variables: 
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where: ΩN – nominal speed of the motor, MN – nominal torque of the motor, ω1, ω2 – motor 
and load speeds, me, ms, mL – electromagnetic, shaft and load torques in per unit system.  
The mechanical time constant of the motor – T1 and the load machine – T2 are thus given as: 
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The stiffness time constant – Tc and internal damping of the shaft – d can be calculated as 
follows: 
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Taking into account the equations (3)-(5) the state equation of the two-mass system in per-
unit value is represented as: 
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(5) 

 
Usually, due to its small value the internal damping of the shaft d is neglected in the 
analysis of the two-mass drive system.  

 
3. Adaptive control structure 
 
A typical electrical drive system is composed of a  power  converter-fed  motor  coupled to a 
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mechanical system, a microprocessor-based controllers, current, rotor speed and/or position 
sensors used as feedback signals. Typically, cascade speed control structure containing two 
major control loops is used, as presented in Fig 1.  

 
Fig. 1. The classical cascade control structure of the two-mass system 

 
The inner control loop performs a motor torque regulation and consists of the power 
converter, electromagnetic part of the motor, current sensor and respective current or torque 
controller. As this control loop is designed to provide sufficiently fast torque control, it can be 
approximated by an equivalent first order term with small time constant. If the control is 
ensured, the driven machine could be an AC or DC motor, with no difference in the outer 
speed control loop. The outer loop consists of the mechanical part of the motor, speed sensor, 
speed controller, and is cascaded to the inner loop. It provides speed control according to the 
reference value (Szabat & Orlowska-Kowalska, 2007).  
Such a classical structure in not effective enough in the case of the two-mass system. To 
improve the dynamical characteristics of the drive, the modification of the cascade structure 
is necessary. In this paper the structure with the state controller which allows the free 
location of the closed-loop poles is considered. So it requires the additional information of 
the shaft torque and the load speed. The parameters of the control structures are set using 
pole-placement methods, with the methodology presented in (Szabat & Orlowska-Kowalska, 
2007), according to the following equations: 
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where: ξr - required damping coefficient, ω0- required resonant frequency of the system.  

In the industrial applications, the direct measurement of the shaft torque ms and the load 
speed ω2 is very difficult. For that reason, in this paper the Nonlinear Extended Kalman 
Filter (NEKF) is used to provide the information about non-measurable mechanical state 
variables. Additionally, the time constant T2 of the load side is also estimated and used to 
on-line retuning the control structure parameters, according to Eq. (6)-(9). The estimated 



Adaptive control 

 

210 

value of T2e is also used to change the element q55 of the covariance matrix Q in the way 
presented in the next section (Eq. (21)). The considered control structure is presented in Fig. 
2. The proposed adaptive control structure ensure the desired characteristic of the drives 
despite the changes of the time constant of the load machine.  

 

 
Fig. 2. The block diagram of the state-feedbacks adaptive control structure 

 
3. Mathematical model of the nonlinear extended Kalman filter (NEKF) 
 

In the presence of the time-varying load machine inertia T2, there is a need to extend the 
two-mass system state vector (1) with the additional element 1/T2 and non-measurable load 
torque mL : 
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The extended, nonlinear state and output equations can be written in the following form: 
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where matrices of the system are defined as follows (in [p.u.]): 
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and w(t), v(t) - represent process and measurement errors (Gaussian white noise), according 
to the Kalman Filter (KF) theory.  
The matrix AR depends on the changeable parameter T2. It means that in every calculation 
step this matrix must be updated due to the estimated value of T2. The input and the output 
vectors of the drive system (and NEKF) are electromagnetic torque and motor speed 
respectively: 
 

em=u  1ω=y  (13) 
After the discretization of Eq. (11) with Tp sampling step, the state estimation using NEKF 
algorithm is calculated: 
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where the gain matrix K is obtained by the suitable numerical procedure.  
In the first step the estimation of the filter covariance matrix is calculated: 
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and Q is a state noise covariance matrix. FR is the state matrix of the nonlinear dynamical 
system (11) after its linearization in the actual operating point, which must be updated in 
every calculation step: 
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The filter gain matrix K of the NEKF and the update of the covariance matrix of the state 
estimation error P are calculated using the following equations: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] 11/111/11 −
++++++=+ kkkkkkkkk RCPCCPK T

RR
T
R  

 

(18) 

( ) ( ) ( )[ ] ( )kkkkkk /1111/1 +++−=++ PCKIP R  (19) 
 
where: R – the output noise covariance matrix. 
The quality of the state estimation depends on the suitable choice of the covariance matrices 
Q and R. However, according to the technical literature, the analytical guidelines which 
ensure proper setting of these matrices do not exist. Usually the trial and error procedure is 
used. However, this process is time-consuming and does not ensure the optimal 
performances of NEKF. In this paper elements of covariance matrices have been set using 
the genetic algorithm (Szabat & Orlowska-Kowalska, 2008), with the following cost function: 
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where: ms, ω2, mL, T2 –real variables and parameter of the two-mass system;  mse, ω2e , mLe, T2e 
–estimated variables and parameter, j – total number of samples.  The cost function defined 
in this way ensures the optimal setting of covariance matrices Q and R for changeable time 
constant of the load machine. 
 
4. Simulation results 
 
4.1 Open-loop system 
In simulation tests the estimation quality of all system state variables is investigated. The 
shaft torque and the load speed are taken for the closed-loop structure with the direct 
feedback from system state variables (Fig.1). The electromagnetic torque and the motor 
speed, used as the input and output vectors of NEKF, are disturbed with white noises. In 
Fig. 3. the transients of the electromagnetic torque and motor speed are presented. 

 
a)       b) 

Fig. 3. Transients of the electromagnetic torque (a) and the motor speed (b) 
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The drive system works in the reverse condition with the electromagnetic torque limit set to 
3 [p.u.] in the considered case is tested. The state estimator working outside the control 
structure is tested. The transients of all the real and estimated variables and theirs 
estimation errors are demonstrated In Fig 4. 
The NEKF starts work with a misidentified value of the time constant of the load machine 
(initial value of the T2 is set to101.5ms – Fig 4.g). Then at the time t1=2s the time constant of 
the load machine T2 and the load torque mL begin to change (Fig. 4c,g). Those two variables 
vary in a smooth sinusoidal way. The NEKF estimates all the system states simultaneously. 
As can be seen from Fig. 4, the transients of all estimates contain high-frequency noises. The 
steady state level of the estimation error is about 0.02 (Fig. 4e) for the load speed and about 
0.10 (Fig. 4e) for the shaft torque. The biggest errors exist in the transients of the load torque 
and of time constant of the load machine (Fig. 4h). The initial estimation error of T2, cause by 
the misidentified value of the time constant of the load machine is eliminated after 500ms. 
The typical disruptions can be seen in the estimated transient. They appear when the 
direction of the motor speed is rapidly changed. The characteristic feature of the NEKF is 
the fact that the estimation of the time constant of the load machine is only possible when 
the load speed is changing. Therefore, the biggest estimation errors occurs when the time 
constant of the load side is varied and the load speed is constant (Fig. 4g,h). The next NEKF 
feature is that the estimate of the T2 contains bigger frequency noises in the case when the 
real value of the T2 is larger. Because the load torque and time constant of the load machine 
have been varied in a smooth way good estimation accuracy has been achieved in the 
simultaneous estimation of all the states.  
 

a)   b)   c) 

 
d)   e)   f) 

 
g)   h) 

 
Fig. 4. Transients of the real and estimated state variables and their estimation errors: load 
speed (a,d) shaft torque (b,e), load torque (c,f) and time constant of the load side (g,h) 
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Then the case of the rapid changing of the load torque and time constant of the load 
machine is considered. The input (electromagnetic torque) and output vector (motor speed) 
of the NEKF are presented In Fig. 5. As the previously the drive is working under reverse 
condition and the limit level of the electromagnetic torque is also set to 3 [p.u.]. The 
electromagnetic torque and the motor speed are disrupted by white noises, which emulate 
the measurements noises. The real and estimated variables and their estimation errors for 
rapid changes of the load torque and the load side inertia are presented in Fig. 6. 
Similarly as in the previous case, the drive system starts working with a misidentified time 
constant of the load machine T2=101.5ms (Fig. 6g). Then at the time t=1s and 3s the time 
constant of the load machine and the load torque change rapidly (Fig. 6c,g). Next, at the time 
t=5, 6 and 8s only the load torque and at the time t= 4, 6.5 and 8.5s only the time constant of 
the load machine vary quickly. The following work cycle allows to examine the quality of 
the variables estimation under different conditions. The average level of the estimation error 
is about 0.014 (Fig. 6e) for the load speed and about 0.06 for the shaft torque (Fig. 6f). 
However, the simultaneous alternation of the load torque and time constant of the load 
machine bring about the rise of the big, quickly damped estimation errors of the load speed 
(Fig. 6b) and shaft torque (Fig. 6d). A single change of the above-mentioned variables cause 
the increase of the estimation errors, but for a smaller extent than in the pervious case. The 
last two estimated variables, i.e. the load torque and the time constant of the load machine 
depend on each other significantly. The rapid change of one variable brings about a 
significant increase of the estimation error of the other variable (Fig. 6f,h).  

 
a)     b) 

Fig. 5. Transients of the electromagnetic torque (a) and the motor speed (b) 

 
Similarly as in the previous case, the drive system starts working with a misidentified time  
From the transients presented in Fig. 4 and Fig. 6 the following remarks can be formulated: 
-the estimation of the time constant of the load machine is possible only when the motor 
speed is changing;  
-the estimates of the load torque and the time constant of the load machine are correlated:  
the change of the load torque causes the rise of the error of the load machine time constant 
and vice versa. This is especially clearly visible in the transient presented in Fig. 6; 
-the noise level of the of the estimated load machine time constant of the strictly depends on 
the actual value of the real time constant and the value of the covariance matrix element q55;  
when of the value of the T2 is smaller, the element q55 should have a bigger value and vice 
versa.  
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The dynamic characteristics of the non-adaptive NEKF strictly depends on the proper 
setting of the covariance matrix values. In the case of the changeable time constant of the 
load machine the element q55 is a compromise between the slow covariance for a small value 
of T2 and a large noise level when value of T2 is big. The modification of the estimating 
procedure is related to this feature. Because the noise level in the estimated variable 
depends on the real value of the T2, the NEKF with the changeable element q55 of the 
correlation matrix Q is proposed. The element q55 adopts to the estimating value of the time 
constant of the load machine according to the following formula:  
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where: q55N- the value of q55 selected for the nominal parameters of the drive (using genetic 
algorithm), T2N – nominal time constant of the load machine, T2e – estimated time  constant 
of the load machine, n – power factor.  
 

               a)   b)   c) 

 
             d)   e)   f) 

 
g)   h) 

 
Fig. 6. Transients of the real and estimated state variables and their estimation errors: load 
speed (a,d)shaft torque (b,e),  load torque (c,f) and time constant of the load side (g,h) 
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Then the adaptive NEKF is tested under the same conditions as previously but with the 
adaptation formula (21). Because the biggest difference is visible in the time constant of the 
load machine only the transients of those variables are presented below. In Fig 7 the 
transients for smooth (case 1- a) and  rapid (case 2- b) changes of the load torque and time 
constant of the load machine for power factor n=3 are presented. 
The difference between the non-adaptive and adaptive NEKF algorithm is clearly visible 
when the Fig. 4, 6 and 7 are compared. The estimate of T2 has a smaller estimation error and 
noise level than for the non-adaptive NEKF. The rapid changing of the load torque does not 
influence the estimate of T2  so significantly as in the previous non-adaptive NEKF case. 
Also the estimate of the load torque has better accuracy in the adaptive NEKF case. 
Similarly, the fast variation of the time constant of the load machine causes a smaller error in 
the estimate of load torque in the adaptive NEKF. 

 
                                            a)                    b) 
Fig. 7. Transients of the real and estimated time constant of the load side for the adaptive 
NEKF with power factor n=3, case-1 (a), case-2 (b)  

 
In order to compare the performance of the non-adaptive and adaptive NEKFs, the 
estimation errors of all estimated have been calculated using of the following equation: 
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where: N – total number of samples, ν –  real variable,   
ν e – estimating variable. 
 
The estimation errors of all state variables for non-adaptive (n=0) and adaptive NEKF (n =3) are 
presented in the Table 1. 
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 Δω2 Δms ΔT2 ΔmL 

Case 1 
n=0 

0.0092 0.0456 
 

0.0180 
 

0.0942 

Case 1 
n=3 

0.0086 
 

0.0442 0.0159 0.0907 

Case 2 
n=0 

0.0140 0.0605 0.0301 0.1073 

Case 2 
n=3 

0.0123 0.0570 0.0224 0.0975 

Table 1. The estimation errors of the state variables for the case 1 and case 2 for the adaptive 
and non-adaptive NEKF 

 
The application of the adaptation mechanism decreases the estimation error in all estimated 
variables. This feature is especially evident when the time constant of the load machine and 
the load torque change rapidly (case -2). For instance, the application of the adaptation 
mechanism ensures the reduction of estimation error of the T2e by approximately 25%.  
 
3.2 Closed-loop system 
First, the effectiveness of the proposed control structure has been investigated in the 
simulation study. The non-measurable state variables, e.g. shaft torque, load speed and load 
torque, are delivered to the control structure by the NEKF.  
 

a)   b)   c) 

 
d)   e)   f) 

 
g)   h)   i) 
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j)   k)   l) 

 
Fig. 8. Transients of the electromagnetic torque (a), motor speed (d), real and estimated state 
variables and their estimation errors: load speed (b,e), shaft torque (c,f), load torque (g,j), 
time constant of the load machine (h,k) adaptive control structure parameters (i,l) in the 
control structure with simultaneous estimation of the time constant of the load machine and 
load torque 

 
The estimated time constant of the load machine is used in the adaptation law in order to 
retune the control structure coefficients in accordance with (6)-(9). The adaptation formula 
(21) is used to improve the NEKF performance. However, in order to ensure the stable work 
of the control structure the coefficients of the covariance matrices are decreased in 
comparison to the previous section. The desired values of the resonant frequency of the 
system and the damping coefficient are ω0=45s-1 and ξr=0.7 respectively. The transients of 
the system states as well as the control structure coefficient are presented In Fig 8. 
 

a)   b)   c) 

 
d)   e)   f) 
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g)   h)   i) 

 
j)   k)   l) 

 
Fig. 9. Transients of the electromagnetic torque (a), motor speed (d), real and estimated state 
variables and their estimation errors: load speed (b,e), shaft torque (c,f), load torque (g,j), 
time constant of the load machine (h,k) adaptive control structure parameters (i,l) in the 
control structure with modified estimation algorithm 

 
The system starts work with a misidentified value of the time constant of the load machine 
T2e =101ms (Fig. 8h) which results oscillations in the estimated load torque transient. Despite 
this no visible oscillations appear in the transients of the load speed. After 2s, the estimate of 
the time constant of the load machine reaches its real value. The rapid changing of the load 
torque causes the oscillations in the estimate of T2e which are noticeable visible at the time 
t=9s. Still, a such big estimation error can not be accepted in the high performance drive 
system 
 
In order to improve the control structure performance the following modifications of the 
standard NEKF algorithm improving the quality of the estimation have been implemented. 
Firstly, the estimation of the time constant T2 is active only when the motor speed is 
changing. Secondly, during this time the estimation of  the load torque mL is blocked. In the 
NEKF algorithm the last estimated value of the mL is used. Also, when motor speed is not 
changing, the estimate of T2 is stopped and the estimate of the mL becomes active. During 
this time, the last estimated value of the time constant T2 is utilized in the algorithm. This 
modification allows to increase the values of the covariance matrices of the NEKF.   
All system states are reconstructed well and their estimation errors are very small and do 
not influence the system dynamics negatively (Fig. 9). The time constant of the load machine 
is estimated accurately with a small steady-stay error. The moments when the estimate of 
mLe is stopped are visible in the load torque transient (Fig. 9g). Thus, the adaptive system 
with adaptive NEKF work properly. 
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5. Experimental results 
 

All theoretical considerations have been confirmed experimentally in  the  laboratory  set-up 

composed of a 0.5kW DC-motor driven by a static converter. The motor is coupled to a load 
machine by an elastic shaft (a steel shaft of 5mm diameter and 600mm length). The speed 
and position of the driven and loading motors have been measured by incremental encoders 
(36000 pulses per rotation). The mechanical system has a natural frequency of 
approximately 9.5Hz. The nominal parameters of the system are T1=203ms, T2=203ms, Tc 

=2.6ms. The picture of the experimental set-up is presented in Fig. 10.  

a)       b) 

 
 
 
 
 
 
 
Fig. 10. The mechanical part of the laboratory set-up (a) and the general view of the 
laboratory set-up (b)  
 

 a)     b) 
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c)     d) 

 
 e)     f) 

 
Fig. 11. Real transients of the: motor and load speeds (a), real and estimated load speeds and 
its estimation error (b), electromagnetic and estimated shaft and load torque (c), estimated  
time constant of the load side (d), control structure parameters (e,f) –for the reference value 
of the speed ωr=0.5 

 
First the performance of the drive system has been tested for the nominal value of the time 
constant of the load machine T2=0.203s. The electromagnetic torque limit has been set to 2. 

 a)     b) 
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c)     d) 

 
e) 

 
f) 

 
Fig. 12. Real transients of the: motor and load speeds (a), real and estimated load speeds and 
its estimation error (b), electromagnetic and estimated shaft and load torque (c), estimated  
time constant of the load side (d), control structure parameters (e,f) –for the reference value 
of the speed ωr=1  
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The system works with the reference value of the speed set to 0.5. According to the 
adaptation procedure described in the previous section during start-up the estimate of the 
mLe is blocked and the estimate of the T2e is activated which is observable in Fig. 11c,d. When 
the control error decreases below 0.05, the estimate T2e is blocked and the mLe. At the time 
t1=0.4s the nominal load torque is applied to the system. This affects the system speed in a 
negative way and some disruption is visible in its transients. The load torque is switched off 
at the time t2=0.8s and the non-zero value of the estimate of the mLe comes from the friction 
torques. At the time t3=1s the system begins to reverse. When the value of the system speed 
is negative, no external torque is applied to the system. The drive reverses again at the time 
t4=2s and then the work cycle is repeated. Clearly, the adaptive control structure with the 
NEKF works properly. The load speed as well as the time constant of the load machine are 
estimated with small errors. The transients of the control structure parameters are presented 
in Fig. 11 e,f. They vary (except k1) with the estimated value of the T2e. 
Next the control structure with the electromagnetic torque limit set to 3 has been examined. 
The work cycle is identical as previously. But the reference speed is set to the nominal value. 
The transients of the system are presented in Fig. 12. 
Similarly as before, the initial value of the time constant of the load machine is set to 
T2e=0.1015s.  After the start-up it reaches its real value almost without an error. During the 
next reversal the estimate of the T2 oscillates around the real value. However, it should be 
pointed out that the estimation error does not exceed a few percent of the real value. The 
estimate of the T2 is reconstructed very well. Small errors appear in its transient during the 
time when the load torque is switched on and off and during the reversal. The adaptive 
control structure with the state controller works in a stable way. 

 
6. Conclusion 
 

In order to damp the torsional vibrations, which could destroy the mechanical coupling 
between the driven and loading machine, the control structure with state controller is 
applied. The control structure coefficients depend on the time constant of the load side 
machine. In the case of the system with changeable load side inertia, there is a need to 
estimate this parameter and adapt the control structure gains in accordance with the actual 
estimated value. The application of the adaptive control structure ensures the required 
transient of the load speed despite the changeable load side inertia. In order to use the 
adaptive control structure, there is a need to choose a state estimator, which has to estimate 
the non-measurable system state variables and changeable parameters of the system. In this 
paper, the non-adaptive and adaptive nonlinear extended Kalman filter (NEKF) is tested. 
Parameters of the covariance matrices Q and R are selected using the genetic algorithm with 
special cost function. The application of the global optimization technique allows to reach 
the global solution according to the defined cost function. However, the application of the 
genetic algorithm is possible only as an off-line process due to a long calculation time. To 
ensure the optimal values of the covariance matrix Q, despite the load side parameter 
changes, the adaptation mechanism is developed. The suitable on-line change of the 
covariance matrix element q55 is proposed, according to the estimated value of the load side 
time constant. It is proved by simulation and experimental tests that the proposed control 
structure is effective for damping the torsional oscillation  of two-mass drive system, also  in  
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the case of wide range changes of load side inertia. 
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1. Introduction     
  

The so-called Sandwich system with hysteresis is a class of systems in which a hysteretic 
subsystem is sandwiched between two smooth dynamic blocks. In engineering, many 
practical processes can be considered as the sandwich systems with hysteresis. In the 
following, two typical examples will be presented. 
  
1.1 Ultra-precision moving positioning stage 
A typical ultra-precision moving positioning stage is often used in ultra-precision 
manufacturing system for its nanometer displacement and fast linear moving speed. 
Usually, such platform consists of electric amplifiers, piezoelectric actuators and loads. As 
hysteresis is inherent in piezoelectric actuator, the amplifier and load can be considered as 
smooth dynamic subsystems. Therefore, this platform can be considered as a typical 
sandwich system with hysteresis. Fig.1 shows the architecture of such system. 
 

 
 Fig. 1. Architecture of ultra-precision moving stage with piezoelectric actuator 
 
 1.2 Mechanical Transmission System 
Mechanical transmission system often exists in machine tools or many other mechanical 
systems. A typical mechanical transmission system is shown in Fig.2. In this system, the 
servomotor is used to drive a gearbox connected with a mechanical work platform through 
a screw. In this system, u is the servomotor angle, x is the angle of the gearbox, and y is the 
displacement of the work platform. The servomotor and the work platform can be 
considered as smooth dynamic subsystems. However, the gearbox and screw in this system 
is a typical hysteresis nonlinearity due to the tear and wear of the gear teeth. Obviously, this 
mechanical system can be described by the sandwich system with hysteresis. 



Adaptive Control 

 

228 

 
Fig. 2. Mechanical transmission system 
 
Although, sandwich systems with hysteresis often exist in engineering practice, there are 
only several research reports found on the control of them. Taware & Tao (1999) presented 
an analysis on the control of such systems with backlash-type hysteresis. Tao & Ma (2001) 
proposed an optimal control for the systems with sandwiched backlash. In their methods, an 
optimal control scheme is employed for backlash compensation. Then, the nonlinear 
feedback control law is used for the control of nonlinear dynamics. Zhao & Tan (2006) 
proposed a neural adaptive control for sandwich systems with hysteresis. The neural 
network based hysteresis compensator is developed to compensate for the effect of the 
hysteresis. Furthermore, Zhao et. al. (2007) presented an adaptive control strategy for 
sandwich systems with dynamic hysteresis based on Duhem hysteretic operator. Corradini 
et. al. (2007) proposed a variable structure control of nonlinear uncertain sandwich systems 
with hysteretic block. Therefore, the control of sandwich systems with hysteresis has 
become one of the interesting topics in control engineering domain. 
It is known that the existence of hysteresis in actuators often leads to oscillation and 
undesirable inaccuracy. Therefore, the main purpose of design a control scheme for 
sandwich system with hysteresis is to eliminate the side effect of hysteresis inherent in the 
system and force the system to track the reference trajectory. Note that hysteresis is a non-
differentiable nonlinear system with multi-valued mapping. Moreover the structure of the 
sandwich system is rather complex. Hence, it is not easy to construct a compensator for the 
hysteresis in such system. Therefore it is a real challenge to develop a control strategy for the 
dynamic systems with sandwiched hysteresis. 
In this chapter, a mathematical description of the sandwich systems with hysteresis will be 
described in section 2. Then, in section 3, the control architecture for the sandwich systems 
with hysteresis will be illustrated. In this architecture, a neural network based inverse model 
is constructed to cancel the effect of the first dynamic block of sandwich system. Then, the 
sandwich system can be transformed to a nonlinear system preceded by hysteresis which 
can be described by a Hammerstein model with hysteresis. In Section 4, a neural network 
based estimator will be developed in terms of a proposed expanded input space with 
hysteretic operator. The developed neural hysteretic estimator can be used to compensate 
for the system residual caused by the effect of hysteresis. Section 5 will present an adaptive 
control strategy based on pseudo inverse control technique for the obtained Hammerstein 
system with hysteresis. One of advantages of the controller is that it does not need to 
construct the hysteresis inverse to cancel hysteretic effect. The neural control strategy and 
the corresponding adaptive law based on the Lyapunov stability theory will be developed. 
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Furthermore, Comparison of the simulation results between the proposed method and the 
PID control strategy will be illustrated in Section 6. Section 7 will present the remarks and 
conclusions of this Chapter. 

  
2. Mathematical Description of Sandwich Systems with Hysteresis 
   

The structure of the sanwich system with hysteresis is shown in Fig.3. Suppose the 
nonlinear single-input-single-output (SISO) system with sandwiched hysteresis is described 
by 
 
                                  iL : ( ) ( 1) (1) ( ) ( 1) (1)[ , , , , , , , , , ] 0n n m m

if v v v v r r r r− − =L L                                      (1) 
 

where r is the input, v is the output, ( )nv is the n-th order derivative of v , ( )mr is m-th order 
derivative of r , m and n ( )m n≤ are the orders of the input and output respectively.  
 
                                                                        H : ( )u H v=                                                              (2) 
 
where H presents the hysteresis nonlinearity.  
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and 
 

                                                                       1y x=                                                                     (4) 
 

where 1 2[ , , , ]Tnx x x x= L is the system state vector, u is the input, y is the output, v  is the 
control input and u  is the actuator output. It is assumed that ( )of x and ( )og x  are sufficiently 

smooth but unknown functions and satisfy 0of
u

∂
∂ ≠ and 0og

u
∂
∂ ≠ . Moreover, assume that of is 

invertible. Notation [.]H  denotes that the hysteresis nonlinearity is not dependent on an 
instantaneous value ( )v t but the trajectory, 0( ) [0, ]v t C t∈ . Assume that all the control and 

input variables, i.e. ( ) ( 1) (1) ( ) ( 1) (1), , , , , , , , ,n n m mv v v v r r r r− −L L are known.  
 

 
Fig. 3. The structure of sandwich system with hysteresis 
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3. Control Architecture for Sandwich System with Hysteresis 
From Fig. 3, it is known that the architecture of the sandwich system with hysteresis is 
rather complex. It would be convenient for us to design a control strategy for such system if 
we could find a method to simplify the structure of the system. In this section, a control 
architecture for the sandwich system will be discussed. In this architecture, a neural 
networks (NN) based inverse system 1ˆ

iL− will be constructed. By connecting the NN based 
inverse with the system iL  can form an approximate pseudo-linear unit compensator which 

leads to 1ˆ 1i iL L− ≈ . Then the sandwich system can be transform to a pseudo-linear unit 
system connected with a nonlinear system preceded with hysteresis nonlinearity which is 
shown in Fig.4. The obtained the system can be considered as a Hammerstein System with 
hysteresis. 
 

 
Fig. 4. The sandwich system with a pseudo-linear unit compensation 

 
With the above-mentioned NN based inverse, the effect of iL  would be cancelled. So we can 
design the controller for the system oL  preceded by a hysteresis nonlinearity. Usually, the 
model uncertainty of the neural network based compensator exists. That implies the NN 
based compensator cannot completely compensate for the effect of iL . Therefore, a model 

residual should be added to system oL . That is 1ˆ 1i iL L− = +ξ , whereξ is a bounded modeling 
error. Hence, the obtained system preceded by a hystersis can be described as follows: 
 
                                                                        H : ( )u H v=  ,                                                           (5) 
 

                                                          oL :

1 2

2 3

1

( ) ( )
n n

n o o

x x
x x

x x
x f x g x u ξ

−

=⎧
⎪ =⎪⎪
⎨
⎪ =⎪

= + +⎪⎩

&

&

L

&

&

,                                                (6) 

 
and 
 

                                                                          1y x=   .                                                              (7) 
 

The control objective is to design a control law ( )v t  to force ( )y t , the plant output, to track a 
smooth prescribed trajectory ( )dy t  with an acceptable accuracy. The desired state vector is 
defined as ( 1)( ) [ , , ]n T

d d d dx t y y y −= & L where ( 1)n
dy −  is the ( 1)n th−  order derivative. Moreover, the 

tracking error vector is defined as de x x= − . It is assumed that the desired states are 

Li Lo H p v u y r Li -1 ^ 
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bounded, i.e.
d dx X≤ . Moreover, ξ denotes bounded disturbance caused by NN based 

inverse, where
Nξ ξ≤ , and 0Nξ > . 

Define the filtered tracking error as 
 

                                                       1 2 1[ , ,1] [ ,1]T
n e eτ λ λ λ −= = ΛL                                             (8) 

 
where 1 2 1[ , ]Tnλ λ λ −Λ = L is a parameter vector to be designed. Suppose 

  1 2
1 1

n n
ns s− −
−+ + +Lλ λ  

is Hurwitz. Differentiating (8) and using (6), it results in 
 

[0, ] ( ) ( ) [0, ]n T n T
n d o o dx y e f x g x u y e= − + Λ = + − + Λ +& &τ ξ                           (9) 

 
As u is the output of hysteresis which is usually unknown, an invertible function ˆ ( , )f x v is 

introduced to approximate ( ) ( )o of x g x u+ . Adding and subtracting ˆ ( , )f x v  to and from the 
right hand side of (9), it yields  
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where ˆ ( , )f x vδ =  is the so called pseudo-control (Calis & Hovakimyan, 2001) and 

(Hovakimyan & Nandi ,2002), ( , ) ( ) ( )o oF x u f x g x u= +  and ˆ( , , ) ( , ) ( , )f x v u F x u f x v= −% is the 

system residual. As ˆ ( , )f x v is invertible with respect to v  and satisfies (Calis & Hovakimyan, 
2001): 
 

                                                                1.
ˆ

sgn sgnF u f
u v v

∂ ∂ ∂
=
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,                                                   (11)                          

  
and 
 

                                                                2.
ˆ 1 0

2
f F u
v u v
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> >
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.                                                   (12) 

 
 
In order to design the corresponding control strategy, the approximation of the nonlinear 
residual ( , , )f x v u%  is required. Neural networks would be one of the recommended 

alternatives to model this residual. However, ( , , )f x v u%  involves the characteristic of 
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hysteresis, the traditional nonlinear identification methods such as neural modeling 
technique usually cannot be directly applied to the modeling of it since the hysteresis is a 
non-linearity with multi-valued mapping (Adly & Abd-El-Hafiz, 1998). In Section 4, we will 
present a method to construct the neural estimator for ( , , )f x v u% to compensate for the effect 
of hysteresis. Moreover, a corresponding adaptive control method based on the control 
archieture stated-above will be illustrated in Section 5. 

  
4. Neural Estimator for System Residual 
  

In order to approximate the system residual, neural network can be considered as an 
alternative. However, the system residual contains the characteristic of hysteresis which is a 
system with multi-valued mapping. In this section, a hysteretic operator is proposed to 
construct an expanded input space so as to transform the multi-valued mapping of 
hysteresis into a one-to-one mapping (Zhao & Tan, 2008). Thus, the neural networks can be 
used for modeling of hysteresis based on the expanded input space with the hysteretic 
operator. The proposed hysteretic operator  is defined as: 
 

| |( ) (1 )( ) ( )px x
p ph x e x x h x− −= − − + ,                                (13) 

 
where x is the current input, ( )h x is the current output, px is the dominant extremum 

adjacent to the current input x . ( )ph x  is the output of the operator when the input is px .  
 
Lemma 1: Let ( ) ( )x t C R+∈ , where { }| 0R t t+ = ≥ and ( )C R+  are the sets of continuous 

functions on R+ . If there exist two time instants 1t , 2t  and 1 2t t≠ , such that 1 2( ) ( )x t x t= , 

1( )x t  and 2( )x t  are not the extrema, then ( ) ( )1 2h x t h x t≠⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ . 

 
Proof:  For ( )x t decreases or increases monotonically, (13) becomes 
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   ( ) ( )' ( ) ( ) [1 ]p px x x x

in ph x e x x e− − − −= ⋅ − + −  

               1 [1 ( )] px x
px x e −= − − −  .                                                (15)                          

               1 1 0px xe −> − >  
 
Therefore, ( )inh x  is monotonic. Similarly one can obtain that ( )deh x  is monotonic. It is noted 
that ( )inh x  is obtained from 0 ( ) (1 )x

inh x e x−= − ( 0)x ≥ . That means its origin moves 
from (0,0) to ( , ( ))p px h x . Similarly ( )deh x  is obtained from 0 ( ) (1 )x

deh x e x= − ( 0)x ≤ . It 
represents that its origin moves from (0,0) to ( , ( ))p px h x . As 0 0( ) ( )in deh x h x− = − , it implies 
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that ( )inh x and ( )deh x  are antisymmetric. Therefore it can be concluded that ( )inh x and ( )deh x  
intersect only at extrumum point ( , ( ))p px h x . That is, if 1( )x t  and 2( )x t  are not the extrema, 

1 2( ) ( )x t x t= , then ( ) ( )1 2h x t h x t≠⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ . 

 
Remark: If both ( )h x and [ ]H ⋅  are fed with the same input ( )v t , the curve of [ ( )]h v t exhibits 
similarity to that of [ ( )]H v t  such as ascending, turning and descending. Moreover, 
since 1 2( ) ( )x t x t= , 1( )x t  and 2( )x t  are not the extrema, ( ) ( )1 2h x t h x t≠⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ , the pair 

( ( ), [ ( )])v t h v t will uniquely correspond to one of the output values of hysteresis [ ( )]H v t . 
Lemma 2: If there exist two time instants 1t , 2t  and 

1 2t t≠ , such that 1 2[ ( )] [ ( )] 0h x t h x t− → , then 

1 2( ) ( ) 0x t x t− → . 
Proof:  
 

                                                       ( ) ( )
( ) ( )
1 2

1 2

in inh x t h x t
k

x t x t
−⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ =
−

,  (0, )k ∈ +∞ ,                                  (16) 

 
and 
 

                                                             ( ) ( )
( ) ( )1 2

1 2
in inh x t h x t

x t x t
k
−⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦− =  .                                  (17) 

 
It is clear that if ( ) ( )1 2 0in inh x t h x t− →⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ , then 1 2( ) ( ) 0x t x t− → . Similarly, it is obtained that 

if ( ) ( )1 2 0de deh x t h x t− →⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ , then 1 2( ) ( ) 0x t x t− → .Thus, it leads to the following theorem, i.e.: 

 
Theorem 1: For any hysteresis, there exists a continuous one-to-one mappingΓ : 2R R→ , such 
that [ ( )] ( ( ), [ ( )])H v t v t h v t= Γ , where { ( ), [ ( )]}v t h v t is an expanded input space with 
hysteresis operator.  
 
Proof: The proof can be divided into two cases, i.e. 
Case 1: If ( )v t  is not the extrema. Based on Lemma1, if there exist two time instants 1t , 2t  
and 

1 2t t≠ , then ( ) ( ) ( ) ( )1 1 2 2( , ) ( , )v t h v t v t h v t≠⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ . Therefore, the pair ( ( ), [ ( )])v t h v t uniquely 

corresponds to an output value of [ ( )]H v t . 
Case 2: If ( )v t  is the extrema, then ( ) ( ) ( ) ( )1 1 2 2( , ) ( , )v t h v t v t h v t=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ . According to the principle 

of the classical Preisach modeling, i.e. 1 2[ ( )] [ ( )]H v t H v t= , then the pair uniquely 
corresponds to an output value of [ ( )]H v t . 
Combining the above-mentioned two cases, there exists a mapping Γ : 2R R→  such that 
[ ( )] ( ( ), [ ( )])H v t v t h v t= Γ .  

In theorem 1, the obtained mapping Γ (.) is a continuous function. According to Lemma 2, 
from 1 2( ) ( ) 0v t v t− → , it leads to 1 2[ ( )] [ ( )] 0H v t H v t− → . Also, from ( ) ( )1 2 0h v t h v t− →⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ , it 
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yields 1 2( ) ( ) 0v t v t− →  . Then, it results in 1 2[ ( )] [ ( )] 0H v t H v t− → . Therefore, it is derived that 
Γ is a continuous function. Moreover, Theorem1 indicates that the multi-valued mapping of 
hysteresis can be transformed to a one-to-one mapping. It can be proved that the obtained 
mapping is a continuous mapping, i.e. 
Let 0[ , )T t R= ∞ ∈ , { | }vV v T R= ⎯⎯→ . Also let { | }hF h T R= ⎯⎯→ be the input sets. Given it T∈ �
it is obvious that ( )iv t < +∞ and [ ( )]ih v t < +∞ . So that 2( ( ), [ ( )])i iv t h v t R∈ . Thus, it is obtained that 

{( ( ), [ ( )]) | ( ) , [ ( )] }i i i iv t h v t v t V h v t FΦ = ∈ ∈  is  a compact  set . 
Hence, it provides a premise to apply neural networks to modeling of the behavior of 
hysteresis. Based on the proposed expanded input space with hysteretic operator, a neural 
network is used to approximate the system residual, i.e. ( , , )f x v u% : 
 
                                                       ( . , ) ( ) ( )T T

nn nnf x v u W V x xσ ε= +%                                            (18) 
 
where ( )⋅σ  is activation function, V is the first-to-second layer interconnection weights, 

W is the second-to-third layer interconnection weights, ( , , )T
nnx x uδ= , ε is the NN 

functional reconstruction error, ( )nn Nxε ε≤ , and 0Nε > .  
The above-mentioned neural network based on the expanded input space with hysteretic 
operator can be used to construct the corresponding neural estimator for the system residual 
( , , )f x v u% . Thus, it can be used for the compensation for the effect of the hysteresis inherent 

in the sandwich system. 

  
5. Adaptive Control Strategy 
  

In section 3, we introduce an architecture of the control strategy for the sandwich system 
with hysteresis. In the control structure, a neural inverse model is used to compensate for 
the effect of iL in the architecture of the sandwich system with hysteresis. After the 
compensation, the sandwich system with hysteresis is approximately tranformed into a 
Hammerstein system with hysteresis. In this section, an adaptive control strategy is 
developed for the obtained Hammerstein system with hysteresis. 
 
Assumption 1: If the weight matrices, i.e.V andW of the neural estimator are respectively 
bounded by 0pV > and 0pW > , i.e. pF

W W≤ and pV V≤ ,where 
F

⋅ represents Frobenius 
norm. Then, the corresponding pseudo-control can be chosen as 
 

( ) [0, ]n T
d ad ry K e v vδ τ= − − Λ − +                                                (19) 

 
where rv is the term for robust design, K is a design parameter, adv is the output of neural 

network, i.e. ˆ ˆ( )T T
ad nnv W V xσ=  where Ŵ andV̂  are the estimated values of W andV .  



Adaptive Control of Dynamic Systems with Sandwiched Hysteresis Based on Neural Estimator 

 

235 

From (10) and (19), notice that ( , , )f x v u%  depends on adv  through δ . However, adv  has to 

be designed to cancel  the effect of ( , , )f x v u% . This should assume that the mapping 

ad f%aδ is a contraction over the entirely interested input domain. It has been proven by 
Hovakimyan and Nandi (2002) that the assumption is held when (11) and (12) are satisfied. 
Using (18) and (19), (10) can be written as 
 
                                ˆ ˆ( ) ( )T T T T

nn nn rK W V x W V x vτ τ σ σ ε ξ= − − + + + +& .                                 (20) 
 
Difine  
 

ˆV V V= −% and ˆW W W= −%   .                                                 (21)  
 
The Taylor series expansion of ( )nnVxσ for a given nnx can be written as  
 

2ˆ ˆ( ) ( ) '( ) ( )nn nn nn nn nnVx Vx Vx Vx o Vxσ σ σ= + +% %                                      (23) 
 
where ˆˆ'( ) ( ) / |z zz d z dz ==σ σ  and 2( )o z% is the term of order two. Denoting ( )T

nnV xσ σ= , 
ˆˆ ( )T

nnV xσ σ= , and ˆˆ ' '( )T
nnV xσ σ= , with the procedure as Appendix, we have 

 
ˆ ˆˆ ˆ ˆ( ' ) 'T T T T

nn nn rK W V x W V x v wτ τ σ σ σ ε ξ= − + − + + + + +% %&                        (24) 
 
where  
 

ˆ ˆˆ ˆ ˆ( ) ' 'T T T T T
nn nnw W W V x W V xσ σ σ σ= − + − .                               (25) 

 
An upper bound for w can be presented as: 
 

                                             
1

ˆ ˆˆ ˆ' 'T T
nn nnF F

w W W V x V x Wσ σ≤ + +                              (26) 

 
or 
 

ˆ ˆ( , , )w w nnw W V xρ ϑ≤                                                   (27) 
 

where ˆ ˆˆ ˆ1 ' 'T T
w nn nn F

V x x Wϑ σ σ= + + and
1

max( , , )w F
W W Vρ =  . 

 
Theorem 2: Let the desired trajectory be bounded. Consider the system represented by (5), (6) 
and (7), if the control law and adaptive law are given by 
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1ˆ ( , )v f x δ−=                                                                (28) 
 

( ) [0, ]n T
d ad ry K e v vδ τ= − − Λ − +                                              (29) 

 
ˆ ˆ ˆˆ ˆ[( ' ) ]T

nnW F V x kWσ σ τ τ= − −&                                              (30) 
 

ˆ ˆ ˆˆ[ ' ]T
nnV R x W kVσ τ τ= −&                                                   (31) 

 
ˆ ˆ[ ( 1) ]w kφ γ τ ϑ τ φ= + −&                                                   (32) 

 
and 
 

ˆ( 1) , 0

0, 0

w

rv
⎧− + ≠⎪= ⎨
⎪ ≠⎩

τφ ϑ τ
τ

τ
                                            (33) 

 
where 0TF F= > , 0TR R= > , 0γ > , max[ ,( )]w N Nφ ρ ε ξ= + , and ˆφ φ φ= −% ; then the 

signals e , Ŵ , V̂ , and φ̂  in the closed-loop system are ultimately bounded. 
 
Proof: Consider the following Lyapunov function candidate, i.e. 
 

2 1 1 11 1 1 1( ) ( )
2 2 2 2

T T TL tr W F W tr V R Vτ φ γ φ− − −= + + + % %% % % %                            (34) 

 
The derivative of L  will be 
 

1 1 1( ) ( )T T TL tr W F W tr V R Vττ φ γ φ− − −= + + + && & % %& % % % %&                                  (35) 
 
Substituting (20) into (35), it yields 
 

2 1 1

1

ˆˆ ˆ( ) [ ( ' ) ]
ˆ ˆ( ')

T T T
r nn

T T
nn

L K v w trW F W V x

trV R V x W

− −

−

= − + + + + + + + −

+ +

& &% %& % %

&% %

τ τ τ ε ξ φ γ φ σ σ τ

τ σ
.      (36) 

 

Substituting ˆW W= − &&% and ˆV V= − &&%  into (30) and (31) , (36) can be rewritten as 
 

2 1 ˆ ˆ( ) [ ( ) ( )]T T T
rL K v w k tr W W tr V Vτ τ τ ε ξ φ γ φ τ−= − + + + + + + +&% %& % %  .       (37) 
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Considering (27) and max[ ,( )]w N Nφ ρ ε ξ= + ,we obtain 
 

2 1 ˆ ˆ ˆ( 1) [ ( ) ( )]T T
r wL K v k tr W W tr V Vτ τ τ φ ϑ φγ φ τ−≤ − + + + − + +&%& % % .                 (38) 

Substituting (32) and (33) into (38), it results in 
 

2 ˆˆ ˆ[ ( ) ( ) ]T T TL K k tr W W tr V Vτ τ φ φ≤ − + + + %& % %     .                               (39)  
 
Defining  
 

0 0
0 0
0 0

W
Z V

φ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

%

% %

%

, 
ˆ 0 0

ˆ ˆ0 0
ˆ0 0

W

Z V

φ

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 and
0 0

0 0
0 0

W
Z V

φ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

,                      (39) 

 
can be rewritten as 
 

2 ˆ( )TL K k tr Z Zτ τ≤ − +& % .                                                (40) 
 

As 
2ˆ( )T

FF F
tr Z Z Z Z Z≤ −% % % , 

 
it leads to 
 

22 ( )
FF F

L K k Z Z Zτ τ≤ − + −& % %  .                                     (41) 

 
That is 
 

2
2[ ( ) ]

2 4
F F

F

Z k Z
L K k Zτ τ≤ − + − −& %  .                             (42) 

 

Thus, L& is negative as long as either 
2

4
F

k Z
K

τ >  or 
FF

Z Z>% . This demonstrate that τ , 

W% , V% , andφ%  are ultimately bounded. According to Assumption 1 and the definition of 

τ andφ , we can obtain that the variables e , Ŵ , V̂ and φ̂  in the closed-loop system are 
ultimately bounded. 

  
6. Simulation 
   

In order to illustrate that the proposed approach is applicable to nonlinear system with 
sandwiched hysteresis, we consider the following nonlear system: 
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iL , 2
20.2(sin cos ) (0.4sin cos 0.8)

1
vv v v v v r
v

= − − − + +
+

& , (0) 0v =  

 
H , The hysteresis is generated by the sum of 50N = backlash operators, i.e. , 
 

1
[ ( )]

N

i
i

u H v t u
=

= = ∑ ,     and 

 

 

( ) ( ) 0, ( ) ( )
2

( ) ( ) 0, ( ) ( )
2

0 otherwise

i
i

i
i i

d
v t v t u t v t

d
u v t v t u t v t

⎧ > = −⎪
⎪
⎪= < = +⎨
⎪
⎪
⎪
⎩

& &

& & &  

 
where iu and id are respectively the output and the dead-band width of i - th backlash 
operator where 1,2,i N= L ( 0N >  is a positive integer).The values of the dead-band 
widths are evenly distributed within [0.02,1] . All the initial outputs of the operators are set 
to zero. Fig. 5 shows the response of the hysteresis contained in the system. 
 

oL : 1 2
2

2 1 2 1(1 )

x x

x x x x u

=⎧
⎨

= − − +⎩

&

&
 

 
and 
 

1y x= . 
 
The design procedure of the controller for the snadwich system with hysteresis will be 
shown in the following. 
 

1) Construction of nerual network based iL inverse. An artificial neural network unit 

inverse , i.e. 1ˆ
iL− is constructed to cancel the effect of the first dynamic block, i.e. iL . 

The system is excited by the input ( ) sin 2 coslr t t t= + . Then, 500 input/output 
pairs of data { , ( , )}l l lr v v&  are obtained. Using these data as learning samples, a 

neural network based inverse 1ˆ
iL− is constructed. The architecture of neural 

network based inverse model consists of 2 input nodes, 10 hidden neurons and 1 
output neuron. The sigmoid function and linear function are respectively used as 
activation function in the hidden layer and the output layer. The conjugate 
gradient algorithm with Powell-Beale restarted method (Powell, 1977) is used to 
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train the neural network. The compensation result of the NN based 1ˆ
iL− is shown in 

Fig. 6. It is known that there are some larger error happened in the beginning. Then 
it is gradually reduced as the control proceeded. 
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Fig. 5. The hysteresis in the system 
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Fig. 6. The compensation error  of NN based 1ˆ

iL−  
 
2) Neural approximator of system residual: The neural network used to approximate ( , , )f x v u%  
consists of 4 input nodes, 35 hidden neurons and 1 output neuron. The input of the NN 

is ( , , )T
nnx x uδ= . The activation function is 

1( )
1 xx

e
σ =

+
.  

3) The selection of the controller parameters: The other parameters of the controller are 
respectively chosen as 1 2λ = , 11K = , 0.001k = , 0.1γ = , ˆ ( , )f x v v= , 8F I= , and 5R I= , 
where I is  the unit matrix. 
4) PID control for comparison: In order to compare the control performance of the proposed 
control strategy with the PID controller , we choose 

1 1 20
( ) 22 13

t
v t e e dt e= − + −∫   
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where 1 de y y= − , 2 de y y= −& &  . Moreover,  the desired output of the system 
is ( ) 0.1 [sin 2 cos ]dy t t tπ= − . 
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Fig. 7. The control response of the proposed method 

 
From Fig.7,  it is known that the control performance of the proposed controller has 
achieved good control response. Also, Fig.8 illustrates the control performance of the PID 
controller. It can be seen that the PID control strategy has led to larger control error when 
the reference signal achieves its local extreme. However, the proposed control strategy 
obtained better control performance. It can obviously derive more accurate control result. 

     
7. Conclusions 
   

An adaptive control strategy for nonlinear dynamic systems with sandwich hysteresis is 
presented. In the proposed control scheme, a neural network unit inverse is constructed to 
compensate for the effect of the first smooth dynamic subsystem. Thus, the sandwich system 
with hysteresis can be transformed to a Hammerstein type nonlinear dynamic system 
preceded by hysteresis. Considering the modified structure of the sandwich system, an 
adaptive controller based on the pseduo-control technique is developed. In our method, a 
neural network is used to approximate the system residual based on the proposed expanded 
input space with hysteretic operator. The advantage of this method can avoid constructing 
the hysteresis inverse. Then, the adaptive control law is derived in terms of the Lyapunov 
stability theorem. It has been proved that the ultimate boundedness of the closed-loop 
control error is guaranteed. Simulation results have illustrated that the proposed scheme has 
obtained good control performance. 
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Fig. 8. The control response of the PID control method 
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8. Appendix 
   
 From (20), the approximation error can be written as: 
 

ˆ ˆT TW W−σ σ  
= ˆ ˆ ˆ ˆT T T TW W W W− + −σ σ σ σ                                                 (A1)                        
= ˆ ˆ( )T TW W+ −% σ σ σ  
 

Substituting (23) into (A1), it yields 
 

ˆ ˆT TW W−σ σ  
= 2 2ˆˆ ˆ ˆ( ' ( ) ) ( ' ( ) )T T T T T T

nn nn nn nnW V x o V x W V x o V x+ + + +% % % % %σ σ σ  

= 2ˆˆ ˆ ˆ' ' ( )T T T T T T T
nn nn nnW W V x W V x W o V x+ + +% % % % %σ σ σ                                       (A2) 

= 2ˆ ˆˆ ˆ ˆ ˆ' ' ' ( )T T T T T T T T T
nn nn nn nnW W V x W V x W V x W o V x+ − + +% % % % %σ σ σ σ  

= 2ˆ ˆˆ ˆ ˆ ˆ( ' ) ' ' ( )T T T T T T T T
nn nn nn nnW V x W V x W V x W o V x− + + +% % % %σ σ σ σ .                                        

 
Defining 2ˆ ' ( )T T T T

nn nnw W V x W o V x= +% %σ , (A2) becomes 
 

ˆ ˆT TW W−σ σ  
= ˆ ˆˆ ˆ ˆ( ' ) 'T T T T

nn nnW V x W V x w− + +% %σ σ σ . 
So that 

ˆ ˆ ˆˆ ˆ ˆ ˆ( ' ) 'T T T T T T
nn nnw W W W V x W V x= − − − −% %σ σ σ σ σ  

    = ˆ ˆˆ ˆ ˆ' 'T T T T T T
nn nnW W W V x W V x− + −% %σ σ σ σ  

= ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ' ' 'T T T T T T T
nn nn nnW W V x W V x W V x− + − − %σ σ σ σ σ  

= ˆ ˆˆ ˆ ˆ( ) ' 'T T T T T
nn nnW W V x W V x− + −σ σ σ σ  
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1. Introduction   
 

The traffic volume of the data transmission is increasing each year with the explosive 
growth of the Internet. The networking technologies supporting the data transmission are 
optical fiber transmission technologies. In the physical layer, the networks are classified into 
three networks, the long-haul network that connects city to city, the metropolitan area 
network that connects the central station in the city to the neighboring base station, and the 
access network that connects the base station to the home. In order to adapt to the increase 
of the data transmission, we need to achieve high-speed transmission and increase the 
capacity of transmission in each network.  
In the access network, many kinds of passive optical networks (PON) are studied to offer a 
high-speed access to the Internet at low cost. In the metropolitan area network, we 
contemplate the update of the network structure from the conventional peer-to-peer 
transmission to the ring or mesh structure for the high-capacity and highly reliable networks. 
In the long-haul network, the study on multilevel modulation such as the differential 
quadrature phase shift keying (DQPSK) is a recent popular topic for the high-capacity 
transmission because the multilevel modulation utilizing the phase information offers high-
speed transmission without increasing the symbol rate. Other modulation and multiplexing 
technologies are also studied for the high-capacity networks. The orthogonal frequency 
division multiplexing (OFDM) is one of the wavelength division multiplexing methods and 
achieves high spectral efficiency by the use of orthogonal carrier frequencies. The optical 
code division multiple access (OCDMA) is a multiplexing technique in the code domain. 
These techniques are developed in the wireless communication and modified for the optical 
transmission technologies in these days.  
In the long-haul and the metropolitan area networks whose transmission distance is over 10 
km in 40 Gb/s, chromatic dispersion (CD) is one of the main factors which limits the 
transmission speed and the advances of the network structure. The CD is a physical 
phenomenon that the group velocity of light in the fiber depends on its wavelength 
(Agrawal, 2002). The CD causes the degradation of the transmission quality as the optical 
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signals having a spectral range are distorted by the difference of the transmission speed in 
the wavelength domain. The effect of dispersion increases at a rate proportional to the 
square of the bit-rate. 
In the high-speed optical transmission over 40 Gb/s, we have to compensate for the CD 
variation caused by the change of strain and temperature adaptively in addition to the 
conventional static CD compensation because the dispersion tolerance is very small in such 
a high-speed transmission. Also, in metropolitan area networks employing reconfigurable 
networking technology such as the mesh or ring network, the transmission route changes 
adaptively depending on the state of traffic and the network failure. As the CD value 
depends on the length of the transmission fiber, we have to compensate for the relatively 
large CD variation caused by the change of the transmission distance. 
With the aforementioned background, many researches and demonstrations have been 
conducted in the field of the adaptive CD compensation since around 2000 (Ooi et al., 2002; 
Yagi et al., 2004). The adaptive compensations are classified into two major groups, the 
optical compensations and the electrical compensations. In the electrical compensation, we 
utilize the waveform equalizer such as the decision feedback equalizer (DFE), the feed 
forward equalizer (FFE) or the maximum likelihood sequence equalizer (MLSE) after 
detection (Katz et al., 2006). These equalizers are effective for the adaptive CD compensation 
because they act as a waveform reshaping. The compensation based on DEF and FFE has 
advantages that the equalization circuit is compact and implemented at low cost. However, 
the compensation range is limited because the phase information of the received signal is 
lost by the direct detection. The MLSE scheme is very effective in 10 Gb/s transmission. 
However it is difficult to upgrade high bit-rate over 40 Gb/s because the scheme requires 
high-speed A/D converter in implementation.  
In the optical domain, the adaptive CD compensation is achieved by the iterative feedback 
control of a tunable CD compensator with a real-time CD monitoring method as shown in 
Fig. 1. Many types of tunable CD compensators are researched and developed recently. The 
tunable CD compensator is implemented by the devices generating arbitral CD value. Also, 
many kinds of CD monitoring methods are studied and demonstrated for the feedback 
control of tunable CD compensators. While the compensation devices and the dispersion 
monitoring methods are studied with keen interest, the adaptive control algorithm, how to 
control the tunable CD compensator efficiently, has not been fully studied yet in the optical 
domain CD compensation. When the tunable CD compensator is controlled iteratively for 
the adaptive CD compensation, the control algorithm affects the speed of the compensation 
to a great degree as well as the response time of the compensation devices and the 
monitorings. Although the simple hill-climbing method and the Newton method are 
employed as a control algorithm in many researches and demonstrations, these algorithms 
are not always the best control algorithm for the adaptive CD compensation. 
 

Tunable CD 
compensator

Real-time CD 
monitoring

Feedback control (search control algorithm)
 

Fig. 1. Adaptive CD compensation in the receiver. 
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In this chapter, we report the adaptive CD compensation employing adaptive control 
technique in optical fiber communications. We propose a high-speed and low cost adaptive 
control algorithm based on the steepest descent method (SDM) for feedback control of the 
tunable CD compensator. The steepest descent approach has an ability to decrease the 
iteration number for the convergence. We conducted transmission simulations for the 
evaluation of the proposed adaptive control technique, and the simulation results show that 
the proposed technique achieves high-speed compensation of the CD variation caused by 
the change of the transmission distance in 40 Gb/s transmission. 
The organization of this chapter is as follows. In Section 2, we explain the fundamentals of 
CD and adaptive CD compensation in optical fiber communications for the background 
knowledge of this research. Then we propose the adaptive control technique based on the 
SDM for adaptive CD compensation in Section 3. In Section 4, we show the demonstrations 
and performance analysis of the proposed technique in 40 Gb/s transmission by simulations. 
Finally, we summarize and conclude this paper in Section 5. 

 
2. Chromatic Dispersion in Optical Fiber Communications 
 
2.1 Fundamental of chromatic dispersion 
The group velocity of the light depends on its wavelength when the light is propagating in 
mediums. This phenomenon is called CD or group velocity dispersion (GVD). In optical 
communications utilizing the optical fiber as a transmission medium, the optical pulse is 
affected by the CD as the propagation time depends on the constituent wavelength of the 
optical pulse as shown in Fig. 2. The CD has two contributions, material dispersion and 
waveguide dispersion in a single mode fiber (SMF). The material dispersion is attributed to 
the characteristics of silica that the refractive index changes with the optical wavelength. The 
waveguide dispersion is caused by the structure of optical fiber, the core radius and the 
index difference. 
Considering optical propagation in the fiber, the propagation constant β is a function of the 
angular frequency ω and expanded by Taylor expansion as follows. 
 

                          L+−+−+−+= 3
03

2
02010 6

1
2
1 )()()()( ωωβωωβωωββωβ                       (1) 

 
Here, ω0 is a center angular frequency, and β0, β1, β2, and β3 are Taylor’s coefficients. The 
time required for the propagation of unit length τ is obtained by differentiating partially the 
propagation constant β as follows. 
 

                                       L+−+−+= 2
03021 2

1 )()()( ωωβωωββωτ                                        (2)               
 
It is confirmed from (2) that the required time is angular frequency dependent; the 
propagation time of optical pulse depends on the wavelength in optical communications. 
The coefficients β2 and β3 are first-order and second-order constants indicating the degree of 
the angular frequency dependence, respectively. Assuming that the second-order CD is 
negligible, the CD parameter is defined as  
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Fig. 2. Schematic diagram of chromatic dispersion. 
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where c is the speed of light. The unit of the CD parameter is ps/nm/km. 
In SMF, the CD parameter is zero at around 1300 nm and about 20 ps/nm/km at the typical 
wavelength used for optical communications, around 1550 nm. We have many 
characteristics of optical fibers such as dispersion shifted fiber (DSF) whose CD parameter is 
zero at around 1550 nm for the reduction of CD effect in optical fiber communications, and 
dispersion compensating fibers (DCF) whose CD parameter is minus value for the purpose 
of static CD compensation. 
In optical fiber communications, the optical pulse is affected by the CD as it has relatively 
wide spectral range corresponding to the bit-rate. Assuming that the optical pulse is a 
Gaussian waveform for the simplicity, the waveform in time-domain is expressed as  
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where T0 is a full width at half maximum (FWHM) of the pulse. When the pulse is 
transmitted for arbitral distance z, the waveform is affected by the CD and distorted as 
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Fig. 3. Optical pulses affected by chromatic dispersion. 
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Fig. 4. Interference of neighboring pulses in optical communication. 

 
where we neglect the second-order CD for simplicity as the first-order CD is dominant. 
Figure 3 shows the waveforms of optical pulse when we change the product of β2 and z 
under the condition that T0=100 ps. The larger the product of β2 and z is, the wider the 
FWHM of the transmitted waveform is; the effect of CD is larger in the case that the 
transmission distance is longer and the CD parameter is larger. If the FWHM of the optical 
pulse gets wider, the possibility of the inter symbol interference (ISI) is higher as shown in 
Fig. 4. As the ISI causes code error in optical communications, the transmission distance is 
limited by the CD. Also, the maximum transmission distance is reduced according to the bit 
rate of the transmission B because the FWHM of the optical pulse T0 is decreased when the 
bit rate increases. We can also understand it from the fact that the spectral width is wide in 
short optical pulse. The effect of CD on the bit rate B can be estimated and the CD tolerance 
DT, the limitation of CD that the quality of the transmission is assured, is expressed as 
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where Δλ is the range of wavelength in the optical pulse. The CD tolerance is inversely 
proportional to the bit rate and the transmission distance and the wavelength range of the 
input pulse. 

 
2.2 Adaptive chromatic dispersion compensation 
As mentioned in Section 1, the adaptive CD compensation is an essential technology for 
high-speed optical fiber communications as the CD tolerance is very small in the systems 
whose transmission speed is over 40 Gb/s. Many researches have been conducted for the 
adaptive CD compensation in optical communications. The principle of the CD 
compensation is very simple as shown in Fig. 5. We can achieve the CD compensation by 
placing a transmission medium which has the inverse CD value of the transmission fiber in 
the transmission line. The adaptive CD compensation is achieved by changing the 
compensating CD value adaptively according to the CD in the transmission fiber. The 
conventional setup of the adaptive CD compensation is shown in Fig. 1; the tunable CD 
compensator is feedback controlled with the real-time CD monitoring. In this section, 
tunable CD compensators and CD monitoring techniques are briefly introduced for the 
background information of the adaptive control algorithm to be proposed. 
We have many types of tunable CD compensators for the adaptive compensation. They are 
basically implemented by the dispersive medium with the function of tunability, for 
example, chirped fiber Bragg grating (CFBG) with heater elements (Matsumoto et al., 2001; 
Eggleton et al., 2000), micro-electro mechanical system (MEMS) (Sano et al., 2003), ring 
resonator (Takahashi et al., 2006), and so on. We adopt a virtually imaged phased array 
(VIPA) compensator in the following research. The VIPA compensator is a tunable CD 
compensator, which is consisted of the combination of a VIPA plate and a three dimensional 
adjustable surface mirror (Shirasaki, 1997; OOi et al., 2002). The VIPA plate operates as a 
grating, and the specific spectral components of light is reflected by the mirror to induce CD.  
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Fig. 5. Principle of chromatic dispersion compensation. 
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 Response 
time 

Cost Relationship 
between 
transmission 
quality and 
monitoring signal 

Monitoring 
range 

Pilot 
signal 

Clock power level 
monitoring 

method 
Good Good Fair Good Not 

required 

Clock phase 
detection method Good Fair Good Poor Not 

required 

Eye-diagram Good Fair Excellent Good Not 
required 

BER Fair Poor Excellent Good Required 
Table 1. Performances of feedback signals in adaptive CD compensation 

 
We can generate arbitral CD value as the change of the geometry of the three dimensional 
mirror. In the VIPA compensator, wide compensation range, ±1800 ps/nm in 10 and 40 
Gb/s, is achieved by the appropriate design of the three dimensional mirror. 
Also, many kinds of CD monitoring methods are studied and demonstrated for the feedback 
control of the tunable CD compensators. The typical monitoring signals are bit error rate 
(BER), eye-diagram, clock power level (Sano et al., 2001), and phase difference of clock 
signals (Qian et al., 2002). We show the performance comparison of the feedback signals for 
adaptive control of the tunable CD compensator in Table 1. The requirement of pilot signal 
is the disadvantage for the BER as the monitoring signal. If we consider each characteristic 
of the feedback signal, the extracted-clock power level or the eye-diagram is better for the 
feedback signal in adaptive CD compensation. We adopt the eye-opening value obtained 
from the eye-diagram as the feedback signal in the adaptive control method to be proposed. 

 
3. High-Speed Adaptive Control Method Based on Steepest Descent Method 
 

In this section, we propose a method of high-speed adaptive control of tunable CD 
compensator for adaptive CD compensation. We apply the steepest descent method to the 
adaptive control algorithm in order to reduce the compensation time. The approximation of 
partial derivative for the steepest descent approach is proposed and applied to the control of 
the VIPA compensator. 

 
3.1 Steepest descent-based control algorithm for adaptive chromatic dispersion 
compensation 
The adaptive control system must be low cost, high-speed, and applicable to wide 
dispersion ranges for the adaptive CD compensation in optical communications. Most 
control systems require high-cost measuring instruments for the CD monitoring. We 
therefore propose the feedback control method that does not require high-cost CD 
monitoring. In our proposal, the feedback signal is a received waveform in the time domain. 
The tunable CD compensator is controlled repeatedly to reshape the waveform. The 
measurement of the waveform is relatively easy and uninfluential in the transmission 
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conditions such as pilot-signal requirements. Conventional feedback control is based on the  
hill-climbing method, which requires a lot of time for optimization. We have therefore 
applied the steepest descent method to the feedback control for high-speed compensation. 
Figure 6 shows an optical dynamic routing network with the adaptive CD compensation. 
Transmitted signals are passed through a route that is chosen arbitrarily among optical 
paths, being affected by the CD. In the receiver part, the degraded signals are fed into the 
tunable CD compensator and the dispersion is compensated. The adaptive dispersion 
compensation is achieved by the combination of a tunable CD compensator and a controller. 
The compensated signals are received by a photodiode and demodulated. 
 

fout:Received signal
fref :Memorized reference signal

(received signal without dispersion)

Laser Modulator

Transmitter

Photo diode

Receiver

Amplifier

Demodulator

Tunable dispersion
compensator

Controller

EDFA

fout

fref

control signal

All-Optical Routing Network

OXC

OXC

OXC

OXC

OXC

OXC

OXC

OXC

OXC

OXC: Optical cross connect  
Fig. 6. Schematic diagram of all-optical dynamic routing network with the adaptive 
dispersion compensation technique. 

 

Memorized reference signal: fref

Cauculate partial derivative of error value

Update control parameters by steepest
descent method

Received signal: fout
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Calculate error value
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Controller

 
Fig. 7. Procedure of proposed steepest-descent-based control. 
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The tunable compensator is controlled by our proposed adaptive control method based on  
the steepest descent method. The proposed procedure of the controller is shown in Fig. 7, 
where Pout and Pref are the eye-opening values (normalized as Pref = 1) of the received and 
reference signals, fout and fref respectively. In this method, we measure and register the 
reference signal, fref which is a received signal unaffected by the CD. The reference signal is 
determined from the characteristics of the transmitter-receiver set. Therefore, we can copy 
the reference signal to other receivers after it has been measured once.  
The first step is a calculation of an error value: Er. The error value is defined as the 
difference between the eye-opening values, Pout and Pref. 
 

                                            2

2
1 )( outref PPEr −=                                                (7) 

 
The next step is a calculation of partial derivatives of Er in terms of the control parameters, 
xi (i=1,2,…, n), for the update based on the steepest descent method.  
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We need to measure small changes in Pout when xi changes slightly in order to get the 
accurate partial derivatives of Pout with respect to xi. However, this is unrealistic as it takes a 
lot of time for the measurement and our goal is to achieve quick CD compensation. 
Therefore, we approximate the partial derivatives of Pout with respect to xi. The 
approximation is to be mentioned at the next subsection. 
In the final step, the control parameters are update as  
 

                                                               
i

ii x
Erxx
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where ε is an appropriate constant concerning the speed and accuracy of the convergence. 
We repeat this procedure until the transmission quality becomes optimal. The required 
number of update iterations is fewer than that of the normal feedback control based on the 
hill-climbing method due to the steepest descent approach. In practical all-optical dynamic 
routing networks, the procedure is repeated all the time as the transmission route changes at 
frequent intervals. 

 
3.2 Approximation of partial derivatives for steepest descent approach 
To approximate the partial derivatives of Pout with respect to xi, we need to know the change 
in one-bit waveforms of the received signal, wout(t), caused by the change in xi. When we 
assume that the waveform of the transmitted signal is a Gaussian-like pulse (the peak level 
is unity) just like in the approximation in return-to-zero transmissions and that the 
transmission is affected only by the CD, the waveform, wout(t) is calculated analytically in 
terms of the CD values of the transmission fiber, Dfiber ps/nm and TDC, DTDC ps/nm, as 
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where TFWHM is the FWHM of the transmitted signal, λ is the center wavelength , t is time, 
and c is the speed of light. The partial derivative of wout(t) with respect to xi is calculated 
from (10) and (11). 
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Equation (10) shows that the value vpeak is the peak level of wout(t). We can measure it in a 
practical system. Therefore, (12) shows that we can obtain the approximated partial 
derivative of wout(t) with respect to xi because TFWHM and λ are known parameters. We obtain 
the partial derivative of the peak value in wout(t) by substituting 0 for t.  
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The value of vpeak corresponds to the eye-opening value in nonreturn-to-zero (NRZ) 
transmission approximately. Therefore, the partial derivative of Pout with respect to xi is 
approximated as follows. 
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3.3 Detailed control algorithm for VIPA compensator 
In the simulations described in the next section, we employ a VIPA compensator as the 
tunable CD compensator. The VIPA compensator has a single control parameter, i.e. CD S 
ps/nm. The detailed control procedure of the VIPA compensator is as follows. In general, 
we can apply the proposed method to any kind of tunable CD compensators. 
 

(i)   Initialize the parameter of the VIPA compensator: S ps/nm 
 
                                                   0=S ps/nm                                                                 (15) 

 
(ii)  Calculate the error value: Er 
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The error value, Er, is derived from (7). 
If Pout is zero, we go to (iii), otherwise to (iv).  
 

(iii) Update S by the hill-climbing method 
 
                                                     SSS Δ−⇒                                                                (16) 
 

where ΔS ps/nm is an appropriate small constant. We then go on to (v). 
 

(iv)  Update S by the steepest descent method 
We calculate the partial derivative of Er from (8) and (14). 
The partial derivative of Pout with respect to S is approximated as 
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The parameter S is updated as 
 

                                                    
S
ErSS
∂
∂

−⇒ ε                                                                (18) 

 
where ε is an appropriate constant. We then go to (v). 

(v)   Judge the error value: Er 
 

We calculate Er again by using (7). If Er increases or becomes small enough, the 
procedure stops. Otherwise, we go back to (ii) and repeat the same process. 
However, in practical all-optical dynamic routing networks, the compensation 
process is repeated all the time as the dispersion value changes frequently. 

 
4. Transmission Simulations at 40 Gb/s  
 
4.1 Simulation results in NRZ-OOK transmission at 40 Gb/s 
Numerical transmission simulations using OptiSystem were conducted to verify the 
application of the proposed technique to 40 Gb/s optical fiber transmission system. In the 
proposed control method, we have to set the constants for search, ε and ΔS, appropriately. 
They were adjusted for the 40 Gb/s transmission and set at 3×105 and 30, respectively. The 
output power of a distributed feedback laser diode (DFB-LD) at the transmitter was 0 dBm. 
We supposed that the modulation format were NRZ-OOK. The central wavelength of the 
transmitted signal was 1550 nm. The transmission path was a non-zero dispersion shifted 
fiber (NZ-DSF). We assumed that CD, polarization mode dispersion (PMD), self-phase 
modulation (SPM), and other nonlinearity affect the transmitted signal. The power loss was 
amplified to 0 dBm by an erbium-doped fiber amplifier (EDFA) after both of the fiber 
transmission and the dispersion compensation by the VIPA compensator. The EDFA, the  
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Fig. 8. BERs at every update of the compensator (a) 0 20km, (b) 20 25km. 
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Fig. 9. Eye-diagrams at every update of the compensator (a) 0 20km, (b) 20 25km. 

 
receiver, and other optical components were assumed to have moderate levels of noise. 
Transmission simulation results are shown in Fig. 8 and Fig. 9. In these simulations, the 
initial value of S was set at 0. Fig. 8 shows the BERs at every update of the VIPA 
compensator when the transmission distance changes (a) from 0 to 20 km (dispersion: 0  



Adaptive Control 

 

256 

100 ps/nm) and (b) from 20 to 25 km (dispersion: 100  125 ps/nm). The compensation 
improved the BER (a) from 1.0×100 to 1.0×10-15 and (b) from 7.41×10-3 to 1.0×10-15, 
respectively. As shown in Fig. 9, the eye-diagrams measured by a sampling oscilloscope 
were found reshaped. These results show that the CD compensation with the proposed 
control method improve the transmission quality. 
The update iteration number to achieve a sufficiently low BER (<10-9) were four and two, 
respectively in these two cases. A single calculation of the next dispersion value requires less 
than 10 ms. The response time of the VIPA compensator is 2 ms for every 1 ps/nm 
compensation. Therefore, the time required for ±400 ps/nm CD compensation is about 1 s, 
which is determined practically by the response time of the VIPA compensator. This 
technique achieves a high-speed adaptive control of a tunable CD compensator in 40 Gb/s 
transmission since the update iteration number is small and the calculation time with the 
proposed approximation is short enough. The proposed technique is more effective if the 
response time of the tunable CD compensator is faster as the required iteration number is 
decreased by our proposed adaptive control technique based on the steepest descent 
method. 

 
4.2 Compensation range and required iteration number 
Figure 10 shows the compensation range of the proposed method at 40 Gb/s. We measured 
BERs before and after compensation when the CD value changed from 0 ps/nm to arbitrary 
value. The compensation range in which the BER after compensation is less than 10-9 is 
about from −450 to 450 ps/nm, corresponding to a NZ-DSF path-length change of about ±90 
km. This range is wide enough for compensating the change of CD caused by dynamic 
routing. In this wide compensation range, the iteration number required for error free 
transmission (BER<10-9) is less than 15. The fast adaptive CD compensation is also achieved 
by the proposed adaptive control technique as the required iteration number is small. 
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Fig. 10. Compensation range of the proposed method at 40 Gb/s. 
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5. Conclusion 
 

In this chapter, we have proposed high-speed adaptive CD compensation with the adaptive 
control method based on the steepest descent method and reported the performances 
evaluated by numerical simulations.  
The simulation results show that the proposed control method based on the steepest descent 
method controls the tunable CD compensator quickly and effectively for a wide dispersion 
range in 40 Gb/s transmission. The range is up to ±450 ps/nm, and the required 
compensation time is about 1 s for the CD variation within ±400 ps/nm at 40 Gb/s. These 
achievements are valuable for the future optical networks employing dynamic routing 
technique. 
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1. Introduction     
 

Hysteresis phenomenon occurs in all smart material-based sensors and   actuators, such as 
shape memory alloys, piezoceramics and magnetostrictive actuators (Bank & Smith, 2000; 
Tan & Baras, 2004). In order to study this phenomenon, different models were proposed 
(Brokate & Sprekels, 1996; Visintin, 1994). Normally, hysteresis models are classified into 
two categories, physics-based model such as Jiles-Atherton model (Jiles & Atherton, 1986) 
and phenomenology-based model such as Preisach operator (Brokate & Sprekels, 1996; 
Visintin, 1994) and Duhem model (Visintin, 1994).  From control systems point of view, 
hysteresis is generally non-differentiable, nonlinear, and unknown. As a result, systems 
with hysteresis usually exhibit undesirable inaccuracies or oscillation and even instability. 
Mitigating the effect of hysteresis becomes necessary and important, thus it has received 
increasing attention in recent years (Tao & Kokotovic, 1995, Su, et al, 2000, Su, et al, 2005). 
Many of these studies are related to modeling of hysteresis and their control issues. 
With the development of artificial intelligent (AI), AI is being applied to dealing with 
nonlinearities in systems (Ge & Wang, 2002). Only a few studies have been carried out by 
using NN to tackle hysteresis modeling and compensation (Makaveev, et al, 2002; 
Kuczmann & Ivanyi, 2002; Beuschel et al, 1998; Zhao & Tan, 2006). In the paper (Makaveev, 
et al, 2002), a NN model is used to describe the hysteresis behavior in different frequencies 
with the knowledge of some properties of magnetic materials, such as loss separation 
property to allow the separate treatment of quasi-static and dynamic hysteretic effects. 
Beuschel et al used (Beuschel et al, 1998) a modified Luenberger observer and NN are used 
to identify a general model of hysteresis. These researches demonstrate that NN can work as 
an unknown function approximator to describe the characteristics of hysteresis. Recently, 
two papers (Zhao & Tan, 2006; Lin et al 2006) applied the approximation property of NN to 
coping with the identification of Preisach-type hysteresis in piezoelectric actuator, and the 
hysteresis estimation problem for piezo-positioning mechanism based on hysteresis friction 
force function, respectively. It should be noted that the aforementioned results share a 
common assumption that the output of hysteresis is measurable.   
In practical systems, smart actuators are integrated into the systems, which makes the 
measurement of output of hysteresis hard. Hence it is a challenge to design an observer for 



Adaptive Control 

 

260 

the unavailable output of hysteresis.  Due to the unavailability of the output of hysteresis, 
the major obstacle of pre-inversion compensator for hysteresis is the lack of effective 
observer design methods for piezoelectric actuators. Especially, the traditional “Luenberger-
type” nonlinear observer design (Krener & Isidori, 1983) or the “high-gain” observer 
(Krener & Kang, 2003) cannot be applied directly, since the hysteresis is highly nonlinear. 
The sliding-mode observer was developed to estimate the internal friction states of LuGre 
model for the servo actuators with friction (Xie, 2007). This observer needs a low-pass filter 
to remove the high-frequency components in the estimated state variable, which is not 
applicable in this paper.  Yang and Lin (Yang & Lin, 2004) proposed homogeneous 
observers design for a class of n-dimensional inherently nonlinear systems whose Jacobian 
linearization is neither controllable nor observable.  
Inspired by NN’s universal approximation property, and the aforementioned facts in 
observer design, we propose an observer-based adaptive control of piezoelectric actuators 
with unknown hysteresis in this paper. The main contribution of this paper is the following: 
First, it applies the NN to on-line approximate complicated piecewise continuous unknown 
nonlinear functions in the explicit solution to Duhem model. Second, an observer is 
designed to estimate the output of hysteresis of piezoelectric actuator based on the system 
input and output.  Third, the stability of the controlled piezoelectric actuator with the 
observer is guaranteed by using Lyapunov extension (Kuczmann & Ivanyi, 2002). 
The organization of the paper is as follows. In Section II, a Duhem model of hysteresis and 
the problem statement are given. The main results on NN-based compensator for hysteresis 
are presented in Section III. Section IV provides an example to show the feasibility of the 
proposed method. Conclusions are given in Section V. 

 
2. Preliminaries 
 
2.1 Duhem model of hysteresis 
Many different mathematic models are built to describe the hysteresis behavior, such as 
Preisach model, Prandtl-Ishlinkii model and Duhem model (Coleman & Hodgdon, 1987; 
Macki et al, 1993). Considering its capability of providing a finite-dimensional differential 
model of hysteresis, we adopt classical Duhem model to develop the adaptive controller for 
the piezoelectric actuator.  
The Duhem model is a rate independent operator, with input signal v , v&  and output 
signal τ . The Duhem model describes hysteresis )(tH  by the following mathematical 
model (Coleman & Hodgdon, 1987; Macki et al, 1993). 
 

                  )(])([ vg
dt
dvvf
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dt
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⋅+−⋅⋅= τατ                        (1) 

 
where α  is a positive number, )(vf  and )(vg  are prescribed real-valued functions on 
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where α  is the same positive number in (1), )(vg  is the slope of the model, and )(vf  is the 
average value of the difference between upward side and downward side. 
 Property 1 (Coleman & Hodgdon, 1987; Macki et al, 1993): )(vf  is a piecewise smooth, 

monotone increasing, odd function with a derivative )(vf ′ , which is not identically zero. For 

large value of input )(tv , there exists a finite limit )(∞′f ; 
 

)()( vfvf −−= , ∞<′
∞→

)(lim vf
v

                                                 (3) 

 
Property 2 (Coleman & Hodgdon, 1987; Macki et al, 1993): )(vg  is a piecewise continuous, 
even function with 
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                                                        (4) 

 
It has been shown that Duhem model can describe a large class of hysteresis in various 
smart materials, such as ferromagnetically soft material, or piezoelectric actuator by 
appropriately choosing )(vf and )(vg (Coleman & Hodgdon, 1987; Macki et al, 1993). One 

widely used pair of functions of )(vf and )(vg  are 
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where 0>sv , 01>a , 02>a , 01 3>>a , 1a  and 2a  satisfy [ ]maxmin21, aaaa ∈ , mina  and 

maxa are  known constants.  Substituting the )(vf and )(vg into (2), we have 
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The above equation can be solved for τ  
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with 
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In order to describe the piezoelectric actuator, we choose the same functions )(vf and )(vg  

as those in (Banning, et al, 2001), which is a special case of the foregoing choice of )(vf  

and )(vg , i.e. aa =1 , 02 =a  and ba =3 when svv ≤ . 
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where 0>sv , 0>a , 0>b and 2/aba ≥> . Suppose the parameter a  
satisfies [ ]maxmin aaa∈ , mina  and maxa are known constants.  
 
Substituting (5) and (6) into (1), we have   
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Equation (7) can be solved for τ  
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where  
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Equation (8) can be also expressed as:           
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where )42,1( L=iiχ  are  indicator functions defined as:  
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 Following the definition of the indicator functions, we get 
 

,021 =⋅χχ  ,121 =+ χχ ,043 =⋅χχ  ,121 =+ χχ  4,3,2,1,2 == kkk χχ   
By defining 021 == χχ && , we have 
 

)( 42244123312232211 χχχχχχχχχτ ⋅⋅+⋅⋅+⋅⋅+⋅⋅−⋅⋅= ffffva &&&&&&           
                

Let                             
 

42244123312232212 χχχχχχχχ ⋅⋅+⋅⋅+⋅⋅+⋅⋅= ffffF &&&&  
 

and 1χaKa = . We can also write the derivative of τ  as  
 

                                             2FvKa −= &&τ                                                 (16) 

         
2.2 Augmented Multilayer Perceptron (MLP) Neural Network 
The MLP NN has been explored to approximate any function with arbitrary degree of 
accuracy (Hornik et al, 1989). However, it needs a large number of NN nodes and training 
iterations to approximate non-smooth functions (i.e. piecewise continuous), such as friction, 
hysteresis, backlash and other hard nonlinearities. For these piecewise continuous functions, 
the MLP needs to be augmented to work as a function approximator. Results for 
approximation of piecewise continuous functions or functions with jumps are given in the 
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paper (Selmic & Lewis, 2000). We use the augmented NN to approximate the piecewise 
continuous function in hysteresis model.  
Let S  be a compact set of nR  and define )(SCn  be the space such that the 

map )(xf : nRS →  is piecewise continuous. The NN can approximate a 

function )()( SCxf n∈ , nRx∈ , which has a jump at cx =  and is continuous from the right 
as 
 

                           )()]([)()( xcxVWxVWxf T
f

T
f

TT εϕσ +−⋅⋅+⋅⋅=                                       (17) 

 

where )(xε  is a functional restructure error vector, TW , T
fW  and TV , T

fV  are 

nominal constant weight matrices. )(⋅σ  and )(⋅ϕ  are activation functions for hidden 
neurons.  
For the hysteresis model (16), the piecewise continuous function F2 will be approximated by 
the augmented NN. In this paper, it is assumed that there exists weight matrix W such that 

Nx εε ≤)(  with constant 0>Nε , for all nRx∈ , and the Frobenius norm of each matrix is 

bounded by a known constant NWW ≤  with 0>NW . 

 
3. NN-based compensator and controller design 
 

Given the augmented MLP NN and hysteresis model, a NN-based pre-inversion 
compensator for the hysteresis is designed to cancel out the effect of hysteresis. In this 
section, a novel approach is developed to compensate the hysteretic nonlinearity and to 
guarantee the stability of integrated piezoelectric actuator control system. 

 
3.1 Problem statement 
Consider a piezoelectric actuator subject to a hysteresis nonlinearities described by Duhem 
model. It can be identified as a second-order linear model preceded by hysteretic 
nonlinearity as follows:  
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τ
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                                (18)  

 
where v(t) is the input to piezoelectric actuator, )(ty  denotes the position of piezoelectric 
actuator, m , b , k  denote the mass, damping and stiffness coefficients, respectively,  

)(•H represents the Duhem model (1). 
In order to eliminate the effect of hysteresis on the piezoelectric actuator system, a NN-
based hysteresis compensator is designed to make the output from hysteresis model prτ  

approach the designed control signal pdτ . After the hysteresis is compensated by the NN, an 
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adaptive control for piezoelectric actuator is to be designed to ensure the stability of the 
overall system and the boundedness of output tracking error of the piezoelectric actuator 
with unknown hysteresis.  
We consider the tracking problem, in which )(ty  is to asymptotically track a reference 

signal )(tyd having the properties that )(tyd  and its derivatives up to second derivative are 

bounded, and )(tyd&& is piecewise continuous, for all 0≥t . The tracking error of the 
piezoelectric actuator is defined as 
 

)()()( tytyte dp −= .                                     (19) 

 
    A filtered error is defined as 
 
                                            )()()( tetetr pppp ⋅+= λ&                                                 (20) 
 
where 0>pλ  is a designed parameter. 

Differentiating )(trp  and combining it with the system dynamics Eq. (18), one may obtain:      
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The tracking error dynamics can be written as    
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and 31 R
cck

b
ck

m T

p ∈⎥⎦
⎤

⎢⎣
⎡

⋅⋅
=θ  is a unknown parameter vector with 

3,2,1maxmin =≤≤ ippip θθθ  where minpθ  and maxpθ  are some known real numbers. 

 
3.2 NN-based Compensator for Hysteresis 
In presence of the unknown hysteresis nonlinearity, the desired control signal pdτ  for the 

piezoelectric actuator is different from the real control signal prτ . Define the error as 

prpdp τττ −=~                                                                     (23) 
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Differentiating (23), yields 
 

prpdp τττ &&& −=~                                                            (24) 

 
thus, we have 
 

2
~ FvKapdp +−= &&& ττ                                               (25) 

 
Here we utilize a second first-layer-fixed MLP to approximate the nonlinear function 2F . 
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where [ ]Tppd vvh 10 &ττ= , 0pτ  is the initial value of the control signal, TV2 , T
fV 21 , 

T
fV 22 , and T

fV 23 are input-layer weight matrices, TW2 , T
fW 21 , T

fW 22 , and T
fW 23 are 

output-layer weight matrices,  0, sv , and sv−  are jump points on the output layer, and 
)(⋅σ , )(21 ⋅ϕ , )(21 ⋅ϕ , and )(23 ⋅ϕ  are the activation functions, and )(1 hε is the functional 

restructure error in which inversion error is included. Output-layer weight 

matrices TW2 , T
fW 21 , T

fW 22 and T
fW 23 are trained so that the output of NN approximates 

to the nonlinear function 2F . 
Let  
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TT WWWWW = . The nonlinear function 2F is expressed as:  

 
                          )(),( 112 hvhWF s

T ε+Θ=                                   (27) 
 

It is assumed that the Frobenius norm of weight matrix W1 is bounded by a known constant 

NWW 11 ≤  with 01 >NW  and  Nh 11 )( εε ≤  with constant 01 >Nε , for all nRx∈ . 

The estimated nonlinear function 2F̂  is constructed by using the neural network with the 

weight matrix 1Ŵ :   

   ),(ˆˆ
12 s
T vhWF Θ= .  

 
Hence the restructure error between the nonlinear functions 2F and 2F̂  is derived as: 
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   )(),(~ˆ~
11222 hvhWFFF s

T ε+Θ=−= . 
 
“where TTT WWW 111

ˆ~
−= .” 

Remark 1 When the input changes its sign derivative (Beuschel et al, 1998), the augmented 
MLP can approximate the piecewise continuous functions. In the process, the “jump 
functions” leads to vertical segments in the feed-forward pre-inversion compensation, 
where the “functional restructure error” can be confronted by the adaptive controller in 
Section III.C (Selmic & Lewis, 2000). 
A hysteresis pre-inversion compensator is designed: 
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Define error matrix as: 
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−= .      
Inserting (26), (28) into (25), we obtain 
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We choose weight matrix update rule as  
 

                                       111
ˆ~~),(ˆ WkvhW ppps ⋅+⋅ΓΘ= ττ&

                  (30) 

 
where Γ is a positive adaptation gain diagonal matrix, and 1pk  is a positive constant. 

Design the update rule of parameter μ̂  in pre-inversion compensator v&  as 
 

]),(ˆ[~,ˆ(ˆ 1 ps
T
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where η  is positive constant, Proj(.) is a projection operator, which is defined as follows: 
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The adaptive NN-based pre-inversion compensator v&  is developed to drive the adaptive 
control signal pdτ  to approach the output of hysteresis model prτ  so that the hysteretic 

effect is counteracted.  

  
3.3 Controller Design Using Estimated Hysteresis Output 
It is noticed that the output of hysteresis is not normally measurable for the plant subject to 
unknown hysteresis. However, considering the whole system as a dynamic model preceded 
by Duhem model, we could design an observer to estimate the output of hysteresis based on 
the input and output of the plant. 
The velocity of the actuator )(ty& is assumed measurable. Define the error between the 
outputs of actuator and observer as 

 
yye ˆ1 −=                                                                      (33) 

 
The observed output of hysteresis is denoted as prτ̂  and the error between the output of 

hysteresis prτ and the observed prτ̂  is defined as prpre ττ ˆ2 −= . Then the observer is 

designed as: 
 

11ˆ eLyy += &&                             (34) 
 

prprapr KeLFvK ττ ˆˆˆˆ 122 −+−= &&                                  (35) 

 
The error dynamics of the observer is obtained based on the actuator model and hysteresis 
model.  
 

11111 eLeLe −=−=&                 

prpra KeLFvKe τ̂~~
1222 +−−= &&                         (36) 

 
where the parameter error  is defined as aaa KKK ˆ~

−= . 
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By using the observed hysteresis output prτ̂ , we may define the signal error between the 

adaptive control signal pdτ  and the estimated hysteresis output as: 

 
prpdpe τττ ˆ~ −=                                                               (37) 

 
The derivative of the signal error is: 
 

prprapdpe KeLFvK τττ ˆˆˆ~
122 +−+−= &&& .                                                (38) 

 
A hysteresis pre-inversion compensator is designed: 
 
                                          }ˆ~{ˆ 2 ppdpeb rFkv +++⋅⋅= ττμ && .                                              (39) 

 
By substituting the neural network output ),(ˆˆ

12 s
T vhWF Θ=  and pre-inversion compensator 

output into the derivative of the signal error, one obtains: 
 

prprpas
T

apebapdape KeLrKvhWKkKK τμμτμτμτ ˆˆˆ),(ˆ)ˆˆ1(~ˆˆ)ˆˆ1(~
121 +−⋅−Θ−+⋅−⋅−= &&                             (40) 

 
The weight matrix update rule is chosen as: 
 

111
ˆ~~),(ˆ WkvhW peppes ⋅+⋅ΓΘ= ττ&

                                            (41) 

 
And the update rule of parameter μ̂  in pre-inversion compensator v&  is designed with the 
same projection operator as (32): 
 

)]),(ˆ[~,ˆ(ˆ 1 ps
T

pdpe rvhWrojP +Θ+⋅⋅= ττημμ && .                                              (42) 

 
The update rule of parameter aK̂  in the observer (35) is designed with the same projection 
operator as (32): 
 
                 )~]),(ˆ[~ˆ,ˆ(ˆ

1 peps
T

pdpeaa vrvhWKrojPK τττμγ ⋅++Θ+⋅⋅⋅= &&
& .                                                 (43) 

 
Hence we design the adaptive controller and update rule of control parameter as: 
 

        p
T

dppdpd Yrk θτ ˆ⋅+⋅=                                     (44) 

 

                                                  ),ˆ(ˆ
ˆ pdpp rYrojP

p
⋅⋅= βθθ θ

&
                                 (45)  
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where the projection operator is 
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With the adaptive robust controller, pre-inversion hysteresis compensator and hysteresis 
observer, the overall control system of integrated piezoelectric actuator is shown in Fig. 3. 
The stability and convergence of the above integrated control system are summarized in 
Theorem 1.  
 

Theorem 1 For a piezoelectric actuator system (18) with unknown hysteresis (1) and a 
desired trajectory )(tyd , the adaptive robust controller (44), NN based compensator (39) and 
hysteresis observer (34) and (35) are designed to make the output of actuator to track the 
desired trajectory )(tyd . The parameters of the adaptive robust controller and the NN based 
compensator are tuned by the updating rules (41)-(43) and (45). Then, the tracking error 

)(tep  between the output of actuator and the desired trajectory )(tyd  converge to a small 

neighborhood around zero by appropriately choosing suitable control gains pdk , bk  and 

observer gains 21, LL  and prK . 

Proof:  Define a Lyapunov function 
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The derivative of Lyapunov function is obtained: 
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Introducing control strategies (39), (44) and the update rules (41)-(43), (45) into above 
equation, one obtains 
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By using 2ˆ eprpr −=ττ , NF 1
~ ε≤  and inequality: 22

2
1

2
1 baab +≤± , one has: 
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By using the inequality  222)(

2
1 baba +≤+  , we can derive the following inequality: 
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From the Property 1 of Chapter 2 in the recent book (Ikhouane & Rodellar, 2007), we know 

2
prτ  is bounded (say, 22 Mpr ≤τ where M is a constant), and then define a constant 
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We select the control parameters pdk , bk  and observer parameters 1L , 2L  and prK  

satisfying the following inequalities: 
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we can easily conclude that the closed-loop system is semi-globally bounded (Su & 
Stepanenko, 1998).   



Adaptive Control 

 

272 

 Hence, the following inequality holds 
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where 0>rb  represents the radius of a ball inside the compact set rC  of the tracking error 

)(~ tpeτ . 

Thus, any trajectory )(~ tpeτ  starting in compact set { }rr brrC ≤= converges within rC  

and is bounded.  Then the filtered error of system )(trp  and the tracking error of the 

hysteresis )(~ tpeτ  converge to a small neighborhood around zero. According to the standard 
Lyapunov theorem extension (Kuczmann & Ivanyi, 2002), this demonstrates the UUB 
(uniformly ultimately bounded) of )(trp , )(~ tpeτ , 1

~W , 1e  and 2e . 

Remark 2 It is worth noting that our method is different from (Zhao & Tan, 2006; Lin et al 
2006) in terms of applying neural network to approximate hysteresis. The paper (Zhao & 
Tan, 2006) transformed multi-valued mapping of hysteresis into one-to-one mapping, 
whereas we sought the explicit solution to the Duhem model so that augmented MLP neural 
networks can be used to approximate the complicated piecewise continuous unknown 
nonlinear functions. Viewed from a wavelet radial structure perspective, the WNN in the 
paper (Lin et al 2006) can be considered as radial basis function network. In our scheme, the 
unknown part of the solution was approximated by an augmented MLP neural network. 

 
4. Simulation studies 
 

In this section, the effectiveness of the NN-based adaptive controller is demonstrated on a 
piezoelectric actuator described by (18) with unknown hysteresis. The coefficients of the 
dynamic system and hysteresis model are m =0.016kg, b =1.2Ns/μm, k =4500N/ μm, c =0.9 
μm /V, a =6, b =0.5, sv =6 μm /s, 1.0=β , 50=pdk . 

The input reference signal is chosen as the desired trajectory: )2.0sin(3 tyd π⋅= .  The 
control objective is to make the output signal y follow the given desired trajectory dy . From 
Fig. 1, one may notice that relatively large tracking error is observed in the output response 
due to the uncompensated hysteresis.  
The Neural Network has 10 hidden neurons for the first part of neural network and 5 
hidden neurons for the rest parts of neural network with three jumping points (0, ss vv −, ). 
The gains for updating output weight matrix are all set as { } 252510 Xdiag=Γ . The activation 

function )(⋅σ  is a sigmoid basis function and activation function )(⋅ϕ  has the 

definition 0
1
1)( ≥⎟

⎟
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⎞
⎜
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⎝
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+
−

=⋅
−

−

x
e
e

k

x

x

α

α
ϕ , otherwise zero.  The parameters for the observer are 

set as: 20=aK , 100=bk , ,1.0=η 1.0=γ , 10=prK , 1001 =L , 12 =L and initial 
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conditions are 0)0(ˆ =y , 0)0(ˆ =τ . The system responses are shown in Fig.2, from which it 
is observed that the tracking performance is much better than that of adaptive controlled 
piezoelectric actuator without hysteretic compensator.  
The input and output maps of NN-based pre-inversion hysteresis compensator and 
hysteresis are given in Fig. 3, respectively. The desired control signal and real control signal 
map (Fig. 3c) shows that the curve is approximate to a line which means the relationship 
between two signals is approximately linear with some deviations.  
In order to show the effectiveness of the designed observer, we compare the observed 
hysteresis output prτ̂  and the real hysteresis output prτ in Fig. 4.  The simulation results 

show that the observed hysteresis output signal can track the real hysteresis output. 
Furthermore, the output of adaptive hysteresis pre-inversion compensator )(tv  is shown in 
Fig.5. The signal is shown relatively small and bounded.   
 

     
                                                   (a) 

 

                 
                                             (b) 

Fig. 1 Performance of NN controller without hysteretic compensator (a) The actual control 
signal (dashed line) with reference (solid) signal; (b) Error dyy −1  
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Fig. 2. Performance of NN controller with hysteresis, its compensator and observer (a) The 
actual control signal (dashed line) with reference (solid) signal; (b) Error dyy −1       
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Fig. 3. (a) Hysteresis’s input and output map vvspr .τ  ; (b) Pre-inversion compensator’s 

input and output map pdvsv τ. ; (c) Desired control signal and Observed control signal 

curve pdpr vs ττ .ˆ . 
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Fig. 4. Observed Hysteresis Ouput prτ̂ and Real Hysteresis Output prτ  
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5. Conclusion 
 

In this paper, an observer-based controller for piezoelectric actuator with unknown 
hysteresis is proposed. An augmented feed-forward MLP is used to approximate a 
complicated piecewise continuous unknown nonlinear function in the explicit solution to 
the differential equation of Duhem model. The adaptive compensation algorithm and the 
weight matrix update rules for NN are derived to cancel out the effect of hysteresis. An 
observer is designed to estimate the value of hysteresis output based on the input and 
output of the plant. With the designed pre-inversion compensator and observer, the stability 
of the integrated adaptive system and the boundedness of tracking error are proved. Future 
work includes the compensator design for the rate-dependent hysteresis.  
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On the Adaptive Tracking Control of 3-D 
Overhead Crane Systems 

Yang, Jung Hua 
National Pingtung University of Science and Technology 

Pingtung, Taiwan 

1. Introduction 

For low cost, easy assembly and less maintenance, overhead crane systems have been 
widely used for material transportation in many industrial applications. Due to the 
requirements of high positioning accuracy, small swing angle, short transportation time, 
and high safety, both motion and stabilization control for an overhead crane system 
becomes an interesting issue in the field of control technology development. Since the 
overhead crane system is underactuated with respect to the sway motion, it is very difficult 
to operate an overhead traveling crane automatically in a desired manner. In general, 
human drivers, often assisted by automatic anti-sway system, are always involved in the 
operation of overhead crane systems, and the resulting performance, in terms of swiftness 
and safety, heavily depends on their experience and capability. For this reason, a growing 
interest is arising about the design of automatic control systems for overhead cranes. 
However, severely nonlinear dynamic properties as well as lack of actual control input for 
the sway motion might bring about undesired significant sway oscillations, especially at 
take-off and arrival phases. In addition, these undesirable phenomena would also make the 
conventional control strategies fail to achieve the goal. Hence, the overhead crane systems 
belong to the category of incomplete control system, which only allow a limited number of 
inputs to control more outputs. In such a case, the uncontrollable oscillations might cause 
severe stability and safety problems, and would strongly constrain the operation efficiency 
as well as the application domain. Furthermore, an overhead crane system may experience 
a range of parameter variations under different loading condition. Therefore, a robust and 
delicate controller, which is able to diminish these unfavorable sway and uncertainties, 
needs to be developed not only to enhance both efficiency and safety, but to make the 
system more applicable to other engineering scopes. 
The overhead crane system is non-minimum phase (or has unstable zeros in linear case) if a 
nonlinear state feedback can hold the system output identically zero while the internal 
dynamics become unstable. Output tracking control of non-minimum phase systems is a 
highly challenging problem encountered in many practical engineering applications such as 
aircraft control [1], marine vehicle control [2], flexible link manipulator control [3], inverted 
pendulum system control [4]. The non-minimum phase property has long been recognized 
to be a major obstacle in many control problems. It is well known that unstable zeros cannot 
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be moved with state feedback while the poles can be arbitrarily placed (if completely 
controllable). In most standard adaptive control as well as in nonlinear adaptive control, all 
algorithms require that the plant to be minimum phase. This chapter presents a new 
procedure for designing output tracking controller for non-minimum phase systems (The 
overhead crane systems). 
Several researchers have dealt with the modeling and control problems of overhead crane 
system. In [5], a simple proportional derivative (PD) controller is designed to asymptotically 
regulate the overhead crane system to the desired position with natural damping of sway 
oscillation. In [6], the authors propose an output feedback proportional derivative controller 
that stabilizes a nonlinear crane system. In [7], the authors proposed an indirect adaptive 
scheme, based on dynamic feedback linearization techniques, which was applied to 
overhead crane systems with two control input. In [8], Li et al attacked the under-actuated 
problem by blending four local controllers into one overall control strategy; moreover, 
experimental results delineating the performance of the controller were also provided. In [9], 
a nonlinear controller is proposed for the trolley crane systems using Lyapunov functions 
and a modified version of sliding-surface control is then utilized to achieve the objective of 
cart position control. However, the sway angle dynamics has not been considered for 
stability analysis. In [10], the authors proposed a saturation control law based on a 
guaranteed cost control method for a linearized version of 2-DOF crane system dynamics. 
In [11], the authors designed a nonlinear controller for regulating the swinging energy of 
the payload. In [12], a fuzzy logic control system with sliding mode Control concept is 
developed for an overhead crane system. Y. Fang et al. [13] develop a nonlinear coupling 
control law to stabilize a 3-DOF overhead crane system by using LaSalle invariance theorem. 
However, the system parameters must be known in advance. Ishide et al. [14] train a fuzzy 
neural network control architecture for an overhead traveling crane by using 
back-propagation method. However, the trolley speed is still large even when the 
destination is arrived, which would result in significant residual sway motion, low safety, 
and poor positioning accuracy. In the paper [15], a nonlinear tracking controller for the load 
position and velocity is designed with two loops: an outer loop for position tracking, and an 
inner loop for stabilizing the internally oscillatory dynamics using a singular perturbation 
design. But the result is available only when the sway angle dynamics is much faster than 
the cart motion dynamics. In the paper [16], a simple control scheme, based on second-order 
sliding modes, guarantees a fast precise load transfer and swing suppression during the 
load movement, despite of model uncertainties. In the paper [17], it proposes a stabilizing 
nonlinear control law for a crane system having constrained trolley stroke and pendulum 
length using the Lyapunov’s second method and performs some numerical experiments to 
examine the validity of the control law. In the paper [18], the variable structure control 
scheme is used to regulate the trolley position and the hoisting motion towards their 
desired values. However the input torques exhibit a lot of chattering. This chattering is not 
desirable as it might shorten the lifetime of the motors used to drive the crane. In the paper 
[19], a new fuzzy controller for anti-swing and position control of an overhead traveling 
crane is proposed based on the Single Input Rule Modules (SIRMs). Computer simulation 
results show that, by using the fuzzy controller, the crane can be smoothly driven to the 
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destination in a short time with low swing angle and almost no overshoot. D. Liu et al. [20] 
present a practical solution to analyze and control the overhead crane. A sliding mode fuzzy 
control algorithm is designed for both X-direction and Y-direction transports of the 
overhead crane. Incorporating the robustness characteristics of SMC and FLC, the proposed 
control law can guarantee a swing-free transportation. J.A. Mendez et al. [21] deal with the 
design and implementation of a self-tuning controller for an overhead crane. The proposed 
neurocontroller is a self-tuning system consisting of a conventional controller combined 
with a NN to calculate the coefficients of the controller on-line. The aim of the proposed 
scheme is to reduce the training-time of the controller in order to make the real-time 
application of this algorithm possible. Ho-Hoon Lee et al. [22] proposes a new approach for 
the anti-swing control of overhead cranes, where a model-based control scheme is designed 
based on a V-shaped Lyapunov function. The proposed control is free from the 
conventional constraints of small load mass, small load swing, slow hoisting speed, and 
small hoisting distance, but only guarantees asymptotic stability with all internal signals 
bounded. This paper also proposes a practical trajectory generation method for a near 
minimum-time control, which is independent of hoisting speed and distance. In this paper 
[23], robustness of the proposed intelligent gantry crane system is evaluated. The evaluation 
result showed that the intelligent gantry crane system not only has produced good 
performances compared with the automatic crane system controlled by classical PID 
controllers but also is more robust to parameter variation than the automatic crane system 
controlled by classical PID controllers. In this paper [24], the I-PD and PD controllers 
designed by using the CRA method for the trolley position and load swing angle of 
overhead crane system have been proposed. The advantage of CRA method for designing 
the control system so that the system performances are satisfied not only in the transient 
responses but also in the steady-state responses, have also been confirmed by the simulation 
results. 
Although most of the control schemes mentioned above have claimed an adaptive 
stabilizing tracking/regulation for the crane motion, the stability of the sway angle 
dynamics is hardly taken into account. Hence, in this chapter, a nonlinear control scheme 
which incorporates both the cart motion dynamics and sway angle dynamics is devised to 
ensure the overall closed-loop system stability. Stability proof of the overall system is 
guaranteed via Lyapunov analysis. To demonstrate the effectiveness of the proposed 
control schemes, the overhead crane system is set up and satisfactory experimental results 
are also given. 
2. Dynamic Model of Overhead Crane 
The aim of this section is to drive the dynamic model of the overhead crane system. The 
model is dived using Lagrangian method. The schematic plotted in Figure 1 represents a 
three degree of freedom overhead crane system. To facilitate the control development, the 
following assumptions with regard to the dynamic model used to describe the motion of 
overhead crane system will be made. The dynamic model for a three degree of freedom 
(3-DOF) overhead crane system (see Figure 1) is assumed to have the following postulates. 
A1: The payload and the gantry are connected by a mass-less, rigid link. 
A2: The angular position and velocity of the payload and the rectilinear position and 



280                                                                                   Adaptive Control 

velocity of the gantry are measurable. 
A3: The payload mass is concentrated at a point and the value of this mass is exactly 
known; moreover, the gantry mass and the length of the connecting rod are exactly known. 
A4: The hinged joint that connects the payload link to the gantry is frictionless. 
 

 
Fig. 1. 3-D Overhead Crane System 

The 3-D crane system will be derived based on Lagrange-Euler approach. Consider the 
3-dimensional overhead crane system as shown in Figure 1. The cart can move horizontally 
in x-y plane, in which the moving distance of the cart along the X-rail is denoted as x(t) and 
the distance on the Y-rail measured from the initial point of the construction frame is 
denoted as y(t). The length of the lift line is denoted as l. Define the angle between the lift 
line and its projection on the y-z plane as )(tα  and the angle between the projection line 
and the negative axis as )(tβ . Then the kinetic energy and potential energy of the system 
can be found in Equation (1.1) and (1.2), respectively and be expressed as the following 
equations. 
 

)(
2
1)(

2
1

2
1 2222

21
2

1 cccc zyxmymmxmK &&&&& +++++=                  (1) 

 
βα coscosmglV −=                                     (2) 

 
where cx , cy  are the related positions of the load described in the Cartesian coordinate, 
which can be mathematically written as 
 

αsinlxxc +=                                        (3) 
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βα sincoslyyc +=                                     (4) 
 

βα coscoslzc −=                                      (5) 
 
The following equations express the velocities by taking the time derivative of above 
equations 
 

αα cos&&& lxxc +=                                       (6) 
 

βαββαα coscossinsin &&&& llyyc +−=                           (7) 
 

βαββαα sincoscossin &&& llzc −−=                           (8) 
 

By using the Lagrange-Euler formulation, 
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where VKL −= , iq  is the element of vector Tyxq ][ βα=  and iτ  is the 
corresponding external input to the system, we have the following mathematical 
representation which formulates the system motion 

 
τ=++ )(),()( qGqqCqqM &&&                              (10) 

 
where 44)( ×∈ RqM  is inertia matrix of the crane system, 14),( ×∈ RqqC &  is the 
nonlinear terms coming from the coupling of linear and rotational motion, 14)( ×∈ RqG  
is the terms due to gravity, and T

yx uu ]00[=τ is the input vector.  
As mentioned previously, the dynamic equation of motion described the overhead crane 
system also have the same properties as follows 
P1: The inertia matrix )(qM  is symmetric and positive definite for all nRq∈ . 
P2: There exists a matrix ),( qqB &  such that qqqBqqC &&& ),(),( = , and 4Rx∈∀  

0)2( =− xBMxT & , i.e., BM 2−&  is skew-symmetric. xyyx qqqBqqqB &&&& ),(),( = . 
P3: The parameters of the system can be linearly extracted as 
 

ff qqqWqGqqCqqM Φ=++ ),,()(),()( &&&&&&                     (11) 
 
where ),,( qqqWf &&& is the regressor matrix and fΦ  is a vector containing the system 
parameters. 
Dynamic Model of Overhead Crane 
In this section, an adaptive control scheme will be developed for the position tracking of an 
overhead crane system. 
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2.1  Model formulation 
For design convenience, a general coordinate is defined as follows 

][ TT
p

T qqq θ=  
where 

][ yxqT
p = , ][ βαθ =Tq  

and using the relations in P2, the dynamic equation of an overhead crane (10) is partitioned 
in the following form 
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where ppM , θpM , θθM , ppB , θpB , pBθ , θθB  are 2×2 matrices partitioned from 
the inertia matrix )(qM  and the matrix ),( qqB & , respectively, pG , θG are 2×1 
vectors, and ][ yx

T
p uuu = . Before investigating the controller design, let the error 

signals be defined as 

TTT
pd eeqqe ][ θ=−=                              (13) 

and the stable hypersurface plane is defined as 
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where 
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and dx , dy , dα  and dβ  are defined trajectories of x , y , α  and β  respectively, 
and pK , θK  are some arbitrary positive definite matrices. 
Then, after a lot of mathematical arrangements, the dynamics of the newly defined signal 
vectors ps , θs  can be derived as 
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where 
)()()()( θθθθθθθτ ekqBekqBekqMekqM pppppdppppppdppp +−++−++−++−= &&&&&&&&     (16) 

)()()()( θθθθθθθθθθθθθτ ekqBekqBekqMekqM pppdppppdp +−++−++−++−= &&&&&&&&     (17) 

Remark 1: The desired trajectories dx , dy , dα  and dβ should be carefully chosen so as 
to satisfy the internal dynamics, as shown in the lower part of equation (15), when the 
control objective is achieved, i.e.,  

0)(),(),()()( =+⎥
⎦

⎤
⎢
⎣

⎡
+⎥
⎦

⎤
⎢
⎣

⎡
+⎥
⎦

⎤
⎢
⎣

⎡
+⎥
⎦

⎤
⎢
⎣

⎡
qGqqB

y
x

qqBqM
y
x

qM
d

d

d

d
P

d

d
d

d

d
d

T
P θθθθθθθ β

α
β
α

&

&
&

&

&
&

&&

&&

&&

&&
    (18) 

Without loss of generality, we always choose an exponentially-convergent trajectories with 
final constant values for dx , dy and zero for dα , dβ .  

2.2  Adaptive Controller Design 
In this subsection, an adaptive nonlinear control will be presented to solve the tracking 
control problem. 

 

 

 

 

 

 

Fig. 2. An Adaptive Self-tuning Controller Block Diagram 

As indicated by property P3 in section 1.2, the dynamic equations of an overhead crane 
have the well-known linear-in-parameter property. Thus, we define 

θθ qqqq pp && ,,,

θθ qqqq pp && ,,,
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ppppppdppdppppdpp ekBekqBekqMekqM θθθθθφω +++−++= )()()(11 &&&&&&&       (19) 

θθθθθθθθθθφω ekBekqBekMekqM pppdppppdp +++++= )()()(22 &&&&&      (20) 

where 1ω , 2ω  are regressor matrices with appropriate dimensions, and 1φ , 2φ  are their 
corresponding vectors of unknown constant parameters, respectively. As a majority of the 
adaptive controller, the following signal is defined 
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where xδ  is some small positive constant and 
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Remark 2: Note that (21) is simply to define a differential equation of which its variable 
)(tZ x remains positive. Let another signal k(t) be defined to be its positive root, i.e., 

xZk = , It can be shown that 
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In the sequel, we will first assume that there exists a measure zero set of time sequences 
{ }∞=1iit  such that 0)( =itZ  or 0)( =itk , ∞= ,...3,2,1i , and then, verify the existence 
assumption valid. 
Now let the adaptive control law be designed as 

pvpvP sKu −−−= τφω 11
ˆ                              (25) 
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where 
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and 21
ˆ,ˆ φφ are the estimates of 21,φφ respectively, then the error dynamics can be 

obtained as 
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or more compactly as 
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Moreover, let the adaptation laws be chosen as 
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where ba kk , are some positive definite gain matrices. In what follows we will show that 
the error dynamics (30) along with the adaptive laws (32) constitutes an asymptotically 
stable closed-loop dynamic system. This is exactly stated in the following theorem. 
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Theorem : Consider the 3-D overhead crane system as mathematically described in (10) or (12) with 
all the system parameters unknown. Then, by applying control laws (25)-(28) and adaptive laws (32), 
the objective for the tracking control problem can be achieved, i.e., all signals inside the closed-loop 
system (29) are bounded and 0,,, →βα eeee yx  asymptotically in the sense of Lyapunov. 
 
Proof: Define the Lyapunov function candidate as 
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It is obvious that, due to the quadratic form of system states as well as the definition of 
)(tZ x , V(t) is always positive-definite and indeed a Lyapunov function candidate. By 

taking the time derivative of V we get 
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It is clear that 0)( <tV&  as long as 0>K , which then implies ∞∈ Lks 21
~,~,, φφ  Now, 

assume that 0)( =tk  instantaneously at it . Because the solution )(tZ x of the equation 
(21) is well defined and is continuous for all 0≥t , k(t) is continuous at it , i.e., 

)()( +=− ii tktk . Since V  is a continuous function of k , it is clear that )(tV  remains 
to be continuous at it , i.e. , )()( +=− ii tVtV . Form then hypothesis, 0)( <−

itV& and 
,0)( <+

itV&  we hence can conclude that V is nonincreasing in t including it , which then 
readily implies that ∞∈ Lks, . Therefore, ve τ,  and ∞∈ Lθτ  directly from equation 
(13) and definitions of vτ  and θτ . It then follows from (30) that ∞∈ Ls& . On the other 
hand, if the set of time instants 

{ }∞=1iit  is measure zero, then 
∞<∞−=− ∫ ∞ )()0(0 VVdtV&  or equivalently that ∞<− ∫ ∞ dts 2

0  so that 2Ls∈ . 
Form the error dynamics, we can further conclusion that .∞∈ Ls&  Then by Barbalat’s 
lemma we readily obtain that 0→s as ∞→t asymptotically as ∞→t  and therefore, 

0, →ee & as ∞→t  Note that in the above proof we have used the property 
)),(2)(( qqBqM && −  is skew- symmetric. Finally, to complete the proof in theory, we 

need to show that the above hypothesis that the set of time instants { }∞=1iit  is indeed 
measure zero. However, it is quite straightforward to conclude the result from (21) by 
simply using the fact that all signals are bounded. This completes our proof. 
 
Remark 3: From the robustness point of view, it would be better if additional feedback term 

θskq− is included in the control law (24). With such an inclusion, the sway stabilization 
result subject to external disturbance can also be maintained as the cart arrived at its 
destination. This can be easily checked from the stability proof given in the theorem.  
Proof: Let the Lyapunov function candidate be chosen as 
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and take the time derivative of V to get 
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3.  Computer Simulation 

In this subsection, several simulations are performed and the results also confirm the 
validity of our proposed controller. The desired positions for X and Y axes are 1 m. Figure 3 
shows the time response of X-direction. Figure 5 show the time responses of Y-direction. It 
can be seen that the cart can simultaneously achieve the desired positions in both X and Y 
axes in approximately 6 seconds with the sway angles almost converging to zero at the same 
time. Figure 4 and Figure 6 show the response of the sway angle with the control scheme. 
Figure 7 and Figure 8 show the velocity response of both X-direction and Y-direction. Figure 
9 and Figure 10 show the control input magnitude. In Figure 11~14, the parameter estimates 
are seen to converge to some constants when error tends to zero asymptotically and the time 
response of the tuning function k(t) is plotted in Figure 15.  
The control gains are chosen to be 
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The corresponding adaptive gains are set to be 1== ba kk  

 
Fig. 3. Gantry Tracking Response )(tx  with Adaptive Algorithm 

 
Fig. 4. Sway Angle Response )(tα  with Adaptive Algorithm  

 
Fig. 5. Gantry Tracking Response )(ty  with Adaptive Algorithm 
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Fig. 6. Sway Angle Response )(tβ  with Adaptive Algorithm 

 
Fig. 7. Gantry Velocity Response )(tx&  with Adaptive Algorithm 
 

 
Fig. 8. Gantry Velocity Response )(ty&  with Adaptive Algorithm 
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Fig. 9. Force Input xu  

 

Fig. 10. Force Input yu   

 

Fig. 11. Estimated Parameters )(1 txφ  
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Fig. 12. Estimated Parameters 

 

Fig. 13. Estimated Parameters )(1 tyφ  
 

 
Fig. 14. Estimated Parameters )(2 tαφ  
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Fig. 15. Response Trajectory of )(tk  

4. Experimental Verification 

In this section, to validate the practical application of the proposed algorithms, a three 
degree-of-freedom overhead crane apparatus, is built up as shown in Figure 16. Several 
experiments are also performed and indicated in the subsequent section for demonstration 
of the effectiveness of the proposed controller. 
 

 
Fig. 16. Experimental setup for the overhead crane system 

The control algorithm is implemented on a xPC Target for use with real time Workshop® 
manufactured by The Math Works, Inc., and the xPC target is inserted in a Pentium4 
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2.4GHz PC running under the Windows operating system. The sensing system includes the 
two photo encoders and two linear position sensors. The cart motion X-direction and 
Y-direction motion measured by linear potentiometer. Two potentiometers are connected to 
the travel direction and the traverse direction. An AC servo motor with 0.95 N-m maximum 
torque and 3.8N-m maximum torque output is used to drive the cart motion X direction and 
Y direction. The servomotors are set in torque control mode so as to output the desired 
torques. 
In the experimental study, the proposed control algorithms have been tested and compared 
with the conventional PD controller. From the experimental results, it is found that our 
proposed algorithms indeed outperform the conventional control scheme in all aspects. A 
schematic description of the experimental system is draw in Figure 17. 
 

 
Fig. 17. A Schematic Overview of the Experimental Setup 

 

4.1  Experiments for Conventional PD control as a comparative study 
In the experiments, a simple PD control scheme with only position and velocity feedback is 
first tested for the crane control. Figure 18 and Figure 20 show the control responses. From 
Figure 19 and Figure 21 it is observed that the sway oscillation can not be rapidly damped 
by using only conventional PD control, although the tracking objective is ultimately 
achieved. 
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Fig. 18. Gantry Tracking Response )(tx  with Conventional PD Control 

 
Fig. 19. Sway Angle Response )(tα  with Conventional PD Control 

 
Fig. 21. Sway Angle Response )(tβ  with Conventional PD Control 
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Fig. 20. Gantry Tracking Response )(ty  with Conventional PD Control 

4.2 Experiments for the Proposed Adaptive Control Method with Set-point Regulation 
In the subsection, the developed adaptive controller is applied. The following controlled 
gains are chosen for experiments. 
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The corresponding adaptive gains are set to be 1 i.e., 1== ba kk . Figure 22~31 depict the 
experimental results for the crane system with the adaptive control law. Figure 22 and 
Figure 24 demonstrate the tracking performance in X and Y directions. It is experimentally 
demonstrated that the sway angle can be actively damped out by using our proposed 
adaptive schemes, as shown in Figure 23 and Figure 25 with maximum swing angle about 
0.05 rad and 0.06 rad, respectively. Figure 26 and Figure 27 show the input torques from 
each AC servo motors, whereas Figure 28~30 plot the associated adaptive gain turning 
trajectories. The trajectory of coupling gain k(t) is also in Figure 31 with initial value 0.05. 
The initial values of other state variable are all zero. Apparently the tracking and damping 
performances by applying the adaptive control algorithm are much better than the ones 
resulting from the PD control. 
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Fig. 22. Gantry Tracking Response with Adaptive Algorithm X(t) 

 
Fig. 23. Sway Angle Response with Adaptive Algorithm α (t)

 
Fig. 24. Gantry Tracking Response with Adaptive Algorithm Y(t) 
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Fig. 25. Sway Angle Response with Adaptive Algorithm β (t) 
 

 
Fig. 26. Force Input Ux 

 
Fig. 27. Force Input Uy 
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Fig. 28. Estimated Parameters x1φ (t) 

 

Fig. 30. Estimated Parameters αφ2 (t) and βφ2 (t) 
 

 
Fig. 29. Estimated Parameters y1φ (t) 
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Fig. 31. Trajectory of k (t)  

4.3  Experiments for the Proposed Adaptive Control with Square Wave Tracking  
To prove the prevalence of our controllers, experiments on the tracking of square wave, as 
shown in Figure 6, is also conducted. The gains are kept the same as in the previous 
experiments. Figure 6(a) and Figure 6(c) demonstrate the tracking performance in X and Y 
directions, respectively while Figure 6(b) and Figure 6(d) show the suppression results of 
sway angles. It is found that good performance can still be preserved is spite of the sudden 
change of desired position. 

 
Fig. 32. Desired Trajectory 
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Fig. 33. Tracking Response )(tx  with Adaptive Algorithm 
 

 
Fig. 34. Sway Angle Response )(tα  with Adaptive Algorithm 
 

 
Fig. 35. Tracking Response )(ty  with Adaptive Algorithm 
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Fig. 36. Sway Angle Response )(tβ  with Adaptive Algorithm 
 

 
Fig. 37. Trajectory of  k(t) 

5. Conclusion 

In this chapter, a nonlinear adaptive control law has been presented for the motion control 
of overhead crane. By utilizing a Lyapunov-based stability analysis, we can achieve 
asymptotic tracking of the crane position and stabilization of payload sway angle for an 
overhead crane system which is subject to both underactuation and parametric 
uncertainties. Comparative simulation studies have been performed to validate the 
proposed control algorithm. To practically validate the proposed adaptive schemes, an 
overhead crane system is built up and experiments are also conducted. Both simulations 
and experiments show better performance in comparison with the conventional PD control. 
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APPENDIX A 

Mathematical Description of The Dynamic Model 
 
The dynamic equation of the 3D overhead crane system can be derived by using  
 
Largrange-Euler formula and shown in the following 
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To satisfy property P2 as stated in section 2 the vector ),( qqC &  can be re-arranged as 

qqqBqqC &&& ),(),( =  where 
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It can be easily checked that 
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which is skew-symmetrical matrix. 
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1. Introduction      
 

In recent years, control Lyapunov functions (CLFs) and CLF-based control designs have 
attracted much attention in nonlinear control theory. Particularly, CLF-based inverse 
optimal controllers are some of the most effective controllers for nonlinear systems [Sontag 
(1989); Freeman & Kokotović (1996); Sepulchre et al. (1997); Li & Krstić (1997); Krstić & Li 
(1998)]. These controllers minimize a meaningful cost function and guarantee the optimality 
and a stability margin. Moreover, we can obtain the optimal controller without solving the 
Hamilton-Jacobi equation. An inverse optimal controller with input constraints has also 
been proposed [Nakamura et al. (2007)]. On the other hand, these controllers assume that 
the desired state of the controlled system is an equilibrium state. Then, if the controlled 
system does not satisfy the assumption, we have to use a pre-feedback control design 
method to the assumption is virtually satisfied. However, a pre-feedback control design 
causes the luck of robustness. This implies that a stability margin of inverse optimal 
controllers is lost. Hence the designed controller does not asymptotically stabilize the 
system if there exists a parameter uncertainty in the system.  
In this article, we study how to guarantee a stability margin when the pre-feedback 
controller design is used. We consider a magnetic levitation system as an actual control 
example and propose an adaptive inverse optimal controller which guarantees a gain 
margin for the system. The proposed controller consists of a conventional inverse optimal 
controller and a pre-feedback compensator with an adaptive control mechanism. By 
introducing adaptive control law based on adaptive control Lyapunov functions (ACLFs), 
we can successfully guarantee the gain margin for the closed loop system.  Furthermore, we 
apply the proposed method to the actual magnetic levitation system and confirm its 
effectiveness by experiments.  
This article is organized as follows. Section 2 introduces some mathematical notation and 
definitions, and outlines the previous results of CLF-based inverse optimal control design. 
Section 3 describes the experimental setup of the magnetic levitation system and its 
mathematical model. In section 4, we design an inverse optimal controller with a pre-
feedback compensator for the magnetic levitation system. The problem with the designed 
controller is demonstrated by the experiment in section 5. To deal with the problem, we 
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propose an adaptive inverse optimal controller in section 6. The effectiveness of the 
proposed controller is confirmed by the experiment in section 7. Section 8 is devoted to 
concluding remarks.   

 
2. Preliminaries 
 

In this section, we introduce some mathematical definitions and preliminary results of CLF-
based inverse optimal control. We also refer to ACLF-based adaptive control techniques.  

 
2.1 Mathematical notations and definitions 
We use the notation ),0[:0 ∞=≥R .  
Definition 1  A function )sgn(y  is defined for Ry∈  by the following equation:  
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In this section, we consider the following input affine nonlinear system: 
 

,)()( uxgxfx +=&  (2) 
 
where nRx∈ is a state vector, mRUu ⊆∈  is an input vector and U  is a convex subspace 
containing the origin 0=u .  We assume that nn RRf →:  and mnn RRg ×→:  are continuous 
vector fields, and 0)0( =f . Let VLf

 and VLg
 be the Lie derivative of )(xf  and )(xg  

respectively, which are defined by  
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(4) 

For simplicity of notations, we shall drop )(x  in the remaining of this article. We suppose 
that a local control Lyapunov function is given for system (2). 
 
Definition 2 A smooth proper positive-definite function 0: ≥→ RXV  defined on a 

neighborhood of the origin nRX ⊂  is said to be a local control Lyapunov function (local 
CLF) for system (2) if the condition  
 

0}{inf <⋅+
⊂

uVLVL gfUu
 (5) 
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is satisfied for all }0{\Xx∈  . Moreover, )(xV  is said to be a control Lyapunov function 
(CLF) for system (2) if )(xV  is a function defined on entire nR  and condition (3) is satisfied 
for all }0{\nRx∈ .   
If there exists no input constraint ( mRU = ), a smooth proper positive-definite function 

0: ≥→ RRV n  is a CLF if and only if  
 

.0,00 ≠∀<⇒= xVLVL fg
 (6) 

 
In this article, we guarantee the robustness of controllers by sector margins and gain 
margins. 
 
Definition 3 A locally Lipschitz continuous mapping mRu ∈)(φ  is said to be a sector 
nonlinearity in ),( βα  with respect to mRu∈  if the following conditions are satisfied:  
 

,0,)( ≠∀<< uuuuuuu TTT βφα  
.0)0( =φ  (7) 

 
Definition 4   System (2) is said to have a sector margin ),( βα  with respect to mRu∈  if the 
closed system  
 

)()()( uxgxfx φ+=&  (8) 
 
is asymptotically stable, where )(uφ  is any sector nonlinearity in ),( βα  with respect to 

mRu∈  .  
 
Definition 5  System (2) is said to have a gain margin ),( βα  with respect to mRu∈  if the 
closed system (8) is asymptotically stable, when )(uφ  is given as follows:  
 

).,(,)( βακκφ ∈= uu  (9) 
 
By the definition, gain margins are the special case of sector margins. If system (2) has a 
sector margin ),( βα , it also has a gain margin ),( βα . 

 
2.2 Inverse optimal controller  
We introduce the inverse optimal controller proposed by Nakamura et al [Nakamura et al. 
(2007)]. The following results are obtained for system (2) with input constraint  
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where ∞<< k1  is a constant and 0)( >xC  is continuous on nR . 
 
Theorem 1  We consider system (2) with input constraint (10). Let )(xV  be a local CLF for 
system (2) and 01 >a be the maximum number satisfying  
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Then, 1W  is a domain in which the origin is asymptotically stabilizable. If )(xV  is a CLF, 
then ∞=1a  and nRW =1 . 
 
Theorem 2  We consider system (2) with input constraint (10) . Let )(xV  be a local CLF for 
system (2) , )(xP  be a function defined by  
 

,
)(

)(

1−

=

k
kg

f

VLxC
VL

xP  
(12) 
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is satisfied, and d  be a positive constant. Then, input  
 

)sgn(
)(

1 1
1

VLVL
xR

u
ii g

k
gi

−−=       ),,,1( mi K=  

 

(14) 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=

≠
++

−

+

= −

−

−

−

−

−

),0(
)(

2

)0(
)()(

1

))(2(

)( 1
1

1

1
1

1

1
1

1

VL
xq

VL
VLxqPP

k
k

VLVLxq

xR

g

g
k

k
kg

k

k
kg

k

k
kg

. 

 

(15) 

)()( 1
1

xdCxq k−=  (16) 



Adaptive Inverse Optimal Control of a Magnetic Levitation System 

 

311 

asymptotically stabilizes the origin in rW , and minimizes the cost function:  
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Moreover, it achieves at least a sector margin ),( βα  in rW . 

 
2.3 Adaptive control problem 
We consider an adaptive control problem for nonlinear systems. In this section, we 
introduce some definitions and properties. We consider the following input affine nonlinear 
system:  
 

,)()()( 10 uxgxfxfx ++= θ&  (18) 
 
where nRx∈  is a state vector, mRu∈  is an input vector, and pR∈θ  is a constant unknown 
parameter vector. We assume that nn RRf →:0 , mnn RRg ×→:  and pnn RRf ×→:1  are 
continuous vector fields, and 0)0(0 =f . Note that there exists no input constraint.  
The stabilizability of the system with unknown parameters is defined as the following. 
 
Definition 6  Let θ̂  be an estimate of θ . We say that (18) is globally adaptively stabilizable 
if there exist a function )ˆ,( θα x  continuous on pn RR ×}0{\  with 0)ˆ,0( ≡θα , a continuous 

function )ˆ,( θτ x , and a positive definite symmetric pp ×  matrix Γ , such that the dynamic 
controller  
 

),ˆ,( θα xu =  
 

(19) 

)ˆ,(ˆ θτθ xΓ=&  (20) 
 
guarantees that the solution )ˆ,( θx  is globally bounded, and 0→x  as ∞→t  for any value 
of the unknown parameter pR∈θ . 
For the stabilization problem, we introduce an adaptive control Lyapunov function (ACLF) 
as the following. 
 
Definition 7  We consider system (18) and assume that ),( θxVa  is a CLF for system (18). 
Then, ),( θxVa  is called an adaptive control Lyapunov function (ACLF) for system (18) if 

there exists a positive-definite symmetric matrix Γ  such that for each pR∈θ , aV  is a CLF 
for the modified system  
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Krstić et al. (1995) proved the following theorem. 
Theorem 3  The following two statements are equivalent:  
(1) There exists a triple ),,( ΓaVα  such that )ˆ,( θα x  globally asymptotically stabilizes (21) at 

0=x  for each pR∈θ  with respect to the Lyapunov function ),( θxVa . 
(2) There exists an ACLF ),( θxVa  for system (18). 

 
3. Magnetic Levitation System 
 
3.1 System configuration 
We consider a stabilization problem of a magnetic levitation system shown in Fig. 
1[Mizutani et al. (2004)]. The system consists of a magnet with a disk, a glass guide rod, 
upper and lower magnetic drive coils that generate a magnetic field in response to a DC 
current and two laser-based sensors that measure the magnetic position using the reflection 
of the disk surface.  

 
3.2 Mathematical model of the system 
In this article, we control the position of the magnet using attractive force generated by the 
upper drive magnetic coil. The force diagram is illustrated in Fig. 2. ξ  is the position of the 
magnet from the upper coil, and uF  is an attractive force for the magnet generated by the 
upper drive magnetic coil.  
The dynamical equation for the magnet is described by  
 

,0mgmFm u −−= ξμξ &&&  (22) 

 
where m is the mass of the magnet, μ  is a friction constant. 0g  is the gravitational 
acceleration.  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Magnetic levitation system 
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Fig. 2. Force diagram of the magnetic levitation system  

 
Here, uF  is modeled by  
 

,
)( 4ba

uFu +−
=

ξ
 (23) 

 
where a  and b  are constants determined by numerical modeling of the magnetic 
configuration, and u  is a control input voltage for the upper coil. The position ξ  is 
measured by the upper laser sensor.  
Let *ξ  be the desired position of the magnet, *

1 ξξ −=x , and 12 xx &= . We set Txxx ],[ 21= . 
Then we obtain the following state equation: 
 

,)()( uxgxfx +=&  (24) 
 
where )(xf  and )(xg  are defined as  
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The system parameters are shown in Table 1.  
 

m  
[kg] 

μ  
[-] 

0g  
[m/s2] 

a  
[V/N m4] 

b  
[m] 

0.12 4.5 9.80665 40118.9 0.056464 
Table 1. Parameter values of the magnetic levitation system 
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There exists the following input constraint in system (24): 
 

52
2

<= uu [V]. (26) 
 
By the above discussion, the control problem is reduced to the stabilization problem of 
system (24) with the input constraint (26).  

 
4. Pre-feedback Gravity Compensation 
 

In system (2), we assume that 0)0( =f . However, 0)0( ≠f  in system (24). Therefore, we 
cannot directly apply the inverse optimal controller (14) to system (24). To achieve 0)0( =f , 
we design a controller to compensate for gravity by a pre-feedback input.  
We consider the following gravity compensation input )(xuc  as  
 

.)()( 4*
10 bxamgxuc +−−= ξ  (27) 

 
Substituting (27) into (24), the gravitational acceleration 0g  is successfully canceled. Then, 
we split the input )(xu using )(xuc  as  
 

),()()( xuxuxu sc +=  (28) 
 
where su  is an asymptotic stabilizing input for system (24) when 00 =g .  
By using (26) and (28), the input constraint is rewritten to  
 

.5)()()(
22
<+= xuxuxu sc

 (29) 
 
To handle input constraint (29) as a norm constraint, we rewrite (29) as  
 

).(:)(5)(
2

xCxuxu cs =−<  (30) 

 
(30) represents a constraint depending on the state. Note that constraint (30) is more severe 
than the original constraint (29). The problem of designing controller (28) is reduced to the 
problem of designing controller )(xus  with input constraint )()(

2
xCxus < .  

To apply inverse optimal controller (14), we construct a CLF for system (24). In general, the 
controller performance often depends on a CLF. However, it is unclear which CLF achieves 
the best control performance. Hence, we construct a CLF with a design parameter. Using the 
integrator backstepping method, a CLF )(xV  can be carried out as  
 

,
2
1)1(

2
1)( 2

221
2

1
2 xxrxxrxV +++=  (31) 
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where r  is a positive constant and also a design parameter. 
Now, we construct input su . Let )(0 xf  be the function defined by  
 

.|)()(
2

2
00 0 ⎥

⎦

⎤
⎢
⎣

⎡
−

== = x
x

xfxf g μ
 (32) 

 
By using (31), we can calculate VLf0

 and VLg
 as  

 
,)(})1{( 2

221
2

0
xrxxrrVLf μμ −+−+=  

 

(33) 

.
)( 4*

1

21

bxma
xrxVLg +−−

+
=

ξ
 (34) 

 
Substituting (33) and (34) into (14) and (15), we get the following input )(xus .  
 

,
)(

1)(
1

VL
xR

xu gs −= , 

 
(35) 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=

≠
++

+

=

),0(
)(

2

)0(
)()(2

))(2(

)( 211

22

1

VL
xq

VL
VLxqPP

VLVLxq

xR

g

g
g

gg

 

 

(36) 

,
)(

)(
2

1
0

VLxC
VL

xP
g

f=    

 

(37) 

.)(5)()(
2

xudxdCxq c−==  

 
(38) 

According to Theorem 2, )(xus  has a sector margin ),2/1( ∞ .  
Finally, the following controller )(xu  is obtained: 
 

.
)(

1)()(
1

4*
10 VL

xR
bxamgxu g−+−−= ξ  (39) 

 
5. Experiment 1 
 

We apply controller (39) to  the  magnetic  levitation  system. We  set  [ ]Tx 0.0,4.1)0( −=  and 

0.2* −=ξ [cm]. The  controller  is  implemented  by   MATLAB/SIMULINK.  The   sampling 
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interval is 3101 −× [sec] and control parameters are 8=r  and 41025.1 −×=d , respectively.  
The time response of the controlled system is shown in Fig. 3. Although the velocity 2x  
vibrates due to sensor noise, the input constraint (26) is satisfied. However, the position 1x  
does not converge to zero (an offset error remains). Then, the actual magnetic levitation 
system is not asymptotically stabilized by the proposed controller (39).  
The biggest reason for the offset error is the lack of robustness with respect to cu . If there 
exists a parameter uncertainty in )(xg , the gravitational acceleration 0g  is not completely  
canceled by the pre-feedback )(xug

. Therefore, the proposed controller )(xu  does not 

guarantee the robustness for the system (24) even if the stabilizing input )(xus  guarantees 
the sector margin ),2/1( ∞  for the system  
 

.)()(0 suxgxfx +=&  (40) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Experimental result of controller (39) 

 
6. Adaptive Inverse Optimal Controller Design 
 
6.1 Robustness recovery via adaptive control 
To  solve  the  problem  stated in  section 5, we propose  a  controller  that  guarantees a gain 
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margin for u . We apply an adaptive control technique to achieve a gain margin for input u .  
Before applying the adaptive controller, we rewrite the system (24) to  
 

,)()()( 010 uxggxfxfx ++=&  (41) 
 
where )(0 xf  is defined by (31) and [ ]Txf 1,0)(1 −= . Additionally, to consider a gain margin 
for (41), we rewrite the system to  
 

,)()()( 10 uxgxfxfx κθκ ++=&  (42) 
 
where κ  is an unknown constant and κθ /: 0g=  is a constant unknown parameter. Note 
that the range of κ , in which the origin of the system (42) is asymptotically stable, is a gain 
margin for input u . Furthermore, we consider the following input: 
 

),ˆ,()ˆ,()ˆ,( θθθ xuxuxu sc ′+=  (43) 
 
where κθ ˆ/:ˆ

0g=  and κ̂  is an estimate of κ . We suppose that input )ˆ,( θxus′  asymptotically 

stabilizes the system (40) and guarantees the gain margin ),2/1( ∞ . Let )ˆ,( θxug
 be a gravity 

compensation input defined as follows: 
 

.)(ˆ)ˆ,( 4*
1 bxmaxuc +−−= ξθθ  (44) 

 
Remark 1  In this section, we do not mention whether the input constraints exist or not.  
 

Then, we construct an adaptive law θ&̂  such that the input (43) stabilizes the system (42) and 
show the input (43) has a gain margin ),2/1( ∞ . 
In this section, we use an ACLF to construct an adaptive law. The following lemma is 
available for constructing an ACLF.  
 
Lemma 1  We consider system (42). Let )(xV  be a CLF for system (41). Then, )(xV  is an 
ACLF for system (42).  
 
Proof:  If )(xV  is an ACLF for system (42), )(xV  is a CLF for the following system:  
 

,)()()( 10 uxgVxfxfx κ
θ

γθκ +⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

++=&  (45) 

 
where γ  is a positive constant. Note that 0/ =∂∂ θV , the above system is rewritten to  
 

.)()()( 10 uxgxfxfx κθκ ++=&  (46) 
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Sytem (46) is asymptotically stabilized by the input  
 

),()()( xuxuxu sc +=θ  (47) 
 
where )(xuc  and )(xus  are defined by  (27) and (35) respectively. This implies all CLFs for 
system (41) are ACLFs for system (42).  
 
By Lemma 1, CLF (31) is applicable to an ACLF for system (42). 
 
Lemma 2  We consider system (42) and assume that an ACLF )(xV  for (42) is obtained. Let 

)ˆ,( θxV ′  be a function defined by  
 

,~
2

)()ˆ(
2

)()ˆ,( 22 θ
γ
κθθ

γ
κθ +=−+=′ xVxVxV  (48) 

 

where ∞<<κ2/1  and θθθ ˆ:~
−= . Let the adaptive law θ&̂  be  

 

).()(ˆ
1 xf

x
Vx
∂
∂

== γγτθ&  (49) 

 
Then, )ˆ,( θxV ′  is a Lyapunov function for the closed loop system of (42).  
 
Proof:  Let the origin of system (42) be ),0()ˆ,( θθ =x . Then, V ′  is a positive definite function. 

Assume u  is input (43) and note that θθ && ˆ~
−= . Then,  

 

( ){ }[ ])ˆ,()ˆ,()(ˆ)()()ˆ,( 10 θθθκθ xuxuxgxfxf
x
VxV sc ′+++
∂
∂

=′&  

[ ] .0)ˆ,()()(0 ≤′+
∂
∂

= θκ xuxgxf
x
V

s
                              

(50) 

 
Since the input )ˆ,( θxus′  has a gain margin ),2/1( ∞ , )ˆ,( θxV& ′  is less than or equal to zero. 

Then )ˆ,( θxV ′  is a Lyapunov function for the closed loop system of (42) and the origin 

),0()ˆ,( θθ =x  is stable. 
 
Remark 2  Lyapunov function (48) contains an unknown constant κ . However, it does not 
become a problem because both input (43) and adaptive law (49) do not contain κ .  
 
Lemma 3  We consider system (42) and assume that an ACLF )(xV  for (42) is obtained. 

Then, if ∞<< κ2/1 , )(0 ∞→→ tx  and )(ˆ ∞→→ tθθ  are achieved by input (43) and 
adaptive law (49).  
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 Proof:  By Lemma 2, we can construct a Lyapunov function )ˆ,( θxV ′  (47) for system (41). 
The input and the adaptive law are given by (42) and (48), respectively. Then, we obtain 

)0(0)ˆ,( ≠≤′ xxV θ&  because the input )ˆ,( θxus′  has a gain margin ),2/1( ∞ . Let S  be a set 
defined by  
 

},ˆ,,0)ˆ,()ˆ,{(: RRxxVxS n ∈∈=′= θθθ &  

}.ˆ,0)ˆ,{( Rxx ∈== θθ                        
(51) 

 
We show that the largest invariant set contained in S  consists of only a point ),0()ˆ,( θθ =x . 
Consider the following solution of (42) belonging to S : 
 

.0,0)( ≥≡ ttx  (52) 
 
Note that 0)ˆ,0( =′ θsu , we obtain the following equation for (42): 
 

{ },)ˆ,0()0()0()0( 10 θθκ ugffx ++=&  

{ },)ˆ,()0()0(1 θθκ xugf c+=             

,0)ˆ(1 ≡−= θθκf                               

(53) 

 
where 0≠κ  and 0)0(1 ≠f , we obtain θθ ≡ˆ . On the other hand, if 0=x  and θθ ≠ˆ , we 
obtain 0≠x&  by (50). Therefore, the largest invariant set contained in S  is a set )},0{( θ . 

Finally, we obtain 0→x  and θθ →ˆ  when ∞→t  by LaSalle’s invariance principle [Khalil 
(2002)].  
 
The following theorem is obtained by Lemmas 2 and 3.  
 
Theorem 4  We consider system (42), controller (43) and adaptive law (49). Then, the 
controller has a gain margin ),2/1( ∞ .  

 
6.2 Adaptive inverse optimal controller  
We calculate θ&̂  of (49) by using CLF (31) as:  
 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
−

+++=
1

0
)1(ˆ

2121
2 xrxrxxrγθ&  

).( 21 xrx +−= γ                        
(54) 

 
Furthermore, taking into consideration the input constraint, we obtain the following 
controller:  
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),ˆ,()(ˆ)ˆ,()ˆ,()ˆ,( 4*
1 θξθθθθ xubxmaxuxuxu ssc ′++−−=′+=  

 
(55) 

,
)ˆ,(

1)ˆ,(
2

VL
xR

xu gs θ
θ −=′ , 

 
(56) 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=

≠
++

+

=

),0(
)ˆ,(

2

)0(
)ˆ,()(2

))ˆ,(2(

)ˆ,( 222

22

2

VL
xq

VL
VLxqPP

VLVLxq

xR

g

g
g

gg

θ

θ

θ

θ
 

 

(57) 

,
)ˆ,(

)ˆ,(
2

2
0

VLxC

VL
xP

g

f

θ
θ =   

  

(58) 

),ˆ,()ˆ,( θθ xdCxq =  
 

(59) 

,)ˆ,(5)ˆ,(
2

θθ xuxC c−=  

 
(60) 

where we use )(xus  given by (35) as )ˆ,( θxus′ . Then, note that the input constraint )(xC   is 

rewritten to )ˆ,( θxC  given by (60). According to Lemma 2 and the result of [Nakamura et al. 
(2007)], we can show the input )ˆ,( θxus′  minimizes the following cost function:  
 

∫
∞

′+=
0

22 ,
2

)ˆ,()ˆ,( dtuxRxlJ s
θθ  (61) 

 
where  
 

.
)ˆ,(2

1)ˆ,(
0

2

2
2

VLVL
xR

xl fg −=
θ

θ  (62) 

 
It is obvious that a gain margin ),2/1( ∞  is guaranteed for controller (55) at least in the 
neighborhood of the origin.  

 
7. Experiment 2 
 

In this section, we apply controller (55) to the magnetic levitation system and confirm its 
effectiveness by the experiment. To consider the input constraint, we employ the following 
adaptive law with projection instead of (54): 
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.0,0ˆ
0,2ˆ

)(
0
0

ˆ
21

210

21 otherwise
xrx
xrxg

xrx
<+=
>+=

⎪
⎩

⎪
⎨

⎧

+−
= θ

θ

γ
θ&  (63) 

 
We set the adaptation gain 160=γ  and the initial value of the estimate 820)0(ˆ =θ . The 
other experimental conditions and control parameters are the same as in section 5. The 
experimental result is shown in Fig. 5. Position 1x  converges to zero without any tuning of 
control parameters. The gain margin guaranteed by the adaptive law seems quite effective. 
We can observe that the input is larger than the non-adaptive controller (39), however, the 
input constraint is satisfied. The parameter estimate θ̂  also tends to converge to the true 
value θ . As a result, the effectiveness of the proposed controller (55) is confirmed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Experimental result of controller (55) 

  
8. Conclusion 
 

In this article, we proposed an adaptive inverse optimal controller for the magnetic 
levitation system. First, we designed an inverse optimal controller with a pre-feedback 
gravity compensator and applied it to the magnetic levitation system. However, this 
controller cannot guarantee any stability margin. We demonstrated that the controller did 
not work well (offset error remained) in the experiment. Hence, we proposed an improved 
controller via an adaptive control technique to guarantee the stability margin. Finally, we 
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confirmed the effectiveness of the proposed adaptive inverse optimal controller by the 
experiment. As a result, we achieved offset-free control performance. 
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1. Introduction     
 

In the unmanned ground vehicle (UGV) case, the estimation of a future position with a 
present one is one of the most important techniques (Madhavan & Schlenoff, 2004). 
Generally, the famous global positioning system (GPS) has been widely used for position 
tracking because of its good performance (Torrieri, 1984; Kim et al., 2006). However, there 
exist some defects. For example, it needs a separate receiver and it must have at least three 
available satellite signals. Moreover it is also vulnerable to the indoor case (Gleanson, 2006) 
or the reflected signal fading. 
There have been many researches to substitute or to assist the GPS. One of them is the 
method of using the time difference of arrival (TDoA) which needs no special equipment 
and can be operated in indoor multipath situation (Najar & Vidal, 2001). The TDoA means 
an arrival time difference of signals transmitted from a mobile station to each base station. It 
is the basic concept of estimation that the position of a mobile station can be obtained from 
the crossing point of hyperbolic curves which are derived from the definition of TDoA. 
Including some uncertainties, there have been several approaches to find the solution of 
TDoA based geolocation problem using the least square method, for example, Tayler series 
method (Xiong et al., 2003), Chan’s method (Ho & Chan, 1993), and WLS method (Liu et al., 
2006). However in case of a moving source, it demands a huge amount of computational 
efforts each step, so it is required to use a method which demands less computational time. 
As a breakthrough to this problem, the application of EKF can be reasonable. 
The modeling errors happen in the procedure of linear approximation for system behaviors 
to track the moving source’s position. The divergence caused from the modeling errors is a 
critical problem in Kalman filter applications (Julier & Uhlmann, 2004). The standard 
Kalman filter cannot ensure completely the error convergence because of the limited 
knowledge of the system’s dynamical model and the measurement noise. In real 
circumstances, there are uncertainties in the system modeling and the noise description, and 
the assumptions on the statistics of disturbances could be restrictive since the availability of 
a precisely known model is very limited in many practical situations. In practical tracking 
filter designs, there exist model uncertainties which cannot be expressed by the linear state-
space model. The linear model increases modeling errors since the actual mobile station 
moves in a non-linear process. Especially even with a little priori knowledge it is quite 
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valuable concerning the strategy. 
Hence, the compensation of model uncertainties is an important task in the navigation filter 
design. In modeling or formulating the mathematical equations, the possible prediction 
errors are approximated or assumed as a model uncertainty. The facts discussed above leads 
to unexpected deterioration of the filtering performance. To prevent the divergence problem 
due to modeling errors in the EKF approach, the adaptive filter algorithm can be one of the 
good strategies for estimating the state vector. This chapter suggests the adaptive fading 
Kalman filter (AFKF) (Levy, 1997; Xia et al., 1994) approach as a robust solution. The AFKF 
essentially employs suboptimal fading factors to improve the tracking capability. In AFKF 
method, the scaling factor is introduced to provide an improved state estimation. The 
traditional AFKF approach for determining the scaling factors mainly depends on the 
designer’s experience or computer simulation using a heuristic searching plan. In order to 
resolve this defect, the fuzzy adaptive fading Kalman filter (FAFKF) is proposed and used as 
an adaptive geolocation algorithm. The application of fuzzy logic to adaptive Kalman 
filtering gains more interests. The fuzzy logic adaptive system is constructed so as to obtain 
the suitable scaling factors related to the time-varying changes in dynamics. In the FAFKF, 
the fuzzy logic adaptive system (FLAS) is used to adjust the scaling factor continuously so 
as to improve the Kalman filter performance. 
In this chapter, we also explain how to compose the FAFKF algorithm for TDoA based 
position tracking system. Through the comparison using the simulation results from the 
EKF and FAFKF solution under the model uncertainties, it shows the improved estimation 
performance with more accurate tracking capability. 

 
2. Geolocation with TDoA analytical methods 
 

When the mobile station (MS: the unknown position) sends signals to each base station (BS: 
the known position), there is a time difference because of the BS’s isolated location from MS. 
The fundamental principle of position estimation is to use the intersection of hyperbolas 
according to the definition of TDoA as shown in Fig. 1.  
The problem of geolocation can be formulated as 
 

 1 1 1

=
= = −

i i

i i i

d s b
d ct ct ct

-

  
 

               { , }, 1, 2, 3, ,= = Li i ib col x y i m  

        { , }=s col x y  

(1) 

 
where ib  is the known position of i-th signal receiver (BS), s is the unknown position of 

signal source (MS), and c is the propagation speed of signal. In Eq. (1), id means the 

distance between MS and i-th BS and it is the time of signal arrival (ToA) (Schau & 

Robinson, 1987) from MS to i-th BS. Hence 1it  becomes the time difference of arrival 
(TDoA) which is the difference of ToA between it  (from MS to the i-th BS) and 1t  (from  



Adaptive Precision Geolocation Algorithm with Multiple Model Uncertainties 

 

325 

 
Fig. 1. Geometric method using hyperbolas. 

 
MS to the first BS). The distance difference of 1id  results from the multiplication of TDoA 
and c. 
Generally it is possible to estimate the source location if the values of ToA could be 
provided exactly. However, it is required to be synchronized for all MS and BS’s in this case. 
To find the TDoA of acknowledgement signal from MS to BS’s, the time delay estimation 
can be used. As shown in Fig. 1, the estimation of geolocation can be obtained by solving the 
nonlinear hyperbolic equation from the relation of TDoA. If there are three BS’s as in Fig. 1, 
we can draw three distinct hyperbolic curves using distance difference from TDoA signal. It 
is the principle of geometric method that the cross point becomes the position estimation of 
MS. 
To find the position estimation (s) of the unknown MS in an analytical method, let’s rewrite 
the distance difference equation (1) as 
 

1 1 , 2, 3, , .i id d d i m= + = L  (2) 
 
By squaring Eq. (2) with the relation of 2 =i i id s b s b( ) - , - , the nonlinear equation for 
positional vector of s can be formulated as following. 
 

2 22 2 2
1 1 1 1 12 2 2 ( ) , 2, ,T T

i i i is b s b s b s b d d d i m− + = − + + + = L  (3) 
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To represent the solution in linear matrix equality form, Eq. (3) can be simplified as 
 

2 2 2
1 1 1 1 1( ) 2 , 2 , 2, ,− + = − − = Li i i ib b d b b s d d i m  (4) 

 
Using the distance from MS to the first BS, 2 2 2

1 1 1( ) ( ) ( ) ,d x x y y= − + − and with 1b  as the 
origin of coordinates, i.e., 1b = {0, 0}col , we can obtain the position estimation from the 
following two nonlinear constraints. 
 

2 2
1 1 1

2 2 2
1

1 ( ( ) ) , , 2,3, ,
2

( ) 0

i i i ib d b s d d i m

x y d

− + = − − =

+ − =

L
 (5) 

 
To find the solution of s, Eq. (5) is rewritten in linear matrix equation. Now the source vector 
s  can be acquired by solving the following MS geolocation problem. 
 

1
2

1
2 2

2 21

2 2
1

21

1

( )

( )
1 1 ( )
2 2

( )

,
,

,

m m

m m m

s d
d s s

b d

b d

d b b

d b b

= +
=
⎡ ⎤−
⎢ ⎥

= = −⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

2 2

G h ρ
,

h d ρ •ρ

ρ d

M

M M

 
(6) 

  

where [ ]2
T

mb b=G L and •  means the Hadamar operator.  

 
3. Geolocation with model uncertainty 
 

This section describes the geolocation using the estimation filter in state-space. As stated in 
the section 2, the conventional analytical methods are focused on solving the nonlinear 
hyperbolic equations. In this section, we introduce the fuzzy adaptive fading Kalman filter 
to get the precision estimation for multiple model uncertainties.  

 
3.1 System modeling 
In the real case, TDoA signal can be distorted by the timing error due to non-line-of sight or 
by additive white Gaussian noise. To find the precision geolocation in real case, the system 
modeling must include the model uncertainty. Let ot  be the ideal TDoA signal and tΔ  is 
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the distorted amount by external noises. The real value of TDoA is changed as = + Δot t t . 
If the real value of TDoA is used in Eq. (6), it becomes more complicated nonlinear equation 
and this complexity may cause huge computational efforts in the real-time process. As a 
breakthrough to this problem, the Kalman filter which needs relatively less computational 
time can be an alternative solution. 
Since the hyperbolic equation of TDoA is nonlinear, the extended Kalman Filter (EKF) can 
be used as a nonlinear state estimator. The basic algorithm of EKF is shown as in Fig. 2.  
 

 
Fig. 2. Flow chart of extended Kalman filter. 

 
The first step is the time update in which it predicts the state of next steps from processing 
model and it compares the real measurement with the prediction measurement of ŝ  
obtained by time update process. For TDoA based geolocation using extended Kalman filter, 
the discrete state-equation of the processing and measurement model for MS can be 
formulated as 
 

        1+ = + +k k k ks As Bu w  

1 0 0 0 0
0 1 0 0 0

,
0 0 0 0 1 0
0 0 0 0 0 1

A B

Δ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥Δ⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 
(7) 
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where ( ) [ ]Ts k x y x y= & & , ku  is the known velocity of moving MS, Δ  is the time interval 
of sampling, kw  is an additive white Gaussian noise (AWGN). 
From the definition of TDoA, the measurement model can be written as 
 

( , )
1 (|| || || ||)

=

= − − − +

k k k

k i k j k

z h s v

Ms b Ms b v
c

 

     

1 0 0 0
0 1 0 0

M ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

 

(8) 

 
where ν k  is the measurement noise in AWGN. 
The output result of kz which is the TDoA signal provides the information of MS position. 
As an accurate geolocation method, the frequency difference (FDoA) resulted from Doppler 
shifts observation can be added in the state equation. However, to make the problem more 
simple, we consider only the TDoA signal as an output measurement in this section.  
Since the measurement model kz  is nonlinear equation, the linear approximation using 
partial differential method should be done for the use of EKF. 
 

1

,

k k k k k

k k
k k

k k

z z H s V
h h

H V
s v

−= + +

∂ ∂
≈ ≈
∂ ∂

 (9) 

 
3.2 Geolocation using fuzzy adaptive fading Kalman filter (FAFKF) 
EKF is a very useful method for nonlinear state estimation. However, as EKF is based on the 
linearization of nonlinear system using partial differential method, the modeling errors can 
easily lead to the divergence problem. To solve this problem, an adaptive fading Kalman 
filter (AFKF) with a fading factor can be applied. The application of AFKF to geolocation 
estimation is given in the following mathematical expression. 
Basically, the fading factor kλ  is added in the error covariance projection during the time 
update process. 
  

1λ−
−= +T T

k k k k k k k kP A P A W Q W  (10) 
 
where 1 2( , , , )k mdiagλ λ λ λ= L . In normal case of 1λ =k , it means the general EKF. If the 

estimated value approaches to the steady-state value, the fading factor kλ  becomes less 

than 1. If kλ  is greater than 1, the divergence could happen. This iterative process is called 
as the adaptive fading loop given as follows. 
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       ˆφ = −k k kz z , ˆˆ ( , )=k k kz h s v  

(11) 

 
where α is a scaling factor and [ ]tr ⋅  is the trace of a matrix. 
Moreover the measurement estimation of ˆkz  is predicted through the estimation of ˆks . 
That is, if we get more accurate ˆks , then the more accurate ˆkz  can be obtained. As the 
error of output measurement is within the ε − neighborhood i.e., ˆ|| || ε− ≤k k kz z  and 

1 0ε ε −− ≤k k , it is confirmed that the present estimation performance is guaranteed and the 

fading factor becomes 1 1kλ + ≤ . 
The fuzzy logic adaptive system (FLAS) offers an effective method when the problem is too 
complicated or hard to be analyzed in mathematical way. The procedure of general fuzzy 
system can be classified as three parts; fuzzification, fuzzy inference, and defuzzification. 
The first step of fuzzification is to make linguistic variables from inputs and outputs. The 
second step of fuzzy inference is to make rules using if-then expression. Finally the third step 
of defuzzification is to decide the degree of the output value. 
Using the scaling factor (α ) as an output from FLAS, the fading factor in FAFKF is updated 
as 1 [ ] [ ]λ α+ = ⋅k k ktr F tr E . According to the following two degree of divergence (DoD) 
parameters from the innovation covariance matrix and the trace of innovation covariance 
matrix, it is possible to identify the changing degree in dynamics of MS. The first DoD 
parameter δ  is defined as the ratio of the trace of innovation covariance matrix at present 
state and the number of measurements used for estimating location. 
 

φ φ
δ =

T
k k

m
 (12) 

 
where 1 2[ ]φ φ φ φ= L T

k m , m is the number of measurements (number of TDoA signals). 
The second DoD parameter σ  is defined as the average of the absolute value of the 
measurement error kφ . 
 

1

1 | |σ φ
=

= ∑
m

i
im

 (13) 



Adaptive Control 

 

330 

The fading factor kλ  updated through the adaptive fading loop is used to change the error 
covariance kP . 
 

 
Fig. 3. Flow chart of the fuzzy adaptive fading Kalman filter process. 

 
Fig. 3 shows how the FAFKF works for TDoA geolocation problem. As a first step in the 
process of FAFKF, the two DoD parameters ( ,δ σ ) are obtained from measurement 

difference between the real value ( kz ) and the estimation result ( ˆkz ). These DoD 
parameters are used as the inputs for the fuzzy system. Finally the FLAS is employed for 
determining the scaling factor α  from the innovation information. According to the scaling 
factor α , the estimation accuracy is determined. Using the fuzzy logic system, we can 
adjust the fading factors adaptively to improve the estimation performance.  

 
4. Simulation results 
 
The basic circumstance to be used in the simulation is shown in Fig. 4. There are two BS’s 
and the signal source of MS is supposed to move at a constant speed but changes its 
direction every 2.5 sec. In Fig. 4, the dotted line is an ideal path of MS with no external forces. 
The solid line is the real path which is affected by the multiple noises such as the 
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measurement noise kv  and the process noise kw . The thick solid line is the path of MS 
estimated by the standard EKF with no adaptive method. Fig. 4 shows that the performance 
of EKF is restricted especially when the MS changes the direction. The accumulated position 
error is increased as the MS changes its direction frequently.  
To prove the effectiveness of the adaptive fading factor in TDoA gelocation, the simulation 
parameters are set close to the real values. Table 1 shows the simulation parameters. 
 

 
Fig. 4. Simulation circumstance for MS  

 
The FLAS consists of the following 9 rules and is represented in the following if-then form. 
The membership functions of input fuzzy variable (DoD parameters: δ  and σ ) and 
output (scaling factor: α ) are shown in Fig. 5. 
 

i. if δ  is n (negative) and σ  is n,  then α  is nb (negative big). 
ii. if δ  is z (zero)  and σ  is n,  then α  is ns (negative small). 

 

 EKF AFKF FAFKF 

Speed Constant Constant Constant. 

(time interval)�  0.1 sec 0.1 sec 0.1 sec 

(scaling factor)α  None 0.12 FLAS output 

(fading factor)λ  None Constant Fuzzy based 

Table 1. Parameters for the TDoA geolocation simulation 



Adaptive Control 

 

332 

 
Fig. 5. Membership functions in FLAS 

 
iii. if δ  is p (positive) and σ  is n,  then α  is z. 
iv. if δ  is n and σ  is z,   then α  is ns. 
v. if δ  is z and σ  is z,   then α  is z. 

vi. if δ  is p and σ  is z,   then α  is ps (positive small). 
vii. if δ  is n and σ  is p,   then α  is z. 

viii. if δ  is z and σ  is p,   then α  is ps. 
ix. if δ  is p and σ  is p,   then α  is pb (positive big). 

 
As the DoD parameter ( δ ) and the averaged magnitude (σ ) of ( )kφ  change within 
0.003~0.007 and 0.03~0.1 respectively, we define those range as zero for δ  and σ . The 
output of the scaling factor (α ) is determined as 0.12 following that of AFKF in the 
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associated range. Other values can be determined from experiential way. The simulation 
result of FLAS and adaptive fading loop is given in Fig. 6.  
Fig. 6 shows the change of the scaling factor αk  and the fading factor kλ . The values of 
αk  and kλ  change very steeply to correct the position error from the beginning and the 
estimate ˆks  gets close to the real value within ε -neighborhood about after 1 sec since the 

fading factor becomes small.  

 
Fig. 6. Change of scaling factor (α ) and fading factor (λ ). 

 
Fig. 7 shows the performance of the proposed geolocation algorithm (FAFKF) through the 
comparison with AFKF and EKF. The performance is measured in terms of the norm of 
positioning error, i.e. ˆ−k ks s . As shown in Fig. 7, the positioning error of FAFKF is much 
smaller than that of EKF. It can be confirmed that the difference of position error between 
EKF and FAFKF is increased as the MS changes its direction more frequently. It means that 
the position estimation with FAFKF is tracking more precisely to the real value of ks  than 
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Fig. 7. Comparison of error performance  

 
AFKF or the standard EKF. 
Fig. 8 indicates the path estimation performance of the proposed geolocation algorithm 
through the comparison with AFKF and EKF under the situation of Fig. 4. As the adaptive 
fading factor takes the sub-optimal value at each iteration, the error covariance has been 
updated and is used to modify the Kalman filter gain adaptively. As shown in Fig. 8, the 
trajectory estimation using FAFKF is close to the real value under noise added real 
circumstance. 

 
5. Conclusion 
 

In this chapter, we introduced TDoA geolocation algorithm to reduce the position 
estimation error. To be more similar to real circumstance, the MS is supposed to change its 
direction periodically. The standard EKF which solves a huge computational problem of 
TDoA based geolocaion can estimate the location of source through the linearization of 
nonlinear measurement equation. However, the linearization from partial differentiation 
causes a divergence problem which restricts the performance of the EKF. 
To solve this problem, we applied FAFKF algorithm which changes the error covariance 
using an adaptive fading factor (λ ) from fuzzy logic. The scaling factor α  which is used  
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Fig. 8. Comparison of path estimation.  

 
to update the fading factor has been decided by the fuzzy logic to minimize the estimation 
error. Through the simulation results, it is confirmed that the trajectory estimation using 
FAFKF follows the real one more precisely than EKF. The positioning error from FAFKF is 
less than that performed by AFKF. 
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1. Introduction    
 

Adaptive control of highly uncertain nonlinear dynamic systems has been an important 
research area in the past decades, and in the meantime neural networks control has found 
extensive application for a wide variety of areas and has attracted the attention of many 
control researches due to its strong approximation capability. Many significant results on 
these topics have been published in the literatures (Lewis et al., 1996 ; Yu & Li 2002; 
Yesidirek & Lewis 1995). It is proved to be successful that neural networks are used in 
adaptive control. However, most of these works are applicable for a kind of affine systems 
which can be linearly parameterized. Little has been found for the design of specific 
controllers for the nonlinear systems, which are implicit functions with respect to control 
input. We can find in literatures available there are mainly the results of Calise et al. (Calise 
& Hovakimyan 2001) and Ge et al. (Ge et al. 1997). Calise et al. removed the affine in control 
restriction by developing a dynamic inversion based control architecture with linearly 
parameterized neural networks in the feedback path to compensate for the inversion error 
introduced by an approximate inverse. However, the proposed scheme does not relate to the 
properties of the functions, therefore, the special properties are not used in design. Ge, S.S. 
et al., proposed the control schemes for a class of non-affine dynamic systems, using mean 
value theorem, separate control signals from controlled plant functions, and apply neural 
networks to approximate the control signal, therefore, obtain an adaptive control scheme. 
Furthermore, when controlling large-scale and highly nonlinear systems, the presupposition 
of centrality is violated due to either due to problems in data gathering when is spread out 
or due to the lack of accurate mathematical models. To avoid the difficulties, the 
decentralized control architecture has been tried in controller design. Decentralized control 
systems often also arise from various complex situations where there exist physical 
limitations on information exchange among several subsystems for which there is 
insufficient capability to have a single central controller. Moreover, difficulty and 
uncertainty in, measuring parameter values within a large-scale system may call for 
adaptive techniques. Since these restrictions encompass a large group of applications, a 
variety of decentralized adaptive techniques have been developed (Ioannou 1986).  
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Earlier literature on the decentralized control methods were focused on control of large-
scale linear systems. The pioneer work by Siljak (Siljak 1991) presents stability theorems of 
interconnected linear systems based on the structure information only. Many works 
consider subsystems which are linear in a set of unknown parameters (Ioannou 1986 ; Fu 
1992 ; Sheikholeslam & Desor 1993 ; Wen 1994 ; Tang et al. 2000), and these results were 
focused on systems with first order interconnections. When the subsystems has nonlinear 
dynamics or the interconnected is entered in a nonlinear fashion, the analysis and design 
problem becomes even challenging.  
The use of neural networks’ learning ability avoids complex mathematical analysis in 
solving control problems when plant dynamics are complex and highly nonlinear, which is 
a distinct advantage over traditional control methods. As an alternative, intensive research 
has been carried out on neural networks control of unknown nonlinear systems. This 
motivates some researches on combining neural networks with adaptive control techniques 
to develop decentralized control approaches for uncertain nonlinear systems with 
restrictions on interconnections. For example, in (Spooner & Passino 1999), two 
decentralized adaptive control schemes for uncertain nonlinear systems with radial basis 
neural networks are proposed, which a direct adaptive approach approximates unknown 
control laws required to stabilize each subsystem, while an indirect approach is provided 
which identifies the isolated subsystem dynamics to produce a stabilizing controller. For a 
class of large scale affine nonlinear systems with strong interconnections, two neural 
networks are used to approximate the unknown subsystems and strong interconnections, 
respectively (Huang & Tan 2003), and Huang & Tan (Huang & Tan 2006) introduce a 
decomposition structure to obtain the solution to the problem of decentralized adaptive 
tracking control a class of affine nonlinear systems with strong interconnections. Apparently, 
most of these results are likewise applicable for affine systems described as above. For the 
decentralized control research of non-affine nonlinear systems, many results can be found 
from available literatures. Nardi et al. (Nardi & Hovakimyan 2006) extend the results in 
Calise et al. (Calise & Hovakimyan 2001) to non-affine nonlinear dynamical systems with 
first order interconnections. Huang (Huang & Tan 2005) apply the results in (Ge & Huang 
1999) to a class of non-affine nonlinear systems with strong interconnections. 
Inspired by the above researches, in this chapter, we propose a novel adaptive control 
scheme for non-affine nonlinear dynamic systems. Although the class of nonlinear plant is 
the same as that of Ge et al. (Ge et al. 1997), utilizing their nice reversibility, and invoking 
the concept of pseudo-control and inverse function theorem, we find the equitation of error 
dynamics to design adaptation laws. Using the property of approximation of two-layer 
neural networks (NN), the control algorithm is gained. Then, the controlled plants are 
extended to large-scale decentralized nonlinear systems, which the subsystems are 
composed of the class of non-affine nonlinear functions. Two schemes are proposed, 
respectively. The first scheme designs a RBFN-based (radial basis function neural networks) 
adaptive control scheme with the assumption which the interconnections between 
subsystems in entire system are bounded linearly by the norms of the tracking filtered error. 
In the scheme, unlike most of other approaches in available literatures, the weight of BBFN 
and center and width of Gaussian function are tuned adaptively. In another scheme, the 
interconnection is assumed as stronger nonlinear function. Moreover, in the former, in every 
subsystem, a RBFN is adopted which is used to approximate unknown function, and in the 
latter, in every subsystem, two RBFNs are respectively utilized to approximate unknown 
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function and uncertain strong interconnection function. For those complicated large-scale 
decentralized dynamic systems, in order to decrease discontinuous factors and make 
systems run smooth, unlike most of control schemes, the hyperbolic tangent functions are 
quoted in the design of robust control terms, instead of sign function. Otherwise, the citation 
of the smooth function is necessary to satisfy the condition of those theorems. 
The rest of the paper is organized as follows. Section 2 gives the normal form of a class of 
non-affine nonlinear systems. Section 3 proposes a novel adaptive control algorithm, which 
is strictly derived from some mathematical and Lyapunov stability theories, and the 
effectiveness of the scheme is validated through simulation. Extending the above-mentioned 
result, Section 4 discusses two schemes of decentralized adaptive neural network control for 
the class of large-scale nonlinear systems with linear function interconnections and 
nonlinear function interconnections, respectively.  Finally, the Section 5 is concluding 
remarks.  

 
2. Problem Statement 
 

We consider a general analytic system  
 

( , ), ,
( ), .

nu R u R
y h y R

⎧ = ∈ ∈
⎨

= ∈⎩

ζ g ζ ζ
ζ

&
                                                             (1) 

 
where ( , )⋅ ⋅g is a smooth vector fields and ( )h ⋅ is a scalar function. In practice, many 
physical systems such as chemical reactions, PH neutralization and distillation columns are 
inherently nonlinear, whose input variables may enter in the systems nonlinearly as 
described by the above general form (Ge et al. 1998). Then, the Lie derivative (Tsinias & 
Kalouptsidis 1983) of ( )h ζ  with respect to ( , )ug ζ  is a scalar function defined 

by [ ( ) ] ( , )L h h u= ∂ ∂g ζ ζ g ζ . Repeated Lie derivatives can be defined recursively 

as 1( ), 1,2i iL h L L h for i−= =g g g L . The system (1) is said to have relative degree α  

at 0( , )u0ζ , if there exists a smallest positive integer α such 

that 0iL h u∂ ∂ =g , 1, , 10, iL h uα α= −∂ ∂ ≠g L . 

 

Let nRΩ ⊂ζ and u RΩ ⊂ be compact subsets containing 0ζ and 0u , respectively. System 

(1) is said to have a strong relative degree α in a compact set uD = Ω ×Ωζ , if it has relative 

degree α  at every point 0( , )u D∈0ζ . Therefore, system (1) is feedback linearizable and the 

mapping 1 2( ) [ ( ), ( ), ( )]nφ φ φΦ =ζ ζ ζ ζL , with 1( ) , 1, 2,j
j L h jφ α−= =gζ L  has a Jacobian 

matrix which is nonsingular for all ( )∈Φx ζ , system (1) can be transformed into a normal 
form  
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 where ( , ) nf x u L h= g  and 1( )x −= Φ ζ  with 1 2[ , , , ]T
nx x x x= L . Define the domain of 

normal system (2) as { }( , ) ( ); uD x u x u∈Φ Ω ∈Ωζ� .  

 
3. Adaptive Control for a Class of Non-affine Nonlinear Systems via Two-
Layer Neural Networks 
 

Now we consider the n th− order nonlinear systems of the described form as (2). For the 
considered systems in the chapter, we may make the following assumptions. 
Assumption 1. ( , ) / 0f x u u∂ ∂ ≠  for all ( , )x u R∈Ω× . 
Assumption 2. 1( ) : nf R R+⋅ → , is an unknown continuous function and ( , )f x u  a smooth 
function with respect to control input u .  
The control objective is: determine a control law, force the output, y  , to follow a given 

desired output, dx  with an acceptable accuracy, while all signals involved must be 
bounded. 
Assumption 3. The desired signals (1) ( 1)( ) [ , , , ],n

d d d dx t y y y −= L and ( )[ , ]T n T
d d dX x y= are 

bounded, with dX X≤d , dX a known positive constant. 

Define the tracking error vector as 
 

de x x= − ,                                                                             (3) 
 
and a filtered tracking error as 
 

[ 1]T eτ = Λ ,                                                                          (4) 
 
with Λ a gain parameter vector selected so that ( ) 0e t → as 0.τ → Differentiating (4), the 
filtered tracking error can be written as 
 

( ) [0 ] .n T
n dx xτ = − + Λ e& &                                                            (5) 

 
Define a continuous function 
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( ) [0 ] .n T
dk xδ τ= − + − Λ e                                                          (6) 

 
where k is a positive constant. We know ( , ) 0f x u u∂ ∂ ≠  (Assumption 1), thus, 

[ ( , ) ] 0f x u uδ∂ − ∂ ≠ . Considering the fact that 0uδ∂ ∂ = , we invoke the implicit 

function theorem (Lang 1983), there exists a continuous ideal control input u∗ in a 

neighborhood of ( , )x u R∈Ω× , such that ( , ) 0f x u δ∗ − = , i.e. ( , )f x uδ ∗= holds. 

( , )f x uδ ∗= may represent ideal control inverse. 

Adding and subtracting δ to the right-hand side of ( , )nx f x u=&  of (2), one obtains 
 

( )( , ) [0 ]n T
n dx f x u k x eδ τ= − − + − Λ& ,                                      (7) 

 
and yields  
 

( , ) .k f x uτ τ δ= − + −&                                                            (8) 
 

Considering the following state dependent transformation nxψ = & , where ψ is commonly 
referred to as the pseudo-control (Calise & Hovakimyan 2001). Apparently, the pseudo-
control is not a function of the control u  but rather a state dependent operator. 
Then, 0uψ∂ ∂ =  , from Assumption 1, ( , ) 0f x u u∂ ∂ ≠ thus [ ( , )] 0f x u uψ − ∂ ≠ . 

With the implicit function theorem, for every ( , )x u R∈Ω× , there exists a implicit 

function such that ( , ) 0f x uψ − =  holds, i.e. ( , )f x uψ = . Therefore, we have 
 

( , )f x uψ = .                                                                     (9) 
 

Furthermore, using inverse function theorem, with the fact that [ ( , )] 0f x u uψ − ∂ ≠  

and ( , )f x u  is a smooth with respect to control input, u  , then, ( , )f x u  defines a local 
diffeomorphism (Slotine & Li 1991), such that, for a neighborhood of u , there exists a 
smooth inverse function and 1( , )u f x ψ−= holds. If the inverse is available, the control 
problem is easy. But this inverse is not known, we can generally use some techniques, such 
as neural networks, to approximate it. Hence, we can obtain an estimated function, 

1 ˆˆ ( , )u f x ψ−= . This result in the following equation holding: 
 

ˆ ˆ( , )f x uψ = ,                                                                (10) 
 

where ψ̂  may be referred to as approximation pseudo-control input which represents 
actual dynamic approximation inverse. 
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Remark 1.  According to the above-mentioned conditions, when one designs the pseudo-
control signal, ψ̂ , must be a smooth function. Therefore, in order to satisfy the condition, 
we adopt hyperbolic tangent function, instead of sign function in design of input. This also 
makes control signal tend smooth and system run easier. The hyperbolic tangent function 
has a good property as follows (Polycarpou 1996) : 
 

0 tanh( )ηη η ςα
α

< − ≤ ,                                                    (11) 

 
with 0.2785ς = , α any positive constant. Moreover, theoretically, ψ̂ is approximation 
inverse, generally a nonlinear function, but it must be bounded and play a dynamic 
approximation role and make system stable. Hence, it represents actual dynamic 
approximation inverse. 
Based on the above conditions, in order to control the system and make it be stable, we 
design the approximation pseudo-control input ψ̂  as follows: 
 

ˆ ( , ) ad rf x u u vψ ∗= + + ,                                                 (12) 
 

where adu  is output of a neural network controller, which adopts a two-layer neural 

network, rv is robustifying control term designed in stability analysis. 

Adding and subtracting ψ̂ to the right-hand side of (8), with ( , )f x uδ ∗= , we have 
 

ˆ( , ) ( , )
ˆ( , , ) ,

ad r

ad r

k f x u f x u u v

k x u u u v

τ τ ψ δ

τ ψ δ

∗

∗

= − + + − − − −

= − + Δ + − − −

&

%
                              (13) 

 

where ( , , ) ( , ) ( , )x u u f x u f x u∗ ∗Δ = −% is error between nonlinear function and its ideal 
control function, we can use the neural network to approximate it. 

 
3.1 Neural network-based approximation 
A two-layer NN consists of two layers of tunable weights, a hidden layer and an output 
layer. Given a 0ε > , there exists a set of bounded weights M and N such that the 

nonlinear error ( )CΔ∈ Ω% , with Ω  compact subset of nR , can be approximated by a two-
layer neural network, i.e. 
 

        ( ) ( )T T
nn nnM N x xσ εΔ = +% ,                                                     (14) 

 

with ˆ[1, , , ]T T
nn dx x e ψ= input vector of NN.   
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Assumption 4.  The approximation error ε  is bounded as follows: 
 

Nε ε≤ ,                                                                         (15) 

 
where 0Nε > is an unknown constant.  

Let M̂ and N̂ be the estimates respectively of M and N . Based on these estimates, let 

adu be the output of the NN 
 

ˆ ˆ( ).T T
ad nnu M N xσ=                                                           (16) 

 

Define ˆM M M= −% and ˆN N N= −% , where we use notations: [ , ]Z diag M N= , 

[ , ]Z diag M N=% % % , ˆ ˆ ˆ[ , ]Z diag M N= for convenience. Then, the following inequality 
holds: 
 

2ˆ( )T
FF F

tr Z Z Z Z Z≤ −% % % .                                                  (17) 

 

The Taylor series expansion of ( )T
nnN xσ  for a given nnx can be written as: 

 
2ˆ ˆ( ) ( ) ( ) ( )T T T T T

nn nn nn nn nnN x N x N x N x O N xσ σ σ ′= + +% % ,                (18) 
 

with ˆˆ : ( )T
nnN xσ σ= and σ̂ ′ denoting its Jacobian, 2( )T

nnO N x% the term of order two. In 

the following, we use notations: : ( )T
nnN xσ σ= , : ( )T

nnN xσ σ= %% . 
With the procedure as Appendix A, the approximation error of function can be written as 
 

ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( )T T T T T T T T
nn nn nn nnM N x M N x M N x M N xσ σ σ σ σ ω′ ′− = − + +% % ,         (19) 

 
and the disturbance term ω can be bounded as 
 

1
ˆ ˆˆ ˆT T

nn nnF F
N x M M N x Mω σ σ′ ′≤ + + ,                                (20) 

 
where the subscript “F” denotes Frobenius norm, and the subscript “1” the 1-norm. 
Redefine this bound as 
 

ˆ ˆ( , , )nnM N xω ωω ρ ϑ≤ ,                                                        (21) 
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where 
1

max{ , , }
F

M N Mωρ = and ˆ ˆˆ ˆ 1T T
nn nnF

x M N xωϑ σ σ′ ′= + + . Notice that 

ωρ is an unknown coefficient, whereas ωϑ is a known function.  

 
3.2 Parameters update law and stability analysis 
Substituting (14) and (16) into (13), we have 
 

ˆ ˆ ˆ( ) ( ) ( ).T T T T
nn nn r nnk M N x M N x v xτ τ σ σ ψ δ ε= − + − + − − +&                  (22) 

 
Using(19), the above equation can become 
 

ˆ ˆ ˆˆ ˆ ˆ( ) .T T T T
nn nn rk M N x M N x vτ τ σ σ σ ψ δ ω ε′ ′= − + − + + − − + +% %&                (23) 

 
Theorem 1. Consider the nonlinear system represented by Eq. (2) and let Assumption 1-4 
hold. If choose the approximation pseudo-control input ψ̂  as Eq.(12), use the following 
adaptation laws and robust control law 
 

 

1

1

ˆ ˆˆ ˆ( ) ,

ˆ ˆ ˆˆ ,

( 1)ˆ ˆ( 1) tanh

( 1)ˆ( 1) tanh

nn

T
nn

r

M F Nx k M

N R x M k N

v

ω
ω

ω
ω

σ σ τ τ

σ τ τ

τ ϑφ γ τ ϑ λφ
α

τ ϑφ ϑ
α

⎡ ⎤′= − −⎣ ⎦

⎡ ⎤′= −⎣ ⎦
⎧ + ⎫⎡ ⎤= + −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

+⎡ ⎤= − + ⎢ ⎥⎣ ⎦

&

&

&
                                            (24) 

 
where 0, 0T TF F R R= > = >  are any constant matrices, 1 0k > and 0γ > are scalar 

design parameters, φ̂ is the estimated value of the uncertain disturbance term 

max( , )Nωφ ρ ε= , defining ˆφ φ φ= −%  with φ%  error ofφ , then, guarantee that all signals 
in the system are uniformly bounded and that the tracking error converges to a 
neighborhood of the origin. 
Proof.  Consider the following positive define Lyapunov function candidate as 
 

2 1 1 1 21 1 1 1( ) ( )
2 2 2 2

T TL tr M F M tr N R Nτ γ φ− − −= + + + %% % % %                               (25) 

 
The time derivative of the above equation is given by 
 

1 1 1( ) ( )T TL tr M F M tr N R Nττ γ φφ− − −= + + + && & % %& % % % %&                                          (26) 
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Substituting (23) and the anterior two terms of (24) into (26), after some straightforward 
manipulations, we obtain 
 

2

1 1 1

2 1
1

2 1
1

ˆ ˆ ˆˆ ˆ ˆ[ ( ) ( ) ]

( ) ( )
ˆˆ( ) ( ) ( ).

ˆˆ( ) ( 1) ( ).

T T T T
nn nn r

T T

T
r

T
r

L k M N x M N x v

tr M F M tr N R N

k v k tr Z Z

k v k tr Z Zω

τ τ σ σ σ ψ δ ω ε

γ φφ

τ τ ψ δ τ τ ω ε γ φφ τ

τ τ ψ δ τ τ φ ϑ γ φφ τ

− − −

−

−

′ ′= − + − + + − − + +

+ + +

= − + − − + + + +

≤ − + − − + + + +

& % %

&& & % %% % % %

&% % %

&% % %

             (27) 

 
With (4),(6),(12),(16) and the last two equations of (24), the approximation error between 
actual approximation inverse and ideal control inverse is bounded by 
 

1 2 3ˆ ,
F

c c c Zψ δ τ− ≤ + + %                                                (28) 

 
where 1 2 3, ,c c c are positive constants. 
 
Using (11) and the last two terms of  (24), we obtain 
 

2

1

2
1

( 1)ˆˆ( ) ( 1) tanh

( 1) ˆ ˆ( 1) ( 1) tanh ( )

ˆ ˆˆ( ) ( )

T

T

L k

k tr Z Z

k k tr Z Z

ω
ω

ω
ω ω

τ ϑτ τ ψ δ τφ ϑ
α

τ ϑτ φ ϑ φ τ ϑ λφ τ
α

τ τ ψ δ ςφα λφφ τ

+⎡ ⎤≤ − + − − + ⎢ ⎥⎣ ⎦
⎧ + ⎫⎡ ⎤+ + − + − +⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

≤ − + − + + +

&

% %

% %

       (29) 

 

Applying (17),(28) , and
2ˆφφ φ φ φ≤ −% % % , after completing square, we have the following 

inequality 
 

2
2 1 2( )L k c D Dτ τ≤ − − + +&                                             (30) 

 

where 2 231
1 1 2

1

1( ) ,
4 4M

ckD c Z D
k

λφ ςφα= + + = + . 

Let 2
3 1 2 2 14 ( )D D D k c D= + − + , thus, as long as 3 2[2( )]D k cτ ≥ − , and 2k c> , 

then 0L ≤& holds. 
 
Now define 
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 { } 1 3 3
1 2

1 1, ( ) , .
2( )Z MF

Z Z k Z c D
k k cφ τφ φ φ τ τ

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪Ω = ≤ Ω = ≤ + Ω = ≤⎨ ⎬ ⎨ ⎬
−⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

% % % %     (31) 

 
Since 1 1 2 3 2 3, , , , , , ,MZ k k D D D c c  are positive constants, as long as k  is chosen to be big 

enough, such that 2k c>  holds, we conclude that , ZφΩ Ω and τΩ are compact sets. 

Hence L&  is negative outside these compacts set. According to a standard Lyapunov 

theorem, this demonstrates that , Zφ% %  and τ are bounded and will converge 

to , ZφΩ Ω and τΩ , respectively. Furthermore, this implies e  is bounded and will converge 

to a neighborhood of the origin and all signals in the system are uniformly bounded. 

 
3.3 Simulation Study 
In order to validate the performance of the proposed neural network-based adaptive control 
scheme, we consider a nonlinear plant, which described by the differential equation 
 

1 2
2 2 3 2 2

2 1 1 2 1 20.02( ) ( ) ( ) tanh(0.2 )

x x

x x x x u x x u u dω ω σ

=

= − − + + + + + +

&

&
        (32) 

 
where 0.4ω π= , ( ) (1 ) (1 )u uu e eσ − −= − +  and 0.2d = . The desired trajectory 

0.1 [sin(2 ) cos( )]dx t tπ= − .  
To show the effectiveness of the proposed method, two controllers are studied for 
comparison. A fixed-gain PD control law is first used as Polycarpou, (Polycarpou 1996). 
Then, the adaptive controller based on NN proposed is applied to the system. 
Input vector of neural network is ˆ[1, , , ]T T

nn dx x e ψ= , and number of hidden layer nodes 25. 

The initial weight of neural network is ˆ ˆ(0) (0), (0) (0)M N= = . The initial condition of 

controlled plant is (0) [0.1,0.2]Tx = . The other parameters are chosen as follows: 

1 0.01, 0.1, 0.01, 10k γ λ α= = = =  , 2, 8 MF IΛ = =  , 5 NR I=  ,  with ,M NI I  corresponding 
identity matrices. 
Fig.1, 2, and 3 show the results of comparisons, the PD controller and the adaptive controller 
based on NN proposed, of tracking errors, output tracking and control input, respectively. 
These results indicate that the adaptive controller based on NN proposed presents better 
control performance than that of the PD controller. Fig.4 depicts the results of output of NN, 

norm values of ˆ ˆ,M N , respectively, to illustrate the boundedness of the estimates of 
ˆ ˆ,M N and the control role of NN. From the results as figures, it can be seen that the 

learning rate of neural network is rapid, and tracks objective in less than 2 seconds. 
Moreover, as desired, all signals in system, including control signal, tend to be smooth. 
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Fig. 1. Tracking errors: PD(dot) and NN(solid). 
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Fig. 2. Output tracking: desired (dash), NN(solid) and PD(dot).  
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Fig. 3. Control input: PD (dash), NN(solid) 
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Fig. 4. M̂  (dash), N̂ (dot), output of NN(solid)
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4. Decentralized Adaptive Neural Network Control of a Class of Large-Scale 
Nonlinear Systems with linear function interconnections 
 

In the section, the above proposed scheme is extended to large-scale decentralized nonlinear 
systems, which the subsystems are composed of the class of the above-mentioned non-affine 
nonlinear functions. Two schemes are proposed, respectively. The first scheme designs a 
RBFN-based adaptive control scheme with the assumption which the interconnections 
between subsystems in entire system are bounded linearly by the norms of the tracking 
filtered error. In another scheme, the interconnection is assumed as stronger nonlinear 
function.  
We consider the differential equations in the following form described, and assume the 
large-scale system is composed of the nonlinear subsystems: 
 

          

1 2

2 3

1 2 1 2

1

( , , , , ) ( , , , )

1, 2, ,

i i

i i

il i i i ili i i n

i i

i

x x
x x

x f x x x u g x x x

y x
i n

⎧ =
⎪

=⎪⎪
⎨
⎪ = +⎪
⎪ =⎩
=

&

&

M

& L L

L

                           (33) 

 

where il
ix R∈ is the state vector, 1 2[ , , , ]

i

T
i i i ilx x x x= L , iu R∈ is the input and 

iy R∈ is the output of the i th− subsystem. 
1( , ) : li

i i if x u R R+ →  is an unknown continuous function and  implicit and smooth 

function with respect to control input iu .  

Assumption  5. ( , ) / 0i i i if x u u∂ ∂ ≠ for all ( , )i i ix u R∈Ω × . 

1 2( , , , )i ng x x xL is the interconnection term. In according to the distinctness of the 
interconnection term, two schemes are respectively designed in the following. 

 
4.1 RBFN-based decentralized adaptive control for the class of large-scale nonlinear 
systems with linear function interconnections 
 
Assumption 6. The interconnection effect is bounded by the following function: 
 

1 2
1

( , , , )
n

i n ij j
j

g x x x γ τ
=

≤∑L ,                                                    (34) 

 
where ijγ  are unknown coefficients, jτ is a filtered tracking error to be defined shortly . 
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The control objective is: determine a control law, force the output, iy  , to follow a given 

desired output, dix  , with an acceptable accuracy, while all signals involved must be 
bounded. 

Define the desired trajectory vector 1[ , , , ]il T
di di di dix y y y −= & L and ( ), , , i

Tl
di di di diX y y y⎡ ⎤= ⎣ ⎦& L , 

tracking error 1 2[ , , , ]
i

T
i i di i i ile x x e e e= − = L , thus, the filter tracking error can be 

written as 
 

( 2) ( 1)
,1 ,2 , 1[ 1] i i

i

l lT
i i i i i i i i l i ik e k e k e eτ − −

−= Λ = + + + +& Le ,                         (35) 

 

where the coefficients are chosen such that the polynomial ( 2)
,1 ,2 , 1

i

i

l
i i i lk k s k s −

−+ + +L  
( 1)ils −+ is Hurwitz.  

Assumption 7. The desired signal ( )dix t is bounded, so that di diX X≤ , where diX is a 

known constant. 
For an isolated subsystem, without interconnection function, by differentiating (35), the 
filtered tracking error can be rewritten as 
 

( ) [0 ] ( , )i

l

l T
i il di i i i i i dix x e f x u Yτ = − + Λ = +& &                                 (36) 

 

with ( ) [0 ]il T
di di i iY x e= − + Λ . 

Define a continuous function 
 

i i i dik Yδ τ= − −                                                          (37) 
 

where ik is a positive constant. With Assumption 5, we know ( , ) 0i i if x u u∂ ∂ ≠ , 

thus, [ ( , ) ] 0i i i if x u uδ∂ − ∂ ≠ . Considering the fact that 0i iuδ∂ ∂ = , we invoke the 

implicit function theorem, there exists a continuous ideal control input iu∗ in a 

neighborhood of ( , )i i ix u R∈Ω × , such that ( , ) 0i i if x u δ∗ − = , i.e. ( , )i i i if x uδ ∗= holds. 

( , )i i i if x uδ ∗=  represents ideal control inverse. 

Adding and subtracting iδ to the right-hand side of ( , )il i i i ii
x f x u g= +&  of (33), one 

obtains 
 

( , )
iil i i i i i i i dix f x u g k Yδ τ= + − − −& ,                                     (38) 

 
and yields  
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( , )i i i i i i i ik f x u gτ τ δ= − + + −&  .                                         (39) 

 
In the same the above-discussed manner as equations (9)-(10) ,  we can obtain the following 
equation: 
 

ˆ ˆ( , )i i i if x uψ = .                                                         (40) 
 

Based on the above conditions, in order to control the system and make it be stable, we 
design the approximation pseudo-control input ˆ iψ  as follows: 
 

ˆ i i i di ci rik Y u vψ τ= − − + + ,                                                 (41) 
 

where ciu  is output of a neural network controller, which adopts a RBFN, riv is 
robustifying control term designed in stability analysis. 
Adding and subtracting ˆ iψ to the right-hand side of (39), with ( , )i i i di i i ik Y f x uδ τ ∗= − − = , 
we have 
 

ˆ( , , )i i i i i i i ci i i ri ik x u u u v gτ τ ψ δ∗= − + Δ − + − − +%& ,                           (42) 
 

where ( , , ) ( , ) ( , )i i i i i i i i i ix u u f x u f x u∗ ∗Δ = −% is error between nonlinear function and its 
ideal control function, we can use the RBFN to approximate it. 

 
4.1.1 Neural network-based approximation 
Given a multi-input-single-output RBFN, let 1in and 1im be node number of input layer and 
hidden layer, respectively. The active function used in the RBFN is Gaussian 
function, 2 2( ) exp[ 0.5( ) / ]l lk kiS z μ σ= − −x  , 11, , il n= ⋅ ⋅ ⋅ , 11, , ik m= ⋅ ⋅ ⋅ where 1 1in

i Rz ×∈  is input 

vector of the RBFN, 1 1i in m
i Rμ ×∈ and 1 1im

i Rσ ×∈ are the center matrix and the width vector.  

Based on the approximation property of RBFN, ( , , )i i i ix u u ∗Δ% can be written as 
 

( , , ) ( , , ) ( )T
i i i i i i i i i i iSx u u W z zμ σ ε∗Δ = +% ,                                     (43) 

 
where ( )i izε is approximation error of RBFN, 1 1im

iW R ×∈ . 

Assumption 8. The approximation error ( )nnxε  is bounded by i Niε ε≤ , with 0Niε > is 

an unknown constant. 
The input of RBFN is chosen as ˆ[ , , ]T T

i i i iz x τ ψ= . Moreover, output of RBFN is designed as  
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ˆ ˆ ˆ( , , ).T

ci i i i i iSu W z μ σ=                                               (44) 
 

Define ˆ ˆ ˆ, ,i i iW μ σ  as estimates of ideal , ,i i iW μ σ , which are given by the RBFN tuning 
algorithms. 
Assumption 9. The ideal values of , ,i i iW μ σ  satisfy 
 

, ,i iM i iM i iMF
W W μ μ σ σ≤ ≤ ≤ ,                                (45) 

 

where , ,iM iM iMW μ σ are positive constants. 
F

⋅ and ⋅  denote Frobenius norm and 2-

norm, respectively. Define their estimation errors as  
 

ˆ ˆ ˆ, , .i i i i i i i i iW W W μ μ μ σ σ σ= − = − = −% % %                              (46) 

 
Using the notations: ˆ ˆ ˆ ˆ[ , , ], [ , , ], [ , , ]i i i i i i i i i i i iZ diag W Z diag W Z diag Wμ σ μ σ μ σ= = =% % % %  for 
convenience. 
The Taylor series expansion for a given iμ and iσ is  
 

2ˆ ˆˆ ˆ( , , ) ( , , ) ( , )i i i i i i i i i i i i i iS S S Sz z Oμ σμ σ μ σ μ σ μ σ′ ′= + + +% % % %                   (47) 

 
where ˆ ˆˆ ˆ ˆ ˆ( , , ) , ( , , )i k i i i i i k i i i iS SS z S zμ σμ σ μ μ σ σ′ ′∂ ∂ ∂ ∂� �  evaluated at ˆi iμ μ= , 

ˆi iσ σ= , 2( , )i iO μ σ% %  denotes the terms of order two. We use notations: ˆ ˆ ˆ: ( , , ),i i i i iSS z μ σ=  

: ( , , )i i i i iS S z μ σ=% % % , : ( , , )i i i i iS S z μ σ= .  
Following the procedure in Appendix B, it can be shown that the following operation. The 
function approximation error can be written as 
 

ˆ ˆ ˆ ˆˆ ˆˆ ˆˆ ˆ( ) ( ) ( ),T T T T
i i i i i i i i i i i i i i i iS S S SW S W S W S W tμ σ μ σμ σ μ σ ω′ ′ ′ ′− = − − + + +% % %             (48) 

 
The disturbance term ( )i tω is given by 
 

ˆ ˆ ˆ ˆˆ ˆˆ ˆ( ) ( ) ( ) ( )T T T
i i i i i i i i i i i i i iS S S St W S S W Wμ σ μ σω μ σ μ σ′ ′ ′ ′= − + + − +                                (49) 

 
Then, the upper bound of ( )i tω  can be written as 

1
ˆ ˆ ˆ ˆˆ ˆˆ ˆ( ) ( ) 2T T

i i i i i i i i i i i i i i iFF F F F
S S S St W W W Wμ σ μ σ ω ωω μ σ μ σ ρ ϑ′ ′ ′ ′≤ + + + + ≤      (50) 
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where
1

max( , , , 2 )i i i i iF
W Wωρ μ σ= , ˆ ˆ ˆ ˆˆ ˆˆ ˆ 1T T

i i i i i i i i iF F F F
S S S SW Wω μ σ μ σϑ μ σ′ ′ ′ ′= + + + +  , 

with 
1
⋅  1 norm. Notice that iωρ is an unknown coefficient, whereas iωϑ is a known 

function. 

 
4.1.2 Controller design and stability analysis 
Substituting (43) and (44) into (42), we have 
 

ˆˆ ˆ ( )T T
i i i i i i i i i ri i i ik W S W S v g zτ τ ψ δ ε= − + − + − − + +& ,                        (51) 

 
using (48), the above equation can become 
 

ˆ ˆ ˆ ˆˆ ˆˆ ˆ( ) ( )
ˆ ( ) ( ).

T T
i i i i i i i i i i i i i i

i i ri i i i i

S S S Sk W S W

v g z t
μ σ μ στ τ μ σ μ σ

ψ δ ε ω

′ ′ ′ ′= − + − − + +

+ − − + + +

%& % %
                      (52) 

 
Theorem 2. Consider the nonlinear subsystems represented by Eq. (33) and let assumptions 
hold. If choose the pseudo-control input ˆ iψ  as Eq.(41), and use the following adaptation 
laws and robust control law 
 

ˆ ˆˆˆ ˆˆ ˆ( )i i i i i i i i Wi i iS SW F S Wμ σμ σ τ γ τ′ ′⎡ ⎤= − − −⎣ ⎦
&

,                                  (53) 

 
ˆ ˆˆ ˆT

i i i i i Wi i iSG Wμμ τ γ μ τ′⎡ ⎤= −⎣ ⎦
& ,                                                    (54) 

 
ˆ ˆˆ ˆT

i i i i i Wi i iSH Wσσ τ γ σ τ′⎡ ⎤= −⎣ ⎦
& ,                                                   (55) 

 
*

*ˆ ˆtanh( )i i
i i i i i i i

i

ω
φ ω φ

τ ϑφ γ τ ϑ λ φ τ
α

⎡ ⎤
= −⎢ ⎥

⎣ ⎦

&
,                                         (56) 

 
2ˆ ˆ( )i di i di i id dγ τ λ τ= −&

,                                                              (57) 

 
*

* ˆˆ tanh( )i i
ri i i i i

i

v dω
ω

τ ϑφϑ τ
α

= + ,                                                      (58) 
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where * 1i iω ωϑ ϑ= + , 0, 0, 0T T T
i i i i i iF F G G H H= > = > = >  are any constant 

matrices, , , , ,Wi i di i diφ φγ γ γ λ λ and iα are positive design parameters, îφ is the estimated 

value of the uncertain disturbance term max( , )i i Niωφ ρ ε= , defining ˆ
i i iφ φ φ= −%  with 

iφ%  error, 0id > is used to estimate unknown positive number to shield interconnection 

effect, ˆ
id  is its estimated value, with ˆ

i i id d d= −%  estimated error, then, guarantee that all 

signals in the system are bounded and the tracking error ie will converge to a neighborhood 
of the origin. 
Proof.  Consider the following positive define Lyapunov function candidate as 
 

2 1 1 1 1 2 1 21 1 ( ) ( ) ( )
2 2

T T T
i i i i i i i i i i i i i di iL tr W F W tr G tr H dφτ μ μ σ σ γ φ γ− − − − −⎡ ⎤= + + + + +⎣ ⎦

%%% % % % % %  (59) 

 
The time derivative of the above equation is given by 
 

1 1 1 1 1( ) ( ) ( )T T T
i i i i i i i i i i i i i i i di i iL tr W F W tr G tr H d dφτ τ μ μ σ σ γ φφ γ− − − − −= + + + + + &&& % %& & % %& % %& % % % %      (60) 

 
Applying(52) to (60), we have 
 

1 1 1 1 1

ˆ ˆ ˆ ˆˆ ˆˆ ˆ( ) ( )
ˆ

( ) ( ) ( )

T T
i i i i i i i i i i i i i

i i
i i ri i i i

T T T
i i i i i i i i i i i i di i i

S S S Sk W S W
L

v g

tr W F W tr G tr H d d

μ σ μ σ

φ

τ μ σ μ σ
τ

ψ δ ε ω

μ μ σ σ γ φφ γ− − − − −

′ ′ ′ ′⎡ ⎤− + − − + +
= ⎢ ⎥

+ − − + + +⎢ ⎥⎣ ⎦

+ + + + +

% % %&

&&& % %& & % %% % % % % %

    (61) 

 
Substituting the adaptive laws (53), (54) and (55) into (61), and ( ) ( )ˆ⋅ = − ⋅&&% ,yields 

 

[ ] 1 1

2

1 1

2 *

ˆˆ ( )

ˆ( ) ( )

ˆ( )

ˆ( )

T
i i i i i i ri i i i Wi i i i i i i di i i

i i i i i ri i i i i i i Ni

T
Wi i i i i i i di i i

i i i i i ri i i i i i i

L k v g tr Z Z d d

k v g

tr Z Z d d

k v g

φ

ω ω

φ

ω

τ τ ψ δ ε ω γ τ γ φφ γ

τ τ ψ δ τ τ τ ρ ϑ ε

γ τ γ φφ γ

τ τ ψ δ τ τ τ φϑ

− −

− −

= − + − − + + + + + +

≤ − + − − + + +

+ + +

≤ − + − − + +

+

&& % %% %& %

&& % %% %%

1 1ˆ( )T
Wi i i i i i i di i itr Z Z d dφγ τ γ φφ γ− −+ + && % %% %%

 (62) 
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Inserting (56) and (58) into the above inequality, we obtain 
*

2 * *

*
* 2

2

*
2 * *

ˆˆ( ) tanh( )

ˆˆtanh( )

ˆ ˆ( ) ( )

ˆ( ) tanh( )

i i
i i i i i i i i i i i i i i

i

i i
i i i i i i i i

i

T
i i di i i Wi i i i

i i
i i i i i i i i i i i i

i

L k g

d

d d tr Z Z

k

ω
ω ω

ω
ω φ

ω
ω ω φ

τ ϑτ τ ψ δ τ τ φϑ τ φϑ
α

τ ϑφ τ ϑ λ φ τ τ
α

τ λ τ γ τ

τ ϑτ τ ψ δ φ τ ϑ τ ϑ λ τ
α

≤ − + − + + −

⎡ ⎤
− − −⎢ ⎥

⎣ ⎦

− − +

⎡ ⎤
= − + − + − +⎢ ⎥

⎣ ⎦

&

%

% %

2

ˆ

ˆ ˆ( )

i i

T
i i i i di i i i Wi i i id g d d tr Z Z

φφ

τ τ λ τ γ τ− + + +

%

% %

     (63) 

 
Using (11), (63) becomes 
 

2 2ˆ( )
ˆˆ ˆ( )

i i i i i i i i i i i i i

T
i i i i di i i Wi i i

L k d g

d d tr Z Zφ

τ τ ψ δ φ ς α τ τ

τ λ φφ λ γ

≤ − + − + − +

⎡ ⎤+ + +⎣ ⎦

&

%% %
                              (64) 

 
By completing square, we have 
 

2
2 ˆ( )

4
ˆˆ ˆ( )

i
i i i i i i i i i

i

T
i i i i di i i Wi i i

gL k
d

d d tr Z Zφ

τ τ ψ δ φ ς α

τ λ φ φ λ γ

≤ − + − + +

⎡ ⎤+ + +⎣ ⎦

&

%% %

                                   (65) 

 
With (41), (44), (53)-(58), approximation error between actual approximation inverse and 
ideal control inverse is bounded by 
 

1 2 3ˆ ,i i i i i i i F
c c c Zψ δ τ− ≤ + + %                                           (66) 

 
where 1 2 3, ,i i ic c c are positive constants. 
 

( ) ( )2
2 1 3

2
ˆˆ ˆ( )

4

i i i i i i i i i i iF

Ti
i i i i di i i Wi i i

i

L k c c c Z

g d d tr Z Z
d φ

τ τ φ ς α

τ λ φ φ λ γ

≤ − − + + +

⎡ ⎤+ + + +⎣ ⎦

& %

%% %
                          (67) 

 

Since 
222 ˆˆ( ) , ,T

i i i i i i i i i i i i i i iFF F
tr Z Z Z Z Z d d d d dφφ φ φ φ≤ − ≤ − ≤ −&% % % %% % %% % % hold, the  
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above inequality can be written as 

( ) ( )
2

2
2 1 3

22 2

4

( ) ( ) ( )

i
i i i i i i i i i i iF

i

i i i i i di i i i Wi i i iFF F

gL k c c c Z
d

d d d Z Z Zφ

τ τ φ ς α

τ λ φ φ φ λ γ

≤ − − + + + +

⎡ ⎤+ − + − + −⎢ ⎥⎣ ⎦

& %

% %% % % %

       (68) 

 
By completing square for (68), we get 
 

( )
2

2
2 5 4

i
i i i i i i i i i

i

gL k c c
d

τ τ φ ς α≤ − − + + +&                                  (69) 

 

where 5 1 4i i ic c c= + ,with
( )2

2 2 3
4 4 4 4

Wi i ii Fdi
i i i

Z c
c dφ γλ λφ

+
= + + . 

For the overall system, it can be derived that the bound as 
 

( )
2

2
2 5

1 1 4

n n
i

i i i i i i i i i
i i i

gL L k c c
d

τ τ φ ς α
= =

⎧ ⎫
= ≤ − − + + +⎨ ⎬

⎩ ⎭
∑ ∑& &                        (70) 

 

According to (34), 
1

n
T

i ij j i
j

g γ τ χ
=

≤ = Γ∑ , define 1 2[ , , ]T
nχ τ τ τ= L , 

1 2[ , , ]T
i i i inγ γ γΓ = L ,  1 21 2 22 2[ , , , ]n nK diag k c k c k c= − − −L  , 51 52 5[ , , , ]T

nC c c c= L  

,  ( )
1

n

i i i
i

D φ ς α
=

=∑  , the above inequality can be rewritten as 

 

2
min

1
4

( )

T T T T T
i i

i

L K C D E C D
d

E C D

χ χ χ χ χ χ

λ χ χ

⎛ ⎞
≤ − − Γ Γ + + = − + +⎜ ⎟

⎝ ⎠

≤ − + +

&
                (71) 

 

where 1(4 ) T
i i iE K d −= − Γ Γ , min ( )Eλ  the minimum singular value of E . Then 0L ≤& , 

as long as 2i ik c> and sufficiently large id , E would be positive definite, and  
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( )

2
min

2
min min

3

( )
,

4 ( ) 2 ( )
1, ,i i i i i Wi i iFF
Wi

C D E C
A

E E

d d Z Z c

λ
χ

λ λ

φ φ γ
γ

+
≥ + =

≥ ≥ ≥ +%% %

                             (72) 

Now, we define  
 

{ } { }
{ } ( )3

, ,

1,

i i i

d i i i Z i i Wi i iFF F
Wi

i

i i

A

d d d Z Z Z c

χ φχ χ φ φ φ

γ
γ

Ω = ≤ Ω = ≤

⎧ ⎫⎪ ⎪Ω = ≤ Ω = ≤ +⎨ ⎬
⎪ ⎪⎩ ⎭

% %

% % % %
                (73) 

 

Since 3, , , ,i i i Wi iF
Z d cφ γ  are positive constants, we conclude that χΩ , Z iΩ  ,

iφ
Ω  

and di
Ω  are compact sets. Hence L&  is negative outside these compacts set. According to a 

standard Lyapunov theorem, this demonstrates that , ,i i iZ dφ %%%  and χ are bounded and will 

converge to χΩ , Z iΩ  ,
iφ

Ω  and di
Ω , respectively. Furthermore, this implies ie  is bounded 

and will converge to a neighborhood of the origin and all signals in the system are bounded. 

 
4.1.3 Simulation Study 
In order to validate the effectiveness of the proposed scheme, we implement an example, 
and assume that the large-scale system is composed of the following two subsystems 
defined by 
 

11 12
2 2

12 11 11 12 1
2 2
11 12 1 21

1: 0.02( )

( ) ( ) 0.2 sin(0.2 )

Subsystem

x x

x x x x u

x x u x

ω ω

σ

=⎧
⎪ = − + − +⎨
⎪ + + + +⎩

&

&                     (74) 

 

21 22
2 2

22 21 22 2 2
3

2 11

2 : 0.1(1 ) tanh(0.1 )

0.15 tanh(0.1 )

Subsystem

x x

x x x u u

u x

=⎧
⎪ = + + +⎨
⎪ + +⎩

&

&                             (75) 

 
where 0.4ω π= , 1 1

1( ) (1 ) (1 )u uu e eσ − −= − + . The desired trajectory
11 0.1 [sin(2 ) cos( )]dx t tπ= − , 

21 0.1 cos(2 )dx tπ= . 
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Input vectors of neural networks are ˆ[ , , ] , 1, 2T T
i i i iz x iτ ψ= = , and number of hidden layer 

nodes both 8. The initial weight of neural network is ˆ (0) (0)iW = . The center values and the 

widths of Gaussian function are initialized as zeroes, and 5 , respectively. The initial 
condition of controlled plant is 1(0) [0.1,0.2]Tx = 2 (0) [0,0]Tx = . The other parameters are 
chosen as follows: 

5, 5i ikΛ = = 0.001, 1, 1, 0.01, 0.01Wi i di i diφ φγ γ γ λ λ= = = = = , 10iα =  , 10i WiF I= , 

2 , 2i iG I H Iμ σ= = , with , ,Wi i iI I Iμ σ  corresponding identity matrices. 

Fig.5 shows the results of comparisons of tracking errors of two subsystems. Fig.6 gives 
control input of two subsystems, Fig.7 and Fig.8 the comparison of tracking of two 
subsystems, respectively. Fig.9 and Fig.10 illustrate outputs of two RBFNs and the change of 
norms of ˆ ˆ ˆ, ,W μ σ , respectively. From these results, it can be seen that the effectiveness of the 
proposed scheme is validated, and tracking errors converge to a neighborhood of the zeroes 
and all signals in system are bounded. Furthermore, the learning rate of neural network 
controller is rapid, and can track the desired trajectory in about 1 second. From the results of 
control inputs, after shortly shocking, they tend to be smoother, and this is because neural 
networks are unknown for objective in initial stages. 
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Fig. 5. Tracking error of two subsystems: 1(solid), 2(dot) 
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Fig. 6. Control input of two subsystems: 1(solid), 2(dot) 
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11
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Fig. 7. Comparison of the tracking of subsystem 1: 11x (solid) and 11dx (dot)   
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Fig. 8. Comparison of the tracking of subsystem 2: 21x (solid) and 21dx (dot)  
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Fig. 9.  Subsystem 1: Output of RBFN (solid), norms of Ŵ (dash), μ̂ (dot), σ̂ (dash-
dot) 
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4.2 RBFN-based decentralized adaptive control for the class of large-scale nonlinear 
systems with nonlinear function interconnections 
Assumption 10. The interconnection effect is bounded by the following function: 

1 2 1
( , , , ) (| |)n

i n ij jj
g x x x ξ τ

=
≤∑L ,                                                  (76) 

 
where (| |)ij jξ τ  are unknown smooth nonlinear function, jτ are filtered tracking errors to 

be defined shortly . 
The control objective is: determine a control law, force the output, iy  , to follow a given 

desired output, dix  , with an acceptable accuracy, while all signals involved must be 
bounded.  
Define the desired trajectory vector 1[ , , , ]il T

di di di dix y y y −= & L , ( )[ , , , ]il T
di di di diX y y y= & L  and 

tracking error 1 2[ , , , ]
i

T
i i di i i ile x x e e e= − = L , thus, the filter tracking error can be written as 

 
( 2) ( 1)

,1 ,2 , 1[ 1] i i

i

l lT
i i i i i i i i l i ie k e k e k e eτ − −

−= Λ = + + + +& L ,                         (77) 

 
where the coefficients are chosen such that the polynomial ( 2) ( 1)

,1 ,2 , 1
i i

i

l l
i i i lk k s k s s− −

−+ + + +L  

is Hurwitz. 
Assumption 11. The desired signal ( )dix t  is bounded, so that di diX X≤ , with diX  a 

known constant. 
For an isolated subsystem, without interconnection function, by differentiating (77), the 
filtered tracking error can be rewritten as 

0 5 10 15 20-5

0

5

10

15

time sec  
Fig. 10. Subsystem 2: Output of RBFN (solid), norms of Ŵ (dash), μ̂ (dot), σ̂ (dash-
dot) 
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( ) [0 ] ( , )i

l

l T
i il di i i i i i dix y e f x u Yτ = − + Λ = +& &  ,                                (78) 

 

with ( ) [0 ]il T
di di i iY y e= − + Λ . 

Define a continuous function 
 

i i i dik Yδ τ= + ,                                                                      (79) 
 
where ik is a positive constant. With Assumption 5, we know ( , ) 0i i if x u u∂ ∂ ≠ , 

thus, [ ( , ) ] 0i i i if x u uδ∂ − ∂ ≠ . Considering the fact that 0i iuδ∂ ∂ = , with the implicit 

function theorem, there exists a continuous ideal control input iu∗ in a neighborhood 

of ( , )i i ix u R∈Ω × , such that ( , ) 0i i if x u δ∗ − = , i.e. ( , )i i i if x uδ ∗= holds. 

Here, ( , )i i i if x uδ ∗=  represents an ideal control inverse. Adding and subtracting iδ to the 

right-hand side of ( , )il i i i ii
x f x u g= +&  of (33), one obtains 

 
( , )il i i i i i di i ii

x f x u g Y kδ τ= + + − −& ,                                           (80) 

 
and yields 

 
( , )i i i i i i i ik f x u gτ τ δ= − + + +& ,                                               (81) 

 
Similar to the above-mentioned equation (40), ˆ ˆ( , )i i i if x uψ =  holds. 
Based on the above conditions, in order to control the system and make it be stable, we 
design the approximation pseudo-control input ˆ iψ  as follows: 
 

ˆˆ (| |)T
i i i di ci gi gi i i rik Y u W S vψ τ τ τ= − − − − − ,                                (82) 

 
where ciu  is output of a neural network controller, which adopts a RBFN, riv is 

robustifying control term designed in stability analysis, ˆ (| |)T
gi gi iW S τ is used to 

compensate the interconnection nonlinearity (we will define later). 

Adding and subtracting ˆ iψ to the right-hand side of (81), with ( , )i i i di i i ik Y f x uδ τ ∗= + = , 
we have 
 

ˆ ˆ( , , ) (| |)T
i i i i i i i ci gi gi i i i i ri ik x u u u W S v gτ τ τ τ δ ψ∗= − + Δ − − + − − +%& ,        (83) 
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where   ( , , ) ( , ) ( , )i i i i i i i i i ix u u f x u f x u∗ ∗Δ = −% is  error  between  the  nonlinear  function  
and its ideal control function, we can use the RBFN to approximate it.  

 
4.2.1 Neural network-based approximation 
Based on the approximation property of RBFN, ( , , )i i i ix u u ∗Δ% can be written as 
 

( , , ) ( ) ( )T
i i i i i i i i iSx u u W z zε∗Δ = +% ,                                         (84) 

 
where iW  is the weight vector, ( )i iS z  is Gaussian basis function, ( )i izε is the 

approximation error and the input vector q
iz R∈ , q the number of input node. 

Assumption 12. The approximation error ( )i izε is bounded by | |i Niε ε≤ , with 0Niε > is 

an unknown constant.  The input of the RBFN is chosen as ˆ[ , , ]T T
i i i iz x τ ψ= . Moreover, 

output of the RBFN is designed as  
 

ˆ ( ).T
ci i i iSu W z=                                                             (85) 

 

Define ˆ
iW  as estimates of ideal iW , which are given by the RBFN tuning algorithms. 

Assumption 13. The ideal value of iW satisfies  
 

|| ||i iMW W≤ ,                                                                 (86) 
 

where iMW is positive known constant, with estimation errors as ˆ
i i iW W W= −%  . 

 
4.2.2 Controller design and stability analysis 
Substituting (84) and (85) into (83), we have 
 

ˆˆ (| |) ( )T T
i i i i i i i ri i gi gi i i i ik W S v g W S zτ τ δ ψ τ τ ε= − + + − − + − +%&                   (87) 

 
Theorem 3. Consider the nonlinear subsystems represented by Eq. (33) and let assumptions 
hold. If choose the pseudo-control input ˆ iψ  as Eq.(82), and use the following adaptation 
laws and robust control law 
 

   ˆ ˆ[ | |]i i i i Wi i iW F S Wτ γ τ= −& ,                                                     (88) 
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2ˆ ˆ[ (| |) | |]gi i gi i i gi gi iW G S Wτ τ γ τ= −& ,                                           (89) 

 

      ˆ ˆ[ (| | 1) tanh( ) | |]i i i i i i i i iφ φφ λ τ τ τ α γ φ τ= + −& ,                                  (90) 

 
     ˆ (| | 1) tanh( )ri i i i iv φ τ τ α= + ,                                                 (91) 

 
where 0T

i iF F= > , 0T
i iG G= >  are any constant matrices, , , ,i Wi gi iφ φλ γ γ γ and iα are 

positive design parameters, îφ is the estimated value of the unknown approximation errors, 
which will be defined shortly, then, guarantee that all signals in the system are bounded and 
the tracking error ie will converge to a neighborhood of the origin. 
Proof.  Consider the following positive define Lyapunov function candidate as 
 

2 1 1 1 22 T T
i i i i i gi i gi i iL W F W W G W φτ λ φ− − −= + + + %% % % %                                  (92) 

 
The time derivative of the above equation is given by 
 

1 1 1T T
i i i i i i gi i gi i i iL W F W W G W φτ τ λ φφ− − −= + + + && % %& % % % %&                                 (93) 

 
Applying (87) and(53) to (59) and ( ) ( )ˆ⋅ = − ⋅&&% , we have 
 

1 1

ˆˆ[ (| |) ]

ˆ | |

T
i i i i i i ri i gi gi i i i

T T
Wi i i i gi i gi i i i

L k v g W S

W W W G W φ

τ τ δ ψ τ τ ε

γ τ λ φφ− −

= − + − − + − +

+ + +

&

&& % %% % %
                      (94) 

 
Using (76), (94) is rewritten as 
 

2
1

1 1

ˆˆ( ) [ (| |) (| |) ]

ˆ| |

n T
i i i i i i ri i i ij j gi gi i ij

T T
i Ni i i i Wi i i i gi i gi

L k v W S

W W W G Wφ

τ τ δ ψ τ τ ξ τ τ τ

τ ε λ φφ γ τ

=

− −

≤ − + − − + −

+ + + +

∑&

& &% % % % %
            (95) 

 

Since ( )ijξ ⋅ is a smooth function, there exists a smooth function (| |)ij jζ τ , (1 , )i j n≤ ≤  

such that (| |) | | (| |)ij j j ij jξ τ τ ζ τ=  hold. Thus, we have 
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2 2
1

1 1

ˆˆ( ) [ (| |) (| |)]

ˆ| | | |

n T
i i i i i i ri i i ij j gi gi ij

T T
i Ni i i i Wi i i i gi i gi

L k v W S

W W W G Wφ

τ τ δ ψ τ τ ζ τ τ

τ ε λ φφ γ τ

=

− −

≤ − + − − + −

+ + + +

∑&

& &% % % % %
         (96) 

 

Since the function 
1

(| |) (| |)n
i i ij ii

d τ ζ τ
=

=∑ is smooth and iτ is on a compact set, 

(| |)i id τ can be approximated via a RBFN, i.e., (| |) (| |)T
i i gi gi i gid W Sτ τ ε= + , with 

bounded approximation error giε , | |gi gNiε ε≤ . ˆ
giW  is estimate of ideal giW , with 

boundedness || ||gi gMiW W≤ , 0gMiW > a known constant, and the estimation errors as 

ˆ
gi gi giW W W= −% . Then, (96) becomes 

 

2

1

1 1

2 2 2

1 1

ˆˆ( ) [ ( ) ( ) ]

ˆ

ˆ( ) (| |) | |

ˆ

n
T

i i i i i i ri i i ij j gi gi i i
j

T T
i Ni i i i Wi i i i gi i gi

T
i i i i i ri i i gi gi i gi i i Ni

T T
i i i Wi i i i gi i

L k v W S

W W W G W

k v W S

W W W G

φ

φ

τ τ δ ψ τ τ ξ τ τ τ

τ ε λ φφ γ τ

τ τ δ ψ τ τ τ ε τ τ ε

λ φφ γ τ

=

− −

− −

≤ − + − − + −

+ + + +

≤ − + − − + + +

+ + +

∑&

& &% % % % %

%

&% % % % %
giW&

          (97) 

 
Substituting the adaptive law (89), we obtain 
 

2 2 1ˆ( ) | |
ˆ ˆ| | | |

i i i i i i ri i gNi i i Ni i i i

T T
Wi i i i gi gi gi i

L k v

W W W W
φτ τ δ ψ τ ε τ τ ε λ φφ

γ τ γ τ

−≤ − + − − + + +

+ +

&% %&

% %
                 (98) 

 

Define max( , )i Ni gNiφ ε ε= , with îφ  is its estimate, and ˆ
i i iφ φ φ= −%  with iφ%  error. (98) can 

be rewritten as 
 

2 2

1

ˆ( ) ( )

ˆ ˆ
i i i i i i ri i i i i

T T
i i i Wi i i i gi gi gi i

L k v

W W W Wφ

τ τ δ ψ τ φ τ τ

λ φφ γ τ γ τ−

≤ − + − − + +

+ + +

&

&% % % %
                               (99) 

 
Applying the adaptive law (56) and robust control term (58), we have 
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2

2

ˆˆ( ) ( 1) tanh( ) ( 1)
ˆˆ ˆ( 1) tanh( )

ˆ( ) ( 1) ( 1) tanh( )
ˆ ˆ

i i i i i i i i i i i i i i

T T
i i i i i Wi i i i gi gi gi i i i i i

i i i i i i i i i i i i i

T T
Wi i i i gi gi gi i i

L k

W W W W

k

W W W W

φ

φ

τ τ δ ψ φτ τ τ α φ τ τ

φτ τ τ α γ τ γ τ λ φφ τ

τ τ δ ψ φ τ τ φτ τ τ α

γ τ γ τ λ φ

≤ − + − − + + +

− + + + +

= − + − + + − +

+ + +

&

% %% %

%% %

2

ˆ

ˆ( ) ( 1) tanh( )
ˆˆ ˆ

i i i

i i i i i i i i i i i

T T
Wi i i i gi gi gi i i i i i

k

W W W W φ

φ τ

τ τ δ ψ φ τ τ τ τ α

γ τ γ τ λ φφ τ

= − + − + + ⎡ − ⎤⎣ ⎦

+ + + %% %

    (100) 

 
Using (11), we get 
 

2 ˆ( ) (| | 1)
ˆˆ ˆ| | | | | |

i i i i i i i i i

T T
Wi i i i gi gi gi i i i i i

L k

W W W W φ

τ τ δ ψ φ τ ςα

γ τ γ τ γ φφ τ

≤ − + − + +

+ + +

&

%% %
                               (101) 

 
With (82), (85), and (88)-(91), the approximation error between the ideal control inverse and 
the actual approximation inverse is bounded by 1 2ˆ| | | |i i i i ic cδ ψ τ− ≤ +  

3 4|| || || ||,i i i gic W c W+ +% % with 1 2 3 4, , ,i i i ic c c c positive constants. Moreover, we utility the 

facts, 2ˆ || |||| || || ||Ta a a a a≤ −% % %  , (101) can be rewritten as 
 

( ) ( )

( )

2
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φ

φ

γ

τ τ τ γ φ ς α

λ φ φ φ

γ

τ τ φ ς α τ γ

λ φ φ φ

⎡ ⎤−
⎢ ⎥
⎢ ⎥≤ − − + + + + + − +
⎢ ⎥
⎢ ⎥+ −⎣ ⎦

⎡ ⎤− + +⎢ ⎥⎣ ⎦
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− +

% %

& % % % %

% %

% %

% %

% %
i

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

         (102) 

 
Completing square for (102), we have 
 

( ) 2
2 8 | |i i i i i i i i iL k c cτ τ φ ς α≤ − − + +&                                        (103) 
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with 5 3 6 4|| || , || ||i Wi i i i gi gi ic W c c W cγ γ= + = + , 2 2 2
7 6 54 4 4i i i i gi i Wic c cφφ λ γ γ= + +  , 

8 1 7i i i i i ic c cφ ς α= + + . 
 
For the overall system, we have 
 

( ) 2
2 81 1

[ | | ]n n
i i i i i i i i ii i

L L k c cτ τ φ ς α
= =

= ≤ − − + +∑ ∑& &                       (104) 

 
Now, define 1[| |, | |]T

nχ τ τ= L , 1 21 2[ , , ]n nK diag k c k c= − −L , 81 82 8[ , , , ]T
nC c c c= L , 

( )1

n
i i ii

D φ ς α
=

=∑ . (104) can be rewritten as 

 
2

min ( ) || || || |||| ||T TL K C D K C Dχ χ χ λ χ χ≤ − + + ≤ − + +&            (105) 
By completing square, yields 
 

2 2

min
min min

( )
2 ( ) 4 ( )

C C
L K D

K K
λ χ

λ λ
⎛ ⎞

≤ − − + +⎜ ⎟
⎝ ⎠

&                            (106) 

 

Clearly, 0L ≤& , as long as 2i ik c> , and  
 

1 1 1
5 6, , ,

Wi gii i i i i i gi i giA W c W W c Wφχ φ λ φ γ γ− − −≥ ≥ ≥ ≥% % %           (107) 

 

where 2 2
min min min[ ( )] [4 ( )] [2 ( )]A C D K K C Kλ λ λ= + + with min ( )Kλ  the minimum 

singular value of K .   
Now, we define  
 

{ } { }
{ } { }

1

1 1
5 6

, ,

, ,

i i i i

W i i i i Wg gi gi i gi

i

i Wi i gi

A

W W c W W W c W

χ φ φχ χ φ φ λ φ

γ γ

−

− −

Ω = ≤ Ω = ≤

Ω = ≤ Ω = ≤

% %

% % % %
      (108) 

 

Since 5 6, , , , , , ,i gi i i Wi Wgi i iW W c cφφ γ γ γ  are positive constants, we conclude 

that χΩ ,
iφ

Ω  , W iΩ  and Wgi
Ω  are compact sets. Hence L&  is negative outside these 

compacts set. According to a standard Lyapunov theorem, this demonstrates that 

, ,i gi iW W φ%% %  and χ are bounded and will converge to χΩ ,
iφ

Ω , W iΩ  and Wgi
Ω , 

respectively.  
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Furthermore, this implies ie  is bounded and will converge to a neighborhood of the origin 
and all signals in the system are bounded. 

 
4.2.3 Simulation Study 
In order to validate the effectiveness of the proposed scheme, we implement an example, 
and assume that the large-scale system is composed of the following two subsystems 
defined by 
 

11 12
2 2 2 2

12 11 11 12 1 11 12 1

2 2

1: 0.02( ) ( ) ( )
0.1|| || exp(0.5 || ||)

Subsystem

x x

x x x x u x x u
x x

ω ω σ

=⎧
⎪ = − + − + + +⎨
⎪ +⎩

&

&             (109) 

 

21 22
2 2 3

22 21 22 2 2 2

2 2

2 : 0.1(1 ) tanh(0.1 ) 0.15
0.2 || || exp(0.1|| ||)

Subsystem

x x

x x x u u u
x x

=⎧
⎪ = + + + +⎨
⎪ +⎩

&

&                     (110) 

 
where 0.4ω π= , 1 1

1( ) (1 ) (1 )u uu e eσ − −= − + . The desired trajectory 

11 0.1 [sin(2 ) cos( )]dx t tπ= − ,  21 0.1 sin(2 )dx tπ= . For the RBFNs as (84), input vectors are 

chosen as ˆ[ , , ]T T
i i i iz x τ ψ= , 1,2i =  and number of hidden layer nodes both 8, the initial 

weights ˆ (0) (0)iW = and the center values and the widths of Gaussian function zero, and 2, 
respectively. For the RBFNs, which used to compensate the interconnection nonlinearities, 
both input vectors are 1 2[ , ]Tτ τ , number of hidden layer nodes is 8, the initial 

weights ˆ (0) (0)giW = , and the center values and the widths of Gaussian function zero, 

and 5 , respectively. The initial condition of controlled plant is 1(0) [0.2,0.2]Tx = , 

2 (0) [0.3,0.2]Tx = . The other parameters are chosen as follows: 1, 2i ikΛ = = , 

0.001, 0.1, 0.01,Wi i iφ φγ γ λ= = = 10iα = , 10i WiF I= , 2 giG I= , with ,Wi giI I    

corresponding identity matrices. Fig.11 and 12 show the results of comparisons of tracking 
errors and control input of two subsystems, Fig.13 and 14 the comparison of tracking of two 
subsystems, respectively. Fig.15 and Fig.16 illustrate the norm of the four weights in two 
subsystems, respectively. From these results, it can be seen that the effectiveness of the 
proposed scheme is validated, and tracking errors converge to a neighborhood of the zeroes 
and all signals in system are bounded. Furthermore, the learning rate of neural network 
controller is rapid, and can track the desired trajectory in less than 3 seconds. From the 
results of control inputs, after shortly shocking, they tend to be smoother, and this is 
because neural networks are unknown for objective in initial stages. As desired, though the 
system is complex, the whole running process is well. 
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Fig. 15. The norms of weights and output of RBFNof subsystem1 
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5. Conclusion  
 
In this chapter, first, a novel design ideal has been developed for a general class of nonlinear 
systems, which the controlled plants are a class of non-affine nonlinear implicit function and 
smooth with respect to control input. The control algorithm bases on some mathematical 
theories and Lyapunov stability theory. In order to satisfy the smooth condition of these 
theorems, hyperbolic tangent function is adopted, instead of sign function. This makes 
control signal tend smoother and system running easier. Then, the proposed scheme is 
extended to a class of large-scale interconnected nonlinear systems, which the subsystems 
are composed of the above-mentioned class of non-affine nonlinear functions. For two 
classes of interconnection function, two RBFN-based decentralized adaptive control schemes 
are proposed, respectively. Using an on-line approximation approach, we have been able to 
relax the linear in the parameter requirements of traditional nonlinear decentralized 
adaptive control without considering the dynamic uncertainty as part of the 
interconnections and disturbances. The theory and simulation results show that the neural 
network plays an important role in systems. The overall adaptive schemes are proven to 
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guarantee uniform boundedness in the Lyapunov sense. The effectiveness of the proposed 
control schemes are illustrated through simulations. As desired, all signals in systems, 
including control signals, are tend to smooth. 
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Appendix A 
 
As Eq.(19), the approximation error of function can be written as 

 
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( )T T T T T T T TM M M M M M M Mσ σ σ σ σ σ σ σ σ− = − + − = − + %    

 
Substituting (18) into the above equation, we have 
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so that 
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Thus, 
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Appendix B 
 
Using (46) and (47), the function approximation error can be written as 
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define as 
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Thus, 
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