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Preface

The RNNs (Recurrent Neural Networks) are a general case of artifi cial neural networks 
where the connections are not feed-forward ones only. In RNNs, connections between 
units form directed cycles, providing an implicit internal memory. Those RNNs are 
adapted to problems dealing with signals evolving through time. Their internal mem-
ory gives them the ability to naturally take time into account. Valuable approximation 
results have been obtained for dynamical systems.

During the last few years, several interesting neural networks developments have 
emerged such as spike nets and deep networks. This book will show that a lot of im-
provement and results are also present in the active fi eld of RNNs.

In the fi rst chapter, we will see that many diff erent algorithms have been applied to pre-
diction in time series. ARIMA, one of the models studied, combines three models (AR, 
MA and ARMA). It is compared to Elman-RNN with four diff erent architectures.

The second chapter gives an overview of RNN for time series prediction. The algo-
rithm BPTT is detailed then delayed connections are added resulting into two new 
algorithms: EBPTT and CBPTT. BPTT is also upgraded through boosting thus giving 
much bett er results especially on multi-step ahead prediction. 

The third chapter presents the application of RNN to the diagnosis of Carpal Tunnel 
Syndrome. The RNN used in this study is Elman-RNN and the Levenberg-Marquardt 
learning algorithm is detailed.

The fourth chapter describes the use of neural networks to model the hysteresis phe-
nomena encountered on human meridian systems. Models using extreme learning ma-
chine (ELM) with a non-recurrent neural network and a RNN are compared. 

The fi ft h chapter shows the use of a dynamic RNN to model the dynamic control of hu-
man movement. From multiple signals (EMG and EEG), the goal is to fi nd the mapping 
with the movement of the diff erent parts of the body. Some relations found by the RNN 
help for a bett er understanding of motor organization in the human brain.

The sixth chapter proposes a paradigm of how the brain deals with active interaction 
with environment. It is based on Compact Internal Representation (CIR). The RNNs 
are used here to learn and retrieve these CIRs and also to predict the trajectories of 
moving obstacles. 



VIII Preface

We hope that this reading will give you or generate new ideas which could be applied 
or adapted to your research.

February 2011

Professors Hubert Cardot1 and Romuald Boné2,1

1University François Rabelais Tours
 2National Engineering School of the Loire Valley
 France
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Double Seasonal Recurrent Neural Networks for 
Forecasting Short Term Electricity 

Load Demand in Indonesia 
Sony Sunaryo, Suhartono and Alfonsus J. Endharta  

Department of Statistics, Institut Teknologi Sepuluh Nopember 
Indonesia 

1. Introduction     
PT. PLN (Perusahaan Listrik Negara) is Government Corporation that supplies electricity 
needs in Indonesia. This electricity needs depend on the electronic tool used by public 
society, so that PLN must fit public electricity demands from time to time. PLN works by 
predicting electricity power which is consumed by customers hourly. The prediction made 
is based on prior electricity power use. 
The prediction of amount of electricity power use is done to optimize electricity power used 
by customers, so that there will not be any electricity extinction. There are some methods 
that could be used for forecasting of amount of electricity power use, such as double 
seasonal ARIMA model and Neural Network (NN) method. Some researches that are 
related to short-term electricity power forecasting can be seen in Chen, Wang and Huang 
(1995), Kiartzis, Bakirtzis and Petridis (1995), Chong and Zak (1996), Tamimi and Egbert 
(2000), Husen (2001), Kalaitzakis, Stavrakakis and Anagnostakis (2002), Taylor (2003), 
Topalli and Erkmen (2003), Taylor, Menezes and McSharry (2006), and Ristiana (2008). 
Neural network methods used in those researches are Feed Forward Neural Network, 
which is known as AR-NN model. This model cannot get and represent moving average 
order effect in time series. Some prior researches in many countries in the world including 
in Indonesia showed that ARIMA model for the electricity consumption data tends to have 
MA order (see Taylor, Menezes and McSharry (2006) and Ristiana (2008)). 
The aim of this research is to study further about other NN type, i.e. Elman-Recurrent 
Neural Network (RNN) which can explain both AR and MA order effects simultaneously 
for forecasting double seasonal time series, and compare the forecast accuracy with double 
seasonal ARIMA model. As a case study, we use data of hourly electricity load demand in 
Mengare, Gresik, Indonesia. The results show that the best ARIMA model for forecasting 
these data is ARIMA ([1,2,3,4,6,7,9,10,14,21,33],1,8)(0,1,1)24(1,1,0)168. This model is a class of 
double seasonal ARIMA, i.e. daily and weekly seasonal with 24 and 168 length of periods 
respectively. Additionally, there are 14 innovational outliers detected from this ARIMA 
model. 
In this study, we apply 4 different architectures of RNN particularly for the inputs, i.e. the 
input units are similar to ARIMA model predictors, similar to ARIMA predictors plus 14 
dummy outliers, the 24 multiplied lagged of the data, and the combination of 1 lagged and 
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the 24 multiplied lagged plus minus 1. The results show that the best network is the last 
ones, i.e., Elman-RNN(22,3,1). The comparison of forecast accuracy shows that Elman-RNN 
yields less MAPE than ARIMA model. Thus, Elman-RNN(22,3,1) gives more accurate 
forecast values than ARIMA model for forecasting hourly electricity load demands in 
Mengare, Gresik, Indonesia. 
The rest of this paper is organized as follows. Section 2 briefly introduces the forecasting 
methods, particularly ARIMA and NN methods. Section 3 illustrates the data and the 
proposed methodology. Section 4 evaluates the model’s performance in forecasting double 
seasonal data and compares the forecasting accuracy between the RNN and ARIMA models. 
The last section gives the conclusion and future work. 

2. Forecasting methods 
There are many quantitative forecasting methods based on time series approach. In this 
section, we will briefly explain some methods used in this research, i.e. ARIMA model and 
Neural Network. 

2.1 ARIMA model 
One of the popular time series models and mostly used is ARIMA model. This model 
contains three parts, namely autoregressive (AR), moving average (MA), and mix of ARMA 
models (Wei, 2006). Bassically, this model model shows that there is a relationship between 
a value in the present (Zt) and values in the past  (Zt-k), added by random value. ARIMA 
(p,d,q) model is a mixture of AR(p) and MA(q), with a non-stationery data pattern and d 
differencing order. The mathematics form of ARIMA(p,d,q) is  

 tqt
d

p aBZBB  )()1)(( θφ =−  (1) 

where p is AR model order, q is MA model order, d is differencing order, and 

)...1()( 2
21

p
pp BBBB φφφφ −−−−= , 

)...1()( 2
21

q
qq BBBB θθθθ −−−−= . 

Generalization of ARIMA model for a seasonal pattern data, which is written as ARIMA 
(p,d,q)(P,D,Q)S, is (Wei, 2006)  

     t
Dsds

Pp ZBBBB )1()1)(()( −−Φφ t
s

Qq aBB  )()( Θ=θ   (2) 

where s  is seasonal period, and 

)...1()( 2
21

Ps
P

sss
P BBBB Φ−−Φ−Φ−=Φ , 

)...1()( 2
21

Qs
Q

sss
Q BBBB Θ−−Θ−Θ−=Θ . 

Short-term (half-hourly or hourly) electricity consumption data frequently follows a double 
seasonal pattern, including daily and weekly seasonal. ARIMA model with multiplicative 
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double seasonal pattern as a generalization of seasonal ARIMA model, written as 
ARIMA(p,d,q)(P1,D1,Q1)S1(P2,D2,Q2)S2, has a mathematical form as 

 t
DsDsds

P
s

Pp ZBBBBBB 22112
2

1
1

)1()1()1)(()()( −−−ΦΦφ  t
s

Q
s

Qq aBBB )()()( 2
2

1
1

ΘΘ=θ  (3) 

where s1 and s2 are periods of difference seasonal. 
One of the methods that can be used to estimate the parameters of ARIMA model is 
Maximum Likelihood Estimation (MLE) method. The assumption needed in MLE method is 
that error  at  distributes normally (Box, Jenkins and Reinsel, 1994; Wei, 2006). Therefore, the 
cumulative distribution function is 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= −

2

2
22

2
exp)2()|( 2

1

a

t
aat

aaf
σ

πσσ  (4) 

Because error is independent, the jointly distribution from naaa ,...,, 21  is 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= ∑

=

−
n

t
t

a
aan aaaaf n

1

2
2

22
21 2

1exp)2()|,...,,( 2

σ
πσσ . (5) 

Error at can be stated as a function of Zt, and parameters 2,, aσθφ  and also the prior error. 
Generally  at  is written as 

           +−−−= −− ptpttt ZZZa φφ ...11 qtqt aa −− ++ θθ ...11 . (6) 

The likelihood function for parameters of ARIMA model when the observations are known is 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= − ),(

2
1exp)2()|,,( 2

22 2 θφ
σ

πσσθφ SZL
a

aa
n  (7) 

where 

 .  )......(),(
1

2
1111∑

=
−−−− +++−−−=

n

t
qtqtptptt aaZZZS θθφφθφ    (8) 

Then, the log-likelihood function is 

 ),(
2

1)log(
2

)2log(
2

)|,,( 2
22 θφ

σ
σπσθφ SnnZl

a
aa −−−= .  (9) 

The maximum of the log-likelihood function is computed by finding the first-order 
derivative of Equation (9) to each parameter and equaling to zero, i.e. 

  ;0
)|,,( 2
=

∂
∂

φ
σθφ Zl a    ;0

)|,,( 2
=

∂
∂

θ
σθφ Zl a  .  0

)|,,(
2

2
=

∂

∂

a

a Zl
σ

σθφ
 

An information matrix which is notated as ),( θφI  is used to calculate the standard error of 
estimated parameter by MLE method (Box, Jenkins and Reinsel, 1994). This matrix is 
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obtained by calculating the second-order derivative to each parameter ),(( θφβ = ), which is 
notated as ijI  where 

 
ji

a
ij

ZlI
ββ
σβ
∂∂

∂
=

)|,( 22
,  (10) 

and 

 )()( ijIEI −=β .  (11) 

The variance of parameter is notated as )ˆ(βV  and the standard error is )ˆ(βSE . 

 1)]ˆ([)ˆ( −= ββ IV   (12) 
and  

 2
1)]ˆ([)ˆ( ββ VSE = . (13) 

2.2 Neural Network 
In general Neural Network (NN) has some components, i.e. neuron, layer, activation 
function, and weight. NN modeling could be seen as the network form which is including 
the amount of neurons in the input layer, hidden layer, and output layer, and also the 
activation functions. Feed-Forward Neural Network (FFNN) is the mostly used NN model 
for time series data forecasting (Trapletti, 2000; Suhartono, 2007). FFNN model in statistics 
modeling for time series forecasting can be considered as a non-linear autoregressive (AR) 
model. This model has a limitation, which can only represent AR effects in time series data. 
One of the NN forms which is more flexible than FFNN is Recurrent Neural Network 
(RNN). In this model the network output is set to be the input to get the next output (Beale 
and Finlay, 1992). RNN model is also called Autoregressive Moving Average-Neural 
Network (ARMA-NN), because the inputs are not only some lags of response or target, but 
also lags of the difference between the target prediction and the actual value, which is 
known as the error lags (Trapletti, 2000). Generally, the architecture of RNN model is same 
with ARMA(p,q) model. The difference is RNN model employs non-linear function to 
process the inputs to outputs, whereas ARMA(p,q) model uses linear function. Hence, RNN 
model can be said as the non-linear Autoregressive Moving Average model. 
There are many activation functions that could be used in RNN. In this research, tangent 
sigmoid function and linear function are used in hidden layer and output layer respectively. 
The mathematics form of tangent sigmoid function is  

 x

x

e
exf 2

2

1
1)( −

−

+

−
= ,  (14) 

and linear function is xxf =)( . The architecture of Elman-RNN, for example ARMA(2,1)-
NN and 4 neuron units in hidden layer, is shown in Fig. 1.  
In general, Elman-RNN(2,4,1) or ARMA(2,1)-NN is a nonlinear model. This network has 3 
inputs, such as 1−tY , 2−tY  and residual 1−te , four neuron units in the hidden layer with 
activation function  )(•Ψ  and one neuron in the output layer with linear function.  The main 
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Fig. 1. The architecture of Elman-RNN(2,4,1) or ARMA(2,1)-NN 

difference between Elman-RNN and other NN types is the presence of feedback process, i.e. 
a process representing the output as the next input. Therefore, the advantage of using 
Elman-RNN is the fits or predictions are usually more accurate, especially for data that 
consist of moving average order. 
The weight and the bias in the Elman-RNN model are estimated by backpropagation 
algorithm. The general RNN with one hidden layer, q input units and p units in the hidden 
layer is 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++= ∑ ∑

= =

p

j

q

i
ijij

h
j

o XffY
1 1

00 γγββ  (15) 

where jβ  is the weight of the j-th unit in the hidden layer, jiγ  is the weight from i-th input 
to j-th unit in the hidden layer, )(xf h  is the activation function in the hidden layer, and 

)(xf o  is the function in the output layer. Chong and Zak (1996) explain that the weight and 
bias can be estimated by minimizing the value E  in the following equation 

 . ]ˆ[
2
1

1

2
)()(∑

=
−=

n

k
kk YYE  (16) 

Minimization of Equation (16) is done by using Gradient Descent method with momentum. 
Gradient Descent method with momentum m, 0<m<1, is formulated as 

 ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−+⋅−=+

w
Emdwmww ttt η)1()()()1(      (17) 

where dw is the change of the weight or bias, η is the learning rate which is defined, 0<η<1.  
To solve the equation, we do the partial derivative of E to each weight and bias w with chain 
rules. The partial derivative of E to the weight jβ  is  
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Equation (18) is simplified into 

 ∑
=

−=
∂
∂ n

k
kjk

o

j
VE

1
)()(δ

β
   (19) 

where 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
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=

p

l
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o
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1
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By using the same way, the partial derivatives of E to 0β , liγ , and 0lγ  are done, so that 

 ∑
=

−=
∂
∂ n

k
k

oE
1

)(
0

δ
β

, (20) 
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where 
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i kilil

h
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o
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h Xf γγβδδ  . (24) 

These derivatives process shows that the weight and the bias can be estimated by using 
Gradient Descent method with momentum. The the weight and the bias updating in the 
output layer are 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⋅−= ∑

=

+
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k
kjk
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j

s
j Vmdwm

1
)()(

)()()1( )1( δηββ  (25) 

and 
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The weight and the bias updating in the hidden layer are 
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In Equation (25) to (28), dw is the change of the related weight or bias, m is the momentum, 
and η  is the learning rate. 

3. Data and methodology 
This research uses an electricity consumption data from Electrics Goverment Company 
(PLN) in Gresik region as a case study. The data is hourly electricity consumption data in 
Mengare Gresik, which is recorded from 1 August to 23 September 2007. Then, data are 
divided into two parts, namely in-sample for observations in period of 1 August to 15 
September 2007 and out-sample dataset for 16-23 September 2007. Fig. 2 shows the time 
series plot of the data. 

Time (hourly)

Y(
t)

: 
El

ec
tir

ic
ity

 c
on

su
m

pt
io

n

117010409107806505203902601301

4000

3500

3000

2500

2000

1500

1000

 
Fig. 2. Time series plot of hourly electricity consumption in Mengare Gresik, Indonesia 

The methodology for analysing the data consists of the following steps: 
i. Modeling of double seasonal ARIMA by using Box-Jenkins procedure. 
ii. Modeling of Elman-RNN with four types of input, i.e. 

a. The inputs are based on the order of the best double seasonal ARIMA model at the 
first step. 

b. The inputs are based on on the order of the best double seasonal ARIMA model at 
the first step and dummy variables from outliers detection. 

c. The inputs are the multiplication of 24 lag up to lag 480. 
d. The inputs are lag 1 and multiplication of 24 lag ± 1. 
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iii. Forecast the out-sample dataset by using both Elman-RNN and double seasonal 
ARIMA model. 

iv. Compare the forecast accuracy between Elman-RNN and double seasonal ARIMA 
model to find the best forecasting model. 

4. Results 
A descriptive data analysis shows that the highest electricity consumption is at 19.00 pm 
about 3537 kW, and the lowest is at 07.00 am about 1665,2 kW. This consumption explains 
that at 07.00 am most of customers turn the lamps off, get ready for work, and leave for the 
office. In Indonesia, customer work hours usually begins at 09.00 am and end at 17.00 pm. 
Thus, the household electricity consumption at that time period is less or beyond of the 
average of overall electricity consumption. At 18.00 pm, customers turn the night lamps on 
and at 19.00 pm most of customers have been back from work, and do many kinds of 
activities at house, that use a large amount of electricity such as electronics use.  
Summary of descriptive statistics of the daily electricity consumption can be seen in Table 1. 
This table illustrates that on Tuesday the electricity consumption is the largest, about 2469.6 
kW, and the lowest electricity consumption is on Sunday, about 2204.8 kW. The electricity 
consumption averages on Saturday and Sunday are beyond the overall average because 
those days are week-end days, so that customers tend to spend their week-end days with 
their family outside the house. 
 

Day Number of 
observations Mean Standard 

Deviation 
Monday 168 2439.0 624.1 
Tuesday 168 2469.5 608.2 
Wednesday 192 2453.3 584.8 
Thursday 192 2447.9 603.9 
Friday 192 2427.3 645.1 
Saturday 192 2362.7 632.4 
Sunday 192 2204.8 660.3 

Table 1. Descriptive Statistics of the Hourly Electricity Consumption in Every Day  

4.1 Result of double seasonal ARIMA model 
The process for building ARIMA model is based on Box-Jenkins procedure (Box, Jenkins 
and Reinsel, 1994), starting with identification of the model order from the stationer data. 
Fig. 2 shows that the data are non-stationer, especially in the daily and weekly periods.  
Fig. 3 shows the ACF and PACF plots of the real data, and indicate that the data are non-
stationer based on the slowly dying down weekly seasonal lags in ACF plot. Hence, daily 
seasonal differencing (24 lags) should be applied. After daily seasonal differencing, ACF and 
PACF plots for these differencing data are shown in Fig. 4. ACF plot shows that ACF at 
regular lags dies down very slowly, and indicates that regular order differencing is needed. 
Then, daily seasonal and regular order differencing data have ACF and PACF plots in Fig. 5. 
The ACF plot in this figure shows that lags 168 and 336 are significant and tend to die down 
very slowly. Therefore, it is necessary to apply weekly seasonal order differencing (168 
lags). 
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Fig. 3. ACF and PACF for original hourly electricity consumption data 
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Fig. 4. ACF and PACF for data after differencing daily seasonal (D=24) 
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Fig. 5. ACF and PACF for data after differencing twice, i.e. d=1 and D=24 
Figure 6 shows that the ACF and PACF plots of stationer data, which are the data that has 
been differenced by lag 1, 24, and 168. Based on these ACF and PACF plots, there are two 
the tentative double seasonal ARIMA models that could be proposed, i.e. ARIMA 
([1,2,3,4,6,7,9,10,14,21,33],1,[8])(0,1,1)24(1,1,0)168 and ([12],1,[1,2,3,4,6,7])(0,1,1)24(1,1,0)168. Then, 
the results of parameters significance test and diagnostic check for both models show that 
the residuals are white noise. Moreover, the results of Normality test of the residual with 
Kolmogorov-Smirnov test show that the residuals for both models do not satisfy normal 
distribution. It due to some outliers in the data and the complete results of outliers’ 
detection could be seen in Endharta (2009). 
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Fig. 6. ACF and PACF for stationary data after differencing d=1, D=24, and D=168. 

Then, outlier detection process is only done in the first model, because MSE of this model at 
in-sample dataset is less than the second model. This process is done iteratively and we find 
14 innovational outliers. The first model has out-sample MAPE about 22.8% and the model 
could be written as 

+++++ 432 088.0155.0139.0164.01( BBBB ++++ 10976 067.0077.0152.0112.0 BBBB  

)543.01)(072.0089.0069.0 168222114 BBBB +++ =−−− tYBBB )1)(1)(1( 16824  

)0674.01( 8B− taB )803.01( 24− . 

Thus, the first model with the outliers is 
 

        ++−= )906()1062()830(
)(ˆ

1 307.621886.710844[ tttBt IIIY π
)1027()810( 238.485067.511 tt II −−    

               +− )1038(19.456 tI −+− )1075()247()274( 704.376882.43809.455 ttt III +)971(48.375 tI  

               −− )907()594( 701.355052.362 tt II ]13.308702.329 )931()623(
ttt aII ++ , 

 

where 
 
           =)(ˆ Bπ 2 3 4[(1 0.164 0.139 0.155 0.088B B B B+ + + + + ++ 76 152.0112.0 BB  

                        ++ 109 067.0077.0 BB )543.01)(072.0089.0069.0 168222114 BBBB +++  

                        )0674.01/[()]1)(1)(1( 816824 BBBB −−−− )]803.01( 24B− . 

4.2 Result of Elman-Recurrent Neural Network 
The Elman-RNN method is applied for obtaining the best network for forecasting electricity 
consumption in Mengare Gresik. The network elements are the amount of inputs, the 
amount of hidden units, the amount of outputs, and the activation function in both hidden 
and output layer. In this research, the number of hidden layers is only one, the activation 
function in the hidden layer is tangent sigmoid function, and in the output layer is linear 
function. 
The first architecture of Elman-RNN that used for modeling the data is a network with 
inputs similar to the lags of the best double seasonal ARIMA model. This network uses 
input lag 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 
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38, 39, 45, 46, 57, 58, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 182, 183, 189, 190, 
192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 206, 207, 213, 214, 225, 226, 336, 337, 
338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 350, 351, 357, 358, 360, 361, 362, 363, 364, 365, 
366, 367, 368, 369, 370, 371, 374, 375, 381, 382, 393, dan 394. Moreover, the network that was 
constructed with these input lags is Elman-RNN(101,3,1) and yields MAPE 4.22%. 
Then, the second network uses the lags of the best double seasonal ARIMA input and adds 
14 detected outliers. These inputs are the lags input as the first network and 14 outliers, i.e. 
in time period 803th, 1062th, 906th, 810th, 1027th, 1038th, 274th, 247th, 1075th, 971th, 594th, 907th, 
623th, and 931th. This network is Elman-RNN(115,3,1) and yields MAPE 4.61%. Furthermore, 
the third network is network with multiplication of 24 lag input, i.e. inputs are lag 24, 48, …, 
480. This third network is Elman-RNN(20,6,1) and yields MAPE 7.55%. Finally, the last 
network is lag 1 input and multiplication of 24 lag ± 1. The inputs of this fourth network are 
lag 1, 23, 24, 25, 47, 48, 49, ..., 167, 168, and 169. The network with this inputs is Elman-
RNN(22,3,1) and yields MAPE 2.78%. 
The forecast accuracy comparison between Elman-RNN models can be seen in Table 2. 
Based on criteria MSE and MAPE at the out-sample dataset, it can be concluded that Elman-
RNN(22,3,1) is the best Elman-RNN for forecasting hourly electricity consumption in 
Mengare Gresik. 
 

In-Sample Criteria Out-Sample Criteria 
Network 

AIC SBC MSE MAPE MSE 

RNN(101,3,1) 11.061 12.054 9778.1 4.2167 17937.0 

RNN(115,3,1) 10.810 12.073 6755.1 4.6108 21308.0 

RNN(20,6,1) 11.468 11.413 22955.0 7.5536 44939.0 

RNN(22,3,1) 10.228 9.606 8710.7 2.7833 6943.2 

Table 2. The values of each selection criteria of Elman-RNN models 

4.3 Comparison between Double Seasonal ARIMA and Elman-RNN 
The result of forecast accuracy comparison between double seasonal ARIMA model with 
and without outliers detection shows that the best model for hourly electricity consumption 
data forecasting in Mengare is ARIMA([1,2,3, 4,6,7,9,10,14,21,33],1,8)(0,1,1)24(1,1,0)168. Then, 
the comparison is also done with Elman-RNN models. The graphs of the comparison among 
forecasted values and residuals for the out-sample dataset can be seen in Figure 7. These 
results show that the residual of Elman-RNN is near to zero compared with ARIMA model. 
Moreover, the results also show that the forecasted values of Elman-RNN is more accurate 
than ARIMA model. 
In addition, the comparison of forecast accuracy is also done for iterative out-sample MAPE 
and the result is shown in Fig. 8. This figure shows that Elman-RNN(22,3,1) gives less 
forecast errors than double seasonal ARIMA and other Elman-RNN models. Hence, all the 
results of the forecast accuracy comparison show that Elman-RNN yield more accurate 
forecasted values than double seasonal ARIMA model for electricity consumption data in 
Mengare Gresik 
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Fig. 7. The comparison of forecast accuracy between ARIMA, Elman- RNN(101,3,1), and 
Elman-RNN(22,3,1) model. 
 

Time (hourly)

M
AP

E

19017115213311495765738191

0.25

0.20

0.15

0.10

0.05

0.00

Variable

RNN(22,3,1)

ARIMA
RNN(101,3,1)

Comparison of iterative MAPE between ARIMA and RNN

 
Fig. 8. The comparison of iterative MAPE at out-sample dataset. 

5. Conclusion and future work 
In this paper, we have discussed the application of RNN for forecasting double seasonal 
time series. Due to the selection of the best inputs of RNN, the identification of lags input 
based on double seasonal ARIMA could be used as one of candidate inputs. Moreover, the 
pattern of the data and the relation to the appropriate lags of the series are important 
information for determining the best inputs of RNN for forecasting double seasonal time 
series data. Short-term electricity consumption in Mengare Gresik, Indonesia has been used 
to compare the forecasting accuracy between RNN and ARIMA models.  
The results show that the best order of ARIMA model for forecasting these data is ARIMA 
([1-4,6,7,9,10,14,21,33],1,8)(0,1,1)24(1,1,0)168 with MSE 11417.426 at in-sample dataset, whereas 
the MAPE at out-sample dataset is 22.8%. Meanwhile, the best Elman-RNN to forecast 
hourly short-term electricity consumption in Mengare Gresik is Elman-RNN(22,3,1) with 
inputs lag 1, 23, 24, 25, 47, 48, 49, 71, 72, 73, 95, 96, 97, 119, 120, 121, 143, 144, 145, 167, 168, 
and 169, and activation function in the hidden layer is tangent sigmoid function and in the 
output layer is linear function. This RNN network yields MAPE 3% at out-sample dataset. 
Hence, the comparison of forecast accuracy shows that Elman-RNN method, i.e. Elman-



Double Seasonal Recurrent Neural Networks  
for Forecasting Short Term Electricity Load Demand in Indonesia   

 

13 

RNN(22,3,1), yields the most accurate forecast values for hourly electricity consumption in 
Mengare Gresik. 
In addition, this research also shows that there is a restriction in statistics program, 
particularly SAS which has facility to do outlier detection. Up to now, SAS program unable 
to be used for estimating the parameters of double seasonal ARIMA model with adding 
outlier effect from the outlier detection process. This condition gives opportunity to do a 
further research related to the improvement of facility at statistics program, especially for 
double seasonal ARIMA model that involves many lags and the outlier detection. 
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1. Introduction  
Time series prediction has important applications in various domains such as medicine, 
ecology, meteorology, industrial control or finance. Generally the characteristics of the 
phenomenon which generates the series are unknown. The information available for the 
prediction is limited to the past values of the series. The relations which describe the 
evolution should be deduced from these values, in the form of functional relation 
approximations between the past and the future values.  
The most usually adopted approach to consider the future values ( )1tx̂ +  consists in using a 
function f  which takes as input a time window of fixed size M  representing the recent 
history of the time series. 

 ( ) ( ) ( ) ( )( )[ ]τ−−τ−= 1Mtx,,tx,txt …x   (1) 

 ( ) ( )( )tftx̂ x=τ+   (2) 

where ( )tx , for lt0 ≤≤ , is the time series data that can be used for building a model. 
Most of the current work on single-step-ahead prediction relies on a result released in 
(Takens, 1981) which shows that under several assumptions (among which the absence of 
noise), it is possible to obtain a perfect estimate of ( )τ+tx  according to (2) if 1d2M +≥ , 
where d  is the dimension of the stationary attractor generating the time series. In this 
approach, the memory of the past is preserved in the sliding time window.  
In multi-step-ahead prediction, given ( ) ( ) ( ){ }…… ,ntx,,tx,tx τ−τ− , one is looking for a good 
estimate ( )τ+ htx̂  of ( )τ+ htx , h  being the number of steps ahead. 
Given their universal approximation properties, neural networks, such as multi-layer 
perceptrons (MLPs) or recurrent networks (RNs), are good candidate models for the global 
approaches. Among the many neural network architectures employed for time series 
prediction, one can mention MLPs with a time window in the input (Weigend et al., 1990), 
MLPs with finite impulse response (FIR) connections (equivalent to time windows) both 
from the input to the hidden layer and from the hidden layer to the output (Wan, 1994), 
recurrent networks obtained by providing MLPs with a feedback from the output 
(Czernichow, 1996), simple recurrent networks (Suykens & Vandewalle, 1995), recurrent 
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networks with FIR connections (El Hihi & Bengio, 1996), (Lin et al., 1996) and recurrent 
networks with both internal loops and feedback from the output (Parlos et al., 2000). 
But the use of these architectures for time-series prediction has inherent limitations, since 
the size of the time window or the number of time delays of the FIR connections is difficult 
to choose.  
An alternative solution is to keep a small length (usually 1M = ) time window and enable 
the model to develop on its own a memory of the past. This memory is expected to 
represent the past information that is actually needed for performing the task more 
accurately. Time series prediction with RNNs usually corresponds to such a solution. 
Memory of the past – of variable length, see e.g. (Aussem, 2002; Hammer & Tino, 2003) – is 
maintained in the internal state of the model, ( )ts , of finite dimension d  at time t , which 
evolves (for 1M = ) according to: 

 ( ) ( ) ( )( )tx,tt sgs =τ+   (3) 

where g  is a mapping function assumed to be continuous and differentiable. The time 
variable t  can either be continuous or discrete and h  is the output function. Assuming that 
the system is noise free, the observed output is related to the internal dynamics of the 
system by:  

 ( ) ( )( )x̂ t tτ+ = h s   (4) 

where ( )τ+tx̂  is the estimate of ( )τ+tx  and the function h  is called the measurement 
function.  
Globally feed-forward architectures, both very common and with a short calculation time, 
are widely used. They share the characteristic of having been initially elaborated for using 
the error gradient back-propagation of feed-forward neural networks (some of which have 
an adapted version today (Campolucci et al., 1999)). Hence the locally recurrent globally 
feed-forward networks (Tsoi & Back, 1994) introduce particular neurons, with local 
feedback loops. In the most general form, these neurons feature delays in inputs as well as 
in their loops. All these architectures remain limited: hidden neurons are mutually 
independent and therefore, cannot pick up some complex behaviors which require the 
collaboration of several neurons of the hidden layer. In order to overcome this problem, a 
certain number of recurrent architectures have been suggested (see (Lin et al., 1996) for a 
presentation). It has been shown that in practice the use of delay connections in these 
networks gives rise to a reduction in learning time (Guignot & Gallinari, 1994) as well as an 
improvement in the taking into account of long term dependencies (Lin et al., 1996; Boné et 
al., 2002). The resulting network is named Time Delay Recurrent Neural Networks 
(TDRNN). In this case, unless to apply an algorithm for selective addition of connections 
with time delays (Boné et al., 2002), which improve forecasting performance capacity but at 
the cost of increasing computations, the networks finally retained are often oversized and 
use meta-connections with consecutive delay connections, also named Finite Impulse 
Response (FIR) connections or, if they contain loops, Infinite Impulse Response (IIR) 
connections (Tsoi & Back, 1994).  
Recurrent neural networks (RNNs) is a class of neural networks where connections between 
neurons form a directed cycle. They possess an internal memory owing to cycles in their 
connection graph and do no longer need a time window to take into account the past values 
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of the time series. They are able to model temporal dependencies of unspecified duration 
between the inputs and the associated desired outputs, by using internal memory. The 
passage of information from one neuron to the other through a connection is not 
instantaneous (one time step), unlike MLP, and thus the presence of the loops makes it 
possible to keep the influence of the information for a variable time period, theoretically 
infinite. The memory is coded by the recurrent connections and the outputs of the neurons 
themselves. Throughout the training, the network learns how to complete three 
complementary tasks: the selection of useful inputs, their retention in coded form and their 
use in the calculation of its outputs.  
RNNs are computationally more powerful than feed-forward networks (Siegelmann et al, 
1997), and valuable approximation results were obtained for dynamical systems (Seidl & 
Lorenz, 2001). 

2. RNNs learning  
During the last two decades, several methods for supervised training of RNNs have been 
explored. BackPropagation Through Time (BPTT) is probably the most widely used method. 
BPTT is an adaptation of the well-known backpropagation training method known from 
feedforward networks. It is therefore a gradient-based training method.  
 

w21

w12

( )y t2

w11
w22

( )s t1 ( )s t2

x t1( )

 
Fig. 1. A recurrent neural network  

The feedforward backpropagation algorithm cannot be directly transferred to RNNs, 
because the backpropagation pass presupposes that the connections between the neurons 
induce a cycle-free ordering. Considering a time series of length l , the central idea of BPTT 
algorithm is to unfold the original recurrent networks (Fig. 1) in time so as to obtain a 
feedforward network with l  layers (Fig. 2), which in turn makes it possible to apply the 
learning method by backpropagation of gradient of the error through time. BPTT unfolds 
the network in time by stacking identical copies of the RNN, and duplicating connections 
within the network to obtain connections between subsequent copies.  
The weights between successive layers must remain identical in order to be able to show up 
in the original recurrent network. In practice, it amounts to cumulating the changes of the 
weights for all the copies of a particular connection and to adding the sum of the changes to 
all these copies after each learning iteration. 
Let us consider the application of BPTT for the training of recurrent networks between time 

1t  and lt . if  is the transfer function of neuron i , ( )tsi  its output at time t , and ijw  its 
connection from neuron j . A value, provided to the neuron at time t , coming from outside, 
is noted ( )txi . 
The algorithm supposes an evolution of neurons of recurrent networks given by the 
following equations: 
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Fig. 2. RNN of Fig. 1 unfolded in time 

 ( ) ( )( ) ( ) N,,1i;tx1tnetfts iii …=+−=   (5) 

 
( ) ( ) ( )1ts1tw1tnet j

)i(predj
iji −−=− ∑

∈   (6) 

The set ( )iPred  contains, for each neuron i , the index of the incoming neurons 

( ) ( ){ }ijij ,wNjiPred τ∃∈= . Likewise, we have defined the successors of a neuron i : 

( ) ( ){ }jiji ,wNjiSucc τ∃∈= . 

The variation of the weight for all the sequence is calculated by the sum of the variations of 
this weight on each element of the sequence. By noting ( )τT  the set of neurons which have a 
desired output ( )τpd  at time τ , we define the mean quadratic error ( )l1 t,tE  of the 
recurrent neural networks between time 1t  and lt as:  

 
( ) ( ) ( )( )

( )
∑ ∑
= ∈

−=
l

1

t

tt tTp

2
ppl1 tstd

2
1t,tE

  (7) 

To minimize total error, gradient descent is used to change each weight in proportion to its 
derivative with respect to the error, provided the non-linear activation functions are 
differentiable ( η  is the learning step): 

 

( ) ( )
( )∑

−

=τ τ∂
∂
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w

t,tE
w

t,tE)1t,t(w   (8) 
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with 
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where  ( )τijw  is the duplication of the weight ijw  of the original recurrent networks, for the 
time τ=t . We expand ( ) ( )τ∂∂ il1 nett,tE : 
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If neuron i belongs to the last layer ( 1t l −=τ ): 

 ( )
( )
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where 
( )

1
1Ti
=δ

+τ∈
 if ( )1Ti +τ∈  and 0 otherwise. If neuron i belongs to the preceding layers: 
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As ( ) ( ) ( )1w1s1net jiij +τ=+τ∂+τ∂ , the equations of BPTT algorithm are finally obtained: 
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• with, for the output layer 
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• and for the hidden layer 
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Eq. (13) to (15) allow to apply error gradient backpropagation through time: after the 
forward pass, witch consists in updating the unfolded network, starting from the first copy 
of the recurrent network and working upwards through the layers, ( ) ( )τ∂∂ il1 net/t,tE  is 
computed, by proceeding backwards through the layers lt ,.., 1t .  
One epoch requires O(lM) multiplications and additions, where M is the total number of 
network connections. Many speed-up techniques for gradient descent approach are 



 Recurrent Neural Networks for Temporal Data Processing 

 

20 

described in the literature, e.g. dynamic learning rate adaptation schemes. Another 
approach to achieve faster convergence is to use second-order gradient descent techniques. 
Unfortunately, the gradient descent algorithms which are commonly used for training 
RNNs have several limitations, the most important one being the difficulty of dealing with 
long-term dependencies in the time series (Bengio et al, 1994; Hochreiter & Schmidhuber 
1997)  i.e. problems for which the desired output depends on the inputs presented at times 
far in the past. 
Backpropagated error gradient information tends to "dilute" exponentially over time. This 
phenomenon is called “vanishing gradient” or “forgetting behavior” (Frasconi et al., 1992; 
Bengio et al, 1994). (Bengio et al, 1994) have demonstrated the existence of a condition on the 
eigenvalues of the RNN Jacobian to be able to store information for a long period of time in 
the presence of noise. But this implies that the portion of gradient due to information at 
times t<<τ  is insignificant compared to the portion of gradient at times near t.  
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Fig. 3. Delayed connection added to a RNN (dotted line) 
 

 
Fig. 4. The RNN of Fig. 3 unfolded in time. Duplicated dotted connections correspond to the 
added connection  
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We can give a more intuitive explanation for backpropagated gradient vanishing. 
Considering eq.  (13) to (15), gradient calculation for each layer is done by a product with 
transfer function derivate.  Most of the time, this last value is bounded between 0 and 1 (i.e. 
sigmoid function). Each time the signal is backpropagated through a layer, the gradient 
contribution of the forward layers is attenuated. Along the time-delayed connections the 
signal does no longer cross nonlinear activation functions between successive time steps (see 
Fig. 3 and Fig. 4). 
Adding connections with time delays to the RNN (El Hihi & Bengio, 1996; Lin, T., et al., 
1996) often allows gradient descent algorithms to find better solutions in these cases. Indeed, 
by acting as a linear link between two distant moments, such a connection has beneficial 
effects on the expression of the gradient. Adding a delayed connection to an RNN (Fig. 3) 
creates several connections in the unfolded network (Fig. 4) jumping as many layers as the 
delay. Gradient backpropagated by these connections avoids attenuation of intermediate 
layers.  
But in the absence of prior knowledge concerning the problem to solve, how can one choose 
the locations and the delays associated to these new connections? By systematically adding 
meta-connections with consecutive delay connections, also named Finite Impulse Response 
(FIR) connections, one obtains oversized networks which are slow to train and have poor 
generalization abilities. Various regularization techniques can be employed in order to 
improve generalization and this further increases the computational cost.  
Constructive approaches for adapting the architecture of a neural network are usually more 
economical. An algorithm for the addition of time-delayed connections to recurrent networks 
should start with a simple, ordinary RNN and progressively add new connections according 
to some heuristic. An alternative solution could be found in the learning of the connection 
delays themselves. We suggested, for an RNN that associates a delay to each connection, an 
algorithm based on the gradient which simultaneously adjusts weights and delays. 
To improve the obtained results, we may also adapt general methods which authorize to 
improve the performances of various models. One such approach is to use a combination of 
models to obtain a more precise estimate than the one obtained by a single model. One such 
procedure is known under the name of boosting. 

3. Constructive algorithms  
Instead of systematically adding finite impulse response (FIR) connections  to a recurrent 
network, each connection encompassing a whole range of delays, we opted for a 
constructive approach: starting with an RN having no time-delayed connections, then 
selectively adding a few such connections. The two algorithms we present in the following 
allow us to choose the location and the delay associated with a time-delayed connection 
which is added to an RN. The assumption we make is that significantly better results can be 
obtained by the addition of a small number of time-delayed connections to a recurrent 
network. The reader is invited to consult (Boné et al., 2000a; Boné et al, 2000b; Boné et al., 
2002) for a more detailed discussion regarding the role of time-delayed connections in RNs. 
The iterative and constructive aspects diminish the effect of the vanishing gradient on the 
outcome of the algorithm. Indeed, by reinforcing the long-term dependencies in the 
network, the first time-delayed connections favor the subsequent learning steps. A high 
selectivity should allow us to avoid over-parameterized networks. For every iteration, we 
rank the candidate connections according to their relevance. 
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We retained two alternative methods for defining the relevance of a candidate connection. 
The first one is based on the amount by which the error diminishes after the addition of the 
connection. The second one relies on a more detailed study of various quantities computed 
inside the network during gradient descent. 

3.1 Bounded exploration for the addition of time-delayed connections 
The first heuristic is a breadth-first search (BFS). It explores the alternatives for the location 
and the delay associated with a new connection by adding that connection and performing a 
few iterations of the underlying learning algorithm. The connection that produces the 
largest increase in performance during these few iterations is then added, and the learning 
continues until error increases on the stop set. Another exploratory stage begins for the 
addition of a new connection.  The algorithm eventually ends when the error on the stop set 
no longer decreases upon the addition of a new connection, or a (user-specified) bound on 
the number of new connections is reached. We employed BPTT as the underlying learning 
algorithm and we called this constructive algorithm Exploratory Back-Propagation Through 
Time (EBPTT). We must note that the breadth-first heuristic does not need any gradient 
information and can be applied in combination with learning algorithms which are not 
based on the gradient. 
If the RNN we start with does not account well for the medium or long-term dependencies 
in the data, and these dependencies are not too complex, then by adding the appropriate 
connection the error is likely to diminish relatively fast.  
Three new parameters are required for this constructive algorithm: the maximal value for 
the delay of a new connection, the maximal number of new connections and the number of 
BPTT steps performed for each candidate connection during the exploratory stage. In 
choosing the value of the first parameter one should ideally use prior knowledge related to 
the problem. If such information is not available one can rely on simple, linear measures 
such as auto or cross-correlations to find a bound for the long-term dependencies. 
Computational cost governs the choice of the two other parameters. However, the 
experiments we present in the following show that the contribution of the new connections 
diminishes quickly as their number increases. The complexity of the exploratory stage may 
seem quite high, O(N4), since after the addition of each candidate connection we carry out 
several steps of the BPTT algorithm on the entire network. The user is supposed to find a 
tradeoff between the quality of the results and the computation cost. When compared to the 
complete exploration of all the alternative architectures, this breadth-first search is only 
interesting if good results can be obtained with few learning steps during the exploratory 
stage. Fortunately, experimental evidence shows that this appears to be the case, so the 
global cost of the algorithm remains low. 

3.2 Internal correlations 
The second heuristic for defining the relevance of a candidate connection is closely 
dependent on BPTT-like underlying learning algorithms. Since this method makes use of 
quantities computed during gradient descent, its computation cost is significantly lower 
than for the breadth-first search. 
When applying BPTT on the training set between 1t  and lt , we obtain the following 
expression for the variation of one weight of delay k , ( ) ( )1t,tw l1

k
ij −Δ : 
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( )( )τk
ijw  being the copy of ( )k

ijw  for τ=t  in the unfolded network employed by BPTT. We 
may write 
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We are looking for connections which are potentially useful in capturing (medium or long-
term) dependencies in the data. A connection ( )k

ijw  is then useful only if it has a significant 
contribution to the computation of the gradient, i.e. ( ) ( )( )τ∂∂ k

ijl1 wt,tE  is significantly 
different from zero for many iterations of the learning algorithm. We select the output of a 
neuron ( )ks j −τ  which best contributes to a reduction in error by means of 

( ) ( )τ∂∂ il1 nett,tE . 
The resulting algorithm, called Constructive Back Propagation Through Time (CBPTT), 
computes during several BPTT steps the correlation between the values of ( ) ( )τ∂∂ il1 nett,tE  
and ( )ks j −τ  for [ ]1t;kt l1 −+∈τ . The relevance of a candidate connection ( )k

ijw  is defined 
as the absolute value of this correlation. The connection with the highest relevance factor is 
then added to the RNN, its weight is initialized to 0, and learning continues. The process 
stops when a new connection has no further positive effect on the performance of the RNN, 
as evaluated on a stop set. The time complexity and the storage complexity of CBPTT is the 
same as for BPTT. 
This constructive algorithm requires two new parameters: the maximal value for the delays 
of the new connections and the maximal number of new connections. The choice of these 
parameters is independent from the constructive heuristic, so the rules already mentioned 
for EBPTT should be applied. Experiments reported in (Boné et al., 2002) support the view 
that the precise value of this parameter does not have a high influence on the outcome, as 
long as it is higher than the significant linear dependencies in the data, which are given by 
the autocorrelation. The same experiments show that performance is not very sensitive to 
the bound on the number of new connections either, because the contribution of the new 
connections quickly diminishes as their number increases. 
This definition for the relevance of a candidate connection is well adapted to time 
dependencies which are well represented in the available data. If this is not the case for the 
dependencies one is interested in, a more thorough study of the distribution of the product 
( ) ( ) ( )τ∂∂⋅−τ il1j nett,tEks  should suggest more adequate measures for the relevance. 

4. Time Delay Learning  
An alternative to the adding of connections with time delays could be found in the learning 
of the connection delays themselves. (Duro & Santos Reyes, 1999) (see also (Pearlmutter 
1990)) have suggested, for a feed-forward neural networks that associate a delay to each 
connection, an algorithm based on the gradient which simultaneously adjusts weights and 
delays. We adapted this technique to a recurrent architecture. 
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Considering an RNN in which two values are associated to each connection from a neuron j 
to a neuron i, these two values are of a usual weight ijw  of the signal and a delay ijτ  which 
is a real value indicating the needed time for the signal to propagate through the connection. 
Note that this parameter is not the same as the maximal order of a FIR connection: indeed, 
when we consider a connection of delay ijτ , we do not have simultaneously 1ij −τ  
connections with integer delays between 1 and ijτ . The neuron output ( )tsi   is given by: 

 ( ) ( )( )1tnetfts iii −=  with ( ) ( )
( )

∑
∈

−τ−=−
iPredj

ijjiji 1tsw1tnet   (15) 

The values ( )1ts ijj −τ−  are obtained by applying a linear interpolation between the two 
nearest whole numbers of the delay ijτ .  
We have adapted the BPTT algorithm to this architecture with a simultaneous learning of 
weights and delays of the connections, inspired from (Duro & Santos Reyes, 1999). The 
variation of a delay ijτ  can be computed as the sum of the variations of this parameter 
copies  corresponding to the times from  1t  to lt . Then we add this variation to all copies of 

ijτ . We will only give here the demonstration of the learning of the delays as the learning of 
the weight can easily be deducted from it. 
We note ( )ττij  the copy of ijτ  for t τ=  in the unfold in time neural net which is virtually 
constructed with BPTT. ⎡ ⎤.  is the operator of upward roundness. 
We apply a back-propagation of the gradient of the mean quadratic error ( )1 lE t , t  which is 
defined as the sum of the instantaneous errors  ( )e t  from  1t  to lt : 
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We can write  ( ) ( ) ( ) ( ) ( ) ( )ττ∂τ∂•τ∂∂=ττ∂∂ ijiil1ijl1 netnett,tEt,tE . With a first order 

approximation, ( ) ( ) ( ) ( )( )ijjijjijiji s1swnet τ−τ−−τ−τ≈ττ∂τ∂ . We expand ( ) ( )τ∂∂ il1 nett,tE  

following Eq. 10. If neuron i belongs to the last layer ( 1t l −=τ ), we apply Eq. 11. If neuron i 
belongs to one of the preceding layers: 
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As ( ) ( ) ( )1w1s1net jiijij +τ=+τ∂+τ+τ∂ , we obtain the final relations to learn the delay 
associated to each connection: 
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with for 1t l −=τ  
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and for 1t t 1lτ≤ < −  
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5. Boosting Recurrent Neural Networks  
To improve the RNN forecasting results, we may use a combination of models to obtain a 
more precise estimate than the one obtained by a single model. In the boosting algorithm, 
the possible small gain a “weak” model can bring compared to random estimate is boosted 
by the sequential construction of several such models, which concentrate progressively on 
the difficult examples of the original training set. Boosting (Schapire, 1990; Freund & 
Schapire, 1997; Ridgeway et al., 1999) works by sequentially applying a classification 
algorithm to re-weighted versions of the training data, and then taking a weighted majority 
vote of the sequence of classifiers thus produced. Freund and Schapire (Freund & Schapire, 
1997) presented the Adaboost. R algorithm that attacks the regression problem by reducing 
it to a classification problem.  
A different approach to regressor boosting as residual-fitting was developed in (Duffy & 
Helmbold, 2002; Buhlmann & Yu 2003). Instead of being trained on a different sample of the 
same training set, as in previous boosting algorithms, a regressor is trained on a new 
training set having different target values (e.g. the residual error). Before presenting briefly 
our algorithm, studied in (Assaad et al, 2005), let us mention that in (Cook & Robinson, 
1996) a boosting method is applied to the classification of phonemes, with RNNs as learners. 
The authors are the first ones to have noticed the implications of the internal memory of the 
RNNs on the boosting algorithm.  
The boosting algorithm employed should comply with the restrictions imposed by the 
general context of the application. In our case, it must be able to work well when a limited 
amount of data is available and to accept RNNs as regressors. We followed (Assaad et al, 
2008) the generic algorithm of (Freund, 1990). Our updates are based on the suggestion in 
(Drucker, 1999), but we apply a linear transformation to the weights before we employ them 
(see the definition of ( )qD 1n+  in Table 1) in order to prevent the RNNs from simply ignoring 
the easier examples. Then, instead of sampling with replacement according to the updated 
distribution, we prefer to weight the error computed for each example (thus using all the 
data points) at the output of the RNN with the distribution value corresponding to the 
example. 
For stage (2a), BPTT equations (14) and (15) become for the output layer: 

 [ ] ( )i l i l n i i1

i

s (t )-d (t ) D 1 f (net (τ)) if i T(τ 1)E(t , t )
net (τ) 0 else

l τ ′⎧ + ∈ +∂ ⎪= ⎨
∂ ⎪⎩

  (22) 

and for the hidden layer:  
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1. Initialize the weights for the examples: ( ) Q1qD1 = , and Q , the number of 
training examples. Put the iteration counter at 0: 0n =   
2. Iterate 
        (a) increment n . Learn with BPTT an RNN nh  by using the entire 
               training set and by weighting the squared error computed for example q    
               with ( )qDn , the weight of example q  for the iteration n ; 
        (b) update the weights of the examples: 
            (i) compute ( )qLn  for every Q,,1q "=  according to the loss function:          

                ( ) ( )( ) nqq
n

q
linear
n SyxyqL −= , ( ) ( )( ) 2

n
2

qq
n

q
quadratic
n SyxyqL −=    

                ( ) ( )( )( )nqq
n

q
lexponentia

n Syxyexp1qL −−−= , with    

                ( )( ) qq
n

q
q

n yxysupS −=  ; 

            (ii) compute ( ) ( )∑
=

=ε
Q

1q
nnn qLqD  and ( ) nnn 1 εε−=α  ; 

            (iii) the weights of the examples become ( nZ  is a normalizing constant) 

                 ( ) ( )
kQ

qpk1qD 1n
1n +

⋅+
= +

+  with ( ) ( ) ( )( )

n

1qL
nn

1n Z
qDqp

n −

+
α

=  until 5.0n <ε . 

3. Combine RNNs by using the weighted median. 

Table 1. The boosting algorithm proposed for regression with recurrent neural networks          
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6. Single step ahead prediction results 
The results we present here concern univariate regression only, but our algorithms are 
obviously not limited to such problems. We employed a natural dataset (sunspots) and two 
synthetic datasets (Mackey-Glass), which allow us to perform comparisons since many 
related results are published in the literature.  
We applied our algorithms to RNNs having an input neuron, a linear output neuron, a bias 
unit and a recurrent hidden layer composed of neurons with the symmetric sigmoid (tanh) 
as activation function. We randomly initialized the weights in [-0.3, 0.3]. For the sunspots 
dataset we tested RNNs having 2 to 15 neurons in the hidden layer and for the Mackey-
Glass RNNs having dataset 2 to 8 neurons. Except for boosting, we performed 20 
experiments for each architecture. For boosting, we limited the experiments to 5 trial runs 
for each configuration: (linear, squared or exponential loss functions; value of parameter k ), 
due to heavy calculation time, using the best  architecture found by BPTT (12 neurons in the 
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hidden layer for sunspots, 7 neurons for the Mackey-Glass series). We set the maximal 
number n of RNNs at 50 for each experiment. 
In the following we employ the normalized mean square error (NMSE) which is the ratio 
between the mean square error and the variance of the time series. It is defined, for a time 
series 

l1 t,,tt)t(x …= , by 

 

( )

( )

( )
2

t

tt

2

t

tt

2

t

tt

2

l

)t(x̂)t(x

)t(x)t(x

)t(x̂)t(x
l

1

l

1

l

1

σ

−

=
−

− ∑

∑

∑
=

=

=   (24) 

where )t(x̂  is the prediction given by the RNN and )t(x , 2σ  are the mean value and 
variance estimated from the available data. A value of NMSE=1 is achieved by predicting 
the unconditional mean of a time series. The normalized root mean squared error (NRMSE) 
used for some of the results in the literature is the square root of the NMSE.  
We compared the results obtained using our algorithms to other results in the literature.  

6.1 Sunspots 
The sunspots dataset (Fig. 5) is a natural dataset that contains the yearly number of dark 
spots on the sun from 1700 to 1979. The time series has a pseudo-period of 10 to 11 years. It 
is common practice to use as the training set the data from 1700 to 1920 and to evaluate the 
performance of the model on two sets, composed respectively of the data from 1921 to1955 
(test1) and of the date from 1956 to 1979 (test2). Test2 is considered to be more difficult. 
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Fig. 5. The sunspots time series 
For both CBPTT and EBPTT we set to 20 the upper bound for the delays of the new 
connections, to 4 the maximal number of new connections and to 20 the number of BPTT 
iterations performed for each candidate connection during the exploratory stage of EBPTT. 
Tables 2 and 3 show the NMSE obtained by various models on the two test sets of this 
benchmark, and the total number of parameters. 
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Model Parameters Test1 Test2 
Carbon copy 0 0.427 0.966 
TAR 18 0.097 0.280 
MLP Weigend 43 0.086 0.350 
MLP Kouam 43 0.082 0.320 
RNR/BPTT 181 0.102 0.371 
RNR/EBPTT 20 it. 15 0.096 0.320 
RNR/EBPTT 100 it. 15 0.092 0.308 
RNR/CBPTT 15 0.094 0.281 
RNR/Boosting (quad., 20)  0.090 0.296 
RNR/Boosting (lin., 10)  0.082 0.314 

Table 2. Mean NMSE obtained by various models on the sunspots time series 
 

Model Parameters Test1 Test2 
MLP Czernichow 30 0.078 0.283 
TAR 18 0.097 0.280 
DRNN1 30 0.091 0.273 
DRNN2 45 0.093 0.246 
RNN/BPTT 155 0.084 0.300 
RNN/EBPTT 23 0.078 0.227 
RNN/CBPTT 15 0.092 0.251 
RNN/Delay learning 34 0.081 0.261 
RNN/Boosting (quad., 5)  0.078 0.250 
RNN/Boosting (lin., 10)  0.080 0.270 

Table 3. Best NMSE obtained by various models 
The threshold autoregressive (TAR) model in (Tong & Lim, 1980) employs a threshold to 
switch between two AR models. The MLP in (Weigend et al., 1991) has a time window of 
size 12 in the input layer; Table 2 gives the results obtained with weight decay and pruning, 
which start with 8 hidden neurons and reduce their number to 3. The Dynamical RNNs 
(DRNNs) are RNNs having FIR connections. We show here the best results obtained in 
(Aussem, 1999) on each of the two test sets; mean values were not available. DRNN1 has 2 
hidden neurons, fully connected by FIR connections of order 5. DRNN2 has 5 hidden 
neurons, fully connected by FIR connections of order 2. The author found the order of these 
connections after several trials. 
The best result is obtained by EBPTT with 100 iterations, for an RNR with 3 hidden neurons. 
Constructive algorithms added most of the time 4 connections. For the delay learning 
algorithm, the experiments show an occasionally unstable behaviour, some learning 
attempts being soon blocked with high values of error. The internal state of the network (the 
set of neuron outputs belonging to the hidden layer) happens to be very sensitive to delay 
variation. The choice of the two learning steps, either for the weights or for connection 
delays, requires a very precise tuning. The boosting algorithm develops 9 networks with 
linear and quadratic functions and 36 networks with exponential function. 
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Fig. 6. The predictions obtained with EBPTT on the sunspots test sets  

6.2 Mackey-Glass series 
The Mackey-Glass benchmarks (Mackey and Glass, 1977) are well-known for the evaluation 
of SS and MS prediction methods. The time series are generated by the following nonlinear 
differential equation: 

 10
dx 0.2 x(t θ)0.1 x(t)
dt 1 x (t θ)

⋅ −
= − ⋅ +

+ −
 (25) 

The behavior is chaotic for τ > 16,8. The results in the literature usually concern τ = 17 
(known as MG17, see Fig. 7) and τ = 30 (MG30). The data is generated and then sampled 
with a period of 6, according to the common practice, see e.g. (Wan 1993). We use the first 
500 values as our learning set and the next 100 values as our test set. 
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Fig. 7. The Mackey-Glass time series for θ = 17 (left) and θ = 30 (right) 

The linear, polynomial, local approaches, RBF and MLP models are mentioned in (Casdagli, 
1989). The FIR MLP put forward in (Wan, 1993) has 15 neurons in the hidden layer. FIR 
connections of order 8 are employed between the inputs and the  hidden neurons, while the 
order of the connections between the hidden neurons and the output is 2. The resulting 
networks have 196 parameters. The feed-forward network employed in (Duro & Santos 
Reyes, 1999) consists of a single input neuron, 20 hidden neurons and one output neuron. A 
delay is associated to every connection in the network, and the value of the delay is 
modified by a learning algorithm inspired by back-propagation. In (McDonnell & Waagen, 
1994) an evolutionary algorithm produces an RNN having 2 hidden neurons with sinusoidal 
transfer functions and several time-delayed connections. 



 Recurrent Neural Networks for Temporal Data Processing 

 

30 

Model MG(17) MG(30) 
Linear 269 324 
Polynomial 11.2 39.8 
Local approach 1 33.1 57.5 
Local approach 2 12.9 380.2 
RBF 10.7 25.1 
FFN 10 31.6 
RNN/BPTT 0.99 13.1 
RNN/EBPTT 0.62 1.8 
RNN/CBPTT 1.66 2.51 
Boosting (quad., 100) 0.16 0.45 
Boosting (quad., 200) 0.18 0.45 

Table 4. Mean EQMN (*103)  obtained by various models on the MG time series 

The DRNNs have FIR connections of order 4 between the input and the hidden layer, FIR 
connections of order 2 between the 4 to 7 hidden neurons, and simple connections to the 
output neuron (for a total of 197 parameters). 
Throughout our experiments, for both EBPTT and CBPTT we set to 34 the maximal value for 
the delays of the new connections and to 10 the maximal number of new connections. The 
number of BPTT steps performed for each candidate connection during the exploratory 
stage of EBPTT was always set to 20; a higher value has a negligible effect here. The mean 
results reported in Table 4 were obtained with RNNs having 6 hidden neurons, so with 10 
time-delayed connections we have a maximum of 65 parameters. The best results were 
obtained with RNNs having up to 7 hidden neurons, for a maximum of 81 parameters. 
Our constructive algorithms significantly improve the results reported in the literature for 
the two datasets, with regard both to the mean NMSE and to the lowest NMSE. There is also 
an improvement upon BPTT without the constructive stage. 
During our experiments we noticed that the mean value of the delays associated with the 
new connections was significantly lower for MG(17) than for MG(30). Also, CBPTT added 
on the average fewer connections than EBPTT. Again, only the first new connections 
produce a significant reduction in the NMSE. 
 

Model MG(17) MG(30) 
FIR MLP 4.9 16.2 
TDFFN 0.8  
RNN evolutionary algorithm  2.5 
DRNN 4.7 7.6 
RNRN/BPTT 0.23 0.89 
RNN/EBPTT 0.13 0.05 
RNN/CBPTT 0.14 0.73 
RNN/delay learning 0.15  
Boosting (lin.,150)  0.13 0.45 
Boosting (quad., 100) 0.15 0.41 

Table 5. Best EQMN (*103) obtained by various models on the MG time series 
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7. Multi step ahead prediction results 
While reliable multi-step-ahead (MS) prediction has important applications ranging from 
system identification to ecological modeling, most of the published literature considers 
single-step-ahead (SS) time series prediction. The main reason for this is the inherent 
difficulty of the problems requiring MS prediction and the fact that the results obtained by 
simple extensions of algorithms developed for SS prediction are often disappointing. 
Moreover, if many different techniques perform rather similarly on SS prediction problems, 
significant differences show up when extensions of these techniques are employed on MS 
problems. 
There are several methods for dealing with a MS prediction problem after finding a 
satisfactory solution to the associated SS problem. 
The first and most common method consists in building a predictor for the SS problem and 
using it recursively for the corresponding MS problem. The estimates provided by the 
model for the next time step are fed back to the input of the model until the desired 
prediction horizon is reached. This method is usually called iterated prediction. This simple 
method is plagued by the accumulation of errors on the difficult data points encountered; 
the model can quickly diverge from the desired behavior. 
A better method consists in training the predictor on the SS problem and, at the same time, 
in making use of the propagation of penalties across time steps in order to punish the 
predictor for accumulating errors in MS prediction. This method is called corrected iterated 
prediction. When the models are MLPs or RNNs, such a procedure is directly inspired from 
the BPTT algorithm performing gradient descent on the cumulated error. The model is thus 
simultaneously trained on both the SS and the associated MS prediction problem. 
Unfortunately, the gradient of the error usually “vanishes” when moving away from the 
time step during which the penalty was received (Bengio, 1994).  
According to the direct method, the predictor is no longer concerned with an SS problem 
and is directly trained on the MS problem. By a formal analysis of the expected error, it is 
shown in (Atiya et al., 1999) that the direct method always performs better than the iterated 
method and at least as well as the corrected iterated method. However, this result relies on 
several assumptions, among which the ability of the model to perfectly learn the different 
target functions (the one for SS prediction and the one for direct MS prediction). The results 
of the learning algorithm may been improved, e.g. when it suffers from the vanishing 
gradient phenomenon. For instance, improved results were obtained by using recurrent 
networks and training them with progressively increasing prediction horizons (Suykens & 
Vandewalle, 1995) or including time-delayed connections from the output of the network to 
its input (Parlos et al., 2000). 
We decided to test on MS prediction problems the previous algorithms that were originally 
developed for learning long-term dependencies in time series (Boné & al, 2000) or for 
improving general performance. Constructive algorithms provide a selective addition of 
time-delayed connections to recurrent networks and were shown to produce parsimonious 
models (few parameters, linear prior on the longer-range dependencies) with good results 
on SS prediction problems. These results, together with the fact that a longer-range memory 
embodied in the time delays should allow a network to better retain the past information 
when predicting at a long horizon, let us anticipate improved results on MS prediction 
problems. Some further support for this claim is provided by the experimental evidence in 
(Parlos et al., 2000) concerning the successful use of time delays in recurrent networks for 



 Recurrent Neural Networks for Temporal Data Processing 

 

32 

MS prediction. We expected the constructive algorithms to identify the most useful delays 
for a given problem and network architecture, instead of using an entire range of delays. 

7.1 Sunspots 
All the tested algorithms perform better than standard BPTT and exhibit a fast degradation 
while simultaneously increasing prediction horizon (Table 6, Fig. 8).  
 

Model Steps 
ahead h BPTT CBPTT EBPTT lin. 10 quad. 20 quad. 5 exp. 20 

1 0.24 0.17 0.19 0.18 0.17 0.18 0.18 
2 0.88 0.69 0.53 0.43 0.40 0.43 0.42 
3 1.14 0.99 0.79 0.54 0.54 0.56 0.67 
4 1.22 1.17 0.80 0.67 0.73 0.64 0.76 
5 1.01 0.99 0.88 0.74 0.69 0.73 0.77 
6 1.02 1.01 0.84 0.73 0.68 0.65 0.74 

10 - - - 0.64 0.69 0.67 0.75 
12 - - - 0.86 0.97 0.77 1.09 

Table 6. Best mean NMSE on the sunspots cumulated set (test1+test2) as a function of the 
prediction horizon 
Boosted architectures give the best results. The boosting algorithm develops around 9 weak 
learners with the linear and quadratic loss functions, and 30 weak learners with the 
exponential function, as for the SS problem. The mean number of networks remains 
practically constant while the horizon increases. 
If we distinguish between the results on test1 and test2 (not shown here) we can see that the 
deterioration is mainly due to test2. It is commonly accepted that the behavior on test2 can 
not be explained (by some longer-range phenomenon) given the available history. Short-
range information available in SS prediction lets the network evaluate the rate of change in 
the number of sunspots. Such information is missing in MS prediction. 
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Fig. 8. Sunspots time series: mean NMSE on the cumulated test set as a function of the 
prediction horizon. Due to their poor results, BPTT and CBPTT algorithms are not 
represented 
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7.2 Mackey-Glass series 
For the two MG series, we obtained (Tables 7 and 8) around 26 networks with the linear 
function, 37 with the squared function and between 46 and 50 for the exponential function. 
The maximal number of networks is set to 50. Tables 7 and 8 show the strong improvements 
obtained on the original BPTT and on the constructive algorithms.  
 
 

Model Steps 
ahead h BPTT CBPTT EBPTT Lin. 150 quad. 100 exp. 100 

1 22 13 1 0.17 0.16 0.17 
2 179 124 101 0.24 0.28 0.25 
3 145 124 16 0.57 0.57 0.52 
4 8 7 4 0.57 0.54 0.52 
5 266 253 181 0.98 1.26 1.27 
6 321 321 232 2.11 15.2 4.66 
10 336 331 219 14.1 12.2 15.0 
11 289 218 252 9.80 12.0 16.8 
12 167 156 158 6.72 8.66 7.57 

Table 7. Best mean results (NMSE*103) on MG17 as a function of the prediction horizon  
Comparisons with other published results concerning MG17 MS prediction can only be 
performed for a horizon of 14; the results presented here are inferior to those of the local 
methods put forward in (Chudy & Farkas 1998; McNames 2000), but for the RNNs trained 
by our algorithm, significantly fewer data points were employed for training (500 compared 
to 3000 or 10000), which is the usual benchmark (Casdagli 1989; Wan, 1994). However, the 
use of a huge number of points for learning the MG17 artificial time series, generated 
without noise, can lead to models with poor generalization to noisy data.    
 
 

Model Steps 
ahead h BPTT CBPTT EBPTT lin. 300 quad. 200 exp. 150 

1 11.7 2.5 1.8 0.45 0.45 0.47 
2 19.9 9.7 3.3 0.49 0.48 0.59 
3 4 2.2 1.6 0.56 0.55 0.64 
4 2.2 2.1 1.6 0.47 0.43 0.48 
5 2.6 2.3 0.9 0.85 0.67 0.72 
6 8.9 8.3 6.4 1.75 1.92 1.80 
7 70.1 65.6 64.3 2.98 4.56 2.72 
8 336 203 112 5.08 109 57.0 
9 801 379 257 84.0 276 3.71 
10 892 383 73.7 2.79 204 2.63 
11 411 230 285 6.34 21.3 8.05 

Table 8. Best mean results (NMSE*103) on MG30 as a function of the prediction horizon  
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8. Conclusion 
Adding time-delayed connections to recurrent neural networks helps gradient descent 
algorithms in learning medium or long-term dependencies. However, by systematically 
adding finite impulse response connections, one obtains oversized networks which are slow 
to train and need regularization techniques in order to improve generalization. We apply 
here two constructive approaches, which starts with a RNN having no time-delayed 
connections and progressively adds some, an approach based on a particular type of neuron 
whose connections have a real value and adapted to recurrent networks and a boosting 
algorithm. The experimental results we obtained on three benchmark problems show that 
by adding only a few time-delayed connections we are able to produce networks having 
comparatively few parameters and good performance for SS problems.  
The results show also that boosting recurrent neural networks improve strongly MS 
forecasting. The boosting effect proved to be less effective for sunspots MS forecasts because 
some short-term dependencies are essential for the prediction of some parts of the data. The 
fact that for the Mackey-Glass datasets the results are better on the most difficult of the two 
sets (MG30) can be explained by noticing that long-range dependencies play a more 
important role for MG30 than for MG17. 
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1. Introduction    
Carpal tunnel syndrome (CTS), an entrapment neuropathy of median nerve at the wrist, is 
one of the most common peripheral nerve disorders with an incidence of 99 per 100.000 
population (Bland JDP, 2005., Sternbach G, 1999). CTS is more common in females than 
males, with a ratio of seven to three. Although it is more prevelent between the fourth and 
sixth decades, it occurs in all age groups (Kanaan N & Sawaya RA, 2001). The condition 
produces bilateral symptoms in approximately half of patients (von Schroeder HP & Motte 
MJ, 1996), but dominant hand usually is more severely affected, especially in idiopathic 
cases (Ilbay K et al.,2010,  Preston DC & Shapiro BE, 2005  ). 
CTS arises from compression of the median nerve between the transverse carpal ligament, 
also called the flexor retinaculum, superiorly, and the flexor tendons, and carpal bones 
inferiorly. Anatomically, the fibres of median nerve originate from the fifth, sixth, seventh, 
and eighth cervical roots, and the first thoracic root and pass through the lateral and medial 
cords of the brachial plexus. The motor branch innervates the abductor pollicis brevis, 
opponens pollicis, and the two lateral lumbricals in the hand. The sensory branch supplies 
sensation to the volar aspect of the radial three digits and the lateral half of the fourth digit 
extending to the palm and the distal dorsal aspects of these digits beyond the distal 
interphalangeal joints (Kanaan N & Sawaya RA, 2001).  
There are two distinct varieties of CTS-acute and chronic. The acute form is relatively 
uncommon condition in which there is a rapid and sustained rise in interstitial pressure in 
the carpal tunnel. This most commonly occurs as the result of a distal radius fracture as 
described by Sir James Paget (Sternbach G, 1999). Other causes include burns, rheumatoid 
arthritis, infections, haemorrhage (caused by coagulopathy or trauma), repetitive and 
intensive manual work and injection injuries (Table 1) (Sternbach G, 1999., Aroori S & 
Spence RAJ, 2008., Luchetti R, 2007). 
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Burns 
Wrist fracture and dislocation 
Haemorrhage 
Infections 
Injection injuries  
Rheumatoid arthritis 
Repetitive and intensive manual work 

Table 1. Acute CTS causes 

The chronic form is much more common and symptoms can persist for months to years. 
However, in only 50 % of cases are the cause identified (Aroori S & Spence RAJ, 2008). The 
causes of chronic CTS summarised in Table 2. 
Any process that increases the volume of the contents of the carpal tunnel, such as tumour, 
inflammation, and edema, will elevate the pressure within the canal (Sternbach G, 1999). 
The pathophysiological mechanism of the nerve lesion is ischemic with the compression of 
the vasa nervosum secondary to the increased pressure ( Sunderland S, 1976). 
In most patients, the cause of CTS is not clear and it is defined as idiopathic. The idiopathic 
forms frequently show up as “non specific tenosynovitis” (Sternbach G, 1999., Luchetti R, 
2007). 
Patients with CTS may present with a variety of symptoms and signs. In early stages, 
patients usually complain of aching, burning, tingling or numb sensations in the distribution 
of median nerve distal to wrist. The portion of the hand involved is typically the thumb, 
index and middle fingers, and radial half of the ring finger. Symptoms are typically worse  
at night, are exaggerated by a flexed or extended wrist posture (Kanaan N & Sawaya RA, 
2001., Preston DC & Shapiro BE, 2005 ). The pain may radiate to the forearm, arm, or rarely 
shoulder. Motor complaints include finger weakness and the disease may be mistaken for 
cervical radiculopathy, shoulder bursitis, thoracic outlet syndrome, transient ischemic 
attack, coronary artery ischemia, tendinitis, fibrositis or lateral epicondylitis. Long-term 
involvement leads to thenar muscle atrophy, with loss of thumb abduction and opposition 
strength (Sternbach G, 1999., Kanaan N & Sawaya RA, 2001). 
The diagnosis of CTS based mainly on clinical symptoms and nerve conduction studies. 
Imaging studies have played a minimal role in evaluation of CTS. Magnetic resonance 
imaging (MRI) has recently been shown to help in establishing the diagnosis. But the 
application of MRI in CTS diagnosis has been limited and should remain so for reasons: 1) 
routine electrophysiologic studies are adequate and can be performed with confidence in 
both community and academic settings; 2) MRI remains expensive; 3) acquisition of high-
quality peripheral nerve images and their expert interpretation is not widely available; and 
4) the low specifity of MRI could complicate treatment decision (Fleckenstein JL & Wolfe GI, 
2002).  
High-resolution ultrasound has advantages over MRI in terms of cost and provides dynamic 
images. It has been shown to produce accurate measurements of carpal tunnel and nerve 
diameters (Kamolz LP et al, 2001). 
This chapter presents the use of recurrent neural networks (RNNs) for diagnosis of CTS. In 
different disciplines for modelling complex real-world problems, artificial neural networks 
(ANNs) have many applications. ANNs have been used for solution of different problems, 
such as pattern classification, time series prediction, nonlinear control, function 
approximation, and biomedical signals analysis. ANNs can produce nonlinear models 
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A.Local and regional causes 
 

B.Systemic causes 

Tumours    
                                     
    Ganglion                         
    Haemangioma        
    Cyst           
    Lipoma  
    Neuroma                      
   
Anatomical anomalies 
    Bony abnormalities 
    Abnormal muscle bellies 
    Persistent median artery 
    Aneurysm or arterio-venous malformation   
 
Inflammatory 
    Tenosynovitis 
    Hypertrophic synovium 
    Histoplasma fungal infection 
    Gout 
    Amyloidosis 
 

Diabetes 
Alcohol 
Obesity 
Hypothyroidism 
Pregnancy 
Menopause 
Systemic lupus erythematosus 
Dermatomyositis 
Scleroderma 
Renal failure  
Long-term haemodialysis 
Acromegaly 
Multiple myeloma 
Sarcoidosis 

Table 2. Causes of chronic form of CTS 

relating the inputs (the independent variables of a system) to the outputs (the dependent 
predictive variables). ANNs are desirable because learning and adaptivity allow the system 
to modify its internal structure in response to changing environment and the model can be 
applied to the unlearned data. RNNs have a wide application field among the ANNs 
architectures. One of the most important applications of pattern recognition is automated 
diagnostic systems and they have role at assisting doctors in making diagnostic decisions 
(Haykin S, 1994; Basheer I.A. & Hajmeer M., 2000; Chaudhuri B.B. & Bhattacharya U., 2000; 
Miller A.S. et al., 1992). 
The recurrent neural networks (RNNs) (Elman J.L., 1990; Thissen U. et al., 2003; Übeyli E.D., 
2008a; 2008b; 2009a; 2009b; Übeyli E.D. & Übeyli M., 2008; Ilbay K et al., 2010) have been 
studied extensively for classification, regression and density estimation. The results of the 
existing studies (Elman J.L., 1990; Thissen U. et al., 2003; Übeyli E.D., 2008a; 2008b; 2009a; 
2009b; Übeyli E.D. & Übeyli M., 2008; Ilbay K et al., 2010)  showed that the RNNs have high 
accuracy in classification of the biomedical data, therefore we used the RNNs in the 
diagnosis of CTS. In this study, in order to diagnose CTS, the RNNs and multilayer 
perceptron neural network (MLPNN) trained with the Levenberg-Marquardt algorithm are 
implemented (Figure 1). A significant contribution of the present chapter is to examine the 
performance of the RNNs on the diagnosis of CTS (normal, right CTS, left CTS, bilateral 
CTS).    
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Fig. 1. A schematic representation of an Elman recurrent neural network. z-1 represents a one 
time step delay unit (Thissen U. et al., 2003).  

2. Electrophysiological tests for the diagnosis of CTS: nerve conduction 
study and electromyography 
The combination of clinical symptoms and signs with electrodiagnostic findings allows 
possible prognostic validation for the neurosurgeon. Neurophysiology is a method that 
solely expresses the functional state of the median nerve alone with carpal tunnel (Haase J, 
2001). 
The usual electrophysiological procedures start with nerve conduction studies (NCS), 
sensory followed by motor NCS. Next, electromyography (EMG) is performed (Cornblath 
DR & Chaudry V, 2001). 
NCS are based on the principle of nerve stimulation across the area of interest. For median 
nerve, the nerve is stimulated proximal to the carpal ligament and compound muscle action 
potential (CMAP) is picked up by skin electrodes placed over the thenar eminence. The 
CMAP reflects the status of the motor fibres in the median nerve. The amplitude of the 
CMAP reveals stimulation of the whole population of motor nerve fibres. The duration 
reflects the conduction velocities across the different fibres. The latency, between the point 
of nerve stimulation and the onset of the CMAP, reveals the fastest velocity of the motor 
fibres across the carpal tunnel (Kanaan N & Sawaya RA, 2001). 
The sensory component of the median nerve is affected much earlier than the motor 
component and in early stages of CTS there is usually a delay in the sensory nerve 

z-

1
z-

1
z-

1

x1 x2 xn 

y1 y2 yn 

Output 
layer 

Hidden 
layer 

Input 
layer 

Context 
layer 



A New Application of Recurrent Neural Networks  
for EMG-Based Diagnosis of Carpal Tunnel Syndrome   

 

41 

conduction study. Stimulation of sensory fibres is done at the same location as for motor 
stimulation and the sensory nerve action potential is recorded from the distal phalange of 
the second or third digits. The study of the sensory fibres can be performed orthodromically 
or anti-dromically (Kanaan N & Sawaya RA, 2001., Aroori S & Spence RAJ, 2008). 
Those studies usually involve a comparison of the median nerve to another nerve in the 
same hand. The ulnar nerve is the nerve most commonly used for comparison (Preston DC 
& Shapiro BE, 2005). 
Needle electromyography (EMG) is a complementary rather than a compulsory test in 
addition to  NCS. EMG describes the functional state of the muscle fibres that are dependent 
on innervation by motor axons. In CTS, it is usually performed on the median nerve –
innervated muscles of the hand and forearm. Denervation activity in the EMG reflects recent 
nerve damage. Neurogenic changes and reinnervation potentials indicate chronic nerve 
pathology (Kanaan N & Sawaya RA, 2001 ). Following of nerve decompression, a typical 
reiinervation pattern is found often earlier than that by clinical examination (Haase J, 2007). 
EMG is also used to reveal other nerve lesions in the involved arm when the findings of 
NCS are not consistent with CTS. These include nerve entrapment in the forearm, plexus 
lesions or cervical root disease (Kanaan N & Sawaya RA, 2001). 

3. Database description and evaluation of electrophysiologic recordings 
We retrospectively considered 350 patients (289 females and 61 males) with various CTS 
symptoms and signs who underwent nerve conduction studies. Of these patients, 121 had 
no electrophysiologic evidence of CTS, and were accepted as normal group (103 females and 
18 males). 229 of the patients were suffered from right CTS (32 females and 15 males), left 
CTS (22 females and 14 males) and bilateral CTS (132 females and 14 males). Patients with 
generalized peripheral neuropathy caused by diabetes or other medical illness and those 
who had undergone prior carpal tunnel surgery were not included in the study. Each 
subject completed a self-administered questionnaire. The questionnaire focused on hand 
symptoms that are commonly associated with CTS. 
All the studies were performed with the subjects at supine position in a warm room with the 
temperature maintained at 26 to 28°C. Skin temperatures were checked over the forearm. 
Nerve conduction studies were performed using standard techniques of supramaximal 
percutaneous stimulation with a constant current stimulator and surface electrode recording 
on both hands of each subject. Sensory responses were obtained antidromically stimulating 
at the wrist and recording from the index finger (median nerve) or little finger (ulnar nerve), 
with ring electrodes at a distance of 14 cm. The results of the median motor nerve obtained 
by stimulating the median motor nerve at the wrist and elbow and the recording was done 
over the abductor pollicis brevis muscle. The results of the ulnar motor nerve were 
performed by stimulating the ulnar nerve at the wrist, below the elbow, and above the 
elbow and the recording was done over the abductor digiti minimi muscle, with the arm 
flexed 135°. In the present study, the following median nerve and ulnar nerve measures 
were used: (1) distal onset latency of the sensory nerve action potential (DL-S); (2) distal 
onset latency of the compound muscle action potential (DL-M). Median sensory latency 
greater than 3.5 ms, median motor latency greater than 4.2 ms was used as the criteria for 
abnormal median nerve conduction (Budak F et al., 2001). 
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4. Recurrent Neural Networks 
In the diagnosis applications, Elman RNNs were used and therefore the Elman RNN is 
presented in this chapter. In principle, the set up of an Elman RNN is formed as a regular 
feedforward network. In the architecture of the network, all neurons in one layer are 
connected with all neurons in the next layer. The only difference in the architecture of the 
Elman RNN is the context layer which is a special case of a hidden layer. The neurons in the 
context layer, which are called as context neurons, hold a copy of the output of the hidden 
neurons. The output of each hidden neuron is copied into a specific neuron in the context 
layer. The value of the context neuron is used as an extra input signal for all the neurons in 
the hidden layer one time step later. Therefore, the Elman network has an explicit memory 
of one time lag (Elman J.L., 1990; Thissen U. et al., 2003). 
The strength of all connections between neurons are denoted with a weight. Initially, all 
weight values are chosen randomly and are optimized during the stage of training. In an 
Elman network, the weights from the hidden layer to the context layer are set to one and are 
fixed because the values of the context neurons have to be copied exactly. After this stage, 
the initial output weights of the context neurons are equal to half the output range of the 
other neurons in the network. The training algorithms of the Elman network are similar to 
the training algorithms of the regular feedforward neural networks. So, the Elman network 
can be trained with gradient descent backpropagation and optimization methods (Thissen 
U. et al., 2003; Pineda F.J., 1987). In the many applications, the backpropagation has some 
problems. The algorithm cannot find the global minimum of the error function, because 
gradient descent can probably get stuck in local minima, where it may remain indefinitely. 
Therefore, in order to improve the convergence of the backpropagation a lot of variations 
were proposed (Haykin S., 1994). In the training of neural networks optimization methods 
such as second-order methods (conjugate gradient, quasi-Newton, Levenberg-Marquardt) 
have also been used. The Levenberg-Marquardt algorithm combines the best features of the 
Gauss-Newton technique and the steepest-descent algorithm and  omitted their limitations. 
The algorithm suffers from the problem of slow convergence (Battiti R., 1992; Hagan M.T. & 
Menhaj M.B., 1994) and can obtain a good cost function compared with the other training 
algorithms.   
The Levenberg-Marquardt algorithm is a least-squares estimation algorithm based on the 
maximum neighborhood. ( )E w  be an objective error function composed of m  individual 
error terms 2( )ie w  as follows: 

 22

1
( ) ( ) ( )

m

i
i

E e f
=

= =∑w w w ,  (1) 

where ( )22( )i di ie = −w y y  and diy  is the desired value of output neuron i , iy  is the actual 
output of that neuron. 
It is assumed that function ( )f ⋅  and its Jacobian J  are known at point w . The Levenberg-
Marquardt algorithm is trying to compute the weight vector w  such that ( )E w  is 
minimum. Then by the Levenberg-Marquardt algorithm, a new weight vector 1k+w  can be 
computed from the previous weight vector kw  as follows: 

 1k k kδ+ = +w w w , (2) 
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where kδw  is defined as  

 1( ( ))( )T T
k k k k kJ f J Jδ λ −= − +w w I .   (3) 

In equation (3), kJ  is the Jacobian of f  computed at kw , λ  is the Marquardt parameter, I  
is the identity matrix (Battiti R., 1992; Hagan M.T. & Menhaj M.B., 1994). The Levenberg-
Marquardt algorithm can be explained as in the following:  
i. compute ( )kE w , 
ii. start with a small value of λ  ( 0.01λ = ), 
iii. solve equation (3) for kδw  and compute ( )k kE δ+w w , 
iv. if ( ) ( )k k kE Eδ+ ≥w w w , increase λ  by a factor of 10 and go to (iii), 
v. if ( ) ( )k k kE Eδ+ <w w w , decrease λ  by a factor of 10, update :k k k kδ← +w w w w  and 

go to (iii).       

5. Results and discussion 
In this application example, the inputs of the RNNs are the features of CTS (right median 
motor latency, left median motor latency, right median sensory latency, left median sensory 
latency). Tables 3 and 4 (Ilbay K et al., 2010) show the values including right median motor 
latency, left median motor latency, right median sensory latency, left median sensory 
latency (four features used as inputs of the classifiers) of sample records of two classes 
(bilateral CTS and normal) which are presented in reports of the subjects.  
Motor Nerve Conduction Study 

Site Latency  
(ms) 

Amplitude Area Segment Distance 
 (mm) 

Interval 
(ms) 

NCV (m/s) 

Median, L        
Wrist 4,74ms 7,83mV 16,09mVms Wrist  4,74ms  
Elbow 8,25ms 6,68mV 13,43mVms Wrist- Elbow   170mm 3,51ms 48,4m/s 
Median,R        
Wrist 6,42ms 6,77mV 15,66mVms Wrist  6,42ms  
Elbow 10,26ms 5,24mV 11,94mVms Wrist- Elbow   170mm 3,84ms 44,3m/s 
Ulnar, R        
Wrist 2,85ms 18,22mV 29,78mVms Wrist  2,85ms  
Elbow 5,91ms 17,77mV 29,36mVms Wrist- Elbow   180mm 3,06ms 58,8m/s 

Sensory Nerve Conduction Study 

Site Latency  
(ms) 

Amplitude Area Segment Distance  
(mm) 

Interval 
(ms) 

NCV 
(m/s) 

Median, L        
Wrist 4,32ms 19,60uV 1,24uVms Wrist  4,32ms  
Median,R        
Wrist 4,72ms 7,20uV 1,00uVms Wrist  4,72ms  
Ulnar, R        
Wrist 2,58ms 31,60uV 1,28uVms Wrist  2,58ms  

Table 3. Values of median motor and sensory latency of the conduction study of the patient 
with bilateral CTS (Ilbay K et al., 2010). 
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The samples of the electromyogram (EMG) records of the patient with bilateral CTS and the 
normal subject are shown in Figures 2 and 3 (Ilbay K et al., 2010). MATLAB software 
package (MATLAB version 7.0 with neural networks toolbox) was used for implementation 
of the RNN and the MLPNN. The determination of architecture and training are important 
for the neural networks used in classification. The sizes of the training set and test set are 
determining the efficiency of neural networks. In order to determine the sizes of the training 
and testing sets of the CTS database, various experiments were performed. In the developed 
classifiers, 100 of 350 records were used for training and the rest for testing. The training set 
consisted of 40 normal, 17 right CTS, 12 left CTS and 31 bilateral CTS. The testing set 
consisted of 81 normal, 30 right CTS, 24 left CTS and 115 bilateral CTS (Ilbay K et al., 2010). 
Motor Nerve Conduction Study 

Site Latency  
(ms) 

Amplitude Area Segment Distance 
(mm) 

Interval 
(ms) 

NCV 
(m/s) 

Median, L        
Wrist 3,92ms 10,91mV 17,95mVms Wrist  3,92ms  
Elbow 7,76ms 12,32mV 20,40mVms Wrist- Elbow   220mm 3,81ms 57,7m/s 
Median,R        
Wrist 3,72ms 2,70mV 64,21mVms Wrist  3,72ms  
Elbow 8,04ms 3,38mV 51,41mVms Wrist- Elbow   250mm 4,32ms 57,9m/s 
Ulnar, R        
Wrist 2,58ms 4,07mV 3,51mVms Wrist  2,85ms  
Elbow 6,72ms 3,31mV 2,64mVms Wrist- Elbow   240mm 4,14ms 58,0m/s 

Sensory Nerve Conduction Study 

Site Latency  
(ms) 

Amplitude Area Segment Distance 
(mm) 

Interval 
(ms) 

NCV 
(m/s) 

Median, L        
Wrist 2,64ms 36,60uV 3,25uVms Wrist  2,64ms  
Median,R        
Wrist 2,76ms 11,60uV 1,82uVms Wrist  2,66ms  
Ulnar, R        
Wrist 2,58ms 25,90uV 1,28uVms Wrist  2,36ms  

Table 4. Values of median motor and sensory latency of the conduction study of the normal 
subject (Ilbay K et al., 2010). 
In the determination of efficient neural network architecture, experiments were done for 
different network architectures and the results of the architecture studies confirmed that 
networks with one hidden layer consisting of 25 recurrent neurons results in higher 
classification accuracy. In order to compare performance of the different classifiers, for the 
same classification problem MLPNN which is the most commonly used feedforward neural 
networks was implemented. The single hidden layered (20 hidden neurons) MLPNN was 
used to classify the CTS. The sigmoidal function was used as the activation function in the 
hidden layer and the output layer.  
The confusion matrices are used to display the classification results of the classifiers. In a 
confusion matrix, each cell contains the raw number of exemplars classified for the 
corresponding combination of desired and actual network outputs. The confusion matrices 
showing the classification results of the classifiers used for classification of the CTS are given 
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in Table 5 (Ilbay K et al., 2010). From these matrices one can tell the frequency with which 
record is misclassified as another. The test performance of the classifiers can be determined 
by the computation of sensitivity, specificity and total classification accuracy. The 
sensitivity, specificity and total classification accuracy are defined as:  
Sensitivity: number of true positive decisions / number of actually positive cases 
Specificity: number of true negative decisions / number of actually negative cases 
Total classification accuracy:  number of correct decisions / total number of cases 
A true negative decision occurs when both the classifier and the physician suggested the 
absence of a positive detection. A true positive decision occurs when the positive detection 
of the classifier coincided with a positive detection of the physician. 
 
A      B 

 
 
C      D                                                                     

 
Fig. 2. The samples of EMG records of the patient with bilateral CTS; A. Image of motor 
nerve conduction study of right median nerve, B. Image of motor nerve conduction study of 
left median nerve, C. Image of sensory nerve conduction study of right median nerve, D. 
Image of sensory nerve conduction study of left median nerve (Ilbay K et al., 2010). 
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  E     F                                                   

 
 
G     H                                                                      

   
Fig. 3. The samples of EMG records of the normal subject; E. Image of motor nerve 
conduction study of right median nerve, F. Image of motor nerve conduction study of left 
median nerve, G. Image of sensory nerve conduction study of right median nerve, H. Image 
of sensory nerve conduction study of left median nerve (Ilbay K et al., 2010). 
The classification accuracies (specificity, sensitivity, total classification accuracy) on the test 
sets of the classifiers are presented in Table 6 (Ilbay K et al., 2010), in order to show 
performance of the classifiers used for classification of the CTS. 
All possible sensitivity/specificity pairs for a particular test can be graphed by receiver 
operating characteristic (ROC) curves. Therefore, the performance of a test can be evaluated 
by plotting a ROC curve for the test and ROC curves were used to describe the 
performances of the SVMs. Sensitivity rises rapidly and 1-specificity hardly increases at all 
until sensitivity becomes high for a good test. 
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Output Result Classifiers 

Desired Result
Normal Right CTS Left CTS Bilateral CTS 

Normal 77 0 0 1 
Right CTS 2 28 0 2 
Left CTS 1 2 22 2 

RNN 

Bilateral CTS 1 0 2 110 

Normal 71 0 0 3 
Right CTS 5 26 1 4 
Left CTS 3 3 21 5 

MLPNN 

Bilateral CTS 2 1 2 103 

 
Table 5. Confusion matrix  (Ilbay K et al., 2010) 

 
 

Classification Accuracies (%) 

Classifiers 
Specificity Sensitivity 

(Right CTS) 
Sensitivity 
(Left CTS) 

Sensitivity 
(Bilateral 

CTS) 

Total 
classification 

accuracy 

RNN 95.06 93.33 91.67 95.65 94.80 

MLPNN 87.65 86.67 87.50 89.57 88.40 
 
Table 6. The values of the statistical parameters (Ilbay K et al., 2010)  

ROC curves which are shown in Figure 4 (Ilbay K et al., 2010) demonstrate the performances 
of the classifiers on the test files. From the classification results presented in Table 6 and 
Figure 4 (classification accuracies and ROC curves), one can see that the RNN trained on the 
features produce considerably high performance than that of the MLPNN. 

6. Conclusions 
The clinical symptoms and nerve conduction studies for the diagnosis of CTS are explained. 
The RNNs were used for automated diagnosis of CTS. The performance of the RNNs on the 
diagnosis of CTS (normal, right CTS, left CTS, bilateral CTS) was investigated. The accuracy 
of RNNs trained on the features of CTS (right median motor latency, left median motor 
latency, right median sensory latency, left median sensory latency) was analyzed. The 
classification accuracies and ROC curves of the classifiers were presented, in order to 
evaluate the used classifiers. The classification results and the values of statistical 
parameters indicated that the RNN had considerable success in discriminating the CTS 
(total classification accuracy was 94.80%). In the further studies, different neural network 
architectures and training algorithms can be used for obtaining more efficient results. 
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Fig. 4. ROC curves (Ilbay K et al., 2010) 
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1. Introduction     
In the theory of the traditional Chinese medicine, it has been found that the acupuncture-
points are distributed in the meridian system of the human body. Moreover, meridian 
system is an independent system which exists in the body parallel with neural systems and 
blood circulation systems (Tsuei 1998, Trentini et. al. 2005). The experimental results have 
shown that the meridian system has significant effect on human health (Tsuei, 1998). Based 
on the recent research results, it was illustrated that the meridian system had an architecture 
with many channels allowing the electrical signals passed through easily (Zhang et. al. 1999, 
Yang 1997). That could be used to explain why the acupuncture-therapy would treat some 
diseases in human body by implementing some stimulating signals on the related 
acupuncture points. The acupuncture points distributed in the meridian system possesses 
some distinctive ways for transferring signals and processing information including 
electrical information (Yang 1997). 
Until today, there have been some research results on human meridian system focusing on 
the analysis of impedance on single acupuncture-point (Yamamoto and Yamamoto 1987, 
Yang 1997, Zhang et. al. 1999). However, the meridian system is, in fact, a network with 
several channels. In each channel, there are several acupuncture-points located along a 
curve. The experimental results demonstrated that there were some relations among those 
points in each channel. Therefore, the analysis just depending on the impedance of one 
single acupuncture-point would not reflect the main characteristic of the signal transmission 
in human meridian system. One of the options is to use an excitation signal to stimulate an 
acupuncture-point in a channel of the meridian. Then the corresponding response of 
another acupuncture-point in the same channel is measured. Thus, the signal transmission 
performance of the measured channel in the meridian can be evaluated. Moreover, the 
experimental results have demonstrated that the human meridian system is a dynamic 
system (Zhang et. al. 1999, Yang 1997, Wang et. al. 2009). In this case, the identification of 
the model to describe the dynamic behavior of the meridian is an efficient way for 
performance evaluation. Wang et. al. (2009) developed an auto-regressive and moving 
average model to describe the human meridian system. It fits the response well when the 
exciting signal with slow frequency and the input amplitude is rather small. However, when 
the frequency of the exciting input is higher or the amplitude of the exciting signal is larger, 
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it will illustrate some nonlinear behavior. Thus, a nonlinear dynamic model should be 
considered to describe this system. 
This chapter is organized as follows: In the 2nd section of this chapter, a brief description on 
the scheme of experiments to obtain the response of acupoints in a channel of the human 
meridian system by stimulating the acupoint in the same channel. Then, in the 3rd section, 
the analysis of the hysteretic characteristic happened in the response between two 
acupuncture-points in the same channel is illustrated. In section 4, an expanded input space 
is constructed to transform the multi-valued mapping of hysteresis to a one-to-one 
mapping. Then the recurrent neural network is employed to model both dynamics and 
nonlinearity of the meridian system. As neural network is a non-convex system, it is often 
stuck in local minima during the training. Therefore, we proposed a dynamic neural 
network based model with extreme learning machine (ELM) (Huang et. al. 2006 and 2007) to 
model the dynamic behavior of the human meridian system in section 5. In the scheme, the 
values of the parameters of the hidden neurons and the weights connecting the hidden 
neurons with the inputs are specified by random values. The feedback factors connecting 
the outputs of the hidden nodes with the inputs of the hidden neurons are constrained 
within the region between zero and one to guarantee the stability of the neural network. 
However, the weights which interconnect the output of the network and the output of the 
hidden neurons are determined by least squares (LS) algorithm. In this case, the training of 
the neural network becomes an optimization for a convex system. Hence, the very good 
modeling results are derived. The corresponding experimental results are presented in 
section 6. In the experiment, both traditional ELM neural network and the proposed 
recurrent version are implemented to model the hysteresis in meridian system. The model 
validation results have shown that the proposed method has led to much better modeling 
performance. 
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Fig. 1. Experimental Configuration of Measurement of Human Meridian Signal 

2. Brief description of the experimental configuration 
In this section, a method based on three detecting electrodes is used to measure both 
stimulation and the corresponding response of the acupuncture-points in meridian systems.  
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The architecture of the measurement for meridian response is shown in Fig. 1. Based on the 
theory of Chinese medicine, there are 11 acupoints in the so-called Hand-Taiyin Lung 
Channel. In this experiment, the stimulating acupoint was Shaoshang (LU 11), the acupoint 
Tianfu (LU 3) was connected to ground, and the detecting acupoints were Chize (LU 5), 
Kongzui (LU 6) and Lieque (LU 7), respectively. The stimulation current signals were 
generated by a signal generator.  Then, the signal was amplified by the amplifier A. In this 
experiment, Acupoint Shaoshang(LU11) was excited by the stimulation signals through a 
stimulating electrode. Then, the detecting electrode was used to measure the corresponding 
response of acupoint Chize(LU5) or the other acupoints in the same channel. The measured 
output was transferred through a current/ voltage conversion circuit then sampled by an 
analog /digital (A/D) convertor. The sampled signals were sent to the computer for further 
processing. 
There were 6 healthy volunteers accepted the test. Before the test, the volunteers were 
relaxed to avoid the strenuous disturbance. 

3. The Response of the acupoint of the human meridian 
What the behavior of human meridian system to excitations would be? In this section, the 
experimental results will be presented to show the responses of the acupoint of the human 
meridian system to the excitation signals. 
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Fig. 2. The plot of the output of acupoint LU5 against the sawtooth input 

In the experiments, we use a sawtooth waveform sequence to excite the meridian. A very 
interesting thing is that hysteresis phenomenon occurs in the human meridian systems. Fig. 
2 shows the plot of the output of acupoint LU5 against the sawtooth waveform input. 
Obviously, the hysteresis presents asymmetric dynamic behavior in the response of the 
acupoint to the sawtooth waveform signal. During the upward segment, the output of the 
acupoint LU5 is almost a straight line. However, we can see the slower dynamics in the 
downward segment of the response. The asymmetric dynamic behavior implies the 
meridian is a nonlinear dynamic system. 
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Moreover, From Fig. 2, we note that the hysteretic phenomenon happened in human 
meridian systems involved with the following characteristics：  
1. non-smoothness; 
2. multi-valued mapping; 
3. asymmetry; and 
4. slow time-varying. 
Therefore, it is a dynamic system with rather complex characteristics. It is a real challenge to 
build a model to describe the meridian system with such comprehensive phenomena based 
on the conventional identification technique because the conventional identification 
methods can only be useful for the systems with smooth and one-to-one mapping. Hence, it 
is a challenge to construct a model of hysteresis. 

4. Modelling of hysteresis via Neural Networks 
Until today, there have been some modeling methods for hysteresis, e.g. Preisach model (Hu 
2003) and Prandtl-Ishlinskii (PI) model (Macki et. al. 1993). Those methods used simple 
backlash operators as the basis functions for modeling. Therefore, lots of operators should 
be employed in order to obtain accurate models. Although there have been some modified 
Preisach model (Hu 2003, Ge and Jouaneh 1995 Ang et. al. 2003) and modified PI model 
(Dong and Tan 2010) proposed to describe the hysteresis systems, the structures of those 
modified schemes are still very complex. In order to simplify the architecture of the model 
to describe the behavior of hysteresis, Li and Tan (2004) as well as Zhao and Tan (2006) 
developed the so-called expanded input space based hysteretic models. In the expanded 
input space, a hysteretic operator which extracted the main movement feature of the 
hysteresis was introduced as one of the coordinates. Thus, the multi-valued mapping of 
hysteresis could be transformed to a one-to-one mapping between the inputs and output. 
Then, the feedforward neural networks were implemented to model the hysteresis based on 
the constructed expanded input space. However, due to the non-convex characteristics of 
the feedforward neural networks, one often met the problem that the training was easily 
stuck in local minima. It would have significant effect on the performance of the obtained 
neural models.  
In this chapter, a modified scheme of the hysteretic operator given by Zhao and Tan (2006) 
is proposed. The modified hysteretic operator will handle the case of extreme-missing. Thus, 
a corresponding expanded input space is constructed.  Then, the multi-valued mapping 
between the input and output of the hysteresis is transformed to a one-to-one mapping on 
this expanded input space. After that, the extreme learning machine (ELM) (Huang et. al. 
2006 and 2007) is applied to the modeling of the hysteresis in human meridian systems.  
In order to transform the multi-valued mapping of hysteresis to a one-to-one mapping, 
based on the expanded input space ( Li and Tan 2004, Zhao and Tan 2006), which is a two-
dimensional plane consisting of the input of hysteresis as well as the output of the hysteretic 
operator, is constructed. As the hysteretic operator can extract the movement tendency, such 
as increase, decrease and turning of the hysteresis, on this plane, the output of the hysteresis 
corresponding to the point in the input plane can be uniquely determined. One of the 
advantages of the expanded input space is that the one-to-one mapping between the input 
space and the output of the hysteresis can be constructed. Thus, the techniques for nonlinear 
modeling can be implemented to model the behavior of hysteresis on the constructed input 
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space. Moreover, another advantage of this modeling method is that the computation of 
gradients at non-smooth points can be avoided. 
Assumption: The considered hysteresis is continuous and forms a closed loop in the input–
output diagram when the input cycles between two extrema.  
Then, we define the hysteresis operator ( )f x as: 

 ( ) (1 )( ) ( )px x
p pf x e x x f x−

= − − +  (1) 

where x is the current input, ( )f x is the current output, px is the dominant extremum 
adjacent to the current input x. ( )pf x is the output of the operator when the input is px . 
The properties of the hysteretic operator are as follows:  
1. Let ( ) ( )x t C R+∈ , where { | 0}R t t+ = ≥ and ( )C R+ is the sets of continuous functions 

on R+ . For the different time instance t1 and t2, it results in 1 2t t≠ but 1 2( ) ( )x t x t= , 
where 1( )x t  and 2( )x t are not the extrema. Then it leads to 1 2[ ( )] [ ( )]f x t f x t≠ . 

2. If there exist two time instance t1 and t2, also 1 2t t≠ , such that 1 2[ ( )] [ ( )] 0f x t f x t− → , 
then 1 2( ) ( ) 0x t x t− → . 

Note that the hysteretic operator used by Zhao and Tan (2006) might encounter the problem 
that the output extreme of the hysteretic operator might be missed when the input just 
passes through the extreme. Therefore, in this section, a modified scheme of the hysteresis 
operator will be proposed. 
Note that some extrema might be missed when the input just passed through its extrma. For 
example, suppose 1t  and 2t ( 1 2t t< ) to be two time instances, in this case, if the 
corresponding values of the input at those two time instances are equal to each other, but 
the output of the hysteretic operator corresponding to one of the input value is in the 
increase zone while the output of the operator with respect to another input value is in the 
decrease zone. The extrema between those two output values of the hysteresis is obviously 
missed. To handle this problem, we have 
Lemma 1: For the formula to describe the hysteresis operator shown in Eq. (1), 
if 1 2( ) ( )x t x t= , 1 2[ ( )] [ ( )]f x t f x t≠ , where 1t  and 2t  are the adjacent time instances and 1 2t t< , 
the extrema located in the segment between points 1 1( ( ), ( ( )))x t f x t  and 2 2( ( ), ( ( )))x t f x t can 
not be obtained within the time period 1 2[ , ]t t . However, it can be estimated by 

2 1( , ( , ))mx lm t t , where 
 

2 2 1( ) 0.5( ( ) ( ))mx x t x t x t= + − , 
and 

2 1
2 1

2 1

(1 )( ) ( ), ( ) ( )
( , )

(1 )( ) ( ), ( ) ( )

m p

m p

x x
m p p

x x
m p p

e x x f x x t x t
lm t t

e x x f x x t x t

− +

−

⎧ − − + >⎪= ⎨
− − + <⎪⎩

. 

Proof: Suppose mx is the local maximum of the input, whilst 1( )x t and 2( )x t are located in the 
increase and decrease zones, respectively. 
Hence, the derivatives of ( ( ))f x t with respect to ( )x t at 2t  and 1t  are  

 2( )
2( ( )) px t xf x t e− +=   (2) 
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and 

 1( )
1( ( )) px t xf x t e− += , (3) 

respectively. 
Based on the assumption given by Zhao and Tan (2006), ( , ( ))p px f x is a local minimum, and 

1 1( ( ), ( ( )))x t f x t is a point adjacent to the local maximum point 2 1( , ( , ))mx lm t t . Hence, 
2 1( ( )) ( ( ))f x t f x t≈ due to the properties of exponential function. That is to say, the three 

points，i.e. 1 1( ( ), ( ( )))x t f x t , 2 2( ( ), ( ( )))x t f x t  and 2 1( , ( , ))mx lm t t can be considered to be 
approximately located in a straight line. Moreover, 2 1( , ( , ))mx lm t t is the point between 

1 1( ( ), ( ( )))x t f x t and 2 2( ( ), ( ( )))x t f x t , where 1t  and 2t are the adjacent time instances. Define 
2 1( , )L t t  represents the line connecting 1 1( ( ), ( ( )))x t f x t  with 2 2( ( ), ( ( )))x t f x t . So the 

extremum point in the space can be approximated to be the mean values of the projections 
of 2 1( , )L t t  on each coordinates in the plane. In other words, the mean value of the 
projection on the input coordinate is estimated by  

 2 2 1( ) 0.5( ( ) ( ))mx x t x t x t= + − ,  (4) 

and the mean value of the projection on the coordinate of the output of the hysteretic 
operator is estimated by 

 2 1( , ) (1 )( ) ( )m px x
m p plm t t e x x f x− += − − + . (5) 

Similarly, if 2 1( , ( , ))mx lm t t is a local minimum, 2 1( , )lm t t can be described by 

 2 1( , ) (1 )( ) ( )m px x
m p plm t t e x x f x−= − − + .  (6) 

Hence, combining Eqs.(4), (5) and (6) leads to 

 2 1
2 1

2 1

(1 )( ) ( ), ( ) ( )
( , )

(1 )( ) ( ), ( ) ( )

m p

m p

x x
m p p

x x
m p p

e x x f x x t x t
lm t t

e x x f x x t x t

− +

−

⎧ − − + >⎪= ⎨
− − + <⎪⎩

.  (7) 

Therefore, based on the above mentioned Lemma and the following Lemmas given by Zhao 
and Tan (2006), i.e. 
Lemma 2: Let ( ) ( )x t C R+∈ , where { }| 0R t t+ = ≥ and ( )C R+  are the sets of continuous 

functions on R+ . If there exist two time instants 1t , 2t  and 1 2t t≠ , such that 1 2( ) ( )x t x t= , 

1( )x t  and 2( )x t  are not the extrema, then ( ) ( )1 2f x t f x t⎡ ⎤ ⎡ ⎤≠⎣ ⎦ ⎣ ⎦ . 

The details of the proofs can be referred to Appendix A. 
Lemma 3: If there exist two time instants 1t , 2t  and 1 2t t≠ , such that 1 2[ ( )] [ ( )] 0f x t f x t− → , 
then 1 2( ) ( ) 0x t x t− → . 
The corresponding proof of lemma 3 can be referred to Appendix B. 
Then, we have the following theorem, i.e. 
Theorem: For any hysteresis satisfying Assumption, there exists a continuous one-to-one 
mapping Γ: R2→R, such that [ ( )] [ ( ), ( ( ))]F x t x t f x t= Γ . 
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The detail of the proof can be referred to Appendix C. 
It can also been proved that the obtained expanded input space is a compact set ( Zhao and 
Tan 2006) Hence, the mapping between the output and the input of the hysteresis on this 
expanded input space is a one-to-one mapping. Thus, the neural networks such as 
multilayer feedforward neural network can be implemented to model the performance of 
hysteresis on this input space. 

5. Recurrent ELM NN based model of hysteresis in human meridian systems 
Note the non-convex characteristic is one of the main drawbacks of the feedforward neural 
networks. It is often stuck in some local minima during the training procedure. Moreover, 
the slow convergence in training is kept it from the application in real-time cases. Huang et. 
al. (2006 and 2007) have proposed an efficient algorithm called as extreme learning machine 
(ELM)  with the randomly specified input weights of the single hidden layered and the 
output weights of the network to be determined by using the least squares algorithm. ELM 
has achieved very good performance in generalization and much faster learning speed. The 
brief description of this neural network is presented as follows： 
For N samples 1{( , )}N

k k kx t = , where 1 2[ , , , ]k k k knx x x=x  is the kth input vector and 

1 2[ , , , ]k k k knt t t=t  is the kth target vector, a single layer feedforward network ( SLFN) 

with N  hidden neurons and activation function ( )g x , i.e. 

 
1

( ) , 1, ,
N

i i k i k
i

g b k N
=

⋅ + = =∑β w x o ,   (8) 

where 1 2[ , , , ]Ti i i inw w w=w is the weight vector connecting the ith hidden neuron and the 

input neurons, 1 2[ , , , ]Ti i i imβ β β=β is the weight vector connecting the ith hidden neuron 

and the output neurons, 1 2[ , , , ]Tk k k kmo o o=o is the output vector of the SLFN, and ib is the 
threshold of the ith hidden neuron. Moreover, i k⋅w x  denotes the inner product of 

iw and kx . Hence, these N equations can be written compactly as: 

 =Hβ O ,  (9) 

where H is called the hidden layer output matrix, i.e. 

 
1 1 1 1

1 1

( ) ( )

( ) ( )

N N

N NN N N N

g b g b

g b g b
×

⎡ ⎤⋅ + ⋅ +
⎢ ⎥

= ⎢ ⎥
⎢ ⎥⋅ + ⋅ +⎣ ⎦

w x w x
H

w x w x
, (10) 

 
1
T

T
N N m×

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

β
β

β

  (11) 

and 
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1
T

T
N N m×

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

o
O

o

.  (12) 

By randomly assigning and fixing the input weights iw and biases ib , only leaving output 
weights iβ  to be adjusted according to the objective function: 

 2min −
β

Hβ T .   (13)  

Based on theorem shown in section 4, the behavior of the hysteresis inherent in meridian 
system can be modeled by the ELM method on the obtained expanded input space. 
Therefore, the corresponding ELM based model for hysteresis is shown as follows: 

 1 1 1 1 1 1 1

1 1

[ , ( )] [ , ( )]

( [ , ( )] ) ( [ , ( )] )

( [ , ( )] ) ( [ , ( )] )

T
N N

T
N N N NN N N

x f x x f x

g f b g f b

g f b g f b

= +

⎡ ⎤⎡ ⎤⋅ + ⋅ +
⎢ ⎥⎢ ⎥

= +⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⋅ + ⋅ +⎣ ⎦ ⎢ ⎥⎣ ⎦

Γ H β ε

w x x w x x β
ε

w x x w x x β

,  (14) 

where ε is the modeling error vector, for any given 0Nε > , Nε≤ε . 
By observing the response of the acupoints of human meridian systems, we can see that the 
dynamics in involved in the hysteresis. In order to describe the dynamic phenomenon of the 
hysteresis in meridian system, an internal feedback connection is introduced for each 
hidden neuron in the ELM neural network. Thus, we obtain a so-called recurrent ELM 
neural network on the constructed expanded input space for hysteresis inherent in human 
meridian. For a single input-single output network, the corresponding architecture is shown 
in Fig. 3. Obviously, we have 

  [ ( ), ( ( ))] [ ( ), ( ( )), ( 1)]x t f x t t f t t= − +Γ H x x z β ε    (15) 

where 

1
T

T
N

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

β
β

β

 

and       

1 1 1 1 1 1 1

1 1 1

[ ( ), ( ( )), ( 1)]

( [ ( ), ( ( ))] ( 1)) ( [ ( ), ( ( ))] ( 1))

( [ ( ), ( ( ))] ( 1)) ( [ ( ), ( ( ))] ( 1))

N N N

N N N NN N N

t f t t

g t f t z t g t f t z t

g t f t z t g t f t z t

α α

α α

− =

⎡ ⎤⋅ + − ⋅ + −
⎢ ⎥
⎢ ⎥
⎢ ⎥⋅ + + − ⋅ + −⎣ ⎦

H x x z

w x x w x x

w x x w x x

 

where iα is the feedback factor with the value randomly assigned within (0,1) to guarantee 
the stability of the model and  
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( ) ( [ ( ), ( ( ))] ( 1)),  1,..., ;  1,...,i i j j i iz t g t f t z t i N j Nα= ⋅ + − = =w x x . 

For the assigned matrix [.]H , its QR decomposition is a matrix of the form 

 =H QR    (16) 

where R is an upper triangular matrix and Q is an orthogonal matrix, i.e., one satisfying  

           =TQ Q I  (17)  

where I is the identity matrix. This matrix decomposition can be used to simplify the 
computation to determine the solutionβ , i.e. 

       1ˆ = −T T Tβ (R R) R Q Γ .    (18) 
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Fig. 3. The structure of recurrent ELM neural network 

6. Experimental results 
Based on the experimental setup shown in section 2, the experiment to measure the 
responses of acupoints was implemented. The semi-exponential signal was used to excite 
the meridian system. Both ELM neural network and recurrent ELM neural network were 
applied to modelling of the hysteresis happened in the meridian. 
Firstly, we applied the ELM neural network with 30 hidden neurons to the modelling 
procedure of hysteresis. The QR decomposed least square algorithm was utilized to 
determine the weights of the neural model. 
Fig. 4 shows the model validation result of the ELM neural network based model. It can be 
seen that the model failed to describe the hysteresis occurred in the meridian. On the other 
hand, we also applied the proposed recurrent ELM neural network on the constructed 
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expanded input space. In the experiment, only 20 hidden neurons were involved in the 
network. The training algorithm to specify the weights of the model was the same as that in 
the training of ELM neural model. Fig. 5 illustrates the corresponding performance of model 
validation. Obviously, the proposed modelling method has achieved satisfactory result. 
Moreover, the proposed method has used less number of hidden neurons than that of the 
conventional ELM neural model. Thus, a much simpler model structure has been obtained. 

7. Conclusion 
 A modeling method for hysteresis in human meridian systems is presented. In this 
modeling scheme, a modified hysteretic operator is proposed to construct an expanded 
input space to transform the multi-valued mapping of hysteresis into a one-to-one mapping. 
On the constructed expanded input space, the ELM neural network is employed to model 
the hysteresis inherent in human meridian systems. As the hysteresis in meridian system is 
an asymmetric and dynamic system, a recurrent ELM neural network is developed. In the 
proposed recurrent ELM neural network, the output state of each hidden neuron is fed back 
to its own input to describe the dynamic behavior of the hysteresis. The training of the 
recurrent ELM neural network is rather simple. A least square algorithm based on QR 
decomposition is implemented. The experimental results have shown that the proposed 
recurrent ELM neural model based model obtained much better modeling performance and 
simpler model structure. 
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Fig. 4. Model validation of ELM neural network 
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Fig. 5. Model validation of recurrent ELM neural network 

8. Appendix A 
The proof of lemma 2 is as follows (Zhao and Tan 2006): 
Considering the segment x(t) decreases monotonically, (1) becomes 

( ) (1 )( ) ( )px x
de p pf x e x x f x−= − − +        ( ) 0x t <  

where fde(x) is decreasing segment of the function, xp is the maximum extremum of the 
input. Whilst 

( )( ) [1 ]( ) ( )px x
in p pf x e x x f x− −= − − +      ( ) 0x t >  

denotes the increasing segment of the function. In this case, xp is the minimum extremum of 
the input. Since 

( ) ( )( ) ( ) [1 ]p px x x xin
p

df x e x x e
dx

− − − −= ⋅ − + −  

       
1 ( )

1
p

p
x x

x x

e −

− −
= −

11 0
px xe −> − > . 

Therefore, fin(x) is monotonic. Similarly one can obtain that fde(x) is also monotonic. 
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9. Appendix B 
The following is the proof of lemma 3 (Zhao and Tan 2006). 
Consider the case of ( ) 0x t > that means in increase segment of the hysteresis. Assume that 
the segment x(t) increases monotonically. From the proof of Lemma 1, it follows that 

          ( )( ) [1 ]( ) ( )px x
in p pf x e x x f x− −= − − +  

 is monotonic as 1 2( ) ( ) 0x t x t− → . Thus, it yields 

( ) ( )1 2 0in inf x t f x t⎡ ⎤ ⎡ ⎤− →⎣ ⎦ ⎣ ⎦ . 

In terms of the property of continuity of the inverse function, it yields  

( ) ( )1 2 0in inf x t f x t⎡ ⎤ ⎡ ⎤− →⎣ ⎦ ⎣ ⎦ ,  

thus 1 2( ) ( ) 0x t x t− → . Similarily, when 

( ) ( )1 2 0de def x t f x t⎡ ⎤ ⎡ ⎤− →⎣ ⎦ ⎣ ⎦ , it results in 

1 2( ) ( ) 0x t x t− → . 

10. Appendix C 
Firstly, it is proved that Γ is a one-to-one mapping.  
Case 1: Assume that x(t) is not the extremum. In terms of lemma1, if there exist two different 
time instances t1 and t2, then 

( ) ( ) ( ) ( )1 1 2 2( , ) ( , )x t f x t x t f x t⎡ ⎤ ⎡ ⎤≠⎣ ⎦ ⎣ ⎦ . 

Therefore, the coordinate (x(t), f[x(t)]) is uniquely corresponding to hysteresis H[x(t)]. 
Case 2: Suppose that x(t) is the extremum. In this case, for two different time instances t1 and 
t2, there will be 

( ) ( ) ( ) ( )1 1 2 2( , ) ( , )x t f x t x t f x t⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ . 

According to the property of the Preisach-type hysteresis, 1 2[ ( )] [ ( )]H x t H x t= . Then the 
coordinate (x(t), f[x(t)]) will be uniquely corresponding to hysteresis H[x(t)]. 
Combining the above-mentioned two situations, it is obtained that Γ is a one-to-one 
mapping. Next, it will be verified that Γ is a continuous mapping. 
According to [11], 

1 2( ) ( ) 0x t x t− → ⇒ 1 2[ ( )] [ ( )] 0H x t H x t− → . 

Then, considering lemma 3, 

( ) ( )1 2 0f x t f x t⎡ ⎤ ⎡ ⎤− →⎣ ⎦ ⎣ ⎦ ⇒ 1 2( ) ( ) 0x t x t− → ⇒ 1 2[ ( )] [ ( )] 0H x t H x t− → . 
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Therefore, it can be concluded that there exists a continuous one-to-one mapping Γ : R2→R 
such that H[x(t)] = Γ (x(t), f[x(t)]). 
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1. Introduction 
The utilization of dynamic recurrent neural networks (DRNN) for the interpretation of 
biological signals coming from human brain and body has acquired a significant growth in 
the field of brain-machine interface. DRNN approaches may offer an ideal tool for the 
identification of input-output relationships in numerous types of neural-based signals, such 
as intracellular synaptic potentials, local field potentials, EEG and EMG which integrate 
multiple sources of activity distributed across large neuronal assemblies. In the field of 
motor control, the output signals of the DRNN mapping concern movement-related 
kinematics signals such as position, velocity or acceleration of the different body segments 
involved. The most direct input signals consist in the electromyographic signals (EMG) 
recorded over the different superficial muscles implicated in movement generation. It is 
generally recognized that the non-invasive recording of the EMG envelope signal represents 
a reasonable reflection of the firing rate of the motoneuronal pools including both central 
and afferent influences (Cheron and Godaux, 1986). In addition, the combination of the 
multiple EMG signals may reveal the basic motor coordination dynamics of the gesture 
(Scholz and Kelso, 1990; Kelso, 1995). A major interest of the EMGs to kinematics mapping 
by a DRNN is that it may represent a new indirect way for a better understanding of motor 
organization elaborated by the central nervous system. After the learning phase and 
whatever the type of movement, the identification performed by the DRNN offers a 
dynamic memory which is able to recognize the preferential direction of the physiological 
action of the studied muscles (Cheron et al. 1996, 2003, 2006, 2007). In this chapter, we 
present the DRNN structure and the training procedure applied in case of noisy biological 
signals. Different DRNN applications are here reviewed in order to illustrate their 
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usefulness in the field of motor control as diagnostic tools and potential prosthetic 
controllers.  

2. Multiple EMG signals as a final output controller 
The behavior of cortical neurons has been well related to movement segmentation, velocity 
profiles and EMG patterns (Schwartz and Moran, 1999) confirming the hypothesis that the 
timing of muscle activation is generated by the central neural structures. For instance, the 
agonist–antagonist organization of the muscles and the reciprocal mode of command are 
represented by the activity of a subset of cortical neurons correlated inside of cortical maps, 
with activation of one group of muscles linked to a simultaneous decrease in the activity of 
the opposing set of muscles (Cheney et al. 1985; Jackson et al. 2003, 2007; Capaday, 2004). 
The organization of the EMG burst is, in some instances, the peripheral reflection of the 
central rhythmical activity of the brain during the movement genesis (Bengoetxea et al. 
2010). This rhythmical organization could be viewed as resulting from a motor binding 
process (Sanes and Truccolo, 2003) supported by the synchronization of cortical neurons 
forming functional assemblies in the premotor and primary motor cortex (Jackson et al. 
2003; Hatsopoulos et al. 2003, 2007; Rubino et al. 2006). Moreover, the timing of the 
antagonist EMG burst is pre-programmed by the cerebellum and our DRNN has been able 
to learn and reproduce such aspect of motor control (Cheron et al. 2007). This will permit to 
use the antagonist EMG burst to stop adequately a prosthetic movement. We have also 
demonstrated that the DRNN is able to reproduce the major parameters of human limb 
kinematics such as: (1) fast drawing of complex figure by the upper limb (Cheron et al. 1996, 
Draye et al. 1997), (2) whole-body straightening (Draye et al. 2002), (3) lower limb 
movement in human locomotion (Cheron et al. 2003; Cheron et al. 2006) and (4) pointing 
ballistic movement (Cheron et al. 2007). In all of these experimental situations we have 
found that the attractor states reached through DRNN learning correspond to biologically 
interpretable solutions (Cheron et al. 2007). It was recently demonstrated that neural 
network with continuous attractors might symbolically represent context-dependent 
retrieval of short-term memory from long-term memory in the brain (Tsuboshita and 
Okamoto, 2007). Indeed, as recurrent neural networks take context and historical 
information into account they are recognized as universal approximators of dynamical 
systems (Hornik et al. 1989; Doya, 1993). This means that the DRNN mapping between EMG 
to kinematics may give rise to a dynamical controller of human movement. 

3. The DRNN structure 
Our DRNN is governed by the following equations: 

 dy -y  I
dt

i
i i i iT = + F(x )+  (1) 

where F(α) is the squashing function F(α) = (1+e -α)-1, yi is the state or activation level of unit i, 
It is an external input (or bias), and xi is given by: 

 ij yi j
j

x = w∑  (2) 
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which is the propagation equation of the network (xi is called the total or effective input of 
the neuron, Wij is the synaptic weight between units i and j ). The time constants Ti will act 
like a relaxation process. It allows a more complex dynamical behaviour and improves the 
non-linearity effect of the sigmoid function (Draye et al. 1996, 1997). In order to make the 
temporal behaviour of the network explicit, an error function is defined as: 

 
1

0

,t  dt
t

t
E = q(y(t) )∫  (3) 

where t0 and t1 give the time interval during which the correction process occurs. The 
function q(y(t ), t ) is the cost function at time t which depends on the vector of the neuron 
activations y and on time. We then introduce new variables pi (called adjoint variables) that 
will be determined by the following system of differential equations:  

 ij
1 1p  - e  -  w  F  p'i

i i j j
i ij

dp = (x )
dt T T∑  (4) 

with boundary conditions pi (t1)=0. After the introduction of these new variables, we can 
derive the learning equations: 

 
1

0

1 F  p  dt'
i j j

ij i t

t
δE = y (x )
δw T ∫  (5) 

 
1

0

dy1
dt

i
i

i i t

t
δE = p
δT T ∫  (6) 

The training is supervised, involving learning rule adaptations of synaptic weights and time 
constant of each unit (for more details, see Draye et al. 1996). This algorithm is called 
‘backpropagation through time’ and tries to minimize the error value defined as the 
differential area between the experimental and simulated output kinematics signals. 

3.1 Improved DRNN training in case of noisy signals 
We found that for certain noisy biological signals, the results obtained using the procedure 
described above were not satisfying. In some cases the convergence to a minimum error 
value was very slow or the learning process could lead to some bifurcations, as shown in 
Figure 1. In order to solve those problems, we brought two improvements to the DRNN 
training procedure: firstly, by using a convergence acceleration technique, and secondly by 
developing a technique to optimize the DRNN topology (i.e. the number of hidden neurons) 
to use.  
The convergence acceleration technique we used is inspired from Silva and Almeida (1990). 
In their method, they defined an adaptive learning rate εij different for each inter-neuron 
connection wij, namely for each synaptic weight and time constant. The acceleration consists 
in modifying the learning rate depending on the error function gradient sign. If the sign 
changes after iterating, it indicates that the learning went too far and so that the learning  
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Fig. 1. In A, typical example of a training procedure where the error function increases with 
the number of iterations before enhancements. In B, same illustration after enhancements. 
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step is too big. In this case, the learning rate is multiplied by d (by default, d=0.7). If there is 
no sign change after iterating, it means that the learning rate is too small. It is then 
multiplied by u (by default, u=1.3) in order to increase the step length and thus accelerate 
the search for the minimum error value. Formally, the algorithm is the following: 
• Small values are chosen for each εij 
• At the step n, the learning rate is defined as: 

If 

( ) ( 1) 0
ij ij

E En n
w w
∂ ∂

⋅ − ≥
∂ ∂

 

Then 
εij(n) = εij(n-1) · u 

Else 

εij(n) = εij(n-1) · d  

• The connections wij are incremented:  

( ) ( ) ( )ij ij
ij

Ew n n n
w

ε ∂
Δ = − ⋅

∂
 

We observed that this method effectively accelerates the learning convergence, but can also 
lead to an abnormal behavior such as a monotonous increase of the error function along the 
number of learning steps as shown in Figure 1 B. Therefore, a new procedure was 
developed checking at each learning step if the new learning rate εij will not lead to an 
increase of the error function. In that case, learning rates are halved. For each step n, the 
mathematic formalism is the following: 

If E(n + 1) > E(n) 
Then εij(n) = εij(n)/2  

Thanks to this procedure, the error function exhibits now a much better behavior, as 
depicted in Figure 2A. Finally, in order to obtain the best results as possible, the parameters 
that lead to the lowest error are stored along the learning. Thanks to those enhancements, 
the DRNN has a higher probability to converge in the training phase.  
Because the initial values of the parameters are random, a global optimization of the 
topology is valuable. It consists in training a certain amount of different neural networks 
with a certain topology and then, the same procedure has to be done again with another 
topology. Finally, the total amount of DRNNs is tested on another dataset and the best 
DRNN is chosen based on an error criterion. This criterion can be the sum of training and 
testing errors, the testing error, or any other combination. Figure 2A and B show 
respectively the impact of this approach on the link between a noisy and complex signal and 
the curve of walking kinematics before and after enhancements,  

4. DRNN identification of EMG-kinematic relationships during maturation of 
toddlers’ locomotion 
The emergence of the very first steps in toddler’s locomotion is considered as a milestone in 
developmental motor physiology because it represents the first basic skill implicating whole 
body movement in vertical posture upon which goal directed repertoires are built (Cheron 
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Fig. 2. In A, illustration of a bad result of the DRNN output due to a bifurcation in the 
training procedure. In B, example of successful results obtained thanks to the acceleration 
method applied during the training procedure and optimization of the DRNN topology 
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et al. 2001a,b, 2006; Ivanenko et al. 2004). The generation of the first steps is performed on 
the basis of highly variable and complex EMG patterns including erratic bursts and co-
contractions (Cheron et al. 2006; Okamoto and Goto. 1985, Okamoto and Okamoto, 2001, 
Okamoto et al. 2003). Such behavioural emergence may be analyzed in the context of neural 
group selection theory for which final or more stable solutions are selected upon numerous 
variable and unstable patterns (Edelman, 1987; Sporns and Edelman, 1993; Thelen and 
Corbetta, 1994; Turvey and Fitzpatrick, 1993). However, classical analytic tools failed to 
extract such relationships during the first three months of gait maturation. We apply our 
DRNN methodology previously developed in adult gait (Cheron et al. 2003) here for 
studying the functional relationships between multiple EMG signals and the elevation 
angles of the three main segments of the lower limb in toddlers’gait. The first derivative of 
elevation angles of the thigh, shank and foot were chosen because they represent robust 
parameters of human locomotion (Borghese et al. 1996; Lacquaniti et al. 1999) including in 
children (Cheron et al. 2001a). 
Despite the recent development of artificial neural networks using multiple EMG time 
course as input for providing joint torque (Koike and Kawato, 1995; Savelberg and Herzog, 
1997), joint angular acceleration (Koike and Kawato, 1994; Draye et al. 2002) or position 
(Cheron et al. 1996) of the upper limb, this type of mapping has sparsely been used in the 
field of human locomotion (Sepulveda et al. 1993). Conceptual and technical problems could 
explain why the neural network approach has been limited in the field of locomotion 
studies. Walking movement, although seemingly stereotyped, is highly complex as it 
integrates equilibrium constraints and forward propulsion in a multi-joint system. Therefore 
separate feedforward neural models could be developed, one for postural control and one 
for propulsion movement implicating some gating or selecting devices for an appropriate 
switch between these different networks. Although this type of approach has proved 
successful for arm movement control (Koike and Kawato, 1994), it is problematic for the 
control of task with simultaneous postural and movement requirements such as locomotion 
where distinction between the two modes of control is difficult on the basis of EMG signals. 
Moreover, in walking the great number of joints and body segments involved pose the 
problem of choice of the kinematic parameter to be used as the output of the neural 
mapping. Technically, the majority of neural networks used for EMG-to-kinematics 
mapping have been of the feedforward type (Sepulveda et al. 1993; Koike and Kawato, 
1994). In these networks, information flows from the input neurons to the output neurons 
without any feedback connections. This excludes context and historical information, which 
are thought to be crucial in motor control (Kelso, 1995).allowing to take into account time 
history and re-entrance of information flux into the controller. 
As explained above, the DRNN attractor states reached through artificial learning may 
correspond to biologically interpretable solutions and provide a new way to understand the 
development of the functional relationship between multiple EMG profiles and the resulting 
movement. Here, we followed the evolution of these attractor states during the early 
maturation of gait. As the coupling of neural oscillators between each other and with limb 
mechanical oscillators is progressively integrated with growing walking experience, we 
hypothesized that the EMG to kinematics mapping by the DRNN will become an easier task 
during the maturation of gait. For this, 8 surface EMG and kinematics of the lower limb 
have been acquired in 9 toddlers, (5 girls and 4 boys) by the motion analysis system ELITE 
(BTS Italy), during their very first unsupported steps (Fig. 3A). Four toddlers have been 
acquired on different days preceding and following the onset of independent walking. 
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Fig. 3. In A, illustration of one toddler during the acquisition of gait data (A). The kinematics 
was recorded by the optoelectronic ELITE system (BTS, Italy) and retro-reflective markers 
fixed on the skin over the following bony landmarks: Fifth Metatarsal Head (5M), Lateral 
Malleolus (LM), Lateral Condylus (LC), Greater Trochanter (GT), Anterior Iliac Crest (IL), 
Acromium (AC), Ear (EAR), Nose (NOS). The EMGs were recorded by surface electrodes  
fixed over the following muscles: Tibialis Anterior (TA), Gastrocnemius Medialis (GM), 
Vastus Lateralis (VL), Biceps Femoris (BF), Tensor Fascia Lata (TFL), Gluteus Maximus 
(GLM), Rectus abdominis (ABD) and Erector Spinae (ERS).  In B, architecture of the 
Dynamic Recurrent Neural Network (DRNN), illustrating 20 fully connected Hidden Units 
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(H0-H19), two Input Units on the left (I0 and I1), and one Output Unit (O0). Note that in this 
experiment we used 8 Inputs, 3 Outputs and 35 Hidden Units. In C, stick diagrams of one 
representative toddler on four acquisition days:  A: two weeks before the very first 
unsupported steps. A parent holds one hand of the toddler. B: very first unsupported steps. 
C: after one week of independent walking experience. D: after 1.5 month of independent 
walking experience. In D, EMG signals corresponding to the acquisitions of the stick 
diagrams shown in C. These signals are filtered, rectified and integrated. For each day, at 
least 3 training sets of two successive walking cycles, starting with “Toe Off” are used in this 
study. 

Informed consent has been given by their parents and the procedures were conformed to the 
Declaration of Helsinki. 
The smoothed and rectified EMG signals of one representative subject are illustrated in 
Figure 3, C. These signals are sent to all 35 hidden units of the DRNN (Fig. 3B), whose 
synaptic weights and time constants are adjusted during the supervised learning procedure.  
In order to quantify the likeness of the simulated output signals with respect to the original 
one, we calculated a similarity index (SI) using the following equation: 
 

( )

( )( ) ( )( )
1 2

2 2
1 2

1
2

f t f (t)dt
SI =

f t dt f t dt⎡ ⎤
⎢ ⎥⎣ ⎦

∫

∫ ∫

 

If  f1(t) = f2(t), then SI = 1. 
Then the DRNN output (f2) is compared to the experimental kinematics' data (f1) (this 
correspondence is expressed by SI). If an SI > 0.99 is reached within 10000 iterations, we 
consider that the training has been successful and its generalization capacities will be tested.  
The Figure 4A illustrates the artificial learning success rate (ALSR) considered as the ratio of 
“successful network trainings” (reaching a SI > 0.99 between the acquired kinematics and 
the simulated ones within 10000 iterations), compared to the total learning trials, for each 
acquisition day. There is no significant difference in the ALSR (F=2.17; p=0.17) between 
different days. This means that artificial learning success rates are not significantly related to 
the degree of early maturation in gait and that the DRNN reach their attractor states 
whatever the maturation of the input-output signals. The natural variability of the toddler’s 
gait kinematics was assessed by the analysis of the different steps performed during the 
same day by calculating the same SI used before to qualify the ALSR. In this case, a SI=1 
means that there is no variability between the different steps. We found that it is only after 
44 days of unsupported walking experience that the pattern is more stabilized. The 
generalization ability was assessed by the comparison of the kinematics calculated from 
unlearned EMG of the same acquisition day by a successfully trained DRNN with the 
kinematics corresponding to this unlearned EMG (Fig. 4C). The recognition index (RI) uses 
the same formula as the previously calculated SI but in this case the comparison is made 
between simulation obtained when an unlearned pattern is used as input and the real one. 
Interestingly, in contrast to the evolution of the SI, the RI presented a regular improvement 
from the first unsupported steps on to the 44th day (F=7.25; p=0.0003). 
We may conclude from these results that while the ALSR is not significantly related to the 
degree of early maturation in gait, there is a clear improvement of the identification process 
for the more experienced walking patterns (day 4), which are also more reproducible.  
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Fig. 4. Histograms of the evolution of the artificial learning success rate (ALSR) (A), the 
similarity index (SI) (B) and the recognition index (RI).    
Correct recognition of unlearned EMG patterns by a trained DRNN is significantly related 
to the walking experience of the toddler. In this context, the DRNN could be used to follow 
and quantify the maturation of a toddler’s and/or child’s gait. The increase in the RI during 
gait maturation could be interpreted as a better coupling between neural oscillators and 
limb mechanical oscillators, which could be progressively integrated by toddlers. By this 
way, the relationship of multiple muscle EMGs and resulting kinematics can slowly be 
generalized. This fits relatively well with Gibson’s concept (1988) suggesting that dynamic 
patterns emerge through exploration of available solutions before subsequent selection of 
preferred patterns. (Gibson, 1988). The initial solutions acquired through self-organized 
principle are often unstable and become more stable with practice. In this initial state, the 
DRNN can learn but its generalization ability is weak. It is only when behaviours have been 
practiced sufficiently and when the task and the context are unchanging that stable patterns 
emerge facilitating the generalization ability of the DRNN. Neurophysiological data are in 
favour of the existence of a central pattern generator (CPG) involving the spinal and supra 
spinal levels acting as a dynamic network generating rhythmic leg patterns (Hadders-Algra, 
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2002; Hadders-Algra et al. 1996). The dynamics of this innate complex progressively 
emerges through the process of repeated cycles of action and perception (Edelman, 1987; 
Sporns and Edelman, 1993). Our DRNN approach of EMG to kinematics mapping of 
toddler’s locomotion offers a new investigation tool of such complex processing. 
 

 
Fig.5. Lunging movement realized by an elite fencer. In A, kinogram of the whole body 
movement. In B, angular position (A, D), angular velocity (B,E) and angular acceleration of 
the elbow and the shoulder, respectively. In C, rectified EMG bursts of the anterior deltoïd 
(AD), posterior deltoïd (PD), medial deltoïd (MD), biceps (BI), triceps (TRI), flexor common 
(FLEX), radialis (RAD) and interroseus (INT) muscles. In D, simplified sketch of muscles 
anatomy. In E, kinogram of the upper limb extension movement. The vertical lines 
correspond to the time of the touch. The black arrows pointed to the onset of the BI and TRI 
muscles. 
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5. DRNN approach reveals interaction torque in sport movements 
EMG to kinematics mapping was applied to lunging movement performed by elite fencers. 
This stereotypical movement (Fig. 5A) is a whole body movement, but our mapping was 
only concerned with the upper limb movement (Fig. 5C) and related muscles (Fig. 5D). The 
angular acceleration of the shoulder and the elbow (Fig. 5E) were used as output signals and 
the rectified EMG of 8 superficial muscles (Fig. 5B) as input signals of a DRNN composed in 
this case of 20 neurons. 
The thrusting movement of the upper limb consists of a very rapid extension of the elbow 
joint (Fig 5B). Logically, this elbow extension should be accomplished by the prime mover 
action of the triceps (TRI)(Fig. 5C). However, the inspection of the time onset of the EMG 
burst of the TRI muscles shows that it is not the first event and that the EMG of the biceps 
muscle (BI) arrives earlier (Fig. 5C and 6C). Quite surprisingly, this muscular strategy only 
occurred in elite fencers and not in amateur fencers and may be explained by using a 
peculiar mechanical law implicating the interaction torque between the shoulder and the 
elbow. Indeed, the EMG recording demonstrated that the BI muscle is the prime mover of 
the extension. How this can be done?  
 

 
Fig. 6. DRNN simulation of the thrusting movement before (stick diagram in A) and after the 
artificial increase (X3) of the EMG burst of the BI muscle (stick diagram in B) (rectangular grey 
area in C). Note the hyperextension of the elbow induced by the BI increase. 
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As a biarticular muscle, the BI is able to produce an elevation of the arm. If this movement is 
explosive it can induce a passive but very fast extension of the forearm like in a flying effect. 
After the learning phase the DRNN is able to reproduce the lunging movement (Fig. 6A) 
and it is thus possible to use it as a simulator for testing the hypothesis that this extension 
movement is due to the effect of a dynamic interaction torque. The net torque is defined as 
the sum of all of the torques acting on a joint. In the lunging movement of the arm, the net 
torque acting at the elbow is equal to the sum of the gravitational, interaction, and muscle 
torques. In our case, the EMG bursts may be considered as a representation of the muscle 
torques acting on the different implicated joints and used as DRNN inputs. Bastian et al. 
(1996) elegantly established the inverse dynamics equations for the extension movement of 
the arm during a reaching task. The calculation of the net torque as the product of the 
moment of inertia of the involved segments and the angular acceleration around a given 
joint, determines the time series of joint angles and resultant limb trajectory. The angular 
acceleration of the shoulder and the elbow (Fig. 6B,C,F) are given here as output signals for 
the DRNN mapping. If the gravitational torque for the same movement remains the same 
regardless how fast the movement is made, in contrast the dynamic interaction torque, the 
passive mechanical torque generated when two or more linked segments move one another, 
depends greatly on joint velocity and acceleration. Like in the very fast lunging movement 
performed by the elite fencers, the interaction torques increase in magnitude. Thus in order 
to test our hypothesis that the DRNN has identified the dynamic interaction torque acting 
on the elbow, we have artificially increased the amplitude of the BI burst acting as the prime 
mover of the lunging movement (Fig. 6). When this increased BI burst (3X) was used in 
conjunction with the other unmodified EMG burst as input for a learned DRNN, it 
produced a strong reinforcement of the extension movement of the elbow. This 
demonstrates that the DRNN has identified the BI burst as inducing an interaction torque at 
the elbow joint by the production of the elevation movement of the arm. The final proof of 
this interaction effect should be obtained by performing inverse dynamics analysis in 
parallel to the DRNN simulation, but this demonstration is out of the scope of the present 
chapter.  
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1. Introduction

Nature has provided living beings with a set of cognitive properties that enables subjective
perception of the external world with the aim of constructing behaviors and survival within
specific environments. A simple but comprehensive example is a near-range searching for
a target by a mobile agent in a time-evolving environment. It requires fast and reliable
generation of flexible behaviors that must take into account not only the current state of the
environment and of the agent, but also infer on their future states.
Despite a vast literature and numerous contexts where the concept of cognition appears [see,
e.g., (Baars & Gage, 2010; Newell, 1994; Wasserman & Zentall, 2009)], there is no generally
accepted functional definition. Nevertheless capacities such as Internal Representation (IR) of
the external world, memory, and learning are commonly accepted as elements constituting
cognition (Godfrey-Smith, 2001). For the study of the problem of cognitive exploration of
dynamic environments it seems sensible to restrict the cognitive abilities to those manifested
externally in motricity, i.e. to those experimentally verifiable in animal models. Then we can
speak about “initial stages” of cognition or protocognition, a subject that has been for decades
a hot spot both in theoretical and experimental (mainly in insects and mammals) research
[see, e.g., (Cruse, 2003; Hesslow, 2002; Newell, 1994) and references therein]. In this chapter
as a working hypothesis we use a general functional definition of protocognition as the basis
levels of the “Cognitive Pyramid” given by Wray et al. (2007). Namely, the protocognitive
capacities organize the sensory information into structured representations, which provide
“skeletal subsolutions” for the higher cognitive levels.
The complexity of protocognitive skills stems from several factors shared by living beings.
First, an enormous amount of sensory information must be structured and broken into
aspects relevant for the aim-driven perception (e.g., position and shape of a target), while
discarding the rest. Usually this is done by the agent’s sensory system, which provides highly
specialized information to the central nervous system (Bear et al., 2007; Kandel et al., 2000).
Second, a serious source of complexity is the continuous evolution of the environment and
causal relations among its constituents. This requires anticipation and hence a predictive
model of the environment and of the agent itself. The cognitive neuronal pathways or
circuits are in charge of building up forward world models based on genetic wiring and
experience. Then the external input modulates the (nonlinear) dynamics of the neuronal
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circuits, which produce behaviors ready to be selected by upper cognitive levels (e.g., using
motivation) and to be enacted. Third, an efficient (fast, reliable, and flexible) management
of behavioral problems relies on memorization of novel situations and learning associations
with corresponding successful behaviors. Libraries of stereotypic situations can significantly
speedup the agent’s reaction and make automatic the previously learned behaviors converting
them into subconscious states. An example is an experiment with astronauts catching a ball
under reduced effective gravity (McIntyre et al., 2001). At the beginning of the experiment
the peak of anticipatory muscle activation occurred earlier than the real impact of the ball,
which lead to incorrect, biased by the experience in the Earth, behaviors. However, after a few
days the astronauts adapted to the new conditions, i.e. the inner mental “model of the ball
trajectory” successfully learned new parameters and finally were able to “calculate” reliably
and fast the necessary movement.
It is noteworthy that the first two features set the ground level of the Cognitive Pyramid,
whereas the third one belongs to the intermediate floor and operates over the information
provided by the ground level. Then intriguing questions are: what are the basic principles
of organization and operation of the cognitive pathways? and how can we mimic them?
An answer to these questions, besides its theoretical value, also would enable a qualitative
advance in mobile robotics.
Here we develop a paradigm of protocognitive neuronal pathways involved into exploration
of dynamic environments based on the so-called principle of Compact Internal Representations
(CIRs) of interactions between the agent and its environment (Villacorta-Atienza et al., 2010).
Based on recent experimental hints we hypothesize that brain, for effective representation
of time-evolving situations, may use specific time-space transformation that reduces the
corresponding time-dependent structures into static patterns that can be easily compared,
stored, and organized into “libraries”. Then the protocognitive pathways should include
several basic elements:

i) Preliminary sensory blocks, capable of extracting the information essential for prediction
of the future states of the environment;

ii) A substrate responsible for the IR, which models a set of virtual futures induced by agent’s
decisions (e.g., collisions with obstacles in the time-space domain);

iii) Working memory that is used for learning and storing the previous successful experiences,
which can optimize and speedup the decision making.

In Sect. 2 we show how the modeling of time-space collisions can be implemented in a
two-dimensional (2D) neuronal network. The network, called Causal Neural Network (CNN),
exploits in a mental world model the principle of causality, which enables reduction of the
time-dependent structure of real dynamic situations to compact static patterns. A single point
in the multidimensional phase space of the CNN gives a CIR of the dynamic situation. Such
CIR provides complete description of the time-space collisions. A remarkable feature of CIRs
is that they do not merely represent situations in which the agent is involved, but contain
a set of behaviors adapted to these specific situations. These behaviors can be used as a
basic entities in higher cognitive activity to create new solutions. In consequence CIR may
be considered as a functional basis for protocognition.
In Sect. 3 we study how individual memory items can be stored assuming that situations
given in the environment can be represented in the form of synaptic-like couplings in a
Recurrent Neural Network (RNN). We provide theoretical analysis illustrating the learning
process and response to novel or incomplete stimuli and show that RNN is suitable for
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simulation of working memory. Furthermore, we show that a similar RNN can be specially
trained to perform algebraic operations over the input stimuli. This ability is essential
for prediction of trajectories of moving objects, i.e. for modeling of future states of the
environment.
In Sect. 4 we provide a general architecture of a protocognitive agent, which includes
conscious and subconscious pathways builded up on the basis of the neuronal networks
discussed in Sects. 2 and 3. Then we illustrate generation of behaviors and their learning
by the agent moving in realistic time-evolving environments. Special attention is given to
dynamical construction of libraries of stereotypic situations and associated CIRs. We show
how, based on the initial sensory information only, the agent can retrieve an appropriate CIR
from the library and hence make fast and efficient decision.
Finally in Sect. 5 we summarize our results.

2. Compact internal representation of complex environments

Generation of CIRs

agent

static
obstacle

moving
obstacle

target

x

y

i

Causal Neural Network

?
j

Fig. 1. Sketch of an arena containing an agent, a target, and static and moving obstacles. The
agent perceives all objects in the arena and makes a decision on how to reach the target
avoiding collisions with the obstacles. The decision making is based on Compact Internal
Representations (CIRs) of itself and of the environment created in the Causal Neural
Network.

Internal Representation is a task-oriented inner description of the environment and of the
agent itself, which offers distinct modes to fulfill a task. In what follows we discuss one
specific decision making problem: a search for paths to a target by a mobile agent in a
time-evolving environment (Fig. 1). For the sake of simplicity the target is considered
immobile and can be an object or a specific place or even an area in the arena. We assume
that the target and obstacles emit or reflect a signal, e.g., sound or light, which is perceived by
the agent’s sensory system, and hence the agent can make a non-blind decision.
To avoid obstacles (especially moving) the agent may construct a spatiotemporal IR of the
observed dynamic situation and use it as a “world model” to resolve collisions. Such
time-dependent IR should be based on prediction of the possible positions of the obstacles
and of the agent in the (mental) future. However, time-dependent IRs due to their excessive
complexity are not suitable for protocognitive behavior. A big challenge is to understand
how the brain makes compact and efficient descriptions of time-evolving situations. In this
section we describe an approach that enables reduction of time-dependent IRs to CIRs, i.e. to
static patterns (Villacorta-Atienza et al., 2010). These static patterns emerge in the so-called
Causal Neural Network (CNN), whose dynamics is driven by the sensory information (Fig.
1). Geometrically the CNN is an (n × m)-lattice of locally coupled neurons. The lattice
coordinates (i, j) scale to real coordinates (x, y) in the arena.
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2.1 Static environments
Let us first briefly describe how CIR can be created in the simplest case when all elements in a
2D arena (except the agent) are immobile. Then the sensory output is time independent, and
hence the immobile obstacles and the target can be simply mapped into the corresponding
cells in the CNN. The CNN models the process of virtual (mental) exploration of the
environment by the agent. Conceptually, a number of identical virtual agents are released
at the agent’s initial position (orange cell in Fig. 1) and perform a random search in the lattice
space until they explore completely the “arena” or some of them reach the target’s image in
the CNN. Then the distribution of the virtual agents in the CNN lattice defines the CIR, which
further can be used for path planing.
The dynamics of the CNN (for static environment) is given by:

ṙij = dΔrij − rij pij (1)

where rij is the neuronal state variable, representing the concentration of virtual agents at
the cell (i, j); the time derivative is taken with respect to the mental (inner) time τ; Δrij =
ri+1,j + ri−1,j + ri,j+1 + ri,j−1 − 4rij denotes the discrete Laplace operator describing the local
(nearest neighbor) interneuronal couplings, whose strength is controlled by d; and pij accounts
for the target:

pij =

{
1, if (i, j) is occupied by target
0, otherwise (2)

It is worth pointing out that a target is not a real entity existing in the environment (as an
object or place), instead it is designated by the agent’s motivation layer. For example, a football
player can turn aside from or catch a ball depending on which side he plays on. Thus the target
is not an external constraint but an internal emergent property of the brain, whose influence
we model by the reactive term in (1). This differs from other approaches that postulate targets
as singular elements in the environment [see, e.g., (Schmidt & Azarm, 1992)].
Obstacles are external constraints whose biological identity, provided by boundary cells
(Savelli et al., 2008), suggests that they shape the IR through altering states of the
neurons corresponding to the obstacle boundaries. We assume that the obstacles are solid
non-penetrable objects, hence a virtual agent reaching an obstacle frontier rebounds and
continues exploring the arena. Thus we impose zero-flux (Neumann) boundary conditions
at the obstacle’s frontiers and also at the arena boundary.
At τ = 0 no virtual agent exists, hence we set rij(0) = 0 for all CNN cells except those occupied
by the agent, where rij(τ) = ra for τ ≥ 0. It has been shown that stable steady states are the
only attractors in the phase space Ψ = Rnm

+ of the CNN (Villacorta-Atienza et al., 2010). Thus
any trajectory in Ψ defined by initial conditions (except a null set) tends to one of the stable
steady states {r∗ij} ∈ Ψ, which is the CIR of the given static situation. By unfolding this steady

state into the three-dimensional lattice space {Z2, R+} we get a 2D stationary pattern that can
be used to trace paths starting at the agent location and crossing the contour lines. We note
that r∗ij satisfies the discrete Laplace equation, and consequently the created pattern has no
local minimums (Keymeulen & Decuyper, 1994; Louste & Liegeois, 2000). This ensures that
all paths (except a null set) derived from this approach end at the target, and hence we obtain
multiple alternatives to reach the target.
To illustrate the approach we simulated a 2D arena consisting of an agent, two immobile
obstacles, and a target (Fig. 2, left). The corresponding sensory information has been used
to integrate numerically the CNN model. Figure 2 (right) shows the limit pattern {r∗ij}
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sensory information CNN

Agent

Target

Obstacles

Fig. 2. Compact Internal Representation of static environments. Left panel: 2D arena
consisting of an agent (red triangle), immobile obstacles (blue rectangles), and a target (green
circle). Positions of all objects are mapped into the CNN whose relaxation yields a CIR, i.e. a
static 2D pattern {r∗ij}60

i,j=1. Right panel: Contour plot of {r∗ij} (colored curves from red to
cyan). A set of paths start at the agent’s position and descend down the gradient to the target
(blue arrowed curves). The agent is free to chose among different alternatives, e.g., by
minimizing the path length (solid thick curve) or by rising safety (dashed curve), under
additional constraint that it must pass between the two obstacles. Parameter values: ra = 1,
d = 2.5, and the integration time τend = 103.

(distribution of virtual agents). We notice that there exist multiple curves connecting the agent
and the target locations. Thus the obtained CIR offers a freedom to chose among different
alternatives. We also notice that the pattern has smooth transitions between actual obstacles
and empty space. This accounts for uncertainty in the obstacle dimensions and positions.
Then path planning from the agent to the target can naturally include the level of safety, e.g.,
a cost function that describes the risk of collision against the length of the path. The strategy
can also include additional conditions, such as to pass through the gap between two obstacles
(dashed curve vs thick solid curve in Fig. 2).

2.2 Dynamic environments
The above discussed CIR of static environments cannot be applied directly to dynamic
situations. However, we shall show now how the moving obstacles can be mapped into static
images in the CNN lattice space, and hence the problem can be reduced to the effectively static
case.
To illustrate the concept let us consider an arena with a single moving obstacle (Fig. 3A).
As in the static case at τ = 0 virtual agents are released into the CNN and start exploring
the environment, which yields a wavefront composed of those virtual agents that reached
the points furthest away from the agent initial position. The wavefront can be viewed as
the “present” in the mental time τ, dividing the three dimensional spacetime into two disjoint
sets corresponding to the points in the mental past (part of the lattice visited by virtual agents)
and in the future (part to be visited) (Fig. 3B). Thus all neurons inside the area enclosed by the
wavefront belong to the virtual past and those outside the area belong to the virtual future.
Due to the principle of causality none of the events occurring ahead of the wavefront (in
the virtual future) can affect those behind it (in the virtual past). This allows restricting
the predicted motion of the obstacle (and hence collisions possible in the virtual future)
to the lattice space outward the wavefront (Fig. 3B, gray vs blue obstacle parts). As the
mental time τ proceeds, a circular wavefront expands until the obstacle will be reached. The
spatial locations where the wavefront coincides with the obstacle (Fig. 3B, yellow circle)
correspond to agent-obstacle collisions in the virtual present that should be avoided at the
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Fig. 3. The concept of CIR of a dynamic situation. A) 2D arena consists of an agent (red
circle), a target (green circle), and a moving obstacle (blue rectangle). B) Three dimensional
spacetime plots sketching the wave regime in the CNN. The expanding wavefront separates
the agent virtual past from the future (gray and white areas, respectively). Effective influence
of the moving obstacle over the agent is restricted to the isochronous spatiotemporal points
of the wavefront and moving obstacle (yellow circle). This encloses a set of frozen neurons
(green area), which form the effective obstacle. C) The diffusion regime (behind the
wavefront) as in Fig. 2B shapes the CIR of the dynamic situation and enables decision
making.

motor execution. With the time course these spatial locations (forbidden to be visited by the
agent) delimit a set of neurons (Fig. 3B, green area), which progressively leads to formation
of a static effective obstacle. Since these neurons belong to the virtual past, new events cannot
change their state, hence their dynamics can be “frozen”. Thus the principle of causality in
the IR context converts moving obstacles into time-independent effective obstacles.
Once the effective obstacle has been formed and the wavefront has passed, the IR problem
reduces to the previous static case. Hence we can apply the approach illustrated in Fig. 2.
Then the steady state pattern {r∗ij} obtained for the new effectively static situation gives a CIR
of the dynamic situation and ensures that all feasible paths will avoid the moving obstacle
(Fig. 3C). Thus CIRs of dynamic situations are obtained in two steps:

1. Wave regime. Propagation of a wavefront separating the virtual future from the virtual
past. Effective obstacles are formed in the CNN lattice.

2. Diffusion regime. Evolution of the CNN with effective (immobile) obstacles shapes the
CIR.

Note that both regimes occur simultaneously in the virtual mental time, but belong to different
spatial regions in the CNN lattice.

2.3 The model of CNN
The complete model of the CNN is based on the lattice described in Sect. 2.1, but now each
unit is a modified FitzHugh-Nagumo neuron, which yields the following dynamical system
(Villacorta-Atienza et al., 2010):

ṙij = qij

(
H(rij)

[
f (rij)− vij

]
+ dΔrij − rij pij

)
v̇ij = (rij − 7vij − 2)/25

(3)

where vij is the so-called recovery variable; f (r) is a cubic nonlinearity, which for numerical
simulations we set to f (r) = (−r3 + 4r2 − 2r − 2)/7; and H is the regime controlling
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(Heaviside step) function:

H(r) =
{

1, if r ≤ rh
0, otherwise

where rh is the threshold separating the wave and diffusion regimes.
The binary variable qij(τ) ∈ {0, 1} in (3) describes the influence of effective obstacles (green
area in Fig. 3B) on the CNN dynamics. This inhibitory term mimicks the possible effect that
border cells may exert over the activity of grid cells (Savelli et al., 2008). At τ = 0 no effective
obstacle exists and qij(0) = 1, ∀(i, j). For τ > 0 a concentric circular wave (sketched in Fig. 3B)
is generated. Once the wavefront catches up an obstacle (mobile or immobile) it slips around.
Cells, where the wavefront “touches” obstacle at τ = τtch (Fig. 3B, yellow circle) become
“frozen”, qij(τ ≥ τtch) = 0. As a consequence, for the frozen cells we have

rij(τ) = rij(τtch), for τ ≥ τtch and (i, j) frozen (4)
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Fig. 4. Circuit implementation of the modified FitzHugh-Nagumo neuronal unit used in the
CNN lattice (3). The blocks f , H, Σ, and Π stand for cubic nonlinearity, Heaviside step
function, sum, and product, respectively. The block v(k) updates the state of the
corresponding recovery variable (linear sum of r(k) and v(k)).

Figure 4 shows the circuit implementation of the CNN unit operating in the discrete time
k. The unit, besides its own recurrent feedback rij(k), receives three types of inputs: i) local
coupling from the nearest neighbors, ii) inhibitory signal modeling the presence of effective
obstacles qij(k) (provided by a recurrent neural network described in Sect. 3.2), and iii)
motivational input defining target locations pij(k) (given by Eq. (2)). The updated state
rij(k + 1) is readout at the unit output.
It can be shown that the unit’s intrinsic dynamics (for d = 0, p = 0, q = 1, and H = 1)
is bistable, with two stable steady states at rd = 0 and ru = 3. For low enough coupling
strength d < dcr this yields multi-stability and even spatial chaos (Nekorkin & Makarov, 1995;
Nekorkin et al., 1997; Sepulchre & MacKay, 1997). The upstate ru has much bigger basin of
attraction than the downstate rd. For a strong coupling d > dcr by fixing just a single neuron in
the upstate we create a wave that propagates with a constant velocity and switch all neurons
from the downstate to the upstate. Hence to obtain a wavefront in our problem we select high
enough inter-neuronal coupling d > dcr.
The propagating wave switches neurons to the upstate and hence H = 0 and also qij =
const behind the wavefront. For long enough τ > τ∗ the wave will explore all the CNN
space and (3) will reduce to (1). Thus (3) also exhibits the gradient property for τ > τ∗
(Villacorta-Atienza et al., 2010), although its transient process is not gradient. Thus trajectories
in the phase space Ψ = RNM

+ × RNM of the CNN (3) tend to one of the stable steady states
that defines the CIR for a given dynamic situation.
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We notice that once the wavefront reaches the target image in the CNN at τ = τtr the
calculations can be stopped. Then by construction there exists at least one path starting from
the agent position and ending at the target. Thus we get a first suitable approximation to
the CIR. Running the CNN further for τ > τtr improves the shaping of the {rij} pattern in
{Z2, R+}, which leads to an exponentially saturating optimization of paths.

2.4 Numerical simulations

�1 �2 �3 �*

A Wave + Diffusion regimes B CIR + paths

Fig. 5. Formation of the CIR of the dynamic situation sketched in Fig. 3A. A) Three
successive snapshots illustrate how the wavefront (dense blue curves) is affected by the
virtual motion of the obstacle. Colored curves show equipotential profiles of rij(τk),
k = 1, 2, 3. B) Final CIR after the diffusion phase. Black solid curve is the shortest path to the
target. Dashed paths are safer but longer.

We simulated numerically the dynamic situation sketched in Fig. 3A1. After observing
the object during the first time steps (needed for the estimation of its initial velocity and
acceleration) its future trajectory can be predicted (we discuss this problem in Sect. 3). This
calculation is fed into the CNN. Figure 5A shows three successive snapshots of the CNN
state (2D profile of {rij}) where for convenience we also have drawn the virtual positions of
the obstacle (gray bar). The obstacle’s virtual movement affects the wavefront propagating
outward the target position. The lattice units, where the spatiotemporal positions of the
wavefront and of the obstacle image match, correspond to effective obstacles and their
dynamics is frozen (curved area behind the obstacle in Fig. 5A).
Behind the wavefront the network dynamics switches to the diffusion phase, which finally
shapes the {rij} pattern. This shaping does not affect the frozen cells (effective obstacles),
instead virtual agents “diffuse” around them thus finding all possible ways and eventually
end up at the target. Thus for a big enough τ∗ the profile {rij(τ

∗)} creates a purpose-based
CIR of the dynamic situation where the potential agent motions are synchronized with the
moving obstacle (Fig. 5B).
As it has been discussed above, the CIR offers multiple alternatives on how to reach the target.
For example, the agent (e.g., being in a hurry) can chose the shortest path to the target (solid
curve in Fig. 5B), or select a longer but safer path (dashed curves in Fig. 5B).

3. RNNs as elements for CIR-memory and prediction of trajectories

In the previous section we described how CIRs of complex time-evolving situations can be
created. Such process involves modeling of trajectories of moving obstacles. In this section

1 The corresponding video and more examples can be found at
http://www.mat.ucm.es/∼vmakarov/IRNN.html
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we shall show that the modeling can be accomplished by a specially trained recurrent neural
network. Besides RNNs can be used for effective storing and retrieval of frequently appearing
CIRs.

3.1 Universal network model
The networks considered in this section consist of n recurrently connected “suppression” units
or neurons (Fig. 6). The units operate in a discrete time k ∈ Z, linked to the mental time τ = kh
(h is an inner time scale of the agent that may vary between “species” and/or “individuals”).
Each neuron has an external input denoted as signal ξ i(k), which we also call activation, an
internal (recurrent) input ρi(k), and an output xi(k + 1). Thus the network state and its inputs
are, in general, time-dependent nD column vectors, i.e. x, ξ, ρ ∈ Rn × Z.2

The recurrent input is given by a weighted sum of the output of all units in the network

ρi(k) =
n

∑
j=1

wijxj(k) (5)

where the matrix W = (wij), wij ∈ R, ∀i, j = 1, . . . , n describes the inter-neuron (synaptic-like)
couplings. As we shall show further the network can learn different static and time-evolving
situations by an appropriate adjustment of the coupling matrix W. Learning rules can be
described as teacher forcing based on the classical delta rule using the mismatch between the
internal and external inputs (K’́uhn et al., 2007; Makarov et al., 2008):

δi(k) = ξi(k)− ρi(k)

We shall consider two RNNs with the same inner structure (Fig. 1), but responsible for
different tasks:

1. Learning and prediction of trajectories of moving objects (Sect. 3.2)

2. Learning and retrieval of CIRs (Sect. 3.3)

The difference in their behaviors is achieved by different learning rules, which in turn produce
the connectivity patterns (matrices W) that finally decide how each network interprets the
external stimuli.
2 As usual for any two vectors x, y ∈ Rn we define a scalar product: 〈x, y〉 ≡ xTy (T denotes transpose).

Then ‖x‖ =
√〈x, x〉 is the norm or length of the vector x.
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3.1.1 Operational phase
In the operational phase the coupling matrix W is fixed (e.g., after preceding learning or due
to genetic wiring) and the RNN is exposed to a novel stimulus ξ(k) and produces an output
x(k). There is no difference between the RNNs used for trajectory modeling and CIR-memory.
In Su the recurrent signal is suppressed and replaced by the external input if the latter is
different from zero, or otherwise sent unchanged to the output

xi(k + 1) =
{

ξi(k), if ξi(k) �= 0
ρi(k), otherwise (6)

Thus to get a nontrivial behavior, at least part of the external activation (stimulus) must be
equal to zero.

3.1.2 Learning phase
During learning the network is exposed to training stimuli, i.e. to a sequence of nD vectors
ξ(k), k = 0, 1, 2, . . . According to the task (learning CIRs or trajectories) we distinguish two
types of situations to be learned. One is so called static situations, when external stimuli
presented to the network are assumed to be (temporarily) independent pieces of a “global
picture” or simply different static patterns. A set of CIRs is an example. Then the learning
does not depend on the sequence of stimuli. The other, dynamic situations, are characterized
by essentially time dependent stimuli, i.e. stimuli composed of different vectors ξ(1), ξ(2), . . .
whose sequence now indeed matters. Such stimuli can be, for example, position of a moving
object in consecutive time instants.
For simplicity3, we assume that the network training starts from zero initial conditions, i.e.
W(0) = 0. Besides, during the training the network has no internal dynamics, i.e. (6) is
reduced to x(k + 1) = ξ(k), which is indeed true if ξ(k) �= 0.
The training is deemed finished when the total squared error ∑ δ2

i falls below a threshold. To
quantify the learning performance we shall also use the normalized inter-matrix distance

d(k) =
‖W(k)− W∞‖

‖W∞‖ (7)

where W∞ = limk→∞ W(k) is the limit (learned) matrix.

3.2 RNN modeling trajectories of moving objects
An accurate prediction of trajectories of moving objects by living beings results from previous
learning (McIntyre et al., 2001), i.e. tracking of moving objects tunes a neural network
responsible for the prediction. In this section we show how an RNN can be used for this
purpose.

3.2.1 Trajectory model: RNN’s viewpoint
From the RNN’s viewpoint trajectory of a moving object can be viewed as a time dependent
stimulus, i.e. an external activation of RNN (Fig. 6). Then the RNN’s inner structure (strengths
of interneuron couplings) should be appropriately tuned in such a way that next time, giving
to the RNN initial conditions of an object, it would be able to generate its whole trajectory.
Let s(t) = (x(t), y(t))T be a 2D-trajectory4 of motion of an object that passes at t = 0 through
a point (x0, y0). Then the prediction or modeling of the object trajectory consists in estimating

3 Results for a general case can be found in (Makarov et al., 2008).
4 Extension to 3D is straightforward.
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a function ŝ(τ) = (x̂(τ), ŷ(τ))T that approximates s(t) for t ≥ 0 based on the observation of
its past (i.e. knowing s(t) for t ≤ 0 construct ŝ(τ) such that ŝ(t) ≈ s(t) for t > 0). We note that
the trajectory modeling actually is made in the mental time τ.
Developing s(t) into a Taylor series we obtain:

s(t) = s(0) + s′(0)t + s′′(0)
2

t2 + · · · (8)

where s(0) = (x0, y0)
T, s′(0) = (v0, u0)

T, and s′′(0) = (a0, b0)
T are the object’s position,

velocity, and acceleration at t = 0, respectively. The time derivatives (s′ and s′′) are estimated
(by the sensory system) from the object past (t ≤ 0). We note that in the r.h.s. of (8) one can
keep an arbitrary number of high order terms. However, their estimates require additional
computational load and may not be reliable, since the error increases with the order. Thus for
the x-component of ŝ(τ) (similar for y) in the discrete time τ = kh we define the following
model:

x̂(k) = x0 + v0kh +
a0

2
k2h2, k ≥ 0 (9)

This model has three parameters x0, v0, and a0 completely describing the observed dynamic
situation. Consequently, a three-neuron RNN is required for the simulation of such dynamic
situations. Besides parameters, (9) includes an inner time scale h that may vary between
“species” and/or “individuals”, hence its value must be tuned during the learning.

3.2.2 Learning phase: Universal structure of W∞
During learning the RNN is exposed to training stimuli. By a training stimulus we understand
a sequence of 3D vectors ξ(k) = (x(k), v(k), a(k))T , which represent a piece of an observed
trajectory and aren’t exchangeable. Here

v(k) =
x(k)− x(k − 1)

h
, a(k) =

v(k)− v(k − 1)
h

(10)

are estimates of the velocity and acceleration provided by the sensory system from the
tracking the object’s position. In (Makarov et al., 2008) we have shown that such a dynamic
situation can be learned by using the following learning rule:

W(k + 1) = W(k)
(

I − εξ(k − 1)ξT(k − 1)
)
+ εξ(k)ξT(k − 1) (11)

We notice that at each step the updating of the coupling matrix W uses two 3D vectors ξ(k) and
ξ(k − 1), and evaluation of each vector requires three time steps. Thus the minimal training
sequence of vectors consists of four time steps: ξ(1), . . . , ξ(4). Then the limit matrix is given
by (Makarov et al., 2008; Villacorta-Atienza et al., 2010):

W∞ =
(

ξ(2), ξ(3), ξ(4)
)(

ξ(1), ξ(2), ξ(3)
)−1

(12)

which yields

W∞ =

⎛
⎝ 1 h h2

0 1 h
0 0 1

⎞
⎠ (13)

Remarkably (13) does not depend on the particular trajectory but includes the inner time
constant h only. This means that the structure of learned interneuron couplings is universal
and during training the RNN can be supplied with arbitrary trajectories. Thus by tracking
different trajectories of different moving objects the RNN learns the correct structure of
interneuron couplings.
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3.2.3 Modeling trajectories
Once the learning has been fulfilled, the RNN can be used for the prediction of trajectories. Let
us assume that at t = 0 an object has the following parameters x0, v0, and a0. At this instant
the sensory system provides initial conditions to the network at k = 0 and then the external
activation is reset to zero:

ξ(0) = (x̄0, v̄0, ā0)
T and ξ(k) = 0, k > 0 (14)

where
x̄0 = x0, v̄0 = v0 − 1

2
ha0, ā0 = a0

are the estimates given by the sensory system. We note that the estimate of the velocity has an
error due to the finite difference approximation of the time derivative (10). The corresponding
trajectory is read out at the network output given by x̂(k + 1) = Wx̂(k). Using (13) and (14)
we obtain:

x̂(k) = x0 + v0kh +
1
2

a0k2h2

Thus, although the initial conditions were not exact, the trained RNN generates a trajectory
with no error.

3.2.4 Numerical simulations
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Fig. 7. Simulation of learning and modeling of trajectories by three-neuron RNN. A)
Learning phase. Left panel: trajectories of moving objects used for learning (four of them are
shown in black). Right panel: The learning process converges to the theoretically derived
matrix (13) nearly exponentially with the number of training trajectories presented during
the learning. Parameter values: h = 0.1, ε = 0.1. B) Modeling phase. A novel trajectory (black
cycles) has been generated and then modeled by the RNN trained up to 5% (blue squares)
and 0.5% (red triangles) precision. The first two points (dashed cycles) were used for
evaluation of the initial object’s velocity and acceleration (10).

To crosscheck the theoretical predictions and illustrate the trajectory learning and modeling
we simulated 60 trajectories (t ∈ [0, 2]) with randomly chosen parameters, i.e. acceleration,
initial velocity and position (Fig. 7A, left panel). The trajectories have been discretized
(h = 0.1) and submitted to the RNN for training. Figure 7A (right panel) shows the
learning performance, i.e. the evolution of the intermatrix distance (7) between W(k) and
the theoretically predicted matrix (13). During the training W(k) converges to W∞ and the
error decreases below 5% and 0.5% in about 35 and 45 stimulus presentations, respectively.
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Once the learning was deemed finished (with a given precision) we test the trajectory
modeling capacity of the RNN. A novel trajectory (not used for learning) has been generated
(Fig. 7B, open circles curve). The first three points of the trajectory have been used to estimate
the initial conditions, i.e. the vector ξ(0) in (14). Then this vector has been submitted to the
RNN as external activation to simulate trajectories using the coupling matrices obtained at
5% and 0.5% precision (open squares and triangles in Fig. 7B, respectively). With 5% error the
trajectory simulated by the network significantly diverges from the real one. However, with
improved learning (10 additional training cycles) the simulated trajectory reproduces the real
one with a high precision.

3.3 Learning and retrieval of CIRs
Let us describe the RNN used to learn and later retrieve CIRs. As mentioned above each CIR
can be considered as a static 2D pattern, {r∗ij}m

i,j=1, which can be (arbitrarily) ordered into a 1D

vector of length m2.
Let us assume that p such vectors or different CIRs: {a1, a2, . . . , ap} ⊂ Rm2

(p ≤ m2) compose
a learning set for the RNN consisting of m2 units (Fig. 6). At each learning step k the network
is exposed to one of the vectors and the learning follows the rule for static cases (K’́uhn et al.,
2007; Makarov et al., 2008):

W(k + 1) = W(k)
(

I − εξ(k)ξT(k)
)
+ εξ(k)ξT(k) (15)

where ε > 0 is the learning rate and ξ(k) is the training external activation applied to the
network (i.e. one of the vectors a1, . . . , ap for each k). We note that at each step the coupling
matrix is updated by a single vector independently on the other elements in the training
sequence.
To be successfully learned, all training vectors should appear sufficiently frequently in the
learning sequence and be linearly independent5, i.e. 〈ai, aj〉 �= 0 ∀i �= j. The former means
that the occurrence frequency of the i-th vector

fi = lim
k→∞

ki

k

is greater then zero (ki is the number of the vector’s occurrences up to time k).

3.3.1 Convergence of the network training procedure
It has been shown (Makarov et al., 2008) that the learning of static situations (i.e. of CIRs) can
be always achieved by using a small enough learning rate satisfying to:

0 < ε < min
{

2
‖a1‖2 ,

2
‖a2‖2 , . . . ,

2
‖ap‖2

}
(16)

The learning result (in terms of W∞) does not depend on the sequence of the presentation
of the training vectors a1, . . . , ap to the network. The latter, for instance, means that
training by a periodic sequence of two vectors (e.g., ξ(t) = a1, a2, a1, a2, a1, . . .) gives the
same matrix W∞ as the training by a random sequence of these vectors (e.g., ξ(k) =
a1, a1, a2, a1, a1, a1, a2, a2, a1, . . .), even if the probability to find vector a1 is different from the

5 In the case of linearly dependent vectors, the learning goes on a maximal linearly independent subset
of the training matrix (Makarov et al., 2008).
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probability to find vector a2. For practical implementation, we note that the learning time
scales as

Ttraining ∝
1

min
(

fi ln 1
1−ε‖ai‖2

)
Thus an excessively small learning rate and/or small occurrence frequency of one of the
training vectors deteriorates the learning performance. This particularly means that the
network can learn equally well, say two vectors a1 and a2, even if the occurrence frequency of
one of them is much smaller then that of the other (e.g., f1 � f2), however the training time
in this case will be proportionally longer, i.e. Ttraining ∝ 1/ f1.
The learning process (15) converges to the coupling matrix (Makarov et al., 2008):

W∞ =
p

∑
i=1

cicT
i

‖ci‖2 (17)

where the vectors

c1 = a1, ci = ai −
i−1

∑
j=1

〈ai, cj〉
‖ cj ‖2 cj for 2 ≤ i ≤ p (18)

form an orthogonal set due to Gram-Schmidt orthogonalization procedure (Strang, 2003).
Thus the RNN composed of n neurons can learn up to n different CIRs described by nD
vectors. In other words the learning efficiency approaches the striking value of one CIR per
one neuron.

3.3.2 Retrieval of learned patterns
Let us assume that the network previously learned a set of p CIRs {a1, a2, . . . ap}. Thus the
inter-neuronal couplings are given by (17). Then the retrieval of one of the learned CIRs is
achieved by presenting to the RNN (and maintaining during the retrieval process) a small
piece (cue) of this CIR.
Without loss of generality we can assume that a fraction of the pattern shown to the RNN for
the retrieval corresponds to the first l elements of the pattern a1 (1 ≤ l < n). Thus the network
activation is given by6

ξ1,...,l(k) = a1;1,...,l ξl+1,...,n(k) = 0, k ≥ 0

Consequently the first l neurons in the RNN have no dynamics:

x1,...,l(k) = a1;1,...,l , k ≥ 0

while the others follow the linear map:

y(k + 1) = Ŵy(k) + B, Ŵ = (w∞
ij ), ∀i, j = l + 1, . . . , n, B =

l

∑
j=1

w∞
ij a1;j (19)

where (w∞
ij ) is given by (17) and y(0) = 0. One can show that the eigenvalues of W∞ are:

λ1,...,p = 1 λp+1,...,n = 0

6 Here ai;j means the j-th element of the i-th vector.
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whereas Ŵ has a similar set but l of them satisfy to 0 < λ < 1. Thus the map (19) converges
to a fixed point. The set of fixed points of the map (19) corresponds to:

(I − Ŵ)ȳ = B

Then by direct substitution one can check that ȳ = a1;l+1,...,n. In other words the RNN
completes the missing part of a1 and hence retrieves the original stimulus.

3.3.3 Numerical simulations
Figure 8A shows a (64 × 48)-pixels image, which we divided into two parts (left and right)
representing static 2D patterns I1 and I2, (32 × 48)-elements each. The gray intensity of these
patterns has been mapped into the range [0, 1] and then they have been reordered into 1D
vectors a1 and a2 of the length 1536. During learning we present the training stimuli a1
and a2 one after the other to the RNN composed of 1536 neurons. Since each element of
the training vectors is bounded we can easily select the learning rate using (16). The lower
limit ensuring convergence is ε = 2/1536 ≈ 0.0013. To achieve faster convergence we set
ε = 1.8/ max(‖a1‖2, ‖a2‖2) ≈ 0.0024. The limit coupling matrix W∞ calculated by (17) has
been used to evaluate the learning performance (7). Figure 8B shows that in about 10 training
cycles the RNN learns the images I1 and I2 with the precision d(10) ≈ 1%, whereas for 20
training cycles it approaches d(20) = 4.5 × 10−4%.
Once the training has been performed, the learned coupling matrix W(20) has been fixed and
we test the retrieval of learned patterns. For retrieval we use a small fragment of the original
images I1 and I2 (Fig. 8C, left insets corresponding to iteration 1). One of the fragments has
been shown to the RNN while the rest of the external inputs has been set to zero. The network
successfully completes both fragments and obtaines the original images I1 and I2 with the
error (relative mismatch between images) about 10−4 in 100 iterations. It is noteworthy
that during retrieval at the beginning there appear a mixture of both images and then the
correct one “attracts” the network state. For example at iteration 10 during retrieval of I1 the
most recognizable image is I2 (Fig. 8C, upper line). We also note that besides retrieval of
single images the RNN can perform arithmetical operations over them, e.g., by using a linear
combination of fragments of two learned images one can obtained the corresponding linear
combination in the complete patterns.
In theory retrieval of an image is possible by presenting a single pixel to the RNN, given that
the gray intensity for this pixel is different for different images. However, this requires a long
retrieval time (number of iterations) and a precise learning (specially in the case of learning of
many images). To test how the retrieval time depends on the size of the presented fragment
we repeated the image retrieval showing to the network fragments of different size. Figure
8D shows that the retrieval time decreases approximately exponentially with the size of the
fragment.

4. Protocognitive behavior

In the previous sections we discussed neural networks essential for building an agent showing
protocognitive behavior. Let us now assemble all the networks together and describe how
different nontrivial behaviors can be generated, learned, and retrieved on purpose.

4.1 The agent’s architecture
Figure 9 shows the general architecture of the agent. The sensory system receives and
preprocesses, e.g. visual, information from the environment and extracts geometrical
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dimensions, initial positions, velocities, and, if necessary, accelerations of all obstacles/objects
in the arena. Besides, the position of a target is defined. The velocity and acceleration are
evaluated by (10) using observation of an object in several consecutive time instants. In the
simplest case the geometrical dimensions may include length and width of obstacles only.
Then it is sufficient to track the geometrical centers of the obstacles, while the rest can be
obtained by translation.
The sensory information at t = 0, coded by an uD vector ξ0 ∈ Ξ ⊂ Ru, is supplied
to: i) Slow “conscious” and ii) Fast “subconscious” pathways (Fig. 9). Both pathways at
the outputs produce CIRs corresponding to the observed dynamical situation, i.e. patterns
{r∗ij} ∈ R ⊂ Rm2

+ . The difference among them resides in the response-time and precision.
The conscious pathway generates accurate CIRs, however it may take too long time, whereas
the subconscious pathway can rapidly retrieve a CIR but the corresponding situation must be
previously learned. Depending on the agent’s experience and available reaction time either of
these CIRs can be used for direct path planning and motor execution. Furthermore, the motor
execution can be suppressed and the system can actuate as a part of “autonomous thinking”,
i.e. instead of sensory information some mental situations can be supplied for evaluation.

4.1.1 Conscious pathway
In the conscious pathway the sensory vector ξ0 is received by the appropriately tuned
Trajectory Modeling RNN (described in Sect. 3.2). This RNN generates in the mental time,
τ = kh, trajectories of all obstacles ŝ(k). In parallel the Causal Neural Network goes through
the process of virtual exploration of the environment (described in Sect. 2). The exploration
is based on a wave front propagating in the CNN-lattice and delimiting the virtual present in
the mental space-time representation of the agent. The outputs of both networks are used to
obtain the binary time dependent pattern {qij(τ)} by coincidence detection of the wavefront
and obstacles’ trajectories. This pattern defines effective obstacles and further shapes the
relaxation (diffusive) dynamics of the CNN, which finally converges to a static 2D pattern
{r∗ij}m

i,j=1 (or m2D vector), i.e. to a CIR of the observed situation.
The obtained CIR reproduces faithfully the world model of possible collisions in the future
and, in theory, is ready to be used for planning different behaviors. However, the whole
process of modeling and creation of a CIR may be slow relatively to the time scale of changes
in the environment. Thus the agent requires a mechanism of fast “unconscious” decision
making. For this purpose the CIR obtained by the conscious pathway is supplied to the
subconscious pathway for learning.

4.1.2 Subconscious pathway
The subconscious pathway is based on the RNN implementing CIR-memory (described in
Sect. 3.3). The corresponding RNN operates in the functional space with extended CIR vectors
given by:

η = (r∗ij, ξ0)
T , η ∈ R × Ξ = Π

Thus it expands the functional space of CIRs by adding the relevant sensory information
dissected by the sensory system from the raw sensory signals (shape, position, initial velocity
of obstacles etc.). The RNN consists of (m2 + u) neurons: m2 of them are used to code
CIRs (patterns {r∗ij}), while the remaining u neurons are responsible for coding the sensory
vector ξ0. The CIR-memory can receive (asynchronously) two types of input vectors η: i) CIR
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produced by the conscious pathway and the corresponding sensory information (ηT in Fig.
9); and ii) Sensory information with CIR part empty (m2 zeros) (ηR in Fig. 9).
The first type of inputs, given by the complete vector ηT = (r∗ij, ξ0)

T, is used for training the

subconscious pathway. We remind that the RNN can learn up to (m2 + u) different patterns
(i.e. extended CIRs). Thus the agent exploring different environments can continuously learn
CIRs provided by the conscious pathway and associate them with the corresponding sensory
information. Then frequently encountered situations will generate a set of extended CIRs
{ηi} ⊂ Π that will be thoroughly learned. This enables a fast subconscious response of the
agent to standard stereotypic situations.
The second type of inputs is given by the vector ηR = (0, ξ0)

T whose first m2 elements are
equal to zero. Such input is used for retrieval of the CIR corresponding to the description of the
dynamic situations given by ξ0. If such a situation (or similar enough) is a standard previously
learned situation then the RNN can rapidly complete the missing part in the extended CIR
vector η:

input: (0, ξ0) → output: (r∗ij, ξ0)
T

Thus the agent gets a fast access to CIRs of stereotypic dynamic situations without a need of
their modeling by the conscious pathway. This provides the agent with a capability of fast
generation of precise behaviors for frequently happening situations.

4.2 Simulations
Let us now illustrate how the agent can cope with dynamical situations and build up libraries
of extended CIRs for stereotypic situations and hence behaviors. Figure 10A shows an arena
with one static and one moving obstacles interfering the agent’s path to the target. We model
two similar but different dynamic situations: i) slowly moving obstacle and ii) rapidly moving
obstacle. The velocities are chosen such that the moving obstacle blocks either left or right free
space from the static obstacle in the time window when the agent can pass there. Then the
agent should generate an appropriate behavior and decide on which side it will pass by.
At the beginning the CIR-memory of the agent is empty, and hence the agent can rely on the
conscious pathway only. Figure 10B shows two CIRs builded by the conscious pathway and
corresponding to the situations with slow and fast obstacle’s motions. The mayor difference
between them is the position in the lattice space of the effective obstacle blocking the agent
movements as it was expected. In the case of slow motion the effective obstacle appears on
the left, whereas for the fast motion it appears on the right. Then the optimal paths to the
target, safely avoiding obstacles including the moving one, are significantly different in both
cases. We note that if CIR is not created “online” by the conscious pathway, then the motor
execution cannot be enacted. Instead, the CIR created afterwards serves for learning by the
subconscious pathway.
Now we model the process of building a library of extended CIRs. The described situations
(slow and fast motions of the obstacle) appear one after another, so the agent repeatedly
encounters these situations and creates extended CIRs through the conscious pathway and
then learns them in the subconscious pathway. We also assume that the reaction time is critical
enough, so the agent has to make a decision on the basis of the output of the subconscious
pathway. Figure 10C shows how the agent acquires experience and goes through different
stages of the development: from “novice” to “expert”.
After three training cycles the subconscious pathway is unable to retrieve successfully CIR
corresponding to the situation observed in the environment. Instead the agent “sees” itself
in a potential minimum in both situations (”novice” column in Fig. 10C), and hence no

98 Neural Networks for Temporal Data Processing



vob

A arena B CIR slow motion CIR fast motion

s
lo

w
 m

o
ti
o

n
  

  
  

  
  

  
  

  
fa

s
t 

m
o

ti
o

n

experience (training cycles)
3 5 12 30

C

no way

no way

no way

“novice” “beginner” “mature” “expert”

wrong way

target

agent

Fig. 10. Simulation of the agent behavior. A) Arena with two obstacles (blue rectangles) one
of which moves from left to right with the velocity vob. B) CIRs obtained by the “conscious”
pathway for two different velocities of the moving obstacles: slow (left) and fast (right). C)
The process of building CIR-library. The agent generates behaviors based on the output of
the subconscious pathway. Dashed curves show optimal trajectories.

trajectory to the target can be traced and the agent cannot reach the target. Getting few
more training cycles the subconscious pathway provides a first solution for the case of fast
moving obstacle (”beginner” column in Fig. 10C). The obtained CIR allows path-planning,
however the agent confuses the CIR corresponding to the slow motion case with the CIR for
the fast motion. Consequently the path traced to the target is wrong (unjustifiably risky) for
the given situation. It takes about 12 training cycles for the agent to learn correct associations
between situations observed in the environment and their CIRs. The agent can now select
correct behaviors and pass the obstacles from the left or from the right in accordance with
the situation observed in the environment (”mature” column in Fig. 10C). Nevertheless, the
provided paths are suboptimal (in length), i.e. they go far away from the identified positions
of the effective obstacles. After 30 training cycles the memory is consolidated and the CIRs
retrieved from the subconscious pathway are identical to the CIRs obtained by the conscious
pathways (compare “expert” column in Fig. 10C and Fig. 10B). Thus in 30 training cycles
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the agent has successfully built a CIR-library consisting of two similar but different extended
CIRs corresponding to two situations that can be encountered in the environment. Now the
agent is ready for fast generation of nontrivial precise behaviors relying on the subconscious
pathway.

5. Discussion

The main advantage of animate mobile creatures with respect to, e.g., plants is the possibility
to actively interact with the environment, which postulates time as a vital dimension. The
active interaction with the environment is manifested in a nonrandom purposeful movement,
which is a prerequisite of cognition. The agent best dealing with this “extra” dimension
receives an evolutionary advantage. The simplest pre-cognitive form of the behavior,
adopted by lower organisms, relies on the direct reaction (automatic reflexes) to the sensory
stimuli. Although such reactions may be extremely fast, efficient in specific conditions, and
even sometimes compound and complex, higher organisms developed significantly different
cognitive skills. Thus it has been argued that the global brain function is geared towards the
implementation of intelligent motricity [for review see (Llinas & Roy, 2009)].
In this chapter we restricted ourself by considering the problem of generation of behaviors
by a mobile agent in time-evolving environments as a paradigm of real situations faced by
living beings (Fig. 1). We have shown that a solution of this problem may be described
as a protocognitive process composing first floors of the Cognitive Pyramid. It includes (at
least) the following four “bricks” (Fig. 9): i) sensory system; ii) “conscious” pathway; iii)
“subconscious” pathway; and iv) motor system. Let us briefly summarize their main features
and principles of operation.
i) Sensory system. The amount of information contained in the environment in principle may
tend to infinity, in part due to the presence of the time dimension. In general, the current state
of the environment is an element of a functional space x ∈ X × (−∞, 0], where X describes
the spatial structure of the environment. Thus at the first step the sensory system should
brake this continuum and extract the information required by the agent for achieving a goal
(i.e. construction of a behavior). In the simplest case (e.g., for path-planning) the state of the
environment can be reduced to a finite-dimensional vector ξ0 ∈ Ξ ⊂ Ru coding the shapes of
the objects, their initial positions and velocities. Thus the sensory system drastically reduces
the dimension of the available information and represents it in the form of a static pattern,
gt0 : X × (−∞, 0] → Ξ, conveyed to the conscious and subconscious pathways.
ii) Conscious pathway. On the next step the spatially coded information, ξ0, provided by the
sensory system is used for prediction of virtual futures with the aim of anticipation of, e.g.,
collisions with obstacles. In general, the world model should deal with three conceptually
different objects: a) the external inanimate or unintelligent objects; b) the agent itself; and c)
other animate agents either cooperating or competing for resources (for the sake of simplicity
we excluded such case). We have shown that a specially trained recurrent neural network
can successfully predict trajectories of inanimate objects thus solving the item (a). The
(imaginary) behavior of the agent is essentially not unique and can be and must be adapted
to the external circumstances. This, in theory, may increase dramatically the dimension of
the state variable describing the virtual futures. Thus the central issue in brain functions
is the optimization of the mapping of the external environment and, more importantly, of
the agent itself (self-awareness) into an internal functional space followed by a join IR. Some
authors propose that the internal space should be isomorphic to the external world. However,
this would overload the brain with unnecessary information. To optimize the information
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processing we proposed to relax the isomorphic condition to a surjection mapping, i.e. to
f : Ξ → R ⊂ Rm2

such that for every r ∈ R in the codomain (internal space) there is a ξ0 ∈ Ξ in
the domain (sensory image) such that f (ξ0) = r. Although conceptually simple such mapping
is not trivial to be implemented in a neural network. The network should go through two
concurrent processes: a) divergence of information due to generation of virtual futures and
b) convergence or compaction of virtual futures into a static structure or multi-dimensional
vector r. Our approach is based on the concept of Compact Internal Representations of
time-evolving environments (Villacorta-Atienza et al., 2010). We have been able to build a
2D neural network (Causal Neural Network) that exploits the principle of causality, which
enables reduction of the time-dependent structure of real situations to compact static patterns.
Due to compactness the resulting patterns (i.e. elements of R) are suitable to be learned, stored
and recovered on request of higher cognitive levels.
iii) Subconscious pathway. Another problem to be resorted is the time of response. Behaviors
made on the basis of internal representations may be very flexible and comprehensive.
However, the agent may lose considerably to the reaction of reflex-like precognitive agents.
Thus a learning process, which transforms behaviors into subconscious reflex-like states,
is essential for the intelligent motricity. To implement subconscious behaviors we used a
recurrent neural network that is able to learn and retrieve static patterns. We have introduced
the extended CIR space Π = R × Ξ, which includes both Compact Internal Representations
(generated by the “conscious” pathway) and the corresponding state vectors provided by the
sensory system. We have shown that the agent can learn extended CIRs, which form a plexus
of attractors in the phase space of the RNN. Then any previously learned extended CIR η ∈ Π
can be rapidly retrieved by presenting to the subconscious pathway the sensory part only, i.e.
showing ξ0 ∈ Ξ receive r ∈ R. This enables fast reflex-like retrieval of stereotypic CIRs from a
“library” {rk} ⊂ R corresponding to situation frequently observed in the environment.
iv) Motor system. The motor execution of behaviors is based on the tracing paths in CIRs using
given by higher cognitive levels criteria h : R → S, where S is a space of trajectories. For
example the agent can optimize the length of the path or its safety (distance to obstacles). This
criteria can also include additional constraints like ’pass through a particular point’, etc.
Thus we suggest that cognition appears as an effective method of processing, storing and
retrieval of time-dependent sensory information, based on compact internal representations,
with the aim of construction of behaviors and active interaction with the environment: gt0 ◦
f ◦ h : X × (−∞, 0] → S.
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