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Preface

It is more than a century since Karl Pearson invented the concept of Principal
Component Analysis (PCA). Nowadays, it is a very useful tool in data analysis in
many fields. PCA is the technique of dimensionality reduction, which transforms
data in the high-dimensional space to space of lower dimensions. The advantages of
this subspace are numerous. First of all, the reduced dimension has the effect of
retaining the most of the useful information while reducing noise and other
undesirable artifacts. Secondly, the time and memory that used in data processing
are smaller. Thirdly, it provides a way to understand and visualize the structure of
complex data sets. Furthermore, it helps us identify new meaningful underlying
variables.

Indeed, PCA itself does not reduce the dimension of the data set. It only rotates the
axes of data space along lines of maximum variance. The axis of the greatest
variance is called the first principal component. Another axis, which is orthogonal to
the previous one and positioned to represent the next greatest variance, is called the
second principal component, and so on. The dimension reduction is done by using
only the first few principal components as a basis set for the new space. Therefore,
this subspace tends to be small and may be dropped with minimal loss of
information.

Originally, PCA is the orthogonal transformation which can deal with linear data.
However, the real-world data is usually nonlinear and some of it, especially
multimedia data, is multilinear. Recently, PCA is not limited to only linear
transformation. There are many extension methods to make possible nonlinear and
multilinear transformations via manifolds based, kernel-based and tensor-based
techniques. This generalization makes PCA more useful for a wider range of
applications.

In this book the reader will find the applications of PCA in many fields such as
taxonomy, biology, pharmacy, finance, agriculture, ecology, health, architecture. It
also includes the core concepts and the state-of-the-art methods in data analysis and
feature extraction.
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Kernel Methods for Dimensionality Reduction
Applied to the «Omics» Data

Ferran Reverter, Esteban Vegas and Josep M. Oller
Department of Statistics, University of Barcelona
Spain

1. Introduction

Microarray technology has been advanced to the point at which the simultaneous monitoring
of gene expression on a genome scale is now possible. Microarray experiments often aim to
identify individual genes that are differentially expressed under distinct conditions, such as
between two or more phenotypes, cell lines, under different treatment types or diseased and
healthy subjects. Such experiments may be the first step towards inferring gene function and
constructing gene networks in systems biology.

The term “gene expression profile” refers to the gene expression values on all arrays for
a given gene in different groups of arrays. Frequently, a summary statistic of the gene
expression values, such as the mean or the median, is also reported. Dot plots of the gene
expression measurements in subsets of arrays, and line plots of the summaries of gene
expression measurements are the most common plots used to display gene expression data
(See for example Chambers (1983) and references therein).

An ever increasing number of techniques are being applied to detect genes which have similar
expression profiles from microarray experiments. Techniques such clustering (Eisen et al.
(1998)), self organization map (Tamayo et al. (1999)) have been applied to the analysis of gene
expression data. Also we can found several applications on microarray analysis based on
distinct machine learning methods such as Gaussian processes (Chu et al. (2005); Zhao &
Cheung (2007)), Boosting (Dettling (2004)) and Random Forest (Diaz (2006)). It is useful to find
gene/sample clusters with similar gene expression patterns for interpreting the microarray
data.

However, due to the large number of genes involved it might be more effective to display these
data on a low dimensional plot. Recently, several authors have explored dimension reduction
techniques. Alter et al. (2000) analyzed microarray data using singular value decomposition
(SVD), Fellenberg et al. (2001) used correspondence analysis to visualize genes and tissues,
Pittelkow & Wilson (2003) and Park et al. (2008) used several variants of biplot methods as
a visualization tool for the analysis of microarray data. Visualizing gene expression may
facilitate the identification of genes with similar expression patterns.

Principal component analysis has a very long history and is known to very powerful for the
linear case. However, the sample space that many research problems are facing, especially the
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sample space of microarray data, are considered nonlinear in nature. One reason might be
that the interaction of the genes are not completely understood. Many biological pathways
are still beyond human comprehension. It is then quite naive to assume that the genes
should be connected in a linear fashion. Following this line of thought, research on nonlinear
dimensionality reduction for microarray gene expression data has increased (Zhengqiu et al.
(2005), Xuehua & Lan (2009) and references therein). Finding methods that can handle such
data is of great importance if as much information as possible is to be gleaned.

Kernel representation offers an alternative to nonlinear functions by projecting the data into a
high-dimensional feature space, which increases the computational power of linear learning
machines, (see for instance Shawe-Taylor & Cristianini (2004); Scholkopf & Smola (2002)).

Kernel methods enable us to construct different nonlinear versions of any algorithm which
can be expressed solely in terms of dot products, known as the kernel trick. Thus, kernel
algorithms avoid the explicit usage of the input variables in the statistical learning task. Kernel
machines can be used to implement several learning algorithms but they usually act as a
black-box with respect to the input variables. This could be a drawback in biplot displays in
which we pursue the simultaneous representation of samples and input variables.

In this work we develop a procedure for enrich the interpretability of Kernel PCA by adding
in the plot the representation of input variables. We used the radial basis kernel (Gaussian
kernel) in our implementation however, the procedure we have introduced is also applicable
in cases that may be more appropriated to use any other smooth kernel, for example the
Linear kernel which supplies standard PCA analysis. In particular, for each input variable
(gene) we can represent locally the direction of maximum variation of the gene expression. As
we describe below, our implementation enables us to extract the nonlinear features without
discarding the simultaneous display of input variables (genes) and samples (microarrays).

2. Kernel PCA methodology

KPCA is a nonlinear equivalent of classical PCA that uses methods inspired by statistical
learning theory. We describe shortly the KPCA method from Scholkopf et al. (1998).

Given a set of observations x; € R",7 =1, ...,m. Let us consider a dot product space F related
to the input space by amap ¢ : R” — F which is possibly nonlinear. The feature space F could
have an arbitrarily large, and possibly infinite, dimension. Hereafter upper case characters are
used for elements of F, while lower case characters denote elements of R”. We assume that
we are dealing with centered data }_/" ; ¢(x;) = 0.

In F the covariance matrix takes the form
1 m
C=—) od(x)p(x)T
=1

We have to find eigenvalues A > 0 and nonzero eigenvectors V € F\{0} satisfying

CV =AV.
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As is well known all solutions V with A # 0 lie in the span of {¢(x;)}/" ;. This has two
consequences: first we may instead consider the set of equations

(D(xc), CV) = Ab(xi), V), ¢y
forallk =1,...,m, and second there exist coefficients a;, i = 1, ..., m such that
m
V=) w&p(x). (2)
i=1
Combining (1) and (2) we get the dual representation of the eigenvalue problem

m

)4 <¢<xk>, 21 $(x) (#(x)), ¢<x1->>> = A 21 % (B (x), $(x)
= =

E
mis
forallk =1,...m. Defining a m x m matrix K by K;; := <¢(xi), qb(x]-)>, this reads

K’a = mMAKa, (3)

where a denotes the column vector with entries «q, ..., 4. To find the solutions of (3), we
solve the dual eigenvalue problem
Ka =mla, 4)

for nonzero eigenvalues. It can be shown that this yields all solutions of (3) that are of interest
for us. Let Ay > Ay > --- > Ay, the eigenvalues of K and al, .., a™ the corresponding set of
eigenvectors, with A, being the last nonzero eigenvalue. We normalize o', ..., o’ by requiring

that the corresponding vectors in F be normalized <Vk, vk > =1, forall k = 1,..,r. Taking

into account (2) and (4), we may rewrite the normalization condition for al, .., o in this way
< k k < k k k k k k
1= thilxj <q§(xi),¢(x]-)> = thilijij = <a ,Ka > = A <a ,Q > (5)
ij ij

For the purpose of principal component extraction, we need to compute the projections onto
the eigenvectors VKinF k=1,..,r. Let y be a test point, with an image ¢(y) in F. Then

(VE o(y)) = iwi‘ (S(x:), B(y)), ©)

are the nonlinear principal component corresponding to ¢.

2.1 Centering in feature space

For the sake of simplicity, we have made the assumption that the observations are centered.
This is easy to achieve in input space but harder in F, because we cannot explicitly compute
the mean of the mapped observations in F. There is, however, a way to do it.
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Given any ¢ and any set of observations xj, ..., X, let us define

- 1 i
=) o(xi)
iz
then, the points
P (xi) = o(xi) — ¢ )
will be centered. Thus the assumption made above now hold, and we go on to define
covariance matrix and dot product matrix K;; = <q~5(xi), é(x])> in F. We arrive at our already
familiar eigenvalue problem
mAé = Ké, ®)
with & being the expansion coefficients of an eigenvector (in F) in terms of the centered points

() .
V= Z &P (x;). )

Because we do not have the centered data (7), we cannot compute K explicitly, however we
can express it in terms of its noncentered counterpart K. In the following, we shall use Kij =

<¢(xi), ¢(x]-)>. To compute Kj; = <¢~S(x,-), (f)(x]-)>, we have:

1 & 1 & 1z
=Kij— Y K=} Kj+ -5 ). K
t=1 s=1 s, t=1

Using the vector 1,; = 1,.., 1)T, we get the more compact expression

5 1 1 1
R=K- EKI’”lT’” - a1m1§K + W(lInKlm)lml,T,,.

We thus can compute K from K and solve the eigenvalue problem (8). As in equation (5),
the solution &, k = 1, ..., r, are normalized by normalizing the corresponding vector VKin I,

which translates into A <Eck, Eck> =1.

Consider a test point y. To find its coordinates we compute projections of centered ¢-images
of y onto the eigenvectors of the covariance matrix of the centered points,

(@(y), V) = (oly) - & (o)~ S 6(x) — )

1

S
<t
=
~—"
Il
INng!
=
<=

=

= LA (6, @06) ~ (& $(x) ~ (6(y), ) +(3.8))
- 3 ch{K(y,xi)) — % iK(xs,xi)) — % iK(y,xs) + % i K(xs,xt)}.

Il
_
w
Il
—_

s=1 s,t=1
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Introducing the vector
Z= (K(y,xi))mxl. (10)

Then,

o 11 o1 _
( <¢(y),Vk> )m = 2TV — ALKV — —(ZT1) 1,V + 5 (1K1 1V

1 1 1 i
—zT (Im - %1m1;1)v - %ILKOW, - %1m1;1)v

- (zT _ %mk) <1m - %1,,,1;1)1 (11)

where V is a m x r matrix whose columns are the eigenvectors ATATIA 8

Notice that the KPCA uses only implicitly the input variables since the algorithm formulates
the reduction of the dimension in the feature space through the kernel function evaluation.
Thus KPCA is usefulness for nonlinear feature extraction by reducing the dimension but not
to explain the selected features by means the input variables.

3. Adding input variable information into Kernel PCA

In order to get interpretability we add supplementary information into KPCA representation.
We have developed a procedure to project any given input variable onto the subspace spanned
by the eigenvectors (9).

We can consider that our observations are realizations of the random vector X = (Xj, ..., X;).
Then to represent the prominence of the input variable X} in the KPCA. We take a set of points
of the formy = a + sey € R" where e, = (0, ..., 1,..,0) € R", s € R, where k-th component
is equal 1 and otherwise are 0. Then, we can compute the projections of the image of these
points ¢(y) onto the subspace spanned by the eigenvectors (9).

Taking into account equation (11) the induced curve in the eigenspace expressed in matrix
form is given by the row vector:

U(S)lxr = (Zg - %1}1-11() (Im - %1M1Tm>‘7/ (12)

where Z; is of the form (10).

In addition we can represent directions of maximum variation of ¢(s) associated with the
variable X} by projecting the tangent vector at s = 0. In matrix form, we have

do dazl 1 e

e S:O(Im - 1,1})V (13)
with

dz! B <dzg dz!" )T

ds ls=0 - ds 5:0, v ds ls=0
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and, with
dzi _ dK(y,x;)
ds ls=0 ds 5=0
_ (i oK (y, xi) @)
= Oy ds /ls=0
_ v K(yxi) | gk 9K(y,xi)
S =t Wk ly=a

where (5f denotes the delta of Kronecker. In particular, let us consider the radial basis kernel:
k(x,z) = exp(—c ||x — z||*) with ¢ > 0 a free parameter. Using above notation, we have

n
K(y,x;) = exp(—c|ly — xi[|*) = exp(—c }_ (v; — xis)?)
t=1

When we consider the set of points of the form y = a + se; € R",

ds

9K (y, x;)

=0 oYk y=a
= —2cK(a,x;)(a — x;)

In addition, if a = xg (a training point) then

dz:

s g = 26K (xp,xi) (xpr — xik)

Thus, by applying equation (12) we can locally represent any given input variable in the KPCA
plot. Moreover, by using equation (13) we can represent the tangent vector associated with
any given input variable at each sample point. Therefore, we can plot a vector field over the
KPCA that points to the growing directions of the given variable.

We used the radial basis kernel in our implementation however the procedure we have
introduced is also applicable to any other smooth kernel, for instance the Linear kernel which
supplies standard PCA analysis.

4. Validation

In this section we illustrate our procedure with data from the leukemia data set of Golub et al.
(1999) and the lymphoma data set Alizadeh et al. (2000).

In these examples our aim is to validate our procedure for adding input variables information
into KPCA representation. We follow the following steps. First, in each data set, we build
a list of genes that are differentially expressed. This selection is based in accordance with
previous studies such as (Golub et al. (1999), Pittelkow & Wilson (2003), Reverter et al. (2010)).
In addition we compute the expression profile of each gene selected, this profile confirm the
evidence of differential expression.
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Second, we compute the curves through each sample point associated with each gene in the
list. These curves are given by the ¢-image of points of the form:

y(s) = x; + seg

where X; is the 1 X n expression vector of the i-th sample, i = 1,...,m, k denotes the index
in the expression matrix of the gene selected to be represented, ey = (0,...,1,..,0)isal xn
vector with zeros except in the k-th. These curves describe locally the change of the sample x;
induced by the change of the gene expression.

Third, we project the tangent vector of each curve at s = 0, that is, at the sample points x;,
i = 1,..,m, onto the KPCA subspace spanned by the eigenvectors (9). This representation
capture the direction of maximum variation induced in the samples when the expression of
gene increases.

By simultaneously displaying both the samples and the gene information on the same plot it is
possible both to visually detect genes which have similar profiles and to interpret this pattern
by reference to the sample groups.

4.1 Leukemia data sets

The leukemia data set is composed of 3051 gene expressions in three classes of leukemia:
19 cases of B-cell acute lymphoblastic leukemia (ALL), 8 cases of T-cell ALL and 11 cases
of acute myeloid leukemia (AML). Gene expression levels were measured using Affymetrix
high-density oligonucleotide arrays.

The data were preprocessed according to the protocol described in Dudoit et al. (2002).
In addition, we complete the preprocessing of the gene expression data with a microarray
standardization and gene centring.

In this example we perform the KPCA , as detailed in the previous section, we compute the
kernel matrix with using the radial basis kernel with ¢ = 0.01, this value is set heuristically.
The resulting plot is given in Figure 1. It shows the projection onto the two leading kernel
principal components of microarrays. In this figure we can see that KPCA detect the group
structure in reduced dimension. AML, T-cell ALL and B-cell ALL are fully separated by
KPCA.

To validate our procedure we select a list of genes differentially expressed proposed by (Golub
et al. (1999), Pittelkow & Wilson (2003), Reverter et al. (2010)) and a list of genes that are not
differentially expressed. In particular, in Figures 2, 3, 4 and 5 we show the results in the case
of genes: X76223_s_at, X82240_rnal_at, YO0787_s_at and D50857_at, respectively.
The three first genes belong to the list of genes differentially expressed and the last gene is not
differentially expressed.

Figure 2 (top) shows the tangent vectors associated with X76223_s_at gene, attached at
each sample point. This vector field reveals upper expression towards T-cell cluster as is
expected from references above mentioned. This gene is well represented by the second
principal component. The length of the arrows indicate the strength of the gene on the sample
position despite the dimension reduction. Figure 2 (bottom) shows the expression profile of
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Fig. 1. Kernel PCA of Leukemia dataset.

X76223_s_at gene. We can observe that X76223_s_at gene is up regulated in T-cell class.
This profile is agree with our procedure because the direction in which the expression of the
X76223_s_at gene increases points to the T-cell cluster.

Figure 3 (top) shows the tangent vectors associated with X82240_rnal_at gene attached
at each sample point. This vector field reveals upper expression towards B-cell cluster as is
expected from references above mentioned. Figure 3 (bottom) shows the expression profile
of X82240_rnal_at gene. We can observe that X82240_rnal_at gene is up regulated
in B-cell class. This profile is agree with our procedure because the direction in which the
expression of the X82240_rnal_at gene increases points to the B-cell cluster.

Figure 4 (top) shows the tangent vectors associated with Y00787_s_at gene attached at
each sample point. This vector field reveals upper expression towards AML cluster as is
expected from references above mentioned. Figure 4 (bottom) shows the expression profile
of Y00787_s_at gene. We can observe that Y00787_s_at gene is up regulated in AML
class. This profile is agree with our procedure because the direction in which the expression
of the Y00787_s_at gene increases points to the AML cluster.
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Fig. 2. (Top) Kernel PCA of Leukemia dataset and tangent vectors associated with
X76223-s-at gene at each sample point. Vector field reveals upper expression towards T-cell
cluster. (Bottom) Expression profile of X76223-s-at gene confirms KPCA plot enriched with
tangent vectors representation.
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Fig. 3. (Top) Kernel PCA of Leukemia dataset and tangent vectors associated with
X82240-rnal-at gene at each sample point. Vector field reveals upper expression towards
B-cell cluster. (Bottom) Expression profile of X82240-rnal-at gene confirms KPCA plot
enriched with tangent vectors representation.
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vectors representation..
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Figure 5 (top) shows the tangent vectors associated with D50857_at gene attached at each
sample point. This vector field shows no preferred direction to any of the three cell groups.
The arrows are of short length and variable direction in comparison with other genes showed
in previous Figures. Figure 5 (bottom) shows a flat expression profile of D50857_at gene.
This profile is agree with our procedure because any direction of expression of the D50857_at
gene is highlighted.

4.2 Lymphoma data sets

The lymphoma data set comes from a study of gene expression of three prevalent lymphoid
malignancies: B-cell chronic lymphocytic leukemia (B-CLL), follicular lymphoma (FL) and
diffuse large B-cell lymphoma (DLCL). Among 96 samples we took 62 samples 4026 genes in
three classes: 11 cases of B-CLL, 9 cases of FL and 42 cases of DLCL. Gene expression levels
were measured using 2-channel cDNA microarrays.

After preprocessing, all gene expression profiles were base 10 log-transformed and, in order
to prevent single arrays from dominating the analysis, standardized to zero mean and unit
variance. Finally, we complete the preprocessing of the gene expression data with gene
centring.

In this example we perform the KPCA , as detailed in the previous section, we compute the
kernel matrix with using the radial basis kernel with ¢ = 0.01, this value is set heuristically.
The resulting plot is given in Figure 6. It shows the projection onto the two leading kernel
principal components of microarrays. In this figure we can see that KPCA detect the group
structure in reduced dimension. DLCL, FL and B-CLL are fully separated by KPCA.

To validate our procedure we select a list of genes differentially expressed proposed by
(Reverter et al. (2010)) and a list of genes that are not differentially expressed. In particular, in
Figures 7, 8, 9 and 10 we show the results in the case of genes: 139009, 1319066, 1352822
and 1338456, respectively. The three first genes belong to the list of genes differentially
expressed and the last gene is not differentially expressed.

Figure 7 (top) shows the tangent vectors associated with 139009 gene attached at each sample
point. This vector field reveals upper expression towards DLCL cluster as is expected from
references above mentioned. This gene is mainly represented by the first principal component.
The length of the arrows indicate the influence strength of the gene on the sample position
despite the dimension reduction. Figure 7 (bottom) shows the expression profile of 139009
gene. We can observe that 139009 gene is up regulated in DLCL cluster. This profile is
agree with our procedure because the direction in which the expression of the 139009 gene
increases points to the DLCL cluster.

Figure 8 (top) shows the tangent vectors associated with 1319066 gene attached at each
sample point. This vector field reveals upper expression towards FL cluster as is expected
from references above mentioned. This gene is mainly represented by the second principal
component. Figure 8 (bottom) shows the expression profile of 1319066 gene. We can observe
that 1319066 gene is up regulated in FL class. This profile is agree with our procedure
because the direction in which the expression of the 1319066 gene points to the FL cluster.
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Fig. 6. Kernel PCA of Lymphoma dataset.

Figure 9 (top) shows the tangent vectors associated with 1352822 gene attached at each
sample point. This vector field reveals upper expression towards B-CLL as is expected from
references above mentioned. Figure 9 (bottom) shows the expression profile of 1352822 gene.
We can observe that 1352822 gene is up regulated in B-CLL class. This profile is agree with
our procedure because the direction in which the expression of the 1352822 gene increases
points to the B-CLL cluster.

Figure 10 (top) shows the tangent vectors associated with 1338456 gene attached at each
sample point. This vector field shows no preferred direction to any of the three cell groups.
The arrows are of short length and variable direction in comparison with other genes showed
in previous Figures. Figure 10 (bottom) shows a flat expression profile of 1338456 gene. This
profile is agree with our procedure because any direction of expression of the 1338456 gene
is highlighted.
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Fig. 7. (Top) Kernel PCA of Leukemia dataset and tangent vectors associated with 139009
gene at each sample point. Vector field reveals upper expression towards DLCL cluster.
(Bottom) Expression profile of 139009 gene confirms KPCA plot enriched with tangent
vectors representation.



16 Principal Component Analysis — Multidisciplinary Applications

o — A& DLCL lr ~ 1319066

Z gI:CLL 1 /X %

2nd Principal Component
>—
=
(SN
- b

1st Principal Component

Cluster-1319066

oo
mmo o

o
~
g o
:
E
S E
P - =
B
g o
o — §
- a
&4 E/ ]
g g
B
8
8
T A o
T T T
B-CLL DLCL FL

Fig. 8. (Top) Kernel PCA of Leukemia dataset and tangent vectors associated with 1319066
gene at each sample point. Vector field reveals upper expression towards FL cluster. (Bottom)
Expression profile of 1319066 gene confirms KPCA plot enriched with tangent vectors
representation.
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Fig. 9. (Top) Kernel PCA of Leukemia dataset and tangent vectors associated with 1352822
gene at each sample point. Vector field reveals upper expression towards B-CLL cluster.
(Bottom) Expression profile of 1352822 gene confirms KPCA plot enriched with tangent
vectors representation.



18 Principal Component Analysis — Multidisciplinary Applications

o — A DLCL ~+ | - 1338456
+ FL Y
o B-CLL > ;
A
}
N A -
EEA
= 2 »
g | A » >
3 * i
© 3
2 »
g o4 By, »
a »
3 #
& 4 »
?, ks
T A ®
4
O T ® ®
o
4 Ea » R Bo)
% 2 SN
@~
-2 0 2 4
1st Principal Component
Cluster-1338456
o g e
g8 E g
L e S |
2] B )
g
71 : :
B-CLL DLCL FL
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gene at each sample point. Vector field shows no preferred direction. (Bottom) Flat
expression profile of 1338456 gene confirms KPCA plot enriched with tangent vectors
representation.
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5. Conclusion

In this paper we propose an exploratory method based on Kernel PCA for elucidating
relationships between samples (microarrays) and variables (genes). Our approach show two
main properties: extraction of nonlinear features together with the preservation of the input
variables (genes) in the output display. The method described here is easy to implement
and facilitates the identification of genes which have a similar or reversed profiles. Our
results indicate that enrich the KPCA with supplementary input variable information is
complementary to other tools currently used for finding gene expression profiles, with the
advantage that it can capture the usual nonlinear nature of microarray data.
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1. Introduction
1.1 Definitions of major «omics» in molecular biology and their goals

The «omics» era, also called classically the post-genomic era, is described as the period of
time which extends the first publication of the human genome sequence draft in 2001
(International Human Genome Sequencing Consortium, 2001; Venter et al., 2001). Ten years
after that milestone, extensive use of high-throughput analytical technologies, high
performance computing power and large advances in bioinformatics have been applied to
solve fundamental molecular biology questions as well as to find clues concerning human
diseases (cancers) and aging. Principal «omics», such as Gen-omics, Transcript-omics, Prote-
omics and Metabol-omics, are biology disciplines whose main and extremely ambitious
objective is to describe as extensively as possible the complete class-specific molecular
components of the cell. In the «omics» sciences, the catalog of major cell molecular
components, respectively, genes, messenger RNAs and small interfering and regulatory
RNAs, proteins, and metabolites of living organisms, is recorded qualitatively as well as
quantitatively in response to environmental changes or pathological situations. Various
research communities, organized in institutions both at the academic and private levels and
working in the «omics» fields, have spent large amounts of effort and money to reach.
standardization in the different experimental and data processing steps. Some of these
«omics» specific steps basically include the following: the optimal experimental workflow
design, the technology-dependent data acquisition and storage, the pre-processing methods
and the post-processing strategies in order to extract some level of relevant biological
knowledge from usually large data sets. Just like Perl (Practical Extraction and Report
Language) has been recognized to have saved the Human Genome project initiative (Stein,
1996), by using accurate rules to parse genomic sequence data, other web-driven.
programming languages and file formats such as XML have also facilitated «omics» data
dissemination among scientists and helped rationalize and integrate molecular biology data.

Data resulting from different «omics» have several characteristics in common, which are
summarized in Figure 1: (a) the number of measured variables n (SNP, gene expression,
proteins, peptides, metabolites) is quite large in size (from 100 to 10000), (b) the number of
samples or experiments p where these variables are measured associated with factors such
as the pathological status, environmental conditions, drug exposure or kinetic points
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(temporal experiments) is rather large (10 to 1000) and (c) the measured variables are
organized in a matrix of n x p dimensions. The cell contents of such a matrix usually record a
metric (or numerical code) related to the abundance of the measured variables. The observed
data are acquired keeping the lowest amount of possible technical and analytical variability.
Exploring these «omics» data requires fast computers and state-of-the-art data visualization
and statistical multivariate tools to extract relevant knowledge, and among these tools PCA is
a tool of choice in order to perform initial exploratory data analysis (EDA).

p x samples (j=1..p)

Samples replicates (patient, cell lines, tissues...)
Experimental conditions (control, treated...)
Temporal analysis (time point...)

v
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Fig. 1. General organization of raw «omics» data represented in a n x p matrix.

Rows contain the measured quantitative variables (n) and columns contain the samples or experimental
conditions tested (p) from which variables n are measured and for which grouping information or
factors is generally present. Each cell (i,j) of this matrix contains a measured quantitative information
which is usually the abundance of the molecule under study.

1.1.1 Genomics and genetics data are different

Genomics and genetics data are of different types. Genomics data are related mainly to the
collection of DNA sequences modeled as linear strings composed of the four nucleotides
symbolized by the letters A, C, G and T (bases). These strings are usually obtained following
large sequencing efforts under the supervision of academic and private consortia. NextGen
sequencing technologies are used to acquire the data and, specialized softwares are used to
assemble sequences in one piece in order to complete an entire genome of thousands of
megabases long. The final result of these extensive and costly efforts is the establishment of
the genome sequence of all living organisms and particularly the human genome. Genomics
has been particularly successful these last few years in determining micro-organism
genomes such as bacteria and viruses. Genomics is regularly used in academic research and
even proposes on-demand service for the medical community to obtain emerging
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pathological genomes (SRAS, toxic strains of Escherichia coli ...) that allow a fast medical
response. Genomics aims to attain the technical challenge of obtaining 99.99% accuracy at
the sequenced nucleotide level, and completeness and redundancy in the genome sequence
of interest. However, the understanding or interpretation of the genome sequence, which
means finding genes and their regulatory signals as well as finding their properties collected
under the name “annotations”, are still the most challenging and expensive tasks.

Genetics data, or genotype data, are related to the sequencing efforts on the human genome,
particularly at the individual level. Genetics data record that the status of some nucleotides
found at a certain position in the genome are different from one person to another. These base-
and position-specific person-to-person variations are known as SNP or Single Nucleotide
Polymorphism. When the frequency of the variation in a population is greater than 1%, this
variation is considered as a true polymorphism possibly associated with traits (phenotypes)
and genetic diseases (mutations). Moreover this information is useful as a genetic biomarker
for susceptibilities to multigenic diseases or ancestrality and migration studies.

1.1.2 Transcriptomics data

Transcriptomics data consist in the recording of the relative abundance of transcripts or
mature messenger RNAs representing the level of gene expression in cells when submitted to
a particular condition. Messenger RNAs are the gene blueprints or recipes for making the
proteins which are the working force (enzymes, framework, hormones...) in a cell and allow
the cell’s adaptation to its fast changing environment. Transcriptomics give a snapshot of the
activity of gene expression in response to a certain situation. Generally mRNA abundances are
not measured on an absolute scale but on a relative quantitative scale by comparing the level
of abundance to a particular reference situation or control. Raw transcriptomics data
associated with a certain gene g consist in recording the ratio of the abundances of its specific
gene transcript in two biological situations, the test and the control. This ratio reveals if a
particular gene is over- or under- expressed in a certain condition relative to the control
condition. Moreover, if a set of genes respond together to the environmental stress under
study, this is a signature of a possible common regulation control (Figure 2). Furthermore,
transcriptomics data are usually organized as for other «omics» data as large tables of n x p.
cells with p samples in columns and n genes in rows (Figure 1). A data pre-processing step is
necessary before analyzing transcriptomics data. It consists in log, intensity ratios
transformation, scaling the ratios across different experiments, eliminate outliers. Multivariate
analysis tools, particularly PCA, are then used to find a few genes among the thousands that
are significantly perturbed by the treatment. The signification level of the perturbation of a
particular gene has purely statistical value and means that the level of measured variation in
the ratio is not due to pure chance. It is up to the experimentalist to confirm that it is truly the
biological factor under study, and not the unavoidable variation coming from technical or
analytical origin inherent to the acquisition method, that is responsible for the observations. To
estimate this significance level it is absolutely necessary to measure ratios on a certain
replicative level, at least three replicates per gene and per situation. ANOVA and multiple
testing False Discovering Rate (FDR) estimates are generally used. Further experimental
studies are mandatory to confirm transcriptomics observations. Moreover, Pearson correlation
coefficient and different linkage clustering methods are used for each gene in order to perform
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their hierarchical clustering and to group genes with similar behavior or belonging to the same
regulation network.

Fig. 2. A picture of a DNA microarray used in high-throughput transcriptomics.

DNA chip of 18 x 18 mm In size containing 6400 yeast gene Specific sequences organized as a matrix in
which gene coordinates (x,y) are known. After hybridization with transcripts labeled respectively with
green and red fluorochromes from two situations (treated versus untreated), 2 images in red and green
fluorescence are recorded and superposed. Spot intensity seen on this image is then mathematically
converted to a ratio of relative abundance of gene expression in the two situations under study (DeRisi
etal., 1997).

1.1.3 Proteomics and metabolomics data

Proteomics and metabolomics data consist in measuring absolute or relative abundances of
proteins and metabolites in the organism, tissue or cells after their proper biochemical
extraction. These two fundamental and different classes of molecules are important for
preserving cell integrity and reactivity to environment changes. These molecules are
generally recognized and their abundances measured by mass spectrometry technologies
after a liquid (HPLC) or gas (GC) chromatographic separation is performed to lower the
high complexity level of analytes in the sample under study. Proteins have the large size of a
few thousands of atoms and weigh a few thousands of Daltons (1 Dalton is the mass of a
hydrogen atom) in mass, contrary to metabolites that are smaller molecules in size and mass
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(less than 1000 Daltons). Mass spectrometers are the perfect analytical tool to separate
physically ionized analytes by their mass-to-charge ratio (m/z) and are able to record their
abundance (peak intensity). Mass spectrometry data are represented graphically by a
spectrum containing abundances versus m/z ratios or by a table or a peak list with two
columns containing m/z and abundances after performing a de-isotopic reduction step and
a noise filtration step.

Because of the large size of protein molecules, entire proteins should be cut in small pieces,
called peptides, of 10-15 amino acids by using a protease enzyme trypsin. These peptides
then have the right size to be analyzed directly by mass spectrometers. Peptide abundances
are recorded. and their sequences even identified by collision-induced fragmentation (CID)
breaking their peptide bonds, which some mass spectrometers instruments can perform
(Triple Quadrupole mass spectrometrer in tandem, MALDI TOF TOF, Ion traps).

Raw data from metabolomics and proteomics studies originating from mass spectrometry
techniques have the same basic contents. However, contrary to previous «omics», analytes
are first separated by a chromatographic step and one analyte is characterized by its unique
retention time (rt) on the separation device, its mass-to-charge ratio (m/z) and its
abundance (a). This triad (rt - m/z - a) is a characteristic of the analyte that is measured
accurately and found in the final «omics» data matrix n x p. Because of the separation step,
multiple chromatography experiments should be normalized on both the scale of abundance
and the scale of retention time to be further compared. A relevant multiple alignment of the
chromatographic separations of different p samples is necessary and is performed by using
sophisticated methods and models (Listgarten & Emili, 2005). This alignment step consists
in recognizing which analyte is recorded in a given retention time bin and in a given m/z
bin. Analytes found in common in the chosen bin are by definition merged in intensity and
considered to be the same analyte. The same m/z analyte is recorded across multiple
chromatographic steps and should be eluted at the same rt with some degree of tolerance
both on rt (a few minutes) and on m/z (a few 0.1 m/z). The rows in the prote- and metabol-
«omics» final matrix n x p contain the. proxy “m/z_rt,” or “feature” and on the columns are
the samples where the analytes come from. The cell content of this matrix record the
abundance. “m/z_rt” is a set of analytes which have the same m/z with the same retention
time rt, hopefully only one. Data can also be visualized as a 3D matrix with 3 dimensions: rt,
m/z and abundances (Figure 3). For convenience it is the “m/z_rt” versus the 2D sample
matrix which is further used in EDA for sample comparisons. The absolute value of
intensity of the m/z analyte with retention rt corresponds to the mass spectrometry
response given by its detector (cps).

1.2 Technologies generating «xomics» data, their sizes and their formats
1.2.1 Genetics data format

Genome-wide studies using genetics data consist in recording the status of a particular
DNA position or genotype in the genome called SNP or Single Nucleotide Polymorphism
among few thousand of genes for a certain number of samples. The SNP status is obtained
by accurately sequencing genomic DNA and recording its sequence in databases such as
Genbank (www.ncbi.nlm.nih.gov/genbank). The SNP status is then coded by a simple
number, 0, 1, 2, according to the nature of the nucleotide found at the genome’s particular
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Fig. 3. A 3D representation of a mass spectrum of a liquid chromatographic separation in
LC-MS typical analysis of proteomics and metabolomics data.

(A) Urinary native peptides without noise filtration and (B) with noise filtration are shown on a smaller
time scale (20 to 34 minutes). These spectra were obtained using MZmine 2.1 with raw data converted
first to the mzxml format (Pluskal et al., 2010).

position. It is not rare for the n x p matrix used in genetics data to have for dimension
n=500000 SNP positions recorded for p=1000 individuals grouped according to ethnical,
geographical or disease status. SNP positions, sequence, type and frequencies are
maintained and accessible on different websites such as dbSNP (www.ncbi
nlm.nih.gov/projects/SNP), the International HapMap project (hapmap.ncbi.nlm.nih.gov),
the SNP consortium (snp.cshl.org), the Human Gene Mutation Database or HGMD
(www.hgmd.org), the 1000 Genomes project (www.1000genomes.org), the
Pharmacogenomics database PharmGKB (www.pharmgkb.org) and the genotype-
phenotype association database. GWAS Central (www.gwascentral.org). This information is
particularly relevant in order to attempt SNP associations to disease status or health
conditions. In recent human genetic studies, genotype data have been harvested, consisting
in collecting for a few thousand human samples of different classes (ethnic groups, disease
status groups, and so on) all the SNP profiles for particular genes (or even better all the
genome). Algorithms such as EIGENSOFT suite is used to find statistically acceptable
genotype-phenotype associations (Novembre & Stephens, 2008; Reich et al, 2008). The suite
contains the EIGENSTRAT tool which is able to detect and correct for population bias of
allele frequency, also called stratification, and suggests where the maximum variability
resides among the population. PCA was demonstrated as a. valuable tool for detecting
population substructure and correcting for stratification representing allele frequency
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differences originating from ancestry between the considered population before associating
SNPs profile and disease status (Price et al., 2006). These studies were recently published for
making qualified inferences about human migration and history.

1.2.2 Transcriptomics data formats

In order to analyze in parallel the large population of mRNAs or transcriptomes that a cell is
expressing, a high-throughput screening method called DNA microarrays is used today.
These DNA chips, some of which are commercially available (ex: Affymetrix), contain
imprinted on their glass surface, as individualized spots,. thousands of short nucleic acid
sequences specific of genes and organized in matrices to facilitate their location. (Figure 2)
Pangenomic DNA chips contain sequences representing ALL the genes known today for a
certain species (a few tens of thousands). These chips are hybridized with equal quantity of
mRNA or complementary DNA copies of the mRNA prepared from control and treated
samples, including fluorescent red (treated) and green (control) nucleotide analogs, in order
to keep track of the sample origin. After subsequent washing steps, green and red
fluorescence signals present on the chip are measured and the red-to-green ratio is
calculated for each gene. The colors of the spots are from red (treated) to green (control)
indicating over- and under- abundance of gene expression in the treated condition. A yellow
color indicates an equal abundance of gene expression (no effect of condition) and a black
spot indicates absence of gene expression in both conditions. Major free-access
transcriptomics databases are the Stanford microarray database (smd.stanford.edu) and the
NCBI GEO omnibus (www.ncbi.nlm.nih.gov/geo). The size of these arrays depends on the
gene population under study. It is not rare to study transcriptomics on n= 7000 genes (yeast)
or more on pangenomic arrays n = 20000 - 30000 (Arabidopsis, humans, mice ...). The
number of DNA microarrays p is generally of the order of a few tens to a few hundreds,
taking into account experimental replicates.

Alternative techniques exist to study gene expression, but they are not applied on a large- or
genomic-wide scale as DNA microarrays,. and they are used in order to confirm hypotheses
given by these later experiments. Among them, 