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Preface 
 
This volume covers a diverse collection of topics dealing with some of the fundamental 

concepts and applications embodied in the study of nonlinear dynamics. Each of the 15 
chapters contained in this compendium generally fit into one of five topical areas: physics 
applications, nonlinear oscillators, electrical and mechanical systems, biological and 
behavioral applications or random processes. The authors of these chapters have 
contributed a stimulating cross section of new results, which provide a fertile spectrum of 
ideas that will inspire both seasoned researches and students. 
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Nonlinear Absorption of Light in Materials with 
Long-lived Excited States 

Francesca Serra and Eugene M. Terentjev 
University of Cambridge 

United Kingdom 

1. Introduction 
The absorption of light is an important phenomenon which has many applications in all the 
natural sciences. One can say that all the chemical elements, molecules, complex substances, 
and even galaxies, have their own “fingerprint” in the light absorption spectrum, as a 
consequence of the allowed transitions between all electronic and vibronic levels. 
The UV-Visible (UV-Vis) light (200-800 nm) has an energy comparable to that typical of the 
transitions between the electrons in the outer shells or in molecular orbitals. Each atom has a 
fixed number of atomic levels, and therefore those spectra are composed of narrow lines, 
corresponding to the transitions between these levels. When molecules and macromolecules 
are considered, the absorption spectrum is no longer characterised by thin lines but by wide 
absorption bands. This is due to the fact that the electronic levels are split in many 
vibrational and rotational sub-levels, which increase in number with the increasing 
complexity of the molecules. IR spectroscopy is often used to investigate these lower energy 
modes, but for very complex biological molecules not even this technique can resolve each 
line precisely because the energy split between the various levels is too small. One possible 
way to obtain higher resolution spectra is to lower the sample temperature, in order to 
suppress many of the vibrational and rotational modes. For biological molecules, though, 
lowering the temperature can be a problem if one wants to study, for example, the activity 
of enzimes, which only work at physiological temperatures. One of the advantages of 
absorption spectroscopy (IR and UV-Vis) is to be a non-disruptive technique, also for 
“delicate” molecules like polymers and biomolecules. 
In the process of light absorption by molecules, once a photon with the right energy is 
absorbed, the molecule goes into an excited state at higher energy [Born and Wolf 1999, 
Dunning & Hulet 1996]. Eventually, it spontaneously returns to the ground state, but it can 
relax following several mechanisms. When excited, the molecule reaches, in general, one of 
the sub-levels of a higher electronic state. The first process is then, generally, a relaxation to 
the lower energy state of that electronic level (schematised in figure 1). This process is 
usually very fast (in the femtosecond scale) and not radiative. From this level, there are 
several pathways to dissipate the energy: a radiative transition from the lower level of the 
excited state to the ground state (fluorescence), accompanied by the emission of a photon at 
lower energy than the absorbed one; a flip of the electronic spin, which leads to a transition 
between singlet and triplet state (intersystem crossing), often associated with another 
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Fig. 1. A scheme representing some possibility of excitation/disexcitation of a molecule. 
Each electronic level is split into many vibrational and rotational sub-levels. The blue arrow 
describes the absorption of a photon, the green arrow the emission of a photon from the 
lower energy level of the excited state (fluorescence), while the black arrows indicate all the 
nonradiative energy dissipation mechanisms, which can be alternative to fluorescence. The 
intersystem crossing is another mechanism of disexcitation: the triplet state is represented 
with the red curve, and the transition with the thick arrow. The molecule can relax over long 
time to the ground state either with a nonradiative process or via phosphorescence (red 
arrow). 

radiative process (phosphorescence); a non radiative decay where the energy is released by 
heat dissipation. In some molecules the relaxation pathway following the excitation is more 
complex, and it can involve interaction with other molecules. In such cases the energy can 
be transferred to other molecules via radiative or non radiative processes: azobenzene, for 
example, is a photosensitive molecule which, after excitation, undergoes a conformational 
change; a more common molecule, like chlorophyll in plant cell chloroplasts, transfers the 
excitation to the neighbouring molecules until the energy reaches the photosynthetic 
complex where the photosynthesis takes place. 
The common characteristic shared by fluorescent molecules, molecules with a triplet state 
and photosensitive molecules like azobenzene, is that the lifetime of the excited state is long 
compared to the time it takes for the excitation to occur. This brings us to the subject of this 
chapter, which deals with a phenomenon, closely associated with the lifetime of the excited 
state, which we called “dynamic photobleaching”. In general usage, the term 
“photobleaching” has been taken to refer to permanent damaging of a chemical, generally 
due to prolongued exposure to light. Here, we will not consider this, but rather a reversible 
phenomenon whereby the number of molecules in the ground state is depleted as a 
consequence of the long lifetime of the excited state. 
This effect has important consequences for UV-Visible spectroscopy measurements. In 
practical use, UVVis light absorption experiments are simple and straightforward: a 
collimated beam of light is sent onto a sample, the transmitted light is collected by a 
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spectrometer and the ratio between the incident and the transmitted light is measured. Its 
simplicity means that this technique is widely used in many areas of science. The 
information one can get from these measurements concerns the allowed electronic 
transitions. On the other hand, once the electronic structure of a substance is known, 
computer simulations are able to reproduce absorption spectra. 
A very common use of UV-vis spectroscopy is to measure the concentration of substances, 
and this requires the celebrated Lambert-Beer (LB) law. This semi-empirical law states that 
the light propagating in a thick absorbing sample is attenuated at a constant rate, that is, 
every layer absorbs the same proportion of light [Jaffe & Orchin 1962]. This can be expressed 
simply as the remaining light intensity at a depth x into the sample is: I(x) = I0 exp(−x/D) 
where I0 is the incident intensity and D is a characteristic length which is called the 
“penetration depth” of a given material. If an absorbing dye is dispersed in a solution (or in 
an isotropic solid matrix) this penetration depth is inversely proportional to the dye 
concentration. In this way it is possible to determine a dye concentration c by 
experimentally measuring the absorbance, defined as the logarithm of intensity ratio 

 
(1) 

where x is the thickness of the sample (the light path length), D is the penetration depth, c 
the concentration of the chromophore, and δ the universal length scale characteristic of a 
specific molecule/solvent. One should note that in chemistry and biology one often uses 
base-10 logarithm in defining the Absorbance, rather than the more intuitive natural 
logarithm. If c is in molar units, the constant of proportionality ε is the “molar absorption 
coefficient” and it is inversely proportional to the characteristic length δ defined above. 
 

 
Fig. 2. Schematic diagram of a typical measurement of light absorption. The amount of 
absorbed light dI across the layer dx is proportional to the number of chromophores in that 
volume. 

The derivation of this empirical law is straightforward. It assumes that the fraction of light 
absorbed by a thin layer of sample (thickness dx) is proportional to the number of molecules 
it contains (see figure 2), expressed as the volume fraction n times the volume of the thin 
layer (Area · dx) 
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where I is the intensity of the incident light. Introducing the cross section σ, which is a 
measure of the probability of a photon being absorbed by a chromophore, the differential 
equation becomes 

 
Solving the equation from 0 to x (total thickness of the sample), with a light I0 incident on 
the front of the sample, one has 

 
and we obtain equation 1 (rearranging the units opportunely). 
Thanks to the Lambert-Beer law, UV-visible absorption spectroscopy is a useful and 
practical tool in many areas of science [Serdyuk et al. 2007]. The technique is widely used in 
organic chemistry and biology, as macromolecules often have a characteristic absorption in 
the UV and, more rarely, in the visible region of the EM spectrum. For example, all proteins 
have a characteristic absorption band around 190nm, due to the molecular orbital formed by 
the peptide bond, and another band around 280nm due to the aromatic side chains of 
aminoacids. Usually, this band is used to determine the concentration of proteins in a 
compound. Nucleic acids also absorb in the UV region and have a strong absorption band at 
260 nm. The ratio between the absorption peak at 260 and 280 nm can give information 
about the relative quantity of DNA and protein in a biological complex, like ribosome. In 
atmospheric sciences, absorption spectroscopy is used to identify the composition of the air 
[Heard 2006 ]. Because the concentration of the species is very low, the light path must be 
very big to yield a detectable signal. Because L is so large and the concentration can change 
over the long range, a generalised Lambert-Beer law is preferred: 

 
where σi is the absorption cross section of each species i. Visible absorption can even be 
applied as a diagnostic tool. In medicine, for example, it is used to measure microvascular 
hemoglobin oxygen saturation (StO2) in small, thin tissue volumes (like small capillaries in 
the mouth) to identify ischemia and hypoxemia [Benaron et al. 2005]. 
All these applications rely on the validity of the LB law. However, this empirical law has 
limitations, and deviations are observed due to aggregation phenomena or electrostatic 
interactions between particles. The simpler form of the LB law also fails to describe the two-
photon absorption and the excited state absorption process, and it must be substituted by a 
generalised Lambert-Beer law [Nathan et al. 1985]. These phenomena are usually present 
only at very high incident light intensity. Also, highly scattering media, very relevant for the 
medical and geological applications, produce large deviations from LB law. 
This chapter addresses the topic of deviations from the LB law occurring in photosensitive 
media due to self-induced transparency, or photobleaching [McCall & Hahn 1967, 
Armstrong 1965]. This effect has been reported in a number of different biological systems 
such as rhodopsin [Merbs & Nathans 1992], green fluorescent protein [Henderson et al. 
2007] and light harvesting complexes [Bopp et al. 1997] stimulated with strong laser 
radiation. 
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In figure 1, we showed how the excitation/disexcitation of a molecule is essentially a 3-state 
(or more!) process. Some of the energy loss, however, occurs very quickly and only involves 
vibrational levels. Considering the different time scales, one can simplify this into a 2-state 
model: an excitation process which promotes the molecule into a long-lived metastable state 
and its relaxation to the ground state. The origin of the long life of the metastable state 
depends on the particular system under study. In the case of spin flip of the excited electron, 
the physical reason underlying the stability of the triplet state is to be found in the selection 
rules, which practically forbid the transition between two different spin states (excited 
triplet state- ground singlet state). This process has raised a vivid interest in the scientific 
community in the last few decades, because triplet state is often a big problem in organic 
semiconductor devices [Wohlgenannt & Vardeny 2003]. Alternatively, the molecule, excited 
by light, gets “trapped” in a metastable state, separated from the ground state by an energy 
barrier. This is the case for azobenzene, a small molecule which exists in two different forms 
(isomers trans and cis). The transition between the two isomers requires breaking a double 
bond. UV light with a certain energy induces this double-bond breakage and lets the 
molecule rotate around its axis; with a certain probability, the bond will reform when the 
molecule is in a metastable cis isomer. The relaxation to the ground (lower energy) state can 
only happen if there is enough energy to break the double bond again. This can occur if the 
molecule is excited with a light at a different wavelength, or if the thermal fluctuations 
provide the molecule with enough energy to overcome the energy barrier and return to the 
ground state. The thermal relaxation is very slow and the characteristic lifetime depends on 
the nature of the chromophore and of the surrounding environment. This is a classical 
Kramers problem of overcoming an energy barrier (the breakage of the double bond) 
between the metastable and the ground state. In the case of this simple molecule, the 
Lambert-Beer law is no longer accurate because of a phenomenon which we call here 
“dynamic photobleaching” or saturable absorption. It means that the photons which shine 
on a sample are absorbed by the chromophores in the first layers. If these molecules don’t 
return to their ground state immediately, when new photons fall on the sample they can’t be 
absorbed anymore in the initial layers and therefore propagate through the sample with a 
sub-exponential law. So, the effective photo-bleaching of the first layers allows a further 
propagation of light into the sample and this leads to nonlinear phenomena which are 
interesting both from the theoretical [Andorn 1971, Berglund 2004, Statman & Janossi 2003, 
Corbett & Warner 2007] and from the experimental point of view [Meitzner & Fischer 2002, 
Barrett et al. 2007, Van Oosten et al. 2005, Van Oosten et al. 2007]. 
The aim of this chapter is to explore the effect that this phenomenon has on the typical 
absorption measurements which are commonly performed on these kinds of molecules. We 
will propose a new theory which can mathematically describe this effect and then we will 
give experimental evidence of its validity both on azobenzene, a molecule with a very long-
lived excited state and whose kinetics of transition can be followed, and on more common 
fluorescent molecules, like chlorophyll, focussing on the absorption of light at equilibrium. 

2. Materials and methods 
2.1 Azobenzene 
The molecule 4’-hexyloxy-4-((acryloyloxyhexyloxy)azobenzene (abbreviated as AC6AzoC6) 
was synthesized in our lab by Dr. A.R. Tajbakhsh. Its molecular structure is shown in figure 
3 and its synthesis is described in [Serra & Terentjev 2008a]. All azobenzene-based 
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molecules exist in two isomers, trans and cis: the transition between the trans isomer, more 
stable, to the cis isomer, metastable, is stimulated by UV light, while the opposite reaction 
can be spontaneous. The isomers of the described molecule are shown in fig. 3 

 
Fig. 3. The monomer used AC6AzoC6 has an acrylate head group followed by a carbon chain 
where the azo-group is attached. It is schematised here in its two isomers, trans and cis. 

The two isomers of this molecule absorb light at different wavelengths: the trans isomer has 
a peak around 365 nm, while the cis isomer absorbs at 440 nm. It is thus possible to monitor 
the kinetics of trans-cis transition. 
Monitoring a conversion process in real-time presents difficulties for a traditional 
spectrophotometer, because measurements over the whole spectrum of wavelengths take a 
long time, and moreover it is often difficult to access the sample in order to provide the UV 
illumination for isomerisation. For this reason, we chose a spectrometer equipped with a 
CCD camera, which is able to collect signal across the whole visible spectrum 
simultaneously. This technique works by illuminating the sample with white light; a system 
of gratings then splits the transmitted light into its various spectral components, whose 
intensity is measured by an array of photodiodes. This type of spectroscope does not require 
a fixed or enclosed sample holder, therefore placing another source of illumination close to 
the sample is easy. 
For the measurements of light absorbtion a Thermo-Oriel MS260i (focal length 260mm) 
spectrometer was used. The apparatus consists of a quartz probe lamp with an adjustable 
slit, a quartz cuvette with 1cm optical path, an optical liquid lightguide to conduct the light 
from the cuvette to the spectrometer, a 50 μm slit at the entrance of the spectrometer, and 
the Andor linear-array CCD camera connected to a computer. The simultaneous 
measurement of all spectral frequencies allows for a response as fast as 0.021 s and the 
possibility of reducing noise by averaging over many measurements. Before every 
absorption spectrum, a background and a reference spectrum were collected: the 
background is the spectrum collected without the illumination from the probe lamp, and the 
reference was the spectrum collected with the probe lamp illuminating the cuvette filled 
with solvent (without the chromophore dye). The absorbance was then calculated from the 
counts of the detector as: 

 



Nonlinear Absorption of Light in Materials with Long-lived Excited States  

 

7 

For all the experiments, it was important to verify that the linear relation between 
absorbance and concentration held for the value of absorbances considered. It was shown 
that the absorption-concentration relation was linear below A ≈ 1.2 in the base-10 defined 
absorbance. At the intensity used for this experiment, for a concentration c expressed in 
moles, the penetration depth at 365nm was δ = c ∗ 480nm. 
At higher concentrations, the linearity fails because of various phenomena, including 
aggregation of the molecules (especially with molecules like proteins or polymers), the 
scattering of light from big particles and stray light in the spectroscope. 
We provide monochromatic illumination to stimulate the isomerisation of azobenzene using a 
Schott KL 1500 LCD lamp, placed at 90 degrees with respect to the incident probe light and the 
optical fiber that collects the light from the sample. In this way the cuvette is irradiated with 
UV light while the absorption spectrum is recorded along the perpendicular beam path, so the 
absorption can be followed in real time without interference of the illumination light. The 
intensity of the monochromatic light was in the order of a few tens of μW cm−2. 
All isomerisation reactions were followed for 90 minutes, which was a sufficient time for 
reaching the respective photostationary states. After this, the lamp was switched off and the 
absorbance was measured during thermal isomerisation in the dark. An example of 
spectrum measured with this technique is shown in fig. 4. 
 

 
Fig. 4. Photo-induced isomerisation (a) and thermal relaxation (b) curves of AC6AzoC6 
recorded as a time sequence. The arrows indicate the direction of the peak movement 
during the reaction. 

2.2 Other chromophores 
Chlorophyll was extracted from Commelina Communis leaves1. The leaves were first boiled in 
distilled water, in order to kill the enzymes which digest chlorophyll once the leaf is cut 
from the plant. The leaves were then dried and ground up with a pestle, with a few drops of 

                                                 
1 Leaves were kindly provided by J. McGregor 
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acetone, and then left in a 50% hexane/water mixture (the hexane forms a layer on top of 
the water), to separate the chlorophyll from the water-soluble compounds (vitamins, etc). 
The extracted solution was filtered to avoid impurities, like dust particles or even intact 
chloroplasts which could be responsible for light scattering effects. The whole extraction 
process was carried out in the dark. This method of extraction does not allow the separation 
of chlorophyll from the carotenoids which could be present in the leaves. However, the 
collected spectrum shows that the stronger absorption bands are those of chlorophyll, and 
this means that the other compounds are present only in low concentrations. Moreover, for 
the purpose of our experiment, an highly purified chlorophyll is not needed, because the 
analysis focusses on the absorption band around 660nm, far from the absorption band of 
carotenoids (blue region). What is important to remark is that there are different kinds of 
chlorophyll, whose relative content varies from species to species. The two main chlorophyll 
components, called “chlorophyll a” and “chlorophyll b”, differ by a carboxylic group, 
attached only to the porphyrine ring in chlorophyll b. The two molecules have slightly 
different absorption spectra, but this is not relevant for the experiments, provided that the 
plant species from which the chlorophyll is extracted is always the same (and has therefore 
the same percentage of chlorophyll a and b). 
From the discussion above, it is clear that chlorophyll is a very special molecule, and has 
many peculiarities. In order to demonstrate that the theory is more general, a commercial 
dye with a strong absorption in the visible region is also investigated. Nile Blue A, a dye 
commonly used for staining DNA, but with spectral properties similar to chlorophyll, was 
selected. The chemical structure of chlorophyll and Nile Blue is shown in figure 5. 
The spectroscopy experiments were conducted with an Ocean Optics USB 4000 
spectrometer, equipped with optical fibers. A 25W halogen lamp with spectral range 400-880 
nm, whose intensity could be tuned, was used as illumination source. The light was 
focussed with collimating lenses onto a 1 cm cuvette containing 3 ml of solution. 
For comparison with more “conventional” spectroscopes (meaning, with a fixed sample 
holder and a fixed intensity of incident light), a Cary UV-Vis Spectrophotometer was used 
to measure spectra and absorbances of the two substances at various concentrations. The 
intensity of the incident light from the spectrometer was also measured with a power meter. 
In order to measure the intensity of the incident light, key quantity in our experiments, the 
light from the source was shone onto the detector directly, in the absence of any sample or 
cuvette in between. Knowing the characteristic response of the spectrometer detector, it is 
possible to measure the intensity of light. Three different values, the number of counts at a 
single wavelength or the integral of the intensity over the range of wavelength which 
correspond to the absorption peak, and the integral over all the wavelengths could be used 
to quantify the incident light intensity. In all cases the outcome of the experimental results 
was the same. Using as a value of intensity the intensity at the single peak-wavelength made 
it possible to compare it to the conventional spectroscope (which produce monochromatic 
light). It was verified that the detector had a linear response in counts versus intensity over 
the range of intensities we used. 
For the absorption spectra, measured as A = log10(I0/I) reference spectra for the pure solvent 
were taken before each measurement at every light intensity. The absorption and 
fluorescence spectra of these materials are shown in figure 6. We chose to refer all the 
absorption values to the wavelengths of the peaks in the yellow-red region. 
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                                                    (a)                                                   (b) 
Fig. 5. Chemical structure of a) chlorophyll a and b) nile blue dye. 
 

 
Fig. 6. Absorption spectra of chlorophyll (green curve) and nile blue (blue). The absorption 
peaks which were considered in this work are those at 668nm and 628nm respectively. 

For each solution, the linearity of the absorption/concentration curve was verified, in order 
to avoid falling into a trivial nonlinear regime. The experiments were conducted in random 
order of light intensity, and the reproducibility was verified. The absorption of each 
chlorophyll solution at 660 nm was stable over a range of hours at constant incident light 
intensity, indicating the absence of chemical irreversible bleaching. Fluorescence from the 
dye was also ruled out as a possible source of disturbance, because at the light intensity we 
used it is not detectable with our equipment. 

3. Theory 
Here we present a description of the dynamical photobleaching effect in the case of 
azobenzene isomerisation, which was previously discussed. We will then generalise the 
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discussion to all the molecules with a long-lived excited state, and show how this affects the 
measurements of light absorption. 
The non-Lambertian propagation of light through a medium has important consequences 
for the analysis of photo-isomerization kinetics: when the photo-bleaching becomes 
important, the measured absorbance no longer follows a simple (traditionally used) 
exponential law. In photosensitive molecules like azobenzene, irradiation with light of a 
certain wavelength induces a conformational change (isomerization) from an equilibrium 
trans state where the benzene rings are far apart to a bent cis state where they are closer. The 
isomerization process follows first-order kinetics. Calling the fraction of molecules in the 
two states trans and cis nt  and nc we have 

 
where I is the intensity of light, k is the trans-cis isomerisation rate, kb the stimulated back 
transition rate (cis to trans), and γ the thermal relaxation rate. In the experiments on 
azobenzene described below we use an illuminating light monochromated at the trans-cis 
transition wavelength. In this case the stimulated cis-trans isomerization is negligible (that is, 
Ikb → 0) and, remembering that nc = 1 − nt the kinetic equation reduces to 

 
(2) 

In this equation the intensity I = I(x) is the light intensity at a certain depth into the sample. 
It is convenient to define a non-dimensional parameter α = I0k/γ, which represent the 
balance of photo- and thermal isomerization at a given incident intensity I0. In this notation, 
the amount of molecules in the trans conformation in the photostationary state, when the 
balance between nt and nc is stable, and therefore dnt/dt = 0 the equation reduces to simply 

 
therefore 

 
(3) 

To express mathematically the reversible photobleaching phenomenon, it can be assumed 
that the change in light intensity across a thin layer of sample (thickness dx) is proportional 
to the number of molecules which are excited, i.e. the number of chromophores which 
absorbed light in a small volume of sample of thickness dx; neglecting the stimulated cis-
trans isomerization (which is appropriate in our study), the model can be much simplified to 
give, per unit time: 

 
Then, combining all the parameters, such as the photon cross section and the transition 
rates, we recover the penetration depth D = δ/c as the relevant parameter of the relation, 
and the final expression is: 
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(4) 

with D the penetration depth, inversely proportional to concentration. In order to study this 
problem at the photostationary state, one needs to combine the equations (4) and (3). 

 
(5) 

Solving the differential equation, the stationary-state light intensity at a depth x is given by 
the relationship [Corbett & Warner 2007] 

 
(6) 

Looking at the equation above some important insights can be gained. The most important 
is that in the limit α = 0 the equation reduces to the Lambert-Beer law, i.e. an exponential 
decay in the transmittance through the medium. Therefore all the nonlinearity is included in 
α. The opposite limit, when α is very big, leads to a linear relation between transmittance 
and sample thickness. Figure 7 is a representation of equation 6 and it shows the intensity 
variation I(x) for several values of the parameter α: from the plot of transmittance as a 
function of x, it is clear that, if the incident intensity, and therefore α, is low enough, the 
Lambert-Beer law is valid and the decrease is exponential, but if the incident intensity is 
high the bleaching of the first layers becomes progressively more relevant such that they 
become partially transparent to the radiation. The decay thus tends to become linear in the 
bulk of the sample, I(x) ≈ I0(1 − x/αD). 
 
 

 
 

Fig. 7. Transmitted intensity ratio I/I0 in the photostationary state as a function of the 
parameter x/D (proportional to sample thickness or inversely proportional to chromophore 
concentration) for several values of α. At small α the decay is exponential; the light penetrates 
deeper into the sample as α increases, as the decay tends to be linear. [Serra & Terentjev 2008b] 
In order to model the dynamics of photoisomerisation, which is evidently inhomogeneous 
across the sample, it is not enough to model photobleaching with equation 6, but instead the 
equations (2) and (4) should be coupled. Calculating a time derivative of equation 4 leads to 
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(7) 

In the right hand side expression, equation 2 can be substituted, giving 

 
(8) 

This equation can be solved with the following method [Corbett et al. 2008]. Introducing the 
variable y = ln(I/I0), which is a very sensible variable, being also the inverse of the 
absorbance, the left-hand side is greatly simplified and one obtains 

 
(9) 

Also, from equation 4 

 
(10)

Substituting nt in equation 9 and rearranging, one finds 

 
(11)

In the next step, one has to keep in mind that 

( ) exp( )yd dy dy
e y y

dx dx dx
γα γ γα γ+ = +  

Rearranging equation 11 and exchanging the order of derivatives on the left-hand side, the 
equation reduces to 

 
(12)

It is now possible to integrate this expression. Integrating between 0 and x, the integral and 
the derivative on the left-hand side cancel out and one finds: 

 
(13)

The factor γα comes from the solution of the definite integral for x=0 (the lower integration 
limit). In fact, if x=0, I = I0 and therefore y=0 by definition. 
The last step is a time integration. At time zero, the absorbance A = −y must be equal to the 
Lambert-Beer law value x/D. Including these considerations, the integral expression for the 
intensity I(x, t) becomes: 

 
(14)
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Fig. 8. Transmitted intensity ratio I/I0 as function of time through a fixed value of x/D = 2.7 
and different incident light intensities. There are several things to observe in this figure. First, 
as α changes, the photostationary state reaches different levels, as expected: if α is bigger, the 
sample becomes more transparent. The second thing is that when α increases (therefore 
intensity of light) the sample reaches the stationary state more quickly. The last observation, 
most important for our study, is that with increasing α the deviation of the kinetics from a 
simple exponential becomes more and more evident. [Serra & Terentjev 2008b] 

The upper limit of this integral is the measurable absorbance A = ln[I0/I(x, t)] from a sample 
of thickness x. Figure 8 shows a simulation predicting the time-evolution of intensity 
transmitted along the path x/D. Note that at t = 0 all curves converge to the Lambert-Beer 
I/I0 = exp(−x/D), while at long times a significant portion of chromophore is bleached and 
the transmitted intensity increases. 
We should note that the problem of non-linear photo-absorption dynamics is not only 
restricted to azobenzene isomerisation. Even ordinary dye molecules that do not undergo 
conformational changes stimulated by photon absorption, still follow the same dynamic 
principles, but with electronic transitions in place of trans-cis isomerization. Therefore, the 
results of this paper should be looked upon as widely applicable to other systems. In 
particular, the two key conclusions, that the crossover intensity into the non-linear photo-
absorption regime is independent of dye concentration and that the rate of the transition is 
independent on solvent viscosity, are probably completely general. 
The model we propose only assumes a two-configuration system, and it does not imply 
anything about the nature of the two states. Therefore, it is important to verify that this 
model has a wider and broader validity, and, in detail, that it helps to understand the 
behaviour of a large class of chromophores, like fluorescent molecules. Azobenzene 
molecule exists in two physical states, trans or cis; for chlorophyll, one could make an 
analogy and, considering the electronic transition, call the two states “ground” and 
“excited”, we still find the same formula at the photostationary state 

 (15)

where x is the path length of light through the sample. It is important to see here that the 
absorbance has a nonlinear dependence on the incident light intensity. The limits where the 
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LB law is recovered are either very low incident intensity (practically, it can never be 
achieved) or a very fast recovery to the ground state compared to the excitation. 
Equation 15 can has important implications for the interpretation of absorption data. Solving 
the equation for the absorbance A = log(I0/I) leads to the expression 

 
(16)

from which it is clear that the value of the absorption does not only explicitly depend on the 
concentration and optical path length, but also on the intensity of the incident light I0. 

4. Non-linear kinetics of photobleaching. 
Azobenzene, as previously discussed, is a small molecule with two double-bonded nitrogen 
atoms linked to two benzyl rings. It is photosensitive, because exposure to light induces an 
isomerisation trans-cis (indicating two possible spatial arrangements of the benzyl rings) 
around the double bond between the nitrogens, and this results in a molecule shape change. 
The process is fully reversible either by stimulated backward photoconversion (with a light 
at a different wavelength), or by spontaneous relaxation to the equilibrium trans 
configuration. 
The isomerization of azobenzene and its derivatives has been extensively studied for the last 
fifty years [Sudesh Kumar & Neckers 1989, Renner & Moroder 2006, Rau 1990], because this 
molecule has many interesting features and its applications range from electronics to 
biomedicine. It has been used as a model molecule for all the biological processes that 
involve similar reactions, like the isomerization of retinal in rhodopsin, or as a probe for 
measuring the free volume in polymers [Victor & Torkelson 1987]. More recently, its 
characteristic response to the polarization state of light made it a suitable molecule for 
surface patterning [Nathanson et al. 1992, El Halabieh et al. 2004]. Finally, azobenzene-
containing elastomers can give rise to inhomogeneous photo-mechanical effects and their 
applications as photoactuators and artificial muscles are under study [Hogan et al. 2002, 
Finkelmann et al. 2001, Yu et al. 2004]. 
However, in spite of the large literature on the subject, many fundamental mechanisms and 
effects have not been clarified yet. It is assumed that the isomerization reaction is very 
sensitive to both electrical and mechanical characteristics of the environment which 
surrounds the molecules, but identifying and separating these effects is a difficult and often 
ambiguous task. 
Of the two possible isomers of azobenzene, the trans form is the lowest energy form, since 
the benzyl ring electron clouds are far apart (see fig. 3), but under UV light an isomerisation 
occurs; once in the cis state, the molecules can return back to their equilibrium trans state 
both by stimulated isomerisation with visible light or by thermal relaxation [Rau 1990]. The 
rate constants of these two processes are usually different, thermal isomerisation being 
slower. The microscopic mechanism that leads to the isomerisation is still not clear, but there 
are suggestions for both rotational and inversional [Asano & Okada 1984] mechanisms may 
be competing. 
The isomerisation of azobenzene can be monitored by UV-Vis (ultraviolet and visible light) 
spectroscopy, because the two trans and cis compounds have different absorption spectra in 
this range: the trans isomer absorbs around 365 nm, while the cis isomer at around 440 nm 
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[Rau 1990]. Irradiation with light at the wavelength of the trans peak progressively depletes 
the molecules in this conformation. This reaction can be “followed” by measuring the 
intensity of the absorbance of the spectrum peak at 365 nm, which decreases as the trans-cis 
photo-isomerisation reaction proceeds. An example of spectral evolution as isomerisation 
proceeds can be found in figure 4. 
The models that were proposed for reaction kinetic are basically first order models, with the 
important exception of azobenzene in polymer matrices. The fraction of isomers in the cis 
state, nc, varies as [Zimmerman et al. 1958, Mechau et al. 2005]: 

 
(17)

where I is the irradiation intensity, kb and k are the cis-trans and trans-cis constant of 
photoisomerisation respectively, γ is the thermal cis-trans isomerisation and nt represents 
the fraction of molecules in the trans state, and it is equal to (1 − nc). In the derivation of the 
formula the sensible assumption was made that the trans-cis thermal isomerisation constant 
is negligible. 
A basic characteristic of the photoisomerisation problem is the rate of spontaneous thermal 
cis-trans isomerisation γ. For a given azobenzene derivative, at fixed (room) temperature and 
sufficiently low dye concentrations to avoid self-interaction, this rate is approximately the 
same for all our solutions. We measured this rate after monitoring the relaxation of the 
spectrum after the UV illumination is switched off (see [Serra & Terentjev 2008a] for detail) 
and obtained  γ ≈ 1.25 · 10−4s−1 (or the corresponding relaxation time of ~ 8000s). 
In order to test the predictions of the theory, dynamic absorption measurements were 
performed for different dye concentrations and different light intensities. Considering 
equation (14) this is equivalent to changing x/D (where D is inversely proportional to the 
dye concentration) and α, which is proportional to the incident intensity I0. With our 
experimental setup it was possible to follow all the isomerisation kinetics and thus the time 
dependence of I/I0 [Serra & Terentjev 2008b]. 
We prepared three different dye solutions with (non-dimensional) weight fractions c = 2.5 · 
10−3, 0.01 and 0.025, resulting in values of penetration depth ranging from D = 36 mm, to D 
= 3.6 mm. We recall here the physical meaning of the penetration length, which is the 
distance through the sample over which the light falls across a sample to 1/10 of its original 
intensity. The cuvette containing the sample is 1 cm long; therefore a sample with D equal to 
a few millimeters is almost completely opaque. 
The measurements were performed using the Thermo-Oriel spectroscope described in the 
materials and methods section. Illumination was provided by a Nichia chip-type UV-LED, 
emitting at 365nm (bandwith about 10nm wide) whose output power was accurately 
regulated by a power supply. The LED light was attenuated by passing through a black tube 
of controlled length, placed in front of a quartz cuvette with 1 cm optical path. Several 
values of intensity were used in reported measurements, ranging between I0 = 4 and 60 
μW/cm2. It is important to point out that these intensity values are very low and that most 
experiments on azobenzene isomerization are performed with intensities which are orders 
of magnitude higher, making the photobleaching much more of an issue. The low values of 
intensity allowed us to have a kinetics slow enough to detect the features which the theory 
predicts at short times. Every point of the spectrum was collected as an average of 100 
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measurements. All isomerization reactions were followed for several hours, until a 
photostationary state was reached. The measurements were repeated at different 
illumination intensities (regulated with the power supply) and at different dye 
concentrations. 
In all cases it was important to verify that the dye concentration remained in a range where, 
at time t = 0, the linear proportionality between absorbance and concentration (Lambert-
Beer law) held. This is important because the concentration of molecules in the trans state at 
every instant was determined from the absorbance at 365 nm. Absorbance was measured at 
several concentrations. The deviation from linearity started at A ≈ 1.2, which corresponds to 
the dye weight fraction of c = 0.03 (3 wt%) in our 1 cm cuvette. After this point, aggregation 
effects start playing a role and the basic Lambert-Beer law is no longer valid, undermining 
the theoretical relationship given by the equation (14). We always kept the concentrations 
below this value, so that the linearity at t = 0 was maintained, with A = x/D where the 
penetration depth is inversely proportional to chromophore concentration, expressed as 
weight fraction, D ≈ δ/c with δ = 91 μm. 
For our detailed dynamic experiments, a very important issue was the viscosity of the 
solution. In fact, at high illumination intensity we have encountered an unexpected 
problem. Figure 9 shows that the transmission of light through a low-viscosity dye solution 
(in pure toluene) displays a characteristic oscillatory behaviour. Detailed analysis of this 
phenomenon is under further investigation. Whether the oscillations are linked to the local 
convection due to the heating of the sample spot [Nitzan & Ross 1973] or to the diffusion of 
the less dense cis molecules – or whether they are intrinsic to the non-linear photochemical 
process [Borderie et al. 1992] – is not clear at this stage. 
 

 
Fig. 9. Kinetics of isomerisation monitored through the observation of I/I0 over time for 3 
different values of x/D (× - 0.2, ◊ - 0.7, • - 1.1) and 2 different values of α, corresponding to: 
(a) I0 = 4μW cm−2, and (b) I0 = 20μW cm−2. The periodic instability was reproducible in all 
low-viscosity experiments. [Serra & Terentjev 2008b] 
In order to avoid this difficulty, the dye solutions were prepared in a mixture of toluene and 
polystyrene of high molecular weight. Adding polystyrene increases the viscosity of the 
solution by over 2 orders of magnitude, and in this way prevents fluid motion in the cuvette 
on the time scales of our measurements. Polystyrenetoluene solutions were prepared at a 
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fixed weight ratio. Adding polystyrene to toluene increases the Rayleigh scattering of the 
solution, but we felt that we could safely do that because on one hand the absorption 
dynamics is not affected (we used the same concentration for all the measurements and for 
the reference spectrum), and on the other we measured the transmittance of the toluene-
polystyrene solution, which is almost equal to the pure toluene solution at 365nm. 
In figure 10 the representative experimental results are shown for the solution with the 
highest chromophore concentration (D = 4.6 mm, leading to x/D = 2.2) and three values of 
incident intensity. One finds that all curves converge to the same initial value corresponding 
to the I/I0 = exp[−x/D], which for this concentration means quite a low transmission (I/I0 ≈ 
0.11). If the isomerisation didn’t take place, the sample absorption would be constant in time 
according to the classical Lambert-Beer. A traditional description of the kinetics of 
isomerisation would predict an exponential decay of the absorption over time, but from 
figure 10 we see a strong deviation. We fit the data with the theoretical model given by 
equation (14) where we input the values of γ(thermal relaxation) and x/D, leaving only α = 
I0k/γ free. Two data sets at higher intensity show the transmitted I(x, t) reach saturated 
values. In this case we are confident of the fit because we have to match both the slope and 
the amplitude of the curve. We obtain α ≈ 60 for I0 = 60 μW/cm2, α ≈ 20 for I0 = 20 μW/cm2, 
and α ≈ 4 for I0 = 4 μW/cm2 (the matching of values is pure coincidence). We found that one 
particular output of experimental recording, the absorbance plateau value (photo-bleached) 
at long times, was extremely sensitive to the reading of reference intensity I0. The latter 
measurement could be affected by various stray factors and in a few cases we had to rescale 
the raw absorbance readings with a proper reference value. This issue did not have any 
effect on absorbance at t = 0, or the kinetics. 
 
 

 
 

Fig. 10. The effect of photo-bleaching for samples with high dye concentration (x/D = 2.2). 
Three values of irradiation intensity are labelled on the plot. Solid lines are fits to the data 
with only one free parameter α, giving α = 60 for the highest intensity, α = 20 for the middle 
intensity, and α = 4 for the lowest intensity. [Serra & Terentjev 2008b] 



 Nonlinear Dynamics 

 

18 

 
Fig. 11. The same experiment as in figure 10 but with an intermediate dye concentration 
(x/D = 1.1), and the same values of irradiation intensity. Here the solid lines are not fits, but 
theoretical plots of equation (14) for α = 60, 20 and 4 for the decreasing I0, respectively. 
[Serra & Terentjev 2008b] 

At a lower concentration of chromophore, corresponding to D ≈ 9.2 mm and x/D = 1.1 (the 
transmitted intensity is about 1/10 of the incident intensity), figure 11 shows the similar 
features of the non-linearity, which are especially evident at very short times. Again all curves 
start at the same I/I0 ≈ 0.33. At higher irradiation intensities we achieve the saturation and the 
steady-state value I(x) corresponding to the solution of equation (6). The change of curvature, 
notable in figures 8 and 10, is not so clear here even at the highest I0. However, in the 
comparative analysis of data we now take a different approach. Assuming all the parameters 
for the curves are now known (γ and x/D from independent measurements, and α from the 
fitting in figure 10), we simply plot the theoretical equation (14) on top of the experimental 
data. It is clear that the theory is in excellent agreement with the data. 
Finally, we study the case of low dye concentration (D ≈ 91 mm, x/D = 0.14) in figure 12: 
this is also the case which is more relevant for biological spectroscopy studies, where the 
concentration of chromophore is usually small. In this exemplified case, the initial 
transmittance is very high: almost 85% of the incident light goes through the sample. Here, 
the complicated integral equation (14) simplifies dramatically, since at small x/D  1 the 
difference between A = ln 10 ln(I0/I) and x/D (which is the range of integration in (14), is 
also small. The integration can then be carried out analytically, giving 

 
(19)

which gives in the stationary state the correct solution of equation (6) approximated at small 
x/D: 
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Fig. 12. At low dye concentration (x/D = 0.14) the sample is relatively transparent. The data 
are for the same three values of irradiation intensity as in the earlier plots (but note that the 
I/I0 axis starts from 0.8). The solid lines are theoretical fits for α = 60, 20 and 5. The inset 
shows the plot of exponential relaxation rate τ−1 against I0, with the linear fit. [Serra & 
Terentjev 2008b] 

The fits of the data for I(t) are again in good agreement with the full theory. More 
importantly, we also see that that the rate of the process described by the approximation (19) 
is given by the simple exponential, τ−1 = γ(1 + α) = γ + kI0. This is in fact the rate originally 
seen in the kinetic equation (2). Therefore, if we instead fit the family of experimental curves 
in figure 12 (and several other data sets we measured) by the simple exponential growth of 
the absorbance, we can have an independent measure of the relaxation rates obtained by 
this fit. The inset in figure 12 plots these rates for all the I0 values we have studied. A clear 
linear relation between the relaxation rate and I0 allows us to independently determine the 
molecular constant: 

 
The measurement of k, with high accuracy, gives the ratio k/γ ≈1 cm2s−1μW−1, which 
explains the fitted values of the non-dimensional parameter α = I0k/γ. 
The consequences of this nonlinear behaviour have in the last year raised an interested in 
some research groups who studied the azobenzene-based actuators. The original work by 
Corbett and Warner, in fact, focused only on the steady-state behaviour, could lead to 
accurate prediction about the effect of dynamic photobleaching on the bending angle of 
elastomers [Corbett & Warner 2007]. In fact, the dynamic photobleaching is the reason why 
heavily doped cantilevers, where the penetration depth is very small, can still bend if 
irradiated with sufficiently intense beams. Because the contraction of cantilevers is due to 
the force generated by the differential contraction of the top and bottom layers, if the light 
was propagating exponentially in the medium the bending would be impossible, because 
the thin layer where the light propagates is too small to generate enough force. A non-
exponential propagation of light due to photobleaching, instead, can explain this effect. 
Subsequent work by Van Oosten, Corbett et al. [Van Oosten et al. 2008, Corbett & Warner 
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2008] and White et al. [White et al. 2009] shown experimental evidence of this effect on the 
bending of cantilevers. Lee et al. also shown the nonexponential kinetics on a different 
azobenzene-based molecule [Lee et al. 2009]. 

5. Absorption of fluorescent molecules. 
Because absorption spectroscopy is so widely used in biology, we want to show the effect of 
dynamic photobleaching on a biological molecule, and we chose chlorophyll, an important 
substance in biology (and in everyday life). Chlorophyll has a very recognisable absorption 
spectrum, which shows two clear peaks, one in the blue and the other in the red region 
(which procures its green colour) of the electromagnetic spectrum. It is also fluorescent in 
the far red and the characteristic lifetime of its excited state is about 4 ns [Hipkins 1986, Jaffe 
& Orchin 1962]. If it is irradiated by UV light or very strong visible light it undergoes a 
photo-chemical bleaching which degrades the molecule irreversibly and leads it to 
precipitate from solution, as many studies reported [Mirchin et al. 2003, Mirchin & Peled 
2005, Carpentier et al. 1987]. We wish to observe a dynamical reversible bleaching due to the 
absorption of light, rather than this chemical degradation process. 
In the previous section, the theoretical model was verified in the case of azobenzene, a 
molecule with a very long lived excited state. Because the kinetics of transition could be 
followed by a spectrometer, it was also possible to model it with the kinetics law (equation 
14). The model, as we said, does not make any hypothesis on the nature of the transition, 
and can therefore be extended to all “two-state” (or more realistically, to the simplified 3-
state) systems. Fluorescent molecules have an excited state with a characteristic lifetime of a 
few nanoseconds, which is still much slower than the typical time of excitation. These 
characteristic times, though, are too short to be followed with conventional spectroscopes, 
and the transition kinetics cannot be followed as in the previous case. The model, however, 
also makes predictions also about the transmittance at the photostationary state, which 
differs from the LB law transmittance. To clarify, in figure 10 the Beer limit would be the 
transmittance at time zero, and the stationary state the transmittance at long times. 
It was important, for our experiments, to rule out all possible mechanisms leading to failure 
of LB law. As it was previously discussed, LB law has many limitations. It fails at high 
concentration of dyes, when they start to interact with each other and form aggregates; it 
fails if the stray light is high and the apparent absorption seems to reach a saturation level; it 
can fail at high intensity of the incident light if nonlinear effects like multiple photon 
absorption, or saturable absorption occur [Abitam et al. 2008, Correa et al. 2002]; it fails for 
highly scattering samples because the light is sent out at a non-zero angle. In order to rule 
out all these possible effects, we place ourselves in the most favourable experimental 
conditions: low concentration of dye and low illumination intensity. 
According to the model, the behaviour at the stationary state is described by equation 16. 
The important thing to observe is that the absorbance (or, equivalently, the transmittance) 
also depends on the intensity of the incident light I0. In order to experimentally verify this 
dependence, five different solutions of chlorophyll at known concentrations were measured 
at various light intensities. In this section all the absorbances will be reported in base-10 
logarithmic form. Figure 13 shows the outcome of measurements of chlorophyll absorption 
of the same solution using different incident intensities. The result was striking: the change 
in the measured absorbance was very substantially affected by this parameter. 



Nonlinear Absorption of Light in Materials with Long-lived Excited States  

 

21 

 
Fig. 13. Absorption of chlorophyll in ethanol at the same concentration (in fact, exactly the 
same solutions) measured only changing the incident illumination intensity, I 1 = 6.5, I 2 = 
13.1, I 3 = 27.5 μWm−2s−1. 
Some interesting consequences of this effect are shown in figure 14 and 15. The values 
correspond to the steady-state absorption at the peak wavelength. Indeed it is possible to see 
a strong dependence on the incident light intensity which is enhanced at high solute 
concentrations. A change in intensity of about 80% of the maximum value leads to a change 
in absorbance of about 50%. Figure 14 shows the dependence of the absorbance on the 
intensity at various concentrations. Equation 16 cannot be explicitly solved for A, but only 
for I0 

 
which gives the fits in the plot. Figure 15 shows the same data in the classical absorbance-
concentration plot, for different intensities. It is important to remark that the experimental 
points can be satisfactorily fitted with a straight line in all cases (as the LB law says) but the 
line slopes are very different. Therefore the absorption coefficient may have different values 
if it is measured with a different light source. The exchangeability of results between 
different laboratories is thus in question. 
We obtained analogous results with Nile Blue, a simpler chromophore. We decided to test 
this dye, described in the Material and Methods section, because it has an absorption 
spectrum similar to chlorophyll in the red region, but it is a simpler and well studied 
molecule. This also proves that the results are general, and that aggregation phenomena 
which may occur in chlorophyll solutions (giving rise to scattering phenomena from still 
intact chloroplasts) are ruled out as a possible cause for the observed behaviour. 
All of the experiments were repeated several times and the behaviour was reproducible. 
Moreover, the intensity of light was increased and decreased alternatively to exclude the 
hypothesis of a chemical permanent photobleaching as a reason for absorption decrease. 
Due to the phenomenon of reversible (dynamic) photobleaching, a simple absorption 
experiment like the one described in the introduction is in practice impossible. The values of 
the absorption coefficients are meaningless if they don’t carry the information about the 
intensity of the incident light. 
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Fig. 14. Absorption of chlorophyll as a function of the intensity of incident light. One can see 
an increase of absorbance at low intensities. The values are reported for five different 
concentrations. In the figure, the black dotted line corresponds to the intensity of the 
incident light of a commercial “traditional” spectrophotometer (Cary-UV-Vis). This 
comparison is done in order to show that the range of intensity of our set-up is the same as a 
more conventional one. 

 

�  
 

Fig. 15. Absorption as a function of concentration for the different values of incident light. 
All the lines have a good “Lambert-Beer” linear form but different proportionality 
coefficients. The LB limit was extrapolated from the ideal limit of zero intensity. 

In light of this, can we use the theoretical model to find a new method to determine 
concentrations using absorption spectroscopy, removing this dependence on the incident 
light intensity? Looking at equation 15, knowing the ratio of the concentrations of two 
solutions makes it possible to measure the combined ratio of parameters α = (k/γ)I0. If one 
solution has an unknown concentration c1 and another solution is obtained by a dilution of 



Nonlinear Absorption of Light in Materials with Long-lived Excited States  

 

23 

the first one, so that c1/c2 = r, measuring the absorbance of the two solutions 1 and 2, at the 
same incident light intensity and the same path length x, one obtains: 

 
(20)

then 

 
(21)

Knowing α, one can simply determine the unknown concentration c1 as 

 
(22)

The relation yields the ratio c/δ, and therefore the knowledge of the absorption coefficient 
δ−1 is required. On the other hand, the same method allows determination of δ once the 
concentration is known. 
We took a series of concentrations of Nile Blue solutions and the corresponding absorbance 
measured at different intensities of incident light. Taking pairs of measurements of 
absorbance at known concentration, at the same value of light intensity, we extracted the 
value of the parameter r from each pair, and from that we calculated α and ε according to 
equation 21 and 22. Averaging over all of them, we obtained the value ε = 120000 ± 
20000M−1cm−1. The literature reports ε = 77000M−1cm−1, but we attribute this to the fact that, 
at intensities greater than zero, the absorption values are always systematically smaller (see 
figures 14 and 15). Therefore the deviation from the literature value is still consistent with 
our findings. 
The limitation of this method is that it very sensitively depends on the value of the 
concentration ratio, and therefore the errorbars are quite large. One should not, in fact, rely 
on the value of α measured only with one pair of measurements. Figure 16 shows the 
dispersion of the estimate values of α obtained using different pairs of values. The strong 
dependence of the parameter α on the value of r is evident from formula 21. It is possible to 
see that the function is divergent when  but this happens 
when r ≈ A1/A2, which is exactly the region of interest. For this reason, the values of α are 
very scattered (some of them are even negative, which is physically meaningless), and this 
formula, although it is correct is principle, is hardly applicable to real experimental data. 

6. How to use absorption spectroscopy 
In order to overcome this disadvantage, a more robust method is suggested to determine the 
value of the absorption coefficients. The strong dependence of α on r obviously remains, 
because it comes directly from formula 21. A method based on a linear regression can be 
used instead to calculate δ from a series of absorbances and known concentrations. Also, a 
series of measurements at known δ allow the evaluation of a substance concentration, just 
like in traditional absorption experiments. Rearranging equation 15, one obtains: 

 
(23)
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Fig. 16. Values of α obtained for three different values of light intensity, using various pairs 
of measurements, according to the suggested method. It is important to notice that the 
values of α are systematically higher at higher intensity, as expected. As one would expect 
from equation 21, the values of α are very scattered and therefore the calculation of ε is not 
precise: this is due to the strong dependence of α on r around the point where r ≈ A1/A2. 

If a set of concentrations and relative absorptions are known, one can plot the quantity  
c(1 − 10−A)−1 as a function of Aln(10)(1 − 10−A)−1. The result is a line whose slope is δ/x and 
whose intercept is δ/xα. It is therefore possible to determine all the important parameters. 
Figure 17 shows this plot obtained for a set of Nile Blue dye. Promisingly, all the lines 
obtained with this method are well fitted with parallel lines, which indicates that they all 
converge to the same value of ε. Several lines indicate several values of incident light 
intensity. From the plot one can find the parameter α for all the intensities, and also δ, which 
 

 
Fig. 17. Application of the suggested method to determine the relevant parameters α and δ. 
The slope depends on δ, which is the same for all the samples, but the intercept depends on 
α which changes with the intensity of light. 
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is simply the slope of the lines. Once δ is known, one can then determine, for x = 1, ε = δ−1, 
the molar absorption coefficient. Following classical error analysis we obtain  
ε = 117700±120M−1 cm−1. The agreement with the previous method is good and this second 
method has the advantage of greatly reducing the experimental errors. 
Whilst this method appeared highly successful at a first glance, we discovered that plotting 
the values of α against the intensity of the incident light, measured from the number of 
counts on the spectroscope, generated a relation which is not linear. According to the theory, 
α is simply the product between the incident intensity and some characteristic constant of 
the material, therefore the nonlinearity shown in figure 18 is not acceptable. 
 

 
Fig. 18. The parameter α extracted from the intercepts of figure 17 as a function of the 
intensity of the incident light. The theoretical model predicts a linear relationship, which is 
not what is observed in the figure! 
Considering the possible causes of this discrepancy, one can see in the model that 
stimulated emission is completely neglected. Neglecting the light-stimulated back-transition 
to the ground state was reasonable in the case of azobenzene, where the trans and cis peaks 
were very far apart, but for fluorescent molecules the same light excites both transitions and 
this factor should therefore be considered. The calculations become more complicated but 
the procedure is the same as that described in the introductory section of this chapter. 
One should now return to the kinetics equation, which we re-write here for simplicity. We call 
n the fraction of molecules in the ground state and kb the rate of the stimulated back transition. 

 
(24)

At the stationary state, the left hand side of the equation is zero and n becomes 

 
(25)

This is the value which should be inserted in the expression for the photobleaching 4, giving 

 
(26)
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This can be simplified by dividing by k, introducing the parameter ϕ = kb/k and integrating 
the equation 

 
Note that earlier, neglecting the stimulated back-reaction, we essentially had ϕ = kb/k→0. 
While the integration on the right-hand side is trivial, the left-hand side splits into a sum 

 
The integration gives 

 
Final simplification leads to: 

 
(27)

It is convenient here to reintroduce our usual non-dimensional parameter α = I0k/γ 

 
(28)

This expression is the full and general result. In many cases we expect ϕ to be small, so the 
expansion at the first order correctly recovers the usual expression 6. Expansion to the 
second order, instead, gives 

 
(29)

Using this equation, the fit to the experimental data improved. The expression was readapted 
to take into account the base-10 logarithm of the absorbance. The parameter space was 
restricted because we expected δ and α to be in the same range as previously determined. The 
best fit to the curves was obtained using δ = 8.75 ⇒ ε = 114000M−1cm−1 and ϕ = 0.3. The value 
of ϕ, quite substantially greater than zero, is consistent with the need to modify the original 
equation. Figure 19 shows the concentration c on the y-axis and the absorbance A on the 
abscissa (different curves for different light intensities): this is because formula 29 can be easily 
inverted. The values of α, obtained by fitting, increase linearly with the incident intensity, as 
shown in figure 20. This is good evidence that the stimulated emission cannot be neglected: the 
theory, thus modified, can well reproduce the experimental data. 

7. Conclusions 
The most important conclusion of our work is that one has to be cautious with the classical 
concept of light absorption, represented by the Lambert-Beer law. Even without considering 
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Fig. 19. Fitting of the absorbance/concentration curves at different intensities, obtained with 
the model which considers the stimulated back-transition. 

 
Fig. 20. The parameter α extracted from the fit in the figure above as a function of the 
intensity of the incident light. In this case we observe the linear relationship with the correct 
intercept in the origin. 

multi-particle effects at high concentration or multiple photon absorption, even at very low 
concentrations (corresponding in our case to the low x/D ratio) the illumination intensity 
above a certain crossover level would always produce a non-linear dynamical effect 
equivalent to the dynamic photo-bleaching, which increases the effective transmittance of 
the sample. We emphasise that this is a totally reversible phenomenon, unrelated to the 
chemical bleaching, which involves irreversible damage to the material. The crossover 
between linear and strongly non-linear regimes is expressed by the non-dimensional 
parameter α = I0k/γ and is, therefore, an intrinsic material parameter of every chromophore 
molecule, but not dependent on the dye concentration. Note that the thermal cis-trans 
isomerization rate γ is strongly temperature dependent, influencing the crossover intensity. 
Azobenzene is an ideal molecule for this kind of study, because it allows investigation of the 
transition kinetics using a simple spectrometer. The experimental data we obtained confirm 
the predictions of the theoretical model, which provided a satisfactory fit to the data. At 
high illumination intensity one finds a characteristic sigmoidal shape. Our experiments were 
deliberately carried out in a highly viscous solvent to eliminate the additional complexities, 
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presented in figure 9, caused by the possible local convection flows of different isomers. 
Certainly, a much more in-depth study will be required to take such effects into account. 
The second result is related to the extension of the model to all fluorescent molecules, or 
indeed any molecule which has a long-lived excited state. We showed that, even for those 
molecules where the conversion between the two states is too fast to be followed by the 
spectroscope, the nonlinearity has an important influence. The absorption values at the 
stationary state were sensitive to the experimental conditions, and particularly the intensity 
of the incident light. 
It must be said that in the literature the light intensity of the spectrometer light source is 
very rarely mentioned, therefore it is possible that many values of absorption coefficient 
reported are wrong or meaningless. The reason why, to our knowledge, no one took this 
phenomenon into consideration before is that many commercial spectroscopes always work 
with the same light intensity, so the results are self-consistent. Also, weighing proteins or 
other materials is often a difficult task, therefore a discrepancy between the expected value 
and the literature values could be easily explained away. In fact, we showed that there is a 
much deeper reason. 
Moreover, this raises also problems of interpretation of data obtained comparing, for 
example, the intensity of two different absorption peaks, because, even at the same incident 
light intensity, the nonlinearity also depends on the factor (k/γ) which is different at each 
wavelength. All these problems could be overcome using the method we suggested, which 
is simple and straightforward and it allows reproducibility of results. 
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1. Introduction 
Bose–Einstein Condensation (BEC) of atomic gases has attracted a renewed theoretical and 
experimental interest in quantum many-body systems at extremely low temperatures 
(Pethick & Smith; 2002). This excitement stems from two favorable features: (1) by applying 
magnetic fields and lasers, most of the system parameters, such as the shape, 
dimensionality, internal states of the condensates, and even the strength of the interatomic 
interactions, are controllable; (2) due to the diluteness, the mean-field theory explains 
experiments quite well. In particular, the Gross–Pitaevskii (GP) equation demonstrates its 
validity as a basic equation for the condensate dynamics. The GP equation is the counterpart 
of the nonlinear Schrödinger (NLS) equation in nonlinear optics. Thus, a study based on 
nonlinear analysis is possible and important. 
In nonlinear physics, a soliton is remarkable object not only for the fact that exact solutions 
can be obtained but also for its usefulness as a communications tool due to its robustness. In 
general, solitons are formed under the balance between nonlinearity and dispersion. For 
atomic condensates, the former is attributed to the interatomic interactions, while the latter 
comes from the kinetic energy. Either dark or bright solitons are allowable depending on the 
positive or negative sign of the interatomic coupling constants g, respectively, and indeed 
have been observed in a quasione-dimensional (q1D) optically constructed waveguide 
(Strecker et al.; 2002) (Khaykovich et al.; 2002). Such matter-wave solitons are expected in 
atom optics for applications in atom laser, atom interferometry, and coherent atom transport 
(Meystre; 2002). In this chapter, we extend the analysis of the matter-wave solitons to a 
multicomponent case by considering the so-called spinor condensate (Stenger et al.; 1998) 
whose spin degrees of freedom are liberated under optical traps. Based on theoretical and 
experimental results, we introduce a new integrable model which describes the dynamical 
properties of the matter-wave soliton of spinor condensates (Ieda et al.; 2004a). We employ 
the inverse scattering method to solve this model exactly. As a result, we predict the 
occurrence of undiscovered physical phenomena such as macroscopic spin precession and 
spin switching. 
The chapter is organized as follows. In Sec. 2, the mean field theory of condensate is briefly 
reviewed. Section 3 introduces an effective interatomic coupling in a q1D condensate. Using 
these results, we consider a spinor condensate in q1D regime in Sec. 4. Then, in Sec. 5, we 
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show an integrable condition of the coupled nonlinear equations for spinor condensates in 
which the exact soliton solutions are derived. In Sec. 6 and 7, we analyze the spin properties 
of one-soliton and two-soliton, respectively. Finally we summarize our findings and remark 
some current progresses on this topic in Sec. 8. 

2. Mean field theory 
The dynamics of BEC wave function can be described by an effective mean-field equation 
known as the Gross-Pitaevskii (GP) equation. This is a classical nonlinear equation that takes 
into account the effects of interatomic interactions through an effective mean field. 
In this section, we derive the GP equation for a single component condensate and discuss 
the theoretical background of it for later extension to a low dimensional case and a spinor 
case. 

2.1 Hamiltonian 
In order to derive the mean-field equation for atomic BECs, we start with the second 
quantized Hamiltonian. The Hamiltonian for the system of N interacting bosons with the 
mass m in a trap potential Utrap(r) can be written as 

                                          (1) 

 
(2) 

       
(3) 

where v(r – r′) expresses the two-body interaction and the bosonic field operators satisfy the 
equal-time commutation relations: 

 (4) 

In most of the experiments, the trap is well approximated by a harmonic oscillator potential, 

 
(5) 

Condensates are pancake-shape for ωz � ωx,y whereas cigar-shape for ωx,y �  ωz. For other 
choice of trap potentials, say a linear or a 4-th order potential, the thermodynamic properties 
can be changed (Ieda et al.; 2001). The discussion about non-harmonic potentials will be 
given in a later section in connection with an implementation of quasi-one dimensional 
system. 
The atom-atom interaction v(r – r′) in a dilute and ultracold system can be approximated by 

 (6) 

 
(7) 
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where a is the s-wave scattering length. The scattering length is the controllable parameter 
which determines the properties of the low energy scattering between cold atoms. The 
positive (negative) sign of a corresponds to the effectively repulsive (attractive) interaction. 

2.2 Bogoliubov theory 
The mean-field theory for weakly interacting dilute Bose gases (WIDBG) was proposed in 
Bogoliubov’s 1947 work (Pethick & Smith; 2002). The main idea of his approach consists in 
separating out the condensate contribution from the bosonic field operator: 

 (8) 

where n0 = N0/Ω is a uniform condensate density (c-number) with N0 the number of the 
condensed atoms, Ω the volume of the system, and the quantum part  is assumed to be a 
small perturbation. Taking  and  terms up to quadratic, Bogoliubov built the “first-oder” 
theory of uniform Bose gas. 
This idea can be extended to non-uniform gases in trap potentials. If we introduce the r 
dependence of the condensate part, the field operator is expressed as 

 (9) 

The scalar function Φ(r, t) is called the condensate wave function, which is normalized to be 
the number of the condensed atoms, 

 
(10)

In the case of BEC, the number of the condensed atoms becomes macroscopic, i.e., 

 (11)

In this sense, the “macroscopic” wave function Φ(r, t) is related to the first quantized N-
body wave function ΦN(r1, . . . , rN; t) as 

 (12)

which obviously satisfies the symmetry under exchanges of two bosons. 
Following the Bogoliubov prescription, we substitute (9) into (1) and retain  and  terms 
up to quadratic; 

 (13)

 
(14)

 
(15)
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(16)

Equation (14) is called the Gross-Pitaevskii energy functional. The statistical and dynamical 
properties of the condensate are determined through a variation of EΦ while the low-lying 
excitations from the ground state can be analyzed by diagonalizing . In the ground state, 

 part vanishes identically. 

2.3 Gross-Pitaevskii equation 
Even at the zero temperature, interactions may cause quantum correlation which gives rise 
to occupation in the excited states. The assumption that the quantum fluctuation part  (r, t) 
gives a small contribution to the condensate is valid for a dilute system. In particular, if we 
consider a dilute limit: 

 (17)

where na3 is the gas parameter with n the particle number density, neglecting  parts 
provides an appropriate description of the condensate wave function at zero temperature. 
By a variational principle, 

 
(18)

we obtain the Gross-Pitaevskii (GP) equation: 

 
(19)

This equation has been derived independently by Gross and Pitaevskii (Pethick & Smith; 
2002) to deal with the superfluidity of 4He-II. The GP equation is a classical field equation 
for a scalar (complex) function Φ but contains  explicitly. In this sense, the description of 
the condensate in terms of Φ is a manifestation of the macroscopic de Broglie wave, where 
the corpuscular aspect of matter dose not play a role. Now the modulus and gradient of 
phase of Φ = |Φ|exp(iϕ) have a clear physical meaning, 

 
(20)

where n and v denote number density and velocity of the condensate, respectively. 

3. Confinement induced resonance 
In this section, we derive an effective one-dimensional (1D) Hamiltonian for bosons 
confined in an elongated trap. The interactions between atoms in the experiments are 
always three-dimensional (3D) even when the kinetic motion of the atoms in such a tight 
radial confinement is 1D like. Therefore, the trap-induced corrections to the strength of the 
atomic interactions should be taken into account properly. 
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This problem was first solved by Olshanii (Olshanii; 1998) within the pseudopotential 
approximation, yielding a new type of tuning mechanism for the scattering amplitude, now 
called confinement induced resonance (CIR). In what follows, we show a detailed account of a 
renormalization of the 3D interaction into an effective 1D interaction, which produces the 
CIR. This technique plays a crucial role in Sec. 5 in order to realize an integrable condition 
for spinor GP equations. 

3.1 Model Hamiltonian 
We start with the following model: 
1. The trap potential is composed by an axially symmetric 2D harmonic potential of a 

frequency ω⊥ in the x-y plane. 
2. Atomic motion for the z direction is free. 
3. Interatomic interaction potential is represented by the Fermi-Huang pseudopotential: 

 
(21)

where the coupling strength g is expressed by the 3D s-wave scattering length a as eq. 
(7) (Meystre; 2002). 

4. The energy of atoms for both transverse and longitudinal motions is well below the 
transverse vibrational energy ω⊥. 

In the harmonic potential we can separate the center of mass and relative motion. Then we 
consider the Schrödinger equation for the relative motion, 

 
(22)

where the reduced mass mr = m/2, the relative coordinate r = r1 – r2, and the transverse 
Hamiltonian: 

 
(23)

From the above condition 4, we assume that the incident wave is factorized as 
, where  is the transverse ground state  The 

longitudinal kinetic energy is smaller than the energy separation between the ground state 
and the first axially symmetric excited state: 

 
(24)

where  is the energy spectrum of 2D harmonic oscillator with n = 0, 1, 2, . 
. . the principal quantum number, and mz the angular momentum around the z axis, which 
takes on values mz = 0, 2, 4, . . . ,n (1, 3, 5, . . . ,n) for even (odd) n. 

3.2 One-dimensional scattering amplitude 
The asymptotic form of the scattering wave function is given by 
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(25)

where feven and fodd denote the one-dimensional scattering amplitudes for the even and odd 
partial waves, respectively. While the transverse state (n = mz = 0) remains unchanged under 
the assumption of low energy scattering considered above, the scattering amplitudes feven,odd 
are affected by a virtual excited state of the axially symmetric modes (n > 0,mz = 0) during 
the collision. 
To calculate the one-dimensional scattering amplitude we expand the solution, 

 
(26)

where  is the (axially symmetric) eigenstate of the transverse Hamiltonian (23), and 
substitute this expansion into eq. (22) with the eigenvalue . Operating 

 
(27)

to both side of the Schrödinger equation and taking the limit, in sequence, → 0+, z → ∞, 
along with the asymptotic form (25), we can obtain  and the following expression 
for the scattering amplitudes: 

 
(28)

Here we have used the normalization condition: 

 
(29)

and the r→0 limit of the regular (free of the 1/r divergence) part of the solution Ψ, 

 
(30)

We note that the regularization operator (r·) that removes the 1/r divergence from the 
scattered wave plays an important role in this derivation. All the expansion coefficients An 
(n = 2, 4, . . . ) in eq. (26) can be obtained in the same procedure for each mode n,0(r⊥) with 
the corresponding imaginary wave number: 

 
(31)

the normalization condition of n,0(r⊥) and a simple relation: . Here a⊥ is 
the oscillator length of the (relative) transverse motion, 

 
(32)
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Recall that due to the condition (24) the value inside the parentheses in eq. (31) is positive 
definite. Thus, the expression for the wave function along the z axis reads 

 
(33)

where the function Λ is defined as 

 
(34)

the sum over s′= n/2 originates from the sum appearing in eq. (26). We have chosen the 
value 0,0(0) to be real and positive. By subtracting and adding a sum, 

 
(35)

to the function Λ, and then, collecting  term from the Taylor series of exp  and 
 with respect to , one can show an expansion, 

 
(36)

Here the zero-order term of the expansion has a form, 

 (37)

with 

 
(38)

and 

 
(39)

Substituting eq. (33) with eq. (36) into eq. (30), we get Ψreg in an explicit form.  
We then write the final expression of the one-dimensional scattering amplitudes (25) as 

 

(40)

with the 1D scattering length: 

 
(41)
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3.3 Effective one-dimensional coupling strength 
The expression (40) is an exact result for the potential (21) with arbitrary strength of the 
transverse confinement a⊥. For atoms with the low kinetic energy, we can drop  
term in the denominator of the scattering amplitudes (40), obtaining a one-dimensional 
contact potential, 

 (42)

were the coupling strength: 

 
(43)

Note that a simple average of the three-dimensional coupling g = 4π 2a/m over the 
transverse ground state only reproduces the coefficient of (43), 

 
(44)

The resonance factor 1/[1 – C(a/a⊥)] implies a possibility to control the strength of 
atomatom scattering via tuning a confinement potential a⊥. The physical origin of the CIR is 
attributed to a zero-energy Feshbach resonance in which the transverse modes of the 
confining potential assume the roles of “open” and “closed” scattering channels. 

4. Spinor Bose–Einstein condensate 
In this section, we extend the model of a single component condensate discussed in Sec. 2 to 
that of a multicomponent condensate with the spin degrees of freedom, which we call a 
spinor condensate for short (Pethick & Smith; 2002). In terms of “spin”, we mean the 
hyperfine spin of atoms in this chapter. 

4.1 Hamiltonian 
The hyperfine spin f is defined by f = s + i, where s and i denote the electronic and nuclear 
spins of the atoms. For simplicity, we consider bosons with the hyperfine spin f = 1. This 
includes alkalis with nuclear spin i = 3/2 such as 7Li, 87Rb, and 23Na. Alkali bosons with f > 1 
such as 85Rb (with i = 5/2), and 133Cs (with i = 7/2) may have even richer structures. 
Atoms in the f = 1 state are characterized by a vectorial field operator with the components 
subject to the hyperfine spin manifold. The three-component field , 
where the superscript T denotes the transpose, satisfies the bosonic commutation relations: 

 (45)

In order to discuss the properties of spinor Bose gases, we start with the following second 
quantized Hamiltonian, 

 (46)

 
(47)
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(48)

 
(49)

where Utrap(r) is the external trap potential, v(r – r′) expresses the two-body interaction and 
subscripts {α, β,α ′, β ′ = 1, 0,–1} denote the components of the spin. The last term in eq. (46), 

, is the response to an external magnetic field p (the linear Zeeman effect). This response 
to the magnetic field necessarily selects one of several possible ground states, or the so-
called weak field seeking state, mf = –1 for f = 1 case where the spin degrees of freedom are 
“frozen”. We set p = 0 throughout this chapter. 
Due to the Bose–Einstein statistics, the total spin F = f1 + f2 of any two bosons whose relative 
orbital angular momentum is zero should be restricted to even, F = 2 f , 2 f –2, . . . , 0. Thus, 
the interatomic interaction (r – r′) can be divided into several sectors labeled by F as 

 
(50)

where  is the projection operator and gF characterizes the strength of the binary interaction 
between bosonic atoms with the total spin F. This coupling constant gF is related to the 
corresponding s-wave scattering length aF as 

 
(51)

For f = 1 bosons, since F takes only on values 0 and 2, we can rewrite the potential (r – r′) in 
a simple form using the following two properties of the projection operators  the 
completeness of the operators, 

 (52)

where  is an identity operator, and the product of the angular momentum operators, 

 
(53)

where a hat “ˆ” on f means an operator as projection. Solving these equations (52), (53) for 
 and , we obtain the form of the interaction in terms of the angular momentum 

operators, 

 (54)

In this expression, 

 
(55)

which are the magnitude of the density-density interaction and of the spin-spin interaction, 
respectively. Thus, the interaction Hamiltonian is rewritten as 
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(56)

where we may use the following expressions of spin-1 matrices f = (fx, fy, fz) as 

 

(57)

A construction of the interaction Hamiltonian for a general hyperfine spin f can be found in 
(Ueda & Koashi; 2002). 

4.2 f = 1 spinor condensate in quasi 1D regime 
From now on, we assume that the system is quasi-one dimensional: the trapping potential is 
suitably anisotropic such that the transverse spatial degrees of freedom (y-z plain) is 
factorized from the longitudinal (x axis) and all the hyperfine states are in transverse ground 
state. 
As derived in Sec. 2, in the mean-field theory of the spinor BEC, the assembly of atoms in 
the f = 1 state is characterized by a vectorial order parameter: 

 (58)

where the subscripts {1, 0,–1} denote the magnetic quantum numbers with the components 
subject to the hyperfine spin space. The normalization is imposed as 

 
(59)

where NT is the total number of atoms. 
According to the discussion in Sec. 3, the effective 1D couplings  and are represented by 

 
(60)

where aF is the 3D s-wave scattering length of the total hyperfine spin F = 0, 2 channels, 
respectively, and a⊥ is the size of the ground state in the (relative) transverse motion. 
Thus, the Gross-Pitaevskii energy functional of this system is given by 

 
(61)

with the particle number and spin densities, respectively, defined by 

 (62)
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The coupling constants  and  are connected to those in eqs. (60) (cf. eq. (43)) as 

 
(63)

The time-evolution of spinor condensate wave function Φ(x, t) can be derived from 

 
(64)

Substituting eq. (61) into eq. (64), we get a set of equations for the longitudinal wave 
functions of the spinor condensate: 

 

(65a)

 

(65b) 

 

(65c)

5. Integrable model 
To analyze the dynamical properties of the coupled system (65), we propose an integrable 
model as follows (Ieda et al.; 2004a,b). We consider the system with the coupling constants, 

 (66)

This situation corresponds to attractive mean-field interaction  < 0 and ferromagnetic spin-
exchange interaction  < 0. Note that in preceding investigations of spinor condensates 
(Pethick & Smith; 2002), mean-field interaction is assumed to be repulsive c0 > 0 and far 
exceeding spin-exchange interaction in the magnitude c0 � |c1| in line with experimental 
data. Thus, the parameter regime (66) was not been explored in detail. 
The effective interactions between atoms in a BEC have been tuned with a Feshbach 
resonance (Pethick & Smith; 2002). In spinor BECs, however, we should extend this to 
alternative techniques such as an optically induced Feshbach resonance or a confinement 
induced resonance (Olshanii; 1998), which do not affect the rotational symmetry of the 
internal spin states. In the latter, the above condition is surely obtained by setting 

 
(67)

in eq. (60) when 
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 (68)

It is worth noting that the integrable property itself is independent of the sign of  ( ) as 
far as their magnitudes are equal to each other. The opposite sign case, i.e., = ≡c > 0, can 
be analyzed in the same manner (Uchiyama et al.; 2006). 
In the dimensionless form: 

 (69)

where time and length are measured in units of 

 
(70)

respectively, we rewrite eqs. (65) as follows, (we omit the arguments (x, t) hereafter.) 

 (71a)

 (71b) 

 (71c)

Now we find that these coupled equations (71) are equivalent to a 2×2 matrix version of 
nonlinear Schrödinger (NLS) equation: 

 (72)

with an identification, 

 
(73)

Since the matrix NLS equation (72) is completely integrable (Tsuchida & Wadati; 1998), the 
integrability of the reduced equations (71) are proved automatically (Ieda et al.; 2004a). 
Remark that the general M× L matrix NLS equation is also integrable. It is worthy to search 
other integrable models for higher spin case (Uchiyama et al.; 2007). 

5.1 Soliton solution 
We summarize an explicit formula for the soliton solution of the 2 × 2 matrix version of NLS 
equation (72) with eq. (73) by considering a reduction of a general formula obtained in 
(Tsuchida & Wadati; 1998). 
Under the vanishing boundary condition, one can apply the inverse scattering method (ISM) 
to the nonlinear time evolution equation (72) associated with the generalized Zakharov-
Shabat eigenvalue problem: 

 
(74)
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Here Ψ1 and Ψ2 take their values in 2 × 2 matrices. The complex number k is the spectral 
parameter. I is the 2 × 2 unit matrix. The 2 × 2 matrix Q plays a role as a potential function in 
this linear system. According to (Tsuchida & Wadati; 1998), N-soliton solution of eq. (72) 
with eq. (73) is expressed as 

 

(75)

where the 2N × 2N matrix S is given by 

 
(76)

Here we have introduced the following parameterizations: 

 
(77)

 (78)

The 2 × 2 matrices Πj  normalized to unity in a sense of the square norm, 

 (79)

must take the same form as Q from their definition. We call them “polarization matrices,” 
which determine both the populations of three components {1, 0, –1} within each soliton and 
the relative phases between them. The complex constants kj denote discrete eigenvalues, 
each of which determines a bound state by the potential Q. εj are real constants which can be 
used to tune the initial displacements of solitons. It is worth noting that all x and t 
dependence is only through the variables χj(x, t). As we shall see in Sec. 6, the real part of 
χj(x, t) represents the coordinate for observing soliton-j’s envelope while the imaginary part 
of it represents the coordinate for observing soliton-j’s carrier waves. 
The same procedure can be performed for nonvanishing boundary conditions (Ieda et al.; 
2007) which is relevant to formation of spinor dark solitons (Uchiyama et al.; 2006). 
Equation (72) is a completely integrable system whose initial value problems can be solved 
via, for example, the ISM (Tsuchida & Wadati; 1998) (Ieda et al.; 2007). The existence of the  
r-matrix for this system guarantees the existence of an infinite number of conservation laws 
which restrict the dynamics of the system in an essential way. Here we show explicit forms 
of some conserved quantities, i.e., total number, total spin (magnetization), total momentum 
and total energy. 

      
(80)

 (81)
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(82)

   (83)

            
(84)

                    (85)

  
(86)

 
(87)

Here tr{·} denotes the matrix trace and σ = (σ x,σ y,σ z)T are the Pauli matrices, 

 
(88)

6. Spin property of one-soliton solution 
In this section, we discuss one-soliton solutions and classify them by their spin states. If we 
set N = 1 in the formula (75) we obtain the one-soliton solution: 

 
(89)

where 

 
(90)

 (91)

We have omitted the subscripts of the soliton number. Here and hereafter, the subscripts R 
and I denote real and imaginary parts, respectively. Throughout this section, we set kR >0 
without loss of generality. We remark the significance of each parameter/coordinate as 
follows, 

 
We use the term “amplitude” to indicate the peak(s) height of soliton’s envelope. Actual 
amplitude should be represented as kR multiplied by a factor from 1 to  which is 
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determined by the type of polarization matrices. The explicit form will be shown later. As 
mentioned before, soliton’s motion depends on both x and t via variables χR and χI, from 
which we can see the meaning of velocity of soliton. 
From a total spin conservation, one-soliton solution can be classified by the spin states. We 
shall show that the only two spin states are allowable, 

 (92a)

 (92b) 

Substituting eqs. (89)–(91) into eq. (83), we obtain the local spin density of the one-soliton 
solution: 

 
(93)

We also give the explicit form of the number density: 

 
(94)

To clarify the physical meaning of detΠ, we define here another important local density as 

 (95)

This quantity measures the formation of singlet pairs. Note that these “pairs” are 
distinguished from Cooper pairs of electrons or those of 3He owing to the different statistical 
properties of ingredient particles. Since Θ(x, t) does not contribute to the magnetization of 
the soliton, it is invariant under any spin rotation. As far as ground state properties are 
concerned, it is not necessary to introduce Θ(x, t) for a system of spin-1 bosons, while a 
counterpart to eq. (95) plays a crucial role for spin-2 case (Ueda & Koashi; 2002). As we shall 
show later, however, it is useful to characterize solitons within energy degenerated states. 
In the case of the one-soliton solution (89), the singlet pair density is proportional to the 
determinant of the polarization matrix Π, 

 
(96)

This suggests that detΠ represents the magnitude of the singlet pairs. For the general  
N-soliton case, this singlet pair density can vary after each collision of solitons and is not the 
conserved density. The detail will be discussed at the end of this section. 
In what follows, we classify spin states of the one-soliton solution based on the values of 
detΠ. 

6.1 Ferromagnetic state 
Let detΠ = 0, then eq. (89) becomes a simple form: 

 (97)
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Now all of mF = 0, ±1 components share the same wave function. Their distribution in the 
internal state reflects directly the elements of the polarization matrix Π. One can see the 
meaning of each parameter listed above. By definition, the singlet pair density (96) vanishes 
everywhere. Thus, this type of soliton belongs to the ferromagnetic state and will be referred 
to as a ferromagnetic soliton. The total number of atoms is given by integrating eq. (94) as 

 (98)

The total magnetization (82) becomes 

 
(99)

with the modulus, . Equation (99) is connected to  through a 
gauge transformation and a spin rotation. 
Next, we calculate the total momentum and the total energy of the ferromagnetic soliton. 
Substituting eq. (97) into eqs. (84), (86) and using detΠ = 0, we obtain 

 
(100)

respectively. In infinite homogeneous 1D space as considered here, it can be shown that a 
single component GP equation for BEC with attractive interactions, i.e., the self-focusing 
NLS equation possesses the one-soliton solution that minimizes the total energy for fixed 
number of particles and total momentum. This remains true for the spinor GP equations 
(71). As we will see later, for given number of NT, the stationary (kI = 0) one-soliton solution 
in the ferromagnetic state is the ground state of this system. On the other hand, in finite 1D 
space case, the ground state is subject to a quantum phase transition between uniform and 
soliton states (Kanamoto et al.; 2002). 

6.2 Polar state 
If detΠ ≠ 0, the local spin density has one node, i.e., f(x0, t) = 0 at a point: 

 
(101)

for each moment t. Setting x′= x – x0 and A–1 ≡ 2|detΠ|, we get 

 
(102)

Since each component of the local spin density is an odd function of x′, its average value is 
zero, 

 
(103)
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This implies that this type of soliton, on the average, belongs to the polar state (Pethick & 
Smith; 2002). Let us also rewrite the number density (94) as 

 
(104)

To elaborate on this type of soliton, we further divide into two cases. 
(i) A–1  = 2|detΠ| = 1 (αβ∗ + α∗γ=0). 
Under this constraint, we find the local spin (102) vanishes everywhere. Solitons in this state 
possess the symmetry of polar state locally. We, therefore, refer to only those solitons as 
polar solitons. Considering eq. (89) with the above condition, we recover a normal sech-type 
soliton solution: 

 (105)

Note that the amplitude of soliton is different from that of the ferromagnetic soliton, which 
leads to a relation between the total number and the spectral parameter as 

 (106)

The total momentum and the total energy are given by 

 
(107)

respectively. The difference between ferromagnetic soliton energy and polar soliton energy 
with the same number of atoms NT is 

 
(108)

which is a natural consequence of the ferromagnetic interaction, i.e.,  = –c < 0. 
(ii) A–1  = 2|detΠ|< 1. 
In this case, the local spin retains nonzero value, although the average spin amounts to be 
zero. The density profile (104) has the following structure. When A > 2, a peak of the density 
splits into two (Fig. 1) due to different density profiles of mF = 0, ±1 components. 
For a large value of A, namely, when detΠ gets close to zero, such twin peaks separate 
away. In consequence, they behave as if a pair of two distinct ferromagnetic solitons with 
antiparallel spins, traveling in parallel with the same velocity and the amplitudes half as 
much as that of the polar soliton (A = 1) in the density profile [see the inset of Fig. 1(a) and 
Fig. 1 (b)]. 
Hence, solitons of this type will be referred to as split solitons. The total number is the same 
as the case (i), 

 (109)

The total momentum and the total energy are the same values as those in the case (i): 

 
(110)
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                                      (a)                                                                                (b) 

Fig. 1. The density profiles of eq. (104). (a)We set kR = 0.5, and A = 1 (solid line), 2 (dashed 
line), 5 (dash-dot line), 20 (dotted line). The inset shows a split soliton for A = 104, consisting 
of two ferromagnetic like solitons with the same velocity. (b) The density profiles of eq. (104) 
(solid line) for kR = 0.5 and A = 104, and the three components, mF = 0 (dashed line), mF = 1 
(dotted line) and mF = –1 (dash-dot line) are shown simultaneously. 

This degeneracy is ascribed to the integrable condition for the coupling constants, i.e.,  
 = . Comparing case (i) with case (ii), we find that a variety of dissimilar shaped solitons 

are degenerated in the polar state. To characterize them, we can use, instead of A, a physical 
quantity defined as 

 
(111)

which is a monotone decreasing function of A ∈ [1, ∞); the maximum value, NT, at A = 1 
(polar soliton) and limiting to 0 at A → ∞ (ferromagnetic soliton). In this sense, S has the 
meaning as the “total singlet pairs” of the whole system. As noted above, S is not the 
conserved quantity in general (N ≥ 2); all the conserved densities should be expressed by the 
matrix trace of products of Q†, Q and their derivatives (Tsuchida & Wadati; 1998) as eqs. 
(81), (83), (85), and (87) while |Θ(x, t)| is not. Nevertheless, S can be used to label solitons in 
the polar state because it dose not change in the meanwhile prior to the subsequent collision. 

7. Two-soliton collision and spin dynamics 
In this section, we analyze two-soliton collisions in the spinor model. The two-soliton 
solutions can be obtained by setting N = 2 in eq. (75). The derivation is straightforward but 
rather lengthy. An explicit expression of the two-soliton solution is given in Appendix of 
(Ieda et al.; 2004b) and, here, compute asymptotic forms of specific two-soliton solutions as  
t → ∓ ∞, which define the collision properties of two-soliton in the spinor model.  
For simplicity, we restrict the spectral parameters to regions: 

 (112a)
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Under the conditions, we calculate the asymptotic forms in the final state (t→∞) from those 
in the initial state (t→–∞). Since each soliton’s envelope is located around x  2kjIt, soliton-1 
and soliton-2 are initially isolated at x → ±∞, and then, travel to the opposite directions at a 
velocity of 2k1I and 2k2I, respectively. After a head-on collision, they pass through without 
changing their velocities and arrive at x→ ∓ ∞ in the final state. Collisional effects appear not 
only as usual phase shifts of solitons but also as a rotation of their polarization. 
According to the classification of one-soliton solutions in the previous section, we choose the 
following three cases: i) Polar-polar solitons collision, ii) Polar-ferromagnetic solitons 
collision, iii) Ferromagnetic-ferromagnetic solitons collision. As we shall see later, the polar 
soliton dose not affect the polarization of the other solitons apart from the total phase factor. 
On the other hand, ferromagnetic solitons can ‘rotate’ their partners’ polarization, which 
allows for switching among the internal states. 

7.1 Polar-polar solitons collision 
We first deal with a collision between two polar solitons defined by kj and Πj (j = 1, 2) with 
the conditions (112) and , equivalently, 

 
(113)

In the asymptotic regions, we can consider each soliton separately. Thus, the initial state is 
given by the sum of two polar solitons as 

 (114)

where the asymptotic form of soliton-j (j = 1, 2) is 

 (115a)

These can be proved by taking the limit χ2R → –∞ with keeping χ1R finite and, vice versa,  
χ1R →–∞ with χ2R fixed. Phase factors which come from the values of |detΠj| are absorbed 
by the arbitrary constants  inside χjR. In the final state, the opposite limit χ2R → ∞ with 
keeping χ1R finite and χ1R →∞ with |χ2R| < ∞ yields 

 (116)

where 

 
(117)

with 

 
(118)

 
(119)
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                                               (a)                                                                              (b) 

Fig. 2. Density plots of | 0|2 (a) and | ±1|2 (b) for a polar-polar collision. Soliton 1 (left 
mover) carries only 0 component and soliton 2 (right mover) consists of ±1 components.  
The parameters used here are k1 = 0.25 – 0.25i, k2 = –0.5 + 0.25i, α1 = 1/ , β1 = γ1 = 0, α2 = 0,  
β2 = γ2 = 1/ . 

Equations (115) and (117) are the same form as polar one-soliton solution (105). Collisional 
effects appear only in the position shift (118) and the phase shifts (119). In Figs. 2, we show 
the polar-polar collision with α1 = 1/ , β1 = γ1 = 0 and α2 = 0, β2 = γ2 = 1/ . Thus, the 
partial number Nj, magnetization Fj, momentum Pj, and energy Ej are defined for the 
asymptotic form of soliton-j and calculated in the same manner as the previous section. The 
integrals of motion are represented by the sum of those quantities for each soliton. 
Moreover, we can prove that 

 (120)

which are by themselves conserved through the collision. In this sense, the polar-polar 
collision is basically the same as that of the single-component NLS equation. 

7.2 Polar-ferromagnetic solitons collision 
Under the condition (112), we set soliton 1 to be polar soliton and soliton 2 to be 
ferromagnetic soliton: 

 (121)

Then, the initial state is represented by eq. (114) with 

 (122a)

 (122b) 

The final state is given by eq. (116) with 
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(123a)

 (123b) 

Here we have defined 

 
(124)

 
(125)

and also used eqs. (118), (119). Normalization of the new polarization matrix (125) turns out 
to be unity, 

 (126)

The determinant of it becomes 

 
(127)

We can see clearly that the initial polar soliton breaks into a split type,  
after the collision with a ferromagnetic one. Only when  where the spinor 
part of wave function of two initial solitons is orthogonal to each other, we have . 
Then, eqs. (123) are reduced to 

 (128a)

 (128b) 

which means that the polar soliton keeps its shape against the collision and shows no 
mixing among the internal states except for the total phase shift. On the other hand, because 
of the total spin conservation, the ferromagnetic soliton always retains its polarization 
matrix and shows only the position and phase shifts similar to those of the polar-polar case. 
In Fig. 3, we have density plots of a polar-ferromagnetic collision with the parameters 
shown in the caption. These pictures correspond to each component of the exact two-soliton 
solution for one collisional run. For simplicity, we choose the parameters to have  
| 1| = | –1|. The polar soliton (soliton 1) initially prepared in mF = ±1 are switched into a 
soliton with a large population in mF = 0 and the remnant of mF = ±1 after the collision. 
Through the collision, the ferromagnetic soliton (soliton 2) plays only a switcher, showing 
no mixing in the internal state of itself outside the collisional region, as clearly seen in eq. 
(123b). In general, this kind of a drastic internal shift of polar soliton is likely observed for 
large values of  which appears in eqs. (124), (125). Although all the conserved 
quantities such as the number of particles and the averaged spin of individual solitons are 
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                                                 (a)                                                                             (b) 

Fig. 3. Density plots of | 0|2 (a) and | ±1|2 (b) for a polar-ferromagnetic collision. Soliton 1 
(left mover) is a polar soliton and soliton 2 (right mover) is a ferromagnetic soliton.  
The parameters used here are k1 = 0.25 – 0.25i, k2 = –0.5 + 0.25i, α1 = 0, β1 = γ1 = 1/ ,  
α2 = β2 = γ2 = 1/2. 
invariant during this type of collision, the fraction of each component can vary not only in 
each soliton level but also in the total after the collision. This contrasts to an intensity 
coupled multicomponent NLS equation in which the total distribution among all 
components is invariant throughout soliton collisions while a switching phenomenon 
similar to Fig. 3 can be observed (Radhakrishnan et al.; 1997). 

7.3 Ferromagnetic-ferromagnetic solitons collision 
Finally, we discuss the collision between two ferromagnetic solitons, 

 (129)

The asymptotic forms are obtained for the initial state,  where 

 (130)

and for the final state,  where 

 
(131a)

Here we have defined 

 
(132)

and, for (j, l) = (1,2) or (2,1), 

 
(133)
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which are shown to be normalized in unity, 

 
(134)

Each polarization matrix Πj of a ferromagnetic soliton can be expressed by three real 
variables τj, θj, ϕj as 

 

(135)

In this expression, the polarization matrices in the initial state Πj and in the final state  are 
given by 

 (136)

where, with (j, l) = (1,2), (2,1), 

 
(137)

This defines the collision property for the ferromagnetic-ferromagnetic soliton collision. 
We can gain a better understanding of the collision between two ferromagnetic solitons by 
recasting it in terms of the spin dynamics. The total spin conservation restricts the motion of 
the spin of each soliton on a circumference around the total spin axis [Fig. 4(a)]. It will be 
interpreted as a spin precession around the total magnetization. 
We calculate the magnetization for each soliton to investigate their collision. In the initial 
state, following eq. (99), we have the spin of soliton-j as 

 
(138)

Thanks to the scattering property (137), the final state spins can be obtained through F1,2 by 

(139)

where 

 
(140)

The conserved total spin,  is given by 

 
(141)
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Considering spin rotation around the total spin FT, we can find ‘rotated spin’ as 

 (142)

where 

 
(143)

with 

 
(144)

The rotation angle ω is determined by setting  through eqs. (139) and (142), 

 
(145)

For the case that the magnitudes of the amplitude and velocity for each ferromagnetic 
soliton are, respectively, identical with each other, |k1R| = |k2R| ≡ NT/4, |k1I| = |k2I| ≡ kI, 
the final state magnetizations (139) are given by 

 
(146)

where (j, l) = (1,2), (2,1). The rotation angle ω depends only on the ratio kI/kR and the 
magnitude of the normalized total magnetization, F ≡ |FT|/NT, as 

 
(147)

The principal value should be taken for the arccosine function: 0 ≤ arccos x ≤ π. 
Setting kI �  kR in eq. (147), one gets the small rotation angle, ω  0. In the opposite case, kI 

� kR, each spin of two colliding solitons almost reverses its orientation, ω  π. Recall that kI 

is the speed of soliton. We can understand these phenomena since a slower soliton spends 
the longer time inside the collisional region. Figure 4 shows the velocity dependence of the 
rotation angle for various initial normalized spins. When F = 1, which corresponds to the 
case of antiparallel spin collision, the spin precession can not occur as shown by the dotted 
line in Fig. 4(b). 
In Fig. 5–Fig. 7, we give examples of this type of collisions for different kI, with the other 
conditions fixed, to illustrate the velocity dependence. The initial normalized spin for the 
parameter set given in the captions is F = 0.5. The rotation angles are ω  0.2π, 0.5π and 
0.9π for Fig. 5, Fig. 6 and Fig. 7, respectively. The internal shift 1 → –1, and vice versa, 
gradually increase by slowing down the velocity of the solitons. 
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                                   (a)                                                                  (b) 
Fig. 4. (a) Schematic of spin precession of two colliding ferromagnetic solitons. (b) Velocity 
dependence of the rotational angle in spin precession for the different initial relative angles, 
F = 1 (solid line), 0.5 (dashed line), 0.0157π (dash-dot line) and 0 (dotted line). 

 
Fig. 5. Density plots of (a) | 0|2, (b) | 1|2 and (c) | –1|2 for a fast ferromagnetic-
ferromagnetic collision. The parameters used here are k1 = 0.5 – 0.75i, k2 = –0.5 + 0.75i, α1 = 
4/17, β1 = 16/17, γ1 = 1/17, α2 = 4/17, β2 = 1/17, γ2 = 16/17. 

 
Fig. 6. Density plots of (a) | 0|2, (b) | 1|2 and (c) | –1|2  for a medium speed 
ferromagnetic-ferromagnetic collision. The parameters are the same as those of Fig. 5 except 
for k1I = –0.25, k2I = 0.25. 
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Fig. 7. Density plots of (a) | 0|2, (b) | 1|2 and (c) | –1|2  for a slow ferromagnetic-
ferromagnetic collision. The parameters are the same as those of Fig. 5 except for k1I = –0.05, 
k2I = 0.05. 

8. Concluding remarks 
The soliton properties in spinor Bose–Einstein condensates have been investigated. 
Considering two experimental achievements in atomic condensates, the matter-wave soliton 
and the spinor condensate, at the same time, we have predicted some new phenomena. 
Based on the results provided in Sec. 2–4, in Sec. 5 we have introduced the new integrable 
model which describes the dynamics of the multicomponent matter-wave soliton. The key 
idea is finding the integrable condition of the original coupled nonlinear equations, i.e., the 
spinor GP equations derived in Sec. 4. The integrable condition expressed by the coupling 
constants, which is accessible via the confinement induced resonance explained in Sec. 3. 
In Sec. 6, we classify the one-soliton solution. There exist two distinct spin states: 
ferromagnetic, |FT| = NT and polar, |FT| = 0. In the ferromagnetic state, the spatial part and 
the spinor part of the soliton are factorized (ferromagnetic soliton). In the polar state, 
dissimilar shaped solitons which we call polar soliton for f(x) = 0 and split soliton otherwise 
are energetically degenerate. The polar soliton has one peak and the space-spinor 
factorization holds. On the other hand, a split soliton consists of twin peaks and the three 
components show different profiles. Changing the polarization parameters one may control 
the peak distance continuously. 
In Sec. 7, we have analyzed two-soliton solutions which rule collisional phenomena of the 
multiple solitons. Specifying the initial conditions, we have demonstrated two-soliton 
collisions in three characteristic cases: polar-polar, polar-ferromagnetic, ferromagnetic-
ferromagnetic. In their collisions, the polar soliton is always “passive” which means that it 
does not rotate its partner’s polarization while the ferromagnetic soliton does. Thus, in the 
polar-ferromagnetic collision, one can use the polar soliton as a signal and ferromagnetic 
soliton as a switch to realize a coherent matter-wave switching device. Collision of two 
ferromagnetic solitons can be interpreted as the spin precession around the total spin. The 
rotation angle depends on the total spin, amplitude and velocity of the solitons. Only 
varying the velocity induces drastic change of the population shifts among the components. 
Stability of spinor solitons has been investigated numerically and perturbatively (Li et al.; 
2005) (Dabrowska-Wüster et al.; 2007) (Doktorov et al.; 2008). It is also interesting to pursue 
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the soliton dynamics of spinor condensates under longitudinal harmonic trap (Zhang et al.; 
2007). Recently, the integrability of the spinor GP equation has been studied in detail 
(Gerdjikov et al.; 2009). The behavior of spinor solitons shows a variety of nonlinear 
dynamics and it is worth exploring them experimentally. 
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1. Introduction 
High performance magnetically confined toroidal plasmas, such as those required for the 
operation of a tokamak based fusion power plant, suffer from a troubling type of repetitive 
edge instability known as edge-localized modes (ELMs). Magnetohydrodynamic (MHD), 
peeling-ballooning, theory predicts that these instabilities are driven by a large current 
density and pressure gradient that forms at the plasma edge as a consequence of the 
enhanced confinement levels achieved in high performance H-mode plasmas. Although 
ELMs are a common feature of high confinement tokamak plasmas, there are significant 
gaps in our understanding of how these instabilities scale with the geometry of the plasma 
and operating conditions expected in large tokamaks that are required for the generation of 
fusion power. Thus, there is an urgent need for a model that can be validated with 
experimental data from existing smaller tokamaks.  
Here, we present a conceptual model describing the topological evolution of the magnetic 
separatrix, in a tokamak plasma with a dominate lower hyperbolic point. Subsequently, the 
nonlinear dynamics of the ELM instability, prescribed by the evolving separatrix topology, 
is discussed. The model invokes a feedback amplification mechanism that causes the stable 
and unstable invariant manifolds of the separatrix, comprising a “homoclinic tangle“ 
(Guckenheimer & Holmes, 1983), to grow explosively as the topology of the separatrix 
manifolds unfold. The amplification process is driven by the rapid growth of helical, field-
aligned, thermoelectric currents that flow through relatively short edge plasma flux tubes 
connecting high heat flux wall structures, known as divertor target plates, on both sides of 
the plasma. These thermoelectric currents produce magnetic fields that couple to the 
separatrix and modify its 3D (topological) structure. As the lobes of the separatrix tangle 
grow, their area of intersection with the divertor target plates increases along with the size 
of the flux tubes connecting target plates on both sides of the plasma. This increases the 
thermoelectric current flow and completes the feedback loop. Numerical simulations have 
shown that our model is consistent with measurements of the currents flowing between the 
target plates and with camera images of the heat flux patterns on the divertor target plates 
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(Wingen, et al. 2009a). In addition, this model suggests that nonaxisymmetric external 
magnetic coils can be used to force higher order separatrix bifurcations to prevent ELMs. 
In the following sections, we discuss why ELMs are an important problem in tokamaks, 
review what is known experimentally and theoretically about the characteristics of ELMs, 
present a conceptual framework for the nonlinear evolution of an ELM and discuss results 
from numerical simulations of the proposed model. We show a sequence of topological 
bifurcations that are observed in the numerical simulations and discuss how these result in a 
separatrix topology that produces heat flux patterns which are consistent with those 
measured by infrared cameras in the DIII-D (Luxon, 2002) tokamak. A general description of 
tokamaks and tokamak physics is given by Callen et al., (1992), Evans (2008) and Wesson 
(2004). 

2. Properties of ELMs in high performance tokamak plasmas 
2.1 ELM dynamics 
Type-I ELMs are naturally occurring MHD instabilities that release large bursts of particles 
and energy from the boundary of the plasma (Suttrop 2000). These very fast growing 
instabilities share properties that are somewhat similar to the eruption of prominences and 
flares from the solar photosphere (Evans, et al., 1996). More specifically, expanding hot 
plasma filaments carrying energy, particles and momentum away from the confined plasma 
volume into the surrounding space are associated with these complex dynamical plasma 
events that form on the surface of the sun and at the edge of a tokamak discharge. 
Tokamaks operating in high confinement H-modes, with strong edge transport barriers, rely 
exclusively on the formation of a large pressure gradient near the surface of the plasma to 
obtain sufficiently high central temperatures and densities to carry out fusion energy 
experiments in these devices. These large pressure gradients are believed to drive edge 
MHD instabilities, referred to as peeling-ballooning modes, that are responsible for the 
onset of ELMs (Snyder, et al., 2005). Since ELMs periodically release particles and energy 
from the edge of the plasma, they limit the size of the pressure gradient that can be obtained 
in tokamaks (Fenstermacher, et al. 2003). Scaling studies suggest that this limits the 
maximum temperature of the core plasma and thus the ultimate performance of the 
tokamak (Loarte, et al. 2003).  In addition, the impulsive energy and particle flux released by 
ELMs can cause a significant enhancement in the erosion of solid surfaces that make up the 
internal walls and divertor components of the tokamak. The impulsive loading of these 
structures due to ELMs releases non-hydrogenic impurities as a result of enhanced solid 
surface erosion. These impurities change the properties of the divertor plasma and can be 
transported out of the divertor chamber into the region of the scrape-off layer (SOL) plasma 
located between the separatrix in the main chamber walls of the tokamak. While ELMs tend 
to prevent the eroded divertor impurities from penetrating deeply into the high temperature 
region of the core plasma, located inside the steep pressure gradient region referred to as 
pedestal plasma, these impurities can accumulate in steady-state discharges and affect the 
plasma performance unless the tokamak pumping system is capable of removing this 
additional particle flux. 
ELMs are typically classified by the amount of energy they eject from the pedestal plasma 
and their dynamical properties. The largest of these instabilities, referred to as type-I ELMs, 
are capable of reducing the energy stored in the pedestal plasma by as much as 20-25% in 
tokamaks operating at the highest performance levels (Loarte, et al. 2003). In the largest 
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tokamaks operating at the present time, this amounts to the ejection of up to 1 MJ of energy 
within a period of about 200-300 μs. In the next generation of tokamaks that are under 
construction or being planned, the energy ejected by a single ELM is expected to increase by 
about a factor of 20. These type-I ELMs are also characterized by an increase in frequency 
fELM as the injected power level of the neutral beam heating system PNBI increases and they 
do not tend to have any clearly identifiable coherent magnetic fluctuations prior to their 
onset (i.e., magnetic precursors) although an increase in the level of broadband plasma 
turbulence is sometimes observed prior to their onset. Profiles of the edge electron density 
(ne) and temperature (Te) just before an ELM are shown for a typical DIII-D type-I ELMing 
discharge in Fig. 1(a) while Fig. 1(b) shows how the ne profile changes immediately 
following a type-I ELM. 
 

 
 

 
Fig. 1. (a) An example of the steep ne and Te profiles, as a function of the normalized 
poloidal magnetic flux Psi (ψN), across the outer region of the plasma inside the separatrix 
and outside the separatrix in a region referred to as the SOL and (b) the ne profile before and 
after an ELM in DIII-D discharge 126006. 

As seen in Fig. 1(b), plasma density from the top of the pedestal region inward to 
approximately 1/2 the radius of the core plasma, at a normalized poloidal magnetic flux Psi 
(ψN) equal 0.5, is ejected into the region outside the separatrix, referred to as the SOL, during 
the explosive growth period of the ELM instability in a typical high performance, low 
collisionality, DIII-D type-I ELMing discharge. Type-I ELMs typically have frequencies fELM 
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= 10-200 Hz and are triggered when the pedestal pressure gradient (αped ∝ ∇pped) 
approaches the critical ideal MHD ballooning limit αped  ∼ 2−3 αcrit_ball (Osborne et al., 2000). 
They are often characterized by an isolated, very rapid, increase in the deuterium recycling 
emissions when the particles ejected from inside the separatrix arrive at the divertor target 
plates or the walls of the tokamak as shown in Fig. 2. 
 

 
Fig. 2. A series of type-I ELM impulses seen in the lower (primary) divertor deuterium (Dα) 
recycling emissions during DIII-D discharge 126006 where fELM = 50→75 Hz is correlated to 
an increase in the stored energy of the plasma. 

A significant fraction of the energy released from the pedestal during type-I ELMs strikes 
the divertor target plates [see Fig. 5(b) for a view of the DIII-D lower divertor and divertor 
target plates] along with the particle flux responsible for the spikes in the recycling 
emissions (Fig. 2). It is this combined, highly impulsive, heat and particle flux that can cause 
enhanced erosion of the divertor targets and walls in large, high performance, tokamaks 
leading to a substantial increase of non-hydrogenic impurities released into the divertor and 
SOL plasmas. 
Also associated with these impulsive heat and particle fluxes are large, rapidly growing, 
electric currents that are an intrinsic part of type-I ELM dynamics. These currents are, in 
fact, a basic element of the nonlinear model described below. In DIII-D Langmuir probes are 
used to measure the parallel ion saturation current flowing through the divertor target 
plates at several radial positions. These measurements show that these currents grow 
explosively to a saturated amplitude exceeding 1 A/mm2 in 50 μs or less during the 
nonlinear growth of a type-I ELM. Measurements of the toroidal distribution and dynamics 
of these currents with a toroidal tile current array in DIII-D has shown that they are strongly 
non-axisymmetric with dominate toroidal mode numbers consisting primarily of n=1 and 2 
components (Evans et al., 1995) while the presence of higher n modes has been observed 
during ELM precursors in some DIII-D discharges (Osborne et al., 2000). As an example of 
the dynamics involved in the evolution of this current, the data shown in Fig. 3 
demonstrates the explosive growth of the instability followed by a slow decay during a 
single ELM. This data is obtained with two lower divertor Langmuir probes located just 
outside the 15 mm SOL flux surface with major radii R = 1.500 m and 1.528 m in a double 
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null (upper and lower hyperbolic point) DIII-D discharge biased upward by 11 mm. The 
radial structure of this current indicates that the ELM produces a strong interaction with the 
top of a pump duct more than 120 mm away from the point of intersection of the separatrix 
with the lower divertor target (Fig. 5 shows a layout of the lower divertor geometry). This 
data also suggests that current flowing in a type-I ELM may be associated with a relatively 
ridged structure that forms during its initial explosive growth phase. Finally, it suggests that 
as the current in this structure decays it appears to rotate past the two Langmuir probes 
with a rather regular period of Δt ~ 480 μs (i.e., a toroidal rotation velocity vELM = 2πR/Δt ~ 
19.6 km/s where R is the radial position of one of the Langmuir probes) as indicated by a 
series of fairly regularly spaced peaks shown in Fig. 3. Signatures such as these have also 
been seen in the DIII-D midplane reciprocating Langmuir probe data where vELM = 
13.5 km/s was observed in plasmas with edge toroidal carbon rotation velocities vcarbon = 
22 km/s (Boedo et al., 2005; Yu et al., 2008). 
 

 
Fig. 3. Time evolution of the plasma current measured by a pair of lower divertor Langmuir 
probes located 28 mm apart in major radius (R) during an ELM DIII-D discharge 138229. 

Type-II ELMs are sometimes observed as the axisymmetric plasma shape becomes more 
triangular and elongated. They often appear as small, irregular, fluctuations in the Dα data 
interspersed between the large type-I ELM Dα spikes. Type-II ELMs do not appear to have a 
distinct PNBI dependence or any signatures associated with coherent MHD precursors and 
do not seem to be associated with a specific αcrit limit (Zohm, 1996). Type-III ELMs are small, 
relatively high fELM, instabilities that tend to have lower frequencies as PNBI increases 
(Osborne et al., 2000). They typically have coherent magnetic precursor modes with 
frequencies in the 50 kHz range and have low to intermediate toroidal mode numbers 
(n=5-10). They are often found in relatively high-density, lower PNBI, plasmas with αped 

ranging from about 30% to 50% of αcrit (Suttrop, 2000). Other types of small ELMs (e.g., type-
V) have been identified in spherical tokamaks where they appear only in lower single null 
plasmas and are often interspersed between large type-I ELMs (Maingi et al., 2005).  
The conceptual model proposed here deals exclusively with the nonlinear dynamics and 
associated topological evolution of the explosive growth seen during the initial growth of 
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type-I ELMs. The dynamics of the different types of ELMs outlined above, as well as those 
observed during intermittent transport bursts in low confinement modes (L-modes) are, at 
the most fundamental level, required to conform to the general framework of this model i.e., 
the fact that a divergence free vector field, such as the equilibrium magnetic field in a 
tokamak or stellarator, must ultimately be consistent with a (conservative) Hamiltonian 
representation such as that prescribed by dynamical systems theory (Guckenheimer & 
Holmes, 1983; Lichtenberg & Lieberman, 1992). 

2.2 ELM topology 
Before elaborating the details of the nonlinear type-I ELM model below, it is instructive to 
briefly describe the global topology of these instabilities. Fortunately, spherical tokamaks 
such as MAST (Kirk et al., 2004; Kirk et al., 2007) and NSTX (Maingi et al., 2005) are 
equipped with visible light fast framing cameras that can capture images of type-I ELMs. 
Figure 4 provides a full view of the plasmas captured during a type-I ELM in MAST. 
 

 
Fig. 4. A wide-angle view of the MAST plasma at one instant in time during the evolution of 
a type-I ELM (Courtesy of A. Kirk, Culham Laboratory, UK). 

Here, the bright emission bands, referred to as ELM filaments, wrap around the outer 
surface of the plasma in helical patterns that connect the upper and lower divertors. The 
pitch of these filaments is aligned with the local magnetic field, which typically has a rather 
steep angle with respect to the equatorial plane of the plasma due to the relative strength of 
the poloidal field compared to that of the toroidal field in spherical tokamaks such as MAST. 
Note that the intensity of the emission in these filaments is not uniform along their helical 
axis and that these structures are seen to protrude from the surface as they approach the 
upper hyperbolic point where they become much more toroidally aligned. These 
protrusions are consistent with the type of structure predicted by the topology of homoclinic 
and heteroclinic tangles invoked in the ELM model presented below. Here, the protrusions 
correspond to the lobes of the tangle, which become narrower in the poloidal direction and 
more extended in the radial direction as they approach a hyperbolic point (Fig. 5 shows the 
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lobes calculated when an n=1 homoclinic tangle is found in the DIII-D tokamak). This 
poloidal compression, accompanied by a radial expansion, is a consequence of the 
preservation of a constant value of the magnetic flux contained inside each lobe of the 
structure as prescribed by the Hamiltonian nature of the tangle in the model as it 
approaches a region of weak poloidal magnetic field near the hyperbolic points. These 
protruding lobes form a spiraling magnetic footprint that converges to the unperturbed 
intersection of the separatrix with the divertor target plate similar to the one shown in Fig. 4 
of Roeder et al., (2003) for an n=1 homoclinic tangle in DIII-D. These magnetic footprints are 
essential elements of the nonlinear ELM model presented below. 

2.3 ELM theories 
Linear ELM theories tend to fall into three general categories. The first and most well 
developed of these includes ideal and resistive ballooning MHD models. These involve 
pressure driven modes that couple to external kink modes (sometimes referred to as peeling 
modes). The second involves dynamics described by a bifurcation of the confinement from 
an H-mode to an L-mode forming a dynamical state described by a restricted type of limit 
cycle. The third combines elements taken from the MHD and limit cycle models to construct 
an appropriate set of dynamics. Each of these models is reviewed in a paper by Conner 
(1998). Nonlinear ELM models are relatively sparse due to the complex nature of the 
dynamics and topology involved in this phase of the instability. One example invokes the 
explosive growth of a narrow finger of hot plasma that pushes its way through other field 
lines (nonlinear ballooning) from a small region in the plasma interior and spreads across a 
large section of the surface of the plasma (Cowley et al., 2003). These models are difficult to 
validate in any practical way with tokamak data due to a lack of specific predictions on how 
they relate to the various types of ELMs and operating regimes found in high performance 
tokamak discharges. Clearly, a more quantitative model is needed. Thus, there is strong 
motivation to develop a model that can be more easily tested with experimental data. The 
model presented below provides a step in this direction since it can be used to numerically 
calculate the global topology of ELMs including the distribution and size of magnetic 
footprints that can be directly compared to divertor diagnostic data (Wingen et al., 2009a). 

3. Description of the proposed nonlinear ELM model 
3.1 Hamiltonian description of the separatrix topology in poloidally diverted tokamaks 
Poloidally diverted tokamaks are formed by a set of external axisymmetric coils that result 
in poloidal magnetic field nulls when superimposed on the magnetic field due to a toroidal 
plasma current flow in the discharge. These poloidal field nulls, in combination with 
magnetic fields from other shaping coils in the tokamak, form hyperbolic points (Zaslavsky, 
2005) of the system along with their associated separatrices that divide field line trajectories 
into trapped (inside the separatrix) versus passing (outside the separatrix) regions of space 
(Evans, 2008). In an ideal axisymmetric poloidally diverted tokamak the trapped and 
passing field line regions are referred to as “closed” and “open“ field line regions 
respectively. This is because field lines outside the separatrix intersect the walls of the 
tokamak and thus are “open“ with respect to the loss of heat and particles that flow parallel 
to the field lines. Alternatively, field lines inside the ideal axisymmetric separatrix do not 
intersect the walls of the tokamak and thus are considered “closed“ in terms of heat and 
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particle transport parallel to these field lines. As discussed below this terminology is no 
longer applicable when small non-axsymmetric magnetic pertrubations are present in the 
system. 
A fundamental element of the ELM model discussed here is the nonlinear evolution of the 
separatrix topology in a poloidally diverted tokamak. Here, the growth of a small 
topological defect known as a homoclinic tangle (Guckenheimer & Holmes, 1983), formed 
by the separatrix due to intersections of stable and unstable invariant manifolds associated 
with a hyperbolic point of the system, is the basic dynamical process invoked by the model. 
In a poloidally diverted tokamak, following along the spatial trajectory of a stable invariant 
manifold in the forward direction results in a series of converging steps that approaches the 
hyperbolic point associated with the manifold. Similarly, following the unstable invariant 
manifold in the opposite (backward) direction produces a series of converging steps toward 
the hyperbolic point from the opposite side. Thus, the splitting of trajectories into stable and 
unstable manifolds due to non-axisymmetric perturbations introduces a directional 
dependence into the spatial trajectories of the field lines implying that following field lines 
in opposite directions leads to very different spatial locations in the plasma (with the 
exception of homoclinic points where the stable and unstable invariant manifolds intersect). 
In general, a homoclinic (self-intersecting) tangle results in a 3D separatrix topology that is a 
generic property of perturbed hyperbolic conservative systems which are composed of 
divergence-free vector fields. The dynamics of such a system is described by integrating 
Hamilton’s equations of motion. Theoretically, it is well known that when sufficiently small 
perturbations are introduced into such a system it remains Hamiltonian in nature and 
preserves its well-behaved (deterministic) dynamics (Dankowicz, 1997; Lichtenberg & 
Lieberman, 1992). Such systems are commonly referred to as “near integrable” and 
generically have non-degenerate, transversely self-intersecting, separatrix manifold 
topologies that form the lobes of the homoclinic tangle. Separatrix structures such as these 
have been studied extensively in physics, mathematics, astrophysics, engineering and 
neuroscience (Dankowicz, 1997; Guckenheimer & Holmes, 1983; Simiu, 2002). Additionally, 
it is well known from conservative dynamical systems theory that the topology of a 
homoclinic tangle is the fundamental element that dictates the behavior of the trajectories 
which form the solutions to the differential equations describing the dynamics of the system 
(Guckenheimer & Holmes, 1983). In toroidal plasma confinement devices such as 
stellarators and tokamaks, the 3D topology of the field lines at any instant in time is found 
by integrating a set of magnetic differential equations that are formulated in terms of the 
toroidal (χ) and poloidal (ψ) magnetic flux coordinates (D’haeseler et al., 1991). Here, ψ is 
associated with the Hamiltonian H while χ serves as the canonical momentum of the system 
and the equations describing the 3D spatial trajectories of the field lines are given in 
Hamilton–Jacobi form as: 

 d dH
d d
θ
φ χ

=   (1)  

 d dH
d d
χ
φ θ

= −   (2)  

where θ and φ are the poloidal and toroidal angles respectively (Evans, 2008). The usual 
Hamiltonian is recognized in terms of the familiar canonical coordinates p,q by substituting 
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χ → p and θ → q and associating φ with time (t). In a tokamak 2πχ is the toroidal magnetic 
flux enclosed by a surface of constant χ and 2πψ = 2πH is the poloidal magnetic flux inside a 
surface of constant H.  
Equations (1) and (2) are generally integrable given an axisymmetric plasma equilibrium but 
the addition of small non-axisymmetric magnetic fields transforms the Hamiltonian into an 
arbitrary function of the toroidal and poloidal angles. In this system a symmetry breaking, 
non-axisymmetric, magnetic perturbation can be expressed in terms of a perturbed 
Hamiltonian εH1(χ,φ,θ) where ε is a small dimensionless perturbation parameter. Then, the 
total Hamiltonian H is given as: 

 H = H0(χ) + εH1(χ,φ,θ)  (3)  

or the sum of the axisymmetric part H0 and the non-axisymmetric perturbed part H1. The 
perturbed part of the Hamiltonian can be expressed in terms of a Fourier series as: 

 ( ) ( ) ( )1 , ,
,

, , cosm n m n
m n

H H m nχ φ θ χ θ φ χ= − +∑   (4)  

where m and n are the poloidal and toroidal mode numbers respectively (Abdullaev, 2006). 
In realistic tokamaks, the nominally degenerate invariant manifolds that form an ideally 
axisymmetric separatrix are transformed into an infinite set of homoclinic intersections by 
small field-errors associated with non-axisymmetric toroidal and poloidal magnetic field 
coil positions and other random magnetic pertrubations that are an intrinsic part of the 
tokamak environment (Evans et al., 2005). In addition, externally applied low toroidal mode 
number (n=1) non-axisymmetric magnetic fields are commonly used to “correct“ ambient 
field-errors that amplify MHD modes in the core plasma. 
Figure 5 shows a poloidal projection of the 3D separatrix structure at one toroidal angle in 
the DIII-D tokamak during the application of an n=1 field-error correction perturbation. As 
seen in the lower part of Fig. 5(a) just above the divertor region the lobes of the homoclinic 
tangle intersect the high-field side (HFS) wall (R = 1.02 m, Z = -1.17 m) while on the low-
field side (LFS) the lobes intersect the horizontal divertor target plate (R = 1.35 m, Z = -
1.36 m). Here, R,Z are cylindrical coordinates representing the distance from the toroidal 
axis of the tokamak and the displacement from equatorial plane respectively. A magnified 
view of the lower divertor region is shown in Fig. 5(b) with a 45º divertor tile (dashed line) 
connecting the HFS wall (R = 1.02 m) to the horizontal target plate tile (Z = -1.37 m). The 
entrance to the pump duct is shown on the right-hand side of Fig. 5(b) (R ≥ 1.36 m) with the 
top of the pump duct located at Z = -1.25 m. The connection length Lc of magnetic flux tubes 
between the LFS divertor target plate and the HFS wall is shown by the color bars in each 
part of the figure. 
This discharge is an example of a double null plasma equilibrium with the balance between 
the upper and lower hyperbolic points displaced slightly downward. Here, the upper 
hyperbolic point is located at R = 1.27 m, Z = 1.11 m while the lower hyperbolic point is 
located at R = 1.28 m, Z = -1.13 m. The topology of the hetroclinic tangles formed in double 
null equilibria has been shown to be a sensitive function of the relative positions of the 
upper (secondary) and lower (primary) hyperbolic points (Evans et al., 2004). For a 
downward biased equilibrium such as that shown in Fig. 5, the homoclinic tangle associated 
with the lower hyperbolic point dominates the 3D topology of the separatrix and creates a 
dramatic change in the magnetic topology inside the separatrix. Here, one of the lobes of the 
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tangle intersects the horizontal divertor target plate at R = 1.36 m, Z = -1.36 m while another 
lobe intersects the vertical wall located at R = 1.02 m. The intersection of these homoclinic 
lobes with the divertor target plate and wall ”opens” some of the field lines that were 
previously in the ”closed” region inside the separatrix prior to the application of the n=1 
magnetic perturbation field from the field-error correction coil (although some field lines are 
always open due to intrinsic non-axisymmetric field errors without the correction coils). 
This topological change creates a set of highly complex field line trajectories that traverse the 
plasma volume inside the separatrix and connect the vertical high-field side (HFS) wall to 
the low-field side (LFS) horizontal divertor target plate. This topology is similar to that of 
“line-tying” found in the solar photosphere (Gibons & Spicer, 1981). Additionally, the field 
line topology formed by this “line-tying” type of bifurcation is composed of a mixture of 
stochastic fields, with a wide range of connection lengths (Lc) that form fractal distributions 
(Abdullaev, 2006), embedded inside a set of coherent flux tubes with short connection 
lengths (Wingen et al., 2009b; Wingen et al., 2009c). It is the short Lc flux tubes that play a 
fundamental role in the nonlinear ELM model discussed below. 
 

 
Fig. 5. (a) Full poloidal cross sectional view of a separatrix homoclinic tangle formed by an 
applied external n=1 magnetic perturbation due to the DIII-D field-error correction coil with 
a current of 8 kAt in discharge 133908 at t = 2000 ms. (b) An expanded cross sectional view 
of the primary divertor. Lc is the field line connection length between the horizontal target 
plate (Z = -1.36 m) and the vertical wall (R = 1.02 m). 

The intersection of the homoclinic and heteroclinic lobes with divertor targets and walls 
forms objects referred to as magnetic footprints on the R,φ and Z,φ planes of the divertor 
targets and walls respectively as shown in Fig. 6(a) for the HFS wall and Fig. 6(b) for the LFS 
divertor target plate for the same conditions as in Fig. 5. Measurements of the heat (Evans 
et al., 2005, Evans et al., 2007) and particle (Schmitz et al., 2008) flux distributions on the 
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DIII-D divertors have been shown to be qualitatively consistent with numerical calculations 
of magnetic footprints produced by homoclinic lobes during experiments with applied non-
axisymmetric magnetic fields from field-error correction and edge MHD (ELM) suppression 
coils (Evans et al., 2006). Similar heat flux patterns have been observed in the ASDEX-U 
tokamak (Eich et al., 2005) during ELMs. Quantitative comparisons of heat flux measure-
ments inside these footprints with numerical simulations indicate that the separation 
between adjacent lobe intersections with the divertor targets can be a factor of 2-3 times 
larger than that predicted suggesting that there is a significant amplification of the homo-
clinic tangle structure from the applied n=1 field due to the response of the plasma (Evans 
et al., 2007). There are also indications that the topology of the lobes is affected by magnetic 
perturbations from MHD modes deep in the core plasma (Evans et al., 2005). 
 

 
Fig. 6. Lower divertor (a) magnetic footprint formed on HFS vertical wall by an externally 
applied n=1 perturbation (no plasma response) from the DIII-D field-error correction coil 
with a current of 8 kAt in discharge 133908 at t = 2000 ms and (b) the LFS magnetic footprint 
formed on the horizontal divertor target plate. These footprints define the open field line hit 
points due to the intersection of the lobes of the homoclinic tangle shown in Fig. 5 with the 
target plate and wall. As in Fig. 5, Lc is the field line connection length between the 
horizontal target plate (Z = -1.36 m) and the vertical wall (R = 1.02 m). 

3.2 Description of the temporal evolution prescribed by the model 
A conceptual model describing the dynamics of the edge plasma and the evolution of the 
pedestal magnetic topology following the linear growth phase of a type-I ELM is presented. 
Understanding the physics, topology and dynamics of ELMs during their post-linear 
growth phase is essential for predicting the characteristics of these instabilities as a funtion 
of the pedestal plasma conditions. In particular, a model is needed that can be used to 
predict the temporal evolution of the plasma heat and particle distributions on the vessel 
wall and divertor components. 
As discussed above, small quasi-static homoclinic and heteroclinic tangles result naturally 
from a variety of non-axisymmetric magnetic field perturbations commonly found in high 
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performance poloidally diverted tokamaks. Examples of these non-axisymmetric field 
perturbations include toroidal field ripple, field-errors, core and edge MHD modes, 3D 
electromagnetic field control (trim) coils and small, spatially random, 3D field components 
due to magnetic materials and tolerence build-ups in the electromagnetic coils used to 
confine and shape the plasma (Evans et al., 2005; Evans et al., 2007). Thus, it is not 
unreasonable to expect the formation of separatrix homoclinic and heteroclinic tangles to be 
the norm rather than the exception, whether in a low confinement L-mode or in high 
confinement H-mode plasma as well as between and during ELMs. It is the existence of the 
separatrix topology associated with these tangles between ELMs that forms the basis of the 
model (Evans et al., 2009) described here. 
Given the basic topology shown in Fig. 5, the model assumes that small fluctuations in the 
pedestal plasma pressure initiate a linearly growing MHD instability as the equilibrium 
conditions in a narrow region just inside the separatrix approach a marginal stability point.  
An example of this process is described by ideal MHD peeling-ballooning theory (Snyder 
et al., 2005; Wilson et al., 2006) which presumes that linearly growing intermediate n modes 
lead to the onset of the nonlinear growth phase. Peeling-ballooning theory predicts that the 
onset of this edge MHD mode significantly increases the radial heat and particle transport. 
Our model assumes that the energy associated with the linearly growing MHD mode flows 
into the coherent, short connection length, homoclinic flux tubes connecting the HFS wall 
and the LFS divertor target. At this point, fast parallel transport along these homoclinic flux 
tubes causes a rapid increase in the electron temperature (Te) inside the magnetic footprints 
near the wall and divertor surfaces. Experimental measurements taken during the early 
growth of an ELM demonstrate that there is a rapid release of thermal energy from the area 
located near the steep gradient region leading up to the top of the pedestal just inside the 
separatrix (Kirk et al., 2007, Neuhauser et al., 2008). These observations are consistent with 
our requirement of a rapid increase in the radial energy transport during this time. These 
rapid bursts of energy flowing from the pedestal into the divertor appear to be correlated 
with an increase in broadband magnetic fluctuations in the pedestal starting about 10 μs 
before the onset of the nonlinear growth phase (Neuhauser et al., 2008) suggesting that 
currents in this region may play a key role in the onset of the nonlinear growth phase.  
In our model, it is these inital heat pulses associated with the linearly growing MHD 
instability that provide the mechanism needed to form a feedback amplification loop. It is 
this feedback loop that causes the stable and unstable invariant manifolds of the initial 
homoclinic tangle to grow explosively. Here, it is presumed that the amplification process is 
triggered by the formation of field-aligned thermoelectric currents that flow through the 
short, pedestal plasma, homoclinic flux tubes connecting the inner wall and outer divertor 
target plate. These thermoelectric currents form when Te at one end of a flux tube increases 
relative to Te at the other end (Staebler & Hinton, 1989). Since part of the heat pulse enters 
the short flux tube near the equatorial plane on the LFS of the discharge it is expected to 
arrive at the LFS target well before arriving at the HFS wall. Numerical simulations of these 
two-poloidal-turn helical flux tubes (Wingen, et al. 2009a) show that the distance from the 
LFS equatorial plane to the LFS target plate is ~25 m while the distance to the HFS wall is 
~75 m. In DIII-D H-mode plasmas, Te just inside the separatrix, where these flux tubes 
reside, is ~400-500 eV. Thus, given an electron thermal velocity vTe = (kTe/me)1/2 = 
8.4×106 m/s where k is Boltzmann’s constant and me is the mass of an electron, these heat 
pulses arrive at the LFS target plate approximately 6 μs before reaching the HFS wall. This 
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causes Te near the LFS target plate to increase relative to that near the HFS wall and initiates 
the flow of a thermoelectric current from the LFS target to the HFS wall with a return 
current connecting through the lower divertor vessel structure. 
Thus, the model assumes that following the release of the initial heat pulse from the linearly 
growing MHD mode a small field-aligned thermoelectric current begins to flow in a helical 
flux tube formed by a small preexisting homoclinic tangle. Although the time evolution of 
the current growth is not specifically predicted by the model, it is assumed that as the 
current grows its magnetic field perturbs the upper and lower hyperbolic points causing the 
lobes of the homoclinic tangle and their associated magnetic footprints to increase in size. 
Simulations have been carried out assuming the current density in the flux tube is limited to 
approximately 1/2 the initial ion saturation current density (~70-80 mA/mm2) during the 
nonlinear phase of the instability (Wingen, et al., 2009a). These simulations have shown that 
the magnetic footprint, associated with a single n=1 flux tube connecting the primary 
(lower) LFS divertor target with the HFS wall, grows from an area of 1760 mm2, with a 
current of 135.5 A, to an area of  3564 mm2 with a current of 274.4 A. During this process, a 
topological bifurcation takes place that creates a new set of n=2 flux tubes connecting the 
primary divertor LFS target to the HFS wall (Wingen, et al., 2009a). It is then assumed, that 
as the thermoelectric current grows with increasing footprint area there is a commensurately 
increasing flow of energy from the pedestal into the flux tube that maintains the constant 
current density. Here, the working hypothesis is that the growing helical thermoelectric 
current filaments associated with the short connection length flux tubes also produce 
resonant magnetic field components that open magnetic islands (i.e., Poincaré islands) on 
rational surfaces across the pedestal region in addtion to perturbing the nominally 
axisymmetric hyperbolic points. As these islands grow and overlap they produce an 
increase in the local magnetic field line stochasticity which enhances the effective radial heat 
tranport into the homoclinic flux tube containing the thermoelectric current. This completes 
the feedback amplification loop and results in the initial explosive growth phase of the 
topological instability.  
During the next step in the process, the initial helical current filament grows explosively and 
acts to amplify the lobes of the homoclinic tangle while inducing a growing level of pedestal 
stochasticity that penetrates deeper into the core plasma as it grows. This process results in a 
self-amplification of the lobes due to a positive feedback loop between the size of the tangle 
lobes, an increasing stochastic layer width and an increase in the heat flux to the target 
plates that drives an increasing flow of current. This process takes on the appearance of 
growing helical filaments that protrude beyond the edge of the plasma and seem to 
propagate radially outward as they grow. A key feature of the processes involved up to this 
point is that there is no need to invoke field line tearing and reconnection during the 
evolution of an ELM. The entire process can be described using ideal MHD theory without 
requiring resistive or dissipative effects that would cause the filaments to tear and separate 
from the edge of the plasma. Such a process would rapidly shut down the thermal transport 
responsible for the growth of the instability. This is seen by comparing the 1-2 ms decay 
time following the current peak in Fig. 3 to a tearing mode growth time γ-1 ~ τr3/5τA2/5 s 
where γ is the growth rate of the tearing mode, τr is the resistive time and τA is the Alfvén 
time in the pedestal. We find that γ-1 ≤ 0.1 ms where τr = 1.2x10-4 s and τA = 5.8x10-5 s or 
approximately an order of magnitude shorter than the current decay time. Therefore, the 
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growth of a tearing mode following the peak in the current would cause a separation of the 
filament from the pedestal and a rapid, sub-millisecond, termination of the of the current. 
Instead, we see that the ELM is a radially extended structure, as indicated by the relatively 
constant ratio of the signals from two adjacent Langmuir probes in Fig. 3, which is 
reminiscent of the lobes of a homoclinic tangle and that this radial structure persists as the 
current slowly decays. This relatively slow decay of the current is more consistent with a 
slow shutdown of the heat flux from the pedestal as the energy reservoir in this region is 
slowly depleted and Te in the short flux tubes drops. This reduction in Te causes an increase 
in resistivity in the short flux tubes which, when coupled with a cooling of the plasma in 
front of the divertor target plate due to an increase in particle recycling, as shown in Fig. 2, 
slowly reduces the thermoelectric current flowing between the target plate and the wall. 
Numerical simulations of the growth experienced by a pre-existing, field-error related, 
homoclinic tangle have been carried out using current filaments that are proportional to the 
area of the magnetic footprint on the divertor target plate. Results from these simulations 
demonstrate that the calculated nonlinear dynamics of the tangle’s topology are consistent 
with the heat flux patterns measured in the DIII-D divertor during a type-I ELM (Wingen 
et al., 2009a). A key question studied during these simulations addresses how the 
topological evolution prescribed by the model conforms to experimental measurements of 
type-I ELM dynamics. In particular, data such as that shown in Fig. 4 suggest that the peak 
in the toroidal mode spectrum of an ELM increases in mode number during the nonlinear 
growth phase. As discussed below, a bifurcation in the separatrix topology has been 
identified during the early growth phase of the instability. This bifurcation involves the 
appearance of heteroclinic invariant manifolds associated with the upper (secondary) 
hyberbolic point. 

3.3 Dynamics of an ELM-induced homoclinic-to-heteroclinic separatrix bifurcation  
Here, we describe the appearance of a homoclinic-to-heteroclinic bifurcation as the total 
current flowing in a short flux tube, connecting the LFS divertor target plate to the HFS wall, 
increases from 100 to 300 A. The simulation starts with an axisymmetric plasma equilibrium. 
We then superimpose a spectrum of nonaxisymmetric magnetic perturbations due to field-
errors that have been systematically measured in the DIII-D tokamak (Luxon et al., 2003) 
along with a 3D magnetic perturbation field produced by a field-error correction coil (refer-
red to as the I-coil) in DIII-D discharge 133908 at t = 2000 ms (Wingen et al., 2009a). Note 
that this is the same plasma equilibrium shown in Fig. 5 but there an artificial n=1 nonaxi-
symmetric magnetic field is applied by a coil referred to as the C-coil with a relatively large 
current in order to highlight the properties of the homoclinic tangle. In the simulation 
discussed here, we use the actual coil currents that were employed during the experiment in 
discharge 133908. 
As a starting point for this simulation, the shortest flux tube produced by the field-errors 
and an n=1 correction coil is selected. Initially, there is only one relatively small flux tube 
connecting the LFS side lower (primary) divertor target plate with the HFS wall. We refer to 
this as flux tube number 1. This flux tube makes two poloidal revolutions along its path 
through the pedestal plasma just inside the separatrix and has a total length from the target 
plate to the wall of ~100 m. The current flowing in a large divertor tile sensor is used to 
establish a current density calibration for the simulation. This is done by calculating the area 
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of overlap between the tile sensor and the magnetic footprint at the toroidal and radial 
position of the tile when the maximum current during an ELM is reached. Using the calcu-
lated area of intersection with the tile sensor and an assumed current density of 
77 mA/mm2 we get 200 A which agrees with the measured current in this tile sensor at the 
peak amplitude of the ELM. The assumed current density (about 1/2 the pre-ELM ion satu-
ration current) is held fixed throughout the remainder of simulation while the topology of 
the separatrix unfolds. We start with a relatively small current in flux tube number 1 and 
increase the current in steps. With each iteration of the code, the area of the magnetic 
footprints increases as the size of the lobes produced by the homoclinic tangle associated 
with the primary divertor hyperbolic point increases. The current is increased until the total 
area of all the magnetic footprints overlapping the tile sensor equals ~3000 mm2. At this 
point, the area of the three footprints associated with flux tubes 1, 2 and 3 is calculated and 
using the assumed current density of 77 mA/mm2 a total current of ~4.9 kA is obtained 
(Wingen et al., 2009a). 
During the sequence of iterations in the current flowing in flux tube number 1, a new pair of 
flux tubes is formed followed by the formation of a fourth flux tube at a higher current. The 
first pair of flux tubes, referred to as flux tube number 2 and 3, connect the primary LFS 
divertor target plate to the HFS wall after one poloidal turn and have a length of ~50 m. Flux 
tubes 2 and 3 are formed during a bifurcation of the separatrix topology that involves a 
splitting of the invariant manifolds, caused by the presence of the secondary (upper) hyper-
bolic point, into a higher order set of stable and unstable branches of the original manifold 
topology. We refer to this as a homoclinic-to-heteroclinic bifurcation although here we focus 
only on the increased complexity of the homoclinic tangle associated with the primary 
(lower) hyperbolic point. 
Figure 7(b) shows the structure of the manifolds produced by the primary (lower divertor) 
hyperbolic point in the secondary divertor region near the upper hyperbolic point with a 
current of 100 A flowing in flux tube number 1. Flux tube number 1 is not large enough to 
be clearly identified at this level of current. With this current, the initial formation of flux 
tubes 2 and 3 has begun. Here, flux tubes are formed in the area between intersecting stable 
and unstable manifolds. As seen in Fig. 8(a) flux tube number 3 is completed at 130 A when 
the stable and unstable manifolds intersect while flux tube number 2 is not yet fully formed 
at 150 A in Fig. 8(b). 
As the current in flux tube number 1 is increased from 150 A to 200 A, flux tube number 2 is 
completed and a new partially formed flux tube appears, flux tube number 4 as shown in 
Fig. 9(a), on each side of flux tube number 2. Between 200 A and 300 A flux tube number 4 is 
completed and manifold connections are made between the secondary (upper) divertor LFS 
target plate and the primary (lower) HFS wall as well as between the primary LFS target 
plate and the secondary HFS wall as shown in Fig. 9(b).  
From this point on in the simulation a current proportional to the area of intersection of flux 
tubes 2 and 3 with the primary LFS divertor target, having a current density of 77 mA/mm2, 
is included at each subsequent step until the current limit discussed above is reached. As the 
simulation proceeds flux tubes 2 and 3, which form a pair of single poloidal turn helical 
structures that are displaced from each other toroidally by 180º, produce an n=2 
perturbation that dominates the growth of the lobes and the primary divertor LFS target 
plate magnetic footprints. 
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Fig. 7. Poincaré plots of (a) the calculated structure of the stable and unstable invariant 
manifolds in the primary divertor with a current of 100 A in flux tube number 1 (not clearly 
visible) and (b) the corresponding structure of the manifolds in the secondary divertor. The 
numbers 2 and 3 indicate regions where flux tube number 2 and 3 will form as the current in 
flux tube number 1 is increased in the simulation once the stable and unstable manifolds 
intersect. 

 
Fig. 8. Poincaré plots of (a) the formation of flux tube number 3 in the secondary divertor as 
the current in flux tube 1 is increased to 130 A, (b) flux tube number 2 is not completely 
formed at 150 A.  

4. Discussion and conclusion 
A conceptual model describing the nonlinear gowth of type-I ELMs in high performance 
tokamak plasmas has been presented along with a numerical simulation of the separatrix 
evolution, described by the model, during an ELM in a typical DIII-D H-mode plasma. The  
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Fig. 9. Poincaré plots of (a) the formation of flux tube number 2 in the secondary divertor at 
200 A in flux tube number 1 and the appearance of a new partially formed flux tube 
(number 4) while (b) at 300 A in flux tube number 1 all of the new flux tubes (numbers 2, 3 
and 4) are fully formed.  
temporal evolution of the separatrix is driven by a plasma instability resulting from a 
rapidly growing current that flows through the pedestal region of the plasma and changes 
the global topology of the manifolds that make up the separatrix. This topological change 
involves a homoclinic-to-heteroclinic bifurcation of the secondary (upper) hyperbolic point 
in the equilibrium magnetic field. The bifurcation creates an n=2 helical structure, consisting 
of two independent flux tubes separated by 180º toroidally, early in nonlinear growth phase 
when a small, 150-200 A, field-aligned current flows in the original n=1 flux tube created by 
field-errors and a field-error correction coil. Although reversing the direction of the current 
in the n=1 flux tube does not have a significant effect on the structure of the invariant 
manifolds associated with the tangle structures, distributing the current into multiple 
filaments rather than allowing it in the single filament, as in the simulation shown in 
Sec. 3.3, results in a much more complex topology that has significantly more lobes 
intersecting the primary LFS divertor target plate. Thus, the model predicts the formation of 
a new set of invariant manifolds associated with the secondary hyperbolic point. These new 
invariant manifolds intersect the upper (secondary) divertor target plate and the HFS wall in 
DIII-D during the nonlinear growth phase of an ELM. This has significant implications for 
fusion reactor designs since it implies that complex heat and particle flux striations, 
associated with the magnetic footprints and flux tubes due to these new separatrix 
manifolds, should cause large impulsive energy bursts on secondary plasma facing surfaces 
that are not typically designed to handle such interactions with high energy density 
plasmas. Therfore, it is important that these predictions be tested using high time resolution 
measurements of the transient heat and particle flux interactions with plasma facing 
components near the secondary hyperbolic point during ELMs. 
Another important question to ask of the model is whether it can be used to shed light on the 
physics of ELM suppression when small (~50 G), stationary, n=3 magnetic pertrubations are 
applied to ELMing H-modes in the DIII-D tokamak (Evans et al, 2006). Here, an interesting 
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hypothessis that can be tested is that the n=3 field interacts with the lobes of the n=1 field-error 
tangle causing them to break up into relatively small scale structures that are more effective for 
dissapating the steady-state heat and particle flux over a much larger area of the divertor. This 
is expected to provide additional control over the pedestal transport that could be used to keep 
the pressure gradient below the threshold required for the onset of the linearly growing MHD 
installability. Constructive and destructive interference between nonaxisymmetric magnetic 
pertrubations from various coils in DIII-D has been studied previously. This work 
demonstrated that such interactions lead to much more complex lobe structures (Wingen et al., 
2009b) that tends to spread the footprints and open more flux tubes (Evans et al, 2007) which 
can be used to fine tune the pedestal transport. Extending this hypothesis to higher n 
homoclinic structures, such as n=4 up to n=6 or 7 or combinations of structures with toroidal 
mode numbers ranging from 1 thorugh 7, suggests that the effect may provide much better 
control over the height and width of the pedestal region thus allowing the possibility of fine 
tuning of the pressure gradient profile. With advanced realtime pedestal profile diagnostics, it 
should be possible to combine this multimode perturbation field approach with an edge 
pressure and current gradient tracking algorithm to obtain a desired set of pedestal properties, 
particularly if an edge-localized heating and current drive system such as electron cyclotron 
system, were to be included as part of the feedback loop. 
In general, the model presented here qualitatively fits some of the observed experimental 
attributes of large type-I ELMs such as a slow decay rate of the current in the flux tube as 
seen in Fig. 3. The model also has elements that may explain the variability seen in ELM 
signatures such as the divertor recycling emissions when effects such as type-II ELMs 
between the type-I ELMs are included. Other effects, such as an increase in the frequency of 
the ELMs with increasing heating power and the apprent rotation of the ELM structure 
during the nonlinear growth phase, have not yet been addressed by the model. These will be 
the focus of future work along with more detailed experimental comparisons. 
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1. Introduction 
The atomic force microscope (AFM) (Bennig et al., 1986) has become an important nanoscale 
characterization tool for the development of novel materials and devices. The rapid 
development of new materials produced by the embedding of nanostructural constituents 
into matrix materials has placed increasing demands on the development of new nanoscale 
measurement methods and techniques to assess the microstructure-physical property 
relationships of such materials. Dynamic implementations of the AFM (known variously as 
acoustic-atomic force microscopies or A-AFM and scanning probe acoustic microscopies or 
SPAM) utilize the interaction force between the cantilever tip and the sample surface to 
extract information about sample material properties. Such properties include sample elastic 
moduli, adhesion, surface viscoelasticity, embedded particle distributions, and topography.  
The most commonly used A-AFM modalities include various implementations of amplitude 
modulation-atomic force microscopy (AM-AFM) (including intermittent contact mode or 
tapping mode) (Zhong et al., 1993), force modulation microscopy (FMM) (Maivald et al., 
1991), atomic force acoustic microscopy (AFAM) (Rabe & Arnold, 1994; Rabe et al., 2002), 
ultrasonic force microscopy (UFM) (Kolosov & Yamanaka, 1993; Yamanaka et al., 1994), 
heterodyne force microscopy (HFM) (Cuberes et al., 2000; Shekhawat & Dravid, 2005), 
resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM) (Cantrell et 
al., 2007) and variations of these techniques (Muthuswami & Geer, 2004; Hurley et al., 2003; 
Geer et al., 2002; Kolosov et al., 1998; Yaralioglu et al., 2000; Zheng et al., 1006; Kopycinska-
Müller et al., 2006; Cuberes, 2009).  
Central to all A-AFM modalities is the AFM.  As illustrated in Fig. 1, the basic AFM consists of 
a scan head, an AFM controller, and an image processor. The scan head consists of a cantilever 
with a sharp tip, a piezoelement stack attached to the cantilever to control the distance 
between the cantilever tip and sample surface (separation distance), and a light beam from a 
laser source that reflects off the cantilever surface to a photo-diode detector used to monitor 
the motion of the cantilever as the scan head moves over the sample surface. The output from 
the photo-diode is used in the image processor to generate the micrograph. 
The AFM output signal is derived from the interaction between the cantilever tip and the 
sample surface. The interaction produces an interaction force that is highly dependent on the 
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tip-sample separation distance. A typical force-separation curve is shown in Fig. 2.  Above the 
separation distance zA the interaction force is negative, hence attractive, and below zA the 
interaction force is positive, hence repulsive. The separation distance zB is the point on the 
curve at which the maximum rate of change of the slope of the curve occurs and is thus the 
point of maximum nonlinearity on the curve (the maximum nonlinearity regime). 
 

 
Fig. 1.  Schematic of the basic atomic force microscope. 

 
Fig. 2. Interaction force plotted as a function of the separation distance z between cantilever 
tip and sample surface. 

Modalities, such as AFM and AM-AFM, are available for near-surface characterization, 
while UFM, AFAM, FMM, HFM, and RDF-AFUM are generally used to assess deeper 
(subsurface) features at the nanoscale. The nanoscale subsurface imaging modalities 
combine the lateral resolution of the atomic force microscope with the nondestructive 
capability of acoustic methodologies. The utilization of the AFM in principle provides the 
necessary lateral resolution for obtaining subsurface images at the nanoscale, but the AFM 
alone does not enable subsurface imaging. The propagation of acoustic waves through the 
bulk of the specimen and the impinging of those waves on the specimen surface in contact 
with the AFM cantilever enable such imaging. The use of acoustic waves in the ultrasonic 
range of frequencies leads to a more optimal resolution, since both the intensity and the 
phase variation of waves scattered from nanoscale, subsurface structures increase with 
increasing frequency (Überall, 1997). 
A schematic of the equipment arrangement for the various A-AFM modalities is shown in 
Fig. 3. The arrangement used for AFAM and FMM is shown in Fig. 3 where the indicated 
switches are in the open positions. AFAM and FMM utilize ultrasonic waves transmitted 
into the material by a transducer attached to the bottom of the sample.  After propagating 
through the bulk of the sample, the wave impinges on the sample top surface where it 
excites the engaged cantilever. For AFAM and FMM the cantilever tip is set to engage the 
sample surface in hard contact corresponding to the roughly linear interaction region below 
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zA of the force-separation curve. The basic equipment arrangement used for UFM is the 
same as that for AFAM and FMM, except that the cantilever tip for UFM is set to engage the 
sample in the maximum nonlinearity regime of the force-separation curve. The UFM output 
signal is a static or “dc” signal resulting from the interaction nonlinearity.  
 

 
Fig. 3. Acoustic-atomic force microscope equipment configuration. Switches are open for 
AFAM, FMM, and UFM.  Switches are closed for HFM and RDF-AFUM. 

The equipment arrangement for RDF-AFUM and HFM is shown in Fig. 3 where the 
indicated switches are in the closed positions. Similar to the AFAM, FMM and UFM 
modalities, RDF-AFUM and HFM employ ultrasonic waves launched from the bottom of the 
sample.  However, in contrast to the AFAM, FMM and UFM modalities, the cantilever in 
RDF-AFUM and HFM is also driven into oscillation. RDF-AFUM and HFM operate in the 
maximum nonlinearity regime of the force-separation curve, so the nonlinear interaction of 
the surface and cantilever oscillations produces a strong difference-frequency output signal.  
For the AM-AFM modality only the cantilever is driven into oscillation and the tip-sample 
separation distance may be set to any position on the force-separation curve.  In one mode 
of AM-AFM operation the rest or quiescent separation distance z0 lies well beyond the 
region of strong tip-sample interaction, i.e. the quiescent separation z0 >> zB.   
Various approaches to assessing the nonlinear behavior of the cantilever probe dynamics 
have been published (Kolosov & Yamanaka, 1993; Yamanaka et al., 1994; Nony et al., 1999; 
Yagasaki, 2004; Lee et al., 2006; Kokavecz et al., 2006; Wolf & Gottlieb, 2002; Turner, 2004; 
Stark & Heckl, 2003; Stark et al., 2004; Hölscher et al., 1999; Garcia & Perez, 2002). We 
present here a general, yet detailed, analytical treatment of the cantilever and the sample as 
independent systems in which the nonlinear interaction force provides a coupling between 
the cantilever tip and the small volume element of sample surface involved in the coupling. 
The sample volume element is itself subject to a restoring force from the remainder of the 
sample.  We consider only the lowest-order terms in the cantilever tip-sample surface, 
interaction force nonlinearity. Such terms are sufficient to account for the most important 
operational characteristics and material properties obtained from each of the various 
acoustic-atomic force microscopies cited above. A particular advantage of the coupled 
independent systems model is that the equations are valid for all regions of the force-
separation curve and emphasize the local curvature properties (functional form) of the 
curve. Another advantage is that the dynamics of the sample, hence energy transfer 
characteristics, can be extracted straightforwardly from the solution set using the same 
mathematical procedure as that for the cantilever.      
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We begin by developing a mathematical model of the interaction between the cantilever tip 
and the sample surface that involves a coupling, via the nonlinear interaction force, of 
separate dynamical equations for the cantilever and the sample surface. A general solution 
is found that accounts for the positions of the excitation force (e.g., a piezo-transducer) and 
the cantilever tip along the length of the cantilever as well as for the position of the laser 
probe on the cantilever surface. The solution contains static terms (including static terms 
generated by the nonlinearity), linear oscillatory terms, and nonlinear oscillatory terms.  
Individual or various combinations of these terms are shown to apply as appropriate to a 
quantitative description of signal generation for AM-AFM and RDF-AFUM as 
representatives of the various A-AFM modalities. The two modalities represent opposite 
extremes in measurement complexity, both in instrumentation and in the analytical 
expressions used to calculate the output signal. This is followed by a quantitative analysis of 
image contrast for the A-AFM techniques. As a test of the validity of the present model, 
comparative measurements of the maximum fractional variation of the Young modulus in a 
film of LaRCTM-CP2 polyimide polymer are presented using the RDF-AFUM and AM-AFM 
modalities.  

2. Analytical model of nonlinear cantilever dynamics 
2.1 General dynamical equations 
The cantilever of the AFM is able to vibrate in a number of different modes in free space 
corresponding to various displacement types (flexural, longitudinal, shear, etc.), resonant 
frequencies, and effective stiffness constants. Although any shape or oscillation mode of the 
cantilever can in principle be used in the analysis to follow, for definiteness and expediency 
we consider only the flexural modes of a cantilever modeled as a rectangular, elastic beam 
of length L, width a, and height b.  We assume the beam to be clamped at the position x = 0 
and unclamped at the position x = L, as indicated in Fig. 4. We consider the flexural 
displacement y(x,t) of the beam to be subjected to some general force per unit length H(x,t), 
where x is the position along the beam and t is time. The dynamical equation for such a 
beam is 

 )t,x(H
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where EB is the elastic modulus of the beam, I = ab3/12 is the bending moment of inertia, ρB 
is the beam mass density, and AB = ab is the cross-sectional area of the beam. 
The solution to Eq. (1) may be obtained as a superposition of the natural vibrational modes 
of the unforced cantilever as 
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where ηcn is the nth mode cantilever displacement (n = 1, 2, 3, ⋅⋅⋅) and the spatial 
eigenfunctions Yn(x) form an orthogonal basis set given by (Meirovitch, 1967)  
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Fig. 4. Schematic of cantilever tip-sample surface interaction:  z0 is the quiescent (rest) tip-
surface separation distance (setpoint), z the oscillating tip-surface separation distance, cη  
the displacement (positive down) of the cantilever tip, sη  the displacement of the sample 
surface (positive up), cnk is the nth mode cantilever stiffness constant (represented as an 
nth mode spring), cm  the cantilever mass, sk  the sample stiffness constant (represented as 
a single spring), sm  the active sample mass, and )z(F 0′ and )z(F 0′′ are the linear and first-
order nonlinear interaction force stiffness constants, respectively, at z0.   

The flexural wave numbers qn in Eq.(3) are determined from the boundary conditions as 
cos(qnL)cosh(qnL) = -1 and are related to the corresponding modal angular frequencies ωn 
via the dispersion relation IE/Aq BBB

2
n

4
n ρω= .  The general force per unit length H(x,t) can 

also be expanded in terms of the spatial eigenfunctions as (Sokolnikoff & Redheffer, 1958) 
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Applying the orthogonality condition 
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(δmn are the Kronecker deltas) to Eq. (4), we obtain  

 ξξ∫ ξ= d)(Y)t,(H)t(B n
L

0
n .  (6) 

We now assume that the general force per unit length acting on the cantilever is composed 
of (1) a cantilever driving force per unit length Hc(x,t), (2) an interaction force per unit length 
HT(x,t) between the cantilever tip and the sample surface, and (3) a dissipative force per unit 
length Hd(x,t). Thus, the general force per unit length H(x,t) = Hc(x,t) + HT(x,t) + Hd(x,t).  We 
now assume that the driving force per unit length is a purely sinusoidal oscillation of 
angular frequency ωc and magnitude Pc. We also assume the driving force to result from a 
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drive element (e.g., a piezo-transducer) applied at the point xc along the cantilever length.  
We thus write )xx(eP)t,x(H c

ti
cc c −δ= ω  where δ(x – xc) is the Dirac delta function. The 

interaction force per unit length HT(x,t) of magnitude PT is applied at the cantilever tip at x = 
xT  and is not a direct function of time, since it serves as a passive coupling between the 
independent cantilever and sample systems. We thus write the interaction force per unit 
length as HT(x,t) = PTδ(x – xT). We assume the modal dissipation force per unit length Hd(x,t) 
to be a product of the spatial eigenfunction and the cantilever displacement velocity given 
as )dt/d)(x(YP)t,x(H cnndd η−= .   The coefficient Bn(t) is then obtained from Eq. (6) as 
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ti
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where the integration in the last term is taken over the range x = 0 to x = L. Substituting Eqs. 
(2) and (4) into Eq.( 1) and collecting terms, we find that the dynamics for each mode n must 
independently satisfy the relation  
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From Eq. (3) we write n
4
n

4
n

4 Yqdx/Yd = .  Using this relation and the dispersion relation 
between qn and ωn , we obtain that the coefficient of ηcn in Eq.( 8) is given by 

BB
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B A)dx/Yd(IE ρω= .  Multiplying Eq. (8) by Ym(x) and integrating from x = 0 to x = 

L, we obtain 

 FeFkm ti
ccncncnccnc c +=η+ηγ+η ω���  (9) 

where the overdot denotes derivative with respect to time, mc = ρBABL is the total mass of 
the cantilever and Fc = PBLYn(xc). The tip-sample interaction force F is defined by F = 
PTLYn(xT) and the cantilever stiffness constant kcn is defined by 2

nccn mk ω= .  The damping 

coefficient γc of the cantilever is defined as dx)x(YLP ndc ∫=γ .  Note that, with regard to the 
coupled system response, for a given mode n the effective magnitudes of the driving term Fc 
and the interaction force F are dependent via Yn(xc) and Yn(xT), respectively, on the positions 
xc and xT at which the forces are applied.  The damping factor, in contrast, results from a 
more general dependence on x via the integral of Yn(x) over the range zero to L. If the 
excitation force per unit length is a distributed force over the cantilever surface rather than 
at a point, then the resulting calculation for Fc would involve an integral over Yn(x) as 
obtained for the damping coefficient.      
The interaction force F in Eq. (9) is derived without regard to the cantilever tip-sample 
surface separation distance z. Realistically, the magnitude of F is quite dependent on the 
separation distance. In particular, various parameters derived from the force-separation 
curve play an essential role in the response of the cantilever to all driving forces. We further 
consider that the interaction force not only involves the cantilever at the tip position xT but 
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also some elemental volume of material at the sample surface. To maintain equilibrium it is 
appropriate to view the elemental volume of sample surface as a mass element ms (active 
mass) that, in addition to the interaction force, is subjected to a linear restoring force from 
material in the remainder of the sample. We assume that the restoring force per unit 
displacement of ms in the direction z toward the cantilever tip is described by the sample 
stiffness constant ks.   
The interaction force F between the cantilever tip and the mass element ms is in general a 
nonlinear function of the cantilever tip-sample surface separation distance z. A typical 
nonlinear interaction force F(z) is shown schematically in Fig. 2 plotted as a function of the 
cantilever tip-sample surface separation distance z. The interaction force results from a 
number of possible fundamental mechanisms including electrostatic forces, van der Waals 
forces, interatomic repulsive (e.g., Born-Mayer) potentials, and Casimir forces (Law & 
Rieutord, 2002; Lantz et al., 2001; Polesel-Maris et al., 2003; Eguchi & Hasegawa, 2002; Saint 
Jean et al.,; Chan et al., 2001).  It is also influenced by chemical potentials as well as hydroxyl 
groups formed from atmospheric moisture accumulation on the cantilever tip and sample 
surface (Cantrell, 2004).   
Since the force F(z) is common to the cantilever tip and the sample surface element, the 
cantilever and the sample form a coupled dynamical system. We thus consider the 
cantilever and the sample as independent dynamical systems coupled by their common 
interaction force F(z). Fig. 4 shows a schematic representation of the various elements of the 
coupled system. The dynamical equations expressing the responses of the cantilever and the 
sample surface to all driving and damping forces may be written for each mode n of the 
coupled system as   

 tcosF)z(Fkm cccncncnccnc ω+=η+ηγ+η ���   (10)   

 )tcos(F)z(Fkm sssnssnssns θ+ω+=η+ηγ+η ���  (11) 

where cnη (positive down) is the cantilever tip displacement for mode n, snη (positive up) 
is the sample surface displacement for mode n, cω  is the angular frequency of the cantilever 
oscillations, sω  is the angular frequency of the sample surface vibrations, cγ is the damping 
coefficient for the cantilever, sγ  is the damping coefficient for the sample surface, cF  is the 
magnitude of the cantilever driving force, sF  is the  magnitude  of  the  sample  driving  
force that we  assume  here  to  result  from an incident ultrasonic  wave generated at the 
opposite surface of the sample. The factor θ  is a phase contribution resulting from the 
propagation of the ultrasonic wave through the sample material and is considered in more 
detail in Section 2.2.   
Eqs. (10) and (11) are coupled equations representing the cantilever tip-sample surface 
dynamics resulting from the nonlinear interaction forces. The equations govern the 
cantilever and surface displacements ηcn and ηsn, respectively at x = xT. In a realistic AFM 
measurement of the cantilever response to the driving forces, the measurement point is not 
generally at x = xT, but at the point x = xL at which the laser beam of the AFM optical 
detector system strikes the cantilever surface. The cantilever response at x = xL is found from 
Eq. (2) to be 

 ∑ η=η=
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We note from Fig. 4 that for a given mode n, )(zz sncno η+η−= , where z0 is the quiescent 
separation distance between the cantilever tip and the sample surface (setpoint distance).  
We use this relationship in a power series expansion of )z(F  about oz to obtain 
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where the prime denotes derivative with respect to z. Substitution of Eq. (13) into Eqs. (10) 
and (11) gives 
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2
1 . 

 

It is of interest to note that Eqs. (14) and (15) were obtained assuming that the cantilever is a 
rectangular beam of constant cross-section. Such a restriction is not necessary, since the 
mathematical procedure leading to Eqs. (14) and (15) is based on the assumption that the 
general displacement of the cantilever can be expanded in terms of a set of eigenfunctions 
that form an orthogonal basis set for the problem. For the beam cantilever the 
eigenfunctions are Yn(x).  For some other cantilever shape a different orthogonal basis set of 
eigenfunctions would be appropriate. However, the mathematical procedure used here 
would lead again to Eqs. (14) and (15) with values of the coefficients appropriate to the 
different cantilever geometry.   

2.2 Variations in signal amplitude and phase from subsurface features   
We consider a traveling stress wave of unit amplitude of the form 

( ) ( )]eeRe[kxtcose kxtix
s

x s −ωα−α− =−ω , where α is the attenuation coefficient, x is the 
propagation distance, sω  is the angular frequency, t is time, c/k sω= , and c is the phase 
velocity, propagating through a sample of thickness a/2. We assume that the wave is 
generated at the bottom surface of the sample at the position x = 0 and that the wave is 
reflected between the top and bottom surfaces of the sample. We assume that the effect of 
the reflections is simply to change the direction of wave propagation. 
For continuous waves the complex waveform at a point x in the material consists of the sum 
of all contributions resulting from waves which had been generated at the point x = 0 and 
have propagated to the point x after multiple reflections from the sample boundaries. We 
thus write the complex wave  A (t)  as   
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    A (t) = e−αxei(ωst−kx)[1 +e−(αa+ika) +"+e−n(αa+ika) +"] 
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(16) 

where the last equality follows from the geometric series generated by the infinite sum. The 
real waveform A(t) is obtained from Eq. (16) as     

               A(t) = Re[A (t)]= e−αx (A1
2 + A 2

2)1/2 cos(ωst − kx − φ) = e−αxBcos(ωst − kx − φ)   (17) 

where  
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The evaluation (detection) of a continuous wave at the end of the sample opposite that of 
the source is obtained by setting x = a/2 in the above equations. It is at x = a/2 that the AFM 
cantilever engages the sample surface.  In the following equations we set x = a/2. 
The above results are derived for a homogeneous specimen. Consider now that the 
specimen of thickness a/2 having phase velocity c contains embedded material of thickness 
d/2 having phase velocity dc . The phase factor c/aka sω=  in Eqs.(17)-(21) must then be 
replaced by ka - ψ where  
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⎛
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and Δc = cd – c.  We thus set x = a/2 and re-write Eqs.(17), (20), and (21) as 
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                              2/1aa2 )]kacos(e2e1[B −α−α− ψ−−+=′ .  (25) 

We have assumed in obtaining the above equations that the change in the attenuation 
coefficient resulting from the embedded material is negligible.  
For small ψ we may expand Eq. (23) in a power series about ψ = 0. Keeping only terms to 
first order, we obtain 

         φΔ+φ=φ′   (26) 
where 
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Eq.(22) is thus approximated as 
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Equation (28) reveals that the total phase contribution at x = a/2 is θ  and from Eqs.(29) and 
(31) that the phase variation resulting from embedded material is χΔ− .  
The fractional change in the Young modulus E/EΔ  is related to the fractional change in the 
ultrasonic longitudinal velocity c/cΔ  as 1111 C/CE/E Δ≈Δ )/()c/c2( ρρΔ+Δ=  where ρ  is 
the mass density of the sample and 11C  is the Brugger longitudinal elastic constant.  
Assuming that the fractional change in the mass density is small compared to the fractional 
change in the wave velocity, we may estimate the relationship between E/EΔ and c/cΔ  as 

c/c2E/E Δ≈Δ . This relationship may be used to express ψ , given in Eq.(22) in terms of 
)c/c)(c/c(c/c dd Δ=Δ , in terms of E/EΔ . 

2.3 Solution to the general dynamical equations 
We solve the coupled nonlinear Eqs. (14) and (15) for the steady-state solution by writing the 
coupled equations in matrix form and using an iteration procedure commonly employed in 
the physics literature (Schiff, 1968) to solve the matrix expression. The first iteration involves 
solving the equations for which the nonlinear terms are neglected. The second iteration is 
obtained by substituting the first iterative solution into the nonlinear terms of Eqs.(14) and 
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(15) and solving the resulting equations. The procedure provides solutions both for the 
cantilever tip and the sample surface displacements. Since the procedure is much too 
lengthy to reproduce here in full detail, only the salient features of the procedure leading to 
the steady state solution for the cantilever displacement ∑ η=η cnnc Y  are given.  We begin 
by writing 

 cncncncn ζ+ξ+ε=η   (32) 
and 

     snsnsnsn ζ+ξ+ε=η   (33) 

where cnε  and cnξ  represent the first iteration (i.e. linear) static and oscillatory solutions, 
respectively, for the nth mode cantilever displacement, cnζ represents the second iteration 
(i.e., nonlinear) solution for the nth mode cantilever displacement, and snε  , snξ , and snζ  
are the corresponding first and second iteration nth mode displacements for the sample 
surface. 
We note that for the range of frequencies generally employed in A-AFM the contribution 
from terms in the solution set involving the mass of the sample element ms is small 
compared to the remaining terms and may to an excellent approximation be neglected.  We 
thus neglect the terms involving ms in the following equations.   

2.3.1 First iterative solution 
The first iterative solution is obtained by linearizing Eqs.(14) and (15), writing the resulting 
expression in matrix form, and solving the matrix expression assuming sinusoidal driving 
terms ti

c ceF ω  and ti
s seF ω  for the cantilever and sample surface, respectively. The first 

iteration yields a static solution cnε  and an oscillatory solution cnξ  for the cantilever.  The 
static solution is given by 

 
)kk)(z(Fkk
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scnoscn
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=ε .  (34) 

The first iterative oscillatory solution is given by 
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and 

   Qcs ≈ −Fs ′ F (zo){[kcnks −ωs
2 (mcks + γcγs) + ′ F (zo)(kcn + ks − mcωs

2)]2   (39) 

 +[ωs (γskcn + γcks) −ωs
3γsmc + ′ F (zo)ωs (γs + γc)]2}−1/2. 

2.3.2 Second iterative solution                  
The second iterative solution cnζ  for each mode n of the cantilever is considerably more 
complicated, since it contains not only sum-frequency, difference-frequency, and generated 
harmonic-frequency components, but linear and static components as well. The second 
iterative solution cnζ  is thus written as 

 harm,cnsum,cndiff,cnlin,cnstat,cncn ζ+ζ+ζ+ζ+ζ=ζ   (40) 

where stat,cnζ  is a static or “dc” contribution generated by the nonlinear tip-surface 
interaction, lin,cnζ  is a generated linear oscillatory contribution, diff,cnζ  is a generated 
difference-frequency contribution resulting from the nonlinear mixing of the cantilever and 
sample oscillations, sum,cnζ is a generated sum-frequency contribution resulting from the 
nonlinear mixing of the cantilever and sample oscillations, and harm,cnζ  are generated 
harmonic contributions. 
Generally, the cantilever responds with decreasing displacement amplitudes as the drive 
frequency is increased above the fundamental resonance (for some cantilevers the second 
resonance mode has the largest amplitude), even when driven at higher modal frequencies.  
Thus, acoustic-atomic force microscopy methods do not generally utilize harmonic or sum-
frequency signals. For expediency, such signals from the second iteration will not be 
considered here. Only the static, linear, and difference-frequency terms from the second 
iteration solution are relevant to the most commonly used A-AFM modalities. 
The static contribution generated by the nonlinear interaction force is obtained to be 
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and ccφ is given by Eq. (36), Qcc  by Eq. (38) and Qcs by Eq.(39). 
The linear oscillatory contribution lin,cnζ  generated by the nonlinear interaction force in 
the second iteration is obtained to be 
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The difference-frequency contribution diff,cnζ  generated by the nonlinear interaction force 
in the second iteration is obtained to be 
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The phase term Γ given by Eq.(64) is quite complicated.  However, advantage can be taken 
of the fact that ks is generally large compared to other terms in the numerators of Qcc, Qss, 
Qcs, and Qsc; the denominators of these terms are very roughly all equal. Hence, the 
magnitudes of Qcc and Qss are usually large compared to those of Qcs and Qsc. The terms 
involving the product QccQss thus dominate in Eq. (64) and we may approximate Γ as    
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Γ ≈ αcc −αss = tan−1 γsωc
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  (65) 

where cc and ss are obtained from Eqs. (45) and (46), respectively.  To the same extent that 
 may be approximated by Eq.( 65) we may also approximate Gn, given by Eq. (57), as 
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2.3.3 Important features of the solution set 
The present derivation is based on the assumption that the cantilever tip-sample surface 
interaction force is a multiply differentiable, nonlinear function of the tip-surface separation 
distance as indicated in Fig. 2. Points on the curve below the separation distance zA in Fig. 2 
correspond to a repulsive interaction force, while points above zA in Fig. 2 correspond to an 
attractive interaction force. The force-separation curve has a minimum at a separation 
distance zB corresponding to the maximum nonlinearity of the curve and that point lies in 
the attractive force portion of the curve. Cantilever oscillations result in continuous 
oscillatory changes in the tip-surface separation distance about the quiescent tip-surface 
separation distance z0 (see Fig. 4).  Since the cantilever oscillations are constrained to follow 
the force-separation curve, the fractions of the cantilever oscillation cycle in the repulsive 
and attractive portions of the force-separation curve depend on the quiescent tip-surface 
separation distance and the amplitude of the oscillations.   
The cantilever oscillations are known to be bi-stable with the particular mode of oscillation 
being determined by the initial conditions that includes the tip-surface separation distance 
(Garcia & Perez, 2002). Unless some extraneous perturbation changes the mode of 
oscillation, the cantilever continues to oscillate in a given bi-stable mode for a given set of 
initial conditions. For large oscillation amplitudes the bi-stability coalesces to a single stable 
mode.  In the present model the bi-stable mode of cantilever oscillation is set by the value of 
the “effective” sample stiffness constant ks that has one of two values – one associated with 
the dominantly repulsive portion of the force-separation curve and one associated with the 
dominantly attractive portion (see Section 4.3). The value of the “effective” sample stiffness 
constant, hence cantilever oscillation mode, must be determined experimentally in the 
present model.  
The total static solution to the coupled nonlinear equations (14) and (15) for the cantilever 

stat,cnη  is the sum of the contribution cnε , given by Eq. (34), from the first iterative solution 
and the contribution stat,cnζ , given by Eq. (41), from the second iteration as 

 stat,cncnstat,cn ζ+ε=η .  (67) 

The total linear solution lin,cnη  to Eqs. (14) and (15) is the sum of the contribution cnξ  
given by Eq. (35) and the contribution lin,cnζ  given by Eq. (47) as 

 lin,cncnlin,cn ζ+ξ=η .  (68) 

The total difference-frequency solution diff,cnη  to Eqs. (14) and (15) is simply the 
contribution diff,cnζ  given by Eq. (56). 
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It is interesting to note that cnε  and the component oε  in stat,cnη  do not explicitly involve 
the cantilever drive amplitude cF  and the sample surface drive amplitude sF , although 
other terms involving the Q factors, given by Eqs. (38), (39), (43), and (44), in stat,cnζ  do 
involve these drive amplitudes.  This means that only the contributions stemming from the 
nonlinearity in the cantilever tip-sample surface interaction force respond directly to 
variations in the drive amplitudes and in particular to the physical features of the material 
giving rise to variations in sF . Further, the magnitudes of all second iteration (i.e. nonlinear) 
contributions, stat,cnζ , lin,cnζ , and diff,cnζ  are strongly dependent on the cantilever tip-
sample surface quiescent separation oz , since the value of the nonlinear stiffness constant 

)z(F o′′  that dominates these contributions is highly sensitive to oz .  Indeed, )z(F o′′ attains 
a maximum value near the bottom of the force-separation curve of Fig. 2.    
For large deflections of the cantilever that may occur for sufficiently hard contact, large 
bending moments may be introduced that produce frequency shifts in the cantilever 
resonance frequencies quite apart from those introduced by the interaction force stiffness 
constant )z(F 0′ .  For the assessment of )z(F 0′  near the bottom of the force-separation curve 
where the nonlinearity )z(F 0′′  is maximum (maximum nonlinearity regime) and )z(F 0′  is 
relatively small, the bending moments are generally negligible and a reasonable estimate of 

)z(F 0′  can be obtained directly from differences in the engaged and non-engaged resonance 
(free space) frequencies of the cantilever.   
For large driving force amplitudes, nonlinear modes of oscillation may be generated in the 
cantilever. Nonlinear tip-surface interactions are also known to excite nonlinear 
(anharmonic) cantilever modes (Stark & Heckl, 2003; Garcia & Perez, 2002).  It is assumed 
that the nonlinear modes can be described in terms of a set of orthogonal eigenfunctions 
Zn(x) describing the nonlinearities of the unforced cantilever that are generally different 
from but orthogonal to Yn(x).  In such case the nonlinear vibrational characteristics of the 
cantilever may also be included in the general cantilever response in a manner similar to 
that given above for the linear modes.  The nonlinear modes are thus formally included in 
the present model by extending the set of eigenvalues kcn, hence eigenvectors spanning the 
function space, to allow for nonlinear eigenmodes.  This requires no additional formal 
analysis in the present model.  All eigenvalues (including those from nonlinear modes) are 
ascertained in the present model from experimental measurements.  

3. Signal generation for representative A-AFM modalities 
Generally, there are two working modes in A-AFM - the contact mode and the non-contact 
mode. The contact mode is viewed as a modality for which the oscillating cantilever tip 
makes periodic contact with the sample surface irrespective of the distance of separation 
(setpont distance) between the non-oscillating (quiescent) cantilever tip and the sample 
surface. When the setpoint distance z0 lies close to the sample surface, the cantilever 
operates near the dominantly repulsive portion of the cantilever tip-sample surface 
interaction force-separation curve and experiences a dominantly repulsive force over some 
appreciable fraction of an oscillation period (contact time). The oscillation amplitude is 
usually small for this contact mode of operation and the tip-surface interaction force may be 
approximated by a linear dependence of the tip-surface interaction force on the tip-surface 
separation distance. A-AFM modalities that operate in the contact mode include force 
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modulation microscopy, atomic force acoustic microscopy, and a modality of amplitude 
modulation-atomic force microscopy (AM-AFM) that may be descriptively called ‘small 
amplitude contact tapping mode.’        
Various other A-AFM modalities operate in the non-contact mode where the cantilever tip-
sample surface setpoint distance z0 is sufficiently large that the cantilever tip, oscillating 
with small amplitude, does not contact with the sample surface. In such cases the modalities 
optimally operate in that portion of the force-separation curve that yields the maximum 
force-separation nonlinearity, appropriately called the ‘maximum nonlinearity regime’ of A-
AFM operation. Ultrasonic force microscopy, heterodyne force microscopy, and resonant 
difference-frequency atomic force ultrasonic microscopy (RDF-AFUM) are examples of non-
contact A-AFM modalities. Non-contact amplitude modulation-atomic force microscopy 
(noncontact tapping mode) also operates in this portion of the force-separation curve.   
The equations derived in Section 2, describing the dynamical response of the cantilever 
resulting from the cantilever tip-sample surface interaction forces, have been used to 
quantify the signal generation and image contrast for all A-AFM modalities mentioned in 
the introduction (Cantrell & Cantrell, 2008). We consider here, however, only resonant 
difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), and the commonly 
used amplitude modulation-atomic force microscopy (AM-AFM), a modality that includes 
the intermittent contact mode as well as contact and non-contact tapping modes. RDF-
AFUM and AM-AFM represent opposite extremes in complexity, both in instrumentation 
and in the analytical expressions used to assess signal generation and image contrast.   
RDF-AFUM uses input drive oscillations both to the cantilever and to the sample surface to 
interrogate the sample.  It is the most complex of the A-AFM modalities and the assessment 
of signal generation and image contrast for RDF-AFUM requires application of the largest 
number of equations from Section 2. The AM-AFM modality uses only an input drive 
oscillation to the cantilever and is among the simplest of A-AFM modalities. The calculation 
of the AM-AFM output signal thus requires relatively few equations from Section 2.  The 
AM-AFM modality may be viewed operationally and analytically as a subset of the RDF-
AFUM modality.       

3.1 Resonant difference-frequency atomic force ultrasonic microscopy 
Resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM) employs an 
ultrasonic wave launched from the bottom of a sample, while the AFM cantilever tip 
engages the sample top surface. The cantilever is driven at a frequency differing from the 
ultrasonic frequency by one of the resonance frequencies of the engaged cantilever. It is 
important to note that at high drive amplitudes of the ultrasonic wave or engaged cantilever 
(or both) the resonance frequency generating the difference-frequency signal may 
correspond to one of the nonlinear oscillation modes of the cantilever. The engaged 
cantilever resonance frequency for the (linear or nonlinear) mode n, neglecting dissipation, 
is given by 1

0scn0cn
2
cnc )]z(Fk[k)z(Fkm −′+′+=ω , where cnk  is the cantilever stiffness 

constant corresponding to the nth (linear or nonlinear) non-engaged (free space) resonance 
mode. Since )z(F 0′  may be positive or negative, depending on the shape of the force 
separation curve, at the separation distance z0 corresponding to maximum )z(F 0′′ , the 
resonance frequency of the cantilever, when engaged at this value of z0, may be larger or 
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smaller, respectively, than the resonance frequency when not engaged. The nonlinear 
mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the 
cantilever tip-sample surface interaction force generates difference-frequency oscillations at 
the engaged cantilever resonance. Variations in the amplitude and phase of the bulk wave 
due to the presence of subsurface nano/microstructures, as well as variations in near-
surface material parameters, affect the amplitude and phase of the difference-frequency 
signal. These variations are used to create spatial mappings generated by subsurface and 
near-surface structures.     
In RDF-AFUM the cantilever difference-frequency response is obtained from the nonlinear 
mixing in the region defined by the tip-surface interaction force. The interaction force varies 
nonlinearly with the tip-surface separation distance. The deflection of the cantilever 
obtained in calibration plots is related to this force.  For small slopes of the deflection versus 
separation distance, the interaction force and cantilever deflection curves are approximately 
related via a constant of proportionality. The maximum difference-frequency signal 
amplitude occurs when the quiescent deflection of the cantilever is near the bottom of the 
force-separation curve (zB in Fig. 2). There the maximum change in the slope of the force 
versus separation (hence maximum interaction force nonlinearity) occurs.  We call this 
region of operation the maximum nonlinearity regime.  
The dominant term or terms for the cantilever difference-frequency displacement in Eqs. 
(56) and (57) depend on the values of cnk  for the free modes of cantilever oscillation, the 
difference-frequency (ωc – ωs), and the value of )z(F 0′ obtained at the quiescent separation 
distance z0 = (z0)B at which the maximum difference-frequency signal occurs. We designate 
the non-engaged linear or nonlinear mode n for which the difference-frequency engaged 
resonance occurs as n = p. The dominant difference-frequency component in Eqs.(56) and 
(57) is thus diff,cpdiff,cpcp ζ=η=η  and is given by Eq.(56) for n = p as 

 ]t)cos[(G cscsssccscpdiff,cp θ−Γ+φ−β+φ+φ−ω−ω=ζ   (69) 

where Gp is given by Eq.(57) and in approximation by Eq.(66).  The phase terms in Eq.(69) 
are obtained from Eqs. (36), (37), (45), (46), and (62)-(64) where  may be approximated by 
Eq. (66).    
It is important to point out in considering these equations that while the difference-
frequency resonance frequency )( sc ω−ω in RDF-AFUM is usually set to correspond to the 
lowest resonance mode of the engaged cantilever (although a higher modal resonance could 
be used), the cantilever driving frequency ωc and ultrasonic frequency sω  generally are set 
near (but not necessary equal to) higher resonance modes n = q and n = r, respectively, of 
the engaged cantilever. Thus, the cantilever stiffness constant kcn is appropriately given as 
kcp when involving the difference-frequency terms in Eqs. (36)-(39), (42)-(46), and (58)-(64), 
given as kcq when involving the cantilever drive frequency cω  at or near the frequency of 
the qth cantilever resonance mode, and given as kcr when involving the ultrasonic frequency 
ωs at or near the frequency of the rth cantilever resonance mode.  If cω  and sω  are not set at 
or near a resonance modal frequency of the engaged cantilever, then it may be necessary to 
include more than one term in Eqs. (12) and (32) corresponding to various values of q and r.    
It is seen from Eq. (57) that for a given value of )( sc ω−ω  the maximum value of diff,cpζ  
ideally occurs for a value of z0 such that )z(F 0′′  is maximized.  It is important to note, 
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however, that )z(F 0′ , while relatively small in magnitude compared to that of the hard 
contact regime, is generally not equal to zero at that point.  Strictly, the values of )z(F 0′′ and 

)z(F 0′  for a given z0 are each dependent on the exact functional form of )z(F 0 . A functional 
form for )z(F 0  sufficiently quantitative to quantify )z(F 0′′  and )z(F 0′  is not typically 
available.   However, experimental curves for )z(F 0  can be obtained and compared to the 
experimental curves of diff,cpζ  plotted as a function of z0.  An examination of Eq. (57) 
suggests that a more exact approach to maximizing diff,cpζ  would be not only to vary z0 
but also to vary slightly the difference-frequency from the free space resonance condition 
until an optimal setting for both z0 and the difference-frequency is achieved.        

3.2 Amplitude modulation-atomic force microscopy 
The amplitude modulation-atomic force microscopy (AM-AFM) mode (also called 
intermittent contact mode or tapping mode) is a standard feature on many atomic force 
microscopes for which the cantilever is driven in oscillation, but no surface oscillations 
resulting from bulk ultrasonic waves are generated (i.e., Fs and ωs are zero). Thus, AM-AFM 
cannot be used to image subsurface features, but interesting surface properties and features 
can be imaged.  Since AM-AFM can be used in both the hard contact and maximum 
nonlinearity regimes (i.e. the linear and maximally nonlinear regimes, respectively, of the 
force-separation curve), the cantilever displacement lin,cnη  for mode n is given most 
generally as 

 lin,cncnlin.cn ζ+ξ=η   (70) 

where cnξ is given by Eq.( 35) with the term involving csQ  set equal to zero and lin,cnζ is 
given by Eq.(47) with all terms involving csQ and ssQ set equal to zero.  

3.2.1 Maximum nonlinearity regime  
For the maximum nonlinearity regime the expression for lin,cnη  is 

 )tcos(H ccclin,cn Λ+φ−ω=η   (71) 

where 
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where ccQ is given by Eq.(38), scQ  by Eq.(43), ccφ by Eq.(36), ccμ  by Eq.(48), 0ε  by Eq.(42); 

cca , cβ , cD , and ccR , are given by Eqs.(45), (50), (52), and (53), respectively. 
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3.2.2  Hard contact regime 
The complexity of the cantilever response lin,cnη  for AM-AFM is greatly reduced for the 
hard contact regime, where )z(F 0′′ is negligibly small and )z(F 0′  is very large and negative.  
For sufficiently hard contact Λ and ccα are approximately zero and we obtain from Eq. (71) 
that 

 )tcos(Q ccccclin,cn φ−ω≈η   (75) 

where 

 2/12
c

2
sc

22
ccscnccc ])()mkk[(FQ −ωγ+γ+ω−+=   (76) 
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cc

mkk
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ωγ+γ
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The dependence of lin,cnη  on the material damping coefficient sγ  and the sample stiffness 
constant sk , both for the hard contact and the maximum nonlinearity regimes, means that 
AM-AFM can be used to assess the viscoelastic properties of the material irrespective of the 
regime of operation. 

4. Image contrast for representative A-AFM modalities 
All the above equations, except for Eqs.(26) - (31), were derived for constant values of the 
cantilever and material parameters. If, in an area scan of the sample, the parameters remain 
constant from point to point, the image generated from the scan would be flat and 
featureless. We consider here that the sample stiffness constant sk  may vary from point to 
point on the sample surface.  Since sk  is dependent on the Young modulus E  (see Section 
4.3), this means that E  also varies from point to point. We assume that the value of the 
sample stiffness constant sk′  at a given point on the surface differs from the value sk  at 
another position as sss kkk Δ+=′ .  For any function )k(f s  having a functional dependence 
on sk , a variation in sk  generates a variation in )k(f s given by s0s k)dk/df(f Δ=Δ , where 
the subscripted zero indicates evaluation at sk .  A similar expression can be obtained for 
the material damping parameter sγ , but we shall not consider such variations here.  
A variation in sk  produces a variation in both amplitude and phase of the signal generated 
by the cantilever tip-sample surface interactions. The variations in amplitude and phase can 
be used to generate amplitude and phase images, respectively, in a surface scan of the 
sample. We consider here only images generated by the phase variations in the signal. The 
equations for amplitude-generated images are given elsewhere (Cantrell & Cantrell, 2008).  
The phase factors involved in RDF-AFUM are given from Eq.(69), (29), and (30) to be ccφ , 

ssφ , csβ , csφ , Γ , and χ ; the phase factors involved in the AM-AFM mode are, from 
Eq.(71), ccφ , and Λ .  Each of these phase factors is dependent on sk  and the variations in 
the phase factors resulting from variations in sk  are responsible for image generation when 
using phase detection of the A-AFM signal. The exact dependence of the phase on sk , 
however, is different for hard contact and maximum nonlinearity regimes.   
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4.1 Resonant difference-frequency atomic force ultrasonic microscopy 
RDF-AFUM operates only in the maximum nonlinearity regime where the total variation in 
phase is given as (Δβcs + Δφcc + Δφss – Δφcs +ΔΓ – Δχ). The phase factors relevant to RDF-
AFUM are given as 

 s22
s

2
0s

s
s

0s
cs

cs k
)()]z(Fk[

k
dk
d

Δ
ωΔγ+′+

ωΔγ
−=Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ β
=βΔ   (78)  

and 

 s
cc
cc

cc k
B
A

Δ−=φΔ   (79) 

where  

                                     csc
2

0cqs0
2
cqscc )]()z(Fk)z(F2k[A ωγ+γ′+γ′+γ=   (80) 

5
cs

2
c

3
c0cqcss

2
c m))]z(Fk(m2[ ωγ+ω′+γ−γγ+  

and 

 23
ccscsc0cqssccc }m)])(z(Fkk{[B ωγ−ωγ+γ′+γ+γ=   (81) 

22
csc

2
cccq0s0

2
cccq })mk)(z(Fk)]z(Fmk{[ ωγγ−ω−′+′+ω−+ , 

    s
ss
ss

ss k
B
A

Δ−=φΔ   (82) 

where 

  ssc
2

0crs0
2
crsss )]()z(Fk)z(F2k[A ωγ+γ′+γ′+γ=   (83) 

5
ss

2
c

3
s0crcss

2
c m))]z(Fk(m2[ ωγ+ω′+γ−γγ+  

and 

 23
scsssc0crsscss }m)])(z(Fkk{[B ωγ−ωγ+γ′+γ+γ=   (84) 

22
ssc

2
sccr0s0

2
sccr })mk)(z(Fk)]z(Fmk{[ ωγγ−ω−′+′+ω−+ , 

and 

 s
cs
cs

cs k
B
A

Δ−=φΔ   (85) 

where 

 ))](()z(Fk)z(F2k[A sc
2

0cps0
2
cpscs ωΔγ+γ′+γ′+γ=   (86) 



 Nonlinear Dynamics 

 

100 

5
s

2
c

3
0cpcss

2
c )(m)))](z(Fk(m2[ ωΔγ+ωΔ′+γ−γγ+  

and 

 23
cssc0cpssccs })(m))]()(z(Fkk{[B ωΔγ−ωΔγ+γ′+γ+γ=   (87) 

22
sc

2
ccp0s0

2
ccp })(])(mk)[z(Fk)]z(F)(mk{[ ωΔγγ−ωΔ−′+′+ωΔ−+ . 

 

To the extent that sscc α−α=Γ , as given by Eq.(65), we may write 
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The phase term χΔ is given by Eqs. (22) and (31).   

4.2 Amplitude modulation-atomic force microscopy 
The appropriate variations in the phase factors relevant to the AM-AFM or tapping mode 
maximum nonlinearity regime are ccαΔ , ccφΔ , and ΔΛ . The factor ΔΛ is obtained from 
Eq.(72) as 
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ccφΔ is given by Eq. (79), and ccμΔ is obtained from Eq.( 48).  To the extend that Qsc is much 
smaller than Qcc, we get from Eq. (48) that cccc αΔ=μΔ where ccαΔ  is given by Eq. (88). 
For the hard contact regime where )z(F 0′ is very large and negative, the relevant phase 
variation is obtained from Eq. (77) as 
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As a word of caution, the extent to which the hard contact equation applies depends on how 
well the approximation −∞→′ )z(F 0  holds. In those cases where such an assumption is 
suspect, the equations for the maximum nonlinearity regime should be used.   

4.3 Dependence on the Young modulus    
Hertzian contact theory provides that the sample stiffness constant ks is related to the Young 
modulus E of the sample as (Yaralioglu et al., 2000) 



Nonlinear Dynamics of Cantilever Tip-Sample Surface Interactions in Atomic Force Microscopy  

 

101 

 

1
2

T

2
T

cs E
1

E
1

r2k

−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ υ−
+

υ−
=   (92) 

 

where υ  is the Poisson ratio of the sample material, TE and Tυ  are the Young modulus 
and Poisson ratio, respectively, of the cantilever tip, and cr  is the cantilever tip-sample 
surface contact radius. Hence, 
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Strictly, Eq. (93) was derived for the case of repulsive interaction forces leading to a concave 
elastic deformation of a flat sample surface from a contacting hard spherical object.  
However, we consider here that to a crude approximation Eqs. (92) and (93) also hold for 
attractive interactive forces providing that the elastic deformation of the sample surface is 
viewed as a convex deformation (asperity) subtending an effective contact radius rc with the 
cantilever tip that is appropriately different in magnitude from that of the repulsive force 
case. As pointed out in Section 2.3.3, the cantilever oscillations are known to be bi-stable 
with the particular mode of oscillation being determined by the initial conditions that 
includes the tip-surface separation distance. In the present model the bi-stable mode of 
cantilever oscillation is set by the value of the “effective” sample stiffness constant ks 
corresponding either to the dominantly repulsive region or dominantly attractive region of 
the force-separation curve. 
Eq. (93) can be used with Eqs. (78)-(91) to ascertain the fractional variation in the Young 
modulus E/EΔ from measurements of the phase variation in the signal from an appropriate 
A-AFM modality.  For the case where ET >> E, e.g. for polymeric or soft biological materials, 
Eq. (92) reduces to ks = 2rcE and Eq. (93) reduces to Δks = ks(ΔE/E). 

5. Assessment of model validity 
We assess the validity of the above analytical model by comparing variations in the Young 
modulus of a specimen as calculated from the model with independent experimental 
measurements of the same specimen material. The choice of material is influenced by a 
recent focus to develop high performance polymers having low density, high strength, 
optical transparency, and high radiation resistance for a variety of applications in hostile 
space environments. One such polymer is LaRCTM-CP2 polyimide. We consider here the 
application of RDF-AFUM and AM-AFM to assess variations in the Young modulus of 
nancomposites composed of nanoparticles embedded in a LaRCTM-CP2 polyimide matrix.  
We consider two nanocomposites – one embedded with gold nanoparticles and the other 
embedded with single wall carbon (SWCNT) nanotube bundles.  
We first consider a specimen of LaRCTM-CP2 polyimide polymer roughly 12.7 μm thick 
containing a monolayer of randomly distributed gold particles, roughly 10-15 nm in 
diameter and embedded roughly 7 μm beneath the specimen surface.  Fig. 5a is an AM-AFM 
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Fig. 5. Micrographs of LaRCTM-CP2 polyimide polymer embedded with gold nanoparticles. 
(a) Noncontact tapping mode (AM-AFM) phase-generated micrograph.  (b) RDF-AFUM 
phase-generated image over the same scan area as (a).  (from Cantrell et al., 2007) 
phase-generated image obtained in the maximum nonlinearity regime (noncontact tapping 
mode). A commercial cantilever having a stiffness constant of 14 N m-1, a lowest-mode 
resonance frequency of 302 kHz, and a cantilever damping coefficient of roughly 10-8 kg s-1 
is driven at 2.1 MHz to obtain the micrograph of Fig.5a (Cantrell et al., 2007). The values of 
the relevant model parameters for LaRCTM-CP2 polyimide polymer are 1.4 x 103 kg m-3 for 
the mass density ρ, 2.4 GPa for the Young modulus E, 0.37 for the Poisson ratio υ, ks = 96.1 
N m-1, and γs = 4.8 x 10-5 kg s-1 (Park et al., 2002; Fay et al., 1999; Cantrell et al. 2007).  Since 
no bulk ultrasonic wave is involved, the image contrast results only from variations in the 
specimen near-surface sample stiffness constant ks. The darker areas in the image 
correspond to larger values of the sample stiffness constant, hence Young modulus, relative 
to that of the brighter areas. The maximum phase difference between the bright and dark 
areas in the image is approximately 1.5 degrees. Using the value 1.5 degrees, we obtain from 
the model that the variation in the Young modulus ΔE/E ≈ 18%. This value is consistent 
with the value ΔE/E ≈ 21%obtained from independent mechanical stretching experiments 
on pure LaRCTM-CP2 polymer sheets (Fay et al., 1999).   
An RDF-AFUM phase image of the same scan area as that of Fig. 5a is shown in Fig. 5b.  The 
RDF-AFUM image reveals bright and dark regions over the scan area that broadly 
correspond to the bright and dark regions in the surface image of Fig. 5a, although the 
image contrast and local detail appears to differ in the two images. F’(z) is assessed to be 
roughly –53 N m-1 at the tip-surface separation corresponding to the maximum difference-
frequency signal. The acoustic wave has a frequency of 1.8 MHz.  The maximum variation in 
phase shown in Fig.5b is approximately 13.2 degrees. Using the value 13.2 degrees, we 
obtain from the model that the variation in the Young modulus ΔE/E ≈ 24%. This value is 
also consistent with the value ΔE/E ≈ 21%obtained from independent mechanical stretching 
experiments on pure LaRCTM-CP2 polymer sheets.   
The existence of contiguous material with differing elastic constants suggests that the 
LaRCTM-CP2 material is not homogeneous. The broad coincidence of dark (bright) regions in 
the images of Fig.5a and 5b suggests that the polymer structure giving rise to a larger 
(smaller) elastic modulus in the bulk material occurs in varying amounts through the bulk 
to the surface, the degree of darkness (brightness) in Fig. 5b being somewhat reflective of the 
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structural homogeneity of the material along the propagation path of the ultrasonic wave.  It 
is assumed that the appearance of contiguous material with different elastic coefficients may 
result from the growth of a strain-nucleated harder material phase resulting from the 
difference in the coefficients of thermal expansion between the polymer matrix and the 
embedded gold particles. 
To test the assumption of a strain-nucleated harder phase, micrographs were obtained of a 
specimen formed from bundles of single-wall carbon nanotubes (SWCNTs) distributed 
randomly through the bulk of a 50μm-thick film of LaRCTM-CP2 polymer. Figure 6a shows a 
conventional atomic force microscope (AFM) topographical image of the specimen showing 
only surface features.  A RDF-AFUM phase-image of the specimen, taken  in the  same scan 
area as that of Fig 6a, is shown in Fig. 6b. Comparison of the two images reveals the 
appearance of subsurface bundles of SWCNTs (dark contrast filamentary features) lying in 
the plane of the RDF-AFUM image that do not appear in the AFM topographical scan. 
Dramatic variations from dark to bright to slightly bright contrast occur in image plane 
along portions of the boundary between the bundles of SWCNTs and the matrix material. 
The variations follow the contour of the nanotube bundles and suggest the occurrence of an 
interphase region (bright contrast feature) at the nanotube bundle-polymer interface. The 
interphase consists of polymer material having dramatically different mechanical properties 
from that of the matrix material. We note, however, that aside from the local interphase 
regions in Fig. 6b there are no broad, contiguous regions of material with differing elastic 
constants as observed in Fig. 5. Since the difference between the coefficients of thermal 
expansion of LaRCTM-CP2 polymer and SWCNT bundles is considerable less than that for 
LaRCTM-CP2 polymer and gold particles, we infer that the thermal strains in SWCNT 
bundle-embedded polymer material are not sufficiently large to generate the larger 
contiguous features observed in material embedded with gold particles. 
 
 
 
 

 
 
 

Fig. 6. Micrographs of LaRCTM-CP2 polyimide polymer embedded with single wall carbon 
nanotube bundles. (a) AFM topographical image.  (b) RDF-AFUM phase-generated image 
over the same scan area as (a). 
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6. Conclusion  
The various dynamical implementations of the atomic force microscope have become 
important nanoscale characterization tools for the development of novel materials and 
devices. One of the most significant factors affecting all dynamical AFM modalities is the 
cantilever tip-sample surface interaction force.  We have developed a detailed mathematical 
model of this interaction that includes a quantitative consideration of the nonlinearity of the 
interaction force as a function of the cantilever tip-sample surface separation distance. The 
model makes full use of cantilever beam dynamics and the multiply differentiability of the 
continuous force-separation curve that results in a set of coupled differential equations, 
Eqs.(14) and (15), for the displacement amplitudes of both the cantilever and the sample 
surface. The coupled dynamical equations are recast in matrix form and solved by a 
standard iteration procedure, but space limitations allow only a presentation of the salient 
features of the procedure. Although the mathematical form of the coupled equations are 
valid for any vibrational mode, only flexural vibrations of the cantilever and out-of-plane 
oscillations of the sample surface are considered.   
We emphasize that Eqs.(14) and (15) are obtained assuming that the cantilever is a 
rectangular beam of constant cross-section, the dynamics of which are characterized by a set 
of eigenfunctions that form an orthogonal basis for the solution set. For some other 
cantilever shape a different orthogonal basis set of eigenfunctions would be appropriate.  
However, the mathematical procedure used here would lead again to Eqs.(14) and (15) with 
values of the coefficients appropriate to the different cantilever geometry.  Practicably, this 
means that the shape of the cantilever is not as important in the solution set as knowing the 
cantilever modal resonant frequencies, obtained experimentally. The modal frequencies and 
solution set are expanded to include nonlinear modes generated by nonlinear interaction 
forces or large cantilever drive amplitudes.      
A general steady state solution of the coupled dynamical equations is found that accounts 
for the positions of the excitation force (e.g., a piezo-transducer) and the cantilever tip along 
the length of the cantilever and for the position of the laser probe on the cantilever surface.  
The solution is applied to two dynamical AFM modalities - resonant difference-frequency 
atomic force ultrasonic microscopy, and the commonly used amplitude modulation-atomic 
force microscopy.  Image generation and contrast equations are obtained for each of the two 
A-AFM modalities assuming for expediency that the contrast results only from variations in 
the sample stiffness constant. Since the sample stiffness constant is related directly to the 
Young modulus of the sample, the contrast can be expressed in terms of the variation in the 
Young modulus from point to point as the sample is scanned. We note further the existence 
of two values of the sample stiffness constant, corresponding to the dominantly attractive 
and dominantly repulsive regimes of the force-separation curve. The two values allow for a 
bi-stability in the cantilever oscillations that is experimentally observed.    
Equations for both the maximum nonlinearity regime and the hard contact (linear) regime of 
cantilever engagement with the sample surface are obtained. For dynamical AFM operation 
outside these regimes, it is necessary to use all terms in the solution set given in Section 2 to 
describe the signal output of a given A-AFM modality. The extent to which the hard contact 
(linear regime) equations apply depends on how well the approximation −∞→′ )z(F 0  holds.  



Nonlinear Dynamics of Cantilever Tip-Sample Surface Interactions in Atomic Force Microscopy  

 

105 

In those cases where such an assumption is suspect, all terms in the equations for a given 
modality should be used.   
In order to test the validity of the present model, comparative measurements of the 
fractional variation of the Young modulus ΔE/E in a film of LaRCTM-CP2 polyimide 
polymer were obtained from phase-generated images obtained over the same scan area of 
the specimen using the RDF-AFUM and AM-AFM maximum nonlinearity modalities. The 
two modalities represent opposite extremes in measurement complexity, both in 
instrumentation and in the analytical expressions used to calculate ΔE/E. The values 24 
percent calculated for RDF-AFUM and 18 percent calculated for the AM-AFM maximum 
nonlinearity mode are in remarkably close agreement for such disparate techniques. The 
agreement of both calculations with the value of 21 percent obtained from independent 
mechanical stretching experiments of LaRCTM-CP2 polymer sheet material offers strong 
evidence for the validity of the present model.    
The present model can also be used to quantify the image contrast from variations in the 
sample damping coefficient sγ  in the material. Space limitations prohibit the inclusion of 
such contrast mechanisms here, but the effects can be derived straightforwardly by the 
reader from the equations derived in Section 2. Although the present model is developed for 
flexural oscillations of the cantilever and out-of-plane vibrations of the sample surface, the 
model can be extended to include other modes of cantilever oscillation and sample surface 
response as well. 
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1. Introduction   
Many complex and interesting phenomena in nature are due to nonlinear interactions of the 
constituents (Nicolis & Prigogine, 1977; Ball, 1999; Morowitz, 2002). The study of nonlinear 
dynamical systems has achieved significant progress over the last four decades, which 
allows scientists to understand various rather complicated behaviors such as self-
organization and pattern formation in the neuronal networks of brain (Scott Kelso, 1995). 
Unusual properties of reagents in far-from-equilibrium conditions and the prevalence of 
instability where small changes in initial conditions may lead to amplified effects have been 
documented more than a century ago, but those nonlinear chemical phenomena did not get 
much attention until late 1960s after the discovery of oscillatory behavior in a homogeneous 
solution reaction between acidic bromate and malonic acid in the presence of metal catalyst 
cerium (Field & Burgur, 1985; Scott, 1994; Epstein & Pojman 1998; Sagues & Epstein, 2003). 
The system is now commonly known as the Belousov-Zhabotinsky (BZ) reaction (Zaikin & 
Zhabotinsky, 1970; Field & Burger, 1985).  Since then, the study of chemical oscillations and 
wave formation has blossomed, which led to the observation of various nonlinear 
spatiotemporal behaviours such as both simple and complex oscillations in a stirred system 
(Smoes, 1979; Györgi & Field, 1992; Wang et al., 1995 & 1996; Zhao et al., 2005), Turing 
pattern (Horváth et al., 2009), target and spiral waves in a two-dimensional reaction-
diffusion medium (Zaikin & Zhabotinsky, 1970; Winfree, 1972; Yamaguchi et al., 1991; 
Steinbock et al., 1995; Kádár et al., 1998), and scroll waves in a 3-dimensional system (Welsh 
et al., 1983; Winfree, 1987; Jahnke et al., 1988; Amemiya et al., 1996). Understanding the 
onset of those exotic phenomena in chemical systems has provided important insight into 
the formation of similar behaviour in nature (Goldbeter, 1996; Dutt & Menzinger, 1999; 
Dhanarajan et al., 2002; Carlsson et al., 2006; Chiu et al., 2006).   
As opposed to nonlinear systems in physical and biological areas, in which dynamic control 
parameters are often inaccessible or difficult to adjust, chemical reactions can be 
conveniently manipulated through adjusting the initial concentration of each reagent, 
temperature, or flow rate in a continuously flow stirred tank reactor (CSTR) (Epstein, 1989; 
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Mori et al., 1993; Amemiya et al., 2002). As a result, chemical media have played a very 
important role in gaining insights into various nonlinear behaviors encountered in nature 
(Nicolis & Prigogine, 1989; Sørensen et al., 1990; Kumli et al., 2003; Kurin-Csörgei et al., 
2004; McIIwaine et al., 2006). Among existing chemical oscillators, the vast majority relies on 
a few elements that possess multiple oxidation states, such as halogens, sulfur and some 
transition metals. In 1978, Orbán and Körös carried out an extensive search to explore 
chemical oscillations in the oxidations of aromatic compounds by acidic bromate (Körös & 
Orbán, 1978; Orbán & Körös, 1978a; 1978b). Because of the absence of metal catalysts, 
systems reported by Orbàn and Körös in 1978 and discovered more recently by other groups 
have been frequently referred as uncatalyzed bromate oscillators (UBO) (Farage & Janjic, 
1982; Szalai & Körös, 1998; Adamcikova et al., 2001). In general, reactions of UBOs represent 
the parallel running of oxidation and bromination of an organic substrate.  
This chapter described nonlinear chemical kinetics in the bromate-pyrocatechol reaction 
with or without the presence of metal catalysts (Harati & Wang, 2008a; 2008b). The bromate-
pyrocatechol reaction system was initially investigated by Orbàn and Körös in 1978 (Orbán 
& Körös, 1978a; 1978b). Unfortunately, no oscillatory behavior could be observed. The 
absence of spontaneous oscillations in the earlier attempt has been attributed to two major 
factors: First, the reaction between acidic bromate and pyrocatechol results in the 
production of bromine, which inhibits autocatalytic reactions; secondly, the oxidation 
product of pyrocatechol is a stable benzoquinone. As is shown in our recent reports, upon 
extensive search in the concentration phase space the bromate-pyrocatechol reaction was 
found to be capable of exhibiting spontaneous oscillations in a stirred batch system (Harati 
& Wang, 2008b). A phase diagram established in the bromate and pyrocatechol 
concentration space sheds light on why finding chemical oscillations in this chemical system 
is such a challenging task. Same as reported in other UBOs (Wang et al., 2001; Zhao & Wang, 
2006 & 2007), the bromate-pyrocatechol reaction exhibits subtle responses to illumination, 
where, depending on the reaction conditions, either light-induced or light-quenched 
oscillatory phenomena could be observed. The influence of metal catalysts on the nonlinear 
dynamics of the bromate-pyrocatechol reaction was also discussed here.  

2. Experimental observation of spontaneous oscillations 
2.1 The uncatalyzed bromate-pyrocatechol reaction 
Figure 1 presents three time series of the bromate-pyrocatechol (H2Q) reaction performed 
under different initial concentrations of NaBrO3: (a) 0.085 M, (b) 0.093 M, and (c) 0.095 M. 
Other reaction conditions are [H2Q] = 0.057 M and [H2SO4] = 1.4 M. Details of the 
experimental procedure can be found in the original reports (Harati & Wang, 2007b). Shortly 
after mixing all chemicals together, Pt potential as seen in Fig. 1a exhibited clock reaction 
phenomenon, which was followed by gradual decrease for several hours. 
Phenomenologically, the excursion of the Pt potential was accompanied by a dramatic color 
change of the reaction solution from transparent to deep red. After the rapid color change, 
which has been observed in all of the following experiments, the red color gradually turned 
into yellow within the next two hours. Our experiments showed that for low bromate 
concentrations (<0.09 M), Pt potential of the system decreased monotonically after the initial 
excursion. Chemical oscillations were obtained when bromate concentration was increased 
to 0.093 M. Further increase of bromate concentration led to slightly irregular oscillations in 
Fig. 1c, where not only the amplitude but also the frequency of oscillation fluctuated. To 
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Fig. 1. Time series of the pyrocatechol – bromate reaction at different initial concentrations 
of bromate: (a) 0.085 M, (b) 0.093 M and (c) 0.095M. Other reaction conditions are [H2Q] = 
0.057 M, and [H2SO4] = 1.4 M. 

show modulations in the oscillation frequency clearly, only the oscillation window is plotted 
in Fig. 1c, in which the long induction time period, similar to the ones plotted in Figs. 1a and 
1b, is omitted. As bromate concentration was increased continuously, the system underwent 
reverse bifurcations leading the system back to non-oscillatory progress in time where the 
evolution of Pt potential was the same as that in Fig. 1a. For conditions employed in Fig. 1, 
spontaneous oscillations have been obtained when bromate concentration was between 0.09 
and 0.11 M (Harati & Wang, 2007b).  
Figure 2a plots the number of oscillation peak as a function of bromate concentration, where 
it increases with bromate concentration and then drops sharply to 0 as the system moves out 
of the oscillation window at the high bromate concentration. Fig. 2b illustrates that the 
induction time (IP) of these spontaneous oscillations grows monotonically with the increase 
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Fig. 2. Dependence of the number of oscillations (N) and induction period (IP) on the initial 
concentration of bromate. Other reaction conditions are [H2Q] = 0.057 M and [H2SO4] = 1.2 
M. 

of bromate concentration. The extremely long induction seen here is similar to that reported 
in other uncatalyzed bromate oscillators (Farage & Janjic, 1982; Szalai & Körös, 1998; 
Adamcikova et al., 2001) 
Figure 3 presents temporal evolutions of the bromate-H2Q reaction under different initial 
concentrations of H2Q: (a) 0.038 M, (b) 0.044 M, and (c) 0.047 M. In Fig. 3a Pt potential 
exhibits a clock reaction phenomenon, followed by a gradual decrease. This behavior is the 
same as seen at a low bromate concentration, where the clock variation of Pt potential is 
accompanied by a dramatic color change of the reaction solution. When H2Q concentration 
was increased to 0.044 M in Fig. 3b, spontaneous oscillations took place at about 2 hours 
after the solution has turned into yellow. Further increase of H2Q concentration also resulted 
in some irregularity in those transient oscillations such as the one shown in Fig. 3c. Again, to 
show details of the chemical oscillations time scale in Fig. 3c is different from that used in 
Figs. 3a and 3b. Within the oscillation window the induction time decreased monotonically 
with the increase of H2Q concentration. On the other hand, the total number of oscillations 
increased rapidly as H2Q concentration became larger than the lower bifurcation threshold 
and then decreased gradually as H2Q concentration was increased further. The above results 
indicate that bromate and H2Q have opposite effects on the oscillatory behavior. 
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Fig. 3. Time series of the pyrocatechol – bromate reaction at different initial concentrations 
of pyrocatechol: (a) 0.038 M, (b) 0.044 M and (c) 0.047M. Other reaction conditions are   
[NaBrO3] = 0.085 M, and [H2SO4] = 1.4 M 

Figure 4 is a phase diagram in the pyrocatechol - bromate concentration plane, where filled 
triangles denote the conditions at which the system exhibits spontaneous oscillations. Here, 
the concentration of H2SO4 is fixed at 1.4 M. First glance of this phase diagram indicates that 
the oscillatory behavior exists over broad concentrations of pyrocatechol and bromate. 
However, at each given concentration of bromate (or pyrocatechol) there is only a narrow 
range of pyrocatechol (or bromate) concentration within that the system oscillates. This 
diagonal narrow band window sheds light on the difficulty of landing the initial conditions 
within such a window, when starting the experiments without existing information of this 
system. 
Dependence of the above chemical oscillations on H2SO4 and bromate concentrations is 
summarized in Fig. 5, in which H2Q concentration was fixed at 0.057 M. Filled triangles are 
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Fig. 4. Phase diagram of the bromate-pyrocatechol reaction in the pyrocatechol – bromate 
concentration plane. (▲) denotes where the system exhibits transient oscillations. Sulfuric 
acid concentration was fixed at 1.4 M. 

 
Fig. 5. Phase diagram of the bromate-pyrocatechol reaction in the bromate – H2SO4 
concentration plane. (▲) denotes the conditions under which the system exhibits 
oscillations. The concentration of pyrocatechol is 0.057 M. 

the conditions under which the system exhibits spontaneous oscillations. This phase 
diagram shows that when the concentration of H2SO4 is larger than 2.5 M or smaller than 0.9 
M, no oscillations can be obtained regardless bromate concentration. On the other hand, the 
range of H2SO4 concentration over which the system exhibits spontaneous oscillations is 
broadened by lowering bromate concentration. 

2.2 The ferroin-bromate-pyrocatechol reaction 
Figure 6 presents time series of (a) the uncatalyzed and (b) ferroin-catalyzed bromate-
pyrocatechol reactions. In the uncatalyzed system, the Pt potential decreased gradually after 
the initial excursion and then reached a plateau. In general, one might have considered that 
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this closed reaction is over. However, the Pt potential suddenly started oscillating after 
another two hours, and the oscillatory process lasted for longer than an hour with about 14 
peaks. This result illustrates that under the conditions investigated here the uncatalyzed 
bromate-pyrocatechol is capable of exhibiting spontaneous oscillations. There is no periodic 
color change during the oscillation and thus the uncatalyzed system is deemed unsuitable 
for studying chemical waves in spatially extended media. 
 

 
Fig. 6. Time series of the (a) uncatalyzed, and (b) ferroin-catalyzed bromate-pyrocatechol 
reaction. Other reaction conditions are: [H2SO4] = 1.30 M, [H2Q] = 0.043 M and [BrO3-] = 
0.078 M. The concentration of ferroin is equal to 1.0 x 10-4 M in (b). 

In Fig. 6b, when 1.0 x 10-4 M ferroin was added to the bromate-pyracatechol reaction, 
spontaneous oscillations commenced at about the same time as in the uncatalyzed system. 
However, there are significant changes in the frequency of oscillation and the total number of 
oscillations and both have been increased greatly. Notably, in this catalyzed system the 
oscillation lasted for longer than 4 hours. Our experiments illustrate that this system exhibits 
observable periodic color changes from yellowish to faint pink during the oscillatory window 
when the concentration of ferroin is above 1.0 x 10-4 M. Further increase of the concentration of 
ferroin results in a better contrast, but reduces the lifetime of the oscillatory period. 
Furthermore, when ferroin concentration is higher than 1.0 x 10-3 M no obvious color change 
could be seen in the stirred system. After oscillations in the ferroin-bromate-pyracatechol 
system stopped, the solution has a blue color if the concentration of ferroin added is above 1.0 
x 10-3 M, or a pink color when the ferroin concentration is less than 5 × 10-4 M.  
Figure 7 summarizes the dependence of the number of oscillations (N) and the induction 
time (IP) on the concentration of ferroin. There is a sharp increase in the number of 
oscillations at a very low concentration of ferroin (10-5 M), suggesting that the presence of 
small amounts of metal catalyst favours the oscillatory behaviour. As the amount of ferroin 
is increased, however, the number of oscillations decreases, which may be due to the 
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increased consumption of the reactants. Notably, ferroin shows a little effect on the 
induction time (IP), where increasing ferroin concentration to 0.002 M only reduces the IP by 
about 10 percent (Harati & Wang, 2008a). 
 

 
Fig. 7. Dependence of the number of oscillations (N) and induction period (IP) on the 
concentration of ferroin. Other reaction conditions are: [H2SO4] = 1.30 M, [BrO3-] = 0.078 M, 
and [pyrocatechol] = 0.043 M. 
 

 
Fig. 8. Dependence of the number of oscillations (N) and induction time (IP) of the ferroin-
catalyzed system on the concentration of bromate and sulfuric acid. Other reaction 
conditions are: [H2Q] = 0.044 M, [ferroin] = 1.0 x 10-4 M, and (a &b) [H2SO4]  = 1.40 M; (c&d) 
[NaBrO3] = 0.085 M.  
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Figure 8 plots, respectively, the number of oscillations (N) and induction time (IP) as a 
function of concentrations of bromate and sulfuric acid in the ferroin-bromate-pyrocatechol 
system, where the concentration of ferroin was fixed at 1.0 x 10-4 M. Figs. 8a and 8b show 
that increasing bromate concentration prolongs the induction period, which may arise from 
the production of larger amounts of bromine in the reaction solution. The number of peaks 
ascends first and then declines slightly with increasing bromate concentration. Under the 
conditions studied here, the concentration of bromate must be between 0.070 and 0.085 M 
for the system to show spontaneous oscillations. As shown in Figs. 8c and 8d, both N and IP 
increase monotonically with the increase of H2SO4 concentration. The system does not 
oscillate when the concentration of H2SO4 is higher than 1.4 M or lower than 1.0 M under 
the conditions studied.  
Figure 9 is a phase diagram of the ferroin-catalyzed system in the pyrocatechol and bromate 
concentration plane, where (♦) indicates the conditions under which the system exhibits 
spontaneous oscillations. Similar to the situation of the uncatalyzed bromate-pyrocatechol 
reaction, the first glance of this figure suggests that the system is able to exhibit oscillatory 
dynamics over a broad range of bromate and pyrocatechol concentrations. However, at each 
given concentration of pyrocatechol (or bromate), the proper concentration of bromate (or 
pyrocatechol) is quite narrow. This narrow band shaped phase diagram suggests that 
nonlinear behavior of this catalyzed system is more sensitive to the ratio of [H2Q]/[BrO3-] 
than their absolute concentrations. In comparison to the uncatalyzed bromate-pyrocatechol 
system, the presence of ferroin does not change the shape of this phase diagram, but makes 
the area of the parameter window slightly larger, implicating that ferroin favors the 
oscillations. 
 

 
Fig. 9. Phase diagram of the ferroin-catalyzed reaction in the bromate–pyrocatechol 
concentration plane. (♦) denotes where the system exhibits simple periodic oscillations. The 
concentration of ferroin is 1.0 x 10-4 M. 

Time series measured with a bromide selective electrode show that bromide concentration 
increases slowly during the long induction time and then starts oscillating (Harati & Wang, 
2008b). It is similar to the behavior reported in earlier studies of the uncatalyzed bromate-
1,4-cyclohexanedione and bromate-1,4-benzoquinone reactions (Szalai & Körös, 1998; Zhao 
& Wang, 2006), in which the accumulation of bromide precursors has been suggested to be 
responsible for the induction time. In this system, however, the initial addition of bromide, 
which leads to the rapid production of bromine and then causes the bromination of 
pyrocatechol, evidenced by mass spectrometry study (Harati & Wang, 2008b), does not 
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shorten the induction time. The slight decrease in the induction time observed at a very high 
bromide concentration may result from decreases in H2Q and BrO3- concentrations due to 
reactions with bromine. The insensitivity of the induction time to the initial presence of 
brominated substrates suggests that the governing mechanism of this oscillator may be 
different from UBOs reported earlier. 

2.3 The influence of Ce4+/Ce3+ and Mn3+/Mn2+ 
It is well known that metal catalysts such as ferroin participate the autocatalytic reactions 
with bromine dioxide radicals (BrO2*) and therefore redox potential of the metal catalyst in 
relative to the redox potential of HBrO2/BrO2* couple is an important parameter in 
determining the rate of the autocatalytic cycle, which in turn has significant effects on the 
overall reaction behavior. In the BZ reaction, four metal catalysts including ferroin, 
ruthenium, cerium and manganese can be oxidized by bromine dioxide radicals, in which 
the redox potential of HBrO2/BrO2* couple is larger than that of ferroin and ruthenium, but 
smaller than that of Ce4+/Ce3+ and Mn3+/Mn2+. Therefore, it is anticipated that when cerium 
or manganese ions are introduced into the bromate-pyrocatechol reaction, behavior different 
from that achieved in the ferroin-bromate-pyrocatechol system may emerge. Figure 10 plots 
the number of oscilllations (N) and induction time (IP) of the catalyzed bromate-
pyrocatechol reaction as a function of catalyst (i.e. Ce4+ and Mn2+) concentration.  
 

 
Fig. 10. Dependence of the number of oscillations (N) and induction time (IP) on the initial 
concentrations of cerium and menganese. Other reaction conditions are [H2SO4] = 1.3 M, 
[NaBrO3] = 0.078 M, and [H2Q] = 0.043 M.  

The sharp increase in the number of oscillations at the low concentration of cerium and 
manganese illustrates that the presence of a small amount of metal catalyst favours the 
oscillatory behaviour, similar to the case of ferroin. As the amount of catalyst (i.e. Ce4+ or 
Mn2+) increases, however, the number of oscillations decreases rapidly. It could be due to 
the increased consumption of major reactants, in particular bromate. Overall, the effect of 
Mn2+ or Ce4+ on the number of oscillations was not as significant as ferroin, although they 
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doubled the number of peaks at an optimized condition. In contrast, the presence of a small 
amount of cerium or manganese dramatically reduced the induction time, where the 
induction time was shortened from about 3 hours in the uncatalyzed system to 
approximately half an hour when the concentration of manganese and cerium reached, 
respectively, 2.0 × 10-4 and 5.0 × 10-5 M. The IP became relative stable when the 
concentration of manganese or cerium was increased further.  
When comparing with the time series of the ferroin system presented in Fig. 6b, for the 
cerium-catalyzed bromate-pyrocatechol reaction the Pt potential stayed flat after the initial 
excursion. The amplitude of oscillation became significantly larger than that of the 
uncatalyzed as well as the ferroin-catalyzed systems; but, there was no significant increase 
in the total number of oscillations when compared with the uncatalyzed system. Unlike the 
ferroin-catalyzed system, no periodic color change was achieved and thus is unfit for 
studying waves. A short induction time and large oscillation amplitude (> 300 mV), 
however, make the cerium-catalyzed system suitable for exploring temporal dynamics in a 
stirred system. In particular, oscillations in the cerium system have a broad shoulder which 
may potentially develop into complex oscillations. Times series of the Mn2+-catalyzed 
bromate-pyrocatechol reaction is very similar to that of the cerium-catalyzed one, in which 
the Pt potential stayed flat after the initial excursion and the oscillation commenced much 
earlier than in the uncatalyzed system. The number of oscillations in the manganese system 
is also slightly larger than that of the uncatalyzed system. Overall, cerium and manganese, 
both have a redox potential above the redox potential of HBrO2/BrO2*, exhibit almost the 
same influence on the reaction behavior. 

2.4 Photochemical behavior  
Ferroin-catalyzed BZ reaction is insensitive to the illumination of visible light. As a result, 
the vast majority of existing studies on photosensitive chemical oscillators have been 
performed with ruthenium as the metal catalyst, despite that ruthenium complex is 
expensive and difficult to prepare. In Figure 11, the photosensitivity of the ferroin-catalyzed 
bromate-pyrocatechol reaction was examined, in which the concentration of ferroin was 
adjusted. As shown in Fig. 11a, when the system was exposed to light from the beginning of 
the reaction, spontaneous oscillations emerged earlier, where the induction time was 
shortened to about 6000 s, but the oscillatory process lasted for a shorter period of time. The 
system then evolved into non-oscillatory evolution. Interestingly, after turning off the 
illumination the Pt potential jumped to a higher value immediately and, more significantly, 
another batch of oscillations developed after a long induction time. The above result 
indicates that the ferroin-bromate-pyrocatechol reaction is photosensitive and influence of 
light in this ferroin-catalyzed system is subtle. On one hand, illumination seems to favor the 
oscillatory behavior by shortening the induction time, but it later quenches the oscillations. 
In Fig. 11b the concentration of ferroin was doubled. When illuminated with the same light 
as in Fig. 11a from the beginning, no oscillation was achieved, except there was a sharp drop 
in the Pt potential at about the same time as that when oscillations occurred in Fig. 11a. 
After turning off the light, the un-illuminated system exhibited oscillatory behaviour with a 
long induction time. We have also applied illumination in the middle of the oscillatory 
window, in which a strong illumination such as 100 mW/cm2 immediately quenched the 
oscillatory behaviour and oscillations revived shortly after reducing light intensity to a 
lower level such as 30 mW/cm2. Interestingly, although ferroin itself is not a photosensitive 
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Fig. 11. Light effect on the bromate – pyrocatechol – ferroin reaction (a) and (b) light 
illuminating from the beginning with intensity equal to 70 mW/cm2, under conditions 
[NaBrO3] = 0.10 M, [H2SO4] = 1.40 M, [H2Q] = 0.057 M, (a) [Ferroin] = 5.0×10-4 M, and (b) 
[Ferroin] = 1.0×10-3 M. 

reagent, here its concentration nevertheless exhibits strong influence on the photoreaction 
behaviour of the bromate-pyrocatechol system. Carrying out similar experiments with the 
cerium- and manganese-catalyzed system under the otherwise the same reaction conditions 
showed little photosensitivity, in which no quenching behaviour could be obtained, 
although light did cause a visible decrease in the amplitude of oscillation. 

3. Modelling 
3.1 The model 
To simulate the present experimental results, we employed the Orbán, Körös, and Noyes 
(OKN) mechanism (Orbán et al., 1979) proposed for uncatalyzed reaction of aromatic 
compounds with acidic bromate. The original OKN mechanism is composed of sixteen 
reaction steps, i.e., ten steps K1 – K10 in Scheme I and six steps K11 – K16 in Scheme II as 
listed in Table 1.  We selected all ten reaction steps K1 – K10 from Scheme I and the first four 
reaction steps K11 – K14 in Scheme II. The reason behind such a selection is that all reaction 
steps in Scheme I as well as the first four reaction steps in Scheme II are suitable for an 
aromatic compound containing at least two phenolic groups such as pyrocatechol used in 
the present study.  
Reaction steps K15 and K16 in Scheme II, on the other hand, suggest how phenol and its 
derivatives could be involved in the oscillatory reactions. There is no experimental evidence 
that pyrocatechol can be transformed into a substance of phenol type, we thus did not take 
into account reactions involving phenol and its derivatives. The model used in our 
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simulation consists of fourteen reaction steps K1 – K14, and eleven variables, BrO3-, Br-, 
BrO2*, HBrO2, HOBr, Br*, Br2, HAr(OH)2, HAr(OH)O*, Q, and BrHQ, where HAr(OH)2 is 
pyrocatechol abbreviated as H2Q in the experimental section, HAr(OH)O* is pyrocatechol 
radical, HArO2 is 1,2-benzoquinone and BrAr(OH)2 is brominted pyrocatechol.  
The simulation was carried out by numerical integration of the set of differential equations 
resulting from the application of the law of mass action to reactions K1 – K14 with the rate 
constants as listed in Table 1. The values of the rate constants for reactions K1 – K3, K5, K8 
have already been determined in the studies of the BZ reaction, and those of all other 
reactions were either chosen from related work on the modified OKN mechanism by 
Herbine and Field (Herbine & Field, 1980) or adjusted to give good agreement between 
experimental results and simulations.   
 

 
 

a Herbine and Field 1980. b Adustable parameter chosen to give a good fit to data. c Not used 
in the present model. 
In this scheme, HAr(OH)2 represents pyrocatechol compound containing two phenolic 
groups, HAr(OH)O* is the radical obtained by hydrogen atom abstraction, HArO2 is the 
related quinone, BrAr(OH)2 is the brominated derivative, and Ar2(OH)4 is the coupling 
product; HAr(OH) is phenol, HArO* is the hydrogen-atom abstracted radical, and Ar(OH)2 
is the product. 

Table 1. OKN mechanism and rate constants used in the present simulation 
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Fig. 12. Numerical simulations of oscillations in (a) Br- (b) HBrO2, and (c) pyrocatechol 
radical, HAr(OH)O*obtained from the present model K1 – K14 by using the rate constants 
listed in Table 1. The initilal concentraions were [BrO3-]=0.08 M, [HAr(OH)2]=0.057 M, 
[H2SO4]=1.4 M, and [Br-]=1.0 x 10-10 M; the other initial concentrations were zero. 

3.2 Numerical results 
Figure 12 shows oscillations in three (Br-, HBrO2, and HAr(OH)O*) of the eleven variables 
obtained in a simulation based on reactions K1 – K14 and the rate constant values listed in 
Table 1. The initial concentraions used in the simulation were [NaBrO3] = 0.08 M, 
[HAr(OH)2] = 0.057 M, [H2SO4] = 1.4 M, and [Br-] = 1.0 x 10-10 M with the other initial  
concentrations to be zero with reference to those in the expreimental conditions as shown in 
Fig. 1. Other four variables, BrO2*, Br*, HOBr, and Br2, exhibited oscillations, whereas the 
rest variables, namely, BrO3-, HAr(OH)2, HArO2, and BrAr(OH)2, did not exhibt oscillations 
in the present simulation.  
Figure 13 shows oscillations in [Br-] at different initial concentrations of bromate: (a) 0.08 M, 
(b) 0.09 M, and (c) 0.1 M, with the same initial concentrations of [HAr(OH)2] = 0.057 M, 
[H2SO4] = 1.4 M, and [Br-] = 1.0 x 10-10 M with reference to the experimental conditions as 
shown in Fig. 1.  Although the concentration of bromate in the simulation is slightly smaller 
than that in the experiments, the agreement between experimentally obtained redox 
potential (Fig. 1) and simulated oscillations as shown in Figs. 12 and 13 is good. In 
particular, the induction period and the period of oscillations are similar in magnitude, as 
well as the degree of damping. The number of oscillations, and the prolonged period of  
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Fig. 13. Numerical simulations of the present model K1 – K14 at different  initial 
concentrations of bromate: (a) 0.08 M, (b) 0.09 M, and (c) 0.1M. Other reaction conditions are 
[HAr(OH)2] = 0.057 M, [H2SO4] = 1.4 M, and [Br-]=1.0 x 10-10 M. 

oscillations near the end of oscillations are also similar between experimental and simulated 
results as shown in Fig. 1 (c), Fig.3 (c), Fig.12, and Fig.13. The above simulation not only 
supports that the oscillatory phenomena seen in the batch system arises from intrinsic 
dynamics, but also provides a tempelate for further understanding the mechanism of this 
uncatalyzed bromate-pyrocatechol system. 
While the above model is adequte in reproducing these spontaneous oscillations seen in 
experiments, the concentration range over which oscillations could be achieved is somehow 
different from what was determined in experiments. In the simulation, oscillatins were 
obtained in the range of 0.02 M < [BrO3-] < 0.1 M with [HAr(OH)2] = 0.057 M and [H2SO4] = 
1.4 M in the present simuations, whereas no oscillation could be seen in experiments for the 
condition of [BrO3-] < 0.085 M. This discrepancy of range of the reactant concentrations for 
exhibiting oscillations between experiments and simulations was also discerned for the 
concentration of HAr(OH)2 under the conditions [BrO3-] = 0.085 M and [H2SO4] = 1.4 M: 
Oscillations were exhibited in the range of 3× 10-4 M < [HAr(OH)2] < 0.3 M in the 
simulation, whereas no oscillation could be observed in experiments under [HAr(OH)2] = 
0.038 M as shown in Fig. 3 (a). The discrepancy in the suitable concentration range between 
experiment and simulation may arise from two sources: (1) the currently employed model 
may have skipped some of the unknown, but important reaction processes; (2) the rate 
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constants used in the calculation are too far away from their actual value. Note that those 
values were original proposed for the phenol system (Herbine & Field, 1980). To shed light 
on this issue, we have carefully adjusted the values of the adjustable rate constants in K4, 
K6, K7, K9 – K14, but so far no significant improvment was achhieved.  
Two other sensitive properties that can help improve the modelling are the dependence of 
the number of oscillations (N) and induction period (IP) on the reaction conditions. In 
experiments, the N value increased monotonically from 4 to 15 as bromate concentration 
was increased and then oscillatory behavior suddenly disappeared with the further increase 
of bromate concentration. In contrast, in the simulation the number of oscillations decreased 
gradually from 17 to 9 and then oscillatory behavior disappeared as the result of increasing 
bromate concentration. On the positive side, IP values increased in both experiments and 
simulations with respect to the increase of bromate concentration, i.e., from 9100 s to 11700 s 
in the experiments, and from 8000 s to 9700 s in the simulations, respectively. We would like 
to note that the simulated IP values firstly decreased from 12600 s to 7500 s with increase in 
the initial concentration of bromate from 0.03 M to 0.06 M, then increased from 7600 s to 
9700 s with increase in the bromate concentration from 0.07 M to 0.11 M. 

3.3 Simplification of the model 
In an attempt to catch the core of the above proposed model, we have examined the 
influence of each individual step on the oscillatory behavior and found that reaction step 
K12 in Scheme II is indispensable for oscillations under the present simulated conditions as 
shown in Fig. 12. Such an observation is different from what has been suggested earlier 
steps K1 to K10 would be sufficient to account for oscillations in the uncatalyzed bromate- 
aromatic compounds oscillators (Orbán et al., 1979). For the Scheme II, our calculations 
show that while setting one of the four rate constants k11 to k14 to zero; only when k12 was set 
to zero, no oscillation could be achieved. We further tested which reaction steps could be 
eliminated by setting the rate constants to zero under the condition of k12 ≠ 0. The results are 
as follows: (i) when three rate constants k11, k13, k14 were simultaneously set to zero, no 
oscillation was exhibited, (ii) when only one of the three rate constants was set to zero, 
oscillation was observed in each case, and (iii) when two of the three rate constants were set 
to zero, oscillations were exhibited under the condition of either k13 ≠0 (k11=k14=0) or k14 ≠0 
(k11=k13=0) with the range of the rate constants as 3.0 × 103 < k13 (M-1 s-1) < 2.9 × 104 and 2.2 × 
103 < k14 (M-1 s-1 ) < 6.0 × 104, respectively. Thus our numerical investigation has concluded 
that oscillations can be exhibited with minimal reaction steps as ten reaction steps in Scheme 
I together with a combination of two reaction steps either K12 and K13 or K12 and K14 in 
Scheme II. 
Fig. 14 presents time series calculated under different combinations of reaction steps from 
scheme II. This calculation result clearly illustrates that the oscillatory behavior is nearly 
identical when the reaction step K11 was eliminated. Meanwhile, eliminating K13 or K14 
seems to have the same influence on total number of oscillations (Fig.14 (c) ,(d)). However, 
chemistry of the present reaction of aromatic compounds suggests that both reaction K13 and 
K14 are equally important (Orbán et al., 1979). The equilibrium of step K13 is well 
precedented, and equimolar mixtures of quinone and dihydroxybenzene are intensely colored, 
and the radical HAr(OH)O* may be responsible for the color changes observed during 
oscillations (Orbán et al., 1979). In addition, step K14 is said to explain the observed coupling 
products and to prevent the buildup of quinone for further oscillations (Orbán et al., 1979).  
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Fig. 14. Numerical simulations of the present model of K1 – K10 with different reaction steps 
in Scheme II: (a) K11 – K14, (b) K12 – K14, (c) K12 and K13, and (d) K12 and K14. The initilal 
concentraions were [BrO3-] = 0.08 M, [HAr(OH)2] = 0.057 M, [H2SO4] = 1.4 M, and [Br-] = 1.0 
x 10-10 M as shown in Fig. 10. Note that the scales of x and y axes are different from those in 
Fig. 12. 

In our numerical simulation, when we eliminated either step K13 or step K14, the simulated 
numerical results such as (i) the time series of oscillations, (ii) the initial concentration range 
of BrO3-, H2SO4, and HAr(OH)2 for oscillations, and (iii) the dependence of the number of 
oscillations and induction period on the initial concentration of BrO3- became significantly 
different from those in experiments. In particular, the number of oscillations are too large 
under the above conditions as shown in Figs.14 (c) and (d). Such observation suggests that 
both K13 and K14 are important in the system studied here. 
Consequently, we have concluded that the simplified model should include reaction steps 
K1 to K10 in Scheme I, and K12, K13, and K14 in Scheme II to reproduce the experimental 
results qualitatively.  

3.4 Influence of reaction step K11 on the equilibrium of step K13 
The numerical investigation presented in Fig. 14b suggests that reaction step K11 is not 
necessary for qualitatively reproducing the experimental oscillations. Besides, more positive 
reason for eliminatiing step K11 from the present model is that step K11 affects the range of 
rate constant of the equilibrium step K13 significantly. The equilibrium must lie well to the 
left (Orbán et al., 1979), i.e., the rate constant kr13 to the left must be much larger than that k13 
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to the right. However, when we included step K11 in the model, we found no upper limit of 
the rate constant to the right; for instance, the rate constant can be more than 1.0 × 109 for the 
system to exhibit scillations under the conditions as shown in Fig.10. This value is already 
too large for the rate constant to the right, because we set the rate constant to the left to be 
3.0 × 104 in the present simulations. 
On the other hand, if we eliminated step K11 from the modelling, the range of the rate 
constant to the right was 0.007 < k13 (M-1 s-1) < 0.03 for the system to exhibit oscillations, 
which seems to be reasonable for the equilibrium reaction step K13 to lie well to the left. 
Thus, this numerical analysis suggests that reaction step K11 should be eliminated from the 
present model. 

4. Conclusions 
This chapter reviewed recent studies on the nonlinear dynamics in the bromate-
pyrocatechol reaction (Harati & Wang, 2008a and 2008b), which showed that spontaneous 
oscillations could be obtained under broad range of reaction conditions. However, when the 
concentration of bromate, the oxidant in this chemical oscillator, is fixed, the concentration 
of pyrocatechol within which the system could exhibit spontaneous oscillations is quite 
narrow. This accounts for the reason why earlier attempt of finding spontaneous oscillations 
in the bromate-pyrocatechol system had failed. As illustrated by phase diagrams in the 
concentration space, it is critical to keep the ratio of bromate/pyrocatechol within a proper 
range. From the viewpoint of nonlinear dynamics, bromate is a parameter which has a 
positive impact on the nonlinear feedback loop, where increasing bromate concentration 
enhances the autocatalytic cycle (i.e. nonlinear feedback). On the other hand, pyrocatechol 
involves in the production of bromide ions, a reagent which inhibits the autocatalytic 
process, where an increase of pyrocatechol concentration accelerates the production of 
bromide ions through reacting with such reagents as bromine molecules. The requirement 
of having a proper ratio of bromate/pyrocatechol reflects the need of having a balanced 
interaction between the activation cycle and inhibition process for the onset of oscillatory 
behaviour in this chemical system. If the above conclusion is rational, one can expect that 
the role that pyrocatechol reacts with bromine dioxide radicals to accomplish the 
autocatalytic cycle is less important than its involvement in bromide production in this 
uncatalyzed bromate oscillator, and therefore when a reagent such as metal catalyst is used 
to replace pyrocatechol to react with bromine dioxide radicals for completing the 
autocatalytic cycle, oscillations are still expected to be achievable. This is indeed the case. 
Experiments have shown spontaneous oscillations when cerium, ferroin or manganese ions 
were introduced into the bromate-pyrocatechol system. 
Numerical simulations performed in this research show that the observed oscillatory 
phenomena could be qualitatively reproduced with a generic model proposed for non-
catalyzed bromate oscillators. The simulation further indicates that while either two reaction 
steps K12 and K13 or K12 and K14 together with ten steps K1 – K10 in Scheme I in the OKN 
mechanism are sufficient to qualitatively reproduce oscillations, three steps K12, K13, and 
K14 with ten steps K1 – K10 are more realistic for representing the chemistry involving the 
oscillatory reactions, and also for reproducing oscillatory behaviors observed 
experimentally.  The ratio of the rate constants for the equilibrium reaction K13 was a key 
reference to eliminate reaction step K11 from the original model. Although the present 
model still needs to be improved to reproduce the experimental results quantitatively, it has 
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given us a glimpse that the autocatalytic production of bromous acid could be modulated 
periodically even in the absence of a bromide ion precursor such as bromomalonic acid in 
the BZ reaction. Understanding the reproduction of bromide ion appears to be a key for 
deciphering the oscillatory mechanism for the family of uncatalyzed oscillatory reactions of 
substituted-aromatic compounds with bromate and should be given particularly attention in 
the future research.  
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1. Introduction    
The denomination Fractional Order Calculus has been widely used to describe the 
mathematical analysis of differentiation and integration to an arbitrary non-integer order, 
including irrational and complex orders. First proposed around three hundred years ago, it 
has attracted much interest during the past three decades (Oldham & Spanier (1974), Miller 
& Ross (1993), Podlubni (1999)). The increased interest in fractional systems in the past few 
decades is due mainly to a large body of physical evidence describing fractional order 
behavior in diverse areas such as fluid mechanics, mechanical systems, rheology, 
electromagnetism, quantitative finances, electrochemistry, and biology. Fractional order 
modeling provides exceptional capabilities for analysing memory-intense and delay systems 
and it has been associated with the exact description of complex transport phenomena such 
as fractional history effects in the unsteady viscous motion of small particles in suspension 
(Coimbra et al. 2004, L’Esperance et al. 2005). Although fractional order dynamical and 
control systems were studied only marginally until a few decades ago, the recent 
development of effective mathematical methods of integration of non-integer order 
differential equations (Charef et al. (1992);  Coimbra & Kobayashi (2002), Diethelm et al. 
(2002); Momany (2006), Diethelm et al. (2005)) has resulted in a number of control schemes 
and algorithms, many of which have shown better performance and disturbance rejection 
compared to other traditional integer-order controllers (Podlubni (1999); Hartly & Lorenzo 
(2002), Ladaci & Charef (2006), among others).  
Variable order (VO) systems constitute a generalization of fractional order representations 
to functional order. In VO systems the order of the derivative changes with respect to either 
the dependent or the independent variables (or both), or parametrically with respect to an 
external functional behavior (Samko & Ross, 1993). Compared to fractional order 
applications, VO systems have not received much attention, although the potential to 
characterize complex behavior by the functional order of differentiation or integration is 
clear. Variable order formulations have been utilized, among other applications, to describe 
the mechanics of an oscillating mass subjected to a variable viscoelasticity damper and a 
linear spring (Coimbra, 2003), to analyze elastoplastic indentation problems (Ingman & 
Suzdalnitsky (2004)), to interpolate the behavior of systems with multiple fractional terms 
(Soon et al., 2005), and to develop a statistical mechanics model that yields a macroscopic 
constitutive relation for a viscoelastic composite material undergoing compression at 
varying strain rates (Ramirez & Coimbra, 2007). Concerning the dynamics and control of VO 
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systems, the authors of this chapter have previously analyzed the dynamics and linear 
control of a variable viscoelasticity oscillator and have presented a generalization of the van 
der Pol equation using the VO differential equation formulation (Diaz & Coimbra, 2009). 
In the present work, we utilize the Coimbra Variable Order Differential Operator  (VODOs) 
to analyze the dynamics of the Duffing equation with a VO damping term. Coimbra’s 
VODO returns the correct value of the p-th derivative for p < 2, as can be generalized to any 
order, positive or negative.The behavior of the variable order differintegrals are shown in 
variable phase space for different parameters that constitute a pictorial representation of the 
dynamics of the variable order system, and help understand the transitional regimes 
between the extreme values of the derivatives. Also, a tracking controller is developed and 
applied to the oscillator for different expressions of the variable order q(x(t)).  Finally, a 
variable order controller is used to eliminate chaotic oscillations of Lorenz-type systems. 

2. Fractional and variable order operators 
Over the past few centuries, different definitions of a fractional operator have been 
proposed.  For instance the Riemann-Liouville integral is defined as  

 
  
D0, t

−α x(t) = 1
Γ(α)

(t −τ )α  −  1

0

t

∫ x(τ )dτ  (1) 

where α ∈ R+ is the order of integration of the function x(t) when the lower limit of 
integration (initial condition) is chosen to be identically zero. The Riemann-Liouville 
derivative of order α is given as  

 
  
D0,t

α x(t) = 1
Γ(m −α)

d m

dt m
(t −τ ) m−α−1

0

t

∫ x(τ )dτ ,  (2) 

and the Grundwald-Letnikov differential operation is defined as 

 ( )0, 0, 0
( ) lim ( 1)   ( )

n
pk

t kh nh t k
D x t h x t khα α−

→ =
=

= − −∑ .  (3) 

Finally, the Caputo derivative of fractional order α of x(t) is defined as 

 
  
D0,t

α x(t) = 1
Γ(m −α)

(t −τ ) m−α−1

0

t

∫ x (m) (τ )dτ ,  (4) 

for which m-1 < α <m ∈ Z+. More details about these operators can be found in Li & Deng 
(2007), Diethelm (2002), and Hartley & Lorenzo (2002).   
For variable order systems, Coimbra (2003) defined the canonical differential operator as: 

 
    
Dq (x (t))x(t) = 1

Γ(1−q(x(t)))
(t −σ )−q (x (t)) D1

0+

t

∫ x(σ )dσ +
(x(0+ ) −x(0− ))t−q (x (t))

Γ(1−q(x(t)))
  (5) 

where q(x(t)) < 1. The constraint on the upper limit of differentiation can be easily removed, 
and is adopted here only for convenience. One of the important characteristics of Coimbra’s 
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operator is that it is dynamically consistent with causal behavior in the initial conditions, i.e. 
the operator returns the appropriate Heaviside contribution to the integral value of 
Dq(x(t))x(t) when x(t) is not continuous between t=0- and t=0+ (Coimbra, 2003; Ramirez & 
Coimbra, 2007; Diaz & Coimbra (2009)). Also of relevance is that all integer and fractional 
order differentials are returned correctly by the operator, including the upper limit. In this 
work we used the extended version of this operator that covers the range of q(x(t))<2. The 
generalized order differential operator can thus be calculated by the following numerical 
algorithm:  

 
  
Dqxn =

1
Γ(4 −q)

ai ,nD2

i=0

n

∑ xi +
x(0+ )(1−q)(tn)−q +D1x(0+)tn

1−q

Γ(2−q)
,  (6) 

with quadrature weights given by 

                                    ai,n = (3−q)n2−q −n3−q + (n−1) 3−q     , if i=0 

  ai,n = (n− i −1)n3−q − 2(n− i) 3−q + (n− i +1) 3−q  , if 0<i<n. 

                                    ai,n = 1         , if i=n. 

As stated earlier, one of the critical properties of this operator for generalized order 
modeling is that it returns the p-th derivative of x(t) when q(x(t)) = p. This can be graphically 
demonstrated by considering an arbitrary function with known derivatives such as 

   y = t 2 sin(t)   (7) 

 
Fig. 1. Comparison of values of function y=t2sin(t) and its derivatives with the results 
obtained with operator described by Eq. (6) for several values of the order q. 
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Figure 1 shows the values of function y (Eq. 7) and its derivatives dy/dt, and d2y/dt2 
calculated analytically.  The figure also shows that the operator described by Eq. (6) returns 
values that match the functions y for q=0, dy/dt for q=1, and d2y/dt2 for q≈2, respectively. The 
values of q=0.5 and q=1.5 are also shown to indicate the matching of the rational order 
derivatives with the values calculated using the VO operator. 

3. Dynamics of the Duffing equation with variable order damping 
Together with the van de Pol equation, the Duffing equation represents the behavior of one 
of the most studied oscillators in the field of nonlinear dynamics (Guckenheimer & Holmes 
(1983), Drazin (1994)). First introduced in 1918 by G. Duffing, different variations of the 
equation have been used to analyze its dynamics for the automomous and forced cases.    
Moon and Holmes (1979, 1980) considered a negative linear stiffness term to analyse the 
forced vibrations of a cantilever beam near two magnets. Vincent & Kenfack (2008) recently 
studied the bifurcation structure and synchronization of a double-well Duffing oscillator.  
They were able to show regions of chaos and quasiperiodicity and they found threshold 
parameters for which synchronization occured. With respect to fractional order systems, 
Sheu et al. (2007) analyzed the Duffing equation with negative linear stiffness and a 
fractional damping term. They reported a period doubling route to chaos in their study. 

3.1 Forced oscillations 
We generalize the concept of fractional damping to include a variable order term as:  

   D
2x +δDqx −x +x 3 = γ sin(ωt) .  (8) 

The main difference with respect to the work by Sheu et al. (2007) is that they studied the 
dynamics of Eq. (8) for a range of values of the fractional order q where this parameter was 
kept constant for every case analyzed. Here, the oscillator is generalized to include a 
damping term where the order of the derivative reacts to the effect of the forcing function 
over time, thus q = q(t). In our analysis, we choose the value of parameters δ and ω to be 0.1 
and 2, respectively.  

Case γ = 1.5: 
The first case considered in this work relates to the behavior of the oscillator given by Eq. (8) 
for γ = 1.5 for two different conditions, i.e. q = 1 and q = (99/100) + sin(ω t).  We note that the 
operator described by Eq. 6 is valid for q(t) < 2, thus the expression used for the change in q 
with respect to time ensures that this condition is met. 
Figure 2 shows the dynamics of the oscillator given by Eq. (8) for q = 1 as the order of the 
derivative in the damping term. The simulations cover the time range t ∈ [0, 700] where only 
the results for t > 200 are plotted to exclude the initial transients.  Chaotic behavior is observed 
and a strange attractor is depicted in Fig. 2(a).  The Poincaré map is shown in Fig. 2(b).   
The effect of the variable order derivative on the damping term of Eq. (8) significantly 
changes the dynamics of the oscillator. This can be observed in Figs. 3(a) and 3(b) where it is 
seen that after removing the intial transients, the dynamics of the oscillators are confined to 
a narrower region in the phase space. 
The dynamics of the VO oscillators can also be analyzed utilizing a modified version of the 
phase diagram where the variable order derivative, Dqx(t), is plotted on the ordinate axis 
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and the position, x(t), is plotted on the abcisa axis.  Figure 4(a) shows the variable order 
phase space (a plot of the value of the VO derivative, Dqx(t),  as a function position), 
whereas Fig. 4(b) shows the behavior of Dqx(t) as a function of the order of the derivative, 
q(t).  It is seen in Fig. 4(b) that q(t) < 2, thus meeting the upper limit of differentiation 
mandated by the numerical algorithm used here (Eq. 6). 
 

 
Fig. 2. Phase diagram and Poincare map for γ = 1.5 and q =1.  

 
Fig. 3. Phase diagram and Poincare map for γ = 1.5 and q =(99/100)+ sin(ω t). 
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Figure 5(a) shows the change of x(t) and Dqx(t) as a function of time. Figures 6(a) and 6(b)  
show that q(t) also has an oscillatory behavior with Dqx(t) having a minimum value when 
x(t) and q(t) approach their maximum value. This is also depicted in the VO phase diagrams 
shown in Figs. 4(a) and 4(b). 

 
Fig. 4. Modified phase diagram and Dqx(t) vs. q(t) plots for γ =1.5. 

 
Fig. 5. Dynamics of VO Duffing equation with respect to time for γ =1.5. (a) - - - x(t), ____ = 
Dqx(t);  (b) - - - q(t), ____ = Dqx(t); 
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Fig. 6. Phase diagram and Poincare map for γ=0.5 and q=1. 

Case γ = 0.5: 

We now analyze the case where parameter γ = 0.5. After the initial transient, the standard 
configuration (q = 1) shows an oscillatory behavior as depicted in Fig. 6(a) with a single 
point appearing in the Poincare map, Fig. 6(b). 

 
Fig. 7. Phase diagram and Poincare map for γ = 0.5 and q = (99/100)+ sin(ω t) for t > 200. 
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Figures 7(a) and 7(b) show the results of the simulations for γ = 0.5 and a variable order of 
the derivative given by q(t) = (99/100) + sin(ω t). It is seen that the phase diagram and 
Poincare maps differ significantly from the case q = 1. However,  plotting x(t) as a function 
of time, as depicted in Fig. 8, shows the transient effects seem to last longer than for the case 
of q = 1. After t ~ 400, the system settles to an oscillatory behavior with a smaller amplitude.   

 
Fig. 8. Phase diagram and Poincare map for γ = 0.5 and q = (99/100) + sin(ω t) for t > 200. 

 
Fig. 9. Phase diagram and Poincare map for γ = 0.5 and q = (99/100)+ sin(ω t) for t > 400. 
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Plots of the phase diagram and the Poincare map for t > 400 are shown in Figs. 9(a) and 9(b), 
respectively. Similar dynamics compared to q = 1 are displayed by the system.   

3.2 Control of the VO Duffing equation 
The dynamics of the variable order Duffing equations were analyzed in the previous section 
for the cases δ = 0.1, ω = 2, with γ = 1.5 and γ = 0.5, respectively. In this section, we study 
controls aspects of this equation subject to a VO damping term. An exact feedback 
linearization is performed to obtain a tracking controller that drives the VO Duffing 
oscillator to follow a periodic reference function, r (Khalil, 1996).  The forcing function in Eq. 
(8) can be replaced by a control action as shown by Eq. 9. 

   D2x = x−x 3 −δDqx + u . (9) 

Exact feedback linearization is obtained by choosing the control action  

   u = x 3 +δDqx +v .  (10) 

Thus, Eq. 9 is converted to a linear equation of the form 

   D2x = x +v .  (11) 

This second order differential equation is transformed to a system of first order differential 
equations 

 
1 1

2 2

0 1 0
,

1 0 1
[1 0] .

x x
Ax Bv v

x x
y Cx x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
= =

� G
�

G G
 (12) 

 

A control action of form    u = −K
G 
x +Gr = −k 1x1 −k2x2 +Gr is chosen where k1 and k2 are 

constants that are used to select the location of the closed-loop eigenvalues, G is the 
feedforward gain, and r is the reference. For the controllable system given by Eq. (12) we 
arbitrarily select closed-loop egivenvalues λ1,2=-5 to obtain k1 = 24 and k2 = 10. The 
feedforward gain is obained with Eq. (13) (Williams & Lawrence, 2007). 

   G = −(C(A−BK)−1B)−1 .  (13) 
 

The tracking scheme is tested with the variable order derivative in the VO damping term 
having the expression q = (99/100) + sin(ω t), where γ = 1.5 and ω = 2.  Figures 10(a) to 10(d) 
show the behavior of the tracking system for r(t) = 2 cos(ω/10) + sin(3ω/10). The ouput of 
the system, y(t), follows the reference, r(t), consistently, as seen in Fig. 10(a). Figure 10(b) 
shows the control action, u(t), and the sinusoidal behavior of the order of the VO derivative, 
q(t), is shown in Fig. 10(c) where the value of the variable order derivative, Dqy(t), is plotted 
in Fig. 10(d).  
Exact feedback linearization can be used for different functions of q(t). Figure 11(a) to 11(d) 
show the tracking of reference r for q(t) = r(t)/3. Scaling of q(t) with respect to r is performed 
so that the value of q(t) remains smaller than 2.  
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Fig. 10. Tracking control for the VO duffing equation for q(t)= (99/100)+ sin(ωt). (a) __ = r(t), 
. . .=y(t); (b) u(t), (c) q(t), and (d) Dqy(t). 
 
We note that if the value of the order of the VO derivative, q(t), is known to remain within 
the requirement of the operator (i.e. q(t)< 2) then an implicit form of the variation of q (i.e. 
q=q(x)) can also be utilized (Diaz & Coimbra, 2009).  It is also mentioned that if the closed-
loop eigenvalues are chosen to have positive real parts then the system becomes unstable. 

4. VO control of the Lorenz system 
So far, we have analyzed the dynamics and control of VO systems that have the term Dqx(t) 
as part of the expression describing their dynamics. We now apply the variable order 
approach as the control action to stabilize a chaotic dynamical system. First proposed as a 
way to discribe the dynamics of weather systems, the Lorenz system of equations (Lorenz, 
1963) has been intensively studied as a dynamical system that displays chaotic behavior 
where a strange attractor is encountered under certain values of its parameters. Control 
techniques have been proposed in the past (Vincent & Yu, 1991) but to the best knowledge 
of the authors, there is no study in the literature that has utilized a variable order controller 
to stabilize the chaotic dynamics of the Lorenz system. 
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Fig. 11. Tracking control for the VO duffing equation for q(t)=(1/3) [2cos(ω/10)+sin(3ω/10)]. 
(a) __ = r(t), . . .= y(t); (b) u(t), (c) q(t), and (d) Dqy(t). 
 

The Lorenz system is described by the folowing equations 

 

1
1 2

2
1 2 2 3

3
1 2 3

,

,

.

dx x x
dt

dx rx x x x
dt

dx x x bx u
dt

σ σ= − +

= − −

= − +

  (14) 

For r > 1 there are two non-trivial equilibrium points, i.e.   x 1 = x 2 = ±  (b  (r −1)) 1/2 ,  x 3 = r −1.  
Linearizing the system with respect to the first non-trivial equilibrium point, we obtain 

 

  

dz1

dt
= −σz1 +σz2 ,

dz2

dt
= z1 −z2 − b(r −1)z3 ,

dz3

dt
= b(r −1)z1 + b(r −1)z2 −bz3 + u*,

  (15) 
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which can be written as dz
dt

= Az +Bu * , where  

 

  

z1 = x1 − b(r −1) ,

z2 = x2 − b(r −1) ,
z3 = x3 − (r −1).

  (16) 

Tavazoei et al. (2009) developed a control strategy using a fractional order controller with 
three parameters that is used to suppress chaos. They showed that a chaotic system is 
stabilized using the single control input u(t)=Jqy(t), where Jq is a fractional integral operator 
and y(t) = -(μT1+νT3)(x(t)-x*), and where T1 and T3 are the first and third row of a 
transformation matrix such that 

 1

0 1 0 0
0 0 1 ,         0  .

1
A TAT B TB

a b c

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

  (17) 

where the parameters a,b,c are the coefficients of the characteristic polynomial of the 
Jacobian matrix A 

 3 2 0.s cs bs a+ + + =   (18) 

Tavazoei et al. (2009) also showed that for the integral fractional operator with -1 < q < 0 the 
controller stabilizes the system when 

 
(1 /2) ( 1 /2)

0 ;    .
cos( / 2) cos( / 2)

q qcb ab
q q

μ ν
π π

− − −

< < >
− −

  (19) 

We use the VO operator described by Eq. (5) with a negative value of q (i.e. integral variable 
order operator) to suppress chaos of the Lorenz system. Choosing σ = 10, b = 8/3, r = 28 and 
q =-0.2, we obtain 0 < μ < 2310.9 and ν > 23.7. Arbitrary values of μ = 23.1 and ν = 26.1 are 
chosen that satisfy the constraints given by Eq. (19). Figure 12(a) depicts the chaotic 
behaviour displayed by the Lorenz system for t < 25.  At t = 25, the controller is turned on 
and the system is stabilized around the selected equilibrium point. Figure 12(b) shows the 
values of the control action, u(t). In this case q has been considered constant for the VO 
operator.   
The variable order capability of the controller can be verified by running a similar case 
where the parameters μ and ν are kept constant and the order of the VO derivative is 
changed. The controller works until the constraints given by Eq. (19) are no longer met.  
Fixed values for μ and ν are used.  However, for t > 25 the order of the VO derivative q(t) is 
monotonically decreased starting from q = -0.2. Figure 13(a) shows the behaviour of the 
system subject to the control action u(t) shown in Fig. 13(b). It is observed that once the 
controller is turned on (t > 25) stabilization of the chaotic system is obtained for variable q 
until parameters μ and ν fall outside of the constraints.  Figure 13(c) shows the variation of q 
over time. The controller reaches a point where it no longer stabilizes the chaotic behaviour 
of the system. This situation is resolved by re-calculating the values of μ and ν for the VO 
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Fig. 12. Chaos suppression in the Lorenz system with σ = 10, b = 8/3, r = 28, q =-0.2, and 
fixed values of μ and ν in VO operator in Eq. (5). (a) x, y, z vs t (b) u vs t. 

 
Fig. 13. Performance of controllers for fixed values of μ and ν and decreasing value of q(t). 
(a) x, y, z vs t (b) u vs t, (c) q vs t. 
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value of q to remain within the required constraints. Figure 14(a) shows that the controller 
stabilizes the chaotic system under the variation of q with respect to time shown in Fig. 14(c) 
that generates the control action displayed in Fig. 14(b). The variation in the values of μ and 
ν is observed in Fig. 14(d) that shows that as q decreases the values of μ and ν also increase 
rapidly. 

 
Fig. 14. Performance of controllers for variable values of μ and ν and decreasing value of 
q(t). (a) x, y, z vs t (b) u vs t, (c) q vs t, (d) μ, ν vs t. 

Grigorenko and Grigorenko (2003) have shown that the generalized fractional order Lorenz 
system also presents chaotic behaviour. Clearly, a VO controller technique as presented here 
can also be utilized to suppress chaos in such a system. 

5. Conclusion 
Variable order systems, i.e. systems where the order of the derivative changes with respect 
to either the dependent or the independent variables have not received as much attention as 
fractional order systems, despite of the ability of variable order formulations to model 
continuous spectral behavior in complex dynamics. We illustrate some of the characteristics 
of variable order systems and controllers through the numerical simulation of nonlinear 
dynamic oscillators and systems of equations. In this work, we analyze the dynamics of a 
modified Duffing equation, which includes a variable order derivative as the damping term, 
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and illustrate its behavior as compared to the classical Duffing equation. Exact feedback 
linearization is used to derive a linear controller of the Duffing equation with variable order 
damping. Finally, a variable order controller is used to suppress chaos on the Lorenz system 
of equations. To the best knowledge of the authors, this is the first time a variable order 
controller is described. 
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1. Introduction 
Axially moving beams can represent many engineering devices, such as band saws, power 
transmission belts, aerial cable tramways, crane hoist cables, flexible robotic manipulators, 
and spacecraft deploying appendages. Despite usefulness and advantages of these devices, 
vibrations associated with the devices have limited their applications. Therefore, 
understanding transverse vibrations of axially moving beams is important for the design of 
the devices. The investigations on vibrations of axially moving beams have theoretical 
importance as well, because an axially moving beam is a typical representative of 
distributed gyroscopic systems. The term “gyroscopic” arose in recognition of an early 
problem in gyrodynamics. Actually, the Coriolis acceleration component experienced by 
axially moving materials imparts a skew-symmetric or gyroscopic term to their governing 
equations. Due to particular characteristics of the gyroscopic term, the approaches 
developed in analyzing vibrations of an axially moving string can be applied to other more 
complicated distributed gyroscopic systems. Because of the practical and theoretical 
significance, the investigation on nonlinear vibrations of axially moving beams is a 
challenging subject which has been studied for many years and is still of interest today.  
The relevant researches on transverse vibrations of axially moving strings can be dated back 
to (Aiken, 1878). There are several excellent and comprehensive survey papers, notably 
(Mote, 1972), (Ulsoy and Mote, 1978), (Mote et al., 1982), (D’Angelo et al., 1985), (Wickert 
and Mote, 1988), (Wang and Liu, 1991), (Abrate, 1992), (Zhu, 2000), reviewing the state-of-
the-art in different time phases of investigations related to vibrations of axially moving 
beams. The present chapter emphasizes on the recent achievements, although some early 
results are mentioned for the sake of completeness. Besides, the chapter focuses the 
nonlinear problem only. If the vibration amplitude is large, the nonlinearity should be taken 
into account. Hence the chapter, unlike (Chen, 2005a) for axially moving strings, is not a 
comprehensive survey with a complete and detailed representation of current researches. 
Instead, the chapter is a counterpart of (Chen et al., 2008) for axially moving beams. The 
author tries to put the some available results into a general framework, as well as to 
highlight the work of the author and his collaborators. It is hoped that the chapter serves as 
a collection of ideas, approaches, and main results in investigations on nonlinear vibration 
of axially moving beams. 
The chapter is organized as follows: Section 2 focuses on the mathematical models of 
nonlinear transverse vibration. The special attentions are paid to the comparison of two 
different nonlinear models and the introduction of the material time derivative into the 
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viscoelastic constitutive relations. Section 3 covers the developments and the applications of 
approximately analytical methods, including the asymptotic method, the Lindstedt-Poincaré 
method, the method of normal forms, the method of nonlinear, complex modes, the method 
of multiple scales, and the incremental harmonic balance method. Section 4 is devoted to the 
numerical approaches, including the Galerkin discretization, the finite difference, and the 
differential quadrature. Section 5 reveals the nonlinear behaviors such as bifurcation and 
chaos based on the numerical solutions. Section 6 discusses energetics, conserved quantity 
and the applications. The final section recommends future research directions. 

2. Governing equations 
2.1 Coupled vibration 
The governing equation is the base of all analytical or numerical investigations. Generally, 
an axially moving beam undergoes both the longitudinal vibration and the transverse 
vibration, and they are coupled. (Thurman & Mote, 1969) obtained the governing equation 
of coupled longitudinal and transverse vibrations of an axially moving beam. (Koivurova & 
Salonen 1999) revisited the same modeling problem and clarified its kinematic aspects. Their 
nonlinear formulation for the moving beam problem has two limitations: the material of the 
beam is linear elastic constituted by Hooke’s law, and the axial speed of the beam is a 
constant. As (Wickert & Mote 1988) pointed out, modeling of dissipative mechanisms is an 
important vibrations analysis topic of axially moving materials. An effective approach is to 
model the beam as a viscoelastic material. Therefore, it is necessary to deal with constitutive 
laws other than Hooke’s law. Axial transport acceleration frequently appears in engineering 
systems. For example, if an axially moving beam models a belt on a pair of rotating pulleys, 
the rotation vibration of the pulleys will result in a small fluctuation in the axial speed of the 
belt. The nonlinear model in (Thurman & Mote, 1969) for coupled vibration can be 
generalized to an axially accelerating viscoelastic beam as follows. 
Consider a uniform axially moving beam of density ρ, cross-sectional area A, moment of 
inertial I, and initial tension P0, as shown in Figure 1. The beam travels at the uniform 
transport speed γ between two boundaries separated by distance l. Assume that the 
deformation of the beam is confined to the vertical plane. A mixed Eulerian-Lagrangian 
description is adopted. The distance from the left boundary is measured by fixed axial 
coordinate x. The beam is subjected to an external excitation fu(x,t) and fv(x,t) in longitudinal 
and transverse directions respectively, where t is the time. The in-plane motion of the beam 
is specified by the longitudinal displacement u(x,t) related to coordinate translating at speed 
γ  and the transverse displacement v(x,t) related to the spatial frame. 
 

 
Fig. 1. The physical model of an axially accelerating beam 
Study the motion of the beam in a reference frame moving in the axial direction and at 
speed γ. The reference system is not an inertial frame if γ  is not a constant. The beam is a 
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one-dimensional continuum undergoing an in-plane motion in the moving reference frame, 
the Eulerian equation of motion of a continuum gives 
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where a comma preceding x or t denotes partial differentiation with respect to x or t, σ(x,t) is 
the axial disturbed stress, and M(x,t) is the bending moment. The viscoelastic material of the 
beam obeys the Kelvin model, with the constitution relation 

 ( ) ( )d, , ,
d

x t E x t
t

σ η ε⎛ ⎞= +⎜ ⎟
⎝ ⎠

N  (2) 

where, E is the Young's modulus, η is the dynamic viscosity, and the disturbed strain εN(x, t) 
of the beam is given by the nonlinear geometric relation 

 ( )2 2
N 1 , , 1x xu vε = + + −  (3) 

For a slender beam (for example, with I/(Al2)<0.001), the linear moment-curvature 
relationship of Euler-Bernoulli beams is sufficiently accurate, 

 ( ) d, ,
d xxM x t E Iv

t
η⎛ ⎞= +⎜ ⎟

⎝ ⎠
 (4) 

In the moving reference frame, the beam itself is without any axial transportation, while the 
boundaries are moving at speed γ. The axially moving beam is constrained by rotating 
sleeves with rotational springs (Chen & Yang, 2006a). The stiffness constant of two springs is 
the same, denoted as K. Nullifying the transverse displacements and balancing the bending 
moment at both ends lead to the boundary conditions 

 ( ) ( ), 0, , 0, ;u s t u l s t= + =  (5) 

 ( ) ( ) ( ) ( ) ( ) ( ), 0, , , , , 0; , 0 , , , , , 0.xx x xx xv s t EIv s t Kv s t v l s t EIv l s t Kv l s t= − = + = + + + =  (6) 

where s γ=� . To avoid the moving boundary conditions (5), which are difficult to tackle, the 
transformation of coordinates is introduced as follows 

 , .x x s t t↔ + ↔  (7) 
Then, expressed in the new coordinates, the boundary conditions have a simpler form 

 ( ) ( )0, 0, , 0;u t u l t= =  (8) 

 ( ) ( ) ( ) ( ) ( ) ( )0, 0, , 0, , 0, 0; , 0 , , , , , 0.xx x xx xv t EIv t Kv t v l t EIv l t Kv l t= − = = + =  (9) 
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Under the new coordinates, the partial derivatives with respect to x and t remain invariant, 
and the total time derivative changes as follows 

 d
dt x t

γ ∂ ∂
↔ +

∂ ∂
 (10) 

Substitution of equations (2), (4), and (10) into equation (1) yields  
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If other viscoelastic constitutive relations are used to describe the beam materials, they can 
be incorporated into the governing equation in the similar way. However, a controversial 
issue arises concerning the application of differential-type constitutive laws including the 
Kelvin relation in axially moving materials. Some investigators used the partial time 
derivative in the Kelvin model for axially moving strings (Zhang & Zu, 1998) (Zhang & 
Song, 2007), (Chen et al., 2007) and (Ghayesh, 2008), or beams (Chen & Yang, 2005, 2006a,b), 
(Ghayesh & Balar, 2008), (Ghayesh & Khadem, 2008), (Yang et al., 2009), and (Özhan & 
Pakdemirli, 2009). However, (Mochensturm & Guo, 2005) convincingly argued that the 
Kelvin model generalized to axially moving materials should contain the material time 
derivative to account for the added “steady state” dissipation of an axially moving 
viscoelastic string. Actually the material time derivative was also used in other works on 
axially moving viscoelastic beams (Marynowski, 2002, 2004, 2006), (Marynowski & 
Kapitaniak, 2002, 2007), (Yang & Chen, 2005), (Ding & Chen, 2008), (Chen & Ding, 2008, 
2009), (Chen & Wang, 2009) and (Chen, et al., 2008, 2009, 2010). Here a coordinate transform 
will be proposed to develop the governing equations, which can introduce naturally the 
material time derivative in the viscoelastic constitutive relations. 
In small but finite stretching problems in literatures of nonlinear oscillations, only the lowest 
order nonlinear terms need to be retained so that the governing equation of small-amplitude 
motion will be obtained. Such simplified coupled governing equations were used in 
analytical investigations on axially moving elastic beams (Thurman & Mote, 1969), (Riedel & 
Tan, 2002), and (Sze et al., 2005). 
It should be remarked that there are different types of governing equations for axially 
moving beams (Tabarrok et al., 1974), (Wang & Mote, 1986, 1987), (Wang, 1991), (Hwang & 
Perkins, 1992a,b, 1994), (Vu-Quoc & Li 1995), (Behdinan, et al, 1997), (Hochlenert et al., 
2007), (Pratiher & Dwivedy 2008), (Spelsbrg-Korspeter et al., 2008), and (Humer & Irschik, 
2009). Actually, there are various beam theories such as Euler-Bernoulli theory, shear-
deformable theories, and three-dimensional theories, and geometric nonlinearities may take 
different forms. Correspondingly, there are various governing equations of axially moving 
beams. Even if an axially stationary slender structure is prescribed by more sophisticated 
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governing equations, the coordinate transform (7) is a still convenient approach to derive 
the governing equations of the slender structure undergoing an axial motion.  

2.2 Transverse vibration 
Although the transverse vibration is generally coupled with the longitudinal vibration, 
many researchers considered only the transverse vibration in order to derive a tractable 
equation. Inserting u=0 into equation (3) and then omitting higher order nonlinear terms 
yield a simplified strain-displacement relation termed as the Lagrange strain 

 2
L , 2xvε =  (12) 

Inserting u=0 into equation (11) and then retaining lower order nonlinear terms only yield a 
nonlinear partial-differential equation 
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The quasi-static stretch assumption means that one can use the averaged value of the 

disturbed tension ( )1
L L L0

, , dt xAE A x lε η ε γε⎡ ⎤+ +⎣ ⎦∫  to replace the exact value 

AEε+Aη(ε,t+cε,x). Thus equation (18) leads to nonlinear integro-partial-differential equation 
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Both equation (13) and equation (14) are governing equations of transverse nonlinear 
vibration. 
Both the nonlinear partial-differential equation and the nonlinear integro-partial-differential 
equation have been applied to some special cases such as free vibration without external 
excitation (Fv=0), elastic beams without viscoelasticity (η=0), uniformly moving beams 
without axially acceleration ( γ� =0). The applications of the nonlinear partial-differential 
equation include (Chen & Zu, 2004) for uniformly moving elastic beams without external 
excitation, (Marynowski, 2002, 2004) and (Marynowski & Kapitaniak, 2007) for axially 
moving viscoelastic beams without external excitation, (Yang & Chen, 2005) and (Chen & 
Yang, 2006) for axially accelerating viscoelastic beams, and (Chen et al., 2007) for uniformly 
moving elastic beams without external excitation. The applications of  the nonlinear integro-
partial-differential equation include (Wickert, 1991), (Pellicano & Zirilli, F., 1997), (Pellicano 
& Vestroni, 2000), (Chakraborty & Mallik, 2000a), (Pellicano, 2001), (Kong & Parker, 2004) 
and (Chen & Zhao, 2005) for uniformly moving elastic beams without external excitation, 
(Ghayesh, 2008) for uniformly moving viscoelastic beams without external excitation, 
(Pellicano & Vestroni, 2000), (Özhan & Pakdemirli, 2009) for uniformly moving elastic 
beams, (Chakraborty & Mallik, 1999), (Öz et al, 2001) and (Ravindra & Zhu, 1998) for axially 
accelerating elastic beams without external excitation, (Chakraborty & Mallik, 1998) 
(Chakraborty et al., 1999), (Chakraborty & Mallik, 2000b) for axially moving elastic beams, 
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(Parker & Lin, 2001) for axially accelerating elastic beams, and (Yang et al., 2009), (Chen et 
al., 2009) for axially accelerating viscoelastic beams, and (Özhan & Pakdemirli, 2009) for 
uniformly moving viscoelastic beams. Approximately analytical investigations on free 
vibration of axially moving elastic (Chen & Yang, 2007), forced vibration of axially moving 
viscoelastic beams (Yang & Chen, 2006), and parametric vibration of axially accelerating 
viscoelastic beams (Chen & Yang, 2005) and (Chen & Ding, 2008)  demonstrated that the 
nonlinear partial-differential equation and the nonlinear integro-partial-differential equation 
yield the qualitatively same results but there are quantitative differences.  
The nonlinear integro-partial-differential equation can also be obtained through uncoupling 
the governing equation for coupled longitudinal and transverse vibration under the quasi-
static stretch assumption in small but finite stretching problems, and a special case of free 
vibration of axially moving elastic beam was treated in (Wickert, 1992). Under quasi-static 
stretch assumption, the dynamic tension to be a function of time alone. In traditional 
derivation in (Wickert, 1992), the nonlinear integro-partial-differential equation seems more 
exact than the nonlinear partial-differential equation because it is the transverse equation of 
motion in which the longitudinal displacement field is taken into account. However, the 
derivation here indicates that the nonlinear partial-differential equation can be reduced to 
the nonlinear integro-partial-differential equation based on the quasi-static stretch 
assumption. Numerical investigations on free vibration of axially moving elastic beams 
(Ding & Chen, 2008) and forced vibration of axially moving viscoelastic beams (Chen & 
Ding, 2009) indicated that the nonlinear integro-partial-differential equation is superior to 
the partial-differential equation, in the sense that approximates the coupled governing 
equation of planar motion better (some details in Subsection 4.2). However, since there has 
no decisive evidence to favor any models of transverse nonlinear vibration of axially 
moving beams, it is still an open problem.  

3. Approximate analytical methods 
3.1 Direct-perturbation approaches 
As exact solutions are usually unavailable, approximate analytical methods are widely 
applied to investigate nonlinear vibration of axially moving beams. The approximate 
analytical methods can be applied to the nonlinear (integro-)partial-differential equations 
without discretization. Such a treatment is regarded as a direct-perturbation. The practice 
can be dated back to (Thurman & Mote, 1969) in which a modified Lindstedt method was 
used to calculate the fundamental frequency.  
The method of multiple scales can be employed to analyze nonlinear vibration of axially 
moving beams. Actually, a general framework of the multi-scale analysis has been proposed 
for a linear gyroscopic continuous system under small nonlinear time-dependent 
disturbances (Chen & Zu, 2008). Consider a gyroscopic continuous system with a weak 
disturbance 

 ( ), , , ,tt tMv Gv Kv N x tε+ + =  (15) 

where v(x,t) is the generalized displacement of the system at spatial coordinate x and time t, 
linear, time-independent, spatial differential operators M, G and K represent mass, 
gyroscopic and stiffness operators respectively, ε stands for a small dimensionless 
parameter, and N(x,t) expresses a nonlinear function of x and t that may explicitly contain v 
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and its spatial and temporal partial derivatives as well as its integral over a spatial region or 
a temporal interval. N(x,t) is periodic in time with the period 2π/ω. Define an inner product 

 ( ) ( ), d ,
E

f g f x g x x= ∫  (16) 

for complex functions f and g defined in the gyroscopic continuum E, where the overbar 
denotes the complex conjugate. M, K are symmetric and G is skew symmetric in the sense 

 , , , , , , , ,Mf g f Mg Kf g f Kg Gf g f Gg= = = −  (17) 

for all functions f and g satisfying appropriate boundary conditions. A uniform 
approximation is sought in the form 

 ( ) ( ) ( ) ( )2
0 0 1 1 0 1, , , , , ,v x t v x T T v x T T Oε ε= + +  (18) 

where T0=t, T1=εt, and O(ε2) denotes the term with the same order as ε2 or higher. 
Substitution of equation (18) into equation (15) yields 

 
0 0 00 0 0, , 0 ,T T TMv Gv Kv+ + =  (19) 

 ( )
0 0 01 1 1 1 0 1, , , , ,T T TMv Gv Kv N x T T+ + =  (20) 

where N1(x,T0,T1) stands for a nonlinear function of x, T0 and T1, which usually depends 
explicitly on v0 and its derivatives and integrals. In addition, N1(x,T0,T1) is periodic in T0 
with the period 2π/ω. Separation of variables leads to the solution of equation (19) as 

 ( ) ( ) ( ) 0i
0 0 1 1

1
, , e ,jT

j j
j

v x T T A T x ccωφ
∞

=
= +∑  (21) 

where Aj denotes a complex function to be determined later, ϕj and ωj represents 
respectively the complex modal function and the natural frequency given by 

 2 i 0j j j j jM G Kω φ ω ϕ ϕ− + + =  (22) 

and the boundary conditions, and cc stands for the complex conjugate of all preceding terms 
on the right side of the equation. If ω approaches a linear combination of natural frequencies 
of equation (19), the summation parametric resonance may occur. A detuning parameter σ is 
introduced to quantify the deviation of ω from the combination, and ω is described by 

 
1

,j j
j

cω ω εσ
∞

=
= +∑  (23) 

where cj are real constants that are not all zero and only a finite of them are not zero. To 
investigate the summation parametric resonance, substitution of equations (21) and (23) into 
equation (20) leads to 
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0 0 0

i
1 1 1 1

1
, , , e ,jT
T T T j

j
Mv Gv Kv F x T NST ccω∞

=
+ + = + +∑  (24) 

where Fj(x, T1) (j=1,2,…) are complex functions dependent explicitly on Aj(T1) and their 
temporal derivatives as well as ϕj(x) and their spatial derivatives and integrals. (Chen & Zu, 
2008) proved that the solvability condition is the orthogonality of the coefficient of the 
resonant term in the first order equation and the corresponding modal function of the zero 
order equation, e.g. 

 ( )1, , 0.j jF x T ϕ =  (25) 

It should be noticed that the solvability condition (25) holds providing the boundary 
conditions are appropriate. That is, M and K are symmetric and G is skew symmetric under 
the boundary conditions. In a specific problem, these requirements can be checked for a 
given the operators, boundary conditions and the modal functions. However, the 
examination depends only on the unperturbed linear part of the problem. For example, 
equation (25) holds for an axially moving beam under condition (9) (Chen & Zu, 2008). 
Usually, it is assumed that only the modes involved in the resonance (23) need to be 
considered in the linear solution (21), and the assumption is physically sound. Some case 
studies demonstrated mathematically that the mode uninvolved in the resonance has no 
effect on the steady-state response (Ding & Chen, 2008), (Chen & Wang, 2009), and (Chen et 
al., 2009). (Özhan & Pakdemirli, 2009) proposed multi-scale analysis on forced vibrations of 
general continuous systems with cubic nonlinearities in the primary resonance case. 
The method of multiple scales has been applied in various transverse nonlinear vibration 
problems of axially moving beams. These problems include free (Öz et al, 2001) and (Chen & 
Yang, 2007), forced (Özhan & Pakdemirli, 2009), and parametric(Öz et al, 2001) and (Özhan 
& Pakdemirli, 2009) vibration of axially moving elastic beams, as well as forced (Yang & 
Chen, 2006) and parametric (Chakraborty & Mallik, 1999), (Chen & Yang, 2005) and (Chen & 
Ding, 2008) vibrations of axially moving viscoelastic beams. In addition to these works on 
the base of the Euler-Bernoulli beam theory, the method of multiple scales has also be 
applied to study free vibration of an axially moving beam with rotary inertia and 
temperature variation effects (Ghayesh & Khadem, 2008), parametric vibration of axially 
moving viscoelastic Rayleigh beams (Ghayesh & Balar, 2008), and forced (Tang et al. 2009) 
and parametric (Tang et al., 2010) vibrations of axially moving elastic Timoshenko beams, 
while the multi-scale analysis on axially moving viscoelastic Timoshenko beams has been 
only limited to linear parametric vibration (Chen et al., 2010).  
Addition to the method of multiple scales, the method of asymptotic analysis is also an 
effective approach to treat parametric or nonlinear vibration. Based on the idea of Krylov, 
Bogoliubov, and Mitropolsky, (Wickert, 1992) developed a asymptotic method for general 
gyroscopic continuous systems with weak nonlinearities, and the method was specialized to 
free nonlinear vibration of an axially moving elastic beam with supercritical transport speed. 
(Maccari, 1999) proposed another asymptotic approach for analyzing transverse vibration of 
axially stationary beams, which are disturbed conservative continuous systems, and 
determined external force-response and frequency-response curves in the cases of primary 
resonance and subharmonic resonance for a weakly periodically forced beam with quadratic 
and cubic nonlinearities. The approach was extended to the gyroscopic continuous system 
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with a weak nonlinear and time-dependent disturbance in order to analyze transverse 
vibration of an axially accelerating viscoelastic string constituted by the Kelvin model (Chen 
et al., 2008) and the standard linear solid model (Chen & Chen, 2009). The method of 
asymptotic analysis has been also presented for nonlinear parametric vibration of axially 
accelerating viscoelastic beams constituted by the Kelvin model (Chen et al., 2009) as well as 
linear parametric vibration of axially accelerating viscoelastic beams constituted by the 
Kelvin model (Chen & Wang, 2009) and the standard linear solid model (Wang & Chen, 
2010). 
Nonlinear normal modes whose shapes depend on the amplitude provide a possible direct 
treatment on nonlinear vibration of axially moving beams. (Chakraborty et al., 1999) used a 
temporal harmonic balance and a spatial perturbation technique to determine the nonlinear 
complex normal modes for free and forced vibrations of axially moving elastic beams. The 
approach was adopted to study the response of a parametrically excited axially moving 
beam both without and with an external harmonic force (Chakraborty & Mallik, 1998). The 
results were justified by the wave propagation analysis (Chakraborty & Mallik, 2000a,b). 

3.2 Discretization-perturbation approaches 
Discretization of governing equations is a commonly used approach to obtain approximate 
solutions of vibration problems of continuous systems. For the governing equations (11) of 
coupled vibration of axially moving beams, one assumes an approximate solution in the 
form 

 ( ) ( ) ( )
1

, ,
m

i i
i

u x t p t xφ
=

= ∑  (26) 

 ( ) ( ) ( )
1

, ,
n

i i
i

v x t q t xϕ
=

= ∑  (27) 

where pi(t) and qi(t) are generalized coordinates, and φ i(x) are ϕ i(x) base functions that are 
usually chosen to be the linear vibration mode shapes of axially stationary beams or moving 
beams (Wickert & Mote, 1990), (Chen & Yang, 2006), and (Tang et al. 2008). A weighted-
residual procedure such as the Galerkin procedure can be applied to truncate equation (11) 
into m+n nonlinearly coupled second-order ordinary-differential equations. A general 
description of the Galerkin procedure is as follows. Denote the differences between the left 
and right sides of two equations in equation (11) as Fu(x,u,v,t) and Fv(x,u,v,t), which are 
nonlinear functions of x and t that may explicitly contain v and its spatial and temporal 
partial derivatives as well as its integral over a spatial region or a temporal interval. Then 
approximate solution (31) and (32) satisfies 
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where ζj(x) and ψk(x) are the weight functions.  
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After the discretization, various perturbation techniques such as the method of multiple 
scales can be employed to analyze the resulting nonlinear ordinary-differential equations 
approximately. Such a treatment is regarded as a discretization-perturbation 
In practical problems, m and n in the discretization expressions (26) and (27) are rather 
small, and they are usually 1 or 2. (Riedel & Tan, 2002) applied the method of multiple 
scales to the discretized equations (m=n=2) to determine the forced response of an axially 
moving elastic beam with internal resonance. The method of multiple scales was also 
applied to the discretized problem of coupled vibration of axially moving beams (Feng & 
Hu, 2002, 2003). (Sze et al., 2005) presented a general description of discretization of the 
governing equation of an axially moving elastic beam, and used incremental harmonic 
balance method to a concrete case of m=n=2 for forced response with internal resonance. In 
both studies, the mode shapes of axially stationary beams were chosen as the base functions 
and the weight functions.  
Discretization-perturbation approaches have also been used in analyzing transverse 
nonlinear vibration of axially moving beams. In this case, equation (27) will be substituted 
into equation (13) or (14) and then the Galerkin procedure can be used to discretize equation 
(13) or (14) into n nonlinearly coupled second-order ordinary-differential equations that can 
be solved approximately via various perturbation techniques. The Lindstedt-Poincaré 
method was applied to discretized governing equations to evaluate transverse response of 
axially moving beams (Pellicano & Zirilli, 1997) and to analyze parametric instability of 
axially moving elastic beams subjected to multifrequency excitations (Parker & Lin, 2001). 
The method of normal forms was used to evaluate free vibration of axially moving elastic 
beams with internal resonances (Pellicano & Zirilli, 1997) as well as forced and parametric 
vibration of axially moving elastic beams (Pellicano et al., 2001). In (Pellicano & Zirilli, 1997), 
(Parker & Lin, 2001), and (Pellicano et al., 2001), the mode shapes of axially moving beams 
were chosen as the base functions and the weight functions, and their orthogonality were 
employed. The stationary mode shapes can also serve as the base functions and the weight 
functions to discretize governing equations. Based on the discretization, the Lindstedt-
Poincaré method was applied to determine the forced response of axially moving elastic 
beams (Chen et al., 2007), and the method of multiple scales was applied to evaluate the 
response of an axially moving viscoelastic beams subjected to multifrequency external 
excitations (Yang et al., 2009). In their studies, n=2 (Chen et al., 2007) and n=1 (Yang et al., 
2009), respectively.  

4. Numerical approaches  
4.1 Galerkin procedure 
Numerical calculation is an effective approach to studying nonlinear vibration of axially 
moving beams. Based on the numerical solutions of the governing equations, some 
changing tendencies of vibration characteristics, such as frequencies or amplitudes, with 
related parameters can be predicted, the approximate analytical results can be verified, and 
the nonlinear dynamical behaviours can be revealed.  
Among numerical approaches, the Galerkin procedure can be applied to discretize the 
governing equation of nonlinear vibration of axially moving beams. The Galerkin 
discretization is not only the priority of discretization-perturbations reviewed in Subsection 
3.2, but also feasible approach to numerical solutions. Using the 3 order Galerkin 
discretization of governing equation (in the type of equation (18)) for transverse motion of 
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axially moving viscoelastic beams excited by the changing tension, (Marynowski, 2002) and 
(Marynowski & Kapitaniak, 2002) numerically investigated the effects of different 
viscoelastic models, such as the Kelvin model, the Maxwell model, and the standard linear 
solid model, on the dynamic response and found that different viscoelastic models yield 
very close numerical results for small damping. The Galerkin procedure has been mainly 
use to calculate long time nonlinear dynamical behaviors, which will be addressed in 
Subsection 5.1. 
In the application of the Galerkin discretization, the main problem in the actual 
computations is the complexity of the resulting discretized equations. If the number of terms 
retained in the Galerkin discretization is rather large, the explicit expression of nonlinear 
terms is very difficult to obtain. (Chen & Yang, 2006b) proposed a technique to simplify the 
nonlinear terms in the equations derived from the Galerkin discretization. All nonlinear 
terms are regrouped to combine the repeated terms and cancel the zero terms. Therefore, the 
resulting equations can be easily coded for computers and then be effectively calculated. For 
example, the Galerkin discretization of the governing equation (18) for transverse motion (in 
the dimensionless form) is 
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If both the base and weight functions are chosen as sine functions, the stationary mode 
shapes for the simply supported beams, equation (29) can be cast into a from convenient to 
compute. Evaluating the corresponding inner products, regrouping the nonlinear terms to 
combine the same terms and canceling all null terms in the resulting equation, one obtains 
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where the sum is defined to be zero if its lower limit is larger than its upper limit. Although 
equation (30) seems rather complicated, it is very efficient when used for computer 
implementing, because almost all repeated nonlinear terms are put together, and terms with 
zero coefficients are eliminated. In fact, equation (29) contains 2n3 nonlinear terms, while 
equation (30) contains less than 2n2 nonlinear terms. For large n, the difference is significant. 
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It should be remarked that, based on stationary mode shapes, the even order Galerkin 
discretization can take the linear gyroscopic terms into full account, while the odd order 
discretization will miss some effects of the gyroscopic terms.  

4.2 Finite difference 
The finite difference method is a numerical procedure to solve partial differential equations. 
The method can be used to discretize both spatial coordinates and time or to discretize 
spatial coordinates only. In the former case, the procedure consists of four steps: 1 Discretize 
the continuous spatial domain and temporal interval, on which a partial differential 
equation is defined, into a discrete finite difference grid; 2 Approximate the individual exact 
partial derivatives in the partial differential equation by algebraic finite difference 
approximations; 3 Substitute the finite difference approximations into the partial differential 
equation in order to derive a set of algebraic finite difference equations; 4 Solve the resulting 
algebraic finite difference equations.  
The finite difference method can be applied to calculated nonlinear vibration of axially 
moving beams. For example, the method will be employed to solve numerically equation 
(11) (Chen & Ding, 2010). Introduce the L×T equispaced mesh grid with time step τ and 
space step h: xj=jh (j=0, 1,2,…,L, h=l/L); tn=nτ (n=0,1,2,…,N, τ=T/N), where T is the 
calculation termination time. Denote the function values u(x,t) and v (x,t) at (xj,tn) as unj and 
vnj. Application of centered difference approximations to the spatial, temporal and mixed 
partial derivatives leads to 
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and 
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Substitution of equations (31) and (32) into equation (11) leads to a set of algebraic equations 
with respect to unj and vnj that can be solved as under the boundary conditions (8) and (9) for 
prescribed parameters and initial conditions. Then the resulting grid values unj and vnj are 
used in the finite difference schemes as an approximation to the continuous solutions u(x,t) 
and v(x,t) to equation (11). When the external transverse load is a spatially uniformly 
distributed periodic force, the amplitude of the beam center displacement changes with the 
force frequency, which is shown in Fig. 2. 
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The finite difference method was applied to examine the validity of the two nonlinear 
transverse models (equations (13) and (14)) and to determine the superiority in the sense of 
approximating the coupled governing equation (11) of planar vibration. For forced vibration 
of axially moving viscoelastic beams (Chen & Ding, 2010), the steady-state transverse 
responses of the beam center calculated from the two transverse models are contrasted with 
the results based on the coupled equations of planar vibration. Qualitatively, the three 
models predict the same tendencies with the changing parameters. Quantitatively, there are 
certain differences. In the view of both the center amplitude and the beam shape, the 
nonlinear integro-partial-differential equation yields the results closer to those from the 
governing equation of coupled vibration. The similar result was obtained by the finite 
difference method for response in free vibrations of axially moving elastic beams (Ding & 
Chen, 2009a). 
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Fig. 2. The response amplitude changing with the external excitation frequency 

The finite difference method was used to confirm the analytical results of nonlinear 
transverse vibration of axially moving beams. For free vibration of axially moving elastic 
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beams, (Pellicano & Zirilli, 1997) compared the beam center displacement changing with 
time via the Lindstedt- Poincaré method and the normal form method with the numerical 
solutions via the finite difference method, and found that they are in good agreement. For 
parametric vibration of axially accelerating viscoelastic beams, (Chen & Ding, 2008) 
compared the stable steady-state response of the beam center via the method of multiple 
scales with the numerical solutions via the finite difference method, and demonstrated that 
they have the same qualitative tendencies changing with the related parameters and are 
quantitatively with rather high precision. 

4.3 Differential quadrature 
The differential quadrature method, initiated from the idea of integral quadrature, is an 
efficient discretization technique to seek accurate numerical solutions using a considerably 
small number of grid points. The method can be used to discretize both spatial coordinates 
and time or to discretize spatial coordinates only. In later case, the differential quadrature 
discretization of a partial-differential equation yields a set of differential-algebraic equations 
via the following four steps. 1 Discretize the continuous spatial domain, on which a partial 
differential equation is defined, by grid points; 2 Approximate the individual exact partial 
derivatives in the partial differential equation by a linear weighted sum of all the functional 
values at all grid points; 3 Substitute the differential quadrature approximations into the 
partial differential equation to obtain a set of ordinary-differential-algebraic equations; 4 
Solve the resulting ordinary-differential-algebraic equations. The two extensively decisive 
issues in the applications of the differential quadrature method are to choose grid points 
and to determine the weighting coefficients for the discretization of a derivative of necessary 
order.  
The differential quadrature method can be applied to calculated nonlinear vibration of 
axially moving beams. Equation (11) is treated as an example to show the application of the 
differential quadrature method. Introduce N unequally spaced grid points as (Bert & Malik, 
1996) and (Shu, 2001) 
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The quadrature rules for the derivatives of a function at the grid points yield 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 2

1 1

1 2

1 1

4 5

1 1

, , , , , , , ,

, , , , , , , ,

, , , , , , , ,

N N

x i j xx i jij ij
j j
N N

x i j xx i jij ij
j j

N N

xxxx i j xxxxx i jij ij
j j

u x t A u x t u x t A u x t

v x t A v x t v x t A v x t

v x t A v x t v x t A v x t

= =

= =

= =

= =

= =

= =

∑ ∑

∑ ∑

∑ ∑

 (34) 

 

where the weighting coefficients are the expression 
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and the recurrence relationship 

 
( )

( )

( 1)
( ) ( 1) (1)

( ) ( )

1,

2,3,4,5; , 1,2, , ; ,

1,2,3,4,5; 1,2, , .

r
ijr r

ij ii ij
i j

N
r r

ii ik
k k i

A
A r A A r i j N j i

x x

A A r i N

−
−

= ≠

⎡ ⎤
⎢ ⎥= − = = ≠
⎢ ⎥−
⎣ ⎦

= − = =∑

"

"

 (36) 

Consider the beam with simply supports at both ends (K=0 in equation (9)). Substitution of 
equation (34) into equation (11) and modification of the weighting coefficient matrices to 
implement the boundary conditions (Wang & Bert 1993) lead to the ordinary-differential-
algebraic equations 
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which can be numerically solved via the convenient  integration routines.  
The differential quadrature method was applied to check the validity and the superiority of 
the two nonlinear transverse models. For free vibration of axially moving elastic beams 
(Ding & Chen, 2009a), the transverse responses of the beam center calculated from the two 
transverse models are contrasted with the results based on the coupled equations of planar 
vibration. The computational investigation leads to the following conclusions: 1 The 
differences between the two models are both relatively small for not very large vibration; 2 
The model differences increase with the vibration amplitude and the axial speed; 3 The 
integro-partial-differential equation yields better results. 
The differential quadrature method was used to validate the analytical results of nonlinear 
transverse vibration of axially moving beams. (Chen et al., 2009) developed a differential 
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quadrature scheme to verify the approximate analytical results of stable steady-state 
response in parametric vibration of axially accelerating viscoelastic beams. Figure 3 shows 
the comparison, in which the solid and dot lines represent the results of the asymptotic 
analysis method and the differential quadrature method respectively. The amplitudes from 
both methods are almost coincided, especially near the exact-resonance (σ=0) and in the first 
resonance. The differential quadrature method was also applied to confirm the analytical 
results of the stability regions in linear parametric vibration of axially accelerating beams 
constituted by the Kelvin model (Chen & Wang, 2009) and the standard linear solid model 
(Wang & Chen, 2009) 
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Fig. 3. Comparison of analytical and numerical results 

5. Nonlinear dynamical behaviours   
5.1 Galerkin discretization 
Axially moving beams undergo periodic vibrations in the aforementioned researches. 
Nonlinear system may exhibit chaos, steady-state response sensitive to initial conditions 
thus unpredictable after a certain time and recurrent but either periodic or quasiperiodic 
hence like a random single with the continuous frequency spectrum. Besides, the dynamical 
behaviors of nonlinear system may change qualitatively at the critical value of the 
parametric variation, and the qualitative change is termed as bifurcation. 
Many investigations on bifurcation and chaos are based on the Galerkin discretization of 
various transverse models of axially moving beams. For transverse free vibration of 
accelerating elastic beams in the supercritical regime, based on 1 order Galerkin 
discretization, (Ravindra & Zhu, 1998) applied Melnikov’s criterion to find out the 
parameter condition of occurring chaos and performed numerical simulations to show both 
period-doubling and intermittent routes to chaos. For transverse harmonically forced 
vibration of axially moving elastic beams in the supercritical regime, based on 8 order 
Galerkin discretization, (Pellicano & Vestroni, 2002) observed intricate scenario of chaos, 
including cascade of bifurcations, blue-sky catastrophes and coexisting chaotic and periodic 
orbits. Actually, they also considered 12 order Galerkin discretization and found that a few 
number of degree-of-freedom is sufficient to furnish a good spatial representation and to 
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follow the actual dynamical behaviors. For transverse parametric vibration of axially 
moving viscoelastic beams excited by the time-dependent tension, based on 4 order Galerkin 
discretization, (Marynowski, 2004) and (Marynowski & Kapitaniak, 2007) observed the 
inverse period doubling and inverse Hope bifurcation and occurrences of regular and 
chaotic motions for beams constituted by the Kelvin model and the standard linear solid 
model respectively. For transverse parametric vibration of axially accelerating viscoelastic 
beams, based on 4 order Galerkin discretization, (Chen & Yang, 2006b) constructed 
numerically the bifurcation diagrams in the case that the axial speed perturbation 
amplitude, the mean axial speed, or the viscosity coefficient is respectively varied while 
other parameters are fixed. They also calculated the largest Lyapunov exponent from the 
discretized governing equation. Numerical results show that, with the increasing speed 
perturbation amplitude, the increasing mean speed, and the decreasing viscosity coefficient, 
the equilibrium loses its stability and bifurcates into a periodic motion, and the periodic 
motion becomes chaotic motion via period doubling bifurcation. In addition, the chaotic 
motion and the periodic motion exchange alternately for the sufficiently large speed 
  

  
                (a) From equilibrium to chaos                               (b) Local magnification 

Fig. 4. Bifurcation versus the dimensionless speed fluctuation amplitude 
 

  
             (a) From chaos to equilibrium                               (b) Local magnification 

Fig. 5. Bifurcation versus the dimensionless viscosity coefficient 
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perturbation amplitude and mean speed, and for the sufficiently small viscosity coefficient. 
Figures 4 and 5 show respectively the bifurcation diagrams versus the dimensionless speed 
fluctuation amplitude and the dimensionless viscosity coefficient. 

5.2 Differential quadrature and time series 
The differential quadrature method is an effective numerical technique for initial and 
boundary problems, and it has much higher precision than the few term Galerkin 
discretization. However, it has not been applied to calculate nonlinear behaviors of axially 
moving materials until (Ding & Chen, 2009b). They used the differential quadrature method 
to investigate bifurcation and chaos of an axially accelerating viscoelastic beam constituted 
by the Kelvin model. Based on the numerical solutions, analysis of the time series yielded 
the Lyapunov exponent to identify periodic and chaotic motions. Numerical results show 
that, with the increasing mean axial speed, the equilibrium loses its stability and bifurcates 
into a periodic motion, and the periodic motion becomes chaotic motion. The chaotic motion 
and the periodic motion exchange alternately for the sufficiently large mean axial speed and 
speed perturbation amplitude. Figures 6 and 7 show the Poincaré map and the largest 
Lyapunov exponent of periodic and chaotic motions respectively.  
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Fig. 6. Periodic motion of the beam centre 

-0.001 0.000 0.001
-0.003

0.000

0.003

dv
/d

t

v( 0.5,t)   0 2500 5000
0.0

0.1

0.2

0.3

λ

t  
                 (a) the Poincaré map                               (b) the largest Lyapunov exponent 

Fig. 7. Chaotic motion of the beam centre 
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6. Energetics and conserved quantity 
6.1 Energetics 
It is well known that the total mechanical energy in free vibration of an undamped axially 
stationary elastic beam with pinned or fixed ends is constant. However, many investigations 
found that the total mechanical energy associated with free vibration of an axially moving 
elastic beam is not constant even if the beam travels between two motionless supports. 
(Barakat, 1968) considered the energetics of an axially moving beam and found that energy 
flux through the supports can invalidate the linear theories of axially moving beams at 
sufficiently high transporting speed. (Tabarrok, 1974) showed that the total energy of a 
traveling beam without tension is periodic in time. (Wickert & Mote, 1989) presented the 
temporal variation of the total energy related to the local rate of change and calculated the 
temporal variation of energy associated with modes of moving beams. Considering the case 
that there were nonconservative forces acting on two boundaries, (Lee & Mote 1997) 
presented a generalized treatment of energetics of translating beams. (Renshaw et al., 1998) 
examined the energy of axially moving beams from both Lagrangian and Eulerian views 
and found that Lagrangian and Eulerian energy functionals are not conserved for axially 
moving beams. (Zhu & Ni, 2000) investigated energetics of axially moving strings and 
beams with arbitrarily varying lengths. (Chen & Zu, 2004) proposed energetics of axially 
moving beams with geometric nonlinearity due to small but finite stretching of the beams. 
Hence the variation of the total mechanical energy is a fundamental feature of free 
transverse vibration of axially moving beams. However, all aforementioned investigations 
on energetics and conserved quantities of axially moving beams have only been limited to 
transverse vibration, in which longitudinal motion is assumed to be uncoupled and thus 
neglectable. Actually, the energetics of coupled vibration of axially moving elastic strings 
(Chen, 2006) can be extended to beams.  
Assume that the axially moving beam described at the beginning of Subsection 2.1 is elastic 
(η=0), is without external excitations (fu=0, fv=0), and moves in a constant axially speed (γ=c). 
Consider the total mechanical energy in a specified spatial domain, the span (0, L). The total 
mechanical energy consists of the kinetic energy of all material particles and the potential 
energy resulted from the initial tension, the disturbed tension, and the bending moment 
caused by the beam deflection due to its motion 
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Then the time-rate of energy change is 
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Interchanging the order of differentiation and integration and inserting u,tt and v,tt solved 
from equation (11), after some mathematical manipulations, one can express the time-rate of 
energy change in the boundary values 
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Notice that 
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are respectively the longitudinal and transverse components of the tension in the beam, 
EIv,xx is the bending moment and EIv,xxx are the shear, while c+u,t+cu,x and v,t+cv,x are 
respectively the absolute velocity in the longitudinal and transverse directions and v,tx+cv,xx 
is the absolute angle velocity. Hence the first term in equation (40) stands for the difference 
of power of the beam tension, the beam bending moment, and the beam shear acting at two 
ends. Meanwhile, 

 ( ) ( )2 2 2 2
0

1 1 1ˆ , , , , ,
2 2 2t x t x xxA c u cu v cv P EA EIvρ ε ε⎛ ⎞⎡ ⎤= + + + + + + +⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

E  (42) 

is the total mechanical energy per unit length. Hence the second term in equation (40) stands 
for the energy change due to the axial motion of the beam. Physically, equation (40) means 
the change rate of the energy consisting of two parts: the power of the beam tension, 
moment and shear applying at two ends and the energy variation resulted from the axial 
motion. 
For a beam with the simple support (K=0 in equation (9)) or the fixed ends (K→∞ in 
equation (9)), equation (40) leads to, respectively,  
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For an axially stationary beam, c=0. Equation (40) becomes 
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If the axially stationary beam is with pinned or fixed ends, equation (45) leads to the 
conservation of the mechanical energy, which is a well known fact. 
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6.2 Conserved quantity 
Although the total mechanical energy of axially moving beams is generally not constant, 
there does exist an alternative conserved quantity. (Renshaw et al. 1998) presented both 
Eulerian and Lagrangian conserved functionals for axially moving beams. (Chen & Zu, 
2004) generalized their results to nonlinear free vibration of axially moving beams. They 
adopted the partial-differential equation (a special case of equation (13)) for axially moving 
beams undergoing nonlinear transverse vibration. (Chen & Zhao, 2005) also present a 
conserved functional for a beam modeled by an integro-partial-differential equation derived 
from the quasi-static assumption (a special case of equation (14)). They applied the 
conserved functional to verify that the straight equilibrium configuration is stable for beams 
at low axial speed.  
Define the functional  
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Evaluation of the temporal differentiation by parts yield 
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Substitution of equation (11) with η=0, fu=0, fv=0, and γ=c into equation (47) leads to 
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At a pinned or fixed end, u,t=0, v,t=0, v,xx=0 or v,x=0 (hence v,xt=0). Therefore, equation (48) 
results in dI/dt=0. There exists functional (46) that is conserved under pinned or fixed 
boundary conditions for beams moving with a constant axial speed c. 
The conserved quantity in a mechanical system is not only mathematically the first integral 
leading to a reduction in the order of the system, but also reflects the physical essence of the 
system closely related to the symmetries of the system. Therefore, it is theoretically 
significant to investigate the conserved quantities. The conserved quantity in a mechanical 
system can be used to check and develop numerical simulation algorithms. It is also useful 
for stability analysis and controller design. 
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7. Concluding remarks 
Because an axially moving beam is an effective mechanical model that can be used in 
diverse engineering fields, many research activities in the area have been witnessed. The 
chapter summarizes some resent works on modeling, analysis and simulations of nonlinear 
vibrations of axially moving beams. It will remain to be an active research field. There are 
many promising topics for future researches, including but surely not limited to the follows: 
(1) modeling slender structures via sophisticated beam theories such as three-dimensional 
beams or composite beams, (2) incorporating functionally graded, theromviscoelastic or 
other advanced materials, (3) accounting for aerodynamic forces and heating and other 
actions coupled with the vibration, (4) considering complex constraints and coupling such 
as belts in drive systems, (5) developing analytical approaches especially for coupled 
vibrations and strongly nonlinear vibrations, (6) investigating convergence, consistency, and 
stability of numerical procedures, (7) exploring energetics of nonlinear and time-dependent 
beams under general constraint conditions, (8) understanding complicated dynamical 
behaviors such as global bifurcations, chaos, patterns, and spatio-temporal chaos.  
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1. Introduction     
Riser systems are inextricable parts of integrated floating production and offloading systems 
as they are used to convey oil from the seafloor to the offshore unit. Risers are installed 
vertically or they are laid obtaining a catenary configuration. From the theoretical point of 
view they can be formulated as slender structures obeying to the principles of the Euler-
Bernoulli beams. Riser-type catenary slender structures and especially Steel Catenary Risers 
(SCRs) attract the attention of industry for many years as they are very promising for deep 
water applications. According to the Committee V.5 of the International Ship and Offshore 
Structures Congress (ISSC, 2003), “flexible risers have been qualified to 1500m and are 
expected to be installed in depths up to 3000m in the next few years”. In such huge depths 
where the suspended length of the catenary will unavoidably count several kilometers, the 
equivalent elastic stiffness of the structure will be quite low enabling large displacements. 
The later remark implies that even small excitations could cause significant excursions in 
both in-plane and out-of-plane directions. Therefore a 2D formulation, although adequate in 
predicting the associated dynamics in the reference plane of the static equilibrium, it would 
be certainly a short approximation.  
Furthermore, in deep water installations, for practical reasons mainly, the riser should be 
configured nearly as a vertical structure in order to avoid suspending more material. The 
nearly vertical configuration which ends in a sharp increase of the curvature close to the 
bottom, results in extreme bending moments at the touch down region. The static bending 
moment which is applied in the plane of reference of the catenary is further amplified due to 
the imposed excitation set by the motions of the floating structure. It has been generally 
acknowledged that the heave motion is the worst loading condition as it causes several 
effects, which depending on the properties of the excitation, can be applied individually or 
in combination between each other. Indicative examples are the seafloor interaction, 
buckling-like effects, “compression loading” and heave induced out-of-plane motions.  
For the formulation of the seafloor interaction, various approaches have been proposed and 
it appears that the associated effects continue to attract the attention of the research 
community (Leira et al., 2004; Aubeny et al., 2006; Pesce et al., 2006; Clukey et al., 2008). 
“Compression loading” has been studied mainly in 2D (Passano & Larsen, 2006 & 2007; 
Chatjigeorgiou et al., 2007; Chatjigeorgiou, 2008), while buckling-like effects and possible 
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destabilizations are mainly considered for completely vertical structures (Kuiper & 
Mertikine, 2005; Gadagi & Benaroya, 2006; Chandrasekaran et al., 2006; Kuiper et al., 2008). 
The content of the present work falls in the last category of the effects that were mentioned 
previously. The main concern of the study is to identify the details of the out-of-plane 
response which is induced due to motions imposed in the catenary’s plane of reference and 
in particular due to heave excitation. Relevant effects called as “Heave Induced Motions” 
have been investigated experimentally in the past by Joint Industry Projects (JIP). According 
to HILM (Heave Induced Lateral Motions of Steel Catenary Risers) JIP led by Institut 
français du pétrole (Ifp), the phenomenon was first recorded during the HCR (Highly 
Compliant Riser Large Scale Model Tests) JIP led by PMB Engineering, in which a steel 
catenary riser was excited by heave motion in a stillwater lake. The pipe was subjected to 
out-of-plane cyclic motions. The same behaviour was observed during the HILM JIP 
measurements (LeCunff et al., 2005).    
Apparently, the associated phenomena can be captured numerically only by treating the 
governing 3D dynamical system. To this end, the associated system is properly elaborated 
and solved numerically using an efficient finite differences numerical scheme. 

2. Definitions 
A fully immersed catenary slender structure is considered. The catenary is modeled as an 
Euler-Bernoulli slender beam, having the following geometrical and physical properties: 
suspended length L, outer diameter do, inner diameter di, submerged weight wo, mass m, 
hydrodynamic mass ma, cross sectional area A and moment of inertia I. The quantities do, di, 
A and I, correspond to the unstretched condition, while wo, m and ma are defined per unit 
unstretched length. The Young modulus of elasticity is denoted by E and accordingly EA 
and EI define the elastic and bending stiffness respectively. Finally, it is assumed that the 
catenary conforms to a linear stress-strain relation.  
Next the generalized motion and loading vectors (Fig. 1) are defined. These are  

 [ ]TwvutsV θφ=);(  (1) 

 [ ]Tnbbn MMSSTtsF =);(  (2) 

where u, v, w are the tangential (axial), normal and bi-normal velocities, respectively, φ  is 
the Eulerian angle which is formed between the tangent of the line and the horizontal in the 
reference plane of the catenary, θ is the Eulerian angle in the out-of-plane direction, T is the 
tension, Sn and Sb are the in-plane and the out-of-plane shear forces and finally Mb and Mn 
are the bending moments around the corresponding Lagrangian axes b  and n , namely the 
generalized loading that causes bending in the in-plane and the out-of-plane direction, 
respectively. The moments Mb and Mn are associated with the corresponding curvatures Ωb 
and Ωn according to Mj=EIΩj, for j=n,b.  
 In the general case where steady current is presented, the relative velocities should be 
considered. These are written as ttr Uuv −= , nnr Uvv −=  and bbr Uwv −= , where Ut, Un 
and Ub are the components of the steady current parallel to t , n  and b , respectively. The 
elements of the vectors defined through Eqs. (1) and (2) are all functions of time t and the 
unstretched Lagrangian coordinate s. 
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3. Dynamic system 
The 3D dynamic equilibrium of the submerged catenary is governed by ten partial 
differential equations. These equations are provided in the following without further details 
on the derivation procedure. For more details the reader is referenced to the works of 
Howell (1992), Burgess (1993), Triantafyllou (1994) and Tjavaras et al. (1998).   
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In Eqs. (3)-(5) Rdt, Rdn  and Rdb denote the nonlinear drag forces which are expressed using 
the Morison’s formula. Thus,  

 ( ) 2/11
2
1 evvCdR trtrdtodt +−= πρ  (13) 

 ( ) 2/12/122 1
2
1 evvvCdR brnrnrdnodn ++−= ρ  (14) 
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 ( ) 2/12/122 1
2
1 evvvCdR brnrbrdbodb ++−= ρ  (15) 

where Cdt, Cdn and Cdb are the drag coefficients in tangential, normal and bi-normal 
directions respectively. Normally, for a cylindrical structure, the in-plane and the out-of-
plane drag coefficients are equal while the tangential coefficient is very small and the 
associated term can be ignored without loss of accuracy. Finally, e denotes the axial strain 
deformation, which for a linear stress-strain relation is written as e=T/EA.  

4. Numerical solution of the governing system using finite differences 
The numerical method employed herein, is the finite differences box approximation 
(Hoffman, 1993). Unlike the very popular finite element methods, the existing works which 
are related to the application of numerical approximations that rely on finite differences, 
concern mainly the dynamics of cables and mooring lines which have a negligible bending 
stiffness (Burgess, 1993; Tjavaras et al., 1998; Ablow & Schechter, 1983; Howell, 1991; 
Chatjigeorgiou & Mavrakos, 1999 & 2000; Gobat & Grosenbaugh, 2001 & 2006; Gobat et al., 
2002). The employment of the bending stiffness in mathematical formulations of cable 
dynamics is done for special applications such as low tension cables, towing cables, highly 
extensible cables and mooring lines in which the cycling loading leads to slacking 
conditions, i.e. cancellation of the total tension.  
With regard to the studies on pipes, for which the omission of the bending stiffness will 
unavoidably lead to loss of important information, the finite differences approximation has 
been used mainly for the solution of the static equilibrium problem (Zare & Datta, 1988; Jain 
1994) or as a numerical scheme for the integration in the time domain, alternative to 
Houbolt, Wilson-θ and Newmark-β methods (Patel & Seyed, 1995). As far as the dynamic 
equilibrium problem is concerned, box approximation has been employed recently by 
Chatjigeorgiou (2008) for the development of a solution tool that treats the two dimensional 
nonlinear dynamics of marine catenary risers.   
For the governing system at hand (Eqs. (3)-(12)), the recommended procedure for employing 
a finite differences approximation requires that the set of equations should be first cast in a 
matrix-vector form. Thus, the concerned equations are written as 

 0)( ,, =+
∂
∂

+
∂
∂

tsst
YFYKYM  (16) 

where [ ]TY bnnb SSTwvu ΩΩ= θφ . The mass and stiffness matrices, M 
and K, and the forcing vector F are defined in Appendix A.  
Next, Eq. (16) is discretized in both time and space using the finite differences box 
approximation. This is the approach taken by several authors mentioned in the references 
section of the present work. With this scheme, the discrete equations are written using what 
look like traditional backward differences, but because the discetization is applied on the 
half-grid points the method is second-order accurate. The result is a four point average, 
centered around the half-grid point. Thus, Eq. (16) becomes 
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According to the matrix-vector Eq. (17) the governing partial differential equations are 
defined in the center of [i,i+1] and [k-1,k], namely at [i+1/2, k-1/2]. The subscripts k define 
the spatial grid points (the nodes) and the superscripts i define the temporal grid points (the 
time steps). For n nodal points (k=1 corresponds to the touch down point at s=0 and k=n 
corresponds to the top terminal point where the excitation is applied) Eq. (17) defines a 
system of 10·(n-1) equations to be solved for the 10·n dependent variables at time step i+1. 
The ten equations needed to complete the problem are provided by boundary conditions. 
The algebraic equivalents of the governing Eqs. (3)-(12) are derived using the grid 
transformation proposed by Eq. (17). The associated algebraic equations are given in 
Appendix B of the present paper. The boundary conditions which are needed to complete 
the final 10·n algebraic system correspond to zero bending moments at both ends of the 
catenary, zero motions at the bottom fixed point and specified time depended excitations at 
the top in three directions. The final system is solved efficiently by the relaxation method. 

5. Discussion on the contribution of the nonlinearities 
The nonlinearities involved in the problem are either geometric or hydrodynamic 
nonlinearities. Here the current is ignored and accordingly, the hydrodynamic action is 
represented by the nonlinear drag forces induced due to the motions of the structure. It is 
noted that the presence of current could stimulate possible vortex-induced-vibration 
phenomena, the study of which exceeds the purposes of the present contribution. In 
addition the structure is slender and therefore the diffraction phenomena are negligible. 
This makes the drag forces the most determinative factor of hydrodynamic nature. Other 
hydrodynamic effects involved in the problem are the added inertia forces which are 
expressed through the added mass coefficients in the normal and the bi-normal directions.  
Apart from the drag forces the dynamic equilibrium of the catenary involves also geometric 
nonlinearities. Apparently, the most important are the internal loading-curvature terms. The 
term “internal loading” refers to the tension and the shear forces. The question which easily 
arises is how nonlinear contributions influence the motions of the structure, namely the 
axial, the normal and the bi-normal displacements. It is evident that any excitation will 
induce displacements in the same direction but the question herein concerns the details of 
the motions which are induced in the other directions. The later remark is intimately 
connected with the so called “compression loading”, i.e. the amplification of the bending 
moments at the touch down region due to the dynamic components. The importance of the 
subject regarding the in-plane bending moment has been extensively discussed by Passano 
and Larsen (2006) and Chatjigeorgiou et al. (2007). Here the discussion is extended to the 
out-of-plane bending moments as well.   
In order to distinguish between the linear and the nonlinear effects it is indispensable to go 
through the equivalent linearized dynamic problem. It is assumed that the generalized 
loading terms and the Eulerian angles consist of a static and a dynamic component. These 
will be denoted in the sequel by the indexes 0 and 1 respectively. In addition small motions 
are considered. Thus the velocities are given by u=∂p/∂t, v=∂q/∂t and w=∂r/∂t, where p, q 
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and r are the motions in the axial, normal and bi-normal directions. Thus, the vector of the 
unknowns of the linear problem [ ]Tbnnb SSTrqptsY ΩΩ= θφ);(  becomes  

 );()();( 10 tsYsYtsY +=  (18) 

where  

 [ ]T00000000 000)( bnnb SSTsY ΩΩ= θφ  (19) 

and  

 [ ]T11111111 );( bnnb SSTrqptsY ΩΩ= θφ  (20) 

The linearization procedure is outlined succinctly in the following. First, Eq. (18) is 
introduced into the nonlinear system of Eqs. (3)-(12). After short mathematical 
manipulations it can be seen that the resulting products will include the terms that define 
the static equilibrium problem as well as nonlinear components. Static equilibrium terms 
cancel each other while in the context of the linearized problem, the nonlinear terms are 
ignored. The compatibility relations given by Eqs. (6)-(8), are integrated with respect to time 
t. Finally, it is noted that the static terms Ωn0, θ0 and Sb0 are zero. This is due to the two-
dimensional static configuration of the catenary.  
By employing the above procedure, the system of Eqs. (3)-(12) is reduced to the equivalent 
linearized system.    
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In Eqs. (22) and (23) cn=4/(3π)ρCdndo and cb=4/(3π)ρCdbdo denote the linearized damping 
coefficients which are determined through the linearization process of the nonlinear drag 
forces Rdn and Rdb. Also, the drag force in tangential direction was considered negligible, 
whereas the elastic strain e was set equal to zero.  
Eqs. (21)-(30) consists of two major groups, namely one set that governs the coupled axial 
and normal motions (Eqs. (21), (22), (24), (25), (28) and (30)) and one set that governs the bi-
normal or out-of-plane motions (Eqs. (23), (26), (27) and (29)). Provided that the solution of 
the static equilibrium problem is known, the two systems can be treated separately, which 
implies that, at least in the context of the linear problem, the in-plane motions do not 
influence the out-of-plane motions and vise versa. Thus, the axial and normal motions 
induced out-of plane vibrations is only due to the nonlinear terms and especially due to the 
geometric nonlinearities. This can be traced back to the fact that the out-of-plane static 
components Ωn0, Sb0 and θ0, were assumed equal to zero. In fact, this is the actual case when 
the structure is perfect with no initial deformations, even marginal, and the excitations 
coincide absolutely with the unit vectors t  and n  for the in-plane motions and b  for the 
out of plane motions.  
For the linear problem, which by default assumes that the motions are relatively small, the 
in-plane and out-of-plane motions and their consequences, as regards the moments, the 
shear forces and the tension, can be considered uncoupled without loss of accuracy. 
Nevertheless, this is not a valid approach for the nonlinear problem. For a perfect structure 
however and assuming only in-plane excitations it will be easy to confirm, through the 
solution of the dynamic problem, that no out-of-plane motions are induced. This is a 
shortcoming of the theoretical methods which is associated with the disability to represent 
the marginal structural imperfections of the static configuration. However it is no difficult to 
invent numerical tricks to override this practical problem. In the present contribution for 
example, the numerical results which refer to the heave excitation induced out-of-plane 
motions, were obtained by exciting the structure at the top with a combined motion that 
consists of a vertical and a bi-normal component. The later is applied for a limited amount 
of time, which is enough to produce non-zero out-of-plane angles, bending moments and 
shear forces. Thus, at the cut-off time step the structure has obtained a 3D shape that 
explicitly diverges from the perfect in-plane configuration and is accordingly used as the 
initial condition for the subsequent time steps of the numerical simulation. 

6. Numerical results and discussion 
The numerical results which are presented in the following refer to the SCR that was used as 
a model by Passano and Larsen (2006). The same model was employed also by 
Chatjigeorgiou (2008). The physical and geometrical properties of the structure are: outer 
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diameter 0.429m, wall thickness 0.0022m, Young modulus of elasticity 207GPa, mass per 
unit unstretched length 262.9kg/m, added mass per unit unstretched length 148.16kg/m, 
submerged weight per unit unstretched length 915.6N/m, suspended length 2024m, elastic 
stiffness 0.5823·1010N and  bending stiffness 0.1209·109Nm2. The drag coefficients in normal 
and bi-normal directions were assumed equal to unity while the tangential drag coefficient 
was set equal to zero. Finally, with regard to the installation characteristics, the catenary was 
assumed suspended in water depth 1800m by applying a pretension at the top equal to 
1860kN.  
This work focuses mainly on the out-of-plane dynamics of the catenary, induced due to both 
in-plane and out-of-plane motions. More interesting from the academic point of view is the 
former type of excitation as in this case the out-of-plane motions are driven by nonlinearities.  

6.1 Bi-normal (sway) excitation 
Normally, nonlinear phenomena are stimulated at high frequencies and large amplitudes or 
by combining both properties, at high excitation velocities. Therefore in order to expose and 
study the associated impacts, the structure should be subjected to relatively severe loading. 
The details of the sway excitation are examined having the structure excited with a 
harmonic motion at the top with amplitude ya=1.0m and circular frequency ω=2.0rad/s.  
The solution in the time domain and especially the one that accounts for the nonlinear terms 
calculates the time histories of all time varying components at any point along the structure, 
providing huge data records, which admittedly, are hard to be handled. In addition, in a 
nonlinear formulation the records of the output signals will contain the contribution of sub- 
and super-harmonics which are difficult to be identified by inspecting only the time 
histories. Therefore, in order to present the results in a friendly and understandable format, 
all records were processed using Fast Fourier Transformation (FFT) and adopted to 3D 
spectrums. The spectrums reveal the prevailing frequencies at any point along the catenary. 
For the test case mentioned before, the 3D spectrums for the dynamic tension T1, the normal 
velocity v, the in-plane dynamic bending moment Mb1, and the out-of-plane dynamic 
bending moment Mn1 are depicted respectively in Figs. 2-5. It is noted that the out-of-plane 
dynamic bending moment also represents the total out-of-plane bending moment as the 
corresponding static counterpart is zero.     
Fig. 5 shows that the out-of-plane bending moment responds at the excitation frequency. 
This occurs for all points along the catenary. The maximum value occurs just before the top 
terminal point where the excitation is applied. In addition, the variation of the out-of-plane 
bending moment as a function of s exhibits a dentate configuration with a notable increase 
at the touch down area. It is also important to note that no other harmonics are stimulated 
and the response is restricted to the frequency of excitation only. 
Figs. 2-4 demonstrate that the in-plane response due to the sway excitation is much more 
complicated as various harmonics are detected. The most significant contribution comes 
from the double of the excitation frequency (4.0rad/s) while it is visually evident that there 
are peaks at 1/2ω, 3/2ω, 2ω, 5/2ω and so on. The non-zero values of the spectral densities 
for ω→0 or T→∞, which exhibit a different pattern for the various dynamic components, 
imply that the sway excitation causes a quasi-static application of the corresponding 
component. In addition, the non-zero values for T→∞, manifest that the response is in 
general non periodic and it is composed by a fundamental frequency that tends to infinity 
and practically a boundless number of harmonics. 
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6.2 In-plane heave excitation induced out-of-plane response 
Here a single excitation case is examined that refers to excitation amplitude in heave 
za=1.0m with circular frequency ω=1.5rad/s. Again, a relatively high excitation velocity was 
assumed, in order to investigate the effect of nonlinearities. In the specific static 
configuration the heave motion acts nearly as an axial loading which, depending on the 
conditions, may result in “compression loading”.   
The details of the in-plane and the out-of-plane response due to the applied heave excitation 
are examined with the aid of Figs. 6-19. Figs. 6-8 are given as a part of the discussion, started 
in section 5, on the dependence of the out-of-plane motions, shear forces and bending 
moments by the initial static configuration. Figs. 6-7 demonstrate a dependence of the 
concerned variables on the amplitude of the sway excitation that is applied for practical 
reasons and for a short time, just to provide an initial out-of-plane deformation to the 
structure. Apparently, the records of the response, which in the specific case correspond to 
the location where the maximum static bending moment Mb0 occurs, are different for 
different amplitudes. Nevertheless, the output signals converge for large amplitudes. The 
attainment of convergence is better shown in shear force Sb1 (Fig. 8), as in this case the 
associated time history contains abnormal signals which however, do not dilute periodicity. 
Nevertheless, it should be noted that the impotence to formulate accurately the marginal 
static deformations in the out-of-plane direction, which it turn leads to the necessity to apply 
artificially non-zero values of Mn0(s) and θ0(s), constitutes in this connection, a numerical 
uncertainty.  
Next, we focus for a while in Figs. 6-8. Fig. 8 is a little bit confusing whereas a careful 
inspection in Fig. 7 indicates the existence of a base harmonic and an additional harmonic. 
The two harmonics are more evident in the time history of the out-of-plane velocity w (Fig. 
6) and it can be shown that they correspond to 0.75rad/s and 2.25rad/s. In other words 
none of the harmonics coincides with the excitation frequency. In particular, the concerned 
harmonics correspond to 1/2ω and 3/2ω where ω is the frequency of the excitation. 
Apparently the occurrence of these harmonics makes the motion of the structure quite 
complicated. The latter remark is graphically shown in Figs. 9-11 which demonstrate the 
path that is followed (in particular by node no 3 in a discretization grid of 100 nodes at 
s=41m from touch down point) as seen from behind (v=f(w)), from above (u=f(w)) and from 
the side (v=f(u)), respectively. It is noted that in Figs. 9-11 v and u respond following the 
excitation frequency ω while w responds having contributions from both 1/2ω and 3/2ω. 
Fig. 9 shows that the general impression that the orbit of the structure follows a reclined 
“eight” configuration is not absolutely true. In fact, the motion is more complicated, mainly 
due to the contribution of 3/2ω. The reclined “eight” path or using a more symbolic term 
the “butterfly” motion, is more appropriate to be used in order to describe the motion of the 
structure from above, i.e. the function u=f(w). Finally, the fundamental frequency of the 
response for v and u which are both in-plane components is equal to the excitation 
frequency. This is shown with a more descriptive fashion in Fig. 11 where the function 
v=f(u) is represented by two coinciding closed loops.  
Figs. 9-11 have been plotted using the numerical predictions of two periods of the steady 
state response. Another way to verify that the in-plane motions conform to the frequency of 
excitation is to observe that the two loops of Fig. 11 practically coincide. However, this is not 
the case when the out-of-plane motion is considered, which it is driven by a subharmonic 
and a superharmonic of the excitation frequency. In this case, each of the loops in Figs. 9 and 
10 (right or left) is covered during one period of the excitation. Nevertheless, the 
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fundamental frequency for the response of w, and in general for all out-of-plane 
components, is the half of the excitation frequency and accordingly the steady state motion 
at any point along the structure is completed after two excitation periods.   
The contribution of the various harmonics, which are stimulated due to the heave excitation, 
to both the in-plane and the out-of-plane dynamic components, is better shown in the 3D 
spectral densities depicted in Figs. 12-17. Figs. 12-14 show in-plane components, namely the 
dynamic tension T1 (Fig. 12), the normal velocity v (Fig. 13) and the in-plane dynamic 
bending moment Mb1 (Fig. 14). In the respective plots it is immediately apparent that the in-
plane components are primarily governed by the excitation frequency (ω=1.5rad/s in the 
present case study), while it is evident that the in-plane response is affected by additional 
harmonics that coincide with integer multipliers of the excitation frequency ω, i.e., 2ω, 3ω 
etc. The 2ω superharmonic is easily detectable in all three figures, whereas 3ω is seen 
(admittedly with relative difficulty), only in the dynamic tension spectral density (Fig. 12). It 
should be stated however that it exists, together with the higher integer multipliers, in all in-
plane dynamic components.   
Figs. 15-17 provide the 3D spectral densities of out-of-plane dynamic components, namely 
the bi-normal velocity w (Fig. 15), the out-of-plane dynamic bending moment Mn1 (Fig. 16) 
and the out-of-plane dynamic shear force Sb1 (Fig. 17). For enriching the discussion that 
preceded with regard the dominant harmonics of the out-of-plane response due to the heave 
excitation, it is again underlined that the motion herein is governed by frequencies that 
correspond to 1/2ω, 3/2ω, 5/2ω etc. The occurrence of all three of them can be detected only 
in Fig. 15 (again, the latter is seen with relative difficulty), while for Mn1 and Sb1 the response 
appears to be governed by 1/2ω. Moreover, we could positively claim that there is a slight 
contribution from 3/2ω.  
The question which easily arises is what exactly these findings mean. To provide an answer 
we could generalize the visual observations on the 3D spectral densities of the out-of-plane 
components and speculate that the contributing harmonics correspond to (n/2)·ω for 
n=1,2,…. In addition, in order to be consistent with the above discussion we could claim that 
the even terms of the sequence are negligible. As far as the in-plane response is concerned, 
the logical sequence is to assume that the constituent harmonics could be approximated by 
the same simple formula, but in this case, the components which could be omitted are the 
odd terms of the sequence.  
Correlating the above findings with the Mathieu equation, should not be considered as a 
significant discovery as many authors did the same in the past. Nevertheless most of the 
works in this subject discuss vertical slender structures (risers or tethers) (Gadagi & 
Benaroya, 2006; Chandrasekaran et al., 2006; Kuiper et al., 2008; Park & Jung, 2002) for 
marine applications where the heaving motions produce buckling and the associated 
dynamic behaviour is directly connected to Mathieu equation. To extend the discussion in 
the context of catenary structures, effort has been made to associate the numerical 
predictions depicted graphically in 3D spectral densities to the solution(s) of Mathieu 
equation. The issue for which we are mainly interested is that the global response consists of 
harmonics (n/2)·ω for n=1,2,…, or equivalently n·(2ω) for n=1,2,…, provided that the 
excitation frequency is 2ω. The Mathieu equation which is satisfied by periodic solutions is 
given for reference in the following: 
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where τ=ωt and q is referred as the Mathieu parameter. The solutions of Mathieu Eq. (31) 
associated with the characteristic values a, are given by (Abramowitz & Stegun, 1970; 
McLachlan, 1947; Meixner & Schäfke, 1954) 
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where cem and sem are the even and odd periodic Mathieu functions and A and B are the 
associated constants depending on the Mathieu parameter q. It is immediately apparent that 
a stable solution of Mathieu Eq. (31) will include contributions originating from an infinite 
number of harmonics. In any case the first harmonic will be equal to ω/2 provided that the 
excitation frequency is ω. It is reminded that according to the numerical results that describe 
the in-plane and the out-of-plane dynamic behaviour of the catenary structure due to heave 
excitation, the response was assumed to include the same type and number of harmonics 
regardless whether they are significant or not. The answer to the question why the in-plane 
motions are governed by the harmonics ω, 2ω, 3ω,…, and the out-of-plane motions by the 
harmonics ω/2, 3ω/2, 5ω/2,…is apparently a difficult task that requires deep and 
comprehensive investigation and it could be the subject for a future work. 

7. Conclusion 
The 3D dynamic behaviour of catenary slender structures for marine applications was 
considered. The investigation was based on the results obtained by solving the complete 
nonlinear governing system that consists of ten partial differential equations. The solution 
method employed was the finite differences box approximation. Particular attention was 
given to the out-of-plane variables which are induced due to heave excitation.  
The main finding in this context was the contribution of several harmonics that influence the 
global response of the structure.  In fact it was shown that under in-plane heave excitation at 
the top terminal point the in-plane variables, motions and generalized loading components, 
are governed by the harmonics ω, 2ω, 3ω,…, whereas the out-of-plane variables by the 
harmonics ω/2, 3ω/2, 5ω/2,… 
For the heave induced out-of-plane motions, the fundamental frequency is exactly the half 
of the excitation frequency. This leads to cyclic motions which are completed during a time 
interval that is equal to the double of the excitation period. It was shown graphically that the 
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orbit of the structure resembles a “butterfly” configuration. This interesting behaviour was 
correlated to the even and odd periodic solutions of the canonical form of Mathieu equation.  
Finally, the contribution of the nonlinearities was studied by deriving the equivalent 
linearized system and it was commented that the out-of-plane motions induced due to in-
plane excitation are driven by the geometric nonlinear terms.   
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Appendix A. Mass matrix M, stiffness matrix K and forcing vector F of Eq. 
(16) 
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Appendix B. Algebraic expansions of the nonlinear system of dynamic 
equilibrium Eqs. (3)-(12) using the finite differences box scheme 
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Fig. 1. Stretched catenary segment and balance of internal loading. 
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Fig. 2. Spectral densities of the dynamic tension T1 along the catenary under sway excitation 
at the top, with amplitude ya=1.0m and circular frequency ω=2.0rad/s.  
 

 
 

Fig. 3. Spectral densities of the normal velocity v along the catenary under sway excitation at 
the top, with amplitude ya=1.0m and circular frequency ω=2.0rad/s.  
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Fig. 4. Spectral densities of the in-plane dynamic bending moment Mb1 along the catenary 
under sway excitation at the top, with amplitude ya=1.0m and circular frequency 
ω=2.0rad/s.  

 
Fig. 5. Spectral densities of the out-of-plane dynamic bending moment Mn1 along the 
catenary under sway excitation at the top, with amplitude ya=1.0m and circular frequency 
ω=2.0rad/s.  
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Fig. 6. Effect of the initial, short-time, sway displacement on the out-of-plane velocity w due 
to heave excitation with amplitude za=1.0m and circular frequency ω=1.5rad/s. The time 
history depicts the variation of w at the location of the max static in-plane bending moment 
Mb0, namely at s≈41m from touch down (at node k=3 in a discretization grid of 100 nodes)  
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Fig. 7. Effect of the initial, short-time, sway displacement on the out-of-plane dynamic 
bending moment Mn1 due to heave excitation with amplitude za=1.0m and circular 
frequency ω=1.5rad/s. The time history depicts the variation of Mn1 at the location of the 
max static in-plane bending moment Mb0, namely at s≈41m from touch down (at node k=3 in 
a discretization grid of 100 nodes)  
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Fig. 8. Effect of the initial, short-time, sway displacement on the out-of-plane dynamic shear 
force Sb1 due to heave excitation with amplitude za=1.0m and circular frequency ω=1.5rad/s. 
The time history depicts the variation of Sb1 at the location of the max static in-plane bending 
moment Mb0, namely at s≈41m from touch down (at node k=3 in a discretization grid of 100 
nodes)  

 
Fig. 9. Orbit of node no 3 (in a discretization grid of 100 nodes at s=41m from touch down) 
as seen from behind (v=f(w)), under heave excitation at the top with amplitude za=1.0m and 
circular frequency ω=1.5rad/s.  
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Fig. 10. Orbit of node no 3 (in a discretization grid of 100 nodes at s=41m from touch down) 
as seen from above (u=f(w)), under heave excitation at the top with amplitude za=1.0m and 
circular frequency ω=1.5rad/s.  

 
Fig. 11. Orbit of node no 3 (in a discretization grid of 100 nodes at s=41m from touch down) 
as seen from the side (v=f(u)), under heave excitation at the top with amplitude za=1.0m and 
circular frequency ω=1.5rad/s.  
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Fig. 12. Spectral densities of the dynamic tension T1 along the catenary under heave 
excitation at the top, with amplitude za=1.0m and circular frequency ω=1.5rad/s.  
 

 
Fig. 13. Spectral densities of the normal velocity v along the catenary under heave excitation 
at the top, with amplitude za=1.0m and circular frequency ω=1.5rad/s.  
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Fig. 14. Spectral densities of the in-plane dynamic bending moment Mb1 along the catenary 
under heave excitation at the top, with amplitude za=1.0m and circular frequency 
ω=1.5rad/s.  
 

 
Fig. 15. Spectral densities of the bi-normal velocity w along the catenary under heave 
excitation at the top, with amplitude za=1.0m and circular frequency ω=1.5rad/s.  
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Fig. 16. Spectral densities of the out-of-plane dynamic bending moment Mn1 along the 
catenary under heave excitation at the top, with amplitude za=1.0m and circular frequency 
ω=1.5rad/s.  
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Fig. 17. Spectral densities of the out-of-plane dynamic shear force Sb1 along the catenary 
under heave excitation at the top, with amplitude za=1.0m and circular frequency 
ω=1.5rad/s. 
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Nonlinear Dynamics Traction Battery Modeling 
Antoni Szumanowski 

 Warsaw University of Technology, 
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1. Introduction 
This chapter presents a method of determining electromotive force (EMF) and battery 
internal resistance as time functions, which are depicted as functions of state of charge 
(SOC). The model is based on battery discharge and charge characteristics under different 
constant currents that are tested by a laboratory experiment.  
Further the method of determining the battery SOC according to the battery modeling result 
is considered. The influence of temperature on battery performance is analyzed according to 
laboratory-tested data and the theoretical background for calculating the SOC is obtained. 
The algorithm of battery SOC indication is depicted in detail. The algorithm of battery SOC 
“online” indication considering the influence of temperature can be easily used in practice 
by microprocessor. NiMH and Li-ion battery are taken under analyze. In fact, the method 
also can be used for different types of contemporary batteries, if the required test data are 
available. 
Hybrid electric (HEVs) and electric (EVs) vehicles are remarkable solutions for the world 
wide environmental and energy problem caused by automobiles. The research and 
development of various technologies in HEVs is being actively conducted [1]-[8]. The role of 
battery as power source in HEVs is significant. Dynamic nonlinear modeling and 
simulations are the only tools for the optimal adjustment of battery parameters according to 
analyzed driving cycles. The battery’s capacity, voltage and mass should be minimized, 
considering its over-load currents. This is the way to obtain the minimum cost of battery 
according to the demands of its performance, robustness, and operating time. 
The process of battery adjustment and its management is crucial during hybrid and electric 
drives design. The generic model of electrochemical accumulator, which can be used in 
every type of battery, is carried out. This model is based on physical and mathematical 
modeling of the fundamental electrical impacts during energy conservation by a battery. 
The model is oriented to the calculation of the parameters EMF and internal resistance. It is 
easy to find direct relations between SOC and these two parameters. If the EMF is defined 
and the function versus the SOC ( 0,1k∈< > ) is known, it is simple to depict the 
discharge/charge state of a battery.  
The model is really nonlinear because the correlative parameters of equations are functions 
of time [or functions of SOC because ( )SOC f t=  ] during battery operation. The modeling 
method presented in this chapter must use the laboratory data (for instance voltage for 
different constant currents or internal resistance versus the battery SOC) that are expressed 
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in a static form. These data have to be obtained discharging and charging tests.  The 
considered generic model is easily adapted to different types of battery data and is 
expressed in a dynamic way using approximation and iteration methods. 
An HEV operation puts unique demands on battery when it operates as the auxiliary power 
source. To optimize its operating life, the battery must spend minimal time in overcharge 
and or overdischarge. The battery must be capable of furnishing or absorbing large currents 
almost instantaneously while operating from a partial-state-of-charge baseline of roughly 
50% [9].  For this reason, knowledge about battery internal loss (efficiency) is significant, 
which influences the battery SOC.  
There are many studies dedicated to determine the battery SOC [10]-[22]; however, these 
solutions have some limitations for practical application [23]. Some solutions for practical 
application are based on a loaded terminal voltage [17]-[20] or a simple calculation the flow 
of charge to/from a battery [21]-[22], which is the integral that is based on current and time. 
Both solutions are not considered the strong nonlinear behavior of a battery. It is possible to 
determine transitory value of the SOC “online” in real drive conditions with proper 
accuracy, considering the nonlinear characteristic of a battery by resolving the mathematical 
model that is presented in this paper. 
 This is the background for optimal battery parameters as well as the proper battery 
management system (BMS) design - particularly in the case of SOC indication [25]. The high 
power (HP) NiMH and LiIon batteries so common used in HEV were considered. 
Finally, for instance, the plots of battery voltage, current and SOC as alterations in time for 
real experimental hybrid drive equipped with BMS especially design according to presented 
original battery  modeling method, are attached. 

2. Battery dynamic modeling 
2.1 Battery physical model  
The basis enabling the formulation of the energy model of an electrochemical battery is 
battery physical model shown in Fig.1. 
 

ia
Rel Re RpE

Ua  
Fig. 1. Substitute circuit for nonlinear battery modeling 

2.2 Mathematical modeling 
The internal resistance can be expressed in an analytical way [7], where: 

 ( ) ( ) ( ) ( ) 1, , , , ,w a el e a aR i Q R Q R Q bE i Q Iτ τ τ −= + +    (1) 

1( , , )a abE i Q Iτ −  is the resistance of polarization. 
b is the coefficient that expresses the relative change of the polarization’s EMF on the cell’s 
terminals during the flow of the aI  current in relation to the EMF E for nominal capacity. 
Electrolyte resistance elR  and electrode resistance eR are inversely proportional to 
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temporary capacity of the battery. During real operation, the capacity of the battery is 
changeable with respect to current and temperature [7], i.e., 

 ( ) ( ) ( )( ), , ,u a w aQ i t Q K i t tττ τ= −  (2) 

or 

 ( ) ( ) ( )
0

, , , d
t

u a a aQ i t Q i i t tττ τ= − ∫   (3) 

Where: 
( )( ),w aK i t t  is the nonlinear function that is used to calculate the battery discharged capacity  

( )
0

d
t

ai t t∫ is the function that is used to calculate the used charge, which has been drawn from 

the battery since the instant time t=0 till the time t 
( ), aQ iτ τ  is the battery capacity as a function of temperature and load current, and 

 ( )n
w aK i tτ=   (4) 

where wK  is the discharge capacity of the battery, n is the Peukert’s constant, which varies 
for different types of batteries. 
Assuming temperature influence: 

 ( ) ( ) ( ) ( )
0

, , d
t

a
u n a

n

i t
Q i t c Q i t t

I

β

τ ττ τ
−

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∫   (5) 

where the ( )cτ τ coefficient can be defined as the temperature index of nominal capacity [7], i.e., 

 ( ) ( )
1

1n n

Qc
Q

τ
τ

τ

τ
α τ τ

= =
+ −

  (6) 

where α is the temperature capacity index (we can assume α ≈ 0.01 deg-1). 
According to the Peukert equation, we can get the following: 

 ( ) ( ) ( )
a a

nn

Q i U i t
IQ U

β τ

τ

−
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

  (7) 

The left –hand side of the equation (7) is the quotient of the electric power that is drawn 
from the battery during the flow of a ni I≠ current and the electric power that is drawn from 
the battery during loading with the rated current. The quotient mentioned above defines the 
usability index of the accumulated power, i.e., 

 ( ) ( ) ( )

, a
A a

n

i t
i

I

β τ

η τ
−

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

  (8) 
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When a ni I<  , the value of the index can exceed 1. 
During further solution of (5), it can be transformed by means of (8), i.e., 

 ( ) ( ) ( ) ( )
0

, , , d
t

u A a n aQ i t c i Q i t tτ ττ τ η τ= − ∫   (9) 

Therefore, the real battery SOC can be expressed in the following way [7]: 

 
( ) ( ) ( )

0

, d
t

A a n a
u

n n

c i Q i t t
Qk
Q Q

τ τ

τ τ

τ η τ −
= =

∫
  (10) 

where 1k = for a nominally charged battery, 0 1k≤ ≤ , and thus 

 ( ) ( ) ( )
0

1, d
t

A a a
n

k c i i t t
Qτ

τ

τ η τ= − ∫   (11) 

For practical application, it’s necessary to transform aforementioned equations for 
determining the internal resistance wR and EMF as functions of k (SOC) [7], i.e., 

 ( ) ( ) ( )
( )
( )

1 2 , ,
, ,

, , , ,
a

w a
u a u a a

bE i Ql lR i Q
Q i t Q i t i t

τ
τ

τ τ
= + +   (12) 

 ( ) ( )
( )

1, ,w a
a

E k
R i t lk b

i t
τ −= +   (13) 

where 1
1 2( ) nl l l Qτ

−= + , l const≈ is a piecewise constant, assuming that the temporary change 
of the battery capacity is significantly smaller than its nominal capacity; the coefficient l is 
experimentally determined under static conditions. ( )E k is the temporary value of 
polarization’s EMF, which is dependent on the SOC. 
The EMF as a function of k is deduced from the well-know battery voltage equation, 
including the momentary value of voltage and internal resistance, because the values 

wR and EMF  are unknown. The solution can be obtained by a linearization and iterative 
method, which is explained by following Fig.2 and following: 

 
*
min

*
max

( )( ) E k Eb k
E
−

=   (14) 

Take under consideration (12)-(14), it’s then possible to obtain the following:  

 

*
min

*
max

*
1 min 1 1

1 *
max 1

( ) ( ) ( )( )

( ) ( ) ( )( )

n n n
w n

n n

n n n
w n

n n

E k E E k l kR k
E I k

E k E E k l kR k
E I k
− − −

−
−

⎧ −
= +⎪

⎪
⎨

−⎪ = +⎪⎩

  (15) 

Obviously, ( )E k is the function that we need. To obtain it, it’s necessary to use the known 
functions ( )au k , which are obtained by laboratory tests. 
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Fig. 2. Linearization method of EMF versus SOC (k) 
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Fig. 3. Linearization method of voltage versus SOC (k) 

Similarly as in the case of Fig.3, the following equations are generated: 

 
1 1 1

( ) ( ) ( )
( ) ( ) ( )

n n a w n

n n a w n

u k E k I R k
u k E k I R k− − −

= ±⎧
⎨ = ±⎩

 (16) 

( )nu k and 1( )nu k −  are known from the family of voltage characteristics that are obtained by 
laboratory tests. ( )a nI is also known because ( )nu k is determined for ( ) .a nI const=  
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Fig. 4. Discharging data of a 14-Ah NiMH battery  

 
Fig. 5. Charging data of a 14-Ah NiMH battery 



Nonlinear Dynamics Traction Battery Modeling  

 

205 

+ is for discharge 
 - is for charge 

0,1k∈< >  
Using the above-presented approach, based on experimental data (shown in Figs.4 and 5), 
it’s possible to construct a proper equation set as in the shape of (15) and (16) and resolve it 
in an iterative way. 
Last, the equations of wR and EMF take the shape of the following polynomial: 

  

6 5 4 3 2

6 5 4 3 2

6 5 4 3 2

7 6 5 4 3 2

( )
( )
( )
( )

w r r r r r r r

e e e e e e e

b b b b b b b

l l l l l l l l

R k A k B k C k D k E k F k G
E k A k B k C k D k E k F k G
b k A k B k C k D k E k F k G
l k A k B k C k D k E k Fk G k H

= + + + + + +

= + + + + + +

= + + + + + +

= + + + + + + +

  (17) 

3. Battery modeling results 
The basic elements that are used to formulate the mathematical model of a NiMH battery 
are the described iteration-approximation method and the approximations based on the 
battery discharging and charging characteristics that are obtained by an experiment. 
Experimental data are approximated to enable determination of the internal resistance in a 
small-enough range k=0.001. The modeling results (Figs. 6-8) in the battery SOC operating 
range of 0.1-0.95 show a small deviation (less than 1%) from the experimental data (Figs.9 
and 10). The NiMH battery that is used in the experiment and the modeling is an HP battery 
for HEV application. The nominal voltage of the battery is 1.2V, and the rated capacity 
14Ah. 
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Fig. 6. Computed internal resistance characteristics of a 14-Ah NiMH battery for discharging 
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Fig. 7. Computed internal resistance characteristics of a 14-Ah NiMH battery for charging 
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Fig. 8. Computed EMF of a 14-Ah NiMH battery 

After approximation according to the computed results, approximated equations of (17) for 14-
Ah NiMH battery can be obtained. These factors of equations (17) are available in Table 1. 
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Coefficient b Coefficient l 
Discharging Discharging Factors of 

Equation 
(17) 

Internal 
resistance R(w) 

during 
discharging 

Internal 
resistance 

Rd(w) during 
charging 

Electromotive 
Force Charging Charging 

-0.015363 0.65917 A 0.65917 0.42073 13.504 0.015341 0.42073 
0.10447 -2.0528 B -2.0397 -1.4434 -36.406 -0.10661 -1.4376 
-0.18433 2.4978 C 2.4684 1.9362 36.881 0.22702 1.9195 
0.13578 -1.495 D -1.4711 -1.2841 -17.198 -0.21788 -1.2661 

-0.045129 0.45416 E 0.44578 0.43809 3.5264 0.10346 0.42896 
0.0059814 -0.066422 F -0.065274 -0.071757 -0.10793 -0.023367 -0.06961 

-9.416e-005 0.0099289 G 0.0099109 0.0078518 1.234 0.0020389 0.0076585 
 -1.2154e-015 H     1.9984e-008 

Table 1. Factors of Eq. (17) for 14-Ah NiMH battery 

 
Fig. 9. Error of experiment data and  the computed voltage at different discharge currents 
The basic element used to formulate the mathematical model of Li-ion battery module from 
SAFT Company is the earlier described iteration-approximation method and the 
approximated based on the battery discharging characteristics obtained by experiment. The 
experimental data is approximated to enable determining the internal resistance in an 
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enough small range k = 0.001. The analyses, in the operating range SOC between 0.01~0.95, 
gives us a small deviation (less than 2%) by using the iteration-approximation method from 
the experimental data. The VL30P-12S module has 30Ah rated capacity and it’s special 
designed for HEV application. 

 
Fig. 10. Error of experiment data and computed voltage at different charge currents 

 
Fig. 11. The discharging voltage characteristics of SAFT 30Ah Li-ion module  
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Fig. 12. The computed internal resistance of SAFT 30Ah Li-ion module  
 

 
Fig. 13. The computed EMF of SAFT 30Ah Li-ion module  
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Fig. 14. The computed coefficient b of SAFT 30Ah Li-ion module  
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Fig. 15. The computed coefficient l of SAFT 30Ah Li-ion module   

After approximation according to the computed results, approximated equations of (17) for 30-
Ah Li-ion module can be obtained. These factors of equations (17) are available in Table 1. 
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Factors of 
equations (6.56) 

Internal resistance 
Rw 

Electromotive force 
E Coefficient b Coefficient l 

A 0.71806 -28.091 0.0032193 0.71806 
B -2.6569 157.05 -0.016116 -2.6545 
C 3.7472 -296.92 0.036184 3.736 
D -2.5575 265.34 -0.040738 -2.5406 
E 0.8889 -119.29 0.023539 0.87755 
F -0.14693 30.476 -0.0065159 -0.14352 
G 0.023413 38.757 0.00078501 0.022978 
H    -1.7916e-015 

Table 2. Factors of Eq. (17) for 30-Ah Li-ion module 
 

 
Fig. 16. Errors between testing data and computed result of SAFT 30Ah Li-ion module   

4. Temperature influence analysis on battery performance 
The determination of the battery EMF and internal resistance gives unlimited possibilities of 
calculating the battery’s voltage versus SOC (k) relation for a different value of discharge-
charge current. For a real driving condition, the battery discharge or charge depends on the 
drive architecture influencing the respective power distribution. In majority, battery 
charging takes place during vehicle regenerative braking, which means that this situation 
lasts for a relatively short time with a significant peak-current value. A discharging current 
that is too high results in a rapid increase in the battery temperature.  
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The main role of this study is to find a theoretical background for calculating the 
temperature influence on the battery SOC. The presented method is more accurate and 
complicated compared with other methods, which doesn’t mean that it is more difficult to 
apply. First of all, it is necessary to make the following assumptions: 
The considered battery is fully charged in nominal conditions: nominal current, nominal 
temperature and nominal capacity ( bi =1C, bτ =20°C, the capacity is designed for nominal 
parameters, respectively). 
The EMF for the considered battery is defined as its nominal condition in the nominal SOC 
alteration range 1,0k∈< > . The assumption is taken that the EMF value of k=0.15 is the 
minimum EMF. For k=0, the EMF is defined as the “minimum-minimorum”, in practice 
which should not be obtained. The same assumption is recommended for a value that is 
different from the nominal temperature for the kτ (SOC) definition. As shown in Fig.19, the 
starting point value of the EMF for a different value from the nominal temperature can be 
higher or lower, which means that the extension alteration of the SOC could be longer or 
shorter. For instance (see Fig.17), in the case of the NiMH battery for a value that is higher 
than the nominal temperature, the discharge capacity is smaller than the nominal, which 
means that for a certain temperature, the battery capacity corresponding to this temperature 
is also changed in file 1,0kτ ∈< > . However, the full kτ  doesn’t mean the same discharge 
capacity as in the case of nominal temperature but does mean the maximum discharge 
capacity at this temperature. For this reason, in fact, kτ for this temperature is 
only ( ) ( )k t k tτ> , [in some case, ( ) ( )k t k tτ< , where ( )k t is connected only with nominal 
conditions].  
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Fig. 17. Temperature dependence of the discharge capacity of the NiMH battery 
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Fig. 18. Temperature dependence of the battery usable discharge capacity and the EMF 
starting point 

From Fig.18, it is easy to note that the EMF (in the case of this battery type) value in the 
nominal conditions is smaller than the EMF value for a temperature that is lower than 20°C 
(the nominal temperature), which means that for a maximum EMF value, the available 
battery capacity is higher than in the case of  the nominal terms. For nominal conditions, the 
SOC can be defined by a k factor ( 1,0k∈< > ). If the EMF for the non-nominal conditions 
reaches its highest value, the available charge (in ampere-hours) will be also greater. It is 
easy to note the relation maxQ Qτ =  and nomQ  is defined as follows: 

max 1
nom

Q Q
Q

τ = >  [If 1,nom
nom

QQ Q
Q

τ
τ < → <  correspondingly, 

max

1nom
EMFEMF EMF

EMF
τ

τ < → < ] 

This corresponds to: 
max 1

nom

EMF EMF
EMF
τ = > . On the other hand, for nomQ  , 1,0k ∈< > , but relating it to nomQ Qτ > in τ 

condition, the file 1,0< >  means file max0,Q< > . Transforming k in nominal terms to kτ is 

necessary to use the general relation
nom

Q
Q

τ . Theoretically, the product nom
nom

Qk
Q

τ  transfers the 

SOC factor into other than nominal temperature conditions. The same transformation can be 
obtained for

nom
nom

EMFk
EMF

τ , where 1,0nomk ∈< > .  
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Fig. 19. Relation of 

nom

EMF
EMF

τ  and temperature 

Using the transformation factor 
nom

nom

EMFk
EMF

τ or k sτ∗ ( ,nom
nom

EMFk k s
EMF

τ
τ= = ),it is possible to 

relate the SOC of the battery that is determined for the nominal temperature to other 
different temperatures. 

5. Algorithm of battery SOC indication  
The algorithm is given as follows. 
1. By simulation, the family of ( )bu k  for different constant currents 0.5 ,6bi C C∈< > and 

nominal temperature (e.g. 20°C) can be obtained according to battery modeling results 
(EMF and internal resistance as functions of SOC). 

2. From Fig.19, 
nom

EMFs
EMF

τ
τ = is defined for τ ∈<-30°C, +35°C> 

3. From Fig.20, for k=0.9, …0.2, the following lookup table can be obtained 

11 11 1 81 81 8

12 12 1 82 82 8

1 1 1 8 8 8

, , , ,
, , , ,

0.9 0.2

, , , ,n n n n

u i E u i E
u i E u i E

k k

u i E u i E

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= ⇒ = ⇒
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

Because of the practical limitation of the SOC alteration of the battery that is applied in 
hybrid drives, the range of k changes can be expressed as 0.9,0.2< >  for the nominal 
temperature.  
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Fig. 20. EMF and calculated discharging voltage characteristics at different discharging 
current and nominal temperature 
4. Considering the real temperatures, the SOC of the battery in relation to the nominal 

temperature can be defined as s k kτ τ∗ =  For instance, at a temperature of +5°C, 

1.06
nom

EMF
EMF

τ = ; hence, k +5°C=1.06 k ,which means that at this moment and this 

temperature, the available capacity is 1.06 times that of the nominal temperature. At a 
temperature +30°C, 0.89

nom

EMF
EMF

τ = ; hence, k +30°C =0.89 k , which means that at this 

moment and this temperature, the available capacity is 0.89 times that of the nominal 
temperature. 
A similar method and process can be used for the battery charging process (see Fig.21) 

The above-depicted method can be used in design of battery management system ( BMS ) 
for the SOC  determination and indication, especially in hybrid ( HEV ) and electric ( EV ) 
vehicle drives. Based on the aforementioned steps 1) - 4), the SOC indication algorithm can 
be depicted as is shown in Fig.22. 
In HEV the battery SOC changes faster ( because HP high power battery is used ) but not so 
deep  as in pure electric vehicles, equipped with high energy ( HE ) battery. It means that 
the SOC indication - display process may not be realized as frequently. It’s not necessary to 
display the SOC of the battery every second.  Certainly, the previous value of the SOC has to 
be remembered by a microprocessor. 
High accuracy of determination of battery SOC is at first of all necessary for entire drive 
system control. In opposed to indication – display, the feedback SOC signals from battery 
must be available online. 
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Fig. 21. EMF and calculated charging voltage characteristics at different charging current 
and nominal temperature 
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                     a) Discharging                                                            b) Charging  

Fig. 22. SOC indication algorithm      
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The presented original method of EMF ( as function of k - SOC ) calculation is the 
background for constructing BMS. This procedure is easily adopted for control application 
in HEV and EV. Its high accuracy is very important for control drive systems ( master 
controller ) based on feedback signals from BMS.  
The following equation is the background to determine accurate value of SOC ( k ) for 
dynamic conditions. 

 
( ) ( ) ( ) ( )w

nom

u t E k R k i t
k k sτ

= ±
=

  (18) 

+  is for discharge; -  is for charge; where E(k) and Rw(k) are taken from equation (17) for real 
battery module. 
Based on equation (18), the SOC calculation can be obtained in a direct way in “online” 
dynamic battery voltage and current alterations. The solving (17) as high power factor 
polynomial is really possible “online” by using two procedures: look-up table (dividing 
polynomial function in shaped-line ranges) or “bisection” numerical iterative computation. 
In some cases, when the accuracy of SOC indication can be lower (about 5%) , which is 
accepted in HEV and EV drives, power factor of polynomial  can be decreased by additional 
approximation E(k) and Rw(k). The accuracy of real time calculation is about 100 μs. 
The second method is “bisection” iterative calculation.  
The exemplary plots of battery voltage, current and SOC is shown in following figures 23, 
24, 25. Because The SOC of battery is much slower changeable than its voltage and current, 
the SOC indication is computed and indicated by using “moving average” procedure. 
 
 

 
 

Fig. 23. Exemplary test of  battery load in hybrid drive ; blue– battery current, green– battery   
voltage  

 
 

 
 

Fig. 24. Exemplary test of battery SOC indication in real drive conditions corresponding to 
battery load shown in Fig.23. 
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Fig. 25. Screen of control system based on  d’Space programming for SOC indication. 

6. Conclusions 
The assumed method and effective model are very accurate according to error checking 
results of the NiMH and Li-Ion batteries. The modeling method is valid for different types 
of batteries. The model can be conveniently used for vehicle simulation because the battery 
model is accurately approximated by mathematical equations. The model provides the 
methodology for designing a battery management system and calculating the SOC. The 
influence of temperature on battery performance is analyzed according to laboratory-tested 
data and the theoretical background for the SOC calculation is obtained. The algorithm of 
the battery SOC “online” indication considering the influence of temperature can be easily 
used in practice by a microprocessor 
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Entropic Geometry of Crowd Dynamics 
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Australia 

1. Introduction 
In this Chapter we propose a nonlinear entropic model of crowd generic psycho–physical1 
dynamics. For this we use Feynman’s action–amplitude formalism, operating on 
microscopic, mesoscopic and macroscopic synergetic levels, which correspond to individual, 
group (aggregate) and full crowd behavior dynamics, respectively. In all three levels, goal–
directed behavior operates under entropy conservation, ∂tS = 0, while naturally chaotic 
behavior operates under (monotonically) increasing entropy, ∂tS > 0. Between these two 
distinct behavioral phases lies a topological phase transition with a chaotic inter-phase. We 
formulate a geometrical representation of this behavioral transition in terms of the 
Perelman-Ricci flow on the crowd’s Riemannian configuration manifold. 
Recall that in psychology the term cognition2 refers to an information processing view of an 
individual psychological functions (see [3; 4; 68; 81; 88]). More generally, cognitive processes 
can be natural and artificial, conscious and not conscious; therefore, they are analyzed from 
different perspectives and in different contexts, e.g., anesthesia, neurology, psychology, 
philosophy, logic (both Aristotelian and mathematical), systemics, computer science, 
artificial intelligence (AI) and computational intelligence (CI). Both in psychology and in 
AI/CI, cognition refers to the mental functions, mental processes and states of intelligent 
entities (humans, human organizations, highly autonomous robots), with a particular focus 
toward the study of comprehension, inferencing, decision–making, planning and learning (see, 
e.g. [11]). The recently developed Scholarpedia, the free peer reviewed web encyclopedia of 
computational neuroscience is largely based on cognitive neuroscience (see, e.g. [79]). The 
concept of cognition is closely related to such abstract concepts as mind, reasoning, perception, 
intelligence, learning, and many others that describe numerous capabilities of the human mind 
and expected properties of AI/CI (see [51; 57] and references therein). 
Yet disembodied cognition is a myth, albeit one that has had profound influence in Western 
science since Rene Descartes and others gave it credence during the Scientific Revolution. In 
fact, the mind-body separation had much more to do with explanation of method than with 
explanation of the mind and cognition, yet it is with respect to the latter that its impact is most 
widely felt. We find it to be an unsustainable assumption in the realm of crowd behavior. 

                                                 
1 The new term “psychophysical” should not be confused with the reserved psychological 
term “psychophysics”. By psycho-physical we mean cognitive–to–physical transition 
behavior: from mental idea to physical manifestation. 
2 Latin: “cognoscere = to know” 
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Mental intention is (almost immediately) followed by a physical action, that is, a human or 
animal movement [82]. In animals, this physical action would be jumping, running, flying, 
swimming, biting or grabbing. In humans, it can be talking, walking, driving, or shooting, etc. 
Mathematical description of human/animal movement in terms of the corresponding neuro-
musculo-skeletal equations of motion, for the purpose of prediction and control, is formulated 
within the realm of biodynamics (see [43; 44; 45; 46; 47; 48; 49; 55]). 
The crowd (or, collective) behavior is clearly formed by some kind of superposition, contagion, 
emergence, or convergence from the individual agents’ behavior. Le Bon’s 1895 contagion 
theory, presented in “The Crowd: A Study of the Popular Mind” influenced many 20th 
century figures. Sigmund Freud criticized Le Bon’s concept of “collective soul,” asserting that 
crowds do not have a soul of their own. The main idea of Freudian crowd behavior theory was 
that people who were in a crowd acted differently towards people than those who were 
thinking individually: the minds of the group would merge together to form a collective way 
of thinking. This idea was further developed in Jungian famous “collective unconscious” [63]. 
The term “collective behavior” [8] refers to social processes and events which do not reflect 
existing social structure (laws, conventions, and institutions), but which emerge in a 
“spontaneous” way. Collective behavior might also be defined as action which is neither 
conforming (in which actors follow prevailing norms) nor deviant (in which actors violate 
those norms). According to the emergence theory [86], crowds begin as collectivities composed 
of people with mixed interests and motives; especially in the case of less stable crowds 
(expressive, acting and protest crowds) norms may be vague and changing; people in crowds 
make their own rules as they go along. According to currently popular convergence theory, 
crowd behavior is not a product of the crowd itself, but is carried into the crowd by particular 
individuals, thus crowds amount to a convergence of like–minded individuals. 
We propose that the contagion and convergence theories may be unified by acknowledging 
that both factors may coexist, even within a single scenario: we propose to refer to this third 
approach as behavioral composition. It represents a substantial philosophical shift from 
traditional analytical approaches, which have assumed either reduction of a whole into 
parts or the emergence of the whole from the parts. In particular, both contagion and 
convergence are related to social entropy, which is the natural decay of structure (such as 
law, organization, and convention) in a social system [16]. Thus, social entropy provides an 
entry point into realizing a behavioral–compositional theory of crowd dynamics. 
Thus, while all mentioned psycho-social theories of crowd behavior are explanatory only, in 
this paper we attempt to formulate a geometrically predictive model–theory of crowd 
psychophysical behavior. 
In this chapter we attempt to formulate a geometrically predictive model–theory of crowd 
behavioral dynamics, based on the previously formulated individual Life Space Foam 
concept [54].3 

                                                 
3 General nonlinear stochastic dynamics, developed in a framework of Feynman path 
integrals, have recently [54] been applied to Lewinian field–theoretic psychodynamics [67], 
resulting in the development of a new concept of life–space foam (LSF) as a natural medium 
for motivational and cognitive psychodynamics. According to the LSF–formalism, the 
classic Lewinian life space can be macroscopically represented as a smooth manifold with 
steady force–fields and behavioral paths, while at the microscopic level it is more 
realistically represented as a collection of wildly fluctuating force–fields, (loco)motion paths 
and local geometries (and topologies with holes). 
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It is today well known that massive crowd movements can be precisely observed/moni-
tored from satellites and all that one can see is crowd physics. Therefore, all involved 
psychology of individual crowd agents: cognitive, motivational and emotional – is only a 

                                                                                                                            
A set of least–action principles is used to model the smoothness of global, macro–level LSF 
paths, fields and geometry, according to the following prescription. The action S[Φ], with 
dimensions of Energy ×Time = Effort and depending on macroscopic paths, fields and 
geometries (commonly denoted by an abstract field symbol Φi) is defined as a temporal 
integral from the initial time instant tini to the final time instant tf in, 

 [ ] = [ ] ,
t fin

tini
S dtΦ Φ∫ L  (1) 

with Lagrangian density given by 

[ ] = ( , ),j
n i

i x
d xΦ Φ ∂ Φ∫L L  

where the integral is taken over all n coordinates xj= xj (t) of the LSF, and j
i

x
∂ Φ  are time and 

space partial derivatives of the iΦ -variables over coordinates. The standard least action 
principle 

 [ ] = 0,Sδ Φ  (2) 

gives, in the form of the so–called Euler–Lagrangian equations, a shortest (loco)motion path, 
an extreme force–field, and a life–space geometry of minimal curvature (and without holes). 
In this way, we have obtained macro–objects in the global LSF: a single path described by 
Newtonian–like equation of motion, a single force–field described by Maxwellian–like field 
equations, and a single obstacle–free Riemannian geometry (with global topology without 
holes). 
To model the corresponding local, micro–level LSF structures of rapidly fluctuating MD & 
CD, an adaptive path integral is formulated, defining a multi–phase and multi–path (multi–
field and multi– geometry) transition amplitude from the motivational state of Intention to 
the cognitive state of Action, 

 i [ ]| := [ ]e ,S
totalAction Intention w Φ〈 〉 Φ∫D  (3) 

where the Lebesgue integration is performed over all continuous =i
conΦ paths + fields + 

geometries, while summation is performed over all discrete processes and regional topologies 
j
disΦ . The symbolic differential D[wΦ] in the general path integral (24), represents an 

adaptive path measure, defined as a weighted product 

 
=1

[ ] = lim ,( = 1,..., = ).
N

i
s sN s

w w d i n con dis
→∞

Φ Φ +∏D  (4) 

The adaptive path integral (3)–(11) represents an ∞–dimensional neural network, with 
weights w updating by the general rule [57] 

new value(t + 1) = old value(t) + innovation(t). 
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non-transparent input (a hidden initial switch) for the fully observable crowd physics. In 
this paper we will label this initial switch as ‘mental preparation’ or ‘loading’, while the 
manifested physical action is labeled ‘hitting’. 
We propose the entropy formulation of crowd dynamics as a three–step process involving 
individual behavioral dynamics and collective behavioral dynamics. The chaotic behavioral 
phase transitions embedded in crowd dynamics may give a formal description for a 
phenomenon called crowd turbulence by D. Helbing, depicting crowd disasters caused by the 
panic stampede that can occur at high pedestrian densities and which is a serious concern 
during mass events like soccer championship games or annual pilgrimage in Makkah (see 
[37; 38; 39; 62]). 
In this paper we propose the entropy formulation of crowd dynamics as a three–step 
process involving individual dynamics and collective dynamics. 

2. Generic three–step crowd psycho–physical behavior 
In this section we model a generic crowd dynamics (see e.g., [36; 69]) as a three–step process 
based on a general partition function formalism. Note that the number of variables Xi in the 
standard partition function from statistical mechanics (see equation (59) in Appendix) need 
not be countable, in which case the set of coordinates {xi} becomes a field  
φ = φ(x), so the sum is to be replaced by the Euclidean path integral (that is a Wick–rotated 
Feynman transition amplitude in imaginary time, see subsection 3.4), as 

[ ]( ) = [ ]exp ( ) ,Z Hφ φ φ−∫D  

More generally, in quantum field theory, instead of the field Hamiltonian H(φ) we have the 
action S(φ) of the theory. Both Euclidean path integral, 

 [ ]( ) = [ ]exp ( ) , real path integral in imaginary timeZ Sφ φ φ−∫D  (5) 

and Lorentzian one, 

 [ ]( ) = [ ]exp ( ) , complex path integral in real timeZ iSφ φ φ∫D  (6) 

–r epresent quantum field theory (QFT) partition functions. We will give formal definitions 
of the above path integrals (i.e., general partition functions) in section 3. For the moment, we 
only remark that the Lorentzian path integral (6) represents a QFT generalization of the 
(nonlinear) Schrödinger equation, while the Euclidean path integral (5) in the (rectified) real 
time represents a statistical field theory (SFT) generalization of the Fokker–Planck equation. 
Now, following the framework of the Extended Second Law of Thermodynamics (see 
Appendix), ∂tS ≥0, for entropy S in any complex system described by its partition function, 
we formulate a generic crowd dynamics, based on above partition functions, as the 
following three–step process: 
1. Individual dynamics (ID) is a transition process from an entropy–growing “loading” 

phase of mental preparation, to the entropy–conserving “hitting/executing” phase of 
physical action. Formally, ID is given by the phase–transition map: 

 
"LOADING": >0 "HITTING": =0

: MENTAL PREPARATION PHYSICAL ACTION
S St t∂ ∂

⇒

������������ 
����������

ID  (7) 
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defined by the individual (chaotic) phase–transition amplitude 

=0 >0
[ ]ID

ID

PHYS. ACTION MENTAL PREP. := [ ]e ,
S St t iSCHAOS

∂ ∂
ΦΦ∫D  

where the right-hand-side is the Lorentzian path-integral (or complex path-integral in 
real time, see Appendix), with the individual action 

ID ID[ ] = [ ] ,
t fin

tini
S L dtΦ Φ∫  

where LID[Φ] is the behavioral Lagrangian, consisting of mental cognitive potential and 
physical kinetic energy. 

2. Aggregate dynamics (AD) represents the behavioral composition–transition map: 

 
"LOADING": >0 "HITTING": =0

AD AD
: MENTAL PREPARATION PHYSICAL ACTION

S St t

i
i i

∂ ∂

∈ ∈

⇒∑ ∑

������������ 
����������

AD  (8) 

where the (weighted) aggregate sum is taken over all individual agents, assuming 
equipartition of the total energy. It is defined by the aggregate (chaotic) phase–
transition amplitude 

=0 >0
[ ]AD

AD

PHYS. ACTION MENTAL PREP. := [ ]e ,
S St t SCHAOS

∂ ∂
− ΦΦ∫D  

with the Euclidean path-integral in real time, that is the SFT–partition function, based 
on the aggregate behavioral action 

AD AD AD ID
AD

[ ] = [ ] , with [ ] = [ ].
t fin i

tini i
S L dt L L

∈

Φ Φ Φ Φ∑∫  

3. Crowd dynamics (CD) represents the cumulative transition map: 

 
"LOADING": >0 "HITTING": =0

CD CD
: MENTAL PREPARATION PHYSICAL ACTION

S St t

i
i i

∂ ∂

∈ ∈

⇒∑ ∑

������������ 
����������

CD  (9) 

where the (weighted) cumulative sum is taken over all individual agents, assuming 
equipartition of the total behavioral energy. It is defined by the crowd (chaotic) phase–
transition amplitude 

=0 >0
[ ]CD

CD

PHYS. ACTION MENTAL PREP. := [ ]e ,
S St t iSCHAOS

∂ ∂
ΦΦ∫D  

with the general Lorentzian path-integral, that is, the QFT–partition function), based on 
the crowd behavioral action 

CD CD CD ID AD
CD =#ofADsinCD

[ ] = [ ] , with [ ] = [ ] = [ ].
t fin i k

tini i k
S L dt L L L

∈

Φ Φ Φ Φ Φ∑ ∑∫  
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All three entropic phase–transition maps, ID, AD and CD, are spatio–temporal biodynamic 
cognition systems, evolving within their respective configuration manifolds (i.e., sets of their 
respective degrees-of-freedom with equipartition of energy), according to biphasic action– 
functional formalisms with behavioral Lagrangian functions LID, LAD and LCD, each 
consisting of: 
1. Cognitive mental potential (which is a mental preparation for the physical action), and 
2. Physical kinetic energy (which describes the physical action itself). 
To develop ID, AD and CD formalisms, we extend into a physical (or, more precisely, 
biodynamic) crowd domain a purely–mental individual Life–Space Foam (LSF) framework 
for motivational cognition [54], based on the quantum–probability concept.4 

                                                 
4 The quantum probability concept is based on the following physical facts [58; 59] 
1. The time–dependent Schrödinger equation represents a complex–valued generalization 

of the real–valued Fokker–Planck equation for describing the spatio–temporal 
probability density function for the system exhibiting continuous–time Markov 
stochastic process. 

2. The Feynman path integral (including integration over continuous spectrum and 
summation over discrete spectrum) is a generalization of the time–dependent 
Schrödinger equation, including both continuous–time and discrete–time Markov 
stochastic processes. 

3. Both Schrödinger equation and path integral give ‘physical description’ of any system 
they are modelling in terms of its physical energy, instead of an abstract probabilistic 
description of the Fokker–Planck equation. 

Therefore, the Feynman path integral, as a generalization of the (nonlinear) time–dependent 
Schrödinger equation, gives a unique physical description for the general Markov stochastic 
process, in terms of the physically based generalized probability density functions, valid 
both for continuous–time and discrete–time Markov systems. Its basic consequence is this: a 
different way for calculating probabilities. The difference is rooted in the fact that sum of 
squares is different from the square of sums, as is explained in the following text. Namely, in 
Dirac–Feynman quantum formalism, each possible route from the initial system state A to 
the final system state B is called a history. This history comprises any kind of a route, 
ranging from continuous and smooth deterministic (mechanical–like) paths to completely 
discontinues and random Markov chains (see, e.g., [23]). Each history (labelled by index i) is 
quantitatively described by a complex number. 
In this way, the overall probability of the system’s transition from some initial state A to 
some final state B is given not by adding up the probabilities for each history–route, but by 
‘head–to–tail’ adding up the sequence of amplitudes making–up each route first (i.e., 
performing the sum–over–histories) – to get the total amplitude as a ‘resultant vector’, and 
then squaring the total amplitude to get the overall transition probability. 
Here we emphasize that the domain of validity of the ‘quantum’ is not restricted to the 
microscopic world [87]. There are macroscopic features of classically behaving systems, 
which cannot be explained without recourse to the quantum dynamics. This field theoretic 
model leads to the view of the phase transition as a condensation that is comparable to the 
formation of fog and rain drops from water vapor, and that might serve to model both the 
gamma and beta phase transitions. According to such a model, the production of activity 
with long–range correlation in the brain takes place through the mechanism of spontaneous 
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The behavioral dynamics approach to ID, AD and CD is based on entropic motor control [41; 
42], which deals with neuro-physiological feedback information and environmental 
uncertainty. The probabilistic nature of human motor action can be characterized by 
entropies at the level of the organism, task, and environment. Systematic changes in motor 
adaptation are characterized as task–organism and environment–organism tradeoffs in 
entropy. Such compensatory adaptations lead to a view of goal–directed motor control as 
the product of an underlying conservation of entropy across the task–organism–
environment system. In particular, an experiment conducted in [42] examined the changes 
in entropy of the coordination of isometric force output under different levels of task 
demands and feedback from the environment. The goal of the study was to examine the 
hypothesis that human motor adaptation can be characterized as a process of entropy 
conservation that is reflected in the compensation of entropy between the task, organism 
motor output, and environment. Information entropy of the coordination dynamics relative 
phase of the motor output was made conditional on the idealized situation of human 
movement, for which the goal was always achieved. Conditional entropy of the motor 
output decreased as the error tolerance and feedback frequency were decreased. Thus, as 
the likelihood of meeting the task demands was decreased increased task entropy and/or 
the amount of information from the environment is reduced increased environmental 
entropy, the subjects of this experiment employed fewer coordination patterns in the force 
output to achieve the goal. The conservation of entropy supports the view that context 
dependent adaptations in human goal–directed action are guided fundamentally by natural 
law and provides a novel means of examining human motor behavior. This is 
fundamentally related to the Heisenberg uncertainty principle [59] and further supports the 
argument for the primacy of a probabilistic approach toward the study of biodynamic 
cognition systems.5 

                                                                                                                            
breakdown of symmetry (SBS), which has for decades been shown to describe longrange 
correlation in condensed matter physics. The adoption of such a field theoretic approach 
enables modelling of the whole cerebral hemisphere and its hierarchy of components down to 
the atomic level as a fully integrated macroscopic quantum system, namely as a macroscopic 
system which is a quantum system not in the trivial sense that it is made, like all existing 
matter, by quantum components such as atoms and molecules, but in the sense that some of its 
macroscopic properties can best be described with recourse to quantum dynamics (see [22] 
and references therein). Also, according to Freeman and Vitielo, many–body quantum field theory 
appears to be the only existing theoretical tool capable to explain the dynamic origin of long–
range correlations, their rapid and efficient formation and dissolution, their interim stability in 
ground states, the multiplicity of coexisting and possibly non–interfering ground states, their 
degree of ordering, and their rich textures relating to sensory and motor facets of behaviors. It 
is historical fact that many–body quantum field theory has been devised and constructed in 
past decades exactly to understand features like ordered pattern formation and phase 
transitions in condensed matter physics that could not be understood in classical physics, 
similar to those in the brain. 
5 Our entropic action–amplitude formalism represents a kind of a generalization of the 
Haken-Kelso- Bunz (HKB) model of self-organization in the individual’s motor system [24; 
65], including: multistability, phase transitions and hysteresis effects, presenting a contrary 
view to the purely feedback driven systems. HKB uses the concepts of synergetics (order 
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On the other hand, it is well known that humans possess more degrees of freedom than are 
needed to perform any defined motor task, but are required to co-ordinate them in order to 
reliably accomplish high-level goals, while faced with intense motor variability. In an 
attempt to explain how this takes place, Todorov and Jordan have formulated an alternative 
theory of human motor co-ordination based on the concept of stochastic optimal feedback 
control [84]. They were able to conciliate the requirement of goal achievement (e.g., grasping 
an object) with that of motor variability (biomechanical degrees of freedom). Moreover, their 
theory accommodates the idea that the human motor control mechanism uses internal 
‘functional synergies’ to regulate task–irrelevant (redundant) movement. 
Also, a developing field in coordination dynamics involves the theory of social coordination, 
which attempts to relate the DC to normal human development of complex social cues 
following certain patterns of interaction. This work is aimed at understanding how human 
social interaction is mediated by meta-stability of neural networks. fMRI and EEG are 
particularly useful in mapping thalamocortical response to social cues in experimental 
studies. In particular, a new theory called the Phi complex has been developed by S. Kelso 
and collaborators, to provide experimental results for the theory of social coordination 
dynamics (see the recent nonlinear dynamics paper discussing social coordination and EEG 
dynamics [85]). According to this theory, a pair of phi rhythms, likely generated in the 
mirror neuron system, is the hallmark of human social coordination. Using a dual–EEG 
recording system, the authors monitored the interactions of eight pairs of subjects as they 
moved their fingers with and without a view of the other individual in the pair. 
Finally, the chaotic behavioral phase transitions embedded in CD may give a formal 
description for a phenomenon called crowd turbulence by D. Helbing, depicting crowd 
disasters caused by the panic stampede that can occur at high pedestrian densities and 
                                                                                                                            
parameters, control parameters, instability, etc) and the mathematical tools of nonlinearly 
coupled (nonlinear) dynamical systems to account for self-organized behavior both at the 
cooperative, coordinative level and at the level of the individual coordinating elements. The 
HKB model stands as a building block upon which numerous extensions and elaborations 
have been constructed. In particular, it has been possible to derive it from a realistic model 
of the cortical sheet in which neural areas undergo a reorganization that is mediated by 
intra- and inter-cortical connections. Also, the HKB model describes phase transitions 
(‘switches’) in coordinated human movement as follows: (i) when the agent begins in the 
anti-phase mode and speed of movement is increased, a spontaneous switch to symmetrical, 
in-phase movement occurs; (ii) this transition happens swiftly at a certain critical frequency; 
(iii) after the switch has occurred and the movement rate is now decreased the subject 
remains in the symmetrical mode, i.e. she does not switch back; and (iv) no such transitions 
occur if the subject begins with symmetrical, in-phase movements. The HKB dynamics of 
the order parameter relative phase as is given by a nonlinear first-order ODE: 

2 2= ( 2 )sin sin 2 ,r rφ α β φ β φ+ −�  

where φ is the phase relation (that characterizes the observed patterns of behavior, changes 
abruptly at the transition and is only weakly dependent on parameters outside the phase 
transition), r is the oscillator amplitude, while , β are coupling parameters (from which the 
critical frequency where the phase transition occurs can be calculated). 
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which is a serious concern during mass events like soccer championship games or annual 
pilgrimage in Makkah (see [37; 38; 39; 62]). 

3. Formal crowd dynamics 

In this section we formally develop a three–step crowd behavioral dynamics, conceptualized 
by transition maps (7)–(8)–(9), in agreement with Haken’s synergetics [25; 26]. We first 
develop a macro–level individual behavioral dynamics ID. Then we generalize ID into an 
‘orchestrated’ behavioral–compositional crowd dynamics CD, using a quantum–like micro– 
level formalism with individual agents representing ‘crowd quanta’. Finally we develop a 
meso–level aggregate statistical–field dynamics AD, such that composition of the aggregates 
AD makes–up the crowd. 

3.1 Individual behavioral dynamics (ID) 
ID transition map (7) is developed using the following action–amplitude formalism (see [53; 
54]): 
1. Macroscopically, as a smooth Riemannian n–manifold MID (see Appendix) with steady 

force–fields and behavioral paths, modelled by a real–valued classical action functional 
SID[Φ], of the form 

I I[ ] = [ ] ,
t fin

D Dtini
S L dtΦ Φ∫  

(where macroscopic paths, fields and geometries are commonly denoted by an abstract 
field symbol Φi ) with the potential–energy based Lagrangian L given by 

I I[ ] = ( , ),n i
D D i jx

L d xΦ Φ ∂ Φ∫ L  

where L is Lagrangian density, the integral is taken over all n local coordinates xj = xj(t) 
of the ID, and ∂x jФi  are time and space partial derivatives of the Φi –variables over 
coordinates. The standard least action principle 

I [ ] = 0,DSδ Φ  

gives, in the form of the Euler–Lagrangian equations, a shortest path, an extreme force– 
field, with a geometry of minimal curvature and topology without holes. We will see 
below that high Riemannian curvature generates chaotic behavior, while holes in the 
manifold produce topologically induced phase transitions. 

2. Microscopically, as a collection of wildly fluctuating and jumping paths (histories), 
force–fields and geometries/topologies, modelled by a complex–valued adaptive path 
integral, formulated by defining a multi–phase and multi–path (multi–field and multi– 
geometry) transition amplitude from the entropy–growing state of Mental Preparation 
to the entropy–conserving state of Physical Action, 

 [ ]ID
ID ID

Physical Action|Mental Preparation := [ ]eiS Φ〈 〉 Φ∫ D  (10) 

where the functional ID–measure D[wΦ] is defined as a weighted product 
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=1

[ ] = lim , ( = 1,..., = ),
N

i
s sN s

w w d i n con dis
→∞

Φ Φ +∏D  (11) 

representing an ∞–dimensional neural network [54], with weights ws updating by the 
general rule 

new value(t + 1) = old value(t) + innovation(t). 
More precisely, the weights ws = ws(t) in (11) are updated according to one of the two 
standard neural learning schemes, in which the micro–time level is traversed in discrete 
steps, i.e., if t = t0, t1, ..., ts then t + 1 = t1, t2, ..., ts+1: 6 

a. A self–organized, unsupervised (e.g., Hebbian–like [35]) learning rule: 

 ( 1) = ( ) ( ( ) ( )),d a
s s s sw t w t w t w tσ

η
+ + −  (12) 

where σ = σ(t), η = η(t) denote signal and noise, respectively, while superscripts d 
and a denote desired and achieved micro–states, respectively; or 

b. A certain form of a supervised gradient descent learning: 

 ( 1)= ( ) ( ),s sw t w t J tη+ − ∇  (13) 

where η is a small constant, called the step size, or the learning rate, and ∇J(n) 
denotes the gradient of the ‘performance hyper–surface’ at the t–th iteration. 

(Note that we could also use a reward–based, reinforcement learning rule [83], in which 
system learns its optimal policy: innovation(t) = |reward(t) – penalty(t)|. ) 

In this way, we effectively derive a unique and globally smooth, causal and entropic phase– 
transition map (7), performed at a macroscopic (global) time–level from some initial time tini 
to the final time tfin. Thus, we have obtained macro–objects in the ID: a single path described 
by Newtonian–like equation of motion, a single force–field described by Maxwellian–like 
field equations, and a single obstacle–free Riemannian geometry (with global topology 
without holes). 
In particular, on the macro–level, we have the ID–paths, that is biodynamical trajectories 
generated by the Hamilton action principle 

I [ ] = 0,DS xδ  

with the Newtonian action SID[x] given by (Einstein’s summation convention over repeated 
indices is always assumed) 

 I
1[ ] = [ ] ,
2

t fin ji
D ijtini

S x g x x dtϕ +∫ � �  (14) 

                                                 
6 The traditional neural networks approaches are known for their classes of functions they 
can represent. Here we are talking about functions in an extensional rather than merely 
intensional sense; that is, function can be read as input/output behavior [5; 6; 19; 34]. This 
limitation has been attributed to their low-dimensionality (the largest neural networks are 
limited to the order of 105 dimensions [61]). The proposed path integral approach represents 
a new family of function-representation methods, which potentially offers a basis for a 
fundamentally more expansive solution. 
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Fig. 1. Riemannian configuration manifold MID of human biodynamics is defined as a 
topological product M = ΠiSE(3)i of constrained Euclidean SE(3)–groups of rigid body 
motion in 3D Euclidean space (see [49; 52]), acting in all major (synovial) human joints. The 
manifold M is a dynamical structure activated/controlled by potential covariant forces (16) 
produced by a synergetic action of about 640 skeletal muscles [47]. 
 

where φ = φ(t, xi) denotes the mental LSF–potential field, while the second term, 

1= ,
2

ji
ijT g x x� �  

represents the physical (biodynamic) kinetic energy generated by the Riemannian inertial 
metric tensor gij of the configuration biodynamic manifold MID (see Figure 1). The 
corresponding Euler–Lagrangian equations give the Newtonian equations of human 
movement 

 = ,i i ix x
d T T F
dt

−
�

 (15) 

where subscripts denote the partial derivatives and we have defined the covariant muscular 
forces Fi = Fi(t, xi, ix� ) as negative gradients of the mental potential φ(xi), 

 = .i ix
F ϕ−  (16) 

Equation (15) can be put into the standard Lagrangian form as 

 = , with = ( ),i
i ix x

d L L L T x
dt

ϕ−
�

 (17) 
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or (using the Legendre transform) into the forced, dissipative Hamiltonian form [44; 47] 

 = , = ,i
p p i i i ii i x x

x H R p F H R∂ + ∂ − ∂ + ∂� �  (18) 

where pi are the generalized momenta (canonically–conjugate to the coordinates xi),  
H = H(p, x) is the Hamiltonian (total energy function) and R = R(p, x) is the general 
dissipative function. 
The human motor system possesses many independently controllable components that 
often allow for more than a single movement pattern to be performed in order to achieve a 
goal. 
Hence, the motor system is endowed with a high level of adaptability to different tasks and 
also environmental contexts [42]. The multiple SE(3)–dynamics applied to human musculo– 
skeletal system gives the fundamental law of biodynamics, which is the covariant force law: 

 Force co vector field = Mass distribution Acceleration vector field,− × −  (19) 

which is formally written: 

= , ( , = 1,..., = dim( ))j
i ijF g a i j n M  

where Fi are the covariant force/torque components, gij is the inertial metric tensor of the 
configuration Riemannian manifold M = ΠiSE(3)i (gij defines the mass–distribution of the 
human body), while aj are the contravariant components of the linear and angular 
acceleration vector-field. (This fundamental biodynamic law states that contrary to common 
perception, acceleration and force are not quantities of the same nature: while acceleration is 
a non-inertial vector-field, force is an inertial co-vector-field. This apparently insignificant 
difference becomes crucial in injury prediction/prevention, especially in its derivative form 
in which the ‘massless jerk’ (= a� ) is relatively benign, while the ‘massive jolt’ (= F� ) is 
deadly.) Both Lagrangian and (topologically equivalent) Hamiltonian development of the 
covariant force law is fully elaborated in [47; 48; 49; 52]. This is consistent with the 
postulation that human action is guided primarily by natural law [66]. 
On the micro–ID level, instead of each single trajectory defined by the Newtonian equation 
of motion (15), we have an ensemble of fluctuating and crossing paths on the configuration 
manifold M with weighted probabilities (of the unit total sum). This ensemble of micro–
paths is defined by the simplest instance of our adaptive path integral (10), similar to the 
Feynman’s original sum over histories, 

 i [ ]

I
P  |  = [ ]e ,S x

M D
hysical Action Mental Preparation wx〈 〉 ∫ D  (20) 

where D[wx] is the functional ID–measure on the space of all weighted paths, and the 
exponential depends on the action SID[x] given by (14). 

3.2 Crowd behavioral–compositional dynamics (CD) 
In this subsection we develop a generic crowd CD, as a unique and globally smooth, causal 
and entropic phase–transition map (9), in which agents (or, crowd’s individual entities) can 
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be both humans and robots. This crowd behavioral action takes place in a crowd smooth 
Riemannian 3n-manifold M. Recall from Figure 1 that each individual segment of a human 
body moves in the Euclidean 3–space R3 according to its own constrained SE(3)–group. 
Similarly, each individual agent’s trajectory, xi = xi(t), i = 1, ...n, is governed by the Euclidean 
SE(2)–group of rigid body motions in the plane. (Recall that a Lie group SE(2) ≡ SO(2) × R is 
a set of all 3 × 3– matrices of the form: 
 

cos sin
sin cos ,
0 0 1

x
y

θ θ
θ θ

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

including both rigid translations (i.e., Cartesian x,y–coordinates) and rotation matrix 
cos sin
sin cos
θ θ
θ θ

⎡ ⎤
⎢ ⎥−⎣ ⎦

 in Euclidean plane R2 (see [49; 52]). The crowd configuration manifold M is 

defined as a union of Euclidean SE(2)–groups for all n individual agents in the crowd, that is 
crowd’s configuration 3n–manifold is defined as a set 
 

 
=1 =1

= (2) (2) ,
n n

k k k

k k
M SE SO≡ ×∑ ∑ R  (21) 

coordinated by , , }, (for = 1,2,..., ).k k k kx y k nθx = {  
 

In other words, the crowd configuration manifold M is a dynamical planar graph with 
individual agents’ SE(2)–groups of motion in the vertices and time-dependent inter-agent 
distances = ( ) ( )ji

ij i jI x t x t⎡ ⎤−⎣ ⎦  as edges. 

Similarly to the individual case, the crowd action functional includes mental cognitive 
potential and physical kinetic energy, formally given by (with i, j = 1, ..., 3n): 
 

 21 1[ , ; , ] = ( ) ( ) ( )   ( ) ( ) ,
2 2

j j ji i i
i j ij i j i j ijt t ti j

A x x t t I x t x t dt dt g x t x t dtδ +∫ ∫ ∫� � � �  (22) 

22with = ( ) ( ) , where , , .ji
ij i j i jI x t x t IN t t t OUT⎡ ⎤− ≤ ≤⎣ ⎦  

 
The first term in (22) represents the mental potential for the interaction between any two 
agents xi and xi within the total crowd matrix xij. (Although, formally, this term contains 
cognitive velocities, it still represents ‘potential energy’ from the physical point of view.) It is 
defined as a double integral over a delta function of the square of interval I2 between two 
points on the paths in their individual cognitive LSFs. Interaction occurs only when this 
LSF– distance between the two agents xi and xj vanishes. Note that the cognitive intentions 
of any two agents generally occur at different times ti and tj unless ti = tj, when cognitive 
synchronization occurs. This term effectively represents the crowd cognitive controller (see [53]). 
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The second term in (22) represents kinetic energy of the physical interaction of agents. 
Namely, after the above cognitive synchronization is completed, the second term of physical 
kinetic energy is activated in the common CD manifold, reducing it to just one of the agents’ 
individual manifolds, which is equivalent to the center-of-mass segment in the human 
musculo-skeletal system. Therefore, from (22) we can derive a generic Euler–Lagrangian 
dynamics that is a composition of (17), which also means that we have in place a generic 
Hamiltonian dynamics that is a amalgamate of (18), as well as the crowd covariant force law 
(19), the governing law of crowd biodynamics: 
 

Crowd force co vector field = Crowd mass distribution Crowd acceleration vector field,− × −  

 formally:   = , where    is the inertial metric tensor of crowd manifold .j
i ij ijF g a g M  (23) 

 

The left-hand side of this equation defines forces acting on the crowd, while right-hand 
defines its mass distribution coupled to the crowd kinematics (CK, described in the next 
subsection). 
At the slave level, the adaptive path integral, representing an ∞–dimensional neural 
network, corresponding to the crowd behavioral action (22), reads 
 

 
[ , ; , ]

CD C
P  |  = [ , , ]e ,

iA x y t ti j

D
hysical Action Mental Preparation w x y〈 〉 ∫ D  (24) 

 

where the Lebesgue-type integration is performed over all continuous paths xi = xi(ti) and  
yj = yj(tj), while summation is performed over all associated discrete Markov fluctuations 
and jumps. The symbolic differential in the path integral (24) represents an adaptive path 
measure, defined as the weighted product 
 

 
=1

[ , , ] = , ( , = 1,..., ).lim
N

js i
ij

N s
w x y w dx dy i j n

→∞
∏D  (25) 

 

The quantum–field path integral (24)–(25) defines the microstate CD–level, an ensemble of 
fluctuating and crossing paths on the crowd 3n–manifold M. 
The crowd manifold M itself has quite a sophisticated topological structure defined by its 
macrostate Euler–Lagrangian dynamics. As a Riemannian smooth n–manifold, M gives rise 
to its fundamental n–groupoid, or n–category Πn(M) (see ([49; 52]). In Πn(M), 0–cells are 
points in M; 1–cells are paths in M(i.e., parameterized smooth maps f : [0,1]→M); 2–cells are 
smooth homotopies (denoted by �) of paths relative to endpoints (i.e., parameterized 
smooth maps h : [0,1] × [0,1]→ M); 3–cells are smooth homotopies of homotopies of paths in 
M (i.e., parameterized smooth maps j : [0,1] × [0,1] × [0,1]→ M). Categorical composition is 
defined by pasting paths and homotopies. In this way, the following recursive homotopy 
dynamics emerges on the crowd 3n–manifold M: 
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3.3 Dissipative crowd kinematics (CD) 
The crowd action (22) with its amalgamate Lagrangian dynamics (17) and amalgamate 
Hamiltonian dynamics (18), as well as the crowd force law (23) define the macroscopic 
crowd dynamics, CD. Suppose, for a moment, that CD is force–free and dissipation free, 
therefore conservative. Now, the basic characteristic of the conservative 
Lagrangian/Hamiltonian systems evolving in the phase space spanned by the system 
coordinates and their velocities/momenta, is that their flow L

tϕ  (explained below) preserves 
the phase–space volume, as proposed by the Liouville theorem, which is the well known 
fact in statistical mechanics. However, the preservation of the phase volume causes 
structural instability of the conservative system, i.e., the phase–space spreading effect by 
which small phase regions Rt will tend to get distorted from the initial one Ro during the 
conservative system evolution. This problem, governed by entropy growth (∂tS > 0), is much 
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more serious in higher dimensions than in lower dimensions, since there are so many 
‘directions’ in which the region can locally spread (see [49; 74]). This phenomenon is related 
to conservative Hamiltonian chaos (see section 4 below). 
However, this situation is not very frequent in case of ‘organized’ human crowd. Its self-
organization mechanisms are clearly much stronger than the conservative statistical 
mechanics effects, which we interpret in terms of Prigogine’s dissipative structures (see 
Appendix). Formally, if dissipation of energy in a system is much stronger then its inertial 
characteristics, then instead of the second-order Newton–Lagrangian dynamic equations of 
motion, we are actually dealing with the first-order driftless (non-acceleration, non-inertial) 
kinematic equations of motion (see Appendix, eq. (64)), which is related to dissipative chaos 
[71]. Briefly, the dissipative crowd flow can be depicted like this: from the set of initial 
conditions for individual agents, the crowd evolves in time towards the set of the 
corresponding entangled attractors,7 which are mutually separated by fractal (non-integer 
dimension) separatrices. 
In this subsection we elaborate on the dissipative crowd kinematics (CK), which is self– 
controlled and dominates the CD if the crowd’s inertial forces are much weaker then the 
crowd’s dissipation of energy, presented here in the form of nonlinear velocity controllers. 
                                                 
7 Recall that quantum entanglement is a quantum mechanical phenomenon in which the 
quantum states of two or more objects are linked together so that one object can no longer be 
adequately described without full mention of its counterpart – even though the individual 
objects may be spatially separated. This interconnection leads to correlations between 
observable physical properties of remote systems. The related phenomenon of wave-function 
collapse gives an impression that measurements performed on one system instantaneously 
influence the other systems entangled with the measured system, even when far apart. 
Entanglement has many applications in quantum information theory. Mixed state 
entanglement can be viewed as a resource for quantum communication. A common 
measure of entanglement is the entropy of a mixed quantum state (see, e.g. [59]). Since a 
mixed quantum state ρ is a probability distribution over a quantum ensemble, this leads 
naturally to the definition of the von Neumann entropy, S(ρ) = –Tr (ρlog2 ρ) , which is 
obviously similar to the classical Shannon entropy for probability distributions (p1, … , pn), 
defined as S(p1, … , pn) = –Σi pi log2 pi. As in statistical mechanics, one can say that the more 
uncertainty (number of microstates) the system should possess, the larger is its entropy. 
Entropy gives a tool which can be used to quantify entanglement. If the overall system is 
pure, the entropy of one subsystem can be used to measure its degree of entanglement with 
the other subsystems. 
The most popular issue in a research on dissipative quantum brain modelling has been 
quantum entanglement between the brain and its environment [77; 78], where the brain–
environment system has an entangled ‘memory’ state, identified with the ground (vacuum) 
state |0 >N, that cannot be factorized into two single–mode states. (In the Vitiello–Pessa 
dissipative quantum brain model [77; 78], the evolution of the N–coded memory system was 
represented as a trajectory of given initial condition running over time–dependent states 
|0(t) >N, each one minimizing the free energy functional.) Similar to this microscopic brain–
environment entanglement, we propose a kind of macroscopic entanglement between the 
operating modes of the crowd behavioral controller and its biodynamics, which can be 
considered as a ‘long–range correlation’. 
Applied externally to the dimension of the crowd 3n–manifold M, entanglement effectively 
reduces the number of active degrees of freedom in (21). 
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Recall that the essential concept in dynamical systems theory is the notion of a vector–field 
(that we will denote by a boldface symbol), which assigns a tangent vector to each point p in 
the manifold in case. In particular, v is a gradient vector–field if it equals the gradient of 
some scalar function. A flow–line of a vector–field v is a path fl(t) satisfying the vector ODE, 
fl� (t) = v(fl(t)), that is, v yields the velocity field of the path fl(t). The set of all flow lines of a 
vector–field v comprises its flow φt that is (technically, see e.g., [49; 52]) a one–parameter Lie 
group of diffeomorphisms (smooth bijective functions) generated by a vector-field v on M, 
such that 

0= , = identity, which gives: ( ) = ( (0)).t s t s ttϕ ϕ ϕ ϕ γ ϕ γ+D  

Analytically, a vector-field v is defined as a set of autonomous ODEs. Its solution gives the 
flow φt, consisting of integral curves (or, flow lines) fl(t) of the vector–field, such that all the 
vectors from the vector-field are tangent to integral curves at different representative points 
p ∈ M. In this way, through every representative point p ∈ M passes both a curve from the 
flow and its tangent vector from the vector-field. Geometrically, vector-field is defined as a 
cross-section of the tangent bundle TM of the manifold M. 
In general, given an nD frame {∂i} ≡ {∂/∂xi} on a smooth n–manifold M (that is, a basis of 
tangent vectors in a local coordinate chart xi = (x1, ..., xn) ⊂ M), we can define any vector-field 
v on M by its components vi = vi(t) as 

1
1= = = ... .i i n

i i nv v v v
x x x
∂ ∂ ∂

∂ + +
∂ ∂ ∂

v  

Thus, a vector-field v ∈ X(M) (where X (M) is the set of all smooth vector-fields on M) is 
actually a differential operator that can be used to differentiate any smooth scalar function  
f = f (x1, ..., xn) on M, as a directional derivative of f in the direction of v. This is denoted simply 
vf, such that 

1
1= = = ... .i i n

i i n

f f ff v f v v v
x x x
∂ ∂ ∂

∂ + +
∂ ∂ ∂

v  

In particular, if v = γ� (t) is a velocity vector-field of a space curve γ(t) = (x1(t), ..., xn(t)), 
defined by its components vi = ix� (t), directional derivative of f (xi) in the direction of v 
becomes 

= = = = ,
i

i
i i

f dfdxf x f f
dt x dt

∂
∂

∂
v ��  

which is a rate-of-change of f along the curve γ(t) at a point xi(t). 
Given two vector-fields, u = ui∂i,v = vi∂i ∈ X(M), their Lie bracket (or, commutator) is another 
vector-field [u,v] ∈ X (M), defined by 

[ , ] = = ,j ji i
i j j iu v v u− ∂ ∂ − ∂ ∂u v uv vu  

which, applied to any smooth function f on M, gives 

( ) ( )[ , ]( ) = ( ) ( ) .f f f−u v u v v u  
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The Lie bracket measures the failure of ‘mixed directional derivatives’ to commute. Clearly, 
mixed partial derivatives do commute, [∂i, ∂j] = 0, while in general it is not the case, [u,v] ≠ 0. 
In addition, suppose that u generates the flow φt and v generates the flow φs. Then, for any 
smooth function f on M, we have at any point p on M, 

( )
2

[ , ]( )( ) = ( ( ( )) ( ( ( ))),s t t sf p f p f p
t s

ϕ ϕ ϕ ϕ∂
−

∂ ∂
u v  

which means that in f (φs(φt(p))) we are starting at p, flowing along v a little bit, then along u 
a little bit, and then evaluating f , while in f (φt(φs(p))) we are flowing first along u and then 
v. Therefore, the Lie bracket infinitesimally measures how these flows fail to commute. 
The Lie bracket satisfies the following three properties (for any three vector-fields u,v,w ∈M 
and two constants a, b – thus forming a Lie algebra on the crowd manifold M): 
i. [ , ] = [ , ]−u v v u  skew-symmetry; 
ii. [ , ] = [ , ] [ , ]a b a b+ + −u v w u v u w  bilinearity;  and 
iii. [ ,[ , ]] [ ,[ , ]] [ ,[ , ]]+ + −u v w v w u w u v Jacobi identity. 
A new set of vector-fields on M can be generated by repeated Lie brackets of u, v, w ∈M. 
The Lie bracket is a standard tool in geometric nonlinear control theory (see, e.g. [49; 52]). Its 
action on vector-fields can be best visualized using the popular car parking example, in 
which the driver has two different vector–field transformations at his disposal. They can 
turn the steering wheel, or they can drive the car forward or backward. Here, we specify the 
state of a car by four coordinates: the (x, y) coordinates of the center of the rear axle, the 
direction θ of the car, and the angle φ between the front wheels and the direction of the car. l 
is the constant length of the car. Therefore, the 4D configuration manifold of a car is a set  
M ≡ SO(2) × R2, coordinated by x ≡ {x, y, θ, φ}, which is slightly more complicated than the 
individual crowd agent’s 3D configuration manifold SE(2) ≡ SO(2) × R, coordinated by  
x = {x, y, θ}. The driftless car kinematics can be defined as a vector ODE: 

 1 2= ( ) ( ) ,c c+x u x v x�  (26) 

with two vector–fields, u,v ∈ X(M), and two scalar control inputs, c1 and c2. The infinitesimal 
car–parking transformations will be the following vector–fields 

cos
sin

tan( ) DRIVE = cos sin ,1 tan

0

x y l
l

θ
θ

φθ θ
θ φ

⎛ ⎞
⎜ ⎟
⎜ ⎟∂ ∂ ∂

≡ + + ≡ ⎜ ⎟
∂ ∂ ∂ ⎜ ⎟

⎜ ⎟⎜ ⎟
⎝ ⎠

u x  

0
0

and ( ) STEER = .
0
1

φ

⎛ ⎞
⎜ ⎟

∂ ⎜ ⎟≡ ≡ ⎜ ⎟∂
⎜ ⎟⎜ ⎟
⎝ ⎠

v x  

The car kinematics (26) therefore expands into a matrix ODE: 
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1 2 1 2

cos 0
sin 0

= DRIVE STEER .1 0tan
10

x
y

c c c c
l

θ
θ

θ φ
φ

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⋅ + ⋅ ≡ ⋅ + ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

�
�
�
�

 

However, STEER and DRIVE do not commute (otherwise we could do all your steering at 
home before driving of on a trip). Their combination is given by the Lie bracket 

2

1[ , ] [STEER,DRIVE] = WRIGGLE.
cosl φ θ

∂
≡ ≡

∂
v u  

The operation [v,u] ≡ WRIGGLE ≡ [STEER,DRIVE] is the infinitesimal version of the 
sequence of transformations: steer, drive, steer back, and drive back, i.e., 

1 1{STEER,DRIVE,STEER ,DRIVE }.− −  

Now, WRIGGLE can get us out of some parking spaces, but not tight ones: we may not have 
enough room to WRIGGLE out. The usual tight parking space restricts the DRIVE 
transformation, but not STEER. A truly tight parking space restricts STEER as well by 
putting your front wheels against the curb. 
Fortunately, there is still another commutator available: 

[ ,[ , ]] [DRIVE,[STEER,DRIVE]] = [[ , ], ]− ≡ ≡u v u u v u  

2

1[DRIVE,WRIGGLE] = sin cos SLIDE
cosl x y

θ θ
φ
⎛ ⎞∂ ∂

− ≡⎜ ⎟
∂ ∂⎝ ⎠

 

The operation [[u,v],u] ≡ SLIDE ≡ [DRIVE,WRIGGLE] is a displacement at right angles to 
the car, and can get us out of any parking place. We just need to remember to steer, drive, 
steer back, drive some more, steer, drive back, steer back, and drive back: 

1 1 1 1{STEER,DRIVE,STEER ,DRIVE,STEER,DRIVE ,STEER ,DRIVE }.− − − −  
We have to reverse steer in the middle of the parking place. This is not intuitive, and no 
doubt is part of a common problem with parallel parking. 
Thus, from only two controls, c1 and c2, we can form the vector–fields DRIVE ≡ u,  
STEER ≡ v, WRIGGLE ≡ [v,u], and SLIDE ≡ [[u,v],u], allowing us to move anywhere in the 
car configuration manifold M ≡ SO(2) × R2. All above computations are straightforward in 
MathematicaTM8 if we define the following three symbolic functions: 
 

1.     Jacobian matrix: JacMat[v_List, x_List] := Outer[D, v, x]; 
2.     Lie bracket: LieBrc[u_List, v_List, x_List] := JacMat[v, x] . u - JacMat[u, x] . v; 
3.     Repeated Lie bracket: Adj[u_List, v_List, x_List, k_] := 
                                                                          If[k == 0, v, LieBrc[u, Adj[u, v, x, k - 1], x]]; 
 

                                                 
8 The above computations could instead be done in other available packages, such as Maple, 
by suitably translating the provided example code. 
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In case of the human crowd, we have a slightly simpler, but multiplied problem, i.e., 
superposition of n individual agents’ motions. So, we can define the dissipative crowd 
kinematics as a system of n vector ODEs: 

 1 2= ( ) ( ) , wherek k k k kc c+x u x v x�  (27) 

cos
( ) DRIVE = , andcos sin sin

0

k

k k k k k
k kx y

θ
θ θ θ

⎛ ⎞
∂ ∂ ⎜ ⎟

≡ + ≡ ⎜ ⎟∂ ∂ ⎜ ⎟
⎝ ⎠

u x  

1 2

0
( ) STEER = 0 , while and  are crowd controls.

1

k k k k
k c c

θ

⎛ ⎞
∂ ⎜ ⎟≡ ≡ ⎜ ⎟∂ ⎜ ⎟

⎝ ⎠

v x  

Thus, the crowd kinematics (27) expands into the matrix ODE: 

 1 2 1 2

0cos
= DRIVE STEER 0 .sin

0 1

k

k k k k k kk

x
y c c c c

θ
θ

θ

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⋅ + ⋅ ≡ ⋅ + ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

�
�
�

 (28) 

A 3D simulation of random, dissipative crowd kinematics (27)–(28) of 120 penguin-like 
SE(2)–robots, developed in C++/DirX is presented in Figure 2. 
 

 
Fig. 2. Driving and steering random SE(2)–dynamics of 120 penguin-like robots (with 
embedded collision-detection). Compare with [2]. 
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The dissipative crowd kinematics (27)–(28) obeys the set of n-tuple integral rules of motion 
that are similar (though slightly simpler) to the above rules of the car kinematics, including 
the following derived vector-fields: 

WRIGGLEk ≡ [STEERk,DRIVEk] ≡ [vk,uk] and 
                                           SLIDEk ≡ [DRIVEk,WRIGGLEk] ≡ [[uk,vk],uk] 
Thus, controlled by the two vector controls 1

kc  and 2
kc , the crowd can form the vector–fields: 

DRIVE ≡ uk, STEER ≡ vk, WRIGGLE ≡ [vk,uk], and SLIDE ≡ [[uk,vk],uk], allowing it to move 
anywhere within its configuration manifold M given by (21). Solution of the dissipative 
crowd kinematics (27)–(28) defines the dissipative crowd flow, K

tφ . 
Now, the general CD–CK crowd behavior can be defined as a amalgamate flow (behavioral 
Lagrangian flow, L

tφ , plus dissipative kinematic flow, K
tφ ) on the crowd manifold M 

defined by (21), 

= : ( ( ), ( )),L K
t t tC t M t g tφ φ+ 6  

which is a one-parameter family of homeomorphic (topologically equivalent) Riemannian 
manifolds9 (M, g = gij), parameterized by a ‘time’ parameter t. That is, Ct can be used for 

                                                 
9 Proper differentiation of vector and tensor fields on a smooth Riemannian manifold (like 
the crowd 3n–manifold M) is performed using the Levi–Civita covariant derivative (see, e.g., 
[49; 52]). Formally, let M be a Riemannian N–manifold with the tangent bundle TM and a 
local coordinate system =1{ }i N

ix  defined in an open set U ⊂ M. The covariant derivative 
operator, ∇X : C∞(TM) → C∞(TM), is the unique linear map such that for any vector-fields 
X,Y,Z, constant c, and scalar function f the following properties are valid: 

= , ( ) = ( ) , = [ , ],X cY X Y X X X X Yc Y fZ Y Xf Z f Z Y X X Y+∇ ∇ + ∇ ∇ + ∇ + + ∇ ∇ −∇  

where [X,Y] is the Lie bracket of X and Y. In local coordinates, the metric g is defined for any 
orthonormal basis (∂i = ∂/∂xi) in U ⊂M by gij = g(∂i, ∂j) = δij, ∂kgij = 0. Then the affine Levi–
Civita connection is defined on M by 

( )1= ,  where   = are the Christoffel symbols.
2

k k kl
j ij k ij i jl j il l iji

g g g g∂∇ ∂ Γ ∂ Γ ∂ + ∂ − ∂  

Now, using the covariant derivative operator ∇X we can define the Riemann curvature (3,1)–
tensor Rm by 

, ]( , ) = ,X Y Y X X YX Y Z Z Z Z∇ ∇ −∇ ∇ −∇Rm  

which measures the curvature of the manifold by expressing how noncommutative 
covariant differentiation is. The (3,1)–components l

ijkR  of Rm are defined in U ⊂ M by 

( ), = ,  or    = .l l l l m l m l
i j k ijk l ijk i jk j ik jk im ik jmR R∂ ∂ ∂ ∂ ∂ Γ − ∂ Γ + Γ Γ − Γ ΓRm  

Also, the Riemann (4,0)–tensor =l m
ijk lm ijkR g R  is defined as the g–based inner product on M, 

( )= , , .ijkl i j k lR ∂ ∂ ∂ ∂Rm  

The first and second Bianchi identities for the Riemann (4,0)–tensor Rijkl  hold,  
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describing smooth deformations of the crowd manifold M over time. The manifold family 
(M(t), g(t)) at time t determines the manifold family (M(t + dt), g(t + dt)) at an infinitesimal 
time t + dt into the future, according to some presecribed geometric flow, like the celebrated 
Ricci flow [30; 31; 32; 33] (that was an instrument for a proof of a 100–year old Poincaré 
conjecture), 

 ( ) = 2 ( ),t ij ijg t R t∂ −  (29) 

where Rij is the Ricci curvature tensor (see Appendix) of the crowd manifold M and ∂tg(t) is 
defined as 

 
0

( ) ( )( ) ( ) := .limt
dt

g t dt g tdg t g t
dt dt→

+ −
∂ ≡   (30) 

3.4 Aggregate behavioral–compositional dynamics (AD) 
To formally develop the meso-level aggregate behavioral–compositional dynamics (AD), we 
start with the crowd path integral (24), which can be redefined if we Wick–rotate the time 
variable t to imaginary values, t → τ = it, thereby transforming the Lorentzian path integral 
in real time into the Euclidean path integral in imaginary time. Furthermore, if we rectify the 
time axis back to the real line, we get the adaptive SFT–partition function as our proposed 
AD –model: 

 
[ , ; , ]

AD C
Physical Action|Mental Preparation = [ , , ]e .

A x y t ti j

D
w x y

−
〈 〉 ∫ D  (31) 

The adaptive AD –transition amplitude 〈Physical Action|Mental Preparation〉AD as defined 
by the SFT–partition function (31) is a general model of a Markov stochastic process. Recall 
that Markov process is a random process characterized by a lack of memory, i.e., the statistical 
properties of the immediate future are uniquely determined by the present, regardless of the 
past (see, e.g. [23; 49]). The N–dimensional Markov process can be defined by the Ito 
stochastic differential equation, 

 ( ) = [ ( ), ] [ ( ), ] ( ),ji i
i i ijdx t A x t t dt B x t t dW t+   (32) 

                                                                                                                            

= 0, = 0,ijkl jkil kijl i jklm j kilm k ijlmR R R R R R+ + ∇ +∇ +∇  

while the twice contracted second Bianchi identity reads: 2∇jRij = ∇iR.  
The (0,2) Ricci tensor Rc is the trace of the Riemann (3,1) –tensor Rm, 

( , ) tr( ( , ) ),  so that   ( , ) = ( ( , ) , ),i iY Z X X Y Z X Y g X Y+ → ∂ ∂Rc Rm Rc Rm  

Its components Rjk = Rc(∂j, ∂k)are given in U ⊂M by the contraction 

= , or   = .i i i i m i m
jk ijk jk i jk k ji mi jk mk jiR R R ∂ Γ − ∂ Γ + Γ Γ − Γ Γ  

Finally, the scalar curvature R is the trace of the Ricci tensor Rc, given in U ⊂M by: R = gijRij. 
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 0(0) = , ( , = 1, , )i
ix x i j N…   (33) 

or corresponding Ito stochastic integral equation 

 
0 0

( ) = (0) [ ( ), ] ( ) [ ( ), ],
t t ji i i i

i ijx t x dsA x s s dW s B x s s+ +∫ ∫  (34) 

in which xi(t) is the variable of interest, the vector Ai[x(t), t] denotes deterministic drift, the 
matrix Bij[x(t), t] represents continuous stochastic diffusion fluctuations, and W j(t) is an N–
variable Wiener process (i.e., generalized Brownian motion [23]) and 

( ) = ( ) ( ).j j jdW t W t dt W t+ −  

The two Ito equations (33)–(34) are equivalent to the general Chapman–Kolmogorov probability 
equation (see equation (35) below). There are three well known special cases of the 
Chapman– Kolmogorov equation (see [23]): 
1. When both Bij[x(t), t] and W(t) are zero, i.e., in the case of pure deterministic motion, it 

reduces to the Liouville equation 

{ }( , | , ) = [ ( ), ] ( , | , ) .t ii
i

P x t x t A x t t P x t x t
x
∂′ ′ ′′ ′′ ′ ′ ′′ ′′∂ −
∂∑  

2. When only W(t) is zero, it reduces to the Fokker–Planck equation 

{ }( , | , ) = [ ( ), ] ( , | , )t ii
i

P x t x t A x t t P x t x t
x
∂′ ′ ′′ ′′ ′ ′ ′′ ′′∂ −
∂∑  

{ }
21 [ ( ), ] ( , | , ) .

2 ijji
ij

B x t t P x t x t
x x
∂ ′ ′ ′′ ′′+

∂ ∂∑  

3. When both Ai [x(t), t] and Bij[x(t), t) are zero, i.e., the state–space consists of integers 
only, it reduces to the Master equation of discontinuous jumps 

( , | , ) = ( | , ) ( , | , ) ( | , ) ( , | , ).tP x t x t dxW x x t P x t x t dxW x x t P x t x t′ ′ ′′ ′′ ′ ′′ ′ ′ ′′ ′′ ′′ ′ ′ ′ ′′ ′′∂ −∫ ∫  
 

The Markov assumption can now be formulated in terms of the conditional probabilities P(xi, 
ti): if the times ti increase from right to left, the conditional probability is determined entirely 
by the knowledge of the most recent condition. Markov process is generated by a set of 
conditional probabilities whose probability–density P = P(x’, t’|x”, t”) evolution obeys the 
general Chapman–Kolmogorov integro–differential equation 

{ } { }
21= [ ( ), ]   [ ( ), ]

2t i ijji i
i ij

P A x t t P B x t t P
x x x
∂ ∂

∂ − +
∂ ∂ ∂∑ ∑  

{ }( | , ) ( | , )dx W x x t P W x x t P′ ′′ ′′ ′+ −∫  

including deterministic drift, diffusion fluctuations and discontinuous jumps (given respectively 
in the first, second and third terms on the r.h.s.). This general Chapman–Kolmogorov 
integro-differential equation (35), with its conditional probability density evolution,  
P = P(x’, t’|x”, t”), is represented by our SFT–partition function (31). 
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Furthermore, discretization of the adaptive SFT–partition function (31) gives the standard 
partition function (see Appendix) 

 
/

= e ,
jw E Tj

j
Z

−

∑  (35) 

where Ej is the motion energy eigenvalue (reflecting each possible motivational energetic 
state), T is the temperature–like environmental control parameter, and the sum runs over all 
ID energy eigenstates (labelled by the index j). From (35), we can calculate the transition 
entropy, as S = kB lnZ (see the next section). 

4. Entropy, chaos and phase transitions in the crowd manifold 
Recall that nonequilibrium phase transitions [25; 26; 27; 28; 29] are phenomena which bring 
about qualitative physical changes at the macroscopic level in presence of the same 
microscopic forces acting among the constituents of a system. In this section we extend the 
CD formalism to incorporate both algorithmic and geometrical entropy as well as dynamical 
chaos [50; 58; 60] between the entropy–growing phase of Mental Preparation and the 
entropy– conserving phase of Physical Action, together with the associated topological 
phase transitions. 

4.1 Algorithmic entropy 
The Boltzmann and Shannon (hence also Gibbs entropy, which is Shannon entropy scaled 
by k ln 2, where k is the Bolzmann constant) entropy definitions involve the notion of 
ensembles. Membership of microscopic states in ensembles defines the probability density 
function that underpins the entropy function; the result is that the entropy of a definite and 
completely known microscopic state is precisely zero. Bolzmann entropy defines the 
probabilistic model of the system by effectively discarding part of the information about the 
system, while the Shannon entropy is concerned with measuring the ignorance of the 
observer – the amount of missing information – about the system. 
Zurek proposed a new physical entropy measure that can be applied to individual 
microscopic system states and does not use the ensemble structure. This is based on the 
notion of a fixed individually random object provided by Algorithmic Information Theory 
and Kolmogorov Complexity: put simply, the randomness K(x) of a binary string x is the 
length in terms of number of bits of the smallest program p on a universal computer that can 
produce x. 
While this is the basic idea, there are some important technical details involved with this 
definition. The randomness definition uses the prefix complexity K(.) rather than the older 
Kolmogorov complexity measure C(.): the prefix complexity K(x|y) of x given y is the 
Kolmogorov complexity 

u
Cφ (x|y)= min{p|x= φu(〈y, p〉)} (with the convention that  

u
Cφ (x|y)= ∞ if there is no such p) that is taken with respect to a reference universal partial 
recursive function φu that is a universal prefix function. Then the prefix complexity K(x) of x 
is just K(x|ε) where ε is the empty string. A partial recursive prefix function φ : M → N is a 
partial recursive function such that if φ(p) < ∞ and φ(q) < ∞ then p is not a proper prefix of q: 
that is, we restrict the complexity definition to a set of strings (which are descriptions of 
effective procedures) such that none is a proper prefix of any other. In this way, all effective 
procedure descriptions are self-delimiting: the total length of the description is given within 
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the description itself. A universal prefix function φu is a prefix function such that  
∀n ∈N φu (〈y, 〈n, p〉〉 = φn(〈y, p〉, where φn is numbered n according to some Godel numbering 
of the partial recursive functions; that is, a universal prefix function is a partial recursive 
function that simulates any partial recursive function. Here, 〈x,y〉 stands for a total recusive 
one-one mapping from N×N into N, 〈x1, x2, . . . , xn〉 = 〈x1, 〈x2, . . . , xn〉〉,N is the set of natural 
numbers, and M = {0,1}* is the set of all binary strings. 
This notion of entropy circumvents the use of probability to give a concept of entropy that 
can be applied to a fully specified macroscopic state: the algorithmic randomness of the state 
is the length of the shortest possible effective description of it. To illustrate, suppose for the 
moment that the set of microscopic states is countably infinite, with each state identified 
with some natural number. It is known that the discrete version of the Gibbs entropy (and 
hence of Shannon’s entropy) and the algorithmic entropy are asymptotically consistent 
under mild assumptions. Consider a system with a countably infinite set of microscopic 
states X supporting a probability density function P(.) so that P(x) is the probability that the 
system is in microscopic state x ∈ X. Then the Gibbs entropy is ( ) = ( ln2) ( )log ( )G

x X
S P k P x P x

∈

− ∑  

(which is Shannon’s information-theoretic entropy H(P) scaled by k ln 2). Supposing that P(.) 
is recursive, then ( ) = ( ln 2) ( ) ( )G

x X
S P k P x K x C

∈

+∑ , where Cφ is a constant depending only on 

the choice of the reference universal prefix function φ. Hence, as a measure of entropy, the 
function K(.) manifests the same kind of behavior as Shannon’s and Gibbs entropy 
measures.  
Zurek’s proposal was of a new physical entropy measure that includes contributions from 
both the randomness of a state and ignorance about it. Assume now that we have 
determined the macroscopic parameters of the system, and encode this as a string - which 
can always be converted into an equivalent binary string, which is just a natural number 
under a standard encoding. It is standard to denote the binary string and its corresponding 
natural number interchangeably; here let x be the encoded macroscopic parameters. Zurek’s 
definition of algorithmic entropy of the macroscopic state is then K(x) + Hx, where  
Hx = SB(x)/(k ln2), where SB(x) is the Bolzmann entropy of the system constrained by x and k 
is Bolzmann’s constant; the physical version of the algorithmic entropy is therefore defined 
as SA(x) = (k ln2)(K(x) + Hx). Here Hx represents the level of ignorance about the microscopic 
state, given the parameter set x; it can decrease towards zero as knowledge about the state of 
the system increases, at which point the algorithmic entropy reduces to the Bolzmann entropy. 

4.2 Ricci flow and Perelman entropy–action on the crowd manifold 
Recall that the inertial metric crowd flow, Ct : t → (M(t), g(t)) on the crowd 3n–mani-fold (21) 
is a one-parameter family of homeomorphic Riemannian manifolds (M, g), evolving by the 
Ricci flow (29)–(30). 
Now, given a smooth scalar function u : M →R on the Riemannian crowd 3n–manifold M, 
its Laplacian operator Δ is locally defined as 

= ,ij
i ju g uΔ ∇ ∇  

where ∇i is the covariant derivative (or, Levi–Civita connection, see Appendix). We say that 
a smooth function u : M× [0,T)→R, where T ∈ (0,∞], is a solution to the heat equation (see 
Appendix, eq. (60)) on M if 
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 = .tu u∂ Δ  (36) 

One of the most important properties satisfied by the heat equation is the maximum 
principle, which says that for any smooth solution to the heat equation, whatever point-wise 
bounds hold at t = 0 also hold for t > 0 [13]. This property exhibits the smoothing behavior 
of the heat diffusion (36) on M. 
Closely related to the heat diffusion (36) is the (the Fields medal winning) Perelman 
entropy–action functional, which is on a 3n–manifold M with a Riemannian metric gij and a 
(temperature-like) scalar function f given by [75] 

 2= ( | | )e f

M
R f dμ−+ ∇∫E  (37) 

where R is the scalar Riemann curvature on M, while dμ is the volume 3n–form on M, 
defined as 

 1 2 3= det( ) ... .n
ijd g dx dx dxμ ∧ ∧ ∧  (38) 

During the Ricci flow (29)–(30) on the crowd manifold (21), that is, during the inertial metric 
crowd flow, Ct : t →(M(t), g(t)), the Perelman entropy functional (37) evolves as 

 2= 2 | | e .f
t ij i jR f dμ−∂ + ∇ ∇∫E  (39) 

Now, the crowd breathers are solitonic crowd behaviors, which could be given by localized 
periodic solutions of some nonlinear soliton PDEs, including the exactly solvable sine–
Gordon equation and the focusing nonlinear Schrödinger equation. In particular, the time–
dependent crowd inertial metric gij(t), evolving by the Ricci flow g(t) given by (29)–(30) on 
the crowd 3n–manifold M is the Ricci crowd breather, if for some t1 < t2 and  > 0 the metrics 
gij(t1) and gij(t2) differ only by a diffeomorphism; the cases  = 1,  < 1,  > 1 correspond to 
steady, shrinking and expanding crowd breathers, respectively. Trivial crowd breathers, for 
which the metrics gij(t1) and gij(t2) on M differ only by diffeomorphism and scaling for each 
pair of t1 and t2, are the crowd Ricci solitons. Thus, if we consider the Ricci flow (29)–(30) as a 
biodynamical system on the space of Riemannian metrics modulo diffeomorphism and 
scaling, then crowd breathers and solitons correspond to periodic orbits and fixed points 
respectively. At each time the Ricci soliton metric satisfies on M an equation of the form [75] 

= 0,ij ij i j j iR cg b b+ +∇ +∇  

where c is a number and bi is a 1–form; in particular, when bi = 1
2
∇ia for some function a on 

M, we get a gradient Ricci soliton. 
Define λ(gij) = inf E (gij, f ), where infimum is taken over all smooth f , satisfying 

 e = 1.f

M
dμ−∫  (40) 

λ(gij) is the lowest eigenvalue of the operator –4Δ+ R. Then the entropy evolution formula 
(39) implies that λ(gij(t)) is non-decreasing in t, and moreover, if λ(t1) = λ(t2), then for t ∈ [t1, 
t2] we have Rij + ∇i∇j f = 0 for f which minimizes E  on M [75]. Therefore, a steady breather 
on M is necessarily a steady soliton. 
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If we define the conjugate heat operator on M as 

= / t R∗ −∂ ∂ − Δ +,  

then we have the conjugate heat equation: = 0.u∗,  
The entropy functional (37) is nondecreasing under the coupled Ricci–diffusion flow on M 
[56] 

 
2| |= 2 , = ,

2t ij ij t
R ug R u u u

u
∇

∂ − ∂ −Δ + −  (41) 

where the second equation ensures 2 = 1,
M

u dμ∫  to be preserved by the Ricci flow g(t) on M. 

If we define 2= e
f

u
−

, then (41) is equivalent to f–evolution equation on M (the nonlinear 
backward heat equation), 

2= | | ,t f f f R∂ −Δ + ∇ −  

which instead preserves (40). The coupled Ricci–diffusion flow (41) is the most general 
biodynamic model of the crowd reaction–diffusion processes on M. In a recent study [1] this 
general model has been implemented for modelling a generic perception–action cycle with 
applications to robot navigation in the form of a dynamical grid. 
Perelman’s functional E  is analogous to negative thermodynamic entropy [75]. Recall (see 
Appendix) that thermodynamic partition function for a generic canonical ensemble at 
temperature β–1 is given by 

 = e ( ),EZ d Eβ ω−∫  (42) 

where ω(E) is a ‘density measure’, which does not depend on β. From it, the average energy 
is given by  〈E〉=–∂β lnZ, the entropy is  S = β〈E〉+lnZ, and the fluctuation is  σ=〈(E–〈E〉)2〉 
=∂ 2β

lnZ. 

If we now fix a closed 3n–manifold M with a probability measure m and a metric gij(τ) that 
depends on the temperature τ, then according to equation 

= 2( ),ij ij i jg R fτ∂ + ∇ ∇  

the partition function (42) is given by 

 ln = ( ) .
2
nZ f dm− +∫  (43) 

From (43) we get (see [75]) 

2 2 2= ( | | ) , = ( ( | | ) ) ,
2M M

nE R f dm S R f f n dmτ τ
τ

− + ∇ − − + ∇ + −∫ ∫  

4 2 21= 2 | | , where  = ,  = (4 ) e .
2

n
f

ij i j ijM
R f g dm dm udV uσ τ πτ

τ
− −+ ∇ ∇ −∫  
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From the above formulas, we see that the fluctuation σ is nonnegative; it vanishes only on a 
gradient shrinking soliton. 〈E〉 is nonnegative as well, whenever the flow exists for all 
sufficiently small τ > 0. Furthermore, if the heat function u: (a) tends to a δ–function as τ → 0, 
or (b) is a limit of a sequence of partial heat functions ui, such that each ui tends to a δ–
function as τ→τi > 0, and τi →0, then the entropy S is also nonnegative. In case (a), all the 
quantities 〈E〉, S, σ tend to zero as τ→ 0, while in case (b), which may be interesting if gij(τ) 
becomes singular at τ = 0, the entropy S may tend to a positive limit. 

4.3 Chaotic inter-phase in crowd dynamics induced by its Riemannian geometry 
change 
Recall that CD transition map (9) is defined by the chaotic crowd phase–transition amplitude 

=0 >0
[ ]PHYS. ACTION MENTAL PREP. := [ ]e ,

S St t
iA x

M
CHAOS x

∂ ∂

∫ D  

where we expect the inter-phase chaotic behavior (see [53]). To show that this chaotic 
interphase is caused by the change in Riemannian geometry of the crowd 3n–manifold M, 
we will first simplify the CD action functional (22) as 

 1[ ] = [ ( , )] ,
2

t fin ji
ijtini

A x g x x V x x dt−∫ � � �  (44) 

with the associated standard Hamiltonian, corresponding to the amalgamate version of (18), 

 2

=1

1( , ) = ( , ),
2

N

i
i

H p x p V x x+∑ �  (45) 

where pi are the SE(2)–momenta, canonically conjugate to the individual agents’ SE(2)– 
coordinates xi, (i = 1, ...,3n). Biodynamics of systems with action (44) and Hamiltonian (45) 
are given by the set of geodesic equations [49; 52] 

 
2

2 = 0,
ji k

i
jk

d x dx dx
ds ds ds

+ Γ  (46) 

where i
jkΓ  are the Christoffel symbols of the affine Levi–Civita connection of the 

Riemannian CD manifold M (see Appendix). In this geometrical framework, the instability 
of the trajectories is the instability of the geodesics, and it is completely determined by the 
curvature properties of the CD manifold M according to the Jacobi equation of geodesic 
deviation [49; 52] 

 
2

 2 = 0,
ji m

i k
jkm

D J dx dxR J
ds ds ds

+  (47) 

whose solution J, usually called Jacobi variation field, locally measures the distance between 
nearby geodesics; D/ds stands for the covariant derivative along a geodesic and  

i
jkmR  are 

the components of the Riemann curvature tensor of the CD manifold M. 
The relevant part of the Jacobi equation (47) is given by the tangent dynamics equation [12; 15] 
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  0 0 = 0, ( , = 1, ,3 ),i i k
kJ R J i k n+�� …  (48) 

where the only non-vanishing components of the curvature tensor of the CD manifold M are 

 2
 0 0 = / .i i k

kR V x x∂ ∂ ∂  (49) 

The tangent dynamics equation (48) can be used to define Lyapunov exponents in 
dynamical systems given by the Riemannian action (44) and Hamiltonian (45), using the 
formula [14] 

 2 2 2 2
1 =1 =1= 1 /2 log( [ ( ) ( )]/ [ (0) (0)]).lim N N

i i i i i i
t

t M J t J t M J Jλ
→∞

+ +  (50) 

Lyapunov exponents measure the strength of dynamical chaos in the crowd behavior. The 
sum of positive Lyapunov exponents defines the Kolmogorov–Sinai entropy (see Appendix). 

4.4 Crowd nonequilibrium phase transitions induced by manifold topology change 
Now, to relate these results to topological phase transitions within the CD manifold M given 
by (21), recall that any two high–dimensional manifolds Mv and Mv’ have the same topology 
if they can be continuously and differentiably deformed into one another, that is if they are 
diffeomorphic. Thus by topology change the ‘loss of diffeomorphicity’ is meant [80]. In this 
respect, the so–called topological theorem [21] says that non–analyticity is the ‘shadow’ of a 
more fundamental phenomenon occurring in the system’s configuration manifold (in our 
case the CD manifold): a topology change within the family of equipotential hypersurfaces 

1 3 3 1 3= {( , , ) | ( , , ) = },n n n
vM x x V x x v∈… …R  

where V and xi are the microscopic interaction potential and coordinates respectively. This 
topological approach to PTs stems from the numerical study of the dynamical counterpart of 
phase transitions, and precisely from the observation of discontinuous or cuspy patterns 
displayed by the largest Lyapunov exponent λ1 at the transition energy [14]. Lyapunov 
exponents cannot be measured in laboratory experiments, at variance with thermodynamic 
observables, thus, being genuine dynamical observables they are only be estimated in 
numerical simulations of the microscopic dynamics. If there are critical points of V in 
configuration space, that is points 1 3= [ , , ]c nx x x…  such that =( ) = 0x xc

V x∇ , according to the 
Morse Lemma [40], in the neighborhood of any critical point xc there always exists a 
coordinate system x(t) = [x1(t), ...,x3n(t)] for which [14] 

 2 2 2 2
1 1 3( ) = ( ) ,c k k nV x V x x x x x+− − − + + +… …  (51) 

where k is the index of the critical point, i.e., the number of negative eigenvalues of the 
Hessian of the potential energy V. In the neighborhood of a critical point of the CD–manifold 
M, equation (51) yields the simplified form of (49), ∂2V/∂xi∂xj = ±δij, giving j unstable 
directions that contribute to the exponential growth of the norm of the tangent vector J. 
This means that the strength of dynamical chaos within the CD–manifold M, measured by 
the largest Lyapunov exponent λ1 given by (50), is affected by the existence of critical points 
xc of the potential energy V(x). However, as V(x) is bounded below, it is a good Morse 
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function, with no vanishing eigenvalues of its Hessian matrix. According to Morse theory 
[40], the existence of critical points of V is associated with topology changes of the 
hypersurfaces {Mv}v∈R. The topology change of the {Mv}v∈R at some vc is a necessary 
condition for a phase transition to take place at the corresponding energy value [21]. The 
topology changes implied here are those described within the framework of Morse theory 
through ‘attachment of handles’ [40] to the CD–manifold M. 
In our path–integral language this means that suitable topology changes of equipotential 
submanifolds of the CD–manifold M can entail thermodynamic–like phase transitions [25; 
26; 27], according to the general formula: 

[ ]

top ch
phase out|phase in := [ ]e .iSw Φ

−
〈 〉 Φ∫ D  

The statistical behavior of the crowd biodynamics system with the action functional (44) and 
the Hamiltonian (45) is encompassed, in the canonical ensemble, by its partition function, 
given by the Hamiltonian path integral [52] 

 3 top ch
= [ ] [ ]exp{i [ ( , )] },

't i
n it

Z p x p x H p x dτ
−

−∫ ∫ �D D  (52) 

where we have used the shorthand notation 

top ch

( ) ( )[ ] [ ] .
2

dx dpp x
τ

τ τ
π−

≡ ∏∫ ∫D D  

The path integral (52) can be calculated as the partition function [20], 

3
3 32

( , ) ( )
3

=1 =1
( ) = e = e

n
n n

H p x V xi i
n i

i i
Z dp dx dxβ βπβ

β
− −⎛ ⎞

⎜ ⎟
⎝ ⎠

∏ ∏∫ ∫  

 

3
2

0
= e ,

n

v

Mv

ddv
V

βπ σ
β

∞ −⎛ ⎞
⎜ ⎟ ∇⎝ ⎠

∫ ∫ & &
 (53) 

where the last term is written using the so–called co–area formula [18], and v labels the 
equipotential hypersurfaces Mv of the CD manifold M, 

1 3 3 1 3= {( , , ) | ( , , ) = }.n n n
vM x x V x x v∈… …R  

Equation (53) shows that the relevant statistical information is contained in the canonical 
configurational partition function 

( )
3 = ( )e .V xC i

nZ dx V x β−∏∫  

Note that 3
C

nZ  is decomposed, in the last term of (53), into an infinite summation of 
geometric integrals, 

/ ,
Mv

d Vσ ∇∫ & &  
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defined on the {Mv}v∈R. Once the microscopic interaction potential V(x) is given, the 
configuration space of the system is automatically foliated into the family {Mv}v∈R of these 
equipotential hypersurfaces. Now, from standard statistical mechanical arguments we know 
that, at any given value of the inverse temperature β, the larger the number 3n, the closer to 

v uM M
β

≡  are the microstates that significantly contribute to the averages, computed 
through Z3n(β), of thermodynamic observables. The hypersurface uM

β
is the one associated 

with 

( )1
3= ( ) ( )e ,V xC i

nu Z dx V x β
β

−− ∏∫  

the average potential energy computed at a given β. Thus, at any β, if 3n is very large the 
effective support of the canonical measure shrinks very close to a single .v uM M

β
=  Hence, 

the basic origin of a phase transition lies in a suitable topology change of the {Mv}, occurring 
at some vc [20]. This topology change induces the singular behavior of the thermodynamic 
observables at a phase transition. It is conjectured that the counterpart of a phase transition 
is a breaking of diffeomorphicity among the surfaces Mv, it is appropriate to choose a 
diffeomorphism invariant to probe if and how the topology of the Mv changes as a function 
of v. Fortunately, such a topological invariant exists, the Euler characteristic of the crowd 
manifold M, defined by [49; 52] 

 
3

=0
( ) = ( 1) ( ),

n
k

k
k

M b Mχ −∑  (54) 

where the Betti numbers bk(M) are diffeomorphism invariants (bk are the dimensions of the 
de Rham’s cohomology groups Hk(M;R); therefore the bk are integers). This homological 
formula can be simplified by the use of the Gauss–Bonnet theorem, that relates X(M) with 
the total Gauss–Kronecker curvature KG of the CD–manifold M given by [52; 58] 

( ) = , where  is given by (38).GM
M K d dχ μ μ∫  

5. Conclusion 
Our understanding of crowd dynamics is presently limited in important ways; in particular, 
the lack of a geometrically predictive theory of crowd behavior restricts the ability for 
authorities to intervene appropriately, or even to recognize when such intervention is 
needed. This is not merely an idle theoretical investigation: given increasing population 
sizes and thus increasing opportunity for the formation of large congregations of people, 
death and injury due to trampling and crushing – even within crowds that have not formed 
under common malicious intent – is a growing concern among police, military and 
emergency services. This paper represents a contribution towards the understanding of 
crowd behavior for the purpose of better informing decision–makers about the dangers and 
likely consequences of different intervention strategies in particular circumstances. 
In this chapter, we have proposed an entropic geometrical model of crowd dynamics, with 
dissipative kinematics, that operates across macro–, micro– and meso–levels. This 
proposition is motivated by the need to explain the dynamics of crowds across these levels 
simultaneously: we contend that only by doing this can we expect to adequately 
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characterize the geometrical properties of crowds with respect to regimes of behavior and 
the changes of state that mark the boundaries between such regimes. 
In pursuing this idea, we have set aside traditional assumptions with respect to the 
separation of mind and body. Furthermore, we have attempted to transcend the long–
running debate between contagion and convergence theories of crowd behavior with our 
multi-layered approach: rather than representing a reduction of the whole into parts or the 
emergence of the whole from the parts, our approach is build on the supposition that the 
direction of logical implication can and does flow in both directions simultaneously. We 
refer to this third alternative, which effectively unifies the other two, as behavioral 
composition. 
The most natural statistical descriptor is crowd entropy, which satisfies the extended second 
thermodynamics law applicable to open systems comprised of many components. 
Similarities between the configuration manifolds of individual (micro–level) and crowds 
(macro–level) motivate our claim that goal–directed movement operates under entropy 
conservation, while natural crowd dynamics operates under monotonically increasing 
entropy functions. Of particular interest is what happens between these distinct topological 
phases: the phase transition is marked by chaotic movement. 
We contend that backdrop gives us a basis on which we can build a geometrically predictive 
model–theory of crowd behavior dynamics. This contrasts with previous approaches, which 
are explanatory only (explanation that is really narrative in nature). We propose an entropy 
formulation of crowd dynamics as a three step process involving individual and collective 
psycho-dynamics, and – crucially – non-equilibrium phase transitions whereby the forces 
operating at the microscopic level result in geometrical change at the macroscopic level. 
Here we have incorporated both geometrical and algorithmic notions of entropy as well as 
chaos in studying the topological phase transition between the entropy conservation of 
physical action and the entropy increase of mental preparation. 

6. Appendix 
6.1 Extended second law of thermodynamics 
According to Boltzmann’s interpretation of the second law of thermodynamics, there exists 
a function of the state variables, usually chosen to be the physical entropy S of the system that 
varies monotonically during the approach to the unique final state of thermodynamic 
equilibrium: 

 0 (for any isolated system).tS∂ ≥  (55) 

It is usually interpreted as a tendency to increased disorder, i.e., an irreversible trend to 
maximum disorder. The above interpretation of entropy and a second law is fairly obvious 
for systems of weakly interacting particles, to which the arguments developed by Boltzmann 
referred. 
However, according to Prigogine [70], the above interpretation of entropy and a second law 
is fairly obvious only for systems of weakly interacting particles, to which the arguments 
developed by Boltzmann referred. On the other hand, for strongly interacting systems like 
the crowd, the above interpretation does not apply in a straightforward manner since, we 
know that for such systems there exists the possibility of evolving to more ordered states 
through the mechanism of phase transitions. 
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Let us now turn to nonisolated systems (like a human crowd), which exchange 
energy/matter with the environment. The entropy variation will now be the sum of two 
terms. One, entropy flux, deS, is due to these exchanges; the other, entropy production, diS, is 
due to the phenomena going on within the system. Thus the entropy variation is 

 = .i e
t

d S d SS
dt dt

∂ +  (56) 

For an isolated system deS = 0, and (56) together with (55) reduces to dS = diS ≥0, the usual 
statement of the second law. But even if the system is nonisolated, diS will describe those 
(irreversible) processes that would still go on even in the absence of the flux term deS. We 
thus require the following extended form of the second law: 

 0 (for any nonisolated system).tS∂ ≥  (57) 

As long as diS is strictly positive, irreversible processes will go on continuously within the 
system.10 Thus, diS > 0 is equivalent to the condition of dissipativity as time irreversibility. If, 
on the other hand, diS reduces to zero, the process will be reversible and will merely join 
neighboring states of equilibrium through a slow variation of the flux term deS. 
From a computational perspective, we have a related algorithmic entropy. Suppose we have a 
universal machine capable of simulating any effective procedure (i.e., a universal machine 
that can compute any computable function). There are several models to choose from, 
classically we would use a Universal Turing Machine but for technical reasons we are more 
interested in Lambda–type Calculi or Combinatory Logics. Let us describe the system of 
interest through some encoding as a combinatorial structure (classically this would be a 

                                                 
10 Among the most common irreversible processes contributing to diS are chemical reactions, 
heat conduction, diffusion, viscous dissipation, and relaxation phenomena in electrically or 
magnetically polarized systems. For each of these phenomena two factors can be defined: an 
appropriate internal flux, Ji, denoting essentially its rate, and a driving force, Xi, related to the 
maintenance of the nonequilibrium constraint. A most remarkable feature is that diS 
becomes a bilinear form of Ji and Xi. The following table summarizes the fluxes and forces 
associated with some commonly observed irreversible phenomena (see [48; 70]) 
 

 
 

In general, the fluxes Jk are very complicated functions of the forces Xi. A particularly simple 
situation arises when their relation is linear, then we have the celebrated Onsager relations, 

 = , ( , = 1,..., )i ik kJ L X i k n  (58) 

in which Lik denote the set of phenomenological coefficients. This is what happens near 
equilibrium where they are also symmetric, Lik = Lki. Note, however, that certain states far 
from equilibrium can still be characterized by a linear dependence of the form of (58) that 
occurs either accidentally or because of the presence of special types of regulatory processes. 
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binary string, but again I prefer for technical reasons Normal Forms with respect to 
alpha/beta/eta, weak, strong reduction, which are basically the Lambda–type Calculi and 
Combinatory Logic notions roughly akin to a “computational” step). In other words, we 
have states of our system now represented as sentences in some language. The entropy is 
simply the minimum effective procedure against our computational model that generates 
the description of the system state. This is a universal and absolute notion of compression of 
our data – the entropy is the strongest compression over all possible compression schemes, 
in effect. Now here is the ‘magic’: this minimum is absolute in the sense that it does not vary 
(except by a constant) with respect to our reference choice of machine. 

6.2 Thermodynamic partition function 
Recall that the partition function Z is a quantity that encodes the statistical properties of a 
system in thermodynamic equilibrium. It is a function of temperature and other parameters, 
such as the volume enclosing a gas. Other thermodynamic variables of the system, such as 
the total energy, free energy, entropy, and pressure, can be expressed in terms of the 
partition function or its derivatives. 
A canonical ensemble is a statistical ensemble representing a probability distribution of 
microscopic states of the system. Its probability distribution is characterized by the 
proportion pi of members of the ensemble which exhibit a measurable macroscopic state i, 
where the proportion of microscopic states for each macroscopic state i is given by the 
Boltzmann distribution, 

/( ) ( )/( )1= e = e ,E kT E A kTi i
i Zp − − −  

where Ei is the energy of state i. It can be shown that this is the distribution which is most 
likely, if each system in the ensemble can exchange energy with a heat bath, or alternatively 
with a large number of similar systems. In other words, it is the distribution which has 
maximum entropy for a given average energy 〈 Ei 〉. 

The partition function of a canonical ensemble is defined as a sum ( ) = e ,
Ej

j
Z

β
β

−

∑  

where β= 1/(kBT) is the ‘inverse temperature’, where T is an ordinary temperature and kB is 
the Boltzmann’s constant. However, as the position xi and momentum pi variables of an ith 
particle in a system can vary continuously, the set of microstates is actually uncountable. In 
this case, some form of coarse–graining procedure must be carried out, which essentially 
amounts to treating two mechanical states as the same microstate if the differences in their 
position and momentum variables are ‘small enough’. The partition function then takes the 
form of an integral. For instance, the partition function of a gas consisting of N molecules is 
proportional to the 6N–dimensional phase–space integral, 

3 3
6( ) exp[ ( , )],i i

i iNZ d p d x H p xβ β−∫R∼  

where H = H(pi, xi), (i = 1, ...,N) is the classical Hamiltonian (total energy) function. 
More generally, the so–called configuration integral, as used in probability theory, 
information science and dynamical systems, is an abstraction of the above definition of a 
partition function in statistical mechanics. It is a special case of a normalizing constant in 
probability theory, for the Boltzmann distribution. The partition function occurs in many 
problems of probability theory because, in situations where there is a natural symmetry, its 
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associated probability measure, the Gibbs measure (see below), which generalizes the notion 
of the canonical ensemble, has the Markov property. 
Given a set of random variables Xi taking on values xi, and purely potential Hamiltonian 
function H(xi), (i = 1, ...,N), the partition function is defined as 

 ( ) = exp ( ) .
i

i

x
Z H xβ β⎡ ⎤−⎣ ⎦∑  (59) 

The function H is understood to be a real-valued function on the space of states {X1,X2 …} 
while β is a real-valued free parameter (conventionally, the inverse temperature). The sum 
over the xi is understood to be a sum over all possible values that the random variable Xi 

may take. Thus, the sum is to be replaced by an integral when the Xi are continuous, rather 
than discrete. Thus, one writes 

( ) = exp ( ) ,i iZ dx H xβ β⎡ ⎤−⎣ ⎦∫  

for the case of continuously-varying random variables Xi. 
The Gibbs measure of a random variable Xi having the value xi is defined as the probability 
density function 

exp ( )1( = ) = exp ( ) = .
( ) exp ( )

i
i i

i i

ix

H x
P X x E x

Z H x

β
β

β β

⎡ ⎤−⎣ ⎦⎡ ⎤−⎣ ⎦ ⎡ ⎤−⎣ ⎦∑
 

where E(xi) = H(xi) is the energy of the configuration xi. This probability, which is now 
properly normalized so that 0 ≤ P(xi) ≤ 1, can be interpreted as a likelihood that a specific 
configuration of values xi, (i = 1, 2, ...N) occurs in the system. P(xi) is also closely related to Ω, 
the probability of a random partial recursive function halting. 
As such, the partition function Z(β) can be understood to provide the Gibbs measure on the 
space of states, which is the unique statistical distribution that maximizes the entropy for a 
fixed expectation value of the energy, 

log( ( ))= .ZH β
β

∂
〈 〉 −

∂
 

The associated entropy is given by 

= ( )ln ( ) = log ( ),i i

ix

S P x P x H Zβ β− 〈 〉 +∑  

representing ‘ignorance’ + ‘randomness’. 
The principle of maximum entropy related to the expectation value of the energy 〈H〉, is a 
postulate about a universal feature of any probability assignment on a given set of 
propositions (events, hypotheses, indices, etc.). Let some testable information about a 
probability distribution function be given. Consider the set of all trial probability 
distributions which encode this information. Then the probability distribution which 
maximizes the information entropy is the true probability distribution, with respect to the 
testable information prescribed. 
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Applied to the crowd dynamics, the Boltzman’s theorem of equipartition of energy states that 
the expectation value of the energy 〈H〉 is uniformly spread among all degrees-of-freedom of 
the crowd (that is, across the whole crowd manifold M). 

6.3 Free energy, Landau’s phase transitions and Haken’s synergetics 
All thermodynamic–like properties of a multi-component system like a human (or robot) 
crowd may be expressed in terms of its free energy potential, F = –kBTlnZ(β), and its partial 
derivatives. In particular, the physical entropy S of the crowd is defined as the (negative) first 
partial derivative of the free energy F with respect to the control parameter temperature T, i.e., 
S = –∂TF, while the specific heat capacity C is the second derivative, C = T∂TS. 
A phase of the crowd denotes a set of its states that have relatively uniform behavioral 
properties. A crowd phase transition represents the its transformation from one phase to another 
(see e.g., [48; 58]). In general, the crowd phase transitions are divided into two categories: 
• The first–order phase transitions, or, discontinuous phase transitions, are those that involve a 

latent heat C. During such a transition, a crowd either absorbs or releases a fixed (and 
typically large) amount of energy. Because energy cannot be instantaneously 
transferred between the system and its environment, first–order crowd transitions are 
associated with mixed–phase regimes in which some parts of the crowd have completed 
the transition and others have not. This forms a turbulent spatioi-temporal chaotic 
interphase, difficult to study, because its dynamics can be violent and hard to control. 

• The second–order phase transitions are the continuous phase transitions, in the entropy S is 
continuous, without any latent heat C. They are purely entropic crowd transitions, 
which are at the focus of the present study. 

In Landau’s theory od phase transitions (see [48; 58]), the probability density function P is 
exponentially related to the free energy potential F, i.e., P ≈ e–F(T), if F is considered as a 
function of some order parameter o. Thus, the most probable order parameter is determined 
by the requirement F = min. Therefore, the most natural order parameter for the crowd 
dynamics would be its entropy S. 
The following table gives the analogy between various systems in thermal equilibrium and 
the corresponding nonequilibrium systems analyzed in Haken’s synergetics [25; 26; 27]: 
 

 
 
In particular, in case of human biodynamics [48; 58], natural control inputs ui are muscular 
forces and torques, Fi, natural system outputs yi are joint coordinates qi and momenta pi, 
while the system efficiencies ei represent the changes of coordinates and momenta with 

changes of corresponding muscular torques for the ith active human joint, = , = .
i

q p i
i i

i i

q pe e
F F
∂ ∂
∂ ∂
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6.4 Heat equation, Dirichlet action and gradient flow on a Riemannian manifold 
The heat equation 

 = ,u uΔ�  (60) 

on a compact Riemannian manifold M with static metric (∂tg = 0), where u : [0,T] × M →R is 

a scalar field, can be interpreted as the gradient flow for the Dirichlet action 

 21( ) := | | ,
2 gM

E u u dμ∇∫  (61) 

using the inner product, 1 2 1 2, := ,
M

u u u u dμ μ〈 〉 ∫  associated to the volume measure dμ. This 

can be proved if we evolve u in time at some arbitrary rate u, an application of integration 
by parts formula, 

= ( )α α
α αμ μ∇ − ∇∫ ∫M M

u X d u X d  

(where div( ) :=X Xα
α∇  is the divergence of the vector-field Xα , which validates the Stokes 

theorem, div( ) = 0),
M

X dμ∫  gives 

 ( ) = ( ) = , ,t M
E u u u d u u μμ∂ − Δ 〈−Δ 〉∫ � �  (62) 

from which we see that (60) is indeed the gradient flow for (62) with respect to the inner 
product. In particular, if u solves the heat equation (60), we see that the Dirichlet energy is 
decreasing in time, 

 2( ) = | | .t M
E u u dμ∂ − Δ∫  (63) 

Thus we see that by representing the parabolic PDE (60) as a gradient flow, we 
automatically gain a controlled quantity of the evolution, namely the energy functional that 
is generating the gradient flow. This representation also strongly suggests that solutions of 
(60) should eventually converge to stationary points of the Dirichlet energy (61), which by 
(62) are harmonic functions (i.e., the functions u with Δu = 0). As an application of the 
gradient flow interpretation, we can assert that the only periodic (or, “breather”) solutions 
to the heat equation (60) are the harmonic functions (which must be constant if the manifold 
M is compact). Indeed, if a solution u was periodic, then the monotone functional E must be 
constant, which by (63) implies that u is harmonic as claimed. 

6.5 Lyapunov exponents and Kolmogorov–Sinai entropy 
A branch of nonlinear dynamics has been developed with the aim of formalizing and 
quantitatively characterizing the general sensitivity to initial conditions. The largest 
Lyapunov exponent λ, together with the related Kaplan–Yorke dimension dKY and the 
Kolmogorov–Sinai entropy hKS are the three indicators for measuring the rate of error growth 
produced by a dynamical system [17; 50; 60]. 
The characteristic Lyapunov exponents are somehow an extension of the linear stability 
analysis to the case of aperiodic motions. Roughly speaking, they measure the typical rate of 
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exponential divergence of nearby trajectories. In this sense they give information on the rate 
of growth of a very small error on the initial state of a system [9; 10]. 
Consider an nD dynamical system given by the set of ODEs of the form 

 = ( ),x f x�  (64) 

where x = (x1, . . . , xn) ∈ Rn and f : Rn →Rn. Recall that since the r.h.s of equation (64) does not 
depend on t explicitly, the system is called autonomous. We assume that f is smooth enough 
that the evolution is well defined for time intervals of arbitrary extension, and that the 
motion occurs in a bounded region R of the system phase space M. We intend to study the 
separation between two trajectories in M, x(t) and x′(t), starting from two close initial 
conditions, x(0) and x′(0) = x(0) + δx(0) in R0 ⊂ M, respectively. 
As long as the difference between the trajectories, δx(t) = x′(t) – x(t), remains infinitesimal, it 
can be regarded as a vector, z(t), in the tangent space TxM of M. The time evolution of z(t) is 
given by the linearized differential equations: 

( )

( ) = ( ).i
i j

j x t

fz t z t
x
∂
∂

�  

Under rather general hypothesis, Oseledets [72] proved that for almost all initial conditions 
x(0) ∈ R, there exists an orthonormal basis {ei} in the tangent space TxM such that, for large 
times, 

 ( ) = exp( ),i i iz t c e tλ  (65) 

where the coefficients {ci} depend on z(0). The exponents λ1 ≥ λ2 ≥ … ≥ λd are called 
characteristic Lyapunov exponents. If the dynamical system has an ergodic invariant measure 
on M, the spectrum of LEs { λi} does not depend on the initial conditions, except for a set of 
measure zero with respect to the natural invariant measure. 
Equation (65) describes how an nD spherical region R = Sn ⊂ M, with radius ε centered in 
x(0), deforms, with time, into an ellipsoid of semi–axes εi(t) = ε exp(λit), directed along the ei 

vectors. Furthermore, for a generic small perturbation δx(0), the distance between the 
reference and the perturbed trajectory behaves as 

( )1 1 2| ( )| | (0)|exp( ) 1 exp ( ) .x t x t O tδ δ λ λ λ⎡ + − − ⎤⎣ ⎦∼  

If λ1 > 0 we have a rapid (exponential) amplification of an error on the initial condition. In 
such a case, the system is chaotic and, unpredictable on the long times. Indeed, if the initial 
error amounts to δ0 = |δx(0)|, and we purpose to predict the states of the system with a 
certain tolerance Δ, then the prediction is reliable just up to a predictability time given by 

1 0

1 ln .pT
λ δ

⎛ ⎞Δ
⎜ ⎟
⎝ ⎠

∼  

This equation shows that Tp is basically determined by the positive leading Lyapunov exponent, 
since its dependence on δ0 and Δ is logarithmically weak. Because of its preeminent role, λ1 is 
often referred as ‘the leading positive Lyapunov exponent’, and denoted by λ. 
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Therefore, Lyapunov exponents are average rates of expansion or contraction along the 
principal axes. For the ith principal axis, the corresponding Lyapunov exponent is defined 
as 

 = {(1 / )ln[ ( ) / (0)]},limi i i
t

t L t Lλ
→∞

 (66) 

where Li(t) is the radius of the ellipsoid along the ith principal axis at time t. 
An initial volume V0 of the phase–space region R0 evolves on average as 

 ( )1 2 2
0( ) = ,tnV t V e λ λ λ+ + +"  (67) 

and therefore the rate of change of V(t) is simply 

2

=1
( ) = ( ).

n

i
i

V t V tλ∑�  

In the case of a 2D phase area A, evolving as ( )1 2
0( ) = tA t A e λ λ+ , a Lyapunov dimension dL is 

defined as 

0

(ln( ( )))= ,lim (ln(1 / ))L
d Nd
d→

⎡ ⎤
⎢ ⎥
⎣ ⎦ε

ε
ε

 

where N(ε) is the number of squares with sides of length ε required to cover A(t), and d 
represents an ordinary capacity dimension, 

0

ln= .lim
ln(1 / )→

⎛ ⎞
⎜ ⎟
⎝ ⎠

c
Nd

ε ε
 

Lyapunov dimension can be extended to the case of nD phase–space by means of the 
Kaplan–Yorke dimension [64; 73; 89] as 

1 2

1

= ,
| |

j
KY

j

d j
λ λ λ

λ +

+ + +
+

"
 

where the λi are ordered (λ1 being the largest) and j is the index of the smallest nonnegative 
Lyapunov exponent. 
On the other hand, a state, initially determined with an error δx(0), after a time enough 
larger than 1/λ, may be found almost everywhere in the region of motion R ∈ M. In this 
respect, the Kolmogorov–Sinai (KS) entropy, hKS, supplies a more refined information. The 
error on the initial state is due to the maximal resolution we use for observing the system. 
For simplicity, let us assume the same resolution ε for each degree of freedom. We build a 
partition of the phase space M with cells of volume εd, so that the state of the system at t = t0 

is found in a region R0 of volume V0 =εd around x(t0). Now we consider the trajectories 
starting from V0 at t0 and sampled at discrete times tj = j τ (j =1, 2, 3, . . . , t). Since we are 
considering motions that evolve in a bounded region R ⊂ M, all the trajectories visit a finite 
number of different cells, each one identified by a symbol. In this way a unique sequence of 
symbols {s(0), s(1), s(2), . . . } is associated with a given trajectory x(t). In a chaotic system, 
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although each evolution x(t) is univocally determined by x(t0), a great number of different 
symbolic sequences originates by the same initial cell, because of the divergence of nearby 
trajectories. The total number of the admissible symbolic sequences, N� (ε, t), increases 
exponentially with a rate given by the topological entropy 

i
0

1= ln ( , ).limlimT
t

h N t
t→ →∞ε

ε  

However, if we consider only the number of sequences Neff (ε, t) ≤N� (ε, t) which appear with 
very high probability in the long time limit – those that can be numerically or 
experimentally detected and that are associated with the natural measure – we arrive at a 
more physical quantity called the Kolmogorov–Sinai (or metric) entropy, which is the key 
entropy notion in ergodic theory [17]: 

 
0

1= ln ( , ) .limlimKS eff T
t

h N t h
t→ →∞

≤
ε

ε  (68) 

hKS quantifies the long time exponential rate of growth of the number of the effective coarse-
grained trajectories of a system. This suggests a link with information theory where the 
Shannon entropy measures the mean asymptotic growth of the number of the typical 
sequences – the ensemble of which has probability almost one – emitted by a source. 
We may wonder what is the number of cells where, at a time t > t0, the points that evolved 
from R0 can be found, i.e., we wish to know how big is the coarse–grained volume V(ε, t), 
occupied by the states evolved from the volume V0 of the region R0, if the minimum volume 
we can observe is Vmin = εd. As stated above (67), we have 

0
=1

( ) exp( ).
d

i
i

V t V t λ∑∼  

However, this is true only in the limit ε→0. In this (unrealistic) limit, V(t) = V0 for a 
conservative system (where =1

d
i∑ λi = 0) and V(t) < V0 for a dissipative system (where  

=1
d
i∑ λi < 0). As a consequence of limited resolution power, in the evolution of the volume  

V0 = εd the effect of the contracting directions (associated with the negative Lyapunov 
exponents) is completely lost. We can experience only the effect of the expanding directions, 
associated with the positive Lyapunov exponents. As a consequence, in the typical case, the 
coarse grained volume behaves as 

0
0

( )( , ) e ,ii tV t V λ λ>Σ
ε ∼  

when V0 is small enough. Since Neff (ε, t) ∝V(ε, t)/V0, one has: hKS = >0λ∑
i

λi. This argument 
can be made more rigorous with a proper mathematical definition of the metric entropy. In 
this case one derives the Pesin relation [17; 76]: hKS ≤ >0λ∑

i
λi. Because of its relation with the 

Lyapunov exponents, or by the definition (68), it is clear that also hKS is a fine-grained and 
global characterization of a dynamical system. >0λ∑

i
 

The metric entropy is an invariant characteristic quantity of a dynamical system, i.e., given 
two systems with invariant measures, their KS–entropies exist and they are equal iff the 
systems are isomorphic [7]. 
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Finally, the topological entropy on the manifold M equals the supremum of the  
Kolmogorov-Sinai entropies, 

( ) = sup{ ( ) = ( ) : ( )},KS uh u h u h u P Mμ μ ∈  

where u : M→ M is a continuous map on M, and μ ranges over all u–invariant (Borel) 
probability measures on M. Dynamical systems of positive topological entropy are often 
considered topologically chaotic. 

7. References 
[1] Aidman, E., Ivancevic, V., Jennings, A. A Coupled Reaction–Diffusion Field Model for 

Perception–Action Cycle with Applications to Robot Navigation. Int. J. Intel. Def. 
Sup. Sys. 2008, 1(2), 93-115. 

[2] Arizona State University. New Computer Model Predicts Crowd Behavior. ScienceDaily. 
2007, May 22. 

[3] Ashcraft M.H.Human Memory and Cognition (2nd ed.) Harper Collins: New York, 1994. 
[4] Ashcraft, M.H. Cognition (4th ed.), Prentice Hall: New Jersey, 2005. 
[5] Barendregt, H. The Lambda Calculus: Its syntax and semantics. Studies in Logic and the 

Foundations of Mathematics. North Holland: Amsterdam, 1984. 
[6] van Benthem, J. Reflections on epistemic logic. Logique & Analyse, 1991, 133–134, 5 14. 
[7] Billingsley, P. Ergodic theory and information. Wiley: New York, 1965. 
[8] Blumer, H. Collective Behavior. In Principles of Sociology (A.M. Lee, ed.), Barnes & 

Noble: New York, 1951, pp 67–121. 
[9] Boffetta, G., Lacorata, G., Vulpiani, A. (eds.) Introduction to chaos and diffusion. Chaos 

in geophysical flows. Proc. ISSAOS, 2001. 
[10] Boffetta, G., Cencini, M., Falcioni, M., Vulpiani, A. Predictability: a way to characterize 

complexity. Phys. Rep. 2002, 356, 367–474. 
[11] Busemeyer, J.R., Diederich A. Survey of decision field theory. Math. Soc. Sci. 2002, 43, 

345–370. 
[12] Caiani, L., Casetti, L., Clementi, C., Pettini, M. Geometry of Dynamics Lyapunov 

Exponents and Phase Transitions. Phys. Rev. Lett. 1997, 79, 4361–4364. 
[13] Cao, H.D., Chow, B. Recent developments on the Ricci flow. Bull. Amer. Math. Soc. 1999, 

36, 59–74. 
[14] Casetti, L., Pettini, M., Cohen, E.G.D. Geometric Approach to Hamiltonian Dynamics 

and Statistical Mechanics. Phys. Rep. 2000, 337, 237–341. 
[15] Casetti, L., Clementi, C., Pettini, M. Riemannian theory of Hamiltonian chaos and 

Lyapunov exponents. Phys. Rev. E 1996, 54, 5969. 
[16] Downarowicz, T. Entropy. Scholarpedia 2007, 2(11), 3901. 
[17] Eckmann, J.P., Ruelle, D. Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 

1985, 57, 617–630. 
[18] Federer, H. Geometric Measure Theory. Springer: New York, 1969. 
[19] Forster, T., Logic, Induction and the Theory of Sets. London Math. Soc. Student Texts 

56, Cambridge Univ. Press: Cambridge, 2003. 
[20] Franzosi, R., Pettini, M., Spinelli, L. Topology and phase transitions: a paradigmatic 

evidence. Phys. Rev. Lett. 2000, 84, 2774–2777. 



 Nonlinear Dynamics 

 

262 

[21] Franzosi, R., Pettini, M. Theorem on the origin of Phase Transitions. Phys. Rev. Lett. 
2004, 92, 060601. 

[22] Freeman, W.J., Vitiello, G. Nonlinear brain dynamics as macroscopic manifestation of 
underlying many–body field dynamics. Phys. Life Rev. 2006, 3(2), 93–118. 

[23] Gardiner, C.W. Handbook of Stochastic Methods for Physics Chemistry and Natural 
Sciences (2nd ed.). Springer, Berlin, 1985. 

[24] Haken, H., Kelso, J.A.S., Bunz, H. A theoretical model of phase transitions in human 
hand movements. Biol. Cybern. 1985, 51, 347–356. 

[25] Haken, H. Synergetics: An Introduction (3rd ed.). Springer: Berlin, 1983. 
[26] Haken, H. Advanced Synergetics: Instability Hierarchies of Self–Organizing Systems 

and Devices (3rd ed.) Springer: Berlin, 1993. 
[27] Haken, H. Principles of Brain Functioning: A Synergetic Approach to Brain Activity, 

Behavior and Cognition, Springer: Berlin, 1996. 
[28] Haken, H. Information and Self–Organization: A Macroscopic Approach to Complex 

Systems. Springer: Berlin, 2000. 
[29] Haken, H. Brain Dynamics, Synchronization and Activity Patterns in Pulse–Codupled 

Neural Nets with Delays and Noise, Springer: Berlin, 2002. 
[30] Hamilton, R.S. Three-manifolds with positive Ricci curvature. J. Diff. Geom. 1982, 17, 

255– 306. 
[31] Hamilton, R.S. Four-manifolds with positive curvature operator. J. Dif. Geom. 1986, 24, 

153–179. 
[32] Hamilton, R.S. The Ricci flow on surfaces. Cont. Math. 1988, 71, 237–261. 
[33] Hamilton, R.S. The Harnack estimate for the Ricci flow. J. Dif. Geom. 1993, 37, 225 243. 
[34] Hankin, C. An introduction to Lambda Calculi for Computer Scientists. King’s College 

Pub. 2004. 
[35] Hebb, D.O. The Organization of Behavior. Wiley: New York, 1949. 
[36] Helbing, D., Molnar, P., Social force model for pedestrian dynamics. Phys. Rev. E 1995, 

51(5), 4282–4286. 
[37] Helbing, D., Farkas, I., Vicsek, T. Simulating dynamical features of escape panic. Nature 

2000, 407, 487–490. 
[38] Helbing, D., Johansson, A., Mathiesen, J., Jensen, M.H., Hansen, A. Analytical approach 

to continuous and intermittent bottleneck flows. Phys. Rev. Lett. 2006, 97, 168001. 
[39] Helbing, D., Johansson, A., Zein Al-Abideen, H. The Dynamics of Crowd Disasters: An 

Empirical Study. Phys. Rev. E 2007, 75, 046109. 
[40] Hirsch, M.W. Differential Topology. Springer: New York, 1976. 
[41] Hong, S.L., Newell, K.M. Entropy conservation in the control of human action. Nonl. 

Dyn. Psych. Life. Sci. 2008, 12(2), 163–190. 
[42] Hong, S.L., Newell, K.M. Entropy compensation in human motor adaptation. Chaos 

2008, 18(1), 013108. 
[43] Ivancevic, V., Snoswell, M. Fuzzy–stochastic functor machine for general humanoid– 

robot dynamics. IEEE Trans. SMCB 2001, 31(3), 319–330. 
[44] Ivancevic, V. Symplectic Rotational Geometry in Human Biomechanics. SIAM Rev. 2004, 

46(3), 455–474. 
[45] Ivancevic, V. Beagley, N. Brain–like functor control machine for general humanoid 

biodynamics. Int. J. Math. Math. Sci. 2005, 11, 1759–1779. 



Entropic Geometry of Crowd Dynamics  

 

263 

[46] Ivancevic, V. Lie–Lagrangian model for realistic human bio-dynamics. Int. J. Hum. Rob. 
2006, 3(2), 205–218. 

[47] Ivancevic, V., Ivancevic, T., Human–Like Biomechanics. Springer: Dordrecht, 2006. 
[48] Ivancevic, V., Ivancevic, T. Natural Biodynamics.World Scientific: Singapore, 2006. 
[49] Ivancevic, V., Ivancevic, T. Geometrical Dynamics of Complex Systems: A Unified 

Modelling Approach to Physics Control Biomechanics Neurodynamics and 
Psycho–Socio– Economical Dynamics. Springer: Dordrecht, 2006. 

[50] Ivancevic, V., Ivancevic, T., High–Dimensional Chaotic and Attractor Systems. Springer: 
Berlin, 2007. 

[51] Ivancevic, V., Ivancevic, T. Computational Mind: A Complex Dynamics Perspective. 
Springer: Berlin, 2007. 

[52] Ivancevic, V., Ivancevic, T., Applied Differential Geometry: A Modern Introduction. 
World Scientific: Singapore, 2007. 

[53] Ivancevic, V., Aidman, E., Yen, L. Extending Feynman’s Formalisms for Modelling 
Human Joint Action Coordination. Int. J. Biomath. 2008, (to appear). 

[54] Ivancevic, V., Aidman, E. Life-space foam: A medium for motivational and cognitive 
dynamics. Physica A 2007, 382, 616–630. 

[55] Ivancevic, V. Generalized Hamiltonian biodynamics and topology invariants of 
humanoid robots. Int. J. Math. Math. Sci. 2002, 31(9), 555–565. 

[56] Ivancevic, V., Ivancevic, T. Ricci flow and bio–reaction–diffusion systems. SIAM Rev. 
2008 (submitted). 

[57] Ivancevic, V., Ivancevic, T. Neuro–Fuzzy Associative Machinery for Comprehensive 
Brain and Cognition Modelling. Springer: Berlin, 2007. 

[58] Ivancevic, V., Ivancevic, T. Complex Nonlinearity: Chaos, Phase Transitions, Topology 
Change and Path Integrals. Springer: 2008. 

[59] Ivancevic, V., Ivancevic, T. Quantum Leap: From Dirac and Feynman Across the 
Universe to Human Body and Mind.World Scientific: Singapore, 2008. 

[60] Ivancevic, T., Jain, L., Pattison, J., Hariz, A. Nonlinear Dynamics and Chaos Methods in 
Neurodynamics and Complex Data Analysis. Nonl. Dyn. 2008 (Springer Online 
first). 

[61] Izhikevich, E.M., Edelman, G.M. Large-Scale Model of Mammalian Thalamocortical 
Systems. PNAS 2008, 105, 3593–3598. 

[62] Johansson, A., Helbing, D., Z. Al-Abideen, H., Al-Bosta, S. From Crowd Dynamics to 
Crowd Safety: A Video–Based Analysis. Adv. Com. Sys. 2008, 11(4), 497–527. 

[63] Jung, C.J. Collected Works of C.G. Jung. Princeton Univ. Press: New Jersey, 1970. 
[64] Kaplan, J.L., Yorke, J.A. Numerical Solution of a Generalized Eigenvalue Problem for 

Even Mapping. Peitgen, H.O.,Walther, H.O. (eds.). Functional Differential 
Equations and Approximations of Fixed Points, Lecture Notes in Mathematics, 730, 
Springer: Berlin, 1979, pp 228–256. 

[65] Kelso, JAS. Dynamic Patterns: The Self Organization of Brain and Behavior. MIT Press: 
Cambridge, 1995. 

[66] Kugler, P.N., Turvey, M.T. Information, Natural Law, and the Self–Assembly of 
Rhythmic Movement: Theoretical and Experimental Investigations, Erlbaum: 
Hillsdale, 1987. 

[67] Lewin, K. Resolving Social Conflicts, and, Field Theory in Social Science. Am. Psych. 
Assoc.,Washington, 1997. 



 Nonlinear Dynamics 

 

264 

[68] Matlin, M.W. Cognition. (7th ed.), Wiley: New York, 2008. 
[69] Nara, A., Torrens, P.M. Spatial and temporal analysis of pedestrian egress behavior and 

efficiency, In Association of Computing Machinery (ACM) Advances in 
Geographic Information Systems, Samet, H.; Shahabi, C.; Schneider, M.(Eds.) 2007, 
New York, ACM, 284-287. 

[70] Nicolis, G., Prigogine, I. Self–Organization in Nonequilibrium Systems: From 
Dissipative Structures to Order through Fluctuations. Wiley: Europe, 1977. 

[71] Nicolis, J.S. Dynamics of hierarchical systems: An evolutionary approach. Springer: 
Berlin, 1986. 

[72] Oseledets, V.I. A Multiplicative Ergodic Theorem: Characteristic Lyapunov Exponents 
of Dynamical Systems. Trans. Moscow Math. Soc. 1968, 19, 197–231. 

[73] Ott, E., Grebogi, C., Yorke, J.A. Controlling chaos. Phys. Rev. Lett. 1990, 64, 1196 1199. 
[74] Penrose, R. The Emperor’s New Mind. Oxford Univ. Press: Oxford, 1989. 
[75] Perelman, G. The entropy formula for the Ricci flow and its geometric applications. 

arXiv:math.DG/0211159, 2002. 
[76] Pesin, Ya.B. Lyapunov Characteristic Exponents and Smooth Ergodic Theory. Russ. 

Math. Surveys 1977, 32(4), 55–114. 
[77] Pessa, E., Vitiello, G. Quantum noise, entanglement and chaos in the quantum field 

theory of mind/brain states. Mind and Matter 2003, 1, 59–79. 
[78] Pessa, E., Vitiello, G. Quantum noise induced entanglement and chaos in the dissipative 

quantum model of brain. Int. J. Mod. Phys. 2004, 18B, 841–858. 
[79] Pessoa, L. On the relationship between emotion and cognition. Nat. Rev. Neurosci. 2008, 

9, 148–158. 
[80] Pettini, M. Geometry and Topology in Hamiltonian Dynamics and Statistical 

Mechanics. Springer, New York, 2007. 
[81] Reed, S.K. Cognition: Theory and Applications. (7th ed.) Wadsworth Pub. 2006. 
[82] Schöner, G. Dynamical Systems Approaches to Cognition. In: Cambridge Handbook of 

Computational Cognitive Modeling. Cambridge Univ. Press: Cambridge, 2007. 
[83] Sutton, R.S., Barto, A.G. Reinforcement Learning: An Introduction. MIT Press: 

Cambridge, MA, 1998. 
[84] Todorov, E., Jordan, M.I. Optimal feedback control as a theory of motor coordination. 

Nat. Neurosci. 2002, 5(11), 1226–1235. 
[85] Tognoli, E., Lagarde, J., DeGuzman, G.C., Kelso, J.A.S. The phi complex as a 

neuromarker of human social coordination. PNAS 2007, 104(19), 8190–8195. 
[86] Turner, R.H., Killian, L.M. Collective Behavior (4th ed.) Englewood Cliffs: New Jersey, 

1993. 
[87] Umezawa, H. Advanced field theory: micro macro and thermal concepts. Am. Inst. 

Phys.: New York, 1993. 
[88] Willingham, D.T. Cognition: The Thinking Animal (3rd ed.) Prentice Hall: New York, 

2006. 
[89] Yorke, J.A., Alligood, K., Sauer, T. Chaos: An Introduction to Dynamical Systems. 

Springer: New York, 1996. 



11 

Nonlinear Dynamics and Probabilistic Behavior 
in Medicine: A Case Study 

H. Nicolis 
Unité RIMBAUD (adolescents), Service de Psychiatrie 

CHU Brugman 4, place A. Van Gehuchten 1020 Bruxelles 
Belgium 

1. Introduction 
Nonlinearity is ubiquitous in medicine and life sciences, from the molecular and cellular to 
the organismic and population levels, owing to the presence of a variety of interactions, 
feedbacks and other kinds of regulatory processes that ensure the harmonious coexistence of 
the multitude of simultaneously ongoing activities (Mosekilde, 1996). 
Nonlinearities arising from the cooperative interactions between the subunits constituting a 
system in conjunction with appropriate environmental stimuli, give often rise to collective 
behaviors transcending the individual subunits. A striking example of such collective 
behavior is contagion, be it in the form of propagation of a disease, of a rumor or on a more 
microscopic scale of a mutation, whereby a previously unaffected unit becomes affected in 
its turn following an encounter with the information-carrying unit. In this chapter we will 
be concerned with a particularly dramatic instance of contagion arising in the context of 
adolescent psychiatry, namely, adolescent suicidal outbreaks. 
Suicidal trends rank among the most serious disorders of adolescence. In most countries, 
mortality from suicide is the second or the third leading cause (depending on the surveys) of 
teenage deaths. The incidence of suicide attempts peaks during mid adolescence (Becker, 
Schmidt, 2004). It is estimated that 20% of adolescents have suicidal thoughts and among 
them as much as 5 to 8% have attempted to commit the act (Pommereau, 2001). Each of 
these suicidal acts leaves behind surviving family members, friends and acquaintances who 
must cope with the loss (Bridge et al, 2003). 
A number of risk factors for adolescent suicidality have been identified. Among these the 
most important are depression and exposure to suicide, suicide attempts or suicidal 
thoughts by family and friends, suggesting that the adolescent can be considered at 
potential risk of contagion with suicidality stimulations. Here, suicide contagion refers to 
the link between adolescent’s exposure to a suicide stimulus and subsequent rise in the 
frequency of suicide attempts or suicide rate and is considered most likely to occur in 
already suicidal adolescent and to be a time-limited risk. In this respect, it appears 
reasonable to view a suicidal trend as a behavioral attribute. If so, suicide contagion could 
be regarded as a particular manifestation of behavioral contagion whereby, much like in an 
infectious disease, an attitude or a mood passes from a person to the next. Jones and Jones 
(1994) provided statistical support of behavioral contagion in a number of situations, and 
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the perspectives opened in their analysis constitute one of the principal motivations of the 
present work.  
Generally speaking, if a behavior is contagious, its prevalence increases with the number of 
susceptible adolescents rather than the total number of individuals present. Wheeler (1970) 
identifies behavioral contagion by 4 criteria: 
1. An observer is motivated to behave in a certain way; 
2. The observer knows how to perform the behavior in question but is not performing it; 
3. The observer sees a model perform the behavior; 
4. The observer after observing the model performs the behavior. 
The theory of contagion rests on three central concepts apart from contagion itself: 
susceptibility, mode of transmission and exposure. Susceptibility is necessary for contagious 
transmission.  
One aspect of youth suicide of particular concern is the repeated reports of suicide 
outbreaks among young people. These outbreaks have been reported from as long ago as 
ancient Greece and from around the world. They have been called suicide clusters, a term 
that describes three or more suicides occurring within a defined space and time. The 
incidence of cluster suicides is highest among teenagers and young adults (Gould, 2001) and 
a growing concern has been that adolescents exposed to a peer’s suicide may be at increased 
risk to engage in suicidal behavior (Brent et al, 1993 a, b). Many studies have also addressed 
the question of whether indirect exposure to suicide through media or Internet accounts 
contributes to subsequent suicide (Baume et al, 1997; Davidson et al, 1989).  
The most common explanation for the above noted phenomena is that of imitation. This 
mechanism is consistent with reported epidemics of suicide involving unusual methods 
such as immolation etc…Imitation is also consistent with the short latency between publicity 
and the increased rate of suicide within 1 to 2 weeks. According to McKenzie et al (2005) 
there is indirect evidence that imitative suicide occurs among people with mental illnesses 
and may account for about 10% of suicides by current and recent patients. 
One could argue that individuals are influenced in their suicidal thoughts mainly through 
their direct exposure to an actual suicidal attempt. If so, suicidal trend would be a 
spontaneous process occurring at a rate equal to the size of the population of concerned 
individuals multiplied by proportionality constant whose value depends on the exposure in 
question. In this context, Joiner (1999) wonders if the pernicious agent of the hypothetical 
contagion in suicide exists. He insists on the important role of exposure, external influence 
rather than contagion and suggests that the concept of imitation may be not needed. He 
emphasizes that the vulnerable people may become socially contagious via assortative 
relating and thus simultaneously susceptible to the effects of life stress. Other studies report 
that the predominant psychiatric sequelae observed in adolescents exposed to violent deaths 
are anxiety, depression and post traumatic stress disorder. It has been suggested that the 
degree to which the second person identifies with or feels similar to the deceased person 
may influence the degree to which he is affected by this exposure.  
While these mechanisms are undoubtedly operating in a number of circumstances of 
interest, our main thesis here is that they cannot account properly for suicidal outbreaks, as 
they lack the necessary ingredient of feedback. The alternative we thus propose is that of 
cooperativity, when a population of susceptible individuals is mixed with a population of 
suicidal ones. The nature of the suicidal attempt is in this perspective completely different, 
as it now depends on the size of two subpopulations in close interaction. This double 
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dependence calls for a nonlinear approach to the problem and opens the way to self-
acceleration, abrupt transitions and other analogous behaviors concomitant to the well-
established syndrome of outbreaks.  
In this chapter, the propagation of suicidal trends is viewed as the result of encounters in the 
course of which a susceptible individual can change its mental state with some probability 
following interaction with a suicidal one. The encounters can be short ranged like e.g. a 
physical encounter in a hospital unit and a school class, or long ranged like e.g. 
communication though the Internet. Different contagion scenarios are explored and the 
main trends to be expected are identified. The results are confronted to the data available 
and different strategies for improving current prevention practices are suggested. Two types 
of methodologies are employed. In a first approach, the variability arising from the 
individual decision making is ignored and a mean view is adopted. This maps the problem 
to a problem of population growth in a medium of limited resources (here the total number 
of susceptible and suicidal individuals). Various growth patterns are highlighted depending 
on the contagion probability and the initial percentage of suicidal individuals. In a second 
approach, variability is incorporated by means of the technique of Monte Carlo simulation 
well suited to treat populations of limited size where randomness is expected to play an 
important role. This approach has been used with success in several problems arising in 
chemical kinetics, biochemistry and social insect behavior (Gillespie, 1992). A number of 
different evolution scenarios are explored and some unexpected effects are brought out. The 
novelty here is to give access to situations limited in space and time like e. g. those arising in 
a given hospital unit over the usual hospitalization time, as opposed for those accounted for 
in surveys where local and short scale trends are smeared out. 

2. General setting 
Let X1, X2 be the populations of suicidal and of susceptible individuals respectively. In order 
to bring out the role of nonlinearity and cooperativity in a clearcut manner, it is stipulated 
that during the phenomenon of interest there is no major reshuffling of the organization, 
entailing that the total population remains essentially constant: 

 X1 + X2 = N = constant  (1)  

In addition to the above two types of individuals, a third type may also be present. In what 
follows its role is viewed as that of a buffer, in the sense that while it does not participate 
directly in the dynamics, it may play a role in determining the values of some of the 
parameters present. 
A first instance (hereafter referred as case I) explored in the sequel is that of contagion 
arising though direct, physical encounters of type 1 and type 2 individuals, hereafter 
denoted as S1 and S2 which are schematized as follows: 
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  (2)                          

The first two steps correspond to the obvious idea that encounters of individuals of the same 
kind do not give rise to a mental transition. On the contrary, the last two steps account for 
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imitation and thus cooperativity: upon encountering a susceptible individual, a suicidal one 
can either switch to the susceptible state with a certain probability p2 or induce a suicidal 
trend to the susceptible partner with another probability p1. The corresponding probabilities 
p1 and p2 are expected to fulfill the inequality p1>p2. Although there seems to be no direct 
statistical evidence in support of this, we argue that in the absence of medical treatment 
such a property reflects the well-established tendency of susceptible and suicidal 
individuals to evolve “uphill” in the search of increasingly dramatic experiences rather than 
to evacuate stress and evolve to the opposite way toward normality.  We refer to 
Pommereau (2001) for the definition of susceptible individuals. In fact adolescents with 
mental dysfunction express affective immaturity, sensibility to frustrations, massive 
dependence to genitors, depressivity of the mood without depressive episode and tendency 
to acting out.  These susceptible adolescents refer to the most deviant repairs including 
suicidality. We emphasize that p1, p2 are intrinsic parameters associated to individual 1-2 
encounters, independent of the respective sizes of the populations X1 and X2. Depending on 
the latter, the overall process of contagion will of course become accentuated, as seen below. 
It should also be noticed that in writing scheme (2), we tacitly assumed that individuals of 
the type 1 and 2 can only exist in a single state. In a more refined analysis one could account 
for further differentiation within a single subpopulation, like e.g. different degrees of 
susceptibility in individuals of type 2. Other refinements would be to account for memory 
effects and for changes in the parameters N, p1, p2 arising for instance from medical care, 
environmental stimuli or population renewal. Such extensions are likely to be important on 
a long time scale. They are not carried out here, as our main purpose is to identify the role of 
nonlinearity and cooperativity in the outbreak of suicidal attempts, a phenomenon expected 
to be initiated in the short to intermediate time regime. 
A second instance of interest (hereafter referred as case II) pertains to contagion through 
long range interactions. To account for this possibility, we imagine that individuals 
constitute the nodes of a network and the interactions between any two individuals give rise 
to a connection between the corresponding nodes.  In the previously presented case I, only 
nearest neighbor nodes are connected (e.g. 1-2, 2-3 etc.).  In the other extreme each node is 
connected to any other node (e.g. 1-2, 1-3, 1-4…, 2-3, 2-4,…, etc…). This corresponds to the 
longest possible range that interactions can achieve. Intermediate cases may also be 
envisaged. We emphasize that the model as defined above is in many respects generic. It 
should thus apply suitably adapted to other types of behavioral contagion beyond the 
suicidal one that constitutes the main focus of the present work.  
We are now in the position to formulate the evolution of the subpopulations X1 and X2 in a 
quantitative manner. Two complementary points of view are adopted for this purpose, as 
specified below. The results to be reported depend crucially on the values of the contagion 
probabilities p1 and p2. These quantities or, more to the point, their difference p1-p2 
determine the time scale over which the suicidal trend will spread. In view of the scarcity of 
relevant data, different values will be considered and the sensitivity of the results on the 
choices will be assessed. Another important parameter, responsible for the sharpness of 
contagion and for the importance of stochastic effects, is the total number N of the 
individuals in the group and the initial numbers X1(0) of suicidal ones. In the following a 
sensitivity analysis with respect to these parameters will be carried out and some robust 
trends will be identified. The following possibilities will be considered.    
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1. All individuals N-X1(0) other than the suicidal ones are likely to be affected by the 
contagion. This can be the case in a hospital unit or in an institution where non-suicidal 
patients are already subjected to psychiatric disorders. 

2. Among the X2=N-X1(0) individuals only a fraction γX2(0) (γ much smaller than 1) are 
likely to be affected, the remaining ones being immune to any psychiatric disorders. 
This can correspond to a school class or to hospital unit in which the adolescent patients 
are treated for a completely different kind of disease. 

3. Population dynamic approach: An averaged view 
In this view, encompassing case I as well as case II above, it is assumed that individuals 1 
and 2 are well mixed and interact at random. The strength of the interactions is proportional 
to the corresponding fractions Θ1=X1/N, Θ2=X2/N, and only encounters between 1 and 2 
lead to changes in the populations of either 1 or 2. This leads us to a rate law of the form 
 

Rate of change of 1 over a time interval 
=p1 x (frequency of 1-2 encounters) - p2 x (frequency of 1-2 encounters) 
 

Taking the limit of the shortest time interval over which interactions become effective one 
obtains the quantitative expression 

d Θ1/ dt = ( p1-p2 ) Θ1 Θ2 

or, with eq. (1) 

 d Θ1 /dt= p Θ1 (1- Θ1)  (3)                          
where we set  

 p=p1-p2  (4) 

This equation is formally identical to the logistic equation (Pielou, 1969). It can be integrated 
exactly, yielding  

 
 
Θ1 (t) =

Θ1 (0)
[1−Θ1 (0)] e−pt +Θ1 (0)

  (5) 

which is seen to depend solely on p and on the initial fraction Θ1(0).   
The two quantitatively different evolutions predicted by this equation are depicted in Fig. 1 
and 2 corresponding respectively to Θ1(0) being greater or smaller than 1/2.  As can be seen, 
in the first case one witnesses a smooth evolution toward a contagion of the entire 
population, bound to occur on the time scale of 

 Tcont ~ 1/p   (6) 

In the second case one observes on the contrary a first period of quiescence during which 
individuals 1 seem to have no contagion effect, followed by an explosive growth and 
eventual saturation. The explosion time, corresponding to the inflexion point of the Θ1 
versus t the curve of Fig. 2, can be evaluate explicitly and is given by 

 
  
t * =

1
p

ln[ 1−Θ1 (0)
Θ1 (0)

]  (7) 



 Nonlinear Dynamics 

 

270 

For Θ1(0) much smaller than unity it is therefore much longer than the contagion time 
associated to the case of Fig. 1. In practice, saturation and explosion may never be achieved 
if the corresponding times are longer than the hospitalization period. Nevertheless, the 
above results may provide valuable indications on the trends that may be in elaboration 
within the populations in interaction. They will also serve as reference for the Monte Carlo 
approach presented below. 
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Fig. 1. Time evolution of the fraction of individuals of type 1 as deduced from eq. (5) under 
the condition Θ1(0)>1/2.  Parameter values p=0.15, Θ1(0)=0.55. 
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Fig. 2. As in Fig. 1 but with Θ1(0)=0.01. 



Nonlinear Dynamics and Probabilistic Behavior in Medicine: A Case Study  

 

271 

4. Monte Carlo simulation 
When dealing with complex realities one is often led to recognize that a modeling approach 
may be limited by the lack of detailed knowledge of the laws governing the system at hand 
and of the values of the parameters involved in the description. A central point of the 
present work is that to cope with this limitation it is important to set up a complementary 
approach aiming at a direct simulation of the underlying process, rather that at the solution 
of the evolution laws suggested by a certain model. The Monte Carlo simulation approach 
described below provides an efficient way to achieve this goal. It also allows one to 
incorporate in a natural way the role of individual variability expected to be of the utmost 
importance, since the quantities featured are now fluctuating in both space and time rather 
than being fully deterministic. Two types of studies have been conducted. In both cases, the 
population sizes have deliberately been taken to be small to emulate real world situations as 
they arise in a single hospital unit or in a school class. As it will turn out stochastic effects 
will then play a very important role. Still, the averaged description serves as a useful 
reference for apprehending the specific role of stochasticity in the overall process. 
Case I 
The physical space (school class, recreation area, hospital unit, space of common patient 
activities, ...) is modeled as a regular square planar lattice. Each individual performs a 
random walk between an initial position and its first neighbors. When two individuals are 
led to occupy through this process the same lattice site processes (2) are locally switched on. 
The various steps are weighted by the corresponding probabilities and the particular 
transition to be performed at a given time is decided by a random number generator 
(amounting essentially to throwing dice) compatible with these probabilities. After this 
particular step is performed the populations X1, X2 are updated and the process is restarted. 
The simulation, which records the numbers of X1 and X2 at different parts of space, is 
stopped at a number of steps beyond which the process becomes stationary in the sense of 
reducing to fluctuations around a constant (time-independent) plateau. In addition to a 
single realization of the simulation (referred as “stochastic trajectory”) averages over 
realization giving access to mean values, variances etc are also performed. 
The following instances are considered. 
i. An institution or a big hospital unit with N=30, X1(0)=6 suicidal individuals and 

X2(0)=24 individuals presenting other kinds of psychiatric disorders. The contagion 
probabilities are set p1=0.25, p2=0.1 and the individuals are initially taken to be 
distributed randomly. 

ii. As before, but with N=20, X1(0)=4 in order to test the role of population size. 
iii. A school class or a mixed hospital unit with N=30, X1(0)=2 suicidal individuals. It is 

supposed that of the N-X1(0)=28 individuals 4 are susceptible of being affected and the 
remaining 24 ones constitute the environment within which the process will take place. 
Accordingly, the contagion probabilities are set to lower values p1=0.1, p2=0.05 since the 
encounters are expected to be more scarce. 

iv. N=8 individuals of which X1(0)=4 are suicidal and N-X1(0)=4 subject to other types of 
disorder, functioning as a “clan” independent of its environment. This is accounted for 
by resetting p1, p2 to the values of 0.25 and 0.1 respectively. 

v. As in iv. but now the two subpopulations are initially segregated (say in different 
hospital rooms) and meet only in common activities. 
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Figures 3a,b depict the time dependence of the population density X1/N of X1 averaged over 
many realizations of the process and of the associated variance <δX12>=<X12> - <X1>2.  
Figure 4 provides a reformulation of the results of Fig. 3 when all cases (i) to (v) are 
normalized to the same mean population. Figs 5 and 6a,b provide a more refined view of the 
role of inherent variability by showing respectively a single stochastic trajectory under the 
conditions of case (iii) and the probability histograms associated with (i) and (iii).  
Case II 
The physical space (e.g. Internet, a newsletter etc…) is here lumped into a single cell within 
which each individual may interact with any number of other ones with probabilities 
determined as before. Again, stochastic trajectories recording the individual transitions as 
well as averaged quantities over all trajectories are deduced.  The context is now that of a 
small number of heavily affected individuals communicating via Internet, newsletter or any 
other kind of multimedia means with a small number of susceptible partners not attained so 
far by the disease. Fig. 7 summarizes the results for N=6, X1(0)=3 using the same values for 
parameters p1 and p2 as before.  

5. Discussion 
Building on evidence supporting the existence of suicidal contagion, we proposed and 
developed a predictive model of how suicidal trends propagate in an adolescent population. 
The principal feature underlying the model is the cooperative character of the contagion 
process (last two steps in (2)). The model predictions depend entirely on two kinetic 
parameters, the contagion probabilities p1 and p2 for susceptible and for suicidal individuals 
to switch to the suicidal and susceptible state respectively; and on two population like 
parameters, the total number N of individuals that may undergo a transition in their mental 
state and the number X1(0) of suicidal individuals initially present.  
A first result of interest has been that contagion is not always a smooth process but may 
rather take an explosive form, depending on the values of X1(0)/N and p=p1-p2. In this latter 
case there exists a well-defined time t∗ of switching toward a collective suicidal state (Figs 2, 
3a and 4a). This provides a quantitative basis for the phenomenon of outbreak referred in 
the Introduction as well as a strong support of the idea of contagion as a generic mechanism 
of adolescent suicidal trends. Subsequently, the population attains a mean saturation level 
on which is superimposed a random signal reflecting individual variability. This level may 
actually never be attained since on a long time scale the refinements to the original model 
discussed in section 2 will begin to play an increasingly crucial role. 
A second series of results pertains to the role of stochasticity. The following comments are in 
order on inspecting the key Figure 3. 
- In all cases the mean value <X1> is increasing in time, in qualitative agreement with 

Figs 1 and 2. 
- The evolution is initially slower for segregated sub-populations (case (v)). What is 

happening here is that few among 1 and 2 types first meet in a limited space which 
constitutes a front of some sort, from which the trend can subsequently propagate. 

- In cases (i), (ii), (iv) and (v), a saturation level in which the entire population of 
susceptible individuals switches to the suicidal state is eventually reached. The time 
scale for this to happen may be long with respect to the hospitalization or school period 
times. Still, the explosive growth for short times should be emphasized, confirming the 
prediction made in eq. (7) and Fig 2. 
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- The saturation level reached in case (iii) is significantly less than 100% in the same time 
scale as (i), (ii), (iv) and (v). This at first sight unexpected emergence of a state of 
undecidability is robust with respect to changes in the values of p1 and p2. It arises 
primarily from individual variability, here exacerbated by the smallness of the size of 
the overall population compared to X1(0). There are long periods of hesitation and in 
some realizations of the process the trend is inverted and the entire population reaches 
the more favorable state. 
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Fig. 3. (a): Time dependence of the mean density of individuals of type 1 as deduced from 
the Monte Carlo simulation; the full, dashed, heavy dotted, dashed-dotted and light dotted 
lines refer to cases (i) to (v), respectively. (b) : Time dependence of the variance under the 
conditions of Fig 3a. The physical space considered is a square planar lattice of size 10X10 
space units, the number of statistical realizations is 10,000 and the initial positions of the 
populations are random in space. 
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These trends are further illustrated in Fig. 3b where the variance<δX12>=<X12> - <X1>2 is 
represented. In all case but (iii) <δX12> is seen to reach a low final value, but prior to this it 
goes though a well - marked maximum grossly at a time corresponding to the inflexion 
point of the curves in Fig. 3a.  As for case (iii), <δX12> steadily increases and reaches a final 
value orders of magnitude larger than for (i), (ii), (iv) and (v) which is comparable to the 
mean value itself. This is in agreement with and provides an explanation of the statement in 
Jones and Jones on the behavior of variance. 
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Fig. 4. (a): As in Fig. 3 but under conditions of identical overall population densities.  Full, 
dashed and dotted lines refer to cases (i), (ii) and (iii), respectively. Initial positions and 
number of realizations as in Fig. 3. 
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Interestingly, when all cases above are normalized to the same mean population density, 
cases (i), (ii), (iv), and (v) are essentially reduced to a “universal" behavior both for the mean 
and the variance while case (iii) still constitutes a different class (Fig. 4a, 4b). This suggests 
that the model of eq. (3) is rather adequate for intermediate to long times as long as N is 
sufficiently large (which in practice could be reached already for the rather modest value of 
N=8), but even in these cases it may prove inadequate for short times and especially for 
times around the maximum of the variance. 
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Fig. 5. (a): Quasi-deterministic behavior modulated by small scale variability under the 
conditions of case (i). (b): Situation of undecidability induced by the individual variability in 
a small size population (case (iii)). 
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At the level of a single stochastic realization of the process (the analog of the type of 
evolution observed in practice) variability and undecidability are reflected by the fact that 
while in case (i) the switching of the population to state 1 occurs quite early in time (Fig.5a), 
it needs a much longer induction time under the conditions of case (iii) (Fig. 5b).  We next 
comment on Figs 6a,b which depict the probability histograms associated with (i) and (iii) 
respectively. In 6a, drawn after 80 time units (the time at which the variance reaches its 
maximum in Fig. 3b) the histogram is clearly unimodal. It is peaked at a value corresponding 
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Fig. 6. Probability histograms associated with cases (i), Fig. 6a and (iii), Fig. 6b with an initial  
population density 0.3.  Initial positions as in Fig. 3 and number of realizations is 20,000. 
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to the instantaneous X1/N as deduced from Fig. 3a. For longer times the maximum slides to 
the right and eventually tends to 1. The structure is radically different for Fig. 6b drawn 
after 300 time units (the time for the value of the variance to exceed that of cases (i), (ii), (iv) 
and (v)) which displays a bimodal structure.  As can be seen, the two peaks are located at 
low (close to 0) and high (close to 1) density of X1, reflecting the possibility of switching 
from individuals of type 1 to type 2 with a non-negligible probability. Clearly, this type of 
structure is quite different from the binomial distribution usually featured when 
interpreting results of surveys (Jones & Jones, 1994). This reflects the cooperative character 
of the contagion dynamics, an idea that has been central throughout this chapter.  
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Fig. 7. Time dependence of the mean density of individuals of type 1 and 2 (7a) and of the 
variance of individuals of type 1 (7b) in the presence of long range interactions. Number of 
realizations as in Fig. 3. 
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The results discussed so far pertain to Case I. Regarding now the new features concerning 
Case II, summarized in Fig. 7, their most striking difference with Figs 3 and 4 is that the 
process is now accelerated dramatically, such that saturation level is reached within an 
observable time scale. Owing the small numbers involved this level is less than 100% in a 
way analogous to case (iii) above. The variance remains substantial at saturation (Fig. 7b) 
and goes through a maximum. 

6. An augmented model 
The results in the preceding sections depend crucially on the validity of the conservation 
condition of the total population of suicidal and susceptible individuals (eq. (1)). Although 
this may be a reasonable assumption over short to intermediate time scales it is bound to fail 
in the long run, as the system becomes open to different kinds of interactions with its 
environment. In this section we develop an augmented version of the model of eqs (2) 
accounting for key processes expected to be present in real-world situations. Specifically, we 
allow for the following additional steps. 
- The influx of susceptible individuals S2 from an external population A of size much 

larger than S 2: 

 
 
A→

a
S2   (8a) 

- The possibility that suicidal individuals may be removed from the population S1 
(recovery or on the contrary isolation): 

 
 
S1 →

k 1

S1
*   (8b) 

- The possibility that susceptible individuals may likewise be removed from the space of 
coexistence with S1, spontaneously or deliberately: 

 
 
S2 →

k 2

S2
*   (8c) 

The rate equations associated to this augmented model read 

 

 

dΘ1
dt

= pΘ1Θ2 − k1Θ1

dΘ2
dt

= a− pΘ1Θ2 − k2Θ2

  (9) 

Choosing as before p>0, we notice that in the limit a=0, k1=k2=0 the total population Θ1+Θ2 
is conserved and one recovers for Θ1 the logistic equation (3). Here we are interested in the 
new effects arising (a), from the opening of the susceptible population towards the influx a 
of freshly arriving individuals; and (b), from the process by which both suicidal and 
susceptible individuals tend to leave the system though the above mentioned mechanisms 
of medical treatment, recovery or spatial constraints. 
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Contrary to eq. (3), eqs (9) do not admit an explicit analytic solution. We therefore proceed 
by identifying first the stationary states in which the variables Θ1 and Θ2 no longer evolve in 
time. Setting d Θ1/dt= d Θ2/dt=0 in eqs. (9), one finds: 
- A semi trivial solution 

 
 
Θ1 = 0, Θ2 =

a
k2

  (10a) 

- A fully non-trivial solution 

 
 
Θ1 =

1
k1

(a−
k1k2

p
), Θ2 =

k1
p

  (10b) 

 

To determine the conditions under which the system will eventually settle in (10a) or (10b) 
we perturb slightly each of these states and seek for conditions on the parameters under 
which the perturbations are amplified or on the contrary damped. In the first case the state -
which will be qualified as unstable- will not be sustainable under real-world conditions, 
where perturbations of different origins are inevitable. In the second case the state –which 
will be qualified as stable- will represent the asymptotic regime towards which the system 
will evolve after a transient period whose duration depends on the values of the parameters. 
A standard linear stability analysis (Nicolis, 1995)) leads to the conclusion that there is a 
well-defined transition separating these two situations, occurring at a value of the influx 
parameter a given by 

 
 
ac =

k1k2
p

  (11) 

 

For a<ac state (10a) is the unique, stable steady state solution of eqs. (9) since state (10b) is 
physically unacceptable ( Θ1<0). For a> ac state (10a) still exists but is unstable, and the 
system evolves spontaneously towards state (10b) which becomes physically admissible as 
Θ1 is now positive. Notice that in the limit a=0, k1=k2=0, p>0 the semi-trivial state is always 
unstable and the non-trivial one is always stable. This corresponds, in fact, to the situation 
depicted in Figs 1 and 2 pertaining to the model of eq. (3). 
Figures 8a,b summarize the time evolution of the fractions of Θ1  and Θ2  prior to the steady 
state, under the condition a>ac  (state (10b) is stable). We start with a sizable pool of 
susceptible individuals in which a small fraction of suicidal ones has been introduced. The 
evolution of Θ1 follows first a course quite similar to that of Fig 2, but once near the plateau 
the situation changes radically: owing to the increasing effect of suicidal contagion, the pool 
of susceptibles tends to be depleted and this in turn induces a sharp decrease of suicidal 
incidents. The result is the appearance of a marked overshoot in the population of Θ1 and a 
concomitant undershoot in Θ2. Subsequently both Θ1 and Θ2 experience a slight undershoot 
and overshoot respectively, before settling to their long terms values. We have here a second 
manifestation of suicidal outbreak beyond the one identified for the model of eq. (3), where 
outbreak was associated with the occurrence of an inflexion point of the function Θ1(t) prior 
to the attainment of the plateau (eq. (7)). 
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Fig. 8. Transient evolutions of the fractions of Θ1 (a) and Θ2 (b) obtained by solving 
numerically eqs. (9). Parameter values a=1, k1=0.12, k2=0.01, k=0.02 and initial conditions 
equal to 0.001 and 0.999, respectively. 

Following the logic of the Monte Carlo analysis previously carried out for the scheme of eqs 
(2), we now inquire on the effect of variability in the results derived so far in this section. 
Rather than perform a full scale Monte Carlo study, we resort to a more phenomenological 
approach in which variability is accounted for by adding to the right hand sides of both eqs 
(9) uncorrelated random noises sampled from a Gaussian distribution. Fig 9 depicts the 
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response of Θ1 to a variability source of this kind. Keeping parameters values as in Fig. 8 we 
see that variability tends to depress the extent of suicidal outbreak, presumably by 
desynchronizing the action of the suicidal individuals that would otherwise have 
manifested itself in a concerted fashion. 
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Fig. 9. Effect of variability in the form of uncorrelated Gaussian noise sources of variance 
equal to 10-2 added to eqs (9), on the evolution of the fraction of Θ1. Parameter values and 
initial conditions as in Fig. 8. 

7. Conclusions and perspectives 
We believe that the ideas put forward in this work have a methodological interest that may 
be further enhanced by e.g. refining the model to account for several internal states or for 
memory effects. In addition to this fundamental aspect we suggest that our results as they 
stand can be the starting point for two kinds of applications. Firstly, the reassessment of 
some of the results available from surveys. In particular the bimodal character of the 
probability in Fig.6b, reflecting the cooperativity and the smallness of the population size, 
suggests that the process does not always follow the trend of a purely random event as 
reflected by a binomial probability distribution. Secondly, the elaboration of prevention 
strategies. In particular, one may use the switching time t* (eq. (7)) and inflexion point in 
Figs 2 and 8a) as alert level beyond which the process may get out of control. It may happen 
as mentioned in Sec. 3 that under the conditions actually prevailing in a given environment 
this time is much too long compared to the time scale imposed by the local conditions. If so 
one should switch to a second indicator of an imminent catastrophic evolution, which in our 
view is provided by the standard deviation (<δX12>)1/2 or more significantly the ratio 
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(<δX12>)1/2/<X1>. As seen in Sec. 5 this quantity, easily monitored, tends to be enhanced in 
the vicinity of a collective transition encompassing the populations of interest.  
For all the situations analyzed in Sec. 4 with the exception of (iii), the propagation of suicide 
is explosive and inevitable. The evolution of the propagation of suicide in case (v) is slower 
because of the limited cooperativity between individuals who have few contacts between 
them. It would be worthwhile to analyze in the future from this perspective contagion 
trends in other behavioral disorders typical of adolescence such as running away and 
addictions. 
Another potential application pertains to prevention of situation (iii) in connection with the 
nature of the class group. There is much discussion about the possibility to create classes 
with mixed difficult adolescents, that is teenagers with conduct and affective disorders 
inhibiting the faculty to learn and to succeed in school. In fact the adolescents suffering of 
conduct disorder have often difficulties in mentalization of their essential depressive 
symptoms. Even if they do not have the problem of suicidal symptoms in first place, they 
commit repeatedly a lot of accidents, such as motor vehicle fatalities or even delinquent acts, 
equivalent to suicidal act. Regrouping this kind of adolescents may be, in our view and 
according to our results, an error as it will tend to induce further accidents. We see actually 
that the mixing of susceptible individuals in a “healthy” class group limits the risk of 
suicidal contagion. 
Finally, there is according to our results an interactive “Werther” effect in the form of cyber 
suicide. In 1774 Johann Wolfgang von Goethe published his by now famous novel “Die 
Leiden des jungen Werther”, in which his hero a young artist, takes his own life after a 
series of failed attempts to gain the love of beautiful Lotte. The novel had an immediate and 
an immense impact: men of society used to dress like Werther and as many as 2000 readers 
seem to have imitated the way he acted and died. As a result of this catastrophic situation, 
Goethe’s novel was banned for a long time in many European countries. More than 200 
years later, it appears that the availability of easy communication channels through the mass 
media and in particular through the advent of the Internet, an increasingly important mode 
of information and communication among adolescents and young adults is at the origin of a 
comeback of an interactive “Werther effect”. Many studies have addressed the question of 
an observer copying suicidal behavior that he has seen modeled in the media. Case reports 
about cyber-suicide have been published, whereby indirect exposure to suicide through 
media or Internet accounts contributes to subsequent suicide.  
Suicide information is easily accessible over the web, as are special chat rooms for 
discussions with like-minded people. Chat rooms are typical of adolescents and young 
adults, a group at the highest risk for imitative suicidal behavior (Davidson et al, 1989). In 
fact mass clusters are media related phenomena. They are regrouped more in time than in 
space, and are purportedly in response of actual or fictional suicide.  
Our results (case II, cf. Fig. 7) provide insights on the mechanisms underlying this collective 
behavior. They also suggest certain ways of control of the phenomenon and of its follow 
ups. Health group sites and qualified treatment for suicidal youths should be better 
promoted. Psychiatrists, parents and teachers should take more interest in their 
patient’s/children’s Internet consumption and discuss with them. Question on media and 
Internet should be part of the anamnesis. The legal options to prevent cyber suicide should 
be discussed from a national and international perspective because of the dramatic 
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contagion and the criminal abuse of the Internet communities (Becker, Schmidt, 2004). This 
is crucial especially in view of our results on the dramatically fast pace of the process.  
In summary, the major clinical insights afforded by our models are: the elaboration of 
guidelines for slowing down the propagation of suicide; the identification of possible “alert” 
indicators; and controlling Internet consumption. The main limitations of the models in their 
present form are that memory effects are not incorporated and that an individual is taken to 
be in either of only two mental states. 
All in all we believe that in addition to and as complement of the all-important insights 
afforded by the statistical analysis of surveys, a “first principles” approach of the kind 
suggested in this chapter may contribute to the unveiling of some of the multiple facets of 
the dramatic episodes surrounding adolescent suicidal trends. 
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1. Introduction 
Cancer is often characterized as a chaotic, poorly regulated growth. Cancer can be viewed as 
a complex adaptive system. Complex adaptive systems can be described mathematically by 
nonlinear (chaos) theory including asymmetry, fractal structure and autocorrelation factor 
(Cramer, 1993). Atypical shape of tumor cells and chaotic structures of blood flow is one 
from characteristic of cancer process. Atypical change of cell shape in conglomerates of 
tumor cells and structure of blood flow is accompanied by increase of deterministic chaos 
(Baish & Jain, 2000; Orel & Dzyatkovskaya, 2000). Complex natural phenomena such as 
cancer are dynamical systems whose state changes by perturbation. The concept of 
deterministic chaos is hierarchical for host in contemporary ideas about role of chaos for 
potential application in oncology (Sedivy & Mader, 1997; Blazsek, 1992). The authors 
introduced concepts related to chaos theory, such as attractors, fractals and the Lotka-
Volterra equations, as potentially useful approaches to allow for the analysis of carcinogenic 
biological processes as related to selection and competition. In certain situations, these 
equations give chaotic, non-linear, and nonpredictable results. Given what is known about 
the enormous complexity of the carcinogenic process, use of models such as these may be 
perfectly justified, and might provide the theoretical framework that is so desperately 
needed in this age of data overload to make real progress in the understanding of human 

carcinogenesis (Garte, 2003). 
Entropy is a measure of disorder. The thermodynamic entropy of a cancerous cell is 
different from that of a normal cell due to the more disordered structure of the cancerous 
cell. The reversal of entropy flow in tumour tissues may halt tumour development due to 
reversed signal transmission in the tumour-host entity. This thermodynamic approach may 
help in the design of cancer therapy (Molnar et al., 2009).  
Transplanted animal tumors which can only be experimentally induced by transplanting  
living tumor cells significant influence on complex adaptive systems include developing of 
tumor formation for experimental animals. During recent years there has been increasing 
public concern on potential cancer risks from radiofrequency radiation emissions (Hardell & 
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Sage, 2008). Inhomogeneous pulsing electromagnetic fields (EF) stimulation of biological 
tissue was associated with the increase in the number of cells and/or with the enhancement 
of the cellular differentiation (Diniz et al., 2002). Inhomogeneous (asymmetric) and 
sinusoidal EF can cause different changes in protein synthesis of cells. It should be noted, 
that pulsed asymmetric EF and heat shock produced different patterns of polypeptide 
synthesis (Goodman & Henderson, 1988). Inhomogeneous pulsing EF caused significant 
reductions in osteoclast formation of tumor necrosis factors, interleukins (Chang et al., 2004) 
and in osteoblast-like cell of proliferation and gene expression (De Mattei et al., 2005). These 
observations provide evidence that in vitro inhomogeneous EF affects the mechanisms 
involved in cell proliferation and differentiation.  
Magnetic resonance images demonstrate that malignant tumor can be inhomogeneous 
media for spatially inhomogeneous EF (Fig. 1). Cancer patient exhibited higher values 
within the spread parameter S range than healthy individual (Fig.2). Each wavefront will be 
continued independently by an arbitrary inhomogeneous structure of tumor. Propagation of 
inhomogeneous radio waves in tumor is accompanied by nonlinear effects with greater 
changes in direction and energy of electromagnetic field than in normal tissues (Kattapuram 
et al., 1999). 
 

 
a b 

Fig. 1. T1-weighted MR images of the stomach: a - healthy individual; b - cancer 
 

 
a b 

Fig. 2. Phase map of T1-weighted MR images of the stomach: a - healthy individual; 
b - cancer 
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The complete wave field at a tumor will be then obtained as an integral superposition of all 
wavefront arriving in some neighbourhood of the object.  Inhomogeneous electromagnetic 
wave can be written from Maxwell's equations in the form of an inhomogeneous 
electromagnetic wave equation (or often "nonhomogeneous electromagnetic wave 
equation") (Purcell, 1985). Relationships between transplanted animal tumors and external 
inhomogeneous EF that initiated in them local hyperthermia are important for understand 
of the principles nonlinear dynamics in cancer process and multimodal approach (and 
typically nonlinearly) for him treatment (Furusawa & Kaneko, 2000).  
Doxorubicin (DOXO) is an anthracycline quinone antineoplastic antibiotic that has been 
shown to have a wide spectrum of clinical activity against a variety of solid tumors. The 
mechanisms of DOXO-induced cytotoxicity have been extensively studied and have been 
shown to include free radical formation and absorption of DOXO into the double helix of 
DNA resulting in topoisomerase II-mediated DNA damage . DOXO also causes depolarization 
of the membrane lipid bilayer in different cancer cell lines (Reszka et al., 2001). 
Current forms of DOXO are higly toxic to the patient and can cause systematic comlications, 
most notably cardiotoxicity. Systemic toxicity can seriously decrease the effectness of the 
drug since a lower dose must be administrated to avoid toxicity. Another approach to avoid 
toxicity include targeted delivery, however, it is often difficult to ensure that the 
chemotherapy targets only the cancer tissue and the agent is localising in the target tissue. 
Therefore in several studies DOXO was combined with electromagnetic hyperthermia with 
an aim at enhancing antitumor efficacy of the drug (Shen et al., 2008). However, the 
cytotoxicity of this antitumor agent is increased by elevated temperatures as shown in vitro 
and in vivo (Marmor, 1979; Chen et al., 2004). Nonetheless, studies of DOXO and 
electromagnetic hyperthermia are still controversial and often show no synergism or 
synergism only at the doses that cannot be tolerated by subjects (Gaber, 2002). Positive 
clinical results of combined treatment with DOXO and electromagnetic hyperthermia are 
still unsatisfactory. Widespread clinical application of electromagnetic hyperthermia in the 
patients is limited because temperatures in the range of 41–50°C produce heat shock 
proteins and initiate drug resistance (thermoresistant) in tumor cells (Roemer, 1999). 
Drug resistance is the single most important cause of cancer treatment failure and carries a 
massive burden to patients, healthcare providers, drug developers and society. It is 
estimated that multi drug  resistance  plays a major role in up to 50% of cancer cases. Today, 
most drug therapies involve multiple agents, as it is almost universally the case that single 
drugs (or single-target drugs) will encounter resistance. Drug resistance presents some of 
the greatest challenges to the treatment and eradication of cancer. There are many studies 
and reports on drug resistance in cancer cells. P-glycoprotein, the expression product of the 
MDR-1 gene, is strongly associated with both de novo and acquired resistant. The protein 
function as a transmembrane drug efflux pump, transporting cytostatic agents. Glutation 
and it is dependent enzymes may be involved in resistance to drug by proving cellular 
protection against free radicals damage. Resistance to drug occurs when the damaged DNA 
undergoes excision repair. It is likely that many mechanisms of DOXO resistance exist and 
that such mechanisms are cell specific. Thus, problems related to the development 
multidrug  resistance have led researchers to investigate  alternative forms of administrating 
DOXO for treatment of cancer.  
One of complex approach may be in use of inhomogeneous pulsing EF for treatment of drug 
resistance tumor (Miyagi et al., 2000). Pulsing EF used for stimulation of antiresistant 
nonthermal effect in mouse osteosarcoma cell line (Hirata et al., 2001). It is known that 
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exposure to the pulsing EF causes depolarization of cell membranes and modifies drug 
resistance of tumor cells (Pasquinelli et al., 1993; Ruiz-Gómez et al., 2002). 
One of the branches in electromagnetic hyperthermia known as inductive hyperthermia (IH) 
is based on the use of magnetic and electric components of EF in the radiofrequency 

spectrum for the localization and the concentration of heat during anticancer neoadjuvant 
therapy or activation of susceptor material implanted in the tumor. The equivalent power 
density (power density of the plane wave having the same field intensity) for magnetic field 
is greater than that for the electric field by a factor of ten (Martino, 1962; Moseley, 1988).  
During IH of tumor the process of irradiating realize by near-field. In the near-field the 
maxima and minima of electric and magnetic fields do not occur at the same points along 
the direction of propagation as they do in the case of the far-field. In this region, the 
electromagnetic field structure may be highly spatially inhomogeneous and typically, there 
may be substantial variations from the plane wave impedance i.e., in some regions, almost 
pure electric fields may exist and, in other regions, almost pure magnetic fields (Jordan & 
Balmain, 1968). The magnetic component of EF causes heating in tumor tissues through 
induced eddy currents. Incorporation of antitumor agents into the tumor cells is increased 
by eddy current stimulation, which is induced by pulsing magnetic fields. Therefore, the cell 
cycle shifts from the non-proliferative to proliferative phase that leads to increased 
antitumor activity of the drug (Ivkov et al., 2005; Jin et al., 1998; Orel et al.,2005). 
It is well known that EF can influence the chemical reactions to raise their activation 
energies above threshold levels of thermal noise (Weaver et al.,1999). Nonthermal effects can 
reduce existing disadvantages on all of the classical thermal treatment (Blank & Soo, 2001; 
Longo & Ricci, 2007). 
In paper (Boddie et al., 1987), it was suggested to produce an inhomogeneous EF pattern 
with eddy current orthogonal to the magnetic force lines during regionally-focused 
hyperthermia of a tumor. Really, it is possible to suppose that increased inhomogeneity of 
EF will activate a non-equilibrium thermodynamical process in a tumor and increase 
antitumor activity of DOXO.  Separately  nonthermal and hyperthermal  effects (41–50°C) of 
amplitude-frequency modulation for initiation EF inhomogeneity during treatment of 
animal tumor  is generally used. However, the influence of spatial inhomogeneity of EF and 
local IH in the range physiological hyperthermia (37–40°C) on nonlinear dynamics of animal 
tumor growth hasn't been well enough studied yet.  
This paper examines the effects of spatially inhomogeneous EF, local IH in the range 
physiological hyperthermia on nonlinear dynamics of the growth for transplanted animal 
tumors and entropic action during treatment by DOXO of DOXO-resistant Guerin's 
carcinoma.  

2. Materials and methods 
2.1 Experimental animals  
In the study, 180 male rats weighing 170 ± 20 g bred in the vivarium of National Cancer 
Institute and 20 C57BL/6 male mice weighing 19 ± 1 g bred in the vivarium of Bohomolets 
Institute for Physiology Research, NAS of Ukraine (Kyiv, Ukraine) were used.  

2.2 Tumor transplantation 
The transplantation of Guerin carcinoma, Lewis lung carcinoma, sarcoma 45, Walker 256 
carcinosarcoma and Pliss lymphosarcoma were performed according to the established 
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procedure. All animal procedures were carried out according to the rules of the regional 
ethic committee. Animals were housed in 2 groups: group 1 – control (no treatment); group 
2 – irradiation by elliptic applicator with straight profile (ASP) (40 MHz).  
DOXO-resistant Guerin's carcinoma was acquired according to (Solyanik et al., 1999). Thirty 
sequential subcutaneous transplantations of Guerin carcinoma cells (3⋅106 per animal) 
received from DOXO-treated rats. The transplantation of DOXO-resistant Guerin's 
carcinoma was performed subcutaneously by standard method into the right hind leg. 
Animals were housed in four groups: 1 – control (no treatment); 2 – DOXO-administration;   
3 – DOXO-administration + electromagnetic irradiation (EI) by ASP; 4 – DOXO-
administration + EI by elliptic applicator with the circular arc in profile (AAP). Each group 
contained ten animals. 

2.3 Electromagnetic irradiation 
First prototype of the device for medical treatment called “Magnetotherm” (Radmir, 
Ukraine) was used (Nikolov et al., 2008). The frequency of EI was 40 MHz with an initial 
power of 100 W. The animal tumors irradiated locally (Fig. 3) by inductive coaxial 
applicators that had differed by the geometry and spatial inhomogeneity of EF.  
 

 
Fig. 3. Electromagnetic irradiation of animal tumors 

ASP was an ellipse on a horizontal plane with the semi-axes 1.5×2.5 cm and straight profile 
(Fig. 4a). AAP profile was an arc of the circle with the radius 2.3 cm (Fig. 4b) (Ares  et al., 
1996). 
 

 
a b 

Fig. 4. Appearance of inductive applicator: a – ASP; b – AAP 
EF distribution was computed according to (Mittra, 1973) (Fig. 5). Spatial inhomogeneity of 
EF was estimated by asymmetry parameter of electric aE and magnetic aH field strength 
distribution according to (Korn & Korn, 1968). Animal tumor was positioned in the center of 
applicator loop at the distance 0.3 cm from tumor surface. Specific adsorption rates (SAR) of 
EI were calculated according to (Mittra, 1973). Similar design was used in helical field 
stellarator for the plasma to increase entropy of EF (Weller et al., 2001).  
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a b 

 
c d 

Fig. 5. The isolines of the electromagnetic field: a – ASP, electrical component with  
aE = – 0.03 a.u.; b – ASP, magnetic component with aH = 0.16 a.u., SAR = 8.8 W/kg;  
c – AAP, electrical component with aE = 0.89 a.u.; d – AAP, magnetic component with aH 
= 0.48 a.u., SAR = 1.6 W/kg. Distance to the plane of applicator was 0.5 cm; the values on 
isolines indicated the tension of the electrical field in V/m and the magnetic field in A/m;  
the distance in cm is indicated on the axis of abscissas and ordinates 
The change of thermal pattern on surface of phantom from fatty tissue of the pig after 
irradiated by EF shown in Fig. 6. The structure of heat formation on the surface of phantoms 
depends on the degree of electrmagnetic field nonuniformity and it is similar to computed.  

2.4 Treatment of animals with doxorubicin-resistant Guerin's carcinoma  
Experimental animals were treated by DOXO (Pharmacia & Upjohn) in the dose 1.5 mg/kg. 
The treatment was performed five times by DOXO and EI from 10 to 18 days after tumor 
transplantation every other two days. Tumor volume before treatment was 0.43 ± 0.05 cm3. 
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a b 

Fig. 6. The change of thermal pattern on surface of phantom from fatty tissue of the pig after 
irradiated by: a –ASP; b – AAP  

2.5 Temperature studies  
The temperature was measured in the tumor centre of DOXO-resistant Guerin’s carcinoma 
by the fiber-optic thermometer ТМ-4 (Radmir, Ukraine). The kinetics of typical temperature 
changes for animal tumor under EI is represented in Fig. 7. 
 

 
Fig. 7. The temperature changes in the centre of DOXO-resistant Guerin’s carcinoma during 
EI by ASP (a) and AAP (b) 

The temperature was reached up to 39.1°С after 15 min and 40°С after 30 min EI by ASP, as for 
AAP that was 37.9 and 38.4°С, accordingly. The time between two measurements was 4 hours. 
It is necessary to notice, that tumor temperature was slightly increased after EI by ASP in 
comparison with AAP. The kinetics of temperature growth in the tumor was quasilinear. The 
fluctuations of experimental values evaluated by standard error of temperature in linear 
regression model. The standard error was 0.15°С for ASP and 0.1°С for AAP.  

24°С 

31°С 

24°С

36°С 
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Preliminary research showed that 15 and 30 minutes of local EI on conventional Guerin 
carcinoma initiated practically identical strengthening of DOXO antineoplastic activity. 
Therefore, with aim of milder hyperthermic non-equilibrium effects at physiological 
temperatures the irradiation was being performed during 15 minutes at once after treatment 
by DOXO.   
The animals were immobilized on the special panel to indicate the heat generation pattern of 
EF. The thermography was conducted by remote thermograph (B.E. Loshkarev Institute of 
semiconductors of NAS of Ukraine). The inhomogeneity structure of digital thermograms 
was estimated by the Shannon entropy (S) equation meant for a statistical measure of the 
disorder (non-equilibrium of thermodynamical process) of a system (Korn & Korn, 1968). 

2.6 The analysis of nonlinear kinetics of tumor volume  
Nonlinear kinetics of tumor volume was evaluated by growth factor ϕ according to 
autocatalytic equation: 

 ( ) ( )= ϕ + −0 1dx x x x
dt

, (1) 
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∞
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volume at the moment of time t = 0; Φ0 and Φ∞ is initial and limiting tumor volume 
accordingly; Φ is tumor volume at the moment of time t (Emanuel, 1977).  
The solution of equation (1) is 
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The effect of EF and local IH on nonlinear dynamics of the growth of animal tumors was 
evaluated with the braking ratio: 

 ϕ
κ =

ϕ
c

EI

, (3) 

where ϕc – is growth factor for control group of animals, ϕEI – is growth factor for group 
after EI.  

2.7 The heterogeneity of tumor structure in ultrasound image 
Ultrasonic studies were done before and right after EI by ultrasonic apparatus ATL HDI 
3000 (Fillips, USA) with the use of 6 MHz transducer. During ultrasonic studies the 
transducer was stationary fixed relative to animal tumor.  
The heterogeneity of ultrasound image G in tumor tissues for studies of tumor vessels was 
evaluated with spatial autocorrelation statistics r by Moran (Bailey & Gatrell, 1995; Orel et 
al., 2007a): 

 G = 1 – r,  (4) 
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where n is the number of pixels in selected region of interest in ultrasound image, xi is the 
intensity of ith pixel, x  is the mean intensity of whole region of interest, and wi is a distance-
based weight which is the inverse distance between pixels i and j (1/dij). 

2.8 Statistical and correlation analysis 
Statistical processing of numerical results was carried out using Statistica 6.0 (© StatSoft, Inc. 
1984–2001) computer program with parametric Student’s t-test. Correlation analysis was 
performed with the MATLAB 7.0 (©1984–2004 The MathWorks, Inc.) software.  

3. Results 
3.1 Changes in nonlinear dynamics of the growth for animal tumors under the 
influence of spatially inhomogeneous electromagnetic field and local inductive 
hyperthermia 
As it is shown in table 1 the growth kinetics of animal tumors had very different nonlinear 
responses under the influence of spatially inhomogeneous electromagnetic fields (aE = –
 0.03 a.u.; aH = 0.16 a.u.) and local IH initiated by ASP. The strongest inhibition effect under 
the influence of EI was in Pliss lymphosarcoma and sarcoma 45. The growth stimulation of 
animal tumors after EI was recorded in Walker 256 carcinosarcoma. Animal tumors for 
Lewis lung carcinoma grew nonsignificantly but average number of metastases on a mouse 
in the lungs was increased on 86%. Nonlinear dynamics of tumors’ growth was much 
differed for each single animal in all investigated groups.  
EI of Gueren carcinoma by AAP with inhomogeneous electromagnetic fields (aE = 0.89 a.u.; 
aH = 0.48 a.u.) statistically not significant changed nonlinear dynamics of malignant growth 
in comparison with control group of animal without treatment. 
 

Parameters 
Tumor 

ϕc, day-1 ϕEI, day-1 κ 
Guerin carcinoma 0.45 ± 0.01 0.46 ± 0.05 0.99 
Lewis lung carcinoma  0.39 ± 0.02 0.36 ± 0.01 1.07 
Sarcoma 45 0.60 ± 0.03 0.45 ± 0.01* 1.31 
Walker 256 carcinosarcoma  0.60 ± 0.01 0.66 ± 0.01* 0.91 
Pliss lymphosarcoma  0.42 ± 0.02 0.32 ± 0.01* 1.32 

* Statistically significant difference from control group 

Table 1. The growth kinetics of animal tumors 

The ultrasonic studies were used for interpretation of peculiarities in tumor blood flow 
during EI. Guerin carcinoma only was researched because there were problems in 
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visualization of ultrasound images on the monitor for other experimental tumors. Fig. 8 
shows the sonogram of Guerin carcinoma on the 10th day after tumor transplantation before 
and after EI. The sonograms show that tumor heterogeneity parameter G for Guerin 
carcinoma was higher in 2.9 times after EI than without irradiation. This is in accordance 
with well known medical observations that EI and mild hyperthermia in tumor is 
characterized by intensive tumor blood flow (Song et al., 2005). 
 

 
a b 

Fig. 8. The sonogram of Guerin carcinoma and tumor heterogeneity parameter G:   
a – without EI (G = 0.24); b – after 15 min EI (G = 0.69)  

According to the presented data, one may suppose that recorded effects of inhibition or 
stimulation growth for animal tumors after electromagnetic stimulation may be caused by 
peculiarity of vascular damages in different experimental tumors.  

3.2 The effect of spatially inhomogeneous electromagnetic field, local inductive 
hyperthermia and doxorubicin on nonlinear dynamics of tumor growth for animals 
with doxorubicin-resistant Guerin's carcinoma  
As it is shown in Fig. 9, nonlinear dynamics of the growth for tumor volumes on 10 and 12th 
day after tumor transplantation was identical. Since 14th day after transplantation tumor 
volumes for animals from 4 groups were statistically significant decreased in comparison with 
the animals of 1, 2 and 3 groups on 88%, 79% and 82% (р < 0.05) accordingly in average. The 
growth kinetics of animal tumors is shown in table 2. The growth kinetics for 3 group had 
minimal response under the influence of DOXO and EI by ASP generated EF with aE = –
 0.03 a.u.; aH = 0.16 a.u. At the same time the complete resorption were observed on 20th day 
after tumor transplantation for 40% animals from 4 group (DOXO + EI by AAP, aE = 0.89 a.u. 
and aH = 0.48 a.u.). The recurrent tumor growth hadn't been detected for 4 months after the 
treatment. Obtained results were testified by the study repeated in 4 months. 
Our research showed that antitumor effect of DOXO was not depended on the rotation of 
applicator on horizontal plane relative to tumor. Antitumor effect of DOXO didn't changed 
significantly under EF after mechanochemical activation of drug before treatment.  
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Fig. 9. EI and DOXO-induced changes in nonlinear dynamics of the growth for DOXO-
resistant Guerin's carcinoma: 1 – without DOXO and EI (control); 2 – DOXO; 3 – DOXO + EI 
by ASP; 4 – DOXO + EI by AAP 

Parameters N Treatment 
ϕ, day-1 κ 

1 Without DOXO and EI (control) 0.46 ± 0.01  
2 DOXO 0.42 ± 0.01 1.08 
3 DOXO + EI by ASP 0.47 ± 0.02 0.97 
4 DOXO + EI by AAP 0.32 ± 0.02* 1.43 

* Statistically significant difference from control group 

Table 2. The growth kinetics of animal tumors 

3.3 Thermography 
Thermal patterns of tumor’s surface and the panel after EI are presented in Fig. 10. Maximal 
inhomogeneity of tumor surface and indicative panel that estimated by entropy was 
  

a b c 

Fig. 10. Change of thermal pattern on tumor surface after transplantation on 15 day (1) and 
indicative panel (2) after EI; а – without EI (control); b – EI by ASP; c – EI by AAP 
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obtained for AAP with increased spatial inhomogeneity of EF (Fig. 11). It testifies, that the 
use of EF with increased spatial inhomogeneity influenced on nonuniform temperature 

distribution on the surface of animal tumor. 
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Fig. 11. The inhomogeneity (entropy) of thermal pattern on tumor surface after 
transplantation on 15 day (a) and indicative panel (b) after EI:  – by ASP;  – by AAP. On 
an axis there is a difference to the control (without EI) 

3.4 Ultrasonic studies 
Typical tumor sonograms on the 15th day after the tumor transplantation and 15 minutes of 
EI are shown in Fig. 12. The computer nonlinear analysis of composite B-mode and steered 
color Doppler acoustic image demonstrated that heterogeneity G was decreased by 30% 
after EI with increased spatial inhomogeneity by AAP. It testifies, that the use of EF with 
increased spatial inhomogeneity influenced on the vessel dilation in malignant tissues. This 
is in accordance with aforementioned observations that EI and moderate hyperthermia in a 
tumor is characterized by the typical change of a tumor’s blood flow and increased 
oxygenation of tumor cells (Song et al., 2005). 

4. Discussion 
4.1 The influence of spatially inhomogeneous electromagnetic field and inductive 
hyperthermia on nonlinear aspects of malignant growth 
Our study demonstrated that spatially inhomogeneous electromagnetic fields with 
asymmetry parameters aE = – 0.03 a.u. and aH = 0.16 a.u. and local IH in the range 
physiological hyperthermia cause influence on nonlinear dynamic of the growth of 
transplanted animal tumor (Orel et al., 2007b). The cancer processes are an example of non-
equilibrium, non-linear process. It is predictable locally in the very short-term, but not in the 
medium- and long-term, as typical of systems exhibiting deterministic chaos (Rubin, 1984). 
The effects of spatially inhomogeneous EF and local IH in the range physiological 
hyperthermia warrant increased to create chaos for animal with cancer process. It effects of 
inducing extremely large and very rapid surges of stochastic endogenous signals in tumor 
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a b 

 
c d 

Fig. 12. The change of heterogeneity (G) in composite B-mode and steered color Doppler 
acoustic image of tumor: а – without EI (control), G = 0.55; b – EI by ASP, G = 0.56;  
c – without EI (control), G = 0.60; d – EI by applicator with AAP, G = 0.42 
cells. They tend to be quasi (almost but not quite)-periodic, the periodicities are a complex of 
many periods, and they can swing between different quasi-periodic states. But they are not 
at all random (Waliszewski et al., 1998; Marino et al., 2000,2009). 
Living systems are organized such that they manifest operational features ascribed to 
hierarchical and heterarchical structures from quantum to organism levels (Dirks, 2008). In 
mainstream biology that would enable us to understand how EF below the "thermal 
threshold" could have any effects. That, despite the fact that consistent changes in gene 
expression and DNA breakages – considered to the ‘most solid’ evidence – have now been 
obtained. Some biological effects are indeed associated with EF so weak that the energies in 
those fields are below the energy of random thermal fluctuations. Molecular signaling in 
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eukaryotic cells is accomplished by complex and redundant pathways converging on key 
molecules that are allosterically controlled by a limited number of signaling proteins. p53-
signaling pathway is an example of a complicated sequence of signals produced in response 
to DNA damage. This pattern of signaling may arise from chance occurrences at the origin 
of life and the necessities imposed on a nanomolar system (Yarosh, 2001; Schneider et al., 
2004). Signals from tumor cells look like stochastic processes although their latent 
mechanism is deterministic. These are the ‘butterfly’ effects: the molecule of DNA could 
affect the metabolism in organism (in common with a proverbial butterfly flapping its wings 
in the Amazon rainforest could affect the weather in London) (Carrubba et al., 2007; 
Carrubba et al., 2008). 
Thereby inhomogeneous EF influence on genetic instability gives rise to the diversity of 
cancer process. Evidently above mentioned can incarnate of foundation for interpretation 
different in nonlinear dynamics for transplanted animal tumors.  
According to the presented data, one may suppose that recorded effects of inhibition or 
stimulation growth for animal tumors after spatially inhomogeneous electromagnetic 
stimulation may be caused by peculiarity of vascular damages in different experimental 
tumors. These results are important for clinical application of medical technologies because 
they testify against the use of electromagnetic hyperthermia as a basis for the monotherapy 
of malignant human tumors and the necessity to facilitate local EI during anticancer 
neoadjuvant therapy with the use of drugs or magnetic nanoparticles. In general, the 
application of local electromagnetic hyperthermia in clinical oncology is effective when 
combined with chemotherapy or radiochemotherapy as shown in (Falk & Issels, 2001). 

4.2 An increase of doxorubicin antitumor effect by entopictic action of spatially 
inhomogenous electromagnetic and heat fields 
The spatially inhomogeneous field is definitely changed by the geometric and 
mass/structure variance of the tumor itself. The effect of spatially inhomogeneous EF 
during EI on transformation of radio waves and thermal descriptions in malignant tumors 
was investigated. It is shown that structure of heat formation in the range physiological 
hyperthermia on tumor surface depends on the degree of inhomogeneity of EF. In our next 
experiments revealed entropic action in antitumor effect for DOXO of inhomogenous 
electric (aE = 0.89 a.u.), magnetic fields (aH = 0.48 a.u.) and temperature in the range 
physiological hyperthermia during EI. 
This action we visualized for other antitumor drug too. The highest antitumor and 
antimetastatic activity was caused by the combined action of cisplatin and irradiation by 
spatially inhomogeneous EF and local IН of animals with resistant to cisplatin substrain of 
Lewis lung carcinoma too (Orel et al., 2009).   
The heterogeneous structure of blood vessels in malignant tissue specified by greater 
specific area of interaction with antitumor drug in comparison with normal tissue. Chaotic 
signals of inhomogeneous EF can be applied to increase creativity of artificial intelligence, in 
fluid dynamics of blood to induce turbulence to increase therapeutic effects for antitumor 
drug, in biochemical processes to drive reactions toward otherwise improbable biochemical 
compounds, or to raise bond energies above threshold levels without destructive heat. It can 
be applied to the breaking up of separative attitudes among metastasized cancer cells and 
aiding in the recovery from cancer (Orel et al., 2004).   
What is physicochemical property of spatially inhomogeneous electric, magnetic and 
temperature fields which influenced on nonlinear dynamics of biological process in the 
tumor and initiated action as increased antitumor effect for DOXO? 
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The heterogeneity for tumor structure usually is more variable than for normal tissues. 
Therefore, we studied influence of EF on transformation of electric, magnetic and thermal 
fields in heterogeneous (rubber foam + 0.9% NaCl solution) and homogeneous (0.9% NaCl 
solution) phantoms. 
Preliminary research showed that transformation of EF and thermal patterns in phantoms 
was investigated during EI by spatially inhomogeneous EF (Orel et al., 2008). The change of 
electric (ΔE) and magnetic (ΔH) component under the influence of phantoms was calculated 
as follows: 

 ΔE = Е – Е0,,  (6) 

 ΔH = Н – Н0,  (7) 

where Е and H is electric and magnetic field intensity under phantom, Е0 and Н0 is electric 
and magnetic field intensity in the air, respectively.  
It is shown in Fig. 13 that the structure of heat formation on the surface of phantoms 
depends on the degree of EF nonuniformity and it is similar to computed in Fig. 5 EF 
distribution. Relative increase of magnetic field strength ΔH/H0 in phantoms after EI by 
AAP was in 3.5 times greater than by ASP on the average (Table 3). Relative increase of 
temperature ΔT/T0 in phantoms was smaller in 5.4 times after EI by AAP compared to ASP 
on the average. In rubber foam phantom the ratio ΔT/T0 increased in 8.6 times after EI by 
AAP compared to 0.9% NaCl solution phantom. It testifies stronger transformation of 
spatially inhomogeneous EF for heterogenous structure of rubber foam phantom than for 
homogeneous structure of 0.9% NaCl solution phantom. The transformation of 
inhomogeneous EF to thermal patterns for phantoms was similarly to an effect for animal 
tumors (see chapter 3.3).  
 

 
Fig. 13. The change of thermal pattern on phantom surface after electromagnetic irradiation 
by ASP of foam rubber + 0.9% NaCl solution (a), AAP of foam rubber + 0.9% NaCl solution 
(b), ASP of 0.9% NaCl solution (с), AAP of 0.9% NaCl solution (d) 
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Phantom Applicator ΔЕ/Е0, % ΔH/H0, % ΔT/T0, % 
NaCl 0.9% solution ASP 47 ± 3 8.0 ± 1.0 0.20 ± 0.02 
NaCl 0.9% solution AAP 19 ± 3* 20.0 ± 3.1* 0.10 ± 0.01 
Foam rubber ASP 49 ± 6 7.0 ± 0.5 6.2 ± 1.0 
Foam rubber AAP 28 ± 4* 31.0 ± 3.5* 0.7± 0.2* 

* p < 0.05 compared to similar parameter of ASP 

Table 3. The ratios ΔЕ/Е0, ΔH/H0 and ΔT/T0 for phantoms 

We studied the transformation of EF and thermal patterns in physiological phantoms – 
muscular, fatty, liver tissues and packed red blood cells too. The result was similarly to 
physical phantoms. 
Analyzing the above-mentioned phantom researchs, it is possible to mark the problem in 
our discussion. Is an increase of antitumor effect for drug during treatment under the action 
of spatially inhomogeneous EF and nonuniform temperature field with temperature peak 
37.9°C accompanied by the tendency of biological system to move toward randomness or 
disorder that increased thermodynamical entropy in the tumor? As contrasted with our 
experiments in classic electromagnetic hyperthermia the uniform heat with discrete peaks 
temperature more 41°C is basic for cancer therapy (Franckena et al., 2009) that is not enough 
for essential change of the thermodynamic entropy in the tumor.  
To answer on this question we studied the growth dynamics for Guerin carcinoma during 
treatment by DOXO under influence of inhomogeneous EF and accessory uniform and 
nonuniform heat in tumor activated by external water heating. Experimental animals were 
treated by DOXO (Pharmacia & Upjohn) in the dose 1.5 mg/kg. The treatment was 
performed four times by DOXO, EI and external uniform and nonuniform heating by the 
rubber hot-water bottles from 9 to 15 days after tumor transplantation every  other two days.  
The growth kinetics of Guerin carcinoma was varied for different groups (Table 4). Spatially 
inhomogeneous EF and nonuniform heat field in the range of physiological hyperthermia 
was maximally increased antitumor effect of DOXO for transplanted Guerin carcinoma. But 
temperature in the tumor for this case had a lesser value. 
We can suppose that increase of antitumor effect by inhomogeneous EF for drug during 
treatment of the tumor accompanied by the change of thermodynamical entropy.  
 

Parameters Treatment Temperature in the 
centre of tumor, °C ϕ, day-1 κ 

Control (without DOXO, EI and 
accessory heat) 36.5 0.54 ± 0.06 1.00 

DOXO 36.5 0.42 ± 0.02* 1.28 
DOXO + accessory uniform heat + 
EI by AAP 41.5 0.38 ± 0.01* 1.43 

DOXO + accessory uniform heat 40 0.37 ± 0.01* 1.45 
DOXO + accessory nonuniform 
heat 38 0.36 ± 0.01* 1.50 

DOXO + EI by AAP 37.9 0.35 ± 0.01* 1.53 

* Statistically significant difference from control group 

Table 4. The growth kinetics of Guerin carcinoma during 15 days after tumor transplantation 
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It is well known that EF can initiate electro- and magnetocaloric effects. The electro- and 
magnetocaloric effects are electro- and magneto-thermodynamic phenomenons in which a 
reversible change in temperature of a suitable material is caused by exposing the material to 
a changing EF. It was accompanied by changes in transfers from electromagnetic to 
thermodynamic entropy and enthalpy (Nikiforov, 2007; Crosignani & Tedeschi, 1976). 
Therefore, we can symbolically included high-frequencies electromagnetic IH in separate 
class of electro- and magnetocaloric effects.  
Described above physicochemical interaction between spatially inhomogeneous electric, 
magnetic and temperature fields in the phantoms was probably similar to physicochemical 
interaction in the tumor. They could influence on nonlinear dynamics of biological process. 
We suppose, that it was interconnection between nonlinear conversion effects of spatial 
inhomogeneous electric, magnetic fields (aE = 0.89 a.u.; aH = 0.48 a.u.) and initiated spatial 
inhomogeneous temperature field in the heterogeneity tumor structure during propagation 
of radio waves through malignant tissues. Entropy action is expressed in increase of 
antitumor effect for DOXO. Alongside located normal tissue toxicity effect was minimal 
through low level their heterogeneity. 
In future we will be able to develop of novel and effective strategies for prevention and 
treating cancers on the basis of understanding of nonlinear dynamics of adaptive systems 
associated with tumorigenesis aspects during signaling interaction between cancer cells and 
the host for complex treatment of patients by whole-body irradiation with local varying 
spatial inhomogeneous EF.  

4.3 Nonlinear model of growth dynamics for transplanted animal tumor during 
irradiation by spatially inhomogeneous electromagnetic field and inductive 
hyperthermia 
Spatially inhomogeneous EF and initiated it heat manage the formation and disintegration 
of dissipative structures lying in the basis of self-organization processes in organism at 
physiological hyperthermia. We applied Waddington’s epigenetic landscape model which is 
a metaphor for how gene regulation modulates development to interpret the changes in 
thermodynamical parameters (entropy, enthalpy etc.) during nonlinear tumor growth of 
transplanted animal tumors (Goldberg et al., 2007). The traditional mechanist, pathway-
centered explanation assumes that a specific, “instructive signal” i.e., a messenger molecule 
or external signal of that interacts with its cognate cell surface receptor, tells the cells which 
particular genes to active in order to establish a new cell phenotype. Essentially, cell 
distortion triggered the cell to “select” between different preexisting attractor states (Sole, R. 
et al., 2006). A certain chemical reaction is performed at different temperatures and the 
reaction rate is determined. The reaction rate (k) for a reactant or product in a particular 
reaction is intuitively defined as how fast a reaction takes place according to the Eyring–
Polanyi equation: 

 
Δ Δ

−
=

S H
B R RTk Tk e e
h

, (8) 

where: kB is Boltzmann's constant, h is Planck's constant, T is absolute temperature, ΔS is 
entropy of activation, ΔH is enthalpy of activation, R is gas constant (Polanyi, 1987). 
The interaction effect of spatially inhomogeneous EF with heterogenous structure of animal 
tumors  just as described above for the phantoms initiated spatially inhomogeneous thermal 
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field gradient in malignant tissues in the range physiological hyperthermia. It was 
accompanied by stochastic changes in transfers from electromagnetic to thermodynamic 
entropy ΔS and enthalpy ΔH of activation and, respectively, stochastic changes of the 
reaction rate that influence on nonlinear (chaotic) aspects in malignant growth (random 
effect of increase or decrease) for transplanted animal tumors (see chapter 3.1). Spatially 
inhomogeneous EF with increased asymmetry parameters during treatment of animal 
tumors by DOXO (Table. 4) accompanied by the change of entropy of activation (ΔS), the 
reaction rate k (eq.8) and initiate enzyme catalysis topoisomerase II-mediated DNA damage 
and free radical formation, absorbing them into double helix of DNA and  resulting damage 
of tumor cells. In this case the number of free radicals increased, in our opinion, as a result 
of the effect of spin conversion in radical electron pair. 
Let us consider kinetic model of tumor growth under the action of DOXO and nonuniform 
heat field in the range of physiological hyperthermia initiated by spatially heterogeneous 
EF. Let tumor cells multiplied with the growth factor λ, and DNA of some part of cells loses 
their ability for replication under the action of DOXO and nonuniform heat field. The 
appropriate equation can be written as 

 dx x v
dt

= λ − . (9) 

where x is the number of tumor cells in unit volume with capable of replication DNA, v is 
the rate of appearing of tumor cells with damaged DNA, which is unable to replicate.  
Doxorubicin is known to interact with DNA by intercalation and inhibits the progression of 
the enzyme topoisomerase II, which unwinds DNA for transcription. Doxorubicin stabilizes 
the topoisomerase II complex after it has broken the DNA chain for replication, preventing 
the DNA double helix from being resealed and thereby stopping the process of replication. 
Schematically this reaction can be written down as: 

 DOXO + [TOP+DNA]  → DNA*,  (10) 

where [TOP+DNA] is topoisomerase II complex, DNA* is damaged DNA. 
Let y = CDOXO is the concentration of DOXO, y(0) = y0 – beginning maximal concentration of 
DOXO, y≥0; u = CTOP is the concentration of topoisomerase II, u > 0. For the open system the 
concentration of DOXO and TOP in the reaction (10) is described taking into account diffusion: 

(11) 
2

2

2

2

,

,

y

u

y yr D
t l
u ur D
t l

⎧∂ ∂
= − +⎪⎪ ∂ ∂

⎨
∂ ∂⎪ = − +⎪ ∂ ∂⎩

 

(12) 

where r is reaction rate, Dy and Du is effective diffusion rate, l is spatial coordinate. 
In accordance with kinetic law of mass action during steady quasistationary regime in the 
system the rate r of reaction (10) is expressed as  

 r = kyu,  (13) 

where k is the constant of reaction rate (Ederer &  Gilles, 2007). 
The concentration u of topoisomerase II is related with the number x of tumor cells in unit 
volume: 



The Effect of Spatially Inhomogeneous Electromagnetic Field and Local Inductive Hyperthermia  
on Nonlinear Dynamics of the Growth for Transplanted Animal Tumors  

 

303 

 u = ax,  (14) 

where a is a coefficient. 
The rate v of appearing of tumor cells with damaged DNA determined by the cells with 
topoisomerase II reacted in (10): 

 1 duv
a dt

= − . (15) 

 

Putting in (15) the expression for du
dt

 from (12) and taking (14) into account, we will get 

 
2

2x
r xv D
a l

∂
= −

∂
. (16) 

Thus, equations (9) and (11) it is possible to write down as a system: 
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 (17) 

The constant of reaction rate k depends on temperature T according to Arrhenius equation: 

 
E

RTk Ae
−

= . (18) 

Taking (13) and (18) into account the system (17) will look like: 
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 (19) 

with initial condition y(0) = y0 and edge conditions x > 0 and y > 0. 
The system of equations (11) describes the nonuniform thermal effect of the spatially 
inhomogeneous EF on the growth kinetics of the number of tumor cells under the action of 
DOXO. 
According to the presented data, one may suppose that recorded effects of growth inhibition 
for DOXO-resistant Guerin's carcinoma after treatment by DOXO and local EI by EF with 
increased spatial inhomogeneity (aE = 0.89 a.u.; aH = 0.48 a.u.) may be connected with the 
initiation of membrane depolarization due to two steps. Firstly – ionic cyclotron resonance 
and next – paramagnetic resonance (Liboff AR, 1985; Blanchard & Blackman 1994; Bezrukov 
& Vodyanoy, 1997), which initiated the antitumor activity of DOXO. Its biochemical 
mechanisms may be the alteration of the tumor microenvironment via changes in the pH 
gradient between the extracellular environment and the cell cytoplasm (De Milito & Fais, 
2005) and probably EF influency on free radical metabolism of human body (Jin et al., 1998). 
Thus, we can assert that spatially inhomogeneous EF and local IH initiated in tumor of the 
reactions with multiple physicochemical properties. 



 Nonlinear Dynamics 

 

304 

 
a b 

 
c 

Fig. 14. Spatial distribution of entropy of activation in the tumor during treatment by 
Doxorubicin hydrochloride  C27H29NO11⋅HCl  and spatial inhomogeneity electromagnetic 
field with increased asymmetry parameters: а – Doxorubicin hydrochloride; b – Doxorubicin 
hydrochloride  under the action of spatially inhomogeneous EF and IH; с- entropy of 
activation and tumor growth 

Our preclinical and early clinical data suggest that combining superficial and intracellular 
agents can synergize and leverage single-agent activity. The aforementioned effect of 
influence of spatially inhomogeneous EF and local IH at physiological temperatures on 
increase of antitumor activity for drug used in clinical practice during chemotherapy of 
cancer patients (Nikolov et al., 2008).  

5. Conclusion 
1. EI by spatially inhomogeneous EF and local IH in the range physiological hyperthermia 

of transplanted animal tumors manifests many of nonlinear (chaotic) aspects in 
malignant growth.  

2. An increase of spatially inhomogeneous EF and local IH in the range physiological             
hyperthermia increased antitumor effect of DOXO for transplanted DOXO-resistant 
Guerin's carcinoma and accompanied by the change of thermodynamical entropy. 

3. Understanding the chaotic theory for cancer and its interplay may enable similar 
strategies to be employed in the treatment of cancer by spatially inhomogeneous EF and 
local IH in the range physiological hyperthermia. 
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1. Introduction 
Tourism is one of the major industries profiting various sectors of the economy, such as the 
transportation, accommodation, entertainment and so on. According to the World Tourism 
Organization (2008), international tourism grew at around 5% during the first four months 
of the year 2008. Fastest growth was observed in the Middle East, North-East and South 
Asia, and Central and South America. Even though, uncertainty over the global economic 
situation is affecting consumer confidence and could hurt tourism demand, for 2008 as a 
whole, UNWTO maintains a cautiously positive forecast. Moreover, international trends 
show that tourists are becoming more discerning in their choice of destinations and, 
therefore, becoming less predictable and more spontaneous in terms of their consumption 
patterns (Burger et al. 2001). 
Air transportation is probably the most important mode for international travel and leisure. 
A typical characteristic of air tourism in Europe is the extensive use of non-
scheduled/charter flights and the existence of low-cost carriers in the leisure travel market, 
that account for 8% of passengers and 3% or revenues in the aviation industry (Dresner 
2006). Non-scheduled demand is typical in Mediterranean countries where connections are 
essentially touristic and characterized by non-scheduled services.  
In this type of air travel, the ability to accurately predict tourist arrivals is of importance in 
the successful management and operation of the airport facilities, as well as the adjacent 
transportation network. Yet, the literature has little to offer in modeling demand stemming 
from non-scheduled flights, as such series exhibit seasonality, intense variability and 
inherent unpredictability. 
This paper develops and tests advanced computational approaches in order to predict non-
scheduled/charter international tourist demand. The computational challenges that may 
arise in such a problem are twofold: first, to treat seasonal and stochastic characteristics of 
non-scheduled tourist demand, and, second, to develop models that consider past tourist 
demand characterists. This paper focuses on developing ARFIMA models that consider both 
non-stationarity and long-term memory effects in the auto-regressive process and temporal 
neural networks with advance genetically optimized characteristics that treat both 
nonlinearity and non-stationarity.  
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2. Motivators and prediction of non-scheduled air-travel demand 
A major motivator for the emergence and growth of non-scheduled air travel has been the 
low-cost carriers (LCC) and their prevalence in global aviation. From the period after 9/11 
period that caused a decreasing trend in the airline travel demand, global aviation and 
travel demand, particularly in Europe and the Mediterranean Region LCCs offered an 
attractive alternative for price-sensitive clients during the tight economic times. Whereas 
traditional airlines have concentrated on large cities and major airports, low-cost airlines 
have turned to under-utilized airports at some distance from the main population centers 
embracing a business model much different in its customer base, air network, and provision 
of services by focusing on the more cost-sensitive leisure travel and working in a way that 
traditional airlines cannot (Barrett 2000). 
LCC market providing point-to-point (rather than hub-based) service owes its growth not 
only to low-cost service, but also to the ability to focus on customer segments not 
emphasized by larger carriers; European low-cost leaders Ryanair and EasyJet, for instance, 
focus on providing air services for travelers seeking to visit friends and relatives. By 
focusing on these groups, LCC have demonstrated an ability to grow the overall passenger 
market, particularly on routes with strong tourist appeal (Dennis 2004). 
Literature emphasizes the role of LCC in the development of multiple airport systems and 
the emergence of secondary airports (Bonnefoy & Hansman 2004). LCC appeal to secondary 
airport is in that they provide reduced congestion and lower cost, while still providing 
access to key population centers.  
The shift to secondary airports, along with the reduced gap between charter flights and “no-
frills” / budget flights have significant impact on the volatility of traffic for the entire airport 
system; literature indicates that periods of high volatility and uncertainty in demand exist 
during the developmental phases of secondary airports that can last up to 20 year after the 
opening of such facilities (de Neufville, 1995). 
Regarding leisure airline traffic, the ability to provide custom-made services to tourists has 
been shown to be critical. Tourists increasingly expect to experience a personalized and 
close to their life-style service (Graham 2006). A characteristic example of charter airports is 
Greece where approximately 80% of the total tourist arrivals every year are accommodated 
by air transportation. The importance of non-scheduled international arrivals is depicted in 
Figure 1 that depicts annual evolution of total arrivals for 1989 and 2006 period, along with 
the evolution of non-scheduled and scheduled international arrivals. As can be observed, for 
the period after 2001, nearly 70% of air-travel arrivals concern international flights and 62% 
of the international arrivals are accommodated by non-scheduled flights. 
From a methodological standpoint, although the prediction of tourist demand has been 
extensively treated (a review of approaches can be found in Law et al. 2007, Song & Li 2008) 
little has been done towards the prediction of non-scheduled arrivals. Summarizing the 
methodologies implemented to date for to tourist demand prediction, both econometrics 
and other computational methods have been applied and compared. Law et al. (2007) state 
that, comparing classical econometric prediction techniques that are highly exploited but 
with marginal improvement to modeling touristic demand, the incorporation of data mining 
techniques has led to some “ground breaking outcomes”. 
Moreover, several papers on tourism forecasting problems report neural networks as having 
better performance than classical statistical techniques, such as ARIMA models, exponential 
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smoothing and so on (Law and Au 1997, Law 2000, Burger et al. 2001, Kim et al. 2003, Cho 
2003). These studies compare advanced computational approaches that have enhanced 
capabilities in modeling nonlinear characteristics (for example neural networks) with simple 
linear and stationary approaches such as the ARIMA models. Quite recently, hybrid ARIMA 
and simple static neural networks, as well as mixtures of static neural network models have 
also been found to perform better that classical time-series approaches (Aslanargun et al. 
2007).  
Regarding modeling of non-scheduled demand, previous work has applied regression 
models to predict charter international arrivals to major Greek airports and has highlighted 
that although there is uncertainty and variability in their evolution, historical data can be 
used to provide good predictions (Karlaftis and Papastavrou 1998). However, no previous 
work has been conducted in the direction of predicting non-scheduled international arrivals 
in secondary airports with intense seasonal characteristics. 

3. Computational approaches 
3.1 Fractionally integrated autoregressive moving average processes 
Commonly applied AR(I)MA models are able to describe processes that are covariance 
stationary I(0) or non-stationary through differencing I(1). It has been observed that the 
erroneous consideration of having a unit root leads to models with inflated estimates of the 
moving average component (Box-Steffensmeier and Smith, 1998). In order to account for 
long memory processes Fractional integration is introduced to autoregressive processes to 
account for the processes that are neither I(0) or I(1) in the form of the differentiation 
operator (Baillie 1999): 

 ( ) ( ) ( )
2 3

1 1 1 1 ...
2! 3!

d L LL dL d d d d
⎧ ⎫

− = − − − − − −⎨ ⎬
⎩ ⎭

 (1) 

In the conditional mean, the fractionally integrated autoregressive moving average process 
of orders p and q – ARFIMA(p,dm,q) introduced by Granger and Joyeux (1980) and Hosking 
(1981) is represented by the following equation: 

 ( )(1 ) ( ) ( )md
t tL L y Lμ ε− Ψ − = Θ  (2) 

    ~ (0,1)t t t tz z Nε σ=  (3) 

where μ is the unconditional mean of yt, 2
1 2( ) 1 ... p

pL L L Lψ ψ ψΨ = − − − −  and 
2

1 2( ) 1 ... q
qL L L Lθ θ θΘ = + + + +  are the AR and MA polynomials having all roots outside the 

unit cycle, while innovations ε t  are i.i.d distributed with 2σ t  being the conditional variance 
and a positive, time-varying, and measurable function with respect to the information set, 
which is available at time t-1 (Baillie et al. 2002). The differentiation parameter (dm) is 
associated with the following statistical properties of a (time) series (Hosking 1981, Odaki 
1993): 
• For every region where 1

2md < , then yt is stationary, 
• When 

1
21 md− < < − , the series exhibits invertibility, 
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• When 1
2 0md− ≤ < , the stationary process yt is antipersistent,1 

• When 0md = , the stationary process yt  has short memory and is mean reverting, 
• When 

1
20 md< ≤ , yt is fractionally integrated and exhibits long memory, 

• When 
1

2 1md< < , the process yt is mean-reverting, but the stationarity property cannot 
be verified and, 

• When 1md = , yt is a unit root process. 
Fractionally integrated processes are significant in dealing with two issues: first, data is 
being modeled more precisely, as the knife-edged restriction of an I(0) or I(1) process is 
avoided and both long term persistence and, second, short-term correlation structure of a 
series can be modeled (Hosking 1981). 

3.2 Temporal genetically optimized neural networks 
Temporal Neural Networks can be considered as an extension of the static Multi-layer 
Perceptrons (MLP) that has been extensively applied to touristic demand prediction. They 
differ from the commonly used MLPs in that they incorporate memory mechanisms in their 
structure that can be limited to the input layer or extend to the entire network. The memory 
acts as a time-series reconstruction module with the aim to embed the scalar series S(t) to a 
vector { }( ) ( ),..., ( ( 1) )t S t S t mτ τ= − − −S in an m-dimensional vector space known as Phase 
Space, where τ is the time delay of and m is the dimension.  
We implement a neural network called time-lagged neural networks (TLNN) with a 
complex Gamma memory mechanism in the input layer and the hidden layer (de Vries and 
Principe 1992). Moreover, in order to develop a fully non-stationary model we set the 
network to predict under the iterative consideration: Given the time-series of a variable a 
single step ahead model is constructed to produce a prediction ˆ( )S t  at time t that is then fed 
backwards to the network and is used as new input data in order to produce the next step 
ˆ( 1)S t +  prediction at t+1: 

 { }ˆ ˆ( 1) ( ), ( ), ( 1)...S t S t S t S t+ = −  (4) 

The training of TLNN under iterative consideration feeds back the prediction at time t+1 
and utilizes it as an input for the generation of next prediction step t+2. The training in the 
specific iterative neural network model is conducted via the temporal back-propagation 
algorithm known as Back-propagation to time (BPTT) (Webros 1990); all weights are 
duplicated spatially for an arbitrary number of time steps τ; as such, each node that sends 
activation to the next has τ number of copies as well. For a training cycle n, the weight 
update is given by the following equation (Haykin 1999): 

 ( 1) ( ) ( ) ( )ji ji j in n n nηδ+ = +w w x  (5) 

where, wji(n+1) and wji(n) are the weights of the i-th synapse of the neuron j at training cycle 
n+1 and n respectively, η is the learning rate, xi(n) (i=1,2,…n) is the input vector and j(n) is 
given by: 
                                                 
1 Anti-persistence is a property of an ACF that exhibits slow decay, but the original series 
are not characterized by the long memory property; rather, the autocorrelations (in the ACF) 
alternate in signs. 
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where, ej(n) is the network’s error, φ  is the nonlinear activation function. Moreover, if A is a 
set of all neurons whose inputs are fed by the j neuron in the hidden layer is a forward 

manner, then 
1

( ) ( )
m

j ji i j
i

n n bυ
=

= +∑w x  is the induced local field of neuron r that belongs to the 

A and [ ]( ) ( ), ( 1),..., ( ) T
r r r rn n n n mδ δ δΤ = + +Δ  is the local gradient vector. 

The iterative neural network approach introduced provides a fully non-stationary and 
nonlinear environment for treating time series problems. However, regardless of being static 
or dynamic, neural networks suffer from the lack of an automatic manner to self-
optimization mainly with respect to their structure (number of hidden units) and learning 
parameters. Recently, genetic algorithms have gained significant interest as they can be 
integrated to the neural network training to search for the optimal architecture without 
outside interference, thus eliminating the tedious trial and error work of manually finding 
an optimal network. Genetic algorithms are based on three distinct operations: selection, 
cross-over and mutation (Mitchell 1998); these operations run sequentially in order for a 
fitness criterion (in the specific case the minimization of the cross-validation error) to 
converge. Details for the specific optimization approach can be found in Vlahogianni et al. 
(2005). 

4. Case study: greek island airports 
We focus on the influence of Non-Scheduled International (NSI) arrivals to the secondary 
airports and a prediction of their temporal evolution. Three case studies from Greek island 
secondary airports are evaluated: Heraklion (Crete), Kefalonia and Rhodes. All three cases 
exhibit significant demand during the peak summer period; however, these case studies 
differ in the overall demand levels, as well as their seasonal arrival characteristics. As can be 
observed in Figure 2, where the evolution of arrivals (passengers per year) and flights per 
year and per airport for the period of 1999-2006 is depicted, Kerkyra is characterized by low 
volumes, whereas Heraklion and Rhodes exhibit high demand during the year. The 
difference is in the volume of the NSI arrivals; as can be seen in Figure 3, where monthly 
arrival variation is depicted for all airports tested, Kerkyra and Rhodes have significantly 
more acute monthly variation, reaching extremely low NSI demand during the off-peak 
periods.  
The analysis to follow will, first, focus on revealing long-term memory features in the 
manner NSI arrivals evolve in time and, second, search for similarities or differences in the 
dynamics of NSI arrivals across the airports selected with different demand distributions. 
Third, advanced neural network predictors will be developed that will apply the iterative 
approach in order to learn to approximate the dynamics of NSI arrivals; models will be 
developed for all the three airports and compared to each other.  

4.1 Fractional dynamics in NSI arrivals 
Several ARFIMA models were fitted to the available time –series in order to test whether 
there exist fractional dynamics in the evolution of non-scheduled international arrivals. The 
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models are fitted to both three study airport, as well as to the pooled data, as well as data 
from the peak (months from May to September). Moreover, in the same datasets I(1) ARIMA 
processes are also fitted in order to compare the estimated autoregressive and moving 
average parameters from ARFIMA and ARIMA models. The choice of the best fitting model 

is done via Akaike’s ( -2 2LogL k
n n

+ , where logL is the log likelihood value, n is the number 

of observations and k the number of estimated parameters) and Schwartz’s 

( log-2 2LogL k
n n

+ ) criteria. Furthermore, the Jarque-Bera test (JB test) goodness-of-fit test 

measuring the of departure from normality, Q2(i) statistics that indicate the possible 
existence of serial correlation in the standardized residuals, as well as the LM ARCH 
statistics that test the null hypothesis of no ARCH effect in the series tested are also 
presented; the above test will provide information of the quality of the ARFIMA models 
developed. 
Results for the best fitted ARFIMA models are shown in Tables 1 to 3( parameter estimates 
depicted in the tables are significantly different from zero at the 1% significance level). 
Interestingly, for all case studies the fractional dynamics are similar. NSI arrivals in all 
airports tested are found to be best described by a fractionally integrated ARMA process 
with p=1 (autoregressive term) and q=1 (moving average term). Parameter d is found to 
vary between 0.24 and 0.46 indicating that NSI arrivals regardless of study period (peak or 
off-peak), as well as of the airport tested, exhibit long-term memory (for more details on the 
memory properties see Washington et al. 2003). We observe that the ARFIMA modeling 
results exhibit an apparent “inability” to approximate the monthly variability of NSI 
arrivals, particularly at low demand levels (off-peak months) (Figure 4).  

4.2 Iterative predictions of NSI arrivals using temporal neural networks 
For iterative predictions, the specifications of the TLNN are shown in Table 4. As can be 
observed, the depth of the Gamma memory of the TLNN (parameters τ and m) are 
genetically optimized during the learning, along with the number of hidden units h in the 
hidden layer and the learning rate η and momentum μ of back-propagation. The available 
data is separated into three subsets in order to test the training (cross-validation) and then 
test the performance of the network (testing). Moreover, the genetic algorithm optimization 
specifications are also depicted on Table 4; a roulette selection method is applied in order to 
select the parents according to their fitness. Moreover, the probabilities of cross-over and 
mutation are to be equal to 0.9 and 0.09 respectively, following literature that indicates that 
crossover should usually be selected at high values and mutation should approximate the 
inverse of the number of chromosomes (population) and be much lower than the crossover 
probability to avoid permutation (Gen and Cheng, 2000).  
Results concerning the optimization of the look-back time window, or else the depth of the 
memory of the iterative temporal neural networks, are shown in Table 5. Interestingly, the 
required data to produce accurate predictions – as determined by the genetic optimization 
of the parameters τ and m during learning – differ between Heraklion airport and the rest of 
the cases examined. The recurrence of the dynamics in the Heraklion case is every 6 months, 
whereas NSI arrivals of Kerkyra and Rhodes are affected by data from up to 4 months in the 
past. 
Results of the predictions (test set) using TLNN are seen in Table 6; predictions for the same 
period using ARFIMA (averaged for the three airports) are also illustrated. As can be 
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observed, the TLNN has, overall, better accuracy that is evident both in the high and low 
demand periods in all three airport cases examined. The averaged behavior of the ARFIMA 
and TLNN models developed with respect to the actual and predicted NSI arrivals is 
graphically represented in Figure 5. Interestingly, the accuracy of predictions seems to 
decrease significantly in the case of low demand time periods, such as months between 
November and March, where touristic arrivals to Greek islands are, in general, significantly 
lower than the ones during summer months. The decreased accuracy in the case of Kerkyra 
indicates the existence of significant stochasticity in the manner in which arrivals evolve in 
low demand and off-peak period cases. 

5. Discussion and conclusions 
A large portion of tourist demand is conducted by air. Several air links can have intrinsic 
characteristics concerning the touristic demand evolution with strong non-stationary and 
seasonal characteristics. In this paper we implemented recent data mining techniques to 
model tourist demand and developed two advanced models of time-series prediction: a 
fractionally integrated autoregressive moving average model (ARFIMA) and a temporal 
genetically optimized iterative neural networks. These models originate from different 
methodological backgrounds and aim to evaluate different statistical properties of tourist 
demand (such as the existence of long-term memory, the parameters of memory depth for 
predictions and so on). To evaluate the proposed methodologies, three cases studies were 
examined that encompass three secondary airport located in the Greek Islands which exhibit 
different yearly and monthly demand distributions. 
In terms of prediction accuracy, the advanced form of temporal neural networks 
implemented seems to outperform the ARFIMA model. This applies to both high and low 
tourist demand periods. In terms of the knowledge acquired by the modeling, both 
approaches revealed very interesting results; the fractional dynamics observed in both the 
pooled data and the peak demand period, show that the tourist arrivals are not always 
stationary or best described as most frequently - assumed - by ARIMA models. The 
fractionally integrated processes fitted to the available data showed that all case studies 
examined have similar fractional dynamics and exhibit long term memory. This finding has 
significant implications to the process of modeling NSI arrivals, as it suggests the 
persistence of the effect of several socio-economic issues to the evolution of NSI arrivals.  
Moreover, the iterative approach to predicting NSI arrivals showed significant improvement 
to the prediction accuracy. The advanced genetic optimization implemented with regards to 
the look-back time window of the TLNN shows that the past could be utilized to predict the 
evolution of tourist demand. Nevertheless, the differences in the memory depth of the three 
TLNN models developed to approximate the dynamics of NSI arrivals in the three airports 
indicates the stochasticity of the temporal evolution of NSI arrivals during periods of low 
volume that significantly affect the accuracy of predictions. 
Finally, lack of prediction accuracy during transitional conditions reveals that, as expected, 
the demand evolution can have multiple causal dimensions that need to be considered in an 
effective methodological framework that could integrate both the temporal and 
causal/relational characteristics of other possible influential variables in the prediction 
process. Our ongoing work focuses on extending the present methodological framework to 
iterative neural network prediction that incorporates other socio-economic data to develop 
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influential relationships and evaluate whether they can improve predictability during 
periods of stochasticity in tourist demand. 
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  Pooled Peak Period 
  p=1,q=1 p=1,q=1 
Degree of differentiation dm 0.24 0.46 

ψ1 0.66 0.02 AR polynomial coefficients ψ2 - - 
θ1 0.52 0.55 MA polynomial coefficients θ2 - - 

 θ3  - 
 θ4  - 
 θ5  - 
Log-likelihood  -2622.36 -1079.26 
JB Test 
Null: normality  2.02 1.42 

Q2(7) 
Null: serial independence  136.25** 66.18** 

LM ARCH (1) 
Null: no ARCH effect  1.41 1.32 

* rejection at 5% significance level 

** rejection at 1% significance level 
Table 1. Estimation Results for the ARFIMA(p,dm,q) models for the Heraklion airport. 

 

  Pooled Peak Period 
  p=1,q=1 p=1,q=1 
Degree of differentiation dm 0.15 0.31 

ψ1 0.66 0.05 AR polynomial coefficients 
ψ2 - - 
θ1 0.35 0.48 MA polynomial coefficients 
θ2 - - 

 θ3  - 
 θ4  - 
 θ5  - 
Log-likelihood  -2588.14 -1002.80 
JB Test 
Null: normality  4.43 1.24 

Q2(7) 
Null: serial independence  145.25** 64.54** 

LM ARCH (1) 
Null: no ARCH effect  1.65 0.03 

* rejection at 5% significance level 

** rejection at 1% significance level 

Table 2. Estimation Results for the ARFIMA(p,dm,q) models for the Kerkyra airport.
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  Pooled Peak Period 
  p=1,q=1 p=1,q=1 
Degree of differentiation dm 0.34 0.37 

ψ1 0.67 0.05 AR polynomial coefficients 
ψ2 - - 
θ1 0.43 0.58 MA polynomial coefficients 
θ2 - - 

 θ3  - 
 θ4  - 
 θ5  - 
Log-likelihood  -2689.31 -1017.48 
JB Test 
Null: normality  3.48 2.48 

Q2(7) 
Null: serial independence  122.52** 75.67** 

LM ARCH (2) 
Null: no ARCH effect  0.82 0.10 

* rejection at 5% significance level 
** rejection at 1% significance level 

Table 3. Estimation Results for the ARFIMA(p,dm,q) models for Rhodes airport. 
 

 Specifications 

 DATA TR–CV–TE *: 60%-20%-20% 

 Structure 
Input layer: Gamma memory (genetically optimized memory 

depth) 
1 hidden layer (genetically optimized number of hidden units h) 

 Learning Back-propagation 
Chromosome [5,15] ,  [0.01 - 0.1],  [0.5 - 0.9],  τ [1,5],  m [1,12]h γ μ∈ ∈ ∈ ∈ ∈ ** 

Fitness function Mean square error (cross-validation set) 
Selection Roulette 

Cross-over Two point (p=0.9) G
en

et
ic

 
al

go
ri

th
m

 
op

tim
iz

at
io

n 

Mutation Probability p=0.09 
* Training - Cross-validation - Testing 
** h: neurons in hidden layer, γ: learning rate, μ: momentum, τ: time delay, m:dimension 
Table 4. Data and neural network specifications for iterative short-term prediction. 
 

Pooled NSI Arrivals  
τ m 

Heraklion 1 6 
Kerkyra 1 4 
Rhodes 1 4 

Table 5. Estimates of the depth of the Gamma memory (parameters τ and m) of the 
genetically-optimized TLNNs for the three cases. 
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 Pooled Data Peak Demand Period 
GA-TLNN* 
     Heraklion 
     Kerkyra 
     Rhodes 

17% 
26% 
18% 

2.8 
3.4 
3.2 

ARFIMA 
(average over cases tested) 37% 8.2 

  *genetically optimized TLNN 
Table 6. Mean Absolute Percent Error of predictions using ARFIMA and genetically 
optimized TLNN. 
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Fig. 1. Yearly evolution of the total arrivals, non-scheduled international arrivals (NSI 
Arrivals) and scheduled international arrivals (SI Arrivals) for the Greek airports. 
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Fig. 2. Evolution of arrivals (passengers per year) and flights per year for the period of 1999-
2006. 
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Fig. 3. Monthly variation of non-scheduled international arrivals in Rhodes for the period 
between 1999 and 2006. 
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Fig. 4. Scatter plots of actual versus predicted values of NSI arrivals for the three airports. 
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Fig. 5. Predictions using the ARFIMA and genetically optimized TLNN. Results from the 
three case study airports are aggregated both for ARFIMA and TLNN. 
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1. Introduction     
Over the past decades, controversial and conflict-laden water allocation issues among 
competing domestic, industrial and agricultural water use as well as urban environmental 
flows have raised increasing concerns (Huang & Chang, 2003); Particularly, Such 
competition has been exacerbated by the growing population, rapidly economic growth, 
deteriorating quality of water resources, and shrinking water availability due to a number of 
natural and human-induced impacts. A sounding strategy for water resources allocation 
and management can help to reduce or avoid the losses which are caused by water 
resources scarcity. However, in the water management system, many components and their 
interactions are uncertain. Such uncertainties could be multiplied not only by fasting 
changes of socioeconomic boundary conditions but also by unpredictable extreme weather 
events which caused by climate change. Thus, water resources management should be able 
to deal with all challenges above. Therefore, an effective integrated approach is desired for 
urban water adaptive management. 
Many methods, such as stochastic, fuzzy, and interval-parameter programming techniques, 
have been employed to counteract uncertainties in different fields of water management and 
have made great progresses in managing uncertainties in model scale. Water resource is an 
integral part of the socio-economic-environmental (SEE) system, which is a complex system 
dominated by human. In order to reach a sounding decision, it is necessary for decision-
makers to obtain a better understanding of the significant factors that shape the urban and 
the way the water resources system reacting to certain policy. Therefore, study of 
sustainable water resource management should be based on general system theory that 
addresses dynamic interactions amongst the related social-economic, environmental, and 
institutional factors as well as non-linearity and multi-loop feedbacks. 
System dynamics (SD) aims at solving of complex systems problems by simulating 
development trends of the system and identifying the interrelations of each factor in the 
system. This will help to explore the hidden mechanism and thus improve the performance 
of the whole system. Hence, after proposed by W. Forrester (Forrester, 1968), SD model has 
been widely used in global, national, and regional scales for sustainability assessment and 
system development programme (Meadows 1973; Mashayekhi, 1990; Saeed, 1994). Due to 
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the complexity of problems in the water system, the use of dynamic simulation models in 
water management has a long tradition (Biswas 1976; Roberts et al., 1983; Abbott and 
Stanley, 1999; Ahmad & Simonovic, 2004). The development journaey of several sections of 
applying system dynamics as a tool for integrated water management system analysis can 
be traced as from focusing on water system itself, to having a strong economic examinations 
on feedback relationships between industry and water availability, and then to having 
interaction with population growth (Liu et al., 2007). The above development make SD 
model has the flexibility and capability to support deliberative-analytical processes 
effectively. Meanwhile, SD and Multi Objective Programme (MOP) integrated model as an 
extension of the previous SD applications has been presented and used in urban water 
management in recent years, which takes into account both optimization and simulation 
(Guo et al, 1999; Zhang & Guo, 2002). This chapter will introduce a nonlinear dynamics 
approach for urban water resources demand forecasting and planning based on SD-MOP 
integrated model. 

2. Uncertainties in Urban water system 
2.1 Urban water system analysis 
Generally, urban water system could be divided into four subsystems, i.e., social subsystem, 
economic subsystem, environmental subsystem and water resources subsystem. The 
relationships and interactions are complicate, as Fig. 1. 
 

 
Fig. 1. Urban water management subsystems and relations 

2.2 Uncertainties of urban water management system analysis 
Urban water resources demand forecasting and planning are two important parts of urban 
water integrated management. Commonly, integrated water management should provide a 
framework for integrated decision-making and could be consists of system analysis, action 
results forecast, planning formulate and implementation, and evaluation and monitoring the 
goals and effects of implementation. At the system analysis stage, information collection and 
investigation are the basic work. A system structure is built based on a careful consideration 
of interactions among factors and subsystems. Long-term and short-term goals, problems, 
and priority focused will then are identified with both experts and stakeholders take part in. 
At the forecast stage, simulation model and evaluation model will be set up. Fixing on 
parameters and variable values of models and listing alternative solutions are the key 
process of the stage, based on field investigation, literature review and interviews with local 
stakeholders. Then according to the simulation and evaluation results of the alternatives, the 
selected solution can be identified and the corresponding desired actions can be determined. 
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Implementation and re-evaluation can’t be separated completely. Management and re-
evaluation is the mechanism that improves management goals and practices constantly. 
Uncertainties limit the forecasting ability of and thus influence the quality of decision 
making. They can be categorized into four types : (1) intransience uncertainties caused by 
fasting changes of urban socioeconomic conditions; (2) external uncertainties caused by the 
stress of factors beyond the urban boundary (Liu, 2007); (3) uncertainties associated with 
raw data and model parameters driven from outdated or absent issues news, events, or 
statistic data; and (4) uncertainties arising from multiple frames (e.g. people’s cognizing/ 
perceiving technique/ability advance, world and ethical view change) (Jamieson, 1996; 
Pahl-Wostl, 2009). The above uncertainties are associated with all four stages, the details as 
Fig. 2.  
 

 
Fig. 2. The uncertainties in urban water management system 
We can find that all above uncertainties are raised from the cognitive dimension (e.g. limited 
understanding system behavior and interactions among composing factors, uncertainty 
from fasting changes of socioeconomic conditions and change of natural conditions) and 
technical dimension (e. g. outdated or absent issues news/events/data, absent specific to 
techniques and countermeasures, limited of forecasting method) two aspects.  

2.3 Overlook of counteracting measures to water system uncertainties 
Whether we recognize it or not, socioeconomic laws and the natural laws are located in the 
objective world. So we can say that uncertainty is raised from the limitations of human 
cognition. Due to human cognitive abilities change, their understanding of the current 
world and their forecast of the future world will change over time. Furthermore, SEE system 
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1

is a complexity system reflecting the mutual and complicated functions amongst the internal 
elements, which can be characterized by the complicated system structure properties far 
from balance status and with dissipation structures, as well as the behaviors of which the 
input-output response shows uncertainty that beyond people’s experiential and qualitative 
cognition. We can be in virtue of SD model as well as interactions between modelers and 
stakeholders to interact the behavior uncertain from input-output response. The SD model 
can be run by different scenarios, and thus the optimal scenario can be selected by the 
analyses and discussions.  
However, simulation model could be run in almost limitless scenarios according SEE 
complex system parameters changed in different policies. Thus it is difficult to simulate all 
possible scenarios constrained in time and fund. So it is difficult to ensure the optimal level 
of selected scenarios and its corresponding programme design. Therefore, SD-MOP 
integrated model (Zhang & Guo, 2002) is proposed to counteracts uncertainties with SD 
model applying in different scenarios simulation and analysis, and MOP model applying in 
optimization.  

3. System dynamics model 
3.1 The basic concepts of SD 
The SD model takes certain steps along the time axis in the simulation process. At the end of 
each step, the system variables denoting the state of the system are updated to represent the 
consequences resulting from the previous simulation step. Initial conditions are needed for 
the first time step. Variables representing flows of information and initials, arising as results 
of system activities and producing the related consequences are named as level variables 
described as              in the flow diagram, and rate variables described as  . Auxiliary 
variable means the detailed steps by which information associated with current levels are 
transformed into rates to bring about future changes. In addition, the symbol 
represents the sinks or sources. 
Fig. 3 is a sample flow diagram for the total population, in which the total population (TP) is 
a level variable; birth population (BP), death population (DP), and net migrated population 
(NP) are rate variables; and birth rate (BR), death rate (DR), and net migration rate (NR) are 
auxiliary variables. 

P
BP DP

BR
DR

NP

NMR

 
Fig. 3. SD flow chart of population subsystem 

In SD level equation, three time points are denoted as J（past）, K (present), and L (future). 
The step from J to K is referred to as JK and that from K to L as KL. The duration period 
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between successive points is named DT. Therefore, a level variable could be referred to as 
LEVEL.J, LEVEL.K, or LEVEL.L at a time point，RATE.JK and RATE.KL will function in the 
duration period. We can express:  

LEVEL.K=LEVEL.J+DT*RATE.JK 

3.2 The procedures for applying SD model to simulate target system behavior 
The proedures for applying SD model to simulate target system behavior can be 
summarized into three steps. 
(1) Construction SD model 
The first step of the procedures is constructing SD model through analyses of the total 
system, and identifying the model validity by historical examination, and sensitivity 
analysis. Accordingly, parameters and relevance can be modified and confirmed. 
(2) Validity examination 
Validity examination examination includes direct observation, historical examination, and 
sensitivity analyses. Direct observation is through SD model run, if there is no obviouse 
unreasonable simulation results, we can to the historical examination.  
Historical examination is checking the error between simulation and reality. The errors of 
main forecasting level variables are accepted is one of the requirements of SD model being 
used in reality system.  
Another requirement is that the target system responds in lower degree sensitivity to most 
of the parameters through a series of sensitivity analyses conducted to examine the system’s 
responses to variations of input parameters and/or their combinations. A concept of 
sensitivity degree is defined as follows:  

 ( ) ( )

( ) ( )

t t
Q

t t

Q X
S

Q X
Δ

= ⋅
Δ

 (1) 

where t is time; Q(t) denotes system state at time t; X(t) represents system parameter affecting 
the system state at time t; SQ is sensitivity degree of state Q to parameter X; and ΔQ (t) and 
ΔX (t) denote increments of state Q and parameter X at time t, respectively. 
For the n state variables (Q1, Q2,…, Qn), the general sensitivity degree of a parameter at time 
t can be defined as follows: 

 
1

1 .
i

n

Q
i

S S
n =

= ∑  (2) 

Where n denotes a number of state variables; SQ is sensitivity degree of state Qi; and S is 
general sensitivity degree of the n states to the parameter X. 
If there are some departures from the model validity requirement standards, the SD model 
should be adjusted until fix to the standards. Then, SD model could be used in target system 
behavior simulation. 

3.3 SD model validity in simulating nonlinear feedback mechanism 
Although SD equations are linearity, they simulating in computer can describe nonlinear 
characteristics produced by multi-feedback when consider temporal dynamic affection. 
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Figure 4 is a piece of water resources subsystem delay feedback circle- water supply 
capacity building flow chart, which included two simple first-order delay feedbacks.  

plan time, Pt

water demand, Wd

delay flow,
Df(t)

delay time, Dt

water supply
capacity, Ws(t)

+

plan for transfer water
from other area, Wr(t)

+

water transfer project
building, Wbr(t)

-

——

�

---

 
Fig. 4. Water supply capacity flow chart 

Plan for transfer water from other area (Wr (t)) expression，in which had a first order delay, 
was shown as the basic divided differences formula: ( ) ( ( )) /Wr t Wd Ws t Pt= − . 
Due to delay time to implement from confirming water transfer scheme to water supply 
formation, water transfer project building (Wbr(t)) could be expressed as a simple first order 
mater delay function: ( ) ( ) /Wbr t Df t Dt= . 
As known, initialization of Df (t) is A m3, initialization of Ws (t) is B m3, Wd = C m3, Pt = a, 
Dt = b. According the above conditions can be established equations (3): 

 

0

0

( ) ( ( )) /
( ) ( ) /

C
a
b

( )| A
( )| B

t

t

Wr t Wd Ws t Pt
Wbr t Df t Dt
Wd
Pt
Dt
Df t
Ws t

=

=

= −⎧
⎪ =⎪
⎪ =
⎪

=⎨
⎪ =⎪
⎪ =
⎪ =⎩

 (3) 

Confluence rate was the derivative of the flow to time t. Hereby, it could be obtained the 
corresponding differential equations (4). 

 

       (4-1)

                      (4-2)

                    (4-3)

                                          (4-4)

'

'

( )1( ) (C ( ))
a b

(0) A
( )( )

b
(0) B

Df tDf t Ws t

Df
Df tW s t

Ws

⎧ = − −⎪
⎪

=⎪
⎨
⎪ =
⎪
⎪ =⎩

 (4) 
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By equations (4), it could be derived the expression of flow, and the following equation  
could be obtained by on both sides of equation (4-3) of equations (4) derivation. 

 1"( ) '( ) ( ) C
2

Ws t Ws t Ws t+ + =  (5) 

Solve equation (5), the curve of water supply capacity, the curve of the delay flow , the curve 
of the plan rate, and the curve of project building could be derivate. Thus the results is 
according follow three conditions. 
1.  Condition 1 

when ab>
4

, 2

1 4 0
b ab

− < , then 1,2
1 1 4b 1

2b 2b a
iλ = − ± −  

The solution of the equation (5) corresponding homogeneous equation is shown as: 

 
1

2b
( ) 1 2

1 4b 1 4b( cos sin )
2b a 2b a

t

s tW e C t C t
−

= − + −  (6) 

Seeking the special solution of equation (5): 

 *
( )s tW C=  (7) 

According to equation (6) and (7), we can obtain the general solution of equation (5), which 
is shown as equation (8). 

 
1

2b
( ) 1 2

1 4b 1 4b( cos sin
2b a 2b a

t

s tW e C t C t C
−

= − + − +  (8) 

Ws(0) =B will be into the equation (8). Then, 

1 CB C= + , 1 B CC = −  

From, 
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(0) (0)
A'
bs fW D= =  is into the equation (9). Then, 

2
A 1 1 4b(B C) 1
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4b 1
a

C + −
=

−
 

According to the above, the special solution of equation (5) is shown as the follow: 
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The equation (10) is the curve of the Water supply capacity. 
From: ( ) ( )'f t s tD bW= , then the curve of the delay flow can be obtained as equation (11): 
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2bA (B C)1 4b 1 4ba(Acos 1 sin 1 )
2b a 2b a4b 1

a

t

f tD e t t
−

+ −
= − − −

−
 (11) 

The curve of plan for transfer water from other area can also be obtained as equation (12): 
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The curve of project building can also be obtained as equation (13): 
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2.  Condition 2 

When ab
4

= ， 2

1 4 0
b ab

− = , Then: 1 2
1

2b
λ λ= = −  

The general solution of equation (5) is shown as the follow: 
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Ws(0) =B will be into equation (14). Then, 

1B CC= + , 1 B CC = −  

From,  
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According to the above, the special solution of equation (5) is shown as the follow: 
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The equation (16) is the curve of the water supply capacity. 
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From ( ) ( )b 'f t s tD W= , then 

 
1 1

2b 2b
( )

1 2A B C 2A B C((B C) )
2 2b 2b

t t

f tD e t e
− −+ − + −

= − − + +  (17) 

 

The equation (17) is the curve of the delay flow. 
The curve of the water transfer rate can be obtained as (18) and the rate curve of Building 
water supply facilities can be obtained as (19). 

 
1

2b
( ) ( )

C-B 2A+B-C(C ) / ( )
a 2ab

t

r t s tW W a e t
−

= − = −  (18) 

 
1 1

( ) 2b 2b
( ) 2

1 2A B C 2A B C((B C) )
b 2b 2b 2b

t tf t
br t

D
W e t e

− −+ − + −
= = − − + +  (19) 

3.  Condition 3 

when ab
4

< , 2

1 4 0
b ab

− > , Then, 1,2
1 1 4b1

2b 2b a
λ = − ± −  

  
1 1 4b 1 1 4b( 1 ) ( 1 )

2b 2b a 2b 2b a
( ) 1 2 C

t t

s tW C e C e
− + − − − −

= + +  (20) 

Ws(0)=B will be into the equation (20). Then 

1 2 C BC C+ + = , 1 2B CC C= − −  

From 

 
1 1 4b 1 1 4b( 1 ) ( 1 )

2b 2b a 2b 2b a
( ) 1 2

1 1 4b 1 1 4b' ( 1 ) ( 1 )
2b 2b a 2b 2b a

t t

s tW C e C e
− + − − + −

= − + − + − + −  (21) 

( )
(0)

A'
b b
f t

s

D
W = =  will be into the equation (21). Then 

 1 2
A 1 1 4b 1 1 4b( 1 ) ( 1 )
b 2b 2b a 2b 2b a

C C= − + − + − − −  (23) 

Because 

1 2B CC C= − −  

 

So, 1

4b( 1 1)(B C) 2A
a

4b2 1
a

C
− + − +

=
−

,    2

4b( 1 1)(B C) 2A
a

4b2 1
a

C
− − − −

=
−

 

 

According to the above, the special solution of equation (5) is shown as the follow: 
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1 1 4b( 1 )
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a

t
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t
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− +
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 (22) 

The equation (22) is the curve of the Water supply capacity. 
From ( ) ( )b 'f t s tD W= , then 

 
1 1 4b 1 1 4b( 1- ) ( 1- )

2b 2b a 2b 2b a
( )

4b 4b 4b 4b(C-B)+2A(-1+ 1- ) (C-B)+2A(1+ 1- )
a a a a

4b 4b4 1- 4 1-
a a

t t

f tD e e
− + − −

= +  (23) 

The equation (23) is the curve of the delay flow. 
And the curve of the water transfer rate can be obtained as (24). 

 

( )
( )

1 1 4b 1 1 4b( 1 ) ( 1 )
2b 2b a 2b 2b a

(C )
a

4b 4b( 1 1)(C-B) 2A ( 1 1)(C-B) 2A
a a

4b 4b2 1 2 1
a a

s t
r t

t t

W
W

e e
a a

− + − − − −

−
=

− + − − − +
= +

− −

 (24)                          

The rate curve of Building water supply facilities can be obtained as (25). 

 

1 1 4b( 1 )( ) 2b 2b a
( )

1 1 4b( 1 )
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+
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 (25) 

From above deduction, we can know that although SD equations are linearity, they 
simulating in computer can describe nonlinear characteristics produced by multi-feedback 
when consider temporal dynamic affection. 

4. Decision-making system based on SD-MOP integrated model for urban 
water resources demand forecasting and planning 
From above analysis, we can know that urban water resources demand forecasting is the 
key procedure of urban water system management. In different scenarios, the forecasting 
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outcomes may be different, which result in different corresponding planning. From above 
deduction, we can also get the conclusion that SD model can be applying to simulate 
nonlinear and complex system behavior though the basic equations are linear and simple. 
Hence, we introduce a decision-making system which core in SD-MOP integrated model for 
urban water resources demand forecasting and planning. The procedure of applying SD-
MOP integrated model as Fig.5.  
 

 
Fig. 5. The procedure of SD-MOP integrated model applying 

In SD-MOP integrated model, SD is used for water resources system dynamics nonlinear 
behavior simulation, and MOP is used for optimal policy choice and optimal design 
forming.  

4.1 Setting up SD model  
The first step of  SD-MOP applying is constructing SD model based on information 
collection system analysis.  The procedures of constructing SD model are the follows: 
1. identify the boundary of SD model; 
2. classify sub-systems of urban water system; 
3. determine the set of  main level variables; 
4. analysis the realtions of system parameters and variable; 
5. design the flow diagram; 
6. determine the basic value of parameters by mathmatic forecasting method both in 

statistical method and experience according to current and historical imformation of the 
target system; 

7. set up basic mathmatic equations which consist of SD model; 
8. test SD model validity and adjust it accoding testing results until it can be used in 

realistic system simulation. 
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4.2 Analyzing IPV 
Analyzing the sensitivity by sensitivity test and original run (run in the condition which the 
system keep current behavior and tendency without any policy adjustment), the sensible 
parameters and the closed relating variables can be identified, which are named as IPV 
(Important  Parameter and Variable). 
IPV aggregation includes controllable factors and non-controllable two types. Non-control 
lable factors can become system development neck, while adapting controllable factors  in 
suitable way could exploit urban development. 

4.3 Setting up MOP model 
Running the SD model based on the current situations (called original run). The gap 
between the original run results and ideal level of the system can be identified. In order to 
obtain optimal programme design and adjust the system function and behavior, MOP 
model cored in IPV is set up. In the MOP model the controllable factors of IPV become 
decison variables and non-controllable factors of IPV become constrains,  while some level 
variable which closely related to IPV become maximum or minimum aim. 
General format of MOP model as follow: 

 max ( ) /k kf x ∀  (26) 

 s.t. ( ) ,i i ig x b≤ ∀  (27) 

 0,j jx x x≥ ∈  (28) 

Where, x is decision variable (a set of real number in a closed boundary limit and is the 
value of IPV or value of variable that are related to IPV),  equation (26) is objective function,  
(27) and (28) are the limiting conditions. 

4.4 Setting up assistant model to solve MOP 
Applying ODTL (Objective Deviation Tolerance Level)  method (Zhou, 1998) to solve MOP 
model. Here, there is some different from Zhou in interview process. First, we determin 
each goal  ODTL by interview with stakeholder based on giving them original run results 
and the ideal goals. Second, the decision is not finished in one time, but in several times 
based on showing them the former scenarios SD model simulation results which 
corresponding to their choice of each goals ODTL, and the stake holders can adjust there 
decision by comparing and discussing the former results. Finally, the optimal IPV can be 
determined by several adjust assistant model, solve MOP, simulation corresponding system 
tendency, and compare and selecte the desirable scenario. 

4.5 Planning 
Based on the optimum values of IPV, the proposals for running the model can be designed. 
Accordingly the final plan proposal can be formulated. 

5. Case study 
Applying SD-MOP integrated model in a real urban system to test its validity [Zhang 2010].  
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The boundary of the target system is the urban area of Qinhuangdao, which is  a city of 
Hebei province, located at latitude 39°22′-40°37′N and longitude 118°33′-119°51′E, and 
covers an area of 7,812 km2. Qinhuangdao has jurisdiction over three districts (Shanhaiguan, 
Beidahe, and Haibin) and four countries (Lulong, Qinglong, Funing, and Changli). The 
annual rainfall in Qinhuangdao is about 670mm, with the water resource per capita in 
Qinhuangdao is 600m3/a, which is 1/4 the average level in China. The system is composed 
of population subsystem, industry subsystem, services subsystem, water supply subsystem 
and water environmental protection subsystem. The planned period is 15 years (2006 - 
2020). It is divided into two phases, i.e., 2006-2010 and 2010 - 2020. The base year is 2000. 

5.1. Constructing SD model 
Based on the analysis of the target system, SD model of Qinhuangdao (QHDWSD) can be 
constructed, and thus the sensibility of the model can also be tested.  There are more than 
110 variables in SD model, in which there are more than 110 system dynamic equations. Fig. 
6 is the flow chart of QHDWSD. 
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Fig. 6. QHDSD diagram 



 Nonlinear Dynamics 

 

338 

5.2 Identifying IPV 
Based on original running and putting eight variables and fourteen parameters into 
sensitivity analysis, IPV were identified. Those are: Increase rate of second industrial GDP, 
per second industrial GDP water consumption, Per capita plow land water consumption. 

5.3 Setting up and solving MOP model 
In the original simulation, when GDP getting in the aim scale’ water resource supply and 
demand balance index (water available supply to human social and economic activities 
divided by water demand human social and economic activities) will be lower than 0.6 in 
2020 (Fig. 2). The consequence will be that people active’s water  consumption invade and 
occupy eco-environmental share and lead to water ecosystem quality degradation and water 
resource sustainable supply capability decrease. According above analysis, the key issue is 
the structure of the economic, thus MOP model is setting up as follow. 

 
3

1
1

Z ( ) max i
i

X X
=

= ∑  (29) 

 
3

2
1

Z ( ) min qi i
i

X X
=

= ⋅∑  (30) 
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1
q Qi i

i
X

=

⋅ ≤∑  (31) 

 
3

1
Ymin /( ) Ymaxi i i i

i
X X

=

≤ ≤∑  (32) 

 0iX ≥  (33) 

where: Xi=GDP of three industry (108￥); qi=per GDP water consumption of three industry 

(t/108￥); Q=water resource amount could be supplied to human economic activities (t);  
Ymini= the lower bound of three industry proportion in total GDP; Ymaxi= the higher 
bound of three industry proportion in total GDP.  Then set up assitant model and solved it 
based on interaction with stakeholders who consists of the staff of water resources bureau, 
the staff of the environmental protection agency, the staff of regional development and 
reform Commission the staff of related bureaus, the staff of water supply and wastewater 
treatment firms, delegates of the three industries, and representatives from the public.  

5.4 Obtaining relative optimal programme 
According IPV solution, the optimal design could be obtained and the corresponding water 
resources plan of Qinhuangdao city was formulated. Table 1 shows the comparison of 
different industry ratio in the total gross domestic production (GDP) respectively between 
optimal solutions and original tendency. The comparison results of the water supply-
demand balance, GDP, population scale and water pollution index between the feasible 
programme simulations with the original simulation as Fig. 7.  
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year item Primary industry
(%) 

Secondary 
industry 

(%) 

Tertiary industry 
(%) 

optimal designs 62 356 457.5 
2010 

original tendency 65 370 440.5 

optimal designs 102 1220 1397.2 
2020 

original tendency 107 1256 1357.2 

 

Table 1. Industrial structure (different industry ratio in GDP) 
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Fig. 7. Main level variable comparing between optimal design and original tendency 
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In Fig. 7, sub Fig-a is for gross domestic production, sub Fig-b is for total population scale, 
sub Fig-c is for water pollution index (WPI-the ratio of simulating year water contamination 
discharge to base year water contamination discharge ) contamination, and sub Fig-d is for 
water resources supply-demand balance index (WRSDBI-the ratio of water supply quantity 
to water demand quantity). 
Fig. 7 and table 1 indicate that through adjusting system structure can realize water 
sustainable utilization while not decreasing the speed of economic development. The water 
resource strategy plan is based on nonlinear dynamics forecasting approach for water 
resource demand.  

5.5 Nonlinear dynamics approach validity test in practice 
Follow is an example of Qinhuangdao water resource plan of 2000 to 2005.  And it was 
researched by our group during 1998 to 2000. In the plan, we used two methods, nonlinear 
method and trend extending method, to forecast urban water resources demand.  Fig. 8 
shows the comparative errors for forecasting data and actual data between SD nonlinear 
method and trend extending method.  From Fig. 8, we can know that nonlinear forecasting 
is more accurate with can give support to water resources plan. 
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Fig. 8. The comparative analysis results 

6. Conclusion 
From above study, we can get the conclusion : (i) complex system analysis and nonlinear 
dynamics simulation are very useful for urban water resource demand forecasting and 
planning, (ii) the integrated model of SD-MOP can avoid the randomness of proposal 
designed by experiences of planners and decision-makers, which results in the generated 
planning proposal has high reliability. 
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1. Introduction 
Methods for detection and estimation of the structure or parameters of abrupt changes in 
dynamic systems play an important role for solving a number of problems encountered in 
practice. They have an important significance in different fields of telecommunications and 
control applications, such as radar tracking of maneuvering targets, fault diagnosis and 
identification (FDI), speech analysis, signal processing in geophysics and biomedical 
systems. Most of these applications belong to the class of problems with nonlinear 
dynamics. Among them an important role is played by a wide class of systems with abrupt 
random jumps of parameters or structure. 
A dynamic system with jumps of this kind can be defined as a system in which the structure 
or parameters can change at any random time. Therefore, in order to describe such a system, 
it is convenient to introduce an unknown random vector ( )kϑ that determines the current 
system structure and parameters. Then the system state and observation equations are 
dependent on this changing vector. The general case then is described as follows: 

 ( 1) [ ( ), ( ), ( )]x k F x k k w kϑ+ = ,  (1) 

 ( ) [ ( ), ( ), ( )] , ( )y k h x k k v k kϑ ϑ= ∈Ω ,  (2) 

where F and h are known nonlinear functions, )(kw  and )(kv are system and measurement 
noises respectively and Ω is the space of possible values of the vector )(kϑ .  
The space Ω  can consist of finite or infinite sets of elements. The structure of the space Ω  
and evolution of the vector )(kϑ in time determine the main approaches to solving the 
problem of detection-estimation in a dynamic system with jump structure. The classification 
of the statistical characteristics of the parameter vector )(kϑ  is presented in Fig. 1. 
According to this classification, after the jump the parameter vector )(kϑ  can take on finite 
or infinite sets of values. In the case of the former the dynamic system can be in one of N 
possible structures. It has been shown that a model of this kind (Willsky, 1976) is the most 
comprehensive description of system jump changes. Such models demand a considerable 
amount of prior information on probable jump changes in the system. At the same time, 
they require a great deal of computation when used for state estimation or jump detection in 
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real-time systems. Modifications to these models are often used for solving problems related 
to tracking maneuvering targets in radars (Gini & Rangaswamy, 2008) and in designing 
reliable dynamic systems (Patton et al., 1989). Usually in these cases the multiple model 
(MM) (Blackman & Popoli, 1999), multiple hypothesis test (MHT) (Bar-Shalom et al., 2001) 
or interactive multiple model (IMM) approaches are used (Mazor et al., 1998). 
 

 
Fig. 1. Classification of the parameter vector ( )kϑ  

Evolution of the vector )(kϑ in time can be described in terms of a random process with 
a known multidimensional probability density function (pdf), by the Markov sequence or by 
single jumps. In practice it is difficult to obtain a priori information about the 
multidimensional probability density function of the process. Therefore a model based on 
these criteria is not readily applicable to solving the problem of detecting jumps in dynamic 
systems.  
Models in which the vector )(kϑ  is defined by Markov properties can describe a broad 
variety of jump changes and hence they are widely used in radar applications and FDI theory 
(Grishin, 1994). Another class of system models with a jump structure  is represented by 
systems with single jumps that can occur at random time, the pdf of these moments being 
unknown. This approach assumes that after the jump, the system parameters and structure 
remain unchangeable. The latter assumption is often unjustified in practice because after the 
jump the system may be non-stationary. More adequate models are required in order to 
describe situations in which following the jump the parameter vector )(kϑ changes 
according to the Markov sequence. A model of this kind will be considered below. 
For a solution to the problem in a real-time system with a minimum computational burden 
it is desirable to have simple but adequate models of the jumps. A method for modelling 
jumps in dynamic systems by means of additive Gauss-Markov sequences with random 
time rises in the state and observation equation is proposed in (Grishin, 1994). Nevertheless 
such models also require a relatively large amount of prior information on the structure and 
parameter of the jumps. 
In order to resolve these difficulties a mixed multiple additive Gauss-Markov model 
is proposed. For this model far less a priori information on probable system jumps 
is required and it can be applied to a broad class of dynamic systems for which relatively 
simple models can be used. 
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Using such models and a generalized likelihood ratio approach (GLR) (Katayama & 
Sigimoto, 1997) it is easy to obtain suboptimal algorithms for state estimation and jump 
detection. Such algorithms in comparison with the multiple model estimation algorithms 
have relatively moderate computation requirements. They can be obtained in recursive form 
and realized in real-time systems.  
In the following section of this chapter we outline the applications of models of this kind 
to the problem of radar maneuvering target tracking and failure detection. 

2. The system model 
The system and measurement equations are described by one of the following models: 

 
( 1) ( 1, ) ( ) ( ) ( 1) ( 1, )1( 1, ),
( ) ( ) ( ) ( ), 1, , ,

S j i ix k k k x k w k G k k t k t
y k H k x k v k j N

ϑ+ = Φ + + + + + +

= + = …
  (3) 

or: 

 
0

( 1) ( 1, ) ( ) ( ),
( ) ( ) ( ) ( ) ( ) ( , )1( , ), 1, , ,j i i

x k k k x k w k
y k H k x k v k H k k t k t j Nϑ

+ = Φ + +
= + + = …   (4) 

where ( )x k  is the state vector, ( ), ( )w k kν  are white Gaussian sequences with zero mean and 
covariance matrices ( )Q k  and ( )R k respectively, ( , )j ik tϑ  - an unknown Gauss-Markov 
state vector modelling changes in the system after the jump at the time it  and 1( , )ik t is the 
unit step function that is zero when itk < . 
The vector ( , )j ik tϑ  can be written in the general case as follows for a dynamic system 
driven by the random signal ( )j kξ : 

 ( 1, ) ( 1, ) ( , ) ( ), 1,..., ,j i j j i jk t k k k t k j Nϑ ϕ ϑ ξ+ = + + =   (5) 

where ( 1, )j k kϕ +  - a transition matrix, ( )j kξ  is a white Gaussian sequences with zero mean 
and covariance matrix ( )ojQ k , j  - a number of possible jump models of which prior 
probabilities ( )j iP t  can be given or not. The other notations specified are commonly used 
(Sorenson, 1985). The a priori distributions of a random value it  are assumed to be 
unknown. 
Thus the additional dynamic system can be described by a set of equations of the form (5) 
with different transition matrices. The choice of a corresponding model can be carried out in 
real time by an adaptive processing algorithm. The case of one of N possible models will be 
considered below. 
Depending on the nature of the parameter vector ( , )j ik tϑ  the model of changes may be 
classified (Grishin & Janczak, 2006) as deterministic ( 0)( =kjξ ), stochastic ( ( 1, ) 0j k kϕ + = ) 
or mixed ( 0)(,0),1( ≠≠+ kkk jj ξϕ ).  
It is easy to demonstrate that the equations (3) - (5) describe a wide variety of system jumps 
which take place in different parts of the system such as jump changes of the state vector 
and its dimension, jumps of the system transition matrix elements, the covariance matrices 
of observation and system noises. Let us consider a description of different jumps in the 
system with the additive Gauss-Markov models. 
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Jump changes of the state vector dimension 

For ik t>  equation (3) can be rewritten as 

 ( 1) ( 1, ) ( ) ( 1) ( 1, ) ( , ) ( 1) ( ) ( )S i Sx k k k x k G k k k k t G k k w kϕ ϑ ξ+ = Φ + + + + + + +  (6) 

Defining the augmented state vector as [ ]( 1) ( 1) ( 1, ) ,T
a ix k x k k tϑ+ = + +  from (5) and (6) 

 ( 1) ( 1, ) ( ) ( 1) ( ),a a a ax k k k x k k w k+ = Φ + + Γ +   (7) 
where 

 
( 1, ) ( 1) ( 1, ) 1 ( 1)

( 1, ) , ( 1)
0 ( 1, ) 0 1

S S
a

k k G k k k G k
k k k

k k
ϕ

ϕ
Φ + + + +⎡ ⎤ ⎡ ⎤

Φ + = Γ + =⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦
 

are transition and input matrices, [ ]( ) ( ) ( ) T
aw k w k kξ=  - the augmented input noise vector. 

Thus equation (3) may be used for modelling the jumps in the system dimension. 
As the dimension of the observation vector is the same, the observation matrix for ik t>  
must be altered, such that [ ]( ) ( ) 0aH k H k= . 
Jump changes of the state vector variables 

If in equation (3) the input matrix is: 

 
, 1 ,

( 1)
0 , 1 ,

i
S

i

I k t
G k

k t
+ =⎧

+ = ⎨ + ≠⎩
  (8) 

then the state equation of the system will be: 

 ( 1) ( 1, ) ( ) ( ) ( 1, ) ( 1, ) .i ix k k k x k w k k t k tϑ δ+ = Φ + + + + +   (9) 

Thus every variable of the state vector at time 1 ik t+ =  changes abruptly. The values of 
these changes are equal to the values of the corresponding variables of the random vector 

( 1, )ik tϑ + . If for ( 1)i Sk t G k I> + =  and the parameters of equation (5) are chosen 
as ( )0 0( 1, ) , ( , ) , ( ) 0 0 ,i ik k I t t k Qϕ ϑ ϑ ξ+ = = = =  then one has: 

 0( 1) ( 1, ) ( ) ( ) 1( 1, ) .ix k k k x k w k k tϑ+ = Φ + + + +   (10) 
The preceding equation shows, that state variable bias appears at time it . 
Abrupt changes of the observation matrix 

In considering jumps of the observation matrix elements it is necessary to restrict our 
discussion to equation (4). If for ik t>  the identity ( , ) ( )ik t x kϑ = is valid, that is 

( 1, ) ( 1, ) , ( ) ( ) , ( , ) ( )i i ik k k k k w k t t x tϕ ξ ϑ+ = Φ + = = , then the observation equation is: 

 0 0( ) ( ) ( ) ( ) ( ) ( ) [ ( ) ( )] ( ) ( ) , .iy k H k x k v k H k x k H k H k x k v k k t= + + = + + >   (11) 

3. Detection-estimation algorithms in the systems with the additive Gauss-
Markov jumps 
To design an appropriate detection-estimation algorithm for a system in which parameters 
can be abruptly changed, it is necessary  to detect the changes, to isolate them (that is to 
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determine the system element in which these changes take place) and then to estimate theirs 
value. The main approaches to the design of such algorithms include the following:  
- change-sensitive filters (Limit Memory Filters) (Willsky, 1976), 
- an innovation-based approach that uses the generalized likelihood ratio (GLR) (Gertler, 

1998), 
- the multiple hypothesis test (Katayma & Sugimoto, 1997), 
- an artificial neural network approach (Patton et al., 1989). 
In this section we focus on the GLR approach. An approach of this kind involves the use of 
the basic Kalman filter which is matched with the normal mode of the input process and the 
GLR computation of the innovation process to detect the parameter or structure jumps 
(Whang et al., 1994). 
When the system changes have occurred, the innovation process is no longer zero mean and 
it carries information about changes in the system. 

3.1 Synthesis of the detection-estimation algorithm 
Let us consider the system for which state and measurement equations are given by the 
model (3). Then, calculating the propagation of all signals through the Kalman filter that 
is matched with a system without jumps, we obtain that the innovation process ( / 1)z k k −  
of the filter in this case can be presented in the following form (Grishin, 1994): 

 1( / 1) ( , ) ( , ) ( / 1).S S i iz k k T k t k t z k kε− = + −   (12) 

where 1( / 1)z k k − is the innovation process of the matched Kalman filter 

 1 ˆ( / 1) ( ) ( ) ( / 1)z k k y k H k x k k− = − −   (13)  
and 

 1 2( , ) [ ( , ) ( , ) ( ) ( , 1)]s i c i c iT k t k t k t H k k kψ= Ψ Φ − ,  (14) 

 1 1
1

( ) ( ) , ,
( , )

( )[ ( , ) ( , 1) ( 1, ) ( , 1)], ;
i S i i

C i
C i C i i

H t G t k t
k t

H k k t k k F k t k k k t
ψ

ϕ−

=⎧⎪= ⎨ Φ −Φ − − − >⎪⎩
  (15) 

 
( ) , ,

( , ) 1( ) ( , 1) ( 1, ) ( , 1) ,

S

S

G t k ti i
k tc i G t k k k t k k k ti c i iϕ

=⎧
⎪Φ = ⎨ −+Φ − Φ − − >⎪⎩

  (16)  

 1 1
1 1

( ) ( ) ( ) , ,
( , )

( ) ( , ) ( , 1) ( 1, ) ( , 1), ,
i i S i i

c i
c i c i i

K t H t G t k t
F k t

K k k t k k F k t k k k tψ ϕ−

=⎧⎪= ⎨ + Φ − − − >⎪⎩
  (17) 

 2 1
2

( ) , ,
( , )

( )[ ( , 1) ( 1, ) ( , 1)], ,
i i

C i
C i i

H t k t
k t

H k I k k F k t k k k t
ψ −

=⎧⎪= ⎨ −Φ − − Φ − >⎪⎩
  (18) 

 2 1
2 2

( ) ( ) , ,
( , )

( ) ( , ) ( , 1) ( 1, ) ( , 1), .
i i i

C i
C i C i i

K t H t k t
F k t

K k k t k k F k t k k k tψ −

=⎧⎪= ⎨ +Φ − − Φ − >⎪⎩
  (19) 
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 (1) (2)
2 2( , ) [ ( , ) ( , ) ( , )] ,T TT T

i i i ik t k t k t k tε ϑ ε ε=   (20) 

 (1) (1)
2 2( , ) ( , 1) ( 1, ) ( , ) ( 1) ,i i ik t k k k t L k t kε ε ξ= Φ − − + −   (21) 

 (2 ) (2 )
2 2( , ) ( , 1) ( 1, ) ( , ) ( 1)i i ik t C k k k t N k t kε ε ξ= − − + −   (22) 

 1

0, ,
( , )

( , 1)[ ( 1, ) ( 1)] ( , 1), ,
i

i
i S i

k t
L k t

k k L k t G k k k k tϕ−

=⎧⎪= ⎨
Φ − − − − − >⎪⎩

  (23) 

 1 2( , ) ( , ) ( , ) ,i i iN k t N k t N k t= +   (24) 

1 1
1

0, ,
( , )

[ ( 1) ( 1) ( 1, ) ( , 1) ( 1, )] ( , 1) , ,
i

i
C i i i

k t
N k t

K k H k k t C k k N k t k k k tϕ−

=⎧⎪= ⎨
− − Φ − + − − × − >⎪⎩

 

2 1
2

0 , ,
( , )

[ ( 1) ( 1) ( , 1) ( 1, )] ( , 1) ( , ) , .
i

i
i i i

k t
N k t

K k H k C k k N k t k k L k t k t−

=⎧⎪= ⎨
− − + − − ×Φ − >⎪⎩

  

It follows from equations (14) and (22) arising at time it that the additive gauss-Markov 
jump changes in the system dynamics result in the appearance of the random vector ( , )ik tε  
of which one of components is the vector ( , )ik tϑ , in the innovation process of the matched 
Kalman filter. When deducing expressions (14)-(22) we used the assumption that 
the transition matrix ( 1, )j k kϕ +  from (5) is non-singular. This assumption is usually feasible 
in engineering practice. The block diagram representation of the innovation process for 
the system (3) is presented in Fig. 2.   
 

 
Fig. 2. Block diagram representation of the innovation process for the system with structure 
or parameters jumps in the system equation 

Taking into consideration formulae (13) - (22) the system presented in Fig. 2 can be written 
in the augmented form as follows: 

 ( 1, ) ( 1, ) ( , ) ( 1, ) ( )i i ik t k k k t J k t kε ε ξ+ = Θ + + +   (25) 

where the state transition and input matrices of the augmented system are calculated as: 
( )( 1, ) ( 1, ) ( 1, ) ( 1, )k k diag k k k k C k kϕΘ + = + Φ + +  and ( 1, ) [ ]T T TJ k k I L N+ = . 

No abrupt changes

)1(
2ε  

)2(
2ε  

)1/( −kkz

)1/(1 −kkz

)(kν  )(kξ

Delay 1cψ),( tkL

Φ  

Delay ΦH),( tkN

C

Delay 2cψ

ϕ

Abrupt changes
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When the system jumps take place in the observation channel described by equation (4) the 
innovation process ( / 1)z k k − has similar form to (12) :  

 1( / 1) ( , ) ( , ) ( / 1)o o i iz k k T k t k t z k kε− = + − ,  (26)  

where all components of equation (26) can also be obtained in recursive form taking into 
consideration propagation of the signals through the Kalman filter matched with the 
undisturbed system : 

 [ ]0 0( , ) ( , ) ( ) ( , 1) ,i iT k t k t H k k kψ= Φ −   (27) 

 1( , ) [ ( , ) ( , )] ,T T T
i i ik t k t k tε ϑ ε=   (28) 

 1
0 0 0( , ) ( ) ( ) ( , 1) ( 1, ) ( , 1),i ik t H k H k k k F k t k kψ ϕ−= − Φ − − −   (29) 

 1
0 0 0( , ) ( ) ( , ) ( , 1) ( 1, ) ( , 1),i i iF k t K k k t k k F k t k kψ ϕ−= + Φ − − −  (30) 

 1 1( 1, ) ( 1, ) ( , ) ( 1, ) ( ),i i ik t C k k k t D k t kε ε ξ+ = + + +  (31) 

 1
0( 1, ) [ ( ) ( ) ( 1, ) ( , )] ( 1, )i iD k t K k H k C k k D k t k kϕ−+ = + + + , (32) 

 ( 1, ) [ ( ) ( )] ( , 1)C k k I K k H k k k+ = − Φ − . (33) 

Thus the problem under consideration can be formulated as a test of two hypotheses – 
the simple hypotheses oH  with respect to the composite alternative 1H : 

 ,)1/(),(),()1/(:
)1/()1/(:

11

10
−+=−

−=−
kkztktkTkkzH

kkzkkzH

ii ε   
(34)

 
where ),(),,( 1 ii tktkT ε  are described by (14) and (20) or (27) and (28). 
Since the a priori distributions for it  and ( , )ik tϑ  are unknown we have to use the 
generalized likelihood ratio (GLR) test. The GLR for the hypotheses (34) for ik t≥ can be 
written as follows (Grishin & Janczak, 2006):  

 
1

1

0

[ ( / 1) / , ( , ( , ))]( , ) ( 1, )
[ ( / 1) / ]

k
ti i i

i i
f z k k z H t k tk t k t

f z k k H
ε−−

Λ = Λ −
−

 (35)  

Since the vector ( / 1)z k k − in (34) is Gaussian the probability density functions [ ]f ⋅  in this 
expression are also Gaussian. Thus the likelihood ratio can be written in the logarithmic form:  

,0),1(
)],1/(~)1/([)()]1/(~)1/([)1/()()1/(

)(detln)(detln),1(),(ln),(
11

1

1

=−

−−−−−−−−−+

+−+−=Λ=
−−

ii

zo
T

z
T

zoziii

tt
kkzkkzkPkkzkkzkkzkPkkz

kPkPtktktk

λ

λλ

(36)

 
where 1( )zP k is the covariance matrix of the innovation process in the matched Kalman filter 
(hypothesis oH ), the value  
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 1
1 ˆ( / 1) [ ( / 1) / , ] ( , ) ( / 1, )k

ti i iz k k E z k k z H T k t k k tε−− = − = −�   (37) 
is the prediction estimate of the innovation process for jumps which have occurred at 
known time it  and 

 ˆ ˆ( / 1, ) ( , 1) ( 1 / 1, )i ik k t k k k k tε ε− = Θ − − −  (38) 

is the prediction estimation of the Kalman filter for the system described by the expressions 
(12) and (25). 
The covariance matrix ( )zoP k  from (36) is given by 

 1( ) ( , ) ( / 1, ) ( , ) ( )T
zo i o i i zP k T k t P k k t T k t P k= − + , (39) 

where ( / 1, )o iP k k t− is the covariance matrix of the estimate (38). 
Therefore if the estimates ˆ ( / 1, )ik k tε −  for each given it  are calculated the maximum 
likelihood estimate is 

 
.),(maxargˆ i

t
i tkt

i
λ=

  
(40)

 
Then the decision rule is  

 

1

0

0
ˆ ˆ ˆ( , ) ( , ) , 1 ,i i i

H

H

k t k t k M t kλ λ − + ≤ ≤
>
<

  (41) 

where )ˆ,(0 itkλ  is the threshold value and ˆ1 ik M t k− + ≤ ≤  is used to avoid a growing bank 
of filters. 
Thus the system of joint detection - estimation of jumps changes in a dynamic system 
consists of the basic Kalman filter, which calculates values )1/( −kkz , the bank of Kalman 
filters, which compute the likelihood ratios ),( itkλ  at different moments kMkti ,...1+−= , 
the logic circuit, which selects the maximum value ),( itkλ  and a threshold circuit for 
detection of abrupt changes. Such a detection-estimation algorithm demonstrates 
a moderate computational burden and can be carried out in real-time systems. Its structure 
is presented in Fig. 3. 
 

 
Fig. 3. Detection-estimation algorithm for the system with additive Gauss-Markov jumps  
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The partial estimates ),(ˆ itkϑ  are obtained using MN ÷= 1  samples of the innovation 
process )1/( −kkz  and therefore they can be obtained using the finite memory filters of 
which weights are calculated recursively. 

3.2 Synthesis of the simplified detection-estimation algorithm 
The method presented in section 3.1 is effective in supplying reasonably accurate estimates 
of the state vector ),( itkϑ . Moreover it does not require a priori knowledge of the additional 
system state vector ),1( ii tt −ϑ  initial value. However high order systems results in 
a relatively high calculation burden. This is a consequence of the high order of the Kalman 
filter for the system (12)-(33) and the necessity for  filter parameter calculations at every time 
step. To remediate these difficulties some simplifications may be introduced. As will be 
shown in the following section, assuming an a priori knowledge of the vector initial value 

),1( ii tt −ϑ , the decision filter equations (12) - (33) may be simplified. In this case the filter 
parameters may be calculated prior to the estimation process (off line). Of course, a set of 
adequately spaced initial values ),1( iij tt −ϑ  should be assumed and the corresponding 
filters should be applied to the system structure (Fig. 3). Simulation investigations of the 
detection method have shown it to be reasonably robust to inaccuracy of the vector 

),1( iij tt −ϑ  value and the decision method chooses a filter initialised with ),1( iij tt −ϑ  that 
is closest to the real one. The accuracy of the simplified method is not amenable to 
the method described in the previous section but the calculation burden is smaller. 
A detection-estimation algorithm can be obtained in a way similar to that described in 
section 3.1 but with additional assumption that is known ),1( iij tt −ϑ . A representation of 
the residuals )1/( −kkz  for itk ≥  can be divided into two components (one associated with 
the  undisturbed system and the other following a given failure) and has the following form 
(in the case of system (4)): 

 1
0

( / 1, ) ( / 1) ( , ) ( , 1) ( 1, ) ( , ) ( 1) ,
ik t

i z i i i i i z i i
n

z k k t z k k k t t t t t k t n t nφ ϑ ξ
−

=

− = − + Ψ − − + Ψ + + −∑  (42) 

where )1/(1 −kkz  is the innovation process (zero mean white noise) related to the 
unchanged system and the remaining elements represent the influence of specific system 
change on the residuals of the filter matched to the undisturbed model. 
All elements ),( iz tkΨ  depend on the system matrices, onset time and filter gain and can be 
calculated in a recursive way. In the case of failure described by the equation (4) these 
elements can be calculated as follows: 

 ( , ) ( ) ( , ) ( ) ( , 1) ( 1, ) ,z i o z i z ik t H k k t H k k k F k tΨ = Φ − Φ − −  (43) 

 ( , ) ( , 1) ( 1, ) ,z i z ik t k k k tφΦ = − Φ −  (44) 

 ( , ) ( ) ( , ) ( , 1) ( 1, ) ,z i z i z iF k t K k k t k k F k t= Ψ + Φ − −  (45) 

with initial conditions: 0),1( =− iiz ttF , I),1( =−Φ iiz tt  where I  is the identity matrix. 
Considering equation (42) the detection problem can be formulated as a statistical test 
of two hypotheses ( 10 , HH ), the first of which )( 0H is intended to test the presence of 
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the white noise )1/(1 −kkz  and the second )( 1H , the presence ( 1H ) of the signal 
φυ0),( iz tkΨ  to )1/(1 −kkz ξ  noise background. 

 0 1

1 1 0

: ( / 1) ( / 1) ,
: ( / 1) ( / 1) ( , ) ,z i

H z k k z k k
H z k k z k k k tξ φϑ

− = −
− = − + Ψ

 (46) 

where ),1()1,(0 iiii tttt −−= ϑφϑ φ  and )1/(1 −kkz ξ  represents all noise components from 
equation (42). 
Since the distribution of the onset time it  is unknown a priori, the generalized likelihood 
ratio (GLR) test is used: 

 
1

0

max [ / ( )]
ˆ( , )

[ / ]
i

i

i

k
t ik

i k
t

f Z H t
k t

f Z H
λ = , (47) 

where ][∗f  is the conditional probability density function and 

)}1/(,...),1/({ −−= kkzttzZ ii
k
ti

. 

The decision procedure has the form (48) where the generalized likelihood logarithm 
)ˆ,( itkΛ  is compared with the threshold )ˆ,( ip tkΛ . A variable threshold level is applied. 

 ( )

1

0

ˆ ˆ ˆ ˆ( , ) ( , ) , arg max ( , ) , 1 ,
i

i p i i i it

H

H

k t k t t k t k M t kΛ Λ = Λ − + ≤ ≤
>
<

 (48) 

where )ˆ,( itkΛ  is the logarithm of )ˆ,( itkλ , M is the width of the moving window used 
to avoid an increasing number of additional filters matched to successive onset moments. 

3.3 Threshold determination 
The performance of the decision procedure is essential to the efficiency of detection and so 
to the quality of estimation. The general principles of the applied GLR method are well 
established (Willsky, 1976), (Sage & Melsa, 1971). Unfortunately, the use of the GLR 
approach requires knowledge of the resulting probability distributions. For instance in the 
detection - estimation structure based on the Kalman filter the usually resulting probability 
distributions are unknown and the threshold value cannot be obtain in an analytical way. 
The detailed solutions to the problem proposed in the literature are based on simplifications 
such as the use of simplified statistics (not GLR) or experimental determination. Moreover 
in numerical examples a constant threshold level is used. This approach is correct under 
steady state conditions of the object and estimator when the corresponding probability 
density functions are constant. It is not appropriate in a non-stationary state of the object or 
filter and leads to permanent additional detection delay under such conditions. The solution 
to the problem requires that changes in the probability distributions and application of 
a variable threshold level be taken into consideration. This approach allows the constant 
probability of false alarm (PFA) to be obtained, i.e. the probability of taking the decision that 
a fault has occurred while the system is in a normal state. A method for obtaining a non-
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constant threshold level variable for a simplified filter as described in the previous section 
will be presented next.  
The choice of a decision threshold )ˆ,( ip tkΛ  can be obtained using the Neyman - Pearson 
criterion, where a probability PFA of the false alarm level is assumed. 

 
00 ( , )/

( , )

( ( , ) / ) 1 ( ( , )) ,
i

i

FA i o o k t H p i
p k t

P f k t H d F k t
∞

Λ
Λ

= Λ = Λ Λ = − Λ∫  (49) 

where )),((0/),( ipHtk tkF i ΛΛ  is the conditional probability distribution function of ),( itkΛ . 
As seen in (49), the decision threshold can be determined with the use of 

0( , )/ ( ( , ))
ik t H p iF k tΛ Λ . 

It can be shown (Grishin, 1994) that the GLR logarithm can be computed in the following 
way: 

 
{

}
1

1

1
1

1
1

1( , ) [ ( / 1)] ( / 1)[ ( / 1)] [ ( / 1) ( / 1, )]
2

( / 1)[ ( / 1) ( / 1, )] ln[det ( ( / 1)] ln[det ( ( / 1)] ,
i

k
T T

i z H i
l k

z H i z z

k t z l l P l l z l l z l l z l l t

P l l z l l z l l t P l l P l l

−

=

−

Λ = − − − − − − − ×

× − − − − + − − −

∑
 (50) 

 

where 1( / 1)zP l l − , ( / 1, )z iP l l t− , and 
1
( / 1, )H iz l l t− are covariance matrixes and 

the expected value of the following conditional probability distributions for the Kalman 
filter innovation process )1/( −kkz : 

 
1

1
0 0 1

1
1 1

[ ( / 1) / , ] [ ( / 1) / ; 0, ( / 1)] ,

[ ( / 1) / , ] [ ( / 1) / ; ( / 1, ), ( / 1)] .
i

i

l
t z

l
t H i z

f z l l Z H N z l l H P l l

f z l l Z H N z l l H z l l k P l l

−

−

− = − −

− = − − −
 (51)  

 

Taking into consideration equation (42), the parameters of the distributions (51) can be 
calculated as follows: 

 1( / 1) ( ) ( / 1) ( ) ( ) ,T
zP l l H l P l l H l R l− = − +  (52) 

 1
0

( / 1, ) ( / 1) ( , ) ( 1) ( , ) ,
ik t

T
z i z z i i z i

n
P l l t P l l l t n Q t n l t nξ

−

=

− = − + Ψ + + − Ψ +∑  (53) 

 [ ]
1 1 0( / 1, ) ( / 1, ) / ( , ) ,H i i z iz l l t E z l l t H l t φϑ− = − = Ψ  (54) 

 

where ( / 1)P l l −  is the covariance matrix of the state vector prediction ˆ( / 1)x l l −  obtained 
in the basic Kalman filter. 
Unfortunately, as follows from (50) the GLR logarithm ( , )ik tΛ  is the difference between 
a random variable with 2χ  distribution (first term) and a random variable with a non-
central 2χ  distribution (second term) in summation with the deterministic term (third part), 
so an appropriate approximation of the distribution should be applied. The following 
approximation of the sum (50) can be assumed: 

 0
ˆ( , ) ( , ) ( , ) ( , ) ( , ) ,i i a i a i d ik t k t k t k t c k tαΛ ≈ Λ = ⋅Λ +  (55) 
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where ( , )a ik tα , 0( , )d ic k t  are coefficients, ( , )a ik tΛ  is a random variable with a known and 
easy to compute distribution that would allow for approximation of the ( , )ik tΛ  
distribution. 
The sum (50) can be written as: 

 

( ) ( )
2

0 0 0 0
1

1( , ) ( , ) ( ) ( / 1) ( ) , ,
2

i

k s

i S i j j j d i
l t j

k t k t a l z l l b l c k t
= =

⎧ ⎫⎪ ⎪⎡ ⎤Λ ≈ Λ = − + +⎨ ⎬⎣ ⎦⎪ ⎪⎩ ⎭
∑ ∑   (56) 

where: 
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1 ( / 1)j l lσ −  are j-th elements from the diagonals of matrices 1( / 1)zP l l − , 

( / 1)zP l l −  respectively, ( / 1)jz l l −  is j-th element of the vector ( / 1)z l l −  and 

0
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j

z l l
jz l l σ

−
− = ,   so 0 ( / 1)jz l l −  is normally distributed [0, 1]N . 

Defining a new variable 0( , )cd ik tΛ : 
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k s
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we can see that 0( , )cd ik tΛ  is the weighted sum (with weights )(02
1 la j ) of squares of 

( 1)is k k⋅ − +  normally distributed ( 0[0, ]jN b ) variables. This leads to the idea of using the 
non-central 2χ  distribution as an approximation distribution (the distribution of ( , )a ik tΛ ). 
In the case of the non-centrality parameter ( ncβ ), the number of degrees of freedom ( ncN ) 
and the coefficient ( , )a ik tα  ( ncα ) must be determined. Calculation of these parameters is 
performed by matching three statistical moments (the first non-central, second and third 
central) of the variable ( , ) ( , )a i a ik t k tα ⋅Λ  (see (55)) and the sum 0( , )cd ik tΛ  (see (57)). 
As a result two sets of solutions ( { , , }nc nc ncNα β′ ′ ′ , { , , }nc nc ncNα β′′ ′′ ′′ ) are obtained: 
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2 3p mS S S Sμ μ= − . 

The set with 0ncβ ≥  and 0ncN >  should be taken as the final solution. Moreover at the 
beginning the following condition should be checked: 2

2 3 0mS S Sμ μ− ≥  
If the condition is not fulfilled the above approximation cannot be calculated. In this case an 
approximation using the central 2χ distribution was also derived and tested. However this 
is less accurate in cases of low value of M (moving widow width) but has no numerical 
constraint and needs less computation. Two of the required parameters (the number of 
degrees of freedom and the coefficient ( , )a ik tα ) can be determined by matching two 
distribution parameters (mean value and variance) of the variable ( , ) ( , )a i a ik t k tα ⋅Λ  and the 
sum 0( , )cd ik tΛ . 
In practice, the number of degrees of freedom obtained in both approximations is not 
usually an integer number, so the distributions cannot be computed as typical central 2χ  or 
noncentral 2χ  distributions. Instead of the central 2χ  distribution function the Gamma 
distribution function (with parameters ( , ) /2c iN k t  and 2) can be used. The other 
distribution can be calculated in the following way (modification of the standard numerical 
procedure): 
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where Pof  - Poisson probability density function, FΓ  - Gamma cumulative distribution 
function. 
The performance of the proposed method was tested by means of numerical simulations. 
The results presented below were obtained for the first order process model and on the basis 
of additive changes to the observation equation (see (4)) with the following parameters: 

( , 1) 1k kΦ − = , ( ) 1H k = , 2( ) (0.2)Q k = , ( ) 1oH k = , 2( ) 10R k = , ( , 1) 1k kφ − = , 2( ) (0.8)Q kξ = , 
( 1, ) 1i it tυ − = , 0 0(0) : [ ; 12, 10]x x N x= . At the beginning the accuracy of the 

approximations was tested using Monte Carlo simulation (number of simulations 
100000sN = ). In Fig. 4 the distribution of ( , )ik tΛ  (determined by numerical experiment - 

“ex”) and analytically calculated approximations (“nc” - noncentral, “c” - central 
2χ distribution) are compared for the case of 1M =  (the smallest width of the moving 

window) and 5M =  (medium value of M). 
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Fig. 4. Distribution of ( , )ik tΛ  (“ex”) and its approximations (“nc”, “c”) for 1M = ,  5M =  
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As can be concluded from Fig. 4 the approximation “nc” is precise for all M. The accuracy of 
approximation “c” is not so exact, especially for low value of M and low threshold level 
(high PFA). These observations were confirmed by analytical measures. The Kullback 
measure of distances between the distribution of ( , )ik tΛ  and its approximations were 
calculated. The results are shown in table 1. 
 

 M=1 M=2 M=3 M=4 M=5 

“nc” 0.0018 0.0023 0.0023 0.0024 0.0022 

“c” 0.0161 0.0139 0.0110 0.0078 0.0058 

Table 1. Kullback measure of distances between the distribution of ( , )ik tΛ  and its 
approximations. 

The numerical data presented in table 1 confirm that the approximation “c” is far less 
accurate then “nc” for small M but is comparable for higher M values ( 5M ≥ ). 
Next, the threshold level was calculated. A constant probability PFA of false alarm was 
assumed. This caused a change in the threshold value. The results are shown in Fig. 5. 
It should be added that the character of the changes depends on system and failure 
parameters and can vary from that presented. 
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Fig. 5. Variation of threshold level in the case of constant PFA  

Finally a check of the validity of the threshold algorithms was performed by testing 
the outcome probability PFA of false alarm. The results of 610sN =  Monte Carlo simulations 
are shown in Fig. 6. There were two PFA values assumed: 0.01FAP =  and 0.001FAP = . The 
parameter is verified for 1,...,5M = . The mean value of PFA was calculated and is shown as 

FAP . 
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Fig. 6. PFA variation in time when thresholds were calculated for 0.001FAP = , 0.01FAP =  
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It can be seen from Fig. 6, that the proposed method demonstrates high accuracy. 
The maximum difference between the obtained and assumed PFA was less than 48 10P −Δ = ⋅ . 
The difference diminishes as the number of simulations increases. Mean values FAP  are very 
close to the assumed PFA. 
The simulation results demonstrate the effectiveness of the proposed probability 
distribution approximations. The method allows a constant rate of the probability of false 
alarm to be obtained in the non-stationary state of the object or filter. 

4. Tracking of maneuvering targets 
The demands of high precision tracking and guidance systems require accurate state 
estimation of the targets. A variety of maneuvering target tracking methods have been 
proposed in the literature. The main principles and techniques used to track target in real 
situations and a comparative evaluation of some of the algorithms can be found in 
(Blackman & Popoli, 1999). In recent years a great deal of new maneuvering target tracking 
algorithms have been proposed. Among them, there are algorithms such as those which use 
the input estimation (IE) technique, variable dimension (VD) filtering, multiple hypothesis 
tracking (MHT) and the interacting multiple model (IMM) approach (Blackman & Popoli, 
(1999), (Bar-Shalom & Fortmann, 1988), (Bar-Shalom et al., 2001), (Li & Bar-Shalom, 1993). 
Although the structure of many optimal algorithms of maneuvering target tracking is 
known, the computational complexity often limits theirs practical realization. Many 
different tracking algorithms have been developed for the purposes of computational 
feasibility. Some of them use combined techniques such as IMM/IE, IE/VD (Blackman & 
Popoli, 1999). For a mathematical description of a maneuver the following models are 
usually used: white noise models, a noisy jerk as a maneuver model, non-random maneuver 
models and combined target maneuver models. The additive Gauss-Markov Models 
(AGMM) presented earlier enable a realistic but simple description of quite complex 
changes in a real process to be obtained. The maneuver of a moving object manifests as 
a change in acceleration. Usually the change is modelled as a step or ramp function. In most 
applications this approximation is sufficient but for precise or close distance tracking 
the change model should be more representative. Reasonably accurate maneuver models 
incorporate acceleration changes in the form of inertial system step response in the presence 
of correlated noise. The acceleration dynamics (Blackman & Popoli, 1999) can be described 
as: 

 
)()],(1),(1[)(1)( twtttttata ji +−+−=

τ
β

τ
� ,

 
(59)

 
 

where )(ta  is acceleration, β  is acceleration level, τ  is correlation time, w(t) is zero mean 
white noise with covariance wQ and 1( , )it t  is unit step function with onset time it  and jt  
is a time of maneuver termination. 
An example of acceleration ( 219.6 m

s
β = for 2

41 m
w s

Q′ =  and 2

49 m
w s

Q′′ = ) used for simulation is 

presented in Fig. 7. 
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Fig. 7. Realization of an acceleration modelling maneuver 
Defining the components of the state vector in terms of position, velocity and acceleration, 
the target dynamics model on one axis can be written as: 

 
)],(1),(1)[()()()()()( ji tttttBtwtBtxtFtx −++=

τ
β� ,

  
(60)

  
where matrices ( ), ( )F t B t  are defined as: 
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A discrete form of the model (60) is given by: 
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where the transition and system input matrices take the values: 
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where T is the sampling time and )(kwd  is zero mean white noise with covariance matrix: 
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( ) ( ) ( )[ ]ττττσ TTTqq 222
3113 expexp21 −− −−== ,               ( )τTq 233 exp1 −−= . 

This complex model can be described by means of AGMM additive to the state (63). 
Maneuver is treated as a change in the order of  target dynamics  from the second (62) to 
the third (61) and is modelled by means of vector ),1( itk +ϑ  (64): 
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where corresponding matrices take the following form: 
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The performance characteristics of the proposed method were compared with the widely 
used IMM technique (Bar-Shalom at al., 2001), (Blackman & Popoli, 1999), (Li & Bar-Shalom, 
1993)  using Monte Carlo simulations. Maneuver was modelled as acceleration change 
described by the scenario shown in Fig. 7 ( 300it T = , 600jt T =  - ,i jt t - onset and 
termination time). For a simulation of the IMM algorithm three models of the movement 
have been used: the constant velocity model, Singer’s model with a correlation time 10sτ =  
and 2

4
2 1 m
m s

σ = , and model described by  Singer’s model with constant acceleration of 

219.6 m
s

β = . The elements of transition matrix are equal to 0.9iip =  on the diagonal and 
0.05ijp =  elsewhere. Initially all models are assumed  equiprobable. 

In the Fig. 8 the root mean square errors (RMSE) of distance and velocity estimates are 
shown. As follows from the schedules, the AGMM algorithm demonstrates a better 
estimation performance in comparison with the IMM method everywhere apart from 
transient parts of the manouver. Smaller estimation errors are achieved due to adaptation of 
the AGMM filter dimension with respect to the real process model. 

5. Failure detection in a multisensor integrated system 
5.1 Fault tolerant airborne navigational system structure  
As an example of the application of the methods developed to the problem of fault 
detection-identification, let us consider reliable data processing in integrated GPS-based 
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Fig. 8. RMS error of position (left) and velocity (right) 
airborne navigational equipment (Brown & Hwang, 1987), (Grishin, 2000). The possible 
structure of a real airborne navigational aid is presented in Fig. 9. It may consist of a number 
of radio-navigational and self-contained sensors such as the Microwave Landing System 
(MLS) or the Instrument Landing System (ILS), the VOR/DME system, the Global 
Positioning System (GPS), the Inertial Navigation System (INS) and the System of Air 
Signals (SAS) supplying barometrical and altitude information (Fadden & Schwab, 1989). 
Each sensor has independent diagnostic facilities (DF) which check the sensor serviceability 
and control a state matrix circuit (SM). The latter determines the availability of the sensor 
output data. When a sensor is out of order the integrated filter does not use the sensor’s data  
 

 
Fig. 9. The structure of the fault-tolerant airborne navigation equipment  ( DF - diagnostic 
facilities, SM - state matrix circuit, CR - coordinate recalculation, FDIA - fault detection-
identification algorithm, GC - gate circuit, FAS - failure alarm signal, Tr - transmitter,  
IFA - integrated filtering algorithm) 
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and the plane state vector estimate is computed with the aid of normally operating sensors 
only. The corresponding failure alarm signal (FAS) has to be transmitted to the system’s 
users. It should be noted that the diagnostic facilities are able to detect only solid failures in 
the airborne equipment and cannot determine faults in the ground-based or space-based 
facilities. 
In the absence of failures the integrated algorithm is usually based on non-linear 
modifications of the Kalman filter (Sage & Melsa, 1971). 
The main objective of this section is to present the algorithms for data processing in the 
multisensor GPS-based airborne navigational equipment which, on the one hand would be 
tolerant to possible failures of the information sources and on the other hand could enhance 
the integrity of the whole navigational system. The main complicating factors accompanying 
the solution to the problem are: rapid changes to the satellite geometry, the presence of 
receiver clock error, increased dynamics of the aircraft and availability of additional 
information from a number of the sensors mentioned above. In this case, fault-tolerant 
signal processing can be based on analytical and/or physical redundancy (Grishin, 2000). 
One of the main characteristics for a system of this kind is integrity (Brown, 1988) which can 
be thought of as the ability of the system to provide a timely warning to users as to when the 
system should not be used for navigation. The integrity performance characteristics such as 
integrity warning time and accuracy threshold requirements vary with the phase of flight 
(oceanic en route, domestic en route, terminal area and nonprecision approach). Higher 
reliability and integrity of airborne equipment may be achieved as a result of the detection 
of individual sensor failures and computation of the state estimates using data which have 
their origin in the normal operated sensors only. 
For modelling the failures of individual subsystems the additive Gauss-Markov models 
considered in section 3 were used: 
1. jump biases in observations (equation 4) with unknown onset time and value (antenna 

beam distortion, time jumps in the GPS due to a gradual degradation of the satellite 
clock, random bias in the INS due to drift of gyroscopes and so on);  

2. random drifts (ramp-type incipient failures) which can be caused by multiple path 
propagation effects in the ILS, frequency shifts in the GPS, soft failures in the INS and 
a number of other failures that can be described by the equation (3). 

Furthermore, it is necessary to take into consideration multiple malfunctions that can arise 
in the sensors which result in outliers at the input of the integrated estimation filter. These 
outliers can be caused by pulse interferences, by signal amplitude fluctuations or by clutter 
or intentional jamming. 
It is assumed here that outliers have a normal pdf (0, )kiN R� with a covariance matrix 

2 ( )ki kiR R kσ=� , where 2 1kiσ >> depending on the signal amplitude iA . This means that when 
the outliers occur the pdf of measurements changes and their variances take on M different 
values. 
Thus the observation equation can be written as follows: 

 ( ) ( ) ( ) ( ),iy k H k k kγ υ= +   (65) 

where H(k) is the observation matrix, the switching function )(kiγ  takes the value 1 when 
the outliers and multiplicative interferences are absent (normal measurement process) and 

2( )i kikγ σ= , under abnormal measurement conditions and v(k)  is the normal measurement 
noise with the covariance matrix R(k)  and zero mean vector. 
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In the general case, the switching function can be modeled by the finite state Markov chain 
of which initial probabilities and the transition matrix are known or unknown depending 
upon a priori information about the spectral characteristics of the outliers. 
In the situation when not all sensors have failed, using the integrated filter estimates makes 
it possible to detect failures of the individual sensors and to inform the user about them. 
Our aim is to develop an integrated filter algorithm which would be fault-tolerant in the 
presence of the failures and outliers mentioned above. Such an algorithm has been 
developed for the aircraft state vector which contains nine components such as the x, y, z - 
position, ΔVx, ΔVy, ΔVz - INS velocity errors, an altimeter bias and the GPS clock’s shift and 
velocity. But the above mentioned limitations concerning the state vector are not 
fundamental and all the results can be applied to an arbitrary case. 
The state and measurement equations in our case can be written in the following form: 

 1 1 ( , ) 1( , ),s i ix(k ) Φ(k )x(k) U(k) w(k) k t k tϑ+ = + + + +   (66) 

 [ ] ( , )1( , ),o i iy(k) h x(k) b(k) γ(k)v(k) k t k tϑ= + + +  (67) 

where ( )x k  is the aircraft state vector, U(k)  is the input control vector, ),( is tkϑ  is a failure 
bias of the state vector arising at random time ti, ),(1 itk  is the unit step function, w(k) is 
the system input noise vector, y(k) is the measurement vector, b(k) is the unknown constant 
bias vector, ),( io tkϑ  is the Markov drift which models incipient failures of such sensors as 
INS, SAS and errors due to the influence of multipath effects in the ILS, v(k) is zero mean 
observation noise with covariance matrix R(k) , and { }1,1)( >= σγ k  is a multiplier which 
describes the outliers in the observation channel. 
The incipent failure model is described by (66). The a priori distributions of a random value 

it  are assumed to be unknown. 
The time dependence of the sequence γ(k) can be described by a stationary Markov chain, for 
which the initial probability vector )0(σP  and transition matrix  ijPγ  are 
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(68)

 
Thus the system and failure model described by (66)-(67) differ from those proposed in 
(Patton et al., 1989).  Firstly, the failures here are treated as an additive Markov process in 
the dynamic or observation equations with an unknown onset time and can describe both 
deterministic and stochastic failure models. Secondly the outliers in the observation 
channels are present at the system input simultaneously with possible failures. Thus, such 
an approach makes it possible to describe both types of failures models - deterministic and 
stochastic. 

5.2 Algorithms for fault-tolerant data processing 
As it follows from (66)-(67), the development of a reliable integrated filter can be advanced 
by using non-linear filtering theory (Ristic et al., 2004). However, immediate application of 
this theory yields too complicated an algorithm to use in real-time systems because of the 
requirement for an infinite amount of memory. To overcome these difficulties it is necessary 
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to decompose the algorithm and to introduce the fault detection procedure as inherent part 
of the process. Therefore it is necessary to modify the problem in the direction of 
simplification. A simplification of this kind leads to a suboptimal algorithm which can be 
applied to a real time system with limited memory requirements.  
The first step in this direction is to separate the failure detection - estimation problem into an 
independent task. A solution can be found if one knows the sensor error statistical models 
and the integrated filter estimates. Using the approach presented in section 3 it is possible to 
estimate failure onset time it̂  and the value of the vector ),(ˆ itkϑ . So in observation equation 
(67) vector ),(ˆ itkϑ  can then be considered  to be a known value. 
The second step in solving the problem is synthesis of the integrated filtering algorithm so 
that it will be sufficiently robust with respect to the presence of malfunctions (outliers) in the 
observation channels. 
In order to cope with this problem for the system described by equations (66) and (67), it is 
necessary to use a general nonlinear filtering theory approach (Ristic et al., 2004). In this case 
the estimates of the dynamic system state vector can be found as a conditional mean of the 
following form (Janczak & Grishin, 2008): 

 1 1
2

ˆ ˆ( / ) [ ( ) / ] ( / ) ( / ),
k

ik i k
k

i
x k k E x k Y x k k P Y

∈
= = Γ∑  (69) 

where 1 { (1), (2), , ( )}kY y y y k= … is the sequence of the input data, { (1), (2), , ( )}k
i kγ γ γΓ = …  

denotes the realization of the switching function and 

 ],,/)([)/(ˆ 1
k
i

ki YkxEkkx Γ=  (70) 

are  partial estimates that are calculated for each realization of the switching function. Thus 
the optimal estimation algorithm requires infinitely increasing memory and cannot be 
realized in practice. Practical realization can only be achieved by using different 
approximations of the pdf of the estimates (69).  One of the possible approaches to solving 
this problem is using the Gaussian approximation method (Ristic et al., 2004). In such 
an approach the state vector estimates ˆ( / )x k k can be expressed as the weighted sum of the 
partial estimates ˆ ( / )ix k k  corresponding to the presence and absence of the outliers in the 
measurements: 
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The  posterior probability of the measurement channel state )/)(( 1
2 k
kii YkP σγ =  depends on 

the outlier stochastic characteristics. If the outliers are statistically independent, 
the probability can be found from: 
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where kip /  is the a posteriori probability of the measurement noise covariance matrix 
)(~ 2 kRR kiki σ= . 
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These probabilities can be calculated in real time using current data at the filter input based 
on the pdf ),)(/)(( 1

1
2 −= k
kii Ykkyf σγ of predicted estimates (Bar-Shalom et al., 2001). When 

the fluctuations and outliers are independent in time, the probability / 1i k kip q− = , where kiq  
are the a priori probabilities. 
It can be shown that for a system which contains N observation channels with outliers, this 
method yields the following expression for the state vector estimate (Grishin, 2000): 

 

}

1 2

1
1 2

1 2

1
1 2

, 1

12
, 1

1

ˆ ˆ ˆ( / ) ( / ) ( , / ) ( 1 / 1)

( / ) ( ) ( ) ( , / )

ˆ( ) ( ) ( 1 / 1) , 1, , 1, , ,

N

N
N

N

N
N

i i N
i i i

N T
i i j j jj N

j i i i

j j j j j

x k k x k k p i i k x k k

P k k H k i R k p i i k

y k H k x k k i j N

σσ σ

σσ σ

Φ

Φ σ

−

=

= ⋅ = − − +∑∑ ∑

⎧ ⎡ ⎤+ ⋅ ×∑ ∑∑ ∑⎨ ⎣ ⎦⎩

⎡ ⎤× − ⋅ − − = =⎣ ⎦

…

…

… …

… …

…

 

(73)

 

where  )/(x̂ ,...,, 21 kkNiii  is a partial estimate of the state vector for certain failure realisation 

in the observation channels (sensors of navigational information), 
1 2 1 2( , , , / ) ( (1) , (2) , , ( ) / (1), , ( ))N Np i i i k p i i N i y y kγ γ γ= = = =… … …  are the a posteriori 

probabilities of these realisations,  (k/k)P N,...,i,ii 21  is the update covariance matrix of the 

partial estimate,  ij=1, σ  are values of the multiplier γ(k) in the j-th channel for a normal and 
failure state of performance, and )(ky j  measurements  at the output of the  j-th navigational 

information source. 
It can be shown that a posteriori probabilities are calculated in real time as follows: 
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where 
1

1
, , 1( ) / ( ),

N

k
i if y k k Yγ ∗ −⎡ ⎤⎣ ⎦…  is a value of the likelihood function at the point )(y k , 
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iii Ykp Nγ  - a priori probability of a certain combination of channel observation 

serviceability, which can be calculated on the basis of a previous value of p and the Markov 
chain characteristics: 
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where )( j
ijnP  is the transition matrix elements of the Markov chain )()( kjγ  in the j-th 

observation channel. The algorithm described by (73) - (75) can be thought of as a soft 
multichannel outlier screening procedure which is correct for arbitrary values of 1>σ  (not 
necessarily for large ones). 
Let us consider then, the part of the system structure (Fig. 9) which is responsible for 
a decision of the failure detection-estimation problem in each information channel (sensor). 
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All of them contain a fault detection-identification algorithm (FDIA), which is used for 
estimating the failures and for generating the failure alarm signal (FAS) to inform the user. 
The failure detection-identification algorithm is designed on the basis of the GLR approach 
for an additive Gauss-Markov model of the system failures. It can be constructed on the 
assumption that no a priori information about failure onset time and the initial conditions 
of vector ),( itkϑ  exists. 
Since the failure vector ),( itkϑ  is part of ),( itkε  its estimate is also known. This estimate 
can be used to cancel the input data biases, for example. The block diagram for 
a cancellation of this kind is presented in Fig. 10.  
 

 
Fig. 10. The fault bias cancellation method 

After detecting abrupt changes to the sensor output, it is necessary to control the presence of 
biases in the output estimates of the IFA to distinguish sensor failures from aircraft 
manoeuvres. 
It should be noted that the proposed structure also makes it possible to isolate failures, that 
is, to determine if failures have occurred in the airborne navigation equipment or in the 
space-based facilities. This can be realised by comparing the data of the FDIA and content of 
the state matrix circuits. Following this, the failure alarm signal should be generated and 
transmitted to the users. 

6. Conclusion 
We have presented a new recursive algorithm for joint detection and estimation of jump 
changes in the dynamics and measurements of linear discrete-time systems in the presence 
of outliers in observations. The algorithm has been developed on the basis of the GLR 
method. The jumps were modelled as Gauss-Markov biases in state and observation 
equations. The structure of the algorithm is sufficiently simple to enable it to be applied in 
real-time systems with a relatively limited computational burden. The proposed models 
describe a wide class of dynamic systems with jump parameters. The detection-estimation 
algorithm developed, was successfully applied to the problem of radar maneuvering target 
tracking and fault-tolerant signal processing for enhancing the integrity and reliability of 
airborne navigation equipment. Simulation results revealed good estimation properties for 
the algorithm. 
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