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Preface

Discrete wavelet transform (DWT) algorithms have become standards tools for pro-
cessing of signals and images in several areas in research and industry. The fi rst DWT 
structures were based on the compactly supported conjugate quadrature fi lters (CQFs). 
However, a drawback in CQFs is related to the nonlinear phase eff ects such as image 
blurring and spatial dislocations in multi-scale analyses. On the contrary, in biorthogo-
nal discrete wavelet transform (BDWT) the scaling and wavelet fi lters are symmetric 
and linear phase. The BDWT algorithms are commonly constructed by a ladder-type 
network called lift ing scheme. The procedure consists of sequential down and uplift -
ing steps and the reconstruction of the signal is made by running the lift ing network 
in reverse order. Effi  cient lift ing BDWT structures have been developed for VLSI and 
microprocessor applications. The analysis and synthesis fi lters can be implemented 
by integer arithmetics using only register shift s and summations. Many BDWT-based 
data and image processing tools have outperformed the conventional discrete cosine 
transform (DCT) -based approaches. For example, in JPEG2000 Standard the DCT has 
been replaced by the lift ing BDWT.

As DWT provides both octave-scale frequency and spatial timing of the analyzed sig-
nal, it is constantly used to solve and treat more and more advanced problems. One of 
the main diffi  culties in multi-scale analysis is the dependency of the total energy of the 
wavelet coeffi  cients in diff erent scales on the fractional shift s of the analysed signal. If 
we have a discrete signal x[n] and the corresponding time shift ed signal x[n-τ], where 
τ ∈ [0,1], there may exist a signifi cant diff erence in the energy of the wavelet coeffi  cients 
as a function of the time shift . In shift  invariant methods the real and imaginary parts 
of the complex wavelet coeffi  cients are approximately a Hilbert transform pair. The 
energy of the wavelet coeffi  cients equals the envelope, which provides smoothness and 
approximate shift -invariance. Using two parallel DWT banks, which are constructed 
so that the impulse responses of the scaling fi lters have half-sample delayed versions 
of each other, the corresponding wavelets are a Hilbert transform pair. The dual-tree 
CQF wavelet fi lters do not have coeffi  cient symmetry and the nonlinearity interferes 
with the spatial timing in diff erent scales and prevents accurate statistical correlations. 
Therefore the current developments in theory and applications of wavelets are concen-
trated on the dual-tree BDWT structures.

This book reviews the recent progress in theory and applications of wavelet transform 
algorithms. The book is intended to cover a wide range of methods (e.g. lift ing DWT, 
shift  invariance, 2D image enhancement) for constructing DWTs and to illustrate the 
utilization of DWTs in several non-stationary problems and in biomedical as well as 
industrial applications. It is organized into four major parts. Part I focuses on non-
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stationary signals. Application examples include non-stationary fractal and chaotic 
time series, non-stationary vibration and sound signals in the vehicle engineering and 
motor fault detection. Part II addresses image processing and analysis applications such 
as image denoising and contrast enhancement, and face recognition. Part III is devoted 
to biomedical applications, including ECG signal compression, multi-scale analysis of 
EEG signals and classifi cation of medical images in computer aided diagnosis. Finally, 
Part IV describes how DWT can be utilized in wireless digital communication systems 
and synchronization of power converters. 

It should be pointed that the book comprises of both tutorial and advanced material. 
Therefore, it is intended to be a reference text for graduate students and researchers 
to obtain in-depth knowledge on specifi c applications. The editor is indebted to all 
co-authors for giving their valuable time and expertise in constructing this book. The 
technical editors are also acknowledged for their tedious support and help.

Juuso T. Olkkonen, Ph.D.
VTT Technical Research Centre of Finland

 Espoo, Finland
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Discrete Wavelet Analyses for Time Series

José S. Murguía and Haret C. Rosu
UASLP, IPICYT

México

1. Introduction

One frequent way of collecting experimental data by scientists and engineers is as sequences
of values at regularly spaced intervals in time. These sequences are called time-series. The
fundamental problem with the data in the form of time-series is how to process them in order
to extract meaningful and correct information, i.e., the possible signals embedded in them.
If a time-series is stationary one can think that it can have harmonic components that can
be detected by means of Fourier analysis, i.e., Fourier transforms (FT). However, in recent
times, it became evident that many time-series are not stationary in the sense that their mean
properties change in time. The waves of infinite support that form the harmonic components
are not adequate in the latter case in which one needs waves localized not only in frequency
but in time as well. They have been called wavelets and allow a time-scale decomposition of a
signal. Significant progress in understanding the wavelet processing of non-stationary signals
has been achieved over the last two decades. However, to get the dynamics that produces a
non-stationary signal it is crucial that in the corresponding time-series a correct separation
of the fluctuations from the average behavior, or trend, is performed. Therefore, people had
to invent novel statistical methods of detrending the data that should be combined with the
wavelet analysis. A bunch of such techniques have been developed lately for the important
class of non-stationary time series that display multi-scaling behavior of the multi-fractal
type. Our goal in this chapter is to present our experience with the wavelet processing,
based mainly on the discrete wavelet transform (DWT), of non-stationary fractal time-series
of elementary cellular automata and the non-stationary chaotic time-series produced by a
three-state non-linear electronic circuit.

2. The wavelet transform

Let L2(R) denote the space of all square integrable functions on R. In signal processing
parlance, it is the space of functions with finite energy. Let ψ(t) ∈ L2(R) be a fixed function.
The function ψ(t) is said to be a wavelet if and only if its FT ψ̂(ω) satisfies

Cψ =
∫ ∞

0

|ψ̂(ω)|2
|ω| dω < ∞. (1)

The relation (1) is called the admissibility condition (Daubechies, 1992; Mallat, 1999; Strang,
1996; Qian, 2002), which implies that the wavelet must have a zero average

∫ ∞

−∞
ψ(t)dt = ψ̂(0) = 0, (2)

0
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and therefore it must be oscillatory. In other words, ψ must be a sort of wave (Daubechies,
1992; Mallat, 1999).
Let us now define the dilated–translated wavelets ψa,b as the following functions

ψa,b(t) =
1√
a

ψ

(
t− b
a

)
, (3)

where b ∈ R is a translation parameter, whereas a ∈ R+ (a �= 0) is a dilation or scale
parameter. The factor a−1/2 is a normalization constant such that the energy, i.e., the value
provided through the square integrability of ψa,b, is the same for all scales a. One notices that
the scale parameter a in (3) rules the dilations of the independent variable (t− b). In the same
way, the factor a−1/2 rules the dilation in the values taken by ψ, see the y-axis in Fig. 1. With (3),
one is able to decompose a square integrable function x(t) in terms of these dilated–translated
wavelets.
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Fig. 1. The Haar wavelet function for several values of the scale parameter a and translation
parameter b. If a < 1, the wavelet function is contracted, and if a > 1, the wavelet is
expanded.

The continuous wavelet transform (CWT) of x(t) ∈ L2(R) is defined as

Wx(a, b) = �x, ψa,b� =
∫ ∞

−∞
x(t)ψ̄a,b(t)dt

=
1√
a

∫ ∞

−∞
x(t)ψ̄

(
t− b
a

)
dt, (4)

where � , � is the scalar product in L2(R) defined as � f , g� :=
∫

f (t)ḡ(t)dt, and the symbol “¯”
denotes complex conjugation. The CWT (4) measures the variation of x in a neighborhood of
the point b, whose size is proportional to a.
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If we are interested to reconstruct x from its wavelet transform (4), we make use of the the
reconstruction formula, also called resolution of the identity (Daubechies, 1992; Mallat, 1999)

x(t) =
1
Cψ

∫ ∞

0

∫ ∞

−∞
Wx(a, b)ψa,b(t)

dadb
a2 , (5)

where it is now clear why we imposed (1).
However, a huge amount of data are represented by a finite number of values, so it is
important to consider a discrete version of the CWT (4). Generally, the orthogonal(discrete)
wavelets are employed because this method associates the wavelets to orthonormal bases
of L2(R). In this case, the wavelet transform is performed only on a discrete grid of the
parameters of dilation and translation, i.e., a and b take only integral values. Within this
framework, an arbitrary signal x(t) of finite energy can be written using an orthonormal
wavelet basis:

x(t) = ∑
m

∑
n
dmn ψm

n (t), (6)

where the coefficients of the expansion are given by

dmn =
∫ ∞

−∞
x(t)ψm

n (t)dt . (7)

The orthonormal basis functions are all dilations and translations of a function referred as the
analyzing wavelet ψ(t), and they can be expressed in the form

ψm
n (t) = 2m/2ψ(2mt− n), (8)

with m and n denoting the dilation and translation indices, respectively. The contribution of
the signal at a particular wavelet level m is given by

dm(t) = ∑
n
dmn ψm

n (t), (9)

which provides information on the time behavior of the signal within different scale bands.
Additionally, it provides knowledge of their contribution to the total signal energy.
In this context, Mallat (1999) developed a computationally efficient method to calculate (6) and
(7). This method is known as multiresolution analysis (MRA). The MRA approach provides
a general method for constructing orthogonal wavelet basis and leads to the implementation
of the fast wavelet transform (FWT). This algorithm connects, in an elegant way, wavelets
and filter banks. A multiresolution signal decomposition of a signal X is based on successive
decomposition into a series of approximations and details, which become increasingly coarse.
Associated with the wavelet function ψ(t) is a corresponding scaling function, ϕ(t), and
scaling coefficients, amn (Mallat, 1999). The scaling and wavelet coefficients at scale m can be
computed from the scaling coefficients at the next finer scale m + 1 using

amn = ∑
l
h[l − 2n]am+1

l , (10)

dmn = ∑
l
g[l − 2n]am+1

l , (11)

where h[n] and g[n] are typically called lowpass and highpass filters in the associated filter
bank. Equations (10) and (11) represent the fast wavelet transform (FWT) for computing (7). In
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fact, the signals amn and dmn are the convolutions of am+1
n with the filters h[n] and g[n] followed

by a downsampling of factor 2 (Mallat, 1999).
Conversely, a reconstruction of the original scaling coefficients am+1

n can be made from

am+1
n = ∑

l
(h[2l − n]aml + g[2l − n]dml ) , (12)

a combination of the scaling and wavelet coefficients at a coarse scale. Equation (12) represents
the inverse of FWT for computing (6), and it corresponds to the synthesis filter bank. This part
can be viewed as the discrete convolutions between the upsampled signal aml and the filters
h[n] and g[n], that is, following an “upsampling” of factor 2 one calculates the convolutions
between the upsampled signal and the filters h[n] and g[n]. The number of levels in the
multiresolution algorithm depends on the length of the signal. A signal with 2k values can
be decomposed into k + 1 levels. To initialize the FWT, one considers a discrete time signal
X = {x[1], x[2], . . . , x[N]} of length N = 2M. The first application of (10) and (11), beginning
with am+1

n = x[n], defines the first level of the FWT of X. The process goes on, always adopting
the “m + 1” scaling coefficients to calculate the “m” scaling and wavelet coefficients. Iterating
(10) and (11) M times, the transformed signal consists of M sets of wavelet coefficients at
scales m = 1, . . . , M, and a signal set of scaling coefficients at scale M. There are exactly 2(k−m)

wavelet coefficients dmn at each scale m, and 2(k−M) scaling coefficients aMn . The maximum
number of iterations Mmax is k. This property of the MRA is generally the key factor to identify
crucial information in the respective frequency bands. A three-level decomposition process of
the FWT is shown in Fig. 2.

Fig. 2. The structure of a three-level fast wavelet transform.

In a broad sense, with this approach, the low-pass coefficients capture the trend and the
high-pass coefficients keep track of the fluctuations in the data. The scaling and wavelet
functions are naturally endowed with an appropriate window size, which manifests in the
scale index or level, and hence they can capture the local averages and differences, in a
window of one’s choice.
When someone is interested to measure the local or global regularity of a signal, some
degree of regularity is useful in the wavelet basis for the representation to be well behaved
(Daubechies, 1992; Mallat, 1999). To achieve this, a wavelet function should have n vanishing
moments. A wavelet is said to have n vanishing moments if and only if it satisfies∫ ∞
−∞ tkψ(t)dt = 0 for k = 0, 1, . . . , n − 1 and

∫ ∞
−∞ tkψ(t)dt �= 0 for k = n. This means that

6 Discrete Wavelet Transforms - Theory and Applications



fact, the signals amn and dmn are the convolutions of am+1
n with the filters h[n] and g[n] followed

by a downsampling of factor 2 (Mallat, 1999).
Conversely, a reconstruction of the original scaling coefficients am+1

n can be made from

am+1
n = ∑

l
(h[2l − n]aml + g[2l − n]dml ) , (12)

a combination of the scaling and wavelet coefficients at a coarse scale. Equation (12) represents
the inverse of FWT for computing (6), and it corresponds to the synthesis filter bank. This part
can be viewed as the discrete convolutions between the upsampled signal aml and the filters
h[n] and g[n], that is, following an “upsampling” of factor 2 one calculates the convolutions
between the upsampled signal and the filters h[n] and g[n]. The number of levels in the
multiresolution algorithm depends on the length of the signal. A signal with 2k values can
be decomposed into k + 1 levels. To initialize the FWT, one considers a discrete time signal
X = {x[1], x[2], . . . , x[N]} of length N = 2M. The first application of (10) and (11), beginning
with am+1

n = x[n], defines the first level of the FWT of X. The process goes on, always adopting
the “m + 1” scaling coefficients to calculate the “m” scaling and wavelet coefficients. Iterating
(10) and (11) M times, the transformed signal consists of M sets of wavelet coefficients at
scales m = 1, . . . , M, and a signal set of scaling coefficients at scale M. There are exactly 2(k−m)

wavelet coefficients dmn at each scale m, and 2(k−M) scaling coefficients aMn . The maximum
number of iterations Mmax is k. This property of the MRA is generally the key factor to identify
crucial information in the respective frequency bands. A three-level decomposition process of
the FWT is shown in Fig. 2.

Fig. 2. The structure of a three-level fast wavelet transform.

In a broad sense, with this approach, the low-pass coefficients capture the trend and the
high-pass coefficients keep track of the fluctuations in the data. The scaling and wavelet
functions are naturally endowed with an appropriate window size, which manifests in the
scale index or level, and hence they can capture the local averages and differences, in a
window of one’s choice.
When someone is interested to measure the local or global regularity of a signal, some
degree of regularity is useful in the wavelet basis for the representation to be well behaved
(Daubechies, 1992; Mallat, 1999). To achieve this, a wavelet function should have n vanishing
moments. A wavelet is said to have n vanishing moments if and only if it satisfies∫ ∞
−∞ tkψ(t)dt = 0 for k = 0, 1, . . . , n − 1 and

∫ ∞
−∞ tkψ(t)dt �= 0 for k = n. This means that

a wavelet with n vanishing moments is orthogonal to all polynomials up to order n− 1. Thus,
the DWT of x(t) performed with a wavelet ψ(t) with n vanishing moments is nothing else
but a “smoothed version” of the n−th derivative of x(t) on various scales. This important
property helps detrending the data.
In addition, another important property is that the total energy of the signal may be expressed
as follows

N

∑
n=1

|x[n]|2 =
N

∑
n=1

|aMn |2 +
M

∑
m=1

N

∑
n=1

|dmn |2. (13)

This can be identified as Parseval’s relation in terms of wavelets, where the signal
energy can be calculated in terms of the different resolution levels of the corresponding
wavelet-transformed signal. A more detailed treatment of this subject can be found in (Mallat,
1999).

3. Multifractal analysis of cellular automata time series

3.1 Cellular automata
An elementary cellular automaton(ECA) can be considered as a discrete dynamical that evolve
at discrete time steps. An ECA is a cellular automata consisting of a chain of N lattice sites with
each site is denoted by an index i. Associated with each site i is a dynamical variable xi which
can take only k discrete values. Most of the studies have been done with k = 2, where xi = 0 or
1. Therefore there are 2N different states for these automata. One can see that the time, space,
and states of this system take only discrete values. The ECA considered evolves according to
the local rule

xt+1
n = [xtn−1 + xtn+1]mod 2 , (14)

which corresponds to the rule 90. Table 1 is the lookup table of this ECA rule, where it
is specified the evolution from the neighborhood configuration (first row) to the next state
(second row), that is, the next state of i−th cell depends on the present states of its left and
right neighbors.

Neighborhood 111 110 101 100 011 010 001 000
Rule result 0 1 0 1 1 0 1 0

Table 1. Elementary rule 90. The second row shows the future state of the cell if it and its
neighbors are in the arrangement shown above in the first row.

In fact, a rule is numbered by the unsigned decimal equivalent of the binary expression in
the second row. When the same rule is applied to update cells of ECA, such ECA are called
uniform ECA; otherwise the ECA are called non-uniform or hybrids. It is important to observe
that the evolution rules of ECA are determined by two main factors, the rule and the initial
conditions.

3.2 WMF-DFA algorithm
To reveal the MF properties (Halsey et al., 1986) of ECA, we follow a variant of the MF-DFA
with the discrete wavelet method proposed in (Manimaran et al., 2005). This algorithm will
separate the trends from fluctuations, in the ECA time series, using the fact that the low-pass
version resembles the original data in an “averaged” manner in different resolutions. Instead
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of a polynomial fit, we consider the different versions of the low-pass coefficients to calculate
the “local” trend. This method involves the following steps.
Let x(tk) be a time series type of data, where tk = kΔt and k = 1, 2, . . . , N.

1. Determine the profile Y(k) = ∑k
i=1(x(ti)− �x�) of the time series, which is the cumulative

sum of the series from which the series mean value is subtracted.

2. Compute the fast wavelet transform (FWT), i.e., the multilevel wavelet decomposition of
the profile. For each level m, we get the fluctuations of the Y(k) by subtracting the “local”
trend of the Y data, i.e., ΔY(k;m) = Y(k) − Ỹ(k;m), where Ỹ(k;m) is the reconstructed
profile after removal of successive details coefficients at each level m. These fluctuations at
level m are subdivided into windows, i.e., into Ms = int(N/s) non-overlapping segments
of length s. This division is performed starting from both the beginning and the end of
the fluctuations series (i.e., one has 2Ms segments). Next, one calculates the local variances
associated to each window ν

F2(ν, s;m) = var [ΔY((ν − 1)s + j;m)] , j = 1, ..., s , ν = 1, ..., 2Ms , Ms = int(N/s) . (15)

3. Calculate a q−th order fluctuation function defined as

Fq(s;m) =

{
1

2Ms

2Ms

∑
ν=1

|F2(ν, s;m)|q/2

}1/q

(16)

where q ∈ Z with q �= 0. Because of the diverging exponent when q → 0 we employed

in this limit a logarithmic averaging F0(s;m) = exp

{
1
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as in

(Kantelhardt et al., 2002; Telesca et al., 2004).

To determine if the analyzed time series have a fractal scaling behavior, the fluctuation
function Fq(s; m) should reveal a power law scaling

Fq(s;m) ∼ sh(q), (17)

where h(q) is called the generalized Hurst exponent (Telesca et al., 2004) since it can depend
on q, while the original Hurst exponent is h(2). If h is constant for all q then the time
series is monofractal, otherwise it has a MF behavior. In the latter case, one can calculate
various other MF scaling exponents, such as τ(q) = qh(q) − 1 and f (α) (Halsey et al.,
1986). A linear behavior of τ(q) indicates monofractality whereas the non-linear behavior
indicates a multifractal signal. A fundamental result in the multifractal formalism states that
the singularity spectrum f (α) is the Legendre transform of τ(q), i.e.,

α = τ�(q), and f (α) = qα − τ(q).

The singularity spectrum f (α) is a non-negative convex function that is supported on the
closed interval [αmin, αmax]. In fact, the strength of the multifractality is roughly measured
with the width Δα = αmax − αmin of the parabolic singularity spectrum f (α) on the α axis,
where the boundary values of the support, αmin for q > 0 and αmax for q < 0, correspond to
the strongest and weakest singularity, respectively.
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3.3 Application of WMF-DFA
To illustrate the efficiency of the wavelet multifractal procedure, we first carry out the analysis
of the binomial multifractal model (Feder, 1998; Kantelhardt et al., 2002).
For the multifractal time series generated through the binomial multifractal model , a series
of N = 2nmax numbers xk, with k = 1, . . . , N, is defined by

xk = an(k−1)(1 − a)nmax−n(k−1). (18)

where 0.5 < a < 1 is a parameter and n(k) is the number of digits equal to 1 in the binary
representation of the index k. The scaling exponent h(q) and τ(q) can be calculated exactly in
this model. These exponents have the closed form

h(q) =
1
q
− ln[aq + (1 − a)q]

q ln 2
, τ(q) = − ln[aq + (1 − a)q]

ln 2
. (19)

In Table 2 and Fig. 3, we present the comparison of the multifractal quantity h for a = 2/3
between the values for the theoretical case (hT(q)), with the numerical results obtained
through wavelet analysis (hW(q)). Notice that the numerical values have a slight downward
translation. Adding a vertical offset (Δ = hT(1) − hW (1)) to hW(q), we can notice that both
values theoretically and numerically are very close.

q hT(q) hW (q) hW(q) + Δ

-10 1.4851 1.4601 1.4851
-9 1.4742 1.4498 1.4749
-8 1.4607 1.4373 1.4623
-7 1.4437 1.4217 1.4467
-6 1.4220 1.4018 1.4269
-5 1.3938 1.3761 1.4012
-4 1.3568 1.3422 1.3673
-3 1.3083 1.2971 1.3221
-2 1.2459 1.2376 1.2627
-1 1.1699 1.1626 1.1876
0 0.0000 1.0742 1.0992
1 1.0000 0.9809 1.0059
2 0.9240 0.8961 0.9212
3 0.8617 0.8286 0.8537
4 0.8131 0.7780 0.8031
5 0.7761 0.7401 0.7652
6 0.7479 0.7112 0.7362
7 0.7262 0.6887 0.7137
8 0.7093 0.6711 0.6961
9 0.6958 0.6570 0.6821

10 0.6848 0.6457 0.6707

Table 2. The values of the generalized Hurst exponent h for the binomial multifractal model
with a = 2/3, which were computed analytically and with the wavelet approach.

In a similar way, we analyze the time series of the so-called row sum ECA signals, i.e., the sum
of ones in sequences of rows, employing the db-4 wavelet function, another wavelet function
that belongs to the Daubechies family (Daubechies, 1992; Mallat, 1999). We have found that
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Fig. 3. The generalized Hurst exponent h for the binomial multifractal model with a = 2/3.
The theoretical values of h(q) with the WMF-DFA calculations are shown for comparison.

a better matching of the results given by the WMF-DFA method with those of other methods
is provided with this wavelet function. Figure 4 illustrates the results for the rule 90, when
the first row is all 0s with a 1 in the center, i.e., the impulsive initial condition. The fact that
the generalized Hurst exponent is not a constant horizontal line is indicative of a multifractal
behavior in this ECA time series. In addition, if the τ index is not of a single slope, it can be
considered as another clear feature of multifractality.
For the impulsive initial condition in ECA rule 90 the most “frequent” singularity for the
analyzed time series occurs at α = 0.568, and Δα = 1.0132(0.9998) when the WMF-DFA
(MF-DFA) are employed. Reference (Murguía et al., 2009) presents the results for different
initial center pulses for rules 90, 105, and 150, where the width Δα of rule 90 is shifted to the
right with respect to those of 105 and 150. In addition, the strongest singularity, αmin, of all
these time series corresponds to the rule 90 and the weakest singularity, αmax, to the rule 150.
With the aim of computing the pseudo-random sequences of N bits, in Reference (Mejía
& Urías, 2001) an algorithm based on the backward evolution of the CA rule 90 has
been proposed. A modification of the generator producing pseudo-random sequences has
been recently considered in (Murguía et al., 2010). The latter proposal is implemented and
studied in terms of the sequence matrix HN , which was used to generate recursively the
pseudo-random sequences.
This matrix has dimensions (2N + 1) × (2N + 1). Since the evolution of the sequence matrix
HN is based on the evolution of the ECA rule 90, the structure of the patterns of bits of the
latter must be directly reflected in the structure of the entries of HN .
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are performed both with the MF-DFA and the wavelet-based WMF-DFA.
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Here, in the same spirit as in Ref. (Murguía et al., 2009), we also analyze the sum of ones in
the sequences of the rows of the matrix HN with the db-4 wavelet function. The results for the
row sums of H2047 are illustrated in Fig. 5, through which we confirm the multifractality of
this time series. The width ΔαH2047 = 1.12− 0.145 = 0.975, and the most “frequent” singularity
occurs at αmfH2047

= 0.638. Although the profile is different, the results are similar with those
obtained for the rule 90 with a slight shifting, see Fig. 4. A more complete analysis of this
matrix is carried out in (Murguía et al., 2010).

4. Chaotic time series

In this section, we study the dynamics of experimental time series generated by an electronic
chaotic circuit. The wavelet analysis of these experimental chaotic time series gives us useful
information of such system through the energy concentration at specific wavelet levels.
It is known that the wavelet variance provides a very efficient measure of the structure
contained within a time series because of the ability of wavelet transforms to allot small
wavelet coefficients to the smoother parts of a signal in contrast with the sharp, non-stationary
behavior which gives rise to local maxima (see, for example, Chapter 8 in the book of Percival
and Walden (Percival & Walden, 2000)).

4.1 Chaotic electronic circuit
The electronic circuit of Fig. 6 (a) has been employed to study chaos synchronization (Rulkov,
1996; Rulkov & Sushchik, 1997). This circuit, despite its simplicity, exhibits complex chaotic
dynamics and it has received wide coverage in different areas of mathematics, physics,
engineering and others (Campos-Cantón et al., 2008; Rulkov, 1996; Rulkov & Sushchik, 1997).
It consists of a linear feedback and a nonlinear converter, which is the block labeled N. The
linear feedback is composed of a low-pass filter RC� and a resonator circuit rLC.
The dynamics of this chaotic circuit is very well modeled by the following set of differential
equations:

ẋ = y,

ẏ = z− x− δy,

ż = γ [k f (x)− z] − σy,

(20)

where x(t) and z(t) are the voltages across the capacitors, C and C�, respectively, and y(t) =
J(t)(L/C)1/2 is the current through the inductor L. The unit of time is given by τ = 1/

√
LC.

The parameters γ, δ, and σ have the following dependence on the physical values of the
circuit elements: γ =

√
LC/RC�, δ = r

√
C/L and σ = C/C�. The main characteristic of the

nonlinear converter N in Fig. 6 is to transform the input voltage x(t) into an output voltage
with nonlinear dependence F(x) = k f (x) on the input. The parameter k corresponds to the
gain of the converter at x = 0. The detailed circuit structure of N is shown in Fig. 6 (b).
It is worth mentioning that depending on the component values of the linear feedback and the
parameter k, the behavior of the chaotic circuit can be in regimes of either periodic or chaotic
oscillations. Due to the characteristics of the inductor in the linear feedback, it turns out to
be hard to scale to arbitrary frequencies and analyze it because of its frequency-dependent
resistive losses. Therefore, the parameter k has been considered to analyze this chaotic circuit,
since it appeared to be a very useful bifurcation parameter in both the numerical and
experimental cases (Campos-Cantón et al., 2008). Two different attractors, projected on the
plane (x, y), generated by this electronic circuit, are shown in Fig. 7. These attractors have
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exponent h(q), (d) the τ(q) exponent, and (e) the singularity spectrum f (α).
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Fig. 6. (a) The circuit diagram of a nonlinear chaotic oscillator. The component values
employed are C� = 100.2 nF, C = 200.1 nF, L = 63.8 mH, r = 138.9 Ω, and R = 1018 Ω. (b)
Schematic diagram of the nonlinear converter N. The electronic component values are
R1 = 2.7 kΩ, R2 = R4 = 7.5 kΩ, R3 = 50 Ω, R5 = 177 kΩ, R6 = 20 kΩ. The diodes D1 and
D2 are 1N4148, the operational amplifiers A1 and A2 are both TL082, and the operational
amplifier A3 is LF356N.

a shape similar to a Rössler oscillator (Fig. 7(a)), and to a double scroll oscillator (Fig. 7(b)).
They can be easily obtained by just fixing the bifurcation parameter k to be equal to 0.4010,
and 0.3964, respectively.

4.2 Wavelet variance
In the wavelet approach the fractal character of a certain signal can be inferred from the
behavior of its power spectrum P(ω), which is the Fourier transform of the autocorrelation
function and in differential form P(ω)dω represents the contribution to the variance of the
part of the signal contained between frequencies ω and ω + dω. Indeed, it is known that for
self-similar random processes the spectral behavior of the power spectrum is given by

P(ω) ∼| ω |−β, (21)

where β is the spectral parameter of the signal. In addition, the variance of the wavelet
coefficients var {dmn } is related to the level m through a power law of the type (Wornell &
Oppenheim, 1992)
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Fig. 7. Attractors of the electronic chaotic circuit projected on the plane x− y obtained
experimentally for two different values of the bifurcation parameter k: (a) 0.4010, and (b)
0.3964.

var {dmn } ≈ (2m)−β. (22)

This wavelet variance has been used to find dominant levels associated with the signal, for
example, in the study of numerical and experimental chaotic time series (Campos-Cantón et
al., 2008; Murguía & Campos-Cantón, 2006; Staszewski & Worden, 1999). In order to estimate
β we used a least squares fit of the linear model

log2(var{dmn }) = βm + (K + vm), (23)

where K and vm are constants related to the linear fitting procedure. Equation (22) is
certainly suitable for studying discrete chaotic time series, because their variance plot has a
well-defined form as pointed out in (Murguía & Campos-Cantón, 2006; Staszewski & Worden,
1999). If the variance plot shows a maximum at a particular scale, or a bump over a group
of scales, which means a high energy concentration, it will often correspond to a coherent
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structure. In general, the gradient of a noisy time series turns out to be zero in the variance
plot, therefore it does not show any energy concentration at specific wavelet level. In certain
cases the gradient of some chaotic time series has a similar appearance with Gaussian noise
at lower scales, which implies that these chaotic time series do not present a fundamental
“carrier” frequency at any scale.
For our illustrative analysis and comparison with the experiments, we study the time series
of the x states of the attractors displayed in Fig. 7(a)-(b), because they are of very different
type and we want to emphasize the versatility of the wavelet approach. The acquisition of
the experimental data was carried out with a DAQ with a sampling frequency of 180 kHz, i.e.
we collected the experimental data for a total time of 182 ms for both signals. In the analysis
of these time series we employed the db-8 wavelet, a wavelet function that belongs to the
Daubechies family (Daubechies, 1992; Mallat, 1999).

• Case k = 0.4010.
The first time series to consider corresponds to the x state of the experimental attractor
of Fig. 7 (a). The first 12 ms of this time series are shown in Fig. 8 (a), whereas Fig. 8 (b)
shows a semi-logarithmic plot of the wavelet coefficient variance as a function of level m,
which is denominated as variance plot of the wavelet coefficients. One can notice that the
whole series is dominated by the 12th wavelet level, i.e., this wavelet level has the major
energy concentration, and it is plotted in isolation in Fig. 8 (c). The energy rate between the
reconstructed signal with respect to the original signal was (Ex12 /Ex) = 0.9565, which
means an energy close to 96% of the total one in this case. Since it does not properly
show the structure of the chaotic time series, we considered and added together the three
neighbor wavelet levels, m = 11 − 13, achieving an energy concentration of 99% of the
total one. In this case, the reconstruction of the signal at these wavelet levels is shown in
Fig. 8(d), where the structure of the original signal can be noticed. Both reconstructed time
series present a slight downward translation, because of the DC component of this chaotic
time series.

• Case k = 0.3964.
For this value of k, the behaviour of the chaotic electronic circuit is similar to that of a
double scroll oscillator with the shape of the attractor displayed in Fig. 7. The experimental
time series corresponding to the x state of this attractor is shown in Fig. 9 (a), while the
variance plot is given in Fig. 9 (b) where the gradient is close to zero, which means that
no significant energy concentration can be seen. We have found that when summing over
the wavelet levels m = 6 − 12 the energy concentration is close to 99% of the total one but
without any pronounced peak. Thus, this case does not present a fundamental “carrier”
frequency and therefore this attractor has a Gaussian noisy behavior. The reconstructed
time series with the mentioned wavelet levels is displayed in Fig. 9 (c).

5. Conclusion

The DWT is currently a standard tool to study time-series produced by all sorts of
non-stationary dynamical systems. In this chapter, we first reviewed the main properties of
DWT and the basic concepts related to the corresponding mathematical formalism. Next, we
presented the way the DWT characterizes the type of dynamics embedded in the time-series.
In general, the DWT reveals with high accuracy the dynamical features obeying power-like
scaling properties of the processed signals and has been already successfully incorporated in
the multifractal formalism. The interesting case of the time-series of the elementary cellular
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structure. In general, the gradient of a noisy time series turns out to be zero in the variance
plot, therefore it does not show any energy concentration at specific wavelet level. In certain
cases the gradient of some chaotic time series has a similar appearance with Gaussian noise
at lower scales, which implies that these chaotic time series do not present a fundamental
“carrier” frequency at any scale.
For our illustrative analysis and comparison with the experiments, we study the time series
of the x states of the attractors displayed in Fig. 7(a)-(b), because they are of very different
type and we want to emphasize the versatility of the wavelet approach. The acquisition of
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of these time series we employed the db-8 wavelet, a wavelet function that belongs to the
Daubechies family (Daubechies, 1992; Mallat, 1999).

• Case k = 0.4010.
The first time series to consider corresponds to the x state of the experimental attractor
of Fig. 7 (a). The first 12 ms of this time series are shown in Fig. 8 (a), whereas Fig. 8 (b)
shows a semi-logarithmic plot of the wavelet coefficient variance as a function of level m,
which is denominated as variance plot of the wavelet coefficients. One can notice that the
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reconstructed signal with respect to the original signal was (Ex12 /Ex) = 0.9565, which
means an energy close to 96% of the total one in this case. Since it does not properly
show the structure of the chaotic time series, we considered and added together the three
neighbor wavelet levels, m = 11 − 13, achieving an energy concentration of 99% of the
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• Case k = 0.3964.
For this value of k, the behaviour of the chaotic electronic circuit is similar to that of a
double scroll oscillator with the shape of the attractor displayed in Fig. 7. The experimental
time series corresponding to the x state of this attractor is shown in Fig. 9 (a), while the
variance plot is given in Fig. 9 (b) where the gradient is close to zero, which means that
no significant energy concentration can be seen. We have found that when summing over
the wavelet levels m = 6 − 12 the energy concentration is close to 99% of the total one but
without any pronounced peak. Thus, this case does not present a fundamental “carrier”
frequency and therefore this attractor has a Gaussian noisy behavior. The reconstructed
time series with the mentioned wavelet levels is displayed in Fig. 9 (c).

5. Conclusion

The DWT is currently a standard tool to study time-series produced by all sorts of
non-stationary dynamical systems. In this chapter, we first reviewed the main properties of
DWT and the basic concepts related to the corresponding mathematical formalism. Next, we
presented the way the DWT characterizes the type of dynamics embedded in the time-series.
In general, the DWT reveals with high accuracy the dynamical features obeying power-like
scaling properties of the processed signals and has been already successfully incorporated in
the multifractal formalism. The interesting case of the time-series of the elementary cellular
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automata has been presented in the case of rule 90 and the concentration of energy by means of
the concept of wavelet variance for the chaotic time-series of a three-state non-linear electronic
circuit was also briefly discussed.
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1. Introduction  
In engineering, digital signal processing techniques need to be carefully selected according 
to the characteristics of the signals of interest. The frequency-based and time-frequency 
techniques have been frequently mentioned in some literature (Cohen, 1995). The frequency-
based techniques (FBTs) have been widely used for stationary signal analysis. For 
nonstationary signals, the time-frequency techniques (TFTs) in common use, such as short-
time Fourier transform (STFT), wavelet transform (WT), ambiguity function (AF) and 
wigner-ville distribution (WVD), etc., are usually performed for extracting transient features 
of the signals. These techniques use different algorithms to produce a time-frequency 
representation for a signal.  
The STFT uses a standard Fourier transform over several types of windows. Wavelet-
based techniques apply a mother wavelet with either discrete or continuous scales to a 
waveform to resolve the fixed time-frequency resolution issues inherent in STFT. In 
applications, the fast version of wavelet transform, that is attributed to a pair of mirror 
filters with variable sampling rates, is usually used for reducing the number of 
calculations to be done, thereby saving computer running time. AF and WVD are 
quadratic time-frequency representations, that use advanced techniques to combat these 
resolution difficulties. They have better resolution than STFT but suffer from cross-term 
interference and produce results with coarser granularity than wavelet techniques do. Of 
the wavelet-based techniques, discrete wavelet transform (DWT), especially its fast 
version, is usually used for encoding and decoding signals, while wavelet packet analysis 
(WPA) are successful in signal recognition and characteristic extraction. AF and WVD 
with excessive transformation durations are obviously unacceptable in the development 
of real-time monitoring systems.  
In applications, the FBTs were typically used in noise and vibration engineering (Brigham, 
1988). They provide the time-averaged energy information from a signal segment in 
frequency domain, but remain nothing in time domain. For nonstationary signals such as 
vehicle noises, some implementation examples are the STFT (Hodges & Power, 1985), WVD, 
smoothed pseudo-WVD (Baydar & Ball, 2001) and WT (Chen, 1998). In particular, the WT as 
“mathematical microscope” in engineering allows the changing spectral composition of a 
nonstationary signal to be measured and presented in the form of a time-frequency map and 
thus, was suggested as an effective tool for nonstationary signal analysis.  
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This chapter includes three sections. We firstly briefly introduce the theory background of the 
Wavelet-based techniques, such as the CWT, DWT, WPA, as well as the Mallat filtering 
scheme and algorithm for the DWT-based calculation. Secondly, we discuss the advantages 
and drawbacks of the DWT-based methods in nonstationary signal processing by comparing 
the DWT with other TFTs. Some successful examples of the DWT used for nonstationary 
vibration and sound signals in the vehicle engineering will be given in the third section.  

2. Theory background 
2.1 Continuous wavelet transform  
For a function or signal x(t)∈L2(R), if a prototype or mother wavelet is given as ψ(t), then the 
wavelet transform can be expressed as:  

 x ab
1 t bCWT (a,b) x(t)ψ( )dt x(t),ψ (t)

aa
−

= =∫  (1) 

Here a and b change continuously, so comes the name continuous wavelet transform (CWT). 
A family of wavelets ψab(t), each of which can be seen as a filter, is defined in (1) by dilating 
and translating of ψ(t). Obviously, b changes along the time axle, its role is simple and clear. 
Varible a acts as a scale function, its change alters not only the spectrum of the wavelet 
function, but also the size of its time-frequency window. The local information in time and 
frequency domain, which reflects different characteristics of the signal, is extracted by CWT. 
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Fig. 1. “mexico hat” wavelets with different a and their spectra 

If 
2Ψ( )

c dψ
ω

= ω < ∞
ω∫ is satisfied, where Ψ(ω) is the Fourier transform of ψ(t), then ψ(t) is an 

admissible wavelet. In this condition, original signal x(t) can be recovered from its CWT by:  

 x ab 2
1 dadbx(t) CWT (a,b)ψ (t)

c aψ
= ∫ ∫   (2) 

In the case where ψ is also L1(R), the admissibility condition implies that Ψ(0)=0; ψ has mean 
value 0, is oscillating, and decays to zero at infinity; these properties explain the 
qualification as “wavelet” of this function ψ(t). From the view of signal processing, ψ(t) acts 
as a band pass filter. 
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2.2 Discrete wavelet transform  
The time-frequency windows of ψab(t) are overlapped each other, which means there is 
information redundancy in CWT. This is a disadvantage of CWT when it is used for signal 
compression or feature extraction. Thus the wavelet transform can be computed discretely on 
the time-frequency plane, to reduce the redundancy. The crucial point is how to sample a and 
b to guarantee the precise reconstruction of original signal x(t) from its wavelet transform. 
There are several forms of wavelet transform according to the different level of discretization. 
Simply let j

0a a= , where 0a 0> and j Z∈ , we can discretize a. Generally we have 0a 2= , thus 

the scale is sampled along a dyadic sequence, so the function jb jj

1 t bψ (t) ψ( )
22

−
= is a dyadic 

wavelet, and the corresponding transform x jbjj

1 t bWT (j,b) x(t)ψ( )dt x(t),ψ (t)
22

−
= =∫  is 

called dyadic wavelet transform. 
To recover x(t) from its dyadic wavelet transform, the dual wavelet ˆ (t)ψ of ψ(t) must be 
introduced. Dual wavelet has the same scale and time shift as original wavelet, that is 

jb jj

1 t bˆ ˆψ (t) ψ( )
22

−
= . The relationship between ˆ (t)ψ and ψ(t) is: 

2j

j

Ψ( )Ψ̂( )
Ψ(2 )

∞

=−∞

ω
ω =

ω∑
, 

where Ψ̂( )ω  is the Fourier transform of ˆ (t)ψ . We can prove x(t) is reconstructed by:  

 3 j/2
x j

j

t bˆx(t) 2 WT (j,b) ( )db
2

∞
−

=−∞

−
= ψ∑ ∫   (3) 

To ensure the recovery, there should be
2j

j
A Ψ(2 ) B

∞

=−∞
≤ ω ≤∑ , where A and B are constants, 

this is the stability condition. Obviously, dual wavelet of a stable function is also stable. 
To step further, we sample time domain by taking b=kb0, where b0 should be chosen to ensure 
the recovery of x(t). When a is changed from j 1

0a − to j
0a , the central frequency and the band 

width of the wavelet are all decreased by a0 times, so the sample interval can increase to a0 

times. In this case, the discretized wavelet function is
j

00
jk jj

00

t ka b1ψ (t) ψ( )
aa

−
= , and its 

wavelet transform is: 
j

00
x jkjj

00

t ka b1WT (j,k) x(t)ψ( )dt x(t),ψ (t)
aa

−
= =∫ . This decomposition 

is called discrete wavelet transform (DWT). From this formula, while time t is still continuous, 
we only compute the wavelet transform on a grid in the time-frequency plane, as depicted in 
Fig. 2.  
Given dj(k)=WTx(j,k), we hope to recover x(t) from formula like 

 j jk
j 0 k

ˆx(t) d (k) (t)
∞ ∞

= =−∞
= ψ∑ ∑   (4) 
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This formula is called wavelet series, in which dj(k) is wavelet coefficients and jkˆ (t)ψ  is dual 
wavelet. To recover x(t) using (4), many questions should be answered, such as: are ψjk(t) 
complete to describe arbitrary signal x(t)∈L2(R); is there information redundancy in the 
decomposition; how to determine the sample interval of a and b. Daubechies studied them 
thoroughly, and her wavelet frame theory answered these questions [1].  
 

 

Fig. 2. The computing grid of DWT 

We call a function family {ψn} a frame if there exist two constants A>0 and B>0 such that for 

an arbitrary x(t)∈L2(R), 22 2
n

n
A x x, B x≤ ψ ≤∑ is satisfied. When A=B the frame is said to 

be tight. A frame defines a complete and stable signal representation, which may also be 
redundant. When the frame vectors are normalized 2

n 1ψ = , the redundancy is measured 
by the frame bounds A and B. The frame is an orthogonal basis if and only if A=B=1. If A>1 
then the frame is redundant and A can be interpreted as a minimum redundancy factor. 
If a frame operator S is defined as n n

n
Sx x,= ψ ψ∑ , then 1 1

n n n n
n n

x x,S x, S− −= ψ ψ = ψ ψ∑ ∑ , 

so we can define 1
n nˆ S−ψ = ψ  as the dual frame of ψn, with bounds A-1 and B-1. If A=B, we have 

n n
1ˆ
A

ψ = ψ . So the recovery process in (4) is well founded.  In many cases where precise 

reconstruction is not a pursuit, we can take jk jk
2ˆ (t) (t)

A B
ψ ≈ ψ

+
, 

jk jk
j,k

2x(t) x(t), (t) (t) e(t)
A B

= ψ ψ +
+ ∑ , here e(t) is the error and B Ae(t) f

B A
−

≤
+

. 

The only remain problem is how to construct a wavelet frame. Obviously, the smaller b0 and 
a0 are, the greater the information redundancy is, and the reconstruction is easier. On the 
contrary, ψn will be incomplete when b0 and a0 are big enough, which make precise recovery 

of x(t) impossible. For this problem, there are two theorems: (1) If 
j

j2
jk 00 0ψ (t) a ψ(a t kb )

− −= −  

is a frame of L2(R) then the frame bounds satisfy

2

0

0 0

Ψ( )
2 d

A B
b ln a

∞ ω
π ω

ω≤ ≤
∫

; (2) Define 

0

j j
0 0

j0 a

( ) Ψ(a ) Ψ(a )sup
∞

=−∞≤ ω≤

β ξ = ω ω+ ξ∑  and
1
2

0 0k
k 0

2 k 2 k[ ( ) ( )]
b b

∞

=−∞
≠

π − π
Δ = β β∑ , if b0 and a0 are such that 
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0

2j
0 0

0 a0 j

1A ( Ψ(a ) ) 0
b inf

∞

≤ ω≤ =−∞

= ω − Δ >∑ and
0

2j
0 0

0 a0 j

1B ( Ψ(a ) )
b inf

∞

≤ ω≤ =−∞

= ω + Δ < ∞∑ , then {ψjk(t)} is 

a frame of L2(R). These two theorems are the sufficient and necessary conditions to construct 
wavelet frame.  
In some cases, wavelet frame {ψjk(t)} is orthogonal or independent, the more correlated the 
functions are , the smaller the subspace spanned by the frame is. This is useful in noise 
reduction. When b0 and a0 is close to 0 and 1, the functions of the frame are strongly related 
and behave like continuous wavelet. In other cases, redundancy or dependency is avoided 
as possible, so ψ, b0 and a0 are chosen to compose an orthogonal basis. 

2.3 Multiresolution analysis and mallat algorithm 
Multiresolution analyze (MRA) provides an elegant way to construct wavelet with different 
properties. A sequence {Vj}j∈Z of closed subspaces of L2(R) is a MRA if the following 6 
properties are satisfied:  
1. j

j j( j,k) Z,f(t) V f(t 2 k) V∀ ∈ ∈ ⇔ − ∈ , 

2. j 1 jj Z,V V+∀ ∈ ⊂ , 

3. j j 1
tj Z, f(t) V f( ) V
2 +∀ ∈ ∈ ⇔ ∈ , 

4. j j
j j

V V {0}lim
∞

→∞ =−∞

= =∩ , 

5. 2
j j

j j
V Closure( V ) L (R)lim

∞

→−∞ =−∞

= =∪ , 

6. There exists θ such that {θ(t-n)}n∈z is a Riesz basis of V0.  
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Fig. 3. Partition of function space by multiresolution analyze 

The main idea of MRA is described in Fig. 3, the space L2(R) is orderly partitioned. The 
relationship between adjacent spaces Vj and Vj+1 is reflected from condition 2) and 3), so the 
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basis of Vj and Vj+1 differs only on the scale by 2. We only discuss how to construct an 
orthogonal wavelet basis here, so a space series Wj which satisfy j j j 1V W V −⊕ ⊂ are 

introduced. By this idea, the function space can be decomposed like 

0 1 2 j jV W W W V= ⊕ ⊕ ⊕ ⊕" and so 2
m

m
L (R) W

∞

=−∞
= ⊕ , which can be seen in Fig. 3. By this 

kind of decomposition, components in each space Wj contain different details of the 
function, or from the view of signal processing, the original signal is decomposed by a 
group of orthogonal filters. 
To construct an orthogonal wavelet basis, we first need to find an orthogonal basis of V0. 
From the following theorem: a family {φ(t-n)}n∈z is a standard orthogonal basis ↔ 

2

k Z
Φ( 2k ) 1

∈
ω+ π =∑ , where Φ(ω) is the Fourier transform of φ(t). If {θ(t-n)}n∈z, with Fourier 

transform Θ(ω), is not an orthogonal basis of V0, from the above theorem, we can compute 

2

k Z

Θ( )Φ( )
Θ( 2k )

∈

ω
ω =

ω+ π∑
, and {φ(t-n)}n∈z must be orthogonal. We call φ(t) the scale function, 

and we will take {φ(t-n)}n∈z as the orthogonal basis of V0 in this chapter. 

From above discussion, {φ(t-n)}n∈z is an orthogonal basis of V0, and 1 0
t( ) V V
2

ϕ ∈ ⊂ , we have 

k

t( ) 2 h(k) (t k)
2

∞

=−∞
ϕ = ϕ −∑ . In the frequency, 2Φ(2 ) H( )Φ( )ω = ω ω , where 

ik

k
H( ) h(k)e

∞
− ω

=−∞
ω = ∑ . If we take n Z

t{ ( n)}
2 ∈ψ −  as an orthogonal basis of W1, since we have  

0 1 1V V W= ⊕  from above discussion of MRA, then 
k

t( ) 2 g(k) (t k)
2

∞

=−∞
ψ = ϕ −∑  and 

2Ψ(2 ) G( )Φ( )ω = ω ω  are hold. Combine all these expressions with (t)dt 0ψ =∫  and 

(t)dt 1ϕ =∫ , we have following conclusions: 1) 
k

h(k) 2=∑  and 
k

g(k) 0=∑ ; 2) H(0) 2=  

and G(0)=0. From this, H is a low pass filter and G band pass filter. 
From formula 2

k Z
Φ( 2k ) 1

∈
ω+ π =∑ , which means {φ(t-n)}n∈z is an orthogonal basis, we have  

 2 2H( ) H( ) 2ω + ω+ π =   (5) 

hold for arbitrary ω. The same conclusion is hold for G, that is 

 2 2G( ) G( ) 2ω + ω+ π =   (6) 

Since the orthogonality between {φ(t-n)}n∈z and {ψ(t-n)}n∈z,  

 H( )G( ) H( )G( ) 0ω ω + ω+ π ω+ π =   (7) 
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must be satisfied. One solution of (7) is iG( ) e H( )− ωω = − ω+ π , or equivalently 
kg(k) ( 1) h(1 k)= − − . Till here, the constructive method of an orthogonal wavelet basis is 

completed.  
From MRA, Mallat developed a fast algorithm to compute DWT of a given signal. 
Suppose xj-1(k), xj(k) and dj(k) are coefficients of x(t) projected on Vj-1, Vj and Wj, dj(k) here 
has the same meaning with that in (4), which is WTx(j,k). The Mallat algorithm includes 
the following Eqs:  

 j j 1 j 1
n

x (k) x (n)h(n 2k) x (k) h(2k)
∞

− −
=−∞

= − = ∗∑  (8) 

 j j 1 j 1
n

d (k) x (n)g(n 2k) x (k) g(2k)
∞

− −
=−∞

= − = ∗∑  (9) 

 j 1 j j
n n

x (k) x (n)h(k 2n) d (n)g(k 2n)
∞ ∞

−
=−∞ =−∞

= − + −∑ ∑  (10) 

In them, (8) and (9) are for decomposition and (10) is for reconstruction. By decomposing it 
recursively, as in Fig. 4(a), the approximate signal xj(k) and detail signal dj(k) are computed 
out successively.  
 

 
h(k) 2↓ 

g(k) 

xj-2(k) xj-1(k) xj(k) 

2↓

dj-1(k) dj(k) 

h(k) 2↓ 

g(k) 2↓ 

 
(a) Decomposition 

 
 

 
2↑ h(k) 

2↑ 

xj-2(k) xj-1(k)xj(k) 

g(k) 
dj-1(k)

dj(k) 
2↑ h(k) 

2↑ g(k) 
 

 
(b) Reconstruction 

 

Fig. 4. The Mallat algorithm 

3. Time-frequency representation comparisons  
The task of signal processing is to find the traits of the signals of interest. As known that 
most of the signals in engineering are obtained in time domain. However, features of the 
signals can usually be interpreted in frequency domain, so the frequency domain analysis is 
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important in signal analysis. The Fourier transform and its inversion connect the frequency 
domain features with the time domain features. Their definitions are as below: 

 j2 ftX(f) x(t)e dt− π= ∫  (11) 

 j2 ftx(t) X(f)e dfπ= ∫  (12) 

In the stationary signal analysis, one may use the Fourier transform and its inversion to 
establish the mapping relation between the time and frequency domains. However, in the 
practical applications, the Fourier transform is not the best tool for signal analysis due to the 
nonstationary and time varying feature in the most engineering signals, such as engine 
vibration and noise signals. For these signals, although their frequency elements can be 
observed from their frequency spectrum, the time of frequency occurrence and frequency 
change relationship over time can not be acquired. For further research on these signals, the 
time-frequency descriptions are introduced. Fig. 5 shows three time-frequency descriptions 
of the linear frequency modulation signal generated from the Matlab Toolbox: (a) is the 
frequency domain description which loses the time information; (c) is the time domain 
description which loses the frequency information; (b) is the time-frequency description 
which shows the change rule of frequency over time clearly. 
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Fig. 5. Three description methods of linear frequency modulation signal 
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The basic idea of time-frequency analysis is to develop a joint function to combine the 
time and frequency factors. The time-frequency analysis, which can describe the signal 
traits on a time-frequency plane, has become an important research field. Many time-
frequency methods have been presented, which can be divided into three types: linear, 
quadratic and nonlinear. The STFT and WT belong to the linear type, and the Wigner-
Ville distribution (WVD) and pseudo Wigner-Ville distribution (PWVD) belong to the 
quadratic type. This section compares the STFT, WVD, PWVD and WT for showing the 
advantage of WT. 
The basic idea of STFT, which is presented by Gabor in 1946, is to cut out the signal by a 
window function, in which the signal can be regard as stationary, and analyze the signal to 
make sure the frequency elements in the window by the Fourier Transform, then move the 
window function along the time axle to obtain the change relationship of frequency over 
time. This is time-frequency analysis process of STFT and the STFT of the signal x(t) can be 
described as: 

 
j2 ft '* '

xSTFT (t, f) x(t ')g (t t)e dt'
− π

= −∫   (13)  

The WVD, which was presented by Wigner in the research of quantum mechanics in 1932 
and applied to signal, processing by Ville later, satisfies many mathematical properties 
expected by time-frequency analysis. The WVD of the signal x(t) can be described as: 

 j2 f*
xWD (t, f) x(t / 2)x (t / 2)e d− π τ= + τ − τ τ∫  (14) 

To suppress the disturbing of cross term in the WVD, the PWVD, which can be equivalent to 
smooth the WVD, is introduced. The PWVD of the signal x(t) can be described as: 

 j2 f*
xPWVD (t, f) h( )x(t / 2)x (t / 2)e d− π τ= τ + τ + τ τ∫  (15) 

A nonstationary signal is analyzed in four time-frequency methods, i.e., STFT, WVD, 
PWVD and WT. Fig. 6 shows the oscillogram of a signal contain four Gauss components. 
The four time-frequency analysis results are showed in Fig. 7, in which (a), (b), (c) and (d) 
denote the results of STFT, WVD, PWVD and WT respectively. As shown in Fig. 7 (a), the 
resolution of STFT is lower and fixed. Although the WVD and PWVD have higher 
resolution and time-frequency concentration, they are disturbed strictly by cross terms as 
shown in Figs. 7 (b) and (c). In contrast, the resolution of WT is higher than STFT and can 
change with frequency. There have a good frequency resolution in the low frequency 
range, and a good time resolution in the high frequency range. And the cross terms in 
WVD and PWVD disappeare. Though the STFT covers the shortage of the FT to some 
extent in local analysis, its defects can not be overcome. That is, when the window 
function is determined, the size of windows is fixed and the time resolution and 
frequency resolution is fixed. As the resolution of window function is restricted by 
Heisenberg uncertainty principle, the frequency resolution is higher and the time 
resolution is lower when a long window is used, the situation is reversed when a short 
window is used. Therefore, the key of application is how to choose reasonable window 
length. When the signal which contains a variety of difference of scales is analyzed, the 
method of STFT becomes useless. 
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Fig. 6. The oscillogram of a signal contain four Gauss components 
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Fig. 7. Four time-frequency representations  

The WVD has higher time-frequency resolution and many mathematical properties such as 
time-frequency concentration, symmetry, reversibility and normalizing. But the shortage is 
that it can not ensure non-negative and produce strictly cross terms especially for nonlinear 
signals, thus many researchers presented a variety of new patterns such as PWVD. These 
methods can suppress the disturbing signal of cross term to a certain extent, but they can not 
eliminate completely and damage many mathematical properties in WVD. 
Although the WT is also restricted by Heisenberg uncertainty principle, the window in WT 
can be adjusted. In the WT, the mother wavelet can be stretched according to frequency to 
provide reasonable window, a long time window is used in low frequency and a short time 
window is used in high frequency. This time-frequency analysis which fully reflects the 
thought of multiresolution analysis is in accordance with the features of time varying 
nonstationary signal. Though the resolution of WT is lower than WVD and PWVD, the cross 
terms don't appear as the WT is linear time-frequency analysis. 
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4. Applications of the WT on nonstationary signals 
This section gives some examples of the DWT successfully applied to nonstationary vehicle 
vibration and sound signals (Wang, et al, 2004, 2007, 2009, 2010).  

4.1 Wavelet transform for nonstationary vehicle vibration 
Most of the research on vehicle vibration systems assumed that the vehicles were running at 
certain constant speeds, therefore, were regarded as a stationary random process. In more 
usual cases such as starting, accelerating and braking, vehicles work under variable speed 
conditions, and its vibration should be considered as a nonstationary process accordingly. 
For nonstationary signals, both the frequencies and their magnitudes vary with time, thus 
the conventional Fast Fourier Transform is incapable for dealing with them. The CWT and 
DWT were used to study the nonstationary inputs and responses of the vehicle vibration 
system (Wang and Lee, 2004).  
A dynamic model of a full vehicle with eight degrees of freedom, was built shown in Fig. 8. 
And the corresponding differential equations were derived from the Lagrange equation as, 

 
.. .

[M]{Z} [C]{Z} [K]{Z} [P]{I(t)}+ + =   (16) 

Where [M] , [C] , [K]  are matrixes of mass, damping and stiffness respectively, {I(t)}  is the 
road roughness vector; [P]  is the transfer matrix from the road roughness vector to the force 
excitation. {z}  is the system response vector. 
 

 
Fig. 8. Dynamic model of a vehicle with 8 DOFs 

Assuming that the vehicle starting at a speed 0v 0= , first accelerating with an acceleration 
1a  up to mv , and then braking with a deceleration 2a  down to fv , the instantaneous 

vehicle speed at any time t were shown as, 

 0 1 m 1

m 2 m 1 m 1 m 1 m 2

v a t 0 t v /a
V(t)

v a (t v /a ) v /a t (v /a v /a )
+ < <⎧

= ⎨ + − < < −⎩
 (17)                

The above process was called “AAB” process. Using the Runge-Kutta Method, the time 
series of road roughness and vehicle response were calculated by Eqs. (16) and (17). 
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Fig. 9. 2D and 3D scalograms result from CWT during the “AAB” process: (a) the vertical 
vibration of the driver seat; (b), (c) and (d) the vertical, pitch and roll vibrations of the 
vehicle body; (e) the vertical vibration of the front axle; (f) the road roughness of the right-
rear wheel. 

The CWT and DWT are performed by using the Mallat algorithm in the Matlab toolbox. The 
selected parameters for calculation are: the Daubechies wavelet with a filter length of seven, 
the scaling factor a=1-350, i.e., the frequency range: 0.404-138.5 Hz. Fig. 9 (a)-(f) shows the 
acceleration scalograms, which were obtained from the CWT, of the seat, vehicle body, axle 
and road roughness during the “AAB” process, respectively. As seen from Fig. 9, the worst 
ride performance of the vehicle happened at 8s during the “AAB”, and there was a little 
time delay in the vibrations transfer from road to the vehicle system. In the accelerating 
process, the vibration energies of the vehicle are getting bigger, moving, as well, to the 
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higher-frequency area; their frequency bands are getting broader, and vice versa in the 
braking process. As a rule, these phenomena of energy flow are transmitted to the other 
levels through the suspension system.  
In view of the vehicle design, the ride comfort of the passenger seat is the most important. 
Comparing Fig. 9 (a)-(f), the energy of road excitation has been greatly restrained by the 
suspension system of the vehicle. However, the similar time frequency traits can be seen in 
(a), (b) and (c), and the ride comfort of the seat deteriorates suddenly at a certain running 
speed. That means that the vertical and the pitching movement of the vehicle body have 
more effect on the vibration of seats than the rolling movement, and that the vibration 
energy of the vehicle body flowed into the resonance frequency region of the seat vibration 
system during the “AAB” process.  
From the above findings, the WT can provide the time-frequency map of transient “energy 
flow” of the examined points of interest in the vehicle vibration system. Thus, the WT may 
be used in vehicle vibration system design, especially for the transient working cases.  

4.2 DWT-based denoising for nonstationary sound signals 
In sound quality evaluation (SQE) engineering, distortion of the measured sounds by certain 
additive noises occurred inevitably, which came from both ambient background noise and 
the hardware of the measurement system; therefore, the signal needed to be denoised. In the 
former researches, we found that the unwanted noises are mainly write random noises 
which distributed in a wide frequency band but with small amplitudes. Some techniques for 
white noise suppression in common use, such as the least square, spectral subtraction, 
matching pursuit methods, and the wavelet threshold method have been used successfully 
in various applications. The wavelet threshold method in particular has proved very 
powerful in the denoising of a nonstationary signal. Here a DWT-based shrinkage denoising 
technique was applied for SQE of vehicle interior noise. 
Sample vehicle interior noises were prepared using the binaural recording technique. The 
following data acquisition parameters were used: signal length, 10 s, sampling rate, 22 050 
Hz. The measured sounds have been distorted by the random write random noises, and 
then wavelet threshold method is applied. This technique may be performed in three steps: 
(a) decomposition of the signal, (b) determination of threshold and nonlinear shrinking of 
the coefficients, and (c) reconstruction of the signal. Mathematically, the soft threshold 
signal is sign(x) (|x|-t) if |x|>t, and otherwise is 0, where t denotes the threshold. The 
selected parameters were: Daubechies wavelet “db3”, 7 levels, soft universal threshold equal 
to the root square of 2 log (length(f)). As an example, a denoised interior signal and 
corresponding specrum are shown in Fig. 10. It can be seen that the harmony and white 
noise components of the sample interior noise are well-controlled. The wavelet shrinkage 
denoising technique is effective and sufficient for denoising vehicle noises. 
Based on the denoised signals, the SQE for vehicle interior noise was performed by the 
wavelet-based neural-network (WT-NN) model which will be mentioned in detail in the 
next section, the overall schematic presentation of the WT-NN model is shown in Fig. 11. 
After the model was well trained, the signals were fed to the trained WT-NN model and the 
Zwicker loudness model which is as reference. It can be seen that the predicted specific 
loudness and sharpness in Fig.12 are consistent with those from the Zwicker models. The 
wavelet threshold method can effectively suppress the write noises in the nonstationary 
sound signal. 
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Fig. 10. Comparison of the interior noises (left panel) and their spectra (right panel) before 
and after the wavelet denoising model.  

4.3 DWT for nonstationary sound feature extraction 
In the above section, we mentioned a new model called WT-NN used for SQE for vehicle 
interior noise shown in Fig. 11. A wavelet-based, 21-point model was used as the pre-
processor of the new WT-NN SQE model for extracting the feature of the nonstationary 
vehicle interior noise. For interpreting this new proposed model in detail, here we extend 
this model to another kind of noise-passing vehicle noise.  
 

 
Fig. 11. Schematic presentation of the data inputs and outputs to the neural network 

Sample passing vehicle noises were prepared identically as the above vehicle interior 
noises. The measured signals were denoised by using the wavelet threshold method 
mentioned before. Based on the pass-by vehicle noises, the 21-point feature extraction 
model for pass-by noises was designed by combining the a five-level DWT and a four-
level WPA shown in Fig.13. It was used to extract features of the pass-by noises. The 
results are shown in Fig. 14. 
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Fig. 12. Comparisons of specific loudness (left panel) and sharpness (right panel) between 
(a) the Zwicker model (upper), and (b) the WT-NN model  (down) 

 
 
 

 
 
 

Fig. 13. Twenty-one-point wavelet-based feature extraction model for pass-by noise analysis 
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Fig. 14. Feature of the pass-by noise in time-frequency map extracted by the 21-point model 

As the inputs of the WT-NN models, the above wavelet analysis results provide the time-
frequency features of the signals. The SQM (sound equality matrices) of the pass-by noise as 
the outputs is taken from the psychoacoustical model. The loudness was adopted, which is 
related to the SQE of the vehicle pass-by noises. The output SQM is expressed as, 

TSQM [TL SL]=  

where the vectors TL and SL denote the total and specific values of loudness, respectively. 
After training the WT-NN model, the signals were fed into the Zwicker loudness model and 
the trained WT-NN model. It can be seen that the predicted specific loudness in Fig. 15 
coincide well with those from the Zwicker models, thus as the pre-processor of the WT-NN 
model, the newly proposed wavelet-based, 21-point model can extract the feature of 
nonstationary signal precisely. 
 

       
Fig. 15. Specific loudness comparison between (left panel) the Zwicker model, and (right 
panel) the WT-NN model. 



Discrete Wavelet Transfom for Nonstationary Signal Processing 

 

37 

4.4 DWT for nonstationary sound quality evaluation 
In this section a DWT-based filter bank is performed for sound octave band analysis (OBA). 
Verification results show that the DWT-based method (DWT-OBA) is accurate and effective 
for SQE of nonstationary vehicle noises. 
In the measurements, a sample vehicle is accelerated up to a running speed 50 km/h. The 
following parameters for data acquisition are used: signal length, five seconds, sampling 
rate, 50 kHz. The measured sound signals need to be denoised for avoiding signal distortion 
by using the wavelet threshold method. Based on the measured interior vehicle noise, a 
DWT-OBA procedure is performed here. The determined wavelet function is the 
Daubechies wavelet with filter length of 70, i.e., ‘db35’. The sound DWT-OBA of the interior 
noise can be performed in three steps: (a) signal resampling, (b) DWT filtering, and (c) band 
SPL calculation. The calculation procedure for the DWT-OBA of a sound signal is shown in 
Fig. 16. Then, the octave-band SPL values can be calculated from the sub-band filtered 
signals using the definition of sound pressure level in time domain, 

 
im

2
i ij ref

i j 1

1L 10log( p /p )
m =

= ∑  (18) 

where iL is the ith band SPL, im  is the total points of the ith band signal, ijP is the ith band 
sound pressure on the thj  point, and refP  is the reference sound pressure, ijP  =20e-6. 
Comparing with the measured results, the errors of the band SPLs in Fig. 21 are within [-0.3, 
+0.2] dB, which are much less than the band error scope of ±1 dB defined in the IEC 651 
standard. The total SPL are also computed by Eq. (19),. 

 iL
T

i
L 10log( 10 )= ∑   (19) 

It is exact same as the measured value 83.7 dB. In view of the A-weighted total SPL, the 
measured value is 66.1 dB (A), and the calculated value is 66.2 dB(A). To prove transient 
characteristic of the DWT-OBA algorithm, furthermore, the time-varying A-weighted total 
SPLs of the interior vehicle noise are carried out by using the DWT-OBA and MF-OBA 
algorithms, respectively. MF-OBA is a self-designed multi-filter octave band analysis 
method also used for SQE and here is adopted as reference. The selected calculation 
parameters are: time frame length, 200 ms, frame amount, 25, and A-weightings, [-56.7 -39.4 
-26.2 -16.1 -8.6 -3.2 0 1.2 1.0 -1.1] dB, for octave band number from one to 10. The results 
shown in Fig. 17 imply a very good transient characteristic of the DWT-OBA.  
In order to examine the effectiveness of the presented DWT-OBA algorithm for more 
practical uses, we applied it and the self-designed filtering algorithm to the measured 
exterior vehicle noise, respectively. The exterior noise signal has been pre-processed 
following the DWT denoising procedure. The A-weighted band SPLs of the exterior vehicle 
noise calculated from the filtering and DWT algorithms, as well as the measurement results, 
are shown in Figs. 18 and 19. And the calculated results are summarized in Table 1. 
 
 Sound 

signal 
Resampling by 

CoolEdit 
DWT 

decomposition 
DWT 

reconstruction 
Total 
SPL 

Octave 
spectra 

 
Fig. 16. The calculation flowchart for DWT octave-band analysis of a sound signal 
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Fig. 17. Calculated time-varying A-weighted total SPLs of the interior vehicle noise by using 
the newly proposed DWT and filtering algorithms. 

 

 
Fig. 18. Linear SPL comparison of the octave-band analysis of the interior vehicle noise: (a) 
the measured result, (b) SPL values calculated by the db35 filter bank, and (c) the band SPL 
errors 
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Fig. 19. A-weighted octave-band SPLs of the exterior vehicle noise from (a) the 
measurement, (b) self-designed filtering algorithm, and (c) the DWT algorithm. 

 
Octave band 
number 1 2 3 4 5 6 7 8 9 10 

Measured band 
SPLs(dB) -13.2 21.0 56.8 55.9 56.7 55.9 58.8 35.4 25.5 20.2 

Filtering band SPL 
error(dB) -0.09 0.48 0.05 0.37 0.19 0.12 0 -0.07 0.27 0.17 

DWT band SPL 
errors(dB) -0.008 0.25 -0.08 0.24 0.09 0.18 0.04 0.02 0.03 -0.01 

A-weighted total 
SPLs(dB) 64.0 (measured ) 64.1476 (filtering) 64.0953 (DWT) 

Error percentage 
of total SPLs 0.2306% (filtering) 0.1489% (DWT) 

 
Table 1. Summary of the calculated A-weighted SPLs of the exterior vehicle noise from 
different methods 

It can be seen that, for the exterior vehicle noise, the A-weighted SPLs from different 
methods have almost same octave patterns in frequency domain. From Table 1, the 
maximum errors of the filtering and DWT band SPLs are 0.48 and 0.25 dB, respectively, 
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which are all occurred in the octave band with a center frequency of 32 Hz. These errors can 
make very small contributions to the total SPL values, due to the special frequency 
characteristics of the vehicle noises. The octave band SPLs from the presented methods are 
satisfied the   error limitation of ± 1 dB published in the IEC 651 standard. The error 
percentage of the A-weighted total SPLs are 0.2306% and 0.1489% for the filtering and DWT 
algorithms, respectively. The above comparisons indicate that the presented DWT-OBA 
algorithm is effective and feasible for sound quality estimation of vehicle noises. 

4.5 DWT pattern identification for engine fault diagnosis 
In Section 4.2, 4.3 we proposed a new model called WT-NN in which the wavelet-based, 21-
point feature extraction model was designed as the pre-processor. Here we performed this 
model for engine fault diagnosis (EFD), so called EFD WT-NN model. 
To establish the EFD WT-NN model, firstly, a database including the engine fault 
phenomena and their corresponding sound intensity signals needs to be built. Based on the 
2VQS type of EFI engine mounted on the GW-II engine test bed, the sound intensities in 
different failure conditions were measured using the two-microphone recording technique 
recommended by the standard ISO 9614. The experimental equipments are arranged as that 
in Fig. 20. The measured signals were denoised by using the wavelet threshold method. 
 

 
Fig. 20. Experimental setup for sound intensity measurements 
To determine the structure of the time-frequency feature extraction model, the FFT-based 
spectral analysis is imposed on the above saved engine noise signals. The results suggest 
that the sound energies of the engine noises mainly distribute in a low-frequency range up 
to 3000 Hz (focus on the frequency interval [0-350Hz]), and decrease with increasing 
frequency. According to the above discussions, the wavelet-based, 21-point model for 
feature extraction of engine noises was applied. Using the 21-point model, the feature of the 
engine noises is extracted, and an example is shown in three dimensions in Fig. 21. Then the 
WT-NN model is built and performed for EFD. The noise signals in different engine state 
have been dealt with by applying the 21- point feature extraction model; the outputs of the 
pre-processor are defined in matrices and fed to a NN as the its inputs. Then, the failure 
phenomena corresponding to the engine state noise signals, which have been defined and 
quantified in matrices as shown in Table 2, are taken as the outputs of the NN.  
After training, we respectively fed all the signals of different engine states to the trained 
WT-NN model. Typically, we listed the outputs of WT-NN model and the simulated 
diagnosis results (patterns) at the measuring point “P1” in Table 3, where the S0, S1, S2, …, 
and S8, denoting the engine fault patterns have the same meanings as those in Table 2, and 
U is an uncertain result. 



Discrete Wavelet Transfom for Nonstationary Signal Processing 

 

41 

 
Fig. 21. The 21-point time-frequency feature of the engine fault state that the ECU does not 
receive the knock signals (meshing point no.2) 

 
Engine working state Target output 
Normal idling state of the engine (S0) [0 0 0 0 0 0 0 0 0] 
The nozzle in the first cylinder doesn’t work (S1) [0 1 0 0 0 0 0 0 0] 
The second and third cylinders do not work (S2) [0 0 1 0 0 0 0 0 0] 
The electric motor doesn’t work (S3) [0 0 0 1 0 0 0 0 0] 
ECU does not receive the hall senor signals (S4) [0 0 0 0 1 0 0 0 0] 
The throttle orientation potentionmeter is broken (S5) [0 0 0 0 0 1 0 0 0] 
ECU does not receive the knock signals (S6) [0 0 0 0 0 0 1 0 0] 
The 5-voltage power of the hall sensor is broken (S7) [0 0 0 0 0 0 0 1 0] 
ECU does not receive the oxygen sensor signal (S8) [0 0 0 0 0 0 0 0 1] 

Table 2. The target output definition of the engine working states 
Since the NN outputs are continuous values, the thresholds need to be defined to identify 
the calculated diagnosis results of the WT-NN model. Mathematically, the threshold rule is 
described as, 

v

fs v

v

0 0 S 0.45
S uncertain 0.45 S 0.55

1 0.55 S 1.0

≤ ≤⎧
⎪= ≤ ≤⎨
⎪ ≤ ≤⎩

 

where, Sfs denotes the fault state of the engine, Sv denotes the calculated output values of the 
WT-NN model. It can be seen that the diagnosis results in Table 4 is exactly same as that 
expected. 
We obtained similar comparison results from the simulations using engine noise signals at 
other measuring points. We found that, for the sample signals used in the NN learning, the 
outputs of the BP network are in general conformity with the desired results; when the 
input data deviate from the samples within a certain range, the NN output has a tendency to 
approach the sample failure characteristics. For a real failure diagnosis, one may select in 
measurement points under the guidance of the NN designer of the diagnosis system. 
According to the above findings, the wavelet-based model may be used to diagnose engine 
failures in vehicle EFD engineering. 
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State S0 S1 S2 S3 S4 S5 S6 S7 S8 
0 0.164 0 0 0.027 0 0 0 0 
0 0.610 0 0 0.023 0 0 0 0 
0 0.022 0.989 0 0 0 0.009 0 0 

0.001 0 0 0.987 0.001 0 0.002 0.002 0 
0 0.016 0 0.034 0.970 0.002 0 0 0.085 

0.009 0 0 0.013 0 0.995 0.002 0.011 0 
0 0 0 0 0 0.001 0.979 0 0.088 
0 0 0 0.008 0 0 0 0.885 0 

Model 
output 

0 0 0 0 0.023 0.004 0.030 0 0.976 
Result S0 S1 S2 S3 S4 S5 S6 S7 S8 

Table 4. The outputs of the WT-NN model and diagnosis results at point “P1” 
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1. Introduction    
Induction motors are the most common means of converting electrical power to mechanical 
power in the industry. Induction machines were typically considered robust machines; 
however, this perception began to change toward the end of the last decade as low-cost motors 
became available on the market. Nowadays the most widely used induction motor in the 
industry is a machine which works at the limits of its mechanical and physical properties. A 
good diagnosis system is mandatory in order to ensure proper behavior in operation.  
The history of fault diagnosis and protection is as outdated as the machines themselves. 
Initially, manufacturers and users of electrical machines used to rely on simple protection 
against, for instance, overcurrent, overvoltage and earth faults to ensure safe and reliable 
operation of the motor. However as the tasks performed by these machines became more 
complex, improvements were also sought in the field of fault diagnosis. It has now become 
essential to diagnose faults at their very inception, as unscheduled machine downtime can 
upset deadlines and cause significant financial losses. 
The major faults of electrical machines can be broadly classified as follows:  
Electrical faults (Singh et al., 2003):  
1. Stator faults resulting in the opening or shorting of one or more stator windings; 
2. Abnormal connection of the stator windings; 
Mechanical faults: 
3. Broken rotor bars or rotor end-rings; 
4. Static and/or dynamic air-gap irregularities; 
5. Bent shaft (similar to dynamic eccentricity) which can result in frictions between the 

rotor and the stator, causing serious damage to the stator core and the windings; 
6. Bearing and gearbox failures. 
However, as is introduced in the basic bibliography by Devaney (Devaney et al., 2004), the 
effect of bearing faults is, in most cases, similar to eccentricities and has the same effects on 
the motor. 
The operation during faults generates at least one of the following symptoms: 
1. Unbalanced air-gap voltages and line currents 
2. Increased torque pulsations 
3. Decreased average torque 
4. Increase in losses and decrease in efficiency 
5. Excessive heating 
6. Appearance of vibrations 
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Many diagnostic methods have been developed so far for the purpose of detecting such 
fault-related signals. These methods come from different types and areas of science and 
technology, and can be summarized as follows (Jardine et al., 2006) (Meador, 2003): 
1. Electromagnetic field monitoring by means of search coils, and coils placed around 

motor shafts (axial flux-related detection). This is associated with the capacity for 
capturing the presence of magnetic fields around an IM. Field evaluation must provide 
information about motor-operation states. 

2. Temperature measurements: Temperature is a typical second-order effect of operation 
conditions. Induction motors typically have an operational temperature range, defined 
in the motor nameplate, which is associated with the tests performed. Any fault-
operation condition shows a temperature increment. By performing a temperature 
analysis the first approach to fault conditions can be made.  

3. Infrared recognition: This is used to evaluate the state of the material, especially for 
bearings. This cannot be performed in an online system.  

4. Radio frequency (RF) emissions monitoring: Radio frequency is a second-order effect of 
fault conditions which is currently used for gearbox diagnosis. 

5. Vibration monitoring: This is the typical method for fault diagnosis in industrial 
applications; it achieves good results for bearing analysis although it presents some 
deficiencies with electrical faults and rotor faults. 

6. Chemical analysis: This is used to analyze bearing grease; it is only used with big 
motors and not with the typical small ones. 

7. Acoustic noise measurement: This is a new trend in the field of gearbox failure (Tahori 
et al., 2007). 

8. Motor current signature analysis (MCSA), which is explained further below. 
9. Model-based artificial intelligence and neural-network-based techniques: These are new 

approaches which combine multi-modal data acquisition with advanced signal-
processing techniques. 

Motor current signature analysis (MCSA) is one of the most widely used techniques for fault 
detection analysis in induction machines. It is based on the Fast Fourier transform (FFT), 
which is currently considered the standard. 
Finally, other pieces of work introduce all the motor faults (Benbouzid et al., 2000) (Thomson 
et al., 2003) at the same time, typifying the different harmonic effects of every fault.  
The classic MCSA method works well under constant load torque and with high-power 
motors, but difficulties emerge when it is applied to pulsating load torques, in applications 
such as mills, freight elevators and reciprocating compressors. On the other hand, the results 
of the common signal processing method (typically FFT, Fast Fourier transform) should 
vary according to the application, especially during transient states. In the cases described 
above, the FFT algorithm is likely to cause errors due to the averaging of spectral 
amplitudes during sampling time. 
The need to find other signal processing techniques for non-stationary signals becomes, 
therefore essential. Time-frequency transforms such as the short time Fourier transform or 
the wavelet analysis (Ukil et al., 2006) (Valsan et al., 2008) have been successfully used with 
electrical systems in order to evaluate faults during transient states. The detection of 
induction motor faults using the wavelet transform has also been introduced (Kar et al., 
2006), especially in the case of noise or vibration signals. Interesting approaches have been 
presented recently (Calis et al., 2007) (Bacha et al., 2008) which introduce the analysis and 
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monitoring of fluctuations of motor current zero-crossing instants and the use of artificial 
intelligence solutions such as neural networks. A recent publication (Niu et al., 2008) 
presents an interesting approach of DWT applied to the evaluation of different statistic 
feature extraction techniques. In this paper different statistic methodologies are applied over 
wavelet decomposition details showing interesting results for specific details. However the 
feature extraction has been done without taking the motor fault behavior into consideration. 
This chapter proposes a different approach that begins with a detailed analysis of motor 
current decomposition for the further application of DWT at specific faulty bands. An 
energy estimation of the analyzed bands is proposed to define fault factors. 
PSD (power spectral density) (Ayhan et al., 2003) describes the distribution of power along 
frequencies. A similar concept applied to the wavelet transform could be useful for 
diagnosing a motor under variable load torque. The energy estimation of specific details 
improves the diagnosis, as it introduces a specific fault factor. 
This chapter starts with a description of the theoretical approach of MCSA bases and signal 
processing techniques proposed, followed by a presentation of experimental results. The use 
of the wavelet transform improves fault detection, and the energy estimation provides the 
fault factor needed to implement an online monitoring system. Conclusions are presented in 
the last section. 

2. Basic theory 
2.1 Motor current signature analysis (MCSA) 
This method focuses its efforts on the spectral analysis of the stator current and has been 
successfully introduced for the detection of broken rotor bars (Deleroi, 1984), bearing 
damage and dynamic eccentricities (Devaney et al., 2004) caused by a variable air gap due to 
a bent shaft or a thermal bow. The procedure consists in evaluating the relative amplitudes 
of the different current harmonics which appear as a result of the fault.  
The frequencies related to the different faults in the induction machine, such as air-gap 
eccentricity, broken rotor bars (Figure 1), and the effect of bearing damage, are expressed by 
equations (1), (2) and (3), respectively (Tahori et al., 2007) 

 ecc 1
1 sf f 1 m

p
⎡ ⎤⎛ ⎞−

= ±⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (1) 

 brb 1
1 sf f m sp

2

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟−

= ±⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (2) 

 i ,o r
n bdf f 1 cos
2 pd

β
⎡ ⎤

= ±⎢ ⎥
⎣ ⎦

 (3) 

where fi is the rotational speed frequency of the rotor, f1 is the frequency supply, m is the 
harmonic order, s is the slip and p is the number of poles. In the bearing fault equation, bd, 
pd and cos β correspond to the constructive bearing parameters (Figure 2). 
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Fig. 1. Stator current spectrum for an induction motor with broken bars. Base frequency of 
50 Hz 

 

 
Fig. 2. Bearing parameters 
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2.2 Stator current composition 
Fault detection in induction machines cannot be considered individually. In order to obtain 
a successful fault detection system harmonic distribution, it must be considered in a holistic 
way. The holistic analysis of all the current spectra makes it possible to develop a successful 
system. By looking at different components of MCSA, the approach to current spectra can be 
defined as follows: 

Considering eccentricities first sideband components are about s
1

ff
2

=  and s
2 s

ff f
2

= +  and 

the upper-sideband components about s
3 s

ff 2 f
2

= ⋅ +  and s
4 s

ff 3 f
2

= ⋅ +  (Singh et al., 2003). 

Considering broken rotor bars, first sideband components are about ( )1 sf f 1 2s= −  and 

( )2 sf f 1 2s= +  and fifth sideband components are about ( )3 sf f 4 5s= −  and ( )4 sf f 5 6s= −  
(Tahori et al., 2007). fs is the main frequency supply. 
Three-phase currents under a fault condition can generally be expressed as follows: 

 ( ) ( )
N

R R s Rn n Rn
n 0

i t 2 I cos 2 f t 2 I cos 2 f tπ π φ
=

= + −∑  (4) 

 ( ) ( ) ( )
N

S S s Sn n Sn
n 0

2 2i t 2 I cos 2 f t 2 I cos 2 f t3 3
π ππ π φ

=
= − + − −∑  (5) 

 ( ) ( ) ( )
N

T T s Tn n Tn
n 0

4 4i t 2 I cos 2 f t 2 I cos 2 f t3 3
π ππ π φ

=
= − + − −∑  (6) 

where IR = IS = IT = I are the RMS values of the fundamental component of the line current, 
IRn, ISn, ITnare the RMS values of the fault components and φRn, φSn, φTn are the angular 
displacements of the fault components. 

The space vector si
→

 referred to the stator reference frame is obtained by applying the 
transformation of the symmetrical components: 

 [ ] [ ] [ ]1 1 2 2 n ns
2 2j j j 2 f t j 2 f t j 2 f tj2 f t3 3

R R S T 1 2 n
2i i i e i e 3 I e I e I e ... I e
3

π π π φ π φ π φπ→ − − − −⎡ ⎤ ⎡ ⎤= + + = + + +⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
 (7) 

A way of understanding the Fourier analysis is to consider it a mathematical transform to 
convert our view of the signal from time-based to frequency-based. This involves splitting 
the signal into its constituent harmonics, providing a fault detection system. 
Yet, the Fourier analysis implies a serious drawback for our purposes: in the process of 
transformation to the frequency domain, the time information is lost. When examining the 
Fourier transform of a signal, it is impossible to know the precise instant when a particular 
event took place. 
If signal properties do not change over time —that is, if we are examining a stationary 
signal— this is not a problem. However, most interesting signals contain a great deal of non-
stationary or transitory characteristics: drift, trends, abrupt changes, and first and last 
occurrences of events. In this case, such characteristics are often the most important part of 
the signal, and the Fourier analysis is not suitable for their detection. Therefore, we need to 
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apply another signal processing technique, such as the Wavelet transform, that can reveal 
aspects that a simple Fourier analysis misses. 

2.3 Continuous wavelet transform (CWT) 
The Fourier analysis consists in breaking up a signal into sine waves with different 
frequencies. Similarly, a wavelet analysis is the breaking-up of a signal into shifted and 
scaled versions of the function called the ‘mother wavelet’. 
The continuous wavelet transform is the sum over time of the signal multiplied by scaled 
and shifted versions of the wavelet. This process produces wavelet coefficients that are a 
function of scale and position. 
The integral wavelet transform of a function ( ) 2f t L∈  with respect to an analyzing wavelet 
φ  is defined as 

 ( ) ( ) ( )b ,aW f b ,a f t t dtφ φ
∞

−∞
= ∫  (8) 

where 

 ( )b ,a
t b1t a 0

aa
φ φ

−
= >  (9) 

Parameters b and a are called translation and dilation parameters respectively. The 
normalization factor a  is included so that b ,aφ φ=  

The expression for the inverse wavelet transform is 

 ( ) ( ) ( )b ,a2
1 1f t db W f b ,a t da

C a φ
φ

φ
∞ ∞

−∞ −∞
⎡ ⎤= ⎣ ⎦∫ ∫  (10) 

Where Cφ is a constant that depends on the choice of wavelet and is given by 

 
( )

2ˆ
C dφ

φ ω
ω

ω
= < ∞∫  (11) 

The coefficients constitute the results of a regression of the original signal performed on the 
wavelets. A plot can be generated with the x-axis representing position along the signal 
(time), the y-axis representing scale, and the color at the x-y point representing the 
magnitude of wavelet coefficient C. These coefficient plots are generated with graphical 
tools. 

2.4 Discrete wavelet transform (DWT) 
The discrete version of the wavelet transform, DWT, consists in sampling the scaling and 
shifted parameters, but neither the signal nor the transform. This leads to high-frequency 
resolution at low frequencies and high-time resolution for higher frequencies, with the same 
time and frequency resolution for all frequencies. 
A discrete signal x[n] can be decomposed as (Mallat, 1998):  
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where  

[ ]nφ         is the scaling function, 

[ ]
0

0
0

j
j2

j ,k n 2 (2 n k)φ φ= − ,                 is the scaling function at a scale of ojs 2=  shifted by k, 

[ ]nϕ  ,    is the mother wavelet, 

[ ] ( )
j

j2
j ,k n 2 2 n kϕ ϕ= − ,                is the mother wavelet at a scale of js 2=  shifted by k, 

0j ,ka  ,    is the approximation coefficients at a scale of ojs 2=   

j ,kd  ,    is the detail coefficients at a scale of ojs 2=  

and JN 2= , where N is the number of x[n] samples. 
The scaling function can be defined as an aggregation of wavelets at scales larger than 1. A 
discrete signal can be constructed by using a sum of J-j0 details and an approximation to 1 of 
a signal at a scale of ojs 2= . 
A quick way to obtain the forward DWT coefficients is to use the filter bank structure shown 
in Figure 3. The approximation coefficients at a lower level are transferred through a high-
pass (h[n]) and a low-pass filter (g[n]), followed by a downsampling by two to compute 
both the detail (from the high-pass filter) and the approximation (from the low-pass filter) 
coefficients at a higher level. The two filters are linked to each other and they are known as 
quadrature mirror filters. High-pass and low-pass filters are derived from the mother 
wavelet and the scaling function, considered respectively in (Mallat, 1998) and (Mallat, 
1989).  
 

g[n] 

h[n] 

2

x[n
2

g[n]

h[n]

2

2

g[n]

h[n]

2

2

Level 1 detail coefficients 

Level 2 detail coefficients 

Level 3 detail coefficients 

Level 1 detail coefficients 

 
Fig. 3. Wavelet tree decomposition for three levels of detail 

The various frequency range coverings for the details and the final approximation for a 
three-level decomposition are shown in Figure 4. These are directly related to the bands 
where the analysis will be performed. 
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Fig. 4. Frequency ranges for details and final approximation 

Figure 5 represents in a graphical manner the time-frequency window, which has better 
resolution on the time domain for high frequencies, and better frequency resolution for low 
frequencies, which means fewer resources for processing.  
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Fig. 5. Time-Frequency window for the wavelet transform 

The shape of the frequency response for these filters depends on the type and the order of 
the mother wavelet used in the analysis. In order to avoid overlapping between two 
adjacent frequency bands, a high-order mother wavelet has to be used that results in a high-
order frequency filter. 
In order to separate the different frequency bands there is an obvious trade-off between the 
order of the mother wavelet and the computational cost. Thus, intensive study is needed in 
order to adapt the order of the mother wavelet to the requirements. 
Taking a common wavelet family such as the Daubechies mother wavelet, the mother 
wavelet time shape shows an evolution if we just change the Daubechies order as is shown 
in Figure 6. Yet, this does not provide clear information for our purpose.  
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Fig. 6. Daubechies mother wavelet time evolution for order increase 
Figure 7 shows the frequency response for low-pass and high-pass filters, which determines 
the detail and approximation decomposition for different orders. For low orders the power 
of one harmonic near the cut frequency could be split into two different details. This could 
give a false impression of the the time evolution of the analyzed signal's frequency 
component. By increasing the Daubechies order it is possible to idealize the filters and, 
hence, to obtain better frequency decomposition.  
 

  
Fig. 7. Low- and high-pass filter frequency response corresponding to details 

Figure 8 shows an example of this drawback. A test signal has been built with two harmonic 
components, one at 100 Hz and the other one at 45 Hz, and the signal has been sampled at 
1000 Hz. The wavelet analysis is performed with a Daubechies db3 mother wavelet. 
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Harmonic content due to the 100 Hz superimposed frequency appears on details 2 and 3; 
when it should only appear on detail 3, corresponding to the analysis band between 125 and 
62.5 Hz. A high-order Daubechies mother wavelet is needed to prevent this drawback, 
which is due to the db3 associated filter not being ideal enough to filter the 100 Hz harmonic 
content on detail 2. 
 

 
Fig. 8. Test decomposition signal with an overlapping effect 

2.5 Power detail density (PDD) 
In a classical Fourier analysis, the power of a signal can be obtained by integrating the 
power spectral density (PSD), which is the square of the Fourier transform’s absolute value. 
The power carried by a defined spectral band can be obtained by integrating the PSD along 
this band. 
A similar derivation can be obtained for a wavelet transform. The power detail density 
(PDD) can be described as the squares of the coefficients for one particular detail. The power 
energy carried by this detail can be obtained by integrating its PDD. 
Discrete wavelet transforms show variations in the harmonic amplitude and location, and 
are the most suitable transform to be applied to non-stationary signals. The power detail 
density function resulting from a wavelet transform has proven to be one of the best suited 
methods for motor fault analysis under variable load, which presents the stator current as a 
non-stationary signal.  
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The average power for a signal ( )x t  is: 

 ( ) ( )2 21 1P lim x t dt lim x t dt
2 2

τ
τττ ττ τ

∞

− −∞→∞ →∞

⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
∫ ∫  (13) 

Applying Parseval’s theorem, this could be expressed as: 

 ( )
( )

( )
2

2 x1 1 1 1P lim x d lim d S d
2 2 2 2 2

τ τ
τττ τ

ω
ω ω ω ω ω

π τ π τ π
∞ ∞

− −∞ −∞→∞ →∞

⎡ ⎤⎡ ⎤
⎢ ⎥= = =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∫ ∫ ∫  (14) 

Where: 
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( ) 2x
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τ

τ

ω
ω

τ→∞

⎡ ⎤
⎢ ⎥=
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 (15) 

( )S ω  is the spectral density of the signal ( )x t , and represents the distribution or the 
density of power as a function of ω . 
The energy of a discrete signal can be calculated by averaging the square of all the signal 
components inside the unity window, following equation 12: 

 ( ) ( )( )
T

2
R

0

1Power i t t dt
T

φ= ∗∫  (16) 

3. Experimental results 
3.1 Experimental setup 
A three-phase, 1.1 kW, 380 V and 2.6 A, 50 Hz, 1410 rpm, four-pole induction motor was 
used in this study. Firstly, its healthy performance was analyzed and, afterwards, a sixth of 
the rotor bars was damaged as is shown in Figure 8. 
The motor nameplate is shown as follows: 
 

Induction motor Value 

Rated power 1.1kW. :Y 400/ D 230V 
2.6/4.5A 

Number of poles 4 

Nominal speed 1410 rev/min 
Cos ϕ 0.81 

Table I. Specifications for an induction motor 

The current has been measured by an A622 Tektronix 100 Ampere AC/DC current probe. 
The current ranges are 0/100 mV/A, and the typical DC accuracy is ±3% ± 50 mA at 100 
mV/A (50 mA to a 10 A peak). The frequency range extends from DC to 100 kHz (-3 dB). 
The test rig and the data processing are displayed in Figure 9.  
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Wavelet Details 

Load Torque 
Control 

 
Fig. 9. Experimental setup 

Load control has been implemented by using a PMSM and an inverter where variable load 
torque was introduced. The variable load torque follows an implemented increasing ramp 
as a torque control reference. Figure 10 depicts the evolution of the acquired currents. 
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Fig. 10. Current supply to the motor 

3.2 Signal acquisition requirements 
When carrying out experimental analyses one of the key elements to obtain good results is 
to choose appropriate acquisition parameters: sampling frequency and number of samples. 
There are three different constraints: analysis signal bandwidth, frequency resolution for the 
FFT analysis and wavelet decomposition spectral bands. 
For an IM, the most significant information about the stator current signal is focused around 
the 0-400 Hz band (Devaney et al., 2004), (Benbouzid et al., 2000) & (Thomson et al., 2003). The 
application of Nyquist’s theorem results in a minimum sampling frequency (fs) of 800 Hz. 
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Furthermore, in case of an FFT analysis, it is necessary to get the right resolution. As for the 
inverter supply, several harmonics could be mixed up in case low resolution of the band 
side was chosen. The minimum resolution needed in order to obtain good results is 0.5 Hz. 
Equation (17) defines the number of samples to achieve the correct resolution required. 

              s
s

fN
R

=   (17) 

Ns  is the number of samples needed and R is the resolution. 
On the other hand, wavelet analysis will show different frequency bands, centered at different 
frequencies. Frequency bands will depend on the sampling frequency, and will decrease as 
shown in Figure 4. The band covered by the wavelet decomposition will start with  

,4 2
sf f⎡ ⎤

⎢ ⎥⎣ ⎦
and will then decrease as of 1

2 . The band suitable for analysis is about 40 Hz 

(Tahori et al., 2007), needs to be covered by one detail, and depends on the sampling 
frequency. 
Finally, a sample frequency fs = 6 kHz was chosen and 50,000 samples were obtained. The 
full analysis band ranges from 0 to 3 kHz with a resolution of 0.12 Hz for the FFT analysis. 
The frequency bands of the wavelet decomposition are shown in Table II.  
 

Decomposition details Frequency bands (Hz) 

Detail at level 1 3000-1500 
Detail at level 2 1500-750 
Detail at level 3 750-375 
Detail at level 4 375-187.5 
Detail at level 5 187.5-92.75 
Detail at level 6 92.75-46.37 
Detail at level 7 46.37-23.18 

Table II. Wavelet decomposition frequency bands for our test 

3.3 Experimental results 
This section presents the experimental results. To clearly demonstrate the effectiveness of 
the method, different test have been performed. Firstly, tests were done in order to verify 
the state of the faulty motor at nominal torque on stationary state. These allow us to check 
MCSA harmonics resulting from the fault condition and their amplitude. The results show 
us that the performance of the DWT is far superior to the FFT. Finally, PSD calculations over 
the wavelet details are used to define a fault factor. 
After an FFT analysis, the current spectra for a faulty motor operating under constant and 
nominal load torque and a frequency supply of 50 Hz show a mark with an amplitude of 
0.15 A (Figure 1) caused by a fault in the motor’s rotor bars. 
Equation (2) determines the frequency where the fault harmonics are located. The 
frequency of the fault harmonic depends on the slip, and the slip, in turn, depends on the 
load torque. This means that a variable load torque condition results in a time-dependent 
slip value, which causes variations in the spectrum. The measured speed values have a 
slip between 5 and 10%. Frequency locations for the fault harmonic are depicted in 
equations (18) and (19). 
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 ( )fault s sf f 1 2 50(1 2 0.05) 45Hz= − = − ⋅ =  (18) 

 ( )fault s sf f 1 2 50(1 2 0.1) 40Hz= − = − ⋅ =  (19) 

Figure 11 corresponds to experimental harmonic distribution for a faulty motor working 
under variable load torque. An FFT analysis shows the spread of the power of a fault 
harmonic along the spectrum and the decrease of its amplitude. The wavelet analysis shows 
the temporary changes in the fault frequency band, and achieves great results under these 
particular conditions. 
  

 
Fig. 11. Spectrum under variable load conditions 
The harmonic amplitude found due to the fault (2.5 mA) is too low to use standard FFT. The 
wavelet transform will be used in order to find the correct amplitude.  
The CWT scalogram is shown in Figure 12. It clearly shows the fault evolution on the 
increased value from 30 to 50 coefficients 
 

 
Fig. 12. Coefficient scalogram for the continuous wavelet transform 
Figures 13 and 14 show the details of the wavelet decomposition for healthy and faulty 
motors when computing the transform with a Daubechies 23 mother wavelet. Daubechies 23 
ensures correct signal decomposition, isolating the fault harmonic content, which gives 
proper results for our diagnostic purposes.  
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Fig. 13. DWT decomposition of a healthy motor     
  

 
Fig. 14. DWT decomposition of a faulty motor 
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Detail levels of high frequency bands provide virtually no information about the original 
signal. Detail 6 corresponds to the frequency band of the main harmonic and detail 7 
corresponds to the frequency band where the fault harmonic is located in the test. 
Comparing Figure 13 to Figure 14, we can clearly see the increase of the coefficient values as 
a result of the fault condition on the depicted scalograms (cfs). Also, the increase of the 
signal content is clearly appreciated on details 4, 5 and 7. 
Promising results are also obtained using wavelet transforms and evaluating the proper 
signal evolution during acquisition time. Figure 14 shows the advantage of the use of 
wavelets under variable load torque. Comparing the FFT decomposition and the DWT 
proves how using the Fourier decomposition (Figure 11) will reveal low amplitude for the 
spectrum in the 40 Hz band, lower than 3 mA. However, analyzing the wavelet time-
amplitude decomposition (Figure 14) will show that the amplitude value follows the change 
of the amplitude in the fault harmonic over time, eventually achieving a value higher than 
0.15 A  when maximum torque is applied. The maximum torque value is the same that was 
applied to the constant torque test. The result of the analysis using the wavelet 
decomposition under a variable load torque matches the results obtained using an FFT 
analysis in the constant load torque test (Figure 1.) 
To perform the diagnosis, we also need to determine the fault factor, which is defined as the 
estimation of the energy content of any decomposed detail. Energy is estimated applying 
equation (16). 
Table III illustrates the energy increment for a fault condition of the approximation and 
detail decompositions at level 7. This energy has been calculated according to equation (12). 
 

Power [W] 
 D1 D2 D3 D5 D6 D7 

Healthy motor 
Phase A 0.00 0.00 0.11 9.9 929.2 35.75 

Motor with broken rotor bars 
Phase A 0.00 0.00 1.1 13 887.7 88.11 

Table III. Power spectral density (power detail density) 
Table III clearly illustrates the energy increment of the decompositions chosen. Both wavelet 
decompositions shown in Table III can be used to detect rotor faults in the motor at any 
point of operation. The fault condition can be clearly identified by analyzing the energy 
content of faulty harmonics (PSD). A clear efficiency decrease of about 6% is appreciated on 
the main supply harmonic and a clear increase due to the fault condition is appreciated on 
the fault frequency bands. In D7, which is placed over the main fault harmonic, there is an 
increase of 2.5 times the energy content. 
This technique combines the time and frequency analysis of wavelet decompositions, 
allowing for better fault factor estimation. Combining DWT and PSD allows for further 
development of expert algorithms to implement an autonomous fault diagnosis system for 
induction machines. 

4. Conclusions 
This chapter has introduced the problems of fault detection under a variable load torque. 
The classical computation of MCSA using the FFT introduces average errors in the 
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amplitude harmonic evaluation, hampering fault detection. To ensure proper results a time-
frequency analysis is required. 
As with time-frequency analysis, the proposed alternative is the discrete wavelet transform 
(DWT). DWT has different resolutions on time and frequency depending on the different 
frequency bands defined. The use of DWT ensures good time-frequency analysis. DWT has 
been used to analyze motors with eccentricity and broken rotor bars under fault conditions, 
achieving good results.  
Moving toward an autonomous diagnosis sensor, a fault condition parameter has been 
studied and the power spectral density has been used as a power detail density with 
wavelets, ensuring proper results. 
To sum up, we can say that: 
• Wavelet decomposition is the proper technique for isolating time components of non-

stationary signals, with low computational costs. 
• Analyzing the energy of some wavelet decompositions is the right way to detect rotor 

faults in industrial motor applications with non-constant load torque. 
• The evolution of wavelet coefficients gives good results in terms of fault detection. 
• Orthogonal properties of wavelet functions ensure the detection of major variations on 

small amplitude signals, which is the case of reduced fault condition operation.  

5. References 
B. Ayhan, M.Y.Chow, H.J. Trussell, M.H. Song, E.S. Kang, H.J.Woe: “Statistical Analysis on 

a Case Study of Load Effect on PSD Technique for Induction Motor Broken Rotor 
Bar Fault Detection”, Symposium on Diagnostics for Electric Machines, Power 
Electronics and Drives, SDEMPED 2003, Atlanta GA, USA 24-26 August 2003. 

Khmais Bacha, Humberto Henao, Moncef Gossa, Gérard-André Capolino; “Induction 
machine fault detection using stray flux EMF measurement and neural network-
based decision”; Electric Power Systems Research, Volume 78, Issue 7, July 2008, 
Pages 1247-1255. 

Mohamed El Hachemi Benbouzid: “A Review of Induction Motor Signature Analysis as a 
Medium for Faults Detection”, IEEE Transactions on Industrial Electronics, Vol. 47, nº 
5, Oct 2000, pp. 984-993. 

Hakan Çalış and Abdülkadir Çakır, Rotor bar fault diagnosis in three phase induction 
motors by monitoring fluctuations of motor current zero crossing instants; Electric 
Power Systems Research, Volume 77, Issues 5-6, April 2007, Pages 385-392. 

J. R. Cameron, W. T. Thomson, and A.. B. Dow: “Vibration and current monitoring for 
detecting airgap eccentricity in large induction motors”, IEE Proceedings, pp. 155-
163, Vol.133, Pt. B, No.3, May 1986. 

W. Deleroi, “Broken bars in squirrel cage rotor of an induction motor- Part 1: Description by 
superimposed fault currents” (in German) Arch. Elektrotech, vol. 67, pp. 91-99, 1984. 

Michael J. Devaney, Levent Eren; “Detecting Motor Bearing Faults” IEEE Transactions on 
Instrumentation and Measurement Magazine, pp 30-50, December 2004.  

Andrew K.S. Jardine, Daming Lin, Dragan Banjevic, A review on machinery diagnostics and 
prognostics implementing condition-based maintenance, Mechanical Systems and 
Signal Processing 20 (2006), 1483-1510 



 Discrete Wavelet Transforms - Theory and Applications 

 

60 

Chinmaya Kar, A.R. Mohanty, Monitoring gear vibrations through motor current signature 
analysis and wavelet transform, Mechanical Systems and Signal Processing 20 (2006) 
158-187. 

S. G. Mallat “A Theory for multiresolution Signal Decomposition: The Wavelet 
Representation” IEEE Transactions on Pattern Analysis and Machine intelligence Vol II 
No 7, July 1989. 

S. G. Mallat, “A Wavelet tour of signal Processing” Academic Press 1998 Second Edition 
Dick Meador; “Tools for O&M, from Building Controls to Thermal Imaging” O&M Workshop 

for Government Facility Managers, June 19, 2003, US Department of Energy. 
Gang Niu, Achmad Widodo, Jong-Duk Son, Bo-Suk Yang, Don-Ha Hwang, Dong-Sik Kang; 

“Decision-level fusion based on wavelet decomposition for induction motor fault 
diagnosis using transient current signal”; Expert Systems with Applications, Volume 
35, Issue 3, October 2008, Pages 918-928. 

G. K. Singh, Saad Ahmed Saleh Al Kazzaz; “Induction machine drive condition monitoring 
and diagnostic research—a survey”, Electric Power Systems Research, Volume 64, 
Issue 2, February 2003, Pages 145-158. 

Easa Tahori Oskouel, Alan James Roddis: “A condition Monitoring Device using Acoustic 
Emission Sensors and data Storage Devices”, UK Patent Application GB 2340034 A, 
data of publication 03/14/2007. 

W. T. Thomson, and M. Fenger: “Case histories of current signature analysis to detect faults 
in induction motor drives”, IEEE International Conference on Electric Machines and 
Drives, IEMDC'03, Vol. 3, pp. 1459-1465, June 2003. 

Abhisek Ukil and Rastko Živanović, “Abrupt change detection in power system fault 
analysis using adaptive whitening filter and wavelet transform”; Electric Power 
Systems Research, Volume 76, Issues 9-10, June 2006, Pages 815-823 

Simi P. Valsan, K.S. Swarup; “Wavelet based transformer protection using high frequency 
power directional signals”; Electric Power Systems Research, Volume 78, Issue 4, 
April 2008, Pages 547-558. 

 



Part 2 

Image Processing and Analysis 





0

A MAP-MRF Approach for Wavelet-Based
Image Denoising

Alexandre L. M. Levada1, Nelson D. A. Mascarenhas2 and Alberto Tannús3

1,2Federal University of São Carlos (UFSCar)
3University of São Paulo (USP)

Brazil

1. Introduction

Image denoising is a required pre-processing step in several applications in image processing
and pattern recognition, from simple image segmentation tasks to higher-level computer
vision ones, as tracking and object detection for example. Therefore, estimating a signal that is
degraded by noise has been of interest to a wide community of researchers. Basically, the goal
of image denoising is to remove the noise as much as possible, while retaining important
features, such as edges and fine details. Traditional denoising methods have been based
on linear filtering, where the most usual choices were Wiener, convolutional finite impulse
response (FIR) or infinitie impulse response (IIR) filters. Lately, a vast literature on non-linear
filtering has emerged Barash (2002); Dong & Acton (2007); Elad (2002); Tomasi & Manduchi
(1998); Zhang & Allebach (2008); Zhang & Gunturk (2008), especially those based on wavelets
Chang et al. (2000); H. et al. (2009); Ji & Fermüller (2009); Nasri & Nezamabadi-pour (2009);
Yoon & Vaidyanathan (2004) inspired by the remarkable works of Mallat (1989) and after
Donoho (1995).
The basic wavelet denoising problem consists in, given an input noisy image, dividing all
its wavelet coefficients into relevant (if greater than a critical value) or irrelevant (if less
than a critical value) and then process the coefficients from each one of these groups by
certain specific rules. Usually, in most denoising applications soft and hard thresholding are
considered, in a way that filtering is performed by comparing each wavelet coefficient to a
given threshold and supressing it if its magnitude is less than the threshold; otherwise, it
is kept untouched (hard) or shrinked (soft). Soft-thresholding rule is generally preferred over
hard-thresholding for several reasons. First, it has been shown that soft-thresholding has several
interesting and desirable mathematical properties Donoho (1995), Donoho & Johnstone (1994).
Second, in practice, the soft-thresholding method yields more visually pleasant images over
hard-thresholding because the latter is discontinuous and generates abrupt artifacts in the
recovered images, especially when the noise energy is significant. Last but not least, some
results found in the literature Chang et al. (2000) conclude that the optimal soft-thresholding
estimator yields a smaller estimation error than the optimal hard-thresholding estimator.
However, for some classes of signals and images, hard-thresholding results in superior estimates
to that of soft-thresholding, despite some of its disadvantages Yoon & Vaidyanathan (2004).
To tackle this problem, several hybrid thresholding functions have been proposed in the
literature.
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To test and evaluate our method, we built a series of experiments using both real Nuclear
Magnetic Resonance (NMR) images and simulated data, considering several wavelet basis.
The obtained results show the effectiveness of GSAShrink, indicating a clear improvement
on the wavelet denoising performance in comparison to the traditional approaches. As in
this chapter we are using a sub-optimal combinatorial optimization algorithm to approximate
the optimal MAP solution, GSAShrink converges to a local maximum, making our method
sensitive to different initializations. What at first could look like a disadvantage, actually
revealed to be an interesting and promissing feature, mostly because we can incorporate
other non-linear filtering techniques in a really straighforward way, by simply using them
to generate better initial conditions for the algorithm. Results obtained by combining Bilateral
Filtering and GSAShrink show that the MAP-MRF method under investigation is capable of
suppressing the noise while preserving most relevant image details, avoiding the appearance
of visible artifacts.
The remaining of the chapter is organized as follows. Section 2 describes the Discrete Wavelet
Transform (DWT) in the context of digital signal processing, showing that, in practice, this
transform can be implemented by a Perfect Reconstruction Filter Bank (PRFB), being completely
characterized by a pair of Quadrature Mirror Filters (QMF), h0[], a low-pass filter and g1[], a
high-pass filter. Section 3 briefly introduces the wavelet-based denoising problem, describing
the proposed MAP-MRF solution, as well as the statistical modeling and threshold estimation,
a crucial step in this kind of application. In Section 4 we briefly discuss the MRF Maximum
Pseudo-Likelihood parameter estimation. The experimental setup and the obtained results are
described in Section 5. Finally, Section 6 brings the our conclusions and final remarks.

2. The Wavelet transform

The basic tool for our MAP-MRF approach is the wavelet transform. Roughly speaking, in
mathematical terms, the wavelet transform is an expansion that decomposes a given signal
in a basis of orthogonal functions. In this sense, we can set a complete analogy with the
Fourier Transform. While the Fourier Transform uses periodic, smooth and unlimited basis
functions (i.e., sines and cosines), the wavelet transform uses non-periodic, non-smooth and
finite support basis functions (i.e., Haar, Daubechies,...), allowing a much more meaningful
representation through multi-resolution analysis, since it can capture a wide . In practice, the
Discrete Wavelet Transform (DWT) can be implemented by a Perfect Reconstruction Filter
Bank (PRFB), being completely characterized by a pair of Quadrature Mirror Filters (QMF)
h0[], a low-pass filter, and g1[], the corresponding high-pass filter, known as analysis filters.

2.1 Perfect reconstruction filter banks (PRFB)
This section describes the Discrete Wavelet Transform from a digital signal processing
perspective, by characterizing its underlying mathematical model by means of the
Z-Transform. For an excellent review on wavelet theory and mathematical aspects of filter
banks the reader is refered to Jensen & Cour-Harbo (2001); Strang & Nguyen (1997),
from where most results described in this section were taken. A two-channel perfect
reconstruction �lter bank (PRFB) consists of two parts: an analysis filter bank, responsible for
the decomposition of the signal in wavelet sub-bands (DWT) and a synthesis filter bank, that
reconstructs the signal by synthesizing these wavelet sub-bands Ji & Fermüller (2009). Figure 1
shows the block diagram of a two-channel PRFB, where H0(z) and G1(z) are the Z-transforms
of the pair of analysis filters, r0[n] and r1[n] are the resulting signals after low-pass and
high-pass filtering, respectively, y0[n] and y1[n] are the downsampled signals, t0[n] and t1[n]
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Fig. 1. Block diagram of a two-channel Perfect Reconstruction Filter Bank

are the upsampled signals obtained by placing zeros between each pair of samples, F0(z)
and K1(z) are the Z-transforms of the pair of synthesis filters, and finally, v0[n] and v1[n] are
interpolated signals that are combined to produce the reconstructed output x̂[n].
The basic assumption for perfect reconstruction is that the output x̂[n] has to be a delayed
version of the input signal x[n]. Suppose that in the filter bank depicted in Figure 1, we have
� levels, each one causing a delay. Then, in mathematical terms, the condition for perfect
reconstruction is:

x̂[n] = x[n− �] (1)

which means that the entire system can be replaced by a single transfer function. Equivalently,
in the Z-domain we have:

X̂(z) = z−�X(z) (2)

As the filter bank defines a linear time invariant (LTI) system and using the convolution
theorem, we have:

R0(z) = H0(z)X(z) (3)

R1(z) = G1(z)X(z) (4)

and using the Z-transform property of decimation operators:

Y0(z) =
1
2

{
R0

(
z1/2

)
+ R0

(
−z1/2

)}
(5)

Y1(z) =
1
2

{
R1

(
z1/2

)
+ R1

(
−z1/2

)}
(6)

leading to the following relationship:
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Y0(z) =
1
2

{
H0(z1/2)X(z1/2) + H0(−z1/2)X(−z1/2)

}
(7)

Y1(z) =
1
2

{
G1(z1/2)X(z1/2) + G1(−z1/2)X(−z1/2)

}
(8)

Since H0(z) and G1(z) are not ideal half-band filters, downsampling can introduce aliasing
since we cannot reduce the interval between samples by half because we would be sampling
below the Nyquist rate. To overcome this problem, conditions for alias cancellation must be
enforced. According to the perfect reconstruction condition:

V0(z) +V1(z) = z−�X(z) (9)

Using the upsampling property of the Z-transform, we have the following expressions for
V0(z) and V1(z):

V0(z) = F0(z)T0(z) = F0(z)Y0(z2) (10)

V1(z) = K1(z)T1(z) = K1(z)Y1(z2) (11)

which leads to:

V0(z) =
1
2
F0(z)

{
H0(z)X(z) + H0(−z)X(−z)

}
(12)

V1(z) =
1
2
K1(z)

{
G1(z)X(z) + G1(−z)X(−z)

}
(13)

Thus, grouping similar terms and enforcing the perfect reconstruction condition, we have the
following equation that relates the input, analysis filters, synthesis filters and the output of
the LTI system:

1
2

{
F0(z)H0(z) + K1(z)G1(z)

}
X(z) + (14)

1
2

{
F0(z)H0(−z) + K1(z)G1(−z)

}
X(−z) = z−�X(z)

Therefore, a perfect reconstruction �lter bank must satisfy the following conditions:

1. Alias cancellation

F0(z)H0(−z) + K1(z)G1(−z) = 0 (15)

2. Perfect Reconstruction (No distortion)

F0(z)H0(z) + K1(z)G1(z) = 2z−� (16)
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The first condition is trivially satisfied by defining the synthesis filters as:

F0(z) = G1(−z) (17)

K1(z) = −H0(−z) (18)

This condition implies that:

F0(z) = G1(−z) (19)

=
∞

∑
−∞

g1[n](−z)−n

=
∞

∑
−∞

(−1)ng1[n]z−n

and

K1(z) = −H0(−z) (20)

= −
∞

∑
−∞

h0[n](−z)−n

=
∞

∑
−∞

(−1)n+1h0[n]z−n

so that the synthesis filters coefficients are obtained directly from the analysis filters by a
simple alternating signs rule:

f0[n] = (−1)ng1[n] (21)

k1[n] = (−1)n+1h0[n]

Defining P0(z) = F0(z)H0(z) and using equation (19) on (16) leads to:

P0(z) − P0(−z) = 2z−� (22)

where � must be odd since the left hand side of (22) is an odd function, since all even terms
cancel each other. Let P(z) = z�P0(z). Then, P(−z) = −z�P0(−z), since � is odd. Rewriting
equation (22) we finally have:

P(z) + P(−z) = 2 (23)

showing that for perfect reconstruction the low-pass filter P(z) requires all even powers to be
zero, except the constant term. The design process starts with the specification of P(z) and

67A MAP-MRF Approach for Wavelet-Based Image Denoising



then the factorization of P0(z) into F0(z)H0(z). Finally, the alias cancellation condition is used
to define G1(z) and K1(z). It has been shown that flattest P(z) leads to the widely recognized
Daubechies wavelet filter Daubechies (1988).
In this chapter, we consider the traditional 2-D separable DWT, also known as Square Wavelet
Transform, that is based on consecutive one dimensional operations on columns and rows of
the pixel matrix. The method first performs one step of the 1-D DWT on all rows, yielding
a matrix where the left side contains down-sampled low-pass (h filter) coefficients of each
row, and the right contains the high-pass (g filter) coefficients. Next, we apply one step to all
columns, resulting in four wavelet sub-bands: LL (which is known as approximation signal),
LH, HL and HH. A multilevel decomposition scheme can be generated in a straghtforward
way, always expanding the approximation signal.
The analysis of a signal or image wavelet coefficients suggests that small coefficients
are dominated by noise, while coefficients with a large absolute value carry more signal
information. Thus, supressing or smoothing the smallest, noisy coefficients and applying
the Inverse Wavelet Transform (IDWT) lead to a reconstruction with the essential signal or
image characteristics, removing the noise. More precisely, this idea is motivated by three
assumptions Jansen (2001):

• The decorrelating property of a DWT creates a sparse signal, where most coefficients are
zero or close to zero.

• Noise is spread out equally over all coefficients and the important signal singularities are
still distinguishable from the noise coefficients.

• The noise level is not too high, so that we can recognize the signal wavelet coefficients.

2.2 Wavelet-based denoising
Basically, the problem of wavelet denoising by thresholding can be stated as follows. Let g ={
gi,j; i, j = 1, 2, . . . , M

}
denotes the M × M observed image corrupted by additive Gaussian

noise:

gi,j = fi,j + ni,j (24)

where fi,j is the noise-free pixel, ni,j has a N(0, σ2) distribution and σ2 is the noise variance.
Then, considering the linearity of the DWT:

yj,k = xj,k + zj,k (25)

with yj,k, xj,k and zj,k denoting the k-th wavelet coefficient from the j-th decomposition level
of the observed image, original image and noise image, respectively. The goal is to recover
the unknown wavelet coefficients xj,k from the observed noisy coefficients yj,k. One way to
estimate xj,k is through Bayesian inference, by adopting a MAP approach. In this chapter, we
introduce a MAP-MRF iterative method based on the combinatorial optimization algorithm
Game Strategy Approach (GSA) Yu & Berthod (1995a), an alternative to the deterministic and
widely known Besag’s Iterated Conditional Modes (ICM) Besag (1986a). By iterative method we
mean that an initial solution x(0) is given and the algorithm successively improves it, by using
the output from one iteration as the input to the next. Thus, the algorithm updates the current
wavelet coefficients given a previous estimative according to the following MAP criterion:

x̂(p+1)
j,k = arg maxxj,k

{
p

(
xj,k|x(p)

j,k , yj,k,�Ψ
)}

(26)
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where p
(
xj,k|x(p)

j,k , yj,k,�Ψ
)

represents the a posteriori probability obtained by adopting a
Generalized Gaussian distribution as likelihood (model for observations) and a Generalized
Isotropic Multi-Level Logistic (GIMLL) MRF model as a priori knowledge (for contextual

modeling), x(p)
j,k denotes the wavelet coefficient at p-th iteration and �Ψ is the model parameter

vector. This vector contains the parameters that control the behavior of the probability laws.
More details on the statistical modeling and how these parameters are estimated are shown
in Sections 3 and 4. In the following, we will derive an algorithm for approximating the MAP
estimator by iteratively updating the wavelet coefficients.

3. The MAP-MRF framework for bayesian inference

The main problem with MAP-MRF approaches is that there is no analytical solution for
MAP estimation. Hence, algorithms for numerically approximating the MAP estimator are
required. It has been shown, in combinatorial optimization theory, that convergence to the
global maximum of the posterior distribution can be achieved by the Simulated Annealing
(SA) algorithm Geman & Geman (1984). However, as SA is extremely time consuming and
demands a high computational burden, sub-optimal combinatorial optimization algorithms,
which yield computationally feasible solutions to MAP estimation, are often used in real
problems. Some of the most popular iterative algorithms found in image processing literature
are: the widely used Besag’s Iterated Conditional Modes (ICM) Besag (1986a), Maximizer of the
Posterior Marginals (MPM) Marroquin et al. (1987a), Graduated Non-Convexity (GNC) Blake &
Zisserman (1987), Highest Con�dence First (HCF) Chou & M. (1990) and Deterministic Pseudo
Annealing Berthod et al. (1995). In this chapter, we introduce GSAShrink, a modified version of
an alternative algorithm known as Game Strategy Approach (GSA) Yu & Berthod (1995a), based
on non-cooperative game theory concepts and originally proposed for solving MRF image
labeling problems.

3.1 Statistical modeling
3.1.1 Generalized gaussian distribution
It has been shown that the distribution of the wavelet coefficients within a sub-band can
be modeled by a Generalized Gaussian (GG) with zero mean Mallat (1989), Westerink et al.
(1991). The zero mean GG distribution has the probability density function:

p (w|ν, β) =
ν

2βΓ (1/ν)
exp

{
−

( |w|
β

)ν}
(27)

where ν > 0 controls the shape of the distribution and β the spread. Two special cases of the
GG distribution are the Gaussian and the Laplace distributions. When ν = 2 and β =

√
2σ,

it becomes a standard Gaussian distribution. The Laplace distribution is obtained by setting
ν = 1 and β = 1/λ. According to Sharifi & Leon-Garcia (1995), the parameters ν and β
can be empirically determined by directing computing the sample moments χ = E [|w|] and
ψ = E

[
w2] (method of moments), because of this useful relationship:

ψ

χ2 =
Γ

(
1
ν̂

)
Γ

(
3
ν̂

)

Γ2
(

2
ν̂

) (28)

and we can use a look-up table with different values of ν and determine is value from the ratio
ψ/χ2. After, it is possible to obtain β̂ by:
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β̂ =
ψΓ

(
1
ν̂

)

Γ
(

3
ν̂

) (29)

3.1.2 Generalized isotropic multi-level logistic
Basically, MRF models represent how individual elements are influenced by the behavior
of other individuals in their vicinity (neighborhood system). MRF models have proved
to be powerful mathematical tools for contextual modeling in several image processing
applications. In this chapter, we adopt a model originally proposed in Li (2009) that
generalizes both Potts and standard isotropic Multi-Level Logistic (MLL) MRF models for
continuous random variables. According to the Hammersley-Clifford theorem any MRF
can be equivalently defined by a joint Gibbs distribution (global model) or by a set of
local conditional density functions (LCDF’s). From now on, we will refer to this model
as Generalized Isotropic MLL MRF model (GIMLL). Due to our purposes and also for
mathematical tractability, we define the following LCDF to characterize this model, assuming
the wavelet coefficients are quantized into M̃ levels:

p (xs|ηs, θ) =
exp {−θDs (xs)}

∑y∈G exp {−θDs (y)} (30)

where Ds(y) = ∑k∈ηs

[
1 − 2exp

(
− (y− xk)

2
)]

, xs is the s-th element of the field, ηs is the
neighborhood of xs, xk is an element belonging to the neighborhood of xs, θ is a parameter
that controls the spatial dependency between neighboring elements, and G is the set of all
possible values of xs, given by G = {g ∈ �/m ≤ g ≤ M}, where m and M are respectively,
the minimum and maximum sub-band coefficients, with |G| = M̃ (cardinality of the set). This
model provides a probability for a given coefficient depending on the similarity between its
value and the neighboring coefficient values. Acording to Li (2009), the motivation for this
model is that it is more meaningful in texture representation and easier to process than the
isotropic MLL model, since it incorporates similarity in a softer way.
For GIMLL MRF model parameter estimation we adopt a Maximum Pseudo-Likelihood
(MPL) framework that uses the observed Fisher information to approximate the asymptotic
variance of this estimator, which provides a mathematically meaningful way to set this
regularization parameter based on the observations. Besides, the MPL framework is useful
in assessing the accuracy of MRF model parameter estimation.

3.2 Game strategy approach
In a n-person game, I = {1, 2, . . . , n} denotes the set of all players. Each player i has a set
of pure strategies Si. The game process consists in, at a given instant, each player choosing a
strategy si ∈ Si. Hence, a situation (or play) s = (s1, s2, . . . , sn) is yielded, and a payoff Hi (s) is
assigned to each player. In the approach proposed by Yu & Berthod (1995a), the payoff Hi (s)
of a player is defined in such a way that it depends only on its own strategy and on the set of
strategies of neighboring players.
In non-cooperative game theory each player tries to maximize his payoff by choosing his own
strategy independently. In other words, it is the problem of maximizing the global payoff
through local and independent decisions, similar to what happens in MAP-MRF applications
with the conditional independence assumption.
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A mixed strategy for a player is a probability distribution defined over the set of pure
strategies. In GSA, it is supposed that each player knows all possible strategies, as well as the
payoff given by each one of them. Additionally, the solutions for a non-cooperative n-person
game are given by the set of points satisfying the Nash Equilibrium condition (or Nash points).
It has been shown that Nash Equilibrium points always exist in non-cooperative n-person
games Nash (1950). A play t∗ =

(
t∗1, t∗2, . . . , t∗n

)
satisfies the Nash Equilibrium condition

if none of the players can improve you payoff by changing his strategy unilaterally, or in
mathematical terms:

∀i : Hi (t∗) = maxsi∈SiHi (t∗||t) (31)

where t∗||t is the play obtained by replacing t∗ by t.
The connection between game theory and combinatorial optimization algorithms is
demonstrated in Yu & Berthod (1995a). It has been proved that the GSA algorithm
fundamentals are based on two major results that states the equivalence between MAP-MRF
estimation and non-cooperative games Yu & Berthod (1995a):

Theorem 3..1. (MAP-MRF Nash Points Equivalence Theorem) The set of local maximum points
of the a posteriori probability in MAP-MRF image labeling problems is identical to the set of Nash
equilibrium points of the corresponding non-cooperative game.

Theorem 3..2. (GSA Convergence Theorem) The GSA algorithm converges to a Nash point in a
�nite number of iterations, given an arbitrary initial condition.

Actually, a complete analogy between game theory and the wavelet denoising problem can
be made, since the wavelet denoising process can be thought as being a generalization of
image labeling, where instead of discrete labels, the unknown coefficients are continuous
random variables. In Table 1 we show how concepts of non-cooperative game theory and
our algorithm are in fact closely related.

Wavelet Denoising Game Theory

sub-band lattice n-person game structure
sub-band elements players
wavelet coefficients pure strategies

an entire sub-band at p-th iteration a play or situation
posterior distribution payoff

local conditional densities mixed strategies
local maximum points (MAP) Nash equilibrium points

Table 1. Correspondence between concepts of game theory and the MAP-MRF wavelet
denoising approach.

3.3 GSAShrink for wavelet denoising
Given the observed data y (noisy image wavelet coefficients), and the estimated parameters
for all the sub-bands �Ψr =

{
ν̂r , β̂r , θ̂r

}
, r = 1, . . . , S, where S is the total number of sub-bands

in the decomposition, our purpose is to recover the optimal wavelet coefficient field x∗ using a
Bayesian approach. As the number of possible candidates for x∗ is huge, to make the problem
computationally feasible, we adopt an iterative approach, where the wavelet coefficient field
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at a previous iteration, let’s say x(p), is assumed to be known. Hence, the new wavelet

coefficient x(p+1)
j,k can be obtained by:

x(p+1)
j,k = argmaxxj,k

�
log p

�
xj,k|x(p), yj,k,�Ψj

��
(32)

Basically, GSAShrink consists in, given an initial solution, improve it iteratively by scanning
all wavelet coefficients sequentially until the convergence of the algorithm or until a
maximum number of iterations is reached. In this manuscript, we are setting the initial
conditions as the own noisy image wavelet sub-band, that is, x(0) = y, although some
kind of previous preprocessing may provide better initializations. Considering the statistical
modeling previously described, we can define the following approximation:

log p
�
xj,k|x(p), yj,k,�Ψj

�
∝ log

⎛
⎝ ν̂j

2β̂jΓ
�

1
ν̂j

�
⎞
⎠ − (33)

⎡
⎣

���yj,k
���

β̂j

⎤
⎦

ν̂j

− θ̂j ∑
(�∈ηj,k)

�
1 − 2exp

�
−

�
x(p)
j,k − x(p)

j,�

�2
��

Therefore, we can define the following rule for updating the wavelet coefficient x(p)
j,k , based on

minimizing the negative of each player payoff, denoted by Hj,k

�
x, y,�Ψj

�
, considering x(0) =

y:

x(p+1)
j,k = argminxj,k

�
Hj,k

�
x, y,�Ψj

��
(34)

where

Hj,k

�
x, y,�Ψj

�
= (35)

⎡
⎣

���xj,k
���

β̂j

⎤
⎦

ν̂j

+ θ̂j ∑
(�∈ηj,k)

�
1 − 2exp

�
−

�
x(p)
j,k − x(p)

j,�

�2
��

The analysis of the above functional (the payoff of each player), reveals that while the first
term favors low valued strategies (coefficients near zero), since the mean value of wavelet
coefficients in a sub-band is zero, the MRF term favors strategies that are similar to those
belonging to the neighborhood (coefficients close to the neighboring ones), defining a tradeoff
between supression and smoothing, or hard and soft thresholding. In this scenario, the
MRF model parameter plays the role of a regularization parameter, since it controls the
compromisse between these two extreme behavior. Thus, our method can be considered a
hybrid adaptive approach since identical wavelet coeficients belonging to different regions
of a given sub-band are modified by completely different rules. In other words, coefficients
belonging to smooth regions tend to be more attenuated than those belonging to coarser
regions. In the following, we present the GSAShrink algorithm for wavelet-based image
denoising.
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ALGORITHM: GSAShrink for wavelet denoising
Require: The S sub-bands of the wavelet decomposition (LH1, HL1, HH1, . . .), a payoff

function (Hj,k), the probability of acceptance of new strategies (α), the attenuation parameter
for noisy coefficients (β), the gain parameter for relevant image coefficients (γ), the
threshold (T) and the number of iterations (MAX).

Ensure: Shrinked wavelet sub-bands
while p ≤ MAX do

for j = 1 to S do
for k = 1 to L (j) do {L (j): size of current sub-band}

x∗j,k = argminxj,k
{
Hj,k

(
x, y,�Ψj

)}

if
(
H

(
x∗j,k

)
≤ H

(
x(p)
j,k

))
then

if
(∣∣∣x(p)

j,k

∣∣∣ ≥ T
)

or
(
max

{∣∣∣ηj,k

∣∣∣
}
≥ T

)
then

x(p+1)
j,k = x(p)

j,k × (1 + γ)
else

x(p+1)
j,k = x∗j,k w. p. α;

Otherwise,
x(p+1)
j,k = x(p)

j,k × (1 − β) w. p. (1 − α) ;
end if

end if
end for

end for
end while

It is interesting to note that an observation can be set forward to explain why there are a large
number of "small" coefficients but relatively few "large" coefficients as the GGD suggests: the
small ones correspond to smooth regions in a image and the large ones to edges, details or
textures Chang et al. (2000). Therefore, the application of the derived MAP-MRF rule in all
sub-bands of the wavelet decomposition removes noise in an adaptive manner by smoothing
the wavelet coeficients in a selective way.
Basically, the GSAShrink algorithm works as follows: for each wavelet coefficient, the value
that maximizes the payoff is chosen and the new payoff is calculated. If this new payoff is
less than the original one, then nothing is done (since in the Nash equilibrium none of the
playes can improve its payoff by uniterally changing its strategy). Otherwise, if the absolute
value of the current wavelet coefficient xj,k or any of its neighbors is above the threshold T,
which means that we are probably dealing with relevant image information such as edges
or fine details, then xj,k is amplified by a factor of (1 + γ). The goal of this procedure is to
perform some image enhancement during noise removal. However, if its magnitude is less a
threshold, then the new coefficient x∗j,k is accepted with probability α, which is a way to smooth
the wavelet coefficients since we are employing the MAP-MRF functional given by equation
(35). The level of suppression/shrinkage depends basically on two main issues: the contextual
information and the MRF model parameter, that controls the tradeoff between suppression
and smoothing. On the other hand, with probability (1 − α) the coefficient is attenuated by
a constant factor of (1 − β), since we are probably facing a noise coefficient. It is worthwhile
to note that the only parameter originally existing in the traditional GSA algorithm for image
labeling problems is α, that controls the probability of acceptance of new strategies. Both β
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and γ parameters have been included to better represent the nature of our problem. Also,
in all experiments thoughout this chapter, we have adopted the following parameter values:
α = 0.9, β = 0.1, γ = 0.05 and MAX = 5.

3.4 Wavelet thresholds
As we have seen, a critical issue in the method is the choice of the thresholding value. Several
works in the wavelet literature discuss threshold estimation Chang et al. (2000); Jansen &
Bultheel (1999). In the experiments throughout this chapter we adopted four different wavelet
thresholdings: universal Donoho (1995); Donoho et al. (1995), SURE Jansen (2001), Bayes and
Oracle thresholds Chang et al. (2000).

3.4.1 Universal threshold
Despite its simplicity, it has been shown that the Universal Threshold has some optimal
asymptotic properties Donoho (1995); Donoho & Johnstone (1994). The Universal Threshold
is obtained by the following expression:

λUNIV =
√

2logNσ2 (36)

where N is the number of data points and σ2 denotes the noise variance. Thus, the Universal
Threshold does not depend directly on the observed input signal, but only on simple statistics
derived from it.

3.4.2 SURE threshold
The SURE (Steins’s Unbiased Risk Estimator) threshold is obtained by minimizing a risk function
R(.), assuming the coefficients are normally distributed Hudson (1978); Stein (1981). In this
chapter, we use the approximation for R(.) derived in Jansen (2001) and given by:

R(λ) =
[

1
N

�ωλ − ω�2 − σ2
]

+
[

2σ2 (N− N0)
N

]
(37)

where N is the number of wavelet coefficients, σ2 is the noise variance, ωλ and ω denote
the wavelet coefficients before and after thresholding, respectively, and N0 is number of null
wavelet coefficients after thresholding. The SURE threshold λSURE, is defined as the one that
minimizes R(λ), that is:

λSURE = argminλ {R(λ)} (38)

Analyzing the expression we can see that this method for threshold estimation seeks a tradeoff
between data fidelity and noise removal.

3.4.3 Bayes threshold
The Bayes Threshold is a data-driven threshold derived in Bayesian framework by using
a generalized Gaussian distribution as prior for the wavelet coefficients. It is a simple and
closed-form threshold that is obtained in a sub-band adaptive way by Chang et al. (2000):

λBAYES =
σ̂2

σ̂x
(39)

where
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σ̂2

σ̂x
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where

σ̂x =
√

max
(
σ̂2
y − σ̂2, 0

)
(40)

σ̂2
y =

1
N2

N

∑
1
y2
i (41)

σ̂ =
Median (|yi|)

0.6745
(42)

It is worth mentioning that in case of σ̂2 > σ̂2
y , σ̂x is taken to be zero, implying that λBAYES =

∞, which means, in practice, that all coefficients within the sub-band are suppressed.

3.4.4 Oracle thresholds
The Oracle Thresholds are the theoretic optimal sub-band adaptive thresholds in a MSE
sense, assuming the original image is known, a condition that obviously is possible only in
simulations. The OracleShrink threshold is defined as:

λ∗
S = argminλ

{
N

∑
k=1

(ηλ (yk) − xk)
2

}
(43)

where N is the number of wavelet coefficients in the sub-band, ηλ denotes the soft
thresholding operator and xk is the k-th coefficient of the original image. Similarly, the
OracleThresh threshold is given by:

λ∗
H = argminλ

{
N

∑
k=1

(ψλ (yk)− xk)
2

}
(44)

where ψλ denotes the hard threshold operator.

4. Statistical inference on MRF models

With advances on probability and statistics, such as the remarkable Hammersley-Clifford
Theorem Hammersley & Clifford (1971), which states the Gibbs-Markov equivalence,
Bayesian inference and the development of Markov Chain Monte Carlo simulation methods
(MCMC) Metropolis et al. (1953), Geman & Geman (1984), Swendsen & Wang (1987), Wolff
(1989) together with combinatorial optimization algorithms to solve numerical maximization
of complex high dimensional functions Besag (1986b), Marroquin et al. (1987b), Yu & Berthod
(1995b), Markov Random Fields became a central topic in a variety of research fields including
pattern recognition, game theory, computer vision and image processing. Those important
contributions have led to a huge number of novel methodologies and techniques in statistical
applications, especially those regarding contextual modeling and spatial data analysis.
However, in most applications the MRF model parameters are still chosen by trial-and-error
through simple manual adjustments Solberg (2004), Wu & Chung (2007). Therefore, statistical
inference on several MRF models remains an open problem. The main reason is that the most
general estimation method, maximum likelihood (ML), is computationally intractable. An
alternative solution proposed by Besag (1974) is to use the local conditional density functions
(LCDF) to perform Maximum Pseudo-Likelihood (MPL) estimation.
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4.1 Maximum pseudo-likelihood estimation
This section briefly describes the MLP estimation of the Generalized isotropic MLL parameter
model θ, given by equation (30). Basically, our motivations for this approach are:

• MPL estimation is a computationally feasible method.

• From a statistical perspective, MPL estimators have a series of desirable properties, such
as consistency and asymptotic normality Jensen & Künsh (1994), Winkler (2006).

In recent works found in MRF literature, analytical pseudo-likelihood equations for Potts
MRF model on higher-order neighborhood systems have been derived Levada et al. (2008c),
showing the importance of MRF parameter estimation assessment. In the experiments along
this chapter, the proposed methodology is based on the approximation for the asymptotic
variance of the Potts MRF model reported in Levada et al. (2008b) and Levada et al. (2008a).

4.1.1 Pseudo-likelihood equation
The main advantage of maximum pseudo-likelihood estimation is its mathematical
tractability and computational simplicity. The pseudo-likelihood function for the Generalized
Potts MRF model is defined as:

PL(X; θ) =
N

∏
s=1

exp {−θDs (xs)}
∑y∈G exp {−θDs(y)} (45)

where N denotes the number of elements on the field.
Taking the logarithms, differentiating on the parameter and setting the result to zero, lead to
the following expression (pseudo-likelihood equation):

N

∑
s=1

[
∑y∈G Ds (y) exp {−θDs (y)}

∑y∈G exp {−θDs (y)}

]
=

N

∑
s=1

Ds (xs) (46)

In the experiments, the solution is obtained by finding the zero of the resultant equation.
We chose the Brent’s method Brent (1973), a numerical algorithm that does not require the
computation (or even the existence) of derivatives. The advantages of this method are: it uses
a combination of bisection, secant, and inverse quadratic interpolation methods, leading to a
very robust approach. Besides, it has superlinear convergence rate.

4.2 Bilateral filtering
Bilateral Filtering (BF) is a noniterative and local non-linear spatial domain filtering technique
that originally was proposed as an intuitive tool Tomasi & Manduchi (1998) but later has
showed to be closely related to classical partial differential equation based methods, more
precisely, anisotropic diffusion Barash (2002); Dong & Acton (2007); Elad (2002). The basic
idea of bilateral filtering is to use a weighted average of degraded pixels to recover the original
pixel by combining a low-pass function (hD) and a edge stoping function (hP) according to the
following relationship:

f̂ [i, j] =
∑(k,n)∈Ωi,j

hD [k, n]hP[k, n]g(k,n)

∑(k,n)∈Ωi,j
hD [k, n]hP[k, n]

(47)

where Ωi,j is a (2N + 1) × (2N + 1) window centered at (i, j) and
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where Ωi,j is a (2N + 1) × (2N + 1) window centered at (i, j) and

hD [k, n] = exp

{
− (k− i)2 + (n− j)2

2σ2
D

}
(48)

hP[k, n] = exp

{
− (g[k,n] − g[i, j])2

2σ2
P

}
(49)

where the parameters σD and σP control the effect of the spatial and radiometric weight
factors. The first weight, hD , measures the geometric distance between the central pixel and
each one of its neighbors, in a way that the nearest samples have more influence on the final
result than the distant ones. The second weight, hP, penalizes the neighboring pixels that vary
greatly in intensity from the central pixel, in a way that the larger the difference, the smaller
will be the pixel’s contribution during the smoothing. In all experiments along this chapter,
we set N = 2 (5 × 5 window), σ2

D = 1 and σ2
P = 0.1.

Basis Metrics
Soft Hard GSAShrink

ISNR -0.8484 0.4388 0.5823
HAAR PSNR 25.613 27.032 27.777

SSIM 0.8012 0.8625 0.8903
ISNR 0.4864 1.6952 2.2662

DB4 PSNR 27.067 28.705 29.365
SSIM 0.8598 0.9017 0.9108
ISNR 0.6580 1.8093 2.3455

SYM4 PSNR 27.257 28.662 29.266
SSIM 0.8639 0.9001 0.9113
ISNR 0.8336 1.9868 2.587

BIOR6.8 PSNR 27.549 28.856 29.829
SSIM 0.8655 0.8981 0.9176

Table 2. Performance of wavelet denoising algorithms on Lena image corrupted by additive
Gaussian noise (PSNR = 26.949 dB) using the Universal Threshold.

5. Experiments and results

In order to test and evaluate the GSAShrink algorithm for wavelet-based image denoising,
we show the results of some experiments performed by using both simulated and real noisy
image data:

• Lena image corrupted by gaussian noise.

• Real Nuclear Magnetic Resonance (NMR) images from primate brains (marmosets and
brown capuchin monkeys).

In all experiments the wavelet thresholds were estimated in a sub-band adaptive way, which
means that we used a different threshold λj, j = 1, 2, . . . , 6, for each sub-band, except the
LL2 (approximation), since we are using a Level-2 wavelet decomposition, resulting in the six
details sub-bands known as LL2, LH2, HL2,HH2, LH1,HL1 and HH1. Also, in all experiments,
we compared the performance of GSAShrink against soft and hard-thresholding techniques,
by using several wavelet basis: Haar, Daubechies4, Symlet4 and Biorthogonal6.8, a kind of
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(a) LHL wavelet subband. (b) HH wavelet subband.

Fig. 2. HL2 and HH1 wavelet sub-bands for the Lena image: (a) a more homogeneous
situation (θ = 1.1754) and (b) a more heterogeneous case (θ = 0.9397), defined by statistically
different MRF parameter values.

wavelet transform that has filters with symmetrical impulse response, that is, linear phase
filters. The motivation for including Biorthogonal wavelets is that it has been reported that in
image processing applications filters with non-linear phase aften introduce visually annoying
artifacts in the denoised images.
To perform quantitative analysis of the obtained results, we compared several metrics
for image quality assessment. In this manuscript, we selected three different metrics that
are: Improvement in Signal-To-Noise-Ratio (ISNR), Peak Signal-To-Noise Ratio (PSNR) and
Structural Similarity Index (SSIM), since MSE based metrics have proved to be inconsistent
with the human eye perception Wang & Bovik (2009).

Sub-band θ̂MPL σ̂2
n(θ̂MPL)

LH2 1.1441 3.1884 × 10−6

HL2 1.1754 9.1622 × 10−6

HH2 1.0533 1.8808 × 10−5

LH1 0.9822 6.2161 × 10−6

HL1 0.9991 7.3409 × 10−6

HH1 0.9397 4.5530 × 10−6

Table 3. MPL estimators for θ and asymptotic variances for the Lena image wavelet
sub-bands.

Table 2 shows the results for GSAShrink denoising on the Lena image, corrupted by additive
Gaussian noise (PSNR = 26.949 dB). Table 3 shows the estimated regularization MRF
parameters and their respective asymptotic variances for each one of the details sub-bands.
Figure 2 shows the HL2 and HH1 sub-bands of wavelet decomposition. Note that the coarser
a sub-band, the smaller is the regularization parameter, indicating that suppression is favored
over smoothing, forcing a more intense noise removal.
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parameters and their respective asymptotic variances for each one of the details sub-bands.
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Analyzing the results, we see that GSAShrink had superior performance in all cases.
Furthermore, the best result was obtained by using GSAShrink with Biorthogonal 6.8 wavelets.
To illustrate these numerical results, Figure 3 shows some visual results for the best
performances.

(a) Noisy Lena. (b) Soft-Threshold.

(c) Hard Threshold. (d) GSAShrink.

Fig. 3. Visual results for wavelet denoising using Biorthogonal6.8 wavelets with sub-band
adaptive Universal threshold (Table 2): (a) Noisy Lena; (b) Soft-Threshold; (c)
Hard-Threshold; (d) GSAShrink.

The same experiment was repeated by considering other threshold estimation methods. The
use of SURE and Bayes thresholds improved the denoising performance, as indicate Table
4. As the use of Biothogonal6.8 wavelets resulted in uniformly superior performances, from
now on we are omitting the other wavelet filters. Figure 4 shows the visual results for the best
results (SURE).
As GSAShrink iterativelly converges to local maxima solutions, we performed an experiment
to illustrate the effect of using different initializations on the final result by combining spatial
domain (Bilateral Filtering) and wavelet-domain (GSAShrink) non-linear filtering. If instead of
considering the observed noisy image directly as input to our algorithm, we use the result
of Bilateral Filtering, the performance can be further improved. Table 5 shows a comparison
between simple Bilateral Filtering and the combined approach. Figure 5 shows that the use of
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Threshold Metrics
Soft Hard GSAShrink

ISNR 2.0235 2.8836 3.3458
SURE PSNR 28.702 29.641 30.441

SSIM 0.8918 0.8991 0.9270
ISNR 2.8511 1.2721 3.2280

Bayes PSNR 29.433 28.270 29.880
SSIM 0.8942 0.8306 0.9157
ISNR 3.3713 2.7318 3.6411

Oracle PSNR 30.045 29.586 30.609
SSIM 0.9103 0.8964 0.9277

Table 4. Performance of wavelet denoising algorithms on Lena image corrupted by additive
Gaussian noise (PSNR = 26.949 dB) using the SURE, Bayes and Oracle thresholds with
Biorthogonal6.8 wavelets.

(a) Noisy Lena. (b) Soft-Threshold.

(c) Hard-Threshold. (d) GSAShrink.

Fig. 4. Visual results for wavelet denoising using Biorthogonal6.8 wavelets with sub-band
adaptive SURE threshold (Table 4): (a) Noisy Lena; (b) Soft-Threshold; (c) Hard-Threshold;
(d) GSAShrink.

Bilateral Filtering in the generation of initial conditions to the GSAShrink algorithm prevents
the appearance of visible artifacts that are usually found in wavelet-based methods.
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Fig. 4. Visual results for wavelet denoising using Biorthogonal6.8 wavelets with sub-band
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Bilateral Filtering in the generation of initial conditions to the GSAShrink algorithm prevents
the appearance of visible artifacts that are usually found in wavelet-based methods.

Metric BF GSAShrink BF + GSAShrink
ISNR 4.6211 3.2280 4.6912
PSNR 31.149 29.880 31.481
SSIM 0.9142 0.9157 0.9310

Table 5. Results of using Bilateral Filtering to generate better initial conditions to our
MAP-MRF approach.

Sub-band θ̂MPL σ̂2
n(θ̂MPL)

LH2 0.8066 2.4572 × 10−5

HL2 0.8898 3.7826 × 10−5

HH2 0.7338 1.0153 × 10−5

LH1 0.7245 3.9822 × 10−5

HL1 0.7674 5.8675 × 10−5

HH1 0.6195 4.4578 × 10−5

Table 6. MPL estimators for θ and asymptotic variances for the NMR image wavelet
sub-bands.

5.1 Results on real image data
Additionally to the simulations, we have performed some experiments on real NMR
image data to test and evaluate GSAShrink. The NMR images considered here are from
primate brains (both marmosets and brown capuchin monkeys) and were acquired by
the CInAPCe project, an abbreviation for the Portuguese expression “Inter-Institutional
Cooperation to Support Brain Research” a Brazilian research project that has as main purpose
the establishment of a scientific network seeking the development of neuroscience research
through multidisciplinary approaches. In this sense, image processing can contribute to the
development of new methods and tools for analyzing magnetic resonance imaging and its
integration with other methodologies in the investigation of brain diseases.
Figure 6 shows some visual results for NMR image denoising. Analyzing the results, it is
possible to see that GSAShrink acts more like soft-thresholding in homogeneous areas and
more like hard-thresholding in regions with a lot of details. Table 6 shows the estimated
regularization MRF parameters and their respective asymptotic variances for each one of the
details sub-bands. Figure 7 shows the subbands HL2 and HH1.

6. Conclusion

In this chapter, we investigated a novel MAP-MRF iterative algorithm for wavelet-based
image denoising (GSAShrink). Basically, it uses the Bayesian approach and game-theoretic
concepts to build a flexible and general framework for wavelet shrinkage. Despite its
simplicity, GSAShrink has demonstrated to be efficient in edge-preserving image filtering.
The Generalized Gaussian distribution and a GIMLL MRF model were combined to derive a
payoff function which provides a rule for iterativelly update the current value of a wavelet
coefficient. This was, to the best of our knowledge, the first time these two models were
combined for this purpose. Also, we have shown that in this scenario, the MRF model
parameter plays the same role of a regularization parameter, since it controls the tradeoff
between supression and atenuation, defining a hybrid approach.
Experiments with both simulated and real NMR image data provided good results that were
validated by several quantitative image quality assessment metrics. The obtained results
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(a) Original Lena. (b) Bilateral Filtering (BF).

(c) GSAShrink. (d) BL + GSAShrink.

Fig. 5. Results for wavelet denoising using combination of Bilateral Filtering and our
MAP-MRF approach (Table 5): (a) Original Lena; (b) Bilateral Filtering (BF); (c) GSAShrink;
(d) Bilateral Filtering + GSAShrink.

indicated a significant improvement in the denoising performance, showing the efectiveness
of the proposed method.
Future works may include the use and investigation of more wavelet decomposition levels,
other kinds of wavelet transforms, such as wavelet packets and undecimated or stationary
transforms, as well as the filtering of other kinds of noise such as multiplicative speckle and
signal-dependent Poisson noise (by using the Anscombe Transform). Finally, we intend to
proposed and study the viability of other combinatorial optimization shrinkage methods
as ICMShrink and MPMShrink, based on modified versions of ICM and MPM algorithms
respectively. Regarding the influence of the initial conditions on the final result, we believe
that the use of multiple initializations instead of a single one, together with information
fusion techniques, can further improve the denoising performance, particularly in multiframe
image filtering/restoration or video denoising, where several frames from the same scene are
available and only the noise changes from one frame to another.
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transforms, as well as the filtering of other kinds of noise such as multiplicative speckle and
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proposed and study the viability of other combinatorial optimization shrinkage methods
as ICMShrink and MPMShrink, based on modified versions of ICM and MPM algorithms
respectively. Regarding the influence of the initial conditions on the final result, we believe
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(a) Noisy NMR image. (b) Soft-Threshold.

(c) Hard-Threshold. (d) BL + GSAShrink.

Fig. 6. Results for wavelet denoising on real NMR marmoset brain image data: (a) Noisy
NMR image; (b) Soft-Threshold; (c) Hard-Threshold; (d) Bilateral Filtering + GSAShrink.

(a) LHL subband. (b) HH subband.

Fig. 7. HL2 and HH1 wavelet sub-bands for the NMR image: (a) a more homogeneous
situation (θ = 0.8898) and (b) a more heterogeneous case (θ = 0.6195), defined by statistically
different MRF parameter values.
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1. Introduction      
Contrast enhancement is frequently referred as one of the most important issues in image 
processing. Contrast is created by the difference in luminance reflected from two adjacent 
surfaces. In other words, contrast is the difference in visual properties that makes an object 
distinguishable from other objects and the background. In visual perception, contrast is 
determined by the difference in the color and brightness of the object with other objects. Our 
visual system is more sensitive to contrast than absolute luminance; therefore, we can perceive 
the world similarly regardless of the considerable changes in illumination conditions.  
If the contrast of an image is highly concentrated on a specific range, e.g. an image is very 
dark; the information may be lost in those areas which are excessively and uniformly 
concentrated. The problem is to optimize the contrast of an image in order to represent all 
the information in the input image. There have been several techniques to overcome this 
issue (Shadeed et al., 2003; Gonzales and Woods, 2007; Kim et al., 1998; Chitwong et al., 
2002). One of the most frequently used techniques is general histogram equalization (GHE). 
After the introduction of GHE, researchers came out with better techniques such as local 
histogram equalization (LHE). However, the contrast issue is yet to be improved and even 
these days many researchers are proposing new techniques for image equalization. In this 
work, we are comparing our results with two state-of-art techniques, namely, dynamic 
histogram equalization (DHE) (Abdullah Al Wadud et al., 2007) and our previously 
introduced singular value equalization (SVE) (Demirel et al. ISCIS 2008).  
As motioned before, in many image-processing applications, GHE technique is one of the 
simplest and most effective primitives for contrast enhancement (Kim and Yang, 2006), 
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which attempts to produce an output histogram that is uniform (Weeks et al., 1999). One of 
the disadvantages of the GHE is that the information laid on the histogram or probability 
distribution function (PDF) of the image will be lost. Demirel and Anbarjafari showed that 
the PDF of face images can be used for face recognition (Demirel and Anbarjafari, IEEE 
Signal Processing Letter, 2008), hence preserving the shape of PDF of the image is of vital 
importance. Techniques such as DHE or SVE are preserving the general pattern of the PDF 
of an image. DHE is obtained from dynamic histogram specification (Sun et al., 2005) which 
generates the specified histogram dynamically from the input image. DHE algorithm works 
in the following way (Abdullah Al Wadud et al., 2007): Firstly, the locations of local 
minimums of the histogram are found and then the histogram is divided into several sub-
histograms based on those local minimums. Then the mean, µ, and standard deviation, σ, 
for each sub-histogram is calculated. If gray levels(GLs) of having frequencies within (µ-σ) to 
(µ+σ) is more than an specific value, e.g. 68.3% of the total number of GLs of a sub-
histogram, then that sub-histogram can be considered as a normal distribution of 
frequencies and there is no dominating portion. But if it is less then that threshold value, the 
sub histogram splits again. Then weights for GL range of ith sub-histogram are calculated by 
the following equation (Abdullah Al Wadud et al., 2007): 

 ( )weight span logi i iS x= ×  (1) 

where spani is GL range of sub-histogram i , Si is summation of all histogram values of ith 
sub-histogram, and x is a coefficient to control the strength of image contrast. Then the 
range which is the expansion value to determine how many times to expand its sub-
histogram is calculated by using the fallowing formula (Abdullah Al Wadud et al., 2007): 

 

1

weightrange ( 1)
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i
i n

i
i

L

=

= ∗ −
∑

 (2) 

where L is total number of available GLs. Finally, GHE is applied for each sub-histogram. 
SVE (Demirel et al. ISCIS 2008; Demirel and Anbarjafari, IEEE Signal Processing Letter, 
2008) technique is based on equalizing the singular value matrix obtained by singular value 
decomposition (SVD). SVD of an image, which can be interpreted as a matrix is written as 
follows:  

 = Σ T
A A AA U V  (3) 

where UA and VA are orthogonal square matrices known as hanger and aligner respectively, 
and ΣA matrix contains the sorted singular values on its main diagonal. The idea of using 
SVD for image equalization comes from this fact that ΣA contains the intensity information 
of the given image (Tian et al., 2003). The objective of SVE proposed by Demirel et al. (ISCIS 
2008) is to equalize a low contrast image in such a way that the mean moves towards the 
neighborhood of 8-bit mean gray value 128 in the way that the general pattern of the PDF of 
the image is preserved.  
In our earlier work (Demirel and Anbarjafari, IEEE Signal Processing Letter, 2008), where 
we introduced PDF based face recognition, singular value decomposition was used to deal 
with the illumination problem. The method uses the ratio of the largest singular value of the 
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generated normalized matrix over a normalized image which can be calculated according to 
equation (4).  

 ( )( )
( )

0,var 1max

max
N

A

μ
ξ

= =Σ
=

Σ
 (4) 

where ( )0,var 1N μ= =Σ is the singular value matrix of the synthetic intensity matrix. This 
coefficient can be used to regenerate an equalized image using equation (5).   

 ( )
A

T
equalized A A AU VξΞ = Σ  (5) 

where 
AequalizedΞ is representing the equalized image A. This task is eliminating the 

illumination problem.  
Nowadays, wavelets have been used quite frequently in image processing. It has been used 
for feature extraction (Wang and Chen, 2006), denoising (Starck et al., 2002), compression 
(Lamard et al., 2005), image equalization enhancement (Demirel et al., IEEE Geoscience and 
Remote Sensing Letter, 2010), and face recognition (Liu et al., 2007). The decomposition of 
images into different frequency ranges permits the isolation of the frequency components 
introduced by “intrinsic deformations” or “extrinsic factors” into certain subbands (Dai and 
Yan, 2007). This process results in isolating small changes in an image mainly in high 
frequency subband images. Hence discrete wavelet transform (DWT) is a suitable tool to be 
used for designing pose invariant face recognition system. The two-dimensional wavelet 
decomposition of an image is performed by applying the one-dimensional DWT along the 
rows of the image first, and then the results are decomposed along the columns. This 
operation results in four decomposed subband images refer to Low-Low (LL), Low-High 
(LH), High-Low (HL), and High-High (HH). The frequency components of those subband 
images cover the frequency components of the original image. 
In this work, we have proposed a new method for image equalization which is an extension 
of SVE and it is based on SVD of LL subband image obtained by DWT. DWT is used to 
separate the input image into different frequency subbands, where LL subband concentrates 
the illumination information. That is why, only LL subband goes through SVE process, 
which preserves high frequency components (i.e. edges). Hence, after IDWT, the resultant 
image will be sharper. In this chapter, the proposed method has been compared with 
conventional GHE technique as well as LHE and some state-of-art technique such as DHE 
an SVE. The results indicate the superiority of the proposed method over the 
aforementioned methods. 

2. The proposed image equalization technique 
There are two significant parts of the proposed method. The first one is the use of SVD. As it 
was mentioned, the singular value matrix obtained by SVD contains the illumination 
information. Therefore, changing singular values will directly affect the illumination of the 
image hence the other information in the image will not be changed. The second important 
aspect of this work is the application of DWT. As it was mentioned in the introduction, the 
illumination information is embedded in LL subband. The edges are concentrated in other 
subbands (i.e. LH, HL, and HH). Hence, separating the high frequency subbands and 
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applying the illumination enhancement in LL subband only, will protect the edge 
information from possible degradation (Demirel et al., IEEE Geoscience and Remote Sensing 
Letter, 2010). After reconstructing the final image by using IDWT, the resultant image will 
not only be enhanced with respect to illumination, but also it will be sharper.  
The general procedure of the proposed technique is as follows. The input image, A, is first 
processed by using GHE to generate Â . Then both of these images are transformed by 
DWT into four subband images.  The correction coefficient for singular value matrix is 
calculated by using the following equation: 
 

 
( )
( )

ˆ
max

max
A

A

LL

LL
ζ

Σ
=

Σ
 (6) 

 

where 
ALLΣ  is the LL singular value matrix of the input image and 

ÂLLΣ is the LL singular 

value matrix of the output of the GHE. The new LL image is composed by: 
 

 A A

AA A

LL LL

LLA LL LLLL U V

ζΣ = Σ

= Σ
 (7) 

 
Now the ALL  and LHA, HLA, and HHA subband images of the original image are recombined 
by applying IDWT, to generate the resultant equalized image A . 
 

 ( ), , ,A A A AA IDWT LL LH HL HH=  (8) 

 
In this chapter we have used db.9/7 wavelet function as the mother function of the DWT. In 
the following section the experimental results and the comparison of the aforementioned 
conventional and state-of-art techniques are discussed. Fig. 1 illustrates all steps of the 
proposed image equalization technique. 

3. Experimental results and discussions 
Fig. 2 (a) illustrates a low contrast image which has been used in (Abdullah Al Wadud et al., 
2007). This image has been equalized by using GHE (b), SVE (c), DHE (d), LHE (e), and the 
proposed equalization technique (f). The quality of the visual results indicates that the 
proposed equalization technique is sharper and brighter than the one achieved by DHE, 
GHE, and LHE. The resultant image generated by SVE is comparable with the image 
achieved by the proposed method.  
In order to show the superiority of the proposed method over the SVE, GHE and LHE, Fig 3, 
and Fig. 4 have been generated. Both figures are showing that the proposed method have a 
brighter and sharper output, also there is no wash out problem as it has occurred in Fig. 3 and 
4 (c) obtained by SVE and there is also no blurring effect like Fig. 3 and 4 (e) obtained by LHE. 
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Low contrast 
input image

Equalized image 
using GHE

DWT DWT

LLLHHLHH HHHLLHLL

Calculate the U , Σ, and V for 
LL subband image and find 
the maximum element in Σ.

Calculate the U , Σ, and V for 
LL subband image and find 
the maximum element in Σ.

Calculate ζ
using eq (6)

Calculate the new Σ and 
reconstruct the new LL 
image, by using eq (7).

IDWT

Equalized 
image

 
Fig. 1. The detailed steps of the proposed equalization technique. 
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(a) Original (b) GHE (c) SVE

(d) DHE (e) LHE (f) Proposed Technique  
Fig. 2. (a) Low contrast image, Equalized image using: (b) GHE, (c) SVE, (d) DHE, (e) LHE, 
and (f ) the proposed technique. 

(a) Original (b) GHE

(c) SVE (d) LHE (e) Proposed Technique

 
Fig. 3. (a) Low contrast image, Equalized image using: (b) GHE, (c) SVE, (d) LHE, and (e ) 
the proposed technique. 
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(a) Original (b) GHE

(c) SVE (d) LHE (e) Proposed Technique  
Fig. 4. (a) Low contrast image, Equalized image using: (b) GHE, (c) SVE, (d) LHE, and (e ) 
the proposed technique. 

4. Conclusions 
In this work, a new image equalization technique based on SVD and DWT was proposed. 
The proposed technique converted the image from spatial domain into the DWT domain 
and after equalizing the singular value matrix of the LL subband image, it reconstructed the 
image in the spatial domain by using IDWT. The technique was compared with the GHE, 
LHE, DHE and SVE techniques. The experimental results were showing the superiority of 
the proposed method over the conventional and the state-of-art techniques. 
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1. Introduction 
Face recognition has recently been the centre of attention of many researchers (Jain et al. 2004). 
The earliest work in digital face recognition was reported by Bledsoe in 1964. Statistical face 
recognition systems such as principal component analysis (PCA) based eigenfaces introduced 
by Turk and Pentland in 1991, attracted lots of attention. Fisherfaces method based on linear 
discriminant analysis was introduced later on by Belhumeur et al. (1997).  
Many of these methods are based on grey scale images; however colour images are 
increasingly being used since they add additional biometric information for face recognition 
(Marcel and Bengio, 381). PDFs obtained from different colour channels of a face image can 
be considered as the signature of the face, which can be used to represent the face image in a 
low dimensional space (Demirel and Anbarjafari, VISSAP 2008). Images with small changes 
in translation, rotation and illumination still possess high correlation in their corresponding 
PDFs. PDF of an image is a normalized version of an image histogram which have been 
used in many image processing applications such as object detection (Laptev, 2006) and face 
recognition (Yoo and Oh, 1999; Rodriguez and Marcel, 2006; Demirel and Anbarjafari, IEEE 
Signal Processing Letter, 2008).  
Nowadays, wavelets have been used quite frequently in image processing. It has been used 
for feature extraction (Wang and chen, 2006), denoising (Starck et al., 2002), compression 
(Lamard et al. 2005), and face recognition (Liu et al., 2007; Demirel et al., 2008). The 
decomposition of images into different frequency ranges permits the isolation of the 
frequency components introduced by “intrinsic deformations” or “extrinsic factors” into 
certain subbands (Dai and Yan, 2007). This process results in isolating small changes in an 
image mainly in high frequency subband images. Hence discrete wavelet transform (DWT) 
is a suitable tool to be used for designing pose invariant face recognition system. 
Another important issue in face recognition system is face localization. There are several 
methods for this task such as skin tone based face localization for face segmentation. Skin is 
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a widely used feature in human image processing with a range of applications (Yang et al., 
2002; Demirel et al., EECS 2008).  Many methods have been proposed to use skin colour 
pixels for face localization. Chai and Ngan (1999) modelled the skin colour in YCbCr colour 
space. One of the recent methods for face localization is proposed by Nilsson (2007) which is 
using local Successive Mean Quantization Transform (SMQT) technique. Local SMQT has 
been claimed to be robust for illumination changes and the Receiver Operation 
Characteristics of the method is reported to be very successful for the segmentation of faces 
(Nilsson et al., ICASSP2007). In order to enhance the robustness of the system under 
changing illumination conditions, a reliable image equalization technique such as dynamic 
histogram equalization (Abdullah et al., 2007) or singular value decomposition based image 
equalization (Demirel and Anbarjafari, IEEE Signal Processing Letter, 2008; Sabet et al., 
ISCIS 2008) can be applied in the pre-processing stage. 
In this chapter, after the face localization, 2-norm based image equalization technique has 
been employed to enhance the robustness of the system under changing illumination. Then 
the PDFs of the equalized and segmented faces in different subbands obtained from discrete 
wavelet transform (DWT) are calculated. These PDFs are used as statistical feature vectors 
for the recognition of faces by minimizing the Kullback-Leibler Divergence (KLD) between 
the PDF of a given face and the PDFs of faces in the database. The effect of well-known 
decision fusion techniques such as sum rule, median rule, max rule, product rule, majority 
voting (MV), and feature vector fusion (FVF),  for combining feature vectors in HSI and 
YCbCr colour spaces of Low-Low, Low-High, High-Low, and High-High subbands, have 
been studied in order to achieve higher recognition performance.  
The Head Pose (HP) face database (Gourier et al., 2004) and a subset from the FERET 
(Philips et al., 2000) database with faces containing varying poses changing from -90o to +90o 
of rotation around the vertical axis passing through the neck were used to test the proposed 
system. Both databases include face images with varying poses and face images have little 
illumination variation. The results are compared with principle component analyses (PCA), 
and three state-of-art face recognition systems: adaptive local binary pattern [LBP] PDFs 
based face recognition (Rodriguez and Marcel, 2006), nonnegative matrix factorization 
(NMF) introduced by Lee et al. (1999, 2001) and supervised incremental NMF (INMF) 
introduced and described by Wen-Sheng et al. (Wen Sheng et al., 2008). 

2. Pre-processing of face images 
The proposed face recognition system has been tested on the databases with no significant 
illumination changes, but singular value decomposition (SVD) based equalization (SVE) 
(Demirel and Anbarjafari, IEEE Signal Processing Letter, 2008; Sabet et al., ISCIS 2008) have 
been applied to the input images in both training and recognition stages. In this section SVE 
technique is explained. 
In general, for any intensity image matrix ΞA, A={R, G, B}, SVD can be written as: 

 { }, ,
A

T
A A A A R G BU V =Ξ = Σ  (1) 

where UA and VA are orthogonal square matrices (hanger and aligner matrices) and ΣA 
matrix contains the sorted singular values on its main diagonal (stretcher matrix). As 
reported in (Tian et al., 2003), ΣA represents the intensity information of a given image. If an 
image is a low contrast image this problem can be corrected to replace the ΣA of the image 
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with another singular matrix obtained from an image with no contrast problem. A 
normalized intensity image matrix with no illumination problem can be considered to be the 
one with a PDF having a Gaussian distribution with mean of 0.5 and variance of 1. Such a 
synthetic intensity matrix with the same size of the original image can easily be obtained by 
generating random pixel values with Gaussian distribution with mean of 0.5 and variance of 
1. Then the ratio of the largest singular value of the generated normalized matrix over a 
normalized image can be calculated according to equation (2):  
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where Σg(μ=0.5,σ=1) is the singular value matrix of the synthetic intensity matrix. This 
coefficient can be used to regenerate a new singular value matrix which is actually an 
equalized intensity matrix of the image generated by equation (3): 

 ( ) { }, , ,
A

T
equalized A A A A R G BU V Aξ =Ξ = Σ  (3) 

where Ξequalized A is representing the equalized image in A-colour channel. 
As equation (3) states the equalized image is just a multiplication of ξA with the original 
image. From the computational complexity point of view singular value decomposition of a 
matrix is an expensive process which takes quite significant amount of time to calculate the 
orthogonal matrices of U and V while they are not being used in the equalization process. 
Hence, finding a cheaper method to obtain or estimate ξA can be an improvement to the 
technique. Recall,  

 maxA λ=  (4) 

where λmax is the maximum eigenvalue of ATA. By using SVD, 

 2T T TA U V A A V V= Σ → = Σ  (5) 

This follows that the eigenvalues of ATA are the square of elements of the main diagonal of 
Σ, and that the eigenvector of ATA is V. Because Σ is in the form of:  

 ( )

1

2
1 2 min ,k

k m n

k m n

λ
λ

λ λ λ

λ
×

⎡ ⎤
⎢ ⎥
⎢ ⎥Σ = > > > =
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (6) 

 
Thus, 

 1A λ=  (7) 

The 2-norm of a matrix is equal to the largest singular value of the matrix. Therefore ξA can 
be easily obtained from: 
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where Ξg(μ=0.5,σ=1) is a random matrix with mean of 0.5 and variance of 1 and ΞA is the 
intensity image in R, G, or B. Hence the equalized image can be obtained by: 
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which shows there is no need to use singular value decomposition of intensity matrices. 
This procedure reduces the complexity of the equalization procedure. This task, which is 
actually equalizing the images, will eliminate the illumination problem. The SVE technique 
has been tested on the Oulu face database (Marszalec et al., 2000) as well as the FERET and 
HP face databases. Fig. 1 shows the general required steps of the pre-processing phases of 
the proposed system.  
After applying SVE, the equalized images can be used as an input for the face detector 
prepared by Mike Nilsson (MathWirks, 2008) in order to localize and then crop the face 
region and eliminate the undesired background. The segmented face images are used as 
inputs of DWT for the generation of PDFs of different subband images in H, S, I, Y, Cb, and 
Cr colour channels. If there is no face in the image, then there will be no output from the face 
detector software, so it means the probability of having a random noise which has the same 
colour distribution of a face but with different shape is zero, which makes the proposed 
method reliable. 
 

Calculate the 2-norm of
each intensity image of the 
input in RGB colour space 
and equalize the intensity 

images using eqn (9)

Cropping by 
using local 

SMQT method

Input 
Images

Output 
Images

Equalized 
images

 
Fig. 1. The algorithm, with a sample image with different illumination from Oulu face 
database, of pre-processing of the face images to obtain a segmented face from the input face 
image. 
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The two-dimensional wavelet decomposition of an image is performed by applying the one-
dimensional DWT along the rows of the image first, and then the results are decomposed 
along the columns (MATLAB 2009). This operation results in four decomposed subband 
images refer to Low-Low (LL), Low-High (LH), High-Low (HL), and High-High (HH). The 
frequency components of those subband images cover the frequency components of the 
original image. 

3. PCA and LBP based face recognition 
3.1 PCA based face recognition 
Eigenfaces method is based on linear PCA where a face image is encoded to a low 
dimensional vector. All face images are decomposed into a small set of characteristic feature 
images called eigenfaces. Each face image is projected on the subspace of meaningful 
eigenfaces (ones with nonzero eigenvalues). Hence, the collection of weights describes each 
face. Recognition of a new face is performed by projecting it on the subspace of eigenfaces 
and then comparing its weights with corresponding weights of each face from a known 
database.  
Assume that all face images in a database are of the same size w×h. Eigenfaces are obtained 
as the eigenvectors of the covariance matrix of the data points. Let Γi be an image from the 
collection of M images in the database. A face image is a 2-dimensional array of size w×h, 
where w and h are width and height of the image, respectively. Each image can be 
represented as a vector of dimension w×h and the average image, Ψ, is defined as: 

 
1

1 M
i

iM =
Ψ = ∑ Γ  (10) 

Each image Гi differ from the average image Ψ by the vector: 

 i i= −Φ Γ Ψ  (11) 

The covariance matrix of the dataset is defined as: 
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Since there are M images in the database, the covariance matrix C has only M-1 meaningful 
eigenvectors. Those eigenvectors ul, can be obtained by multiplying eigenvectors vl, of 
matrix L=ΛTΛ (of size M×M) with difference vectors in matrix Λ. 
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The eigenvectors, ul, are called the eigenfaces. Eigenfaces with higher eigenvalues contribute 
more in representation of a face image. The face subspace projection vector for every image 
is defined by: 
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The projection vectors are indispensable in face recognition tasks, due to their uniqueness. 
The projection vector, which represents a given face image in the eigenspace can be used for 
the recognition of faces. Euclidian distance, ε, between projection vectors of two different 
images (Ω1 and Ω2) is used to determine whether a face is recognized correctly or not. 

 ( )22
1 2 1 2

1

M
i i

i
ε ω ω

=
= Ω −Ω = −∑  (15) 

PCA face recognition system has been applied to the different colour channels (H, S, I, Y, Cb 
and Cr) and as it will be shown in section 7, the recognition rate of PCA based face 
recognition system is being increased by fusion of the decisions of different colour channels 
using MV.   

3.2 Language, style spelling 
The local binary pattern (LBP) is a non-parametric operator which describes the local spatial 
structure of an image. Ojala et al. introduced this operator and showed its high 
discriminative power for texture classification (Ojala et al., 1996). At a given pixel position 
(x,y), LBP is defined as an ordered set of binary comparisons of pixel intensities between the 
centre pixel and its eight neighbour pixels, as shown in Fig 2. 
 

83 90 225

98 97 200

45 69 199

0 0 1

1 1

0 0 1

Binary
Intensity

Comparison with
The centre

Binary : 00111001
Decimal: 57

 
Fig. 2. The local binary pattern (LBP) operator 
The decimal form of the resulting 8-bit word of LBP code can be expressed as follows: 

 ( ) ( )( )7
,

0
LBP , 2n

n x y
n

x y s i i
=

= −∑  (16) 

where i(x,y) corresponds to the grey value of the centre pixel (x,y), in to the grey values of the 
8 neighbour pixels, and function s(x) is defined as: 

 ( )
1 if 0
0 if 0

x
s x

x
≥⎧

= ⎨ <⎩
 (17) 

By definition, the LBP operator is unaffected by any monotonic greyscale transformation 
which preserves the pixel intensity order in a local neighbourhood. Note that each bit of the 
LBP code has the same significance level and that two successive bit values may have a 
totally different meaning. Sometimes, the LBP code is referred as a kernel structure index. 
Ojala et al extended their previous work to a circular neighbourhood of different radius size 
(Ojala et al., 2002). They used LBPP,R notation which refers to P equally spaced pixels on a 
circle of radius R. Two of the main motivations of using LBP are its low computational 
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complexity and its texture discriminative property. LBP has been used in many image 
processing applications such as motion detection, visual inspection, image retrieval, face 
detection, and face recognition. 
In most aforementioned applications a face image was usually divided in small regions. For 
each region, a cumulative histogram of LBP code computed at each pixel location within the 
region was used as a feature vector.  
Ahonen et al. used LBP operator for face recognition (Ahnon et al., 2004). Their face 
recognition system can be explained as follows: A histogram of the labelled image f1(x,y) can 
be defined as: 

 ( ){ }1
,

, 0, , 1i
x y

H I f x y i i n= = = −∑  (18) 

where n is the number of different labels produced by the LBP operator and 
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A
I A

A
⎧

= ⎨
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 (19) 

This histogram contains information about the distribution of the local micropatterns, such 
as edges, spots, and flat areas, over the whole image. For efficient face representation, 
retaining the spatial information is required; hence the image is divided into regions R0, R1, 
…, Rm-1, as shown in Fig 3. 
 

 
Fig. 3. An example of a facial image divided into 8x8windows. 
As reported in (Ojala et al., 1996), the spatially enhanced histogram is defined as: 

 ( ){ } ( ){ }, 1
,

, , , 0, , 1 , 0, , 1i j j
x y

H I f x y i I x y R i n j m= = ∈ = − = −∑  (20) 

where m is the number of blocks and n is the LBP bins. In this histogram, a description of the 
face on three different levels of locality exists: the labels for the histogram contain 
information about the patterns on a pixel level, the labels are summed over a small region to 
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produce information on a regional level, and the regional histograms are concatenated to 
build a global description of the face. 
Although Ahonen et al. have mentioned several dissimilarity measures such as histogram 
intersections and log-likelihood statistics, they used nearest neighbour classifier with Chi 
square dissimilarity measure in their work (Ahnon et al., 2004).  
When the image has been divided into several regions, it can be expected that some of the 
regions contain more useful information than others in terms of distinguishing between 
people, such as eyes. In order to contribute such information, a weight can be set for each 
region based on level of information it contains. 

4. PDF based face recognition system 
The PDF of an image is a statistical description of the distribution of occurrence probabilities 
of pixel intensities. In a general mathematical sense, a PDF of an image is simply a mapping 
to represent the probability of the pixel intensity levels that fall into various disjoint 
intervals, known as bins. In this work the bin size is set as 256. Given an intensity image, 
PDF, p, meets the following conditions:  

 
0 1 255
, , , , , 0, ,255

i
ip i

N
η

τ τ τ τ⎡ ⎤= = =⎣ ⎦  (21) 

where N is the total number of pixels in an image and ηi is the number of pixels having i 
intensity.  
Given two PDFs the divergence between them can be calculated by using Kullback-Leibler 
Divergence (KLD). The KLD value, κ, between two given PDFs, pC and qC, can be calculated 
as follows: 

 ( )C Cq ,p i=0,1,2,..., -1 
q

q log p
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ii
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⎜ ⎟
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⎝ ⎠

= ∑  (22) 

where β is the number of bins and C is (H, S, I, Y, Cb, or Cr)LL,LH,HL,HH. However, KLD is not a 
distance measure but it represents the similarity of the two PDFs. In other words, the 
smaller the KLD value the more similar the PDFs. 
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Here,
Ciχ , is the minimum KLD reflecting the similarity of the ith image in the training set in 

C subband colour channel and the query face and M is the number of image samples. The 
colour PDFs used in the proposed system is generated only from the segmented face, and 
hence the effect of background regions is eliminated. Fig. 4 shows two subjects with two 
different poses and their segmented faces from the FERET face database.  
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Fig. 4. Two subjects from FERET database with 2 different poses (a), their segmented faces 
(b) and their PDFs in H(c), S(d), I(e), Y(f), Cb(g), and Cr(h) colour channels in LL subband 
respectively.  

5. Proposed PDF based face recognition using DWT 
In this work, the local SMQT algorithm has been adopted for the localization and 
cropping of faces in the pre-processing stage. Then each face image has been equalized by 
using the proposed equalization technique in order to reduce the illumination problems. 
Colour PDFs of the isolated face images in different frequency subbands in HSI and 
YCbCr colour spaces are used as the face descriptors. Face recognition is achieved using 
the KLD between the PDF of the input face and the PDFs of the faces in the training set. In 
order to increase the recognition performance of the system, several well-known decision 
fusion techniques which are explained in the proceeding section have been used to 
improve the recognition performance. Fig. 5 illustrates the building blocks of the 
proposed face recognition system. 
The HP face database and a subset from the FERET database were used to test the proposed 
system. The HP face database is consisting of 150 face samples of 15 different classes with 10 
samples per class and the FERET face database is consisting of 500 face samples of 50 
different classes with 10 samples per class. Both databases include face images with varying 
poses and face images have little illumination variation. The results are compared with 
conventional techniques such as PCA and LDA, and three state-of-art face recognition 
systems namely, adaptive LBP PDFs based face recognition, PDF based face recognition 
system using FVF, NMF, and INMF. 
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Fig. 5. Building blocks of the proposed system. 

6. Decision fusion of different wavelet subbands in different colour channels 
The proposed face recognition system as explained in the previous section can be applied to 
different colour channels (H, S, I, Y, Cb, and Cr) of different subband images obtained by 
DWT (LL, LH, HL, and HH). Hence, given a face image the image can be represented in these 
24 channels with dedicated colour PDFs for each channel. Different channels contain 
different information regarding the image; therefore all of these 24 PDFs can be combined to 
represent a face image. There are many techniques to combine the resultant decision. In this 
paper, several well-known techniques such as sum rule, median rule, max rule, product 
rule, majority voting (MV), and feature vector fusion (FVF) have been used to do this 
combination. These methods have been described in much detailed in by Polikar (2006). The 
aim of this work is not to introduce but to implement these fusion techniques on PDF based 
face recognition system.  
These data fusion techniques use probability of the decisions they provide through 
classifiers. That is why it is necessary to calculate the probability of the decision of each 
classifier based on the minimum KLD value. This is achieved by calculating the probability 
of the decision in each colour channel, γC, which can be formulated as follows:  
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where ςC is the normalized KLD value, χi is indicating the KLD value of the query image 
from the ith image in the training set, n shows the number of face samples in each class and 
M is the number of classes. The highest similarity between two projection vectors is when 
the minimum KLD value is zero. This represents a perfect match, i.e. the probability of 
selection is 1. So zero KLD value represents probability of 1 that is why ςC has been 
subtracted from 1, the maximum probability corresponds to the probability of the selected 
class. The sum rule is applied, by adding all the probabilities of a class in different colour 
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channels of different subbands, followed by declaring the class with the highest accumulated 
probability to be the selected class. The maximum rule, as its name implies, simply takes the 
maximum among the probabilities of a class in different colour channels of different subbands, 
followed by declaring the class with the highest probability to be the selected class. The 
median rule similarly takes the median among the sorted probabilities of a class in different 
channels. The product rule is achieved from the product of all probabilities of a class in 
different colour channels of different subbands. Product rule is very sensitive as a low 
probability (close to 0) will remove any chance of that class being selected.  
MV is one of the most frequently used decision fusion technique. The main idea behind MV 
is to achieve increased recognition rate by combining decisions of the PDF based face 
recognition procedures of different colour spaces and subbands. By considering the H, S, I, 
Y, Cb and Cr PDFs in different wavelet subbands separately and combining their results by 
using MV, the performance of the classification process will be increased. The MV 
procedure can be explained as follows. Consider {p1,p2,….,pM}C to be a set of PDFs of training 
face images in wavelet subband colour channels (C=(H, S, I, Y, Cb, or Cr)LL,LH,HL,HH), then a 
given a PDF of a query face image, q, colour PDFs of the query image qC can be used to 
calculate the KLD between qC and PDFs of the images in the training samples by equation 
(24). The image with the minimum distance in a channel, χC, is declared to be the vector 
representing the recognized subject. Given the decisions of each classifier in each colour 
space, the voted class E, can be chosen as follows. 

 ( )mode , , , , , ,
LL HH LL HHH H Cr Crχ χ χ χΕ =  (25) 

where mode is declaring the most repeated class. 
Data fusion is not the only way to improve the recognition performance. PDF vectors can 
also be concatenated with the FVF process which is a source fusion technique and can be 
explained as follows. Consider {p1,p2,….,pM}C to be a set of training face images in subband 
colour channels C, (H, S, I, Y, Cb, or Cr)LL,LH,HL,HH, then for a given query face image, the fvfq  
is defined as a vector which is the combination of all PDFs of the query image q as follow: 

 H H H H 1 6144
q q q q

LL LH HL HHqfvf
×

⎡ ⎤= ⎣ ⎦  (26) 

where only the H colour channel components are shown in equation (26).  This new PDF can 
be used to calculate the KLD between fvfq and fvfpi of the images in the training samples. fvfq 
is a vector of 1×6144, where 6144 is multiplication of the bin size (which is 256) by number of 
colour channels (which is 6) by number of subbands (which is 4). 
This new PDF can be used to calculate the KLD between fvfq and fvfpj of the images in the 
training samples as follows:  

 ( )( )min , , 1, ,i q pjfvf fvf j Mχ κ= =  (27) 

where M is the number of images in the training set and fvfpj is the combined PDFs of the jth 
image in the training set. Thus, the similarity of the ith image in the training set and the 
query face can be reflected by χi, which is the minimum KLD value. The image with the 
lowest KLD distance, χi , is declared to be the vector representing the recognized subject. 
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6. Results and discussions 
In this paper the PCA, PCA-MV, LDA, LBP, LBP-MV, PDF based face recognition by using 
FVF, NMF, INMF, and the proposed PDF based face recognition system have been tested on 
the FERET face database with faces containing varying poses changing from -90o to +90o of 
rotation of 500 face images of 50 different classes.  

6.1 Simulation results 
Table 1 shows the performance of PCA based face recognition system of the FERET face 
database in HSI and YCbCr colour spaces respectively. 
 

 Recognition rates of the proposed PDF based system 

# of face images in 
the training set H S I Y Cb Cr 

1 36.89 48.67 49.11 47.33 49.78 49.11 

2 41.50 54.75 53.50 52.50 58.25 57.75 

3 52.86 62.86 56.29 56.57 67.71 64.00 

4 58.00 69.00 64.67 66.00 73.67 70.33 

5 62.40 74.80 69.60 72.80 77.60 74.80 

Table 1. Performance of the PCA based system in H, S, I, Y, Cb and Cr colour channels of the 
FERET face database. 
Table 2 shows the performance of LBP based face recognition system of the FERET face 
databases in HSI and YCbCr colour spaces.  
 

 Recognition rates of the proposed PDF based system 

# of face images in the 
training set H S I Y Cb Cr 

1 59.33 50.67 48.22 48.44 61.11 62.67 

2 64.50 56.75 54.50 54.75 66.50 66.50 

3 74.57 66.00 64.29 64.86 76.86 76.57 

4 85.67 79.00 77.00 77.67 87.67 86.67 

5 87.60 80.40 78.00 78.40 89.00 89.60 

Table 2. Performance of the LBP based system in H, S, I, Y, Cb and Cr colour channels of the 
FERET face database. 
The correct recognition rates in percent of the PDF based face recognition of LL, LH, HL, 
and HH subband images in different colour channels of HSI and YCbCr for the FERET face 
database are included in Table 3. Each result is an average of 100 runs, where we have 
randomly shuffled the faces in each class.  
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Recognition rates of the proposed PDF 
based system Number of training  

images 
1 2 3 4 5 

LL 67.16 80.43 86.43 89.83 92.96 

LH 62.89 74.28 76.86 82.43 84.44 

HL 68.84 79.73 84.00 85.13 88.88 

H
 

HH 68.40 78.48 83.54 86.07 89.08 

LL 48.27 60.23 64.20 71.00 74.72 

LH 37.27 48.10 49.14 55.20 57.56 

HL 42.76 51.63 55.46 59.63 64.76 

S 

HH 42.49 52.60 55.83 60.17 65.84 

LL 44.02 54.93 59.74 66.30 70.16 

LH 37.31 47.88 50.43 55.83 60.44 

HL 41.96 47.90 52.34 57.27 62.36 

I 

HH 40.20 47.78 52.37 57.87 60.68 

LL 53.93 64.55 70.14 76.33 81.24 

LH 36.47 48.13 50.54 57.90 60.80 

HL 40.18 47.78 52.31 59.27 63.00 

Y 

HH 41.27 49.53 54.34 60.60 63.48 

LL 56.09 67.90 74.43 79.23 83.36 

LH 29.49 33.23 35.89 40.60 42.84 

HL 42.93 50.78 55.37 56.03 58.24 C
b 

HH 29.84 33.33 35.14 37.23 38.96 

LL 14.65 15.89 17.31 18.33 20.24 

LH 26.24 32.95 36.94 38.60 40.24 

HL 30.84 39.35 39.94 40.63 43.68 

C
r 

HH 22.04 37.35 52.60 59.47 62.20 
 
Table 3. Performance of the proposed PDF based face recognition system of the DWT 
subbands of colour images in H, S, I, Y, Cb and Cr colour channels separately for the FERET 
face database. 
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The performances of the proposed system using data fusion techniques such as sum rule, 
median rule, max rule, product rule, MV, and FVF, between all 24 decisions (an image with 
its 4 subband images in 6 colour channels) for the FERET face database are shown in Table 4. 
The performance of the conventional PCA, PCA-MV, LDA, and the state-of-art face 
recognition systems: LBP, LBP-MV, PDF based face recognition by using FVF, NMF, and 
INMF based face recognition systems for the FERET face database are also included in the 
Table 4. 
 

Recognition rate 
Number of training images 

1 2 3 4 5 

MV 82.22 90.45 93.69 95.60 96.88 

H (DWT subbands) 80.44 85.50 95.43 96.33 96.40 

S (DWT subbands) 60.89 68.25 81.71 88.00 90.00 

I (DWT subbands) 63.11 68.50 84.57 91.67 93.60 

Y (DWT subbands) 80.67 85.75 95.71 96.67 96.80 

Cb (DWT subbands) 66.89 70.75 84.00 86.33 89.60 

Cr (DWT subbands) 63.33 61.50 74.29 79.67 83.20 

FV
F 

All subbands 82.89 87.00 96.57 98.80 99.33 

SUM RULE 94.53 97.03 98.08 98.49 98.84 

MEDIAN RULE 93.82 96.23 97.80 97.98 98.39 

MAX RULE 81.71 87.78 90.37 91.83 92.87 

PRODUCT RULE 16.58 0.67 0.67 0.67 0.67 

PCA 44.00 52.00 58.29 66.17 68.80 

LDA 61.98 70.33 77.78 781.43 85.00 

PCA-MV 57.11 62.50 65.71 74.00 77.60 

LBP 50.89 56.25 74.57 77.67 79.60 

LBP-MV 54.44 58.75 69.14 81.00 83.20 

PDF based face recognition by FVF 
(Demirel and Anbarjafari, IEEE 
Signal Processing Letter, 2008) 

80.44 83.75 94.00 97.67 98.00 

NMF 61.33 64.67 69.89 77.35 80.37 

INMF 63.65 67.87 75.83 80.07 83.20 

Table 4. Performance of the proposed face recognition system using MV, FVF, PCA, LDA, 
LBP, PDF based face recognition, NMF, and INMF based face recognition system for the 
FERET database. 
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The performances of the proposed system using aforementioned data fusion techniques 
between all decisions for the HP face database are shown in Table 5. 
 

 Recognition Rate 
Number of training images 1 2 3 4 5 

MV 77.93 91.00 92.67 95.11 97.53 
H (DWT subbands) 68.89 79.17 85.71 88.89 88.00 
S (DWT subbands) 64.44 77.50 87.62 92.22 93.33 
I (DWT subbands) 54.07 64.17 77.14 87.78 84.00 
Y (DWT subbands) 69.63 80.00 86.67 90.00 89.33 

Cb (DWT subbands) 59.17 60.00 67.62 75.56 77.33 
Cr (DWT subbands) 28.15 34.17 41.90 40.00 48.00 

FV
F 

All subbands 88.15 93.33 97.14 98.67 98.89 
SUM RULE 83.85 96.42 96.76 96.67 97.33 

MEDIAN RULE 84.74 97.00 96.19 97.00 98.53 
MAX RULE 74.74 88.17 90.95 91.47 91.67 

PRODUCT RULE 84.22 97.33 96.86 97.11 96.27 

Table 5. Performance of the proposed face recognition system using MV, and FVF based face 
recognition system for the HP face databases 

6.2 Discussions 
The combination of feature vectors, with 5 samples per subject in the training set, achieve 
99.33% and 96.88% recognition rates by using FVF and MV methods for the FERET face 
database respectively. The MV and FVF results are 98.89% and 97.53% for the HP face 
database, when 5 samples per subject is available in the training set, respectively. The results 
obtained by the proposed system using FVF for the FERET database shows 30.53%, 21.73%, 
14.33%, 19.73%, 16.13%, 1.33%, 18.96%, and 16.13% improvement over PCA, PCA-MV, LDA, 
LBP, LBP-MV, PDF based face recognition system by using FVF, NMF, and INMF 
respectively. In all cases both FVF and MV approaches outperform the conventional 
methods in the literature. As it could be predicted sum rule, median rule, and max rule are 
improving the recognition rate but as table 4 and 5 are showing, FVF is over performing the 
other fusion techniques. 

7. Conclusion 
In this chapter, a new high performance face recognition system using the PDFs obtained 
from DWT subbands in different colour channels followed by data fusion has been 
proposed. The PDFs of the equalized and segmented face images in different subbands of 
different colour channels were used as feature vectors for the recognition of faces by 
minimizing the KLD between the PDF of a given face and the PDFs of faces in the database. 
Several fusion techniques including sum rule, median rule, max rule, product rule, MV, and 
FVF have been employed in order to improve the recognition performance. The system was 
tested on the FERET and the HP face databases. The results have been compared with the 
conventional PCA, improved PCA by applying MV, LDA and state-of-art face recognition 
techniques including LBP, improved LBP by using MV, previously introduced PDF based 
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face recognition by using FVF, NMF, and INMF. The performance of the proposed face 
recognition system has clearly shown the superiority of the system over the conventional 
and state-of-art techniques. 
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1. Introduction 
Communication and multimedia have been developed rapidly in recent years. Digital media 
and services found in daily life include, such as digital cameras, VCD (Video Compact Disc), 
DVD (Digital Video Disc), HDTV (High-Definition TeleVision) and video conferences. 
Several well-known compression schemes, such as Differential Pulse Code Modulation 
(DPCM)-based method (Habibi & Hershel, 1974), DCT-based methods (Feig et al., 
1995)(Kondo & Oishi, 2000), and Wavelet-based methods (Mallat, 1989) have been well-
developed in recent years. The lifting-based scheme has recently provided a less-complexity 
solution for image/video applications, e.g., JPEG2000, Motion-JPEG2000, MPEG-4 still 
image coding, and MC-EZBC (Motion Compensation- Embedded Zero Block Coding). 
However, the real-time 2-D DWT (software-based) is still difficult to be achieved. Hence, an 
efficient transformation scheme for large of multimedia files is highly demanded. 
Filter banks for the applications of subband image/video coding were introduced in the 
1990s. Wavelet coding has been studied extensively since then. Wavelet coding has been 
successfully applied to many applications. The most significant applications include 
subband coding for audio, image, video, signal analysis and representation using wavelets. 
In the past few years, DWT  (Mallat, 1989) has been adopted in a wide range of applications 
including image coding and video compression, including speech analysis, numerical 
analysis, signal analysis, image coding, pattern recognition, computer vision and biometrics. 
The DWT can be viewed as a multi-resolution decomposition of a signal, meaning which 
decomposes a signal into several components in different wavelet frequency bands. 
Moreover, 2-D DWT is a modern tool for signal processing applications, such as JPEG2000 
still image compression, denoising, region of interest (ROI), and watermarking. By factoring 
the classical wavelet filter into lifting steps, the computational complexity of the 
corresponding DWT can be reduced by up to 50% (Daubechies & Sweldens, 1998). The 
lifting steps can be easily implemented, which is different from the direct finite impulse 



 Discrete Wavelet Transforms - Theory and Applications 

 

114 

response (FIR) implementations of Mallat’s algorithm  (Daubechies & Sweldens, 1998). 
Several lifting-based DWT hardware architectures have recently been proposed. The 2-D 
DWT architecture described by Chiang et al. (Chiang et al., 2005) is based on the new 
interlaced read scan algorithm with pipeline processing to achieve low-transpose memory 
size and high-speed operation. Chiang et al. (Chiang & Hsia, 2005) proposed a 2-D DWT 
folded architecture to improve the hardware utilization. Andra et al. (Andra et al., 2000) and 
(Andra et al., 2002) proposed simple processing units that compute several stages of the 
DWT at a time. An architecture performs the lifting-based DWT with the 5/3 filter, which is 
based on the interleaving technique presented in (Diou et al., 2001). Chen et al. (Chen & Wu, 
2002) used a 1-D folded architecture to improve the hardware utilization for 2-D 5/3 and 
9/7 filters. The recursive architecture is a general scheme to implement any wavelet filter 
that is decomposable into lifting steps (Lian et al., 2001) in small-size and low-power design. 
Despite these efficiency improvements of the existing architecture, further improvements in 
the algorithm and architecture are required. For this, Tan et al. (Tan & Arslan, 2003) 
presented a novel shift-accumulator arithmetic logic units architecture for 2-D lifting-based 
JPEG2000 5/3 DWT. The architecture has an efficient memory organization, which uses a 
smaller amount of embedded memory for processing and buffering. Lee et al. (Lee et al., 
2003) proposed a new signal flow operation approach for the DWT implementation, and 
adopted only a memory size of N is employed for an N×N 2-D DWT. Varshney et al. 
(Varshney et al., 2007) presented energy efficient single-processor and fully pipelined 
architectures for the 2-D 5/3 lifting-based JPEG2000. The single processor performs both the 
row-wise and column-wise processing simultaneously, thus achieving, full 2-D transform 
with 100% hardware utilization. In (Chen, 2002) proposed one flexible and folded 
architecture for 3-level 1-D Lifting-based DWT to increase hardware utilization. Liao et al. 
(Liao et al., 2004) proposed two similar 2-D lifting-based 9/7 DWT generic architectures by 
employing parallel and pipeline techniques with recursive pyramid algorithms. Those 
architectures achieve multilevel decomposition using an interleaving scheme that reduces 
the size of memory and the number of memory accesses, while having a slow throughput 
rate and inefficient hardware utilization. Some VLSI architectures of 2-D lifting-based DWT 
reduce the transpose memory requirements and communication between the processors. 
However, these architectures need large transpose memory and long latency time. 
Low-transpose memory requirement and latency reduction are the major concerns in 2-D 
DWT implementation. This work presents a new approach, namely 2-D Symmetric Mask-
based DWT algorithm (SMDWT), to improve the 2-D lifting-based DWT (LDWT), and 
further applies it 2-D DWT real-time applications. 

2. Lifting-based Discrete Wavelet Transform 
Filtering and convolution are applied to achieve the signal decomposition in classical DWT. 
In 1986, Meyer and Mallat found that the orthonormal wavelet decomposition and 
reconstruction can be implemented in the multi-resolution signal analysis framework 
(Mallat, 1989). Multi-resolution analysis is now a standard method for constructing the 
orthonormal wavelet bases. Figure 1 shows the framework of the 2-D DWT. In the 
decomposition process, the low-pass filter H and high-pass filter G denote the scaling 
functions and the corresponding wavelets, respectively. Given a filter of length four, the 
corresponding transfer functions of filters H and G can be represented as, 
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 H(z)=h0+h1z-1+h2z-2+h3z-3, (1) 

 G(z)=g0+g1z-1+g2z-2+g3z-3. (2) 

The downsampling operation is then applied to the filtered results. A pair of filters are 
applied to the signal to decompose the image into the low-low (LL), low-high (LH), high-
low (HL), and high-high (HH) wavelet frequency bands. Consider an image of size N×N, 
Each band is subsampled by a factor of two, so that each wavelet frequency band contains 
N/2×N/2 samples. The four bands can be integrated to generate an output image with the 
same number of samples as the original. 
In most image compression applications, the above 2-D wavelet decomposition can be 
applied again to the LL sub-image, forming four new subband images, and so on to achieve 
a compact energy in the lower frequency bands. 
 

 
Fig. 1. The 2-D analysis DWT image decomposition process. 

2.1 Lifting-based DWT algorithm 
The lifting-based scheme proposed by Daubechies and Sweldens requires fewer 
computations than the traditional convolution-based approach (Sweldens, 1996)(Daubechies 
& Sweldens, 1998). The lifting-based scheme is an efficient implementation for DWT. It can 
easily use integer operations, and avoids the problems caused by the finite precision or 
rounding. The Euclidean algorithm can be used to factorize the poly-phase matrix of a DWT 
filter into a sequence of alternating upper and lower triangular matrices and a diagonal 
matrix. The variables h(z) and g(z) in Eq. 3 respectively denote the low-pass and high-pass 
analysis filters, which can be divided into even and odd parts to generate a poly-phase 
matrix P(z) as in Eq. 4. 

g(z)=ge(z2)+ z-1go(z2), 
h(z)=he(z2)+z-1ho(z2). (3) 
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The Euclidean algorithm recursively finds the greatest common divisors of the even and 
odd parts of the original filters. Since h(z) and g(z) form a complementary filter pair, P(z) can 
be factorized into Eq. 5. 
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where si(z) and ti(z) are Laurent polynomials corresponding to the prediction and update 
steps, respectively, and k is a nonzero constant. Therefore, the filter bank can be factorized 
into three lifting steps. As illustrated in Fig. 2, a lifting-based scheme has the following four 
stages: 
1) Split phase: The original signal is divided into two disjoint subsets. Significantly, the 
variable Xe denotes the set of even samples and Xo denotes the set of odd samples. This 
phase is called lazy wavelet transform because it does not decorrelate the data, but only 
subsamples the signal into even and odd samples. 
2) Predict phase: The predicting operator P is applied to the subset Xo to obtain the wavelet 
coefficients d[n] as in Eq. 6. 

 d[n]=Xo[n]+P×(Xe[n]). (6) 

3) Update phase: Xe[n] and d[n] are combined to obtain the scaling coefficients s[n] after an 
update operator U as in Eq. 7. 

 s[n]=Xe[n]+U×(d[n]). (7) 

4) Scaling: In the final step, the normalization factor is applied on s[n] and d[n] to obtain the 
wavelet coefficients. Equations 8 and 9 describe the implementation of the 5/3 integer lifting 
analysis DWT and are used to calculate the odd coefficients (high-pass coefficients) and 
even coefficients (low-pass coefficients), respectively. 

 d*[n]=X(2n+1) - (2 ) (2 2) / 2X n X n+ +   (8) 

 s*[n]=X(2n) + (2 1) (2 1) 2 / 4d n d n− + + +  (9)                          

Although the lifting-based scheme has less complexity, its long and irregular data paths 
constitute a major limitation for efficient hardware implementation. Additionally, the 
increasing number of pipelined registers increases the transpose memory size of the 2-D 
DWT architecture. 
 

 
Fig. 2. Block diagram of the lifting-based DWT. 

2.2 Lossless 2-D 5/3 lifting-based DWT structure 
The 2-D DWT uses a vertical 1-D DWT subband decomposition and a horizontal 1-D DWT 
subband decomposition to obtain the 2-D DWT coefficients. Therefore, the memory 
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requirement dominates the hardware cost and complexity of the architectures for 2-D DWT. 
The 2-D transform operation is shown in Fig. 3. 
 

 
(a) 

 
(b) 

Fig. 3. 2-D LDWT operation. (a) The flow of a traditional 2-D DWT. (b) Detailed processing 
flow. 
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Fig. 4. Lifting-based 5/3 DWT algorithm. 

Figure 4 shows the lifting step associated with the wavelet. The original signals including s0, 
d0, s1, d1, s2, d2, ... are the original input pixel sequences. If the original data are infinite in 
length, then the first-stage lifting is applied to update the odd index data s0, s1, …. In Eq. 10, 
the parameters -1/2 and Hi denote the first stage lifting parameter and outcome, 
respectively. After all the odd index data points are calculated, the second stage lifting can 
be performed with Eq. 11, where those parameters denote the second stage lifting 
parameters and outcomes, respectively. The variables Hn and Ln are the high-pass and low-
pass coefficients. The values of the lifting parameters -1/2, 1, and 1/4 as shown in Fig. 4 are 
used for the prediction module (Hi), the update module (Li) and the Kn module (scaling by 
Kn=1), respectively. 

 Hi= [(si+si+1)×-1/2+di]×K0, (10) 

 Li= [(Hi+Hi-1)×1/4+si]×K1, (11) 

 K0 = K1 = 1. (12) 

3. The proposed 2-D symmetric mask-based Discrete Wavelet Transform 
LDWT is widely employed in the visual subband coding, because it inherently has the well-
known perfect reconstruction property. However, LDWT has high-transpose memory 
requirement and operation time in 2-D transform, as shown in Fig. 3. The memory 
requirement and operation speed are the two major concerns in 2-D DWT implementation. 
The row and column-wise signal flow operation is generally adopted for an N×N 2-D DWT. 
However, the memory requirement of this scheme ranges from 2.5N to N2. To solve the 
transpose memory access problem, this work proposes a low-latency and low-memory 
architecture for 1-level 2-D lifting-based DWT. The previous signal flow from row- and 
column-wise is replaced with mask-based processing, SMDWT, to reduce the transpose 
memory requirement for the 2-D DWT. The SMDWT has many advanced features, such as 
short critical path, less latency time, regular signal coding, and independent subband 
processing. The following subsections introduce the 2-D SMDWT where the coefficients of 
mask wavelet coefficient derivation are based on the 2-D 5/3 integer lifting-based DWT. 

3.1 The 2-D SMDWT structure 
This sub-section, the proposed SMDWT is discussed in three aspects: lifting structure, 
transpose memory, as well as latency and critical path. The proposed SMDWT algorithm 
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has the advantages of fast computational speed, less complexity, reduced latency, and 
regular data flow. 
For speed and simplicity, four-masks, 3×3, 5×3, 3×5, and 5×5, are generally used to perform 
spatial filtering tasks. Moreover, the four-subband processing can be further optimized to 
speed up and reduce the transpose memory of DWT coefficients. The four-matrix processors 
consist of four mask filters, and each filter is derived from one 2-D DWT of 5/3 integer lifting-
based coefficients. In LDWT implementation, a 1-D DWT needs massive computations, so the 
computation unit dominants the hardware cost (Chiang & Hsia, 2005)(Andra et al., 2002). A 2-
D DWT is compose of two 1-D DWTs and a block of transpose memory, which is of the same 
size of the processed image. The transpose memory is the main overhead of the computation 
unit in the 2-D DWT. Figure 3 shows the block diagram of a traditional 2-D DWT. Without loss 
of generality, the 5/3 lifting-based 2-D DWT is adopted for comparison. Assuming that the 
image is of size N×N, during the transformation, a large amount of transpose memory (order 
of N2) is needed to store the temporary data after the first stage 1-D DWT decomposition. The 
second stage 1-D DWT is then applied to the stored data to obtain the four-subband (HH, HL, 
LH, and LL) results of the 2-D DWT. Because the memory requirement of size N2 is huge and 
the processing is too long, this work proposes a new approach, called 2-D SMDWT, to reduce 
the transpose computing latency and critical path. Figure 5(a) shows the concept of the 
proposed SMDWT architecture, which consists of input arrangement, processing element, 
memory unit, and control unit, as shown in Fig. 5(b). The outputs are fed to the 2-D DWT four-
subband coefficients, HH, HL, LH, and LL. Significant transpose memory can be saved using 
the proposed approach. This architecture is described in detail in the following subsections, 
and is illustrated in Figs. 5, 7(c), 8(c), 11(c), and 14(c). This study focuses on the 5/3 lifting-
based 2-D DWT complexity reduction. 
 

 
(a) 

 
(b) 

Fig. 5. The system block diagram of the proposed 2-D DWT. (a) 2-D SMDWT. (b) Block 
diagram of the proposed system architecture. 
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Without loss of generality, let us take a 6×6-pixel image is employed to demonstrate the 5/3 
LDWT operations as shown in Fig. 6. In Fig. 6, the variable x(i,j) denotes the original image. 
The upper part of Fig. 6 shows the first stage 1-D LDWT operations, and the lower part of 
Fig. 6 shows the second stage 1-D LDWT operations for evaluating the four-subband 
coefficients, HH, HL, LH, and LL. In the first stage of the 1-D LDWT, three pixels are used to 
evaluate a 1-D high-frequency coefficient. For example, x(0,0), x(0,1), and x(0,2) are used to 
calculate the high-frequency wavelet coefficient b(0,0), where 
 

 

 

 

  

 trap L trap H

 
x(i,j): original image, i = 0~5 and j = 0~5 
b(i,j): high frequency wavelet coefficient of 1-D LDWT 
c(i,j): low frequency wavelet coefficient of 1-D LDWT 
HH: high-high frequency wavelet coefficient of 2-D LDWT 
HL: high-low frequency wavelet coefficient of 2-D LDWT 
LH: low-high frequency wavelet coefficient of 2-D LDWT 
LL: low-low frequency wavelet coefficient of 2-D LDWT 

Fig. 6. Example of 5/3 LDWT operations. 
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b(0,0)=−[x(0,0)+x(0,2)]/2+x(0,1). The pixels, x(0,2), x(0,3), and x(0,4) are used to calculate the 
next high-frequency wavelet coefficient b(0,1). Herein x(0,2) is used to calculate both of b(0,0) 
and b(0,1), and is called the overlapped pixel. The low-frequency wavelet coefficient is 
calculated using two consecutive high-frequency wavelet coefficients and the overlapped 
pixel. For example, b(0,0) and b(0,1) cope with x(0,2) to find the low-frequency wavelet 
coefficient c(0,1), where c(0,1)=[b(0,0)+b(0,1)]/4+x(0,2). The calculated high-frequency 
wavelet coefficients, b(i,j), and the low frequency wavelet coefficients, c(i,j), are then used in 
the second stage 1-D LDWT to calculate the four-subbands coefficients, HH, HL, LH and LL. 
The general form of the mask coefficients is derived first, and the complexity is further 
reduced by employing the symmetric feature of the mask. 

3.2 Simplified 2-D SMDWT using symmetric features 
1. High-High (HH) band mask coefficients reduction for 2-D SMDWT 
According to the 2-D 5/3 LDWT, the HH band coefficients of the SMDWT can be derived as 
follows: 

HH(i,j)=x(2i+1,2j+1)+(1/4)∑1u=0∑1v=0x(2i+2u,2j+2v)+(-1/2)∑2u=-1x(2i+|u|,2j+|1-u|). (13) 

The mask as shown in Fig. 7(a) can be obtained by Eq. 13, where the variables α=-1/2, 
β=1/4, and γ=1. Figure 7(b) shows the DSP architecture and Fig. 7(c) shows the hardware 
architecture. 
The transpose memory requirement is a very important issue in multimedia IC design. 
Therefore, to make the SMDWT architecture suitable for VLSI implementation, the design 
processing element must be as simple and modular as possible. However, the product of 
cost and computation time is always the most important consideration from a 
standardization provides economies of scale for VLSI solution point of view. Therefore, 
speed is sometimes sacrificed to obtain less cost hardware, while still satisfying the 
performance requirement. In other words, the SMDWT architecture can be decomposed so 
as to adjust the cost and computation time product. Its hardware cost and computation time 
tradeoffs must be carefully considered to find the optimal design for VLSI implementation. 
A simple SMDWT method for cost and computation time savings is introduced below. 
Figure 7(c) shows the concept of the proposed HH-band architecture for SMDWT. The 
proposed HH-band architecture consists of a shifter (α, β, and γ) and one adder tree with 
propagation registers, as shown in Fig. 7(c). The architecture design can be divided as 
follows: 
• Input arrangement unit: Three pixels in a column are inputted into a processing 

element for address generator circuits in each cycle. Simultaneously, the input 
arrangement to assign input original signals used in multiplexer (MUX) fetch 3 pixels in 
each cycle to switch for group 1, group 2 and group 3 to operations, respectively. 

• Coefficient shifter unit: The coefficient shifter values are α=-1/2, β=1/4, and γ=1. 
Shifters replace multipliers to achieve a high-efficiency architecture by (reducing 
computational time, critical path, area cost and power consumption (Tan & Arslan, 
2003)). 

• Adder tree unit: An adder tree architecture is adopted to avoid the long signal path 
length, signal skewing, and hazards caused by signal dependency. Each adder tree level 
can be viewed as a parallel pipeline stage. This architecture is suitable for the realization 
in hardware design. 
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                        (a)                                                                    (b) 

 
(c) 

Fig. 7. HH band mask coefficients and the corresponding DSP architecture. (a) Coefficients. 
(b) DSP architecture. (c) Hardware architecture design. 

• Propagation register unit: Current pixels are stored to assign subband coefficients 
computation needs in each group, and next horizontal or vertical scan oriented 
computation are stored in propagation registers for data reuse. This approach can 
reduce the next access time and computations. The pipeline design is the best method to 
improve the system throughput. 

Based on this structure, the coefficient overlap part can be reused as show in Fig. 7(c). 
The complexity of the mask-based method is further reduced by employing the symmetric 
feature of the mask. First, the initial horizontal scan is expressed by: 

 HH(0,0)=β×x(0,0)+α×x(0,1)+β×x(0,2)+α×x(1,0)+γ×x(1,1) 

 +α×x(1,2)+β×x(2,0)+α×x(2,1)+β×x(2,2) (14) 

The next coefficient can be calculated by: 

HH(0,1)=β×x(0,2)+α×x(0,3)+β×x(0,4)+α×x(1,2)+γ×x(1,3)+α×x(1,4)+β×x(2,2)+α×x(2,3)+β×x(2,4) 

=α×x(0,3)+β×x(0,4)+γ×x(1,3)+α×x(1,4)+α×x(2,3)+β×x(2,4)+XMH 

 =β×(x(0,4)+x(2,4))+α×(x(0,3)+x(1,4)+x(2,3))+γ×x(1,3)+XMH,   (15) 
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where the variable XMH denotes the repeated part after the horizontal third coefficient, 
where X denotes group of pixels x, M denotes the mask, and H denotes horizontal 
orientation. The general form can be derived as: 

 XMH=β×x(i,2j+2)+α×x(i+1,2j+2)+β×x(i+2,2j+2). (16) 

Since γ=1, the general form can be expressed as: 

HH(i,j+1)=β×(x(i,2j+4)+x(i+2,2j+4))+α×(x(i,2j+3)+x(i+1,2j+4)+x(i+2,2j+3))+x(i+1,2j+3)+XMH, (17) 
 

where i=0~N-1, j=0~N-2. 
The vertical scan can be done in the same way, where HH(0,0) is the same as that in Eq. 14. 
The next coefficient can be calculated by: 

HH(1,0)=β×x(2,0)+α×x(2,1)+β×x(2,2)+α×x(3,0)+γ×x(3,1)+α×x(3,2)+β×x(4,0)+α×x(4,1)+β×x(4,2) 

 =α×x(3,0)+β×x(4,0)+γ×x(3,1)+α×x(4,1)+α×x(3,2)+β×x(4,2)+XMV,  (18) 

where the variable XMV denotes the repeated part after the vertical third coefficient, where 
V denotes vertical orientation. The general form can be derived as: 

 XMV=β×x(2i+2,j)+α×x(2i+2,j+1)+β×x(2i+2,j+2).  (19) 

Since γ=1, the general form can be expressed as: 

HH(i+1,j)=β×(x(2i+4,j)+x(2i+4,j+2))+α×(x(2i+3,j)+x(2i+4,j+1)+x(2i+3,j+2))+x(2i+3,j+1)+XMV.  (20) 

where i=0~N-1, j=0~N-2. 
Finally, the diagonal oriented scan can be derived as: 

HH(1,1)=β×x(2,2)+α×x(2,3)+β×x(2,4)+α×x(3,2)+γ×x(3,3)+α×x(3,4)+β×x(4,2)+α×x(4,3)+β×x(4,4) 

=γ×x(3,3)+α×x(3,4)+α×x(4,3)+β×x(4,4)+XMD 

 =β×x(4,4)+α×(x(3,4)+x(4,3))+γ×x(3,3)+XMD, (21) 

where the variable XMD denotes the repeated part after the vertical fifth coefficient, where D 
denotes diagonal orientation. The general form can be expressed as: 

 XMD=β×x(2i+2,2j+2)+α×x(2i+2,2j+3)+β×x(2i+2,2j+4)+α×x(2i+3,2j+2)+β×x(2i+4,2j+2). (22) 

Since γ=1, the general form can be expressed as: 

 HH(i+1,j+1)=β×x(2i+4,2j+4)+α×(x(2i+3,2j+4)+β×x(2i+4,2j+3))+x(2i+3,2j+3)+XMD. (23) 

where i=0~N-1, j=0~N-2. 
The repeat part is only needed to be calculated once throughout the whole image. Hence it 
greatly reduces the complexity of the SMDWT. 
2. High-Low (HL) and Low-High (LH) band mask coefficients reduction for 2-D SMDWT 
According to the 2-D 5/3 lifting-based DWT, the HL-band coefficients of the mask-based 
DWT can be expressed as follows: 

HL(i,j)=(3/4)x(2i+1,2j)+(1/16)∑1u=0∑1v=0x(2i+4u,2j-2+2v)+(-1/8)∑1u=0x(2i+4u,2j) 
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+(-1/8)∑1u=0∑1v=0x(2i+2u,2j-1+2v)+ 

 (1/4)∑1u=0x(2i+1,2j-1+2u)+(-3/8)∑1u=0x(2i+2u,2j).  (24) 

The mask as shown in Fig. 8(a) can be obtained via Eq. 24, where α=-1/8, β=1/16, γ=1/4, 
δ=-3/8, and ε=3/4. The DSP and hardware architecture are also depicted in Figs. 8(b) and 
(c). The complexity of the SMDWT is further reduced by employing the symmetric feature 
of the mask. 
The initial horizontal scan is expressed by: 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 8. HL band mask coefficients and the corresponding DSP architecture. (a) Coefficients. 
(b) DSP architecture. (c) Hardware architecture design. 
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HL(0,0)=β×x(0,0)+α×x(0,1)+δ×x(0,2)+α×x(0,3)+β×x(0,4)+α×x(1,0)+γ×x(1,1)+ε×x(1,2)+ 

+γ×x(1,3)+α×x(1,4)+β×x(2,0)+αx(2,1)+δ×x(2,2)+α×x(2,3)+β×x(2,4) 

=β×x(0,0)+α×x(0,1)+δ×x(0,2)+β×x(0,4)+α×x(1,0)+γ×x(1,1)+ε×x(1,2)+ 

 +α×x(1,4)+β×x(2,0)+α×x(2,1)+δ×x(2,2)+β×(2,4)+XMH+1, (25) 

where the variable XMH+1 denotes the repeated part after the first horizontal coefficient. The 
next coefficient can be calculated as: 

HL(0,1)=β×x(0,2)+α×x(0,3)+δ×x(0,4)+α×x(0,5)+β×x(0,6)+α×x(1,2)+γ×x(1,3)+ε×x(1,4)+ 

+γ×x(1,5)+α×x(1,6)+β×x(2,2)+αx(2,3)+δ×x(2,4)+α×x(2,5)+β×x(2,6) 

=β×x(0,2)+δ×x(0,4)+α×x(0,5)+β×x(0,6)+α×x(1,2)+ε×x(1,4)+γ×x(1,5)+ 

 +α×x(1,6)+β×x(2,2)+δ×x(2,4)+α×x(2,5)+β×(2,6)+XMH+1,   (26) 

The general form of the first horizontal step can be derived as: 

HL(i,1)=β×x(i,j+2)+δ×x(i,j+4)+α×x(i,j+5)+β×x(i,j+6)+α×x(i+1,j+2)+ε×x(i+1,j+4)+ 

+γ×x(i+1,j+5)+α×x(i+1,j+6)+β×x(i+2,j+2)+δ×x(i+2,j+4)+α×x(i+2,j+5)+β×x(i+2,j+XMH+1, (27) 

where i=0~N-1, and 

 XMH+1=α×x(i,3)+γ×x(i+1,3)+α×x(i+2,3). (28) 

The next coefficient can be calculated as: 

HL(0,2)=β×x(0,4)+α×x(0,5)+δ×x(0,6)+α×x(0,7)+β×x(0,8)+α×x(1,4)+γ×x(1,5)+ 

+ε×x(1,6)+γ×x(1,7)+α×x(1,8)+β×x(2,4)+αx(2,5)+δ×x(2,6)+α×x(2,7) 

+β×x(2,8)=δ×x(0,6)+α×x(0,7)+β×x(0,8)+ε×x(1,6)+γ×x(1,7)+α×x(1,8)+ 

 +δ×x(2,6)+α×x(2,7)+β×x(2,8)+XMH+n,  (29) 

where the variable XMH+n denotes the repeated part after the second horizontal coefficient. 
From Eq. 29, the general form can be expressed as: 

HL(i,j+2)=δ×x(i,2j+6)+α×x(i,2j+7)+β×x(i,2j+8)+ε×x(i+1,2j+6)+γ×x(i+1,2j+7)+α×x(i+1,2j+8)+ 

 +δ×x(i+2,2j+6)+α×x(i+2,2j+7)+β×x(i+2,2j+8)+XMH+n, (30) 

where i=0~N-1, j=0~N-2, and  

XMH+n=β×x(i,2j+4)+α×x(i,2j+5)+α×x(i+1,2j+4)+γ×x(i+1,2j+5)+β×x(i+2,2j+4)+α×x(i+2,2j+5). (31) 

The vertical scan can be done in the same way, where HL(0,0) is the same as that in Eq. 25. 
The next coefficient can be calculated as: 

HL(1,0)=β×x(2,0)+α×x(2,1)+δ×x(2,2)+α×x(2,3)+β×x(2,4)+α×x(3,0)+γ×x(3,1)+ 
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+ε×x(3,2)+γ×x(3,3)+α×x(3,4)+β×x(4,0)+α×(4,1)+δ×x(4,2)+α×x(4,3)+β×x(4,4) 

=α×x(3,0)+γ×x(3,1)+ε×x(3,2)+γ×x(3,3)+α×x(3,4)+β×x(4,0)+α×x(4,1)+ 

 +δ×x(4,2)+α×x(4,3)+β×x(4,4)+XMV, (32) 

where the variable XMV denotes the repeated part after the vertical fifth coefficient. The 
general form can be expressed as: 

HL(i+1,j)=α×x(2i+3,j)+γ×x(2i+3,j+1)+ε×x(2j+3,j+2)+γ×x(2j+3,j+3)+α×x(2j+3,j+4)+ 

+β×x(2j+4,j)+α×x(2j+4,j+1)+δ×x(2j+4,j+2) 

 +α×x(2j+4,j+3)+β×x(2j+4,j+4)+XMV,  (33) 
where i=0~N-1, j=0~N-1, and 

 XMV=β×x(2i+2,j)+α×x(2i+2,j+1)+δ×x(2i+2,j+2)+α×x(2i+2,j+3)+β×x(2i+2,j+4).  (34) 

Finally, the diagonal oriented scan can be expressed as: 

HL(1,1)=β×x(2,2)+α×x(2,3)+δ×x(2,4)+α×x(2,5)+β×x(2,6)+α×x(3,2)+γ×x(3,3)+ε×x(3,4)+ 

+γ×x(3,5)+α×x(3,6)+β×x(4,2)+αx(4,3)+δ×x(4,4)+α×x(4,5)+β×x(4,6) 

=α×x(3,2)+ε×x(3,4)+γ×x(3,5)+α×x(3,6)+β×x(4,2)+δ×x(4,4)+α×x(4,5)+β×x(4,6)+XMD+1,  (35) 

where the variable XMD+1 denotes the repeated part as shown in the gray part of Fig. 9 after 
the first diagonal scan. Next, the HL(2,2) is calculated as: 

HL(2,2)=β×x(4,4)+α×x(4,5)+δ×x(4,6)+α×x(4,7)+β×x(4,8)+α×x(5,4)+γ×x(5,5)+ 

+ε×x(5,6)+γ×x(5,7)+α×x(5,8)+β×x(6,4)+α×(6,5)+δ×x(6,6)+α×x(6,7)+β×x(6,8)                             

 =ε×x(5,6)+γ×x(5,7)+α×x(5,8)+δ×x(6,6)+α×x(6,7)+β×x(6,8)+XMD+n, (36) 
 

x(2,2) x(2,3) x(2,4) x(2,5) x(2,6) 

x(3,2) x(3,3) x(3,4) x(3,5) x(3,6) 

x(4,2) x(4,3) x(4,4) x(4,5) x(4,6) 

Fig. 9. Repeat part (in gray) of the diagonal scanned position HL(1,1). 

where the variable XMD+n denotes the repeated part as shown in the gray part of Fig. 10 after 
the first diagonal scan. The general form of XMD+n can be expressed as: 

XMD+n=β×x(2i+4,2i+4)+α×x(2i+4,2i+5)+δ×x(2i+4,2i+6)+α×x(2i+4,2i+7)+β× 

×x(2i+4,2i+8)+α×x(2i+5,2i+4)+γ×x(2i+5,2i+5)+ε×x(2i+5,2i+6)+ 

+γ×x(2i+5,2i+7)+α×x(2i+5,2i+8)+β×x(2i+6,2i+4)+α×x(2i+6,2i+5)+ 

 +δ×x(2i+6,2i+6)+α× x(2i+6,2i+7)+β×x(2i+6,2i+8),   (37) 
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x(4,4) x(4,5) x(4,6) x(4,7) x(4,8) 

x(5,4) x(5,5) x(5,6) x(5,7) x(5,8) 

x(6,4) x(6,5) x(6,6) x(6,7) x(6,8) 

Fig. 10. Repeat part (in gray) of the diagonal scanned position HL(2,2). 

The general form of the rest part can be expressed as: 

HL(i+1,j+1)=β×x(2i+6,2j+8)+α×(x(2i+5,2j+8)+x(2i+6,2j+7))+γ×x(2i+5,2j+7)+ 

 +δ×x(2i+6,2j+6)+ε×x(2i+5,2j+6)+XMD+n, (38) 

where i=1~N-1, j=1~N-1. 
The HL-band can be derived in the same way. According to the 2-D 5/3 LDWT, the LH-
band coefficients of the SMDWT can be derived as follows: 

LH(i,j)=(3/4)x(2i,2j+1)+(1/16)∑1u=0∑1v=0x(2i-2+2u,2j+4v)+ 

+(-1/8)∑1u=0x(2i,2j+4u)+(-1/8)∑1u=0∑1v=0x(2i-1+2u,2j+2v)+ 

 (1/4)∑1u=0x(2i-1+2u,2j+1)+(-3/8)∑1u=0x(2i,2j+2u).  (39) 

The mask as shown in Fig. 11(a) can be obtained via Eq. 39, where α=-1/8, β=1/16, γ=1/4, 
δ=-3/8, and ε=3/4. The DSP and hardware architecture are depicted in Figs. 11(b) and (c). 
The complexity of the SMDWT is further reduced by employing the symmetric feature of 
the mask. First, the initial horizontal scan is calculated by the method that is similar to that 
of HL SMDWT, where the variable XMH denotes the repeated part after the horizontal fifth 
coefficient. The general form can be expressed as: 

LH(i,j+1)=α×x(i,2j+3)+β×x(i,2j+4)+γ×x(i+1,2j+3)+α×x(i+1,2j+4)+ε×x(i+2,2j+3)+ 

+δ×x(i+2,2j+4)+γ×x(i+3,2j+3)+ 

 α×x(i+3,2j+4)+α×x(i+4,2j+3)+β×x(i+4,2j+4)+XMH, (40) 

where i=0~N-1, j=0~N-1, and 

 XMH=β×x(i,2j+2)+α×x(i+1,2j+2)+δ×x(2i+2,j+2)+α×x(i+3,2j+2)+β×x(i+4,2j+2).   (41) 

Next, the initial vertical scan is calculated by the method similar to that of HL mask-based 
DWT, where the variable XMV+1 denotes the repeated part after the vertical first coefficient. 
The general form of the first vertical step can be expressed as: 

LH(1,j)=β×x(i+2,j)+α×x(i+2,j+1)+β×x(i+2,j+2)+δ×x(i+4,j)+ε×x(i+4,j+1)+δ×x(i+4,j+2)+ 

+α×x(i+5,j)+γ×x(i+5,j+1)+α×x(i+5,j+2)+ 

 +β×x(i+6,j)+α×x(i+6,j+1)+β×x(i+6,j+2)+XMV+1, (42) 

where i=0, j=0~N-1, and 

 XMV+1=α×x(2i+3,0)+γ×x(2i+3,1)+α×x(2i+3,2).  (43) 
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Next, the second vertical scan is calculated with the method similar to that of HL SMDWT. 

LH(i+2,j)=δ×x(2i+6,j)+ε×x(2i+6,j+1)+δ×x(2i+6,j+2)+α×x(2i+7,j)+γ×x(2i+7,j+1)+ 

 +α×x(2i+7,j+2)+β×x(2i+8,j)+α×x(2i+8,j+1)+β×x(2i+8,j+2)+XMV+n,  (44) 

where i=0~N-1, j=0~N-2, and  

XMV+n=β×x(2i+4,j)+α×x(2i+4,j+1)+β×x(2i+4,j+2)+α×x(2i+5,j)+γ×x(2i+5,j+1)+α×x(2i+5,j+2). (45) 

Finally, the diagonal oriented scan can be derived as: 

LH(1,1)=α×x(3,4)+ε×x(4,3)+δ×x(4,4)+α×x(5,2)+γ×x(5,3)+β×x(6,2)+α×x(6,3)+β×x(6,4)+XMD+1,(46) 

 

  
          (a)                                                                          (b) 

 
(c) 

Fig. 11. LH band mask coefficients and the corresponding DSP architecture. (a) Coefficients. 
(b) DSP architecture. (c) Hardware architecture design. 



An Improved Low Complexity Algorithm for 2-D Integer Lifting-Based  
Discrete Wavelet Transform Using Symmetric Mask-Based Scheme   

 

129 

where the variable XMD+1 denotes the repeated part as shown in the gray part of Fig. 12 after 
the first diagonal scan. 
Next the LH(2,2) is calculated as: 

 LH(2,2)=α×x(5,4)+ε×x(6,5)+δ×x(6,6)+γ×x(7,5)+α×x(7,6)+β×x(8,4)+α×x(8,5)+XMD+n, (47) 

where the variable XMD+n denotes the repeated part as shown in the gray part of Fig. 13 after 
the first diagonal scan. The general form of XMD+n can be expressed as: 

XMD+n=β×x(2i+4,2i+4)+α×x(2i+4,2i+5)+β×x(2i+4,2i+6)+α×x(2i+5,2i+4)+γ×x(2i+5,2i+5)+ 

 +α×x(2i+5,2i+6)+δ×x(2i+6,2i+4)+α×x(2i+7,2i+4)+β×x(2i+8,2i+4).   (48) 

 

x(2,2) x(2,3) x(2,4) 

x(3,2) x(3,3) x(3,4) 

x(4,2) x(4,3) x(4,4) 

x(5,2) x(5,3) x(5,4) 

x(6,2) x(6,3) x(6,4) 

Fig. 12. Repeat part (in gray) of the diagonal scanned position LH(1,1). 
 

x(4,4) x(4,5) x(4,6) 

x(5,4) x(5,5) x(5,6) 

x(6,4) x(6,5) x(6,6) 

x(7,4) x(7,5) x(7,6) 

x(8,4) x(8,5) x(8,6) 

Fig. 13. Repeat part (in gray) of the diagonal scanned position LH(2,2). 

The general form of the rest part can be expressed as: 

LH(i+1,j+1)=β×x(2i+8,2j+6)+α×(x(2i+7,2j+6)+x(2i+8,2j+5))+γ×x(2i+7,2j+5)+ 

 +δ×x(2i+6,2j+6)+ε×x(2i+5,2j+6)+XMD+n.   (49) 

where i=1~N-1, j=1~N-1. 
3. Low-Low (LL) band mask coefficients reduction for 2-D SMDWT 
According to the 2-D 5/3 LDWT, the LL-band coefficients of the SMDWT can be expressed 
as follows: 

LL(i,j)=(9/16)x(2i,2j)+(1/64)∑1u=0∑1v=0x(2i-2+4u,2j-2+4v)+ 

+(1/16)∑1u=0∑1v=0x(2i-1+2u,2j-1+2v)+(-1/32)∑1u=0∑1v=0 x(2i-1+2u,2j-2+4v)+ 
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+(-1/32)∑1u=0∑1v=0x(2i-2+4u,2j-1+2v)+(3/16)∑1u=0[x(2i-1+2u,2j)+P(2i,2j-1+2u)]+ 

 +(-3/32)∑1u=0[x(2i-2+4u,2j)+x(2i,2j-2+4u)].  (50) 

The mask as shown in Fig. 14(a) can be obtained via Eq. 50, where α=-1/32, β=1/64, γ=1/16, 
δ=-3/32, ε=3/16 and ζ=9/16. The DSP and hardware architecture are depicted in Figs. 14(b) 
and (c). The complexity of the SMDWT is further reduced by employing the symmetric 
feature of the mask. First, the initial horizontal scan LL(0,0). The next coefficient can be 
calculated as LL(0,1). where the variable XMH+1 denotes the repeated part after the first 
horizontal coefficient. The general form of the first horizontal step can be expressed as: 

LL(i,1)=β×x(i,j+2)+δ×x(i,j+4)+α×x(i,j+5)+β×x(i,j+6)+α×x(i+1,j+2)+ε×x(i+1,j+4)+ 

+γ×x(i+1,j+5)+α×x(i+1,j+6)+δ×x(i+2,j+2)+ζ×x(i+2,j+4)+ε×x(i+2,j+5)+δ×x(i+2,j+6)+ 

+α×x(i+3,j+2)+ε×x(i+3,j+4)+γ×x(i+3,j+5)+α×x(i+3,j+6)+β×x(i+4,j+2)+ 

 +δ×x(i+4,j+4)+α×x(i+4,j+5)+β×x(i+4,j+6)+XMH+1,  (51) 

where i=0~N-1, and 

 XMH+1=α×x(i,3)+γ×x(i+1,3)+ε×x(i+2,3)+γ×x(i+3,3)+α×x(i+4,3).  (52) 

The next coefficient can be calculated as LL(0,2). where the variable XMH+n denotes the 
repeated part after the second horizontal coefficient. From LL(0,2), the general form can be 
expressed as: 

LL(i,j+2)=δ×x(i,2j+6)+α×x(i,2j+7)+β×x(i,2j+8)+ε×x(i+1,2j+6)+γ×x(i+1,2j+7)+ 

+α×x(i+1,2j+8)+ζ×x(i+2,2j+6)+ε×x(i+2,2j+7)+δ×x(i+2,2j+8)+ 

+ε×x(i+3,2j+6)+γ×x(i+3,2j+7)+α×x(i+3,2j+8)+δ×x(i+4,2j+6)+ 

 +α×x(i+4,2j+7)+β×x(i+4,2j+8)+XMH+n, (53) 

where i=0~N-1, j=0~N-2, and  

XMH+n=β×x(i,2j+4)+α×x(i,2j+5)+α×x(i+1,2j+4)+γ×x(i+1,2j+5)+δ×x(i+2,2j+4)+ 

 +ε×x(i+2,2j+5)+α×x(i+3,2j+4)+γ×x(i+3,2j+5)+β×x(i+4,2j+4)+α×x(i+4,2j+5).  (54) 
 

  
(a) 
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(b) 

 
(c) 

Fig. 14. LL band mask coefficients and the corresponding DSP architecture. (a) Coefficients. 
(b) DSP architecture. (c) Hardware architecture design. 
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The vertical scan can be done in the same way, where LL(0,0) is the same as that horizontal 
in LL(0,0). The next coefficient can be calculated as LL(1,0). Next, the initial vertical scan is 
calculated by the method similar to that of LH SMDWT, where the variable XMV+1 denotes 
the repeated part after the vertical first coefficient. The general form of the first vertical step 
can be expressed as: 

LL(1,j)=β×x(2i,j)+α×x(2i,j+1)+δ×x(2i,j+2)+α×x(2i,j+3)+β×x(2i,j+4)+δ×x(2i+4,j)+ 

+ε×x(2i+4,j+1)+ζ×x(2i+4,j+2)+ε×x(2i+4,j+3)+δ×x(2i+4,j+4)+α×x(2i+5,j)+ 

+γ×x(2i+5,j+1)+ε×x(2i+5,j+2)+γ×x(2i+5,j+3)+α×x(2i+5,j+4)+ 

 +β×x(2i+6,j)+α×(2i+6,j+1)+δ×x(2i+6,j+2)+α×x(2i+6,j+3)+β×x(2i+6,j+4)+XMV+1, (55) 
 

where i=0, j=0~N-1, and 

 XMV+1=α×x(3,j)+γ×x(3,j+1)+ε×x(3,j+2)+γ×x(3,j+3)+α×x(3,j+4). (56) 
 

Next, the second vertical scan is calculated by the method similar to that of LH SMDWT. 

LL(i+2,j)=δ×x(2i+6,j)+ε×x(2i+6,j+1)+ζ×x(2i+6,j+2)+ε×x(2i+6,j+3)+δ×x(2i+6,j+4)+ 

+ε×x(2i+7,j+2)+γ×x(2i+7,j+1)+ε×x(i,2j+7)+γ×x(2i+7,j+3)+α×x(2i+7,j+4)+β×x(i,2j+8)+ 

 +α×x(2i+8,j+1)+δ×x(2i+8,j+2)+α×x(2i+8,j+3)+β×x(2i+8,j+4)+XMV+n,  (57) 
 

where i=0~N-1, j=0~N-2, and 

XMV+n=β×x(2i+4,j)+α×x(2i+4,j+1)+δ×x(2i+4,j+2)+α×x(2i+4,j+3)+β×x(2i+4,j+4)+ 

 +β×x(2i+5,j)+γ×x(2i+5,j+1)+ε×x(2i+5,j+2)+γ×x(2i+5,j+3)+α×x(2i+5,j+4).  (58) 
 

Finally, the diagonal oriented scan can be derived as: 

LL(1,1)=β×x(2,2)+α×x(2,5)+β×x(2,6)+ζ×x(4,4)+ε×x(4,5)+α×x(5,2)+ε×x(5,4)+ 

 +γ×x(5,5)+α×x(5,6)+β×x(6,2)+δ×x(6,4)+α×x(6,5)+β×x(6,6)+XMD+1,  (59) 
 

where the variable XMD+1 denotes the repeated part as shown in the gray part of Fig. 15 after 
the first diagonal scan. 
Next the HL(2,2) is calculated as: 

LL(2,2)=ε×x(6,5)+ζ×x(6,6)+ε×x(6,7)+γ×x(7,5)+ε×x(7,6)+γ×x(7,7)+α×x(7,8)+ 

 +α×x(8,5)+δ×x(8,6)+α×x(8,7)+β×x(8,8)+XMD+n, (60) 
 

where the variable XMD+2 denotes the repeated part as shown in the gray part of Fig. 16 after 
the first diagonal scan. The variable XMD+1 denotes the repeated part as shown in the gray 
part of Fig. 17 after the first diagonal scan. The general form of XMD+n can be expressed as: 
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x(2,2) x(2,3) x(2,4) x(2,5) x(2,6) 

x(3,2) x(3,3) x(3,4) x(3,5) x(3,6) 

x(4,2) x(4,3) x(4,4) x(4,5) x(4,6) 

x(5,2) x(5,3) x(5,4) x(5,5) x(5,6) 

x(6,2) x(6,3) x(6,4) x(6,5) x(6,6) 

Fig. 15. Repeat part (in gray) of the diagonal scanned position LL(1,1). 
 

x(4,4) x(4,5) x(4,6) x(4,7) x(4,8) 

x(5,4) x(5,5) x(5,6) x(5,7) x(5,8) 

x(6,4) x(6,5) x(6,6) x(6,7) x(6,8) 

x(7,4) x(7,5) x(7,6) x(7,7) x(7,8) 

x(8,4) x(8,5) x(8,6) x(8,7) x(8,8) 

Fig. 16. Repeat part (in gray) of the diagonal scanned position LL(2,2). 
 

x(6,6) x(6,7) x(6,8) x(6,9) x(6,10) 

x(7,6) x(7,7) x(7,8) x(7,9) x(7,10) 

x(8,6) x(8,7) x(8,8) x(8,9) x(8,10) 

x(9,6) x(9,7) x(9,8) x(9,9) x(9,10) 

x(10,6) x(10,7) x(10,8) x(10,9) x(10,10) 

Fig. 17. Repeat part (in gray) of the diagonal scanned position LL(3,3). 

XMD+n=β×x(2i+6,2i+6)+α×x(2i+6,2i+7)+δ×x(2i+6,2i+8)+α×x(2i+6,2i+9)+ 

+β×x(2i+6,2i+10)+α×x(2i+7,2i+6)+γ×x(2i+7,2i+7)+ε×x(2i+7,2i+8)+ 

+γ×x(2i+7,2i+9)+α×x(2i+7,2i+10)+δ×x(2i+8,2i+6)+ε×x(2i+8,2i+7)+ 

 +δ×x(2i+8,2i+10)+α×x(2i+9,2i+6)+γ×x(2i+9,2i+7)+β×x(2i+10,2i+6)+α×x(2i+10,2i+7).  (66) 

The general form of the rest part can be expressed as: 

LL(i+1,j+1)=ζ×x(2i+8,2i+8)+ε×x(2i+8,2i+9)+ε×x(2i+9,2i+8)+γ×x(2i+9,2i+9)+ 

 +α×x(2i+9,2i+10)+δ×x(2i+10,2i+8)+α×x(2i+10,2i+9)+β×x(2i+10,2i+10)+XMD+n,  (67) 

where i=1~N-1, j=1~N-1. 

3.3 Summary of the complexity reduction 
The four-matrix frameworks, HH, HL, LH, and LL lead to four different architectures. Each 
of these is described by the structural behavior of different components that makes up the 
digital signal processing (DSP) as shown in Table 1. The discussion above shows that the 
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complexity of the proposed SMDWT can be significantly reduced by exploiting the 
symmetric feature of the masks. Tables 2-5 show the overall complexity reductions from the 
original SMDWT to the simplified SMDWT. 
 

HH 9 2 
HL 15 2 
LH 15 2 
LL 25 2 

Table 1. The Subband Mask for DSP. 

 
XMH of HH(i,j+1) β×x(i,2j+2)+α×x(i+1,2j+2)+β×x(i+2,2j+2). 

Complexity 
reduction 

Original SMDWT: adder is 8, and multiplier is 9. (number of operations) 
Simplified SMDWT: adder is 5, and multiplier is 0. (The shifter is used to 
replace multiplier) 

XMV of HH(i+1,j) β×x(2i+2,j)+α×x(2i+2,j+1)+β×x(2i+2,j+2). 
Complexity 
reduction 

Original SMDWT: adder is 8, and multiplier is 9. 
Simplified SMDWT: adder is 6, and multiplier is 0. 

Table 2. HH-Band Wavelet Coefficient (Mask of Size 3×3). 
 

XMH+1 of HL(i,1) α×x(i,3)+γ×x(i+1,3)+α×x(i+2,3). 
Complexity 
reduction 

Original SMDWT: adder is 14, and multiplier is 15. 
Simplified SMDWT: adder is 12, and multiplier is 0. 

XMH+n of 
HL(i,j+2) 

β×x(i,2j+4)+α×x(i,2j+5)+α×x(i+1,2j+4)+γ×x(i+1,2j+5)+β×x(i+2,2j+4)+α×x(
i+2,2j+5). 

Complexity 
reduction 

Original SMDWT: adder is 14, and multiplier is 15. 
Simplified SMDWT: adder is 9, and multiplier is 0. 

XMV of HL(i+1,j) β×x(2i+2,j)+α×x(2i+2,j+1)+δ×x(2i+2,j+2)+α×x(2i+2,j+3)+β×x(2i+2,j+4). 
Complexity 
reduction 

Original SMDWT: adder is 14, and multiplier is 15. 
Simplified SMDWT: adder is 10, and multiplier is 0. 

Table 3. HL-Band Wavelet Coefficient (Mask of Size 5×3). 
 

XMH of LH(i,j+1) β×x(i,2j+2)+α×x(i+1,2j+2)+δ×x(2i+2,j+2)+α×x(i+3,2j+2)+β×x(i+4,2j+2). 
Complexity 
reduction 

Original SMDWT: adder is 14, and multiplier is 15. 
Simplified SMDWT: adder is 10, and multiplier is 0. 

XMV+1 of LH(1,j) α×x(2i+3,0)+γ×x(2i+3,1)+α×x(2i+3,2). 
Complexity 
reduction 

Original SMDWT: adder is 14, and multiplier is 15. 
Simplified SMDWT: adder is 12, and multiplier is 0. 

XMV+n of 
LH(i+2,j) 

β×x(2i+4,j)+α×x(2i+4,j+1)+β×x(2i+4,j+2)+α×x(2i+5,j)+γ×x(2i+5,j+1)+α×x(
2i+5,j+2). 

Complexity 
reduction 

Original SMDWT: adder is 14, and multiplier is 15. 
Simplified SMDWT: adder is 9, and multiplier is 0. 

Table 4. LH-Band Wavelet Coefficient (Mask of Size 3×5). 
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XMH+1 of LL(i,1) α×x(i,3)+γ×x(i+1,3)+ε×x(i+2,3)+γ×x(i+3,3)+α×x(i+4,3). 
Complexity 
reduction 

Original SMDWT: adder is 24, and multiplier is 25. 
Simplified SMDWT: adder is 20, and multiplier is 0. 

XMH+n of LL(i,j+2) β×x(i,2j+4)+α×x(i,2j+5)+α×x(i+1,2j+4)+γ×x(i+1,2j+5)+δ×x(i+2,2j+4)+ε×
x(i+2,2j+5)+α×x(i+3,2j+4)+γ×x(i+3,2j+5)+β×x(i+4,2j+4)+α×x(i+4,2j+5). 

Complexity 
reduction 

Original SMDWT: adder is 24, and multiplier is 25. 
Simplified SMDWT: adder is 15, and multiplier is 0. 

XMV+1 of LL(1,j) α×x(3,j)+γ×x(3,j+1)+ε×x(3,j+2)+γ×x(3,j+3)+α×x(3,j+4). 
Complexity 
reduction 

Original SMDWT: adder is 24, and multiplier is 25. 
Simplified SMDWT: adder is 20, and multiplier is 0. 

XMV+n of LL(i+2,j) β×x(2i+4,j)+α×x(2i+4,j+1)+δ×x(2i+4,j+2)+α×x(2i+4,j+3)+β×x(2i+4,j+4)+
β×x(2i+5,j)+γ×x(2i+5,j+1)+ε×x(2i+5,j+2)+γ×x(2i+5,j+3)+α×x(2i+5,j+4). 

Complexity 
reduction 

Original SMDWT: adder is 24, and multiplier is 25. 
Simplified SMDWT: adder is 15, and multiplier is 0. 

Table 5. LL-Band Wavelet Coefficient (Mask of Size 5×5). 

4. Experimental results and performance comparisons 
The proposed 2-D SMDWT algorithm is generally used to performing the 2-D DWT for still 
images. Figure 18 shows the schematic diagram of the 2-D SMDWT. The wavelet transform 
provides a multi-scale representation of image/video in the spatial-frequency domain. 
Besides the energy compaction and decorrelation properties that facilitate compression, a 
major advantage of the DWT is its scalability. The proposed algorithm is based on the four-
subband matrices (HH, HL, LH, and LL) which are processed to achieve the same 
performance as the 5/3 LDWT algorithm. The SMDWT is implemented in the JPEG2000 
reference software VM 9.0 and is compared with the original JPEG2000. The test image the 
used in this experiment was Lena of size 512×512. Experimental results show that the 
proposed algorithm not only significantly improves lifting-based latency, but also has the 
same visual quality as the normal 2-D 5/3 LDWT as shown in Fig. 19. 
 

 
Fig. 18. Schematic diagram of the 2-D SMDWT. 
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Fig. 19. PSNR (dB) versus Rate (bpp) comparison between 2-D LDWT and the proposed 2-D 
SMDWT. 

The architecture of the 2-D SMDWT has many advantages compared to the 2-D LDWT. For 
example, the critical path of the 2-D LDWT is potentially longer than that of SMDWT. 
Moreover, the 2-D LDWT is frame-based with the implementation bottleneck being the huge 
amount of the transpose memory size. This work uses the symmetric feature of the masks in 
SMDWT to improve the design. Experimental results, as shown in Table 7 show that the 
proposed algorithm is superior to most of the previous works. The proposed algorithm has 
efficient solutions for reducing the critical path (which is defined as the longest, time-weighted 
sequence of events from the start of the program to its termination with examples shown in 
Figs. 7(c), 8(c), 11(c), 14(c)), latency (the time between the arrival of a new signal and its first 
signal output becoming available in the system), and hardware cost, as shown in Figs. 7, 8, 11, 
14, and 20, and Table 6. The SMDWT approach requires a transpose memory of size (N/2)+26 
((N/2) is on-chip memory of size and 26 is number of register). The proposed 2-D DWT adopts 
parallel and pipeline schemes are employed to reduce the transpose memory and increase the 
operating speed. The shifters and adders replace multipliers in the computation to increase the 
hardware utilization and reduce the hardware cost. A N×N 2-D lifting-based DWT is RTL 
(Register Transistor Level) designed and simulated with VerilogHDL in this paper. 
 

 
            (a)                              (b)                                    (c)                                         (d) 

Fig. 20. 2-D LDWT critical path. (a) HH band. (b) HL band. (c) LH band. (d) LL band. 
 

Subbands LDWT critical path SMDWT critical path 
HH 2TM+2TA 1TM+2TA Fig.7(c) 

HL 3TM+3TA 1TM+2TA Fig.8(c) 
LH 3TM+3TA 1TM+3TA Fig.11(c) 
LL 4TM+4TA 1TM+3TA Fig.14(c) 

*TM: Multiplier operation time; TA: Adder operation time 

Table 6. Subband Lifting-Based V.S. Mask-Based for Integer 2-D DWT. 



An Improved Low Complexity Algorithm for 2-D Integer Lifting-Based  
Discrete Wavelet Transform Using Symmetric Mask-Based Scheme   

 

137 

Methods 2-D 
DWT 

Wave 
stage 

1Transpose 
memory 

2Latency
3Computing 

time Complexity 

Chiang et al., 2005 LDWT Integer 4N 7 (3/4)N2+7 Simple 
Chiang & Hsia, 
2005 LDWT Integer N2/4+5N 3 N2 Medium 

Diou et al., 2001 LDWT Integer 3.5N N/A N/A Simple 
Chen & Wu, 2002 LDWT Integer 2.5N N/A N2 Complexity 
Andra et al., 2002 LDWT Integer 3.5N 2N+5 (N2/2)+N+5 Simple 
Tan & Arslan, 
2003 LDWT Integer 3N N/A (N2/2)+N+5 Medium 

Lee et al., 2003 LDWT Integer N 5 (N2/2)+5 Medium 
ISO/IEC, 2000 LDWT Integer N2 N/A N/A Simple 
Varshney et al., 
2007 LDWT Integer 3N 13 N/A Medium 

Chen, 2002 LDWT Integer 3N N/A (N2/2)+N+5 Medium 
Proposed SMDWT Integer (N/2)+26 2 N2/4+3 Simple 

1 Transpose memory is used to store frequency coefficients in the 1-L 2-D DWT. 
2 In a system, latency is often used to mean any delay or waiting time that increases real or perceived 
response time beyond the response time desired. For example, specific contributors to 2-D DWT latency 
include from original image input to first subband output in signal. 
3 In a system, computing time represents the time used to compute an image of size N×N. 
4 Suppose image is of size N×N. 

Table 7. Performance Comparisons. 
 

 
Fig. 21. The multilevel 2-D DWT architecture. 

The multi-level DWT computation can be implemented similarly by the proposed 2-D 
SMDWT. For the multi-level computation, this architecture needs (N2/4) off-chip memory. 
As illustrated in Fig. 21, the off-chip memory temporarily stores the LL subband coefficients 
for the next iteration computations. The second level computation requires N/2 counters 
and N/2 FIFOs for the control unit. The third level computation requires N/4 counters and 
N/4 FIFOs for the control unit. Generally, the jth level computation needs N/2j-1 counters 
and N/2j-1 FIFOs. Therefore, the proposed architecture is suitable for multilevel DWT 
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computations. The SMDWT also has the advantages of regular signal coding, short critical 
path, reduced latency time, and independent subband coding processing. Moreover, 
SMDWT can easily reduce the transpose memory access time and overlap original signal 
access so that power consumption of 2-D LDWT can also be easily improved by SMDWT. 

5. Conclusions 
This work proposes a novel 2-D SMDWT fast algorithm, which is superior to the 5/3 LDWT. 
The algorithm solves the latency problem in the previous schemes caused by multiple-layer 
transpose decomposition operation. Moreover, it provides real-time requirement and can be 
further applied to the 3-D wavelet video coding [30]. 
The proposed 2-D SMDWT algorithm has the advantages of a fast computational speed, less 
complexity, reduced latency. Low-transpose memory and regular data flow, and is suitable 
for VLSI implementation. Possible future works are described below: 
1.  The Dual-Mode 2-D SMDWT on JPEG2000: The dual-mode 2-D SMDWT can be 

developed to support 5/3 (lossless) lifting or 9/7 (lossy) lifting using similar hardware 
architecture, since the 5/3 and 9/7 are very similar and both have less complexity. 

2. High Performance JPEG2000 Codec: Since part of the JPEG2000 encoder is symmetric to 
the decoder the complexity of both the encoder and the decoder can be reduced. 

3. An independent four-subband mask can be used in other visual coding fields (eg. visual 
processing, visual compression and visual recognition). 
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1. Introduction 
Transmission techniques of biomedical signals through communication channels are 
currently an important issue in many applications related to clinical practice. These 
techniques can allow experts to make a remote assessment of the information carried by the 
signals, in a very cost-effective way. However, in many situations this process leads to a 
large volume of information. The necessity of efficient data compression methods for 
biomedical signals is currently widely recognized. This chapter introduces the compression 
of ElectroCardioGram (ECG or EKG) signals using Discrete Wavelet Transform (DWT). It is 
well known that modern clinical systems require the storage, processing and transmission of 
large quantities of ECG signals. ECG signals are collected both over long periods of time and 
at high resolution. This creates substantial volumes of data for storage and transmission. 
Data compression seeks to reduce the number of bits of information required to store or 
transmit digitized ECG signals without significant loss of signal quality. Although storage 
space is currently relatively cheap, electronic ECG archives could easily become extremely 
large and expensive. Moreover, sending ECG recordings through mobile networks would 
benefit from low bandwidth demands. ECG signal compression attracted considerable 
attention over the last decade. Several examples of ECG compression algorithms have been 
described in the literature with compression ratios ranging approximately from 2:1 up to 
50:1 (Jalaleddine et al., 1990; Addison, 2005). The main goal here is to provide an up-to-date 
introduction to this fascinating field; through presenting some of the latest algorithmic 
innovations and to stimulate readers to investigate the subject in greater depth using the 
extensive set of references provided (Addison, 2005; Padma et al., 2009). Section 2 introduces 
the production of the ECG signal and its main time- and frequency-domain parameters. 
Different ECG signal compression techniques including direct, transformed and 
optimization methods are presented in section 3. Section 4 discusses the fundamentals of 
DWTs and their filter bank realizations. Subjective and objective performance measures of 
compression algorithms are explained in section 5. In section 6, DWT based ECG signal 
compression algorithms are presented. This includes optimization-based, SPIHT, 2-D, 
hybrid, and linear prediction based algorithms. Thresholding, and coding of DWT 
coefficients considering energy packing efficiency and binary significant map are discussed 
in sections 7 and 8 respectively. 
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2. ElectroCardioGraphy 
ECG signal is a recording of the electrical activity of the heart over time produced by an 
electrocardiograph and is a well-established diagnostic tool for cardiac diseases. ECG signal 
is monitored by placing sensors at defined positions on chest and limb extremities of the 
subject. Each heart beat is caused by a section of the heart generating an electrical signal 
which then conducts through specialized pathway to all parts of the heart. These electrical 
signals also get transmitted through the chest to the skin where they can be recorded. The 
following four steps in the generation of ECG signal can be monitored: 
1. The S-A node (natural pacemaker) creates an electrical signal. 
2. The electrical signal follows natural electrical pathways through both atria. The 

movement of electricity causes the atria to contract, which helps push blood into the 
ventricles. 

3. The electrical signal reaches the A-V node (electrical bridge). There, the signal pauses to 
give the ventricles time to fill with blood. 

4. The electrical signal spreads through the His-Purkinje system. The movement of 
electricity causes the ventricles to contract and push blood out to lungs and body. 

ECG signal is obtained from a machine known as an Electrocardiograph, which captures the 
signal through an array of electrode sensors placed at standard locations on the skin of the 
human body. Modern electrocardiographs record ECG signals by digitizing and then 
storing the signal in magnetic or optical discs. An automated diagnostic system is required 
to speed up the diagnostic process and assist the cardiologists in examining patients using 
non-invasive techniques. Electrical impulses in the heart originate in the sinoatrial node and 
travel through the heart muscle where they impart electrical initiation of systole or 
contraction of the heart. The electrical waves can be measured at selectively placed 
electrodes (electrical contacts) on the skin. Electrodes on different sides of the heart measure 
the activity of different parts of the heart muscle. An ECG displays the voltage between 
pairs of these electrodes, and the muscle activity that they measure, from different 
directions, also understood as vectors. The ECG signal is composed from five waves labeled 
using five capital letters from the alphabet: P, Q, R, S, and T. The width of a wave on the 
horizontal axis represents a measure of time. The height and depth of a wave represent a 
measure of voltage. An upward deflection of a wave is called positive deflection and a 
downward deflection is called negative deflection. A typical representation of the ECG 
waves is presented in Figure (1) (Moody, (1992).  
The electrocardiogram essentially reads the electrical impulses that stimulate the heart to 
contract. It is probably the most useful tool to determine whether the heart has been injured 
or how it is functioning. The ECG signal is made up of a number of segments or waves of 
different durations, amplitudes, and forms: ‘slow’, low-frequency P and T waves and short 
and high-frequency Q, R, and S waves, forming the QRS complex. P wave, QRS wave, and T 
wave, they are diagnostic critical waves. The P wave represents the atrial depolarization 
where the blood is squeezed from the atria to the ventricles. The QRS segment is when the 
ventricles depolarize and squeeze the blood from the right ventricle to the aorta. The T wave 
represents the period of time when the ventricles repolarize (get ready for the next heart 
beat). Most of the ECG signal energy is concentrated in the QRS complex, but there are 
diagnostically important changes in the low amplitude PQ and ST intervals, the P and T 
waves.  
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Fig. 1. A typical representation of the ECG waves. 
Figure (2) illustrates the ECG signal in time and frequency domains. Compressing the ECG 
signal while preserving the original shape of the reconstructed signal and especially the 
amplitudes of Q, R and S peaks, without introducing distortions in the low amplitude ST 
segment, P and T waves are the main objectives of this chapter. In fact, most ECG 
compression algorithms produce ripple effects around QRS complexes and could also 
reduce the sharp waves' amplitudes. 

3. ECG signal compression  
Data reduction of ECG signal is achieved by discarding digitized samples that are not 
important for subsequent pattern analysis and rhythm interpretation. The data reduction 
algorithms are empirically designed to achieve good reduction without causing significant 
distortion error. ECG compression techniques can be categorized into: direct time-domain 
techniques; transformed frequency-domain techniques and parameters optimization 
techniques. 
  

 
Fig. 2. ECG signal in time and frequency domains. 
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1. Direct Signal Compression Techniques: Direct methods involve the compression 
performed directly on the ECG signal. These are also known as time domain techniques 
dedicated to compression of ECG signal through the extraction of a subset of significant 
samples from the original sample set. Which signal samples are significant, depends on 
the underlying criterion for the sample selection process. To get a high performance time-
domain compression algorithm, much effort should be put in designing intelligent sample 
selection criteria. The original signal is reconstructed by an inverse process, most often by 
drawing straight lines between the extracted samples. This category includes the FAN 
(Dipersio & Barr, 1985), CORTES (Abenstein & Tompkins, 1982), AZTEC (Cox et al., 1968), 
Turning Point (Mueller W., 1978) and TRIM (Moody et al., 1989) algorithms. The more 
recent cardinality constrained shortest path technique (Haugland et al., 1997) also fits into 
this category. Many of the time domain techniques for ECG signal compression are based 
on the idea of extracting a subset of significant signal samples to represent the original 
signal. The key to a successful algorithm is the development of a good rule for 
determining the most significant samples. Decoding is based on interpolating this subset 
of samples. The traditional ECG time domain compression algorithms all have in common 
that they are based on heuristics in the sample selection process. This generally makes 
them fast, but they all suffer from sub-optimality. 

2. Transformed ECG Compression Methods: Transform domain methods, as their name 
implies, operate by first transforming the ECG signal into another domain. These 
methods mainly utilize the spectral and energy distributions of the signal by means of 
some transform, and properly encoding the transformed output. Signal reconstruction 
is achieved by an inverse transformation process. This category includes traditional 
transform coding techniques applied to ECG signals such as the Karhunen–Loève 
transform (Olmos et al., 1996), Fourier transform (Reddy & Murthy, 1986), Cosine 
transform (Ahmed et al., 1975), subband-techniques (Husøy & Gjerde, (1996), vector 
quantization (VQ) (Mammen & Ramamurthi, 1990), and more recently the wavelet 
transform (WT) (Chen et al., 1993; (Miaou et al.., 2002). Wavelet technique is the obvious 
choice for ECG signal compression because of its localized and non-stationary property 
and the well-proven ability of wavelets to see through signals at different resolutions. 
Wavelets are mathematical functions that cut up data into different scale-shift 
components. The wavelet decomposition splits the analyzing signal into average and 
detail coefficients, using finite impulse response digital filters. The main task in wavelet 
analysis (decomposition and reconstruction) is to find a good analyzing function 
(mother wavelet) to perform an optimal decomposition. Wavelet-based ECG 
compression methods have been proved to perform well. The ability of DWT to 
separate out pertinent signal components has led to a number of wavelet-based 
techniques which supersede those based on traditional Fourier methods. The discrete 
wavelet transform has interesting mathematics and fits in with standard signal filtering 
and encoding methodologies. It produces few coefficients, and the user does not have 
to worry about losing energy during the transform process or its inverse. While the 
DWT is faster and maps quickly to the sub-band coding of signals, the Continuous 
Wavelet Transform (CWT) allows the user to analyze the signal at various scales and 
translations according to the problem.  

3. Optimization Methods For ECG Compression: More recently, many interesting 
optimization based ECG compression methods, the third category, have been 
developed. The goal of most of these methods is to minimize the reconstruction error 
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given a bound on the number of samples to be extracted or the quality of the 
reconstructed signal to be achieved. In (Haugland et al., 1997), the goal is to minimize 
the reconstruction error given a bound on the number of samples to be extracted. The 
ECG signal is compressed by extracting the signal samples that, after interpolation, will 
best represent the original signal given an upper bound on their number. After the 
samples are extracted they are Huffman encoded. This leads to the best possible 
representation in terms of the number of extracted signal samples, but not necessarily in 
terms of bits used to encode such samples. In (Nygaard et al., 1999), the bit rate has 
been taken into consideration in the optimization process. 

The vast majority of the above mentioned methods do not permit perfect reconstruction of 
the original signals. In fact; there is no automatic way to assure that the distortion in the 
reconstructed signal will not affect clinically important features of the ECG. To preserve the 
clinical diagnostic features of the reconstructed ECG signals both the wavelet filters’ 
parameters and the threshold levels in all subbands should be selected carefully. Thus, the 
aim is to present ECG compression technique that achieves maximum data volume 
reduction while preserving the significant signal morphology features upon reconstruction. 
This has been achieved through the minimization of both the bit rate and the distortion of 
the reconstructed ECG signal through parameterization of the wavelet filters and the 
selection of optimum threshold levels of the wavelet coefficients in different subbands.  

4. Discrete wavelet transform 
In technical literature, a number of time–frequency methods are currently available for the 
high resolution signal decomposition. This includes the short time Fourier transform (STFT), 
Wigner–Ville transform (WVT), Choi–Williams distribution (CWD) and the WT. Of these, 
the wavelet transform has emerged as the most favored tool by researchers as it does not 
contain the cross terms inherent in the WVT and CWD methods while possessing 
frequency-dependent windowing which allows for arbitrarily high resolution of the high 
frequency signal components. The DWT is the appropriate tool for the analysis of ECG 
signals as it removes the main shortcomings of the STFT; namely it uses a single analysis 
window which is of fixed length in both time and frequency domains. This is a major 
drawback of the STFT, since what are really needed are a window of short length (in time 
domain) for the high frequency content of a signal and a window of longer length for the 
low frequency content of the signal. The WT improves upon the STFT by varying the 
window length depending on the frequency range of analysis. This effect is obtained by 
scaling (contractions and dilations) as well as shifting the basis wavelet. The continuous 
wavelet transform (CWT) transforms a continuous signal into highly redundant signal of 
two continuous variables — translation and scale. The resulting transformed signal is easy 
to interpret and valuable for time-frequency analysis. The continuous wavelet transform of 
continuous function, ( )f x  relative to real-valued wavelet, ( )xψ  is described by: 

 ,( , ) ( ) ( )sW s f x x dxψ ττ ψ
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−∞
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s andτ are called scale and translation parameters, respectively. ( , )W sψ τ denotes the 
wavelet transform coefficients and ψ is the fundamental mother wavelet. If ( , )W sψ τ is 
given, ( )f x can be obtained using the inverse continuous wavelet transform (ICWT) that is 
described by:  
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where, ( )uΨ  is the Fourier transform of ( )xψ  and 
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The discrete wavelet transform  can be written on the same form as Equation (1), which 
emphasizes the close relationship between CWT and DWT. The most obvious difference is 
that the DWT uses scale and position values based on powers of two. The values of s and τ  
are:  2 , * 2j js kτ= =  and 2( , )j k Z∈  as shown in Equation (5).  
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The key issues in DWT and inverse DWT are signal decomposition and reconstruction, 
respectively. The basic idea behind decomposition and reconstruction is low-pass and high-
pass filtering with the use of down sampling and up sampling respectively. The result of 
wavelet decomposition is hierarchically organized decompositions. One can choose the level 
of decomposition j  based on a desired cutoff frequency. Figure (3-a) shows an 
implementation of a three-level forward DWT based on  a  two-channel  recursive  filter 
bank,  where 0( )h n  and 1( )h n  are low-pass  and  high-pass  analysis filters,  respectively, 
and the block 2 represents the down sampling operator by a factor of 2. The input signal 

( )x n  is recursively decomposed into a total of four subband signals: a coarse signal 3( )C n , 
and three detail signals, 3 2( ), ( )D n D n , and 1( )D n , of three resolutions. Figure (3-b)  shows  an  
implementation of  a  three-level  inverse DWT based on a  two-channel recursive filter 
bank, where 0( )h n  and 1( )h n  are low-pass and high-pass synthesis filters, respectively, and 
the block  2  represents  the up sampling operator by a factor of 2. The four subband signals 

3 3 2( ), ( ), ( )C n D n D n  and 1( )D n , are recursively combined to reconstruct the output 
signal ( )x n . The four finite impulse response filters satisfy the following relationships: 

 -1 0( ) ( 1) ( )nh n h n=   (6) 

 -0 0( ) (1 )h n h n=   (7) 

  - -1 0( ) ( 1) (1 )nh n h n=   (8) 

so that the output of the inverse DWT is identical to the input of the forward DWT. 
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5. Compression algorithms performance measures 
5.1 Subjective judgment 
The most obvious way to determine the preservation of diagnostic information is to subject 
the reconstructed data for evaluation by a cardiologist. This approach might be accurate in 
some cases but suffers from many disadvantages. One drawback is that it is a subjective 
measure of the quality of reconstructed data and depends on the cardiologist being 
consulted, thus different results may be presented. Another shortcoming of the approach is 
that it is highly inefficient. Moreover, the subjective judgment solution is expensive and can 
generally be applied only for research purposes (Zigel et al., 2000). 

5.2 Objective judgment 
Compression algorithms all aim at removing redundancy within data, thereby discarding 
irrelevant information. In the case of ECG compression, data that does not contain 
diagnostic information can be removed without any loss to the physician. To be able to 
compare different compression algorithms, it is imperative that an error criterion is defined 
such that it will measure the ability of the reconstructed signal to preserve the relevant 
diagnostic information. The criteria for testing the performance of the compression 
algorithms consist of three components: compression measure, reconstruction error and 
computational complexity. The compression measure and the reconstruction error depend 
usually on each other and determine the rate-distortion function of the algorithm. The 
computational complexity component is related to practical implementation consideration 
and is desired to be as low as possible. 
 

 
Fig. 3. A three-level two-channel iterative filter bank   (a) forward DWT   (b) inverse DWT 

The compression ratio (CR) is defined as the ratio of the number of bits representing the 
original signal to the number required for representing the compressed signal. So, it can be 
calculated from: 
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Where, bc  is the number of bits representing each original ECG sample. One of the most 
difficult problems in ECG compression applications and reconstruction is defining the error 
criterion. Several techniques exist for evaluating the quality of compression algorithms. In 
some literature, the root mean square error (RMS) is used as an error estimate. The RMS is 
defined as 
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where ( )x n  is the original signal, ( )x n  is the reconstructed signal and N is the length of the 
window over which the RMS is calculated(Zou & Tewfik, 1993). This is a purely 
mathematical error estimate without any diagnostic considerations.  
The distortion resulting from the ECG processing is frequently measured by the percent 
root-mean-square difference (PRD) (Ahmed et al., 2000). However, in previous trials focus 
has been on how much compression a specific algorithm can achieve without loosing too 
much diagnostic information. In most ECG compression algorithms, the PRD measure is 
employed. Other error measures such as the PRD with various normalized root mean 
square error and signal to noise ratio (SNR) are used as well (Javaid et al., 2008). However, 
the clinical acceptability of the reconstructed signal is desired to be as low as possible. To 
enable comparison between signals with different amplitudes, a modification of the RMS 
error estimate has been devised. The PRD is defined as:  
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This error estimate is the one most commonly used in all scientific literature concerned with 
ECG compression techniques. The main drawbacks are the inability to cope with baseline 
fluctuations and the inability to discriminate between the diagnostic portions of an ECG 
curve. However, its simplicity and relative accuracy make it a popular error estimate among 
researchers (Benzid et al., 2003; Blanco-Velasco et al., 2004). 
As the PRD is heavily dependent on the mean value, it is more appropriate to use the 
modified criteria:  
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where x  is the mean value of the signal. Furthermore, it is established in (Zigel et al., 2000), 
that if the PRD1 value is between 0 and 9%, the quality of the reconstructed signal is either 
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‘very good’ or ‘good’, whereas if the value is greater than 9% its quality group cannot be 
determined. As we are strictly interested in very good and good reconstructions, it is taken 
that the PRD value, as measured with (11), must be less than 9%. 
In (Zigel et al., 2000), a new error measure for ECG compression techniques, called the 
weighted diagnostic distortion measure (WDD), was presented. It can be described as a 
combination of mathematical and diagnostic subjective measures. The estimate is based on 
comparing the PQRST complex features of the original and reconstructed ECG signals. The 
WDD measures the relative preservation of the diagnostic information in the reconstructed 
signal. The features investigated include the location, duration, amplitudes and shapes of 
the waves and complexes that exist in every heartbeat. Although, the WDD is believed to be 
a diagnostically accurate error estimate, it has been designed for surface ECG recordings.  
More recently (Al-Fahoum, 2006), quality assessment of ECG compression techniques using 
a wavelet-based diagnostic measure has been developed. This approach is based on 
decomposing the segment of interest into frequency bands where a weighted score is given 
to the band depending on its dynamic range and its diagnostic significance.  

6. DWT based ECG signal compression algorithms  
As described above, the process of decomposing a signal x into approximation and detail 
parts can be realized as a filter bank followed by down-sampling (by a factor of 2) as shown 
in Figure (4). The impulse responses h[n] (low-pass filter) and g[n] (high-pass filter) are 
derived from the scaling function and the mother wavelet. This gives a new interpretation of 
the wavelet decomposition as splitting the signal x into frequency bands. In hierarchical 
decomposition, the output from the low-pass filter h constitutes the input to a new pair of 
filters. This results in a multilevel decomposition. The maximum number of such 
decomposition levels depends on the signal length. For a signal of size N, the maximum 
decomposition level is log2(N).  
The process of decomposing the signal x can be reversed, that is given the approximation 
and detail information it is possible to reconstruct x. This process can be realized as up-
sampling (by a factor of 2) followed by filtering the resulting signals and adding the result of 
the filters. The impulse responses h’ and g’ can be derived from h and g. If more than two 
bands are used in the decomposition we need to cascade the structure.  
In (Chen et al., 1993), the wavelet transform as a method for compressing both ECG and 
heart rate variability data sets has been developed. In (Thakor et al., 1993), two methods of 
data reduction on a dyadic scale for normal and abnormal cardiac rhythms, detailing the 
errors associated with increasing data reduction ratios have been compared. Using discrete 
orthonormal wavelet transforms and Daubechies D10 wavelets, Chen et al., compressed ECG 
data sets resulting in high compression ratios while retaining clinically acceptable signal 
quality (Chen & Itoh, 1998). In (Miaou & Lin, 2000), D10 wavelets have been used, with the 
incorporating of adaptive quantization strategy which allows a predetermined desired 
signal quality to be achieved. Another quality driven compression methodology based on 
Daubechies wavelets and later on biorthogonal wavelets has been proposed (Miaou & Lin, 
2002). The latter algorithm adopts the set partitioning of hierarchical tree (SPIHT) coding 
strategy. In (Bradie, 1996), the use of a wavelet-packet-based algorithm for the compression 
of the ECG signal has been suggested. By first normalizing beat periods using multi rate 
processing and normalizing beat amplitudes the ECG signal is converted into a near 
cyclostationary sequence (Ramakrishnan & Saha, 1997). Then Ramakrishnan and Saha 
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employed a uniform choice of significant Daubechies D4 wavelet transform coefficients 
within each beat thus reducing the data storage required. Their method encodes the QRS 
complexes with an error equal to that obtained in the other regions of the cardiac cycle. 
More recent DWT data compression schemes for the ECG include the method using non-
orthogonal wavelet transforms (Ahmed et al., 2000), and SPIHT algorithm (Lu et al., 2000).  

6.1 Optimization-based compression algorithm  
As it has been mentioned before, many of the resulting wavelet coefficients are either zero or 
close to zero. These coefficients are divided into two classes according to their energy content; 
namely: high energy coefficients and low energy coefficients. By coding only the larger 
coefficients, many bits are already discarded. The high energy coefficients should be 
compressed very accurately because they contain more information. So, they are threshold 
with low threshold levels. However, the low energy coefficients that represent the details are 
threshold with high threshold levels. The success of this scheme is based on the fact that only a 
fraction of nonzero value wavelet coefficients may be encoded using a small number of bits.  
In (Zou & Tewfik, 1993), the problem of finding a wavelet that best matches the wave shape 
of the ECG signal has been addressed. The main idea behind this approach is to find the 
minimum distortion representation of a signal, subject to a given bit budget or to find the 
minimum bit rate representation of a signal, subject to a target PRD. If, for a given wavelet, 
the error associated with the compressed signal is minimal, then its wavelet coefficients are 
considered to best represent the original signal. Therefore, the selected wavelet would more 
effectively match the signal under analysis when compared to standard wavelets 
(Daubechies, 1998). The DWT of the discrete type signal x[n] of length N is computed in a 
recursive cascade structure consisting of decimators ↓2 and complementing low-pass (h) 
and high-pass (g) filters which are uniquely associated with a wavelet. The signal is 
iteratively decomposed through a filter bank to obtain its discrete wavelet transform. This 
gives a new interpretation of the wavelet decomposition as splitting the signal into 
frequency bands. Figure (4) depicts a diagram of the filter bank structure. In hierarchical 
decomposition, the output from the low-pass filter constitutes the input to a new pair of 
filters. The filters coefficients corresponding to scaling and wavelet functions are related by 

 [ ] ( ) [ ]  1  –  ,    0 ,  1,  . . . ,  1ng n h L n n L= − = −  (13) 

where L is the filter length. To adapt the mother wavelet to the signals for the purpose of 
compression, it is necessary to define a family of wavelets that depend on a set of 
parameters and a quality criterion for wavelet selection (i.e. wavelet parameter 
optimization). These concepts have been adopted to derive a new approach for ECG signal 
compression based on dyadic discrete orthogonal wavelet bases, with selection of the 
mother wavelet leading to minimum reconstruction error. An orthogonal wavelet transform 
decomposes a signal into dilated and translated versions of the wavelet function ( )tψ . The 
wavelet function ( )tψ is based on a scaling function ( )tϕ and both can be represented by 
dilated and translated versions of this scaling function. 
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With these coefficients h(n) and g(n), the transfer functions of the filter bank that are used to 
implement the discrete orthogonal wavelet transform, can be formulated. 
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For a finite impulse response (FIR) filter of length L, there are 12/ +L sufficient conditions 
to ensure the existence and orthogonality of the scaling function and wavelets (Donoho & 
Johnstone, 1998). Thus 12/ −L  degrees of freedom (free parameters) remain to design the 
filter h. 
 

 
Fig. 4. The DWT implementation using a filter bank structure. 

The lattice parameterization described in (Vaidyanathan, 1993) offers the opportunity to 
design h via unconstrained optimization: the L coefficients of h can be expressed in term of 

/ 2 1L −  new free parameters. These parameters can be used to choose the wavelets which 
results in a good coding performance. The Daubechies wavelet family was constructed by 
using all the free parameters to maximize the number of vanishing moments. Coiflet 
wavelets were designed by imposing vanishing moments on both the scaling and wavelet 
functions. In (Zou & Tewfik, 1993) wavelet parameterizations have been used to 
systematically generate L-tap orthogonal wavelets using the 12/ −L  free parameters for    
L = 4, 6 and 8. The order of a wavelet filter is important in achieving good coding 
performance. A higher order filter can be designed to have good frequency localization 
which in turn increases the energy compaction. Consequently, by restriction to the 
orthogonal case, h definesψ . For this purpose consider, the orthogonal 2x2 rotational 
angles, realized by the lattice section shown in Figure (5), and defined by the matrix: 
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The polyphase matrix ( )pH z  can be defined in terms of the rotational angles as 
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Fig. 5. Lattice Implementation   

where, ( )eH z , ( )oH z , ( )eG z and ( )oG z are defined, respectively, from the decomposition of 
( )H z and ( )G z as 

  2 1 2( ) ( ) ( )e oH z H z z H z−= +  (18a) 

and  

 2 1 2( ) ( ) ( )e oG z G z z G z−= +   (18b) 

To obtain the expressions for the coefficients of H(z) in terms of the rotational angles, it is 
necessary to multiply out the above matrix product. In order to parameterize all orthogonal 
wavelet transforms leading to a simple implementation, the following facts should be 
considered.   
1. Orthogonality is structurally imposed by using lattice filters consisting of orthogonal 

rotations.  
2. The sufficient condition for constructing a wavelet transform, namely one vanishing 

moment of the wavelet, is guaranteed, by assuring the sum of all rotation angles of the 
filters to be exactly -45o .  

A suitable architecture for the implementation of the orthogonal wavelet transforms are 
lattice filters. However, the wavelet function should be of zero mean, which is equivalent to 
the wavelet having at least one vanishing moment and the transfer functions H(z) and G(z) 
have at least one zero at z =-1 and z=1 respectively. These conditions are fulfilled if the sum 
of all rotation angles is 45o (Xie & Morris, 1994), i.e.,  
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Therefore, a lattice filter whose sum of all rotation angles is 45o performs an orthogonal WT 
independent of the angles of each rotation. For a lattice filter of length L, L/2 orthogonal 
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rotations are required. Denote the rotation angles by , 1, 2, . . . , / 2i i Lβ = , and considering 
the constraint given in (19), the number of design angles θ s is L/2-1.  The following is the 
relation between the rotation angles and the design angles. 
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At the end of the decomposition process, a set of vectors representing the wavelet 
coefficients is obtained  

 { }1 2 3, , , . . . , , . . . , ,j m mC d d d d d a=  (21) 

where, m is the number of decomposition levels of the DWT. This set of approximation and 
detail vectors represents the DWT coefficients of the original signal. Vectors jd  contain the 
detail coefficients of the signal in each scale j. As j varies from 1 to m, a finer or coarser detail 
coefficients vector is obtained. On the other hand, the vector ma  contains the approximation 
wavelet coefficients of the signal at scale m. It should be noted that this recursive procedure 
can be iterated ( )2logm N≤   times at most. Depending on the choice of m, a different set of 
coefficients can be obtained. The inverse transform can be performed using a similar 
recursive approach. Thus, the process of decomposing the signal x can be reversed, that is 
given the approximation and detail information it is possible to reconstruct x. This process 
can be realized as up-sampling (by a factor of 2) followed by filtering the resulting signals 
and adding the result of the filters. The impulse responses h’ and g’ can be derived from h 
and g. However, to generate an orthogonal wavelet, h must satisfy some constraints. The 
basic condition is

1
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=∑ , to ensure the existence of φ . Moreover, for orthogonality, h 

must be of norm one and must satisfy the quadratic condition 
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The lattice parameterization described in (Vaidyanathan, 1993) offers the opportunity to 
design h using unconstrained optimization by expressing the / 2 1L −  free parameters in 
terms of the design parameter vectorθ . For instance, if L = 6, two-component design vector, 

1 2[ , ]θ θ θ=  is needed, and h is given by (Vaidyanathan, 1993): 

( )( )1 1 2 2 2 10 , 1 ( ) 1 ( 1) cos sin 1 ( 1) cos sin ( 1) 2sin cos / 4 2i i ii h i θ θ θ θ θ θ⎡ ⎤= = + − + − − − + −⎣ ⎦  

1 2 1 22 , 3 ( ) 1 cos( ) ( 1) sin( ) / 2 2ii h i θ θ θ θ⎡ ⎤= = + − + − −⎣ ⎦  

4 , 5 ( ) 1 / 2 ( 4) ( 2)i h i h i h i= = − − − −    (23) 
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For other values of L, expressions of h are given in (Maitrot et al., 2005). With this wavelet 
parameterization there are infinite available wavelets which depend on the design 
parameter vector θ  to represent the ECG signal at hand. Different values of θ  may lead to 
different quality in the reconstructed signal. In order to choose the optimal θ  values, and 
thus the optimal wavelet, a blind criterion of performance is needed. Figure (6) illustrates 
the block diagram of the proposed compression algorithm. In order to establish an efficient 
solution scheme, the following precise problem formulation is developed.  For this purpose, 
consider the one-dimensional vector x(i), i=1, 2, 3, …., N represents the frame of the ECG 
signal to be compressed; where N is the number of its samples. The initial threshold values 
are computed separately for each subband by finding the mean (μ) and standard deviation 
(σ) of the magnitude of the non-zero wavelet coefficients in the corresponding subband. If 
the σ is greater than μ then the threshold value in that subband is set to (2*μ), otherwise, it is 
set to (μ-σ). Also, define the targeted performance measures PRDtarget and CRtarget and start 
with an initial wavelet design parameter vector 10 20[ , ,.θ θ θ=  10.. , ]Lθ −  to construct the 
wavelet filters H(z) and G(z). Figure (7) illustrates the compression algorithm for satisfying 
predefined PRD (PRD1) with minimum bit rate representation of the signal. The same 
algorithm with little modifications is used for satisfying predefined bit rate with minimum 
signal distortion measured by PRD ( 1PRD ); case 2. In this case, the shaded two blocks are 
replaced by: CR calculation and predefined CR is reached?, respectively. 
 

 
Fig. 6. Block diagram for the proposed compression algorithm. 

6.2 Compression of ECG signals using SPIHT algorithm 
SPIHT is an embedded coding technique; where all encodings of the same signal at lower bit 
rates are embedded at the beginning of the bit stream for the target bit rate. Effectively, bits are 
ordered in importance. This type of coding is especially useful for progressive transmission 
and transmission over a noisy channel. Using an embedded code, an encoder can terminate 
the encoding process at any point, thereby allowing a target rate or distortion parameter to be 
met exactly. Typically, some target parameters, such as bit count, is monitored in the encoding 
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process and when the target is met, the encoding simply stops. Similarly, given a bit stream, 
the decoder can cease decoding at any point and can produce reconstruction corresponding to 
all lower-rate encodings. EZW, introduced in (Shapiro, 1993) is a very effective and 
computationally simple embedded coding algorithm based on discrete wavelet transform, for 
image compression. SPIHT algorithm introduced for image compression in (Said & Pearlman, 
1996) is a refinement to EZW and uses its principles of operation. 
 

 
Fig. 7. Compression Algorithm for Satisfying Predefined PRD with Minimum Bit Rate. 
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These principles are partial ordering of transform coefficients by magnitude with a set 
partitioning sorting algorithm, ordered bit plane transmission and exploitation of self-
similarity across different scales of an image wavelet transform. The partial ordering is done 
by comparing the transform coefficients magnitudes with a set of octavely decreasing 
thresholds. In this algorithm, a transmission priority is assigned to each coefficient to be 
transmitted. Using these rules, the encoder always transmits the most significant bit to the 
decoder. In (Lu et al., 2000), SPIHT algorithm is modified for 1-D signals and used for ECG 
compression. For faster computations SPIHT algorithm can be described as follows: 
1. ECG signal is divided to contiguous non-overlapping frames each of N samples and 

each frame is encoded separately.  
2. DWT is applied to the ECG frames up to L decomposition levels.  
3. Each wavelet coefficient is represented by a fixed-point binary format, so it can be 

treated as an integer. 
4. SPIHT algorithm is applied to these integers (produced from wavelet coefficients) for 

encoding them.  
5. The termination of encoding algorithm is specified by a threshold value determined in 

advance; changing this threshold, gives different compression ratios.  
6. The output of the algorithm is a bit stream (0 and 1). This bit stream is used for 

reconstructing signal after compression. From it and by going through inverse of SPIHT 
algorithm, we compute a vector of N wavelet coefficients and using inverse wavelet 
transform, we make the reconstructed N sample frame of ECG signal.  

In (Pooyan et al., 2005), the above algorithm is tested with N=1024 samples, L=6 levels and 
the DWT used is biorthogonal 9/7 (with symmetric filters h(n) with length 9 and g(n) with 
length 7). The filters' coefficients are given in Table (1). 
 

n 0 ±1 ±2 ±3 ±4 
h(n) 0,852699 0,377403 -0.11062 -0.023849 0.037829 
g(n) 0.788485 0.418092 -0.04069 -0.064539  

 

Table 1. Coefficients of the Biorthogonal 9/7 Tap Filters. 

6.3 2-D ECG compression methods based on DWT 
By observing the ECG waveforms, a fact can be concluded that the heartbeat signals 
generally show considerable similarity between adjacent heartbeats, along with short-term 
correlation between adjacent samples. However, most existing ECG compression techniques 
did not utilize such correlation between adjacent heartbeats. A compression scheme using 
two-dimensional DWT transform is an option to employ the correlation between adjacent 
heartbeats and can thus further improve the compression efficiency. In (Reza et al., 2001; Ali 
et al., 2003) a 2-D wavelet packet ECG compression approach and a 2-D wavelet based ECG 
compression method using the JPEG2000 image compression standard have been presented 
respectively. These 2-D ECG compression methods consist of: 1) QRS detection, 2) 
preprocessing (cut and align beats, period normalization, amplitude normalization, mean 
removal), 3) transformation, and 4) coefficient encoding. Period normalization helps 
utilizing the interbeat correlation but incurs some quantization errors. Mean removal helps 
maximizing the interbeat correlation since dc value of each beat is different due to baseline 
change. Recently (Tai et al., 2005), a 2-D approach for ECG compression that utilizes the 
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redundancy between adjacent heartbeats has been presented. The QRS complex in each 
heartbeat is detected for slicing and aligning a 1-D ECG signal to a 2-D data array, and then 
2-D wavelet transform is applied to the constructed 2-D data array. Consequently, a 
modified SPIHT algorithm is applied to the resulting wavelet coefficients for further 
compression. The way that the 2-D ECG algorithm presented in (Tai et al., 2005) differs from 
other 2-D algorithms, (Reza et al., 2001; Ali et al., 2003), is that it not only utilizes the 
interbeat correlation but also employs the correlation among coefficients in relative 
subbands. More recently (Wang & Meng, 2008), a new 2-D wavelet-based ECG data 
compression algorithm has been presented. In this algorithm a 1-D ECG data is first 
segmented and aligned to a 2-D data array, thus the two kinds of correlation of heartbeat 
signals can be fully utilized. And then 2-D wavelet transform is applied to the constructed 2-
D ECG data array. The resulting wavelet coefficients are quantized using a modified vector 
quantization (VQ). This modified VQ algorithm constructs a new tree vector which well 
utilizing the characteristics of the wavelet coefficients. Experimental results show that this 
method is suitable for various morphologies of ECG data, and that it achieves higher 
compression ratio with the characteristic features well preserved. 

6.4 Hybrid ECG signal compression methods 
Hybrids ECG signal compression methods are constructed from more than time and/or 
frequency domain techniques (Ahmed et al., 2007). These include Modified Discrete Cosine 
Transform (MDCT) and DWT; linear prediction coding and DWT. By studying the ECG 
waveforms, it can be concluded that the ECG signals generally show two types of 
correlation, namely correlation between adjacent samples within each ECG cycles (intrabeat 
correlation) and correlation between adjacent heartbeats (interbeat correlation) (Xingyuan & 
Juan, 2009). However, most existing ECG compression techniques did not utilize such 
correlation between adjacent heartbeats. Hybrid compression methods of ECG signals are 
discussed in this section, which fully utilizes the interbeat correlation and thus can further 
improve the compression efficiency.  

6.4.1 ECG signal compression based on combined MDCT and DWT 
In (Ahmed et al., 2008), a hybrid two-stage electrocardiogram (ECG) signals compression 
method based on the MDCT and DWT has been proposed. The ECG signal is partitioned 
into blocks and the MDCT is applied to each block to decorrelate the spectral information. 
Then, the DWT is applied to the resulting MDCT coefficients. The resulting wavelet 
coefficients are then threshold and compressed using energy packing and binary-significant 
map coding technique for storage space saving. MDCT is a linear orthogonal lapped 
transform, based on the idea of time domain aliasing cancellation (TDAC). It is designed to 
be performed on consecutive blocks of a larger dataset, where subsequent blocks are 
overlapped so that the last half of one block coincides with the first half of the next block. 
This overlapping, in addition to the energy-compaction qualities of the DCT, makes the 
MDCT especially attractive for signal compression applications. Thus, it helps to avoid 
artifacts stemming from the block boundaries (Britanak & Rao, 2002; Nikolajevic & Fettweis, 
2003). MDCT is critically sampled, which means that though it is 50% overlapped, a 
sequence data after MDCT has the same number of coefficients as samples before the 
transform (after overlap-and-add). This means that, a single block of IMDCT data does not 
correspond to the original block on which the MDCT was performed. When subsequent 
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blocks of inverse transformed data are added, the errors introduced by the transform cancel 
out TDAC. The MDCT is defined as (Nikolajevic & Fettweis, 2003): 
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where, x(n), n=0, 1, 2, …, N-1 is the sequence to be transformed, N=2M is the window length 
and M is the number of transform coefficients. The computation burden can be reduced if 
the transform coefficients given by equation (24) are rewritten in the following recursive 
form 
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Where,  
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The MDCT computation algorithm of a data sequence x(n) can be summarized in the 
following: 
1. Partition the data sequence in Nb consecutive blocks, each one with N=64 samples.  
2. Recursively generate the mV from the input sequence x(n) according to (26) and (27).  
3. Calculate the MDCT coefficients for each block by evaluating the k-th MDCT coefficient 

using (25) at the N-th step.  
In the decompression stage, the inverse MDCT, that is termed IMDCT, is adopted. Because 
there are different numbers of inputs and outputs, at first glance it might seem that the 
MDCT should not be invertible. However, perfect invertability is achieved by adding the 
overlapped IMDCTs of subsequent overlapping blocks, causing the errors to cancel and the 
original data to be retrieved. The IMDCT transforms the M real coefficients, XC (0), XC (1), … 
, XC (M-1), into N=2M real numbers, x(0), x(1), ….. , x(N-1), according to the formula:  
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Again, the computation burden of x(n) can be reduced considerably if equation (28) is 
rewritten in the following recursive form 
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6.4.2 ECG signal compression based on the linear prediction of DWT coefficients 
In (Abo-Zahhad et al., 2000; Ahmed & Abo-Zahhad, 2001), a new hybrid algorithm for ECG 
compression based on the compression of the linearly predicted residuals of the wavelet 
coefficients is presented. The main goal of the algorithm is to reduce the bit rate while 
keeping the reconstructed signal distortion at a clinically acceptable level. In this algorithm, 
the input signal is divided into blocks and each block goes through a discrete wavelet 
transform; then the resulting wavelet coefficients are linearly predicted. In this way, a set of 
uncorrelated transform domain signals is obtained. These signals are compressed using 
various coding methods, including modified run-length and Huffman coding techniques. 
The error corresponding to the difference between the wavelet coefficients and the predicted 
coefficients is minimized in order to get the best predictor.  

7. Thresholding and coding of DWT coefficients 
Thresholding DWT coefficients are very similar to the method that our ears take to de-noise 
a music signal. We concentrate on the high peaks and try to ignore the low crackling of the 
white noise. Because DWT coefficients are based on amplitude and location of the signal, we 
can separate much of the noise from the signal relatively easily. The technique of 
thresholding takes the DWT coefficients, and throws out (makes them zero) coefficients 
below a certain threshold, leaving the peaks of the signal. Then each coefficient after 
thresholded is quantized. A non-uniform quantization method is commonly used to 
increase the compression and decrease the distortion in the reconstructed signal. The 
quantized coefficients are then encoded. The wavelet domain representation itself does not 
introduce any compression. Compression is obtained by encoding the thresholded wavelet 
coefficients using optimal thresholding levels. Given that most of the energy in the signal is 
in the lower subbands, it is reasonable to assume that after thresholding a substantial 
number of higher band wavelet coefficients will be set to zeros. Since these zeros tend to 
occur in clusters, as a direct consequence of the way in which the data are organized in 
vectors, run-length coding of these zeros makes sense. The basic idea of this technique is to 
encode a sequence of equal symbols with a certain codeword depending on the length of 
that sequence. Thus, two types of codewords may be used: the counter-words and the 
value-words. For example, the string “aaabbbbd” is encoded as: (a, 3), (b, 4), and (d, 1). In 
case of ECG compression, the run-length coding is done by representing the thresholded 
wavelet coefficients vectors in the forum of (Run, Level), where Run is the number of zeros 
before each nonzero coefficients, and Level is the amplitude of the coefficient following a 
number of zeros given by Run. The event that the last coefficient are all zeros is represented 
by the special code (0 , 0). For example, the set of wavelet coefficients given by  Wbefore = {0  
1  0  0  0  4  5  0   0   0   0   0   0    0    0   0 } is run-length coded as Wafter = { (1 , 1)    (3 , 4)    (0 , 
5)    (0 , 0) }. As it has been mentioned in section 3, the compression is based on representing 
the thereshold wavelet coefficients with a small number of bits. This has been carried out by 
discarding the WT-coefficients, which are less than a given threshold. These coefficients are 
considered insignificant with their values set to zero. The remaining NS coefficients are the 
significant coefficients. The number of the discarded coefficients is NI=N-NS. Most of these 
coefficients are concentrated at the end of the coefficients’ vector. In technical literature, 
many algorithms are suggested to deal with signals that have repeated samples' values such 
as run-length coding and Huffman coding. The need of at least one bit for the mostly 
repeated sample is the main limitation of the Huffman coding. The disadvantage of the run-
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length algorithm is the need of two words for the representation of each group of repeated 
samples: one for the repeated value and the other for the number of repetitions. In this 
section a more efficient coding algorithm, a modified run-length algorithm, is presented for 
dealing with this situation. The algorithm is based on representing each significant 
coefficient by bS+1 bits. The insignificant coefficients (of value zero) are manipulated in a 
different manner. First, the repeated groups of zeros are counted and the resulting count is 
represented by bS+1 bits. Then the train of coefficients representing the ECG signal is 
transformed to another train of numbers. Some of these numbers represent the significant 
coefficients and the rest are the numbers representing the repeated group of zeros (K1, K2, 
…., KM). Here, M denotes the number of these groups. The problem here is how to 
differentiate between the coefficients and the numbers representing the group of zeros. For 
example, the number 18 may be found twice in the new train of numbers, where the first 18 
may be a significant coefficient and the second one may indicate 18 repeated zeros. To 
overcome this problem, the first bit in the representation of each number is used as a control 
bit. In case of the significant coefficient this bit is set to one and in case of repeated zeros it is 
reset to zero.  
 

• representation of significant residual coefficient 1 bS – bits 
 

• representation of a group of repeated zeros 0 bS – bits 

8. Quantization and coding of DWT coefficients 

A quantizer simply reduces the number of bits needed to store the transformed coefficients 
by reducing the precision of those values. A quantization scheme maps a large number of 
input values into a smaller set of output values. This implies that some information is lost 
during the quantization process. The original wavelet coefficients ( )c n  cannot be recovered 
exactly after quantization. An encoder further compresses the quantized values losslessly to 
give better overall compression. The most commonly used encoders are the Huffman 
encoder and the arithmetic encoder, although for applications requiring fast execution, 
simple run-length encoding (RLE) has proven very effective (Ahmed & Abo-Zahhad, 2001). 
In the following, wavelet coefficients quantization and coding algorithms are described.  

8.1 Energy packing efficiency strategy 
In this section, the quantization strategy adopted is based on the energy packing efficiency 
(EPE). It guarantees the balance between the compression achievement and information 
loss. Here, quantization process is performed by selecting an appropriate threshold level λ 
to control the compression ratio. Due to the careful representation of the ECG signal 
performed by DWT, it is reasonable to assume that only a few coefficients contain 
information about the real signal while others appear as less important details. The goal is to 
extract these significant coefficients and to ignore others smaller  than  specified threshold 
level λ. The optimal value of λ is determined such that the reconstructed signal is as close to 
the original one as possible. Usually the selection of optimal threshold level is not an easy 
task, because some of the coefficients that represent the actual signal details may be also 
killed, and as a result, signal distortion is the side effect. In (Abo-Zahhad & Rajoub, 2001, 
2002) Energy Packing Efficiency (EPE) strategy has been utilized for decreasing the 
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distortion of the reconstructed signal. This has been performed by thresholding the wavelet 
coefficients of the approximation and details subbands with different threshold levels.  
As it can be deduced from the above discussion, the approximation band is the smallest 
band in size and it includes high amplitude approximation coefficients. The wavelet 
coefficients other than these included in the approximation band, detail coefficients, have 
small magnitudes. Most of the energy is captured by these coefficients of the lowest 
resolution band. This can be seen from the decomposition of 4096-sample ECG signal up to 
the fifth level. The total energy of the signal is 94393.5. About 99.73% of this energy is 
concentrated in the 136 approximation coefficients and only 0.27% of the energy is 
concentrated in the remaining 3960 detail coefficients. Here, threshold levels are defined 
according to the energy packing efficiencies of the signal for all subbands. EPE for a set of 
coefficients in the ith subband is defined as the ratio of the energy captured by the subband 
coefficients and the energy captured by the whole number of coefficients. 
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c n
EPE x
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i

=

=

=
∑
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Where iL and L are the number of coefficients in the ith subband and the whole number of 
coefficients respectively. A large threshold could attain high data reduction but poor signal 
fidelity and a small threshold would produce low data reduction but high signal fidelity. To 
explore the effect of threshold level (λ) selection and the coefficients representation on the 
compression ratio and PRD, the following thresholding rule is set:  
Keep all the wavelet coefficients in the approximation subband without thresholding and  calculate the 
threshold value for each details subband separately  by preserving the higher amplitude wavelet 
coefficients in the ith details subband that contribute to αi % of the energy in that subband.  
One important feature of this rule is that the integer part of the wavelet coefficients in each 
subband is represented by different number of bits.  

8.2 Binary significant map coding algorithm 
The coding algorithm adopted here is based on grouping the significant coefficients in one 
vector and the locations of the insignificant coefficients in another vector. The significant 
coefficients are arranged from high scale coefficients to low scale coefficients. Each 
significant coefficient is decomposed into integer part and fractional part, where M-bits are 
assigned to represent the integer part (signed representation) and N-bits represent the 
fractional part; i.e. each coefficient is represented by N+M bits. A binary significant map is 
used as flags to indicate if the coefficient is significant or not. This binary stream is 
compressed further as will be shown in the following: 
1. Threshold the wavelet coefficients, ( )c n , to produce the threshold coefficients ( )c n . 

The threshold level (λ) is determined by using the above-mentioned rule such that the 
distortion in the reconstructed signal ix  is acceptable. The distortion is measured using 
PRD and/or visual inspection. The optimal non-orthogonal wavelet transform 
developed in (Ahmed et al., 2000) may be used to minimize the PRD in least mean 
square sense. Here, the threshold λ is determined such that the PRD is less or equal to a 
prescribed acceptable value defined by a cardiologist.  
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2. Search the vector ( )c n to isolate the significant coefficient in another vector ˆ ( )SC m .  
3. Use finite word length representation to represent the integer and fractional parts of the 

coefficients, ˆ ( )SC m . The number of bits used to represent these coefficients is 
determined as follows: 
3.1  Search the vector ˆ ( )SC m to find the maximum coefficient (in absolute value) and 

determine the number of bits that represents this coefficient. This can be done by 
finding ˆInt max| ( )|k C mS=  where Int .  denotes the integer part. Then convert 
k to a binary number and count the number of bits, M.  

3.2  Similarly, find the number of bits, N, that represent the minimum value of the 
fractional part of each significant coefficient in such a way to keep the distortion 
within acceptable limits.  

4. Generate a binary stream, b(n),  of 1’s and 0’s that encodes the zero-locations in ( )c n . 
This is done by coding each significant coefficient in ( )c n by a binary 1. The length of 
the binary stream equals n1, where n1 designates the index value of the last significant 
coefficients in ( )c n . Hence, there is no need to encode the zeros for n > n1. The value of 
n1 need not be stored because it can be determined as the length of the vector b(n) in the 
decoding process.  

5. Compress the binary stream using run length encoding of 0’s and 1’s as follows:  
5.1   Set i = 1,  Run-type= b(i),  and set the run length Z to 1; 
        If b(i) ≠ b(i+1)  increment i by Z. Else, while b(i+1) = b(i),  increment i by 1  and Z       

by 1   end;  end. 
5.2  From Table (2), find the inequality that Z satisfies. Then output the symbol that 

specifies the run type followed by the number Z. i.e., code = [code  χ Z] , where χ 
designates concatenation operator.  

5.3   If index < n1 set Z=1 and go to step (5.1). 
6. Represent the obtained run length code in binary format. There are 16 different symbols 

that can be generated from step 5. These are the digits 0-9 and the letters A-F. Hence, 4 
bits can be used to represent each symbol. 

 
Symbol Run Type Range  Symbol Run Type Range 

A 0 999100 ≤≤ Z   D 1 999100 ≤≤ Z  
B 0 9910 ≤≤ Z   E 1 9910 ≤≤ Z  
C 0 92 ≤≤ Z   F 1 92 ≤≤ Z  

Table 2. Run Length Encoding of 0’s and 1. 

9. Conclusion 
In literature, numerous ECG compression methods have been developed. They may be 
defined either as reversible methods (offering low compression ratios but guaranteeing an 
exact or near-lossless signal reconstruction), irreversible methods (designed for higher 
compression ratios at the cost of a quality loss that must be controlled and characterized), or 
scalable methods (fully adapted to data transmission purposes and enabling lossy 
reconstruction). Choosing one method mainly depends on the use of the ECG signal. In the 
case of the needs of a first diagnosis, a reversible compression would be most suitable. 
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However, if compressed data has to be stored on low-capacity data supports, an irreversible 
compression would be necessary. Finally, scalable techniques clearly suit data transmission. 
All compression solutions presented in this chapter adopt DWT as a reversible compression 
tool. As a consequence, the following question remains: why should they all be compressed 
using the same algorithm? Unsurprisingly, this discussion still remains open. 
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1. Introduction  
Since the discovery of the compactly supported conjugate quadrature filter (CQF) based 
discrete wavelet transform (DWT) (Smith & Barnwell, 1986; Daubechies, 1988), a variety of 
data and image processing tools have been developed. It is well known that real-valued 
CQFs have nonlinear phase, which may cause image blurring or spatial dislocations in 
multi-resolution analysis.  In many applications the CQFs have been replaced by the 
biorthogonal discrete wavelet transform (BDWT), where the low-pass scaling and high-pass 
wavelet filters are symmetric and linear phase. In VLSI hardware the BDWT is usually 
realized via the ladder network-type filter (Sweldens, 1988). Efficient lifting wavelet 
transform algorithms implemented by integer arithmetic using only register shifts and 
summations have been developed for VLSI applications (Olkkonen et al. 2005).   
In multi-scale analysis the drawback of the BDWT is the sensitivity of the transform 
coefficients to a small fractional shift [0,1]τ ∈  in the signal, which disturbs the statistical 
comparison across different scales. There exist many approaches to construct the shift 
invariant wavelet filter bank.  Kingsbury (2001) proposed the use of two parallel filter banks 
having even and odd number of coefficients. Selesnick (2002) has described the nearly shift 
invariant CQF bank, where the two parallel filters are a half sample time shifted versions of 
each other. Gopinath (2003) generalized the idea by introducing the M parallel CQFs, which 
have a fractional phase shift with each other. Both Selesnick and Gopinath have constructed 
the parallel CQF bank with the aid of the all-pass Thiran filters, which suffers from 
nonlinear phase distortion effects (Fernandes, 2003). 
In this book chapter we introduce a linear phase and shift invariant BDWT bank consisting 
of M fractionally delayed wavelets. The idea is based on the B-spline interpolation and 
decimation procedure, which is used to construct the fractional delay (FD) filters (Olkkonen 
& Olkkonen, 2007).  The FD B-spline filter produces delays τ =N/M (N, M∈N , N= 0,…,M-
1). We consider the implementation of the shift invariant FD wavelets, especially for the 
VLSI environment. The usefulness of the method was tested in wavelet analysis of the EEG 
signal waveforms. 
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2. Theoretical considerations  
2.1 Two-channel BDWT filter bank 
The two-channel BDWT analysis filters are of the general form (Olkkonen et al. 2005)  
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where 0( )H z  is the Nth order low-pass scaling filter polynomial having the Kth order zero 
at ω π= . ( )P z  is polynomial in 1z− . 1( )H z  is the corresponding Mth order high-pass 
wavelet filter having Kth order zero at 0ω = . ( )Q z  is polynomial in 1z− . For a two-channel 
perfect reconstruction filter bank, the well known perfect reconstruction (PR) condition is 
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where 0( )G z  and 1( )G z  are the low-pass and high-pass reconstruction filters defined as 
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A typical set of the scaling and wavelet filter coefficients is given in (Olkkonen et al. 2005). 
In this work we apply the following essential result concerning on the PR condition (2). 
Lemma 1: If 0( )H z and 1( )H z  are the scaling and wavelet filters, the following modified 
analysis and synthesis filters obey the PR condition  
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where P(z) is any polynomial in 1z− and 1( )P z−  its inverse. Proof: The result can be proved 
by direct insertion of (4) into (2). 

2.2 Fractional delay B-spline filter 
The ideal FD operator has the z-transform  

                                                             ( , )D z z ττ −=    (5) 

where [0,1]τ ∈ . In (Olkkonen & Olkkonen, 2007) we have described the FD filter design 
procedure based on the B-spline interpolation and decimation procedure for the 
construction of the fractional delays /N Mτ = ( , , 0,1,..., 1)N M N M∈ = −N . The FD filter 
has the following representation 

                                            1( , , ) ( ) ( ) ( )N
p p M

D N M z z z z F zβ β− −

↓
⎡ ⎤= ⎣ ⎦   (6) 
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where ( )p zβ  is the discrete B-spline filter (Appendix I). Decimation by M  is denoted by 
M↓ , and the polynomial ( )F z  is of the form 
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For convenience we use the following polyphase decomposition 
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By inserting (8) into (6) we have 

                                                           1( , , ) ( ) ( )p ND N M z z P zβ −=   (9) 

Table I gives the polyphase components ( )NP z  for 4M =  and 0,1,...,N M= . It appears 
generally that 0( ) ( )pP z zβ=  and 1( ) ( ).M pP z z zβ−=  Hence, (0, , ) 1D M z =  and 

1( , , )D M M z z−= . The implementation of the inverse discrete B-spline filter 1( )p zβ −  in (9) is 
described in Appendix I. Fig. 1 shows the magnitude and phase spectra of the FD B-spline 
filter (9) for 4M = and 1,2 and 3N = . 

2.3 FD BDWT bank 
As a direct application of Lemma 1, the fractionally delayed BDWT consists of the analysis 
and synthesis filters ( 0,1,2,..., 1N M= − ) 

                                        

0 0
1

1 1
1

0 0

1 1

( , , ) ( , , ) ( )

( , , ) ( , , ) ( )

( , , ) ( , , ) ( )
( , , ) ( , , ) ( )

H N M z D N M z H z

H N M z D N M z H z

G N M z D N M z G z
G N M z D N M z G z

−

−

=

= −

=
= −

  (10) 

The FD B-spline filter (9) suits readily for the implementation of the FD BDWT bank (10). 
For example, if we construct the four parallel filter banks, we select 4M = and 

0,1,2 and 3N = . For M=4 the wavelet filter 1(0,4, )H z  equals the original 1( )H z , which is 
FIR. However, the filters 1(1,4, )H z ,  1(2,4, )H z  and 1(3,4, )H z are IIR-type.  In the following 
we present a novel modification of the FD BDWT filter bank (10), where all FD wavelet 
filters are FIR-type. 

 
Table I. Polyphase components ( )NP z  for 4M =  and 0,1,...,N M= ( 4p = ). 
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Fig. 1. The FD B-spline ( 4p = ) filter for 4M =  and 1,2 and 3N = . 

2.4 FIR FD wavelet filters 
In VLSI and microprocessor environment the FIR filters are preferable due to the 
straightforward implementation by direct convolution. In tree structured multi-scale 
analysis the nondelayed scaling coefficients are fed to the following scale and only the 
wavelet coefficients are fractionally delayed. Next we describe a modification of the FD 
BDWT bank (10), where all the FD wavelet filters are FIR. The idea is based on the fact that 
only the relative time shift of the wavelet coefficients is essential for shift invariance. Hence, 
due to Lemma 1 we may replace the original scaling and wavelet filters by  

                                                      
1

0 0

1 1

(0, , ) ( ) ( )
(0, , ) ( ) ( )
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H M z z H z
H M z z H z

β

β
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which obey the PR condition. Since the discrete B-spline filter ( )p zβ contains no zeroes at 
1z = − , the regulatory degree (the number of zeros at 1z = − ) of the scaling filter is not 

affected. The corresponding fractionally delayed wavelet filters are 

                                         1 1( , , ) ( ) ( ) 1,2,..., 1NH N M z P z H z N M= − = −   (12) 

Now, for 0,1,..., 1N M= − all the wavelet filters are FIR-type and they are the fractionally 
delayed versions of each other. The polyphase components ( )NP z−  in (12) have high-pass 
filter characteristics. Hence, the frequency response of the modified wavelet filters is only 
slightly altered. Fig. 2 shows the impulse responses of the BDWT wavelet filter (Olkkonen et 
al. 2005) and the corresponding fractionally delayed wavelet filters for M = 4 and N = 0, 1,2 
and 2. The energy (absolute value) of the impulse response is a smooth function, which 
warrants the shift invariance. The corresponding impulse responses of the fractionally 
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delayed Daubechies 7/9 wavelet filters (Unser & Blu, 2003) are given in Fig. 3 and the 
fractionally delayed Legall 3/5 wavelet filters (Unser & Blu, 2003) in Fig. 4. 
 

 

 
 

Fig. 2. The FD impulse responses of the BDWT wavelet filter (M=4 and N=0,1,2 and 3). 
h1[n] = [1 -1 -8 -8 62 -62 8 8 1 -1]/128. The dashed line denotes the energy (absolute value) of 
the wavelet filter coefficients.  
 

 

 
 

Fig. 3. The FD impulse responses of the Daubechies 7/9 BDWT wavelet filters (M=4 and 
N=0,1,2 and 3). The energy of the wavelet filter coefficients is denoted by the dashed line. 
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Fig. 4. The FD impulse responses of the Legall 3/5 BDWT wavelet filters (M=4 and N=0,1,2 
and 3).The dashed line denotes the energy of the wavelet filter coefficients.  

3. Experimental                                                          
The usefulness of the FD B-spline method was tested for the EEG signal waveforms. For 
comparison the EEG signals were analysed using the well established Hilbert transform 
assisted complex wavelet transform (Olkkonen et al. 2006). The EEG recording method  is 
described in detail in our previous work (Olkkonen et al. 2006). The EEG signals were 
treated using the BDWT bank given in (Olkkonen et al. 2005). The FD wavelet coefficients 
were calculated via (12) using M=4 and N=0,1,2 and 3. Fig. 5A shows the nondelayed 
wavelet coefficients. Fig. 5B shows the energy (absolute value) of the wavelet coefficients 
and Fig. 5C the energy of the wavelet coefficients computed via the Hilbert transform 
method (Olkkonen et al. 2006).  

4. Discussion 
This book chapter presents an original idea for construction of the shift invariant BDWT 
bank. Based on the FD B-spline filter (9) we obtain the FD BDWT filter bank (12), which 
yields the wavelet sequences by the FIR filters. The integer valued polyphase components 
(Table I) enable efficient implementation in VLSI and microprocessor circuits. The present 
paper serves as a framework, since the FD B-spline filter implementation can be adapted in 
any of the existing BDWT bank, such as the lifting DWT (Olkkonen et al. 2005), Daubechies 
7/9 and Legall 3/5 wavelet filters (Unser &Blu, 2003).  
The present idea is highly impacted on the work of Selesnick (2002). He observed that if the 
impulse responses of the two scaling filters are related as 0[ ]h n  and 0[ 0.5]h n − , then the 
corresponding wavelets form a Hilbert transform pair. We may treat the two parallel 
wavelets as a complex sequence 

                                                          [ ] [ ] [ 0.5]cw n w n j w n= + −   (13) 
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Fig. 5. The FD BDWT analysis of the neuroelectric signal waveform recorded from the 
frontal cortex at a 300 Hz sampling rate. The nondelayed wavelet coefficients (A). The 
energy of the FD wavelet coefficients (M=4, N = 0,1,2 and 3) (B). The Hilbert transform 
assisted energy (envelope) of the wavelet coefficients (C). 
The energy (absolute value) of the complex wavelet corresponds to the envelope, which is a 
smooth function. Hence, the energy of the complex wavelet sequence is nearly shift 
invariant to fractional delays of the signal. 
Gopinath (2003) has studied the effect of the M parallel CQF wavelets on the shift 
invariance. According to the theoretical treatment the shift invariance improves most from 
the change M=1 to 2. For M=3,4,…. the shift invariance elevates, but only gradually. Hence, 
M = 4 is usually optimal for computation cost and data redundancy.  If we consider the case 
M=4 the corresponding hyper complex (hc) wavelet sequence is  

                               [ ] [ ] [ 0.25] [ 0.5] [ 0.75]hcw n w n i w n j w n k w n= + − + − + −   (14) 

where i, j and k are the unit vectors in the hc space. It is evident that the energy of the hc 
wavelet coefficients is more shift invariant to the fractional delay in the signal compared 
with the dual tree complex wavelets (13). According to our experience the values M > 4 do 
not produce any additional advantage to the treatment of the EEG data. 
The FD BDWT bank offers an effective tool for EEG data compression and denoising 
applications. Instead of considering the wavelet coefficients we may threshold the energy of 
the hc wavelet coefficients as 

                                                         [ ] [ ] 0hcif w n then w nε< =   (15) 
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 where ε  is a small number. Due to the smooth behaviour of the energy function, ε  can be 
made relatively high compared with the conventional wavelet denoising methods. In tree 
structured BDWT applications only the nondelayed scaling sequence is fed to the next scale. 
Usually the scaling sequence is not thresholded, but only the wavelet coefficients. The FD 
BDWT bank does not increase the memory requirement (redundancy) compared with the 
original nondelayed BDWT bank, since the reconstruction of the data can be performed by 
knowing only the nondelayed scaling and wavelet sequences.  The FD BDWT bank can be 
considered as a subsampling device, which improves the quality of the critically sampled 
wavelet sequence. As an example we consider the multi-scale analysis of the neuroelectric 
signal (Fig. 5). The energy of the signal in different scales can be estimated with the aid of 
the Hilbert transform (Olkkonen et al. 2006). Applying the result of this work the energy of 
the wavelet sequence [ ]hcw n  (14) approaches closely to the energy (envelope) of the signal. 
However, the delayed wavelet sequence is produced only by the polyphase filter 

( )NP z (N=1,2,…,M-1)(12), while the Hilbert transform requires the FFT based signal 
processing (Olkkonen et al. 2006). In the EEG signal recorded from the frontal cortex, the 
spindle waves have concentrated energy, which is clearly revealed both by the FD BDWT 
and the Hilbert transform analysis (Fig. 5). The energy content of the EEG signal yielded by 
the two different methods is remarkably similar.  
The essential difference compared with the half-sample shifted CQF filter bank (Selesnick, 
2002) is the linear phase of the BDWT bank and the FD B-spline filters adapted in this work. 
The shifted CQF filter bank is constructed with the aid of the all-pass Thiran filters and the 
scaling and wavelet coefficients suffer from nonlinear phase distortion effects (Fernandes, 
2003). The linear phase warrants that the wavelet sequences in different scales are accurately 
time related.  The FD wavelet coefficients enable the high resolution computation of the 
cross and autocorrelation and other statistical functions. 

Appendix I 
The discrete B-spline filter 
B-splines ( )p tβ  are defined as p -times convolution of a rectangular pulse 
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The Laplace transform of the B-spline comes from 
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and the inverse Laplace transform gives the time domain solution                                       
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The discrete B-spline [ ]p nβ equals to the continuous B-spline at integer values of time. 
Hence, the Laplace transform (17) and the z-transform of the discrete B-spline have inverse 
transforms which coincide at integer values in the time domain. Using the relation  
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 we obtain the z-transform of the discrete B-spline 
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We have 1
1( ) 1 /(1 )N z z−= − . By differentiating in respect to z we obtain a recursion 
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As an example we may obtain the discrete B-spline for p=4 as 1 2
4( ) (1 4 ) /6z z zβ − −= + + . 

The inverse discrete B-spline filter can be written as a cascade realization 
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where c is a constant and the roots 1ib ≤  and 1jb >  . The ( )iS z filters in (23) can be directly 
implemented. The ( )jR z filters in (23) can be implemented by the following recursive 
filtering procedure. First we replace z by z-1 
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where  ( )U z  and  ( )Y z  denote  z-transforms of the input [ ]u n  and output [ ]y n  signals 

( 0,1,2,..., )n N= . The 1( )U z−  and 1( )Y z−  are the z-transforms of the time reversed input 

[ ]u N n−  and output [ ]y N n− . The 1( )jR z−  filter is stable having a root 1
jb−  inside the unit 

circle. The following Matlab program rfilter.m demonstrates the computation procedure: 
  

function y=rfilter(u,b) 
u=u(end:-1:1); 
y=filter([0 -1/b],[1 -1/b],u); 
y=y(end:-1:1);  
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1. Introduction

The discrete wavelet transform (DWT) is gaining momentum as a feature extraction and/or
classification tool, because of its ability to localize structures with good resolution in a
computationally effective manner. The result is a unique and discriminatory representation,
where important and interesting structures (edges, details) are quantified efficiently by few
coefficients. These coefficients may be used as features themselves, or features may be
computed from the wavelet domain that describe the anomalies in the data.
As a result of the potential that the DWT possesses for feature extraction and classification
applications, the current work focuses on its utility in a computer-aided diagnosis (CAD)
framework. CAD systems are computer-based methods that offer diagnosis support to
physicians. The images are automatically analyzed and the presence of pathology is identified
using quantitative measures (features) of disease.
With traditional radiology screening techniques, visually analyzing medical images is
labourious, time consuming, expensive (in terms of the radiologist’s time) and each individual
scan is prone to interpretation error (the error rate among radiologists is reported to hover
around 30% Lee (2007)). Additionally, visual analysis of radiographic images is subjective; one
rater may choose a particular lesion as a candidate, while another radiologist may find this
lesion insignificant. Consequently, some lesions are being missed or misinterpreted. To reduce
the error rates, a secondary opinion may be obtained with a CAD system (automatically
reanalyze the images after the physician). Such methods are advantageous not only because
they are cost effective, but also because they are designed to objectively quantify pathology in
a robust, reliable and reproducible manner.
There has been a lot of research in CAD-system design for specific modalities or applications
with excellent results, i.e. see Sato et al. (2006) for CT, or Guliato et al. (2007) for
mammography. Although these techniques may render good results for the particular
modality it was built for, the technique is not transferable and has little-to-no utility in other
CAD problems (cannot be applied to other images or databases). Since CAD systems are being
employed widely, a framework that encompasses a variety of imaging modalities - not just a
single one - would be of value.
To this end, this work concerns the development of a generalized computer-aided diagnosis
system that is based on the DWT. It is considered generalized, since the same framework can
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be applied to different images with no modifications. There are three image databases that
are used to test the generalized CAD system: small bowel, mammogram and retinal images.
Although these images are very different from one another, a common attribute is noticed:
pathology is rough and heterogeneous, and healthy (normal) tissue is uniform. These images
are described in Section 2.
To quantify these differences between textures in normal and abnormal images, a texture
analysis scheme based on human texture perception is proposed. To describe the
elemetary units of texture (which are needed for overall texture perception), important
features such as scale, frequency and orientation are used for texture discrimination. The
DWT is a perfect mechanism to highlight these space-localized features, since it offers
a high resolution, scale-invariant representation of nonstationary phenomena (such as
texture). Multiresolutional analysis, the wavelet transform, DWT with its properties and
implementations are discussed in Section 4.
Although the DWT has many beneficial qualities, the DWT is shift-variant. Therefore, any
texture metrics extracted from the wavelet coefficients will also be shift-variant, reducing the
classification performance of our system. To combat this, a shift-invariant DWT (SIDWT)
is utilized to ensure that only translation invariant features are extracted (see Section 5).
To robustly quantify these texture elements (as described by the wavelet coefficients), a
multiscale texture analysis scheme is employed on the shift-invariant coefficients. At various
levels of decomposition, wavelet-domain graylevel cooccurrence matrices were implemented
in a variety of directions over all subbands to capture the orientation of such texture
elements. Texture features were extracted from each of the wavelet subbands to quantify the
randomness of the coefficients and they are classified using a linear classifier. The multiscale
texture analysis scheme and the classification technique are described in Section 6 and Section
7. Section 8 and Section 9 presents the results of the proposed generalized CAD framework for
all images and the concluding remarks, respectively. This work is a consolidation of several
research efforts Khademi (2006) Khademi & Krishnan (2007) Khademi & Krishnan (2008).

2. Biomedical imagery

Three imaging modalities are utilized to test the classification system: mammography, retinal
and small bowel images. Each one of these image types are used to diagnose diseases from
a specific anatomical region. Although these images are quite different from one another, the
current work develops a generalized framework for CAD that may be applied directly to each
of the images. The only apriori assumption is a very general one: the texture between normal
tissue and pathology is different.
The first modality, mammography, is an imaging technology which acquires an x-ray image
of the breast Ferreira & Borges (2001). They are currently the most effective method for early
detection of breast cancers Cheng et al. (2006) Wei et al. (1995). A challenging problem in
human-based analysis of mammography is the discrimination between malignant and benign
masses. Incorrectly identifying the lesion type results in negative to positive biopsies ratios
as high as 11:1 in some clinics Rangayyan et al. (1997). Normal tissue masks the lesions and
breast parenchyma is much more prominent than the lesion itself Ferreira & Borges (2001).
To test the CAD system with mammography images, a database is used where images contain
either a benign or malignant lesion(s). Examples of benign and malignant masses (along with
the contrast enhanced versionS) are shown in Figure 1. Normal regions are also shown for
comparison.
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(a) Regular

(b) Enhanced

Fig. 1. Mammographic regions (128 × 128). (a)-(c) Normal regions, (d)-(f) circumscribed
benign masses, (g)-(i) spiculated malignant masses. The contrast enhanced versions of these
regions are also included to highlight the textural differences between lesions.
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The benign masses have a rounded appearance with a defined boundary, while the inside
of the mass is relatively uniform and radiolucent. This has also been noted by other others,
see Ferreira & Borges (2001) Rangayyan et al. (1997) Mudigonda et al. (2000). In contrast, the
malignant masses possess ill-defined boundaries, are of higher density (radiopaque) and have
an overall nonuniform appearance in comparison to the benign lesions. Furthermore, spicules
from malignant masses cause disturbances in the homogeneity of tissues in the surrounding
breast parenchyma Rangayyan (2005). Since benign and malignant masses carry different
textural qualities, these textural differences will be exploited in the CAD system.
The second type of images are known as small bowel images. They are acquired by Given
Imaging Ltd.’s capsule endoscopy known as the PillCamTM SB video capsule. The PillCamTM

is a tiny capsule (10mm × 27mm Kim et al. (2005)), which is ingested from the mouth. As
natural peristalsis moves the capsule through the gastrointestinal tract it captures video and
wirelessly transmits it to a data recorder the patient is wearing around his or her waist Given
Imaging Ltd. (2006a). This video provides visualization of the 21 foot long small bowel, which
was originally seen as a “black box” to doctors Given Imaging Ltd. (2006b).
Video is recorded for approximately eight hours and then the capsule is excreted naturally

Fig. 2. Small bowel images captured by the PillCamTM SB, which exhibit textural
characteristics. (a) Healthy small bowel, (b) normal neocecal valve, (c) normal colonic
mucosa, (d) normal small bowel, (e) normal jejunum, (f) small bowel polyp, (g) small bowel
lymphoma, (h) GIST tumor, (i) polypoid mass, (j) small bowel polyp.

with a bowel movement Given Imaging Ltd. (2006a). Clinical results for the PillCamTM show
that it is a superior diagnostic method for diseases of the small intestine Given Imaging Ltd.
(2006c). The downfall of this technology comes from the large amount of data which is
collected while the PillCamTM - the doctor has to watch and diagnose eight hours of footage!
This is quite a labourious task, which could cause the physicians to miss important clues due
to fatigue, boredom or due to the repetitive nature of the task. To combat missed pathologies,
the proposed CAD system could be used to double check the image data.
To test out the generalized CAD system, a small bowel image database is utilized that contains
both normal (healthy regions) and several abnormal images. As shown Figure 2(a)-(e), the
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to fatigue, boredom or due to the repetitive nature of the task. To combat missed pathologies,
the proposed CAD system could be used to double check the image data.
To test out the generalized CAD system, a small bowel image database is utilized that contains
both normal (healthy regions) and several abnormal images. As shown Figure 2(a)-(e), the

normal small bowel images contain smooth, homogeneous texture elements with very little
disruption in uniformity except for folds and crevices.
Many types of pathologies are found in the small bowel image database ("abnormal" image
class), such as “Abnormal”: polyp, Kaposi’s sarcoma, carcinoma, etc. These diseases may
occur in various sizes, shapes, orientations and locations within the gastrointestinal tract.
Abnormalities have some common textural characteristics: the diseased region contains
many different textured areas simultaneously and these diseased areas are composed of
heterogeneous texture components. This may be seen in Figure 2(f)-(j).
The data for each patient is a series of 2D colour images. As the current chapter is focused
on grayscale processing, the colour images are converted to grayscale first. Additionally, each
image has been lossy JPEG compressed, so feature extraction is completed in the compressed
domain. Feature extraction in the compressed domain has become an important topic recently
Chiu et al. (2004) Xiong & Huang (2002) Chang (1995) Armstrong & Jiang (2001) Voulgaris &
Jiang (2001), since the prevalence of images stored in lossy formats far supersedes the number
of images stored in their raw format.
The last set of images are known as retinal images. Ophthalmologists use digital fundus
cameras to acquire and collect retinal images of the human eye Sinthanayothin et al. (2003),
which includes the optic nerve, fovea, surrounding vessels and the retinal layer Goldbaum
(2002). Although screening with retinal imaging reduces the risk of serious eye impairment
(i.e. blindness caused by diabetic retinopathy by 50% Sinthanayothin et al. (2003)), it also
creates a large number of images which the doctors need to interpret Brandon & Hoover
(2003). This is expensive, time consuming and may be prone to human error. The current
automated system can be used to help the doctors with this diagnostic task by offering a
secondary opinion of the images.
The current database contains several normal (healthy) retinal images as well as several
images that contain a variety of pathologies. Examples of normal and abnormal retinal images
are shown in Figure 3. Healthy eyes are easily characterized by their overall homogeneous
appearance, as easily seen in Figure 3(a)-(c).
Eyes which contain disease do not possess uniform texture qualities. Three cases of abnormal

retinal images are shown in Figure 3(d)-(f). Diabetic retinopathy, which is characterized by
exudates or lesions (random whitish/yellow patches locations Wang et al. (2000)) are shown
in Figure 3(a).
Another clinical sign of diabetic retinopathy are microaneurysms and haemorrhages and
macular degeneration, which can cause blindness if it goes untreated. Macular degeneration
may be characterized by drusens, which appear as yellowish, cloudy blobs, which exhibit
no specific size or shape Brandon & Hoover (2003). This is shown in Figure 3(e). These
pathologies disrupt the homogeneity of normal tissues. Other diseases include central retinal
vein and/or artery occlusion shown in Figure 3(f) (an oriented texture pattern which radiates
from the optic nerve).

2.1 Texture for pathology discrimination
As shown in the previous subsection, pathological regions in the images have a heterogeneous
appearance and normal regions are uniform. Moreover, texture elements occur at a variety of
orientations, scales and locations. Thus the CAD system must be robust to all these variances,
but still remain modality- or database-independent (i.e. not tuned specifically for a modality).
Computing devices are becoming an integral part of our daily lives and in many times, these
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Fig. 3. Retinal images which exhibit textural characteristics. (a)-(c) Normal, homogeneous
retinal images, (d) background diabetic retinopathy (dense, homogeneous yellow clusters),
(e) macular degeneration (large, radiolucent drusens with heterogeneous texture properties),
(f) central retinal vein occlusion (oriented, radiating texture).

algorithms are designed to mimic human behaviour. In fact, this is the major motivation of
many CAD systems; to understand and analyze medical image content in the same fashion
as humans do. Since texture has been shown to be an important feature for discrimination in
medical images, understanding how humans perceive texture provides important clues into
how a computer vision system should be designed to discriminate pathology.
As shown, these images possess textural characteristics that differentiate between
pathological and healthy (normal) tissues. A common denominator is that the pathological
(cancerous) lesions seem to have heterogeneous, oriented texture characteristics, while the
normal images are relatively homogeneous. These differences are easily spotted by the human
observer and thus we want our system to also differentiate between these two texture types
(homogeneity and heterogeneity) for classification purposes.
To build a system that understands textural properties that is in line with human texture
perception, a human texture analysis model must first be examined. When a surface is viewed,
the human visual system can discriminate between textured regions quite easily. To describe
how the human visual system can differentiate between textures, Julesz defined textons,
which are elementary units of texture Julesz (1981). Textured regions can be decomposed
using these textons, which include elongated blobs, lines, terminators and more. It was found
that the frequency content, scale, orientation and periodicity of these textons can provide
important clues on how humans differentiate between two or more textured areas Julesz
(1981). Therefore, to create a system which mimics human understanding of texture for
pathology discrimination, it is necessary that the analysis system can detect the properties of
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the fundamental units of texture (texture markers). In accordance to Julesz’s model, textural
events will be detected based on their scale, frequency and orientation.

3. Feature invariance

To describe the textural characteristics of medical images, a feature extraction scheme will
be used. The extracted features are fed into a classifier, which arrives at a decision related
to the diagnosis of the patient. Let X ⊂ Rn represent the signal space which contains all
biomedical images with the dimensions of n = N × N. Since the images X can be expected
to have a very high dimensionality, using all these samples to arrive at a classification result
would be prohibitive Coifman & Saito (1995). Furthermore, the original image space X is
also redundant, which means that all the image samples are not necessary for classification.
Therefore, to gain a more useful representation, a feature extraction operator f may map the
subspace X into a feature space F

f : X → F , (1)

where F ⊂ Rk, k ≤ n and a particular sample in the feature space may be written as a feature
vector: F = {F1, F2, F2, · · · , Fk}. If k < n, the feature space mapping would also result in a
dimensionality reduction.
Although it is important to choose features which provide the maximum discrimination
between textures, it is also important that these features are robust. A feature is robust if
it provides consistent results across the entire application domain Umbaugh et al. (1997). To
ensure robustness, the numerical descriptors should be rotation, scale and translation (RST)
invariant. In other words, if the image is rotated, scaled or translated, the extracted features
should be insensitive to these changes, or it should be a rotated, scaled or translated version
of the original features, but not modified Mallat (1998). This would be useful for classifying
unknown image samples since these test images will not have structures that have the same
orientation and size as the images in the training set Leung & Peterson (1992). By ensuring
invariant features, it is possible to account for the natural variations and structures within the
retinal, mammographic and small bowel images.
As will be shown in the next section, such features are extracted from the wavelet domain. If a
feature is extracted from a transform domain, it is also important to investigate the invariance
properties of the transform since any invariance in this domain also translates to an invariance
in the features. For instance, the 1-D Fourier spectrum is a well-known translation-invariant
transform since any translation in the time domain representation of the signal, does not
change the magnitude spectrum in the Fourier domain

f (t− τo)⇔F(ω) · e−jωτo , (2)

for all real values of τo. Similarly, scaling in time results in a easily definable reaction in the
frequency domain

f (αt) ⇔ 1
|α| · F

( ω

α

)
, (3)

where α is an integer value.
Although the types of feature extraction algorithms that will be used have not yet been
discussed, prior to designing any feature extractor, it is important to understand the necessity
of robust features. The following sections will detail the analysis tool used to localize the
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texture events, as well as the feature extraction framework that is used to extract robust
features (in the RST-invariant sense).

4. Multiresolutional analysis

All signals and images may be categorized into one of two categories: 1) deterministic
or 2) non-deterministic (random). Deterministic signals allow for advanced prediction of
signal quantities, since the signal may be described by a mathematical function. In contrast,
instantaneous values of non-deterministic signals are unpredictable due to their random
nature and must be represented using a probabilistic model Ross (2003). This stochastic model
describes the inherent behaviour of the signal or image in question.
Random signals (both 1D and 2D) may be further classified into two groups: 1) stationary
or 2) nonstationary. A stationary signal (1D) is a signal which has a constant probability
distribution for all time instants. As a consequence, first order statistics such as the mean and
second order statistics such as variance must also remain constant. In contrast, a nonstationary
signal has a time-varying probability distribution which causes quantities computed from the
probability density function (PDF) to also be time-varying. For instance, the mean, variance
and autocorrelation function of a nonstationary signal would change with time. Since the
Fourier transform of the autocorrelation function is equal to the power spectral density (PSD)
of a signal (which is related to the spectral content), the PSD of a nonstationary signal is also
time-varying. Consequently, a nonstationary signal has time-varying spectral content.
The medical images (as with most natural images) are nonstationary since they have
spatially-varying frequency components. Texture is comprised of a variety of frequency
content (and may be found in any location in the image), and therefore texture is also a type of
nonstationary phenomena. Since textured regions provide important clues that discriminate
between pathologies and/or healthy tissue, nonstationary analysis would add extra utility in
the sense that it would quantify or localize these textural elements. As discussed, the theory
of human texture perception is defined in terms of several features for texture discrimination:
the scale, frequency, orientation of textons. Therefore, analyzing the scale, frequency and
orientation properties of textural elements by nonstationary image analysis is in accordance
to the human texture perception model.
The type of nonstationary image analysis tool that will be utilized is part of the
multiresolutional analysis family, and is known as the Discrete Wavelet Transform (DWT).
As will be discussed, wavelet transforms are optimal for texture localization since the wavelet
basis have excellent joint space-frequency resolution Mallat (1998).
The section will begin by presenting the signal decomposition theory needed to understand
the fundamentals of the DWT. Following the introduction, the wavelet transform (with
descriptions of the wavelet and scaling basis functions) are given, with emphasis given to
signal space definitions. The DWT is then defined using the filter-bank method which was
implemented by the lifting-approach for the 5/3 Le Gull wavelet.

4.1 Signal decomposition techniques
Signal decomposition techniques can be used to transform the images into a representation
that highlights features of interest. As such decomposition techniques are used to define the
wavelet transform and its variants, some brief background is given here.
A decomposition technique linearly expands a signal or image using a set of mathematical
functions. For a 1D signal, using a set of real-valued expansion coefficients ak, and a series
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of 1-D mathematical functions ψk(t) known as an expansion set (ψk(t) = ψ(t − k) for all
integer values of k), a signal f (t) may be expressed as a weighted linear combination of these
functions

f (t) = ∑
k
ak · ψk(t), k ∈ Z. (4)

If the members of the expansion set ψk(t) are orthogonal to one another:

�ψk(t), ψl(t)� = 0, k �= l, (5)

then it is possible to find the expansion coefficients ak

ak = � f (t), ψk(t)�, (6)

where the inner product �·� of two signals x(t) and y(t) is defined by

�x(t), y(t)� =
∫

t
x∗(t) · y(t)dt. (7)

The definition of an expansion set depends on various properties. For instance, if there is
a signal f (t) which belongs to a subspace S ( f (t) ∈ S), then ψk(t) will only be called an
expansion set for S if f (t) can be expressed with linear combinations of ψk(t). The expansion
set forms a basis if the representation it provides is unique Burrus et al. (1998). Similarly, a basis
set may be defined first and then the space S spans all functions f (t) which can be expressed
by f (t) = ∑k ak · ψk(t).
For images, the basis functions may be dependant on both the horizontal and vertical spatial
variables (x, y). This leads to 2D basis functions ψm,n(x, y), where ψm,n(x, y) = ψ(x− n, y−
m), for all (m, n) ∈ Z. Therefore, a 2D function (image) f (x, y), that belongs to the space of the
basis functions, may be rewritten as a linear expansion

f (x, y) = ∑
m

∑
n
am,n · ψm,n(x, y), (8)

where am,n are the 2-D expansion coefficients found by

am,n = �ψm,n(x, y), f (x, y)�. (9)

Using decomposition techniques, a new representation is generated. In feature extraction
problems, we want this representation (i.e. coefficients ak or an,m) to highlight the features we
are interested in. This requires us to choose basis functions that are tuned to the properties of
our image (i.e. nonstationary structures). While choosing which basis set to use, one of the
main considerations is the functions’ space-frequency resolution.
Consider the basis function ψk(t) which has an energy distribution that is concentrated near
the time instant k and is spread out over the interval Δt Mallat (1998). This basis function ψk(t)
can identify time-localized features (at k) with a resolution of 1

Δt . Similarly, in the frequency
domain, the Fourier representation Ψξ (ω) is concentrated in energy near the frequency ξ
and spread over the interval of Δω, which captures frequency-localized features (at ξ) with a
resolution of 1

Δω .
Ideally, basis functions with infinitely small time and frequency would provide the best
representation since time-frequency structures would be represented with infinite resolution.
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However, this is not possible, because there is a direct trade off between time and
frequency resolution of basis functions as governed by the Heisenburg uncertainty principal
Burrus et al. (1998) Mallat (1998). The Heisenburg uncertainty principal states that resolution
of the time-frequency functions are lower bounded by

Δω · Δt ≥ 1/2. (10)

Therefore, to capture nonstationary events with good space-frequency localization, we need
basis functions that aim to operate near the theoretical lower bound. Many basis functions
offer solutions, but are not optimal for all applications. For example, the Short-Time Fourier
Transform (STFT) bases are not optimal because (1) they offer a fixed resolution for the
entire decomposition process (thus missing features that are comprised with different scales
and frequencies), (2) do not offer an easy method to access and manage the coefficients
and (3) creates a drastic increase in memory consumption and computational resources.
The following section will describe how the wavelet transform poses solutions to all these
problems.

4.2 Wavelet transforms
The wavelet transform offers solutions to all the problems associated with other basis
functions (such as the STFT) Mallat (1989) Wang & Karayiannis (1998) Vetterli & Herley
(1992) Mallat (1998). It offers a multiresolutional representation (decomposes the image using
various scale-frequency resolutions), which is achieved by dyadically changing the size of the
window. Space-frequency events are localized with good results since the changing window
function is tuned to events which have high frequency components in a small analysis
window (scale) or low frequency events with a large scale Burrus et al. (1998). Therefore,
texture events could be efficiently represented using a set of multiresolutional basis functions.
Additionally, the discrete wavelet transform utilizes critical subsampling along rows and
columns and uses these subsampled subbands as the input to the next decomposition level.
For a 2-D image, this reduces the number of input samples by a factor of four for each level of
decomposition. This representation may be stored back on to the original image for minimum
memory usage and it also permits for an organized, computationally efficient manner to
access these subbands and extract meaningful features.
The wavelet transform utilizes both wavelet basis ψj,k(t) and scaling basis φk(t) functions.
The wavelet functions are used to localize the high frequency content, whereas the scaling
function examines the low frequencies. The scale of the analysis window changes with each
decomposition level, thus achieving a multiresolutional representation. Starting with the
initial scale j = 0, the wavelet transform of any function f (t) which belongs to L2(R) is found
by

f (t) =
k=∞

∑
k=−∞

c(k) · φk(t) +
j=∞

∑
j=0

k=∞

∑
k=−∞

d(j, k) · ψj,k(t), (11)

where c(k) are the scaling or averaging coefficients (low frequency material) defined by

c(k) = c0(k) = � f (t), φk(t)� =
∫

f (t)φk(t) dt, (12)
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c(k) = c0(k) = � f (t), φk(t)� =
∫

f (t)φk(t) dt, (12)

and dj(k) are the detail wavelet coefficients (high frequency content) defined by

dj(k) = d(j, k) = � f (t), ψj,k(t)� =
∫

f (t)ψj,k(t) dt. (13)

In order to achieve a wavelet transform, the functions ψj,k(t) and φk(t) have to meet specific
criteria. These criteria, the properties of the scaling/wavelet functions and the corresponding
signal spaces are described next.

4.2.1 Scaling function subspaces
Consider a set of basis functions {φk(t)} which may be created by translating the prototype
scaling function φ(t) Burrus et al. (1998)

φk(t) = φ(t− k), k ∈ Z, (14)

where φk(t) spans the space Vo

Vo = Spank{φk(t)}. (15)

If a set of basis functions span a signal space Vo, then any function f (t) which also belongs to
that space can be completely represented using those basis functions as in: f (t) = ∑k ak · φk(t)
(for any f (t) ∈ Vo).
For added flexibility, the time and frequency resolution of these scaling functions may be
adjusted by including an additional scale parameter j in the characteristic basis function
expression

φj,k(t) = 2j/2 · φ(2jt− k), j, k ∈ Z, (16)

where the scalar multiple 2j/2 is included to ensure orthonormality Mallat (1989). Therefore,
an entire series of basis functions can be created by simply dilating (changing the j value) or
translating (changing the k value) the prototype scaling function φ(t). These basis functions
span the subspace Vj

Vj = Spank{φk(2jt)},

= Spank{φj,k(t)}, (17)

and any signal f (t) can be expressed using this expansion set, as long as it is also a set of Vj

f (t) = ∑
k
ak · φ(2jt− k), f (t) ∈ Vj. (18)

The introduction of a scale parameter changes the time duration of the scaling functions.
This allows different resolutions to isolate different anomalies in the signals or images. For
instance, if j > 0, φj,k(t) is narrower and would provide a good representation of finer
detail. For j < 0, the basis functions φj,k(t) are wider and would be ideal to represent coarse
information Burrus et al. (1998).

4.2.2 Wavelet basis functions
Although the scaling functions give way to a multiresolution representation, it is also
necessary to investigate the spaces which span the differences of the spaces spanned by the
scaling functions. These regions correspond to the high frequency details of the data.
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Fig. 4. Nested wavelet and scaling signal spaces.

The types of basis functions that can localize the details are known as wavelets ψ(t) and their
corresponding signal spaces are denoted as W . Similar to scaling functions, a series of wavelet
basis functions can be generated by dilating and translating the mother wavelet ψ(t)

ψj,k(t) = 2j/2ψ(2jt− k), j, k ∈ Z. (19)

To find the mother wavelet ψ(t), it is necessary to find the relationship between the mother
wavelet ψ(t) and the generating scaling function φ(t).
Starting with an initial resolution of j = 0, the nested subspaces may be written as

Vo ⊂ V1 ⊂ V2 ⊂ · · · ⊂ L2. (20)

The corresponding spaces spanned by the wavelet basis functions are shown in Figure 4,
which illustrates how each W subspace spans the difference of two subspaces. As shown in
Figure 4, the signal spaces V1 and V2 may be expressed as

V1 = Vo ⊕Wo, (21)

and
V2 = Vo ⊕ Wo ⊕ W1, (22)

where ⊕ is a direct sum. If Vj is the space spanned by the scaling functions φj,k(t) and
Vj+1 is the space spanned by the functions φj+1,k(t), then Wj is the disjoint difference or the
orthogonal compliments of Vj and Vj+1 spanned by the wavelet basis functions ψj,k(t). This
may be shown by

Vj+1 = Vj ⊕Wj, ∀j ∈ Z. (23)

Using Equation 21, Equation 22 and Figure 4, a general expression for the L2 subspace may be
developed:

L2 = Vo ⊕ Wo ⊕ W1 ⊕ W2 ⊕ · · · , (24)

and since these subspaces are orthogonal to one another

Vo ⊥Wo ⊥W1 ⊥W2 ⊥W3 · · · , (25)
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the corresponding basis functions which span these spaces are also orthogonal

�φj,k(t), ψj,k(t)� =
∫

φj,k(t) · ψj,k(t)dt = 0. (26)

Furthermore, wavelet spaces at a scale j are a subset of the scale spaces at the next scale j + 1

Wj ⊂ Vj+1. (27)

Consequently, wavelets reside in the space spanned by the next narrower scaling function and
can be expressed as a weighted sum of shifted scaling functions, φ(2t)

ψ(t) = ∑
n
h1(n) ·

√
2 · φ(2t− n), n ∈ Z, (28)

where h1(n) are the wavelets’ coefficients. Equation 28 shows that the generating wavelet
ψ(t) can be produced from the prototype scaling function φ(t) by choosing the appropriate
h1(n). In order to ensure orthogonality, the scaling and wavelet coefficients must be related
by Burrus et al. (1998)

h1(n) = (−1)nho(1 − n). (29)

Therefore, for analysis with orthogonal wavelets, the highpass filter h1(n), which is half-band,
is calculated as the quadrature mirror filter of the lowpass ho(n). These filters may be
used to efficiently implement the wavelet transform for discrete signals (the Discrete Wavelet
Transform) and is discussed next.

4.3 Discrete wavelet transform
In order to perform the wavelet transform for discrete images, implementation of the DWT
using filterbanks is popular choice since the complexities of the wavelet transform are
explained in terms of filtering operations (which is intuitive). The material is first presented
for one dimensional signals and then is expanded to 2D for images.
After performing a series of simplifications and change of variables Burrus et al. (1998) Mallat
(1998) Vetterli & Herley (1992), Equation 28 may be rewritten as

cj(k) = ∑
m

ho(m− 2k)cj+1(m), (30)

and
dj(k) = ∑

m
h1(m− 2k)cj+1(m). (31)

This illustrates that cj(k) and dj(k) can be found by filtering cj+1(k) with ho and h1,
respectively, followed by a decimation by a factor of 2. The two filters, ho(n) and h1(n)
are half-band lowpass and highpass filters, respectively. Consequently, the lowpass filter
ho(n) produces lowpassed or averaged coefficients cj(k) and the highpass filter h1(n) creates
highpassed or detail coefficients dj(k).
To compute the DWT coefficients for two levels, examine the two stage analysis filterbank in
Figure 5(a) alongside the signal spaces in Figure 5(b). Note that the initial scale here is j + 1,
and therefore cj+1 would represent the original input signal. After one level of decomposition,
the lowpass coefficients cj and the highpass details dj are produced. For a multiresolutional
representation, cj are further decomposed with ho and h1, to produce the coefficients cj−1(k)
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and dj−1(k) (they describe the next scale of low and high frequency structures). The 2D
extension for images is detailed next.

Fig. 5. (a) Computing the 1-D wavelet and scaling coefficients using filtering and decimation
with a 2-stage analysis filterbank, (b) corresponding decomposition tree showing the division
of signal spaces.

4.3.1 2-D extension for images
Instead of having a wavelet or filter which is a function of the two spatial dimensions of an
image, the filter can be separable, which allows a particular 1D filter to be applied to the rows
and columns of an image separately to gain the desired overall 2D response Lawson & Zhu
(2004). A separable filter for two dimensions may be denoted by:

H(z1, z2) = H(z1) · H(z2), (32)

where z1 and z2 relate to the spatial dimensions of an image. Therefore, the filters defined
for the 1D DWT may be applied separably to gain a 2D DWT representation for images. The
2-D DWT filterbank scheme for an N × N image x(m, n) is shown in Figure 6. Initially, the
filters Ho(z) and H1(z) are applied to the rows of image x(m, n), creating two images which
respectively contain the low and high frequency content of the image in question. After this,
both frequency bands are subsampled by a factor of 2, and are sent to the next set of filters for
filtering along the columns. After these bands have been filtered, decimation by a factor of 2
is again performed, but this time along columns. At the output of one level of decomposition,
as shown in Figure 6, there are four subband images of size N

2 × N
2 labeled LL, LH, HL and

HH. Using the separability concept, at scale j, these subbands may be computed by

LLj(x, y) = ∑
m

∑
n
ho(m− 2x)ho(n− 2y) · LLj+1(m, n), (33)

HLj(x, y) = ∑
m

∑
n
ho(m− 2x)h1(n− 2y) · LLj+1(m, n), (34)

LHj(x, y) = ∑
m

∑
n
h1(m− 2x)ho(n− 2y) · LLj+1(m, n), (35)

HHj(x, y) = ∑
m

∑
n
h1(m− 2x)h1(n− 2y) · LLj+1(m, n). (36)
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The first letter of the subimages indicates the operation that was performed on the columns
(i.e. L is for lowpass filtering with Ho(z) and H is for highpass filtering with H1(z))
whereas the last letter indicates which operation was performed on the rows. If more levels

Fig. 6. Filterbank implementation of 2-D discrete wavelet transform (DWT).

of decomposition are required, the LL band may be recursively reapplied to the analysis
filterbank of Figure 6. For two levels of decomposition, the placement of the coefficients back
onto the image is shown in Figure 7.

To examine the localization properties of the 2D DWT, consider Figure 8. The edges and

Fig. 7. Graphical depiction of wavelet coefficient placement for two levels of decomposition.

corners of the square (the original image) are composed of localized high frequency content,
which is captured in the high frequency subbands in the wavelet domain, regardless of the
orientation (horizontal, diagonal, vertical). As texture is comprised of such localized high
frequency events, utilization of such a transform will be able to describe the textural events
as required. The diffusion of textural features or events will occur across subbands, which
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allows features to be captured not only within subbands, but also across subbands.
For an example of the localization properties of wavelets in a medical image, as well as
the textural differences between normal and abnormal medical images, see Figure 9. The
normal image’s decomposition exhibits an overly homogeneous appearance of the wavelet
coefficients in the HH, HL and LH bands (which reflects the uniform nature of the original
image). The decomposition of the retinal image with diabetic retinopathy shows that each
of the higher frequency subbands localizes the retinopathy, which appears as heterogeneous
textured blobs (high-valued wavelet coefficients) in the center of the subband. This illustrates
how the DWT can localize the textural differences in medical images also how multiscale
texture may be used to discriminate between pathological cases . Similar results are obtained
with the small bowel and mammographic lesions, however, are not shown here due to space
constraints.

Another benefit of wavelet analysis is that the basis functions are scale-invariant.

Fig. 8. Left: original image. Right: one level of DWT of left image.

Scale-invariant basis functions will give rise to a localized description of the texture elements,
regardless of their size or scale, i.e. coarse texture can be made up of large textons, while fine
texture is comprised of smaller elementary units. Therefore, the DWT can handle both of these
scenarios.
Although the filterbank method is efficient, it requires a lot of filtering operations which is

computationally expensive. For more efficient implementations of the filterbank-based DWT,
the lifting-based approach is one such approach that is employed in the current framework
and detailed next.

4.4 Lifting-based DWT
To compute the DWT in an efficient manner, the lifting based approach is used Fernández
et al. (1996) Sweldens (1995) Sweldens (1996). To increase computation speed, lifting based
approaches make optimal use of similarities which exist between the lowpass (H1(z)) and
highpass (Ho(z)) filters. All 1D implementations will be later extended to 2D implementations
by ’lifting’ both the columns and the rows separately.
The lifting based DWT is an efficient scheme since it aims to implement complicated functions
with simple and invertible stages Zhang & Zeytinoglu (1999). Compared to the filterbank
method, the lifting based DWT method offers a less computationally expensive solution to
compute the DWT Zhang & Zeytinoglu (1999) Sweldens (1996).
The lifting based scheme relies on three operations to achieve the discrete wavelet transform:
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Fig. 9. One level of DWT decomposition of retinal images. Left: normal image
decomposition. Right: decomposition of retinal image with diabetic retinopathy. Contrast
enhancement was performed in the higher frequency bands (HH, LH, HL) for visualization
purposes.

1) split, 2) predict and 3) update. These three operations which comprise the 1-D lifting
scheme, are shown in Figure 10, where S is the splitting function, P is the predictor function
and U is the update operation. As shown by Figure 10, the scaling and wavelet coefficients
(cj(n) and dj(n)) are still from the previous level’s coefficients, cj+1(n). Lifting may be also
applied separably to the rows and columns of an image to arrive at a 2D DWT.

Fig. 10. Generalized 1-D lifting based implementation of the DWT.

4.4.1 Splitting
The splitting operation divides the 1-D input string into even and odd samples, as denoted
by cj+1(2n) and cj+1(2n + 1), respectively. Using digital signal processing, the even samples
may be obtained by decimating the original signal by a factor of 2, and the odd samples may
be obtained by subsampling a time shifted (single unit of time) version of the original signal
by 2. This is often referred to as the Lazy Wavelet Transform Fernández et al. (1996).
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4.4.2 Prediction
In order to compute the wavelet coefficients dj(n), a lifting scheme uses a predictor to
interpolate the odd-indexed coefficients from the previous scale (cj+1(2n+ 1)). The prediction
is subtracted from the original odd-indexed signal to produce the wavelet coefficients dj(n).
This may expressed as

dj(n) = cj+1(2n + 1) −P(cj+1(2n + 1)), (37)

where P(·) is the predictor function. As stated earlier, the wavelet coefficients correspond to
the high frequency components which makes this operation equivalent to highpass filtering.
A good predictor function would produce small valued wavelet coefficients (ideally zero),
since the predicted version of the signal would be identical to the original. However, for
nonstationary signals (such as biomedical images) that have properties which change over
time, it is not possible to exactly predict the signal Zhang & Zeytinoglu (1999) and non-zero
wavelet coefficients can be expected. There are many different predictor functions which may
be used Maragos et al. (1984) Haijiang et al. (2004) Denecker et al. (1997), however, in order
to implement the forward wavelet transform, the interpolation function is chosen such that it
relates to the wavelet ψ(t) Zhang & Zeytinoglu (1999).

4.4.3 Updating
In a lifting based DWT implementation, the scaling coefficients cj(n) are computed as the sum
of the even-indexed samples (cj+1(2n)) and an updated version of the wavelet coefficients
dj(n) as shown below:

cj(n) = cj+1(2n) + U (dj(n)), (38)

where U (·) is the update function. This operation isolates the low frequency components
within the original signal. For images, lifting based DWT must be extended to two
dimensions. As shown earlier in the 2D DWT filterbank approach, 1D wavelet transforms
were applied separably to the images in order to gain a 2D DWT representation. This also
applies to lifting based schemes as well. By sequentially applying the lifting operation first to
the rows and then to the columns of an image, the forward transformation is achieved. The
forward operation is depicted in Figure 11.

Fig. 11. Lifting-based implementation of the DWT for two dimensional signals.
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4.5 5/3 Wavelet
The integer wavelet which will be used is part of the Odd-Length Analysis/Synthesis
Filter (OLASF) family, where the number of filter taps in the FIR filter (for the filterbank
implementation) are odd Adams & Ward (2003). Additionally, biomedical images are high
resolution images, which results in large image sizes. Consequently, for these large-sized
images, a wavelet with fewer taps is desired so that the overall computational load may be
reduced. The 5/3 Le Gull wavelet will be used since the filter lengths are small (5 and 3
taps for the analysis low and highpass filters) and can warrant an efficient implementation
Marcellin et al. (2000) Zhang & Fritts (2004) . The 5/3 filter coefficients are listed in Table ??.

Analysis Coefficients Synthesis Coefficients
i ho(i) h1(i) ho(i) h1(i)
0 + 6

8 +1 +1 + 6
8

±1 + 2
8 − 1

2 − 1
2 + 2

8
±2 − 1

8 + 1
8

Table 1. Analysis and synthesis filter coefficients for the 5/3 wavelet.

Using the 5/3 integer wavelet, the highpass details dj(n) can be computed using a lifting
based approach:

dj(n) = cj+1(2n + 1) −
⌊
cj+1(2n) + cj+1(2n + 2)

2

⌋
, (39)

where �X� is the greatest integer less than or equal to X. The low frequency, average
coefficients cj(n) may be found using an update function

cj(n) = cj+1(2n) +

⌊
dj(n) + dj(n− 1) + 2

4

⌋
. (40)

For reconstruction, the reverse DWT can be found by reversing the arithmetic operations of
the forward transform. This is shown below:

cj+1(2n) = cj(n) +

⌊
dj(n) + dj(n− 1) + 2

4

⌋
, (41)

cj+1(2n + 1) = dj(n)−
⌊
cj+1(2n) + cj+1(2n + 2)

2

⌋
. (42)

These equations may be applied separably to the images in order to gain a 2-D DWT
representation.

5. Shift-invariant discrete wavelet transform

Although the DWT is scale-invariant, it is well known that the DWT is shift-variant Mallat
(1998), i.e. the coefficients of a circularly shifted image are not translated versions of the
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original image’s coefficients. For instance, the DWT of an input biomedical image f (x, y)
can be shown as:

f (x, y) −→ DWT −→ F̂(k1, k2, j)

where F̂(k1, k2, j) are the 2-D DWT coefficients at scale j. A shift of the image will result in a
different set of coefficients

f (x + Δx, y+ Δy) −→ DWT −→ F̂(k
�
1, k

�
2, j)

where k
�
1 �= k1 + a1 · Δx and k

�
2 �= k2 + a2 · Δy for (a1, a2), (Δx, Δy) ∈ Z, indicating that the two

sets of coefficients are not translated versions of one another.
Shift-variance causes significant challenges in a feature extraction problem. For example,

Fig. 12. Image (simulated benign lesion).

consider the image of Figure 12 (the center circle can be considered as a circumscribed benign
lesion, or something to that effect). If this circle is translated by a small amount (which is
equivalent to the lesion being located in different regions of an image), the extracted features
would be different. To illustrate this, the image in Figure 12 is translated by shifts of (Δx, Δy)
= {(0,0), (0,1), (1,0), (1,1)} and for each translation, the DWT is performed. Then, the mean
and variance of the wavelet coefficients are extracted from the LH band (moments are RST
invariant, so any invariance would be a consequence of the transform). The extracted features
are shown in Table 2. As shown by these results, images with pathology (texture) located
in different regions of the images would result in different feature sets, thus leading to high
misclassification results.

For shift-invariant features, it is necessary to utilize a shift-invariant discrete wavelet

Input shift (Δx, Δy) Mean μ Variance σ2

(0,0) -0.050537 97.017
(0,1) -0.051025 100.42
(1,0) 0.057861 96.82
(1,1) 0.058350 98.383

Table 2. Mean μ and variance σ2 of the DWT coefficients of the LH band for circular
translates (Δx, Δy) of Figure 12.

transform (SIDWT) on the input image f (x, y)

f (x, y) −→ SIDWT −→ F̃(k1, k2, j)
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misclassification results.

For shift-invariant features, it is necessary to utilize a shift-invariant discrete wavelet

Input shift (Δx, Δy) Mean μ Variance σ2

(0,0) -0.050537 97.017
(0,1) -0.051025 100.42
(1,0) 0.057861 96.82
(1,1) 0.058350 98.383

Table 2. Mean μ and variance σ2 of the DWT coefficients of the LH band for circular
translates (Δx, Δy) of Figure 12.

transform (SIDWT) on the input image f (x, y)

f (x, y) −→ SIDWT −→ F̃(k1, k2, j)

to compute the wavelet coefficients F̃(k1, k2, j). The representation achieved by such a
transform would be considered shift-invariant if a shift of the input image (Δx, Δy) ∈ Z results
in output coefficients which are exactly the same as F̃(k1, k2, j), or a spatially shifted version
of it. This may be shown by

f (x + Δx, y + Δy) −→ SIDWT −→ F̃(k
�
1, k

�
2, j)

where k
�
1 = k1 + b1 ·Δx and k

�
2 = k2 + b2 · Δy for some (b1, b2) ∈ Z. If the coefficients are exactly

the same: b1 = b2 = 0.
The shift-variant property of the DWT is widely known and several solutions have been
proposed. Mallat et. al use an overcomplete, redundant dictionary, which corresponds to
filtering without decimation Mallat (1998) Bradley (2003). From the filtered and fully sampled
version of the image, local extrema are used for translation invariance since a shift in the input
image results in a corresponding shift of the extrema Mallat (1998) Liang & Parks (1994).
Since there is no decimation, each level of decomposition contains as many samples as the
input image, thus making the algorithm computationally complex. It also requires significant
memory bandwidth.
Simoncelli et. al propose an approximate shift-invariant DWT algorithm by relaxing the
critical sampling requirements of the DWT Simoncelli et al. (1992). This algorithm is known as
the power-shiftable DWT since the power in each subband remains constant. As explained in
Bradley (2003), the shift-variant property is also related to aliasing caused by the DWT filters.
The power shiftable transform tries to remedy this problem by reducing the aliasing of the
mother wavelet in the frequency domain. The modifications to the mother wavelet result in a
loss of orthogonality Liang & Parks (1998).
The Matching Pursuit (MP) algorithm can also achieve a shift-invariant representation,
when the decomposition dictionary contains a large amount of redundant wavelet basis
functions Mallat & Zhang (1993). However, the MP algorithm is extremely computationally
complex and arriving at a transformed representation causes significant delays Cohen et al.
(1997). Bradley combines features of the DWT pyramidal decomposition with the à trous
algorithm Mallat (1998), which provides a trade off between sparsity of the representation and
time-invariance Bradley (2003). Critical sampling is only carried out for a certain number of
subbands and the rest are all fully sampled. This representation only achieves an approximate
shift-invariant DWT Bradley (2003).
The algorithms discussed either try to minimize the aliasing error by relaxing critical
subsampling and/or add redundancy into the wavelet basis set. However, these algorithms
either suffer from lack of orthogonality (which is not always an issue for feature extraction),
achieve an approximate shift-invariant representation, are computationally complex or
require significant memory resources. To combat these downfalls, the SIDWT algorithm
proposed by Beylkin, which computes the DWT for all circular shifts in a computationally
efficient manner Beylkin (1992) is utilized. The proposed SIDWT utilizes orthogonal wavelets,
thereby resulting in less redundancy in the representation Liang & Parks (1994), and a more
efficient implementation. Belkyn’s work has also been extended to 2-D signals by Liang et.
al Liang & Parks (1994) Liang & Parks (1998) Liang & Parks (1996) and its performance in a
biomedical image feature extraction application will be investigated.
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5.1 2D SIDWT algorithm
For different shifts of the input image, it was shown that the DWT can produce one of four
possible representations after one level of decomposition. These four DWT coefficient sets
(cosets) are not translated versions of one another and each coset may be generated as the
DWT response to one of four shifts of the input: (0, 0), (0, 1), (1, 0), (1, 1), where the first
index corresponds to the row shift and the second index is the column shift. All other shifts
of the input (at this decomposition level) will result in coefficients which are shifted versions
of one of these four cosets. Therefore, to account for all possible representations, these four
cosets may be computed for each level of decomposition. This requires the LL band from each
level to be shifted by the four translates {(0, 0), (0, 1), (1, 0), (1, 1)} and each of these new
images to be separately decomposed to account for all representations.
To compute the coefficients at the jth decomposition level, for the input shift of (0, 0), the
subbands LLj, LHj, HLj, HHj may be found by filtering the previous levels coefficients LLj+1,
as shown below:

LLj
(0,0)(x, y) = ∑

m
∑
n
ho(m− 2x)ho(n− 2y) · LLj+1(m, n), (43)

LHj
(0,0)(x, y) = ∑

m
∑
n
h1(m− 2x)ho(n− 2y) · LLj+1(m, n), (44)

HLj
(0,0)(x, y) = ∑

m
∑
n
ho(m− 2x)h1(n− 2y) · LLj+1(m, n), (45)

HHj
(0,0)(x, y) = ∑

m
∑
n
h1(m− 2x)h1(n− 2y) · LLj+1(m, n). (46)

The subband expressions listed in Equation 43 through to Equations 46 contain the coefficients
which would appear the same if LLj+1 is circularly shifted by {0, 2, 4, 6, · · · , s} rows and
{0, 2, 4, 6, · · · , s} columns, where s is the number of row and column coefficients in each of
the subbands for the level j + 1.
The subband coefficients which are the response to a shift of (0,1) in the previous level’s
coefficients may be computed by

LLj
(0,1)(x, y) = ∑

m
∑
n
ho(m− 2x)ho(n− 2y) · LLj+1(m, n− 1), (47)

LHj
(0,1)(x, y) = ∑

m
∑
n
h1(m− 2x)ho(n− 2y) · LLj+1(m, n− 1), (48)

HLj
(0,1)(x, y) = ∑

m
∑
n
ho(m− 2x)h1(n− 2y) · LLj+1(m, n− 1), (49)

HHj
(0,1)(x, y) = ∑

m
∑
n
h1(m− 2x)h1(n− 2y) · LLj+1(m, n− 1), (50)

which contain all the coefficients for {0, 2, 4, 6, · · · , s} row shifts and {1, 3, 5, 7, · · · , s − 1}
column shifts of LLj+1. Similarly, for a shift of (1,0) in the input, the DWT coefficients may be
found by

LLj
(1,0)(x, y) = ∑

m
∑
n
ho(m− 2x)ho(n− 2y) · LLj+1(m− 1, n), (51)

LHj
(1,0)(x, y) = ∑

m
∑
n
h1(m− 2x)ho(n− 2y) · LLj+1(m− 1, n), (52)
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column shifts of LLj+1. Similarly, for a shift of (1,0) in the input, the DWT coefficients may be
found by

LLj
(1,0)(x, y) = ∑

m
∑
n
ho(m− 2x)ho(n− 2y) · LLj+1(m− 1, n), (51)

LHj
(1,0)(x, y) = ∑

m
∑
n
h1(m− 2x)ho(n− 2y) · LLj+1(m− 1, n), (52)

HLj
(1,0)(x, y) = ∑

m
∑
n
ho(m− 2x)h1(n− 2y) · LLj+1(m− 1, n), (53)

HHj
(1,0)(x, y) = ∑

m
∑
n
h1(m− 2x)h1(n− 2y) · LLj+1(m− 1, n), (54)

which contain all the coefficients if the previous levels’ coefficients LLj+1 are shifted by
{1, 3, 5, 7, · · · , s − 1} rows and {0, 2, 4, 6, · · · , s} columns. For an input shift of (1,1), the
subbands may be computed by

LLj
(1,1)(x, y) = ∑

m
∑
n
ho(m− 2x)ho(n− 2y) · LLj+1(m− 1, n− 1), (55)

LHj
(1,1)(x, y) = ∑

m
∑
n
h1(m− 2x)ho(n− 2y) · LLj+1(m− 1, n− 1), (56)

HLj
(1,1)(x, y) = ∑

m
∑
n
ho(m− 2x)h1(n− 2y) · LLj+1(m− 1, n− 1), (57)

HHj
(1,1)(x, y) = ∑

m
∑
n
h1(m− 2x)h1(n− 2y) · LLj+1(m− 1, n− 1). (58)

Similarly, these subband coefficients account for all DWT representations, which correspond
to {1, 3, 5, 7, · · · , s− 1} row shifts and {1, 3, 5, 7, · · · , s− 1} column shifts of the input subband
LLj+1.
Performing a full decomposition will result in a tree which contains the DWT coefficients for
all N2 circular translates of an N × N image. At each level of decomposition, the LL band is
shifted four times, and for each shift (0, 0), (0, 1), (1, 0), (1, 1), four new sets of subbands are
generated. The decomposition tree is shown in Figure 13 and each circular node corresponds
to only three subband images: HH, LH and HL, since at each level the LL band is shifted
and then further decomposed. The number of coefficients in each node (per decomposition
level) remains constant at 3N2, and a complete decomposition tree will have N2(3log2N + 1)
elements Liang & Parks (1994). To compute the DWT for all N2 translates of the image costs
O(N2log2N), due to the periodicity of the rate change operators Liang & Parks (1998).
To achieve shift-invariance, a subset of the wavelet coeffieints in the Tree of Figur e13 must be

chose in a consistent manner. To do this, metrics can be computed from the tree. This requires
an organized way to address each of the coefficients. A proper addressing scheme will help
to find the wavelet transform for a particular translate (m, n), where m is the row shift and n
is the column translate of the input image.
For a path in the tree, which originates from the root, terminates at a leaf node and corresponds
to the translate (m, n), an expression may be developed which considers all row shifts and all
column shifts as binary vectors, where each vector entry can be either 0 or 1. Therefore, the
binary expansions may be rewritten as

m =
log2N

∑
i=1

ai2
i−1, (59)

n =
log2N

∑
i=1

bi2
i−1, (60)
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Fig. 13. Shift-invariant DWT decomposition tree for three decomposition levels.

where ai and bi correspond to the binary symbol which represents the row and column shift
at decomposition level i, respectively. In order to find the three subimages (HL, HH and
LH) which correspond to the translate (m, n) in the Kth decomposition level in the tree, it is
necessary to find the Sth node which corresponds to this shift, as shown below

S = 2 ·
K

∑
i=1

ai4
K−i +

K

∑
i=1

bi4
K−i. (61)

After the three subimages are located within the tree, to ensure that they correspond to
the translate of the input by (m, n), these three images (HH, LH, HL) must be shifted by
(xShift, yShift)

xShift =
log2N

∑
i=K+1

ai2
i−K−1, (62)

yShift =
log2N

∑
i=K+1

bi2
i−K−1. (63)

This scheme allows us to address the wavelet coefficients that correspond to a particular shift
of the input. The following section, which focuses on Coifmen and Wickenhauser’s best
basis selection technique Coifman & Wickerhauser (1992), is focused on a method to select
a consistent set of wavelet coefficients which are independent of the input translation. Since
the same coefficients are selected every time the algorithm is run, regardless of any initial
offset, shift-invariance is achieved.
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yShift =
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∑
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bi2
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This scheme allows us to address the wavelet coefficients that correspond to a particular shift
of the input. The following section, which focuses on Coifmen and Wickenhauser’s best
basis selection technique Coifman & Wickerhauser (1992), is focused on a method to select
a consistent set of wavelet coefficients which are independent of the input translation. Since
the same coefficients are selected every time the algorithm is run, regardless of any initial
offset, shift-invariance is achieved.

5.2 Best basis paradigm
Coifmen and Wickerhauser defined a method to choose a set of basis functions, based on
the minimization of a cost function J Coifman & Wickerhauser (1992). The cost function J
is often called an “information cost” and it evaluates and compares the efficiency of many
basis sets Coifman & Saito (1995). Although there are many choices for cost functions, an
additive information cost is preferred so that a fast-divide and conquer tree search algorithm
may be used to find the best set of wavelet coefficients Liang & Parks (1994). A cost function
J is additive if it maps a sequence {xi} to R while ensuring that the following properties are
always true:

J (0) = 0, (64)

J ({xi}) = ∑
i
J (xi). (65)

To choose a consistent set of wavelet coefficients, an entropy cost function J is used for
best basis determination. Entropy gives insight about the uniformity of the coefficients’
representation (maximum energy compaction), which may be used for texture analysis.
Furthermore, entropy is beneficial since it can achieve additivity Coifman & Saito (1995).
Shown below is the expression of entropy which is minimized:

hr(x) = ∑
i
|xi|rlog|xi|r, (66)

where r is usually set to 1 or 2.
To choose the best basis representation, we begin at the bottom of the decomposition tree (see

Fig. 14. Best basis selection corresponding to the minimum cost path.

Figures 13 and 14) and work upwards. For each parent node, there are four child nodes, each
containing the high frequency subbands of a particular translate. The cost A of a particular
translate (p, q) ∈ {(0, 0), (0, 1), (1, 0)(1, 1)} at some node is computed by summing the cost of
the individual high frequency subbands for that shift:

A(p,q) = J (LH(p,q)) + J (HL(p,q)) + J (HH(p,q)). (67)
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To minimize entropy, the node with the minimum cost for each parent would be selected at
every decomposition level. The path which is connected from the root of the tree all the way
down to the leaves, is selected as the the minimum cost path, as shown in Figure 14. This path
corresponds to the DWT of a particular translate and is chosen as the consistent set of basis
functions in order to achieve shift-invariance.

6. Multiscale texture analysis

Now that a transformation has been employed which can robustly localize the scale-frequency
properties of the textured elements in the medical images, it is important to design an analysis
scheme which can quantify such textured events. To do this, this work proposes the use of a
multiscale texture analysis scheme. Extracting features from the wavelet domain will result in
a localized texture description, since the DWT has excellent space-localization properties.
To extract texture-based features, normalized graylevel cooccurrence matrices (GCMs) are
employed in the wavelet domain. GCMs count the the number of two-pixel combinations and
are typically normalized so that the matrix may be treated as a probability density function
(PDF). In the wavelet domain, each entry of the normalized GCM is represented as

p (l1, l2, d, θ) =
P(l1, l2)

∑L−1
l1=0 ∑L−1

l2=0 P(l1, l2)
, (68)

where P(l1, l2) is the number of occurrences of wavelet coefficients l1 and l2 at a distance d
and angle θ. Additionally, ∑l1 ∑l2 P(l1, l2) is the normalizing factor and L is the maximum
number of graylevels in the image. Note that these matrices are symmetric: p (l1, l2, d, θ) =
p (l2, l1, d, θ).
In the wavelet domain, GCMs are computed for adjacent wavelet coefficients. Such a second
order PDF examines the correlation or relationship of wavelet coefficients to one another.
Since texture is captured by the multiresolutional analysis scheme (large valued coefficients
for edgy regions in a variety of scales), wavelet-based GCMs describe the statistical nature
of the texture in our image. As texture is localized in a variety of directions, the GCMs are
computed for each scale j at several angles θ. They are computed at multiple angles and
scales since orientation and scale is play an important role in texture discrimination.
In the wavelet domain, each subband isolates different frequency components - the HL band
isolates horizontal edge components, the LH subband isolates horizontal edges, the HH band
captures the diagonal high frequency components and LL band contains the lowpass filtered
version of the original. Consequently, to capture these oriented texture components, the GCM
is computed at 0◦ in the HL band, 90◦ in the LH subband, 45◦ and 135◦ in the HH band and
0◦ , 45◦ , 90◦ and 135◦ in the LL band to account for any directional elements which may still
may be present in the low frequency subband. Moreover, d = 1 for fine texture analysis.
From these GCMs, homogeneity h and entropy e are computed for each decomposition level
using Equation 69 and 70. Homogeneity (h) describes how uniform the texture is and entropy
(e) is a measure of nonuniformity or the complexity of the texture.

h(θ) =
L−1

∑
l1=0

L−1

∑
l2=0

p2 (l1, l2, d, θ) (69)
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h(θ) =
L−1

∑
l1=0

L−1

∑
l2=0

p2 (l1, l2, d, θ) (69)

e(θ) = −
L−1

∑
l1=0

L−1

∑
l2=0

p (l1, l2, d, θ) log2(p (l1, l2, d, θ)) (70)

These features describe the relative uniformity of textured elements in the wavelet domain
(which are localized with good results due to the space-frequency resolution of the bases).
Recall that abnormal and normal cases were shown to have significant differences in terms
of their texture uniformity (normal images contained smooth texture while abnormal images
were heterogeneous). Therefore, such a scheme, which captures textural differences between
images, should be able to arrive at high classification results for CAD (i.e. the classification of
normal and abnormal retinal and small bowel images, and differentiation between malignant
and benign lesions in the mammogram images).
For each decomposition level j, more than one directional feature is generated for the HH
and LL subbands. The features in these subbands are averaged so that: features are not
biased to a particular orientation of texture and the representation will offer some rotational
invariance. The features generated in these subbands (HH and LL) are shown below (note
that the quantity in parenthesis is the angle at which the GCM was computed):

h̃j
HH =

1
2

(
hj

HH(45◦) + hj
HH(135◦)

)
,

ẽj
HH =

1
2

(
ej

HH(45◦) + ej
HH(135◦)

)
,

h̃j
LL =

1
4

(
hj

LL(0◦) + hj
LL(45◦) + hj

LL(90◦) + hj
LL(135◦)

)
,

ẽj
LL =

1
4

(
ej

LL(0◦) + ej
LL(45◦) + ej

LL(90◦) + ej
LL(135◦)

)
.

As a result, for each decomposition level j, two feature sets are generated:

Fj
h =

[
hj

HL(0◦), hj
LH(90◦), h̃j

HH, h̃j
LL

]
, (71)

Fj
e =

[
ej

HL(0◦), ej
LH(90◦), ẽj

HH, ẽj
LL

]
, (72)

where h̃j
HH, h̃j

LL, ẽj
HH and ẽj

LL are the averaged texture descriptions from the HH and LL

band previously described and hj
HL(0◦), ej

HL(0◦), hj
LH(90◦) and ej

LH(90◦) are homogeneity and
entropy texture measures extracted from the HL and LH bands. Since directional GCMs are
used to compute the features in each subband, the final feature representation is not biased for
a particular orientation of texture and may provide a semi-rotational invariant representation.

7. Classification

After the multiscale texture features have been extracted, a pattern recognition technique
is needed classify the features. A large number of test samples are required to evaluate
a classifier with low error (misclassification) rates since a small database will cause the
parameters of the classifiers to be estimated with low accuracy. This requires the biomedical
image database to be large, which may not always be the case since acquiring the images
for specific diseases can take years. If the extracted features are strong (i.e. the features
are mapped into nonoverlapping clusters in the feature space) the use of a simple (linear)
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classification scheme will be sufficient in discriminating between classes. The desire is to test
the robustness of the found feature set to the variations found in image databases. This can be
easily determined by a linear classifier.
To satisfy the above criteria, linear discriminant analysis (LDA) will be the classification
scheme used in conjunction with the Leave One Out Method (LOOM). In LOOM, one sample is
removed from the whole set and the discriminant functions are derived from the remaining
N− 1 data samples and the left out sample is classified. This procedure is completed for all N
samples. LOOM will allow the classifier parameters to be estimated with least bias Fukunaga
& Hayes (1989).

8. Results

The objective of the proposed system is to automatically classify pathologies based on their
textural characteristics. Such a system examines texture in accordance to the human texture
perception model and is shown in Figure 15.

Fig. 15. System block diagram for the classification of medical images.

The classification performance of the proposed system is evaluated for three types of imagery:

1. Small Bowel Images: 41 normal and 34 abnormal (submucosal masses, lymphomas,
jejunal carcinomas, multifocal carcinomas, polypoid masses, Kaposi’s sarcomas, etc.),

2. Retinal Images: 38 normal, 48 abnormal (exudates, large drusens, fine drusens, choroidal
neovascularization, central vein and artery occlusion, arteriosclerotic retinopathy,
histoplasmosis, hemi-central retinal vein occlusion and more),

3. Mammograms: 35 benign and 19 malignant lesions.

The image specifications are shown in Table 3 and example images were shown earlier in
Section 2. Only the luminance plane was utilized for the colour images (retinal and small
bowel), in order to examine the performance of grayscale-based features. Furthermore, in
the mammogram images, only a 128 × 128 region of interest is analyzed which contains the
candidate lesion (to strictly analyze the textural properties of the lesions). Features were

Small Bowel Retinal Mammogram
Colour (24 bpp) Colour (24 bpp) Grayscale (8 bpp)
Lossy (.jpeg) Lossy (.jpeg) Raw (.pgm)
256 × 256 700 × 605 1024 × 1024

Table 3. Medical image specifications

extracted from the higher levels of decomposition (the last three levels were not included
as further decomposition levels contain subbands of 8×8 or smaller, resulting in skewed
probability distribution (GCM) estimates). Therefore, the extracted features are Fj

e and Fj
h for

j = {1, 2, · · · , J}, where J is the number of decomposition levels minus three.
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as further decomposition levels contain subbands of 8×8 or smaller, resulting in skewed
probability distribution (GCM) estimates). Therefore, the extracted features are Fj

e and Fj
h for

j = {1, 2, · · · , J}, where J is the number of decomposition levels minus three.

In order to find the optimal sub-feature set, an exhaustive search was performed (i.e. all
possible feature combinations were tested using the proposed classification scheme). For
the small bowel images, the optimal classification performance was achieved by combining
homogeneity features from the first and third decomposition levels with entropy from the first
decomposition level (see Khademi & Krishnan (2006) for more details):

F1
h =

[
h1

HL(0◦), h1
LH(90◦), h̃1

HH, h̃1
LL

]
, (73)

F3
h =

[
h3

HL(0◦), h3
LH(90◦), h̃3

HH, h̃3
LL

]
, (74)

F1
e =

[
e1

HL(0◦), e1
LH(90◦), ẽ1

HH, ẽ1
LL,

]
. (75)

The optimal feature set for the retinal images were found to be homogeneity features from
the fourth decomposition level with entropy from the first, second and fourth decomposition
levels (see Khademi & Krishnan (2007) for more details):

F4
h =

[
h4

HL(0◦), h4
LH(90◦), h̃4

HH, h̃4
LL

]
, (76)

F1
e =

[
e1

HL(0◦), e1
LH(90◦), ẽ1

HH, ẽ1
LL

]
, (77)

F2
e =

[
e2

HL(0◦), e2
LH(90◦), ẽ2

HH, ẽ2
LL

]
, (78)

F4
e =

[
e4

HL(0◦), e4
LH(90◦), ẽ4

HH, ẽ4
LL,

]
. (79)

Lastly, the optimal feature set for the mammographic lesions were found by combining
homogeneity features from the second decomposition level with entropy from the fourth
decomposition level:

F2
h =

[
h2

HL(0◦), h2
LH(90◦), h̃2

HH, h̃2
LL

]
, (80)

F4
e =

[
e4

HL(0◦), e4
LH(90◦), ẽ4

HH, ẽ4
LL.

]
. (81)

Using the above features in conjunction with LOOM and LDA, the classification results for
the small bowel, retinal and mammogram images are shown as a confusion matrix in Table 4,
Table 5 and Table 6, respectively.

Normal Abnormal
Normal 35 (85%) 6 (15%)
Abnormal 5 (15%) 29 (85%)

Table 4. Results for small bowel image classification.

Normal Abnormal
Normal 30 (79%) 8 (21%)
Abnormal 7 (14.6%) 41 (85.4%)

Table 5. Results for retinal image classification.
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Benign Malignant
Benign 28 (80%) 7 (20%)
Malignant 8 (42%) 11 (58%)

Table 6. Results for mammogram ROI classification.

9. Conclusions

A total of 75 abnormal and normal bowel images were correctly classified at an average rate of
85%, 86 retinal images had an average classification accuracy of 82.2% and the mammogram
lesions (54) were classified correctly 69% on average. The classification results are quite high,
considering that the system wasn’t tuned for a specific modality. The system performed well,
even though: (1) pathologies came in various orientations, (2) pathologies arose in a variety
of locations in the image, (3) the masses and lesions were of various sizes and shapes and
(4) there was no restriction on the type of pathology for the retinal and small bowel images.
Accounting for all these scenarios in one algorithm was a major challenge while designing
such a unified framework for computer-aided diagnosis.
Although the classification results are high, any misclassification can be accounted to cases
where there is a lack of statistical differentiation between the texture uniformity of the
pathologies. Additionally, normal tissue can sometimes assume the properties of abnormal
regions; for example, consider a normal small bowel image which has more than the average
amount of folds. This may be characterized as non-uniform texture and consequently would
be misclassified. In a normal retinal image, if the patient has more than the average number
of vessels in their eye, this may be detected as oriented or heterogeneous texture and could
be misclassified. Moreover, when considering the mammogram lesions, the normal breast
parenchyma is overlapping with the lesions and also assumes some textural properties itself.
In order to improve the performance of the mammogram lesions, a segmentation step could
be applied prior to feature extraction.
Another important consideration arises from the database sizes. As was stated in Section 7, the
number of images used for classification can determine the accuracy of the estimated classifier
parameters. Since only a modest number of images were used, misclassification could result
due to the lack of proper estimation of the classifiers parameters (although the scheme tried
to combat this with LOOM). This could be the case for the mammogram lesions especially,
since the number of benign lesions outnumbered the malignant lesions by almost double -
this could have caused difficulties in classification parameter accuracy. Additionally, finding
the right trade off between number of features and database size is an ongoing research topic
and has yet to be perfectly defined Fukunaga & Hayes (1989).
The overall success of the system is a result of the design of the algorithm, which aimed
to account for all the pathological scenarios previously described. Firstly, the utilization of
the DWT was important to gain a space-localized representation of the images’ elementary
texture units (textons), which is in accordance to human texture perception. Secondly,
the choice of wavelet-based statistical texture measures (entropy and homogeneity) was
critical in quantifying the localized texture properties of the images (which provided
discrimination between normal and other pathological cases). Utilization of the SIDWT
allowed for the extraction of consistent (i.e. shift-invariant) features. Furthermore, due to
the scale-invariant basis functions of the DWT, pathologies of varying sizes were captured
within one transformation (i.e. the features were scale-invariant).
By design, the system is relatively robust to pathologies which occurred in various
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texture units (textons), which is in accordance to human texture perception. Secondly,
the choice of wavelet-based statistical texture measures (entropy and homogeneity) was
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the scale-invariant basis functions of the DWT, pathologies of varying sizes were captured
within one transformation (i.e. the features were scale-invariant).
By design, the system is relatively robust to pathologies which occurred in various

orientations. Features were collected at various angles (0◦, 45◦ , 90◦ , 135◦) in the respective
subbands in order to describe the texture elements, regardless of their orientation. The feature
set thus offered a semi-rotational invariant representation which could account for oriented
textural properties (of pathology).
A last point for discussion is the fact that features were successfully extracted from the
compressed domain in the retinal and small bowel images. Since many forms of multi-media
are being stored in lossy formats, it is important that classification systems may also be
successful when utilized in the compressed domain.
A generalized framework for computer-aided diagnosis was designed in accordance to the
human texture perception model. The unified feature extraction and classification scheme
utilized the DWT and textural features were extracted from the wavelet domain for a localized
description of the relative homogeneity of the images. To ensure the DWT representation was
suitable for the consistent extraction of features, a shift-invariant discrete wavelet transform
(SIDWT) was computed. To combat the small database size, a small number of features
and LDA classification were used in conjunction with the LOOM to gain a more accurate
approximation of the classifier’s parameters.
A total of 75 abnormal and normal bowel images were correctly classified at an average rate of
85%, 86 retinal images had an average classification accuracy of 82.2% and the mammogram
lesions (54) were classified correctly 69% on average. The success of the system can be
accounted to the semi-rotational invariant, scale-invariant and shift-invariant features, which
permitted the extraction of discriminating features regardless of the location, shape, size or
orientation of the pathologies.
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1. Introduction

Electronic power converters connected to electrical grids allow industrial processes, traction
applications and home appliances to be improved by controlling the energy flow depending
on the operation conditions of both the electrical load and the grid. This is the case of variable
frequency drives, which can be found in pump drives or ship propulsion systems (Bose, 2009)
maintaining the electrical machine in the required operation state while ensuring a proper
current consumption from the electrical grid. Recent researching and developing efforts on
grid-connected power converters are due to the integration of renewable energy sources
in electrical grids, which requires the implementation of new functionalities, such as grid
support, while maintaining reduced current distortion levels and an optimal power extraction
from the renewable energy source (Carrasco et al., 2006; Liserre et al., 2010).
In the most general case, a grid-connected power converter consists of power and control
stages which ensures the appropriate energy management (Erickson & Maksimovic, 2001;
Mohan et al., 2003). In the first one, electronic power devices, such as power diodes, thyristors,
insulated gate bipolar transistors (IGBTs) or MOS-controlled thyristors (MCTs), and passive
elements (inductances and capacitors) are found. The switching state of the power devices
allows the voltage or/and current across the passive components to be controlled. Resistive
behaviors must be minimized in order to avoid conduction power losses. The second stage,
in case of controlled semiconductor devices, consists of a signal conditioning system and the
required hardware for implementation of the converter controller (Bose, 2006).
Recent advances in field programmable gate arrays (FPGAs) and digital signal processors
(DSPs) allow the complexity and functionalities of the controllers employed in power
converters to be increased and improved (Bueno et al., 2009). In grid-connected power
converters these functionalities include, in most cases, the synchronization with the electrical
grid, the evaluation of the reference current amplitude at the grid-side and current control
(Kazmierkowski et al., 2002). The amplitude and phase of the grid-side current depends
on the reference current evaluation and the synchronization subsystems while the current
controller ensures that the current waveform matches the reference one. The implementation
of these subsystems depends on the application characteristics. Other functionalities, such as
grid support (Ullah et al., 2009) or detection of the islanding condition (De Mango, Liserre &
D’Aquila, 2006; De Mango, Liserre, D’Aquila & Pigazo, 2006), can be added if it is required.
These controller functionalities can be implemented by applying diverse approaches, such as
digital signal processing techniques, i.e. Fourier Transforms (McGrath et al., 2005), Kalman
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Filters (Moreno et al., 2007) or Discrete Wavelet Transforms (DWTs) (Pigazo et al., 2009).
Frequency and time localization of wavelet analysis allow the performance of controllers in
grid-connected power converters to be improved. This is the case of active power filters, where
the compensation reference current can be evaluated by means of DWT (Driesen & Belmans,
2002), modulation techniques in controlled rectifiers (Saleh & Rahman, 2009) or the controller
design process using averaging models of power converters (Gandelli et al., 2001).
This book chapter proposes to take advantage of DWTs’ properties in order to improve the
synchronization subsystem of controllers in grid-connected power converters. After a review
of the state of art in wavelet analysis applied to power electronics, the main characteristics
of controllers in grid-connected power converters are presented as well as the new approach
for synchronization purposes. Results validating the proposal, considering diverse operation
conditions, are shown.

2. Wavelet analysis applied to power converters

The wavelet analysis has been mainly applied to signal analysis and processing (i.e.
identification and classification) in electrical power systems (voltage and current) during
the last twenty years (Ribeiro, 1994; Robertson et al., 1994). The wavelet analysis was firstly
applied to power system protection, power quality measurement, detection of power system
transients, partial discharges, forecasting of electrical loads due to its its capability for fast
and accurate identification of transients (Castro & Diaz, 2002). In recent years this signal
processing technique has been also applied in order to control power electronic converters,
such as dc-dc, inverters, rectifiers, active power filters and unified power quality conditioners
(UPQCs). This chapter section shows some of these applications both to power systems and,
more specifically, power converters.

2.1 Wavelet analysis in power systems
The power system protection can be improved by applying the wavelet analysis to activate the
relays in case of power system transients. Time resolution capability of the wavelet analysis
is employed in (Chaari et al., 1996) for detection of earth faults in case of a 20 kV resonant
grounded network. High impedance faults identification and protection of transformers and
generators by means of wavelets are also shown in (Solanki et al., 2001) and (Eren & Devaney,
2001) respectively. In this last case, the frequency resolution of wavelets allows the changes of
the power signals’ spectra to be measured in order to detect the degradation of the insulation
and identify internal and external faults. Wavelets have been also employed for modeling of
electrical machines in wind turbines and detection of turn-to-turn rotor faults (Dinkhauser &
Fuchs, 2008).
The evaluation of the electrical power quality (PQ) can take advantage of wavelet analysis
for detection and measurement of interferences, impulses, notches, glitches, interruptions,
harmonics, flicker and other disturbances. In case of harmonic currents/voltages and voltage
flicker the multiresolution analysis (MRA) using wavelet filter banks (Pham & Wong, 1999;
Pham et al., 2000) and continuous wavelet transforms (Zhen et al., 2000) can be applied. The
propagation of power system transients can be also analyzed by means of wavelets (Heydt &
Galli, 1997; Wilkinson & Cox, 1996). The characteristics of partial discharges (short duration,
high frequency and low amplitude) make it difficult to detect. Wavelet analysis allows partial
discharges to be detected due to its time resolution, as it is shown in (Shim et al., 2000) in case
of transformer windings and cables.
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generators by means of wavelets are also shown in (Solanki et al., 2001) and (Eren & Devaney,
2001) respectively. In this last case, the frequency resolution of wavelets allows the changes of
the power signals’ spectra to be measured in order to detect the degradation of the insulation
and identify internal and external faults. Wavelets have been also employed for modeling of
electrical machines in wind turbines and detection of turn-to-turn rotor faults (Dinkhauser &
Fuchs, 2008).
The evaluation of the electrical power quality (PQ) can take advantage of wavelet analysis
for detection and measurement of interferences, impulses, notches, glitches, interruptions,
harmonics, flicker and other disturbances. In case of harmonic currents/voltages and voltage
flicker the multiresolution analysis (MRA) using wavelet filter banks (Pham & Wong, 1999;
Pham et al., 2000) and continuous wavelet transforms (Zhen et al., 2000) can be applied. The
propagation of power system transients can be also analyzed by means of wavelets (Heydt &
Galli, 1997; Wilkinson & Cox, 1996). The characteristics of partial discharges (short duration,
high frequency and low amplitude) make it difficult to detect. Wavelet analysis allows partial
discharges to be detected due to its time resolution, as it is shown in (Shim et al., 2000) in case
of transformer windings and cables.

The efficient management of electrical power system requires a proper forecasting of electrical
loads. The combination of wavelets and neural networks in (Huang & Yang, 2001; Yao et al.,
2000) allows it by considering the current waveforms as a linear combination of different
frequencies. The wavelet analysis can also be applied for measurement of the electrical
active/reactive power and the root mean square (rms) value of line voltages and currents
on a frequency band basis (Hamid & Kawasaki, 2001).

2.2 Wavelet analysis in controllers for power converters
Wavelets have been recently applied in power converters used in diverse applications. The
covered functionalities include modeling of the power converter, its control and supervision
tasks.
In order to obtain a more flexible model of a dc/dc power converter, wavelets are applied in
(Ponci et al., 2009) for detection of the operation mode of the power converter, consisting on
an extension of conventional analysis techniques based on state-space averaging. A model of
a dc/ac converter based on wavelets is obtained in (Gandelli et al., 2002) in order to perform
a detailed analysis and the optimization of the power converter.
Wavelet-based controllers have been also proposed in literature in order to improve the
performance of the power converter. This is the case of (Hsu et al., 2008), where a
wavelet-based neural network is employed in order to minimize the impact of input voltage
and load resistance variations on a dc/dc converter. In (Saleh & Rahman, 2009) wavelets allow
a new switching strategy to be developed in order to reduce the harmonic content of the
output voltage in a ac/dc converter maintaining unity power factor. A three-phase induction
generator (IG) system for stand-alone power systems is controlled by means of one ac/dc plus
one dc/ac converter and applying a recurrent wavelet neural network (RWNN) controller
with improved particle swarm optimization (IPSO) (Teng et al., 2009). The controllers in
dc/ac converters can be optimized by applying wavelets, this is the case of (Mercorelli et al.,
2004), where it is employed for optimization of the applied model predictive controller. The
wavelet analysis is applied in (González et al., 2008) in order to evaluate the performance of
the employed modulation technique, including the spectrum of the converter output voltage
and its ripple. Controllers in multilevel converters can also take advantage of wavelets, as it
is shown in (Iwaszkiewicz & Perz, 2007), in order to ensure a better and faster adaptation of
their output voltage waveforms to sine waveforms and reduce the harmonic distortion of the
output voltage at relatively low switching frequencies. High-level control functionalities, such
as islanding detection or source impedance measurement, required in distributed generation
systems connected to electrical grids can also obtain benefits from the wavelet analysis. The
high frequency bands of voltage and current waveforms are evaluated in (Pigazo et al.,
2009; 2007) in order to detect the islanding condition. The power system impedance can
be measured in real-time by injecting a controlled disturbance into the electrical grid, the
wavelet analysis allows an fast detection of faults (Sumner et al., 2006).The wavelets can be
also applied for characterization of power converters’ performance. In (Knezevic et al., 2000)
the wavelet analysis is applied for measurement of transients caused by ac/dc converters.

3. Controllers in grid-connected power converters

The general structure of a single-phase grid-connected power converter, including both power
and control stages, is shown in Fig. 1. The power stage of the dc/ac converter consists of an
IGBT full-bridge with diodes, which synthesizes a low frequency ac voltage by changing the
IGBTs’ switching states, the gate circuit, which applies the required gate signals in order to
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switch on and off the controlled power devices, an LCL-filter, employed as a second-order low
pass filtering stage which allows the high frequency ripple of the full-bridge output voltage to
be filtered out and a dc-side filtering stage, which can be implemented by means of one shunt
capacitor (first order) or a series inductance plus a shunt capacitor (second order).
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Fig. 1. Three-phases three-wires grid connected dc/ac converter.

Depending on the application characteristics, the converter controller functionalities are
implemented using analog or digital circuitries and, in the second case, FPGAs, DPSs
and microcontrollers (μCs) allow more flexible and complex controllers to be designed
and implemented (Bueno et al., 2008; Koizumi et al., 2006; Kojabadi et al., 2006).
In case of grid-connected power converters, both inverters and controlled rectifiers
switching at relatively high frequencies (around 10 kHz), the main functionalities that
must be implemented are grid synchronization, evaluation of the reference for current
injection/consumption, grid side current control and pulse width modulation (PWM)
(Kazmierkowski et al., 2002). The grid synchronization block must generate, at least, a
reference signal sin ωt which must track properly the fundamental component of the grid
voltage vg. Depending on the application, i.e. distributed generation systems, the grid
frequency must be also measured in order to implement load sharing algorithms (Guerrero
et al., 2004). The evaluation of the instantaneous values of the reference current i∗ is required
in order to determine the proper current which must flow from/to the electrical grid ig.
The implementation of this functionality depends on the application and, hence, on the
implemented high level control functionalities such as reactive power requirements, harmonic
control, tolerance to grid disturbances or the maintenance of the dc-bus voltage. The obtained
values of i∗ are applied to a current controller. This block must ensure that the grid side current
ig matches the reference ones i∗. Diverse approaches, such as hysteresis (Ho et al., 2009),
deadbeat (Mohamed & El-Saadany, 2008), proportional-integral (PI) controllers (Dannehl
et al., 2010), resonant controllers (Liserre et al., 2006), repetitive controllers (Weiss et al., 2004)
or inner model controllers (Gabe et al., 2009), can be found in literature for this purpose.
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Depending on the application characteristics, the converter controller functionalities are
implemented using analog or digital circuitries and, in the second case, FPGAs, DPSs
and microcontrollers (μCs) allow more flexible and complex controllers to be designed
and implemented (Bueno et al., 2008; Koizumi et al., 2006; Kojabadi et al., 2006).
In case of grid-connected power converters, both inverters and controlled rectifiers
switching at relatively high frequencies (around 10 kHz), the main functionalities that
must be implemented are grid synchronization, evaluation of the reference for current
injection/consumption, grid side current control and pulse width modulation (PWM)
(Kazmierkowski et al., 2002). The grid synchronization block must generate, at least, a
reference signal sin ωt which must track properly the fundamental component of the grid
voltage vg. Depending on the application, i.e. distributed generation systems, the grid
frequency must be also measured in order to implement load sharing algorithms (Guerrero
et al., 2004). The evaluation of the instantaneous values of the reference current i∗ is required
in order to determine the proper current which must flow from/to the electrical grid ig.
The implementation of this functionality depends on the application and, hence, on the
implemented high level control functionalities such as reactive power requirements, harmonic
control, tolerance to grid disturbances or the maintenance of the dc-bus voltage. The obtained
values of i∗ are applied to a current controller. This block must ensure that the grid side current
ig matches the reference ones i∗. Diverse approaches, such as hysteresis (Ho et al., 2009),
deadbeat (Mohamed & El-Saadany, 2008), proportional-integral (PI) controllers (Dannehl
et al., 2010), resonant controllers (Liserre et al., 2006), repetitive controllers (Weiss et al., 2004)
or inner model controllers (Gabe et al., 2009), can be found in literature for this purpose.

Finally, the control action must be applied to the gate circuitry of the H-bridge, where square
signal waveforms with variable width are required. In order to obtain these variable switching
patterns, diverse approaches can be also found. A detailed description of these techniques is
available in (Holmes & Lipo, 2003)

4. Synchronization subsystem in grid-connected power converters

Main approaches for synchronization of the power converter to the electrical grid are
zero crossing detection (Vainio & Ovaska, 1995; Valiviita, 1999) and phase locked loops
(PLLs) (El-Amawy & Mirbod, 1988; Freijedo et al., 2009). While the first one can be easily
implemented by means of analog circuitry, power system disturbances such as partial
discharges can result on synchronization problems and an erroneous reference current i∗. Due
to this fact, the second approach and other based on digital signal processing techniques,
i.e. DFT (McGrath et al., 2005) and Kalman filter (Moreno et al., 2007), are preferred. A
common approach for implementation of PLLs includes a phase detection (PD) block, a
low-pass filtering stage and a voltage controlled oscillator (VCO). By applying the PD block,
the input signal vg is shifted in the frequency domain to low frequency while other frequency
components of the input signal are shifted to higher frequencies. The obtained signal is
applied to a low-pass filtering stage for filtering out frequency components of the input signal
which must not be tracked. Once filtered out, the obtained signal is proportional to the phase
error of the input signal vg and the signal which is generated by the VCO and applied to
PD block. Due to the closed loop structure, and depending on the characteristics of the input
signal, the PD block and the low-pass filtering stage, the VCO will adjust the relative phase
and frequency of the generated signal in order to match the frequency component of vg to be
tracked.
Diverse approaches have been proposed in the literature in order to implement the
functional blocks in the previous paragraph but one of the most applied ones in case of
grid-connected power converters is based on the Park Transformation. Its general structure
for the synchronization of a single-phase grid-connected power converter is shown in Fig.
2. The grid voltage is measured, digitized and applied to the software PLL by means of the
input port Vg . This signal is employed to generate a virtual quadrature component, denoted
as β, which allows the grid voltage, considered as α, to be represented as a phasor on a
stationary complex reference frame (Clarke Transformation), obtaining αβ components of
this single-phase voltage signal. The obtained instantaneous values of this voltage phasor are
transformed again by applying the Park Transformation, which carries out a frequency shift
of the fundamental frequency tracked by the software PLL. This allows dq components of the
voltage phasor, obtained in a rotating reference frame, to be generated. Once the software
PLL is tracking the fundamental frequency properly (in phase), the q component of this
transformation should be equal to zero and, hence, the instantaneous phase generated by
the software PLL should be properly controlled. This is done by the Controller block. The
impact of possible amplitude variations, i.e. due to voltage sags, can be prevented by means
of a normalization block which generates dq components in the range [-1,1]. The Controller
generates, as a result of its operation and once the software PLL is operating properly, a
measure of the grid frequency. The instantaneous phase can be obtained by means of a discrete
integrator and, then, a sinusoidal output signal with unity amplitude and in-phase with the
grid voltage signal can be generated by applying sin and cos functions to the measured
instantaneous phase. These trigonometric functions are required by the Park Transformation
in order to generate the dq components.
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Fig. 2. Structure of software PLL for a single-phase grid-connected power converter.

4.1 Proposed synchronization subsystem
The Controller block of the software PLL is commonly implemented as a PI controller or, more
generally, as a first order or second order low pass filter, however, recent researching works on
DWTs for control applications suggest that the performance of PI controllers can be improved
by using DWTs (Parvez & Gao, 2005). The proposed software PLL substitutes the PI controller
by a DWT implemented using filter banks. The inner structure of the Controller in case of the
proposed software PLL is shown in Fig. 3. As it can be seen, it consists of one Buffer, where
2L samples of the input are buffered to be analyzed and L is the number of decomposition
levels, the Dyadic Analysis Filter Bank from the Signal Processing Blockset in MatLab/Simulink,
which generates an output vector containing the output at each sub-band. Then, the loop
gains, contained in the Constant Diagonal Matrix Block and needed to adjust the response of
the proposed software PLL, are applied. Finally, the Controller output signal is obtained by
adding the current output of the previous stage at each sub-band.

Fig. 3. Controller block in the wavelet PLL (WPLL).

5. Simulation results

In order to analyze the performance of the proposed synchronization block diverse simulation
tests have been carried out. After the selection of the most suitable mother wavelet considering
diverse decomposition levels and operation conditions, the proposed synchronization system
is employed in order to control a dc machine by means of a grid connected controlled rectifier.
The applied tests include step amplitude variations of the voltage grid from 23

√
2 V to 230

√
2

V and step frequency variations from 47.5 Hz to 52.5 Hz, in both cases including a 7% 5th

voltage harmonic. The employed sampling frequency is 6.4 kHz.

220 Discrete Wavelet Transforms - Theory and Applications



Fig. 2. Structure of software PLL for a single-phase grid-connected power converter.

4.1 Proposed synchronization subsystem
The Controller block of the software PLL is commonly implemented as a PI controller or, more
generally, as a first order or second order low pass filter, however, recent researching works on
DWTs for control applications suggest that the performance of PI controllers can be improved
by using DWTs (Parvez & Gao, 2005). The proposed software PLL substitutes the PI controller
by a DWT implemented using filter banks. The inner structure of the Controller in case of the
proposed software PLL is shown in Fig. 3. As it can be seen, it consists of one Buffer, where
2L samples of the input are buffered to be analyzed and L is the number of decomposition
levels, the Dyadic Analysis Filter Bank from the Signal Processing Blockset in MatLab/Simulink,
which generates an output vector containing the output at each sub-band. Then, the loop
gains, contained in the Constant Diagonal Matrix Block and needed to adjust the response of
the proposed software PLL, are applied. Finally, the Controller output signal is obtained by
adding the current output of the previous stage at each sub-band.

Fig. 3. Controller block in the wavelet PLL (WPLL).

5. Simulation results

In order to analyze the performance of the proposed synchronization block diverse simulation
tests have been carried out. After the selection of the most suitable mother wavelet considering
diverse decomposition levels and operation conditions, the proposed synchronization system
is employed in order to control a dc machine by means of a grid connected controlled rectifier.
The applied tests include step amplitude variations of the voltage grid from 23

√
2 V to 230

√
2

V and step frequency variations from 47.5 Hz to 52.5 Hz, in both cases including a 7% 5th

voltage harmonic. The employed sampling frequency is 6.4 kHz.

10 20 30 40 50

haar
db10

coif3
bior3.1

rbio1.5
rbio4.4

0.005

0.01

0.015

GA
3

(a)

E
rr

or

10 20 30 40 50

haar
db10

coif3
bior3.1

rbio1.5
rbio4.4

0.005

0.01

0.015

GA
3

(b)

E
rr

or

10 20 30 40 50

haar
db10

coif3
bior3.1

rbio1.5
rbio4.4

0.5

1

1.5

GA
3

(c)

R
ip

pl
e

10 20 30 40 50

haar
db10

coif3
bior3.1

rbio1.5
rbio4.4

0.5

1

1.5

GA
3

(d)

R
ip

pl
e

Fig. 4. L=3. a) Magnitude of the WPLL average error after the voltage amplitude step, b)
magnitude of the WPLL average error after the fundamental grid frequency step, c) ripple of
the WPLL error after the voltage amplitude step and d) ripple of the WPLL error after the
voltage amplitude step.

5.1 Selection of the mother wavelet
The selection of the most suitable mother wavelet has been carried out considering
decomposition levels (L) in the range [3, 6]. At each decomposition level, diverse values of
the WPLL loop gains have been applied under the operation conditions described previously.
The obtained results, the average error magnitude of the WPLL and the ripple of this error,
have been measured 0.5 s after each transient in order to compare the performance of each
mother wavelet. Figs. 4, 5, 6 and 7 show the obtained results for L in [3, 6].
From Fig. 4, the best results at L = 3 are obtained by applying a Daubechies 7 mother wavelet
with a loop gain at the lowest frequency sub-band GA3 = 39. In this case, the cumulative
measured average error of the WPLL falls to 1.1 · 10−3 V after the first transient, which reaches
5.2 · 10−3 V after the frequency step. The error ripple measured after the grid voltage transients
are 0.23 V and 0.16 V. The worst results are obtained in case of Daubechies 4 at GA3, reaching
cumulative average errors of 2.0 · 10−2 V after both grid voltage transients. In case of the
measured error ripple, it decreases up to 5.4 · 10−3 V and 4.6 · 10−2 respectively but, as it will
be shown in the following subsection, the phase of the input signal is not tracked accurately
due to the average error.
In case of four decomposition levels (L = 4, in Fig. 5), the most suitable mother wavelet is
Haar applying GA4 = 43. The obtained cumulative average errors after each transient of the
grid voltage are 1.1 · 10−3 V and 2.0 · 10−3 respectively. The measured ripples are 0.14 V and
0.16 V respectively. In comparison to the obtained results for L = 3, in this case (L = 4)
the cumulative error after the grid frequency transient is reduced to 38%. The comparisson
of the measured ripples using L = 3 and L = 4 shows that, after the first transient, L = 4
with Haar wavelets results on better results. The worst results in case of L = 4 are obtained
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Fig. 5. L=4. a) Magnitude of the WPLL average error after the voltage amplitude step, b)
magnitude of the WPLL average error after the fundamental grid frequency step, c) ripple of
the WPLL error after the voltage amplitude step and d) ripple of the WPLL error after the
voltage amplitude step.

by employing Coif�et 5 as mother wavelet with GA4 = 21. The obtained cumulative average
errors are 2.0 · 10−2 V and 8.6 · 10−3 V while the measured ripples reach 1.1 · 10−2 V and 1.5
V.
From Fig. 6, again Haar wavelets, in this case with GA5 = 29, result on the best tracking of the
applied grid voltage. The measured cumulative average errors were 8.1 · 10−4 V and 2.6 · 10−3

V after the amplitude and frequency steps respectively while, in case of the error ripple, the
measured values were 0.14 V and 0.12 V. Comparing these results to the ones obtained in case
of L = 4, the cumulative average error decreases after the amplitude step of the grid voltage
due to the added fifth decomposition level. The worst results at L = 5 are obtained for symlet
8, where the cumulative average errors after the transients are 2 · 10.2 V and 1.7 · 10−2 V. The
measured error ripples are 2.4 · 10−2 and 0.16 V.
Again in case of L = 6 (Fig. 7), Haar wavelets with GA6 = 22 allow the best tracking
performance to be reached. The measured cumulative average errors in this case were
6.4 · 10−4 V and 9.3 · 10−4 V corresponding to amplitude and frequency transients respectively,
which improves the obtained results in case of L = 5. The measured error ripples were 0.16 V
and 0.22 V. The worst results were obtained in case of the mother wavelet Biorthonormal 4.4,
with cumulative average errors equal to 2.0 · 10−2 V and 1.6−2 V. The error ripple reached
0.02 V and 0.67 V for each grid voltage transient.
The evolution of the frequency measurement obtained by means of the WPLL in case of L = 3,
Daubechies 7, GA3 = 39 and GD3 = 30 is shown in Fig. 8.a where the response time of the
WPLL is 305 ms. Response times with Haar wavelet and four (GA4 = 43, GD4 = 18.5) and
five (GA5 = 29, GD5 = 4.5 and GD4 = 3) decomposition levels are shown in Fig. 8.b and 8.c.
In these cases the measured response times are 64 ms and 150 ms corresponding to L = 4 and
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Fig. 5. L=4. a) Magnitude of the WPLL average error after the voltage amplitude step, b)
magnitude of the WPLL average error after the fundamental grid frequency step, c) ripple of
the WPLL error after the voltage amplitude step and d) ripple of the WPLL error after the
voltage amplitude step.
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Daubechies 7, GA3 = 39 and GD3 = 30 is shown in Fig. 8.a where the response time of the
WPLL is 305 ms. Response times with Haar wavelet and four (GA4 = 43, GD4 = 18.5) and
five (GA5 = 29, GD5 = 4.5 and GD4 = 3) decomposition levels are shown in Fig. 8.b and 8.c.
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Fig. 6. L=5. a) Magnitude of the WPLL average error after the voltage amplitude step, b)
magnitude of the WPLL average error after the fundamental grid frequency step, c) ripple of
the WPLL error after the voltage amplitude step and d) ripple of the WPLL error after the
voltage amplitude step.

10 20 30 40 50

haar
db10

coif3
bior3.1

rbio1.5
rbio4.4

0.005

0.01

0.015

GA
6

(a)

E
rr

or

10 20 30 40 50

haar
db10

coif3
bior3.1

rbio1.5
rbio4.4

0.005

0.01

0.015

GA
6

(b)

E
rr

or

10 20 30 40 50

haar
db10

coif3
bior3.1

rbio1.5
rbio4.4

0.5

1

1.5

GA
6

(c)

R
ip

pl
e

10 20 30 40 50

haar
db10

coif3
bior3.1

rbio1.5
rbio4.4

0.5

1

1.5

GA
6

(d)

R
ip

pl
e

Fig. 7. L=6. a) Magnitude of the WPLL average error after the voltage amplitude step, b)
magnitude of the WPLL average error after the fundamental grid frequency step, c) ripple of
the WPLL error after the voltage amplitude step and d) ripple of the WPLL error after the
voltage amplitude step.
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Fig. 8. Time response of the WPLL. a) Frequency measurement with L = 3, b) WPLL error
with with L = 3, c) Frequency measurement with L = 4, d) WPLL error with with L = 4, e)
Frequency measurement with L = 5 and f) WPLL error with with L = 5.

L = 5. In despite of a higher number of decomposition levels, the response time of Daubechies
7 is the longest one due to the filter length. Haar wavelets result on simple filter banks with
low response times. Moreover, from Fig. 8.e, the WPLL performance improves by selecting
more decomposition levels which results on less frequency ripple.
The WPLL outputs, considering Daubechies 7 (L = 3) and Haar (L = 4 and L = 5), for control
purposes of the grid-connected power converter can be compared by means of Fig. 9, where
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Fig. 9. Time response of the WPLL after the frequency step, at 2 s, from 47.5 Hz to 52.5 Hz.
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Fig. 9. Time response of the WPLL after the frequency step, at 2 s, from 47.5 Hz to 52.5 Hz.

the time response of the PLL after the frequency transient of the grid voltage (at t = 2 s) is
shown.

5.2 Control of a dc motor
The proposed synchronization subsystem has been tested in simulation as a part of the whole
controller in case of a grid-connected power converter feeding a dc motor. The employed
MatLab/Simulink simulation model, including the power stage, the converter controller and
the measurement, is depicted in Fig. 10.

Fig. 10. MatLab/Simulink model of a dc motor controlled by means of a grid-connected
power converter. Top: power stage, including the electrical grid, the power converter and the
dc machine. Bottom: the controller of the power converter and measurement blocks.

The power stage includes a pure sinusoidal waveform with 230
√

2 V amplitude and 50 Hz
frequency as grid voltage. The grid impedance and the inverter side inductance have been
modeled as a series RL with values 0.4 Ω and 2.5 mH. The IGBT+Diode H-bridge is modeled
by means of the Universal Bridge block of the SimPowerSystems Blockset. The dc filtering
stage consist of one 550 μF capacitor and it is connected to the dc motor windings, which
are connected in series. The dc machine is modeled as a separately excited dc machine by
means of the DC Machine block. The measured variables in this model are, at the dc motor
side, the motor speed, the output voltage of the power converter (across the dc capacitor) and
the output current (flowing through the dc motor), at the electrical grid side, the grid voltage
and line current waveforms are also measured.
The inner structure of the employed controller is shown in Fig. 11. The power signals
employed for control purposes (voltage across the dc capacitor, grid voltage and line current)
are filtered out in order to avoid the aliasing due to the sampling process. The PLL block
generates a sinusoidal signal, with unitary amplitude, which is employed to evaluate the
reference current (applied to port iGrid* in current controller). The proportional-integral (PI)
block with Kp = Ki = 0.4, employed in case of the SPLL-based model, evaluates the amplitude
of this reference current in order to maintain the dc bus voltage at the reference value, in this
case 450 V. In order to compare the obatined results, the same reference voltage is employed
in case of the WPLL-based model, where the Haar wavelet with five decomposition levels, that
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Fig. 11. Structure of the analyzed converter controller.

was analyzed in the previous sections, is applied. The current controller is implemented as a
proportional-resonant controller and, in this case, three resonant blocks have been employed
at frequencies ω1 = 50 Hz, ω3 = 150 Hz and ω3 = 250 Hz. The gains of the controller are
Kp = 7 and K1 = K3 = K5 = 200. After the control action, in order to obtain the switching
pattern, the output of the current controller must be divided by the measured dc capacitor
voltage. Then, the gate pulses of the H-bridge are generated by the block PWM Generator,
which applies a triangular carrier signal whose frequency matches the sampling frequency,
fs = 6.4 kHz.
The obtained results corresponding to the dc voltage, in case of both the conventional PLL
and the WPLL, are shown in Fig. 12.a. As it can be seen, the WPLL subsystem results on an
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Fig. 12. Structure of the analyzed converter controller.

smoother dc voltage during the motor starting while the conventional SPLL subsystem, based
on a PI controller, results on a 863 V transient, which could damage the power converter
and the motor windings in case of no protection. The response times in both cases, after the
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Fig. 12. Structure of the analyzed converter controller.

smoother dc voltage during the motor starting while the conventional SPLL subsystem, based
on a PI controller, results on a 863 V transient, which could damage the power converter
and the motor windings in case of no protection. The response times in both cases, after the

starting transient, are 3.72 s. This is due to the fact that reference current amplitude is obtained,
in both cases, by applying the same PI controller. The current line waveforms, once the dc
motor reaches the steady state in both models (with the conventional SPLL and the WPLL),
are shown in Fig. 12.b. The measured current THDs are 0.67% and 0.55% corresponding to the
conventional SPLL and the proposedl WPLL.

6. Conclusions

This book chapter presents an application of wavelets in grid-connected power converters.
The proposed approach allows wavelet-based software phase locked loops (SPLLs) to be
developed and implemented, replacing the proportional-integral controller in conventional
SPLLs. The proposed approach results on a more flexible synchronization subsystem whose
characteristics can be adjusted depending on the electrical grid disturbances. Simulation
results, comparing the performance of the conventional SPLL and the wavelet-based proposed
one, are given in case of a grid-connected power converter feeding a dc motor.
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1. Introduction 
There has been paradigm shift in mobile communications systems every decade. Now, just 
coming into the new century, it might be a good time to start discussions on the fourth 
generation (4G) systems which may be in service around 2010. For systems beyond 3G, there 
may be a requirement for a new wireless access technology for the terrestrial components 
[1]. It’s envisaged that these potential new radio interfaces will support up to approximately 
100 Mbps for high mobility and up to 1 Gbps for the low mobility, such as nomadic, leads to 
the 4th generation system. The data rate figures are targets for research and investigation on 
the basic technologies necessary to implement the vision. The future system specification 
and the design will be based on the results of the research and investigations. 
Due to the high rate requirements, additional spectrum will be needed for the new 
capabilities beyond International Mobile Telecommunications-2000 (IMT-2000). In 
conjunction with the future development of IMT-2000 and systems beyond IMT-2000 there 
will be an increasing relation ship between radio access and communication system, such as 
wireless Personal Area Networks (PANs), Local Area Networks (LANs), digital broadcast, 
and fixed wireless access.   
 In discussion about 2G systems in the 1980, two candidates for the radio access technique 
existed, Time Division Multiple Access (TDMA) and Code Division Multiple Access 
(CDMA) schemes. In discussion about 3G system, the Orthogonal Frequency Division 
Multiplexing (OFDM) appeared in the 1990s and gained a lot of attention and is a potential 
candidate for 4G systems. OFDM is very efficient in spectrum usage and is very effective in 
a frequency selective channel. A variation of OFDM which allows multiple accesses is Multi-
Carrier CDMA (MC-CDMA) which is essentially an OFDM technique where the individual 
data symbols are spread using spreading code in frequency domain. The inherent 
processing gain due to the spreading helps in interference suppression in addition to 
providing high data rates. OFDM is already the technique used in Digital Audio and Video 
Broadcasting (DAB, DVB) and WLANs, 802-11 family, and is believed to be the technique for 
future broadband wireless access [2]. The present third generation (3G) systems can provide 
a maximum data rate of 2 Mbps for indoor environment which is quite less than the needed 
for the currently evolving multimedia applications requiring very high bandwidth.  
This had led the researchers worldwide to the evolution of the 4G systems that are expected 
to provide a data rate ranging from 20 Mbps to 100 Mbps on the air interface. The reader can 
easily understand the reason why the OFDM is suited for 4G systems, with some 
justifications that appeared as follows: 
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Multicarrier techniques can combat hostile frequency selective fading countered in mobile 
communications. The robustness against frequency selective fading is very attractive, 
especially for high-speed data transmission [3] 
OFDM scheme has been well matured through research and development for high-rate 
wireless LANs and terrestrial digital video broadcasting. 
By combining OFDM with CDMA, it has been synergistic effect, such as enhancement of 
robustness against frequency selective fading and high scalability in possible data 
transmission rate. 
OFDM can provide higher data rates as is a very good choice for service providers to compete 
with wire-line carriers [3]. The CDMA scheme is robust to frequency selective fading and has 
been successfully introduced in commercial cellular mobile communications systems such as 
Interim Standard-95 (IS-95) and 3G systems. Combining multi-carrier OFDM transmissions 
with Code Division Multiple Accesses (CDMA) allows us to exploit the wideband channels 
inherent frequency diversity by spreading each symbol across multiple carriers. 
Although OFDM is robust to frequency selective fading, it has severe disadvantages in sub-
carrier synchronization and sensitivity to frequency offset estimation. The other one is 
related with the presence of a large number of sub-carriers which exhibit a non-constant 
nature in its envelope. The combining of OFDM and CDMA has one major advantage 
though; it can lower the symbol rate in each sub-carrier compared to OFDM so that longer 
symbol duration makes it easier to synchronize. The MC-CDMA not only mitigates the 
Inter-Symbol Interference (ISI) but also exploits the multipath. The MC-CDMA suffers only 
slightly in presence of interference as opposed to Direct Sequence-CDMA (DS-CDMA) 
whose performance decreases significantly in the presence of interference [4]. 
In the second section of this chapter, the theory of the Wavelet Transform (with a special 
concentration on the Discrete Wavelet Transform) will be presented in a very simple and 
comprehensive manner to make it understandable enough for the formulation of the next 
sections where the Wavelet based Wireless Digital Communication Systems will be 
discussed. Also performance comparisons of Fourier and Wavelet based communication 
systems on different channel models will be presented. 

2. Wavelet transform 

Any general signal can be decomposed into wavelets, i.e., the original function is 
synthesized by adding elementary building blocks, of constant shape but different size and 
amplitude. In this approach, one can design a set of basis functions by choosing a proper 
basic wavelet ( )tΨ  (mother wavelet) and use a delayed and scaled version of that. The most 
important properties of wavelets are the admissibility and the regularity conditions and 
these are the properties which gave wavelets their name. It can be shown [5] that square 
integrable functions ( )tΨ satisfying the admissibility condition: 

                                                              
( ) 2w

dw
w

Ψ
< +∞∫  (1) 

can be used to first analyze and then reconstruct a signal without loss of information. In (1) 
( )wΨ  stands for the Fourier transform of ( )tΨ . The admissibility condition implies that the 

Fourier transform of ( )tΨ  vanishes at the zero frequency, i.e. 
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                                                            ( ) 2

0
0

w
w

=
Ψ =  (2) 

A zero at the zero frequency also means that the average value of the wavelet in the time 
domain must be zero and therefore it must be oscillatory. In other words, ( )wΨ must be a 
wave. The reconstruction or inverse transformation is satisfied whenever ( )wΨ  is of finite 
energy and band pass (oscillates in time like a short wave). These are the regularity 
conditions and they state that the wavelet function should have some smoothness and 
concentration in both time and frequency domains. For sufficiently regular ( )wΨ , the 
reconstruction condition is: 

                                                                ( ) 0t dtΨ =∫   (3) 

Summarizing, the admissibility condition gave us the wave, regularity and vanishing 
moments gave us the fast decay or the let, and together they give us the wavelet. 

2.1 The discrete wavelet transform 
Under the reconstruction condition (3), the continuously labeled basis functions (wavelets), 

( ),j k tΨ  behaves in the wavelet analysis and synthesis just like an orthonormal basis. By 
appropriately discretizing the time-scale parameters,τ , s, and choosing the right mother 
wavelet, ( )tΨ , it is possible to obtain a true orthonormal basis. The natural way is to 
discretizing the scaling variable s in a logarithmic manner ( )0

js s−=  and to use Nyquist 
sampling rule, based on the spectrum of function x (t), to discretizing  τ  at any given scale  
( )0  jk s Tτ −= . The resultant wavelet functions are then as follows: 

                                        ( ) ( )2
, 00 0 j j

j k t s s t kτΨ = Ψ −  (4) 

If s0 is close enough to one and if T is small enough, then the wavelet functions are over-
complete and signal reconstruction takes place within non-restrictive conditions on ( )tΨ . 
On the other hand, if the sampling is sparse, e.g., the computation is done octave by octave 
(s0 = 0), a true orthonormal basis will be obtained only for very special choices of ( )tΨ . 
Based on the assumption that wavelet functions are orthonormal: 

                         ( ) ( ), ,
1      
0j k m n

if j m and k n
t t dt

otherwise
= =⎧

Ψ Ψ = ⎨
⎩

∫  (5) 

For discrete time cases, equation (4) is generally used with s0 = 2, the computation is done 
octave by octave. In this case, the basis for a wavelet expansion system is generated from 
simple scaling and translation. The generating wavelet or mother wavelet, represented 
by ( )tΨ , results in the following two-dimensional parameterization of ( ),j k tΨ . 

                                                   ( ) ( )2
, 2 2j j

j k t t kΨ = Ψ −  (6) 

The 2 j/2 factor in equation (6) normalizes each wavelet to maintain a constant norm 
independent of scale j. In this case, the discretizing period in τ  is normalized to one and is 
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assumed that it is the same as the sampling period of the discrete signal ( )-j 2kτ = . All 
useful wavelet systems satisfy the multiresolution conditions. In this case, the lower 
resolution coefficients can be calculated from the higher resolution coefficients by a tree-
structured algorithm called filter-bank [6]. In wavelet transform literatures; this approach is 
referred to as discrete wavelet transform (DWT). 

2.1.1 The scaling function 
The multiresolution idea is better understood by using a function represented by ( )tΦ and 
referred to as scaling function. A two-dimensional family of functions is generated, similar 
to (6), from the basic scaling function by [7]: 

                                                    ( ) ( )2
, 2  2j j

j k t t kΦ = Φ −   (7) 

Any continuous function, f(t), can be represented, at a given resolution or scale  j0, by a 
sequence of coefficients given by the expansion: 

                                             ( ) [ ] ( )
0 0 0 ,j j j k

k
f t f k t= ⋅Φ∑   (8) 

In other words, the sequence [ ]
0jx k  is the set of samples of the continuous function x(t) at 

resolution j0. Higher values of j correspond to higher resolution. Discrete signals are 
assumed samples of continuous signals at known scales or resolutions. In this case, it is not 
possible to obtain information about higher resolution components of that signal. The main 
required property is the nesting of the spanned spaces by the scaling functions. In other 
words, for any integer j, the functional space spanned by [8]: 

                                             ( ){ }, ;     1,2,j k t for kΦ ∈ …   (9) 

should be a subspace of the functional space spanned by: 

                                                 ( ){ }1, ;     1,2,j k t for k+Φ ∈ …   (10) 

The nesting of the space spanned by ( )2 j t kΦ − is achieved by requiring that ( )tΦ  be 
represented by the space spanned by ( )2tΦ . In this case, the lower resolution function, ( )tΦ , 
can be expressed by a weighted sum of shifted version of the same scaling function at the next 
higher resolution, ( )2tΦ , as follows: 

                                                    ( ) ( ) ( )  2  2
k

t h k t kΦ = Φ −∑   (11) 

The set of coefficients ( )h k being the scaling function coefficients and 2  maintains the 
norm of the scaling function with scale of two. ( )tΦ  being the scaling function which 
satisfies this equation which is sometimes called the refinement equation, the dilation 
equation, or the multiresolution analysis equation (MRA). 
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2.1.2 The wavelet functions 
The important features of a signal can better be described or parameterized, not by using 

( ),j k tΦ  and increasing j to increase the size of the subspace spanned by the scaling 
functions, but by defining a slightly different set of functions ( ),j k tΨ  that span the 
differences between the spaces spanned by the various scales of the scaling function. 
Since it is assumed that these wavelets reside in the space spanned by the next narrower 
scaling function, they can be represented by a weighted sum of shifted version of the scaling 
function ( )2tΦ as follows: 

                                ( ) ( ) ( ) 2  2
k

t g k t kΨ = Φ −∑   (12) 

The set of coefficients ( )g k ’s is called the wavelet function coefficients (or the wavelet filter). 
It is shown that the wavelet coefficients are required by orthogonality to be related to the 
scaling function coefficients by [9, 10]: 

 ( ) ( ) ( )1 1ng k h k= − −  (13) 

One example for a finite even length-N ( )h k  

 ( ) ( ) ( )1 1kg k h N k= − − −  (14) 

The function generated by equation (12) gives the prototype or mother wavelet ( )tΨ  for a 
class of expansion functions of the form shown in equation (6). For example the Haar scaling 
function is the simple unit-width, unit-height pulse function ( )tΦ  shown in Fig (1a) [7] and 
it is obvious that ( )2tΦ can be used to construct ( )tΦ  by: 

 ( ) ( ) ( )2 2 1t t tΦ = Φ +Φ −  (15) 

Which means (11) is satisfied for coefficients  ( )0 1 2h =  , ( )1 1 2h = . 

The Haar wavelet function that is associated with the scaling function in Fig.(1a) is shown in 
Fig. (1b). For Haar wavelet, the coefficients in equation (14) are ( )0 1 2g = , ( )1 1 2g = − . 
 

 

               ( ) ( ) ( )2 2 1t t tΦ = Φ +Φ −                                         ( ) ( ) ( )2 2 1t t tΨ = Φ −Φ −  
(a)                                                                     (b) 

Fig. 1. (a) Haar Scaling Function, (b) Haar wavelet function. 
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Any function ( )f t  could be written as a series expansion in terms of the scaling function 
and wavelets by [11]: 

         ( ) ( ) ( ) ( ) ( )
0 0

0

, ,j j k j j k
k j j k

f t a k t b k t
∞ ∞ ∞

=−∞ = =−∞
= Φ + Ψ∑ ∑ ∑  (16) 

In this expansion, the first summation gives a function that is a low resolution or coarse 
approximation of f(t) at scale  j0 . For each increasing j in the second summation, a higher or 
finer resolution function is added, which adds increasing details. The choice of j0 sets taking 
the coarsest scale whose space is spanned by ( )

0 .j k tΦ . The rest of the function is spanned by 
the wavelets providing the high-resolution details of the function. The set of coefficients in 
the wavelet expansion represented by equation (14) is called the discrete wavelet transform 
(DWT) of the function f(t). 
These wavelet coefficients, under certain conditions, can completely describe the original 
function, and in a way similar to Fourier series coefficients, can be used for analysis, 
description, approximation, and filtering. If the scaling function is well behaved, then at a 
high scale, samples of the signal are very close to the scaling coefficients. As mentioned 
before, for well-behaved scaling or wavelet functions, the samples of a discrete signal can 
approximate the highest achievable scaling coefficients. 
It is shown that the scaling and wavelet coefficients at scale j are related to the scaling 
coefficients at scale (j + 1) by the following two relations. 

 ( ) ( ) ( )12  j j
m

a k h m k a m+= −∑  (17) 

 ( ) ( ) ( )12  j j
m

b k g m k b m+= −∑  (18) 

2.2 Fast computation method of DWT 
The implementation of equations (17) and (18) is illustrated in Fig. (2). In this figure, two 
levels of decomposition are depicted. h and g are low-pass and high-pass filters 
corresponding to the coefficients ( )h n  and ( )g n  respectively. The down-pointing arrows 
denote a decimation or down-sampling by two.  This splitting, filtering and decimation can 
be repeated on the scaling coefficients to give the two-scale structure. The first stage of two 
banks divides the spectrum of 1,j ka −  into a low-pass and high-pass band, resulting in the 
scaling coefficients and wavelet coefficients at lower scale ,j ka  and ,j kb . The second stage 
then divides that low-pass band into another lower low-pass band and a high-pass filter.  
 

 
Fig. 2. The filter bank for calculating the wavelet coefficients. 
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3. OFDM and CDMA theory and concept 
The purpose of this section is to describe the OFDM and CDMA systems. The majority of 
the information presented is intended as background information for the system simulation 
and evaluation presented in rest of the chapter. The basic theoretical aspects for mobile 
radio channels with a brief mathematical explanation of multi-path selective channels and 
their characteristic parameters are explored, due to their direct effect on the performance of 
the OFDM and CDMA modulation techniques. Then the FFT-based OFDM and different 
combinations of MC and CDMA are given together with their performances and simulation. 
Then it provides the basic theory of used transforms, wavelet, and its equations and a basic 
outlines for its computation algorithm using D4 wavelet. Also Multi-wavelets theory with 
its equations is introduced. 

3.1 Orthogonal frequency division multiplexing (OFDM) 
A simple multi-carrier communication system is the frequency division multiplexing (FDM) 
or multi-tone. The broad transmission bandwidth is divided into many narrow non-
overlapping sub-channels, in which the data is transmitted in a parallel fashion. Ideally each 
sub-channel is narrow enough so that the sub-channel can be considered to be slow, flat 
fading to reduce the effect of ISI. The fundamental structure of a multi-carrier system is 
depicted in Fig. (3). The data stream is mapped to the desired waveform, filter banks are 
used to limit the signal bandwidth. After being modulated by separate center frequencies, 
these signals are multiplexed and transmitted. At the receiver the frequency multiplexed 
signal is down converted to different channels by multiplication with separate center 
frequencies, filtered by the filter banks to get the base band Multicarrier signal for further 
processing . 
 

 
Fig. 3. Fundamental structure of a multi-carrier transceiver-carrier 
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Fig. 4. FDM sub-bands spectrum distribution. 
The spectrum allocation for sub-channels in a FDM system is shown in Fig (4), where f0, f1, 
_ _ _, fN-1 are the center frequencies of the sub-channels.  
This modulation has the following disadvantages: 
1. Since the sub-carriers are not overlapped with each other, the wide    spacing between 

the sub-bands means lower spectrum efficiency. 
2. The complexity will increase due to the N modulators and filters used at the transmitter 

and N demodulators and filters at the receiver which makes the system more 
complicated [13] 

3.1.1 Implementation of OFDM signals  
For Fig. (3), with input sequence {a[k]}, 0≤k≤N-1, the frequency spacing �∆f  � between the 
different sub-carriers and the symbol interval Tu, the transmitted data can be expressed as: 

1

0
( ) [ ]

N

a
k

x t a k
−

=
= ∑ 2j k fte π Δ  ,                 0 ≤ t ≤Tu  (19) 

If the signal is sampled at a rate Tu / N, then the above equation can be  
rewritten as: 

 
1

2 /

0
[ ] ( ) [ ] u

N
j k fT N

a a u
k

nx n x T a k e
N

π
−

Δ

=
= = ∑  (20) 

If the following equation: 

 f  Tu =1   ( f=Δ Δ
1 )

Tu
 (21) 

is satisfied, then the multi-carriers are orthogonal to each other and equation (20) can be 
rewritten as: 

 
1

2 /

0
[ ] [ ]

N
j nk N

a
k

x n a k e π
−

=
= ∑  (22) 

One of the major advantages of OFDM is that the modulation can be performed in the 
discrete domain using an Inverse Discrete Fourier Transform (IDFT) or more 
computationally efficient inverse Fast Fourier Transform (IFFT). The above equation is just 
the IDFT of the input signal stream {a[k]}, equation (22) can be rewritten as [14]: 

 [ ] [ ]{ }.eX n N IDFT a k=   (23) 

fN-1 



Discrete Wavelet Transform Based Wireless Digital Communication Systems 

 

239 

At the receiver the DFT implementation to find the approximate signal â[k] can be written 
as: 

[ ]{ }ˆ[ ] aa k DFT x n=                                                                                              (24) 

∑
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Here δ[m-k] is the delta function defined as : 

1 , 0
[ ]

0 ,
if n

n
otherwise

δ
=⎧

⎨
⎩

 

From the derivation above, it can be observed that there are two most important features of 
the OFDM technique, these are: 
1. Each sub-carrier has a different center frequency. These frequencies are chosen so that 

the following integral over a symbol period is satisfied: 

                               0
0,m l

Tu jw t jw t
m la e a e dt m l= ≠∫   (25) 

The sub-carrier signals in an OFDM system are mathematically orthogonal to each other. 
The sub-carrier pulse used for transmission is chosen to be rectangular. The rectangular 

pulse leads to a sin( )x
x

 type of spectrum. The spectrum of the three adjustment OFDM 

sub-carriers is illustrated in Fig. (5). The spectrum of the sub-carriers is overlapped to 
each other, thus the OFDM communication system has high spectrum efficiency. 
Maintenance of the orthogonality of the sub-carriers is very important in an OFDM 
system, which requires the transmitter and receiver to be in the perfect synchronization 
[12]. 
2. IDFT and DFT functions can be exploited to realize the OFDM modulation and 

demodulation instead of the filter banks in the transmitter and the receiver to lower the 
system implementation complexity and cost. This feature is attractive for practical use. 
The IFFT and FFT algorithms can be used to calculate the IDFT and DFT efficiently. 
IFFT and FFT are used to realize the OFDM modulation and demodulation to reduce 
the system implementation complexity and to improve the system running speed. 
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Fig. 5. Orthogonality principle of OFDM 
It is necessary for a predetermined number of sub symbols to be available simultaneously at 
the inputs of the IFFT unit. For this reason the sequentially received data are temporarily 
stored, until the required number of sub symbols for parallel transmission have 
accumulated, and are then read out in parallel. 
 

 

Fig. 6. Signal processing of OFDM 
Fig.(6) above demonstrates by a simple example the principle of the signal processing within 
the subsequent IFFT unit. In this example an OFDM symbol is shaped from five consecutive 
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bits. The first diagram represents the serial data stream. After the parallel transformation 
each bit lies at one of the inputs of the IFFT unit for the duration Tu=5Tb and generates a 
sub signal. The frequencies of the individual sub signals result in integral multiples of f0 
=1/Tu .They are therefore orthogonal to one another [15] 

3.1.2 Guard Interval 
One of the most important properties of OFDM transmissions is the robustness against 
multipath delay spread. This is achieved by having a long symbol period, which minimizes 
the inter-symbol interference. The level of robustness can in fact be increased even more by 
the addition of a guard period between transmitted symbols. The guard period allows time 
for multipath signals from the pervious symbol to die away before the information from the 
current symbol is gathered [16]. 
As long as the multipath delay echoes stay within the guard period duration, there is strictly 
no limitation regarding the signal level of the echoes: they may even exceed the signal level 
of the shorter path. The signal energy from all paths just adds at the input to the receiver, 
and since the FFT is energy conservative, the whole available power feeds the decoder. If the 
delay spread is longer then guard intervals then they begin to cause inter symbol 
interference. However, provided the echoes are sufficiently small they do not cause 
significant problems. This is true most of the time as multipath echoes delayed longer than 
the guard period will have been reflected off very distant objects. There are several types of 
guard interval such that cyclic prefix (CP), zero padded, and other variation of guard 
interval are possible. 

3.1.3 Cyclic prefix 
The most effective guard period to use is a cyclic extension of the symbol, see Fig (7). If a 
mirror in time, of the end of the symbol waveform is put at the start of the symbol as the 
guard period, this effectively extends the length of the symbol, while maintaining the 
orthogonality of the waveform. Using this cyclic extended symbol the samples required for 
performing the FFT can be taken anywhere over the length of the symbol. This provides 
multipath immunity as well as symbol time synchronization tolerance. 
 

OFDM Symbol OFDM Symbol OFDM Symbol 

Tg T T TG T Tg 

Time 

 
Fig. 7. Cyclic extension of OFDM transmitted symbol tation of OFDM 

3.1.4 Zero padding 
Another type of guard interval is a zero-padding .Instead of inducing the cyclic prefix, each 
IFFT processed block is zero padded, by many zeros depending on channel's order to 
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eliminate ISI. If the number of zeros padded is equal to cyclic prefix length, then ZP-OFDM 
and CP-OFDM transmission has the same spectral efficiency. 
Other types of guard intervals are possible. One possible type is to have half the guard 
period a cyclic prefix of the symbol, as in cyclic prefix type, and the other half a zero 
padded, as above [16].  

3.2 Synchronization of OFDM systems 
Synchronization is a big hurdle in OFDM. Synchronization usually consists of three parts as 
follows:  

3.2.1 Frame detection  
Frame detection is used to determine the symbol boundary so that correct samples for a 
symbol frame can be taken. The sampling starting point TX at the receiving end must satisfy 
the condition max x gT Tτ 〈 〈  ,where τmax is maximum delay spread. Since the previous symbol 
will only have effect over samples within [0,τmax],there is no ISI [18]. 
There are many algorithms that can be applied to estimate the start of an OFDM symbol 
based on pilots or on the cyclic prefix. A good synchronization method must be fast, have a 
reliable indication of the synchronized state and introduce a minimum of redundancy in the 
transmitted stream. 
Most existing timing algorithms use correlations between repeated OFDM signal portions to 
create a timing plateau. Such algorithms are not able to give precise timing position 
especially when the SNR is low. To improve the robustness of the algorithms, in [29] they 
used a differentially coded time-domain PN sequence for frame detection. Because of its 
delta like self-correlation property, the PN sequence allows to find the precise timing 
position. The PN sequence is transmitted as part of the OFDM packet preamble. At the 
receiver, the received signal samples are correlated with the known sequence. When the 
transmitted PN sequence is aligned with receiver PN sequence, a correlation peak is 
observed from which the OFDM symbol boundary can be inferred. 

3.2.2 Carrier synchronization error 
Carrier frequency offset estimation plays an important role in OFDM communication 
systems because of their high sensitivity to carrier frequency offsets [19]. Due to the carrier 
frequency difference of the transmitter and receiver, each signal sample at time t contains an 
unknown phase factor 2 cj f te πΔ , where ∆f is the unknown carrier frequency offset. This 
unknown phase factor must be estimated and compensated for each sample before FFT at 
the receiver, since otherwise the orthogonality between sub-carriers is lost. 
The impact of a frequency error can be seen as an error in the frequency instants, where the 
received signal is sampled during demodulation by the FFT Fig (8) depicts this two-fold 
effect. The amplitude of the desired sub-carrier is reduced (‘+’) and inter-carrier-interference 
ICI arises from the adjacent sub-carriers (‘0’) [20]. 

3.2.3 Sampling error correction 
Because the sampling clock difference between the transmitter and receiver, each signal 
sample is off from its correct sampling time by a small amount which is linearly increasing 
with the index of the sample. For example, for 100ppm crystal offset, it will be off by 1  
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Fig. 8. Inter-carrier-interference (ICI) arises in case of a carrier synchronization error. 
sample after 10000 samples. If a symbol contains 100 samples, then within each symbol the 
maximum offset will be 1% of a sample. Although this may cause the orthogonality 
degrading between the sub-carriers, it can usually be ignored. If sampling error must be 
corrected, then interpolation filter must be used to construct the signal at correct sampling 
time [18]. 

4. Mobile radio channels 
In mobile radio channels, the transmitted signal suffers from different effects, which are 
characterized as follows [21],[22],[23]:  
 Multi-path propagation occurs as a consequence of reflection, scattering, and diffraction of 
the transmitted electromagnetic wave at natural and man-made objects. Thus, at the receiver 
antenna, a multitude of waves arrives from many different directions with different delays, 
attenuations, and phases as shown in Fig.(9), which shows that the terminal station (TS) may 
receive the direct signal from the base station (BS) as well as several signals generated due to 
reflections and scattering. The superposition of these waves results in amplitude and phase 
variations of the composite received signal. 
Changes in the phases and amplitudes of the arriving waves occur, which lead to time-
variant multi-path propagation. Even small movements on the order of the wavelength may 
result in a totally different wave superposition The varying signal strength due to time-
variant multi-path propagation is referred to as fast fading. Shadowing is caused by 
obstruction of the transmitted waves by e.g., hills, buildings, wall, and trees, which results 
in more or less strong attenuation of the signal strength. Compared to fast fading, longer 
distances have to be covered to significantly change the shadowing constellation. The 
varying signal strength due to shadowing is called slow fading and can be described by a 
log-normal distribution 
Path loss indicates how the mean signal power decays with distance between transmitter, 
and receiver. In free space, the mean signal power decreases with the square of the distance 
between (BS) and (TS). In a mobile radio channel, where often no line of site (LOS) path 
exists, signal power decreases with a power higher than two and is typically in the order of 
three to five. Variations of the received power due to shadowing and path loss can be 
efficiently counteracted by power control.  
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Fig. 9. Composite received signal due to reflections in mobile radio channel 

4.1 Channel modeling 
The mobile radio channel can be characterized by the time-variant channel impulse 
response h(τ,t) [24]. The channel impulse response represents the response of the channel at 
time t due to an impulse applied at time t-τ. The mobile radio channel is assumed to be a 
wide-sense stationary random process, i.e., the channel has a fading statistic that remains 
constant over short periods of time or small spatial distances. In environments with multi-
path propagation, the channel impulse response is composed of a large number of scattered 
impulses received over Np different paths,  
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and ap, fd,p, ϕp, and τp are the amplitude, the Doppler frequency, the phase, and the 
propagation delay, respectively, associated with the path p, p=0,1,2,……………,Np-1. A 
channel impulse response with corresponding channel transfer function is illustrated in 
Fig.(10), while, Fig.(11), is a block diagram representation of a fading channel with two 
paths, i.e., with two rays.  
 

 
Fig. 10. Time-variant channel impulse response and channel transfer function with 
frequency-selective fading 
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The assigned channel transfer function is   
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The delays are measured relative to the first detectable path at the receiver. The Doppler 
frequency is given by [22]:  

 c p
d ,p

vf cos( )
f

c
θ

=  (30) 

It is obvious that fd,p depends on the velocity v of the terminal station, the speed of light c, 
the carrier frequency fc, and the angle of incidence θp of a wave assigned to a path p. 
 

 
Fig. 11. 2-Ray fading channel 

Fig. (12) illustrates the Doppler effect. The delay power density spectrum ρ(τ) that 
characterizes the frequency selectivity of the mobile radio channel gives the average power 
of the channel output as a function of the delay, τ. The mean delay , the root mean square 
(RMS) delay spread τRMS and the maximum  
 

 
 

Fig. 12. Illustration of Doppler Effect 
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Delay τmax are characteristic parameters of the delay power density spectrum. The mean 
delay is: 
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where, the term 2
Pa , in equation (31) represents the power of path p. The RMS delay 

spread is defined as:  
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Similarly, the Doppler power density spectrum S(fd) can be defined as that characterizing 
the time variance of the mobile radio channel and gives the average power of the channel 
output as a function of the Doppler frequency fD. The frequency dispersive properties of 
multi-path channels are most commonly quantified by the maximum occurring Doppler 
frequency fD max and the Doppler spread fDspread. The Doppler spread is the bandwidth 
of the Doppler power density spectrum and can take on values up to two times            
│fDmax│[25] , i.e.,   

                                                        fDspread  ≤ 2 │fDmax│  (33) 

4.2 Channel fade statistics 
The statistics of the fading process characterize the channel and are of importance for 
channel model parameter specifications. A simple and often used approach is obtained from 
the assumption that there is a large number of scatterers in the channel that contribute to the 
signal at the receiver side. The application of the central limit theorem leads to a complex-
valued Gaussian process for the channel impulse response. In the absence of LOS or a 
dominant component, the process is zero-mean. The magnitude of the corresponding 
channel transfer function:  

   a=a(f,t)=│H(f,t)│ (34) 

is the random variable, with Rayleigh's distribution given by: 
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The phase is uniformly distributed in the interval [0, 2π]. In the case that the multi-path 
channel contains a LOS or dominant component in addition to the randomly moving 
scatters. The channel impulse response can no longer be modeled as zero-mean. Under the 
assumption of a complex-valued Gaussian process for the channel impulse response, the 
magnitude of the channel transfer function has a Rice distribution given by:  

 
2( / )
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The Rice factor KRice is determined by the ratio of the power of the dominant path to the 
power of the scattered paths. Io is the zero-order modified Bessel function. The phase is 
uniformly distributed in the interval [0, 2π].  
 

 
Fig. 13. Probability density function of Ricean Distribution, k=-∞ for (Rayleigh) 

4.3 Inter-symbol interference (ISI) and inter-channel interference (ICI) 
The delay spread can cause inter-symbol-interference (ISI), when adjacent data symbols 
overlap and interfere with each other due to different delays on different propagation paths. 
The number of interfering symbols in a single-carrier modulated system is given by  

 max
,sinISI gle carrier

d
N

T
τ

−
⎡ ⎤

= ⎢ ⎥
⎢ ⎥

 (38) 

For high data rate applications with very short symbol duration Td < τmax, the effect of ISI 
and, with that, the receiver complexity can increase significantly. The effect of ISI can be 
counteracted by different measures such as time or frequency domain equalization.   
In spread spectrum systems, rake receivers with several arms are used to reduce the effect of 
ISI by exploiting the multi-path diversity such that individual arms are adapted to different 
propagation paths.  
If the duration of the transmitted symbol is significantly larger than the maximum delay 
Td>>τmax, the channel produces a negligible amount of ISI. This effect is exploited with 
multi-carrier transmission where the duration of the transmitted symbol increases with the 
number of sub-carrier Nc and, hence, the amount of ISI decreases. The number of the 
interfering symbols in a multi-carrier modulated system is given by: 
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Residual ISI can be eliminated by the use of a guard interval. The maximum Doppler spread 
in mobile radio applications using single-carrier modulation is typically much less than the 
distance between adjacent channels, such that the effect of interference on adjacent channels 
due to Doppler spread is not a problem for a single-carrier modulated systems. For multi-
carrier modulated systems, the sub-channel spacing Fs can become quite small, such that 
Doppler effects can cause significant ICI. As long as all sub-carriers are affected by a 
common Doppler shift fd, this Doppler shift can be compensated for in the receiver and ICI 
can be avoided. However, if Doppler spread on the order of several percent of the sub-
carrier spacing occurs. ICI may degrade the system performance significantly. To avoid 
performance degradations due to ICI more complex receivers with ICI equalization should 
be used. The sub-carrier spacing Fs should be chosen as: 

 maxS DF f>>  (40) 

such that the effect due to Doppler spread can be neglected.  
Nevertheless, if a multi-carrier system design is chosen such that the Doppler spread is on 
the order of the sub-carrier spacing or higher, a rake receiver in the frequency domain can 
be used. With the frequency domain rake receiver each branch of the rake resolves a 
different Doppler frequency.  

5. Code division multiple access scheme 
In the context of broadband wireless communications using CDMA without the assistance 
of frequency/ time hopping, the main multiple access options include Multi-tone CDMA 
(MT-CDMA) using time domain DS spreading [26], Multicarrier CDMA (MC-CDMA) using 
frequency domain spreading, as well as Multicarrier DS-CDMA (MC DS-CDMA) using time 
domain DS spreading of the individual sub-carrier signals [27].  
The behavior of the above three CDMA schemes will be investigated when communicating 
over broadband wireless channels. It will be shown that regardless of the communication 
environments encountered, both Multi-tone DS-CDMA and MC-CDMA exhibit more severe 
problems than MC DS-CDMA. Broad-band MC DS-CDMA augmented by transmit diversity 
is capable of mitigating the problems imposed by broadband wireless channels. It is shown 
that by appropriately selecting the system parameters, transmit diversity assisted 
broadband MC DS-CDMA is capable of supporting wireless communications in diverse 
propagation environments. Furthermore, the capacity improvement achievable by 
broadband MC DS-CDMA systems is also investigated. Let an overview first embark on a 
rudimentary of the above three CDMA schemes. 

5.1 MC CDMA system 
Multicarrier CDMA schemes can be broadly categorized into two groups. The first type 
spreads the original data stream using a spreading code and then modulates different 
carriers with each chip. This is usually referred to as MC-CDMA. The second type spreads 
the serial to parallel converted streams using a spreading code and then modulates different 
carriers with each data stream [21]. Denoting the bit duration as Tb and the chip duration as 
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Tc, then the sub-carrier spacing in one system is 1/Tc and the other is 1/Tb. The former is 
called the Multicarrier DS-CDMA (MC-DS-CDMA) and the latter is called the Multi-tone 
CDMA (MT-CDMA). The performance of these two schemes has been studied for an uplink 
channel in [29]. Hara has shown that MC-CDMA outperforms MC-DS-CDMA and MT-
CDMA in terms of downlink BER performance. MC-CDMA is thus an attractive technique 
for the downlink [30]. A simple block diagram of a MC-CDMA system is as shown below in 
Figure (14) below. 
 

 
Fig. 14. Block Diagram of a FFT-MC-CDMA system 

The input data stream is spread using the spreading sequence which could be a Walsh-
Hadamard code or a PN sequence. The resultant chips after spreading the symbols are 
modulated into different sub-carriers using the IFFT operator.  The end few symbols are 
appended at the beginning of the frame to act as the cyclic prefix. The cyclic prefix maintains 
Orthogonality between the sub-carriers in a multipath channel. The receiver first removes  
the  cyclic  prefix  and then  performs  an  FFT operation  of  the  received  symbols and  
brings  them back  to  the  frequency domain.  Then dispreading and decoding of the chips 
in frequency domain are performed. 

5.2 MC-DS CDMA system 
The block diagram of MC-DS CDMA transmitter is shown in Fig(15(a))  The incoming data 
stream is first converted to a parallel stream and then spread in time using spreading codes. 
This ensures that the resulting spectrum has orthogonal sub-carriers. The spreading code is 
represented as C(t) and the processing gain is N. The receiver block is shown in Fig (15(b)). 
The dispreading is done in time after the FFT followed by a low pass filter and 
demodulation. The figures are adapted from [31].   
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Fig. 15. (a) MC-DS CDMA Transmitter    (b) MC-DS CDMA Receiver 

5.3 Multi-tone CDMA (MT-CDMA) system 
Multi-Tone CDMA transmitter spreads the serial parallel converted data streams using a 
spreading  code  in  time  domain  so  that  the  spreading  operation  can  satisfy  the 
Orthogonality  condition. The MT-CDMA uses spreading codes in multiples of the number 
of sub-carriers as compared to MC-DS CDMA.  
The transmitter block is shown in Fig (16(a)). The receiver employs Rake combining to 
effectively utilize the diversity due to multipath. The figures are adapted from [31, 32].   
 

 
Fig. 16. (a) MT-CDMA Transmitter, (b) MT-CDMA Receiver 
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5.4 DWT based MC CDMA system 
Figure (17) below shows the block diagram of the DWT-MC-CDMA system. The only 
difference is that DWT is used instead of the FFT in the OFDM modulator and demodulator. 
Since wavelet based OFDM will not add a cyclic prefix to OFDM symbol, its data rates can 
surpass those of the FFT implementation. 
 

 
Fig. 17. Block Diagram of DWT-MC-CDMA System 

5.5 DWT based STBC-MC-DS-CDMA system 
The block diagram of the MC-DS-CDMA is depicted in Figure (18).This Figure illustrates a 
typical STBC-MC-DS-CDMA system used for Multicarrier modulation using one transmitter 
and one receiver. 

6. Simulation results 
In this section the simulation of the FFT based OFDM STBC DWTCS-OFDM system in 
MATLAB version 7 are achieved. And the BER performance of the OFDM system considered 
in different channel models, the AWGN channel, the flat fading channel. Table (1) shows the 
parameters of the system that are used in the simulations; the bandwidth used was 10MHz. 

6.1 Performance of DWT-MC-CDMA in AWGN and flat fading channel models 
Simulation results of the DWT-OFDM system is shown in figure (19). It is shown clearly that 
the DWT-MC-CDMA is much better than the system FFT-MC-CDMA. This is a reflection to 
the fact that the orthogonal bases of the wavelet is much significant than the orthogonal 
bases used in FFT-MC-CDMA.  
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Fig. 18. Block Diagram of the DWT based STBC-MC-DS-CDMA System  
 

QPSK Modulation Types 

64 Number of sub-carriers 

64 Number of DMWT points 

AWGN 

Flat fading+ AWGN 

Frequency selective fading +AWGN 

Channel model 

Table 1. Simulation Parameters 

Figure (20) below shows simulation result of the DWT-MC-CDMA system in the flat fading 
channel that assumed all the frequency components of the transmitted signal are changed 
correlated in phase and magnitude. Maximum Doppler Shift taken was 5Hz. 
It is shown that wavelet based MC-CDMA is still better than that based on FFT transform. 
The wavelet based MC-CDMA system has BER=10-3 at SNR=25dB, while in case of FFT 
based MC-CDMA system, the BER=10-3 achieved at approximately SNR=40dB, which 
means a gain of about 15dB has been achieved. 
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Fig. 19. BER performance of DMWT-OFDM in AWGN channel model 

 
 

 
 
Fig. 20. BER performance of DWT-MC-CDMA in Flat Fading Channel at Max. Doppler 
Shift=5 

6.2 Performance of STBC-MC-DS-CDMA systems in AWGN and flat fading channel 
models 
Simulation result of the STBC-MC-DS-CDMA Systems in AWGN channel is shown in 
Figure (21). It is clearly shown that the STBC-MC-DS-CDMA Based on DWT is much better 
than STBC-MC-DS-CDMA systems Based on FFT.  
In flat Fading Channel simulation a Doppler frequency of 10Hz is used. From Figure (22) it 
can be seen that for BER=10-4 the SNR required for DWT based STBC-MC-DS-CDMA was 
about 13dB and for FFT based STBC-MC-DS-CDMA has 25dB, therefore a gain of 12dB for 
the DWT against FFT is achieved. 
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Fig. 21. Performance of STBC-MC-CDMA System in AWGN Channel. 

 
 

 
 

Fig. 22. Performance of S TBC-DS-CDMA in Flat Fading Channel Max. Doppler Shift= 10Hz. 

7. Conclusions 
The improved performance of MC-DS-CDMA system using STBC schemes and DWT is 
investigated. The performance comparisons of BER performance for the conventional MC-
DS-CDMA based on FFT, STBC MC-DS-CDMA and DWT based STBC MC-DS-CDMA in 
the different channel models together with their comparison for best achievable BER have 
been presented. Simulation results were provided to demonstrate that significant gains can 
be achieved by introducing such combination technique with very little decoding 
complexity. Therefore, the DWT based STBC MC-DS-CDMA is a feasible way to reach the 
next generation of wireless communication for large data rates and applications 
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