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1. Introduction     
 

Matlab is the software developed by the MathWorks, Inc., Natick, USA. In 1984, the first 
version appeared. Software was primarily used only for the mathematical computation 
enabling the computation of complicated matrix equations and their systems. All major 
functions can directly use the matrix as the input. From that year, the software is still under 
development enlarging the area of the users every year. Matlab became the standard in the 
area of simulation and modelling and it is used by the researchers and students at 
universities mainly in the areas of Control Engineering, Power Plant Systems, Aerospace, 
Bioinformatics, Economics and Statistics. In comparison to other software such as 
Mathematica or Maple, Matlab has several advantages. Let us mention some. Its open 
architecture enables sharing all source code among the user community and several 
different areas are solved and the solution appears usually as a new toolbox. Simulink is the 
important Matlab enlargement which simplifies the computation very much. You just drag 
and drop the blocks to the new window from the block libraries and connect them and run 
the model. Matlab is used not only at universities but also in practice, for instance by NASA 
or General Motors. Most Matlab users are from the major world countries, such as USA, 
Japan, China, and India. Nice book was written by Hanselman and Littlefield (Hanselman 
and Littlefield, 2005). And interesting paper about teaching using Matlab was written by 
Perutka and Heczko (Perutka & Heczko, 2007). This chapter provides some chosen tips and 
tricks to the beginners in Matlab programming and should ease the first steps in 
programming. These tips and tricks are based on the experience of chapter author with 
teaching Matlab programming in the undergraduate curriculum for several years. The 
author mostly worked in MATLAB version 6.5, for which tips are. They are unsorted and 
each chapter provides one tip or trick only. 

 
2. Placing picture as dialog background 
 

Being bored from standard look of GUI created in Matlab? If you create dialog in Matlab 
using GUIDE or set of functions figure, uimenu, uicontrol and axes, the dialog 
background is usually based on the settings of the system, for  example in older Microsoft 
Windows it was grey – Windows Classic Theme. However, if you need to have your picture 
as the figure background, there is possible to use the following solution. Such example is 

1
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shown in figure 1. The dialog in this figure contains only 3 grey pushbuttons (online 
ident., Gr, >>) and background picture.  
What to do first? You have to draw the picture in the extern software, for example in Corel 
DRAW! and save it in one of the formats that Matlab supports, for instance as JPG or BMP. 
You can get the list of supported formats from the Matlab Help Dialog. Don’t forget to write 
down the width and height of the picture or their ratio. Create new dialog using the 
command figure or by GUI. Set the size of the new window in accordance with the picture 
width and height or their ratio. How? If you working with GUIDE, double-click the window 
in GUIDE and Property Inspector should appear. Change the Units property on Pixels and 
after that change in the Position property the third and fourth value to the width and height 
of the figure or keep these values in the ratio of the picture you would like to show.  If you 
created the dialog using figure function in M-file, include in the list of properties Units 
and Position and set them in similar way as was described for the GUI created by GUIDE. 
Now you need to load the figure in the Matlab Workspace, create axes and put the figure 
inside them. This tip is based on work of Perutka (Perutka, 2007). Inspire yourself by the 
following code which will be commented 
 
1 STCssu=imread('STCssu.jpg','jpg'); 
2 axes('Position',[0 0 1 1]); 
3 image(STCssu); 
4 axis off; 
5 clear STCssu 
 

 
Fig. 1. Dialog with picture as its background 

 

This code should be placed in the file where the figure is defined. The line 1 of the code is 
responsible of loading the picture in the Matlab Workspace using the function image. In 
this case, STCssu.jpg is the name of picture file and the picture is loaded to the STCssu 
variable. Line 2 creates the axes with their range just for all dialog area. Command in line 3 
draws the image from the STCssu variable to the axes created by line 2.  The axes description 
is hidden by the command on line 4. If you don’t re-draw the dialog, you can delete the 
variable from the Matlab Workspace, as it is shown in line 5. But if you re-call the dialog, 
don’t use line 5. For the dialog re-calling, lines 2 to 4 are enough. 

 
3. Short online help for every object in dialog 
 

Imagine the situation depicted in figure 2. There is a short text “If you click this button, you 
will open the dialog of setting the controller parameters.” in the box. This text is shown if 
you keep the cursor on the button Gr for a while. This might be useful especially in the case 
of two sorts of objects in dialog (button or edit text) to provide necessary short information 
what should be written as the text (edit text) or what will happen when the button is 
pressed. But short information can be displayed over every object in dialog which has the 
property TooltipString.  
If you created your dialog by GUIDE, open it in GUIDE again and double click the object for 
which you would like to create the short help.  
 

 
Fig. 2. Dialog with short help 
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The Property Inspector dialog should appear, find the property denoted as TooltipString and 
write some string as the input. The string you write will appear as the short help for the 
object after calling the dialog again. 
If you created the object by the uicontrol function, just read the sample code below 
 
6 hButtonClose = uicontrol('Style', 'pushbutton',... 
7               'String', 'Close',... 
8               'Parent', hFigure,... 
9               'Tag', 'tButtonClose',... 
10              'Units', 'pixels',... 
11              'Position', [560 75 100 30],... 
12              'TooltipString', 'Press the button for exit.',... 
13              'Callback', 'closeIt'); 
 
The code in lines 6 to 13 presents the definition of pushbutton object in the dialog created by 
commands in M-file. The TooltipString property of uicontrol is defined in line 12, the text “Press 
the button for exit.” is shown as a short help when the cursor will be on the button “Close”. 

 
4. More pictures in one dialog and their control 
 

It is sometime necessary to place more than one picture in the dialog, have a look at figure 3. 
The dialog in figure 3 includes 9 JPG pictures. The digital clock consists of 8 pictures, 6 
pictures are the digits of the clock. The background of analogue clock is the remaining 
picture. These pictures are shown similarly as is described in “Placing picture as dialog 
background”, it means the pictures are drawn using image function to pre-defined axes. 
The dialog in figure 3 was created as a set of commands in M-file and it is defined by lines 
14 to 24, the Render and DoubleBuffer properties should be set according to lines 23 and 24. 
 
14 hFigure = figure('Units', 'pixels',... 
15               'Position', [100 50 770 690],... 
16               'MenuBar','None',... 
17               'Name', 'Hodiny',... 
18               'Tag', 'tWindow',... 
19               'NumberTitle', 'off',... 
20               'Resize', 'off',... 
21               'Visible', 'off',... 
22               'BackingStore', 'off',... 
23               'Renderer', 'painters',... 
24               'DoubleBuffer', 'on');           
 
When figure is defined, all axes objects are created, example for one axes object is shown 
in lines 25 to 33 
 
25 hAnalog = axes('Units', 'pixels',... 
26       'Position', [30 210 460 460],... 
27       'Visible', 'on',... 
28       'Parent', hFigure,... 
29     'Tag', 'tAnalog',... 
30     'XTickLabelMode', 'manual', 'YTickLabelMode', 'manual',... 

 

31     'XColor', 'k', 'YColor', 'k',... 
32     'DrawMode', 'fast',... 
33     'Color', 'k'); 
 
This step is followed by step in which all images are read into Matlab Workspace using the 
image function, the image file are in the same directory as the source code, for  one image 
the code will be  
 
34  File_Analog = imread('clock.jpg'); 
 

 
Fig. 3. Dialog with more pictures 
 
Now have a careful look at the following source code, lines 35 – 39  
 
35 set(0, 'CurrentFigure', hFigure); 
36 set(hFigure, 'CurrentAxes', hAnalog); 
37 image(File_Analog); 
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38 axis image; 
39 axis off; 
 
The source code on lines 35 – 39 shows how to switch among several axes in one dialog. 
Line 35 gives us an example where the dialog identified by hFigure, line 14, is set as the 
active one. And line 36 shows us the example of setting one of the axes as the active one. The 
axes are in the dialog, which is identified by hFigure, line 14, and the axes are identified by 
hAnalog, line 25. Now you show the chosen picture, line 37, which was read by line 34. 
Finally, you place the axis just to the borders of the image, line 38, and you hide the ticks, 
line 39. This tip is based on the example provided by Perutka (Perutka, 2005). 

 
5. Button with your picture 
 

Figure 4 shows the green dialog with two options to be chosen, they are both yellow and 
black. If you click “Stromek” or  “Kytka”, new dialog appears. The dialog in figure 4 
consists of 3 axes objects to which the pictures are drawn, one axes object shows the 
background and 2 axes objects show pictures as “buttons”. 
 

 
 

Fig. 4. Dialog with “2 buttons” with our picture. 
 
Now let us look at the source code, lines 40 – 64. These lines provide the full source code for 
figure 4. See line 59 or 63. There is another syntax of image function in comparison to line 3. 
The ButtonDownFcn property is used, its value is set on the name of function or file, which 
should be called if the picture or axes are clicked. For  example if you click on “Kytka”, there 
will be called the file kytka.m according to line 63. 

 

40 hFigure = figure('Units','pixels',... 
41      'Position',[160 160 470 350],... 
42      'MenuBar','None',... 
43      'Name','Volba',... 
44      'Tag','tOkno',... 
45      'NumberTitle','off',... 
46      'Resize','off',... 
47      'Visible','on',... 
48      'BackingStore','off',... 
49      'Renderer','painters',... 
50      'DoubleBuffer','on'); 
51 hlavniObr=imread('vyberte.jpg'); 
52 prvniObr=imread('stromek.jpg'); 
53 druhyObr=imread('kytka.jpg'); 
54 hlavniAxes=axes('Position',[0 0 1 1]); 
55 image(hlavniObr); 
56 axis off 
57 prvniAxes=axes('Units','pixels',... 
58        'Position',[200 152 230 35]); 
59 image(prvniObr,'ButtonDownFcn','stromek'); 
60 axis off 
61 druhyAxes=axes('Units','pixels',... 
62     'Position',[200 65 230 35]); 
63 image(druhyObr,'ButtonDownFcn','kytka'); 
64 axis off 
 
6. New picture on button click 
 

This task is connected with the previous example, see similar figure 5 and lines 65 to 71. If 
you click “the button”, the button changes the color for a while, i.e. for 0.5 s, line 69. 
Actually, you set the axes, which will be “the button”, as active, line 65. You read the image 
to the Matlab Workspace variable, line 66, and draw it in the selected axes, line 67, and hide 
the description of axes, line 68. To keep the illusion of the button, you draw the previous 
picture back, line 70, together with the option to be clicked again, i.e. there is 
ButtonDownFcn property included, line 70, there will be called the file kytka.m if you click 
“the button”. 
  
65 set(hFigure,'CurrentAxes',druhyAxes); 
66 cervKytka=imread('kytka1.jpg'); 
67 image(cervKytka); 
68 axis off 
69 pause(0.5); 
70 image(druhyObr,'ButtonDownFcn','kytka'); 
71 axis off 
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Fig. 5. New picture on “button” click. 

 
7. Set of buttons with your pictures in dialog, each button 
is pressed on given key 
 

Typical task for simple menu controlled by keyboard is the following one. You have a list of 
menu items such as in figure 6. The list is controlled by 3 keys. First key is used for moving 
up. One press means one item up. Second key is used for moving down and the last key 
selects the menu item. Menu in figure 6 has five items namely New game, Load game, Game 
help, Options, Exit. Function for menu control is shown as the source code in lines 72 to 173.  
Each menu item is represented by its own axes object. There are two pictures for each 
menu item, black for inactive state and grey for active item. The grey picture is shown when 
the item is selected or chosen. Moving up is realized by “w” key – line 75, down by “s” key –
line 79 and selection by “l” key – line 83. You should be familiar with the basics of 
programming in Matlab to fully understand it. Let us describe the function in brief. All 
necessary variables are loaded before the function body using the line 73, file defineglobal.m 
Lines 74 to 105 show the menu control and selection. Line 74 shows how to load the key 
pressed – there is CurrentCharacter property for get function, and dMenu is the dialog 
identifier, lines 75 - 82 show moving up ad down. Lines 106 – 172 show the way of changing 
the pictures during move or selection. For one change of menu item all pictures are 
redrawn. This tip is based on the work of Hrubos consulted by me (Hrubos, 2009). 
 
 
 
 

 

72 function keyboardmenu                                                    
73 defineglobal 
74 switch lower(get(dMenu,'CurrentCharacter')) 
75     case 'w'  % up 
76      if kPosition <= 5 && kPosition > 1  
77          kPosition = kPosition - 1; 
78      end 
79     case 's'  % down 
80      if kPosition < 5 && kPosition >= 1  
81          kPosition = kPosition + 1; 
82      end  
83     case 'l' 
84      if kPosition == 1  
85        set(dMenu,'Visible','off'); 
86          levelA                                                      
87      end 
88      if kPosition == 2  
89         loadgame 
90         set(dLoad,'Visible','on'); 
91     end 
92      if kPosition == 3  
93         gamehelp 
94      end 
95      if kPosition == 4  
96         set(dOptions,'Visible','on'); 
97      end 
98     if kPosition == 5 
99         set(dMenu,'Visible','off'); 
100         clear all 
101         exitmenu = 1; 
102      end 
103     otherwise 
104  wavplay(zMenu,zMenuF) 
105 end 
106 if exitmenu == 1 
107  clear all                                                         
108  return 
109 else 
110     set(dMenu, 'Units', 'pixels'); 
111     if kPosition == 1 
112       set(0,'CurrentFigure',dMenu); 
113       set(dMenu,'CurrentAxes',dMenuNewGameAxes); 
114       image(oNewGame1); axis off; 
115       set(dMenu,'CurrentAxes',dMenuLoadGameAxes); 
116       image(oLoadGame0); axis off; 
117       set(dMenu,'CurrentAxes',dMenuGameHelpAxes);                        
118       image(oGameHelp0); axis off; 
119       set(dMenu,'CurrentAxes',dMenuOptionsAxes); 
120       image(oOptions0); axis off; 
121       set(dMenu,'CurrentAxes',dMenuExitAxes);                            
122       image(oExit0); axis off; 



Tips and tricks for programming in Matlab 9

 

 
Fig. 5. New picture on “button” click. 

 
7. Set of buttons with your pictures in dialog, each button 
is pressed on given key 
 

Typical task for simple menu controlled by keyboard is the following one. You have a list of 
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identifier, lines 75 - 82 show moving up ad down. Lines 106 – 172 show the way of changing 
the pictures during move or selection. For one change of menu item all pictures are 
redrawn. This tip is based on the work of Hrubos consulted by me (Hrubos, 2009). 
 
 
 
 

 

72 function keyboardmenu                                                    
73 defineglobal 
74 switch lower(get(dMenu,'CurrentCharacter')) 
75     case 'w'  % up 
76      if kPosition <= 5 && kPosition > 1  
77          kPosition = kPosition - 1; 
78      end 
79     case 's'  % down 
80      if kPosition < 5 && kPosition >= 1  
81          kPosition = kPosition + 1; 
82      end  
83     case 'l' 
84      if kPosition == 1  
85        set(dMenu,'Visible','off'); 
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87      end 
88      if kPosition == 2  
89         loadgame 
90         set(dLoad,'Visible','on'); 
91     end 
92      if kPosition == 3  
93         gamehelp 
94      end 
95      if kPosition == 4  
96         set(dOptions,'Visible','on'); 
97      end 
98     if kPosition == 5 
99         set(dMenu,'Visible','off'); 
100         clear all 
101         exitmenu = 1; 
102      end 
103     otherwise 
104  wavplay(zMenu,zMenuF) 
105 end 
106 if exitmenu == 1 
107  clear all                                                         
108  return 
109 else 
110     set(dMenu, 'Units', 'pixels'); 
111     if kPosition == 1 
112       set(0,'CurrentFigure',dMenu); 
113       set(dMenu,'CurrentAxes',dMenuNewGameAxes); 
114       image(oNewGame1); axis off; 
115       set(dMenu,'CurrentAxes',dMenuLoadGameAxes); 
116       image(oLoadGame0); axis off; 
117       set(dMenu,'CurrentAxes',dMenuGameHelpAxes);                        
118       image(oGameHelp0); axis off; 
119       set(dMenu,'CurrentAxes',dMenuOptionsAxes); 
120       image(oOptions0); axis off; 
121       set(dMenu,'CurrentAxes',dMenuExitAxes);                            
122       image(oExit0); axis off; 
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123     elseif kPosition == 2 
124       set(0,'CurrentFigure',dMenu); 
125       set(dMenu,'CurrentAxes',dMenuNewGameAxes); 
126       image(oNewGame0);axis off; 
127       set(dMenu,'CurrentAxes',dMenuLoadGameAxes); 
128       image(oLoadGame1);axis off; 
129       set(dMenu,'CurrentAxes',dMenuGameHelpAxes); 
130       image(oGameHelp0); axis off; 
131       set(dMenu,'CurrentAxes',dMenuOptionsAxes); 
132       image(oOptions0); axis off; 
133       set(dMenu,'CurrentAxes',dMenuExitAxes); 
134       image(oExit0); axis off; 
135     elseif kPosition == 3 
136       set(0,'CurrentFigure',dMenu); 
137       set(dMenu,'CurrentAxes',dMenuNewGameAxes); 
138       image(oNewGame0); axis off; 
139       set(dMenu,'CurrentAxes',dMenuLoadGameAxes); 
140       image(oLoadGame0); axis off; 
141       set(dMenu,'CurrentAxes',dMenuGameHelpAxes); 
142       image(oGameHelp1); axis off; 
143       set(dMenu,'CurrentAxes',dMenuOptionsAxes); 
144       image(oOptions0); axis off; 
145       set(dMenu,'CurrentAxes',dMenuExitAxes); 
146       image(oExit0); axis off; 
147     elseif kPosition == 4 
148       set(0,'CurrentFigure',dMenu); 
149       set(dMenu,'CurrentAxes',dMenuNewGameAxes); 
150       image(oNewGame0); axis off; 
151       set(dMenu,'CurrentAxes',dMenuLoadGameAxes); 
152       image(oLoadGame0); axis off; 
153       set(dMenu,'CurrentAxes',dMenuGameHelpAxes); 
154       image(oGameHelp0); axis off; 
155       set(dMenu,'CurrentAxes',dMenuOptionsAxes); 
156       image(oOptions1); axis off; 
157       set(dMenu,'CurrentAxes',dMenuExitAxes); 
158       image(oExit0); axis off; 
159     elseif kPosition == 5 
160       set(0,'CurrentFigure',dMenu); 
161       set(dMenu,'CurrentAxes',dMenuNewGameAxes); 
162       image(oNewGame0); axis off; 
163       set(dMenu,'CurrentAxes',dMenuLoadGameAxes); 
164       image(oLoadGame0); axis off; 
165       set(dMenu,'CurrentAxes',dMenuGameHelpAxes); 
166       image(oGameHelp0); axis off; 
167       set(dMenu,'CurrentAxes',dMenuOptionsAxes); 
168       image(oOptions0); axis off; 
169       set(dMenu,'CurrentAxes',dMenuExitAxes); 
170       image(oExit1); axis off; 
171     else 
172     end 
173 end 

 

 
Fig. 6. Part of dialog with set of “buttons” as pictures 

 
8. Showing the vectors in dialogs 
 

This part shows an example how to show vectors in dialog. There are several possibilities 
but this example seems to me as the simplest one. The realisation is provided in lines 174 to 
251, and sample output is shown in figure 7. It is based on the following.  The vectors of 
same length with numeric values change their data type using num2str function and they 
are added into one listbox in dialogue, each column for one data vector. And now the 
short description of provided source code is going to be outlined. Lines 174 and 175 
predefine the name of colors to be used in the dialog, lines 176 - 180 defines new dialog, and 
lines 181 – 189 new menu and its items. The background of the dialog was created in Adobe 
Photoshop and the code for showing it in the dialog is in lines 190 – 192. There are several 
objects in the dialog. They are given by the code in lines 196 – 241. The position of objects 
depends on the screen resolution and therefore the k_y variable is used. The most important 
code for this example is in lines 242 – 251. The data are given via the String property, lines 
250 and 251 have to be one line actually! The data type change is realized for the matrix, 
because each input in lines 250 and 251 is actually the vector.  
 
174  cerna=[0 0 0];   
175  cervena=[1 0 0]; 
176  hf6=figure('Color',cerna,... 
177         'Name','Tabulka t, u1, y1, w1',... 
178         'MenuBar','None',... 
179         'Resize','off',... 
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123     elseif kPosition == 2 
124       set(0,'CurrentFigure',dMenu); 
125       set(dMenu,'CurrentAxes',dMenuNewGameAxes); 
126       image(oNewGame0);axis off; 
127       set(dMenu,'CurrentAxes',dMenuLoadGameAxes); 
128       image(oLoadGame1);axis off; 
129       set(dMenu,'CurrentAxes',dMenuGameHelpAxes); 
130       image(oGameHelp0); axis off; 
131       set(dMenu,'CurrentAxes',dMenuOptionsAxes); 
132       image(oOptions0); axis off; 
133       set(dMenu,'CurrentAxes',dMenuExitAxes); 
134       image(oExit0); axis off; 
135     elseif kPosition == 3 
136       set(0,'CurrentFigure',dMenu); 
137       set(dMenu,'CurrentAxes',dMenuNewGameAxes); 
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144       image(oOptions0); axis off; 
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155       set(dMenu,'CurrentAxes',dMenuOptionsAxes); 
156       image(oOptions1); axis off; 
157       set(dMenu,'CurrentAxes',dMenuExitAxes); 
158       image(oExit0); axis off; 
159     elseif kPosition == 5 
160       set(0,'CurrentFigure',dMenu); 
161       set(dMenu,'CurrentAxes',dMenuNewGameAxes); 
162       image(oNewGame0); axis off; 
163       set(dMenu,'CurrentAxes',dMenuLoadGameAxes); 
164       image(oLoadGame0); axis off; 
165       set(dMenu,'CurrentAxes',dMenuGameHelpAxes); 
166       image(oGameHelp0); axis off; 
167       set(dMenu,'CurrentAxes',dMenuOptionsAxes); 
168       image(oOptions0); axis off; 
169       set(dMenu,'CurrentAxes',dMenuExitAxes); 
170       image(oExit1); axis off; 
171     else 
172     end 
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because each input in lines 250 and 251 is actually the vector.  
 
174  cerna=[0 0 0];   
175  cervena=[1 0 0]; 
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180         'NumberTitle','off'); 
181  hmenu4=uimenu('label','Zobrazit tabulku :'); 
182  hmenu42=uimenu(hmenu4,'label','t,u2,y2,w2',... 
183                 'CallBack','tu2y2w2'); 
184  hmenu43=uimenu(hmenu4,'label','t,e1,e2',... 
185     'CallBack','te1e2'); 
186  hmenu44=uimenu(hmenu4,'label','t,T11,T21,K1',... 
187     'CallBack','tT11T21K1'); 
188  hmenu45=uimenu(hmenu4,'label','t,T12,T22,K2',... 
189     'CallBack','tT12T22K2');    
190 axes('Position',[0 0 1 1]); 
191 image(vysledky); 
192 axis off; 
193 close(hf10); 
194 dial7; 
195 pause(1); 
196 text17 = uicontrol(hf6,... 
197      'HorizontalAlignment','center',... 
198      'BackgroundColor',cerna, ... 
199      'ForegroundColor',cervena, ... 
200      'Units','points', ... 
201     'Position',[134 k_y*213.25 29.75 13.5], ... 
202     'Style','text', ... 
203     'String','t(s)'); 
204 text18 = uicontrol(hf6,... 
205      'HorizontalAlignment','center',... 
206      'BackgroundColor',cerna, ... 
207      'ForegroundColor',cervena, ... 
208      'Units','points', ... 
209     'Position',[174 k_y*213.25 29.75 13.5], ... 
210     'Style','text', ... 
211     'String','u1'); 
212 text19 = uicontrol(hf6,... 
213      'HorizontalAlignment','center',... 
214      'BackgroundColor',cerna, ... 
215      'ForegroundColor',cervena, ... 
216      'Units','points', ... 
217     'Position',[219 k_y*213.25 29.75 13.5], ... 
218     'Style','text', ... 
219     'String','y1'); 
220 text20 = uicontrol(hf6,... 
221      'HorizontalAlignment','center',... 
222      'BackgroundColor',cerna, ... 
223      'ForegroundColor',cervena, ... 
224      'Units','points', ... 
225     'Position',[259 k_y*213.25 29.75 13.5], ... 
226     'Style','text', ... 
227     'String','w1'); 
228 text24 = uicontrol(hf6,... 
229      'HorizontalAlignment','right',... 
230      'BackgroundColor',cerna, ... 

 

231      'ForegroundColor',cervena, ... 
232      'Units','points', ... 
233     'Position',[130 k_y*109.25 264.75 k_y*121.5], ... 
234     'Style','frame'); 
235 text24 = uicontrol(hf6,... 
236      'HorizontalAlignment','right',... 
237      'BackgroundColor',cerna, ... 
238      'ForegroundColor',cervena, ... 
239      'Units','points', ... 
240     'Position',[130 k_y*109.25 264.75 k_y*101.5], ... 
241       'Style','frame'); 
242   ddd=size(param1); d1=ddd(1,2); 
243   text24 = uicontrol(hf6,... 
244        'HorizontalAlignment','right',... 
245        'BackgroundColor',cerna, ... 
246        'ForegroundColor',cervena, ... 
247        'Units','points', ... 
248       'Position',[134 k_y*113.25 256.75 k_y*93.5], ... 
249       'Style','listbox', ... 
250       'String',num2str([param1(:,d1) real(simout1(:,1))  
251 real(simout1(:,2)) real(simout1(:,3))])); 
 

 
Fig. 7. Dialog with vectors, data, shown in table 
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180         'NumberTitle','off'); 
181  hmenu4=uimenu('label','Zobrazit tabulku :'); 
182  hmenu42=uimenu(hmenu4,'label','t,u2,y2,w2',... 
183                 'CallBack','tu2y2w2'); 
184  hmenu43=uimenu(hmenu4,'label','t,e1,e2',... 
185     'CallBack','te1e2'); 
186  hmenu44=uimenu(hmenu4,'label','t,T11,T21,K1',... 
187     'CallBack','tT11T21K1'); 
188  hmenu45=uimenu(hmenu4,'label','t,T12,T22,K2',... 
189     'CallBack','tT12T22K2');    
190 axes('Position',[0 0 1 1]); 
191 image(vysledky); 
192 axis off; 
193 close(hf10); 
194 dial7; 
195 pause(1); 
196 text17 = uicontrol(hf6,... 
197      'HorizontalAlignment','center',... 
198      'BackgroundColor',cerna, ... 
199      'ForegroundColor',cervena, ... 
200      'Units','points', ... 
201     'Position',[134 k_y*213.25 29.75 13.5], ... 
202     'Style','text', ... 
203     'String','t(s)'); 
204 text18 = uicontrol(hf6,... 
205      'HorizontalAlignment','center',... 
206      'BackgroundColor',cerna, ... 
207      'ForegroundColor',cervena, ... 
208      'Units','points', ... 
209     'Position',[174 k_y*213.25 29.75 13.5], ... 
210     'Style','text', ... 
211     'String','u1'); 
212 text19 = uicontrol(hf6,... 
213      'HorizontalAlignment','center',... 
214      'BackgroundColor',cerna, ... 
215      'ForegroundColor',cervena, ... 
216      'Units','points', ... 
217     'Position',[219 k_y*213.25 29.75 13.5], ... 
218     'Style','text', ... 
219     'String','y1'); 
220 text20 = uicontrol(hf6,... 
221      'HorizontalAlignment','center',... 
222      'BackgroundColor',cerna, ... 
223      'ForegroundColor',cervena, ... 
224      'Units','points', ... 
225     'Position',[259 k_y*213.25 29.75 13.5], ... 
226     'Style','text', ... 
227     'String','w1'); 
228 text24 = uicontrol(hf6,... 
229      'HorizontalAlignment','right',... 
230      'BackgroundColor',cerna, ... 

 

231      'ForegroundColor',cervena, ... 
232      'Units','points', ... 
233     'Position',[130 k_y*109.25 264.75 k_y*121.5], ... 
234     'Style','frame'); 
235 text24 = uicontrol(hf6,... 
236      'HorizontalAlignment','right',... 
237      'BackgroundColor',cerna, ... 
238      'ForegroundColor',cervena, ... 
239      'Units','points', ... 
240     'Position',[130 k_y*109.25 264.75 k_y*101.5], ... 
241       'Style','frame'); 
242   ddd=size(param1); d1=ddd(1,2); 
243   text24 = uicontrol(hf6,... 
244        'HorizontalAlignment','right',... 
245        'BackgroundColor',cerna, ... 
246        'ForegroundColor',cervena, ... 
247        'Units','points', ... 
248       'Position',[134 k_y*113.25 256.75 k_y*93.5], ... 
249       'Style','listbox', ... 
250       'String',num2str([param1(:,d1) real(simout1(:,1))  
251 real(simout1(:,2)) real(simout1(:,3))])); 
 

 
Fig. 7. Dialog with vectors, data, shown in table 
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9. Nicely drawn results from Simulink 
 

Simulink provides Scope block for drawing the results of simulation. It is a fast solution. If 
you want to manage the look of the graph, saving the data to Matlab Workspace and 
drawing them by the chosen plotting function is the easiest way. The following example 
shows it, lines 252 to 266 and figures 8 to 10. 
 
252 close all 
253 clear all 
254 clc 
255 a=0.1; b=0.01; c=0.5; 
256 sim('untitled1',[0 10]) 
257 t=v(:,1); 
258 x=v(:,2); 
259 Dx=v(:,3); 
260 plot(t,x,'r') 
261 hold on 
262 plot(t,Dx,'k') 
263 title('x and its derivation') 
264 xlabel('time [t]') 
265 ylabel('x(t), Dx(t)') 
266 legend('x(t)', 'Dx(t)') 
 

 
Fig. 8. Simulink model with Scope and To Workspace blocks 

 

 
Fig. 9. Setting the parameters of Scope block 
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Fig. 10. Graphical output from Simulink (left) and using plot function (right) 
 
Firstly, the Simulink model named as untitled1.mdl is created according to figure 8. To 
Workspace block saves the data into v variable as an array, see the settings in figure 9. Time is 
the first input to the To Workspace block. Simulation of the model is called by sim function, 
line 256. You can view the simulation results by clicking the blocks Scope and Scope1 in the 
model, see figure 10 – left part. Lines 257 – 266 are responsible for nice and easy-to-edit 
graphical output, right part of figure 10. The data are sent to variables in lines 257 – 259. 

 
10. Conclusion 
 

This chapter presented some tips and tricks for programming in Matlab which appeared to 
be useful during the classes and it might be useful mostly for students and beginners. 
Almost all of them are oriented on working with GUI, only one tip is used with Simulink, 
the most common Matlab enlargement. The reader should be familiar with the basics of 
Matlab programming. 
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1. Introduction     

In the institutes where laboratory facilities are not that much available, and industries are 
located in remote areas, Personal Computer (PC) can be used to facilitate science and 
engineering education. Programming and simulation tools can be used widely for preparing 
such a PC based setting for students. But to develop a software, toolbox or standalone 
applications one had to rely on C++, Visual basic, or Java. For a computer science or 
information technology student it is easy to program in these environments but for other 
science and engineering students this pose a problem since they are not familiar with these 
programs and require excellent programming expertise. MATLAB (MathWorks, 2009), 
flagship software in scientific computing, is extensively used all over the world. Particular 
factors that support the selection of MATLAB are: 
 
• A flexible software structure of MATLAB comprising libraries, models, and programs 
enables one to integrate different model components in one package conveniently. 
 
• Fast development with MATLAB using powerful calculation and visualization means of 
the package enables one to expand the software quickly and efficiently without developing 
any extra programming tools. 
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grow even faster in the future. 
 
The use of MATLAB (short for MATrix LABoratory) is increasing day by day (McMohan, 
2007; Littlefield & Hanselman, 2004). Science and engineering students use this software 
broadly for educational purposes (Chapman, 2007). Graphical User Interface (GUI) is an 
environment available with renowned software that gives the option to the user developing 
software packages for personal and problem specific uses. It is a way of arranging 
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information on a computer screen that is easy to understand and use because it uses icons, 
menus and a mouse rather than only text and programs written in high level language 
which is often not much handy for others except for programmers. The rapidly developing 
software MATLAB for technical computation is giving two releases per annum with 
extended capabilities which enhances user performance and boosts customer satisfaction. 
Collaterally, its size is increasing. With every release MATLAB takes a new look with new 
features and changes. Each version is accompanied by major bug fixes, enhanced help 
menus, removal of undocumented deprecated functions, and development of alternative 
functions. In case of GUI this change is more rapid, functions are being obsolete and new 
efficient functions are generated. Due to this reason a GUI developed in one version may not 
be used in other version (Marchand, 2002; Smith, 2006). So other ways must be taken into 
deliberation to solve this setback. This chapter presents a guide to develop standalone 
software tools and/or packages using the enormous competence of MATLAB GUI which 
can be used in educational and training institutes for learning purposes of freshman or 
sophomore students. 
 
But another problem arises simultaneously, the huge size and memory requirements of 
these new releases of MATLAB prevents its uses on the PCs having low memory. 
Sometimes the programs developed by the recent versions of MATLAB cannot be used by 
the previous ones due to lack of version compatibility option. So, although instructors can 
develop interactive tutorial packages for students using the recent versions of MATLAB 
which they can afford easily, the developed software cannot be used in the laboratories 
having older facilities. Students also cannot take the advantage of using the new software 
since he does not have the financial capacity of purchasing newer versions or upgrading 
MATLAB and high performance PC. To solve this hindrance MATLAB standalone project 
development tools can be used. 
 
This chapter describes the development of an interactive computer based GUI for MATLAB 
which can be used in any Pentium III graded PC. It has been prepared for anyone who has 
little or no exposure to MATLAB. Readers are guided through new concepts to build 
easy‐to‐use GUI, acting as a ‘wrapper’ for experimental simulation codes written by the 
educator. Even though the chapter is written based on the recent release of MATLAB 2009a, 
this can be used as a guide for other versions starting from MATLAB 6. It is designed to 
relieve the coder from most of the programming burden, and to provide with a friendly, 
consistent approach to the development of standalone MATLAB programs. 

 
2. Getting Started 

MATLAB GUI can be built in two ways.  
(a) Using GUIDE (GUI Development Environment) 
(b) Coding from MATLAB editor 

 
The first approach of building GUI is straightforward and will be discussed in this chapter. 
Once completed several examples of building GUI, anyone can learn how to code from 
MATLAB editor. 
 

 

To initiate GUIDE let’s write guide in the MATLAB command window and press Enter key. 
This will open the GUIDE Quick Start window as shown in Fig. 1, where there are two tabs 
(Create NEW GUI and Open Existing GUI). Under the Create New GUI tab four GUI 
templates are available. Selecting the Blank GUI (Default) template and pressing Ok at the 
bottom of the window opens the design window as shown in Fig. 2. 
 

 
Fig. 1. GUIDE quick start window 
 
The GUI is not yet saved, so at the top of the window it is shown untitled.fig. Once the work 
is saved the title of the GUI will be reflected here. *.fig is the extension of GUI figure files. 
Generally, a GUI requires two files the figure (*.fig) files where various components are 
aligned and the code (*.m) files where the coding is done. There is also provision to run the 
GUI using the single *.m file. At the top of the window Menu and Shortcuts can be found. 
To the right there are some GUI controls which are very important to learn for building GUI. 
The blank portion is used for the design purpose of the GUI. 
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Fig. 2. GUIDE design window 

 
3. GUI Components 

Some basic GUI components are 
(a) Push Button 
(b) Slider 
(c) Radio Button 
(d) Check Box 
(e) Edit Text 
(f) Static Text 
(g) Pop-up Menu 
(h) Listbox 
(i) Toggle Button 
(j) Table 
(k) Axes 
(l) Panel 
(m) Button Group 
(n) ActiveX Control 

 

These components may vary depending on the version of MATLAB. These examples are 
taken from MATLAB 2009a version.  

 
4. A Simple Calculator  

The target of this chapter is to give the reader a quick look at GUI of MATLAB rather than 
discussing each and every item. Readers will be able to learn with examples. The first 
example here will be considered to build a simple calculator. Two numbers provided by 
user will be added, subtracted, multiplied, and divided. The result will be displayed in a 
box. The first step of building a GUI is to have a rough sketch of the GUI. To build a simple 
calculator some basic components are needed: 

(a) Two input boxes (Edit text) 
(b) One  output box (Static text) 
(c) Four options for addition, subtraction, multiplication, and division (this can be 

accomplished in many ways. Here let’s take four Radio Buttons) 
(d) One Calculate button (Push Button) 

 
To enhance the GUI one also can add some static texts to show various signs. In this 
example two more static texts are used. One is for the sign of calculation (+,-,x,/) and the 
other is to show (=) sign. The GUI will look like Fig. 3. 
 

 
Fig. 3. A simple calculator 

 
5. Adding Components  

Now since the concept of the GUI has been built, the next step is to add all components 
required for building the calculators. Adding components to the *.fig file is very easy. Just 
click the item on the left, drag and drop to the blank space and the component is added. 
First consider adding the two static text components for entering two numbers. Select Edit 
Text and drag and drop to the blank space of the figure two times. Now the GUI will 
somewhat look like Fig. 4. 
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Fig. 4. Adding edit text controls to the GUI 
 
Now the newly added editable text boxes must be modified as per the need of the GUI. Here 
two numbers are added; hence it is a good idea to give two numbers as input from the very 
first so the inexperienced user will understand the purpose of the GUI. This task can be 
performed using Property Inspector. 

 
6. Property Inspector  

Now right clicking on the component and selecting the Property Inspector will open the 
window as in Fig. 5. The left column gives the property name and the right column shows 
property values. String and Tag properties worth emphasizing since it is essential for 
programming a GUI. The String property has value Edit Text. Anything can be written here. 
Lets write 10 here and change the Tag to number1. Now the property inspector should look 
like Fig. 6. Similarly, change the property of the second Edit text. It is changed as: String -15 
and Tag number2. 
 

 

 
Fig. 5. Property inspector 
 

 
Fig. 6. Edited property inspector 
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7. Aligning Objects  

One can align objects in the GUI to make the outlook of the GUI better. It can be done by 
clicking Tools menu and then selecting Align Objects. Then using the controls there objects 
can be aligned as in Fig. 7. 
 

 
Fig. 7. Aligning objects 

 
8. Adding More Components  

More components can be added to the GUI. In Fig. 8 some Static Text controls are added 
and Fig. 9 shows the complete GUI with all components, Radio and Push Buttons are added 
here. The property modified for these components are given in Table 1. 
 

Component FontSize String Tag 
Edit Text1 15 10 edit1 
Edit Text1 15 -15 edit2 

Static Text1 15 + text1 
Static Text2 15 = text2 
Static Text3 15 -5 text3 
Push Button 15 Calculate pushbutton1 

Radio Button1 15 ADD radiobutton1 
Radio Button2 15 SUBTRACT radiobutton2 
Radio Button3 15 MULTIPLY radiobutton3 
Radio Button4 15 DIVIDE radiobutton4 

Table 1. Properties of various controls used in this chapter 

 

 
Fig. 8. Adding static text to GUI 
 

 
Fig. 9. Complete figure of a simple calculator 
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9. Programming the GUI  

Now all the components are added. The GUI is saved in the name test1.fig. The rest task is 
coding the M-file. It can be accessed by clicking M-file Editor from View menu. When the m-
file opens it somewhat looks like Fig. 10. This is a multi-function m-file. Codes are written 
under various functions. Functions are generated automatically. The opening function and 
callback functions are most important. Functions can be accessed as shown in Fig. 11.  
 
When the GUI is first open the default action will be to work as adder. For this purpose let’s 
modify the opening function of the GUI as in Fig. 12. 
 

 
Fig. 10. M-file for simple calculator 
 

 

 
Fig. 11. Accessing functions in *.m file 
 

 
Fig. 12. Opening function of simple calculator 
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10. Programming Radio and Push Button  

The radiobuttons should be mutually exclusive and when a radiobutton is selected 
corresponding operating notation should be reflected in the symbol text box. This job is 
done in the radiobutton callback function. One example (multiply radio button) is given in 
Fig. 13. The Calculate (Push) button is also programmed as in Fig. 14.  
 

 
Fig. 13. Radio Button callback 
 

 
Fig. 14. Push Button callback 
 

 

11. Running the GUI  

If the GUI is completed programming and run (whole code is given later) the window 
should look somewhat like Fig. 15 and if someone wants to multiply, the window will be 
like Fig. 16.  
 

 
Fig. 15. Running GUI for the first time 
 

 
Fig. 16. Modifying and running GUI for multiplication 
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12. Some Additional Tools  

There are also some additional options to make the GUI more attractive. Two examples are 
Object browser and Tab editor which are given in Fig. 17 and 18 respectively. The Object 
Browser displays a hierarchical list of the objects in the figure. It can be opened from View > 
Object Browser or by click the Object Browser icon  on the GUIDE toolbar. 
 

 
Fig. 17. Object browser 
 
A GUI's tab order is the order in which components of the GUI acquire focus when a user 
presses the Tab key on the keyboard. Focus is generally denoted by a border or a dotted 
border. To examine and change the tab order of the panel components, click the panel 
background to select it, then select Tab Order Editor in the Tools menu of the Layout Editor. 

 

The Tab Order Editor displays the panel's components in their current tab order. To change 
the tab order, select a component and press the up or down arrow to move the component 
up or down in the list. 
 

 
Fig. 18. Tab editor 

 
13. Running GUI from a Single *.m File  

Up to this point to run a GUI, both *.fig and *.m files are required. A GUI can also run from 
a single *.m file which will be demonstrated here. At first go to the test1.fig file in the 
GUIDE and select Export from the File menu as depicted in Fig. 19. Let’s save the GUI in the 
name test_standard.m. 
 

 
Fig. 19. Running GUI from a single *.m file 
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14. Standalone Application Project  

In this final step, the standalone project will be developed. Enter deploytool in the MATLAB 
command window (It may be needed to setup the MATLAB compiler by entering        
mbuild –setup and following steps in the command window). The MATLAB development 
project window appears as in Fig. 20. Clicking the new deployment project icon as shown in 
Fig. 20 opens a window as in Fig. 21. 
 

 
Fig. 20. Deployment tool 
 
Here the project needs to be saved (let’s save it by the name test_project.prj). After that, files 
should be added to the project (here test_standard.m) which is given in Fig. 22. The state of 
the deployment tool window after the file have been added is shown in Fig. 23. The next 
step is to build the project which is given in Fig. 24. After the compilation process the 
executable file will be available. The file can be found in the specified location in the distrib 
folder. In this project the file name should be test_project.exe. If the file is clicked in any PC it 
will run as in Fig. 25. 

 

 
Fig. 21. New deployment project window 
 

 
Fig. 22. Adding file to deployment tool 
 

  
Fig. 23. Deployment tool window after adding file 
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Fig. 24. Build Project 
 

 
Fig. 25. Running the standalone project 

 
15. Conclusion 

A standalone MATLAB project is discussed here which will be very useful for educational 
purposes. Students can develop their projects in home and demonstrate in the class. 
Teachers can build excellent software packages in powerful computers and without can run 
it the classroom PCs with limited resource. There is no need of version compatibility, no 
need of huge memory requirement. After completing the project in this chapter it will open 

 

a new horizon for MATLAB users. For first time users codes are given in the next article. In 
case of any question regarding this issue the author can be contacted at 
nasiruzzaman@ieee.org. 

 
16. MATLAB Code 

function varargout = test1(varargin) 
% TEST1 M-file for test1.fig 
%      TEST1, by itself, creates a new TEST1 or raises the existing 
%      singleton*. 
% 
%      H = TEST1 returns the handle to a new TEST1 or the handle to 
%      the existing singleton*. 
% 
%      TEST1('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in TEST1.M with the given input arguments. 
% 
%      TEST1('Property','Value',...) creates a new TEST1 or raises the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before test1_OpeningFcn gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to test1_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
 
% Edit the above text to modify the response to help test1 
 
% Last Modified by GUIDE v2.5 28-May-2010 22:04:08 
 
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @test1_OpeningFcn, ... 
                   'gui_OutputFcn',  @test1_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
 
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
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                   'gui_OutputFcn',  @test1_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
 
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
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else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
 
 
% --- Executes just before test1 is made visible. 
function test1_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to test1 (see VARARGIN) 
 
% Choose default command line output for test1 
handles.output = hObject; 
 
% Update handles structure 
guidata(hObject, handles); 
 
% UIWAIT makes test1 wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
 
clc 
movegui('center') 
set(handles.radiobutton1, 'Value', 1); 
set(handles.radiobutton2, 'Value', 0); 
set(handles.radiobutton3, 'Value', 0); 
set(handles.radiobutton4, 'Value', 0); 
 
 
% --- Outputs from this function are returned to the command line. 
function varargout = test1_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Get default command line output from handles structure 
varargout{1} = handles.output; 
 
 
 
function number1_Callback(hObject, eventdata, handles) 
% hObject    handle to number1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 

 

% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of number1 as text 
%        str2double(get(hObject,'String')) returns contents of number1 as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function number1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to number1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
 
function number2_Callback(hObject, eventdata, handles) 
% hObject    handle to number2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of number2 as text 
%        str2double(get(hObject,'String')) returns contents of number2 as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function number2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to number2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
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else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
 
 
% --- Executes just before test1 is made visible. 
function test1_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to test1 (see VARARGIN) 
 
% Choose default command line output for test1 
handles.output = hObject; 
 
% Update handles structure 
guidata(hObject, handles); 
 
% UIWAIT makes test1 wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
 
clc 
movegui('center') 
set(handles.radiobutton1, 'Value', 1); 
set(handles.radiobutton2, 'Value', 0); 
set(handles.radiobutton3, 'Value', 0); 
set(handles.radiobutton4, 'Value', 0); 
 
 
% --- Outputs from this function are returned to the command line. 
function varargout = test1_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Get default command line output from handles structure 
varargout{1} = handles.output; 
 
 
 
function number1_Callback(hObject, eventdata, handles) 
% hObject    handle to number1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 

 

% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of number1 as text 
%        str2double(get(hObject,'String')) returns contents of number1 as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function number1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to number1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
 
function number2_Callback(hObject, eventdata, handles) 
% hObject    handle to number2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of number2 as text 
%        str2double(get(hObject,'String')) returns contents of number2 as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function number2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to number2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
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% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
a = str2double(get(handles.number1, 'String')); 
b=  str2double(get(handles.number2, 'String')); 
index1 = get(handles.radiobutton1, 'Value'); 
index2 = get(handles.radiobutton2, 'Value'); 
index3 = get(handles.radiobutton3, 'Value'); 
index4 = get(handles.radiobutton4, 'Value'); 
if index1==1 
    c=a+b; 
else if index2==1 
        c=a-b; 
    else if index3==1 
            c=a*b; 
        else if index4==1 
                c=a/b; 
            end 
        end 
    end 
end 
set(handles.text3, 'String',c); 
 
 
 
% --- Executes on button press in radiobutton1. 
function radiobutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to radiobutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of radiobutton1 
set(handles.radiobutton1, 'Value', 1); 
set(handles.radiobutton2, 'Value', 0); 
set(handles.radiobutton3, 'Value', 0); 
set(handles.radiobutton4, 'Value', 0); 
set(handles.text1, 'String', '+'); 
 
% --- Executes on button press in radiobutton2. 
function radiobutton2_Callback(hObject, eventdata, handles) 
% hObject    handle to radiobutton2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of radiobutton2 
set(handles.radiobutton1, 'Value', 0); 

 

set(handles.radiobutton2, 'Value', 1); 
set(handles.radiobutton3, 'Value', 0); 
set(handles.radiobutton4, 'Value', 0); 
set(handles.text1, 'String', '-'); 
 
 
% --- Executes on button press in radiobutton3. 
function radiobutton3_Callback(hObject, eventdata, handles) 
% hObject    handle to radiobutton3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of radiobutton3 
set(handles.radiobutton1, 'Value', 0); 
set(handles.radiobutton2, 'Value', 0); 
set(handles.radiobutton3, 'Value', 1); 
set(handles.radiobutton4, 'Value', 0); 
set(handles.text1, 'String', 'x'); 
 
 
% --- Executes on button press in radiobutton4. 
function radiobutton4_Callback(hObject, eventdata, handles) 
% hObject    handle to radiobutton4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of radiobutton4 
set(handles.radiobutton1, 'Value', 0); 
set(handles.radiobutton2, 'Value', 0); 
set(handles.radiobutton3, 'Value', 0); 
set(handles.radiobutton4, 'Value', 1); 
set(handles.text1, 'String', '/'); 
 
 
% --- Executes on slider movement. 
function slider1_Callback(hObject, eventdata, handles) 
% hObject    handle to slider1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'Value') returns position of slider 
%        get(hObject,'Min') and get(hObject,'Max') to determine range of slider 
 
 
% --- Executes during object creation, after setting all properties. 
function slider1_CreateFcn(hObject, eventdata, handles) 



Using MATLAB to develop standalone  
graphical user interface (GUI) software packages for educational purposes 39

 

% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
a = str2double(get(handles.number1, 'String')); 
b=  str2double(get(handles.number2, 'String')); 
index1 = get(handles.radiobutton1, 'Value'); 
index2 = get(handles.radiobutton2, 'Value'); 
index3 = get(handles.radiobutton3, 'Value'); 
index4 = get(handles.radiobutton4, 'Value'); 
if index1==1 
    c=a+b; 
else if index2==1 
        c=a-b; 
    else if index3==1 
            c=a*b; 
        else if index4==1 
                c=a/b; 
            end 
        end 
    end 
end 
set(handles.text3, 'String',c); 
 
 
 
% --- Executes on button press in radiobutton1. 
function radiobutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to radiobutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of radiobutton1 
set(handles.radiobutton1, 'Value', 1); 
set(handles.radiobutton2, 'Value', 0); 
set(handles.radiobutton3, 'Value', 0); 
set(handles.radiobutton4, 'Value', 0); 
set(handles.text1, 'String', '+'); 
 
% --- Executes on button press in radiobutton2. 
function radiobutton2_Callback(hObject, eventdata, handles) 
% hObject    handle to radiobutton2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of radiobutton2 
set(handles.radiobutton1, 'Value', 0); 

 

set(handles.radiobutton2, 'Value', 1); 
set(handles.radiobutton3, 'Value', 0); 
set(handles.radiobutton4, 'Value', 0); 
set(handles.text1, 'String', '-'); 
 
 
% --- Executes on button press in radiobutton3. 
function radiobutton3_Callback(hObject, eventdata, handles) 
% hObject    handle to radiobutton3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of radiobutton3 
set(handles.radiobutton1, 'Value', 0); 
set(handles.radiobutton2, 'Value', 0); 
set(handles.radiobutton3, 'Value', 1); 
set(handles.radiobutton4, 'Value', 0); 
set(handles.text1, 'String', 'x'); 
 
 
% --- Executes on button press in radiobutton4. 
function radiobutton4_Callback(hObject, eventdata, handles) 
% hObject    handle to radiobutton4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of radiobutton4 
set(handles.radiobutton1, 'Value', 0); 
set(handles.radiobutton2, 'Value', 0); 
set(handles.radiobutton3, 'Value', 0); 
set(handles.radiobutton4, 'Value', 1); 
set(handles.text1, 'String', '/'); 
 
 
% --- Executes on slider movement. 
function slider1_Callback(hObject, eventdata, handles) 
% hObject    handle to slider1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'Value') returns position of slider 
%        get(hObject,'Min') and get(hObject,'Max') to determine range of slider 
 
 
% --- Executes during object creation, after setting all properties. 
function slider1_CreateFcn(hObject, eventdata, handles) 
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% hObject    handle to slider1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: slider controls usually have a light gray background. 
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
end 
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1. Introduction

As a powerful programming and simulation tool, MATLAB®(The MathWorks, 1994) becomes
more and more important in today’s curricula of electrical engineering. Its intuitive way to
map matrices and vector algebra from mathematical formulas to program algorithms allows
an easy and fast introduction to programming basics, especially for beginners. Furthermore,
the manifold functionalities of MATLAB enable the user to abstract and solve complex en-
gineering tasks and mathematical problems, which become important when teaching core
electrical engineering and computing concepts. Thus, MATLAB is often used as a valuable
tool to develop demo applications and address real–world problems in freshman courses (De-
vens, 1999; Director et al., 1995). Many examples are given in the literature, such as introduc-
tion courses to digital signal processing (DSP) (Anderson et al., 1996; McClellan & Rosenthal,
2002; McClellan et al., 1997; 2002; Saint-Nom & Jacoby, 2005; Sturm & Gibson, 2005; Vicente
et al., 2007), applied automatic controls (Narayanan, 2005), computer programming (Azemi
& Pauley, 2008) as well as to graphical user interface (GUI) design (Lee et al., 2005). Since
MATLAB is also widely used in industry for algorithm and simulation development, the ac-
quisition of advanced programming skills in MATLAB becomes important in engineering ed-
ucation.
Besides the establishment of project–based laboratories using interactive software tools, many
practical projects showed that robotics can be used in an efficient way to teach and motivate
students (Azlan et al., 2007; Christensen et al., 2004; Cliburn, 2006; Dagdilelis et al., 2005; Klass-
ner & Anderson, 2003; Lau et al., 2001; Maher et al., 2005; Michaud, 2007; Mota, 2007; Neilsen,
2006; Patterson-McNeill & Binkerd, 2001; Pomalaza-Raez & Groff, 2003; Sharad, 2007; Vallim
et al., 2006; Williams, 2003; Ye et al., 2007). Thus, they overcome the problem of dropping
motivation during traditional and more theoretical lectures of core electrical engineering and
computing concepts. Studies showed that a pedagogical approach that places students in sit-
uations where they “feel like engineers” is likely to enhance student motivation best (Vallim
et al., 2006).
Driven by both above teaching aspects, the combination of MATLAB and robots is used for
a new first–semester learning module, established in 2007–2008 in the curriculum in Electri-
cal Engineering and Information Technology at RWTH Aachen University, Aachen, Germany
(Behrens & Aach, 2008; Behrens et al., 2008; 2010). In this laboratory for freshman students,
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termed “MATLAB meets LEGO Mindstorms”, digital signal processing is combined with
computer programming and problem–oriented engineering. It gives the students their first
insights into practical methods and basic engineering concepts and helps them to apply their
knowledge to other challenges later on in their studies. After only two months of lectures and
seminars, the students participate in this mandatory full–time eight–day project. Working
together in teams, the students enhance their first MATLAB programming skills and apply
mathematical foundations, which are taught in the affiliated lecture “Mathematical Methods
of Electrical Engineering”. To avoid an exclusive focus on programming, real–world prob-
lems and practical tasks are emulated by using LEGO®Mindstorms®NXT robots (The LEGO
Group, 2006c). Besides six mandatory exercises, the students are given time to create their
own applications and to define creative robot tasks. The students collaborate in teams of two
and four, and are involved in discussions and presentations. For a high student motivation
and an increased learning effort during the project, good supervision and a simple and in-
tuitive interface between MATLAB and the Mindstorms robots are essential to ensure fast
prototyping and program development. Based on the objective to teach MATLAB fundamen-
tals to beginners and to realize innovative robot applications in a short period of time, the
MATLAB ↔ robot interface must also provide high usability and a well structured documen-
tation. Therefore the new “RWTH – Mindstorms NXT Toolbox” for MATLAB has been created
and applied in the laboratory. Furthermore it is published as free and open source software
(RWTH Aachen University, Germany, 2008), and accessible for third party projects.

1.1 Previous Work
In previous work, G. Gutt (2006) provided a first remote control MATLAB ↔ Mindstorms
interface, which uses additional communication software to establish a Bluetooth connec-
tion between MATLAB and Mindstorms NXT robots. Since the received Bluetooth pack-
ets are always buffered in files, this implementation does not provide a direct and intuitive
computer–robot communication suitable for first–semester projects. Another implementation
using Simulink®, complex simulation models, and advanced control engineering concepts
was developed by T. Chikamasa (2006). This toolbox provides a simulation mode and pro-
duces embedded code, which does not allow the program code to be debugged step–wise.
Also, it focuses on advanced control theory and requires an initial familiarity with Simulink,
which can hardly be expected of freshman students.
Thus, no satisfying software interface between MATLAB and LEGO Mindstorms NXT ful-
filling the requirements of a direct and powerful interface was available. Therefore the new
RWTH – Mindstorms NXT Toolbox, which is fully integrated into the MATLAB environment
and maps the complete functionality of the Mindstorms hardware to the user, was devel-
oped. After a period of only four months development time, the first toolbox release and the
practical exercises used in the first semester term of the project “MATLAB meets LEGO Mind-
storms” were finalized by a core team of eight supervisors in 2007. Since then the toolbox has
been consequently improved and extended.

2. LEGO Mindstorms NXT

LEGO Mindstorms NXT is a low–cost and widely used toy robot kit. It is available as a com-
mercial hardware package for private use, as well as an education set (The LEGO Group,
2007). The NXT education set includes a programmable NXT intelligent brick with an inte-
grated USB and Bluetooth communication interface, four different types of sensors (touch,
sound, light, and ultrasonic distance sensor), and three servo motors, as illustrated in Fig. 1.

Fig. 1. LEGO Mindstorms NXT hardware of the standard education kit: Five sensors (light,
sound, ultrasonic, and two touch sensors), three servo motors, and the programmable NXT
intelligent brick.

Furthermore several different plastic LEGO bricks are provided for construction. The NXT
brick contains an Atmel®32–bit ARM processor running at 48 MHz, 256 KB flash and 64 KB
RAM memory. Its monochrome graphical LCD display has a resolution of 100 × 64 pixels. In
total four sensor input ports supporting both a digital and analog interface, as well as three
output ports for motors or lamps are available.
In addition to the sensors included in the standard Mindstorms kit, many other sensors are
provided by third party vendors. HiTechnic (2001) offers a wide range of additional analog
and digital NXT sensors, like e.g. compass, acceleration and infrared sensors. Supported by
LEGO, the sensors are integrated in the common plastic shells and designed like the stan-
dard NXT sensors. Furthermore CODATEX (2007) distributes an RFID sensor and individual
ID–tag transponders. Mindsensors.com (2005) offers advanced sensor kits and controller in-
terfaces for Mindstorms, which are not encapsulated as HiTechnic sensors. In Table 1 a short
overview of the most common NXT sensors is given.
Beyond the variety of commercially available sensors, LEGO provides a hardware developer
kit specification (The LEGO Group, 2006b, Hardware Developer Kit) which can be used for
individual sensor development. Examples of customized sensors are given by Gasperi et al.
(2007).

2.1 NXT Programming Languages
To control LEGO Mindstorms NXT robots, a wide range of programming interfaces is avail-
able in the literature. These include compiler–based programming languages (C, C++, Java,
.NET), interpreted languages (MATLAB, Python, Perl), as well as graphically oriented tools
and simulation software (LabVIEW, RoboLab, Simulink). Despite the high variety of available
packages, all programming concepts can mainly be categorized by two properties. The first
one is determined by the type of program execution.

Embedded code: In this scenario, programs are usually developed on a computer using a
programming development software first, e.g. NXT–G (National Instruments Corporation,



Teaching practical engineering for freshman students 
using the RWTH – Mindstorms NXT toolbox for MATLAB 43

termed “MATLAB meets LEGO Mindstorms”, digital signal processing is combined with
computer programming and problem–oriented engineering. It gives the students their first
insights into practical methods and basic engineering concepts and helps them to apply their
knowledge to other challenges later on in their studies. After only two months of lectures and
seminars, the students participate in this mandatory full–time eight–day project. Working
together in teams, the students enhance their first MATLAB programming skills and apply
mathematical foundations, which are taught in the affiliated lecture “Mathematical Methods
of Electrical Engineering”. To avoid an exclusive focus on programming, real–world prob-
lems and practical tasks are emulated by using LEGO®Mindstorms®NXT robots (The LEGO
Group, 2006c). Besides six mandatory exercises, the students are given time to create their
own applications and to define creative robot tasks. The students collaborate in teams of two
and four, and are involved in discussions and presentations. For a high student motivation
and an increased learning effort during the project, good supervision and a simple and in-
tuitive interface between MATLAB and the Mindstorms robots are essential to ensure fast
prototyping and program development. Based on the objective to teach MATLAB fundamen-
tals to beginners and to realize innovative robot applications in a short period of time, the
MATLAB ↔ robot interface must also provide high usability and a well structured documen-
tation. Therefore the new “RWTH – Mindstorms NXT Toolbox” for MATLAB has been created
and applied in the laboratory. Furthermore it is published as free and open source software
(RWTH Aachen University, Germany, 2008), and accessible for third party projects.

1.1 Previous Work
In previous work, G. Gutt (2006) provided a first remote control MATLAB ↔ Mindstorms
interface, which uses additional communication software to establish a Bluetooth connec-
tion between MATLAB and Mindstorms NXT robots. Since the received Bluetooth pack-
ets are always buffered in files, this implementation does not provide a direct and intuitive
computer–robot communication suitable for first–semester projects. Another implementation
using Simulink®, complex simulation models, and advanced control engineering concepts
was developed by T. Chikamasa (2006). This toolbox provides a simulation mode and pro-
duces embedded code, which does not allow the program code to be debugged step–wise.
Also, it focuses on advanced control theory and requires an initial familiarity with Simulink,
which can hardly be expected of freshman students.
Thus, no satisfying software interface between MATLAB and LEGO Mindstorms NXT ful-
filling the requirements of a direct and powerful interface was available. Therefore the new
RWTH – Mindstorms NXT Toolbox, which is fully integrated into the MATLAB environment
and maps the complete functionality of the Mindstorms hardware to the user, was devel-
oped. After a period of only four months development time, the first toolbox release and the
practical exercises used in the first semester term of the project “MATLAB meets LEGO Mind-
storms” were finalized by a core team of eight supervisors in 2007. Since then the toolbox has
been consequently improved and extended.

2. LEGO Mindstorms NXT

LEGO Mindstorms NXT is a low–cost and widely used toy robot kit. It is available as a com-
mercial hardware package for private use, as well as an education set (The LEGO Group,
2007). The NXT education set includes a programmable NXT intelligent brick with an inte-
grated USB and Bluetooth communication interface, four different types of sensors (touch,
sound, light, and ultrasonic distance sensor), and three servo motors, as illustrated in Fig. 1.

Fig. 1. LEGO Mindstorms NXT hardware of the standard education kit: Five sensors (light,
sound, ultrasonic, and two touch sensors), three servo motors, and the programmable NXT
intelligent brick.

Furthermore several different plastic LEGO bricks are provided for construction. The NXT
brick contains an Atmel®32–bit ARM processor running at 48 MHz, 256 KB flash and 64 KB
RAM memory. Its monochrome graphical LCD display has a resolution of 100 × 64 pixels. In
total four sensor input ports supporting both a digital and analog interface, as well as three
output ports for motors or lamps are available.
In addition to the sensors included in the standard Mindstorms kit, many other sensors are
provided by third party vendors. HiTechnic (2001) offers a wide range of additional analog
and digital NXT sensors, like e.g. compass, acceleration and infrared sensors. Supported by
LEGO, the sensors are integrated in the common plastic shells and designed like the stan-
dard NXT sensors. Furthermore CODATEX (2007) distributes an RFID sensor and individual
ID–tag transponders. Mindsensors.com (2005) offers advanced sensor kits and controller in-
terfaces for Mindstorms, which are not encapsulated as HiTechnic sensors. In Table 1 a short
overview of the most common NXT sensors is given.
Beyond the variety of commercially available sensors, LEGO provides a hardware developer
kit specification (The LEGO Group, 2006b, Hardware Developer Kit) which can be used for
individual sensor development. Examples of customized sensors are given by Gasperi et al.
(2007).

2.1 NXT Programming Languages
To control LEGO Mindstorms NXT robots, a wide range of programming interfaces is avail-
able in the literature. These include compiler–based programming languages (C, C++, Java,
.NET), interpreted languages (MATLAB, Python, Perl), as well as graphically oriented tools
and simulation software (LabVIEW, RoboLab, Simulink). Despite the high variety of available
packages, all programming concepts can mainly be categorized by two properties. The first
one is determined by the type of program execution.

Embedded code: In this scenario, programs are usually developed on a computer using a
programming development software first, e.g. NXT–G (National Instruments Corporation,
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Sensor Analog/ Vendor Toolbox support
Digital (v4.03)

Touch A LEGO yes
Light A LEGO yes
Sound A LEGO yes
Ultrasonic D LEGO yes
Color A LEGO no
RFID D CODATEX yes
Compass D HiTechnic yes
Accelerometer D HiTechnic yes
Gyro A HiTechnic yes
Color D HiTechnic yes
Color V2 D HiTechnic no
IRSeeker D HiTechnic yes
IRSeeker V2 D HiTechnic no
EOPD D HiTechnic no
IRLink D HiTechnic no
IRReceiver D HiTechnic no
NXTCam D mindsensors.com no
Sony PlayStation Controller D mindsensors.com no

Table 1. Overview of most common LEGO Mindstorms NXT sensors.

2006), NXC (Hanson, 2006), ROBOTC (Robotics Academy, 2006), leJOS (Solorzano, 2007), and
then translated into NXT bytecode. After downloading the code onto the NXT, no external
computer is required anymore. The program code is always executed on the NXT hardware
platform.
The NXT’s firmware usually provides a virtual machine and executes bytecode while taking
care of low–level hardware functionality. In some cases, the embedded program code can also
be plain text and is executed by an interpreter, e.g. pbLua (Hempel, 2007). Due to direct hard-
ware access to sensors and motors with minimal latency, real–time applications are possible.
On the other hand, the program complexity is restricted by the limited resources of the NXT,
such as memory, CPU speed, and display resolution.

Remote control: Programs using a remote control concept typically run on a computer or
other host devices, e.g. a mobile phone. Commands specified in the LEGO Mindstorms NXT
communication protocol (The LEGO Group, 2006a, Bluetooth Developer Kit) are sent to the
NXT via Bluetooth or USB connections. These commands are then interpreted and executed
by the firmware. In a similar way sensor and motor data can be retrieved. Since the actual
robot control programs do not run on the NXT platform, they can utilize all resources, devices
and technologies of their host systems. However, they are limited by the set of available re-
mote commands and by the transfer time delay, which often impedes the realization of true
real–time applications.

The second way to categorize Mindstorms interfaces is specified by the required NXT firmware.
While some implementations are adapted to the original LEGO NXT firmware, other pro-

gramming languages need a specific or customized firmware on the NXT for program execu-
tion.
NXT firmware: The standard configuration of the NXT includes the LEGO Mindstorms NXT
firmware, maintained as open source code by LEGO. Its main purpose is to execute bytecode
generated by LEGO’s standard programming language, NXT–G. This firmware also supports
the NXT communication protocol to execute so–called direct commands, remotely sent by
other devices or computers.
Besides the official LEGO release, some firmware modifications are available, keeping full
compatibility to compiled NXT–G binaries and to direct commands. The most prominent
example is John Hansen’s enhanced firmware, which fixes known bugs and adds advanced
functionality. It comes with the Bricx Command Center (Hanson, 2002) development environ-
ment for the programming language NXC (Hanson, 2006).

Custom firmware: In the literature a variety of custom firmware versions is available. Some
are based on the original release by LEGO, whereas others provide alternative firmware im-
plementations. The custom firmware usually provides a virtual machine that can execute
bytecode or plain text for a certain programming language. Prominent examples are leJOS
(Solorzano, 2007) for Java programs, the Lua interpreter pbLua (Hempel, 2007), NXTalk (HPI
Software Architecture Group, 2006) as a Smalltalk implementation, and ECRobot (Embedded
Coder Robot) for Simulink (Chikamasa, 2006).
Another purpose of custom firmware is the execution of machine code directly on the ARM
CPU, or the integration of specialized programs straight into the firmware. One implementa-
tion providing such capabilities is given by nxtOSEK (Chikamasa, 2007). Other efforts provide
toolchains or compilers for custom firmware development, such as NXTGCC (Pedersen, 2006)
or the IAR Embedded Workbench (IAR SYSTEMS, 2009) for LEGO Mindstorms NXT.

The most common interfaces are listed in Table 2. Note that the list is not exhaustive at all.

Name Language Type Standard Embedded/
Firmware Remote

leJOS NXJ Java no embedded
iCommand Java no remote
NXC C–like yes embedded
ROBOTC C–like no embedded
NXT++ C++ yes remote
Mindsqualls .NET yes remote
MS Robotics Studio .NET yes remote
NXT_Python Python yes remote
LEGO::NXT Perl yes remote
NXT-G LabVIEW–like yes embedded
RoboLab LabVIEW–like no embedded
ECRobot Simulink no embedded
RWTH – Mindstorms NXT Toolbox MATLAB yes remote

Table 2. Most common programming languages for LEGO Mindstorms NXT.
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2006), NXC (Hanson, 2006), ROBOTC (Robotics Academy, 2006), leJOS (Solorzano, 2007), and
then translated into NXT bytecode. After downloading the code onto the NXT, no external
computer is required anymore. The program code is always executed on the NXT hardware
platform.
The NXT’s firmware usually provides a virtual machine and executes bytecode while taking
care of low–level hardware functionality. In some cases, the embedded program code can also
be plain text and is executed by an interpreter, e.g. pbLua (Hempel, 2007). Due to direct hard-
ware access to sensors and motors with minimal latency, real–time applications are possible.
On the other hand, the program complexity is restricted by the limited resources of the NXT,
such as memory, CPU speed, and display resolution.

Remote control: Programs using a remote control concept typically run on a computer or
other host devices, e.g. a mobile phone. Commands specified in the LEGO Mindstorms NXT
communication protocol (The LEGO Group, 2006a, Bluetooth Developer Kit) are sent to the
NXT via Bluetooth or USB connections. These commands are then interpreted and executed
by the firmware. In a similar way sensor and motor data can be retrieved. Since the actual
robot control programs do not run on the NXT platform, they can utilize all resources, devices
and technologies of their host systems. However, they are limited by the set of available re-
mote commands and by the transfer time delay, which often impedes the realization of true
real–time applications.

The second way to categorize Mindstorms interfaces is specified by the required NXT firmware.
While some implementations are adapted to the original LEGO NXT firmware, other pro-

gramming languages need a specific or customized firmware on the NXT for program execu-
tion.
NXT firmware: The standard configuration of the NXT includes the LEGO Mindstorms NXT
firmware, maintained as open source code by LEGO. Its main purpose is to execute bytecode
generated by LEGO’s standard programming language, NXT–G. This firmware also supports
the NXT communication protocol to execute so–called direct commands, remotely sent by
other devices or computers.
Besides the official LEGO release, some firmware modifications are available, keeping full
compatibility to compiled NXT–G binaries and to direct commands. The most prominent
example is John Hansen’s enhanced firmware, which fixes known bugs and adds advanced
functionality. It comes with the Bricx Command Center (Hanson, 2002) development environ-
ment for the programming language NXC (Hanson, 2006).

Custom firmware: In the literature a variety of custom firmware versions is available. Some
are based on the original release by LEGO, whereas others provide alternative firmware im-
plementations. The custom firmware usually provides a virtual machine that can execute
bytecode or plain text for a certain programming language. Prominent examples are leJOS
(Solorzano, 2007) for Java programs, the Lua interpreter pbLua (Hempel, 2007), NXTalk (HPI
Software Architecture Group, 2006) as a Smalltalk implementation, and ECRobot (Embedded
Coder Robot) for Simulink (Chikamasa, 2006).
Another purpose of custom firmware is the execution of machine code directly on the ARM
CPU, or the integration of specialized programs straight into the firmware. One implementa-
tion providing such capabilities is given by nxtOSEK (Chikamasa, 2007). Other efforts provide
toolchains or compilers for custom firmware development, such as NXTGCC (Pedersen, 2006)
or the IAR Embedded Workbench (IAR SYSTEMS, 2009) for LEGO Mindstorms NXT.

The most common interfaces are listed in Table 2. Note that the list is not exhaustive at all.

Name Language Type Standard Embedded/
Firmware Remote

leJOS NXJ Java no embedded
iCommand Java no remote
NXC C–like yes embedded
ROBOTC C–like no embedded
NXT++ C++ yes remote
Mindsqualls .NET yes remote
MS Robotics Studio .NET yes remote
NXT_Python Python yes remote
LEGO::NXT Perl yes remote
NXT-G LabVIEW–like yes embedded
RoboLab LabVIEW–like no embedded
ECRobot Simulink no embedded
RWTH – Mindstorms NXT Toolbox MATLAB yes remote

Table 2. Most common programming languages for LEGO Mindstorms NXT.



Matlab - Modelling, Programming and Simulations46

3. RWTH – Mindstorms NXT Toolbox for MATLAB

Since the target audience of the RWTH – Mindstorms NXT Toolbox for MATLAB are freshman
students without any or only basic programming skills, the main objective of the toolbox is
a direct and intuitive usability of the control interface. Beginners must be enabled to start
with simple high–level commands to obtain results rapidly, while intermediate users can use
more advanced functions. Using MATLAB as development tool, essential key features such
as easy visual debugging by step–by–step execution, 2D and 3D plotting capabilities, a GUI
designer, and additional toolboxes are directly provided. Furthermore advanced algorithms
and technologies, as well as external hardware such as webcams can easily be integrated into
individual robotic projects. However, an intuitive and consistent development environment
will only be preserved, if the algorithms are entirely developed in MATLAB code. Thus,
the usage of additional third–party software is avoided. As an exception, external USB and
Bluetooth hardware drivers are used.
In addition to good usability, a well–written documentation is essential, especially for begin-
ners. Apart from a list of functions and appropriate descriptions, genuine algorithmic exam-
ples are provided. Tutorials and step–by–step guides integrated in the toolbox help students
to get started and extend their knowledge. Since software which is compatible to different
operation systems can easily be distributed in bigger education projects, the framework is
designed in MATLAB to run on Windows, Mac OS, and on Linux platforms. Furthermore
low–level implementation details for hardware interaction (such as certain drivers or external
libraries) are masked by a universal abstraction layer. Thus, the users are able to utilize both
Bluetooth and USB connections to the NXT promptly without making any modifications to
their program code.
Using the original LEGO NXT firmware the toolbox functionality is mainly limited to the
MATLAB ↔ NXT communication specified by the Mindstorms communication protocol. How-
ever, the usage of the original firmware allows a lower toolbox development effort, and a less
complex initialization procedure, since the NXT does not have to be flashed again with a cus-
tom firmware.

3.1 Software Design
The RWTH – Mindstorms NXT Toolbox is a framework to control NXT robots remotely. Since
MATLAB is an interpreted language, the use of embedded code is omitted. This is obvious,
because the development of a full MATLAB runtime and a virtual machine or interpreter for
the NXT platform with only 256 KB of available flash memory and 64 KB RAM is unfeasi-
ble. Thus, the user program is executed by the host computer, which highly outperforms the
NXT’s computational resources, especially regarding CPU speed. However, the characteris-
tics of the established communication channel between NXT and computer, i.e. limited band-
width and time delay, impede real–time control loops for wireless robots. Also, the complete
functionality of the NXT is not immediately available via the specified remote commands. But
aside from this technical point of view, the remote concept still combines a powerful program-
ming environment with an adequate way for beginners to control robots, analyze data, and
get results very quickly.
Based on this concept 117 MATLAB functions are provided by the toolbox (version 4.03),
organized in a multi–layer software architecture. A global overview of these command layers
and the hardware interaction is shown in Fig. 2.
Using individual motor and sensor settings, high–level functions and control loops are avail-
able within the third and fourth command layer. Relying on low–level functions, direct com-
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Fig. 2. Overview of the communication between MATLAB and NXT hardware using a multi–
layer architecture.
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Fig. 3. Structure of a valid Bluetooth packet, defined by LEGO’s NXT Bluetooth communica-
tion protocol. For a USB communication the first two bytes describing the length of the data
packet are omitted.

mands are transmitted via the USB and the wireless Bluetooth communication channel. Each
of these commands is specified in the packet–based NXT communication protocol and con-
sists of exactly one data packet. Optional reply packets can be requested for each command.
The packet structure is illustrated in Fig. 3.
In the case of transmission via Bluetooth the first two bytes determine the total length of the
packet. The command type specifies which category the command is from and whether the
NXT should send a reply packet or not. The next byte defines the individual command. What
follows is payload and depends on the command. When a command packet is received by
the NXT brick, the firmware interprets the content and acts accordingly, e.g. by controlling
motors or sensors.
From the technical point of view, the interface of the PC Bluetooth hardware (e.g. a Bluetooth
USB stick) is based on the serial port profile (SPP), which uses the radio frequency communi-
cation (RFCOMM) protocol and emulates serial ports. Hence, the whole Bluetooth communi-
cation is carried out via virtual serial ports. Those are called COM ports in Windows, or can
found in the device folders /dev/rfcomm on Linux and /dev/tty on Mac OS, respectively.
For data exchange via USB, no additional computer hardware is required, except a USB cable
and a free USB port. When the NXT is connected to a Windows or Mac OS machine, the di-
rect commands exchange data with the NXT USB driver “Fantom” (DLL–library and system
driver). Since LEGO does not offer any specific NXT USB driver for Linux, the open source li-
brary “libusb” (Erdfelt, 2008) is then loaded by the toolbox to handle the USB communication.
Via USB connections, direct commands are typically executed within 3 ms (depending on host
system specifications), including the time to receive a reply–package if requested. Using Blue-
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3. RWTH – Mindstorms NXT Toolbox for MATLAB

Since the target audience of the RWTH – Mindstorms NXT Toolbox for MATLAB are freshman
students without any or only basic programming skills, the main objective of the toolbox is
a direct and intuitive usability of the control interface. Beginners must be enabled to start
with simple high–level commands to obtain results rapidly, while intermediate users can use
more advanced functions. Using MATLAB as development tool, essential key features such
as easy visual debugging by step–by–step execution, 2D and 3D plotting capabilities, a GUI
designer, and additional toolboxes are directly provided. Furthermore advanced algorithms
and technologies, as well as external hardware such as webcams can easily be integrated into
individual robotic projects. However, an intuitive and consistent development environment
will only be preserved, if the algorithms are entirely developed in MATLAB code. Thus,
the usage of additional third–party software is avoided. As an exception, external USB and
Bluetooth hardware drivers are used.
In addition to good usability, a well–written documentation is essential, especially for begin-
ners. Apart from a list of functions and appropriate descriptions, genuine algorithmic exam-
ples are provided. Tutorials and step–by–step guides integrated in the toolbox help students
to get started and extend their knowledge. Since software which is compatible to different
operation systems can easily be distributed in bigger education projects, the framework is
designed in MATLAB to run on Windows, Mac OS, and on Linux platforms. Furthermore
low–level implementation details for hardware interaction (such as certain drivers or external
libraries) are masked by a universal abstraction layer. Thus, the users are able to utilize both
Bluetooth and USB connections to the NXT promptly without making any modifications to
their program code.
Using the original LEGO NXT firmware the toolbox functionality is mainly limited to the
MATLAB ↔ NXT communication specified by the Mindstorms communication protocol. How-
ever, the usage of the original firmware allows a lower toolbox development effort, and a less
complex initialization procedure, since the NXT does not have to be flashed again with a cus-
tom firmware.

3.1 Software Design
The RWTH – Mindstorms NXT Toolbox is a framework to control NXT robots remotely. Since
MATLAB is an interpreted language, the use of embedded code is omitted. This is obvious,
because the development of a full MATLAB runtime and a virtual machine or interpreter for
the NXT platform with only 256 KB of available flash memory and 64 KB RAM is unfeasi-
ble. Thus, the user program is executed by the host computer, which highly outperforms the
NXT’s computational resources, especially regarding CPU speed. However, the characteris-
tics of the established communication channel between NXT and computer, i.e. limited band-
width and time delay, impede real–time control loops for wireless robots. Also, the complete
functionality of the NXT is not immediately available via the specified remote commands. But
aside from this technical point of view, the remote concept still combines a powerful program-
ming environment with an adequate way for beginners to control robots, analyze data, and
get results very quickly.
Based on this concept 117 MATLAB functions are provided by the toolbox (version 4.03),
organized in a multi–layer software architecture. A global overview of these command layers
and the hardware interaction is shown in Fig. 2.
Using individual motor and sensor settings, high–level functions and control loops are avail-
able within the third and fourth command layer. Relying on low–level functions, direct com-
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Fig. 3. Structure of a valid Bluetooth packet, defined by LEGO’s NXT Bluetooth communica-
tion protocol. For a USB communication the first two bytes describing the length of the data
packet are omitted.

mands are transmitted via the USB and the wireless Bluetooth communication channel. Each
of these commands is specified in the packet–based NXT communication protocol and con-
sists of exactly one data packet. Optional reply packets can be requested for each command.
The packet structure is illustrated in Fig. 3.
In the case of transmission via Bluetooth the first two bytes determine the total length of the
packet. The command type specifies which category the command is from and whether the
NXT should send a reply packet or not. The next byte defines the individual command. What
follows is payload and depends on the command. When a command packet is received by
the NXT brick, the firmware interprets the content and acts accordingly, e.g. by controlling
motors or sensors.
From the technical point of view, the interface of the PC Bluetooth hardware (e.g. a Bluetooth
USB stick) is based on the serial port profile (SPP), which uses the radio frequency communi-
cation (RFCOMM) protocol and emulates serial ports. Hence, the whole Bluetooth communi-
cation is carried out via virtual serial ports. Those are called COM ports in Windows, or can
found in the device folders /dev/rfcomm on Linux and /dev/tty on Mac OS, respectively.
For data exchange via USB, no additional computer hardware is required, except a USB cable
and a free USB port. When the NXT is connected to a Windows or Mac OS machine, the di-
rect commands exchange data with the NXT USB driver “Fantom” (DLL–library and system
driver). Since LEGO does not offer any specific NXT USB driver for Linux, the open source li-
brary “libusb” (Erdfelt, 2008) is then loaded by the toolbox to handle the USB communication.
Via USB connections, direct commands are typically executed within 3 ms (depending on host
system specifications), including the time to receive a reply–package if requested. Using Blue-
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tooth, a larger latency of about 30 ms is experienced every time the NXT has to switch from
transmission to receive–mode and vice versa. Although a lag in the order of some seconds can
be observed infrequently (depending on Bluetooth link quality and surrounding interference),
the overall communication protocol can be considered reliable.

3.1.1 Command Layers
Table 3 shows a complete overview of the toolbox functions, categorized in different command
layers.

Low–level Functions: The lowest layer consists mostly of private functions, which are not di-
rectly accessible by the user (i.e. most of them reside in the “private” directory of the toolbox
directory structure). These functions include debug procedures, named constants, look–up
operations, so–called MATLAB “prototype files” handling external libraries and drivers, as
well as functions for binary packet management. Since many low–level functions are called
frequently, optimization techniques like look–up tables and mex–files are used for maximal
performance.

Direct NXT Commands: This layer provides the first usable front–end of the toolbox. Accord-
ing to the NXT communication protocol, packet–based commands are defined, which can be
sent to the NXT via a USB or Bluetooth connection. The interface of these direct commands
is implemented as close as possible to the protocol specifications to make it easy for other
developers to extend or adapt the open source code. Abstract functions to handle the commu-
nication between NXT and computer — independent from the connection type and operating
system — are integrated. In relation to the OSI reference model (Day & Zimmermann, 1983),
these functions represent the presentation and application layers of the protocol stack.

High–Level Functions: To provide a more user–friendly interface than the direct NXT com-
mands, high–level functions are established. Going far beyond the implementation of the
communication protocol, certain feature and parameter combinations are hidden from the
user to focus more on essential and robot–related problems. For example, instead of requiring
knowledge about specific sensor settings, operation modes, and timeout periods in order to
operate the NXT sensors, straightforward instructions are provided for simple actions such
as “open sensor, retrieve data”. Also complex I2C command sequences, which are used with
digital sensors, are combined into single functions. Possible exceptions are caught wherever
possible, and if program execution cannot resume, meaningful error messages are generated.
Furthermore main functions to establish and control the NXT ↔ PC connection via Bluetooth
or USB are provided. Some advanced functions are given to read or write complete sets of
firmware registers (so-called I/O maps) at once.

High–Level Control and Utilities: Layer four mainly features an object–oriented interface
to the NXT actors. The many variable motor options and complex parameter combinations
are mapped to properties of the motor class in MATLAB. Functions with integrated control
capability handle conditional tasks while interacting with the motors, e.g. pausing further
program execution until the servo motor has rotated to a certain position, or helping a motor
to reach a specific encoder target. To overcome limitations of the direct commands provided
by the NXT firmware, optionally a customized and advanced motor control program with a
higher precision control can be used, which runs embedded on the NXT.

Layer Description Output/Motors Input/Sensors General Bluetooth/USB

NXTMotor OptimizeToolboxPerformance COM_MakeBTConfigFile
.ReadFromNXT
.SendToNXT GUI_WatchMotorState

4 High–Level .Stop GUI_WatchSensor
Control and .WaitFor
Utilities .ResetPosition ToolboxTest

ToolboxBenchmark
NXC_MotorControl ToolboxUpdate

DirectMotor Command OpenLight readFromIniFile COM_OpenNXT
GetLight COM_OpenNXTEx

StopMotor MAP_GetCommModule
OpenSound MAP_GetInputModule COM_CloseNXT

SwitchLamp GetSound MAP_GetOutputModule
MAP_GetSoundModule COM_ReadI2C

NXC_ResetErrorCorrection OpenSwitch MAP_GetUIModule
GetSwitch COM_SetDefaultNXT

MAP_SetOutputModule COM_GetDefaultNXT
OpenUltrasonic
GetUltrasonic NXC_GetSensorMotorData
USMakeSnapshot
USGetSnapshotResults

OpenAccelerator
GetAccelerator

OpenColor
3 High–Level CalibrateColor

Functions GetColor

OpenCompass
CalibrateCompass
GetCompass

OpenGyro
CalibrateGyro
GetGyro

OpenInfrared
GetInfrared

OpenRFID
GetRFID

CloseSensor

NXT_SetOutputState NXT_SetInputMode NXT_PlayTone COM_CreatePacket
NXT_PlaySoundFile COM_SendPacket

NXT_GetOutputState NXT_GetInputValues NXT_StopSoundPlayback COM_CollectPacket

NXT_ResetMotorPosition NXT_ResetInputScaledValues NXT_StartProgram
NXT_GetCurrentProgramName

NXT_LSRead NXT_StopProgram
NXT_LSWrite
NXT_LSGetStatus NXT_SendKeepAlive

2 Direct NXT NXT_GetBatteryLevel
Commands NXT_GetFirmwareVersion

NXT_SetBrickName

NXT_ReadIOMap
NXT_WriteIOMap

NXT_MessageWrite
NXT_MessageRead

MOTOR_A SENSOR_1 DebugMode checkStatusByte
MOTOR_B SENSOR_2 isdebug
MOTOR_C SENSOR_3 createHandleStruct

SENSOR_4 textOut checkHandleStruct
1 Low–Level byte2outputmode getLibusbErrorString

Functions byte2regmode byte2sensortype dec2wordbytes getVISAErrorString
byte2runstate byte2sensormode name2commandbyte getReplyLengthFromCmdByte
outputmode2byte sensortype2byte commandbyte2name
regmode2byte sensormode2byte wordbytes2dec fantom_proto
runstate2byte libusb_proto

waitUntilI2CReady

Table 3. Overview of the toolbox functions categorized in different command layers.
(NXT_* = NXT direct commands, COM_* = Functions related to the NXT communication, MAP_* Func-
tions related to the NXT I/O maps, NXC_* = Functions which interact with the NXC program “Motor-
Control”, bold = Main functions, italic = private functions)
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tooth, a larger latency of about 30 ms is experienced every time the NXT has to switch from
transmission to receive–mode and vice versa. Although a lag in the order of some seconds can
be observed infrequently (depending on Bluetooth link quality and surrounding interference),
the overall communication protocol can be considered reliable.

3.1.1 Command Layers
Table 3 shows a complete overview of the toolbox functions, categorized in different command
layers.

Low–level Functions: The lowest layer consists mostly of private functions, which are not di-
rectly accessible by the user (i.e. most of them reside in the “private” directory of the toolbox
directory structure). These functions include debug procedures, named constants, look–up
operations, so–called MATLAB “prototype files” handling external libraries and drivers, as
well as functions for binary packet management. Since many low–level functions are called
frequently, optimization techniques like look–up tables and mex–files are used for maximal
performance.

Direct NXT Commands: This layer provides the first usable front–end of the toolbox. Accord-
ing to the NXT communication protocol, packet–based commands are defined, which can be
sent to the NXT via a USB or Bluetooth connection. The interface of these direct commands
is implemented as close as possible to the protocol specifications to make it easy for other
developers to extend or adapt the open source code. Abstract functions to handle the commu-
nication between NXT and computer — independent from the connection type and operating
system — are integrated. In relation to the OSI reference model (Day & Zimmermann, 1983),
these functions represent the presentation and application layers of the protocol stack.

High–Level Functions: To provide a more user–friendly interface than the direct NXT com-
mands, high–level functions are established. Going far beyond the implementation of the
communication protocol, certain feature and parameter combinations are hidden from the
user to focus more on essential and robot–related problems. For example, instead of requiring
knowledge about specific sensor settings, operation modes, and timeout periods in order to
operate the NXT sensors, straightforward instructions are provided for simple actions such
as “open sensor, retrieve data”. Also complex I2C command sequences, which are used with
digital sensors, are combined into single functions. Possible exceptions are caught wherever
possible, and if program execution cannot resume, meaningful error messages are generated.
Furthermore main functions to establish and control the NXT ↔ PC connection via Bluetooth
or USB are provided. Some advanced functions are given to read or write complete sets of
firmware registers (so-called I/O maps) at once.

High–Level Control and Utilities: Layer four mainly features an object–oriented interface
to the NXT actors. The many variable motor options and complex parameter combinations
are mapped to properties of the motor class in MATLAB. Functions with integrated control
capability handle conditional tasks while interacting with the motors, e.g. pausing further
program execution until the servo motor has rotated to a certain position, or helping a motor
to reach a specific encoder target. To overcome limitations of the direct commands provided
by the NXT firmware, optionally a customized and advanced motor control program with a
higher precision control can be used, which runs embedded on the NXT.

Layer Description Output/Motors Input/Sensors General Bluetooth/USB

NXTMotor OptimizeToolboxPerformance COM_MakeBTConfigFile
.ReadFromNXT
.SendToNXT GUI_WatchMotorState

4 High–Level .Stop GUI_WatchSensor
Control and .WaitFor
Utilities .ResetPosition ToolboxTest

ToolboxBenchmark
NXC_MotorControl ToolboxUpdate

DirectMotor Command OpenLight readFromIniFile COM_OpenNXT
GetLight COM_OpenNXTEx

StopMotor MAP_GetCommModule
OpenSound MAP_GetInputModule COM_CloseNXT

SwitchLamp GetSound MAP_GetOutputModule
MAP_GetSoundModule COM_ReadI2C

NXC_ResetErrorCorrection OpenSwitch MAP_GetUIModule
GetSwitch COM_SetDefaultNXT

MAP_SetOutputModule COM_GetDefaultNXT
OpenUltrasonic
GetUltrasonic NXC_GetSensorMotorData
USMakeSnapshot
USGetSnapshotResults

OpenAccelerator
GetAccelerator

OpenColor
3 High–Level CalibrateColor

Functions GetColor

OpenCompass
CalibrateCompass
GetCompass

OpenGyro
CalibrateGyro
GetGyro

OpenInfrared
GetInfrared

OpenRFID
GetRFID

CloseSensor

NXT_SetOutputState NXT_SetInputMode NXT_PlayTone COM_CreatePacket
NXT_PlaySoundFile COM_SendPacket

NXT_GetOutputState NXT_GetInputValues NXT_StopSoundPlayback COM_CollectPacket

NXT_ResetMotorPosition NXT_ResetInputScaledValues NXT_StartProgram
NXT_GetCurrentProgramName

NXT_LSRead NXT_StopProgram
NXT_LSWrite
NXT_LSGetStatus NXT_SendKeepAlive

2 Direct NXT NXT_GetBatteryLevel
Commands NXT_GetFirmwareVersion

NXT_SetBrickName

NXT_ReadIOMap
NXT_WriteIOMap

NXT_MessageWrite
NXT_MessageRead

MOTOR_A SENSOR_1 DebugMode checkStatusByte
MOTOR_B SENSOR_2 isdebug
MOTOR_C SENSOR_3 createHandleStruct

SENSOR_4 textOut checkHandleStruct
1 Low–Level byte2outputmode getLibusbErrorString

Functions byte2regmode byte2sensortype dec2wordbytes getVISAErrorString
byte2runstate byte2sensormode name2commandbyte getReplyLengthFromCmdByte
outputmode2byte sensortype2byte commandbyte2name
regmode2byte sensormode2byte wordbytes2dec fantom_proto
runstate2byte libusb_proto

waitUntilI2CReady

Table 3. Overview of the toolbox functions categorized in different command layers.
(NXT_* = NXT direct commands, COM_* = Functions related to the NXT communication, MAP_* Func-
tions related to the NXT I/O maps, NXC_* = Functions which interact with the NXC program “Motor-
Control”, bold = Main functions, italic = private functions)
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In addition to the comfortable motor interface, several tools are offered in this layer: Utilities
to monitor the current motor and sensor state, an assistant to create a Bluetooth configuration
file, an update notifier, as well as various tools for benchmarking and integrity testing the
toolbox.

3.1.2 Advanced Motor Control
When trying to control motors via direct commands (i.e. “NXT_SetOutputState”), two prob-
lems become apparent. First, the motors cannot be turned to a precise position, since they
often overshoot (i.e. turn too far). This characteristic is caused by the motor control of the
LEGO firmware. It only turns off the power to the motor when the desired encoder target
(property “TachoLimit” ) is reached, leaving the motor spinning freely in coast mode. An au-
tomatic “braking” mode is not available. Instead, the LEGO firmware provides an automatic
error correction mechanism to compensate cumulative error displacements. Unfortunately,
due to large overshootings, this displacement correction can lead to unexpected results, which
causes another difficulty. For example, the next direct motor command will be ignored by the
firmware, if the current absolute motor position already exceeds the next target position. Both
characteristics clearly impede an intuitive motor control.
Even though the internal error correction of the firmware can be deactivated by overwriting
specific bytes in the firmware register using complex input/output map commands, a precise
motor control which automatically turns the motor to a specific position is still not avail-
able. To overcome this problem, the advanced program “MotorControl” was developed. The
program runs directly on the NXT to control the motors in real–time, without being slowed
down by Bluetooth or USB latencies. It is programmed in NXC (Pedersen, 2006) and is down-
loaded on the NXT as a binary 32 KB large RXE file. During execution of MATLAB pro-
grams, “MotorControl” keeps running on the NXT as background process, and controls the
motor movement in a control loop. The control parameters are specified via the motor class
in MATLAB (toolbox function layer four), and then transmitted to the NXC program using a
specified message-based communication protocol. Besides a motor position accuracy of ±1
degree in most cases, smooth braking and acceleration modes, synchronized motor move-
ments, monitored motor information, and a manual emergency stop (by pressing a button
on the NXT brick) are supported. Further information about “MotorControl”, its features
and its communication protocol are given at http://www.mindstorms.rwth-aachen.
de/trac/wiki/MotorControl. Since it is designed independently from the MATLAB en-
vironment, also other Mindstorms NXT remote control interfaces can adapt the concept and
utilize “MotorControl” for their own projects.

3.2 Documentation and Toolbox Help
Besides an adequate program interface, a complete and easily accessible documentation of the
toolbox functions and their features is very important for a high level of usability. Thus, the
documentation of the RWTH – Mindstorms NXT Toolbox is fully integrated into the common
MATLAB help browser, just like any other commercial MATLAB toolbox, as shown in Fig. 4.
This is achieved by providing specially formatted XML help and content files.
From each m–file a HTML–formatted MATLAB help file is published using the wg_publish
script (Garn, 2006). Since every major function is located in a separate m–file, the relevant
information is extracted from the customized header format. The layout of the HTML pages
is designed like the standard MATLAB text layout, using single cascading style sheets (CSS).
Besides interface descriptions, the help content includes example code and see–also links.

Fig. 4. Documentations and help text of the toolbox integrated in the MATLAB help browser.

Furthermore comprehensive tutorials, first–step demo programs and help pages for beginners
are provided. In addition to the help browser support, the common MATLAB help command
help <function> displays the function’s help text in the command window.
Since the toolbox is published as an open source project, the complete source code is well
and comprehensively commented so that other developers are able to extend and adapt the
toolbox easily. The toolbox (v4.03) consists of more than 14.000 source lines in total. One third
are comments, one third are help text, and the remaining third comprises executable code.

3.3 Version History
The first stable toolbox release 1.0 had been completed in December 2007 before the first
“MATLAB meets LEGO Mindstorms” lab course started. It featured Bluetooth connections
only and provided a basic motor control support via direct commands. Nevertheless the pre-
sented robot creations by students were truly impressive (Behrens et al., 2008; 2010).
The toolbox website was created in February 2008, and version 1.0 was made publicly avail-
able for download under the GNU General Public Licence (Free Software Foundation, 2007).
During summer 2008, USB connections and an improved communication layer were intro-
duced with version 2.0. It enabled the construction of stationary robots with very fast response
times. Also the possibility to connect to multiple NXT devices at the same time was another
new feature.
Later in 2008, the first embedded NXC program was developed to offer precise motor rota-
tions. Although the control mechanism often led to abrupt motor movements, the position
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In addition to the comfortable motor interface, several tools are offered in this layer: Utilities
to monitor the current motor and sensor state, an assistant to create a Bluetooth configuration
file, an update notifier, as well as various tools for benchmarking and integrity testing the
toolbox.

3.1.2 Advanced Motor Control
When trying to control motors via direct commands (i.e. “NXT_SetOutputState”), two prob-
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due to large overshootings, this displacement correction can lead to unexpected results, which
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firmware, if the current absolute motor position already exceeds the next target position. Both
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ments, monitored motor information, and a manual emergency stop (by pressing a button
on the NXT brick) are supported. Further information about “MotorControl”, its features
and its communication protocol are given at http://www.mindstorms.rwth-aachen.
de/trac/wiki/MotorControl. Since it is designed independently from the MATLAB en-
vironment, also other Mindstorms NXT remote control interfaces can adapt the concept and
utilize “MotorControl” for their own projects.

3.2 Documentation and Toolbox Help
Besides an adequate program interface, a complete and easily accessible documentation of the
toolbox functions and their features is very important for a high level of usability. Thus, the
documentation of the RWTH – Mindstorms NXT Toolbox is fully integrated into the common
MATLAB help browser, just like any other commercial MATLAB toolbox, as shown in Fig. 4.
This is achieved by providing specially formatted XML help and content files.
From each m–file a HTML–formatted MATLAB help file is published using the wg_publish
script (Garn, 2006). Since every major function is located in a separate m–file, the relevant
information is extracted from the customized header format. The layout of the HTML pages
is designed like the standard MATLAB text layout, using single cascading style sheets (CSS).
Besides interface descriptions, the help content includes example code and see–also links.
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Furthermore comprehensive tutorials, first–step demo programs and help pages for beginners
are provided. In addition to the help browser support, the common MATLAB help command
help <function> displays the function’s help text in the command window.
Since the toolbox is published as an open source project, the complete source code is well
and comprehensively commented so that other developers are able to extend and adapt the
toolbox easily. The toolbox (v4.03) consists of more than 14.000 source lines in total. One third
are comments, one third are help text, and the remaining third comprises executable code.

3.3 Version History
The first stable toolbox release 1.0 had been completed in December 2007 before the first
“MATLAB meets LEGO Mindstorms” lab course started. It featured Bluetooth connections
only and provided a basic motor control support via direct commands. Nevertheless the pre-
sented robot creations by students were truly impressive (Behrens et al., 2008; 2010).
The toolbox website was created in February 2008, and version 1.0 was made publicly avail-
able for download under the GNU General Public Licence (Free Software Foundation, 2007).
During summer 2008, USB connections and an improved communication layer were intro-
duced with version 2.0. It enabled the construction of stationary robots with very fast response
times. Also the possibility to connect to multiple NXT devices at the same time was another
new feature.
Later in 2008, the first embedded NXC program was developed to offer precise motor rota-
tions. Although the control mechanism often led to abrupt motor movements, the position
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accuracy was highly improved. The interface to these new motor functions used the object–
oriented paradigm for the first time. Additionally, more external sensors were supported. The
resulting stable toolbox 2.03 was used during the student project in 2008.
In 2009, the focus was put on higher precision of the embedded motor control program.
Smooth braking was achieved by introducing a custom control algorithm. Other improve-
ments include further documentation, stability and performance issues. The version number
has finally arrived at 4.03, which is the latest stable version recommended to be used as of
May 2010.

3.4 System Requirements
In summary the RWTH – Mindstorms NXT Toolbox for MATLAB can be used on standard PC
and NXT hardware. The system requirements of the current release version 4.03 are listed in
Table. 4.

• Operating system: Windows, Linux, or Mac OS
• MATLAB Version 7.7 (R2008b) or higher
• LEGO Mindstorms NXT building kit (compatible with NXT 1.0 retail, NXT 2.0 retail,

and NXT Education)
• LEGO Mindstorms NXT firmware v1.26 or higher, or compatible
• For Bluetooth connections: Bluetooth 2.0 adapter recommended model by LEGOő

(e.g. AVM BlueFRITZ! USB) supporting the serial port profile (SPP)
• For USB connections: Official Mindstorms NXT Driver "Fantom", v1.02 or higher

(Windows, Mac OS), “libusb” (Linux), 32–bit version of MATLAB

Table 4. System requirements of the RWTH – Mindstorms NXT Toolbox v4.03.

In the case of using an older MATLAB version such as 7.3 (R2006b), the NXT motors can be al-
ternatively controlled via the classic motor control functions offered until toolbox release 2.04.
For more information using individual system configurations, a version guide and changelogs
are provided on the toolbox web page.

3.5 Example Code
A basic example program using high–level functions and direct commands is shown in List-
ing 1. The program first establishes a Bluetooth connection to the NXT, then plays a tone, gets
the current battery level, and finally closes the connection again.

handle = COM_OpenNXT(’bluetooth.ini’); % open a Bluetooth connection using
COM_SetDefaultNXT(handle); % parameters from configuration file

NXT_PlayTone(800,500); % play tone with 800Hz for 500ms

voltage = NXT_GetBatteryLevel; % get current battery level

COM_CloseNXT(handle); % close Bluetooth connection

Listing 1. Basic program example.

A comparison between high–level functions and direct commands for sensor reading is given
in the next Listings 2 and 3. Both programs request the current raw 10–bit value of the NXT
light sensor. In the case of using direct NXT commands (command layer two), data packets
have to be requested and verified by the user program code until a valid packet is received
from the sensor. This control mechanism is necessary, since the light sensor can still be busy
in its initialization step. A control loop, which requests packets every 300 ms in the case of an
invalid data is shown in Listing 2.

% initialize the sensor
NXT_SetInputMode(SENSOR_1, ’LIGHT_ACTIVE’, ’RAWMODE’, ’dontreply’);

data = NXT_GetInputValues(SENSOR_1); % get light sensor value

if ~data.Valid % check valid flag, re-request data if necessary
startTime = clock(); % initialize timeout counter
timeout = 0.3; % set time out to 300 ms

while (~data.Valid) && (etime(clock, startTime) < timeout)
data = NXT_GetInputValues(SENSOR_1); % re-request until valid/timeout

end
end

light = double(data.NormalizedADVal); % use normalized light value (10 bit)

Listing 2. Program reads the current value of the light sensor using direct NXT commands.

Using high–level functions from command layer three, the control loop in Listing 2 is hid-
den from the user to provide a better usability for sensor reading. Thus, the whole program
simplifies to only two commands, as shown in Listing 3.

OpenLight(SENSOR_1, ’active’); % initialize light sensor

light = GetLight(SENSOR_1); % get light sensor value

Listing 3. Reprogramming of the program code in Listing 2 using high–level functions.

In addition to the high–level features, the RWTH – Mindstorms NXT Toolbox provides ap-
plications for motor and sensor data monitoring. Since e.g. the initialization of parameter
settings, sensor tests, or calibration processes are often necessary for the development of in-
dividual control algorithms, the users are able to test and measure sensor characteristics, as
illustrated in Fig. 5.
An example of using objects of the NXTMotor class (command layer four) to control the NXT
servo motors in MATLAB is shown in the next two listings. First, several motor objects for
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accuracy was highly improved. The interface to these new motor functions used the object–
oriented paradigm for the first time. Additionally, more external sensors were supported. The
resulting stable toolbox 2.03 was used during the student project in 2008.
In 2009, the focus was put on higher precision of the embedded motor control program.
Smooth braking was achieved by introducing a custom control algorithm. Other improve-
ments include further documentation, stability and performance issues. The version number
has finally arrived at 4.03, which is the latest stable version recommended to be used as of
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and NXT hardware. The system requirements of the current release version 4.03 are listed in
Table. 4.
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• LEGO Mindstorms NXT building kit (compatible with NXT 1.0 retail, NXT 2.0 retail,
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• LEGO Mindstorms NXT firmware v1.26 or higher, or compatible
• For Bluetooth connections: Bluetooth 2.0 adapter recommended model by LEGOő

(e.g. AVM BlueFRITZ! USB) supporting the serial port profile (SPP)
• For USB connections: Official Mindstorms NXT Driver "Fantom", v1.02 or higher

(Windows, Mac OS), “libusb” (Linux), 32–bit version of MATLAB

Table 4. System requirements of the RWTH – Mindstorms NXT Toolbox v4.03.

In the case of using an older MATLAB version such as 7.3 (R2006b), the NXT motors can be al-
ternatively controlled via the classic motor control functions offered until toolbox release 2.04.
For more information using individual system configurations, a version guide and changelogs
are provided on the toolbox web page.

3.5 Example Code
A basic example program using high–level functions and direct commands is shown in List-
ing 1. The program first establishes a Bluetooth connection to the NXT, then plays a tone, gets
the current battery level, and finally closes the connection again.

handle = COM_OpenNXT(’bluetooth.ini’); % open a Bluetooth connection using
COM_SetDefaultNXT(handle); % parameters from configuration file

NXT_PlayTone(800,500); % play tone with 800Hz for 500ms

voltage = NXT_GetBatteryLevel; % get current battery level

COM_CloseNXT(handle); % close Bluetooth connection

Listing 1. Basic program example.

A comparison between high–level functions and direct commands for sensor reading is given
in the next Listings 2 and 3. Both programs request the current raw 10–bit value of the NXT
light sensor. In the case of using direct NXT commands (command layer two), data packets
have to be requested and verified by the user program code until a valid packet is received
from the sensor. This control mechanism is necessary, since the light sensor can still be busy
in its initialization step. A control loop, which requests packets every 300 ms in the case of an
invalid data is shown in Listing 2.

% initialize the sensor
NXT_SetInputMode(SENSOR_1, ’LIGHT_ACTIVE’, ’RAWMODE’, ’dontreply’);

data = NXT_GetInputValues(SENSOR_1); % get light sensor value

if ~data.Valid % check valid flag, re-request data if necessary
startTime = clock(); % initialize timeout counter
timeout = 0.3; % set time out to 300 ms

while (~data.Valid) && (etime(clock, startTime) < timeout)
data = NXT_GetInputValues(SENSOR_1); % re-request until valid/timeout

end
end

light = double(data.NormalizedADVal); % use normalized light value (10 bit)

Listing 2. Program reads the current value of the light sensor using direct NXT commands.

Using high–level functions from command layer three, the control loop in Listing 2 is hid-
den from the user to provide a better usability for sensor reading. Thus, the whole program
simplifies to only two commands, as shown in Listing 3.

OpenLight(SENSOR_1, ’active’); % initialize light sensor

light = GetLight(SENSOR_1); % get light sensor value

Listing 3. Reprogramming of the program code in Listing 2 using high–level functions.

In addition to the high–level features, the RWTH – Mindstorms NXT Toolbox provides ap-
plications for motor and sensor data monitoring. Since e.g. the initialization of parameter
settings, sensor tests, or calibration processes are often necessary for the development of in-
dividual control algorithms, the users are able to test and measure sensor characteristics, as
illustrated in Fig. 5.
An example of using objects of the NXTMotor class (command layer four) to control the NXT
servo motors in MATLAB is shown in the next two listings. First, several motor objects for
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Fig. 5. The “Watch Sensor GUI” provides a comfortabke data monitoring tool for several NXT
sensors.

different robot movements are created in Listing 4. Based on these objects, an algorithm of an
explorer robot which drives an eight–shaped loop on the floor becomes structured and very
simplified, as shown in Listing 5.

leftWheel = MOTOR_B; % set parameters
rightWheel = MOTOR_C;
bothWheels = [leftWheel; rightWheel];
drivingPower = 60; % in percent
turningPower = 40; % in percent
drivingDist = 1500; % in degrees
turningDist = 220; % in degrees

% create objects for drive forward:
mForward = NXTMotor(bothWheels, ’Power’, drivingPower, ’TachoLimit’,

drivingDist);

% create object for turning the bot left:
mTurnLeft1 = NXTMotor(leftWheel, ’Power’, -turningPower, ’TachoLimit’,

turningDist);
mTurnLeft2 = NXTMotor(rightWheel, ’Power’, turningPower, ’TachoLimit’,

turningDist);

% create object for turning the bot right:
mTurnRight1 = mTurnLeft1; % copy objects
mTurnRight2 = mTurnLeft2;
mTurnRight1.Port = rightWheel; % swap wheels
mTurnRight2.Port = leftWheel;

Listing 4. Initialization of motor objects for different robot movements.

for n=1:1:8
mForward.SendToNXT(); % drive forward
mForward.WaitFor();

if (n < 4) || (n == 8)
mTurnLeft1.SendToNXT(); % make left-turn
mTurnLeft1.WaitFor();
mTurnLeft2.SendToNXT();
mTurnLeft2.WaitFor();

else
mTurnRight1.SendToNXT(); % make right-turn
mTurnRight1.WaitFor();
mTurnRight2.SendToNXT();
mTurnRight2.WaitFor(); % resulting route _

end % of the robot: |_|
end % |_|

Listing 5. Program code of an explorer robot driving an eight–shaped loop.

4. Software Project Management

To maintain the current and previous versions of the RWTH – Mindstorms NXT Toolbox,
the revision control system Subversion® (The Apache Software Foundation, 2000) is used.
Thus, changes and developments of each single file of the toolbox can be easily controlled.
Furthermore merging of new program code contributed by different programmers becomes
structured and traceable. In addition to the revision control of source code, the toolbox is
administrated using the web–based project management tool Trac (Edgewall Software, 2003).
It provides a wiki, an issue tracking system for bug reports, a user administration, and a road
map schedule for project management.
Using an individual layout the RWTH – Mindstorms NXT Toolbox is published as an open
source software on the web page http://www.mindstorms.rwth-aachen.de (see Fig. 6).

5. Educational Projects, Evaluations and Results

5.1 Freshmen Project “MATLAB meets LEGO Mindstorms”
The development of the RWTH – Mindstorms NXT Toolbox for MATLAB was motivated by
the establishment of a new laboratory “MATLAB meets LEGO Mindstorms” for freshman
students at the RWTH Aachen University, Aachen, Germany. Started in winter term 2007, the
project has become an annual mandatory project for each first–semester Bachelor student of
electrical engineering. Within this eight–day full–time course three objectives are addressed.
First, mathematical foundations are mapped to MATLAB program code. Based on this, more
complex tasks and algorithms are then described within the MATLAB environment. Going be-
yond simulations, real applications are performed by LEGO Mindstorms NXT robots, which
are designed and constructed by the students themselves.
While many other robotic education projects are designed for senior students, this project is
intentionally established for freshman students. Each winter term almost 400 students par-
ticipate in the laboratory and are guided by more then 80 supervisors simultaneously. Using
about 200 robot kits, students grouped into teams of two are distributed over 23 institutes
of the Electrical Engineering Department. The project tasks are separated into three working
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Fig. 5. The “Watch Sensor GUI” provides a comfortabke data monitoring tool for several NXT
sensors.

different robot movements are created in Listing 4. Based on these objects, an algorithm of an
explorer robot which drives an eight–shaped loop on the floor becomes structured and very
simplified, as shown in Listing 5.

leftWheel = MOTOR_B; % set parameters
rightWheel = MOTOR_C;
bothWheels = [leftWheel; rightWheel];
drivingPower = 60; % in percent
turningPower = 40; % in percent
drivingDist = 1500; % in degrees
turningDist = 220; % in degrees

% create objects for drive forward:
mForward = NXTMotor(bothWheels, ’Power’, drivingPower, ’TachoLimit’,
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mTurnLeft1 = NXTMotor(leftWheel, ’Power’, -turningPower, ’TachoLimit’,

turningDist);
mTurnLeft2 = NXTMotor(rightWheel, ’Power’, turningPower, ’TachoLimit’,

turningDist);

% create object for turning the bot right:
mTurnRight1 = mTurnLeft1; % copy objects
mTurnRight2 = mTurnLeft2;
mTurnRight1.Port = rightWheel; % swap wheels
mTurnRight2.Port = leftWheel;

Listing 4. Initialization of motor objects for different robot movements.

for n=1:1:8
mForward.SendToNXT(); % drive forward
mForward.WaitFor();

if (n < 4) || (n == 8)
mTurnLeft1.SendToNXT(); % make left-turn
mTurnLeft1.WaitFor();
mTurnLeft2.SendToNXT();
mTurnLeft2.WaitFor();

else
mTurnRight1.SendToNXT(); % make right-turn
mTurnRight1.WaitFor();
mTurnRight2.SendToNXT();
mTurnRight2.WaitFor(); % resulting route _

end % of the robot: |_|
end % |_|

Listing 5. Program code of an explorer robot driving an eight–shaped loop.

4. Software Project Management

To maintain the current and previous versions of the RWTH – Mindstorms NXT Toolbox,
the revision control system Subversion® (The Apache Software Foundation, 2000) is used.
Thus, changes and developments of each single file of the toolbox can be easily controlled.
Furthermore merging of new program code contributed by different programmers becomes
structured and traceable. In addition to the revision control of source code, the toolbox is
administrated using the web–based project management tool Trac (Edgewall Software, 2003).
It provides a wiki, an issue tracking system for bug reports, a user administration, and a road
map schedule for project management.
Using an individual layout the RWTH – Mindstorms NXT Toolbox is published as an open
source software on the web page http://www.mindstorms.rwth-aachen.de (see Fig. 6).

5. Educational Projects, Evaluations and Results

5.1 Freshmen Project “MATLAB meets LEGO Mindstorms”
The development of the RWTH – Mindstorms NXT Toolbox for MATLAB was motivated by
the establishment of a new laboratory “MATLAB meets LEGO Mindstorms” for freshman
students at the RWTH Aachen University, Aachen, Germany. Started in winter term 2007, the
project has become an annual mandatory project for each first–semester Bachelor student of
electrical engineering. Within this eight–day full–time course three objectives are addressed.
First, mathematical foundations are mapped to MATLAB program code. Based on this, more
complex tasks and algorithms are then described within the MATLAB environment. Going be-
yond simulations, real applications are performed by LEGO Mindstorms NXT robots, which
are designed and constructed by the students themselves.
While many other robotic education projects are designed for senior students, this project is
intentionally established for freshman students. Each winter term almost 400 students par-
ticipate in the laboratory and are guided by more then 80 supervisors simultaneously. Using
about 200 robot kits, students grouped into teams of two are distributed over 23 institutes
of the Electrical Engineering Department. The project tasks are separated into three working
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Fig. 6. Web page of the RWTH – Mindstorms NXT Toolbox.

steps. First, each student team has to work on basic exercises to get familiar with the Mind-
storms NXT hardware and to foster their MATLAB skills. In the second part, two student
teams work together on individual tasks and develop a own robot. At the end the students
present their work in a 15 minute presentation.

Basic Exercises: During the first five project days the students perform six mandatory exer-
cises which address basic MATLAB functions like loops, if–conditions, GUIs, timer objects, the
RWTH – Mindstorms NXT Toolbox functionality and its interaction with the NXT hardware,
as well as the characteristics of the different Mindstorms sensors (touch, sound, light, ultra-
sonic) and the NXT motors. Furthermore, MATLAB features and programming principles
combined with mathematical fundamentals are introduced in a practical and demonstrative
way.
For example, one exercise focuses on programming structures like loops, if–conditions and
arrays. Here the students implement a traffic light control system using LEGO lamps and the
NXT sound sensor. Depending on the number of detected handclaps, the lamps are switched
on and off. The values of the sound sensor are continuously read and filtered by applying a
moving window to the data stream. This provides a value of how many claps occurred during
the last 15 samples for each time instance. The different states of the traffic lights can then be
determined by thresholding the filtered data stream. An abstract of the program code is given
in Listing 6.

function detectClaps()
h = COM_OpenNXT(); % open connection to NXT
COM_SetDefaultNXT(h);

OpenSound(SENSOR_1, ’DB’); % initialize sound sensor
SwitchLamp(MOTOR_A, ’off’); % turn off lamp

values = zeros(15, 1); % initialize slinding window

for n = 1:1:500
s = GetSound(SENSOR_1); % get current sound value
values = [values(2:end); s]; % fill sliding data vector
pause(0.01); % delay reading to be able to detect

end % hand claps within 15 data samples

% ... analyze data samples ...

COM_CloseNXT(h); % close connection to NXT
end

Listing 6. Abstract of the detectClaps function to control lamps based on a handclap
detection.

Individual Tasks: In the second part of the project the students are given room to become
more creative and are free to develop their own ideas and innovative robot applications. In
the case of a lack of creativity, the students can start from three optional pre–documented
tasks. However, in winter term 2010 81% of the students created their own robots. One of
these inventions is given by a stationary crane with two degrees of freedom and a grabber
mounted to the end of its arm, as shown in Fig. 7.

Fig. 7. Left: Robotic crane grabs balls. Based on acceleration measurements it is remotely
controlled by tilting a second NXT interface. Right: GUI shows distances (green dots) between
robot and single objects on the table using an ultrasonic sensor. Its field of view is highlighted
in red. The distances are plotted in a 360◦ compass diagram (left). Side view of the current
arm position (right).

It utilizes a light sensor to detect whether an object was picked up (and to distinguish between
different colors) as well as an ultrasonic sensor to locate objects in its vicinity. The crane is con-
trolled wirelessly via Bluetooth. A second NXT brick, connected via a USB cable, is used as
a remote control. It contains a touch sensor to detect pressed keys and an acceleration sensor
which is used to detect roll and pitch motions by exploiting gravity. Thus the user can tilt the
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Fig. 6. Web page of the RWTH – Mindstorms NXT Toolbox.

steps. First, each student team has to work on basic exercises to get familiar with the Mind-
storms NXT hardware and to foster their MATLAB skills. In the second part, two student
teams work together on individual tasks and develop a own robot. At the end the students
present their work in a 15 minute presentation.

Basic Exercises: During the first five project days the students perform six mandatory exer-
cises which address basic MATLAB functions like loops, if–conditions, GUIs, timer objects, the
RWTH – Mindstorms NXT Toolbox functionality and its interaction with the NXT hardware,
as well as the characteristics of the different Mindstorms sensors (touch, sound, light, ultra-
sonic) and the NXT motors. Furthermore, MATLAB features and programming principles
combined with mathematical fundamentals are introduced in a practical and demonstrative
way.
For example, one exercise focuses on programming structures like loops, if–conditions and
arrays. Here the students implement a traffic light control system using LEGO lamps and the
NXT sound sensor. Depending on the number of detected handclaps, the lamps are switched
on and off. The values of the sound sensor are continuously read and filtered by applying a
moving window to the data stream. This provides a value of how many claps occurred during
the last 15 samples for each time instance. The different states of the traffic lights can then be
determined by thresholding the filtered data stream. An abstract of the program code is given
in Listing 6.

function detectClaps()
h = COM_OpenNXT(); % open connection to NXT
COM_SetDefaultNXT(h);

OpenSound(SENSOR_1, ’DB’); % initialize sound sensor
SwitchLamp(MOTOR_A, ’off’); % turn off lamp

values = zeros(15, 1); % initialize slinding window

for n = 1:1:500
s = GetSound(SENSOR_1); % get current sound value
values = [values(2:end); s]; % fill sliding data vector
pause(0.01); % delay reading to be able to detect

end % hand claps within 15 data samples

% ... analyze data samples ...

COM_CloseNXT(h); % close connection to NXT
end

Listing 6. Abstract of the detectClaps function to control lamps based on a handclap
detection.

Individual Tasks: In the second part of the project the students are given room to become
more creative and are free to develop their own ideas and innovative robot applications. In
the case of a lack of creativity, the students can start from three optional pre–documented
tasks. However, in winter term 2010 81% of the students created their own robots. One of
these inventions is given by a stationary crane with two degrees of freedom and a grabber
mounted to the end of its arm, as shown in Fig. 7.

Fig. 7. Left: Robotic crane grabs balls. Based on acceleration measurements it is remotely
controlled by tilting a second NXT interface. Right: GUI shows distances (green dots) between
robot and single objects on the table using an ultrasonic sensor. Its field of view is highlighted
in red. The distances are plotted in a 360◦ compass diagram (left). Side view of the current
arm position (right).

It utilizes a light sensor to detect whether an object was picked up (and to distinguish between
different colors) as well as an ultrasonic sensor to locate objects in its vicinity. The crane is con-
trolled wirelessly via Bluetooth. A second NXT brick, connected via a USB cable, is used as
a remote control. It contains a touch sensor to detect pressed keys and an acceleration sensor
which is used to detect roll and pitch motions by exploiting gravity. Thus the user can tilt the
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remote to adjust the crane’s position. The touch sensor is used to open and close the grabber.
A MATLAB GUI displays the robot’s current orientation and status on the computer monitor.

In the following listings an abstract of the program code is presented. At first the program
connects the PC to the NXT devices, as described in Listing 7.

% connect 1. NXT (robo crane) via Bluetooth / 2. NXT (remote control) via USB
hCrane = COM_OpenNXTEx(’Bluetooth’, ’’, ’bluetooth.ini’);
hRemote = COM_OpenNXTEx(’USB’, ’’);

Listing 7. Establishment of the PC ↔ NXT connections.

Then the NXT sensors are initialized and the motor objects for the basic movements are created
(Listing 8).

portLight = SENSOR_1; % set up ports (crane)
portUS = SENSOR_4;
portSwitch = SENSOR_1; % set up ports (remote control)
portAccel = SENSOR_4;

OpenLight(portLight, ’active’, hCrane); % initialize sensors
OpenUltrasonic(portUS, hCrane);
OpenSwitch(portSwitch, hRemote);
OpenAccelerator(portAccel, hRemote);

% set up motor objects for basic crane movement
mTurn = NXTMotor(’A’, ’TachoLimit’, 0, ’SpeedRegulation’, false);
mLift = NXTMotor(’B’, ’TachoLimit’, 0, ’SpeedRegulation’, false);

% set up motor objects for grabber control
mOpenGrabber = NXTMotor(’C’, ’Power’, GRABBER_POWER, ’TachoLimit’,

GRABBER_ANGLE);
mCloseGrabber = NXTMotor(’C’, ’Power’, -GRABBER_POWER, ’TachoLimit’,

GRABBER_ANGLE);
mCloseGrabber.SpeedRegulation = false;

Listing 8. Initialization of the NXT sensors and creation of the NXT motor objects for basic
movements.

In a further calibration process, the crane moves to its default start position. Then the main
control loop is executed. Sensor data is read continuously from the remote control, and motor
commands are sent to the crane to update and control its movement. Simultaneously, infor-
mation about the ultrasonic sensor and the motors are retrieved from the crane and displayed
in the MATLAB GUI for monitoring. Listing 9 shows the code abstract of the main control
loop.

acce = GetAccelerator(portAccel, hRemote); % acce is a 1x3-vector
buttonPressed = GetSwitch(portSwitch, hRemote);

if buttonPressed % handle touch sensor interaction
if grabberIsOpen

mCloseGrabber.SendToNXT(hCrane);
else

mOpenGrabber.SendToNXT(hCrane);
end
grabberIsOpen = ~grabberIsOpen;

end

yAbs = abs(acce(2)); % determine displacement in y-direction
if yAbs >= minAccelVal % consider minimal tilt of remote control

yAbs = min(yAbs, maxAccelVal); % clip too high values

mTurn.Power = ((yAbs-minAccelVal) / maxAccelVal) * 100 * (sign(acce(2)));
mTurn.SendToNXT(hCrane); % calc new power (linear interpolation)

else % for horizontal movement
mTurn.Stop(’off’);

end

% ... similar code for vertical movement ...

tmp = mTurn.ReadFromNXT(hCrane); % read current motor rotation angle
curPos = rem(-tmp.Position / gearFactor + 90, 360); % calc crane position
phi = curPos * pi / 180; % calc rotation angle of crane in radians

distUS = GetUltrasonic(portUS, hCrane); % read ultrasonic sensor
if distUS < 1 % if vision is free

distUS = 255; % assume max. distance in cm
end

[u, v] = pol2cart(phi, distUS); % update graphics
compass(u, v);
drawnow;

Listing 9. Code abstract of the crane’s main control loop.

The example shows that complex tasks and even advanced multi–NXT applications can easily
be structured and designed by the students using the RWTH – Mindstorms NXT Toolbox.

Presentation: On the last project day, the students present results and demonstrate their in-
dividual applications during a 15–minute presentations. Furthermore many descriptions,
pictures, and videos of the robots and their characteristics are presented as blogs on the
project web page http://www.lfb.rwth-aachen.de/mindstorms, and the video por-
tal www.youtube.com.
After the student laboratory, an anonymous and voluntary online evaluation is carried out.
Up to 38 questions about the general project concepts, specific exercises, and personally achieved
improvements are answered. The summarized evaluation results of the last three semester
terms are shown in Fig. 9. From the students’ point of view, the results show that the course
and the established toolbox have achieved the goal of introducing MATLAB as a software to
solve real–world problems. Every year, on average 49% of the students rate their improve-
ment in MATLAB programming skills as “excellent” and 42% as “good” after the project.
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remote to adjust the crane’s position. The touch sensor is used to open and close the grabber.
A MATLAB GUI displays the robot’s current orientation and status on the computer monitor.

In the following listings an abstract of the program code is presented. At first the program
connects the PC to the NXT devices, as described in Listing 7.

% connect 1. NXT (robo crane) via Bluetooth / 2. NXT (remote control) via USB
hCrane = COM_OpenNXTEx(’Bluetooth’, ’’, ’bluetooth.ini’);
hRemote = COM_OpenNXTEx(’USB’, ’’);
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(Listing 8).

portLight = SENSOR_1; % set up ports (crane)
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OpenUltrasonic(portUS, hCrane);
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% set up motor objects for basic crane movement
mTurn = NXTMotor(’A’, ’TachoLimit’, 0, ’SpeedRegulation’, false);
mLift = NXTMotor(’B’, ’TachoLimit’, 0, ’SpeedRegulation’, false);

% set up motor objects for grabber control
mOpenGrabber = NXTMotor(’C’, ’Power’, GRABBER_POWER, ’TachoLimit’,

GRABBER_ANGLE);
mCloseGrabber = NXTMotor(’C’, ’Power’, -GRABBER_POWER, ’TachoLimit’,

GRABBER_ANGLE);
mCloseGrabber.SpeedRegulation = false;

Listing 8. Initialization of the NXT sensors and creation of the NXT motor objects for basic
movements.

In a further calibration process, the crane moves to its default start position. Then the main
control loop is executed. Sensor data is read continuously from the remote control, and motor
commands are sent to the crane to update and control its movement. Simultaneously, infor-
mation about the ultrasonic sensor and the motors are retrieved from the crane and displayed
in the MATLAB GUI for monitoring. Listing 9 shows the code abstract of the main control
loop.

acce = GetAccelerator(portAccel, hRemote); % acce is a 1x3-vector
buttonPressed = GetSwitch(portSwitch, hRemote);

if buttonPressed % handle touch sensor interaction
if grabberIsOpen

mCloseGrabber.SendToNXT(hCrane);
else

mOpenGrabber.SendToNXT(hCrane);
end
grabberIsOpen = ~grabberIsOpen;

end

yAbs = abs(acce(2)); % determine displacement in y-direction
if yAbs >= minAccelVal % consider minimal tilt of remote control

yAbs = min(yAbs, maxAccelVal); % clip too high values

mTurn.Power = ((yAbs-minAccelVal) / maxAccelVal) * 100 * (sign(acce(2)));
mTurn.SendToNXT(hCrane); % calc new power (linear interpolation)

else % for horizontal movement
mTurn.Stop(’off’);

end

% ... similar code for vertical movement ...

tmp = mTurn.ReadFromNXT(hCrane); % read current motor rotation angle
curPos = rem(-tmp.Position / gearFactor + 90, 360); % calc crane position
phi = curPos * pi / 180; % calc rotation angle of crane in radians

distUS = GetUltrasonic(portUS, hCrane); % read ultrasonic sensor
if distUS < 1 % if vision is free

distUS = 255; % assume max. distance in cm
end

[u, v] = pol2cart(phi, distUS); % update graphics
compass(u, v);
drawnow;

Listing 9. Code abstract of the crane’s main control loop.

The example shows that complex tasks and even advanced multi–NXT applications can easily
be structured and designed by the students using the RWTH – Mindstorms NXT Toolbox.

Presentation: On the last project day, the students present results and demonstrate their in-
dividual applications during a 15–minute presentations. Furthermore many descriptions,
pictures, and videos of the robots and their characteristics are presented as blogs on the
project web page http://www.lfb.rwth-aachen.de/mindstorms, and the video por-
tal www.youtube.com.
After the student laboratory, an anonymous and voluntary online evaluation is carried out.
Up to 38 questions about the general project concepts, specific exercises, and personally achieved
improvements are answered. The summarized evaluation results of the last three semester
terms are shown in Fig. 9. From the students’ point of view, the results show that the course
and the established toolbox have achieved the goal of introducing MATLAB as a software to
solve real–world problems. Every year, on average 49% of the students rate their improve-
ment in MATLAB programming skills as “excellent” and 42% as “good” after the project.
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Fig. 8. Robot descriptions on the project web page (left). Videos of the student projects (right).
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Fig. 9. Evaluation results of the last three project terms based on an anonymous student online
evaluation (A: excellent, B: good, C: average,D: below average, E: inadequate).

Even though these results are based on the students’ own subjective self–assessment, they
agree well with the skills objectively required to pass the project, such as the ability to develop
and program one’s own individual robot, based on MATLAB programs using the RWTH –
Mindstorms NXT Toolbox. Also the motivation level and overall ratings show that the project
augments student motivation and helps the students to develop their programming skills.
Furthermore, each year about 47% of the students say they would use MATLAB for future
programming tasks. More evaluation results and further descriptions of the project and its
educational objectives can be found in Behrens et al. (2010).

5.2 Other Education Projects
Besides the “MATLAB meets LEGO Mindstorms” course, other universities and schools are
encouraged to introduce the toolbox into their own practical robotics courses.
One example is given by the “Fundamentals of Engineering Design Course” for Biomedi-
cal Engineers at the New Jersey Institute of Technology, Newark, USA (Parameswaran et al.,
2009). In this three–hour semester long project about 60 students solve robotic surgery tasks

with the RWTH – Mindstorms NXT Toolbox for MATLAB and a modeling software. Vari-
ous MATLAB projects, like a basketball and football shooting robot, or a gymnast robot are
developed by students in the biomechanics project at the Locomotion laboratory at Friedrich
Schiller University of Jena, Germany (Seyfarth, 2009). Inspired by the objectives and struc-
ture of the “MATLAB meets LEGO Mindstorms” project, a similar student laboratory called
“Robotics with MATLAB and LEGO NXT” is established at the Villanova University, Vil-
lanova, USA (Konyk & Nersesov, 2010). At the Department of Automatic Control, Lund In-
stitute of Technology, Lund, Sweden a student project in automatic control is given during the
second study period (Akesson, 2009). Addressing a control engineering topic, the RWTH –
Mindstorms NXT Toolbox is introduced in a control systems course at School of Information
Technology and Engineering, University of Ottawa, Ottawa, Canada (Habash, 2008). Another
first semester project is conducted by freshman students of the cybernetic engineering course
at the Otto-von-Guericke University Magdeburg, Magdeburg, Germany. Currently, also the
University of Cambridge, Cambridge, United Kingdom, is establishing a new student lab for
engineering undergraduates (Gee, 2010), using the toolbox and about 130 NXT robotic kits.
Besides student courses and laboratories, the RWTH – Mindstorms NXT Toolbox is also used
in final projects and theses. Examples are given by the gesture controlled robot at the Depart-
ment of Electrical and Computer Engineering, University of Illinois, Chicago, USA (Mahajan,
2009), and the “Technical Lego Robot Entertainment Device” developed at the Faculty of Engi-
neering and Computing, Coventry University, Coventry, United Kingdom (Ischebeck, 2008).
Since this list of examples is not exhaustive, many more are given on the toolbox web page
http://www.mindstorms.rwth-aachen.de.

5.3 The MathWorks Support
After the first release of the RWTH – Mindstorms NXT Toolbox was official published in 2008,
The MathWorks also offered free code to control LEGO Mindstorms NXT robots remotely via
Bluetooth. In a similar way the NXT interface was designed using sensor and motor objects.
However, only the direct commands of the NXT communication protocol were implemented.
Because of less functionality than the RWTH – Mindstorms NXT Toolbox, which is also freely
available at MATLAB Central File Exchange (The MathWorks, 2008b), The MathWorks de-
cided in 2010 to withdraw their code and officially feature and promote the RWTH – Mind-
storms NXT Toolbox on their Academia web pages (The MathWorks, 2008a). Furthermore
The MathWorks promotes the toolbox and the “MATLAB meets LEGO Mindstorms” fresh-
man course in their MATLAB Digest Academic Journal (Behrens & Aach, 2008), and awards
the best student group of the project with the “MATLAB Team Award” since 2009.

6. Conclusion

The development of the RWTH – Mindstorms NXT Toolbox showed that the MATLAB envi-
ronment is feasible to design complex libraries and educational applications from scratch, and
generate exhaustive and professional documentation in a very short development time. Pro-
viding an intuitive interface to external devices such as LEGO Mindstorms NXT robots, even
total MATLAB beginners become quickly familiar in programming and are able to develop
their own complex programs in relatively short practical courses.
The command layer design of the RWTH – Mindstorms NXT Toolbox with its high–level con-
trol functions enables the user to control NXT robotics easily and focus on the main course ob-
jectives, like efficient MATLAB programming, digital signal processing, control engineering,
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Even though these results are based on the students’ own subjective self–assessment, they
agree well with the skills objectively required to pass the project, such as the ability to develop
and program one’s own individual robot, based on MATLAB programs using the RWTH –
Mindstorms NXT Toolbox. Also the motivation level and overall ratings show that the project
augments student motivation and helps the students to develop their programming skills.
Furthermore, each year about 47% of the students say they would use MATLAB for future
programming tasks. More evaluation results and further descriptions of the project and its
educational objectives can be found in Behrens et al. (2010).

5.2 Other Education Projects
Besides the “MATLAB meets LEGO Mindstorms” course, other universities and schools are
encouraged to introduce the toolbox into their own practical robotics courses.
One example is given by the “Fundamentals of Engineering Design Course” for Biomedi-
cal Engineers at the New Jersey Institute of Technology, Newark, USA (Parameswaran et al.,
2009). In this three–hour semester long project about 60 students solve robotic surgery tasks

with the RWTH – Mindstorms NXT Toolbox for MATLAB and a modeling software. Vari-
ous MATLAB projects, like a basketball and football shooting robot, or a gymnast robot are
developed by students in the biomechanics project at the Locomotion laboratory at Friedrich
Schiller University of Jena, Germany (Seyfarth, 2009). Inspired by the objectives and struc-
ture of the “MATLAB meets LEGO Mindstorms” project, a similar student laboratory called
“Robotics with MATLAB and LEGO NXT” is established at the Villanova University, Vil-
lanova, USA (Konyk & Nersesov, 2010). At the Department of Automatic Control, Lund In-
stitute of Technology, Lund, Sweden a student project in automatic control is given during the
second study period (Akesson, 2009). Addressing a control engineering topic, the RWTH –
Mindstorms NXT Toolbox is introduced in a control systems course at School of Information
Technology and Engineering, University of Ottawa, Ottawa, Canada (Habash, 2008). Another
first semester project is conducted by freshman students of the cybernetic engineering course
at the Otto-von-Guericke University Magdeburg, Magdeburg, Germany. Currently, also the
University of Cambridge, Cambridge, United Kingdom, is establishing a new student lab for
engineering undergraduates (Gee, 2010), using the toolbox and about 130 NXT robotic kits.
Besides student courses and laboratories, the RWTH – Mindstorms NXT Toolbox is also used
in final projects and theses. Examples are given by the gesture controlled robot at the Depart-
ment of Electrical and Computer Engineering, University of Illinois, Chicago, USA (Mahajan,
2009), and the “Technical Lego Robot Entertainment Device” developed at the Faculty of Engi-
neering and Computing, Coventry University, Coventry, United Kingdom (Ischebeck, 2008).
Since this list of examples is not exhaustive, many more are given on the toolbox web page
http://www.mindstorms.rwth-aachen.de.

5.3 The MathWorks Support
After the first release of the RWTH – Mindstorms NXT Toolbox was official published in 2008,
The MathWorks also offered free code to control LEGO Mindstorms NXT robots remotely via
Bluetooth. In a similar way the NXT interface was designed using sensor and motor objects.
However, only the direct commands of the NXT communication protocol were implemented.
Because of less functionality than the RWTH – Mindstorms NXT Toolbox, which is also freely
available at MATLAB Central File Exchange (The MathWorks, 2008b), The MathWorks de-
cided in 2010 to withdraw their code and officially feature and promote the RWTH – Mind-
storms NXT Toolbox on their Academia web pages (The MathWorks, 2008a). Furthermore
The MathWorks promotes the toolbox and the “MATLAB meets LEGO Mindstorms” fresh-
man course in their MATLAB Digest Academic Journal (Behrens & Aach, 2008), and awards
the best student group of the project with the “MATLAB Team Award” since 2009.

6. Conclusion

The development of the RWTH – Mindstorms NXT Toolbox showed that the MATLAB envi-
ronment is feasible to design complex libraries and educational applications from scratch, and
generate exhaustive and professional documentation in a very short development time. Pro-
viding an intuitive interface to external devices such as LEGO Mindstorms NXT robots, even
total MATLAB beginners become quickly familiar in programming and are able to develop
their own complex programs in relatively short practical courses.
The command layer design of the RWTH – Mindstorms NXT Toolbox with its high–level con-
trol functions enables the user to control NXT robotics easily and focus on the main course ob-
jectives, like efficient MATLAB programming, digital signal processing, control engineering,
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biomechanics, or software design. Besides the evaluation results of the related student labo-
ratory “MATLAB meets LEGO Mindstorms” at RWTH Aachen University, Aachen, Germany,
many other educational projects for undergraduate students showed an easy and effective in-
tegration of the RWTH – Mindstorms NXT Toolbox in their MATLAB courses. Additionally,
the implementation of the MATLAB toolbox published as free open source software at http:
//www.mindstorms.rwth-aachen.de provides a transparent and adapable computer–
robot communication framework for MATLAB.
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biomechanics, or software design. Besides the evaluation results of the related student labo-
ratory “MATLAB meets LEGO Mindstorms” at RWTH Aachen University, Aachen, Germany,
many other educational projects for undergraduate students showed an easy and effective in-
tegration of the RWTH – Mindstorms NXT Toolbox in their MATLAB courses. Additionally,
the implementation of the MATLAB toolbox published as free open source software at http:
//www.mindstorms.rwth-aachen.de provides a transparent and adapable computer–
robot communication framework for MATLAB.
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1. Introduction     
 

There are various premier software packages available in the market, either for free use or 
found at a high price, to analyse the century old electrical power system.  Universities in the 
developed countries expend thousands of dollars per year to bring these commercial 
applications to the desktops of students, teachers and researchers. For teachers and 
researchers this is regarded as a good long-term investment. As well, for the postgraduate 
students these packages are very important to validate the model developed during course 
of study. For simulating different test cases and/or standard systems, which are readily 
available with these widely used commercial software packages, such enriched software 
plays an important role. But in case of underdeveloped and developing countries the high 
amount of money needed to be expended per year to purchase commercial software is a far-
fetched idea. In addition, undergraduate students who are learning power system for the 
very first time find these packages incongruous for them since they are not familiar with the 
detailed input required to run the program. Even if it is a simple load flow program to find 
the steady-state behaviour of the system, or an elementary symmetrical fault analysis test 
case these packages require numerous inputs since they mimic a practical power system 
rather than considering simple test cases. In effect, undergraduate students tend to stay 
away from these packages. So rather than aiding the study in power system, these create a 
bad impression on students‘ mind about the very much interesting course.  
 

Many researchers have tried a lot to solve this overarching problem. With the advent of 
personal computers (PCs) the solution to this issue has been very easy. Then came 
MATLAB, a flagship software for scientific and engineering computation. A revolution 
occurred in the field of science. Teaching and learning became very much easier than ever 
with the powerful graphical tools of MATLAB. Many researchers have developed various 
attractive software packages to aid to the power system analysis and design. A few have 
focused on the power engineering education field. This chapter discusses an excellent 
software package based on MATLAB developed mainly to aid in power system study. 
Although the program  is developed using MATLAB, it is compiled such that it can be used 
outside MATLAB environment. 
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2. Overview of Software Packages for Power Engineering 

To facilitate power engineering analysis and design various companies have developed 
diverse software. Among them some are used widely and some are built to meet specific 
purpose of a company. There are PSS®E, ETAP, NEPLAN and much more commercial 
programs. PSAT, Power World Simulator, and POWERHU basically developed to facilitate 
power engineering education and sometimes available with textbooks. Among these 
programs some are code based and some are model based. Some written in C, and Java, 
others depend on MATLAB.  
 
PSS®E (Siemens, 2009) developed by Siemens Power Technologies International (Siemens PTI) 
has various modules like power flow, short circuit, dynamic simulation, contingency analysis, 
optimal power flow, linear network, reliability assessment, and small signal analysis. These 
modules requires a solid idea about the whole generation, transmission, and distribution 
system, various control devices used at different points to improve power system quality. This 
software is a benchmark against which other newly developed software is tested. 
 
ETAP (Operation Technology, 2009) offers a group of fully integrated power engineering 
software solutions including arc flash, load flow, short circuit, transient stability, relay 
coordination, optimal power flow, and more. Its modular functionality can be customized to 
fit the needs of any company, from small to large power systems. ETAP is a comprehensive 
analysis platform for the design, simulation, operation, and automation of generation, 
distribution, and industrial power systems. As a fully integrated enterprise solution, ETAP 
extends to a real-time intelligent power management system to monitor, control, automate, 
simulate, and optimize the operation of power systems. 
 
BCP (i.e., Busarello + Cott + Partner AG) was founded 1988 in Zurich, Switzerland and is 
specialized in the field of power systems engineering. BCP is the developer and owner of 
the power system analysis tool NEPLAN (BCP, 2010). Small and large utilities, industrial 
organizations, engineering companies and universities in more than 80 countries around the 
world use this product. NEPLAN is the planning, optimization and simulation tool for 
transmission, distribution, generation and industrial networks. It covers all aspects of 
modern power system planning and analysis. NEPLAN offers several starter packages. 
These starter packages are extendable with many useful modules. All these modules may be 
added to a starter package at any time. It is available in 9 languages. 
 
The Power System Analysis Toolbox (PSAT) is a MATLAB toolbox for electric power system 
analysis and simulation (Milano, 2005). All operations can be assessed by means of 
graphical user interfaces (GUIs) and a SIMULINK based library provides a tool for network 
design. The main features of PSAT are: power flow, optimal power flow, small signal 
stability analysis, time domain simulation, FACTS models, wind turbine models, conversion 
of data files from several formats; Export results to MS Excel and LaTeX files. 
 

PowerWorld Simulator (PowerWorld Corporation, 2009) is an interactive power systems 
simulation package designed to simulate high voltage power systems operation on a time 
frame ranging from several minutes to several days. The software contains a highly effective 
power flow analysis package capable of efficiently solving systems with up to 100,000 buses. 

 

PowerWorld Simulator is ideally suited for teaching power systems operations and analysis 
and for performing research.  In fact, the original version of the simulator software was built 
as a tool for teaching power systems and presenting power systems analysis results to 
technical and non-technical audiences alike.  Since that time, simulator has evolved into the 
highly powerful power systems analysis and visualization platform that it is today.   
Simulator has been, and continues to be, used effectively in undergraduate and graduate 
level classes in power systems operation, control, and analysis.  Concepts are presented 
simply, yet the software has sufficient detail to challenge advanced engineering students.   
 

MATLAB 4.0 was used to develop a software package named POWERHU (Songur & Ercan, 
1997) keeping in mind power engineering students. It has the excellent feature of solving 
problems in a way that most widely used power system analysis textbooks use. It is capable 
of performing load flow study, impedance calculation, fault calculation, and transient 
stability analysis. 
 

PSS®E, ETAP, and NEPLAN are mainly used in industries and for research purposes. They 
are not suitable for first time learners of power system. PSAT and PowerWorld Simulators 
are excellent tools that can be used to teach and learn power system. But the problem here is 
that these packages are mainly model based and does not give the chance to see the inner 
structure of the program. It just takes inputs and provides outputs after some processing. 
The students may not see the inner structure of the program which is required very much to 
develop insight into the behaviour of various components of power system. POWERHU 
takes into account the problems of PSAT and PowerWorld Simulator. It provides a step by 
step solution so that the confidence can be built up towards solving more complex 
problems. But this program is not MATLAB independent. One has to start MATLAB first to 
run this program, and the size and cost of MATLAB license is increasing day by day. This is 
why; it may not be possible for students in some developing countries to use this program 
in the laboratories since they may not have the high performance computers. Also, the 
program may not run in the recent versions of MATLAB since many old commands of 
MATLAB have been obsolete. The POWERHU is neither standalone nor it is made version 
independent. It was developed and tested in MATLAB 4.0 and no improvement was 
reported after that. 

 
3. Structure of Student Friendly Power System Analysis Toolbox 
 

Power system analysis courses taught in undergraduate levels cover mainly basic concepts 
of power system like single-line diagram, per unit system, modelling of generators, 
transformers, transmission lines and loads, load flow analysis, fault analysis, stability 
studies etc. The purpose of such courses is to develop a fundamental idea about the power 
system among the undergrads so that they can develop their own skills and aptitudes for 
solving real world power engineering problems. The huge computations required for these 
courses are handled by computers and now-a-days MATLAB is used extensively for 
scientific and engineering computation. In this chapter, a student friendly toolbox 
developed to assist students during their course of study in basic power system courses is 
presented. The toolbox takes into account the fresh students having no idea about the course 
and can alone be used as a textbook. The help menu in the toolbox provides details of 
problems solved with sufficient background materials so that each and every module can be 
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grasped and mastered with ease. One can easily see the inner structure of the program to 
understand how to code a power engineering problem. The main advantage of the toolbox 
is that apart from using the software within MATLAB it is made version compatible and can 
be used without MATLAB. So it can be regarded as a standalone software package for 
power system analysis. The software was developed in MATLAB 6.5 and now successfully 
tested in the recent version of MATLAB 2010a. The toolbox is divided into different modules 
to focus different areas of power system as follows: 

a) Fault analysis of a motor-generator set 
b) Demonstration of symmetrical components 
c) Fault analysis of unloaded alternator 
d) Synchronous machine transients (balanced) 
e) Synchronous machine transients (unbalanced) 
f) Fault analysis of interconnected buses 
g) Single machine stability analysis (classical) 
h) Single machine stability analysis (modern) 
i) Load flow 

 

When the program is run the main window appears as in Fig. 1. 
 

 
Fig. 1. Main window of student friendly power system analysis toolbox 

 

4. Fault Analysis of a Motor-Generator Set 
 

This toolbox can be used to study various types of faults encountered in power system and   
was reported on (Rabbani et al., 2006) which is again presented here in a slight different 
format.  
 

The effect of a fault in the line connected in between the motor and generator can be 
visualised using this module which is shown in Fig. 2. The effect of change of various 
parameters is visualised using this module. This example is taken from a classical textbook 
of power system (Stevenson, 1982).  
 

 
Fig. 2. Symmetrical fault analysis of a motor-generator set 
 
The idea behind the example is to consider a case when a symmetrical three phase fault 
occurs in the connecting line of a motor-generator set when the system was running full 
load. The fault current is the contribution from both generator and motor. The magnitude 
and angle of the fault, generator and motor currents are found by simulating the program. 
The effect of the pre-fault operating conditions like input power, power factor, and pre-fault 
voltages on the fault currents can be observed. The impedances of motor, generator, and 
transmission lines can be changes individually and their impact on fault current can be 
noticed. The power and voltage ratings of the motor and generator can be modified to see its 
influence on fault currents. This problem is analysed here with a very attractive user 
friendly Graphical User Interface (GUI) (MathWorks, 2009) developed using MATLAB 
GUIDE (GUI Design Environment).  
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One need not go to the main program each time, save this and run again and need not be 
worried about unintentionally changing the program and generate an unexpected error. It 
also provides a help menu for an easy understanding of the problem for the first time user 
and a step by step procedure of developing program to solve the problem using PC. It 
provides a complete formulation and solution of the problem. A glimpse of the help file for 
this module is given in Fig. 3. The help file first describes the problem then the inputs 
required for running the program are clarified. The next step is to provide a step by step 
solution procedure for the problem which is given in the textbooks. The last step describes a 
complete methodology to develop MATLAB program for solving the problem.  
 
After analysing this module a student develops the very basic idea of a fault encountered in 
power system. By varying various parameters he can verify hand calculation which builds a 
confidence within him. This hands-on, user friendly interactive module excites the learners 
to pursue their study of power system. The preliminary objective of providing such a basic 
problem first is to reinforce students’ decision to take power system analysis course, 
immediately upon starting the course, and help them feel included. 
 

 
Fig. 3. A portion of help file for symmetrical fault analysis of a motor-generator set 

 
5. Demonstration of Symmetrical Components 
 

Symmetrical components allow unbalanced phase quantities such as currents and voltages 
to be replaced by three separate balanced symmetrical components. The concept of 
symmetrical components is an indispensible tool for investigating unbalanced systems. The 
idea of symmetrical components is found in the paper (Fortescue, 1918). According to 
Fortescue’s theorem, three balanced system of phasors can be constructed from three 
unbalanced phasor quantities. The balanced components of phasors have the following 
properties: 

 

a) The positive sequence components have three phasors equal in magnitude. Each 
are displaced 1200 with each other in phase. It has the phase sequence of the 
original phasor. 

b) The negative sequence components also have three phasors equal in magnitude, 
displaced 1200 with each other in phase. The difference with the positive 
sequence component is that the negative sequence components have the 
opposite phase sequence than that of the positive one. 

c) The zero sequence components are equal in magnitude and zero phase difference 
from each other. 

 
In this module as shown in Fig. 4 unbalanced phasors are converted to balanced set of 
positive, negative, and zero sequence components.  
 

 
Fig. 4. Conversion of unbalanced phasor to symmetrical components 
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The a-b-c set in the figure is the unbalanced set of phasors which can be entered in the 
system using the editable text boxes named as Magnitude and Angle. In this particular 
example the magnitudes of three phasors are 1.6, 1.0, and 0.9, while the angles are 250, 1800, 
and 1320 respectively. The GUI also has the provision to change the angles using the slider 
whose range varies from 0 to 360 degrees. After setting all these parameters the user needs 
to press the Transform button and the results are displayed in the three figures titled Zero, 
Positive, and Negative-sequence set. Like other modules of this toolbox the Help button 
provides a detail description of the symmetrical components and some worked out 
examples to facilitate plumbing the concept. Close button terminates the program. By 
pressing the pushbutton Main the main window of the toolbox as in Fig. 1 is returned.  

 
6. Fault Analysis of an Unloaded Alternator 
 

 
Fig. 5. Module for different types of fault analysis of an unloaded alternator  
 
This module of the toolbox shown in Fig. 5 is used to study the effect of symmetrical three 
phase, single line-to-ground, line-to-line, and double line-to-ground faults at the terminal of 
a previously unloaded alternator which has a rating 20MVA and 13.8kV in this default 

 

example taken from (Stevenson, 1982). The ratings of the alternator (MVA and kV) can be 
changed as well as the sequence reactance (Z0, Z1, and Z2) of the machine can be modified 
to see the effect of various types of faults on fault currents and voltages. If Data button is 
pressed fault currents and voltages are displayed in a separate window. Initially there is no 
fault selected as reflected by Fig. 5. If Line-to-Line fault is selected then GUI is modified as 
in Fig. 6 and the result on the analysis is presented in Fig. 7 respectively. 
 

 
Fig. 6. Modified GUI for simulating line-to-line fault at the terminal of an unloaded alternator   
 
The voltage and current data as shown in Fig. 7 validates some general concept of power 
system. The first one is the phase a current is zero since the machine was previously 
unloaded and the line-to-line fault is simulated in phases b and c. Also the voltage 
difference between phases b and c is zero since these two phases are short-circuited 
together. The b and c phase currents are same in magnitude but are of opposite phases since 
they are directly opposing each other as viewed in Fig. 6. This statement is also valid for Vab 

and Vca. The Help, Close, and Main buttons perform functions as described earlier and the 
Reset button initializes the module. Table 1 provides voltage and current data by running 
the program using the ratings as it is shown in Fig. 5 for different types of faults. 
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Fig. 7. Voltages and currents after fault   
 

Fault Symmetrical 3 Phase Single Line-to-Ground Line-to-Line Double-Line-to-
Ground 

Quantity Magnitude Angle degree Magnitude Angle 
degree Magnitude Angle 

degree Magnitude Angle 
degree 

Ia 3346.9981 -90 3586.0265 -90 0 0 0 0 
Ib 3346.9981 30 0 0 2415.4589 180 4021.2983 132.2 
Ic 3346.9981 150 0 0 2415.4589 0 4021.2983 47.78 

Vab 0 0 8.0684 77.78 13.943 0 5.6717 0 
Vbc 0 0 15.7714 -90 0 0 0 0 
Vca 0 0 8.0684 102.2 13.943 180 5.6717 180 

Table 1. Currents and Voltages of various types of faults after simulating the system in Fig. 5 
 
7. Balanced and Unbalanced Synchronous Machine Transients 
 

Under steady state condition the rotor m.m.f. and the resultant stator m.m.f. are stationary 
with respect to each other. So the flux linkages with the rotor circuit do not change with 
time and no voltage is induced in the rotor circuit. When a balanced or unbalanced fault 
occurs flux linkages with the rotor circuit changes with time. This causes transient currents 
in the rotor circuit which in turn creates effect on armatures. This transient analysis is 
visualised in this module as depicted in Fig. 8 for balanced 3 phase short circuit and in Fig. 9 
for unbalanced fault (line-to-line) at the terminal of an alternator.  
 

The field voltage, self and mutual inductances, resistances, frequency, initial torque angle, 
and time span are the inputs for the module. Two standard frequencies (50 and 60Hz) can 
be chosen from the drop-down menu in the GUI. The time span can be varied according to 
the region of interest of the simulation. In case of unbalanced fault analysis there is an extra 
provision to select between line-to-line and line-to-ground fault. These two modules can be 
switched using the Unbalanced and Balanced buttons in the balanced and unbalanced 
modules respectively. By pressing the Simulate button the transient curves can be obtained 
which takes some time depending upon the time span since it is required to solve 
differential equations.    

 

 
Fig. 8. Currents in various phases of an alternator after a three phase short circuit occurs at 
its terminal 

 
8. Fault Analysis of Interconnected Buses 
 

In this module a very much challenging problem of power system analysis course is 
described. The generalised case of finding voltages and currents after the occurrence of 
symmetrical three phase fault at any bus of a power system is either solidly grounded or 
shorted with some impedance is the most interesting problem in this toolbox. For example, a 
simple 11 bus test case is considered as shown in Fig. 10. The pre-fault voltages at various 
buses can be found by load flow study. Generally, if such accuracy is not important the pre-
fault bus voltages are assumed to be unity. The transient impedance of the generators are on 
a 100MVA base are given in Table 2. 
 

Generator Ra 
/
dX

 

1 0 0.20 

10 0 0.15 

11 0 0.25 
Table 2. Generator resistance and reactance for simple 11 bus system in Fig. 10 
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Fig. 9. Simulation of line-to-line fault at the terminal of a 50Hz alternator for 2 seconds 
 

 
Fig. 10. Simple 11-bus power system for fault studies (Saadat, 2009) 

 

The line and transformer data along with the half of susceptance value is given in Table 3 in per 
unit. These data are incorporated in the program and the pre-fault bus voltages are assumed to 
be 1 and a solid 3 phase symmetrical fault is simulated at bus 8. The resulting GUI looks like Fig. 
11. The Voltage Data corresponds to the various bus voltages after the fault and the Current 
Data represents various currents flowing in various lines in the system after the fault has 
occurred. The voltage and current data after the fault are given in Fig. 12 and Fig. 13 respectively. 
If any bus was faulted with some impedance this can be done by entering Fault Impedance as 
r+jx format.  
 

Fro
m 

Bus 

To 
Bus 

R 
pu 

X 
pu 

½ B 
pu 

1 2 0.00 0.06 0.0000 
2 3 0.08 0.30 0.0004 
2 5 0.04 0.15 0.0002 
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Table 3. Line and transformer data for simple 11 bus system in Fig. 10 
 

 
Fig. 11. GUI for analysing solid fault at bus 8 of 11 bus system 



A student friendly toolbox for power system analysis using MATLAB 79

 

 
Fig. 9. Simulation of line-to-line fault at the terminal of a 50Hz alternator for 2 seconds 
 

 
Fig. 10. Simple 11-bus power system for fault studies (Saadat, 2009) 
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Fig. 12. Voltage at various buses after a 3 phase symmetrical fault at bus 8 of Fig. 10 
 

 
Fig. 13. Currents at various lines after a 3 phase symmetrical fault at bus 8 of Fig. 10 

 

9. Stability Analysis 
 

Power system stability is defined as ‘Power system stability is the ability of an electric power 
system, for a given initial operating condition, to regain a state of operating equilibrium 
after being subject to a physical disturbance, with most system variables bounded so that 
practically the entire system remains intact by (Kundur et. Al., 2004). Broadly, the power 
system stability is classified as: 

a) Rotor angle stability 
b) Voltage stability 
c) Frequency stability 

 

In this module mainly the rotor angle stability is considered.  When a 3 phase short circuit 
occurs in a line very close to a generator bus of an interconnected power system, the voltage 
of the bus essentially becomes zero. So the electrical output power also becomes zero. But 
the mechanical power input to the turbine-generator system remains constant. Hence the 
generator accelerates. This acceleration means that the rotor angle of the generator will keep 
increasing. Now, in order to clear the fault the circuit breakers are tripped to remove the 
faulted line out of the system. Depending upon the time of tripping the rotor angle of the 
generator of the faulted bus will then wither settle down to a new equilibrium, or keep on 
increasing resulting in instability. This is an example of rotor angle stability which occurs 
mainly due to the mismatch of electrical output and mechanical input power of the 
alternator. Rotor angle stability can be analysed for either for small or large disturbances 
and generally this type of stability analysis if performed for 2 to 10 seconds i.e., this is an 
example of short term stability. 
 

 
Fig. 14. Stability analysis module 
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The example that have considered here is a single machine system connected to an infinite 
bus via two parallel transmission lines as demonstrated in Fig. 14. In this case the stability of 
the single machine is considered subjected to a symmetrical 3 phase fault in one of the two 
parallel lines. The position of the fault along the line can be changed and its effect on 
stability can be visualised. The example shown in Fig. 14 simulates a fault at the middle 
(50%) of the transmission line. The fault location can be varied either by using the slider 
control of the GUI or by entering the fault position as a percentage (0% for a fault at the 
transformer terminal and 100% for the fault at the infinite bus). The generator, transformer, 
and transmission line reactances can be varied. Various ratings can be changed such as 
Generator output power, Generator e.m.f., Infinite bus-bar voltage, Generator inertia 
constant. Fault clearing time is very essential for this type of stability and system may 
become stable or unstable for a same fault with different fault clearing time. The final time 
that needs to be visualised the rotor angle change due to the application of the fault is 
entered in the textbox Final time of swing equation. The frequency of the system can be set 
to either 50Hz or 60Hz. The program plots angular swing of the generator with respect to 
time and gives the critical clearing time and critical clearing angle of fault which is very 
important in stability studies.  

 
10. Load Flow Analysis 
 

 
Fig. 15. Load flow analysis module 

 

Load flow or power flow analysis is performed in a power system analysis course to 
determine voltage magnitudes and angles of various bus bars as well as real and reactive 
power flow in a power system. It is basically a problem of solving a system of nonlinear 
equations and various methods have been proposed in the literatures for solving load flow 
problems efficiently. Gauss-Seidel, Newton-Raphson, Decoupled Newton-Raphson methods 
are very much common for undergraduate studies and these are considered in building the 
toolbox. The module is shown in Fig. 15. There are various test systems like IEEE-30 bus 
system, 11 bus system as in Fig. 10 and simple 5 bus system as in Fig 15 (Stevenson, 1982) 
are made available with this toolbox. User can build own system also. After running the 
load flow program the Bus Data and Line Flows are available.  
 

 
Fig. 16. Simple 5-bus power system for load flow analysis  
 
The input required to conduct load flow of a simple 5 bus system is given in Fig. 16 whereas 
Fig. 17 and 18 gives the output of the load flow study using Gauss-Seidel method. 
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Fig. 17. Input for load flow analysis of system in Fig. 16 
 

 
Fig. 18. Bus data after load flow for the system in Fig. 16 

 
11. Conclusion 
 

Programs developed in this software package cover all the topics of basic power system 
analysis course. Examples from various widely available textbooks (Bergen & Vittal, 1999; 
Elgerd, 1983; Glover, 2007; Grainger & Stevenson, 1994; Saadat, 2009; Stevenson, 1982; Wood 
& Wollenberg, 1996) are taken as examples. These textbooks are used all over the world. So, 
students running the software find a familiar environment around. Apart from this, other 
examples can be tested using this toolbox since the programs are written in a generalised 

 

way. Although codes are written in MATLAB, the software is compiled so that it can run 
without MATLAB. This feature is very much useful for computers having low memory, 
which increases the versatility of the toolbox. Extended help files are available with step by 
step solution procedure. So the toolbox can be used as alternative to textbook, albeit this is 
not recommended. Anyone can see the inner structure of the program and learn to code 
power engineering problems.  
 

 
Fig. 19. Line flows and losses for the system in Fig. 16 
 
The toolbox is currently used as a supplement to Power System Analysis (EEE 461) course in 
the Department of Electrical & Electronic Engineering, Rajshahi University of Engineering & 
Technology, Kazla, Rajshahi‐6204, Bangladesh (www.ruet.ac.bd). The author can be contacted 
at nasiruzzaman@ieee.org in case of any enquiry about the software. 
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1. Introduction     
 

Looking back at the history of control engineering, one finds that technology and ideas 
combine themselves until they reach a successful result, over the timeline of several decades 
(Bernstein, 2002). Simple dynamical compensators (such as PID, Phase-Lead, Phase-Lag, etc) 
have done in the past a remarkably good and efficient job in real-life control applications. 
Theoretical insight in the closed-loop behavior is provided by powerful and well-developed 
theories – which are considered as basic knowledge for every control engineer – such as the 
Root Locus and the Frequency Response techniques. In the past, these theories have been 
extensively used as analysis tools – e.g. the stability analysis of a given control system based 
on closed loop poles (Root Locus - RL) or Nyquist criterion (Frequency Response - FR). 
However, analysis implies that a controller is already available, irrespective of its design 
method.  
Nowadays, thanks to the computational and graphical power of modern computers, many 
of these theories can be implemented as interactive graphical design tools. In this way, 
control engineering moves away from being an abstract and mathematical-oriented 
discipline and it evolves gradually towards a mature engineering discipline. An extensive 
reflection upon the role of information science in control engineering has been given in 
(Dormido, 2004). This new way of interactive control education provides practical insights 
into control systems fundamentals (Wittenmark et al, 1998; Dormido et al, 2002). Such 
combinations of interactive environment and animation bring visualization to a new level 
and aid learning and active participation by control engineering students (Kheir et al, 1996; 
Johansson et al, 1998).  
Recently, a Root Locus RL toolbox has been introduced in Matlab – in this chapter, a 
Frequency Response toolbox (FRtool) will be presented. Although some other computer 
aided design (CAD) tools based on frequency response have been developed in the past 
(Balakrihsnan & Boyd, 1994; Satoh et al, 1994; Piguet & Gillet, 1997; Pouliz & Pouliezos, 1997; 
Piguet et al, 1999), the one presented in this contribution is highly interactive, graphical, 
easy-to-use and posing an elegant simplicity (especially for non-experts, as limited control 
engineering insight is required). The Matlab® controller design tool based on the root locus 
method (rltool) cannot handle systems with time-delay without approximating the dead-
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time by a rational transfer function. To tackle this problem, the FRtool operates with 
frequency diagrams (Nichols charts) – and in this way, the dead-time can be treated without 
any approximation. 
The paper is structured as follows: the FRtool graphical interface is depicted in the next 
section, followed in the 3rd section by a description of the underlying frequency response 
concepts. In the 4th section, four examples are given:  

i) a time-delayed and integrating transfer function of a (chemical) process;  
ii) a second order system (velocity control);  
iii) a mass spring damper system, defined by a 4th order transfer function with poor 
damping factors and  
iv) a high order system (6th order)  

A final section concludes this contribution. 

 
2. FRTool Graphical Interface 
 

Probably the most important feature of the FRtool is the user-friendly graphical interface 
(drag & drop and zoom included). It also has the possibility to display design specifications 
as graphical restrictions on the Nichols plot – including a real-time update while dragging 
controller’s poles and zeros. It can also import/export process and controller from or to the 
Matlab workspace and has options to print Nichols, Nyquist or Bode curves and closed-loop 
responses, as depicted in figure 1.  
 

PHC

%OS
Ro

GMPM

x

Pole

Zero

Real Part Imaginary Part

Gain

Matlab
workspace

PHC

%OS
Ro

GMPM

x

Pole

Zero

Real Part Imaginary Part

Gain

Matlab
workspace

 
Fig. 1. Graphical interface of FRtool. After the system has been imported from Matlab 
workspace (see window in the lower right part), it appears as a curve in the Nichols chart 
corresponding to the loop frequency response (PHC).  

The design specifications can be introduced using the options denoted in the bolded dashed 
green line; e.g. the overshoot (%OS) and the robustness (Ro) specifications are visible in the 
chart. Closed-loop performance can be evaluated with the options in the dashed-dotted blue 
line. The upper right window in figure 1 is used to design the compensator by dragging 
compensator’s poles and zeros with the mouse. Additionally, pre-filter F(s) or feedback H(s) 
transfer functions can be added within the control scheme. In order to design a controller 
with FRtool, the user does not need a detailed knowledge of the frequency-response 
background theory. Tools lessen the need for prior insights, but should provide a better 
understanding of the problem to let the user make better decisions.  In figure 1, the PHC-
curve corresponds to the loop Nichols curve, with a default controller equal to 1 (and in this 
example also H=1). Notice that the PHC-curve is above the critical point in the Nichols 
chart: -1+j0 – denoted by a star corresponding to an open-loop gain of 0dB and phase -180°. 
Consider now figure 2 and a transfer function available in the Matlab workspace: 
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It is obvious that transfer function (1) denotes a system which is not trivial to control: it is 
marginally stable due to the integrator and it has a significant dead-time, two aspects which 
make the control design a challenging task.  
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Fig. 2. General scheme of a control loop: r – reference, w – setpoint, e – error, u – the 
manipulated variable, d and n – disturbances, y – the controlled variable, F(s) is a pre-
filtering transfer function and H(s) is a feedback transfer function; C(s) and P(s) denote the 
controller, respectively the process transfer function. 
 
When imported in FRTool, the process from (1) with controller C=1 gives the result as 
depicted in figure 1. One may observe that the closed loop system will be unstable, and the 
user has then to play with the controller’s poles and zeros to fulfill the specifications by pure 
visual inspection in the Nichols chart. Figures 3 and 4 depict various situations of zeros-
poles placement, affecting the shape of the Nichols curve. Additionally, the user may choose 
to plot the Nichols grid (see dotted grid in figures 3-4), denoting the circles of Hall in the 
Nyquist plane (Nise, 1995). This grid shows the relationship between open-loop and closed-
loop frequency responses. 
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Fig. 3. Graphical interface of FRtool. It can be observed that the change in gain produces 
only a translation of the Nichols curve along the vertical axis, while its shape (dynamics) is 
influenced by the position of the controller’s poles and zeros. 
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Fig. 4. Graphical interface of FRtool. Referenced to the pole/zero positions in figure 3, this picture 
illustrates the effect of a change in the pole position (left) and in the zero position (right). 

3. Design Specifications 

An important feature of a controller design tool is the possibility to define practically-
meaningful design specifications – which will guide the designer in the tuning process. 
These specifications have to be converted to graphical restrictions to make the designer’s job 
easier. Some of the traditional design specifications are gain margin and phase margin (Nise, 
1995). However, these specifications have not necessarily a clear physical meaning to a 
potential user (unless this user is e.g. a control engineer) – they are based on mathematical 
insight and system theory. Therefore, more practical specifications - which can be easily 
interpreted by any user - are settling-time and overshoot of the closed-loop time response, 
and of course robustness of the design (Nise, 1995). In this section, the background theory 
on which these specifications are taken into account in FRtool is explained with reference to 
their graphical equivalents. The basic (textbook) transfer function of a PID is: 
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with Kp the proportional gain, Ti the integrative and Td the derivative constants, K the 
equivalent controller gain in zero-pole chart, z1 and z2 zeros. Similarly, in FRtool a general 
form of the compensator (filter) can be defined as the following transfer function: 
 

 


 
1 2

1 2

( )( )...( )
( )( )...
s z s zC s K
s p s p  (3) 

 
Robustness is probably the most important design specification in practice. Since the 
controller tuning is done around a nominal operating point, the control performance should 
still be acceptable irrespective of model changes (e.g. in chemical plants) or model-
mismatches (e.g. in mass-produced mechatronic devices such as DVD-players, hard-disks, 
etc). Denote ( )G s  as the (open-)loop transfer function and ( )T s  as the closed-loop transfer 
function, then the closed-loop sensitivity is defined as the closed-loop relative change over 
the open-loop relative change (the controller does not change, but the process may): 
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Thus the sensitivity should be as small as possible, resulting in 1 ( )G s  to be as big as 
possible. The equivalent representation in the complex plane is given in figure 5. 
 

 
Fig. 5.  Graphical representation of the robustness-function. 



A Matlab® interactive tool for computer aided  
control systems design in frequency domain: FRTool 91

Pole = -25

Zero = -2

Gain = 1

Pole = -25

Zero = -2

Gain = 0.3801

Pole = -25

Zero = -2

Gain = 1

Pole = -25

Zero = -2

Gain = 0.3801

 
Fig. 3. Graphical interface of FRtool. It can be observed that the change in gain produces 
only a translation of the Nichols curve along the vertical axis, while its shape (dynamics) is 
influenced by the position of the controller’s poles and zeros. 
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Robustness is described as how in-sensitive a closed-loop is to changes in the process. In 
FRtool, robustness (Ro) is a design parameter specified by the user, with value 0<Ro<1. It 

has the meaning of 1 ( )G j , thus a larger Ro-value means more robustness. To fulfill the 
robustness spec, the Nyquist curve has to stay outside the circle with radius Ro.  
Every point of this circle can be translated into the Nichols chart, leading to the ellipse-type 
blue curve in figures 2, 3 and 4. The inner part of this ellipse denotes a forbidden zone for 
the Nichols curve (with   0 360 ): 
 

    

        
 

2 2
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R 1 * cos( )      I * sin( )
I20log R I    180 arctan
RdB

Ro Ro

M  (5) 

 
The other two specifications – overshoot (%OS) and settling time (Ts) – are derived from the 
dominant second order closed-loop transfer function:  
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n

n n

T s
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From (6) the overshoot and settling time in time-domain are obtained via the damping 

factor (   ) and the natural frequency (n ). Further on, given the user-defined specifications 

for %OS and Ts, it is straightforward to obtain  and n  from: 
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Having (7), the time-domain specifications can be translated into frequency-domain 
specifications by using the following formulas (Nise, 1995): 
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These parameters correspond then to the maximum closed-loop magnitude Mp (which is 
related to overshoot specification) and the closed-loop bandwidth ωBW (which is related to 
the settling time specification).  
From (7) and (8) it results that the designed controller should induce in the closed loop 
transfer function a peak-magnitude smaller than Mp, and the -3dB-bandwith frequency 
should be bigger than ωBW. Notice in figure 2 the representation of Mp by the red curve 
indicated by %OS; the Nichols curve must stay below this %OS curve. The frequency ωBW is 
denoted by the little red circle on the Nichols curve in figure 2; it must be above the green -
3dB line in order to fulfill the specification.  

4. Illustrative Examples 
 

4.1 First Order Plus Integrator and Time-Delay 
Given the challenging process (1), design a phase-lead controller so that the closed-loop will 

satisfy the specifications for overshoot % 5%OS  and settling time  0.8sT s .  Defining the 
system in the Matlab command window: 
 

sys=tf(2500,[1 25 0],'InputDelay',0.2)  
 
importing it in the FRtool P-block (as Process transfer function) and defining the given 
specifications, the Nichols curve will be the one shown in figure 2 (blue line), which 
represents the process and controller C=1. Suppose the user wants to design a phase-lead 
controller, whose transfer function is defined by: 
 

( ) s zC s K
s p



  (9) 

 

where the condition p z  is satisfied. The optimal situation with the corresponding 
phase-lead controller design that satisfies the specifications is given in figure 6 along with 
the corresponding step response of the closed-loop. 
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Fig. 6. Optimal phase-lead controller design fulfilling the required specifications and its step 
response for first example.  
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4.2 Second Order System 
A second example is given to illustrate the robustness property of the designed controller. 
Consider a flight control system (angular) velocity control (it can be as well a servo-control 
system, antenna, disk drive, DVD, etc) represented by: 
 


 

32( )
( 4)( 16)

P s
s s  (10) 

 
and the following specifications for a PI-controller design: robustness Ro>0.7 (a reasonably 
high robustness specification on a scale 0…1); overshoot %OS<10% and a minimum settling 
time Ts. The optimal PI-controller design and its corresponding step response are given in 
figure 7. The robustness can be evaluated in case the process model changes (the controller 
is fixed). To illustrate this case, consider the following transfer function, assuming that (10) 
has changed: 
 


 

* 48( )
( 5)( 12)

P s
s s  (11) 

 
As it can be observed from (11), the changes do not affect only the gain (+50%), but also 
change the dynamics of the process quite significantly. In figure 8 can be evaluated the 
performance of the same PI-controller designed as in figure 7, but applied on the process 
model (11). 
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Fig. 7. Optimal PI-controller design fulfilling the required specifications and its step 
response for second example. 
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Fig. 8. Robustness evaluation of the PI-controller. The continuous line represents the 
nominal process model, and the dashed line represents the changed process model.  
 
It can be concluded that the performance of the controller does not fulfill anymore the initial 
specifications (%OS>10%) but it has still a reasonably good behavior, taking into account the 
fairly large changes in the process transfer function. This is due to the fact that a relatively 
high robustness was asked in the specifications.  

 
4.3 High Order + Poorly Damped System 
Consider a mass-spring-damper system driven by an electrical motor, with two masses, 
three springs and one damper, given by the transfer function: 
 


   4 3 2

800( )
2.498 16.65 4473 14400 1360000

P s
s s s s  (12) 

 

This system has two poorly damped eigenfrequencies  1 20.8  rad/s and  2 39.1  rad/s, 

with damping factors  1 0.08  and  1 0.05 . Although this type of vibrational process 
should in practice be better controlled by a more sophisticated controller, it is possible to 
design with the CAD package, a suboptimal controller, of PID type. The result is then 
indicated in figure 9. 
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Fig. 9. Optimal PID-controller design fulfilling the required specifications and its step 
response for the high order plus poorly damped example. 

 
4.4 High Order System 
Consider the high order system presented by: 
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P s
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and the specifications: phase margin PM=62°, overshoot %OS<20% and a the settling time Ts 

as small as possible. The PID controller design in FRTool is given in figure 10, along with the 
step response. 
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Fig. 10. Optimal PID-controller design fulfilling the required specifications and its step 
response for the high order example. 

 
5. Conclusions 
 

In this contribution, a novel controller design toolbox has been presented for the Matlab 
environment. It is based on the frequency response (Nichols chart) representation of systems 
and entitled FRtool – Frequency Response toolbox. The toolbox can perform controller 
design with given practical specifications such as overshoot, settling time, robustness (and 
also ‘classical’ gain and phase margins as an option). It can also deal with time-delay 
systems and it has been illustrated on four examples, of which two examples far from being 
second order systems (6th order, respectively, 4th order with poor damping).  
Notice that the design procedure is extremely simple and close-at-hand, given the highly 
interactive graphical user interface of FRtool. Insight in all details of the underlying control 
engineering principles is not really required in order to use the CAD tool. This makes the 
toolbox attractive to students and engineers who are not control experts, and it offers an 
elegant solution for obtaining satisfactory results. 
The CACSD tool has been used during five years by several hundreds of engineering 
students – not specializing in control engineering – in a basic control engineering course. The 
experience is that the majority of them are able to manage the tool and produce a good 
controller design within about fifteen minutes. 
The software package is a development of Ghent University EeSA department; it consists of 
a set of Matlab files and is freely provided by email request.  
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1. Introduction  

On-grid photovoltaic systems are well known and established systems in countries where 
solar energy is considered for residential buildings. MATLAB – based interactive software was 
developed to perform a quick and reliable design of grid – tied photovoltaic systems. The 
software is one of a kind, since it was the first time to build such a user-friendly 
comprehensive tool using MATLAB. The reason behind choosing MATLAB as a programming 
environment was primarily because of its powerful capabilities in numerical computation, 
data analysis and visualization. MATLAB also offers impressive and easy-to-use tools in 
applications development using Graphical User Interfaces (GUIs). The software was originally 
developed to serve educational purposes in the university domain, keeping in mind that 
MATLAB is considered a standard tool for tackling engineering problems. In the first stage of 
this project, the software was created by using simple script programming in m-files, and then 
these m-files were used later on with Graphical User Interface programming. 
It’s an essential step before installing a PV system, whether it is stand alone or grid-tied 
systems, to perform a detailed study which showcases its technical and economical feasibility. 
The technical validity of the PV system can be achieved by insuring that the system is working 
with a sufficient overall light-to-electricity conversion efficiency. This can be insured by a good 
selection of the system components such as PV panels, inverters, and cables, connecting the 
system components in a permissible manner, and a proper installation of the PV arrays in 
order to increase the sun light exposure and reduce surface temperatures. 
The software was developed to perform a sequential task designing and planning 
procedure, which means that the design procedure consists of a number of dependent tasks 
that follow each other as shown in Figure.1. The software was equipped with a daily 13-year 
period meteorological database for number of cities in the United Arab Emirates (UAE) and 
PV system components database (i.e. PV modules, inverters, etc). MS Excel was used to 
build the databases, due to the simplicity of linking Excel to MATLAB routines and the ease 
of carrying out adjustments in the databases whenever necessary. The first task in the design 
procedure is to specify the site information and carry out the solar irradiance study. This is 
simply done by selecting the city of investigation, specifying the PV installation area 
orientation and inclination angle, and finally determining a proper reflectivity factor 
depending on the surrounding ground surfaces and structures (i.e. sand, grass, snow, etc). 
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In the next step, the designer is asked to give some details about the geometry of the 
installation area, such as the PV panels’ alignment and dimensions. The designer will then 
move to do the building load profile study, in order to determine the building’s annual 
energy requirements and decide how much the PV system will be responsible to cover. 
According to the aforementioned design steps, the software will suggest number of PV 
panels that would surely fit into the installation area. Upon the designer choice of the PV 
panel, the software will pick up number of DC/AC inverters according to their sizing factor. 
 

 
Fig. 1. The sequential design process used in the developed application 
 
Up to this stage of the design procedure, the user can analyze the systems electrical 
performance graphically. The final design step is to select appropriate wiring and protection 
devices in such a way the planned system will be efficient and as safe as possible. A 
partitioned grid-tied PV system can be modeled and designed using the developed 
software. The partitioning feature is available in both DC and AC circuits of the PV system. 
The user can save his design at any stage of the design procedure, with the ability to load 
the saved file and perform adjustments whenever needed. Simplicity and clearance of the 

 

software has been carefully preserved through creating the software in a one window multi 
panel fashion. Moreover, a user with minimum knowledge about PV systems can easily 
perform the designing procedure with the assistance provided by the guidance features of 
the software. These guidance means varies from providing quick and short explanation of 
some technical terminologies to providing the PV components datasheets. 
The book chapter will mainly focus on the software capabilities and features and how 
MATLAB tools were used to create a reliable, simple, and user friendly software, that can be 
utilized to design, model, and predict grid-tied PV systems. 
 
2. Background 

The amount of carbon dioxide and sulfur oxides has increased rapidly, putting the whole 
world in a real battle with the resulting environmental problems (Ohnishi et al., 1995). In the 
light of that and in order for a future society to be sustainable while operating at or above our 
current standard of living, a shift away from carbon based energy sources must occur. Active 
PV energy technology can outline a partial solution for the environmental problems caused by 
accelerating global energy expenditure. Solar cells, since they convert solar light directly into 
electrical energy, are the most prominent candidates for a new and clean energy source. The 
research works on solar cells are moving fast worldwide. The technical, social, and economic 
benefits and limitations of PV technologies to provide electricity in both off-grid and on-grid 
applications are critically analyzed and it has been demonstrated that PV electrical production 
is a technologically feasible, economically viable, environmentally green, sustainable, and 
socially equitable solution to the energy needs in the near future (Pearce, 2002). 
It is argued that in order to resolve the energy problems the world is facing today and to live 
comfortably in the 21st century, we must install photovoltaic power-generating systems in our 
homes, facilities, etc …, and then build a global system with solar cells (Ohnishi et al., 1995). 
Given this promising field of research all over the world, there is remarkably growing use of 
photovoltaic technologies in building design especially in housing. Unfortunately little 
research efforts have been devoted to the same sector in Arab countries in general and in the 
UAE in particular. According to the last general census in UAE for population, housing and 
establishments conducted by the Ministry of Economy on 6 December 2005, the total number 
of buildings in UAE reaches 336 thousand buildings and the number of residential buildings 
reaches about 60% of this number in Abu Dhabi and Dubai. 
With the advances and enhancements in the quality of PV technologies, the electricity 
produced through utilizing these technologies in buildings is witnessing a noticeable increase. 
The spread of the use of PV technologies has and is still leading to a continuous decrease in the 
initial cost of installing PV systems. The situation is getting better with the current production 
of photovoltaic panels in Abu Dhabi. Consequently, it is thought that through the 
incorporation of photovoltaic technology in housing designs and BIPVs of the UAE, significant 
saving of energy will be achieved. This will help in realizing environmental sustainability in 
the housing sector in which the domestic use of electricity represents a significant level. 
The integration of photovoltaic technologies into the design of typical housing might be 
generalized for the whole of the UAE. This may help the developed communities and the 
scattered ones in securing their electricity needs, or most of them, at a lower cost. Even with 
higher initial cost, PV systems are a good choice, considering the rising cost of fossil fuel –
based electricity. This claim is supported by a recent research in the region (Egypt) which 
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initial cost of installing PV systems. The situation is getting better with the current production 
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incorporation of photovoltaic technology in housing designs and BIPVs of the UAE, significant 
saving of energy will be achieved. This will help in realizing environmental sustainability in 
the housing sector in which the domestic use of electricity represents a significant level. 
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proved that providing electricity for a family house in a rural zone using PV systems is very 
beneficial and competitive with other types of conventional energy sources, especially 
considering the decreasing prices of PV systems and their increasing efficiency and reliability. 
PV systems also have the advantage of maintaining a clean environment. The first solar village 
project in Abou-Sorra, Syria (Zein et al., 1998) showed that the generated power has been 
supplied to six households. The PV plant in this project has proved to be technically feasible 
and efficient. In comparison with a system based on diesel generator set, this PV system 
turned out to be more economically efficient for rural electrification of scattered houses and 
villages in sunny countries like Syria. 
In addition, some research works have been conducted in the field of BIPV to tackle the issue 
of the practical and economic feasibility of adopting this system and how to overcome some 
inherited difficulties associated with its use. For example, in a study conducted by Omer et al. 
(2003) about a BIPV system installed on a detached house, using crystalline PV roof slates 
appropriate for domestic buildings, it has been found that the problems inherent in the design 
of roof slate integrated PVs result in elevated temperatures of cells. Therefore, the study 
suggested a modification to the way solar slates are built, and that is by providing airways and 
voids at the rear of the slates to allow air to pass between them, which would help to prevent 
any rise in cell temperature. 
In the same study, in terms of economic justification, it was suggested that for the systems to be 
economically competitive, the array and labor costs need to be reduced. The researchers claim 
that this appears to be possible, given volume production and standardization of PV system 
components, which would drive down production costs, and reduce labor costs as installation 
experience becomes greater. Solar energy is already economically viable in many applications, 
and will continue to expand as production continues to increase in scale (Omer et al., 2003). 
During recent years, interest in introducing the use of PV systems in the envelope of buildings 
(BIPV) has increased significantly. PV production has been doubling almost every 2 years, 
having increased by 48% since 2002 (Elgun & Shahrabi, 2008). The cumulative global PV 
power production was 12400 MW at the end of 2007 (Elgun & Shahrabi, 2008). UAE has 
strongly emerged in the PV market by launching its outstanding MASDAR initiative. This 
AED 15 billion initiative is expected to establish a strong renewable energy-dependent society 
in the country. This initiative is being directed to investments in a solution for the manufacture 
of future energy, as well as education and R&D, carbon management and sustainable 
development and planning. 
Photovoltaic systems can be connected to the public electricity grid via suitable inverters. 
Energy storage (i.e. batteries) is not necessary in this case. On sunny days, the PV system 
provides power for the electrical appliances in a house. Excess energy is injected in the public 
grid. During the night and overcast days, power is drawn from the grid.  PV systems operating 
parallel to the grid have great technological potential. However, without subsidies from the 
government or utilities, they are not yet financially competitive (Román et al., 2006). 
Today, PV solutions form one of the basic concepts of smart homes, ensuring renewable, clean, 
and free-of-charge energy resource. Recently, the concept of a smart home has come to present 
this home not only as one that can provide a convenient and healthy life through the utilization 
of intelligent solutions mainly based on information and communication technologies, but also a 
home that can cover its energy requirements using renewable energy sources. 
In this work, a MATLAB – based modeling tool to design, predict, and analyze grid- tied PV 
systems is presented. This tool offers a simple, quick, and accurate means for designing grid 

 

–tied PV systems that can be used in smart homes. The simplicity of this modeling tool 
would probably make it a good tool for educational and research purposes. In comparison 
with the tools available in the market (i.e PVSol, PVSYST 4.37), this developed tool has some 
smart routines that classify and suggest suitable PV panels, while meeting both the power 
and installation area requirements, unlike other tools where either the output power or the 
installation area is considered. Besides, the user can easily design the cables and protection 
devices throughout all portions of the PV system. Such a feature is not available in other PV 
system design tools. In addition, the developed tool can be limited to records, such as 
weather records, of the UAE environment, or it may include weather records for tens of 
cities around the world. In section two all necessary background information is presented. 
The tool sections, the how-to-use and features of the proposed tool are discussed in section 
three. Section four presents the results and discussion of a case study, which was conducted 
to validate and show the features of the presented modeling tool. 
 
3. Principle of Grid Tied Photovoltaic Systems 

PV systems may be connected to the public grid. This requires an inverter for the 
transformation of the PV-generated DC voltage to the level of grid AC voltage. National and 
even regional regulations differ widely with respect to the policy of interconnection 
requirements and incentives for PV-generated electricity fed into the grid. In order to 
support the production of PV-generated power, some utilities offer a better price for the 
kWh fed into their grid than they charge for the kWh from the grid. In other locations a one-
to-one ratio is applied which means the same kWh-price applies to both flow directions. The 
third option is to pay less for the generated PV power fed into the grid than for that sold to 
the consumer (Luque & Hudges, 2005). In comparing the rates, the fixed rates for the power 
connection also have to be considered. Depending on the kind of tariffs adopted, one or two 
electricity meters have to be used at the point of utility connection. Figure 2 shows a block 
diagram of a grid-connected PV system suitable for building integration. In grid-connected 
applications, photovoltaic systems must compete against the cost of the conventional energy 
source used to supply the grid. PV systems are particularly cost-effective when the utility 
load and solar resource profiles are well matched. This is, for example, the case in areas with 
high air-conditioning loads (such as the UAE) that have their peaks during the peak 
sunshine hours of the summer day. 
 

 
Fig. 2. Grid connected PV system schematic (source: www.homepower.com), 
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Fig. 2. Grid connected PV system schematic (source: www.homepower.com), 
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3.1 Conservation and Energy Efficiency 
Renewable energy may seem to be a fascinating solution when you look at its benefits, but 
the main concern of someone willing to invest in renewable energy should be conservation 
and efficiency (Kerr, 2008). It is well known that renewable energy solutions are not yet 
economically competitive with exhaustible resources (i.e oil, coal and gas) especially for 
countries with low electricity tariffs like the UAE. Conservation involves changing your 
energy consumption behaviors from wasteful, inefficient habits (such as lighting places that 
should not be lighted) to energy-saving ones. Efficiency, on the other hand, is reducing 
energy consumption without changing your life-style by using efficient appliances 
(Livingston, 2007). Both conservation and efficiency work in parallel, because the more 
efficiency you have in your energy consumption the more money you will save when 
installing your renewable energy.  

 
3.2 Principle of Building Load Assessment 
Before designing a PV system for a building, whether it is a residential, commercial or 
public building, a full load assessment should be performed. The load assessment is 
described by a graph called the load profile. This graph shows the variation in the electrical 
load versus time (Woodfeden & Laforge, 2007). A load profile will vary according to the 
customer type (typical examples include residential, commercial and industrial), the 
temperature and the holiday seasons. 
Figure 3 shows a typical load profile for a residential building (i.e. Villa) in Al Ain. Load 
profiles could be hourly, daily, monthly, or annually, depending on the nature of the 
analysis carried out and the level of precision required. The load assessment shows the 
power consumption behavior of people occupying the building, which is a vital step for 
planning and designing PV systems (Woodfeden & Laforge, 2007). 
 

 
Fig. 3. Villa load profile in Al Ain (Source: AADC) 

 
3.3 Grid Tied Inverters 
In grid-connected PV systems, grid-tied inverters are used to convert the DC power from 
the PV generator (PV arrays) to AC power. The AC power is then delivered first to the home 
loads (i.e. household appliances), with any excess power fed to the grid as described in 
Figure 4. 
 

 

 
Fig. 4. Grid tied inverter connected between the PV generator and the utility grid 
 
Most of the grid-tied inverters have a set of features that make them interactive with both 
the DC side (PV arrays) and the AC side (utility grid). These features improve the safety and 
reliability of the overall system. The inverters are equipped with an anti–islanding 
protection. Islanding occurs when the grid gets down and the inverter power output 
becomes in resonance with the power demand of home appliances (Woodfeden, 2007). This 
phenomenon may lead to some unwanted consequences if it lasts for a long time. To avoid 
this islanding, the inverter automatically switches off once it senses a utility outage. Another 
feature inverters should have is the ground fault detection system, which turns off the 
inverter until the fault is manually cleared. Some inverters can provide a string over- current 
protection by fixing fuses inside the inverter enclosure (SMA Sunny Boy, 2007). 
The PV generator is connected to the grid via DC/AC inverters based on different 
technological concepts. There are three main topologies that can be followed in connecting 
the inverter to the PV generator. The first topology involves a number of modules connected 
in series (string), and a large number of parallel strings connected to one central inverter as 
shown in Figure 5 (Luque & Hedgus, 2005). 
 

 
Fig. 5. Schematic of central inverter topology 
 
Central inverter topology is mainly used for large PV systems (> 10kW), which is not the 
appropriate topology for residential building grid-tied PV system. Instead, the same central 
inverter topology is used but with a lower number of strings (< 4 strings); this topology is 
called multi–string inverter topology. The second topology is the string inverter topology, 
where each PV string is connected to one inverter, which is a good solution to minimize 
mismatch between strings and reduce losses due to shading as shown in Figure 6 (Luque & 
Hedgus, 2005). 
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Central inverter topology is mainly used for large PV systems (> 10kW), which is not the 
appropriate topology for residential building grid-tied PV system. Instead, the same central 
inverter topology is used but with a lower number of strings (< 4 strings); this topology is 
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Fig. 6. Schematic of string inverter topology 
 
String inverter topology was the first standard topology for utility–interactive systems. The 
third topology is a less popular topology, and that is the module integrated inverter, where 
each module has its own inverter. Module integrated inverter topology is used in relatively 
small PV systems (50 – 400 W), where a lower number of modules is involved. For large PV 
systems, module integrated inverter topology is avoided since it would make the system AC 
circuit drastically complex. These different types of inverters are all available in the market. 
The choice of the most appropriate inverter depends on the technical and economical 
feasibility (Luque & Hedgus, 2005). 

 
3.4 PV System Sizing 
The PV generator is designed in such a way that the output DC power, voltage and current 
match with the input DC ratings of the inverter used. This principle is very important from 
both technical and economical points of view, because if the PV system is optimally sized, 
the overall performance of the system would be improved. This means that the inverter is 
primarily picked according to the configuration of the PV generator. In other words, an 
oversized inverter will lead to a shorter inverter service life, which in turn may increase the 
maintenance cost of the system. On the other hand, an undersized inverter would cause an 
unjustified excess in the initial cost of the system (Luque & Hedgus, 2005). To determine the 
sizing status of the inverter, the inverter sizing factor is calculated, which is the ratio of the 
PV generator DC power output to the DC input power rating of the inverter. The inverter 
sizing factor ranges from 0 to 100%. The maximum and minimum sizing factors should be 
calculated to make sure that the inverter will remain optimally sized regardless of the DC 
power output of the PV generator throughout the year. 
 
3.5 Balance of System 
All components that make up the grid-tied PV system except the PV panels and the inverter 
are called Balance of the System (BOS). This includes wiring, protection devices (fuses and 
circuit breakers), enclosures, disconnects, installation equipment and power metering 
devices (Sick & Erge, 1996). Each of these components is designed and picked according to 
the system requirements and the code of the standard adopted in order to improve the 
system reliability, durability and safety. 

 

3.5.1 Wiring and Cable Sizing 
Every single conductor in the system is sized and picked to withstand the maximum possible 
operating currents and harsh weather conditions. The selection procedure is achieved through 
the corresponding standard code practices (IEEE P929, 1996).  Cable sizing is the process of 
selecting the proper cable size (cross-sectional area) in a specific location of the system. The 
ampacity of the cable is calculated, which is the maximum current that a conductor can handle. 
Each cable has different ampacity values depending on the ambient temperature and cable 
insulation type (IEEE P929, 1996). Cable sizing includes the module interconnection cables, PV 
generator–inverter cables, inverter–utility grid cables and grounding cables. 
 
3.5.2 Protection Devices 
Like conductors, protection devices are sized according to their ampacity. The protection 
devices used in PV systems are mainly fuses and circuit breakers. The ratings of these 
devices are determined according to which part of the system these devices are protecting. 
The ampacity of a protection device should be smaller than that of the conductor it is 
directly connected to, while both should have the same insulation (National Electrical Code, 
2005). Fuses and circuit breakers are encapsulated in enclosures that are usually equipped 
with a manual disconnect such as junction boxes. 
 
3.5.3 DC and AC Disconnects 
To improve the level of safety of the PV system, manual disconnects should be used in both 
DC and AC sides of the system, in such a way that it would be easy to isolate any portion of 
the system in case of a fault or for maintenance. At least one disconnect should be installed 
right between the PV generator and the inverter, while another disconnect should be placed 
between the inverter and the utility grid (IEEE P929, 1996). 
 
3.5.4 Metering Devices 
In grid-connected PV systems, power metering devices are an important part of the system. A 
wattmeter should be used to record the amount of energy the PV system is generating during 
the day, alongside the normal wattmeter that records the amount of energy bought from the 
utility company. Sometimes, one wattmeter could be used, in such a way that its needle spins 
in one direction when energy is bought and in the opposite direction when it is sold. 
 
4. The Modeling Tool 

This section presents all the methods, techniques and procedures applied to build a 
comprehensive PV tool that can be used to design, predict and analyze on-grid PV systems. 
 
4.1 Site information & PV Array Installation 
The first step in designing the grid-tied PV system is to specify the site information such as 
the city, the tilt angle and the reflectivity factor. These pieces of information are enough to 
calculate the daily average global irradiance, which is a very important parameter in the PV 
system as shown in Figure 7. The PV tool prompts the user to enter the dimensions of the 
array installation area (width and height) as shown in Figure 8. 
 



MATLAB – based software for modeling and studying grid – tied photovoltaic systems 107

 

 
Fig. 6. Schematic of string inverter topology 
 
String inverter topology was the first standard topology for utility–interactive systems. The 
third topology is a less popular topology, and that is the module integrated inverter, where 
each module has its own inverter. Module integrated inverter topology is used in relatively 
small PV systems (50 – 400 W), where a lower number of modules is involved. For large PV 
systems, module integrated inverter topology is avoided since it would make the system AC 
circuit drastically complex. These different types of inverters are all available in the market. 
The choice of the most appropriate inverter depends on the technical and economical 
feasibility (Luque & Hedgus, 2005). 

 
3.4 PV System Sizing 
The PV generator is designed in such a way that the output DC power, voltage and current 
match with the input DC ratings of the inverter used. This principle is very important from 
both technical and economical points of view, because if the PV system is optimally sized, 
the overall performance of the system would be improved. This means that the inverter is 
primarily picked according to the configuration of the PV generator. In other words, an 
oversized inverter will lead to a shorter inverter service life, which in turn may increase the 
maintenance cost of the system. On the other hand, an undersized inverter would cause an 
unjustified excess in the initial cost of the system (Luque & Hedgus, 2005). To determine the 
sizing status of the inverter, the inverter sizing factor is calculated, which is the ratio of the 
PV generator DC power output to the DC input power rating of the inverter. The inverter 
sizing factor ranges from 0 to 100%. The maximum and minimum sizing factors should be 
calculated to make sure that the inverter will remain optimally sized regardless of the DC 
power output of the PV generator throughout the year. 
 
3.5 Balance of System 
All components that make up the grid-tied PV system except the PV panels and the inverter 
are called Balance of the System (BOS). This includes wiring, protection devices (fuses and 
circuit breakers), enclosures, disconnects, installation equipment and power metering 
devices (Sick & Erge, 1996). Each of these components is designed and picked according to 
the system requirements and the code of the standard adopted in order to improve the 
system reliability, durability and safety. 

 

3.5.1 Wiring and Cable Sizing 
Every single conductor in the system is sized and picked to withstand the maximum possible 
operating currents and harsh weather conditions. The selection procedure is achieved through 
the corresponding standard code practices (IEEE P929, 1996).  Cable sizing is the process of 
selecting the proper cable size (cross-sectional area) in a specific location of the system. The 
ampacity of the cable is calculated, which is the maximum current that a conductor can handle. 
Each cable has different ampacity values depending on the ambient temperature and cable 
insulation type (IEEE P929, 1996). Cable sizing includes the module interconnection cables, PV 
generator–inverter cables, inverter–utility grid cables and grounding cables. 
 
3.5.2 Protection Devices 
Like conductors, protection devices are sized according to their ampacity. The protection 
devices used in PV systems are mainly fuses and circuit breakers. The ratings of these 
devices are determined according to which part of the system these devices are protecting. 
The ampacity of a protection device should be smaller than that of the conductor it is 
directly connected to, while both should have the same insulation (National Electrical Code, 
2005). Fuses and circuit breakers are encapsulated in enclosures that are usually equipped 
with a manual disconnect such as junction boxes. 
 
3.5.3 DC and AC Disconnects 
To improve the level of safety of the PV system, manual disconnects should be used in both 
DC and AC sides of the system, in such a way that it would be easy to isolate any portion of 
the system in case of a fault or for maintenance. At least one disconnect should be installed 
right between the PV generator and the inverter, while another disconnect should be placed 
between the inverter and the utility grid (IEEE P929, 1996). 
 
3.5.4 Metering Devices 
In grid-connected PV systems, power metering devices are an important part of the system. A 
wattmeter should be used to record the amount of energy the PV system is generating during 
the day, alongside the normal wattmeter that records the amount of energy bought from the 
utility company. Sometimes, one wattmeter could be used, in such a way that its needle spins 
in one direction when energy is bought and in the opposite direction when it is sold. 
 
4. The Modeling Tool 

This section presents all the methods, techniques and procedures applied to build a 
comprehensive PV tool that can be used to design, predict and analyze on-grid PV systems. 
 
4.1 Site information & PV Array Installation 
The first step in designing the grid-tied PV system is to specify the site information such as 
the city, the tilt angle and the reflectivity factor. These pieces of information are enough to 
calculate the daily average global irradiance, which is a very important parameter in the PV 
system as shown in Figure 7. The PV tool prompts the user to enter the dimensions of the 
array installation area (width and height) as shown in Figure 8. 
 



Matlab - Modelling, Programming and Simulations108

 

 
Fig. 7. Site information section 
 

 
Fig. 8. Array installation parameters 
 

 
Fig. 9. Area mismatch 
 
The tool will fit the module on the suggested area considering the space between modules in 
each string and between strings as well. The user will be able to control the accuracy of the 
installation area filling by adjusting the area mismatch variable, which is the allowed error 
margin between the suggested installation area and the actual PV array area as shown in Figure 8. 
The user can also specify whether the modules alignment is horizontal or vertical as shown 
in Figure 9. This feature has been added to make sure that the modules alignment matches 
with the shape of the installation area, hence ensuring a good appearance of the PV array as 
part of the building. 

 
4.2 Load Profile Section 
In the load profile section, the user will be able to select the load profile model from the pop-
up menu shown in Figure 10. The menu includes three load profile models for residential 
buildings (villa). Each of these models represents a level of power demand behavior. For 

 

example, model A represents the average power consumption, while model B and C 
represent the maximum and minimum power consumption respectively. 
These three load profile models were developed by analyzing and studying a 13–year 
annual load profile for tens of villas in Al Ain.  To develop a realistic and accurate power 
demand profile representing the environment and the life-style in Al Ain, a large number of 
load profiles were obtained from Al Ain Distribution Company (AADC). After selecting the 
proper load profile model, the user should specify the coverage factor as shown in Figure 10, 
which is the percentage the PV system is expected to cover from the annual home power 
demand. This way, the tool will give an indication message showing to what extent the 
designed PV system will cover the annual power demand. 
 

 
Fig. 10. load profile section 

 
4.3 Modules Sorting Procedure 
The database built for this tool includes various types of modules, each with different 
electrical and mechanical characteristics. To make the design procedure simpler and faster, 
the PV tool has some routines that sort out the most appropriate modules in terms of fitting 
the installation area, so instead of going through all modules, only the modules that would 
fit the suggested installation area will be displayed for the user as shown in Figure11. 
 

 
Fig. 11. load profile section 
 
After confirming the installation area dimensions, the user can select from a group of 
modules based on the desired electrical behavior.  Once the user selects one of the listed 
modules, the tool determines all possible PV array configurations: a number of parallel 
strings (group of modules in series) and a number of modules per string as shown in Figure 12. 
The tool is designed to show all possible configurations, where the number of strings is less 
than the number of modules per string as shown in Figure 11. This is to limit the number of 
choices in front of the user and because of the fact that if the number of strings is greater 
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After confirming the installation area dimensions, the user can select from a group of 
modules based on the desired electrical behavior.  Once the user selects one of the listed 
modules, the tool determines all possible PV array configurations: a number of parallel 
strings (group of modules in series) and a number of modules per string as shown in Figure 12. 
The tool is designed to show all possible configurations, where the number of strings is less 
than the number of modules per string as shown in Figure 11. This is to limit the number of 
choices in front of the user and because of the fact that if the number of strings is greater 
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than number of modules per string, high overall current and low overall voltage will be 
obtained, which is not technically recommended (IEEE P929, 1996). 
 

 
Fig. 12. PV generator configuration schematic 

 
4.4 Inverter Selection Methodology 
After the module and the PV generator configurations are selected, the tool searches the 
database of inverters for the inverters that would work properly with the designed PV array. 
The inverter searching procedure is performed by comparing the output voltage, current and 
power of the DC generator with the DC input ratings of the inverter. The tool lists all the 
inverters that can work properly from the technical point of view as shown in Figure 13. All 
selected inverters would probably work in all conditions such as maximum irradiance days 
(maximum current) and maximum ambient temperature days (minimum voltage). 
 

 
Fig. 13. Inverter selection section 
 
Based on the budget and the preferred level of system reliability, the user can select the 
suitable inverter. The tool offers a helpful clue for the designer to select the best inverter 
based on the inverter sizing factor range as explained above. The higher the sizing factor 
range, the better the design would be. Practically, an inverter sizing factor criterion that 
ranges from 45 to 100 could be considered optimal (Antonio Luque and Steven Hedgus, 
2005). In general, the inverter sizing factor range is calculated as shown in equation 1. 
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4.5 PV System Partitioning 
The PV tool offers the opportunity of designing a partitioned grid-tied PV system. The 
partitioning feature is available for both DC and AC circuits of the PV system. For the DC 
side, if the system is composed of several PV generators located in different locations, while 
they all have the same design parameters and specifications, the user can design one PV 
generator and then specify a number of identical PV generators as shown in Figure 10. This 
feature duplicates the PV array and prevents the designer from going back and starting 
again from the beginning. The duplicated PV arrays are then connected to the same inverter, 
so the partitioning of the DC side is at the PV array level. For the AC side, the PV system can 
be divided into independent sub-systems, each subsystem with its own inverter. Then all 
the subsystems are combined together via a combiner enclosure to connect it to the home 
distribution panel as shown in Figure 14. 
 

 
Fig. 14. Schematic of an AC partitioned grid tied PV system 

 
4.6 Cable and Protection Devices Sizing Procedure 
Picking the appropriate components for the PV system is very important to ensure a high 
level of reliability and safety. The PV tool computes the cable sizes at every spot in the 
system. In electrical power systems, most conductors are restricted from operating on a 
continuous basis at more than 80% of their rated ampacity. This principle also applies for 
over-current protection devices. However, the current-carrying conductors used in PV 
systems are further de-rated by a factor of 80% due to the manner in which PV modules 
generate power in response to sunlight and because the intensity of sunlight at noon may 
exceed the standard test conditions (IEEE P929, 1996). The ampacity of conductors and the 
sizing of over-current devices is an area that requires careful attention. Temperatures and 
wiring methods must be addressed for each site. Calculations start with the 125% of Isc 
value to comply with the UL 1703 requirements, and an additional 125% must then be used 
for code compliance (UL 1703, 2000). Finally, the cable ampacity is adjusted for temperature 
using the cable de-rating table. The user is requested to specify the ambient temperature of 
operation and the cable insulation type at a specific part of the PV system, and then the tool 
will determine the adequate cable size and protection device rating for that part as shown in 
Figure 15. 
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4.5 PV System Partitioning 
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4.6 Cable and Protection Devices Sizing Procedure 
Picking the appropriate components for the PV system is very important to ensure a high 
level of reliability and safety. The PV tool computes the cable sizes at every spot in the 
system. In electrical power systems, most conductors are restricted from operating on a 
continuous basis at more than 80% of their rated ampacity. This principle also applies for 
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generate power in response to sunlight and because the intensity of sunlight at noon may 
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value to comply with the UL 1703 requirements, and an additional 125% must then be used 
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using the cable de-rating table. The user is requested to specify the ambient temperature of 
operation and the cable insulation type at a specific part of the PV system, and then the tool 
will determine the adequate cable size and protection device rating for that part as shown in 
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Fig. 15. Cabling and protection section 
 
Regarding the cabling of the system, the tool is designed to determine the cable sizes at the 
following parts of the system: 

 Module interconnection cabling   
 DC combiner – Inverter cabling 
 Inverter – AC combiner cabling (if more than one inverter is used) 
 Equipment grounding cable 
 DC grounding electrode cable 

Grounding all PV system components is an important step to make the system immune to 
all kinds of hazards caused by electrical faults. After determining the cable size, the tool 
computes the proper protection device ratings to protect each cable and all attached 
equipment from any over-current that may occur. 

 
4.7 Economical Assessment Procedure 
The PV tool offers the opportunity to perform an economical assessment. The economical 
evaluation is based on two variables, the net present value (NPV) and the system payback 
period ( )P  (Jose L. Bernal-Agustn, Rodolfo Dufo-Lopez, 2005). Basically, both of these 
variables are strongly linked to one another because NPV  shows whether the system will 
pay-off during its service life time or not, while the year in which the system pays-off will 
determine the payback period ( )P . To calculate the net present value ( )NPV , the system 
initial cost ( )S  should be calculated as shown in equation 2. 
 

Subsidyinvestment CCS                                                 (2) 

 
The investment cost includes the PV system cost, which in turn includes all PV components 
such as modules, inverters and BOS equipments. The annual maintenance cost is also 
included in the investment cost. The initial cost of grid-tied PV systems is unfortunately 
very high, so these renewable solutions can be made economically competitive by applying 
subsidy programs. The subsidy programs can be offered and controlled by the government, 
who can pay a percentage of the initial investment cost or increase the price of the energy 
sold to the utility (Bernal-Agustn & Dufo-Lopez, 2005). 
The net cash flow ( )Q  i.e. the difference between the cash input generated by the 
investment and the payment or cash output the investment requires) can be calculated for 
each year (j) as described in equations 3 & 4: 
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where bp  and sp  are the prices of the energy bought from and sold to the utility 

respectively. PV AutE   is the annual energy generated by the PV system connected to the 
grid that is auto-consumed (i.e. not bought from the grid), and PV InjE   is the generated 

energy injected into the grid annually (Bernal-Agustn & Dufo-Lopez, 2005). 
Furthermore, MC  and InsC  are the annual costs attributed to the operation, maintenance 
and insurance. It should be taken into account that the income and expenditures may vary 
from year to year due to inflation. For PV systems connected to the grid, the maintenance 
costs and insurance increase with inflation. However, the income due to the sale of the 
energy does not necessarily have to increase. The effect of the inflation rate (g) is calculated 
as shown in equation 5. 
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In order to compare investments, it is necessary to consider the same period of time. If the 
cash flow is over various years, they should all be considered during the same period of 
time (normally at the start of the investment). This way, different investments can be 
compared using the Nominal Interest Rate and the Net Present Value. The Nominal Interest 

Rate ( ) is the monetary price or the interest rate that allows different economic quantities to 
be referred to each other, transferred periodically over time, to the initial year of investment. 
The net present value of the investment is defined as described in equation 6. 
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Where ( )NPV  is the duration of the investment (i.e. the service time of the PV system) and 

( ) is the nominal interest rate. In order to say that the generated benefits from the system 
are greater than the cost, NPV  should be as large as possible and always positive (Jose L. 
Bernal-Agustn, Rodolfo Dufo-Lopez, 2005). 
The Pay-Back Time ( P ) is the number of years, up to the present moment, needed to make 
the NPV  of the cash flow equal to the initial outlay of the investment. It can be expressed 
as shown in equation 7. 
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be referred to each other, transferred periodically over time, to the initial year of investment. 
The net present value of the investment is defined as described in equation 6. 
 

 
 


N

J
j

j

i

Q
SNPV

1 1
 

 
                                        (6) 

 
Where ( )NPV  is the duration of the investment (i.e. the service time of the PV system) and 

( ) is the nominal interest rate. In order to say that the generated benefits from the system 
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Based on this method of analysis, the shorter the Pay-Back time is, the better the investment. This 
is a criterion that values the availability more than the profitability and does not take into account 
the cash flow generated after the recuperation period (Bernal-Agustn & Dufo-Lopez, 2005). 

 
4.8 Guidance and Documentation 
The PV tool (Figure 16) is designed to be simple, clear and easy-to-use. To achieve these 
characteristics, guidance and help features were added so that the user will be able to 
understand all technical parameters and terminologies during the design process. All 
modules and inverters data sheets were added to help the user choose the most appropriate 
PV component. The tool also has the ability to provide a full and comprehensive summary 
of the designed system as final output documentation. 

 
5. Results and Discussions 

5.1 Design of a BIPV Villa in Al Ain – UAE 
The developed PV software was used to design a grid-tied photovoltaic system for a 
residential building (villa) in Al Ain. Then the villa was prototyped to show how the PV 
array is integrated into the structure of the building. The system consists of three PV 
generators (subsystems). Each subsystem is oriented towards the south. The first subsystem 
is mounted on the southward-tilted parts of the building roof with an inclination angle of 
30°. The second and third subsystems are located on the garage with an inclination angle of 
15° as shown in Figure 17. Each subsystem was designed to be independent of both the DC 
and AC sides. 
 

 
Fig. 16. PV Tool 

 

 
Fig. 17. Villa prototype 

 
5.1.1 Roof Array (Subsystem 1) 
The design of the PV system starts with the selection of a proper load profile. Model A load 
profile, which represents the average energy consumption of typical villas in Al Ain, was selected 
to be used in the design. Figure 18 shows the average monthly energy consumption for Model A. 
 

 
Fig. 18. Average monthly energy consumption 
 
The south–facing roof is tilted at an angle of 30°. Figure 19 shows the daily average global 
irradiance distribution with reflectivity factor set to 0.2. The installation area dedicated to 
subsystem 1 was approximately 41 m2 (26.5 x 1.70 m). To have a good- looking PV array, the 
modules were aligned vertically in order to suit the shape of the installation area. 
Moreover, the aesthetical side was preserved by setting the area mismatch factor to 5%, so 
that the proposed installation area will be very close to the actual array area. The proper 
module was selected from a set of modules suggested by the tool, keeping in mind that all 
the suggested modules should fit into the installation area.  BP SX 3200 was used as a 
module in subsystem 1 array with a rated maximum power of 200W. A total number of 29 
modules were used with a configuration of 1 x 29, occupying an area of 44m2. Figure 20 
demonstrates the daily DC analysis parameters of subsystem 1. 
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demonstrates the daily DC analysis parameters of subsystem 1. 



Matlab - Modelling, Programming and Simulations116

 

 
Fig. 19. Daily average global irradiance on an inclined surface of 30° 
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(d) 

Fig. 20. (a) Daily DC open circuit voltage of the array (b) Daily DC short circuit current (c) 
Solar cell operating temperature along the year (d) Daily DC maximum power of the array 
 
After completing the design of the PV generator, a proper grid-tied inverter was selected. SB 
5000TL HC is the proper inverter for this design, since it has a sizing factor range of 53% - 
86% (which is a permissible sizing factor range). The tool predicted the annual energy 
produced by subsystem 1 (approximately 12.3 MWh).  Figure 21 shows the energy produced 
by subsystem 1. 
After designing both the PV array and the grid-tied inverter, the next step is to size the 
cables and protection devices for all parts of the PV system. The module interconnection 
cable size is found to be 2.5mm2 and it is protected by a 12A fuse located at the DC combiner 
enclosure (ambient temperature of 70° C and insulation of 90°C). Since subsystem 1 has a 
single string array, the array–inverter part has the same cable and fuse sizes as the previous 
part (PV array). The inverter–AC combiner cable is sized to be 6mm2 (ambient temperature 
60°C and insulation 90°C). 
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Fig. 20. (a) Daily DC open circuit voltage of the array (b) Daily DC short circuit current (c) 
Solar cell operating temperature along the year (d) Daily DC maximum power of the array 
 
After completing the design of the PV generator, a proper grid-tied inverter was selected. SB 
5000TL HC is the proper inverter for this design, since it has a sizing factor range of 53% - 
86% (which is a permissible sizing factor range). The tool predicted the annual energy 
produced by subsystem 1 (approximately 12.3 MWh).  Figure 21 shows the energy produced 
by subsystem 1. 
After designing both the PV array and the grid-tied inverter, the next step is to size the 
cables and protection devices for all parts of the PV system. The module interconnection 
cable size is found to be 2.5mm2 and it is protected by a 12A fuse located at the DC combiner 
enclosure (ambient temperature of 70° C and insulation of 90°C). Since subsystem 1 has a 
single string array, the array–inverter part has the same cable and fuse sizes as the previous 
part (PV array). The inverter–AC combiner cable is sized to be 6mm2 (ambient temperature 
60°C and insulation 90°C). 
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(a) 

 

 
(b) 

Fig. 21. (a) The average energy yield of sub-system 1 per month (b) The total energy output 
every month 

 
5.1.2 Garage Array (Subsystem 2) 
Subsystem 2 is located on the garage with dimensions of 6.25 x 3 and tilt angle of 15°. The 
selected module for this array was BP 175I with configuration of 2 x 7 and total gross PV 
array area of 10m2. The inverter SB 3300TL HC was selected as the most appropriate inverter 
with sizing factor range of 67 – 95 %. The DC analysis results of subsystem 2 are shown in 
Figure 22. The total monthly energy yield produced by this subsystem is shown in Figure 
23. 
The module interconnection cable was sized to be 2.5mm2 and it is protected with a 9A fuse 
located in the DC combiner enclosure (ambient temperature 70°C and insulation 90°C). The 
array- inverter cable was sized to be 4mm2 and it is protected with a 20A fuse located in the 
DC disconnect enclosure. The inverter–AC combiner cable size was designed to be 6mm2. 
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(d) 

Fig. 22. (a) Daily DC open circuit voltage of the array (b) Daily DC short circuit current (c) 
Solar cell operating temperature along the year (d) Daily DC maximum power of the array 
 

 
Fig. 23. Total energy yield per month of sub-system 2 

 
5.1.3 Overall PV System 
The overall coverage factor of the whole PV system was determined to be approximately 
27%. Figure 24 shows the overall output energy of the combined PV system. 
 

 
Fig. 24. Monthly maximum overall PV energy output 

 

Figure 25 shows the monthly building energy consumption versus the monthly energy 
produced by the PV system. 
 

 
Fig. 25. Building energy consumption (grey columns) vs. PV energy output (black columns) 
 
It is obvious that the monthly energy consumption values are much larger than the value of 
the energy produced by the PV system, which is an expected result. The PV system was 
basically designed to cover up to 25% - 30%, while the actual PV system coverage factor is 
approximately 28%, keeping in mind that the overall wiring losses comprise around 5% 
(typical value).  It is known that the total PV energy production is divided into auto-
consumed energy and injected energy.  Figure 26 shows the total auto-consumed energy 
versus the total injected power. 
 

 
Fig. 26. Auto consumed energy vs. injected energy 
 
The monthly total injected energy was equal to zero in all months, because all the generated 
PV power was consumed. So the green bars represent only the auto-consumed energy. The 
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designed PV system has an overall system efficiency of 15%, which makes sense due to the 
large losses in the system, which are mainly due to the low light- electricity conversion 
efficiency of the crystalline-type panels used in this modeling tool and also the losses in the 
cables and wires used in the system. 

 
6. Conclusion 

This paper presents a MATLAB-based tool for the design of PV systems. The proposed 
modeling tool uses daily weather data and simple irradiance models that are as accurate as 
many other complex models. This tool is flexible enough to adapt quickly if other locations 
in the world are to be investigated. Besides, the tool offers a variety of PV products such as 
modules, inverters, cables, etc. The tool is still under development to include more features 
such as the prediction of the amount of CO2 that can be reduced in case of replacing a 
traditional building by a BIPV. 
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1. Introduction     

The DC-DC converters are electrical circuits that transfer the energy from a DC voltage 
source  to a load and regulate the output voltage. The energy is transferred via electronic 
switches, made with transistors and diodes, to an output filter and than is transferred to the 
load.   
DC-DC converters are used to convert unregulated dc voltage to regulated or variable dc 
voltage at the output. They are widely used in switch-mode dc power supplies and in dc 
motor drive applications. In dc motor control applications, they are called chopper-controlled 
drives. The input voltage source is usually a battery or derived from an ac power supply 
using a diode bridge rectifier. These converters are generally either hard-switched PWM 
types or soft-switched resonant-link types. 
These converters employ square-wave pulse width modulation to achieve voltage 
regulation. The output voltage is regulated varying the duty cycle of the power 
semiconductor switch driving signal. The voltage waveform across the switch and at the 
input of the filter is square wave in nature and they generally result in higher switching 
losses when the switching frequency is increased. Also, the switching stresses are high with 
the generation of large electromagnetic interference (EMI), which is difficult to filter. 
However, these converters are easy to control, well understood, and have wide load control 
range. 
These converters operate with a fixed-frequency, variable duty cycle. This type of signal is 
called Pulse Width Modulated signal (PWM). Depending on the duty cycle, they can operate 
in either continuous current mode (CCM) or discontinuous current mode (DCM). If the 
current through the output inductor never reaches zero then the converter operates in CCM; 
otherwise DCM occurs. 
The output voltage will be equal with the average value on the switching cycle of the 
voltage applied at the output filter. Due to the losses on the ON or OFF state of the ideal 
transistor are zero, the theoretical efficiency of the switching mode converters is up to 100%. 
But, considering the real switches, with parasitic elements, the efficiency will be a little bit 
lower, but higher than linear regulators.   
Another advantage of switching mode converters consist in the possibility to use the same 
components but in other topology in order to obtain different values of the output voltages: 
positive or negative, lower or higher than input voltage. 
 

7
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There are various analysis methods of DC-DC converters. Throughout the chapter an 
extended analysis and modelling for DC-DC power converters is proposed.  In this 
approach, the differential equations that describe the inductor current and capacitor voltage 
are determined and are solved according with the boundary conditions of the switching 
periods. The values of currents and voltages at the end of a period become initial conditions 
for the next switching period. This method is very accurate and produces a set of equations 
that require extensive computation.  
In addition, for specified values of converter parameters (inductance and capacitor) we can 
calculate the maximum value of transistor and diode current and reverse voltage, in order to 
help user to choose the appropriate type of transistor and diode.  

 
2. Buck converter 

The buck (or step-down converter), shown in the figure 1, contain a capacitor and an 
inductor with role of energy storing, and two complementary switches: when one switch is 
closed, the other is open and vice-versa. 
 

 
Fig. 1. The buck converter diagram 
 
The switches are alternately opened and closed with at a rate of PWM switching frequency. 
The output that results is a regulated voltage of smaller magnitude than input voltage. The 
converter operation will be analyzed function of switches states. 
 
The first time interval: The transistor is in ON state and diode is OFF. 
 
During this time period, corresponding with duty cycle of PWM driving signal, the 
equivalent diagram of the circuit is presented bellow:  
 

 
Fig. 2. The equivalent circuit during the ON state of transistor and OFF state of diode 
 

 

For this equivalent circuit will write the equations that describe the converter operation: 
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The second time period: the transistor is OFF and diode is ON 
 
In the moment when the transistor switch in OFF state, the voltage across the inductor will 
change the polarity and the diode will switch in ON state. The equivalent diagram of 
converter during this period is shown in the bellow figure: 
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Fig. 3. The equivalent circuit for OFF state of transistor and ON state of diode 
 
For this operation period, the output voltage u0 and the current through the inductor iL 
satisfy the following equations: 
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The third operation mode: The both transistor and diode are OFF 
 
If the inductor current becomes zero before ending the diode ON period, both transistor and 
diode will naturally closed. This operation regime is called discontinuous current mode. The 
equivalent diagram of this operation regime is shown bellow. 
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Fig. 4. The equivalent circuit with transistor and diode in OFF state 



Modelling of DC-DC converters 127

 

There are various analysis methods of DC-DC converters. Throughout the chapter an 
extended analysis and modelling for DC-DC power converters is proposed.  In this 
approach, the differential equations that describe the inductor current and capacitor voltage 
are determined and are solved according with the boundary conditions of the switching 
periods. The values of currents and voltages at the end of a period become initial conditions 
for the next switching period. This method is very accurate and produces a set of equations 
that require extensive computation.  
In addition, for specified values of converter parameters (inductance and capacitor) we can 
calculate the maximum value of transistor and diode current and reverse voltage, in order to 
help user to choose the appropriate type of transistor and diode.  

 
2. Buck converter 

The buck (or step-down converter), shown in the figure 1, contain a capacitor and an 
inductor with role of energy storing, and two complementary switches: when one switch is 
closed, the other is open and vice-versa. 
 

 
Fig. 1. The buck converter diagram 
 
The switches are alternately opened and closed with at a rate of PWM switching frequency. 
The output that results is a regulated voltage of smaller magnitude than input voltage. The 
converter operation will be analyzed function of switches states. 
 
The first time interval: The transistor is in ON state and diode is OFF. 
 
During this time period, corresponding with duty cycle of PWM driving signal, the 
equivalent diagram of the circuit is presented bellow:  
 

 
Fig. 2. The equivalent circuit during the ON state of transistor and OFF state of diode 
 

 

For this equivalent circuit will write the equations that describe the converter operation: 
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The second time period: the transistor is OFF and diode is ON 
 
In the moment when the transistor switch in OFF state, the voltage across the inductor will 
change the polarity and the diode will switch in ON state. The equivalent diagram of 
converter during this period is shown in the bellow figure: 
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Fig. 3. The equivalent circuit for OFF state of transistor and ON state of diode 
 
For this operation period, the output voltage u0 and the current through the inductor iL 
satisfy the following equations: 
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The third operation mode: The both transistor and diode are OFF 
 
If the inductor current becomes zero before ending the diode ON period, both transistor and 
diode will naturally closed. This operation regime is called discontinuous current mode. The 
equivalent diagram of this operation regime is shown bellow. 
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Fig. 4. The equivalent circuit with transistor and diode in OFF state 
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For this operation period, the output voltage uo and the current through the inductor iL 
satisfy the following equations: 

1 ;

0;

o o

L

du u
dt R C

di
dt

   

 


 (3) 

 
2.1 CCM inductance 
The minimum value of inductance for continuous current mode (CCM) operation is 
calculated from output voltage and inductor current equations. 
Thus, the output voltage uo and the current through the inductor iL satisfies the following 
equations: 
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The waveforms of inductor voltage and current on a switching period are shown in the 
figure 5: 
 

 
Fig. 5. The waveforms of output voltage and inductor current 

 
In the steady state regime, the average value of voltage across the inductor is zero. Thus, 
 

    EDUoDTUoTDUoE  1  (6) 
 
Based on the inductor current waveform, the following equation can be write:  
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The average value of the inductor current is equal with the output current: 
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
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From the equations (7) and (8) results the minimum ad the maximum values of inductor 
current. 
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From the equations (6) and (11) the inductor current ripple can be calculated. 
 

  T
L

DDEi 



1  (12) 

From the condition, min 0LI   , it results: 
2 1L D
RT

  . (13) 

 
This relation can be used to determine the minimum value of inductance, when the 
switching frequency and load value are known. 
 

 DTRL 


 1
2min     

(14) 

 
2.2 The discontinuous current mode 
In discontinuous current regime, the waveforms of inductor voltage and current are shown 
in the figure bellow: 
 

 
Fig. 6. The waveforms of voltage and inductor current in DCM 
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For this operation period, the output voltage uo and the current through the inductor iL 
satisfy the following equations: 
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2.2 The discontinuous current mode 
In discontinuous current regime, the waveforms of inductor voltage and current are shown 
in the figure bellow: 
 

 
Fig. 6. The waveforms of voltage and inductor current in DCM 
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The average value of the input current is equal with the current through the switching 
transistor. 

max
1
2iav LI T D T I      (15) 

max
o

L
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L

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From the above equations, it results: 
 

2
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o
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
 . (17) 

 
Considering that there are no losses in the circuit, the input and the output powers are 
equals. 
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
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Denoting the circuit transfer ratio 
E
Us

=M: 

 
2 2

2 0
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R T D R T DM M
L L

   
   

 
 (21) 

 

Denoting                                              a= 
L

TDR



2

2
,                                                  (22) 

the solutions of the above equation are : 
 

2 4
2

a a aM   
 . (23) 

 
Analyzing those solutions, can be observed that the single valid solution is  
 

2 4
2

a a aM   
  (24) 

 
The variation of circuit transfer ratio M function of PWM signal duty-cycle D, for different 

values of 
2L
RT

parameters is shown in the figure: 

 

 
Fig. 7. Variation of circuit transfer ratio M function of PWM signal duty-cycle D 

 
2.3 Filtering capacitor 
Other important parameter that is important to be determined is the value of the output 
capacitor, in order to obtain a specific value of the output voltage ripple.  
The capacitor charging current is equal with difference between the inductor current iL and 
the output current iO. Considering a constant output current, the electric charge stored in the 
capacitor during a switching period is equal with the shade area from the figure bellow: 
 

 
Fig. 8. The waveforms of inductor current and output voltage  
 

max 1 2
1 ( )( )
2 L OQ u C I I t t       

 
(25) 

 
1 2 1 2 max

max min1
L O

L L

t t t t I I
DT D T T I I

 
  

 
 (26) 



Modelling of DC-DC converters 131

 

The average value of the input current is equal with the current through the switching 
transistor. 
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capacitor, in order to obtain a specific value of the output voltage ripple.  
The capacitor charging current is equal with difference between the inductor current iL and 
the output current iO. Considering a constant output current, the electric charge stored in the 
capacitor during a switching period is equal with the shade area from the figure bellow: 
 

 
Fig. 8. The waveforms of inductor current and output voltage  
 

max 1 2
1 ( )( )
2 L OQ u C I I t t       

 
(25) 

 
1 2 1 2 max

max min1
L O

L L

t t t t I I
DT D T T I I

 
  

 
 (26) 



Matlab - Modelling, Programming and Simulations132

 

Thus, the value of the output capacitor can be calculated with the following formula: 

   2

2
1

8 8
OE U DT E D D

C
L u Lf u

 
 

 
 (27) 

 
It can be seen in this formula that the capacitor value depends by the switching frequency. 
Increasing the switching frequency, the capacitor value will be smaller. 

 
3. Boost Converter 

The boost (or step-up converter), shown in the figure 9, contains, like the Buck converter, a 
capacitor and an inductor with role of energy storing, and two complementary switches. In 
the case of the boost converter, the output voltage is higher than the input voltage.  
 

 
Fig. 9. The boost converter diagram  
 
The switches are alternately opened and closed with at a rate of PWM switching frequency. 
As long as transistor is ON, the diode is OFF, being reversed biased. The input voltage, 
applied directly to inductance L, determines a linear rising current. When transistor is OFF, 
the load is supplied by both input source and LC filter. The output that results is a regulated 
voltage of higher magnitude than input voltage. The converter operation will be analyzed 
according with the switches states. 
 
The first time interval: The transistor is in ON state and diode is OFF. 
 
During this time period, corresponding with duty cycle of PWM driving signal, the 
equivalent diagram of the circuit is presented bellow. In this time period the inductance L 
store energy.  
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Fig. 10. The equivalent circuit during the ON state of transistor and OFF state of diode 

 

For this operation period, the output voltage uo and the current through the inductor iL 
satisfies the following equations: 
 

;

;

L

o o

di E
dt L
du u
dt R C

 

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 

 (28) 

 
The second time period: the transistor is OFF and diode is ON 
 
In the moment when the transistor switch in OFF state, the voltage across the inductor will 
change the polarity and diode will switch in ON state. The equivalent diagram of converter 
during this period is shown in the bellow figure: 
 

 
Fig. 11. The equivalent circuit for OFF state of transistor and ON state of diode 
 
For this operation period, the output voltage uo and the current through the inductor iL 
satisfy the following equations: 

;
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di E u
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
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 (29) 

 
The third operation mode: The both transistor and diode are OFF 
 
If the inductor current becomes zero before ending the diode conduction period, both the 
transistor and the diode will be in OFF state. Due to the diode current becomes zero, the 
diode will naturally close, and the output capacitor will discharge on the load. This 
operation regime is called discontinuous current mode. The equivalent diagram of this 
operation regime is shown bellow. 
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Fig. 12. The equivalent circuit with transistor and diode in OFF state 
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Thus, the value of the output capacitor can be calculated with the following formula: 
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The switches are alternately opened and closed with at a rate of PWM switching frequency. 
As long as transistor is ON, the diode is OFF, being reversed biased. The input voltage, 
applied directly to inductance L, determines a linear rising current. When transistor is OFF, 
the load is supplied by both input source and LC filter. The output that results is a regulated 
voltage of higher magnitude than input voltage. The converter operation will be analyzed 
according with the switches states. 
 
The first time interval: The transistor is in ON state and diode is OFF. 
 
During this time period, corresponding with duty cycle of PWM driving signal, the 
equivalent diagram of the circuit is presented bellow. In this time period the inductance L 
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Fig. 10. The equivalent circuit during the ON state of transistor and OFF state of diode 

 

For this operation period, the output voltage uo and the current through the inductor iL 
satisfies the following equations: 
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The second time period: the transistor is OFF and diode is ON 
 
In the moment when the transistor switch in OFF state, the voltage across the inductor will 
change the polarity and diode will switch in ON state. The equivalent diagram of converter 
during this period is shown in the bellow figure: 
 

 
Fig. 11. The equivalent circuit for OFF state of transistor and ON state of diode 
 
For this operation period, the output voltage uo and the current through the inductor iL 
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The third operation mode: The both transistor and diode are OFF 
 
If the inductor current becomes zero before ending the diode conduction period, both the 
transistor and the diode will be in OFF state. Due to the diode current becomes zero, the 
diode will naturally close, and the output capacitor will discharge on the load. This 
operation regime is called discontinuous current mode. The equivalent diagram of this 
operation regime is shown bellow. 
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Fig. 12. The equivalent circuit with transistor and diode in OFF state 
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For this operation period, the output voltage uo and the current through the inductor iL can 
be calculated from the following equations: 
 

0;

;

L

o o

di
dt
du u
dt R C

 

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 

 (30) 

 
3.1 CCM inductance 
The minimum value of inductance for continuous current mode (CCM) operation is 
calculated from inductor current equation. In the steady state regime, the average value of 
voltage across the inductor is zero. 
 

 
Fig. 13. The waveforms of inductor voltage and current in steady-state regime 
 
Thus, the output voltage u0 and the current through the inductor iL satisfies the following 
equations: 

   
D

EUoEUoDTTDE

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1

;1  (31) 

 
Based on the above waveforms, the maximum value of the inductor current is: 
 

TD
L
Eii LL 

minmax
 (32) 

 
The output current is equal with the diode average current: 
 

 max min 1
2

L L oi i UT D T
R


        

(33) 
 
Based on the equations (32) and (33), results: 
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L
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Based on the equations (34) and (35), can be determined the inductor current ripple: 
 

E D Ti
L
 

   (36) 

 

From the condition for continuous conduction mode, 0
min

Li , results: 

 22 1L D D
R T

  


 (37) 

 

This condition can be used to determine the minimum inductance value, for a specific 
switching period T and a specific load value R.  
 

 2min 1
2

R TL D D
    (38) 

 
3.2 The discontinuous current mode 
In discontinuous conduction mode, the waveforms of the inductor voltage and current are 
shown in the figure bellow: 
 

 
Fig. 14. The waveforms of voltage and inductor current in DCM 

 
The average value of the input current is equal with the inductor average current. 
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Based on the equations (39) and (40), results: 
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For this operation period, the output voltage uo and the current through the inductor iL can 
be calculated from the following equations: 
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This condition can be used to determine the minimum inductance value, for a specific 
switching period T and a specific load value R.  
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3.2 The discontinuous current mode 
In discontinuous conduction mode, the waveforms of the inductor voltage and current are 
shown in the figure bellow: 
 

 
Fig. 14. The waveforms of voltage and inductor current in DCM 
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The average value of the inductor voltage during a switching period is zero. 
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Replacing equation (42) in the equation (41), and also considering the input and the output 
power equals, 
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Denoting the voltage transfer ratio with M=
E
Uo , the equation (44) becomes: 
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The solution of this equation is: 
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The variation of circuit transfer ratio M function of PWM signal duty-cycle D, for different 

values of 2L
RT

parameters is shown in the figure: 

 

 
Fig. 15. Variation of circuit transfer ratio M function of PWM signal duty-cycle D 

 

3.3 Filtering capacitor 
Other important parameter that is important to be determined is the value of the output 
capacitor, in order to obtain a specific value of the output voltage ripple.  
The capacitor charging current is equal with the difference between the diode current iD and 
the output current io. Considering a constant output current, the electric charge stored in the 
capacitor during a switching period is equal with the shade area from the figure bellow: 
 

 
Fig. 16. The waveforms of inductor current and output voltage 
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Thus, the value of the output capacitor can be calculated with the following formula: 
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4. Buck-Boost converter 

The buck-boost converter (polarity inverter) is shown in figure 17.  
 

 
Fig. 17. Buck-Boost converter diagram 
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The average value of the inductor voltage during a switching period is zero. 
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4. Buck-Boost converter 

The buck-boost converter (polarity inverter) is shown in figure 17.  
 

 
Fig. 17. Buck-Boost converter diagram 
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The switches are alternately opened and closed with at a rate of PWM switching frequency. 
As long as the transistor is ON, the diode is OFF, being reversed biased. The input voltage, 
applied directly to inductance L, determines a linear rising current. The capacitor is 
discharged on the load circuit. When the transistor is OFF, the load is supplied by LC filter. 
The output that results is a regulated voltage of smaller or higher magnitude than input 
voltage, depending on the value of duty cycle, but it has a reverse polarity. The converter 
operation will be analyzed according with the ON or OFF state of switches. 
 
The first time interval: The transistor is in ON state and diode is OFF. 
 
During this time period, corresponding with duty cycle of PWM driving signal, the 
equivalent diagram of the circuit is presented bellow. In this time period the inductance L 
stores energy. The load current is assured by the output capacitor. 
 

 
Fig. 18. The equivalent circuit during the ON state of transistor and OFF state of diode 
 
For this operation period, the output voltage uo and the current through the inductor iL are 
given by the following equations system: 
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The second time period: the transistor is OFF and diode is ON 
 
In the moment when the transistor switch in OFF state, the voltage across the inductor will 
change the polarity and diode will switch in ON state. The energy stored in the inductor will 
supply the load.  The equivalent diagram of converter during this period is shown in the 
figure bellow: 
 

 
Fig. 19. The equivalent circuit during the OFF state of transistor and ON state of diode 

 

For this operation period, the following equations for the output voltage uo and the current 
through the inductor iL can be written:  
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The third operation mode : The both transistor and diode are OFF 
 
If the inductor current becomes zero before ending the diode ON period, both the transistor 
and the diode will be OFF. Due to the diode current becomes zero, the diode will naturally 
close, and the output capacitor will discharge on the load. This operation regime is called 
discontinuous current mode. The equivalent diagram of this operation regime is shown bellow. 
 

 
Fig. 20. The equivalent diagram for discontinuous conduction mode operation 
 
For this operation mode, the output voltage uo and the current through the inductor iL can be 
calculated from the following differential equations: 
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4.1 CCM inductance 
The minimum value of the inductance for continuous current mode (CCM) operation is 
calculated from the the inductor current equations.  
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The switches are alternately opened and closed with at a rate of PWM switching frequency. 
As long as the transistor is ON, the diode is OFF, being reversed biased. The input voltage, 
applied directly to inductance L, determines a linear rising current. The capacitor is 
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The third operation mode : The both transistor and diode are OFF 
 
If the inductor current becomes zero before ending the diode ON period, both the transistor 
and the diode will be OFF. Due to the diode current becomes zero, the diode will naturally 
close, and the output capacitor will discharge on the load. This operation regime is called 
discontinuous current mode. The equivalent diagram of this operation regime is shown bellow. 
 

 
Fig. 20. The equivalent diagram for discontinuous conduction mode operation 
 
For this operation mode, the output voltage uo and the current through the inductor iL can be 
calculated from the following differential equations: 
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4.1 CCM inductance 
The minimum value of the inductance for continuous current mode (CCM) operation is 
calculated from the the inductor current equations.  
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Fig. 21. The inductor voltage and current waveforms in steady-state regime 
 
In the steady state regime, the average value of the voltage across the inductor is zero. From 
this condition, the output voltage Uo can be determined: 
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Based on the above waveforms: 
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Also, the average diode current is equal with the output current.  
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Based on the equations (54) and (55), the maximum and the minimum value of the inductor 
current will be: 
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Thus, the inductor current ripple is: 
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From the condition for continuous conduction mode, 0
min

Li , results: 
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This condition can be used to determine the minimum inductance value, for a specific 
switching period T and a specific load value R.  
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4.2 The discontinuous current mode 
In discontinuous conduction mode, the waveforms of the inductor voltage and current are 
shown in the figure bellow: 
 

 
Fig. 22. The waveforms of voltage and inductor current in DCM 
 
The average value of the input current is equal with the transistor average current.  
 

max
1
2avi LI T I D T     (61) 

where, 

maxL
E D TI

L
 

  (62) 

From the above equations results: 
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Neglecting the losses in the circuit, the input power is equal with the output power. 
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Denoting the voltage transfer ratio 
E
Uo =M , it results: 
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The variation of circuit transfer ratio M function of PWM signal duty-cycle D, for different 

values of 2L
RT

parameters is shown in the figure: 

 

 
Fig. 23. Variation of circuit transfer ratio M function of PWM signal duty-cycle D 

 
4.3 Filtering capacitor 
Other important parameter that must be determined is the value of the output capacitor, in 
order to obtain a specific value of the output voltage ripple.  
The capacitor charging current is equal with difference between the diode current iD and the 
output current io. Considering a constant output current, the electric charge stored in the 
capacitor during a switching period is equal with the shade area from the bellow figure: 
 

 
Fig. 24. The waveforms of the inductor current and output voltage 
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The value of the output capacitor can be calculated with the following formula: 
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5. Matlab Modeling of DC-DC Converters 

In order to simulate the converters, the equations that describe the converter operation on 
each of the three possible operating stages are implemented in Matlab, and solved using 
Matlab facilities.  
The program structure consists in two files. The first file initializes the default values of 
converter parameters: the input voltage E, the inductance value L, the capacitor value C, the 
load value R, the switching period T, the duty-cycle D and the number of periods to be 
displayed. All the parameters can be changed during the converters simulation. The 
structure of this file is: 
 
Listing for initialization of default parameters values 

clear all; 
close; 
E=10;       %input voltage value 
L=1e-4;     %inductor value 
C=10e-6;  %capacitor value 
R=10;        %load value 
%--------------------- 
Q=sqrt(L./C)./R; 
T0=2.*pi.*sqrt(L.*C); 
%------------ 
T=50e-6;    %switching period 
D=0.5;        %duty-cycle 
N=20;       %numbers of periods to be displayed 
%--------------- 
p=1;          % default plotting regime (transient)  
%-------------------- 
type=1;     % default analyzed converter -Buck 
%type=2;  % Boost 
%type=3;   % Buck-Boost 
%---------------- 
ed_converter(E,L,C,R,T,D,N,p,type);   % function for converters simulation 
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Denoting the voltage transfer ratio 
E
Uo =M , it results: 
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ed_converter(E,L,C,R,T,D,N,p,type);   % function for converters simulation 
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As it can be seen at the end of the file, the ed_converter(E,L,C,R,T,D,N,p,type) function is 
called. This function is implemented in a file with the same name, and had as arguments the 
converter parameters. In the first part of the file are created the buttons that allow to change 
the values of the converter parameters. Than, are implemented the functions that solve the 
differential equations that describe the converter operation and are calculated the critical 
values of inductor for continuous conduction mode operation and value of output voltage. 
Also, are defined the plots for output voltage and input current. 
The structure of this file is presented bellow: 
 
Listing of function file 

function ed_converter(E,L,C,R,T,D,N,p,type); 
%create a new figure; 
Fig=figure('Name','   DC-DC Converters',... 
           'Numbertitle','off', 'color', [1, 1, 1]); 
 
% creating 7 text buttons B_T; 
  
txt=['E [V]   L[ H]  C[ F] R[ohm]   T[ s]   D      N    ']; 
   for k=1:7 
    B_T(k)=uicontrol('Style','text', ... 
                  'Units','normalized', ... 
                  'backgroundcolor',[1, 1, 1],... 
                  'Position',[0.91 0.95-0.1.*(k-1) 0.10 0.04], ... 
                  'String',txt((7.*(k-1))+1:7.*k), ... 
                  'Callback','close; '); 
   end 
  
% Creating 7 Edit buttons B_E ; 
 var=['E';'L';'C';'R';'T';'D';'N']; 
 val=[E;L;C;R;T;D;N]; 
  
  xc= '=str2num(get(gco,''String''));close;ed_converter(E,L,C,R,T,D,N,p,type)'; 
 for i=1:7      
  B_E= uicontrol('Style','edit',... 
                'Units','normalized',... 
                'backgroundcolor',[1, 1, 0],... 
                'Position',[0.91 0.90-0.1*(i-1) 0.10 0.04],... 
                'String',val(i),... 
                'Callback',cat(2,var(i),xc)); 
 end 
 

%Creating the control buttons for selection of converter type: Buck, Boost or Buck-Boost 
            Buck=uicontrol('Style','pushbutton',... 
             'Units','normalized',... 
             'Position',[0.05 0.01 0.17 0.04],... 
             'String','Buck',... 

 

             'backgroundcolor',[0, 1, 0.5],... 
             'Callback','type=1,close;ed_converter(E,L,C,R,T,D,N,p,type)'); 
            Boost=uicontrol('Style','pushbutton',... 
             'Units','normalized',... 
             'Position',[0.25 0.01 0.17 0.04],... 
             'String','Boost',... 
             'backgroundcolor',[0, 1, 0.5],... 
             'Callback','type=2,close;ed_converter(E,L,C,R,T,D,N,p,type)'); 
         Buck_Boost=uicontrol('Style','pushbutton',... 
             'Units','normalized',... 
             'Position',[0.45 0.01 0.17 0.04],... 
             'String','BuckBoost',... 
             'backgroundcolor',[0, 1, 0.5],... 
             'Callback','type=3,close;ed_converter(E,L,C,R,T,D,N,p,type)'); 
  
 %---------------- 
          Bp=uicontrol('Style','pushbutton',... 
             'Units','normalized',... 
             'Position',[0.01 0.92 0.19 0.04],... 
             'String','Steady-State Regime',... 
             'backgroundcolor',[0, 1, 1],... 
             'Callback','p=0;close;ed_converter(E,L,C,R,T,D,N,p,type)'); 
          if p==0 
             set(Bp,'String','Transient Regime'); 
             set(Bp,'Callback','p=1,close;ed_converter(E,L,C,R,T,D,N,p,type)'); 
          end 
% When a button is pushed, the callback will call again the function file with the 
newer parameters 
%Routine for solving the function ec_conv, that describes the converters operation 
t=0; 
y=[0 0]; 
for k=1:N 
nt=length(t); 
t0=(k-1).*T; 
tf=t0+D.*T; 
ci=y(nt,:); 
interval=1; 
[t,y]=ode45(@ec_conv,[t0,tf],[ci],[],E,R,L,C,type,interval); 
nt=length(t); 
%Setting the plots 
subplot('Position',[0.10 0.55 0.80 0.35]); 
plot(t,y(:,1),'r');grid on;hold on; 
subplot('Position',[0.10 0.15 0.80 0.35]); 
plot(t,y(:,2),'r');grid on;hold on; 
%---------------------interval=2; 
t0=(k-1).*T+D.*T; 
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As it can be seen at the end of the file, the ed_converter(E,L,C,R,T,D,N,p,type) function is 
called. This function is implemented in a file with the same name, and had as arguments the 
converter parameters. In the first part of the file are created the buttons that allow to change 
the values of the converter parameters. Than, are implemented the functions that solve the 
differential equations that describe the converter operation and are calculated the critical 
values of inductor for continuous conduction mode operation and value of output voltage. 
Also, are defined the plots for output voltage and input current. 
The structure of this file is presented bellow: 
 
Listing of function file 

function ed_converter(E,L,C,R,T,D,N,p,type); 
%create a new figure; 
Fig=figure('Name','   DC-DC Converters',... 
           'Numbertitle','off', 'color', [1, 1, 1]); 
 
% creating 7 text buttons B_T; 
  
txt=['E [V]   L[ H]  C[ F] R[ohm]   T[ s]   D      N    ']; 
   for k=1:7 
    B_T(k)=uicontrol('Style','text', ... 
                  'Units','normalized', ... 
                  'backgroundcolor',[1, 1, 1],... 
                  'Position',[0.91 0.95-0.1.*(k-1) 0.10 0.04], ... 
                  'String',txt((7.*(k-1))+1:7.*k), ... 
                  'Callback','close; '); 
   end 
  
% Creating 7 Edit buttons B_E ; 
 var=['E';'L';'C';'R';'T';'D';'N']; 
 val=[E;L;C;R;T;D;N]; 
  
  xc= '=str2num(get(gco,''String''));close;ed_converter(E,L,C,R,T,D,N,p,type)'; 
 for i=1:7      
  B_E= uicontrol('Style','edit',... 
                'Units','normalized',... 
                'backgroundcolor',[1, 1, 0],... 
                'Position',[0.91 0.90-0.1*(i-1) 0.10 0.04],... 
                'String',val(i),... 
                'Callback',cat(2,var(i),xc)); 
 end 
 

%Creating the control buttons for selection of converter type: Buck, Boost or Buck-Boost 
            Buck=uicontrol('Style','pushbutton',... 
             'Units','normalized',... 
             'Position',[0.05 0.01 0.17 0.04],... 
             'String','Buck',... 

 

             'backgroundcolor',[0, 1, 0.5],... 
             'Callback','type=1,close;ed_converter(E,L,C,R,T,D,N,p,type)'); 
            Boost=uicontrol('Style','pushbutton',... 
             'Units','normalized',... 
             'Position',[0.25 0.01 0.17 0.04],... 
             'String','Boost',... 
             'backgroundcolor',[0, 1, 0.5],... 
             'Callback','type=2,close;ed_converter(E,L,C,R,T,D,N,p,type)'); 
         Buck_Boost=uicontrol('Style','pushbutton',... 
             'Units','normalized',... 
             'Position',[0.45 0.01 0.17 0.04],... 
             'String','BuckBoost',... 
             'backgroundcolor',[0, 1, 0.5],... 
             'Callback','type=3,close;ed_converter(E,L,C,R,T,D,N,p,type)'); 
  
 %---------------- 
          Bp=uicontrol('Style','pushbutton',... 
             'Units','normalized',... 
             'Position',[0.01 0.92 0.19 0.04],... 
             'String','Steady-State Regime',... 
             'backgroundcolor',[0, 1, 1],... 
             'Callback','p=0;close;ed_converter(E,L,C,R,T,D,N,p,type)'); 
          if p==0 
             set(Bp,'String','Transient Regime'); 
             set(Bp,'Callback','p=1,close;ed_converter(E,L,C,R,T,D,N,p,type)'); 
          end 
% When a button is pushed, the callback will call again the function file with the 
newer parameters 
%Routine for solving the function ec_conv, that describes the converters operation 
t=0; 
y=[0 0]; 
for k=1:N 
nt=length(t); 
t0=(k-1).*T; 
tf=t0+D.*T; 
ci=y(nt,:); 
interval=1; 
[t,y]=ode45(@ec_conv,[t0,tf],[ci],[],E,R,L,C,type,interval); 
nt=length(t); 
%Setting the plots 
subplot('Position',[0.10 0.55 0.80 0.35]); 
plot(t,y(:,1),'r');grid on;hold on; 
subplot('Position',[0.10 0.15 0.80 0.35]); 
plot(t,y(:,2),'r');grid on;hold on; 
%---------------------interval=2; 
t0=(k-1).*T+D.*T; 
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tf=k.*T; 
ci=y(nt,:); 
interval=2; 
options=odeset('Events',@conv_ev); 
[t,y,te,ye,ie]=ode45(@ec_conv,[t0,tf],[ci],[options],E,R,L,C,type,interval); 
nt=length(t); 
%----------------------- 
 subplot('Position',[0.10 0.55 0.80 0.35]); 
plot(t,y(:,1),'b');grid on;hold on; 
subplot('Position',[0.10 0.15 0.80 0.35]); 
plot(t,y(:,2),'b');grid on;hold on; 
%----------------------------interval=3; 
if te>0; 
t0=t(nt); 
tf=k.*T; 
ci=y(nt,:); 
interval=3; 
[t,y]=ode45(@ec_conv,[t0,tf],[ci],[],E,R,L,C,type,interval); 
%----------------------- 
subplot('Position',[0.10 0.55 0.80 0.35]); 
plot(t,y(:,1),'g');grid on;hold on; 
subplot('Position',[0.10 0.15 0.80 0.35]); 
plot(t,y(:,2),'g');grid on;hold on; 
%--------------------- 
end 
      if (p==0)&(j<N-1) 
                  subplot('Position',[0.10 0.55 0.80 0.35]); 
               hold off; 
         end 
              
      if (p==0)&(j<N-1) 
                 subplot('Position',[0.10 0.15 0.80 0.35]); 
            hold off; 
      end 
  
end 
%======================================== 
subplot('Position',[0.10 0.55 0.80 0.35]); 
ylabel(['iL [ A ]']); 
  switch type; 
      case 1 

      Lm=R.*T.*(1-D)./2;    %Calculating the minimum value of inductance for Buck Converter 
          if 2.*L./(R.*T)>=1-D 

      Uo=E.*D;                     %Calculating the output voltage in Continuous conduction mode 
  
          else 

 

              z=0.5.*R.*D.^2.*T./L; 
             v=0.5.*(sqrt(z.^2+4.*z)-z); 
 Uo=v.*E;          %Calculating the output voltage in Discontinuous conduction mode 
          end 
      title(['Buck Converter',' Uo = ',num2str(Uo),' [ V ]',' Lm = ',num2str(Lm),' [ H ]']); 
 
      case 2     
Lm=R.*T.*D.*(1-D).^2./2;   %Calculating the minimum value of inductance for 
Boost Converter 
              di=E.*D.*T./L; 
  
          if 2.*L./(R.*T)>=D*(1-D).^2 

              Uo=E./(1-D);          %Calculating the output voltage in Continuous conduction mode 
                 
          else 
v=0.5.*(1+sqrt(1+2.*D.^2.*T.*R./L)); 
 Uo=v.*E;          %Calculating the output voltage in Discontinuous conduction mode 
          end 
   title(['Boost Converter',' Uo = ',num2str(Uo),' [ V ]',' Lm = ',num2str(Lm),' [ H ]']); 
 
      case 3 
                    Lm=R.*T.*(1-D).^2./2, %Calculating the minimum value of inductance 
for Buck-Boost Converter 
            if 2.*L./(R.*T)>=(1-D).^2 
Uo=E.*D./(1-D);   %Calculating the output voltage in Continuous conduction mode 
               
          else 
             v=D.*sqrt(0.5.*T.*R./L); 
Uo=v.*E;          %Calculating the output voltage in Discontinuous conduction mode 
          end 

title(['Buck-Boost Converter',' Uo = ',num2str(Uo),' [ V ]',' Lm = ',num2str(Lm),' [ H ]']); 
  
  end 
  
subplot('Position',[0.10 0.15 0.80 0.35]); 
ylabel(['Uo = uC [ V ]']); 
xlabel(['t [ s ]']); 
 
%Function that describes the converters operation 
function dy=ec_conv(t,y,E,R,L,C,type,interval); 
dy=zeros(2,1); 
switch type; 
 
    case 1 
        if interval==1 
            a=1;b=1;c=1; 
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tf=k.*T; 
ci=y(nt,:); 
interval=2; 
options=odeset('Events',@conv_ev); 
[t,y,te,ye,ie]=ode45(@ec_conv,[t0,tf],[ci],[options],E,R,L,C,type,interval); 
nt=length(t); 
%----------------------- 
 subplot('Position',[0.10 0.55 0.80 0.35]); 
plot(t,y(:,1),'b');grid on;hold on; 
subplot('Position',[0.10 0.15 0.80 0.35]); 
plot(t,y(:,2),'b');grid on;hold on; 
%----------------------------interval=3; 
if te>0; 
t0=t(nt); 
tf=k.*T; 
ci=y(nt,:); 
interval=3; 
[t,y]=ode45(@ec_conv,[t0,tf],[ci],[],E,R,L,C,type,interval); 
%----------------------- 
subplot('Position',[0.10 0.55 0.80 0.35]); 
plot(t,y(:,1),'g');grid on;hold on; 
subplot('Position',[0.10 0.15 0.80 0.35]); 
plot(t,y(:,2),'g');grid on;hold on; 
%--------------------- 
end 
      if (p==0)&(j<N-1) 
                  subplot('Position',[0.10 0.55 0.80 0.35]); 
               hold off; 
         end 
              
      if (p==0)&(j<N-1) 
                 subplot('Position',[0.10 0.15 0.80 0.35]); 
            hold off; 
      end 
  
end 
%======================================== 
subplot('Position',[0.10 0.55 0.80 0.35]); 
ylabel(['iL [ A ]']); 
  switch type; 
      case 1 

      Lm=R.*T.*(1-D)./2;    %Calculating the minimum value of inductance for Buck Converter 
          if 2.*L./(R.*T)>=1-D 

      Uo=E.*D;                     %Calculating the output voltage in Continuous conduction mode 
  
          else 

 

              z=0.5.*R.*D.^2.*T./L; 
             v=0.5.*(sqrt(z.^2+4.*z)-z); 
 Uo=v.*E;          %Calculating the output voltage in Discontinuous conduction mode 
          end 
      title(['Buck Converter',' Uo = ',num2str(Uo),' [ V ]',' Lm = ',num2str(Lm),' [ H ]']); 
 
      case 2     
Lm=R.*T.*D.*(1-D).^2./2;   %Calculating the minimum value of inductance for 
Boost Converter 
              di=E.*D.*T./L; 
  
          if 2.*L./(R.*T)>=D*(1-D).^2 

              Uo=E./(1-D);          %Calculating the output voltage in Continuous conduction mode 
                 
          else 
v=0.5.*(1+sqrt(1+2.*D.^2.*T.*R./L)); 
 Uo=v.*E;          %Calculating the output voltage in Discontinuous conduction mode 
          end 
   title(['Boost Converter',' Uo = ',num2str(Uo),' [ V ]',' Lm = ',num2str(Lm),' [ H ]']); 
 
      case 3 
                    Lm=R.*T.*(1-D).^2./2, %Calculating the minimum value of inductance 
for Buck-Boost Converter 
            if 2.*L./(R.*T)>=(1-D).^2 
Uo=E.*D./(1-D);   %Calculating the output voltage in Continuous conduction mode 
               
          else 
             v=D.*sqrt(0.5.*T.*R./L); 
Uo=v.*E;          %Calculating the output voltage in Discontinuous conduction mode 
          end 

title(['Buck-Boost Converter',' Uo = ',num2str(Uo),' [ V ]',' Lm = ',num2str(Lm),' [ H ]']); 
  
  end 
  
subplot('Position',[0.10 0.15 0.80 0.35]); 
ylabel(['Uo = uC [ V ]']); 
xlabel(['t [ s ]']); 
 
%Function that describes the converters operation 
function dy=ec_conv(t,y,E,R,L,C,type,interval); 
dy=zeros(2,1); 
switch type; 
 
    case 1 
        if interval==1 
            a=1;b=1;c=1; 
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        elseif interval==2 
            a=0;b=1;c=1; 
        else  
            a=0;b=0;c=0; 
        end 
 
   case 2 
        if interval==1 
            a=1;b=0;c=0; 
        elseif interval==2 
            a=1;b=1;c=1; 
        else  
            a=0;b=0;c=0; 
        end 
 
   case 3 
        if interval==1 
            a=1;b=0;c=0; 
        elseif interval==2 
            a=0;b=1;c=1; 
        else  
            a=0;b=0;c=0; 
        end 
end 
 
            dy(1)=(a.*E-b.*y(2))./L;     % Current equation 
            dy(2)=(c.*y(1)-y(2)./R)./C;  % Voltage equation 
 
%=========================================================== 
function [value,isterminal,direction] =conv_ev(t,y,E,R,L,C,type,interval); 
value = y(1);     % detect iL = 0 
isterminal = 1;   % stop the integration 
direction = -1;   % negative direction 

 
As it can be seen in the converters description, for all types of converters, the equation that 
describes the operation has the same shape. The difference consists in the value of the 
coefficients. From this reason, the same equations are used for the simulation of the 
converters operation and from each converter only the value of a, b, and c coefficients are 
set. The equations system is: 
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The simulation results of the dc-dc converters are presented in the following figure: 
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Fig. 25. The converters simulation results 
 
As can be seen in the figure, from the upper left side button can be chosen the display mode: 
transient, when all the simulated periods are plotted or steady state regime when only the 
last simulated period is plotted. 
From the right site editing buttons, all of the converter parameters can be set. From the 
bottom side it can be selected the desired converter: buck, boost or buck-boost. Also, for 
each converter type, the program displays the output voltage value and the minimum 
inductance value in order to obtain continuous current mode operation. 
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        elseif interval==2 
            a=0;b=1;c=1; 
        else  
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As it can be seen in the converters description, for all types of converters, the equation that 
describes the operation has the same shape. The difference consists in the value of the 
coefficients. From this reason, the same equations are used for the simulation of the 
converters operation and from each converter only the value of a, b, and c coefficients are 
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Fig. 25. The converters simulation results 
 
As can be seen in the figure, from the upper left side button can be chosen the display mode: 
transient, when all the simulated periods are plotted or steady state regime when only the 
last simulated period is plotted. 
From the right site editing buttons, all of the converter parameters can be set. From the 
bottom side it can be selected the desired converter: buck, boost or buck-boost. Also, for 
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inductance value in order to obtain continuous current mode operation. 
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Definition of Power Factor 

Definition of power factor is: 
 

1 1 1 1 1
1

1

cos cos cos
S R R

U I IPPF
U I I

           (1) 

 

In formula (1), PF is power factor, P is active power, S is apparent power, 1I  is effective 

value of fundamental component of input current, RI is effective value of AC power source 

current, 22
2

2
1 nR IIII   , 1I , 2I ,…, nI  are effective value of harmonic 

components of input current, 1U is effective value of fundamental component of input AC 

voltage,  is deformation factor of input current, 1  is the angel between the input AC 
voltage and fundamental component of the input current.  

It is clear that the power factor PF is determined by   and 1 . The bigger the 1 , the 
bigger the reactive power is, the bigger the wastage of conductive line wire and transformer  
is. The smaller the  , the bigger the input current harmonics of is, which will cause current 
distortion, produce pollution to electric grid, and even damage the electric equipments if 
condition is serious. 

 
Input Circuit and Its Power Factor of Single-Phase AC/DC Switching Power 
Supply 
 

Single-phase AC/DC switching power replaces the low frequency transformer of traditional 
power source with high frequency transformer, so it has such advantages as light weight, 
small size, and high power density etc. At the same time, the switching power has higher 

8
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Fig. 3. Emulated circuit figure for input circuit of AC/DC switching power 
 
The wave forms of input voltage and current are shown as Figure 4. There are current pass 
through the rectifier diode D1~D4 only when input alternating voltage bigger than the 
voltage between the two ends of filter capacitor, so the input current presents in sharp 
impulse form, the distortion factor of wave form   is small, power factor PF is small, 
usually 0.6~0.7, and then the electric grid and other electric equipments are polluted and 
disturbed. In 1982, the IEC laid down a regulation IEC55-2 to limit higher harmonic (the 
later modified one is IEC1000-3-2), and made many power electronics technicians start to 
study harmonic filtering and PFC. The English full name for PFC is "Power Factor 
Correction”. 
There are two kinds of PFC, one is passive PFC, and the other is active PFC. Passive 
PFC(PPFC) only use capacitance, diode, inductance and other passive elements. The circuit 
is simple, and the cost is low, but the power factor of passive PFC is not very high that can 
only reach 0.7~0.8; APFC need to use transistor and controlling IC, the cost of which is much 
higher than that of PPFC. But the AC input current wave totally conform with such 
standard limits provision as IEC1000-3-2 etc. And can fundamentally realize unit power 
factor (when power factor is 1, it is called unit power factor). As a result, active BOOST 
correcting circuit is used much widely. 
This following will introduce several kinds of passive PFC and active PFC. 

efficiency than the linearly-regulated DC power because its main power elements work as 
high frequency switches, so its application range is wider and wider. 
The input circuit of traditional single-phased AC/DC switching power is demonstrated as 
Figure 1, after the mains supply(commercial power) is bridge rectified by D1~D4, it takes 
advantage of big electric capacity C to carry on smooth filtering to get DC voltage, and then 
transformed by DC/DC to realize insulation and voltage changing to supply the load. In 
simulation, use equivalent resistance R to replace the latter DC/DC and load as shown in 
the Figure 2. 
 

 
Fig. 1. Input circuit of AC/DC switch power supply 
 

 
Fig. 2. Input equivalent electric circuit of AC/DC switching power supply 
 
The emulated electric circuit that uses MATLAB structure is shown as Figure 3. The SCOPE 
module is used to observe the input voltage and current wave form; the current measuring 

module is used to check input current and then calculate the current effective value RI , 

fundamental wave’s effective value 1I  and included angel between input voltage and 

current fundamental component 1 , and at last use formula (1) to calculate the power factor. 
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Fig. 3. Emulated circuit figure for input circuit of AC/DC switching power 
 
The wave forms of input voltage and current are shown as Figure 4. There are current pass 
through the rectifier diode D1~D4 only when input alternating voltage bigger than the 
voltage between the two ends of filter capacitor, so the input current presents in sharp 
impulse form, the distortion factor of wave form   is small, power factor PF is small, 
usually 0.6~0.7, and then the electric grid and other electric equipments are polluted and 
disturbed. In 1982, the IEC laid down a regulation IEC55-2 to limit higher harmonic (the 
later modified one is IEC1000-3-2), and made many power electronics technicians start to 
study harmonic filtering and PFC. The English full name for PFC is "Power Factor 
Correction”. 
There are two kinds of PFC, one is passive PFC, and the other is active PFC. Passive 
PFC(PPFC) only use capacitance, diode, inductance and other passive elements. The circuit 
is simple, and the cost is low, but the power factor of passive PFC is not very high that can 
only reach 0.7~0.8; APFC need to use transistor and controlling IC, the cost of which is much 
higher than that of PPFC. But the AC input current wave totally conform with such 
standard limits provision as IEC1000-3-2 etc. And can fundamentally realize unit power 
factor (when power factor is 1, it is called unit power factor). As a result, active BOOST 
correcting circuit is used much widely. 
This following will introduce several kinds of passive PFC and active PFC. 

efficiency than the linearly-regulated DC power because its main power elements work as 
high frequency switches, so its application range is wider and wider. 
The input circuit of traditional single-phased AC/DC switching power is demonstrated as 
Figure 1, after the mains supply(commercial power) is bridge rectified by D1~D4, it takes 
advantage of big electric capacity C to carry on smooth filtering to get DC voltage, and then 
transformed by DC/DC to realize insulation and voltage changing to supply the load. In 
simulation, use equivalent resistance R to replace the latter DC/DC and load as shown in 
the Figure 2. 
 

 
Fig. 1. Input circuit of AC/DC switch power supply 
 

 
Fig. 2. Input equivalent electric circuit of AC/DC switching power supply 
 
The emulated electric circuit that uses MATLAB structure is shown as Figure 3. The SCOPE 
module is used to observe the input voltage and current wave form; the current measuring 

module is used to check input current and then calculate the current effective value RI , 

fundamental wave’s effective value 1I  and included angel between input voltage and 

current fundamental component 1 , and at last use formula (1) to calculate the power factor. 



Matlab - Modelling, Programming and Simulations154

 
Fig. 6. Current wave form of large inductance 
 

 
Fig. 7. Current wave form of infinite inductance 
 
Using large inductance to correct power factor has such advantages as simple circuit, high 
reliability, and no extra frequency disturbing; But its drawback is it is cumbersome, the 
effect of power factor correcting is not very satisfied, and the correcting effect is inferior 
when the load range is relatively wide. 

 
Fig. 4. Wave forms of input voltage and current 

 
Correcting circuit of passive power factor with large inductance 

Correcting circuit of passive power factor with large inductance is as Figure 5. The current 
and voltage wave form are shown as Figure 6, and its power factor is 0.898. If adopting 
infinite inductance, then the current wave form will be as Figure 7, and the power factor 
reaches to 0. 901. 
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Fig. 5. Correcting circuit of passive power factor with large inductance 
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Load Resistance 
/Ohm 

40 60 80 100 120 140 160 180 

Power Factor 0.9112 0.8946 0.8836 0.8749 0.8644 0.8446 0.8442 0.8174 
Table 1. Power factors of valley-filled PFC under different loads 
 
From Figure 9, we can see that valley-filled PFC current wave form is still not very satisfied, 
so, literature 5 put forward a kind of improved circuit as Figure 10. Its current wave form 
demonstrates as Figure 11. Compared with Figure 9, the current wave form is improved 
evidently, and the power factor is also been improved, and its power factors under different 
loads are shown as in table 2. 
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Fig. 10. An improved valley-filled PFC circuit 

Correcting Circuit of Valley-filled Passive Power Factor 

The basic structure of valley-filled PFC is demonstrated as Figure 8. When the input voltage 
is higher than the voltage between the two ends of the capacity, then the two capacities are 
charged in series; when the input voltage is lower than the voltage in the two ends of the 
capacity, the two capacities are discharging in parallel, which magnifies the conduction 
angle of diode, and then improves the current wave form and the power factor. The voltage 
and current waves by using MATLAB simulation are demonstrated as Figure 3. And the 
different power factors under different loads are shown as table 1. 
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Fig. 8. Basic structure of valley-filled PFC rectification circuit 
 

 
Fig. 9. Current wave form of valley-filled PFC 
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Load Resistance 
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Table 1. Power factors of valley-filled PFC under different loads 
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Fig. 9. Current wave form of valley-filled PFC 
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Fig. 12. BOOST active correcting circuit 
 
BOOST active correcting circuit’s power factor is smaller than 1. This conclusion is proved 
by counter evidence. i.e., assuming the circuit in Figure 12 has corrected the power factor to 

unit one, and then BU  should be full wave voltage, current of inductance 1L  should be 

full wave current, and same as BU  in wave form. Then the circuit can be emulated as 

Figure 13. This circuit uses current source (peak value is 12A) to replace, ,IGTB  5D , 

1C , 2R  in Figure 12, and this current source has same wave forms with inductive current. 
The R1 in Figure 13 is the resistance added in order to avoid iteration divergence, but it is 
evidently that the effect to emulation results can be ignored. The emulation results are 

shown as Figure 14. From Figure 14, we can see that outV  appears minus voltage that is 

obviously impossible. Because the peak value of EU  in Figure 12 is similar and almost 

equivalent to DU , and its valley value is 0, the low frequency component of EU  e could 
not be minus. And thus it is proved that the BOOST active correcting circuit power factor of 
the BOOST active correcting circuit is always smaller than 1. 
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Fig. 13. Emulated circuit to prove the limit power factor of BOOST which is smaller than unit one 

 
Fig. 11. an improved current wave form of valley-filled PFC circuit 

 
Load Resistance 
/Ohm 

40 60 80 100 120 140 160 180 

Power Factor 0.9554 0.9502 0.9421 0.9396 0.9345 0.9304 0.9285 0.9202 
Table 2. Power Factors of the improved valley-filled PFC under different loads  
 
We can see that this kind of improved valley-filled PFC can evidently improve the power 
factors by comparing table 1 and table 2. Valley-filled PFC has been used in electronic 
ballast and other small electronic equipment, which can meet the requirements for power 
factor of low power electronic equipments of IEC1000-3-2 and other standards. 

 
Correcting Circuit and its Limit Power Factor of Active Power based on 
BOOST Circuit[1] 
 

BOOST active correcting circuit is demonstrated as Figure 12, AU  is sampled current, BU  is 

sampled full wave voltage and alternating voltage effective value, CU  is MOSFET driving 

impulse, and DU  is sampled output voltage. When the circuit operates in steady state, voltage 

BU  is similar to full wave voltage, current of inductance L is similar to full wave current, the 
current is similar to sine current, and is similar to mains supply voltage, of same frequency and 
phase, and then make switching power factor approached to unit one.  
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phase, and then make switching power factor approached to unit one.  



Matlab - Modelling, Programming and Simulations160

Correcting Circuit of Active PFC based on BOOST Circuit 

BOOST active correcting circuit is demonstrated as Figure 12, and its emulated circuit is 
demonstrated as Figure 16. The module li1 is used to detect current, the module ls is to display 
current, The module Vui1 is used to calculate voltage, the module Ui&I is to display voltage and 
current, the module Subsystem3 is used to calculate power factor according to formula (1), the 
module fft1 is used to calculate elements of harmonic wave, RS is current sampling resistor, the 
module Ii2 is to detect current of inductance, the module Subsystem is controlling module that 
adopts average current control mode. The module Subsystem3 is demonstrated as Figure 17. 
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Fig. 16. BOOST active correcting circuit 
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Fig. 17. The circuit of the module Subsystem3 

Now, we are going to calculate power factor’s limit of BOOST active correcting circuit. The 
emulated circuit is demonstrated as in Figure 14, the diode D5 is added in order to delete 
the minus part of VOUT in Figure 13, and this conforms to actual application. Its voltage 
and current wave forms are demonstrated as the Figure 15. And we can see from the Figure 
that except the current wave near the zero point is “a little” deflected from the sine wave, all 
the other places are very close to it.  
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Fig. 14. Emulated circuit that calculating the power factor’s limit of BOOST active correcting 
circuit 

 

 
Fig. 15. Voltage and current wave form 
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Correcting Circuit of Active PFC based on BOOST Circuit 

BOOST active correcting circuit is demonstrated as Figure 12, and its emulated circuit is 
demonstrated as Figure 16. The module li1 is used to detect current, the module ls is to display 
current, The module Vui1 is used to calculate voltage, the module Ui&I is to display voltage and 
current, the module Subsystem3 is used to calculate power factor according to formula (1), the 
module fft1 is used to calculate elements of harmonic wave, RS is current sampling resistor, the 
module Ii2 is to detect current of inductance, the module Subsystem is controlling module that 
adopts average current control mode. The module Subsystem3 is demonstrated as Figure 17. 
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Fig. 17. The circuit of the module Subsystem3 

Now, we are going to calculate power factor’s limit of BOOST active correcting circuit. The 
emulated circuit is demonstrated as in Figure 14, the diode D5 is added in order to delete 
the minus part of VOUT in Figure 13, and this conforms to actual application. Its voltage 
and current wave forms are demonstrated as the Figure 15. And we can see from the Figure 
that except the current wave near the zero point is “a little” deflected from the sine wave, all 
the other places are very close to it.  
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Fig. 14. Emulated circuit that calculating the power factor’s limit of BOOST active correcting 
circuit 

 

 
Fig. 15. Voltage and current wave form 
 
 



Matlab - Modelling, Programming and Simulations162

Auxiliary resonant network supplies ZVS/Zero-voltage opening conditions for main 
switch 1Q . The working procedure can be divided into 6 steps as the following: 

(1) Assuming main switch 1Q  is off, and diode 1D  is conducted, inductance L charges 
for capacitor C ; 

(2) When the main switch 1Q  is needed to be turned on, the auxiliary switch 2Q  is 
turned on in advance, the current of resonant inductance increases from zero linearly at the 

time. 1D  will be turned off when the current of aL  equals to the one of L ; 

(3) When 1D  is turned off, resonant inductance aL  and resonant capacitor rC  is to 

form resonant circuit, rC  voltage gradually decreases, and when it equals zero, the diode 

1Q
D  in the main switch 1Q  is inducted, the resonant circuit stops vibrating, and the 

voltage of the 1Q  equals zero; 

(4) Switching on 1Q  to realize ZVS; 

(5) When 1Q  is on, 2Q  is turned off,  then aL  and aC  is to form resonant circuit, 

but for the initial value of aC  is zero, 2Q  is off at zero voltage; when voltage of aC  

equals to output voltage, the diode aD  is conducted, and the current of La decreases 

linearly, when it decreases to zero, aD  and bD  are turned off; 

(6) When the mains switch 1Q ,is turned off ,the current of inductance L charges for aC  

and Cr respectively, for the initial voltage of capacitor rC  is zero, the 1Q  is off under the 

condition of zero voltage; when the voltage of rC  increases to as same as the output voltage, 

the voltage of  aC  already decreases to zero, diode aD  and diode 1D  is conducted. 
Hereafter, repeating the front process. 

Therefore, from the above analysis we can see that the main switch 1Q  is zero voltage 
turned on and turned off, which works in the mode of real ZVT model; auxiliary switch is 
zero current turned on and zero voltage turned off, which works on the model of the 
combination of ZCT（Zero Current Transition）and ZVT. 
There are various controlling circuit of Boost power factor correction, among which, average 
current control is suitable to be used in occasions of high and medium voltage and it most 
widely used in APFC currently because that its THD（Total Harmonic Distortion）and EMI（
Electro Magnetic Interference）is small, it is not sensitive to noise, the switching frequency is 
fixed, and the error between inductive current peak value and average value is small, it is a 
kind of controlling method that used most widely in APFC at present. So, in correcting circuits 
for soft-switching power factor, average current controlling is chose. 
In order to make sure that the main switch keeps turning on under zero voltage, and the 

auxiliary switching tube maintains conducted when the time the resonance voltage on rC  

The input voltage and current of BOOST active correcting circuit are shown in Figure 18, in 
which the power of factor is up to 0.99. BOOST active correcting circuit is mainly used on 
occasions of high and medium power. 
 

 
Fig. 18. Input voltage and current wave form of BOOST active correcting circuit 

 
Soft-switching Correcting Circuit Based on BOOST Circuit[2] 

By the use of active switch components, BOOST active correcting circuit drastically 
decreases the harmonic current in AC side, and increases power factor. But, with the use of 
active switch components, switch devices’ off-losses increase, the stress of the voltage and 
current increases. In order to solve these problems, soft switch technology is introduced. The 
typical circuit of using soft switch technology is shown in Figure 19. The circuit is consisted 
of basic BOOST circuit and auxiliary resonant network. Auxiliary resonant network is 
comprised of auxiliary switch Q2, resonant inductor La, resonant capacitor Ca and Cr, 
auxiliary diode Da, Db and Dc. 
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Fig. 19. Correcting circuit of typical soft-switching active power factor 
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Auxiliary resonant network supplies ZVS/Zero-voltage opening conditions for main 
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form resonant circuit, rC  voltage gradually decreases, and when it equals zero, the diode 
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D  in the main switch 1Q  is inducted, the resonant circuit stops vibrating, and the 

voltage of the 1Q  equals zero; 
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Fig. 18. Input voltage and current wave form of BOOST active correcting circuit 

 
Soft-switching Correcting Circuit Based on BOOST Circuit[2] 

By the use of active switch components, BOOST active correcting circuit drastically 
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Fig. 19. Correcting circuit of typical soft-switching active power factor 



Matlab - Modelling, Programming and Simulations164

 
Fig. 21. Wave Forms of Input Voltage, Current of Soft Switch BOOST 

 

 
Fig. 22. Wave Form of Output Voltage 

 
Figure 23 gives harmonic wave input current value of soft switching active power factor’s 
correcting circuit and the comparing result with standard value of IEC61000-3-2A. We can 
see from the Figure that input current’s 2、3……19 harmonic wave, the current values are 
all much smaller than standard value in IEC61000-3-2A.  
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equals to the transition time of zero voltage under the 

condition of input voltage low limit and full loading. This is also the advanced conduction 
time of auxiliary switching tube than main switching tube. 
The selecting of parameters as is shown in table 3. 
 

Boost 
Inductance L 

Filter 
Capacitor C 

Auxiliary 
Inductance La 

Auxiliary 
Capacitor Ca 

Sampling 
Resistance Rs 

Output 
Load R0 

1.0mH 450μF 6μH 3.6nF 0.048Ω 160Ω 

Table 3. the selecting of parameters of correcting circuit components of soft-switching power 
factor 
 
Power factor is shown in Figure 20, wave forms of input voltage and current are shown in 
Figure 21, and wave form of output voltage is shown in Figure 22. We can see that when 
emulation time reaches to 0.024s, the circuit tends to stable, power factor is also stable and 
power factor approaches to 1. Although the power factor fluctuated after became stable, but 
the amplitude of fluctuation is very small. 
 

 
Fig. 20. The Power Factor of soft Switch BOOST 
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Fig. 25. Phase voltage and phase current wave forms of three-phase uncontrolled rectifier 
circuit with the load of pure resistance 

 
Three-phase Passive PFC Circuit of Series Connected Large Inductance 

Power factor correcting circuits of three phase AC/DC switch power source can be divided 
into passive PFC and active PFC. Active PFC can adopt three three-phase BOOST correcting 
circuit, but its application area is not as wide as the one of passive PFC. The most widely 
used of three-phase passive PFC is inductive circuit, the voltage and current of which are 
shown in Figure 26, and the power factor reach to 0.95. 
 

 
Fig. 26. Three-phase Current of Series Connected Large Inductance 

 
Fig. 23. Comparison of Circuit Input Harmonic Current Wave Value and Standard Value 

 
Power factor of three-phase AC/DC switching power supply with the load of 
pure resistance 
 

In single-phase uncontrolled rectifying circuit, if the load equivalent is a resistance, the input 
power factor is unit l. But in three-phase uncontrolled rectifying circuit, even the load is a 
resistance (see Figure 24), its power factor is only about 0.94. The phase voltage and phase 
current wave form of the time being as are shown in Figure 25. 
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Fig. 24. Three-phase uncontrolled rectifier circuit with the load of pure resistance 
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An Improved Three-phase Passive PFC Circuit 

Figure 27 is a kind of improved three-phase passive power factor’s correcting circuit, the 
circuit parameters of which has been optimized by using MATLAB. Figure 28 is its phase 
voltage and phase current form, and the power factor of which reaches to 0.991. 
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Fig. 27. The circuit of an improved three-phrase passive power factor correcting 

 

 
Fig. 28. The phase voltage and phase current form of an improved three-phase passive 
power factor’s correcting circuit 
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1. Introduction 

Utility engineers and consultants use relay models to select the relay types suited for a 
particular application, and to analyze the performance of relays that appear to either operate 
incorrectly or fail to operate on the occurrence of a fault. Instead of using actual prototypes, 
manufacturers use relay model designing to expedite and economize the process of 
developing new relays. Electric power utilities use computer-based relay models to confirm 
how the relay would perform during systems disturbances and normal operating conditions 
and to make the necessary corrective adjustment on the relay settings. The software models 
could be used for training young and inexperienced engineers and technicians. Researchers 
use relay model to investigate and improve protection design and algorithms. However, 
simulating numerical relays to choose appropriate settings for the steady state operation of 
over current relays and distance relays is presently the most familiar use of relay models 
(McLaren et al., 2001) 
Numerical relay models can be divided into two categories. The models of the first category 
consider only the fundamental frequency components of voltages and currents. Phasor-
based models were the first to be widely used to design and apply relays. The models of the 
second category take into consideration the high frequency and decaying DC components of 
voltages and currents in addition to the fundamental frequency components. These models 
are called transient models of relays. (McLaren et al., 2001) 
The goal of this chapter is to explain the building process of MATLAB model of a distance 
relay and validating the relay behavior when the input data that describes the voltage and 
current signals at the relay location is generated by simulation of the power network using 
EMTP–ATP. Voltage and current signals during faults are severely distorted; this is why 
EMTP is used as a power simulator during faults. EMTP would present voltage and current 
signals during fault with their dc decaying components and high frequency oscillations. 
However the model was validated by a similar input data generated by the simulation of 
the power network using MATLAB. The validation process extended to include the cases 
where the measured impedance is changed due to a change of fault location, due to an 
existence of resistive faults or due to an existence of more than one in-feed. 
The chapter began by introducing the principle of operation of distance relays and reviews 
the functionality of each of the internal modules of numerical relay such as, analog anti-
aliasing filtering module, analog-to-digital conversion module, and phasor estimation 
algorithm. 

9
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3.1 Principle of operation 
The basic principle as illustrated in figure 1, involves the division of the voltage at the 
relaying point by the measured current. The apparent impedance is compared with the 
reach point impedance. If the measured impedance is less than the reach point impedance, it 
is assumed that a fault exists on the line between the relay and the reach point. The reach 
point of the relay is the point along the line impedance locus that is intersected by the 
boundary characteristics of the relay. Distance relay is the broader name of the different 
types of impedance relay.  
 

 
Fig. 1. Principle of operation of distance relay 
 
The relay is connected at position, R and receives a secondary current, iF, equivalent to a 
primary fault current, IF. The secondary voltage, VF, is equivalent to the product of the fault 
current “IF” and impedance of the line up to the point of fault, ZF. The operating torque of 
this relay is proportional to the fault current “IF”, and its restraining torque is proportional 
to the voltage “VF”. Taking into account the number of turns of each coil, there will be a 
definite ratio of V/I at which the torque will be equal. This is the reach point setting of the 
relay. The relay will operate when the operating torque is greater than the restraining 
torque. Thus any increase in current coil ampere-turns, without a corresponding increase in 
the voltage coil ampere-turns, will unbalance the relay. This means the V/I ratio has fallen 
below the reach point. Alternatively if the restrain torque is greater than the operating 
torque, the relay will restrain and its contacts will remain open. In this case the V/I ratio is 
above the reach point. The reach of a relay is the distance from the relaying point to the 
point of fault. Voltage on the primary of voltage transformer, VT,  is : 
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2. Protective Relays 

Fault current is the expression given to the current that flow in the circuit when load is 
shorted i.e. flow in a path other than the load. This current is usually very high and may 
exceed ten times the rated current of a piece of plant. Faults on power system are inevitable 
due to external or internal causes, lightning may struck the overhead lines causes insulation 
damage. Internal overvoltage due switching or other power system phenomenon may also 
cause an over voltage leads to deterioration of the insulation and faults. Power networks are 
usually protected by means of two main components, relays that sense the abnormal current 
or voltage and a circuit breaker that put a piece of plant out of tension. Power System 
Protection is the art and science of the application of devices that monitor the power line 
currents and voltages (relays) and generate signals to deenergize faulted sections of the 
power network by circuit breakers. Goal is to minimize damage to equipment and property 
that would be caused by system faults, if residues, and maintain the delivery of electrical 
energy to the consumers. Many types of protective relays are used to protect power system 
equipments, they are classified according to their operating principles; over current relay 
senses the extra (more than set) current considered dangerous to a given equipment, 
differential relays compare in and out currents of a protected equipment, while impedance 
relays measure the impedance of the protected piece of planet. For a good performance of a 
relay in a power system it must have the following characteristics; dependability, security, 
selectivity, sensitivity and speed. 
Traditionally, power systems problems and  applications have been solved by means of 
purely analog circuits, However the scenario have changed and power system area was one 
of the most benefited areas from the booming in area of digital and signal processing. 
Numerical relays are the result of the application of microprocessor technology in relay 
industry, they convert the measured voltages and currents from analog to digital values and 
calculates from these samples the relay protection criterium i.e. impedance (Ziegler, 1999). 
Due to processing capacity of numerical relays many protection criteria can be 
implemented. Protection relays, such as other monitoring and control equipments have 
taken the advantage from the increasing improvement of the semiconductor industry and 
the enormous number of digital signal processing and control algorithms. The latest 
generations of protective relays be provided with a large capacity of processing capabilities  
become more efficient and can perform a numerous number of functions such as fault 
locators, integrated monitoring and control functions.  
Designing and modeling of numerical relay require establishing a generalized numerical 
relay structure, which is composed the more relevant and common internal modules 
employed by typical numerical relays.  

 
3. Distance Relays 

Distance relays, as the name sounds, should measure distance. In fact this is true, as in case 
of transmission line, distance relay measures the impedance between the relay point and the 
fault location. This impedance is proportional to the length of the conductor, and hence to 
the distance between the relaying point and the fault.  
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elements is supplied with samples of Va – Vb voltage and Ia _ Ib current. For earth elements, the 
relevant phase voltage is supplied e.g. Va, but the corresponding current is residually 
compensated. The earth faults compensation factor may be calculated considering the sequence-
networks connection for the phase A-to-ground fault on a transmission line. Table (1) indicates 
calculation formula for phase and line to line faults. In order for the relay to be correctly 
operated, residual factor shall be introduced as shown in the following equations  

 
 
              (4) 
 

Where; K0, is the compensation factor 
             I0, is zero sequence current 
             Vk, Ik are the sampled voltage and current respectively 
 

Distance Element Voltage signal Current signal 
Phase A 

aV  003 IKIa   
Phase A - Phase B ba VV   ba II   

Table 1. Calculation formula for phase and line to line faults 

 
3.4 Effect of fault resistance on relay coverage 
The earth fault resistance reduces the effective earth-fault reach of a mho Zone 1 element to 
such an extent that the majority of faults are detected in Zone 2 time. Figure 3 illustrates the 
effect of arc resistance on the relay reach. The effect of fault resistance on the reach of 
distance relays is better discussed with the simulation results.  
 
 
 
 
                     IX                   B      Relay zone 2 
 
                                              P                    Q 
 
 
                  Relay zone 1 
              
  
               Ø 

θ 
 
 
AB, Protected line, 
θ,    Line angle, 
Ø,   Relay characteristic angle setting 
AP,  Relay Impedance setting and 
PQ,   Arc (fault) resistance 
 

Fig. 3. Effect of arc resistance on relay coverage  
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Zm is the measured impedance called secondary impedance. (GEC, 1990) 
 
3.2 Zones of protection 
Basic distance protection will comprise instantaneous directional Zone 1 protection and one 
or more time delayed zones. Numerical distance relays may have up to five zones, some set 
to measure in the reverse direction. Numerical relays usually have a reach setting of up to 
85% of the protected line impedance for instantaneous Zone 1 protection. The resulting 15% 
safety margin ensures that there is no risk of the Zone 1 protection over-reaching the 
protected  line due to errors in the current and voltage transformers, inaccuracies in line 
impedance data provided for setting purposes and errors of relay setting and measurement. 
of the distance protection must cover the remaining 15% of the line. 
The reach setting of the Zone 2 protection should be at least 120% of the protected line 
impedance. In many applications it is common practice to set the Zone 2 reach to be equal to 
the protected line section +50% of the shortest adjacent line. Zone 3 reach should be set to at 
least 1.2 times the impedance presented to the relay for a fault at the remote end of the second 
line section (GEC, 1990). Typical reach for a 3-zone distance protection are shown in Figure 2. 
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Fig. 2. Typical 3 zones distance protection 
 
3.3 Residual factor 
The measuring element of the distance relay is principally laid out such that for each fault type 
the line impedance of the fault loop is determined. In three phase system the zone-1 of the relay 
will have six elements responsible for detecting both phase and earth faults (Ziegler, 2006). For 
phase faults elements, the difference between the two relevant phase signals are used, e.g. a-b 
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elements is supplied with samples of Va – Vb voltage and Ia _ Ib current. For earth elements, the 
relevant phase voltage is supplied e.g. Va, but the corresponding current is residually 
compensated. The earth faults compensation factor may be calculated considering the sequence-
networks connection for the phase A-to-ground fault on a transmission line. Table (1) indicates 
calculation formula for phase and line to line faults. In order for the relay to be correctly 
operated, residual factor shall be introduced as shown in the following equations  

 
 
              (4) 
 

Where; K0, is the compensation factor 
             I0, is zero sequence current 
             Vk, Ik are the sampled voltage and current respectively 
 

Distance Element Voltage signal Current signal 
Phase A 

aV  003 IKIa   
Phase A - Phase B ba VV   ba II   

Table 1. Calculation formula for phase and line to line faults 

 
3.4 Effect of fault resistance on relay coverage 
The earth fault resistance reduces the effective earth-fault reach of a mho Zone 1 element to 
such an extent that the majority of faults are detected in Zone 2 time. Figure 3 illustrates the 
effect of arc resistance on the relay reach. The effect of fault resistance on the reach of 
distance relays is better discussed with the simulation results.  
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Fig. 3. Effect of arc resistance on relay coverage  
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Zm is the measured impedance called secondary impedance. (GEC, 1990) 
 
3.2 Zones of protection 
Basic distance protection will comprise instantaneous directional Zone 1 protection and one 
or more time delayed zones. Numerical distance relays may have up to five zones, some set 
to measure in the reverse direction. Numerical relays usually have a reach setting of up to 
85% of the protected line impedance for instantaneous Zone 1 protection. The resulting 15% 
safety margin ensures that there is no risk of the Zone 1 protection over-reaching the 
protected  line due to errors in the current and voltage transformers, inaccuracies in line 
impedance data provided for setting purposes and errors of relay setting and measurement. 
of the distance protection must cover the remaining 15% of the line. 
The reach setting of the Zone 2 protection should be at least 120% of the protected line 
impedance. In many applications it is common practice to set the Zone 2 reach to be equal to 
the protected line section +50% of the shortest adjacent line. Zone 3 reach should be set to at 
least 1.2 times the impedance presented to the relay for a fault at the remote end of the second 
line section (GEC, 1990). Typical reach for a 3-zone distance protection are shown in Figure 2. 
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Fig. 5. Block diagram of relay analogue to digital conversion arrangement 
 
The basic function of a sample-and-hold in an analog input system is to capture an input 
signal and hold it constant during the subsequent ADC conversion cycle. An analog-to-
digital converter (A/D converter or ADC) takes the instantaneous value of an analog 
voltage and converts it into an n-bit binary number that can be easily manipulated by a 
microprocessor. A distance relay having a minimum set impedance of 4Ω, would have a 
highest current level for a voltage transformer of 110 V, equal to 110/4 = 27.5 A. Allowing 
for offset during faults,100%, this current could reach 55A. Suppose that the relay must 
operate for a minimum current level of 25 mA and this can be represented by I digital level. 
Hence the dynamic range for one polarity of the current is 55/0.025 =2200. Hence for bipolar 
signal the dynamic range is 4400. The ADC closest to this figure is 12 bit. In general, most 
high performance numeric relays use 12, 14 or 16 bit ADCs. (IEE, 1995). The n-bit number is 
a binary fraction representing the ratio between the input voltage and the full-scale voltage 
of the converter. A number of techniques can be used to achieve this conversion. The full-
input voltage ranges for an ADC are typically 0 to +5 or 0 to +10 volts for unipolar 
operations, and –5 to +5 or –10 to +10 volts for bipolar operation (Sandro, 2006).  

 
4.4 Quantizer 
The Quantizer block passes its input signal through a stair-step function so that many 
neighboring points on the input axis are mapped to one point on the output axis. The effect 
is to quantize a smooth signal into a stair-step output. The output is computed using the 
round-to-nearest method, which produces an output that is symmetric about zero. The 
output  y of the quantizer is given by: 
 

 )(* q
uroundqy    (5) 

 
where u is the input, and q the Quantization interval. 

 

Control of signals  
to/from μP     ADC 

Eoc    ConvMux 

Start conversion 
 
End of conversion 
 
Mux. Address 
 
Sample and Hold 

S /H 

S /H 

S /H 

S /H 

S /H 

S /H 

4. Numerical Relay Structure  

Since their introduction on 1920, Classic distance relays based on electro-mechanical and 
then on static technology are still in wide use. However due to the booming in digital 
techniques, microprocessor–based relays were introduced. It is quite common to use term 
digital relay instead of numerical relay as the distinction between both rests on fine technical 
details. Others see numerical relays as natural developments of digital relays as a result of 
advances in technology. However, in US the term (digital distance protection) has always 
been used in the meaning of (numerical distance protection) (Ziegler, 1999). A general view 
of the typical digital relay is shown in figure 4. 

 

 
Input Signals          Filter      S&H               A/D      Algorithm              Decision       

 
S&H, Sample and Hold,   A/D, Analogue to digital convertor 
Fig. 4. Block diagram of a typical digital relay. 
 
The generalized numerical relay concept is directly derived from open system relaying 
(different relay functions can be obtained from the same hardware just by modifying 
microprocessor programming) (Sandro, 2006). The following hardware modules and 
functions constitute the generalized numerical relay.  
 
4.1 Isolation and analog signal scaling 
Current and voltage waveforms from instrument transformers are acquired and scaled 
down to convenient voltage levels for use in the digital and numerical relays.  
 
4.2 Analog anti-aliasing filtering 
Low-pass filters are used to avoid the phenomena of aliasing in which the high frequency 
components of the inputs appear to be parts of the fundamental frequency components. The 
analog inputs must be applied to low-pass filters and their outputs should be sampled and 
quantized. The use of low-pass filter is necessary to limit the effects of noise and unwanted 
components of frequencies. The filter is designed to remove any frequencies existing on the 
input signal which are greater than half the sampling frequency. The nature of the relaying 
task dictates the total amount of filtering required. Distance protection based on impedance 
measurements uses information contained in the sinusoidal steady state components of 50-
60 Hz. Therefore, filtering must preserve the steady state components and reject other 
components. Common analog low-pass filters used in these relays are of third to fifth order 
with cutoff frequency of about 90 Hz. The cutoff frequency of 90 Hz implies that a sampling 
rate of at least three samples per cycle (180 Hz) must be used in order that the information 
needed to perform the distance relay functions is retained and errors due to aliasing are avoided. 
In practice, the sampling rate must be at least four samples per cycle (240 Hz) (Sandro, 2006).  
 
4.3 Analog-to-digital conversion (ADC) 
Because digital processors can process numerical or logical data only, the waveforms of 
inputs must be sampled at discrete times. To achieve this, each analog signal is passed 
through a sample- and-hold module, and conveyed, one at a time, to an Analog-to-Digital 
Converter (ADC) by a multiplexer (Mux), as shown in figure 5.  
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(b) Adder 
The purpose of the adder is to add two or more signals appearing at the input at a specific 
time. Mathematically, it performs the operations like the one shown in the following 
equation.  
 ...)()()()( 321  nxnxnxny   (7) 
 
An adder is depicted schematically in Figure 6(b).  
 

(c) Multiplier 
The purpose of this element  is to multiply a signal (a varying quantity) by a constant 
number, which takes the form;   
 

 )()( naxny    (8) 
 
A multiplier is depicted schematically in Figure 6(c). There is no specific symbol for the 
multiplier, but to show its operation, a constant factor is placed above or besides the signal line.  

 
4.6 Phasor estimation algorithm 
A software algorithm implemented in a microprocessor estimates the amplitude and phase 
of the waveforms provided to the relay. More details are given in section 8, Impedance 
Estimation Algorithms. 

 
4.7 Relay algorithm and trip logic 
After microprocessor calculates the phasors representing the inputs, acquires the status of 
the switches, performs protective relay calculations, and finally provides outputs for 
controlling the circuit breakers, the result of the algorithm transported to the control part of 
the relay where the results is compared with the settings of the relay and trip signal may be 
generated. Trip signal has to be secured and it should not be released unless the fault is 
stable within the tripping zone. Since impedance measurement falling within the relay 
characteristic is not a reliable indication of fault, counter may be used to establish a decision 
scheme that decides the trip signal generation. One of the employed counters techniques 
increases when the impedance is in the tripping zone and decreases when outside the 
tripping zone, other, remaining the impedance values in the characteristic for a certain 
period of time before fault is reliably evaluated, i.e. a number of successive samples are in 
tripping zone. The processor may also support communications, self-testing, target display, 
time clocks, and other tasks (McLaren et al,. 2001). 

 
5. Numerical Relays Operating Principles 

When the distance relays receive discrete voltage and current signal, it converts it to a 
phasor. However faults on transmission lines cause the voltage and current signals to be 
severely distorted. These signals may contain decaying dc components, subsystem 
frequency transients, high frequency oscillation quantities, and etc. The higher frequency 
components can be eliminated using low pass anti-aliasing filters with appropriate cut-off 
frequency, but the anti-aliasing filters cannot remove decaying dc components and reject 

4.5 Digital filter 

Digital filters have, for many years, been the most common application of digital signal 
processors. There are two basic forms of digital filters, the Finite Impulse Response (FIR) 
filter and Infinite Impulse Response (IIR) filter. The main draw back to the use of IIR filters 
in digital protection relays is that the group delay cannot be specified in the design process. 
This makes their use in protection somewhat onerous, in general, FIR filters are usually the 
preferred type. (IEE, 1995). As this the case FIR filter will be briefly explained. As seen in the 
block diagram of figure 6, and the second order Finite Impulse (FIR) filter shown in figure 7,  
the input signal x(n) is a series of discrete values obtained by sampling an analogue signal. 
X(0) correspond to the input value at t=0, x(1) at t=Ts, x(2) at t=2 Ts and so on, where Ts is 
sampling period =1/fs. The three main blocks of FIR filters are: 
 

(a) Unit delay 
 Its purpose is to hold the input for a unit of time (physically equal to the sampling interval 
Ts) before it is delivered to the output. Mathematically, it performs the following operation.  
 

 )()( anxny    (6) 
 

Unit delay is depicted schematically in Figure 6(a). The letter D, indicating delay, sometimes 
is replaced by z-1, which is the delay operator in the z domain.  
Unit delay can be implemented in software in a storage variable, which changes its value 
when instructed by the program.  
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Fig. 6. Basic elements of Finite Impulse (FIR) digital filter.  
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Fig. 7. Second order Finite Impulse (FIR) filter.  
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7. Relay Models 

A successful relay model must produce the same output for the same inputs as its real 
counterpart. However, numerical relay models can be divided into two categories. First, the 
models that considers only the fundamental frequency components of voltages and 
currents. Phasor-based models were the first to be widely used to design and apply relays. 
The second category models take into consideration the high frequency and decaying DC 
components of voltages and currents in addition to the fundamental frequency components 
(McLaren,et,2001) 
 
7.1 Transient relay models  
Transient relay models mimic the behavior of numerical relays including their performance in 
the transient state and the impact of the transient components in the input signal. The 
availability of detailed information of the internal functioning of relays is critical in the process 
of producing a close-to-real transient relay model. According to the available information, 
transient models can be categorized in generic and detailed models (Sandro, 2006).  
Generic models give considerable insight into the operation of the relay type but may not be 
suitable for marginal cases and precise timing. They may not have detailed logic provided in 
specific implementation of the generic principle in a specific relay. This logic is often applied 
to make specific functions interact with other functions to make a protection system. 
Because of this limitation generic model determine the best use for checking specific 
functions, rather than complete systems that are made up of numerous interacting functions.  
Detailed models preserve all the advantages of being able to examine the internal operation 
of any function. Detailed models are more useful than generic models for checking the 
performance of complete systems since all logic is represented. Unfortunately, detailed 
models are not as readily available as the generic models because they may include trade 
secrets of the manufacturers.  
Manufacturers are in position to design accurate transient models, particularly for new 
digital relays, for the reason that, in the designing process, the software model may precede 
the hardware design. Where algorithms and hardware are known in detail, very precise 
performance can be achieved in the modeling.  
 
8. Impedance Estimation Algorithms 

The estimated phasors of voltages and currents are used in the implementation of protection 
algorithms in numerical relays. A relay algorithm is a set of equations whose evaluation and 
comparison with certain predetermined levels determines the operation of the relay. A 
number of algorithms can be regarded as impedance calculations in that the fundamental 
frequency component of both voltages and currents are obtained from the samples. The 
ratio of appropriate voltages and currents then provide the impedance to the fault. The 
performance of all of these algorithms is dependent on obtaining accurate estimate of the 
fundamental frequency component of a signal from a few samples. The algorithm based on 
series R&L model has the apparent advantage of allowing all signals that satisfy the 
differential equations to be used in estimating the R and L of the model.(Phadke & Thorp, 
1990). The equations and parameters that represent the relay algorithm of distance relays are 
simplified hereinafter. The algorithms are classified according to the approach used to 
calculate the impedance based on the voltage and current measurements. 

low frequency components. This makes the phasors very difficult to be quickly estimated 
and affects the performance of digital relaying. Therefore, the Discrete Fourier transform is 
usually used to remove the dc-offset components. DFT is a digital filtering algorithm that 
computes the magnitude and phase at discrete frequencies of a discrete time sequence.  

 
6. Current and Voltage Signal During Faults  

The voltage and current signals in resistance-inductance behavior of power network are as 
usual sinusoid with exponentially decaying offsets. The offsets can severely affect the 
currents but seldom affect the voltage. Figure 8, shows the shape of the fault current at the 
terminal of a synchronous machine (Nasser, 2008) 
 

 
Fig. 8. Three-phase short-circuit fault at a synchronous machine terminals 
 
Non-linear loads, power transformers and instrument transformers can produce harmonics. 
Figure 9 shows a composite harmonic waveform. (Barry, 2000). In addition to that, 
capacitive series compensation introduces subsystem frequency transients. This transient 
depends on the percentage of capacitive compensation. Attention has to be given to filters, 
no matter how they are built, they should have the following characteristics:- 
Band pass response, about the system frequency, because all other components are of no interest. 
Dc rejection to guarantee decaying- exponential are filtered out. 
Harmonic attenuation or rejection to limit effects of nonlinear loads.  
Reasonable bandwidth for fast response. 
 

 
   Fifth harmonic waveform                             Fundamental 60Hz waveform 
  Third harmonic waveform                       Resultant nonlinear wave 
 

Fig. 9. Composite harmonic waveform. 
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differential equations to be used in estimating the R and L of the model.(Phadke & Thorp, 
1990). The equations and parameters that represent the relay algorithm of distance relays are 
simplified hereinafter. The algorithms are classified according to the approach used to 
calculate the impedance based on the voltage and current measurements. 

low frequency components. This makes the phasors very difficult to be quickly estimated 
and affects the performance of digital relaying. Therefore, the Discrete Fourier transform is 
usually used to remove the dc-offset components. DFT is a digital filtering algorithm that 
computes the magnitude and phase at discrete frequencies of a discrete time sequence.  

 
6. Current and Voltage Signal During Faults  

The voltage and current signals in resistance-inductance behavior of power network are as 
usual sinusoid with exponentially decaying offsets. The offsets can severely affect the 
currents but seldom affect the voltage. Figure 8, shows the shape of the fault current at the 
terminal of a synchronous machine (Nasser, 2008) 
 

 
Fig. 8. Three-phase short-circuit fault at a synchronous machine terminals 
 
Non-linear loads, power transformers and instrument transformers can produce harmonics. 
Figure 9 shows a composite harmonic waveform. (Barry, 2000). In addition to that, 
capacitive series compensation introduces subsystem frequency transients. This transient 
depends on the percentage of capacitive compensation. Attention has to be given to filters, 
no matter how they are built, they should have the following characteristics:- 
Band pass response, about the system frequency, because all other components are of no interest. 
Dc rejection to guarantee decaying- exponential are filtered out. 
Harmonic attenuation or rejection to limit effects of nonlinear loads.  
Reasonable bandwidth for fast response. 
 

 
   Fifth harmonic waveform                             Fundamental 60Hz waveform 
  Third harmonic waveform                       Resultant nonlinear wave 
 

Fig. 9. Composite harmonic waveform. 
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8.2 Discrete Fourier Transform (DFT)  

In this approach the estimation is based on equation vZ i . The sampled current and 

voltage signals are initially transformed in to phasor quantities (both direct and quadrature 
components). The estimation approach includes estimation of the first harmonic; calculation 

from equation vZ i  the impedance as a quotient of voltage and current phasors. Based 

on fault type (using residual factors as explained in section 3.3), the resistance and reactance 
up to the relay point is calculated. 

 
Mathematical Background 
Signal at any given time may be described by a phasor. Phasor actually is a vector rotating 
in the complex plane with a speed ω radian/sec , a snap-shot in time, the signal at that  time, 
x�t�) is given in rectangular form by; (Marven & Gillian, 1993) 
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Therefore, sine or cosine signal can be represented by two phasors form a conjugate pair, i.e. 
if,  x(t)� � ���ωt  , then x�t�may be written as; 
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The above discussion is related to a simple cosine or sine functions of a single frequency, 
most signals are composed of many cosine and sine waves. Therefore any complex periodic 
signal can be described as sum of many phasors. Fourier series assumes that a set of phasors 
have frequencies which are multiples of some fundamental frequency, f�, i.e. 
 

8.1 Transmission Line Model 
By assuming that the transmission line to which the relay is connected is composed of a 
series resistance and inductance, the fundamental equation is: 
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where, R and L are the resistance and reactance of the fault loop (up to the fault point 
respectively). 
Any sampled voltage and current signals taken at any time is considered to obey above 
equation. 
To solve the equation (9) and calculate R and L, two equations are required. This can be 
achieved by measuring v(t), i(t) and di/dt at two different instants of time 
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where D is matrix determinant. The derivative of the current may be calculated from 
difference formula,  
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It is obvious how sampled voltage and current signals can be combined to form the 
resistance and inductance of the fault loop.  
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Fig. 10. Block diagram of the developed distance relay model 

 
9. Developing Procedures of Distance Relay Model Using MATLAB 

MATLAB development environment, is a set of tools to help the use of MATLAB functions 
and files (Matlab, 2006),  where Simulink is an interactive tool for modeling, simulating and 
analyzing dynamic systems, including control and many complex systems. (Simulink, 2001) . 
MATLAB and Simulink were used to model the relay components such as ADC and digital 
filters. (Abdlmnam, 2007). Figure 10, shows block diagram for developed distance relay 
model. The voltage and current data are derived using the power simulator EMTP-ATP. It is 
possible to derive these values from any power system simulator such as MATLAB, EMTP, 
NEPLAN....etc. and converted to a MATLAB format. Simulation of electric power systems 
has been a common practice for more than thirty years. Computer models of major power 
system components have been used in software packages such as short circuit programs, 
load flow, stability programs, and electromagnetic transient programs. In most of the cases 
the power system is represented by a single line diagram which is representing either a 
three or single phase system. This may include three phase source, three phase transmission 
line (lines may be represented using π model), current transformers, voltage transformers 
and voltage and current measurements. The voltage and current input signals are inserted 
in a MATLAB window which is designed to set the distance relay parameters. As these 
signals generated by applying faults they may include a dc offset and a high frequency 
traveling waves which, if not suppressed, may lead to misjudgment to the fault location. 
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The individual frequency components are known as harmonics. 
If the complex signal is not periodic the phasor frequencies are not related, thus the Fourier 
general form may be written as; 
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In digital domain (discrete time), replace the continuous function, t, with a function 
progresses in jumps of w��T�, thus phasor description of single frequency signal would be; 
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where, Ts is the sampling interval 
A real signal can be described using Fourier in discrete domain called (Discrete Fourier 
Series) as,  
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which is a simple phasor model that describes a general discrete signal. 
The discrete Fourier transform (DFT) is a digital filtering algorithm that computes the 
magnitude and phase at discrete frequencies of a discrete time sequence. Fast Fourier 
transforms are computationally efficient algorithms for computing DFTs. FFTs are useful if 
we need to know the magnitude and/or phase of a number individual or band of 
frequencies. The DFT is ideal method of detecting the fundamental frequency component  in 
a fault signal. However, DFT, Least Error Square LES and Walsh Function algorithms are 
among the most popular phasor estimation techniques employed in numerical relays 
(Phadke & Thorp, 1990). As we are dealing with a 50-60 Hz signal that is sampled 
synchronously. This means that the sample interval is the inverse of an integer multiple of 
50 or 60. We need to compute the DFT for the fundamental using equation (1), where, k 
equal to one for the fundamental and n is the coefficient subscript. Two digital filters are 
required, one to get the real part and one for the imaginary part.  
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which is a simple phasor model that describes a general discrete signal. 
The discrete Fourier transform (DFT) is a digital filtering algorithm that computes the 
magnitude and phase at discrete frequencies of a discrete time sequence. Fast Fourier 
transforms are computationally efficient algorithms for computing DFTs. FFTs are useful if 
we need to know the magnitude and/or phase of a number individual or band of 
frequencies. The DFT is ideal method of detecting the fundamental frequency component  in 
a fault signal. However, DFT, Least Error Square LES and Walsh Function algorithms are 
among the most popular phasor estimation techniques employed in numerical relays 
(Phadke & Thorp, 1990). As we are dealing with a 50-60 Hz signal that is sampled 
synchronously. This means that the sample interval is the inverse of an integer multiple of 
50 or 60. We need to compute the DFT for the fundamental using equation (1), where, k 
equal to one for the fundamental and n is the coefficient subscript. Two digital filters are 
required, one to get the real part and one for the imaginary part.  
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(a) Voltage signal                                                  (b) Current signal             
Fig. 13. The signals as appeared after Analogue to Digital convertor. 
 

 

               (a) Voltage signals amplitude                         (b) Current signals amplitude 
Fig. 14. The input signals amplitude as determined by Discreet Fourier Transform model. 

 
10. Simulation Results 

The developed distance relay model is evaluated using data generated from power 
simulator. The output signals as resulted from faults set over a power network using EMTP 
are input to the MATLAB relay model. Evaluation extended to include different power 
networks at different fault locations. The faults were also set over the power network when 
fault resistances at different values were assumed. and when the power network consist of  
more than one in-feed. This is to evaluate performance of the developed model at different 
operating conditions and to check the effect of system conditions, fault resistance and load 
conditions on the performance of the developed distance relay model.  
A Single line diagram representing a single 220 kV 50 Hz over head line connected to a 
single power source is shown in figures 15, where the overhead line is modeled as a lumped 
π model. The positive and zero sequence impedance of the source are:- 

Figure 11 a&b shows a sample of a current and voltage waveform before, during and after 
fault,  while Figure 12 a@b shows the Matlab window that contain the input signals as 
appeared after low pass filter. Thus data is passed through low pass filter to remove the 
effects, on the voltage and current signals, of the traveling waves instigated by the fault. 
 

(a) Input voltage signals                                       (b) Input current signals 
Fig. 11. The input signals as resulted from a single line to ground fault. 
 

     
(c) MATLAB voltage window                       (d) MATLAB current window 

Fig. 12. The Matlab window for the input signals as appeared after low pass filter.  
 
The input filtered signals then passed through A/D convertor. Figure 13 shows the output 
signal of A/D convertor. The output signal becomes ready to be used by the Discrete Fourier 
Transformer. Figure 14 shows the input voltage and current signals amplitude as determined 
by Discreet Fourier Transform model. Data applied to the developed relay model, is then 
analyzed to evaluate the relay response i.e. whether the impedance trajectory of the relay 
during fault denotes to the proper zone. MATLAB program then used to plot the 
characteristic of mho distance relay, the behavior of Z during the sampled period. The results 
are presented in graphical form using an R-X diagram. 
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The input filtered signals then passed through A/D convertor. Figure 13 shows the output 
signal of A/D convertor. The output signal becomes ready to be used by the Discrete Fourier 
Transformer. Figure 14 shows the input voltage and current signals amplitude as determined 
by Discreet Fourier Transform model. Data applied to the developed relay model, is then 
analyzed to evaluate the relay response i.e. whether the impedance trajectory of the relay 
during fault denotes to the proper zone. MATLAB program then used to plot the 
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are presented in graphical form using an R-X diagram. 
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10.2 Case two: Single line to ground faults with fault resistance  
 Single line to ground faults with different fault resistances were set on EMTP model of the 
power system shown in Figure 15 at different fault locations. Figure 17 show the impedance 
trajectory for two of these cases. The shown cases illustrate the behavior of the relay when 
fault resistance is  2Ω and 10Ω. (Abdlmnam & Sherwali, 2009) 
In first case the relay detects the fault in zone 1 as the resistance value were not enough to 
change the reach of the relay, while in the second case the value of the resistance was enough 
to make the impedance presented to the relay lies in zone two, even though the fault were set 
in zone one. However, in all cases the output results which are the impedance trajectory of the 
digital distance relay model had the expected behavior where the effect of the arc resistance 
reflected on the value of the impedance seen by the relay. Impedance trajectory calculations 
start the trajectory from the load area, but due to the existence of fault resistance the relay 
judges the location of the fault considering the effect of arc resistance, as expected. 
 
 

 
 
 
 
 
 
 
 

 
(a) Fault resistance of 2 Ω                             (b) Fault resistance of 10 Ω      

Fig. 17. Impedance trajectory of the relay for faults accompanied by fault resistances. 

 
10.3 Case three: Double circuit fed from more than one in-feed 
A distance relay is said to under-reach when the impedance presented to it is apparently greater 
than the impedance to the fault. The main cause of underreaching is the effect of fault current in-
feed at remote busbars. High voltage power system usually interconnected and run in double 
circuits for a reliable system. This usually implies an existence of more than one in-feed point 
which may cause the distance relay to under. EMTP-ATP is used to simulate the power system 
network shown in figure 18, to evaluate the developed model under this circumstance. Fault 
location is shown on the single line diagram and system data is as shown below:- 
 
 
 

 
 
 
 
 
 
Fig. 18. Single line diagram of the simulated multi in-feed power network. 
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Zs0= 3.681+j24.515    Zs1=0.819+j7.757  
The positive and zero sequence impedance of transmission line are   
Z1= 0.09683 + 0.9034j Ω /km 
Z0= 0.01777 + 0.4082j Ω /km 
The current transformer ratio is 1000/1A and the voltage transformer ratio is 220kV/110V. 

 

 
 

 
 
 
 
 

Fig. 15. The single line diagram of the simulated single in-feed power network. 

 
10.1 Case one: Single line to ground faults at different distances from the relay location 
Single line to ground faults were set on EMTP model of the power system shown in figure 
13 at a distance of 10 Km, 20 Km and 35 Km from the location of bus-A. The distances 
representing 10% to 80% of line A-B length. Similarly few more Single line to ground faults 
were set at 5 Km, 10Km and 25 Km from the location of bus-B and bus-C. The selected 
distances are to check the relay behavior at faults that covers the different zones of 
protection of the relay. The voltage and current signal before and during fault were fed to 
the relay model. Figures 16, show the impedance trajectory for few samples of these cases. In 
all cases the output results which are the impedance trajectory of the digital distance relay 
model had the expected behavior where the impedance trajectory calculations start the 
trajectory from the load area, before fault, and end up at the proper zone. 
 

 
 
 
 

 
 
 
 

a) Fault at 10 Km from bus-A, Zone 1             b)    Fault at 20 Km from bus-B, Zone 2 
 
 
 
 
 
 
 
 

c) Fault at 10 Km from bus-C, Zone 3 
Fig. 16. Impedance trajectory for faults at different locations, case 1. 
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10.2 Case two: Single line to ground faults with fault resistance  
 Single line to ground faults with different fault resistances were set on EMTP model of the 
power system shown in Figure 15 at different fault locations. Figure 17 show the impedance 
trajectory for two of these cases. The shown cases illustrate the behavior of the relay when 
fault resistance is  2Ω and 10Ω. (Abdlmnam & Sherwali, 2009) 
In first case the relay detects the fault in zone 1 as the resistance value were not enough to 
change the reach of the relay, while in the second case the value of the resistance was enough 
to make the impedance presented to the relay lies in zone two, even though the fault were set 
in zone one. However, in all cases the output results which are the impedance trajectory of the 
digital distance relay model had the expected behavior where the effect of the arc resistance 
reflected on the value of the impedance seen by the relay. Impedance trajectory calculations 
start the trajectory from the load area, but due to the existence of fault resistance the relay 
judges the location of the fault considering the effect of arc resistance, as expected. 
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Fig. 17. Impedance trajectory of the relay for faults accompanied by fault resistances. 
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Fig. 18. Single line diagram of the simulated multi in-feed power network. 
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Zs0= 3.681+j24.515    Zs1=0.819+j7.757  
The positive and zero sequence impedance of transmission line are   
Z1= 0.09683 + 0.9034j Ω /km 
Z0= 0.01777 + 0.4082j Ω /km 
The current transformer ratio is 1000/1A and the voltage transformer ratio is 220kV/110V. 

 

 
 

 
 
 
 
 

Fig. 15. The single line diagram of the simulated single in-feed power network. 

 
10.1 Case one: Single line to ground faults at different distances from the relay location 
Single line to ground faults were set on EMTP model of the power system shown in figure 
13 at a distance of 10 Km, 20 Km and 35 Km from the location of bus-A. The distances 
representing 10% to 80% of line A-B length. Similarly few more Single line to ground faults 
were set at 5 Km, 10Km and 25 Km from the location of bus-B and bus-C. The selected 
distances are to check the relay behavior at faults that covers the different zones of 
protection of the relay. The voltage and current signal before and during fault were fed to 
the relay model. Figures 16, show the impedance trajectory for few samples of these cases. In 
all cases the output results which are the impedance trajectory of the digital distance relay 
model had the expected behavior where the impedance trajectory calculations start the 
trajectory from the load area, before fault, and end up at the proper zone. 
 

 
 
 
 

 
 
 
 

a) Fault at 10 Km from bus-A, Zone 1             b)    Fault at 20 Km from bus-B, Zone 2 
 
 
 
 
 
 
 
 

c) Fault at 10 Km from bus-C, Zone 3 
Fig. 16. Impedance trajectory for faults at different locations, case 1. 
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be employed. The simulation of numerical distance relay using MATLAB/SIMULINK was 
explained in details and the behavior of the developed relay model was tested under 
different onerous conditions. From impedance calculation point of view, the relay model 
was able to identify the proper zone of operation. In all of the cases presented to test the 
model, the model judged the fault location as expected including the cases were the 
measured impedance was changed due to a change of fault location, due to an existence of 
resistive faults and/ or due to the change in apparent impedance as a result of an existence 
of more than one in-feed. The impedance trajectory that reflects the behavior of the developed 
model under different fault locations and at different arc resistances, for few of the cases 
tested, was presented and discussed. However, trip signal was not generated since the model 
was not provided with a decision scheme that decides when to generate the trip signal.  
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Where the network voltage is 400kV, the current transformer ratio is 400/1A, the voltage 
transformer ratio is 400kV/110V and the setting of relay A is as follows: 
Zone one = 1.79 ohm-secondary (80 %  of  the protected line). 
Zone two = 3.55ohm-secondary (100%  of  the  protected  line + 50% of the shortest adjacent line). 
Zone three = 7.64 ohm-secondary (120% of the impedance presented to the relay for a fault 
at the remote end of the longest adjacent line). 
As seen in figure 19, the impedance trajectory moves into zone three not in zone two. If the 
fault impedance is calculated assuming a single in-feed the relay, A would see the fault 
within its zone two, however due to the under-reach caused by the in-feed from the parallel 
line, relay A sees the fault in zone three. 
 

 
Fig. 19. Impedance trajectory for faults on multi in-feed power network  

 
11. Future Research 

Since the developed model was not provided with a decision scheme, work may be 
extended to include a comprehensive relay model including trip scheme. Work may be 
extended to incorporate algorithms used to improve the relay behavior when overhead lines 
are compensated by series capacitors or/and when the model is to be used to protect power 
systems incorporate power cables having a considerable capacitance. 

 
12. Conclusions 

As modern numerical relays are widely employed in protection systems nowadays and 
modeling of these types of relays is important to adjust and settle protection equipment in 
electrical facilities and to train protection personnel, the simulation of distance relays using 
MATLAB offers a good opportunity to perform these activities efficiently and with 
minimum cost. Another advantages is that, as MATLAB is a powerful tool rich with 
component models, any shape of relay characteristic (Impedance, mho, quadrilateral,..) can 
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be employed. The simulation of numerical distance relay using MATLAB/SIMULINK was 
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different onerous conditions. From impedance calculation point of view, the relay model 
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of more than one in-feed. The impedance trajectory that reflects the behavior of the developed 
model under different fault locations and at different arc resistances, for few of the cases 
tested, was presented and discussed. However, trip signal was not generated since the model 
was not provided with a decision scheme that decides when to generate the trip signal.  
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1. Introduction     

The task of the  modulator design is the fact that  modulator is nonlinear discrete 
system. Thus, the calculation of the optimal transfer coefficients is difficult. There exist three 
main design approaches: utilization of the table values, calculation from signal transfer and 
noise transfer functions (STF, NTF) and by iteration methods. At first, it is necessary to 
define tests and test conditions for optimization of the modulator transfer coefficients. Test 
results are used for consequent optimization steps. Spectral analysis is used to calculation of 
the signal to noise ratio (SNR) of the  modulator output. The Fast Fourier Transform (FFT) 
is used for calculations. Accuracy of the SNR calculation directly depends on number of the 
spectral lines of the input signal bandwidth. Unfortunately, increasing number of the 
spectral lines also leads to exponential increasing of time demand. The low frequency or 
band pass filter is used inside modulator structure. Due to SNR of modulator would be 
different for various frequencies of the input signal in input signal bandwidth. Logically the 
modulator SNR would be dependent on the input signal amplitude. It is crucial to get 
relevant test results to ensure appropriate test conditions and resolution.  
 
It is possible to calculate coefficients of the  modulator based on signal and noise transfer 
functions instead of utilizing of the table values. It allows calculating values of the  
modulator transfer coefficients. Nevertheless, the coefficients ensure modulator stable, they 
are not apparently optimal. We usually use interpolation methods to determinate optimal 
values of the transfer coefficients. However, the number of the interpolation steps issue 
appears at this point. If we suppose the second order CIDIDF  modulator, we can 
optimize total eight coefficients. Next, if we use only 64 iteration steps to each of eight 
coefficients it leads to the total of 648 (approximately 3.1014) combinations. It is also number 
of the necessary FFT analysis to calculate. In addition, if we would calculate with various 
frequencies and amplitudes of the input signal, the number of combinations would be 
higher. We can see that it is not possible to calculate each combination by using computing 
power of the common personal computers. That is why we are looking for faster calculation 
like another optimization methods. 
There exist a lot of optimizing methods. We would like to deal with the aspects of 
mentioned application for optimal coefficients values calculation of the modulator , 
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namely for computers with one or more processor cores. Next, the possibility of the 
computation cluster using will be described and another parallelization methods and 
processes as well. General comparisons of each described parallelization methods will be 
introduced in this chapter. 

 
2. The number of spectral components issue  

2.1 SNR and THD calculation issue 
There are two most important parameters defining the AD converter quality and area of the 
utilization: conversion rate and effective number of bits (ENOB). The dynamic parameters 
(including ENOB) are usually obtained for harmonic sinusoidal signal (IEEE, 2000), (Kester 
& Sheingold, 2004). We can write (Norsworthy et al. ,1997), (Geerts et al., 2002)  
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where SNDR is signal to noise distortion ratio for sinusoidal signal with maximal 
amplitude. The ENOB parameter concerns the distortion due to nonlinear transfer 
characteristics and overload of the quantization stage. The SNDR is very important for  
modulators. Sometimes it is called SINAD. Therefore it must be calculated to obtain ENOB 
(Kester, 1999)  
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where S is energy of the input signal, N is energy of the quantization noise, D is energy of 
the harmonic distortion, SNR is signal to noise ratio and THD is total harmonic distortion. 
The IEEE Std. 1241-2000 standard defines examination of the first 10 harmonic components. 
However the integrated circuits producers usually do not follow this definition, i.e. the 
Analog Devices company analyzes only first 6 harmonic components. The reason is very 
simple. When calculating THD, only first 5 harmonic components mainly influence this 
calculation. The error between calculations from first 10 or 5 harmonic components is only 
tenth of dB (Kester, 1999). The THD parameter is (Kester & Sheingold, 2004)  
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where Pdis is energy of the input signal distortion and Vi is amplitude of the i-th harmonic 
component. The analysis of the THD and ENOB is simple. Fig. 1 shows frequency spectrum 

 

of the converter with sampling frequency of 100 MHz and input signal with frequency of 
35 MHz. The first 10 harmonic components of signal fa are shown. Aliased harmonics of fa 
fall at frequencies equal to  
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where n is the order of the harmonic, and K = 0, 1, 2, 3,.... 
 

 
Fig. 1. Spectral analysis of the converter 
 
It can be seen that for DFT (Discrete Fourier Transform) result 10.i, where i = 1,2,3,… of 
spectral components, the identification of the first 10 harmonic components is simple. The 
complicated situation is for mismatched spectral components and frequency of the 
harmonic components. The resulting error should be in tens of %. Nevertheless, when 
calculating THD it is possible to determine the number of spectral components in relation 
with input signal frequency to avoid the problem. The number of spectral components 
necessary for FFT (Fast Fourier Transform) is  
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where D is most common divisor. Unfortunately, the important disadvantage of the FFT 
algorithm is occasion of 2n of spectral components. 
 
The second parameter affecting ENOB of the AD converter is SNR (Kester, 1999)  
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component. The analysis of the THD and ENOB is simple. Fig. 1 shows frequency spectrum 
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where Psig is energy of signal, Pnoise is noise energy, fs is sampling frequency and BW is 
bandwidth. Unfortunately this equation cannot be used for any case. The calculation error 
occurs for AD converters which spectral modulate quantization noise.  
 

 
Fig. 2. The error of defining SNR 
 
Several facts influence this error. There is mainly number of spectral components used for 
calculation, order modulator noise and oversampling ratio (OSR). It can be confirmed direct 
relation between growing number of spectral components and resulting accuracy of 
calculation. 
 
The behaviour and function confirmation of  modulators could be processed utilizing 
tools and scripts called SDtoolbox 2 (Brigati et al., 2004). It is very universal tool and the 
result of the calculation is value of SNDR (Malcovati et al., 2003). On the other hand, it is not 
able to differ contribution of particular errors on spurious free dynamic range SFDR 

 
2.2 DFT leakage 
The frequency analysis of the AD converter output signal should be done for calculation of 
both parameters (SNR and THD). It leads to calculation of DFT realized using FFT 
algorithm. However another problem occurs at this point. It is DFT leakage (Lyons, 2004). It 
is defined as energy distortion of one spectral component into its neighbour components. 
This situation arises when the ratio between frequency of sampling signal and input signal 
is not integer – Fig. 3. Nevertheless it is possible to set the frequency of input signal correctly 
during simulation. The AD converter must be able to process signals with any frequency in 
real situation.  

 

 

 
Fig. 3. Dependency of the DFT leakage 
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2.3 Computing time 
The growing number of spectral components leads to the higher accuracy of SNDR 
calculation, but also grows computing time. This relation is exponential, but the deviation 
change caused by calculation decreases very fast.  
 

 

 
(b) 

Fig. 4. Modulator SNR computing time consumption 
 
The sufficient accurate result of simulation is obtained, when number of spectral 
components is higher than half of OSR.  

 
3. Computing of the modulator transfer parameters 

There exist three possibilities of determination of the  modulator transfer parameters. They are: 
 Utilization of table values, 
 The calculation based on STF and NTF,  
 Iteration methods. 

The first method is useless due to its simplicity. The second is more complicated. It should 
be spited in two groups. One way uses fundamental behaviour of ΔΣ modulator with basic 
transform functions  

1STF  (7) 

 lzNTF 1 (9) 

where l is order of the modulator.  

 

The second way is utilization of table values of optimal transfer functions and transfer 
parameters calculation. This solution is universal and it should be applied on various types 
of DA modulators. 
 
The third method is focused on observation of ideal  modulator parameters by means of 
iteration. However, since the modulator is nonlinear system, the iteration is possible only by 
partial intervals. All appropriate constants must be iterated during transfer coefficients 
calculation. Fig. 5 shows the second order CIDIDF  modulator, which were used in 
experiments. 
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2.3 Computing time 
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Fig. 4. Modulator SNR computing time consumption 
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The input parameters are: 
 OSR, 
 bandwidth, 
 limits of parameters, 
 amplitude of the input signal. 

It is possible to change eight parameters in this case. Their values affect each other. The 
example of simulation result for two parameters is shown in Fig. 6. 
 
Consequently, it means that for iteration of i.e. 64x parameters, it is necessary to calculate 
2,814.1014 times SNR of modulator. Therefore it is not possible to utilize this solution. The 
total computing time will take hundreds of years. That is why the optimization methods for 
iteration process must be used. One solution leads to several computing units utilization, 
which speed-up the calculation n-times. The second approach is genetic algorithm (GA) 
(Mitchell, 1996). 

 
4. Computing cluster and its using in optimization methods  
The aim of this chapter is not comparison of all computing parallelization methods. It 
describes the most useful method for our purpose. Since the computing tools for  
modulator simulation are created for MATLAB SIMULINK, we utilized this software.  
 
There are many reasons why optimize methods, which use multi-results algorithm (e.g. GA, 
Particle Swarm Optimization (Kennedy & Eberhart, 1995), etc.). The first advantage is high 
efficiency of the solving of selected tasks accompanied with the fact that computing is very 
simple parallelizable as well. It gives a possibility to compute with multi-core systems if the 
algorithm is properly designed and parallelization is adequately processed. Additionally, 
the computing can be processed by any computer cluster that can be composed of many 
computers. It is simple and relatively cheap way, to enhance computing power and decrease 
the computing time.  

 
4.1 Parallelization 
There are many ways to parallelization of computing tasks in MATLAB. Unfortunately, 
methods like “parloop” or “matlab pool” are useable only for certain computing algorithms. 
Moreover, it speeds-up the computing minimally.  
 
Another possibility of parallel computing is based on using of „Parallel computing 
toolbox“(PCT) (MATLAB, 2006). It enables parallel calculations on local station. Next 
method is utilization of „Distributed computing engine“(MDCE). It divides computing task 
into more computing stations. The main advantage of the MDCE against PCT is the fact that 
all parallel instances of the MATLAB are running and waiting for computing task instead of 
the PCT case, where MATLAB instances are started and stopped on request. If computing 
time is shorter than time needed to start MATLAB, the PCT method is useless. Moreover, 
using the PCT method in case of many quick tasks could bring significant delay during 
computing. 

 

 

4.2 Computer cluster 
The computer cluster was created to verify parallelization possibility of tasks which would 
be useful for the simulations of the modulator. The computer cluster was created and 
placed behind the Network Address Translation (NAT). The restriction was applied due to 
security reason. It is not necessary to connect computer cluster from outer network. If the 
situation is opposite the computer with main “job manager” would have public IP address 
to ensure that the “workers” will be able to connect to it from outer network. The block 
scheme of the computer connection is shown in Fig. 7. 

 
Fig. 7. The block scheme of the computer connection in the computer cluster 
 
The crucial condition during MATLAB installation on computer connected into the network 
is proper MATLAB configuration on each connected computer. The MDCE could be 
executed from the system command line. First installation of the MDCE instance as 
“services” is necessary. The command “mdce install” serves for this purpose. Next the 
MDCE could be started by command “mdce start”. Both commands should run from “bin” 
directory of the MDCE. It is usually “MATLAB\R2009b\toolbox\distcomp\bin”. There is 
also “admin center” in same directory, which is executable in Windows operational system 
by command “admincenter.bat”. 
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is proper MATLAB configuration on each connected computer. The MDCE could be 
executed from the system command line. First installation of the MDCE instance as 
“services” is necessary. The command “mdce install” serves for this purpose. Next the 
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directory of the MDCE. It is usually “MATLAB\R2009b\toolbox\distcomp\bin”. There is 
also “admin center” in same directory, which is executable in Windows operational system 
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Fig. 8. The admin centre of the MDCE 
 
Dialog window of the “admin centre” is divided into three parts placed underneath where 
the computer cluster is configured – Fig. 8. The connection of the each “worker” is 
controlled in the first part. There is displayed whether the “workers” are connected into the 
computer cluster and/or the MDCE runs there. The “job manager” is configured in the next 
part of the “admin centre”. The “job manager” spreads computing tasks among the 
connected “workers”. 
 
Finally, the workers of the connected stations are executed in the third part of the “admin 
centre”. It is an advantageous to run the same number of “workers” as a number of 
processor cores in the computer station.  
 
Fig. 9 depicts the configuration of six computers in the cluster for our case. Three of them 
are temporary shut down. The figure shows the job manager “CLUSTER1” is configured on 
computer named “WORKER16”. The running instances of the MDCE “workers” are 
doubled on computers “pcautonoe” and “wprker2” and four on computer “WORKER16”. 
There are total 8 “workers” executed on three computers. 

 

The block scheme of the MATLAB instances connected into the “job manager” is shown in 
Fig. 9.  
 

 
Fig. 9. The MATLAB instances connected into the “job manager” 
 
There is also marked the connection of the operator computer in Fig. 9. The operator 
computer is sending calculation tasks. The MATLAB is configured to be as local “job 
manager”. It is necessary to configure MATLAB to use cluster “job manager” to take 
advantage of the computer cluster - computer capacity. It is set in the bookmark “Parallel” 
of the MATLAB main menu. The new configuration of the “job manager” and IP address of 
the computer with running “job manager” of created computer cluster could be set in the 
“parallel” menu. The Fig. 10 shows the mentioned dialog box. 
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Fig. 10. Configuration dialog of the “job manager” and IP address of the computer with 
running “job manager” of created computer cluster 
 
Next, the MATLAB must be configured for use of the new configuration to distribute 
computing task into the computer cluster.  
 

 
 

Fig. 11. MATLAB menu with the parallel computing items 

 

4.3 Test of the computer cluster  
The followed code was created to verify configuration and power of the computer cluster 
(soubor test_cluster_simulink.m , F_Test_Simulink.m). There is a function that uses the 
simulink for computing in the file F_Test_Simulink.m. The script described in 
test_cluster_simulink.m hundred times calculates function F_Test_Simulink in two 
configurations of the „job manager“. In the first case the option is set as “local” (default 
settings) and in second case is set as “CLUSTER1” (the task is spread into the computer 
cluster). Computing time is measured in both cases. 
 
test_cluster_simulink.m 
clear all; 
disp('start'); 
 
for i = 1:100 
  p{i}=i; 
end 
 
startTime = tic; 
a=dfeval(@F_Test_Simulink,p,'Configuration', 'CLUSTER1'); 
stopTime = toc(startTime); 
fprintf('Cluster congiguration time: %g seconds.\n', stopTime); 
 
startTime = tic; 
a=dfeval(@F_Test_Simulink,p,'Configuration', 'local'); 
stopTime = toc(startTime); 
fprintf('Local congiguration time: %g seconds.\n', stopTime); 
 
disp('stop'); 
 
The result of this test is:  
start 
Cluster congiguration time: 14.9345 seconds. 
Local congiguration time: 206.757 seconds. 
stop 
 
The test script was executed on the main computer of the computer cluster to obtain the 
most relevant result. It can be seen that the computing was 13-times faster in comparison 
with default settings. Note, it is remarkable result, especially considering the fact that the 
computation was calculated by eight computing threads. It is probably thanks to 
calculations processed without graphical interface (GUI) which requires the SIMULINK to 
be executed.  
 
The function “dfeval” in mentioned code is used to parallelize the computation tasks. It is 
the simplest way how effectively executes tasks that have to be processed by PCT or MDCE. 
There are other methods to do it, but they are not useful for the  modulator simulations. 
The main reason is that during parallelizing of GA task it is supposed all parameters of the 
functions are known before spreading computations of the criteria functions. The problem 
has to be solved in different way in difficult cases, especially in case of dynamic function. 
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5. Genetic algorithm 

The GA is stochastic searching method based on the evolution algorithm. As a stochastic 
process the GA is always nondeterministic and cannot guarantee successful solution. The 
knowledge of the course of criteria (evaluative) function is not needed. It is main benefit of 
the GA technique. Next advantage of the GA is parallel computing possibility, since the 
algorithm operates with higher amount of results together. Finally, those are the main 
reasons why the GA was chosen and used for  modulator coefficients evaluation.  
 

 

 
Parameter 1 → 7 bit Parameter 2 → 7 bit

Parameters

Chromozome (14 bit) 

Fig. 12. Parameter coding 

 
5.1 Parameters coding 
The GA works with more results (subjects) which are collected into one generation. The 
subject represents sequence of bits, which is called chromosome. Parameters of the result are 
optimized and coded as a sequence of bits and put into the chromosome like a gene. Coding 
of the result parameters is shown in Fig. 12. Parameter coding is very interesting and 
provides coding also for unordinary types of parameters which would be difficult expressed 
by number g.e. smell or light colour.  

 
5.2 Description of the genetic algorithm  
The GA can be dividend into the six steps:  

 Initialization of the starting population 
 Coding of the solution parameters 
 Gene creating from chromosome 
 Subject evaluating of the population by criteria function 
 Selecting of the best evaluated subjects 
 Creating of the next generation based on the recombination and mutation of the 

selected subjects 
Typical GA processing could be dividend into the three basic stages: Initialization, 
Reproduction and Exchange of the generations. 

 

  New 
generation 
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fitness

It is end?   Yes

No 

Solution 

Selection

New
generation

Crossing

Mutation

Fig. 13. Flowchart of the GA 
 
The fundamental GA flowchart is shown in the Fig. 13. The first generation is filled by 
defined quantity of the randomly generated and coded unique subjects during the 
initialization. Each of the generated subjects represents one solution. The generated subjects 
are used as a new generation and consequently, each subject is evaluated by criteria 
function.  
 
The new generation from older one is created during the reproduction phase. The 
reproduction means that the individual pair is selected. The selected pair serves like parents. 
Parents are hybridized and muted. They produce new pair called descendants. 
Consequently the descendants are placed into the new generation. Selection, hybridizing 
and mutations have to be processed until the sufficient amount of the descendants is 
generated for filling of the new generation. 

 
5.3 Selection 
The selection starts by the criteria function evaluating of the subjects. It uses results of the 
criteria function for each subject to determine the subject effectiveness. Nevertheless, 
selection is not only choosing the best subject, because the best subject need not be close to 
the optimal solution. The different selecting strategies are used depending on the concrete 
task. The most frequently used strategies are strategy of concurrent fight or tournament. 

 
5.4 Hybridizing 
The two parents are used to obtain two new descendants creating in operation of 
hybridizing. Many hybridizing methods are developed. One of the simplest is one-point 
hybridizing. The one-point hybridizing method is depicted in Fig. 14. It selects randomly 
place where the chromosomes of the parents are swapped. 
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Fig. 14. Block scheme of the hybridizing process 

 
5.5 Mutation 
The chromosome is randomly chosen and arranged. The random bit is selected and inverted 
in the randomly selected chromosome. Example of the mutation is shown in Fig. 15. 

 
5.6 Finalization of the genetic algorithm  
The last step of the GA calculation is its finalization. The most frequently used method is 
displaying of the best searched solution after the defined number of GA runs.  
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Mutationed chromosome

 
Fig. 15. The process of mutation 
 
If the number of the algorithm solutions is not sufficient the possibility that the optimal 
solution would not be found exists. Alternative frequently finalizing method to terminate 
the GA algorithm is based on the computing termination when the solution with defined 
error is found. Since the GA is stochastic, the various results could be found. It is a serious 
problem of the GA. Due to the adequate number of the calculation runs and parameters for 
hybridizing and mutation have to be set as well.  

 

6. Conclusion  

The most important parameters, which affect this process, are conversion rate and effective 
number of bits (ENOB). The ENOB influences another features of the ΔΣ modulator such as 
signal to noise distortion ratio (SNDR) and total harmonic distortion (THD). 
There are three methods of coefficients calculation – utilization of table values, the 
calculation based on signal and noise transfer function (STF, NTF) and iteration methods. 
The article presents problems arising during MATLAB simulation of the  modulator 
behaviour. It has been discussed the problem of finding of optimal spectral components 
number. Next, there have been depicted methods of determination of  modulator transfer 
coefficients. The genetic algorithm has been presented in more details as one of the solution 
possibilities. The calculations require a lot of time. That is why the computer cluster has 
been made and its configuration and utilization have been presented. It has been shown 
how to find the optimal solution for certain task. 
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number of bits (ENOB). The ENOB influences another features of the ΔΣ modulator such as 
signal to noise distortion ratio (SNDR) and total harmonic distortion (THD). 
There are three methods of coefficients calculation – utilization of table values, the 
calculation based on signal and noise transfer function (STF, NTF) and iteration methods. 
The article presents problems arising during MATLAB simulation of the  modulator 
behaviour. It has been discussed the problem of finding of optimal spectral components 
number. Next, there have been depicted methods of determination of  modulator transfer 
coefficients. The genetic algorithm has been presented in more details as one of the solution 
possibilities. The calculations require a lot of time. That is why the computer cluster has 
been made and its configuration and utilization have been presented. It has been shown 
how to find the optimal solution for certain task. 
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1. Introduction 
 

Relevant literature recognises that the practical test of an automation and control process 
controlled by programmable logic controllers (PLC) is a well-known problem [1-3]. There 
are several solutions that can be implemented, such as scale models, batteries of led’s and 
switches and Human Machine Interfaces (HMI), Supervisory Control and Data Acquisition 
(SCADA) systems, or simulation tools. The use of scale models of real processes is very 
expensive and difficult to adapt to different processes. There is no question that this is the 
best way to teach PLC controlled process, allowing project testing in an almost real 
environment, however their cost often prohibits its use. The use of leds and switches sets is 
extremely confusing end uninteresting. This approach, only valid when small processes are 
considered, severely reduces the motivation. Some HMI and SCADA systems allow this 
feature but there are very expensive, not intended for this purpose and usually consider 
property protocols. 
The use of Matlab®/Simulink® [4] has not been a regular approach for teaching industrial 
automation and PLC controlled processes. Assuming that the model of the industrial 
process is implemented in the Matlab/Simulink, this chapter presents a tool that can be 
used to implement the PLC control program in Matlab/Simulink environment. The basic 
idea is to consider the PLC control program as a Matlab function block, within the 
Matlab/Simulink environment, that will control the model of the industrial process as long 
as the simulation runs. The main objective of the work described in this chapter is to 
automatically translate the PLC control program, written as an instruction list, into 
Matlab/Simulink software language. 
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 Faster scan times are being achieved using new, advanced microprocessor and 
electronic technology. 

 Small, low-cost PLCs, which can replace four to ten relays, now have more power 
than their predecessor, the simple relay replacer. 

 High-density input/output (I/O) systems provide space-efficient interfaces at low 
cost. 

 Intelligent, microprocessor-based I/O interfaces have expanded distributed 
processing. Typical interfaces include PID (proportional-integral-derivative) 
controllers, network, CANbus, fieldbus, ASCII communication, positioning, host 
computer, and language modules (e.g., BASIC, Pascal). 

 Mechanical design improvements have included rugged input/output enclosures 
and input/output systems that have made the terminal an integral unit. 

 Special interfaces have allowed certain devices to be connected directly to the 
controller. Typical interfaces include thermocouples, strain gauges, and fast-
response inputs. 

 Peripheral equipment has improved operator interface techniques, and system 
documentation is now a standard part of the system. 

All of these hardware enhancements have led to the development of programmable 
controller families. These families consist of a product line that ranges from very small 
“microcontrollers,” with as few as 10 I/O points, to very large and sophisticated PLCs, with 
as many as 8000 I/O points and 128000 words of memory. These family members, using 
common I/O systems and programming peripherals, can interface to a local communication 
network. 
The family concept is an important cost-saving development for users. Like hardware 
advances, software advances, such as the ones listed below, have led to more powerful 
PLCs: 

 PLCs have incorporated object-oriented programming tools and multiple 
languages based on the IEC 1131-3 standard. 

 Small PLCs have been provided with powerful instructions, which extend the area 
of application for these small controllers. 

 High-level languages, such as BASIC and C, have been implemented in some 
controllers’ modules to provide greater programming flexibility when 
communicating with peripheral devices and manipulating data. 

 Advanced functional block instructions have been implemented for ladder 
diagram instruction sets to provide enhanced software capability using simple 
programming commands. 

 Diagnostics and fault detection have been expanded from simple system 
diagnostics, which diagnose controller malfunctions, to include machine 
diagnostics, which diagnose failures or malfunctions of the controlled machine or 
process. 

 Floating-point math has made it possible to perform complex calculations in 
control applications that require gauging, balancing, and statistical computation. 

 Data handling and manipulation instructions have been improved and simplified 
to accommodate complex control and data acquisition applications that involve 
storage, tracking, and retrieval of large amounts of data. 

 

2. State-of-the-art 

Although programmable logic controllers (PLC) have many definitions, one can affirm that 
they are solid-state members of the computer family, using integrated circuits instead of 
electromechanical devices to implement control functions. They can be thought of in simple 
terms as industrial computers with specially designed architecture in both their central units 
(the PLC brain) and their input/output (I/O) interfacing circuitry with the real world. PLCs 
are capable of storing instructions, such as sequencing, timing, counting, logic, arithmetic, 
data manipulation, and communication, to control industrial machines and processes [5]. 
Fig. 1 shows a conceptual diagram of a PLC application. 
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Fig. 1. Conceptual diagram of a PLC application. 
 
The Hydramatic Division of the General Motors Corporation specified the design criteria for 
the first programmable controller in 1968. Their primary goal was to eliminate the high costs 
associated with inflexible, relay controlled systems. The specifications required a solid-state 
system with computer flexibility to survey in an industrial environment, be easily 
programmable and maintained by plant engineers and technicians, and be reusable. The 
first PLC had its first product models in 1969. These early controllers met the original 
specifications and opened the doors to the development of a new control technology. PLCs 
provided an easy way to reprogram the wiring rather than actually rewiring the control 
system. The first PLCs offered relay functionality, thus replacing the original hardwired 
relay logic. Notice that they were more or less just relay replacers: Their primary functions 
were to perform the sequential operations that were previously implemented with relays 
(ON/OFF control of machines and processes that required repetitive operations, such as 
transfer lines and grinding and boring machines). However, the first programmable 
controllers were a vast improvement over relays: They were easily installed, used 
considerably less space and energy, had diagnostic indicators that aided troubleshooting, 
and unlike relays, were reusable if a project should be modified. 

 
2.1 Today’s Programmable Logic Controllers 
Many technological advances in the programmable controller industry continue today. 
These advances not only affect programmable controller design, but also the philosophical 
approach to control system architecture and programming. In fact, changes include both 
hardware (physical components) and software (control program) upgrades. Thus, the 
following list describes some recent PLC hardware enhancements: 
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Some compact systems have the capacity to be extended to cope with more inputs and 
outputs by linking input/output boxes to them. This kind of PLCs is known as semi-
modularized units [7].These systems generally have an expansion port (an interconnection 
socket) which will allow the addition of specialized units such as high speed counters and 
analog input and output units or additional discrete inputs or outputs. These expansion 
units are either plugged directly into the main case or connected to it with ribbon cable or 
other suitable cable. 
Finally, systems with larger numbers of inputs and outputs and more sophisticated units, 
with a wider array of options, are likely to be modular and designed to fit in racks 
(modularized PLCs) [8]. The modular type consists of separate modules for power supply, 
processor, and the like, which are often mounted on rails within a metal cabinet. The rack 
type can be used for all sizes of programmable controllers and has the various functional 
units packaged in individual modules that can be plugged into sockets in a base rack. The 
mix of modules required for a particular purpose is decided by the user and the appropriate 
ones then plugged into the rack. Thus it is comparatively easy to expand the number of I/O 
connections by simply adding more input/output modules or to expand the memory by 
adding more memory units. The power and data interfaces for modules in a rack are 
provided by copper conductors in the backplane of the rack. When modules are slid into a 
rack, they engage with connectors in the backplane. 

 
2.4 Scopes of Applications and Sizes for PLC Systems 
Prior to evaluating the system requirements, the designer should understand the different 
ranges of programmable controller products and the typical features found within each 
range. This understanding will enable the designer to quickly identify the type of product 
that comes closest to matching the requirements of the application. Fig. 2 illustrates PLC 
product ranges divided into five major areas with overlapping boundaries. The basis for this 
product segmentation is the number of possible inputs and outputs the system can 
accommodate (I/O count), the amount of memory available for the application program, 
and the general hardware and software of the system structure. As the I/O count increases, 
the complexity and cost of the system also increase. Similarly, as the system complexity 
increases, the memory capacity, variety of I/O modules, and capabilities of the instruction 
set increase as well. Thus, PLC market or their scopes of applications can be segmented into 
five groups [5]: 

 Micro PLCs. 
 Small PLCs. 
 Medium PLCs. 
 Large PLCs. 
 Very large PLCs. 

 

Programmable controllers are now mature control systems offering many more capabilities 
than were ever anticipated. They are capable of communicating with other control systems, 
providing production reports, scheduling production, and diagnosing their own failures 
and those of the machine or process. These enhancements have made programmable 
controllers important contributors in meeting today’s demands for higher quality and 
productivity. Despite the fact that programmable controllers have become much more 
sophisticated, they still retain the simplicity and ease of operation that was intended in their 
original design. 

 
2.2 Programmable Logic Controllers and the Future 
The future of programmable controllers relies not only on the continuation of new product 
developments, but also on the integration of PLCs with other control and factory 
management equipment. PLCs are being incorporated, through networks, into computer-
integrated manufacturing (CIM) systems, combining their power and resources with 
numerical controls, robots, CAD/CAM systems, PCs, management information systems, 
and hierarchical computer-based systems. There is no doubt that programmable controllers 
will play a substantial role in the factory of the future. 
New advances in PLC technology include features such as graphic user interfaces (GUIs), 
better operator interface (human-machine interfaces or HMIs), and more human-oriented 
man/machine interfaces (such as voice modules). They also include the development of 
interfaces that allow communication with equipment, hardware, and software that supports 
artificial intelligence, such as fuzzy logic controllers, etc. 

 
2.3 Mechanical Configurations for PLC Systems 
There are four common types of mechanical design for PLC systems: 

 Single-board PLCs or open frame PLCs. 
 Compact PLCs or single-box PLCs (sometimes referred to as a brick PLCs or shoe-

box PLCs). 
 Semi-modularized PLCs. 
 Modularized PLCs, modular PLCs or rack types. 

On the one hand, single board PLCs are basic PLCs available on a single printed circuit 
board. They are totally self-contained (normally with the exception of a power supply) and, 
when installed in a system, they are simply mounted inside a control cabinet on threaded 
standoffs [6]. Single board PLCs are very inexpensive, easy to program, small, and consume 
little power, but, generally speaking, they do not have a large number of inputs and outputs, 
and have a somewhat limited instruction set. They are best suited to small, relatively simple 
control applications. 
On the other hand, PLCs are also available housed in a single case with all input and output, 
power and control connection points located on the single unit. In this case, they are known 
as compact PLCs. This kind of programmable controllers is generally chosen according to 
available program memory and required number and voltage of inputs and outputs to suit 
the application. The compact type is commonly used for small programmable controllers 
and is supplied as an integral compact package complete with power supply, processor, 
memory, and input/output units. Typically such a PLC might have 6, 8, 12, or 24 inputs and 
4, 8, or 16 outputs and a memory that can store some 300 to 1000 instructions. 
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previously mentioned. Area B contains medium PLCs that have more memory, table 
handling, PID, and subroutine capabilities than typical medium-sized PLCs, as well as more 
arithmetic and data-handling instructions. 
Large PLCs (area 4) are used for more complicated control tasks, which require extensive 
data manipulation, data acquisition, and reporting. Further software enhancements allow 
these products to perform complex numerical computations. Area C includes the segment 4 
PLCs that have a large amount of application memory and I/O capacity. The PLCs in this 
area also have greater math and data-handling capabilities than other large PLCs.  
Very large PLCs (area 5) are used in sophisticated control and data acquisition applications 
that require large memory and I/O capacities. Remote and special I/O interfaces are also 
standard requirements for this type of controller. Typical applications for very large PLCs 
include steel mills and refineries. These PLCs usually serve as supervisory controllers in 
large, distributed control applications. 

 
2.5 PLC Architecture 
The typical blocks for a general programmable controller are [6]: The processor, the mounting 
rack, the input and output modules, the power supply and the programming unit. 
The processor (also known as CPU), as in the self contained units, is generally specified 
according to memory required for the program to be implemented. The processor consists of 
the microprocessor, system memory, serial communication ports for printer, PLC LAN link 
and external programming device and, in some cases, the system power supply to power 
the processor and I/O modules. Notice that, in modularized versions, capability can also be 
a factor. This includes features such as higher math functions, PID control loops and 
optional programming commands. 
The mounting rack is usually a metal framework with a printed circuit board backplane 
which provides means for mounting the PLC input/output (I/O) modules and processor. 
Mounting racks are specified according to the number of modules required to implement 
the system. The mounting rack provides data and power connections to the processor and 
modules via the backplane. For CPUs that do not contain a power supply, the rack also 
holds the modular power supply. There are systems in which the processor is mounted 
separately and connected by cable to the rack. The mounting rack can be available to mount 
directly to a panel or can be installed in a standard equipment cabinet. Mounting racks are 
“cascadable” so several may be interconnected to allow a system to accommodate a large 
number of I/O modules. 
The input and output (I/O) modules are specified according to the input and output signals 
associated with the particular application. These modules fall into the categories of discrete, 
analog, high speed counter or register types. Discrete I/O modules are generally capable of 
handling 8 or 16 and, in some cases 32, on-off type inputs or outputs per module. Modules 
are specified as input or output but generally not both although some manufacturers now 
offer modules that can be configured with both input and output points in the same unit. 
The module can be specified as AC only, DC only or AC/DC along with the voltage values 
for which it is designed. Analog input and output modules are available and are specified 
according to the desired resolution and voltage or current range. As with discrete modules, 
these are generally input or output; however some manufacturers provide analog input and 
output in the same module. Analog modules are also available which can directly accept 
thermocouple inputs for temperature measurement and monitoring by the PLC. Pulsed 
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Fig. 2. PLC product ranges. 
 
The shaded areas in Fig. 2, labeled A, B, and C, reflect the possibility of controllers with 
enhanced (not standard) features for a particular range. These enhancements place the 
product in a shady area that overlaps the next higher range. For example, because of its I/O 
count, a small PLC would fall into area 2, but it could have analog control functions that are 
standard in medium-sized controllers. Thus, this type of product would belong in area A. 
Products that fall into these overlapping areas allow the user to select the product that best 
matches the requirements of his/her application, without having to select the larger 
product, unless it is necessary. Thus, micro PLCs are used in applications controlling up to 
32 input and output devices, 20 or less I/O being the norm. The micros are followed by the 
small PLC category, which controls 32 to 128 I/O. The medium (64 to 1024 I/O), large (512 
to 4096 I/O), and very large (2048 to 8192 I/O) PLCs complete the segmentation. 
In particular, micro PLCs (area 1) are used in applications that require the control of a few 
discrete I/O devices, such as domotic applications and small conveyor controls. Some micro 
PLCs can perform limited analog I/O monitoring functions (e.g., monitoring a temperature 
set point or activating an output). 
Small PLCs (area 2)  are mostly used in applications that require ON/OFF control for logic 
sequencing and timing functions. These PLCs, along with microcontrollers, are widely used 
for the individual control of small machines. Often, these products are single-board 
controllers. In addition, area A includes controllers that are capable of having up to 64 or 128 
I/O, along with products that have features normally found in medium-sized controllers. 
The enhanced capabilities of these small controllers allow them to be used effectively in 
applications that need only a small number of I/O, yet require analog control, basic math, 
I/O bus network interfaces, LANs, remote I/O, and/or limited data-handling capabilities. 
A typical application of an area A controller is a transfer line in which several small 
machines, under individual control, must be interlocked through a LAN. 
Medium PLCs (area 3) are used in applications that require more than 128 I/O, as well as 
analog control, data manipulation, and arithmetic capabilities. In general, the controllers in 
segment 3 have more flexible hardware and software features than the controllers 
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previously mentioned. Area B contains medium PLCs that have more memory, table 
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and its more characteristic behavior. Therefore, the goal in modeling techniques is to achieve 
models in a simple or complex manner depending on the application and objectives. In this 
Section, we will briefly focus on the development of control models that describe industrial 
processes that will be useful to controllers’ tuning.  
Models serve to represent and determine systems behavior and thus fulfill at least three 
purposes: Prediction, learning new rules and/or data compression. Models can be 
developed in two different ways or two basic approaches. Let us imagine in the need, in the 
other hand quite often, of crossing a closed door without knowing the direction of opening. 
A possibility to know the right direction of opening is to observe the arrangement of hinges; 
this would be a theoretical approach. The other possibility is to try to open the door choosing 
one of the directions; this would be the experimental approach. Following, there is the 
definition of both approaches: 

 Theoretical approach: This approach consists of building a model from physical 
laws. Here, the engineer can find the difficulty of managing all the physical laws 
that take part, and in case the model is achieved, it could be very complex and thus 
difficult to manage. Moreover, another drawback of this approach is that real 
phenomena are not taken into account such as components wearing, tolerances, 
noise and disturbance effects… 

 Experimental approach or identification: When a system is not suitable for the 
theoretical approach due to many reasons (such as its complexity, an incomplete 
knowledge of the system structure or due to an unpredictable variation of its 
features), it is necessary to resort to another approach that permits the achievement 
of valid and suitable models. This second approach consists of analyzing the 
system based on the study of its output signals in front of a well-known set of 
input signals. In this approach, to not adopt any hypothesis about the system’s 
characteristics usually makes the study difficult, limiting its quality.  

The experience demonstrates that the best solution is the combination of both approaches, 
whenever it is possible. In this case, two steps are usually carried out: The analysis stage 
and, then, the experimental stage. In the analysis stage, physical laws and work conditions 
(operation modes) will be taken into account in order to establish the hypothesis. In the 
experimental stage, starting from the hypothesis set in the analysis, the obtained 
experimental measures will be considered to determine the coefficients of the mathematical 
model. 
In order to obtain the system’s response, it is necessary to stimulate it thanks to the input 
variables that are generated from the environment of the system under study. There exist 
two kinds of system input variables: Those that can be controlled, and those that cannot be 
controlled and are automatically generated by the environment (known as disturbances, Fig. 
3). The variables generated by the system are the output variables and they influence on the 
environment. Those variables are measurable and, sometimes, observable. 
Suppose a system like the presented one in Fig. 3. Mainly, two problems can arise with this 
system: 

 Direct problem or analysis: knowing (input, system), find (output). This problem 
has a unique solution and it is called a problem of analysis.  

 Inverse problems:  
o Knowing (input, output), find (system). This problem does not have a 

unique solution but it has infinite correct solutions. This is a problem of 

 

inputs to the PLC can be accepted using a high speed counter module. This module can be 
capable of measuring the frequency of an input signal from a tachometer or other frequency 
generating device. These modules can also count the incoming pulses if desired. Generally, 
both frequency and count are available from the same module at the same time if both are 
required in the application. Register input and output modules transfer 8 or 16 bit words of 
information to and from the PLC. These words are generally numbers (BCD or Binary) which 
are generated from thumbwheel switches or encoder systems for input or data to be output to 
a display device by the PLC. Other types of modules may be available depending upon the 
manufacturer of the PLC and its capabilities. These include specialized communication 
modules to allow for the transfer of information from one controller to another. 
The power supply specified depends upon the manufacturer's PLC being utilized in the 
application. As stated above, in some cases a power supply capable of delivering all 
required power for the system is furnished as part of the processor module. If the power 
supply is a separate module, it must be capable of delivering a current greater than the sum 
of all the currents needed by the other modules. For systems with the power supply inside 
the CPU module, there may be some modules in the system which require excessive power 
not available from the processor either because of voltage or current requirements that can 
only be achieved through the addition of a second power source. This is generally true if 
analog or external communication modules are present since these require ± DC supplies 
which, in the case of analog modules, must be well regulated. 
The programming unit allows the engineer or technician to enter and edit the program to be 
executed. In its simplest form it can be a hand held device with a keypad for program entry 
and a display device (LED or LCD) for viewing program steps or functions. More advanced 
systems employ a separate personal computer which allows the programmer to write, view, 
edit and download the program to the PLC. This is accomplished with proprietary software 
available from the PLC manufacturer. This software also allows the programmer or engineer 
to monitor the PLC as it is running the program. With this monitoring system, such things 
as internal coils, registers, timers and other items not visible externally can be monitored to 
determine proper operation. Also, internal register data can be altered if required to fine 
tune program operation. This can be advantageous when debugging the program. 
Communication with the programmable controller with this system is via a cable connected 
to a special programming port on the controller. Connection to the personal computer can 
be through a serial port or from a dedicated card installed in the computer. 

 
3. Industrial Process Modeling and Simulation 
 

3.1 Why Modeling?  
In order to study, analyze and control systems, it is necessary to know them very well and, 
thus, to have a mathematical model that describes them. This model can be used in a 
computer simulator tool (as MATLAB/Simulink), or for the analysis and design purposes of 
control systems. 
On the one hand, in case a model is developed for a computer simulator, in general, such a 
model will be represented in a complex and complete way in order to describe as accurate 
and realistic as possible the real system behavior. On the other, in case a control is needed 
for the analysis or design purposes of a control system, a representation of this model will 
be required in its simplest manner, but always taking into account the essence of the model 
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to monitor the PLC as it is running the program. With this monitoring system, such things 
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thus, to have a mathematical model that describes them. This model can be used in a 
computer simulator tool (as MATLAB/Simulink), or for the analysis and design purposes of 
control systems. 
On the one hand, in case a model is developed for a computer simulator, in general, such a 
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Fig. 4. Modeling: from white box to black box. 

 
3.3 Mathematical model representation 
Linear Time-Invariant (LTI) systems are represented by ODEs, but these expressions are too 
much complicated to manipulate. Thus, modelers use equivalent and easier expressions to 
represent these equations, for instance, Laplace transform. This representation permits to 
obtain the transfer function describing the system, mainly used in SISO (Single Input Single 
Output) systems. An alternative to represent a system is through the state space 
representation, mainly used in MIMO (Multiple Input Multiple Output) systems. The main 
feature of state space representation is that the internal system variables are represented (all 
the system’s stated) whereas the transfer function only represents the relationship between 
output and input of the system. 
In control engineering, a state space representation is a mathematical model of a physical 
system as a set of input, output and state variables related by first-order differential 
equations. To abstract from the number of inputs, outputs and states, the variables are 
expressed as vectors and the differential and algebraic equations are written in matrix form 
(the last one can be done when the dynamical system is linear and time invariant). The state 
space representation (also known as the "time-domain approach") provides a convenient 
and compact way to model and analyze systems with multiple inputs and outputs. With p 
inputs and q outputs, we would otherwise have to write down q x p Laplace transforms to 
encode all the information about a system. Unlike the frequency domain approach, the use 
of the state space representation is not limited to systems with linear components and zero 
initial conditions. "State space" refers to the space whose axes are the state variables. The 
state of the system can be represented as a vector within that space. 
 

 

structure identification and state estimation, and it is called a problem of 
synthesis. 

o Knowing (system, output), find (input). This is a problem of control 
(instrumentation). 

 
Fig. 3. System Diagram. 

 
3.2 Modelling and simulation spectrum 
A system can belong to different disciplines, and each one presents different aspects that 
should be taken into account when treating this system. The modeler can face a kind of 
systems that present only historical data, for instance, public opinion systems or social areas 
systems (see Fig. 4). Models can only be built from experimentation and the modeling 
technique is identification that is mainly used when the system structure is unknown. In this 
case, the models are call black box models, and they can be represented with differential 
equations. 
In the real world, there exist many complex systems which evolution depends on various 
variables (time, space…) and the most suitable way to describe them is through Partial 
Differential Equations (PDEs) because they are systems with distributed parameters. In the 
field of Environmental Sciences is where those systems can be mainly found (Ecology, 
pollution, biodiversity…). The models developed in these systems are mostly for prediction 
and experimentation of management strategies.  
Finally, there is another kind of systems that their physical laws are perfectly known, that is, 
the system structure is known and they can be built using white box models. From those 
models the differential equations are generated and, in the most of the cases, they are 
straightforward enough to be represented with Ordinary Differential Equations (ODEs) 
because normally their parameters are concentrated. For instance, electric and electronics 
circuits, chemical control processes, industrial control and aerospatial systems can be 
represented with white box models. In these cases, the obtained models are used to design a 
controller to manage the process.  
As it can be seen in Fig. 4, from the black box models to white box models there are all the 
models that a modeler can find in the real world. 
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1967. There are domain-oriented packages: electronic programs SPice, Saber, Multibody 
Systems, HADAMS, DADS, SIMPACKI, chemical processes (ASPEN Plus, SpeedUp), etc. In 
October 1996, an international effort started to design a new language for physical 
modeling. The language is called Modelica. The main objective is to make it easy to 
exchange models and model libraries and to allow users to benefit from the advances in 
object oriented modeling methodology [10]. 
On the other hand, there exists novel simulation software, for instance Easy Java 
Simulations (Ejs), that lastly is growing and widely used because it is a freeware, open 
source, Java-based tool intended to create interactive dynamic simulations [11]. Ejs was 
originally designed to be used by students for interactive learning, under the supervision of 
educators with a low programming level. As a consequence, simplicity was a requirement. 
Ejs guides the user in the process of creating interactive simulations. This process includes 
the definition of the model and the view. 
The use of Ejs, together with Matlab/Simulink and Modelica/Dymola allows us to combine 
the best features of each tool. Ejs has the capability for building interactive user-interfaces 
composed of graphical elements, whose properties are linked to the model variables. 
Matlab/Simulink has the capability for modeling of automatic control systems and for 
model analysis. Modelica has the capability for physical modeling, and finally Dymola has 
the capability for simulating hybrid-DAE (differential-algebraic equations) models. 
It is important to highlight that, with a few exceptions, all simulation packages are only 
strong in one domain and are not capable of modeling components in other domains 
reasonably. This is a major disadvantage since technical systems are becoming more and 
more heterogeneous with components from many engineering domains. 
JMAG provides state of the art technology to encompass extensive physical phenomena 
accurately in the simulation model. JMAG's precise analysis supports superior 
electromechanical design. In addition, Spice, in its different versions (PSpice, HSpice, etc.), is 
the main simulation software in the field of Electronics and Electrical Engineering. PSIM is 
another simulation package specifically designed for power electronics and motor control.  
Finally, apart from the industrial process software simulation software, there exists another 
line of simulators: The PLC simulator. In this field, developers can find software packages 
such as PC-SIM, a good option for PLC programming learning, because it has a very good 
graphical environment, among other features. Another tool is SIMTSX, a software package 
that enables debugging some PLC commercials brands without the presence of the machine 
or process and allows validate PLC programs and associated control command functions, 
and training for control and maintenance operators before taking charge of the equipment 
on site. Some PC-based process simulation tools have been developed, using microcontroller 
technologies and designed to work with any type of PLC [12]. The PLC modeling issue can 
be reduced to the emulation of the PLC control program and many approaches can be 
further taken regarding the PLC program. Several authors developed specific packages for 
the verification of the PLC program [13,14]. These packages verify the structure of the 
program using, among others, automata networks. Often these programs only verify the 
program structure without verifying if it achieves the desired control objectives. Other 
approach is the generation of the PLC program from other formalisms, such as Petri nets 
[15], state diagrams, or finite state machines. If the original formalism is error free this could 
be a valuable tool for developing PLC programs. Some authors developed software 

 

3.4 Steps for the simulation project 
To choose the type of model to apply is important to know the objectives for which the 
model will be used. After chosen the model that best fits to the objectives, the system model 
is developed using the physical laws and/or identification, depending on the situation. 
Then, the model has to be implemented and validated using obtained real data (data base). 
To validate the model any error criterion is used, and if the model has goodness enough the 
process is over, in opposite case the model is reconsidered and the selection process starts 
again looking for the model that best fits with the system and all the process is repeated 
until we are satisfied with the chosen model. The whole process can be seen in Fig. 5. 
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3.5 Simulation Software 
Mathematical modeling and simulation are emerging as key technologies in engineering. 
Relevant computerized tools, suitable for integration with traditional design methods are 
essential to meet future needs of efficient engineering. 
Interactive simulation provides a flexible and user-friendly method to define the 
experiments performed on the model. During the interactive simulation run, the user can 
change the values of the model inputs (signals of interest or disturbances), system 
parameters and initial conditions of the state variables, perceiving instantly how these 
changes affect to the model dynamic. As a consequence, interactive simulation facilitates the 
development and improvement of the model performance and allows enhancing the 
understanding of the system behavior. This capability is especially useful when the model is 
being used for educational purposes [9]. 

 
3.5.1 Today’s simulation tools 
There is a large amount of simulation software on the market. All languages and model 
representations are proprietary and developed certain tools. There are general-purpose tools 
such as ACSL, MATLAB-Simulink, and System Build. They are based on the same modeling 
methodology, input-output blocks, as in the previous standardization effort, CSSL, from 
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1967. There are domain-oriented packages: electronic programs SPice, Saber, Multibody 
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6. Save the PLC control program as a text-oriented programming language in a text 
file; 
7. Run the developed PLC–Matlab/Simulink translation package in order to 
convert the PLC control program into the Matlab/Simulink language (the 
Matlab/Simulink m-file function block ‘PLC control program’ should be 
automatically produced); 
8. Test the developed PLC control program with the considered PLC-controlled 
process model (Matlab/Simulink m-file function block ‘Industrial Process 
Simulation Block’); 
9. Elaborate the required adaptations in order to put the program control to work 
properly. 

The proposed PLC–Matlab/Simulink translation package, before automatically translate the 
PLC control program into Matlab/Simulink language, will require the following 
information: 

1. Type of PLC; 
2. PLC’s number of inputs and outputs; 
3. PLC control program file for translation. 

 
4.1 Type of PLC 
The choice of the PLC type is essential for establishing the translation rules accordingly to 
the manufacturer program syntax. Although they are all boolean logic based, each PLC 
manufacturer develops its own programming syntax. In this way the translation package 
should know the PLC manufacturer in order to apply the adequate translation rules. 

 
4.2 PLC’s number of Inputs and outputs 
The number of PLC’s Inputs and Outputs clearly defines the arguments of the 
Matlab/Simulink function ‘PLC Control Program’ (1). This function will be responsible for 
executing the PLC control program within the Matlab/Simulink environment, and will be 
created as a text m-file. Both di1 to din denote the PLC’s digital inputs, ai1 to aim denote the 
PLC’s analog inputs, do1 to dop denote the PLC’s digital outputs and ao1 to aoq denote the 
PLC’s analog outputs. n, m, p and q denote, respectively, the PLC’s number of digital inputs, 
analog inputs, digital outputs and analog outputs. 
It is important to note that n+m define the dimension of the Mux block (a) in Fig. 6. Similarly 
p+q define the dimension of the Demux block (b) in Fig. 6. 
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packages to translate PLC programs to DSP code, so that it can be used in non-PLC 
hardware [16]. 
None of these approaches is intended to be used within the Matlab/Simulink environment. 
The proposed methodology approach will consider that the PLC is essentially modelled by 
emulating its control program, which interacts with the controlled industrial process itself, 
as presented in Fig. 1. 

 
4. PLC/Matlab Translation Methodology 
 

In order to fully understand the advantages of the proposed translation methodology, let us 
assume that the industrial process is already modelled in the Matlab/Simulink 
environment, as presented in Fig. 6. 
 

 
Fig. 6. PLC operation and Industrial Process interaction 
 
The industrial PLC controlled process is simulated in a Matlab/Simulink block named 
‘Industrial Process Simulation Block’. This block outputs (sensors and detectors outputs) are 
the process sensors and detectors signals, which will be used as inputs to the 
Matlab/Simulink block named ‘PLC Control Program’. This block will emulate the PLC 
operation and its outputs will correspond to the PLC outputs that will connect to the 
actuators input, in the ‘Industrial Process Simulation Block’. 
The block ‘PLC Control Program’ is the keystone of the proposed methodology. It will 
emulate the cyclic PLC operation. This function block is a Matlab m-file. In order to 
automatically build this block, the following procedures must be accomplished: 

1. Assume a PLC-controlled process, which is already modelled in an already 
existing ‘Industrial Process Simulation Block’, developed in Matlab/Simulink 
environment; 
2. Consider the functional specifications of this PLC-controlled process; 
3. Consider a specific PLC to control the process; 
4. Elaborate the respective PLC control program accordingly to the considered 
functional specifications, using for example the GRAFCET methodology [17]; 
5. Write down the PLC control program using one of the vendor’s programming 
languages; 
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packages to translate PLC programs to DSP code, so that it can be used in non-PLC 
hardware [16]. 
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5. Write down the PLC control program using one of the vendor’s programming 
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the PLC’s number of inputs/outputs, the conversion tool establishes the correct number of 
input and output arguments for function (1). The translation of the PLC Control Program 
itself relays on a set of translation rules applied to the set of PLC instruction list. 
A full PLC instruction list can be roughly divided into: 

 Boolean 
 Comparison 
 Output 
 Timer 
 Counter 
 Math 
 Increment/Decrement 
 Moving/Shifting 
 Program Control 
 Other 

Following some instructions conversion rules will be described, considering a Siemens PLC 
instruction list. Boolean instructions will be translated into Matlab/Simulink language using 
standard Matlab boolean functions, as presented in Table 1, where I x.y denotes a digital 
input and Q x.y denotes a digital output, x and y are, respectively, the byte and bit of the 
considered digital input/output. Furthermore, do_g is a Matlab variable denoting digital 
output g and di_h is a Matlab variable denoting the digital input h. The bollean state TRUE 
will be represented in Matalb environment by ‘1’ and FALSE by ‘0’. Combinations of 
various Boolean instructions will be converted using the above rules. An example is shown 
on the last row of Table 1. 
 

Boolean 
instruction PLC instruction Matlab/Simulink 

translation 

AND 
LD I a.b 
A I c.d 
= Q e.f 

do_g = di_h&di_i 

OR 
LD I a.b 
O I c.d 
= Q e.f 

do_g = di_h | di_i 

NOT 
LDN I a.b 
= Q c.d 

do_g = ~ di_i 

Combinations 
of various 
Boolean 

instructions 

LD I 0.0 
A I 0.1 
LD I 0.2 
OLD 
= Q 0.0 

do_1 = (di_1 & di_2) 
| di_3 

Table 1. Boolean Instructions Translation 
 
PLC math instructions are usually boolean enabled. This implies the use of Matlab function 
‘if’ in order to represent their behavior. As an example, consider the PLC integer adding 
instruction presented in Table 2. AIW0 and AQW0 represent, respectively, a PLC analog 
input and a PLC analog output. Variable ao_1 is a Matlab variable denoting the first analog 
output and ai_1 is a Matlab variable denoting the first analog input. 

 

4.3 PLC Control Program file for translation 
The PLC control program can be written in a wide set of programming languages. The 
software model of PLC’s and the referred set of languages are established and defined in the 
IEC standard 1131-3. Every manufacturer offers different kinds of suitable programming 
languages, resulting in a typical set of five programming languages: 

 Instruction List: Very close to assembler can be considered as a low-level text 
programming language; 

 Ladder Diagrams: Historically derived from electric circuits wiring does not allow 
complexity and modularity; 

 Sequential Functional Chart: A Petri Net like graphical programming language it 
structures the internal elements of the PLC into steps (associated with actions) and 
transitions (between steps); 

 Function Block Diagram: Another graphical language where function blocks 
process the several PLC’s signals; 

 Structured Text: Derived from Pascal programming language, it is a high level 
programming language that enables complexity and modularity. 

The PLC control program is typically represented using a graphical language known as a 
ladder diagram. However, almost every PLC software-programming packages allows the 
use of text-oriented programming languages. Moreover, they allow the automatic 
conversion between ladder diagrams and text-oriented programming languages, and vice-
versa. The proposed translation methodology will consider that the PLC control program is 
written as a text-oriented programming language, in a standard text file. This does not 
represent a problem because, as referred, almost every PLC software-programming package 
allows saving the PLC control program in this format. Fig 7 shows a simple PLC Control 
Program text file considering, as an example, a Siemens PLC. 
 

1 // 
2 // PROGRAM TITLE COMMENTS 
3 // 
4 NETWORK 1 
5 LD I 0.0 
6 A I 0.1 
7 LD I 0.2 
8 A I 0.3 
9 OLD 
10 = Q 0.0 
11 // 
12 NETWORK 2 
13 LD I 0.4 
14 LD I 0.5 
15 CTU C5,+6 
16 // 
17 END 

Fig. 7. PLC Control Program standard text file 
 
The PLC control program translation package is a software tool, developed in Visual Basic, 
which automatically converts the PLC control program text file into a correspondent 
Matalb/Simulink m-file. This m-file, containing the PLC control program described in 
Matalb/Simulink language, holds the Matalb/Simulink function defined in (1). Knowing 
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Instruction PLC instruction Matlab/Simulink translation 

COUNTER 

LD        I 0.0    // Count up 
LD        I 0.1    // Count down 
LD        I 0.2    // Reset counter 
CTUD  C10, +4 

if di_1 & ~ di_1_prev 
     c_10_value = c_10_value + 1 
end 
if di_2 & ~ di_2 
     c_10_value = c_10_value - 1 
end 
if di_3 
     c_10_value = 0 
     c_10 = 0 
end 
if c_10_value >= +4 
c_10 = 1 
end 

TIMER 
LD        I 2.0 
TON  T33, 3 
 

%Start timer 
if di_20 & t33_start==0 
    t33_start=3;   
    t33_end_time=clock_in+3; 
end 
%Timer ON 
if t33_start &clock_in>=t33_end_time 
    t33_bin=1; 
end 
%Timer OFF 
if ~di_20 
    t33_bin=0; 
    t33_start=0; 
end 

Table 3. Counter and Timer Instructions Translation 

 
5. Application Examples 
 

As a first illustrative application example let us consider pure Boolean. It is supposed to 
automate the sawmill presented on Fig. 9. After pressing the START pushbutton the cutting 
machine moves to the right. The blade must be connected before it reaches the logs and cut 
off after sawing them. At this time the blade should be raised. When the top position is 
reached the upward movement should stop and the machine must move to the left until it 
reaches its original position, where the blade should be lowered. In Fig. 9 are also depicted 
the limit switches (denoted as Si) that are used to control the machine actions. 
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Instruction PLC instruction Matlab/Simulink translation 

COUNTER 

LD        I 0.0    // Count up 
LD        I 0.1    // Count down 
LD        I 0.2    // Reset counter 
CTUD  C10, +4 

if di_1 & ~ di_1_prev 
     c_10_value = c_10_value + 1 
end 
if di_2 & ~ di_2 
     c_10_value = c_10_value - 1 
end 
if di_3 
     c_10_value = 0 
     c_10 = 0 
end 
if c_10_value >= +4 
c_10 = 1 
end 

TIMER 
LD        I 2.0 
TON  T33, 3 
 

%Start timer 
if di_20 & t33_start==0 
    t33_start=3;   
    t33_end_time=clock_in+3; 
end 
%Timer ON 
if t33_start &clock_in>=t33_end_time 
    t33_bin=1; 
end 
%Timer OFF 
if ~di_20 
    t33_bin=0; 
    t33_start=0; 
end 

Table 3. Counter and Timer Instructions Translation 

 
5. Application Examples 
 

As a first illustrative application example let us consider pure Boolean. It is supposed to 
automate the sawmill presented on Fig. 9. After pressing the START pushbutton the cutting 
machine moves to the right. The blade must be connected before it reaches the logs and cut 
off after sawing them. At this time the blade should be raised. When the top position is 
reached the upward movement should stop and the machine must move to the left until it 
reaches its original position, where the blade should be lowered. In Fig. 9 are also depicted 
the limit switches (denoted as Si) that are used to control the machine actions. 

 

On
me
fin
var
ins
Ta
an
 

Ta
 
PL
inp
the
the
inp
the
Co
cha
10,
PL
cou
res
rea
 

Fig
 
Th
cor
tim
tim
bec

n the other hand,
emories) to repre

nds a PLC interna
riables are usual
struction (MUL) 

able 2, where the M
other) is also use

Instruct

INCREM

MULTIP

ble 2. Non-Boolea

LC counter instru
puts: One for cou
e counter. Since t
e Matlab/Simulin
put. Table 3 prese
e previous state 
ontrol Program C
anges to true. In
, and c_10_value 

LC timer instructi
unting. As Fig. 8
spective digital in
aches its preset tim

g. 8. On-delay tim

he previous time
rresponding digi

me (t33_start) is a
me (t33_end_time
comes true. The t

, PLC control pro
esent states or to 
al memory, autom
lly denoted as m
often involves th
MOVW instructio
d. Please, note th

tion PLC

MENT 
LD I 0
+I AIW

PLY 

LD I 0
MOV
MUL 
 

an Instructions T

uctions (CTUD –
unting up, other 
the counting is o
nk translation sho
ents a counting e
 of variable di_1

Cycle. In this exa
n Matlab environm
 denotes the coun
ions, such as on-

8 presents, the on
nput (I2.0 in the e
me (3 seconds in 

mer operation 

er translation is 
ital input – di_20
added to the actu
e). After reaching 
timer is restarted 

ograms often use
 store analog val

matically assigns 
m or v, as they ar
he use of an auxi
on (moving the v

hat the PLC intern

C instruction 

0.0 
W0 , AQW0 

0.0 
VW +6 , VD4 

 +9 , VD4 

Translation 

– counter up an
 for counting dow
only performed o
ould take into ac
xample, where d

1. Previous state 
mple, by reachin
ment c_10 denote
nting value of the
-delay timers, usu
n-delay timer (T3
example) is enable
 the example). 

presented in Ta
0 –is TRUE and t
ual clock value (cl
 this stopping tim
 when its corresp

 internal flags (b
lues. Whenever t
 a Matlab/Simuli
re digital or ana
iliary internal me

value of one word
nal variable VD re

Matlab/Simulin

if di_1 
     ao_1 = ai_1 
end 
if di_1 
     v_4 = +6 
     v_4 = +9 * v_4
end 

nd down) can re
wn (if the case) a
on the rising edg
count the previou
i_1_prev is a Mat
 means the state

ng counting 4 the
es the boolean st
 same counter. 
ually require onl

33 in the example
ed, and becomes 

able 3. Wheneve
the timer has not
lock_in) establish

me the logical val
ponding boolean i

it and variable in
the translation pa
ink variable to it.
log. The PLC mu
emory, as presen

d variable – 16 bit
efers to a 32-bit w

nk translation 

 + ao_1 

4 

equire several bo
and other for res
e of the boolean 
us state of that bo
tlabb variable de
e in the previou
e counter boolean
tate of counter n

ly one digital inp
e) works whenev
 Boolean TRUE w

 

er the timer star
t started yet) the 
hing the timer sto
lue of the timer (t
input becomes FA

nternal 
ackage 
 These 
ultiply 

nted in 
t – into 

word. 

oolean 
senting 
 input, 
oolean 
noting 

us PLC 
n state 
umber 

put for 
ver the 
when it 

rts (its 
 preset 
opping 
t1_bin) 
ALSE. 



Matlab - Modelling, Programming and Simulations230

Fig
 

f
[
)
 

g
 

%
a
a
 

%
m
m
m
m
m
m
 

%
d
d
d
d
d
 

%
m
m
m
m
m
m
 

o

 

g. 10. Sawmill GR

function 
[output]=cpu222(
) 

global m0 m0_a m

%output initializa
aux=0; do1=aux; d
ao1=aux; ao2=aux

%grafcet step evo
m0=(m5&di3)|(m
m1=(m0&di1&di6
m2=(m1&di2)|(m
m3=(m2&di3)|(m
m4=(m3&di5)|(m
m5=(m5&di6)|(m

%Output generat
do1=m1; 
do2=m2; 
do3=m3; 
do0=m4; 
d04=m5; 

%grafcet previous
m0_a=m0; 
m1_a=m1; 
m2_a=m2; 
m3_a=m3; 
m4_a=m4; 
m_a=m5; 

output=[do1 do2 
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ion 
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]; 
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function 
[output]=cpu222(
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Function (3) is called in the subsystem “PLC Control Program” (see Fig. 6). Whenever the 
simulation runs this function acts as the PLC, controlling the water system process. Fig. 13 
presents the random input water flow and the water tank level. One can see that the 
developed control program (implemented in the PLC simulation subsystem) is able to 
comply with the desired specifications, keeping the water level between 4 and 5 meter 
height. 
 

   
 (a) (b) 
Fig. 13. PLC controlled water tank system Matlab/Simulink simulation results. (a) Input 
water flow. (b) Water tank level. 
 
Fig. 14 presents the cumulative counting of the valve operation and both of the considered 
alarms. One clearly sees the effect of the external reset counter (at 3 and 12 seconds), and the 
one second delay (due to timer operation) between the light alarm (gray thick line) and the 
buzzer alarm (black thin line). 
 

 
Fig. 14. PLC controlled water tank counter evolution and alarm generation 

 

 

function [output]=cpu222(di1,di2,di3,di4,di5,di6,di7,di8,ai1,ai2,ai3,ai4,clock_in) 
global m0 m0_a m1 m1_a m2 m2_a m3 m3_a m10 m10_a m11 m11_a c1 c1_bin t1_start 
t1_end_time t1_bin 
%output initialization 
aux=0; do1=aux; do2=aux; do3=aux; do4=aux; do5=aux; do6=aux; 
ao1=aux; ao2=aux; ao3=aux; ao4=aux; 
 
%grafcet 1 (valve control) 
m0=(m2)|(m0&~m1); 
m1=(m0&di1)|(m1&~m2); 
m2=(m1&~di2)|(m2&~m0); 
%grafcet 2 (counter reset) 
m10=(m11)|(m10&~m11); 
m11=(m10&di3)|(m11&~m10); 
 
%Counter Siemens (CTU) 
%counter actualization 
if m1==1 & ~m1_a 
    c1=c1+1; 
end 
%counter set 
if c1==8 
    c1_bin=1; 
end 
%counter reset 
if m11 
    c1=0; 
    c1_bin=0; 
end 
 
%Timer SIEMENS (on-delay) 
%Start timer 
if c1_bin & t1_start==0 
    t1_start=1;   
    t1_end_time=clock_in+1; 
end 
%Timer ON 
if t1_start &clock_in>=t1_end_time 
    t1_bin=1; 
end 
%Timer OFF 
if ~c1_bin 
    t1_bin=0; 
    t1_start=0; 
end 
 
%Output generation 
do1=m1; 
do2=c1_bin; 
do3=t1_bin; 
ao1=c1; 
ao2=ai1; 
%GRAFCET previous steps actualization 
m0_a=m0; 
m1_a=m1; 
m2_a=m2; 
m3_a=m3; 
m10_a=m10; 
m11_a=m11; 
output=[do1 do2 do3 do4 do5 do6 ao1 ao2 ao3 ao4]; 

(3) 
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Function (3) is called in the subsystem “PLC Control Program” (see Fig. 6). Whenever the 
simulation runs this function acts as the PLC, controlling the water system process. Fig. 13 
presents the random input water flow and the water tank level. One can see that the 
developed control program (implemented in the PLC simulation subsystem) is able to 
comply with the desired specifications, keeping the water level between 4 and 5 meter 
height. 
 

   
 (a) (b) 
Fig. 13. PLC controlled water tank system Matlab/Simulink simulation results. (a) Input 
water flow. (b) Water tank level. 
 
Fig. 14 presents the cumulative counting of the valve operation and both of the considered 
alarms. One clearly sees the effect of the external reset counter (at 3 and 12 seconds), and the 
one second delay (due to timer operation) between the light alarm (gray thick line) and the 
buzzer alarm (black thin line). 
 

 
Fig. 14. PLC controlled water tank counter evolution and alarm generation 
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aux=0; do1=aux; do2=aux; do3=aux; do4=aux; do5=aux; do6=aux; 
ao1=aux; ao2=aux; ao3=aux; ao4=aux; 
 
%grafcet 1 (valve control) 
m0=(m2)|(m0&~m1); 
m1=(m0&di1)|(m1&~m2); 
m2=(m1&~di2)|(m2&~m0); 
%grafcet 2 (counter reset) 
m10=(m11)|(m10&~m11); 
m11=(m10&di3)|(m11&~m10); 
 
%Counter Siemens (CTU) 
%counter actualization 
if m1==1 & ~m1_a 
    c1=c1+1; 
end 
%counter set 
if c1==8 
    c1_bin=1; 
end 
%counter reset 
if m11 
    c1=0; 
    c1_bin=0; 
end 
 
%Timer SIEMENS (on-delay) 
%Start timer 
if c1_bin & t1_start==0 
    t1_start=1;   
    t1_end_time=clock_in+1; 
end 
%Timer ON 
if t1_start &clock_in>=t1_end_time 
    t1_bin=1; 
end 
%Timer OFF 
if ~c1_bin 
    t1_bin=0; 
    t1_start=0; 
end 
 
%Output generation 
do1=m1; 
do2=c1_bin; 
do3=t1_bin; 
ao1=c1; 
ao2=ai1; 
%GRAFCET previous steps actualization 
m0_a=m0; 
m1_a=m1; 
m2_a=m2; 
m3_a=m3; 
m10_a=m10; 
m11_a=m11; 
output=[do1 do2 do3 do4 do5 do6 ao1 ao2 ao3 ao4]; 

(3) 
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6. Conclusions 
 

A new approach for testing PLC control programs for teaching automation and PLC-
controlled processes was presented. This approach is based on the Matlab/Simulink 
software language. The PLC control program is translated into a Matlab function block, 
within the Matlab/Simulink environment, which will act over the model of the industrial 
process as long as the simulation runs. The developed translation package automatically 
translates the PLC control program, written as an instruction list, into Matlab/Simulink 
software language. The translation package produces a m-file, obtained by applying a set of 
translation rules that convert the PLC instruction list into Matlab language. This m-file is 
integrated into the Matlab/Simulink process simulation as a function block named ‘PLC 
Control Program’. 
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1. Introduction

TORSCHE (Time Optimization of Resources, SCHEduling) Scheduling Toolbox for Matlab
is a freely (GNU GPL) available toolbox developed at the Czech Technical University in
Prague. The toolbox is designed for researches in operational research or industrial engi-
neering and for undergraduate courses. The current version of the toolbox covers the fol-
lowing areas: scheduling on monoprocessor/dedicated processors/parallel processors, open
shop/flow shop/job shop scheduling, cyclic scheduling and real-time scheduling. Further-
more, particular attention is dedicated to graphs and graph algorithms due to their large in-
terconnection with the scheduling theory. The toolbox offers a transparent representation of
the scheduling/graph problems, various scheduling/graph algorithms, a useful graphical ed-
itor of graphs, interfaces for mathematical solvers (Integer Linear Programming, satisfiability
of the boolean expression) and an interface to a MATLAB/Simulink based simulator and a vi-
sualization tool. The scheduling problems and algorithms are categorized by notation (α|β|γ)
proposed by Graham and Błażewicz (Blazewicz et al., 1983). This notation, widely used in
the scheduling community, greatly facilitates the presentation and discussion of scheduling
problems.
The toolbox is supplemented by several examples of real applications, e.g. the schedul-
ing of Digital Signal Processing (DSP) algorithms on a hardware architecture with pipelined
arithmetic units, scheduling the movements of hoists in a manufacturing environment and
scheduling of light controlled intersections in urban traffic. The toolbox is equipped with sets
of benchmarks from the research community (e.g. DSP algorithms, the Quadratic Assignment
Problem). TORSCHE is an open-source tool available at (http://rtime.felk.cvut.cz/
scheduling-toolbox/)
In the off-line scheduling area, some tools for the development of scheduling algorithms al-
ready exist. The term off-line scheduling means all parameters of the scheduling problem
are known a priori (Pinedo, 2008). A scheduling system developed at the Stern School of
Business is called LEKIN (Pinedo et al., 2002). It was created as an educational tool and it
provides six basic workspace environments: single machine, parallel machines, flow shop,
flexible flow shop, job shop, and flexible job shop. Another tool is LiSA (Andresen et al.,
2003). It is a software-package for entering, editing and solving off-line scheduling problems
while the main focus is on shop-scheduling and one-machine problems. The graphical user
interface is written in Tcl/Tk for machine and operating system independence. All algorithms
are implemented externally while the parameters are passed through files. The commercial
tool ILOG Scheduler from the software package ILOG CP Optimizer (ILOG, 2009) is based on
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Fig. 1. TORSCHE architecture by the UML Class Diagram

Input variables correspond to the public class properties. Variables contained inside the
square brackets are optional. The class Task provides the following properties (also graphi-
cally depicted in Fig. 2):

Processing time (ProcTime, pj) is time necessary for task execution (also called computa-
tion time).

Release date (ReleaseTime, rj) is the moment at which a task becomes ready for execution
(also called the arrival time, ready time, request time).

Deadline (Deadline, d̃j) specifies a time limit by which the task has to be completed, oth-
erwise the scheduling is assumed to fail.

Due date (Duedate, dj) specifies a time limit by which the task should be completed, other-
wise the criterion function is charged by a penalty.

Weight (Weight) expresses the priority of the task with respect to other tasks (also called the
priority).

Processor (Processor) specifies the dedicated processors on which the task must be exe-
cuted.

The resulting schedule is represented by the following properties:

Start time (schStart, sj) is the time when the execution of the task is started.

Completion time (cj) is the time when the execution of the task is finished.

Lateness Lj = cj − dj.

Tardiness Dj = max{cj − dj, 0}.

constraints programming. It provides extensions for scheduling problems in manufacturing,
transportation and workforce scheduling.
There are more tools for on-line scheduling, where on-line means the parameters of the tasks
become known on the task arrival/occur. One example is the MAST tool (Gonzalez et al.,
2008) built to mainly support the timing analysis of real-time applications. A tool with close
relationship to this category is TrueTime (Andersson et al., 2005), which is a Matlab/Simulink
based discrete-events simulator mainly focused on real-time control systems.
The TORSCHE toolbox is mostly based on the existing well-known scheduling algorithms, but
some of them were developed by our group. It is a very convenient platform for sharing ideas
and algorithms among researchers and students. The toolbox has become part of a textbook
for courses in scheduling (Pinedo, 2008). Our objective for developing TORSCHE was to fill
the gap in the available tools for scheduling and optimization.
This chapter is organized as follows: Section 2 outlines the toolbox architecture. Section 3 sum-
marizes the selected scheduling algorithms from the toolbox, with their practical applications.
The first two algorithms are selected from the scheduling for the digital signal processing area.
The first algorithm uses the problem formulation by satisfiability of the boolean expressions
(SAT). The second one solves a cyclic scheduling problem by Integer Linear Programming
(ILP). Moreover, the subsection demonstrates how the results of the scheduling can be simu-
lated in Matlab Simulink using TrueTime. The third algorithm shows an original application
of the minimum cost multi-commodity flow problem on the scheduling of light controlled
intersections in urban traffic. The last application is focused on the graphic visualization of
the scheduling results based on the Matlab Virtual Reality toolbox demonstrated on the hoist
scheduling problem. Section 4 concludes the chapter.

2. Tool Architecture and Basic Notation

TORSCHE Scheduling Toolbox is written in the Matlab object oriented programming lan-
guage (backward compatible with Matlab environment version 2007) and it is used in the
Matlab environment as a toolbox. The toolbox includes two complementary parts. The first
one is intended for solving problems from scheduling theory. Problems from this area or their
parts can, very often, be reformulated to another problem which can be directly solved by a
graph algorithm. For this purpose the second part of the toolbox is dedicated to graph theory
algorithms.

2.1 Scheduling Part
The main classes of the scheduling part are Task, PTask, Taskset and Problem. The UML class
diagram illustrating the class relationships is shown in Fig. 1. A task represented by the class
of the same name is a unit of work to be scheduled on the given set of processors. The class in-
cludes task parameters as processing time, release date, deadline, etc. The instance of the class
(variable T1 depicted below) is returned by the constructor method, which has the following
syntax rule:

T1 = task([Name,]ProcTime[,ReleaseTime[,Deadline ...
[,DueDate[,Weight[,Processor]]]]])
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erwise the scheduling is assumed to fail.

Due date (Duedate, dj) specifies a time limit by which the task should be completed, other-
wise the criterion function is charged by a penalty.

Weight (Weight) expresses the priority of the task with respect to other tasks (also called the
priority).

Processor (Processor) specifies the dedicated processors on which the task must be exe-
cuted.

The resulting schedule is represented by the following properties:

Start time (schStart, sj) is the time when the execution of the task is started.

Completion time (cj) is the time when the execution of the task is finished.

Lateness Lj = cj − dj.

Tardiness Dj = max{cj − dj, 0}.

constraints programming. It provides extensions for scheduling problems in manufacturing,
transportation and workforce scheduling.
There are more tools for on-line scheduling, where on-line means the parameters of the tasks
become known on the task arrival/occur. One example is the MAST tool (Gonzalez et al.,
2008) built to mainly support the timing analysis of real-time applications. A tool with close
relationship to this category is TrueTime (Andersson et al., 2005), which is a Matlab/Simulink
based discrete-events simulator mainly focused on real-time control systems.
The TORSCHE toolbox is mostly based on the existing well-known scheduling algorithms, but
some of them were developed by our group. It is a very convenient platform for sharing ideas
and algorithms among researchers and students. The toolbox has become part of a textbook
for courses in scheduling (Pinedo, 2008). Our objective for developing TORSCHE was to fill
the gap in the available tools for scheduling and optimization.
This chapter is organized as follows: Section 2 outlines the toolbox architecture. Section 3 sum-
marizes the selected scheduling algorithms from the toolbox, with their practical applications.
The first two algorithms are selected from the scheduling for the digital signal processing area.
The first algorithm uses the problem formulation by satisfiability of the boolean expressions
(SAT). The second one solves a cyclic scheduling problem by Integer Linear Programming
(ILP). Moreover, the subsection demonstrates how the results of the scheduling can be simu-
lated in Matlab Simulink using TrueTime. The third algorithm shows an original application
of the minimum cost multi-commodity flow problem on the scheduling of light controlled
intersections in urban traffic. The last application is focused on the graphic visualization of
the scheduling results based on the Matlab Virtual Reality toolbox demonstrated on the hoist
scheduling problem. Section 4 concludes the chapter.

2. Tool Architecture and Basic Notation

TORSCHE Scheduling Toolbox is written in the Matlab object oriented programming lan-
guage (backward compatible with Matlab environment version 2007) and it is used in the
Matlab environment as a toolbox. The toolbox includes two complementary parts. The first
one is intended for solving problems from scheduling theory. Problems from this area or their
parts can, very often, be reformulated to another problem which can be directly solved by a
graph algorithm. For this purpose the second part of the toolbox is dedicated to graph theory
algorithms.

2.1 Scheduling Part
The main classes of the scheduling part are Task, PTask, Taskset and Problem. The UML class
diagram illustrating the class relationships is shown in Fig. 1. A task represented by the class
of the same name is a unit of work to be scheduled on the given set of processors. The class in-
cludes task parameters as processing time, release date, deadline, etc. The instance of the class
(variable T1 depicted below) is returned by the constructor method, which has the following
syntax rule:

T1 = task([Name,]ProcTime[,ReleaseTime[,Deadline ...
[,DueDate[,Weight[,Processor]]]]])
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the required scheduling problem. The output parameter is an instance of the Taskset class
containing the resulting schedule. A typical syntax of the scheduling algorithm call is:

TSout = algorithmname(TS,problem[,processors[,parameters]])

where:

TSout is the instance of the Taskset with the resulting schedule,
algorithmname is the algorithm name,
TS is the instance of the Taskset to be scheduled,
problem is the instance of the Problem class,
processors is the number of processors to be used,
parameters denotes additional parameters, e.g. algorithm strategy, etc.

The typical workflow of a scheduling problem solution is shown in a UML Interaction
Overview Diagram (see Fig. 3). There are several sequence diagrams (sd) used. The first two
“Create Taskset 1” and “Create Taskset 2” show the constitution of a Taskset instance by both
of the above described ways. The third one, called “Classification”, shows the constitution
of a Problem instance. The following sequence diagram “Scheduling” presents the call of the
scheduling algorithm. The scheduling algorithm is described separately in the “Scheduling
Algorithm” diagram, which is divided into three parts. The first one is checking of the input
parameters (“Read Properties”). The second one is constituted by the solver of a schedul-
ing algorithm and the final part stores the resulting schedule into the instance of the Taskset
(“Schedule to the Tasks”). The last diagram “Gantt Chart” presents the final schedule conver-
sion to a Gantt chart, i.e. the graphical representation of a schedule.
Furthermore, the toolbox contains objects to handle problems like open shop, flow shop and
job shop, it also supports limited buffers and transport robots. For more details please see the
toolbox documentation (Kutil et al., 2007).

2.2 Graph Part
A number of scheduling problems can be solved with the assistance of the graph theory.
Therefore, the second part of the toolbox is aimed at graph theory algorithms. All algorithms
are available as a method of the main class Graph which is used to describe the directed graph.
There are several different ways to create an instance of the class Graph. The graph is generally
described by an adjacency matrix. In this case, the Graph object is created by the command
with the following syntax:

G = graph(’adj’,A)

where the variable A is an adjacency matrix. Similarly, it is possible to create the Graph by an
incidence matrix. Another way how to create the Graph object is based on a matrix of edge
weights.
The toolbox is equipped with a simple but powerful editor of graphs called Graphedit based on
the System Handle Graphics of Matlab. It provides a simple and intuitive way to construct di-
rected graphs with various user parameters on nodes and edges. (see Fig. 4). The constructed
graph can be easily used to create an instance of the class Graph which can be exported to the
Matlab workspace or saved to a binary mat-file. In addition, Graphedit contains a system of
plug-ins which allow one to extend its functionality by the user.

Fig. 2. Graphic representation of the task parameters

The private properties of the class Task are mainly intended for the final task schedule repre-
sentation, which are set up inside the scheduling algorithms (e.g. by method add_scht). The
values from the private properties are used, for example, by the method plot for the Gantt
chart drawing.
Class PTask (see Fig. 1) is a derived class from the Task class in order to represent a periodic
task in on-line scheduling problems (e.g. in response-time analysis). This class extends the
Task class with support to store, plot and analyze the utilization methods.
The instances of the classes Task and PTask can be aggregated into a set of tasks. A set of tasks
is represented by the class Taskset which can be obtained as the return value of the constructor
taskset, for example:

TS = taskset(tasks[,prec])

where the variable tasks is an array of instances of the Task class. Furthermore, the relations
between the tasks can be defined by precedence constraints in the optional parameter prec.
The parameter prec is an adjacency matrix defining a graph where the nodes correspond to
the tasks and the edges are precedence constraints between these tasks. For simple scheduling
problems, the object Taskset can be directly created from a vector of the tasks processing times.
In this case, the tasks are created automatically inside the object constructor. There are also
other ways how to create an instance of the set of tasks in order to simplify the user interface
as much as possible.
Another class, Problem, is used for the classification of deterministic scheduling problems in
Graham and Błażewicz notation (Blazewicz et al., 1983). This notation consists of three parts
(α|β|γ). The first part describes the processor environment (e.g. number and type of proces-
sors), the second part describes the task characteristics of the scheduling problem (e.g. prece-
dence constrains, release time). The last part denotes the optimality criterion (e.g. schedule
makespan minimization). The following example shows the notation string used as an input
to the class constructor:

prob = problem(’P|prec|Cmax’)

This instance of the class Problem represents the scheduling problem on parallel identical
processors where the tasks have precedence constraints and the objective is to minimize the
schedule makespan.
All of the above-mentioned classes are designed to be maximally effective for users and devel-
opers of scheduling algorithms. The toolbox includes dozens of scheduling algorithms which
are stored as Matlab functions with at least two input parameters and at least one output pa-
rameter. The first input parameter has to be an instance of the Taskset class containing the
tasks to be scheduled. The second one has to be an instance of the Problem class describing
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the required scheduling problem. The output parameter is an instance of the Taskset class
containing the resulting schedule. A typical syntax of the scheduling algorithm call is:

TSout = algorithmname(TS,problem[,processors[,parameters]])

where:

TSout is the instance of the Taskset with the resulting schedule,
algorithmname is the algorithm name,
TS is the instance of the Taskset to be scheduled,
problem is the instance of the Problem class,
processors is the number of processors to be used,
parameters denotes additional parameters, e.g. algorithm strategy, etc.

The typical workflow of a scheduling problem solution is shown in a UML Interaction
Overview Diagram (see Fig. 3). There are several sequence diagrams (sd) used. The first two
“Create Taskset 1” and “Create Taskset 2” show the constitution of a Taskset instance by both
of the above described ways. The third one, called “Classification”, shows the constitution
of a Problem instance. The following sequence diagram “Scheduling” presents the call of the
scheduling algorithm. The scheduling algorithm is described separately in the “Scheduling
Algorithm” diagram, which is divided into three parts. The first one is checking of the input
parameters (“Read Properties”). The second one is constituted by the solver of a schedul-
ing algorithm and the final part stores the resulting schedule into the instance of the Taskset
(“Schedule to the Tasks”). The last diagram “Gantt Chart” presents the final schedule conver-
sion to a Gantt chart, i.e. the graphical representation of a schedule.
Furthermore, the toolbox contains objects to handle problems like open shop, flow shop and
job shop, it also supports limited buffers and transport robots. For more details please see the
toolbox documentation (Kutil et al., 2007).

2.2 Graph Part
A number of scheduling problems can be solved with the assistance of the graph theory.
Therefore, the second part of the toolbox is aimed at graph theory algorithms. All algorithms
are available as a method of the main class Graph which is used to describe the directed graph.
There are several different ways to create an instance of the class Graph. The graph is generally
described by an adjacency matrix. In this case, the Graph object is created by the command
with the following syntax:

G = graph(’adj’,A)

where the variable A is an adjacency matrix. Similarly, it is possible to create the Graph by an
incidence matrix. Another way how to create the Graph object is based on a matrix of edge
weights.
The toolbox is equipped with a simple but powerful editor of graphs called Graphedit based on
the System Handle Graphics of Matlab. It provides a simple and intuitive way to construct di-
rected graphs with various user parameters on nodes and edges. (see Fig. 4). The constructed
graph can be easily used to create an instance of the class Graph which can be exported to the
Matlab workspace or saved to a binary mat-file. In addition, Graphedit contains a system of
plug-ins which allow one to extend its functionality by the user.

Fig. 2. Graphic representation of the task parameters
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sentation, which are set up inside the scheduling algorithms (e.g. by method add_scht). The
values from the private properties are used, for example, by the method plot for the Gantt
chart drawing.
Class PTask (see Fig. 1) is a derived class from the Task class in order to represent a periodic
task in on-line scheduling problems (e.g. in response-time analysis). This class extends the
Task class with support to store, plot and analyze the utilization methods.
The instances of the classes Task and PTask can be aggregated into a set of tasks. A set of tasks
is represented by the class Taskset which can be obtained as the return value of the constructor
taskset, for example:

TS = taskset(tasks[,prec])

where the variable tasks is an array of instances of the Task class. Furthermore, the relations
between the tasks can be defined by precedence constraints in the optional parameter prec.
The parameter prec is an adjacency matrix defining a graph where the nodes correspond to
the tasks and the edges are precedence constraints between these tasks. For simple scheduling
problems, the object Taskset can be directly created from a vector of the tasks processing times.
In this case, the tasks are created automatically inside the object constructor. There are also
other ways how to create an instance of the set of tasks in order to simplify the user interface
as much as possible.
Another class, Problem, is used for the classification of deterministic scheduling problems in
Graham and Błażewicz notation (Blazewicz et al., 1983). This notation consists of three parts
(α|β|γ). The first part describes the processor environment (e.g. number and type of proces-
sors), the second part describes the task characteristics of the scheduling problem (e.g. prece-
dence constrains, release time). The last part denotes the optimality criterion (e.g. schedule
makespan minimization). The following example shows the notation string used as an input
to the class constructor:

prob = problem(’P|prec|Cmax’)

This instance of the class Problem represents the scheduling problem on parallel identical
processors where the tasks have precedence constraints and the objective is to minimize the
schedule makespan.
All of the above-mentioned classes are designed to be maximally effective for users and devel-
opers of scheduling algorithms. The toolbox includes dozens of scheduling algorithms which
are stored as Matlab functions with at least two input parameters and at least one output pa-
rameter. The first input parameter has to be an instance of the Taskset class containing the
tasks to be scheduled. The second one has to be an instance of the Problem class describing
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Fig. 4. Graphedit

Moreover, due to the close relationship between the scheduling and graph algorithms, each
object Graph can be transformed to an object Taskset and vice versa. Obviously, the nodes from
the graph are transformed to the tasks in the Taskset and the edges are transformed to the
precedence constraints and vice versa according to the user specification.

3. Implemented algorithms

The biggest part of the toolbox is constituted by scheduling algorithms. There are a large
variety of algorithms solving both simple problems (on a single processor) and practically
oriented issues. This section shows several of them demonstrated on real applications.

3.1 List Scheduling Algorithm
List Scheduling (LS) is a basic and popular heuristic algorithm applicable on scheduling of set
of tasks on a single and parallel processors as well. In this algorithm the tasks are ordered in a
pre-specified list defining their priority. Whenever a processor becomes idle, the first available
task on the list is scheduled and removed from the list. Where the availability of a task means
that the task has been released and if there are precedence constraints, all its predecessors
have already been processed (Leung, 2004). The algorithm terminates when all tasks from the
list are scheduled. Its time complexity is O(n).
The accuracy of the algorithm depends on the order in which tasks appear on the list. There
are many strategies defining the order of tasks in the list, e.g. the Earliest Starting Time first
(EST), the Earliest Completion Time first (ECT), the Longest Processing Time first (LPT), the
Shortest Processing Time first (SPT) etc. The appropriate choose of the strategy depends on
the particular scheduling instance.
The List Scheduling algorithm is implemented in TORSCHE Scheduling Toolbox under func-
tion listsch which also allows to choice one of the implemented strategy defining the order
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Fig. 3. UML Interaction Overview Diagram of a typical toolbox workflow of the scheduling
problem solution
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that the task has been released and if there are precedence constraints, all its predecessors
have already been processed (Leung, 2004). The algorithm terminates when all tasks from the
list are scheduled. Its time complexity is O(n).
The accuracy of the algorithm depends on the order in which tasks appear on the list. There
are many strategies defining the order of tasks in the list, e.g. the Earliest Starting Time first
(EST), the Earliest Completion Time first (ECT), the Longest Processing Time first (LPT), the
Shortest Processing Time first (SPT) etc. The appropriate choose of the strategy depends on
the particular scheduling instance.
The List Scheduling algorithm is implemented in TORSCHE Scheduling Toolbox under func-
tion listsch which also allows to choice one of the implemented strategy defining the order

:Taskset
taskset()

task()
:Task

sd Create Taskset 1
user at Matlab

command line

:Taskset
taskset()

task()
:Task

sd Create Taskset 2

loop

loop

simple taskset definition complex taskset definition

:Problem
problem()

sd Classification

Scheduling
Algorithm

ref

:Taskset
get()

get()

:Task

sd Read Properties

loop

Algorithm

Scheduling Algorithm Solverref

:Taskset :Task

sd Schedule to the Tasks

loop

Algorithm
add schedule()

add scht()

invalid input
instances

sd Scheduling Algorithm

valid input instances

Algorithm

algorithmname()

sd Scheduling

:Taskset
plot()

sd Gantt Chart

no-exist schedule

sd Scheduling Part of Toolbox Use

:Task

plot()loop

Fig. 3. UML Interaction Overview Diagram of a typical toolbox workflow of the scheduling
problem solution



Matlab - Modelling, Programming and Simulations246

2. Define precedence constraints by adjacency matrix prec. Matrix has size n × n where
n is the number of tasks.

>> prec = [0 0 0 0 0 1 0 0;...
0 0 0 0 0 1 0 0;...
0 0 0 0 0 1 0 0;...
0 0 0 0 0 1 0 0;...
0 0 0 0 0 1 0 0;...
0 0 0 0 0 0 0 1;...
0 0 0 0 0 0 0 1;...
0 0 0 0 0 0 0 0];

3. Create an object of taskset from recently defined objects.

>> T = taskset([T1 T2 T3 T4 T5 T6 T7 T8],prec)
Set of 8 tasks
There are precedence constraints

4. Define solved problem.

>> p = problem(’P|rj,prec|Cmax’)
P|rj,prec|Cmax

5. Call the List Scheduling algorithm on taskset Twhere the scheduling problem is defined
by object p and number of processors available for manufacturing is equal to 2. The
algorithm use the Shortest Processing Time first (SPT) strategy.

>> TS = listsch(T,p,2,’SPT’)
Set of 8 tasks
There are precedence constraints
There is schedule: List Scheduling

Solving time: 0.1404s

6. Display the final schedule by standard plot function, see Fig. 6.

>> plot(TS)
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Fig. 6. The chair manufacturing schedule

3.2 Scheduling on Parallel Identical Processors
This section presents a SAT (satisfiability of boolean expression) based algorithm for the
scheduling problem P|prec|Cmax, i.e. the scheduling of tasks with precedence constraints on
the set of parallel identical processors while minimizing the schedule makespan. The main
idea is to formulate the scheduling problem in the form of CNF (conjunctive normal form)
clauses (Crama & Hammer, 2006; Memik & Fallah, 2002).
In the case of the P|prec|Cmax problem, each CNF clause is a function of the boolean variables
in the form xijk. If the task Ti is started at time unit j on the processor k then xijk = true, other-
wise xijk = f alse. For each task Ti, where i = 1 . . . n, there are S × R Boolean variables, where
S denotes the maximum number of time units and R denotes the total number of processors.

of tasks. Furthermore, the algorithm steps can be displayed in the MABLAB workspace by
enabling the verbose mode. Moreover, the last algorithm version is able to solve scheduling
problems on unrelated parallel processors. The syntax of listsch function is:

TS = listsch(T, problem, processors[, strategy][, verbose])
TS = listsch(T, problem, processors[, option])

where:
T is the instance of the Taskset class without schedule,
TS is the instance of the Taskset class with schedule,
problem is the instance of the Problem class,
processors is the number of processors,
strategy is the strategy (like LPT, SPT, EST, . . . ),
verbose is a level of verbosity,
option is the optimization option setting.
This subsection concludes by an example. The example solves a problem of a chair manu-
facturing by two workers (cabinetmakers). Their goal is to make four legs, one seat and one
backrest of the chair and assembly all of these parts within minimal time. Release time of the
task representing the backrest making is equal to 20 time units. Moreover, the assemblage is
divided into two stages (assembly1/2 and assembly2/2). Fig. 5 shows the representation of the
mentioned problem instance by a graph.

leg2leg1 leg3 leg4 seat

assembly1/2

assembly2/2

backrest
p=6 p=6 p=6 p=6 p=15 p r=25, =20

p=15
p=15

Fig. 5. Graph representing the chair manufacturing

Solution of the scheduling problem is shown in the following steps:
1. Create desired tasks.

>> T1 = task(’leg1’,6)
Task "leg1"
Processing time: 6
Release time: 0

>> T2 = task(’leg2’,6);
>> T3 = task(’leg3’,6);
>> T4 = task(’leg4’,6);
>> T5 = task(’seat’,6);
>> T6 = task(’backrest’,25,20);
>> T7 = task(’assembly1/2’,15);
>> T8 = task(’assembly2/2’,15);
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2. Define precedence constraints by adjacency matrix prec. Matrix has size n × n where
n is the number of tasks.

>> prec = [0 0 0 0 0 1 0 0;...
0 0 0 0 0 1 0 0;...
0 0 0 0 0 1 0 0;...
0 0 0 0 0 1 0 0;...
0 0 0 0 0 1 0 0;...
0 0 0 0 0 0 0 1;...
0 0 0 0 0 0 0 1;...
0 0 0 0 0 0 0 0];

3. Create an object of taskset from recently defined objects.

>> T = taskset([T1 T2 T3 T4 T5 T6 T7 T8],prec)
Set of 8 tasks
There are precedence constraints

4. Define solved problem.

>> p = problem(’P|rj,prec|Cmax’)
P|rj,prec|Cmax

5. Call the List Scheduling algorithm on taskset Twhere the scheduling problem is defined
by object p and number of processors available for manufacturing is equal to 2. The
algorithm use the Shortest Processing Time first (SPT) strategy.

>> TS = listsch(T,p,2,’SPT’)
Set of 8 tasks
There are precedence constraints
There is schedule: List Scheduling

Solving time: 0.1404s

6. Display the final schedule by standard plot function, see Fig. 6.

>> plot(TS)
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3.2 Scheduling on Parallel Identical Processors
This section presents a SAT (satisfiability of boolean expression) based algorithm for the
scheduling problem P|prec|Cmax, i.e. the scheduling of tasks with precedence constraints on
the set of parallel identical processors while minimizing the schedule makespan. The main
idea is to formulate the scheduling problem in the form of CNF (conjunctive normal form)
clauses (Crama & Hammer, 2006; Memik & Fallah, 2002).
In the case of the P|prec|Cmax problem, each CNF clause is a function of the boolean variables
in the form xijk. If the task Ti is started at time unit j on the processor k then xijk = true, other-
wise xijk = f alse. For each task Ti, where i = 1 . . . n, there are S × R Boolean variables, where
S denotes the maximum number of time units and R denotes the total number of processors.

of tasks. Furthermore, the algorithm steps can be displayed in the MABLAB workspace by
enabling the verbose mode. Moreover, the last algorithm version is able to solve scheduling
problems on unrelated parallel processors. The syntax of listsch function is:

TS = listsch(T, problem, processors[, strategy][, verbose])
TS = listsch(T, problem, processors[, option])

where:
T is the instance of the Taskset class without schedule,
TS is the instance of the Taskset class with schedule,
problem is the instance of the Problem class,
processors is the number of processors,
strategy is the strategy (like LPT, SPT, EST, . . . ),
verbose is a level of verbosity,
option is the optimization option setting.
This subsection concludes by an example. The example solves a problem of a chair manu-
facturing by two workers (cabinetmakers). Their goal is to make four legs, one seat and one
backrest of the chair and assembly all of these parts within minimal time. Release time of the
task representing the backrest making is equal to 20 time units. Moreover, the assemblage is
divided into two stages (assembly1/2 and assembly2/2). Fig. 5 shows the representation of the
mentioned problem instance by a graph.
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Fig. 5. Graph representing the chair manufacturing

Solution of the scheduling problem is shown in the following steps:
1. Create desired tasks.

>> T1 = task(’leg1’,6)
Task "leg1"
Processing time: 6
Release time: 0

>> T2 = task(’leg2’,6);
>> T3 = task(’leg3’,6);
>> T4 = task(’leg4’,6);
>> T5 = task(’seat’,6);
>> T6 = task(’backrest’,25,20);
>> T7 = task(’assembly1/2’,15);
>> T8 = task(’assembly2/2’,15);
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Fig. 9. The optimal schedule of the Jaumann filter

3.3 Cyclic Scheduling
The subsequent example has its application in digital signal processing (DSP) too but it uses
a cyclic approach. Cyclic scheduling deals with a set of tasks (operations) that have to be per-
formed an infinite number of times (Hanen & Munier, 1995). This approach is also applicable
if the number of loop repetitions is large enough. If the execution of the operations belonging
to different iterations can interleave, the schedule is called overlapped. An overlapped sched-
ule can be more effective especially if processors are pipelined hardware units or precedence
delays are considered. The periodic schedule is a schedule of one iteration that is repeated with
a fixed time interval called a period (also called the initiation interval). The aim is then to find a
periodic schedule with a minimum period (Hanen & Munier, 1995).

3.3.1 The Problem Outline
A DSP algorithm, used as an example, is a wave digital filter (LWDF) (Vesterbacka et al.,
1994). Its computation loop, shown in Fig. 10(a), consists of five tasks. Their processing
times are given by parameters of the used floating point arithmetic library for FPGA (Field-
programmable gate array) circuits.
The operations in a computation loop can be considered as a set of n tasks T = {T1, T2, ... , Tn}
to be performed N times where N is usually very large. One execution of T labeled with the
integer index k ≥ 1 is called an iteration. The scheduling problem is to find a start time si(k)
of every occurrence Ti.
The data dependencies of this problem can be modeled by a directed graph G(V, E). Each
task (node in V) is characterized by the processing time pi. Edge (i, j) ∈ E from the node i
to j is weighted by a couple of integer constants lij and hij. Length lij represents the minimal
distance in clock cycles from the start time of the task Ti to the start time of Tj and is always
greater than zero. Its value corresponds to the input-output latency of the used arithmetic

for k=1 to N do
T1: a(k) = X(k)− c(k − 2)
T2: b(k) = a(k) ∗ α
T3: c(k) = b(k) + X(k)
T4: d(k) = b(k) + c(k − 2)
T5: Y(k) = X(k − 1) + d(k)

end
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>> procTime = [2,2,2,2,2,2,2,3,3,2,2,3,2,3,2,2,2];
>> prec = sparse([6,7,1,11,11,17,3,13,13,15,8,6,2, 9,11,12,17,14,15,2 ,10],...

[1,1,2, 2, 3, 3,4, 4, 5, 5,7,8,9,10,10,11,12,13,14,16,16],...
[1,1,1, 1, 1, 1,1, 1, 1, 1,1,1,1, 1, 1, 1, 1, 1, 1, 1, 1],17,17);

>> TS = taskset(procTime,prec);
>> TS = satsch(TS,problem("P|prec|Cmax"),2)
Set of 17 tasks
There are precedence constraints
There is schedule: SAT solver

SUM solving time: 0.06s
MAX solving time: 0.04s
Number of iterations: 2

>> plot(TS)

Fig. 8. Solution of the scheduling problem P|prec|Cmax in the toolbox

The Boolean variables are constrained by the following three rules: 1. For each task, exactly
one of the S × R variables has to be equal to true. 2. If there are precedence constraints such
that Tu is the predecessor of Tv, then Tv cannot start before the execution of Tu is finished. 3.
At any time unit, there is at most one task executed on a given processor. The rules result in a
set of clauses in CNF generated by the algorithm in the toolbox that are consequently solved
in a selected SAT solver.
The toolbox cooperates with the zChaff solver (Moskewicz et al., 2001) to decide whether the
set of clauses is satisfiable. If it is, the schedule within S time units is feasible. An optimal
schedule is found in an iterative manner. First, the List Scheduling algorithm is used to find
the initial value of S. Then the algorithm iteratively decreases the value of S by one and tests
the feasibility of the solution. The iterative algorithm finishes when the solution is not feasible.
An example of the P|prec|Cmax problem can be taken from the digital signal processing area.
A typical scheduling problem is to optimize the speed of a computation loop, e.g constituting
the Jaumann wave digital filter (de Groot et al., 1992). The goal is to minimize the compu-
tation time of the filter loop, shown as a directed acyclic graph in Fig. 7. The nodes in the
graph represent the tasks (i.e. operations of the loop) and the edges represent the precedence
constraints. The nodes are labeled by the operation type (“+” or “∗”) and processing time pi.
The example in Fig. 7 considers two parallel identical processors, i.e. two general arithmetic
units.
Fig. 8 shows the consecutive steps performed in the toolbox. The first step defines the set of
the tasks with the precedence constraints for the scheduling algorithm satsch. The resulting
schedule is displayed by the plot command. The optimal schedule is depicted in Fig. 9.
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3.3 Cyclic Scheduling
The subsequent example has its application in digital signal processing (DSP) too but it uses
a cyclic approach. Cyclic scheduling deals with a set of tasks (operations) that have to be per-
formed an infinite number of times (Hanen & Munier, 1995). This approach is also applicable
if the number of loop repetitions is large enough. If the execution of the operations belonging
to different iterations can interleave, the schedule is called overlapped. An overlapped sched-
ule can be more effective especially if processors are pipelined hardware units or precedence
delays are considered. The periodic schedule is a schedule of one iteration that is repeated with
a fixed time interval called a period (also called the initiation interval). The aim is then to find a
periodic schedule with a minimum period (Hanen & Munier, 1995).

3.3.1 The Problem Outline
A DSP algorithm, used as an example, is a wave digital filter (LWDF) (Vesterbacka et al.,
1994). Its computation loop, shown in Fig. 10(a), consists of five tasks. Their processing
times are given by parameters of the used floating point arithmetic library for FPGA (Field-
programmable gate array) circuits.
The operations in a computation loop can be considered as a set of n tasks T = {T1, T2, ... , Tn}
to be performed N times where N is usually very large. One execution of T labeled with the
integer index k ≥ 1 is called an iteration. The scheduling problem is to find a start time si(k)
of every occurrence Ti.
The data dependencies of this problem can be modeled by a directed graph G(V, E). Each
task (node in V) is characterized by the processing time pi. Edge (i, j) ∈ E from the node i
to j is weighted by a couple of integer constants lij and hij. Length lij represents the minimal
distance in clock cycles from the start time of the task Ti to the start time of Tj and is always
greater than zero. Its value corresponds to the input-output latency of the used arithmetic

for k=1 to N do
T1: a(k) = X(k)− c(k − 2)
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>> procTime = [2,2,2,2,2,2,2,3,3,2,2,3,2,3,2,2,2];
>> prec = sparse([6,7,1,11,11,17,3,13,13,15,8,6,2, 9,11,12,17,14,15,2 ,10],...

[1,1,2, 2, 3, 3,4, 4, 5, 5,7,8,9,10,10,11,12,13,14,16,16],...
[1,1,1, 1, 1, 1,1, 1, 1, 1,1,1,1, 1, 1, 1, 1, 1, 1, 1, 1],17,17);

>> TS = taskset(procTime,prec);
>> TS = satsch(TS,problem("P|prec|Cmax"),2)
Set of 17 tasks
There are precedence constraints
There is schedule: SAT solver

SUM solving time: 0.06s
MAX solving time: 0.04s
Number of iterations: 2

>> plot(TS)

Fig. 8. Solution of the scheduling problem P|prec|Cmax in the toolbox

The Boolean variables are constrained by the following three rules: 1. For each task, exactly
one of the S × R variables has to be equal to true. 2. If there are precedence constraints such
that Tu is the predecessor of Tv, then Tv cannot start before the execution of Tu is finished. 3.
At any time unit, there is at most one task executed on a given processor. The rules result in a
set of clauses in CNF generated by the algorithm in the toolbox that are consequently solved
in a selected SAT solver.
The toolbox cooperates with the zChaff solver (Moskewicz et al., 2001) to decide whether the
set of clauses is satisfiable. If it is, the schedule within S time units is feasible. An optimal
schedule is found in an iterative manner. First, the List Scheduling algorithm is used to find
the initial value of S. Then the algorithm iteratively decreases the value of S by one and tests
the feasibility of the solution. The iterative algorithm finishes when the solution is not feasible.
An example of the P|prec|Cmax problem can be taken from the digital signal processing area.
A typical scheduling problem is to optimize the speed of a computation loop, e.g constituting
the Jaumann wave digital filter (de Groot et al., 1992). The goal is to minimize the compu-
tation time of the filter loop, shown as a directed acyclic graph in Fig. 7. The nodes in the
graph represent the tasks (i.e. operations of the loop) and the edges represent the precedence
constraints. The nodes are labeled by the operation type (“+” or “∗”) and processing time pi.
The example in Fig. 7 considers two parallel identical processors, i.e. two general arithmetic
units.
Fig. 8 shows the consecutive steps performed in the toolbox. The first step defines the set of
the tasks with the precedence constraints for the scheduling algorithm satsch. The resulting
schedule is displayed by the plot command. The optimal schedule is depicted in Fig. 9.
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function Y=lwdf(X)

%Arithmetic Units Declaration
struct(’operator’,’+’,’number’,2, ...

’proctime’,1,’latency’,1);
struct(’operator’,’*’,’number’,1, ...

’proctime’,1,’latency’,2);

struct(’frequency’,2000000);

%Variables Declaration
K = 10000; alpha = 0.375;
a = zeros(1,K); b = zeros(1,K);
c = zeros(1,K); d = zeros(1,K);
Y = zeros(1,K);

%Iterative Algorithm
for k=3:K

a(k) = X(k) - c(k-2);
b(k) = a(k) * alpha;
c(k) = b(k) + X(k);
d(k) = b(k) + c(k-2);
Y(k) = X(k-1) + d(k);

end

Fig. 13. LWDF algorithm in SubLab

>> [TS,m]=cssimin(dsvffile,schoptions);
>> prob=problem(’CSCH’);
>> TS=cycsch(TS, prob, m, schoptions);
>> plot(TS);
>> cssimout(TS,’simple_init.m’,’code.m’);

Fig. 14. Solution of a cyclic scheduling problem in the toolbox

its code can be both transformed into the Taskset object and directly executed in the Matlab
environment in order to check the iterative loops that were input (see Fig. 13).
Fig. 14 shows how the cyclic scheduling problem can be solved in the toolbox in three steps:
input file parsing (function cssimin), cyclic scheduling (function cycsch) and True-Time
code generation (function cssimout). The simulation is realized so that the scheduled code
is time-exact executed by the TrueTime Kernel block which can be interconnected with other
Matlab/Simulink blocks. It allows one to directly verify the behavior of the scheduled DSP
algorithm interconnected with an appropriate model of the dynamic system.
Furthermore, the scheduling results can be used to generate parallel code for FPGAs in VHDL
language. The concept is the same as for the simulation in TrueTime (see Fig. 12) but the
output is a VHDL file which can be embedded into an FPGA design defining arithmetic units,
interfaces, etc. FPGA code generation is not freely available in TORSCHE.

3.4 Minimum Cost Multi-commodity Flow Problem
Various optimization problems (e.g. routing) from the graph and network flow theory can be
reformulated in terms of a minimum cost multi-commodity flow (MMCF) problem. The objec-
tive of the MMCF is to find the cheapest possible ways of sending a certain amounts of flows
through the network. Therefore, TORSCHE includes a multicommodityflow function.
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units. In our example in Fig. 10(b), the input-output latency of ADD (MUL) unit is 1 (2) clock
cycles. On the other hand, the height hij specifies the shift of the iteration index (dependence
distance) related to the data produced by Ti and read (consumed) by Tj.
Assuming a periodic schedule with the period w (i.e. the constant repetition time of each task),
each edge (i, j) ∈ E represents one precedence relation constraint sj − si ≥ lij − w · hij, where
si denotes the start time of task Ti in the first iteration. Fig. 10(b) shows the data dependence
graph of the computation loop shown in Fig. 10(a). When the number of processors m is
restricted, the cyclic scheduling problem becomes NP–complete (Hanen & Munier, 1995). An
optimal solution of the example from Fig. 10 is shown in Fig. 11.

3.3.2 Solution in the Toolbox
In the toolbox, we formulate this scheduling problem as a problem of Integer Linear Program-
ming (Šůcha & Hanzálek, 2009). In addition, the toolbox provides the possibility to simulate
scheduled iterative loops in Matlab/Simulink using TrueTime tool (Andersson et al., 2005).
The idea is depicted in Fig. 12. An instance of this scheduling problem (Taskset object) can be
created manually but it can be generated automatically from a DSP algorithm and HW de-
scription in SubLab, a language compatible with Matlab. The main advantage of SubLab is that
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function Y=lwdf(X)

%Arithmetic Units Declaration
struct(’operator’,’+’,’number’,2, ...

’proctime’,1,’latency’,1);
struct(’operator’,’*’,’number’,1, ...
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its code can be both transformed into the Taskset object and directly executed in the Matlab
environment in order to check the iterative loops that were input (see Fig. 13).
Fig. 14 shows how the cyclic scheduling problem can be solved in the toolbox in three steps:
input file parsing (function cssimin), cyclic scheduling (function cycsch) and True-Time
code generation (function cssimout). The simulation is realized so that the scheduled code
is time-exact executed by the TrueTime Kernel block which can be interconnected with other
Matlab/Simulink blocks. It allows one to directly verify the behavior of the scheduled DSP
algorithm interconnected with an appropriate model of the dynamic system.
Furthermore, the scheduling results can be used to generate parallel code for FPGAs in VHDL
language. The concept is the same as for the simulation in TrueTime (see Fig. 12) but the
output is a VHDL file which can be embedded into an FPGA design defining arithmetic units,
interfaces, etc. FPGA code generation is not freely available in TORSCHE.

3.4 Minimum Cost Multi-commodity Flow Problem
Various optimization problems (e.g. routing) from the graph and network flow theory can be
reformulated in terms of a minimum cost multi-commodity flow (MMCF) problem. The objec-
tive of the MMCF is to find the cheapest possible ways of sending a certain amounts of flows
through the network. Therefore, TORSCHE includes a multicommodityflow function.
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units. In our example in Fig. 10(b), the input-output latency of ADD (MUL) unit is 1 (2) clock
cycles. On the other hand, the height hij specifies the shift of the iteration index (dependence
distance) related to the data produced by Ti and read (consumed) by Tj.
Assuming a periodic schedule with the period w (i.e. the constant repetition time of each task),
each edge (i, j) ∈ E represents one precedence relation constraint sj − si ≥ lij − w · hij, where
si denotes the start time of task Ti in the first iteration. Fig. 10(b) shows the data dependence
graph of the computation loop shown in Fig. 10(a). When the number of processors m is
restricted, the cyclic scheduling problem becomes NP–complete (Hanen & Munier, 1995). An
optimal solution of the example from Fig. 10 is shown in Fig. 11.

3.3.2 Solution in the Toolbox
In the toolbox, we formulate this scheduling problem as a problem of Integer Linear Program-
ming (Šůcha & Hanzálek, 2009). In addition, the toolbox provides the possibility to simulate
scheduled iterative loops in Matlab/Simulink using TrueTime tool (Andersson et al., 2005).
The idea is depicted in Fig. 12. An instance of this scheduling problem (Taskset object) can be
created manually but it can be generated automatically from a DSP algorithm and HW de-
scription in SubLab, a language compatible with Matlab. The main advantage of SubLab is that
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Fig. 15. Traffic region model

In the second step, the multicommodity flow method in the following form is called:

>> Gm = multicommodityflow(G,source,sink,b)

where the vectors source, sink and b define the required multi-commodity flow as is it
described above. These variables are shown in Table 1. The graph Gm includes an assignment
of optimal multi-commodity flow to the edges. We assume the drivers make their decision in
a similar way. Table 2 shows a part of the assignment fi(u, v) : u = 6 ∨ v = 6. The complete
result can be obtained from the Graph object by the command:

>> F = get(Gm,’edl’)

3.4.2 Tasks Definition for Intersection
In the last step, the phase j split τvj and the offset ϕuv for each light controlled intersection
v ∈ V are found. Continuous vehicle flow from the street (u, v) over a given number of in-
tersection phases can be formalized as one task Tuv from the scheduling theory point of view.
The number of phases is given by the urban architecture of the intersection and by the inter-
section control strategy. The processing time puv of task Tuv is calculated by Algorithm 1 (Part
of the Algorithm shows the solution of the consecutive steps in TORSCHE for intersection 6).
This algorithm computes the processing time from the assignment of MMCF fi(u, v), from the
control period P and from the precedence constraints of the tasks (defined by the intersection
control strategy).

The MMCF problem is defined by a directed flow network graph G(V, E), where the edge
(u, v) ∈ E from node u ∈ V to node v ∈ V has a capacity cuv and a cost auv. There are ψ
commodities K1, K2, . . . , Kψ defined by Ki = (sourcei, sinki, bi) where sourcei and sinki stand
for source and sink node of commodity i, and bi is the volume of the demand. The flow of
commodity i along the edge (u, v) is fi(u, v). The objective is to find an assignment of the

flow fi(u, v) which minimizes the total cost J = ∑∀(u,v)∈E

(
auv · ∑

ψ
i=1 fi(u, v)

)
and satisfies

the following constraints:

∑
ψ
i=1 fi(u, v) ≤ cuv ∀(u, v) ∈ E,

∑u∈V fi(u, w) = ∑v∈V fi(w, v) w ∈ V \ {sourcei, sinki},
∀i = 1 . . . ψ,

∑w∈V fi(sourcei, w) = ∑w∈V fi(w, sinki) = bi ∀i = 1 . . . ψ.

The function multicommodityflow solves MMCF problem by the transformation to the
linear programming problem (Korte & Vygen, 2006).

3.4.1 Example of the Urban Traffic Scheduling
As an example, we show how to find the time schedule for light-controlled intersections in a
urban traffic region in Prague by the TORSCHE toolbox.
The light controlled intersections are characterized by several parameters: the number of light
phases, phase split, offset time and a list of streets from which the vehicles flow (Guberinić
et al., 2008). The term phase means state of traffic lights on the intersection. The number
of phases and the list of streets are partially given by the urban architecture of the intersec-
tion and partially by the intersection control strategy (i.e. one-way street, directional roadway
marking). Both of these parameters are constant. On the other hand, the split and offset can be
changed dynamically during a day. The split τvj defines the time interval of phase j for which
the vehicle flow can go through the intersection v from one or more streets (Papageorgiou
et al., 2003). The offset ϕuv is a certain time delay between phases of two successive intersec-
tions u and v. When the offset is zero, all lights in the region turn on and off at the same time.
It is called the synchronized strategy. In the green wave strategy, the traffic light changes with
time delay between the light phases of two successive intersections. As a result, signals switch
as the green wave (Nagatani, 2007).
The goal is to find the offset ϕuv respecting the green wave strategy and the split τvj which
minimizes the total cost J and considers a constant control period Pv = ∑∀j τvj of intersection v
such that P1 = P2 = · · · = P.
For the first step, a traffic region is modeled as an oriented graph G(V, E). Nodes V of the
graph represent the intersections and edges E represent the streets. See Fig. 15 where the
Graphedit tool of TORSCHE is utilized to construct the graph. Sink and source nodes are drawn
as rectangles. The edges include two parameters; the first one is cost auv and the second one
is capacity cuv of the street (u, v). The cost is given by the street length in meters. The capacity
of the street is given by the number of lanes �uv in the street as cuv = �uv ·Wuv/l where Wuv is
a maximal allowed vehicle speed in the street in ms−1 and l is the unit vehicle length including
distance between vehicles. Let us assume that, in our case, the speed is Wuv = 13.8 ms−1

(50 km/h) and the unit vehicle length is l = 5 m, then the capacity of one lane street is 2.8 s−1.
The final graph is exported from the Graphedit tool to the Matlab workspace as graph object G.
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In the second step, the multicommodity flow method in the following form is called:

>> Gm = multicommodityflow(G,source,sink,b)

where the vectors source, sink and b define the required multi-commodity flow as is it
described above. These variables are shown in Table 1. The graph Gm includes an assignment
of optimal multi-commodity flow to the edges. We assume the drivers make their decision in
a similar way. Table 2 shows a part of the assignment fi(u, v) : u = 6 ∨ v = 6. The complete
result can be obtained from the Graph object by the command:

>> F = get(Gm,’edl’)

3.4.2 Tasks Definition for Intersection
In the last step, the phase j split τvj and the offset ϕuv for each light controlled intersection
v ∈ V are found. Continuous vehicle flow from the street (u, v) over a given number of in-
tersection phases can be formalized as one task Tuv from the scheduling theory point of view.
The number of phases is given by the urban architecture of the intersection and by the inter-
section control strategy. The processing time puv of task Tuv is calculated by Algorithm 1 (Part
of the Algorithm shows the solution of the consecutive steps in TORSCHE for intersection 6).
This algorithm computes the processing time from the assignment of MMCF fi(u, v), from the
control period P and from the precedence constraints of the tasks (defined by the intersection
control strategy).

The MMCF problem is defined by a directed flow network graph G(V, E), where the edge
(u, v) ∈ E from node u ∈ V to node v ∈ V has a capacity cuv and a cost auv. There are ψ
commodities K1, K2, . . . , Kψ defined by Ki = (sourcei, sinki, bi) where sourcei and sinki stand
for source and sink node of commodity i, and bi is the volume of the demand. The flow of
commodity i along the edge (u, v) is fi(u, v). The objective is to find an assignment of the

flow fi(u, v) which minimizes the total cost J = ∑∀(u,v)∈E

(
auv · ∑

ψ
i=1 fi(u, v)

)
and satisfies

the following constraints:

∑
ψ
i=1 fi(u, v) ≤ cuv ∀(u, v) ∈ E,

∑u∈V fi(u, w) = ∑v∈V fi(w, v) w ∈ V \ {sourcei, sinki},
∀i = 1 . . . ψ,

∑w∈V fi(sourcei, w) = ∑w∈V fi(w, sinki) = bi ∀i = 1 . . . ψ.

The function multicommodityflow solves MMCF problem by the transformation to the
linear programming problem (Korte & Vygen, 2006).

3.4.1 Example of the Urban Traffic Scheduling
As an example, we show how to find the time schedule for light-controlled intersections in a
urban traffic region in Prague by the TORSCHE toolbox.
The light controlled intersections are characterized by several parameters: the number of light
phases, phase split, offset time and a list of streets from which the vehicles flow (Guberinić
et al., 2008). The term phase means state of traffic lights on the intersection. The number
of phases and the list of streets are partially given by the urban architecture of the intersec-
tion and partially by the intersection control strategy (i.e. one-way street, directional roadway
marking). Both of these parameters are constant. On the other hand, the split and offset can be
changed dynamically during a day. The split τvj defines the time interval of phase j for which
the vehicle flow can go through the intersection v from one or more streets (Papageorgiou
et al., 2003). The offset ϕuv is a certain time delay between phases of two successive intersec-
tions u and v. When the offset is zero, all lights in the region turn on and off at the same time.
It is called the synchronized strategy. In the green wave strategy, the traffic light changes with
time delay between the light phases of two successive intersections. As a result, signals switch
as the green wave (Nagatani, 2007).
The goal is to find the offset ϕuv respecting the green wave strategy and the split τvj which
minimizes the total cost J and considers a constant control period Pv = ∑∀j τvj of intersection v
such that P1 = P2 = · · · = P.
For the first step, a traffic region is modeled as an oriented graph G(V, E). Nodes V of the
graph represent the intersections and edges E represent the streets. See Fig. 15 where the
Graphedit tool of TORSCHE is utilized to construct the graph. Sink and source nodes are drawn
as rectangles. The edges include two parameters; the first one is cost auv and the second one
is capacity cuv of the street (u, v). The cost is given by the street length in meters. The capacity
of the street is given by the number of lanes �uv in the street as cuv = �uv ·Wuv/l where Wuv is
a maximal allowed vehicle speed in the street in ms−1 and l is the unit vehicle length including
distance between vehicles. Let us assume that, in our case, the speed is Wuv = 13.8 ms−1

(50 km/h) and the unit vehicle length is l = 5 m, then the capacity of one lane street is 2.8 s−1.
The final graph is exported from the Graphedit tool to the Matlab workspace as graph object G.
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Ki K2 K3 K5 K6 K24 K26 K30

u v fi(u, v) [10−3s−1] ∑
ψ
i=1 fi(u, v)

2 6 0 0 10.1 12.1 0 0 0 22.2
5 6 1.9 3.1 0 0 0 0 1.9 6.9
9 6 0 0 0 0 4.3 3.6 0 7.9
6 2 1.9 0 0 0 4.3 3.6 0 9.8
6 7 0 3.1 10.1 12.1 0 0 1.9 27.2

Table 2. Multi-commodity flow assignment

3.4.3 Scheduling with Communication Delay
The intersection phase offset and split are computed for the green wave strategy. The green
wave strategy, specified by the engineering skills, extends the tasks precedence constraints by
the relationships between successive intersection tasks. Each of those relationships defines the
offset ϕuv as a time, which a vehicle needs to pass from intersection u to intersection v. The
ϕuv is given by the street length auv and vehicle speed Wuv as ϕuv = auv/Wuv.
The split can be found by an algorithm for scheduling with a communication delay (Chré-
tienne et al., 1995). The scheduling with communication delay problem extends the precedence
constraints in the classical scheduling by the communication delay between dependent tasks
assigned to distinct processors. In our case the communication delay is equal to the offset ϕuv.
Let D be a matrix of communication delays, where the elements are ϕuv in the case that the
offset between intersections u and v is considered, and zero otherwise. We can classify our
instances as tasks with precedence constraints in an out-tree form, communication delays, un-
limited number of processors and no duplication of tasks. In Graham and Błażewicz notation
it can be denoted as P∞|out-tree, cjk|Cmax. This problem can be solved in O(n) time by the
allgorithm presented in (Chrétienne, 1989) which is implemented in the TORSCHE toolbox as
a function chretienne.
Fig. 16 shows the problem solution in the toolbox for three intersections (6, 7 and 8).

>> T56 = task(’T(5,6)’, 21.3);
>> T26 = task(’T(2,6)’, 68.7);
>> T96 = task(’T(9,6)’, 24.4);
>> prec6 = [0 1 1; 0 0 0; 0 0 0];
>> TS6 = taskset([T56 T26 T96],prec6);
>> T67 = task(’T(6,7)’, 29.6);
>> T37 = task(’T(3,7)’, 60.4);
>> T97 = task(’T(9,7)’, 7.5);
>> prec7 = [0 1 1; 0 0 0; 0 0 0];
>> TS7 = taskset([T67 T37 T97],prec7);
>> T78 = task(’T(7,8)’, 18.4);
>> T228 = task(’T(22,8)’, 71.6);
>> prec8 = [0 1; 0 0];
>> TS8 = taskset([T78 T228],prec8);

>> TSall = [TS6 TS7 TS8];
>> TSall.Prec(1,4) = 1;
>> TSall.Prec(4,7) = 1;

>> D = zeros(size(TSall.Prec));
>> D(1,4) = 9.5;
>> D(4,7) = 8;

>> prob = ...
problem(’Pinf|prec,out-tree,cjk|Cmax’);

>> TSall = chretienne(TSall,p,Inf,D);
>> plot(TSall);

Fig. 16. Solution of the scheduling problem in the toolbox

First, the taskset object TSall with eight tasks corresponding to the intersection control is de-
fined. The tasks and precedence constraints among them are shown in Fig. 17(a). The prece-
dence constraints given by the green-wave strategy are drawn as solid lines. Consequently,
matrix D and the notation of the problem prob is defined. Finally, the scheduling problem

Ki K1 K2 K3 K4 K5 K6 K7 K8
sourcei 14 14 14 14 16 16 16 16
sinki 24 17 21 27 24 21 15 27
bi[10−3s−1] 4.9 1.9 3.1 30.1 10.1 12.1 1.2 6.6
Ki K9 K10 K11 K12 K13 K14 K15 K16
sourcei 18 18 18 18 18 20 20 20
sinki 24 17 21 15 27 19 24 17
bi[10−3s−1] 32.7 3.3 9.3 2.1 11.3 8.9 13.4 8.1
Ki K17 K18 K19 K20 K21 K22 K23 K24
sourcei 20 20 22 22 22 22 23 23
sinki 15 27 19 21 15 27 24 17
bi[10−3s−1] 7.9 41.7 11.7 88.5 4.7 25.1 8.6 4.3
Ki K25 K26 K27 K28 K29 K30 K31 K32
sourcei 23 23 25 25 26 26 26 26
sinki 21 27 24 21 24 21 15 27
bi[10−3s−1] 6.5 3.6 9.6 0.4 15.9 1.9 5.7 6.5

Table 1. Required traffic region multi-commodity flow instances

Algorithm 1 Processing time computation

1. Create tasks Tuv, each with temporary processing time p′uv = ∑
ψ
i=1 fi(u, v).

>> T56 = task(’T(5,6)’, 0.0069)
>> T26 = task(’T(2,6)’, 0.0222);
>> T96 = task(’T(9,6)’,0.0079);

2. Group the tasks into a taskset and add precedence constrains.

>> prec6 = [0 1 1; 0 0 0; 0 0 0];
>> TS6 = taskset([T56 T26 T96],prec6);

3. Compute a length of critical path CPv by the asap (as soon as possible) function.

>> TS6.asap;
>> asapStart = asap(TS6,’asap’);
>> CP6 = max(asapStart + TS6.ProcTime)
CP6 =

0.0291

4. From the length of the critical path and control period P we obtain processing time puv
as a linear proportion of flow: puv = p′uv · P/CPv.

>> P = 90;
>> TS6.ProcTime = TS6.ProcTime * P / CP6;
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Ki K2 K3 K5 K6 K24 K26 K30

u v fi(u, v) [10−3s−1] ∑
ψ
i=1 fi(u, v)

2 6 0 0 10.1 12.1 0 0 0 22.2
5 6 1.9 3.1 0 0 0 0 1.9 6.9
9 6 0 0 0 0 4.3 3.6 0 7.9
6 2 1.9 0 0 0 4.3 3.6 0 9.8
6 7 0 3.1 10.1 12.1 0 0 1.9 27.2

Table 2. Multi-commodity flow assignment

3.4.3 Scheduling with Communication Delay
The intersection phase offset and split are computed for the green wave strategy. The green
wave strategy, specified by the engineering skills, extends the tasks precedence constraints by
the relationships between successive intersection tasks. Each of those relationships defines the
offset ϕuv as a time, which a vehicle needs to pass from intersection u to intersection v. The
ϕuv is given by the street length auv and vehicle speed Wuv as ϕuv = auv/Wuv.
The split can be found by an algorithm for scheduling with a communication delay (Chré-
tienne et al., 1995). The scheduling with communication delay problem extends the precedence
constraints in the classical scheduling by the communication delay between dependent tasks
assigned to distinct processors. In our case the communication delay is equal to the offset ϕuv.
Let D be a matrix of communication delays, where the elements are ϕuv in the case that the
offset between intersections u and v is considered, and zero otherwise. We can classify our
instances as tasks with precedence constraints in an out-tree form, communication delays, un-
limited number of processors and no duplication of tasks. In Graham and Błażewicz notation
it can be denoted as P∞|out-tree, cjk|Cmax. This problem can be solved in O(n) time by the
allgorithm presented in (Chrétienne, 1989) which is implemented in the TORSCHE toolbox as
a function chretienne.
Fig. 16 shows the problem solution in the toolbox for three intersections (6, 7 and 8).

>> T56 = task(’T(5,6)’, 21.3);
>> T26 = task(’T(2,6)’, 68.7);
>> T96 = task(’T(9,6)’, 24.4);
>> prec6 = [0 1 1; 0 0 0; 0 0 0];
>> TS6 = taskset([T56 T26 T96],prec6);
>> T67 = task(’T(6,7)’, 29.6);
>> T37 = task(’T(3,7)’, 60.4);
>> T97 = task(’T(9,7)’, 7.5);
>> prec7 = [0 1 1; 0 0 0; 0 0 0];
>> TS7 = taskset([T67 T37 T97],prec7);
>> T78 = task(’T(7,8)’, 18.4);
>> T228 = task(’T(22,8)’, 71.6);
>> prec8 = [0 1; 0 0];
>> TS8 = taskset([T78 T228],prec8);

>> TSall = [TS6 TS7 TS8];
>> TSall.Prec(1,4) = 1;
>> TSall.Prec(4,7) = 1;

>> D = zeros(size(TSall.Prec));
>> D(1,4) = 9.5;
>> D(4,7) = 8;

>> prob = ...
problem(’Pinf|prec,out-tree,cjk|Cmax’);

>> TSall = chretienne(TSall,p,Inf,D);
>> plot(TSall);

Fig. 16. Solution of the scheduling problem in the toolbox

First, the taskset object TSall with eight tasks corresponding to the intersection control is de-
fined. The tasks and precedence constraints among them are shown in Fig. 17(a). The prece-
dence constraints given by the green-wave strategy are drawn as solid lines. Consequently,
matrix D and the notation of the problem prob is defined. Finally, the scheduling problem

Ki K1 K2 K3 K4 K5 K6 K7 K8
sourcei 14 14 14 14 16 16 16 16
sinki 24 17 21 27 24 21 15 27
bi[10−3s−1] 4.9 1.9 3.1 30.1 10.1 12.1 1.2 6.6
Ki K9 K10 K11 K12 K13 K14 K15 K16
sourcei 18 18 18 18 18 20 20 20
sinki 24 17 21 15 27 19 24 17
bi[10−3s−1] 32.7 3.3 9.3 2.1 11.3 8.9 13.4 8.1
Ki K17 K18 K19 K20 K21 K22 K23 K24
sourcei 20 20 22 22 22 22 23 23
sinki 15 27 19 21 15 27 24 17
bi[10−3s−1] 7.9 41.7 11.7 88.5 4.7 25.1 8.6 4.3
Ki K25 K26 K27 K28 K29 K30 K31 K32
sourcei 23 23 25 25 26 26 26 26
sinki 21 27 24 21 24 21 15 27
bi[10−3s−1] 6.5 3.6 9.6 0.4 15.9 1.9 5.7 6.5

Table 1. Required traffic region multi-commodity flow instances

Algorithm 1 Processing time computation

1. Create tasks Tuv, each with temporary processing time p′uv = ∑
ψ
i=1 fi(u, v).

>> T56 = task(’T(5,6)’, 0.0069)
>> T26 = task(’T(2,6)’, 0.0222);
>> T96 = task(’T(9,6)’,0.0079);

2. Group the tasks into a taskset and add precedence constrains.

>> prec6 = [0 1 1; 0 0 0; 0 0 0];
>> TS6 = taskset([T56 T26 T96],prec6);

3. Compute a length of critical path CPv by the asap (as soon as possible) function.

>> TS6.asap;
>> asapStart = asap(TS6,’asap’);
>> CP6 = max(asapStart + TS6.ProcTime)
CP6 =

0.0291

4. From the length of the critical path and control period P we obtain processing time puv
as a linear proportion of flow: puv = p′uv · P/CPv.

>> P = 90;
>> TS6.ProcTime = TS6.ProcTime * P / CP6;
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>> a = [0 70 70 30];
>> b = [0 100 200 75];
>> C = toeplitz([0 15 20 25]);
>> d = [36 36 36 51];
>> T = taskset(d);
>> T.TSUserParam.SetupTime = C;
>> T.TSUserParam.minDistance = a;
>> T.TSUserParam.maxDistance = b;
>> TS = singlehoist(T);
>> adduserparam(TS,’onehoist.txt’);
>> name = ’onehoist.wrl’;
>> ports = visiscontrolports(’Output’,

’HoistArm’,3,...
>> VRin = vrports(’Hoist’,’translation’,...
>> taskset2simulink(name, TS, ports, VRin,

500, []);

%File name: ’onehoist.txt’
task1
repeat 0:1:4
HoistArm(1) = HoistArm(1) + 1;
repeat 0:1:7
HoistArm(2) = HoistArm(2) - 0.5;
...
endparam

task2
repeat 0:1:5
HoistArm(1) = HoistArm(1) - 1;
repeat 0:1:9
HoistArm(2) = HoistArm(2) + 1;
...
endparam

(a) Solution in the toolbox (b) Visualization description (file: onehoist.txt)
Fig. 18. Matlab code for hoist scheduling visualization
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Fig. 19. Visualization of the hoist scheduling problem

assigns an appropriate code of visualization to each task. The visualization is subse-
quently performed by executing an automatically generated Matlab/Simulink file. The
resulting problem visualization is shown in Fig. 19, and a video file can be found on
http://rtime.felk.cvut.cz/scheduling-toolbox/video.

4. Conclusions

This chapter presents the TORSCHE Scheduling Toolbox for Matlab covering: scheduling
on monoprocessor/dedicated processors/parallel processors, open shop/flow shop/job shop
scheduling, cyclic scheduling and real-time scheduling. The toolbox includes scheduling al-
gorithms that have been used for various applications as scheduling of Digital Signal Pro-
cessing algorithms on a hardware architecture with pipelined arithmetic units, scheduling the
movements of hoists in a manufacturing environment and scheduling of light controlled in-
tersections in urban traffic. Moreover, the toolbox already has several real applications. It
has been used for the development of a new method for re-configuration of the tasks or a
process in an embedded avionics application (Muniyappa, 2009). Simulations in TORSCHE
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(b) Gantt chart for vehicle flow including split and offset mark

Fig. 17. The intersections (6, 7 and 8) control

is solved by the algorithm chretienne and the resulting Gantt chart is shown in Fig. 17(b).
The figure shows the tasks for the three considered intersections including the processing time
puv, split τvj and offset ϕuv. The split is given by the processing time of the scheduled tasks.
The tasks are repeated with period P.

3.5 Visualization of the Scheduling Results
In the toolbox, there is a possibility to simulate or visualize the acquired scheduling results
in the Matlab/Simulink environment through the use of the Matlab Virtual Reality toolbox,
which is a standard part of Matlab. TORSCHE allows users to create their own project with
3-D animation in the Virtual Reality toolbox and interconnect it with a schedule obtained in
TORSCHE. Consequently, both simulation and visualization are realized in Matlab/Simulink
and in case of visualization, it is possible to capture any frame or a stream video file of the
animation.
The hoist scheduling problem is chosen as an example for the visualization. The hoist schedul-
ing problem (Manier & Bloch, 2003) deals with the problem how to schedule the hoist move-
ments to perform a material handling between several tanks with elecrolyte solution, where
the material is processed. The objective of this problem is to find a schedule which maximizes
the processing throughput. The hoist scheduling problem can be solved by the singlehoist
algorithm that is available in the TORSCHE toolbox. The problem is represented so that the
tasks correspond with the movements of the hoist (load/unload station → Bath 1, Bath 1 →
Bath 2, Bath 2 → Bath 3, Bath 3 → load/unload station).
The problem solution in the toolbox is shown in Fig. 18(a). The interconnection be-
tween the tasks and the project with 3-D animation is realized by a user defined text-
file. Fig. 18(b) shows a fragment of the text-file containing the code that describes the
movement of the hoist corresponding to the first task. The interconnection is performed
in the function adduserparam. This function parses the code of the input-text file and
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>> a = [0 70 70 30];
>> b = [0 100 200 75];
>> C = toeplitz([0 15 20 25]);
>> d = [36 36 36 51];
>> T = taskset(d);
>> T.TSUserParam.SetupTime = C;
>> T.TSUserParam.minDistance = a;
>> T.TSUserParam.maxDistance = b;
>> TS = singlehoist(T);
>> adduserparam(TS,’onehoist.txt’);
>> name = ’onehoist.wrl’;
>> ports = visiscontrolports(’Output’,

’HoistArm’,3,...
>> VRin = vrports(’Hoist’,’translation’,...
>> taskset2simulink(name, TS, ports, VRin,

500, []);

%File name: ’onehoist.txt’
task1
repeat 0:1:4
HoistArm(1) = HoistArm(1) + 1;
repeat 0:1:7
HoistArm(2) = HoistArm(2) - 0.5;
...
endparam

task2
repeat 0:1:5
HoistArm(1) = HoistArm(1) - 1;
repeat 0:1:9
HoistArm(2) = HoistArm(2) + 1;
...
endparam

(a) Solution in the toolbox (b) Visualization description (file: onehoist.txt)
Fig. 18. Matlab code for hoist scheduling visualization
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assigns an appropriate code of visualization to each task. The visualization is subse-
quently performed by executing an automatically generated Matlab/Simulink file. The
resulting problem visualization is shown in Fig. 19, and a video file can be found on
http://rtime.felk.cvut.cz/scheduling-toolbox/video.

4. Conclusions

This chapter presents the TORSCHE Scheduling Toolbox for Matlab covering: scheduling
on monoprocessor/dedicated processors/parallel processors, open shop/flow shop/job shop
scheduling, cyclic scheduling and real-time scheduling. The toolbox includes scheduling al-
gorithms that have been used for various applications as scheduling of Digital Signal Pro-
cessing algorithms on a hardware architecture with pipelined arithmetic units, scheduling the
movements of hoists in a manufacturing environment and scheduling of light controlled in-
tersections in urban traffic. Moreover, the toolbox already has several real applications. It
has been used for the development of a new method for re-configuration of the tasks or a
process in an embedded avionics application (Muniyappa, 2009). Simulations in TORSCHE
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is solved by the algorithm chretienne and the resulting Gantt chart is shown in Fig. 17(b).
The figure shows the tasks for the three considered intersections including the processing time
puv, split τvj and offset ϕuv. The split is given by the processing time of the scheduled tasks.
The tasks are repeated with period P.

3.5 Visualization of the Scheduling Results
In the toolbox, there is a possibility to simulate or visualize the acquired scheduling results
in the Matlab/Simulink environment through the use of the Matlab Virtual Reality toolbox,
which is a standard part of Matlab. TORSCHE allows users to create their own project with
3-D animation in the Virtual Reality toolbox and interconnect it with a schedule obtained in
TORSCHE. Consequently, both simulation and visualization are realized in Matlab/Simulink
and in case of visualization, it is possible to capture any frame or a stream video file of the
animation.
The hoist scheduling problem is chosen as an example for the visualization. The hoist schedul-
ing problem (Manier & Bloch, 2003) deals with the problem how to schedule the hoist move-
ments to perform a material handling between several tanks with elecrolyte solution, where
the material is processed. The objective of this problem is to find a schedule which maximizes
the processing throughput. The hoist scheduling problem can be solved by the singlehoist
algorithm that is available in the TORSCHE toolbox. The problem is represented so that the
tasks correspond with the movements of the hoist (load/unload station → Bath 1, Bath 1 →
Bath 2, Bath 2 → Bath 3, Bath 3 → load/unload station).
The problem solution in the toolbox is shown in Fig. 18(a). The interconnection be-
tween the tasks and the project with 3-D animation is realized by a user defined text-
file. Fig. 18(b) shows a fragment of the text-file containing the code that describes the
movement of the hoist corresponding to the first task. The interconnection is performed
in the function adduserparam. This function parses the code of the input-text file and
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also helped to develop a method optimizing the jitter of tasks in a real-time system (Liu
et al., 2009). Recently, TORSCHE has become a part of a textbook for courses in schedul-
ing “Scheduling: Theory, Algorithms, and Systems” written by M. Pinedo (Pinedo, 2008).
The actual version of the toolbox with documentation and screencasts is freely available at
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1. Introduction

An antenna array is a group of identical antenna elements arranged usually in a regular fash-
ion. In a linear array, the elements are arranged along a straight line. They are arranged on a
grid of points on a plane for a planar array. Generally the currents through the elements are of
different amplitudes and phases in order to obtain greater control over the radiation pattern.
Antenna arrays are important components of present day wireless communication systems.
They have become ubiquitous. The current wireless standards include advanced antenna
array concepts such as adaptive antenna arrays and MIMO (Multiple- Input and Multiple-
Output) systems to improve the performance of the communication system. Therefore under-
standing and designing antenna arrays have become imperative.

Basically the antenna array design involves calculating the complex currents of the individ-
ual antenna elements and selecting an appropriate antenna element. The current excitations
would largely determine how sharp the resultant radiation pattern is and how small the side
lobe levels are in comparison to the main lobe. After calculating the current excitations, one
would want to visualize the resultant radiation pattern to verify the design. MATLAB®, one
of the languages of technical computing, has many built-in functions and visualization tools
that would help the design process. Here we demonstrate how toolboxes such as signal-
processing, image-processing and optimization toolboxes can help in designing an array and
visualize its radiation pattern.

In addition to designing antenna arrays, the toolboxes can be effectively used in the teach-
ing and learning process. Generally, the learning process involves augmenting one’s existing
knowledge with new concepts. Therefore, while teaching a new concept to students, their
already acquired knowledge can be exploited to help them assimilate the concept. Explaining
a new concept to students is made effective if we compare the new concepts to other con-
cepts, with which the students are already familiar. The strong similarity between antenna
theory and signal-processing theory can be used in this way. Students typically learn signal-
processing theory earlier than antenna theory, and antenna educators can make use of the
former to illustrate the latter. Though programs can be written in MATLAB without using the
signal and image-processing toolboxes to analyze and synthesize antenna arrays, students

13
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Fig. 1. The pattern of a four element array with current excitations [ 1, 1.2, 1.2, 1]

2.2 Synthesis
2.2.1 Least square method
One of the problems of array synthesis consists of finding the current excitations of the array
elements, given the desired radiation pattern or some data about the radiation pattern. This
synthesis problem is equivalent to the problem of finding the impulse response of a digital
FIR filter for the desired frequency response, as follows from the explanation in the previous
section. The MATLAB Signal-Processing Toolbox has the firls function for designing an
one-dimensional FIR filter that is optimal in a least-squares sense (SP toolbox, 2010). The
arguments of the function are:

• N, one less than the number of impulse response coefficients;
• F, a vector of frequency points, in ascending order between 0 and 1; 1 corresponds to

half the sampling frequency;
• A, a real vector of the same size as F, which specifies the desired amplitude of the fre-

quency response of the resultant filter.
If the function is given as firls(N, F, A), it returns an FIR filter with N + 1 impulse-
response coefficients that has the best approximation to the desired frequency response de-
scribed by F and A in the least-squares sense. This function can be used to design an antenna
array if a proper mapping is executed between the frequency variable, F, and the variable ψ,
which in turn is related to φ. For a broadside array, if the spacing between the elements is λ/2,
then ψ = π cos φ. In this case, when φ varies from 0 to π, ψ will vary from π to −π. Thus, for
the F -vector values in the firls function to vary from 0 to 1 (the normalized range of ω), the
corresponding ψ values will range from 0 to −π. This restricts the specification of A(φ) to be
specified from π/2 to π. The normalized E-field values of the desired radiation pattern at the
ψ vector values is given by A. N will now be equal to the number of elements in the array mi-
nus one. The values in the vector F should be in ascending order and normalized to unity. For
instance, let us design an antenna array that will give an approximately bidirectional pattern
as in Fig. 2 (indicated by the blue line). The pattern is defined by:

A(φ) =




0.1 if 0 < φ < π/3,
1 if π/3 < φ < 2π/3
0.1 if 2π/3 < φ < π.

(3)

can gain additional knowledge and insight by comparing signal and image-processing theo-
ries with antenna theory, using them. These toolboxes have many built-in functions for filter
synthesis that are useful for array synthesis.

2. Use of Signal Processing Toolbox

The antenna array design process is fundamentally similar to the filter synthesis problem. This
enables the use of the signal processing functions in antenna array analysis and synthesis.

2.1 Analysis
Given the currents on the radiating elements, calculating the radiation pattern and plotting
it to visualize it is one of the tasks of antenna analysis. In this section, we will show how a
built-in function of the signal processing toolbox is used in antenna analysis. The array factor
of n isotropic point sources with different excitations placed along the x axis on the x-y plane
is given by (Balanis, 2005)

AF = w0 + w1ejψ + w2ej2ψ + . . . + wn−1ej(n−1)ψ (1)

where
ψ = βd cos φ

the wn are the complex currents of the elements, β is the wave number, d is the inter-element
spacing and φ is the angular variable.The frequency response of a n point FIR filter is given
by

H(jω) = h0 + h1e−jω + h2e−j2ω + . . . + hn−1e−j(n−1)ω (2)

where hn are the impulse-response coefficients of the FIR filter and ω is discrete angular fre-
quency.
Equations (1) and (2) are of similar form, except for a minus sign in the power of the complex
exponential. Therefore, the tool that is used for finding the frequency response can be used to
find the array response as a function of direction φ. The built-in function freqz in the signal-
processing toolbox of MATLAB evaluates the frequency response given the impulse-response
coefficients (SP toolbox, 2010). The same function can be used to evaluate the radiation pattern
of the array given the current excitations. For example, the current excitation of a four-element
array is [1, 1.2, 1.2, 1]. Fig. 1 shows the pattern obtained by using freqz command. The
following MATLAB code generates the radiation pattern of the four-element array of this
example.

Code 1 To generate the pattern

phi=0:0.01:2*pi; %0<phi<2*pi
shi=pi*cos(phi); %For lambda/2 spacing
Currents=[1,1.2,1.2,1]; %Current excitations
E=freqz(Currents,1,shi); %E for different shi values
polar2(phi,E); %Generating the radiation pattern

As it is desirable to plot the radiation pattern of an array in dB scale, the built-in function
polar is modified to plot in dB scale and is called as polar2 in the code.
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Fig. 1. The pattern of a four element array with current excitations [ 1, 1.2, 1.2, 1]

2.2 Synthesis
2.2.1 Least square method
One of the problems of array synthesis consists of finding the current excitations of the array
elements, given the desired radiation pattern or some data about the radiation pattern. This
synthesis problem is equivalent to the problem of finding the impulse response of a digital
FIR filter for the desired frequency response, as follows from the explanation in the previous
section. The MATLAB Signal-Processing Toolbox has the firls function for designing an
one-dimensional FIR filter that is optimal in a least-squares sense (SP toolbox, 2010). The
arguments of the function are:

• N, one less than the number of impulse response coefficients;
• F, a vector of frequency points, in ascending order between 0 and 1; 1 corresponds to

half the sampling frequency;
• A, a real vector of the same size as F, which specifies the desired amplitude of the fre-

quency response of the resultant filter.
If the function is given as firls(N, F, A), it returns an FIR filter with N + 1 impulse-
response coefficients that has the best approximation to the desired frequency response de-
scribed by F and A in the least-squares sense. This function can be used to design an antenna
array if a proper mapping is executed between the frequency variable, F, and the variable ψ,
which in turn is related to φ. For a broadside array, if the spacing between the elements is λ/2,
then ψ = π cos φ. In this case, when φ varies from 0 to π, ψ will vary from π to −π. Thus, for
the F -vector values in the firls function to vary from 0 to 1 (the normalized range of ω), the
corresponding ψ values will range from 0 to −π. This restricts the specification of A(φ) to be
specified from π/2 to π. The normalized E-field values of the desired radiation pattern at the
ψ vector values is given by A. N will now be equal to the number of elements in the array mi-
nus one. The values in the vector F should be in ascending order and normalized to unity. For
instance, let us design an antenna array that will give an approximately bidirectional pattern
as in Fig. 2 (indicated by the blue line). The pattern is defined by:

A(φ) =




0.1 if 0 < φ < π/3,
1 if π/3 < φ < 2π/3
0.1 if 2π/3 < φ < π.

(3)

can gain additional knowledge and insight by comparing signal and image-processing theo-
ries with antenna theory, using them. These toolboxes have many built-in functions for filter
synthesis that are useful for array synthesis.

2. Use of Signal Processing Toolbox

The antenna array design process is fundamentally similar to the filter synthesis problem. This
enables the use of the signal processing functions in antenna array analysis and synthesis.

2.1 Analysis
Given the currents on the radiating elements, calculating the radiation pattern and plotting
it to visualize it is one of the tasks of antenna analysis. In this section, we will show how a
built-in function of the signal processing toolbox is used in antenna analysis. The array factor
of n isotropic point sources with different excitations placed along the x axis on the x-y plane
is given by (Balanis, 2005)

AF = w0 + w1ejψ + w2ej2ψ + . . . + wn−1ej(n−1)ψ (1)

where
ψ = βd cos φ

the wn are the complex currents of the elements, β is the wave number, d is the inter-element
spacing and φ is the angular variable.The frequency response of a n point FIR filter is given
by

H(jω) = h0 + h1e−jω + h2e−j2ω + . . . + hn−1e−j(n−1)ω (2)

where hn are the impulse-response coefficients of the FIR filter and ω is discrete angular fre-
quency.
Equations (1) and (2) are of similar form, except for a minus sign in the power of the complex
exponential. Therefore, the tool that is used for finding the frequency response can be used to
find the array response as a function of direction φ. The built-in function freqz in the signal-
processing toolbox of MATLAB evaluates the frequency response given the impulse-response
coefficients (SP toolbox, 2010). The same function can be used to evaluate the radiation pattern
of the array given the current excitations. For example, the current excitation of a four-element
array is [1, 1.2, 1.2, 1]. Fig. 1 shows the pattern obtained by using freqz command. The
following MATLAB code generates the radiation pattern of the four-element array of this
example.

Code 1 To generate the pattern

phi=0:0.01:2*pi; %0<phi<2*pi
shi=pi*cos(phi); %For lambda/2 spacing
Currents=[1,1.2,1.2,1]; %Current excitations
E=freqz(Currents,1,shi); %E for different shi values
polar2(phi,E); %Generating the radiation pattern

As it is desirable to plot the radiation pattern of an array in dB scale, the built-in function
polar is modified to plot in dB scale and is called as polar2 in the code.
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current excitations of the array elements. Discrete arrays having taylor patterns can also be
synthesized in the same way using taylorwin(N,Nbar,SLL). This function returns a Tay-
lor window of N-points with side lobe level of SLL dB (SP toolbox, 2010). Nbar is a parameter
of the window. The radiation patterns of the arrays synthesized using the window functions
are shown in Fig. 3. The number of elements and the side lobe levels are taken to be 8 and
-20dB respectively.
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Fig. 3. Synthesized patterns of Chebyshev and Taylor arrays

The following code synthesizes a Chebyshev array and a Taylor array of eight elements with
-20dB side lobe level.

Code 3 To synthesize Chebyshev and Taylor arrays

phi=0:0.01:2*pi; %0<phi<2*pi
shi=pi*cos(phi); %For lambda/2 spacing
Currents=chebwin(8,20); %Chebyshev Window values
E=abs(freqz(Currents,1,shi)) %E for different shi values
EdB(1,:)=20*log10(E/max(E)); %Converting into dB scale
Currents=taylorwin(8,3, -20); %Taylow Window values
E=abs(freqz(Currents,1,shi)) %E for different shi values
EdB(2,:)=20*log10(E/max(E)); %Converting into dB scale
plot(phi*180/pi,EdB,’LineWidth’,2) %Generating the pattern
axis([0 180 -30 10])

2.2.3 Constrained least square method
In this section, we demonstrate the use of the fircls function in designing the antenna array.
This function designs a FIR filter by minimizing the integral square error (‖E(ω)‖2) between
the desired frequency response (D(ω))and the magnitude response of the filter (A(ω)) subject
to the constraint that the ripples of (A(ω)) lie within the specified bounds. The minimization
of (‖E(ω)‖2) is done until (A(ω)) is within the bounds.The integral square error is:

‖E(ω)‖2 =

(
1
π

∫ π

0
(A(ω)− D(ω))2 dω

) 1
2

Using the above approach, for a 16 element linear array, respective current excitations were
obtained. The pattern of the synthesized array is indicated by a blue line in Fig. 2.
The following MATLAB code synthesizes the array for a given specification.

Code 2 To synthesize a linear array in the least-squares sense

a=0:pi/315:pi/3; %Side lobe directions
b=pi/3:pi/315:2*pi/3; %Main lobe directions
c=2*pi/3:pi/315:pi; %Side lobe directions
T=[a b c ];L=length(b); %The direction variable
Spec=[0.1*ones(1,L),...

ones(1,L),... %Specifications
0.1*ones(1,L)];

shi=pi*cos(T);
F=shi(((length(T))/2-1):-1:1)/pi; %Sorting shi in ascending

%order and normalizing to 1
A= Spec((length(T)/2-1):-1:1); %Sorting in the order of shi
Currents=firls(15,F,A); %Synthesis
E=freqz(Currents,1,shi); %Analysis
EdB=20*log10(abs(E)); %dB scale conversion
plot(T*180/pi,EdB,’LineWidth’,2);
axis([0 180 -25 10])

The values of the excitation currents can be found by displaying the variable Currents. The
script for plotting the specification is excluded from Code 2.
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Fig. 2. Pattern of an array synthesized using least square method

2.2.2 Chebyshev and Taylor Syntheses
Another useful function regarding synthesis is chebwin (SP toolbox, 2010). For instance, if a
six- element Chebyshev array is to be designed with a certain sidelobe level (SLL), the func-
tion chebwin available in the signal processing tool box can be used. The chebwin(n,r)
returns a n-point Chebyshev window with side lobe level of r dB. The window values are the
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current excitations of the array elements. Discrete arrays having taylor patterns can also be
synthesized in the same way using taylorwin(N,Nbar,SLL). This function returns a Tay-
lor window of N-points with side lobe level of SLL dB (SP toolbox, 2010). Nbar is a parameter
of the window. The radiation patterns of the arrays synthesized using the window functions
are shown in Fig. 3. The number of elements and the side lobe levels are taken to be 8 and
-20dB respectively.
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The following code synthesizes a Chebyshev array and a Taylor array of eight elements with
-20dB side lobe level.

Code 3 To synthesize Chebyshev and Taylor arrays

phi=0:0.01:2*pi; %0<phi<2*pi
shi=pi*cos(phi); %For lambda/2 spacing
Currents=chebwin(8,20); %Chebyshev Window values
E=abs(freqz(Currents,1,shi)) %E for different shi values
EdB(1,:)=20*log10(E/max(E)); %Converting into dB scale
Currents=taylorwin(8,3, -20); %Taylow Window values
E=abs(freqz(Currents,1,shi)) %E for different shi values
EdB(2,:)=20*log10(E/max(E)); %Converting into dB scale
plot(phi*180/pi,EdB,’LineWidth’,2) %Generating the pattern
axis([0 180 -30 10])

2.2.3 Constrained least square method
In this section, we demonstrate the use of the fircls function in designing the antenna array.
This function designs a FIR filter by minimizing the integral square error (‖E(ω)‖2) between
the desired frequency response (D(ω))and the magnitude response of the filter (A(ω)) subject
to the constraint that the ripples of (A(ω)) lie within the specified bounds. The minimization
of (‖E(ω)‖2) is done until (A(ω)) is within the bounds.The integral square error is:

‖E(ω)‖2 =

(
1
π

∫ π

0
(A(ω)− D(ω))2 dω

) 1
2

Using the above approach, for a 16 element linear array, respective current excitations were
obtained. The pattern of the synthesized array is indicated by a blue line in Fig. 2.
The following MATLAB code synthesizes the array for a given specification.

Code 2 To synthesize a linear array in the least-squares sense

a=0:pi/315:pi/3; %Side lobe directions
b=pi/3:pi/315:2*pi/3; %Main lobe directions
c=2*pi/3:pi/315:pi; %Side lobe directions
T=[a b c ];L=length(b); %The direction variable
Spec=[0.1*ones(1,L),...

ones(1,L),... %Specifications
0.1*ones(1,L)];

shi=pi*cos(T);
F=shi(((length(T))/2-1):-1:1)/pi; %Sorting shi in ascending

%order and normalizing to 1
A= Spec((length(T)/2-1):-1:1); %Sorting in the order of shi
Currents=firls(15,F,A); %Synthesis
E=freqz(Currents,1,shi); %Analysis
EdB=20*log10(abs(E)); %dB scale conversion
plot(T*180/pi,EdB,’LineWidth’,2);
axis([0 180 -25 10])

The values of the excitation currents can be found by displaying the variable Currents. The
script for plotting the specification is excluded from Code 2.
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2.2.2 Chebyshev and Taylor Syntheses
Another useful function regarding synthesis is chebwin (SP toolbox, 2010). For instance, if a
six- element Chebyshev array is to be designed with a certain sidelobe level (SLL), the func-
tion chebwin available in the signal processing tool box can be used. The chebwin(n,r)
returns a n-point Chebyshev window with side lobe level of r dB. The window values are the
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would mean the main lobe is between π/2 and −π/2 in ψ domain. The corresponding filter
passband ranges from ω = −π/2 to ω = π/2. In the normalized frequency domain, this is
from -0.5 to 0.5. The built-in function requires the normalized frequency to be specified only
from 0 to 1, as the magnitude response of a filter is symmetric about f =0. For this example,
the normalized cutoff frequency is 0.5. The specification and the designed pattern are shown
in Fig. 4. The script for plotting the specification is excluded from Code 4.

Code 4 To synthesize an array using constrained least square method

f=[0 0.5 1];amp=[1 0]; %Specification
up=[1.02 0.01];lo =[0.98 -0.01]; %Bounds
phi=0:0.01:2*pi; %0<phi<2*pi
shi=pi*cos(phi); %For lambda/2 spacing
b = fircls(32,f,amp,up,lo); %Sythesis
E=freqz(b, 1,shi); %E for different shi values
EdB=20*log10(abs(E)/max(abs(E))); %Converting into dB scale
plot(phi*180/pi,EdB,’LineWidth’,2) %Generating the pattern
axis([0 180 -50 10])

3. Schelkunoff polynomial method

The array factor of a linear array (see (1)) can be rewritten as

AF = w0 + w1z + w2z2 + . . . + wn−1zn−1

where
z = ejβd cos φ

For an array with a real beam pattern, the array factor is given by

AF = w0 + w1z + . . . + w1zn−2 + w0zn−1 (4)

For a real beam pattern, the excitations coefficients of an array are symmetric and the roots
of the array factor occur in complex conjugate pairs. The Z transform of a symmetric discrete
time sequence is given by

X(Z) = a0 + a1z−1 + . . . + a1z−(n−2) + a0z−(n−1) (5)

The equations (4) and (5) are of similar form except for the minus sign. We can rewrite the Z
transform equation as below to compare the array factor.

X(Z) =
a0zn−1 + a1zn−2 + . . . + a1 + a0

zn−1 (6)

Exploiting this similarity, we may use a built-in function called zplane of the signal process-
ing toolbox which is used to visualize the poles and zeros of a discrete filter to see the locations
of the roots of a real beam pattern. Because of negative powers of the z terms in the Z trans-
form, we would get (n − 1) poles at z = 0. For instance, we would like to see the roots of an
array factor on the z plane. The array factor is given by

In order to use this built-in function to design an array, proper mapping between the digital
angular frequency (ω) and the angle variable must be accomplished as discussed in section
2.2.1. The arguments of the function are:

• f is a vector of transition frequencies in the range from 0 to 1, where 1 corresponds to
the Nyquist frequency. The first point of f must be 0 and the last point 1. The frequency
points must be in increasing order;

• amp is a vector describing the piecewise constant desired amplitude of the frequency
response. The length of amp is equal to the number of bands in the response and should
be equal to length(f)-1;

• up and lo are vectors with the same length as amp. They define the upper and lower
bounds for the frequency response in each band.

If the function is given as fircls(n,f,amp,up,lo), it generates a length n+1 linear phase
FIR filter. According to equations (1) and (2), the range 0 to π of the angular digital frequency
maps onto the range 0 to −π. This means that we can specify a pattern from φ = π/2 to π.
Since the frequency response of the digital filter is periodic, the magnitude response of a real
filter in the range 0 to π is equal to 0 to −π. Therefore the pattern for the range 0 to π/2 is
just the mirror image of the pattern for the range π/2 to π. The mapping between the filter
frequency variables and the antenna angle variables are given in the following table.

Azimuth angle φ 0 π/2 π

Progressive phase ψ π 0 −π

Angular frequency ω −π 0 π

Frequency F −0.5 0 0.5
Frequency (normalized to 1) f −1 0 1

Table 1. Mapping between filter and antenna variables
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Fig. 4. Pattern of an array synthesized using constrained least square method

Supposing that a flat beam pattern antenna array is to be designed. The main lobe is between
φ = π/3 to φ = 2π/3. The sidelobe level is -40 dB. The number of elements is n = 33. This
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would mean the main lobe is between π/2 and −π/2 in ψ domain. The corresponding filter
passband ranges from ω = −π/2 to ω = π/2. In the normalized frequency domain, this is
from -0.5 to 0.5. The built-in function requires the normalized frequency to be specified only
from 0 to 1, as the magnitude response of a filter is symmetric about f =0. For this example,
the normalized cutoff frequency is 0.5. The specification and the designed pattern are shown
in Fig. 4. The script for plotting the specification is excluded from Code 4.

Code 4 To synthesize an array using constrained least square method

f=[0 0.5 1];amp=[1 0]; %Specification
up=[1.02 0.01];lo =[0.98 -0.01]; %Bounds
phi=0:0.01:2*pi; %0<phi<2*pi
shi=pi*cos(phi); %For lambda/2 spacing
b = fircls(32,f,amp,up,lo); %Sythesis
E=freqz(b, 1,shi); %E for different shi values
EdB=20*log10(abs(E)/max(abs(E))); %Converting into dB scale
plot(phi*180/pi,EdB,’LineWidth’,2) %Generating the pattern
axis([0 180 -50 10])

3. Schelkunoff polynomial method

The array factor of a linear array (see (1)) can be rewritten as

AF = w0 + w1z + w2z2 + . . . + wn−1zn−1

where
z = ejβd cos φ

For an array with a real beam pattern, the array factor is given by

AF = w0 + w1z + . . . + w1zn−2 + w0zn−1 (4)

For a real beam pattern, the excitations coefficients of an array are symmetric and the roots
of the array factor occur in complex conjugate pairs. The Z transform of a symmetric discrete
time sequence is given by

X(Z) = a0 + a1z−1 + . . . + a1z−(n−2) + a0z−(n−1) (5)

The equations (4) and (5) are of similar form except for the minus sign. We can rewrite the Z
transform equation as below to compare the array factor.

X(Z) =
a0zn−1 + a1zn−2 + . . . + a1 + a0

zn−1 (6)

Exploiting this similarity, we may use a built-in function called zplane of the signal process-
ing toolbox which is used to visualize the poles and zeros of a discrete filter to see the locations
of the roots of a real beam pattern. Because of negative powers of the z terms in the Z trans-
form, we would get (n − 1) poles at z = 0. For instance, we would like to see the roots of an
array factor on the z plane. The array factor is given by

In order to use this built-in function to design an array, proper mapping between the digital
angular frequency (ω) and the angle variable must be accomplished as discussed in section
2.2.1. The arguments of the function are:

• f is a vector of transition frequencies in the range from 0 to 1, where 1 corresponds to
the Nyquist frequency. The first point of f must be 0 and the last point 1. The frequency
points must be in increasing order;

• amp is a vector describing the piecewise constant desired amplitude of the frequency
response. The length of amp is equal to the number of bands in the response and should
be equal to length(f)-1;

• up and lo are vectors with the same length as amp. They define the upper and lower
bounds for the frequency response in each band.

If the function is given as fircls(n,f,amp,up,lo), it generates a length n+1 linear phase
FIR filter. According to equations (1) and (2), the range 0 to π of the angular digital frequency
maps onto the range 0 to −π. This means that we can specify a pattern from φ = π/2 to π.
Since the frequency response of the digital filter is periodic, the magnitude response of a real
filter in the range 0 to π is equal to 0 to −π. Therefore the pattern for the range 0 to π/2 is
just the mirror image of the pattern for the range π/2 to π. The mapping between the filter
frequency variables and the antenna angle variables are given in the following table.

Azimuth angle φ 0 π/2 π

Progressive phase ψ π 0 −π

Angular frequency ω −π 0 π

Frequency F −0.5 0 0.5
Frequency (normalized to 1) f −1 0 1

Table 1. Mapping between filter and antenna variables
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Fig. 4. Pattern of an array synthesized using constrained least square method

Supposing that a flat beam pattern antenna array is to be designed. The main lobe is between
φ = π/3 to φ = 2π/3. The sidelobe level is -40 dB. The number of elements is n = 33. This



Matlab - Modelling, Programming and Simulations268

Equations (7) and (8) are of similar format, except for a minus sign in the power of the com-
plex exponentials. Therefore, the tool that is used for finding the frequency response can be
used to find the array response as a function of variables θ and φ. The image-processing
toolbox of MATLAB has a function freqz2 for finding the frequency response of two-dimen-
sional filters. The same could be effectively used to evaluate the radiation pattern of the two-
dimensional arrays (IP toolbox, 2010). The radiation pattern of the array on the x-y plane is
shown in Fig. 6. For example, the code given below generates the radiation pattern of a 5 x 5
uniform rectangular array.
The following MATLAB function generates the three dimensional radiation pattern of a rect-
angular array. This requires three arguments:

• Currents, a matrix whose elements define the current distribution of the array;

• theta, an array having the θ directions in which the pattern is evaluated;

• phi, an array having the φ directions in which the pattern is evaluated .

The function freqz2 requires the frequency variables to be normalized frequencies in the
range -1.0 to 1.0, where 1.0 corresponds to half the sampling frequency, or π radians. Due to
this, the progressive phase shifts ψx and ψy are normalized so that their limits are equal to the
limits of the normalized frequencies of a two dimensional filter. The normalized values of the
progressive phase shifts are defined as follows:

ψnx = sin θ cos φ
ψny = sin θ sin φ

(9)

Finally E(θ, φ) is converted into E(x, y) so that the three dimensional plotting function mesh
can be used.

Code 5 To generate a three dimensional radiation pattern

function analyze2D(Currents,theta,phi) %Function definition
[the,ph]=ndgrid(theta,phi);
shinx=cos(ph).*sin(the); %Normalized shinx
shiny=sin(ph).*sin(the); %Normalized shiny
E=freqz2(Currents,shinx,shiny); %Analysis
x=abs(E).*sin(the).*cos(ph); %Spherical to
y=abs(E).*sin(the).*sin(ph); %rectangular
z=abs(E).*cos(the); %coordinate system
mesh(x,y,z) %3D plot

4.2 Synthesis
Similarly, two-dimensional rectangular arrays can be synthesized using tools available in the
image-processing toolbox. The tools are fwindl, fsamp2, ftrans2, and fwind2 (IP tool-
box, 2010). For example, H=fwind2(FR,WIN) designs a two-dimensional FIR filter H with
frequency response FR. fwind2 uses the two-dimensional window WIN to truncate the in-
finitely large impulse response required to meet the given frequency response, FR. WIN can be
the boxcar(rectangular), hamming, hanning, bartlett, blackman, kaiser, or chebwin
window functions of the signal processing toolbox. To synthesize the rectangular array, the
fwind2 function’s argument FR is given by the desired radiation pattern samples in the θ and

AF = z3 − z2 + z − 1

If we treat the above polynomial as the numerator of a Z transform of a sequence, then the
function zplane([-1 1 -1 1],1) will give the locations of the roots of the array factor on
the z plane in addition to three poles at the origin, which we can ignore (See Fig. 5). Although
one can write a separate MATLAB code to find the roots of the array factor and then plot it on
a rectangular graph using simple commands like poly,roots and plot, comparing the
Schelkunoff polynomial with the Z transform would give more insight into the array factor
dependence on the roots. One may also be interested in the Pole/Zero editor of the fdatool
of the signal processing toolbox. This interactive editor allows the user to adjust the locations
of the poles and zeros on the z plane and see the effect on the frequency response which is
analogous to the array factor.
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Fig. 5. Locations of the roots of the beam pattern (indicated in red)

4. Use of Image Processing Toolbox

4.1 Analysis
The array factor for an M×N rectangular array on the x-y plane (Ioannides & Balanis, 2005) is
given by

AF(θ, φ) =
M

∑
m=1

N

∑
n=1

wmnej[(m−1)ψx+(n−1)ψy)] (7)

where

ψx = kdx sin θ cos φ

ψy = kdy sin θ sin φ

where dx and dy are the spacings between the adjacent elements along the x axis and the y
axis, respectively, and the wmn are the current excitations. The frequency response of a two-
dimensional filter is given by

H(jω1, jω2) =
M

∑
m=1

N

∑
n=1

hmne−j[(m−1)ω1+(n−1)ω2)] (8)
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Equations (7) and (8) are of similar format, except for a minus sign in the power of the com-
plex exponentials. Therefore, the tool that is used for finding the frequency response can be
used to find the array response as a function of variables θ and φ. The image-processing
toolbox of MATLAB has a function freqz2 for finding the frequency response of two-dimen-
sional filters. The same could be effectively used to evaluate the radiation pattern of the two-
dimensional arrays (IP toolbox, 2010). The radiation pattern of the array on the x-y plane is
shown in Fig. 6. For example, the code given below generates the radiation pattern of a 5 x 5
uniform rectangular array.
The following MATLAB function generates the three dimensional radiation pattern of a rect-
angular array. This requires three arguments:

• Currents, a matrix whose elements define the current distribution of the array;

• theta, an array having the θ directions in which the pattern is evaluated;

• phi, an array having the φ directions in which the pattern is evaluated .

The function freqz2 requires the frequency variables to be normalized frequencies in the
range -1.0 to 1.0, where 1.0 corresponds to half the sampling frequency, or π radians. Due to
this, the progressive phase shifts ψx and ψy are normalized so that their limits are equal to the
limits of the normalized frequencies of a two dimensional filter. The normalized values of the
progressive phase shifts are defined as follows:

ψnx = sin θ cos φ
ψny = sin θ sin φ

(9)

Finally E(θ, φ) is converted into E(x, y) so that the three dimensional plotting function mesh
can be used.

Code 5 To generate a three dimensional radiation pattern

function analyze2D(Currents,theta,phi) %Function definition
[the,ph]=ndgrid(theta,phi);
shinx=cos(ph).*sin(the); %Normalized shinx
shiny=sin(ph).*sin(the); %Normalized shiny
E=freqz2(Currents,shinx,shiny); %Analysis
x=abs(E).*sin(the).*cos(ph); %Spherical to
y=abs(E).*sin(the).*sin(ph); %rectangular
z=abs(E).*cos(the); %coordinate system
mesh(x,y,z) %3D plot

4.2 Synthesis
Similarly, two-dimensional rectangular arrays can be synthesized using tools available in the
image-processing toolbox. The tools are fwindl, fsamp2, ftrans2, and fwind2 (IP tool-
box, 2010). For example, H=fwind2(FR,WIN) designs a two-dimensional FIR filter H with
frequency response FR. fwind2 uses the two-dimensional window WIN to truncate the in-
finitely large impulse response required to meet the given frequency response, FR. WIN can be
the boxcar(rectangular), hamming, hanning, bartlett, blackman, kaiser, or chebwin
window functions of the signal processing toolbox. To synthesize the rectangular array, the
fwind2 function’s argument FR is given by the desired radiation pattern samples in the θ and

AF = z3 − z2 + z − 1

If we treat the above polynomial as the numerator of a Z transform of a sequence, then the
function zplane([-1 1 -1 1],1) will give the locations of the roots of the array factor on
the z plane in addition to three poles at the origin, which we can ignore (See Fig. 5). Although
one can write a separate MATLAB code to find the roots of the array factor and then plot it on
a rectangular graph using simple commands like poly,roots and plot, comparing the
Schelkunoff polynomial with the Z transform would give more insight into the array factor
dependence on the roots. One may also be interested in the Pole/Zero editor of the fdatool
of the signal processing toolbox. This interactive editor allows the user to adjust the locations
of the poles and zeros on the z plane and see the effect on the frequency response which is
analogous to the array factor.
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Fig. 5. Locations of the roots of the beam pattern (indicated in red)

4. Use of Image Processing Toolbox

4.1 Analysis
The array factor for an M×N rectangular array on the x-y plane (Ioannides & Balanis, 2005) is
given by

AF(θ, φ) =
M

∑
m=1

N

∑
n=1

wmnej[(m−1)ψx+(n−1)ψy)] (7)

where

ψx = kdx sin θ cos φ

ψy = kdy sin θ sin φ

where dx and dy are the spacings between the adjacent elements along the x axis and the y
axis, respectively, and the wmn are the current excitations. The frequency response of a two-
dimensional filter is given by

H(jω1, jω2) =
M

∑
m=1

N

∑
n=1

hmne−j[(m−1)ω1+(n−1)ω2)] (8)
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Using (9), r = sin θ for all φ. The specification of the conic beam is

Espec(θ) =

{
1 if 0 < θ < π/6
0 if π/6 < θ < π/2.

Code 6 To synthesize a rectangular array

phi=2*pi*((0:1:100)/100); %0<phi<2*pi
theta=(pi/2)*((0:1:100)/100); %0<theta<pi/2
[shix,shiy]=freqspace(101,’meshgrid’); %Frequencty points
r=sqrt(shix.*shix+shiy.*shiy);
Espec=ones(101); %Specifications
Espec(r>sin(pi/6))=0;
win=boxcar(10)*boxcar(10)’; %Window
Currents=fwind2(Espec,win); %Synthesis
analyze2D(Currents,theta,phi)

5. Spacing and Sampling Rate

The effect on the array pattern of changing the spacing between the adjacent elements of the
array is same as the effect on the frequency response of changing the sampling period of the
FIR filter. To illustrate this point, the frequency responses of a 15-tap FIR filter with uniform
impulse response coefficients for different sampling rates are compared with the array re-
sponses of a 15-element uniform linear array with different spacing. The frequency responses
are plotted from -1 Hz to 1 Hz for the Nyquist rate (Fs), one-half the Nyquist rate, and one-
quarter of the Nyquist rate in Fig. 8 (a), (b) and (c) respectively. It can be observed that
the frequency response shrinks as the sampling frequency decreases (the sampling period in-
creases). As a result, more main lobes creep into the fundamental range, which otherwise has
only one main lobe.

In Fig. 9 (a), (b) and (c), the array responses for a 15-element uniform linear array are plotted
to show the analogy. As the spacing between the elements is increased, more main lobes occur
within the range of φ, just as in the frequency response of the FIR filter. This analogy can be
used to explain the occurrence of grating lobes to the students, who have already come across
the phenomenon of aliasing. Aliasing occurs when the signal is sparsely sampled. Aliasing
is reflected in the frequency response of the filter, because it should respond in the same way
for two different frequencies having the same identity. Similarly, aliasing of the pattern in the
spatial domain occurs when the array elements are sparsely arranged. If the sampling rate
is sufficiently high, the frequency response expands, and only the main lobe may occupy the
entire fundamental range of -1 Hz to 1 Hz. In the same way, if the array elements are arranged
densely enough, the extra grating lobes which would otherwise occur will disappear from the
range of φ.

6. Convolution and Pattern Multiplication

Pattern multiplication is used to find the array pattern from the patterns of individual ele-
ments. This is analogous to multiplication of two frequency responses, corresponding to two
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φ directions, and the dimension of WIN is given by N×N, the dimension of the array. The
output, H, is the array excitations. Fig. 7(a) shows the desired pattern, and Fig. 7(b) shows the
synthesized pattern, of the two-dimensional array.
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The following MATLAB code synthesizes the array whose radiation pattern approximates
a conical pattern (see Fig. 7) The code uses a built-in function called freqspace, which
creates the two- dimensional normalized frequency vectors and returns a grid of values for
each normalized frequency vector as if meshgrid is applied to the vectors. An intermediate
variable is introduced to define the conic beam. Let the intermediate variable be r and is equal
to

r =
√

ψ2
nx + ψ2

ny
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Using (9), r = sin θ for all φ. The specification of the conic beam is

Espec(θ) =

{
1 if 0 < θ < π/6
0 if π/6 < θ < π/2.

Code 6 To synthesize a rectangular array

phi=2*pi*((0:1:100)/100); %0<phi<2*pi
theta=(pi/2)*((0:1:100)/100); %0<theta<pi/2
[shix,shiy]=freqspace(101,’meshgrid’); %Frequencty points
r=sqrt(shix.*shix+shiy.*shiy);
Espec=ones(101); %Specifications
Espec(r>sin(pi/6))=0;
win=boxcar(10)*boxcar(10)’; %Window
Currents=fwind2(Espec,win); %Synthesis
analyze2D(Currents,theta,phi)

5. Spacing and Sampling Rate

The effect on the array pattern of changing the spacing between the adjacent elements of the
array is same as the effect on the frequency response of changing the sampling period of the
FIR filter. To illustrate this point, the frequency responses of a 15-tap FIR filter with uniform
impulse response coefficients for different sampling rates are compared with the array re-
sponses of a 15-element uniform linear array with different spacing. The frequency responses
are plotted from -1 Hz to 1 Hz for the Nyquist rate (Fs), one-half the Nyquist rate, and one-
quarter of the Nyquist rate in Fig. 8 (a), (b) and (c) respectively. It can be observed that
the frequency response shrinks as the sampling frequency decreases (the sampling period in-
creases). As a result, more main lobes creep into the fundamental range, which otherwise has
only one main lobe.

In Fig. 9 (a), (b) and (c), the array responses for a 15-element uniform linear array are plotted
to show the analogy. As the spacing between the elements is increased, more main lobes occur
within the range of φ, just as in the frequency response of the FIR filter. This analogy can be
used to explain the occurrence of grating lobes to the students, who have already come across
the phenomenon of aliasing. Aliasing occurs when the signal is sparsely sampled. Aliasing
is reflected in the frequency response of the filter, because it should respond in the same way
for two different frequencies having the same identity. Similarly, aliasing of the pattern in the
spatial domain occurs when the array elements are sparsely arranged. If the sampling rate
is sufficiently high, the frequency response expands, and only the main lobe may occupy the
entire fundamental range of -1 Hz to 1 Hz. In the same way, if the array elements are arranged
densely enough, the extra grating lobes which would otherwise occur will disappear from the
range of φ.

6. Convolution and Pattern Multiplication

Pattern multiplication is used to find the array pattern from the patterns of individual ele-
ments. This is analogous to multiplication of two frequency responses, corresponding to two

−0.2
−0.1

0
0.1

0.2

−0.2
−0.1

0
0.1

0.2
0

0.2

0.4

0.6

0.8

1

xy

Fig. 6. The radiation pattern of a 5 × 5 uniform rectangular array

φ directions, and the dimension of WIN is given by N×N, the dimension of the array. The
output, H, is the array excitations. Fig. 7(a) shows the desired pattern, and Fig. 7(b) shows the
synthesized pattern, of the two-dimensional array.
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The following MATLAB code synthesizes the array whose radiation pattern approximates
a conical pattern (see Fig. 7) The code uses a built-in function called freqspace, which
creates the two- dimensional normalized frequency vectors and returns a grid of values for
each normalized frequency vector as if meshgrid is applied to the vectors. An intermediate
variable is introduced to define the conic beam. Let the intermediate variable be r and is equal
to

r =
√

ψ2
nx + ψ2

ny



Matlab - Modelling, Programming and Simulations272

The four-element array is comparable to a discrete time sequence having four unit samples
with sampling period d. The two-element array separated by distance 2d is comparable to
a sequence having two unit samples with sampling period 2d, and so on. The discrete time
sequence with 2d sampling period (Sequence 1) is [1,0,1] and with d sampling period (Se-
quence 2) is [1,1]. The resultant sequence (Sequence 3) is [1,1,1,1] which is obtained by
the script conv([1,0,1],[1,1]. Just as the time sequence 3 can be considered as a result
of a convolution of time sequences 1 and 2, as shown in Fig. 10 (b), the four-element array
can be regarded as the result of a convolution of two arrays of two elements with spacing
2d and d distances. Since the convolution of two sequences in the time domain corresponds
to multiplication of frequency responses in the frequency domain, the convolution of two
arrays corresponds to multiplication of the radiation patterns of the respective two-element
arrays (Raj & Kabilan, 2007).

2d d d

2d d d

(a)

2d d d

2d d d

(b)

Fig. 10. (a) The convolution of two arrays of two elements with spacings of 2d and d, respec-
tively. (b) The convolution of two sequences with sampling rates of spacings of 2d and d,
respectively.

7. Use of Optimization Toolbox

Optimization is one of the main techniques that enable the designer to design an antenna
array having asymmetric sidelobes and/or arbitrary main lobe, for example ( Schoebel et al.,
2005). In this section, we demonstrate how the optimization toolbox of MATLAB can be used
to do antenna array optimization. Here we use the built-in function fmincon of the toolbox,
as this function performs nonlinear constrained optimization (Optimization toolbox, 2010).
This is suitable for the design of antenna array whose pattern is a nonlinear function of the
direction variable and the pattern is constrained at various directions to meet the sidelobe
requirement (Lebret & Boyd, 1997).
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Fig. 9. (Top to bottom: a, b, and c) The array responses of a 15-point uniform linear array for
different spacings between the elements.

discrete time sequences. The resultant frequency response obtained by multiplication is actu-
ally the frequency response of the resultant sequence obtained by convolving the two discrete
time sequences. In the same way, an array for which the pattern is needed can be thought of
as a result of convolution of two arrays, one comprising m individual elements of the array
and the other comprising n elements. Each of the n elements is a combination of m elements.

For instance, to demonstrate the pattern-multiplication concept, a four-element isotropic ar-
ray, shown in Fig. 10 (a) is considered here. The four element array is treated as a combination
of two arrays of two elements each. Each two-element isotropic array can be regarded as
a directional antenna. Then, the four-element array is equivalent to an array of two direc-
tional antennas separated by a distance 2d. Now, by multiplying the pattern of the 2d -spaced
two-element array with the pattern of the d-spaced two-element array, the pattern of the four-
element array can be obtained.
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The four-element array is comparable to a discrete time sequence having four unit samples
with sampling period d. The two-element array separated by distance 2d is comparable to
a sequence having two unit samples with sampling period 2d, and so on. The discrete time
sequence with 2d sampling period (Sequence 1) is [1,0,1] and with d sampling period (Se-
quence 2) is [1,1]. The resultant sequence (Sequence 3) is [1,1,1,1] which is obtained by
the script conv([1,0,1],[1,1]. Just as the time sequence 3 can be considered as a result
of a convolution of time sequences 1 and 2, as shown in Fig. 10 (b), the four-element array
can be regarded as the result of a convolution of two arrays of two elements with spacing
2d and d distances. Since the convolution of two sequences in the time domain corresponds
to multiplication of frequency responses in the frequency domain, the convolution of two
arrays corresponds to multiplication of the radiation patterns of the respective two-element
arrays (Raj & Kabilan, 2007).

2d d d

2d d d

(a)

2d d d

2d d d

(b)

Fig. 10. (a) The convolution of two arrays of two elements with spacings of 2d and d, respec-
tively. (b) The convolution of two sequences with sampling rates of spacings of 2d and d,
respectively.

7. Use of Optimization Toolbox

Optimization is one of the main techniques that enable the designer to design an antenna
array having asymmetric sidelobes and/or arbitrary main lobe, for example ( Schoebel et al.,
2005). In this section, we demonstrate how the optimization toolbox of MATLAB can be used
to do antenna array optimization. Here we use the built-in function fmincon of the toolbox,
as this function performs nonlinear constrained optimization (Optimization toolbox, 2010).
This is suitable for the design of antenna array whose pattern is a nonlinear function of the
direction variable and the pattern is constrained at various directions to meet the sidelobe
requirement (Lebret & Boyd, 1997).
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different spacings between the elements.

discrete time sequences. The resultant frequency response obtained by multiplication is actu-
ally the frequency response of the resultant sequence obtained by convolving the two discrete
time sequences. In the same way, an array for which the pattern is needed can be thought of
as a result of convolution of two arrays, one comprising m individual elements of the array
and the other comprising n elements. Each of the n elements is a combination of m elements.

For instance, to demonstrate the pattern-multiplication concept, a four-element isotropic ar-
ray, shown in Fig. 10 (a) is considered here. The four element array is treated as a combination
of two arrays of two elements each. Each two-element isotropic array can be regarded as
a directional antenna. Then, the four-element array is equivalent to an array of two direc-
tional antennas separated by a distance 2d. Now, by multiplying the pattern of the 2d -spaced
two-element array with the pattern of the d-spaced two-element array, the pattern of the four-
element array can be obtained.
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Fig. 11. Asymmetric pattern of an array of 8 elements with the specification indicated

must be written for the objective. This function returns the function value which is to be
minimized. For our example, the argument is equal to the function value. The code for the
objective function is given below.

function z=objfun(a0,goal,phim,phin)
%a0=[R(w1),...,R(wn),I(wn),...,I(w1),z]
z=a0(end);
%Since objective function is equal to the input argument.

Only the input a0 is used in the objective function. The remaining arguments are not used
but they must be included because the arguments of the objective function and the constraint
function (described below) are the same. These arguments are passed by the optimization
tool fmincon when it invokes the objective and constraint functions by their handles.
Similar to the objective function, the constraints are also stored as a separate MATLAB func-
tion. We show below the code for the constraint function.

function [c,ceq]=confun(a0,goal,phim,phin)
N=length(a0)-1;x=a0(1:1:N);phi=[phim,phin];
for n=1:length(phi)
AR=exp(-j*pi*(0:N/2-1)*cos(phi(n)));
RS=real(AR);IS=imag(AR);
a=[RS,-IS];b=[IS RS];
P(n)=(a*x’).*(a*x’)+(b*x’).*(b*x’);
end
Pnorm=P/max(P);
z=a0(end)*ones(1,length(phim));
c=Pnorm(1:length(phim))’-z’;
ceq=goal’-Pnorm(length(phim)+1:end)’;

In order to understand the variables of the above code, one may refer (11). The optimization
tool is invoked as:

The problem that we consider for our demonstration is formulated as follows.

min
wi

(
max

m=1,...,P
|AF(φm)|

)

subject to |AF(φn)| ≤ Un, n = 1, . . . , Q
|AF(φs)| = 1.

(10)

• φm, directions in which the array factor is evaluated for the minimax problem;

• φn, directions in which the array factor is constrained to be equal to Un;

• φs, angle at which the normalized gain is equal to 1.

The angles φm and φn will be within the two sidelobe regions. The original problem which in-
volves complex numbers is cast into a formulation involving only real numbers. The weights
wi and the steering vector terms si are expressed as below.

wi = �(wi) + i�(wi)

eiβdi cos(φ) = �(si) + i�(si).

where di is the position of the ith element from the origin. Now we can write the array factor
as

AF(wi) = am
T x + ibm

T x (11)

where
x = (�(w1), . . . ,�(wn),�(w1), . . . ,�(wn));

RS = (�(s1), . . . ,�(sn));

IS = (�(s1), . . . ,�(sn));

am = (RS,−IS);
bm = (IS, RS)

Following (Lasdon et al., 1987), the problem in (10) is

min
wi

z

subject to |AF(φm)|2 < z, m = 1, . . . , P

|AF(φn)|2 = Un, n = 1, . . . , Q

|AF(φs)|2 = 1.

(12)

The remaining section will show how to use fmincon function to the above optimization
problem. The specification for the beam pattern is as follows:

phim=[0,44,57,72,106,122,140,180]*pi/180;
phin=[30,55,67,90,112,128,150]*pi/180;
goal=[0.01,0.01,0.01,1,0.02,0.02,0.02];

In this piece of code, phin vector has the values of the angles in which the magnitude square
oof the array factor is constrained to be equal to the values in the vector goal. The goal is
specified for the power pattern. The goal is equal to -20dB for the first three phin and is
equal to -17 dB for the last three phin angles. When phin=90◦, it is 0 dB. A separate function
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Fig. 11. Asymmetric pattern of an array of 8 elements with the specification indicated

must be written for the objective. This function returns the function value which is to be
minimized. For our example, the argument is equal to the function value. The code for the
objective function is given below.
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• φm, directions in which the array factor is evaluated for the minimax problem;

• φn, directions in which the array factor is constrained to be equal to Un;

• φs, angle at which the normalized gain is equal to 1.

The angles φm and φn will be within the two sidelobe regions. The original problem which in-
volves complex numbers is cast into a formulation involving only real numbers. The weights
wi and the steering vector terms si are expressed as below.
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eiβdi cos(φ) = �(si) + i�(si).

where di is the position of the ith element from the origin. Now we can write the array factor
as
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where
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RS = (�(s1), . . . ,�(sn));

IS = (�(s1), . . . ,�(sn));
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Following (Lasdon et al., 1987), the problem in (10) is

min
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subject to |AF(φm)|2 < z, m = 1, . . . , P

|AF(φn)|2 = Un, n = 1, . . . , Q

|AF(φs)|2 = 1.

(12)

The remaining section will show how to use fmincon function to the above optimization
problem. The specification for the beam pattern is as follows:

phim=[0,44,57,72,106,122,140,180]*pi/180;
phin=[30,55,67,90,112,128,150]*pi/180;
goal=[0.01,0.01,0.01,1,0.02,0.02,0.02];

In this piece of code, phin vector has the values of the angles in which the magnitude square
oof the array factor is constrained to be equal to the values in the vector goal. The goal is
specified for the power pattern. The goal is equal to -20dB for the first three phin and is
equal to -17 dB for the last three phin angles. When phin=90◦, it is 0 dB. A separate function
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options = optimset(’Algorithm’,’interior-point’);
Wopt= fmincon(’objfun’,a0,[],[],[],[],...
lb,ub,’confun’,options,goal,phim,phin);

As the problem does not have any linear constraints, the corresponding arguments must be
empty. The arguments lb and ub define the bounds on the real and imaginary parts of the
weight vector and the objective function input. Fig. 11 shows the normalized pattern of the
array with sidelobe specifications.

8. Conclusion

Exploiting the similarity between signal-processing theory and antenna-array theory, it has
been demonstrated that with little effort analysis of antenna arrays can be done using signal-
and image-processing tools of MATLAB. The analogy between FIR filters and arrays can be
effectively used to explain the concepts of the arrays to students. Also, synthesis of arrays,
to a first approximation, can be carried out using signal-processing tools in the case of one-
dimensional arrays, and image-processing tools in the case of two-dimensional arrays, ig-
noring the mutual coupling between the elements.It has been shown that the optimization
toolbox of MATLAB can be used to design antenna arrays with asymmetric sidelobes.
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1. Introduction 

The rising development of the microelectronic integrated circuits and technologies requires 
effective and flexible tools for modeling and simulation. Modeling of the planar inductors is 
a key problem in microelectronic design and requires precise implementation of the 
corresponding models for simulation and optimization. The application of a general-
purpose matrix based software like MATLAB and the proper model implementation for 
such software is of great importance in the RF designer’s everyday work. 
The on-chip planar inductor is a very important constructive component of the 
contemporary CMOS microelectronics. In the CMOS SoC RFs the use of the planar inductors 
in designs like VCOs, mixers, RF amplifiers, impedance-matching circuits is widespread. 
Many papers, devoted on the on-chip spiral inductors analysis, model parameter extraction 
and optimization were published in the recent years. 
The MATLAB environment can be successfully used in the circuit analysis. The 
implemented symbolic representation of the equations is of a significant importance for the 
description and simulation of  multiparameter models in microelectronics.  
Genetic Algorithm (GA) optimization tools are already implemented in leading general-
purpose system analysing software like MATLAB. This gives the users another opportunity 
for solving various design optimization problems. The GA is a stochastic global search 
method, which is based on a mechanism resemble the natural biological evolution 
mechanism. GA operates on a population of solutions and the fitness of the solutions is 
determined from the objective function of some specific problem. Only the best fitted 
solutions remain in the population after a number of predefined cycles. In microelectronic 
technologies and in the microelectronic design the problems are often presented as 
mathematical functions of multiple variables. The optimization of the values of these 
variables is in some cases a complex problem, especially when the amount of the variables is 
huge. The big advantage of GA is that these algorithms do not require derivative 
information or other knowledge. Only the objective function and the corresponding fitness 
levels influence the direction of search. This makes the GA an useful tool for parameter 
optimization in microelectronics and especially for geometric optimization of 
microelectronic components, when the parameters of the technology are known. 

14
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Fig. 1. The enhanced model of spiral inductor (a) and its schematic representation (b) 
 
From the analysis point of view, the model can be represented using the equivalent 
schematic, shown in Fig. 1b (Durev et al., 2009). The following expressions can be written: 
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The Y-parameters can be found using equations (1), (2) and (3). The corresponding 
schematics are shown in Fig. 2 for both cases – 02 V  (Fig. 2a) and 01 V  (Fig. 2b). 
According to the two-port definition for the Y-parameters, Y11 and Y21 are defined for the 
case in Fig. 2a, and Y22 and Y12 – for the case, shown in Fig. 2b.  
 

 
                                      a)                                                                               b) 
Fig. 2. Representation of the Y-parameter analysis: (a) 02 V ;  (b) 01 V  

 

A method for optimal design and synthesis of CMOS inductors for use in RF circuits is 
proposed in (Hershenson et al., 1999). The method is based on formulating the design 
problem as an optimization problem using geometric programming. The physical 
dimensions of the inductor are defined as design parameters. A variety of specifications are 
introduced including the required inductance value, as well as the minimum allowed values 
of the self-resonant frequency and the quality factor. Geometric constraints that can be 
handled include the maximum and the minimum values for each of the design parameters 
and a limit on total area.  
The wide-band spiral inductor model, proposed in (Gil  & Shin, 2003) is simple and has an 
excellent accuracy in comparison to the measured results. The main advantage of this model  
compared to the models with geometry dependent parameters developed in (Ashby et al., 
1994; Yue et al. 1996; Mohan et al., 1999) consists in the frequency independence of the  
model parameters. Moreover, the models in (Ashby et al., 1994; Yue et al. 1996; Mohan et al., 
1999) can not predict the drop-down characteristics in the series resistance at higher 
frequencies. The wide-band model was widely accepted and several extraction procedures 
were published to aid the verification and the easy implementation in the microelectronic 
designs (Kang et al., 2005; Chen et al., 2008). Several modifications of the model are 
proposed in (Sun et al., 2004 ; Wen  & Sun, 2006). The application of the simple parameter 
extraction method (Kang et al., 2005) and the systematic model parameter extraction 
approach (Chen et al., 2008) lead to very accurate results. However, the application of these 
procedures takes time and the need of having automated extraction procedures using an 
industrial standard environment like MATLAB is an important problem to solve. 
A bandwidth extension technique of gigahertz broadband circuitry is applied in (Mohan et 
al., 2000) by using optimized on-chip spiral inductors. A global optimization method, based 
on geometric programming, is discussed. As a result, the optimized on-chip inductors 
consume only 15% of the total area. A fast Sequential Quadratic Programming (SQP) 
approach to optimize the on-chip spiral inductors is proposed in (Zhan & Sapatnekar, 2004). 
A robust automated synthesis methodology to efficiently generate spiral inductor designs 
using multi-objective optimization techniques and surrogate functions to approximate 
Pareto surfaces in the design space is developed in (Nieuwoudt & Massoud, 2005). The 
obtained results indicate that the synthesis methodology efficiently optimizes inductor 
designs based on the defined requirements with an improvement of up to 51% in key 
inductor design constraints. The need to develop analysis and optimizations in one and the 
same environment leads to the usage of MATLAB and the implemented optimization 
toolboxes and GA toolbox (Chipperfield et al., 1994). 

 
2. Wide-band planar inductor model analysis in MATLAB 

The enhanced model of spiral inductor (Gil & Shin, 2003) can be treated as a parallel 
combination of an upper and a lower subcircuits (Fig. 1a). Because of the DC blocking 
property of the oxide capacitors Cox1 and Cox2, the spiral inductor model can be separated 
into two parts: upper subcircuit and lower subcircuit. The inductor can be approximately 
characterized by the upper subcircuit for lower frequencies and by the lower subcircuit for 
high frequencies. 
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3. Minimization the Parameter Extraction Errors Using GA 

3.1. Purpose function and general structure 
Once the basic circuit analysis and Y-parameter expressions are present, a GA approach can 
be applied to minimize the errors, coming from the parameter extraction procedure. The 
idea is to compare the Y-parameters, obtained for the model parameter values from the 
parameter extraction and the Y-parameters, obtained when the model parameter values are 
varied in a certain range. The actual comparison is done in the purpose function, which 
compares the absolute value for every frequency point of every two-port Y-parameter in one 
expression, using the sum of the least squares values: 
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where j, k = 1,2; 
          )m(

jkY – measured Y-parameters;  

          jkY   – simulated Y-parameters of the model; 

           n     – number of the measured/simulated frequency points. 
The GA optimization is done using 1000 iterations, generation gap of 0.7 for population of 
200 individuals. (Durev, 2009). The function body contains two for cycles. The first cycle 
runs the calculations for every frequency point until the end (DATA_ROWS), and the 
second cycle runs the calculations for every generated individual (variable) for a given 
frequency point until the end (Nind).  
 
3.2. Optimization procedure realized in MATLAB 
The representation of equations (1 - 11) and the construction of the optimization procedure 
in MATLAB are shown below: 
   for i = 1:DATA_ROWS %Calculate the frequency response of the circuit 
         s = j*2*pi*frequency(i); 
   for ix = 1:Nind  
         ZLs0 = s.*Ls0(ix);  Zs1 = Rs1(ix) + s.*Ls1(ix);  ZRs0 = Rs0(ix);   
         Zs = ZLs0 + ((Zs1.*ZRs0)./(Zs1 + ZRs0));  Zox1 = 1./(s.*Cox1(ix));  
         Zox2 = 1./(s.*Cox2(ix));  ZRsi1 = Rsi1(ix);  ZCsi1 = 1./(s.*Csi1(ix)); 
         Zsi1 = (ZRsi1.*ZCsi1)./(ZRsi1 + ZCsi1);   ZRsi2 = Rsi2(ix);  ZCsi2 = 1./(s.*Csi2(ix)); 
         Zsi2 = (ZRsi2.*ZCsi2)./(ZRsi2 + ZCsi2);   ZRsub = Rsub(ix);  ZCsub = 1./(s.*Csub(ix)); 
        Zsub = (ZRsub.*ZCsub)./(ZRsub + ZCsub); 
         %Calculate Y11, V1 = 1, V2 = 0 
         Zox2si2 = (Zox2.*Zsi2)./(Zox2 + Zsi2);  Zsubox2si2 = Zox2si2 + Zsub; 
         Zsubox2si2si1 = (Zsi1.*Zsubox2si2)./(Zsi1 + Zsubox2si2); 
         Zsubox2si2si1ox1 = Zox1 + Zsubox2si2si1; 
         ZeqY11 = (Zs.*Zsubox2si2si1ox1)./(Zs + Zsubox2si2si1ox1);   
         Y11(ix, 1) = V1./ZeqY11; 
         %Calculate Y22, V1 = 0, V2 = 1 
         Zox1si1 = (Zox1.*Zsi1)./(Zox1 + Zsi1);  Zsubox1si1 = Zox1si1 + Zsub; 
         Zsubox1si1si2 = (Zsi2.*Zsubox1si1)./(Zsi2 + Zsubox1si1); 
         Zsubox1si1si2ox2 = Zox2 + Zsubox1si1si2; 
         ZeqY22 = (Zs.*Zsubox1si1si2ox2)./(Zs + Zsubox1si1si2ox2); 

 

The equivalent impedance ZeqY11 for the schematic, shown in Fig. 2a can be found, using the 
following equations: 
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The following expression for Y11 can be written: 
 
 11111 eqYZVY  . (6) 
 
The equivalent impedance ZeqY22 and Y22 are obtained similarly from the analysis of the 
schematic in Fig. 2b, when 01 V . The following expressions are valid: 
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Y21 can be easily expressed if the voltage 2oxZV across Zox2 in Fig. 2a is known. It can be 
symbolically expressed using the symbolic analysis possibilities in MATLAB. If the input 
current, node voltages and admittances in Fig. 2 are declared as symbols using syms, the 
Modified Nodal Analysis (MNA) circuit matrix equation can be solved and the following 
expression can be written for 2oxZV : 
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In order to obtain Y21, the currents 2oxZI  and sI  are expressed, using the following 
equations: 
 222 oxoxZoxZ ZVI   ; ss ZVI 1

  . (9) 
 
Using the expressions (9) and the Y21 two-port definition, Y21 is expressed in the form: 
 
   1221 VIIY oxZs

  . (10)  
 
Because of the symmetry of the model from Fig. 1b, the following expression is obtained for 
Y12 from the analysis of the circuit, shown in Fig. 2b when 01 V : 
 
   2112 VIIY oxZs

   (11) 
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where j, k = 1,2; 
          )m(

jkY – measured Y-parameters;  

          jkY   – simulated Y-parameters of the model; 

           n     – number of the measured/simulated frequency points. 
The GA optimization is done using 1000 iterations, generation gap of 0.7 for population of 
200 individuals. (Durev, 2009). The function body contains two for cycles. The first cycle 
runs the calculations for every frequency point until the end (DATA_ROWS), and the 
second cycle runs the calculations for every generated individual (variable) for a given 
frequency point until the end (Nind).  
 
3.2. Optimization procedure realized in MATLAB 
The representation of equations (1 - 11) and the construction of the optimization procedure 
in MATLAB are shown below: 
   for i = 1:DATA_ROWS %Calculate the frequency response of the circuit 
         s = j*2*pi*frequency(i); 
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         Zs = ZLs0 + ((Zs1.*ZRs0)./(Zs1 + ZRs0));  Zox1 = 1./(s.*Cox1(ix));  
         Zox2 = 1./(s.*Cox2(ix));  ZRsi1 = Rsi1(ix);  ZCsi1 = 1./(s.*Csi1(ix)); 
         Zsi1 = (ZRsi1.*ZCsi1)./(ZRsi1 + ZCsi1);   ZRsi2 = Rsi2(ix);  ZCsi2 = 1./(s.*Csi2(ix)); 
         Zsi2 = (ZRsi2.*ZCsi2)./(ZRsi2 + ZCsi2);   ZRsub = Rsub(ix);  ZCsub = 1./(s.*Csub(ix)); 
        Zsub = (ZRsub.*ZCsub)./(ZRsub + ZCsub); 
         %Calculate Y11, V1 = 1, V2 = 0 
         Zox2si2 = (Zox2.*Zsi2)./(Zox2 + Zsi2);  Zsubox2si2 = Zox2si2 + Zsub; 
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         Zsubox2si2si1ox1 = Zox1 + Zsubox2si2si1; 
         ZeqY11 = (Zs.*Zsubox2si2si1ox1)./(Zs + Zsubox2si2si1ox1);   
         Y11(ix, 1) = V1./ZeqY11; 
         %Calculate Y22, V1 = 0, V2 = 1 
         Zox1si1 = (Zox1.*Zsi1)./(Zox1 + Zsi1);  Zsubox1si1 = Zox1si1 + Zsub; 
         Zsubox1si1si2 = (Zsi2.*Zsubox1si1)./(Zsi2 + Zsubox1si1); 
         Zsubox1si1si2ox2 = Zox2 + Zsubox1si1si2; 
         ZeqY22 = (Zs.*Zsubox1si1si2ox2)./(Zs + Zsubox1si1si2ox2); 

 

The equivalent impedance ZeqY11 for the schematic, shown in Fig. 2a can be found, using the 
following equations: 
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The following expression for Y11 can be written: 
 
 11111 eqYZVY  . (6) 
 
The equivalent impedance ZeqY22 and Y22 are obtained similarly from the analysis of the 
schematic in Fig. 2b, when 01 V . The following expressions are valid: 
 

 
2211

22 11
1

oxsisisuboxs
eqY ZZ

Z


   ;     22222 eqYZVY  . (7) 

 
Y21 can be easily expressed if the voltage 2oxZV across Zox2 in Fig. 2a is known. It can be 
symbolically expressed using the symbolic analysis possibilities in MATLAB. If the input 
current, node voltages and admittances in Fig. 2 are declared as symbols using syms, the 
Modified Nodal Analysis (MNA) circuit matrix equation can be solved and the following 
expression can be written for 2oxZV : 
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In order to obtain Y21, the currents 2oxZI  and sI  are expressed, using the following 
equations: 
 222 oxoxZoxZ ZVI   ; ss ZVI 1

  . (9) 
 
Using the expressions (9) and the Y21 two-port definition, Y21 is expressed in the form: 
 
   1221 VIIY oxZs
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Because of the symmetry of the model from Fig. 1b, the following expression is obtained for 
Y12 from the analysis of the circuit, shown in Fig. 2b when 01 V : 
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The corresponding relative errors are: RelErrY11max = 0.254 %, RelErrY12max = 0.062 %, 
RelErrY21max = 0.062 %, RelErrY22max = 0.239 %.  After the GA optimization, the following 
model parameter values are obtained: Rs0 = 6.697 Ω, Rs1 = 7.558 Ω, Ls0 = 3.02 nH, 
Ls1 = 1.184 nH, Cox1 = 119.776 fF, Cox2 = 112.479 fF, Rsi1 = 292.638 Ω, Rsi2 = 285.733 Ω, 
Csi1 = 33.997 fF, Csi2 = 32.958 fF, Rsub = 944.4 Ω and Csub = 72.516 fF. 
The corresponding relative errors after the GA optimization are: RelErrY11max = 0.099 %, 
RelErrY12max = 0.041 %, RelErrY21max = 0.041 %, RelErrY22max = 0.154 %. Thus the improvement 
of the errors is 61%, 34%, 34% and 36% respectively. The improvement is achieved with 
0.5% variation of the model parameter values. The proposed algorithm shows excellent 
agreement with the measured data over the whole frequency range. 

 
4. Parameter extraction of the  
wide-band planar inductor model using MATLAB 

Several extraction procedures for wide-band on-chip spiral inductor model are proposed in 
(Kang et al., 2005; Chen et al., 2008). An automated parameter extraction procedure using 
MATLAB is developed in (Gadjeva et al., 2009). 
The input data is supplied to the MATLAB script as an Excel file .xls. The data is structured 
in columns, starting from the frequency column, followed by the real and imaginary parts of 
the measured two-port S-parameters: S11re, S11im, S12re, S12im, S21re, S21im, S22re and S22im. 
The program has the option for the two-port Y-parameters to be the input data. In the most 
cases the input data are the measured S-parameters, which are easier to measure and the 
network analyzers provide this data. Once accepted from the .xls file, the S-parameters are 
converted to Y-parameters, as the parameter extraction procedure works with Y-parameters. 
The conversion is done using the MATLAB s2y function. Once converted, the input data is 
structured into five vectors: 1n]freq[ , 111 n]Y[ , 112 n]Y[ , 121 n]Y[ , 122 n]Y[ , where n is the 
number of points, measured as input data. The input data can be represented as a matrix 
[INPUT_DATA]DATA_ROWS x 9  for nine input data vectors – frequency vector matrix and the 
real and the imaginary parts vectors for the two-port S- or Y-parameters. 
The enhanced model of spiral inductor (Gil & Shin, 2003) shown in Fig. 1a can be approximately 
characterized by the upper subcircuit for lower frequencies. Such an approximation has been 
widely applied to calculate the series resistance and inductance (Kang et al., 2005; Huang et al., 
2006). To minimize the error, caused by the approximation, the upper frequency limit must be 
calculated and fixed in the parameter extraction program. For this reason, the spiral inductor 
model shown in Fig. 1a can be represented by the equivalent schematics in Fig. 3 (π-network). 
 

 
Fig. 3. Relation between the shunt and series admittances of the π-network for the spiral 
inductor model 
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         Y22(ix, 1) = U2./ZeqY22; 
         Ysub = 1./Zsub;  Yox1 = 1./Zox1;  Yox2 = 1./Zox2;  Ysi1 = 1./Zsi1; Ysi2 = 1./Zsi2; 
         %Calculate Y12, V1 = 0, V2 = 1 
         %Expressions taken from symmetry considerations with Y21 
         VZox1 = (Yox2.*Ysub)./((Yox2 + Ysi2).*(Ysub + Yox1 + Ysi1) + Ysub.*(Yox1 + Ysi1)); 
         IZox1 = VZox1./Zox1;  Is = V2./Zs; I1 = Is + IZox1;  Y12(ix, 1) = -I1./U2; 
         %Calculate Y21, V1 = 1, V2 = 0 
         %Expressions taken from the symbolic extraction of Y21 
         VZox2 = (Yox1.*Ysub)./((Yox1 + Ysi1).*(Ysub + Yox2 + Ysi2) + Ysub.*(Yox2 + Ysi2)); 
         IZox2 = VZox2./Zox2;  Is = V1./Zs;  I2 = Is + IZox2; 
         Y21(ix, 1) = -I2./U1; 
   end 
   %Least squares sum of the difference between the modules of the required and the current 
Y-parameters 
   g_fun = g_fun + ((abs(Y11) - abs(Y11_req(i)))).^2 + ((abs(Y12) - abs(Y12_req(i)))).^2 + 
((abs(Y21) - abs(Y21_req(i)))).^2 + ((abs(Y22) - abs(Y22_req(i)))).^2; 
   end 
The presented procedure for optimization of the model parameters of the wide-band on-
chip spiral inductor model is verified according to the published data in (Gil  & Shin, 2003; 
Chen et al., 2008). The relative percentage error for the modules of the extracted and the 
measured Y-parameters is used to estimate the accuracy of the optimization procedure for 
various geometry RF spiral inductors. The maximal relative percentage error is calculated 
for the modules of the Y-parameters in the form: 
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where j, k = 1,2; 
           )m(

jkY - measured Y-parameters;  

           jkY - simulated Y-parameters of the model. 

The obtained results for the relative errors from the extraction procedure and after the 
optimization procedure are compared and the error improvement for each of the  
Y-parameters is shown in Table 1. For example, the extracted values for the case of 4.5 x 30 x 
14.5 x 2 geometry (Table 1) are: Rs0 = 6.680 Ω, Rs1 = 7.588 Ω, Ls0 = 3.02 nH, Ls1 = 1.183 nH, 
Cox1 = 119.57 fF, Cox2 = 112.745 fF, Rsi1 = 291.376 Ω, Rsi2 = 286.831 Ω, Csi1 = 34.133 fF,  
Csi2 = 32.993 fF, Rsub = 946.544 Ω and Csub = 72.409 fF.  
 

Dimension 
(N x R x W x S)* 

Relative error improvement, % 

Y11 Y12 Y21 Y22 
2.5 x 60 x 14.5 x 2 15 19 19 16 
4.5 x 60 x 14.5 x 2 32 33 33 43 
6.5 x 60 x 14.5 x 2 14 9 9 7 
4.5 x 30 x 14.5 x 2 61 34 34 36 
3.5 x 60 x 9 x 7.5 29 37 37 14 

                                          * N: number of turns, R: inner radius (μm), W: metal width (μm), S: spacing (μm) 
Table 1. Error improvement after the application of GA optimization procedure 
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The corresponding relative errors are: RelErrY11max = 0.254 %, RelErrY12max = 0.062 %, 
RelErrY21max = 0.062 %, RelErrY22max = 0.239 %.  After the GA optimization, the following 
model parameter values are obtained: Rs0 = 6.697 Ω, Rs1 = 7.558 Ω, Ls0 = 3.02 nH, 
Ls1 = 1.184 nH, Cox1 = 119.776 fF, Cox2 = 112.479 fF, Rsi1 = 292.638 Ω, Rsi2 = 285.733 Ω, 
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The corresponding relative errors after the GA optimization are: RelErrY11max = 0.099 %, 
RelErrY12max = 0.041 %, RelErrY21max = 0.041 %, RelErrY22max = 0.154 %. Thus the improvement 
of the errors is 61%, 34%, 34% and 36% respectively. The improvement is achieved with 
0.5% variation of the model parameter values. The proposed algorithm shows excellent 
agreement with the measured data over the whole frequency range. 

 
4. Parameter extraction of the  
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Several extraction procedures for wide-band on-chip spiral inductor model are proposed in 
(Kang et al., 2005; Chen et al., 2008). An automated parameter extraction procedure using 
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number of points, measured as input data. The input data can be represented as a matrix 
[INPUT_DATA]DATA_ROWS x 9  for nine input data vectors – frequency vector matrix and the 
real and the imaginary parts vectors for the two-port S- or Y-parameters. 
The enhanced model of spiral inductor (Gil & Shin, 2003) shown in Fig. 1a can be approximately 
characterized by the upper subcircuit for lower frequencies. Such an approximation has been 
widely applied to calculate the series resistance and inductance (Kang et al., 2005; Huang et al., 
2006). To minimize the error, caused by the approximation, the upper frequency limit must be 
calculated and fixed in the parameter extraction program. For this reason, the spiral inductor 
model shown in Fig. 1a can be represented by the equivalent schematics in Fig. 3 (π-network). 
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   %Least squares sum of the difference between the modules of the required and the current 
Y-parameters 
   g_fun = g_fun + ((abs(Y11) - abs(Y11_req(i)))).^2 + ((abs(Y12) - abs(Y12_req(i)))).^2 + 
((abs(Y21) - abs(Y21_req(i)))).^2 + ((abs(Y22) - abs(Y22_req(i)))).^2; 
   end 
The presented procedure for optimization of the model parameters of the wide-band on-
chip spiral inductor model is verified according to the published data in (Gil  & Shin, 2003; 
Chen et al., 2008). The relative percentage error for the modules of the extracted and the 
measured Y-parameters is used to estimate the accuracy of the optimization procedure for 
various geometry RF spiral inductors. The maximal relative percentage error is calculated 
for the modules of the Y-parameters in the form: 
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The obtained results for the relative errors from the extraction procedure and after the 
optimization procedure are compared and the error improvement for each of the  
Y-parameters is shown in Table 1. For example, the extracted values for the case of 4.5 x 30 x 
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The frequency range, where the upper subcircuit from Fig. 1a represents the approximate 
behaviour of the spiral inductor model, is then fixed to [Fmin; F1], where F1 is the minimal 
value of the frequencies freq_low_rat1u and freq_low_rat2u.  
Once F1 and Fmax were calculated, the low and high frequency vectors: 
[freq_low]freq_low_rows x freq_low_columns   and [freq_high]freq_high_rows x 
freq_high_columns can be found, which will be needed for the further indexing of the 
matrices in the calculations: 
for i = 1:DATA_ROWS 
    if(freq(i) <= F1)  
           freq_low(i, 1) = freq(i); 
    elseif(freq(i) <= Fmax)  
           freq_high(i, 1) = freq(i); 
    end            
end   
[freq_low_rows, freq_low_columns] = size(freq_low); 
[freq_high_rows, freq_high_columns] = size(freq_high); 

 
4.1. Extraction of Ls0, Rs0, Ls1, and Rs1 
The equivalent resistance and inductance of the upper subcircuit are obtained for the 
frequency range  [Fmin ; F1]: 
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The dc resistance and inductance Rdc and Ldc are calculated for ω = 0. In the real case these 
values are calculated for minF 2 according to the following expressions: 
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The relation between the differences ΔRuf  and ΔLuf gives the coefficient T from (Chen et al., 
2008) defined in the form: 
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The coefficient M and its maximal value Mmax are obtained in the form (Chen et al., 2008): 
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The values of Rs0, Rs1, Ls0 and Ls1 are calculated directly from the obtained scalar values for 
Rdcmax, Ldcmax, Tmax and Mmax (Chen et al. , 2008): 
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In this network, the following expressions are valid (Chen et al., 2008): 
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It is shown in (Chen et al., 2008) that the normalized magnitudes of the upper subcircuit 

uRAT1  and uRAT2  should be smaller than 1% in order to achieve accurate low frequency 
approximation. The frequency values in the 1n]freq[ data vector are in the range 
[Fmin; Fmax]. Fmin is the start frequency and Fmax is the end frequency at which the input two-
port Y- or S-parameters are measured. The values of these two frequencies can be easily 
defined in MATLAB using min and max functions over the vector 1n]freq[ : 
Fmin = min(freq); 
Fmax = max(freq); 
 

The expressions (14) and (15), written as a MATLAB code are in the form: 
Ysh1 = Y11 + Y12;    Ysh2 = Y22 + Y12; 
rat1u = 100*abs(Ysh1./Y12);    rat2u = 100*abs(Ysh2./Y12); 
The maximal frequencies, at which the normalized magnitudes of the vector components are 
less than 1%, can be found using the following code over the matrices 1n]freq[ , 11 nu ]RAT[   
and 12 nu ]RAT[  : 
for i = 1:DATA_ROWS 
    if(rat1u(i) <= 1.0) 
           freq_low_rat1u = freq(i); 
    elseif(rat1u_min > 1.0) 
           freq_low_rat1u = freq_low_rat1u_min; 
           ErrorMsg 
    end 
    if(rat2u(i) <= 1.0) 
           freq_low_rat2u = freq(i); 
    elseif(rat2u_min > 1.0) 
           freq_low_rat2u = freq_low_rat2u_min; 
           ErrorMsg 
    end 
end 
F1 = min(freq_low_rat1u, freq_low_rat2u); 
Here n = DATA_ROWS and an error message ErrorMsg is written in case when there are no 
component values in 11 nu ]RAT[  and 12 nu ]RAT[ , smaller than 1%. This occurs when the 
input data have not enough number of points or they are not precisely measured. The 
minimum values found in vectors 11 nu ]RAT[  and 12 nu ]RAT[ (freq_low_rat1u_min and 
freq_low_rat2u_min) are taken into account in this case and this could cause deviations in 
the calculations.   
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The frequency range, where the upper subcircuit from Fig. 1a represents the approximate 
behaviour of the spiral inductor model, is then fixed to [Fmin; F1], where F1 is the minimal 
value of the frequencies freq_low_rat1u and freq_low_rat2u.  
Once F1 and Fmax were calculated, the low and high frequency vectors: 
[freq_low]freq_low_rows x freq_low_columns   and [freq_high]freq_high_rows x 
freq_high_columns can be found, which will be needed for the further indexing of the 
matrices in the calculations: 
for i = 1:DATA_ROWS 
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end   
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4.1. Extraction of Ls0, Rs0, Ls1, and Rs1 
The equivalent resistance and inductance of the upper subcircuit are obtained for the 
frequency range  [Fmin ; F1]: 
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The coefficient M and its maximal value Mmax are obtained in the form (Chen et al., 2008): 
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Rdcmax, Ldcmax, Tmax and Mmax (Chen et al. , 2008): 
 

 maxdcmaxs RMR 0 ;     
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maxdcs
s M

RR
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1  , (21) 

 

In this network, the following expressions are valid (Chen et al., 2008): 
 
 12YYser  ;    12111 YYYsh  ;  12222 YYYsh  ,  (14) 
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YRAT 2
2 100 .  (15) 

 
It is shown in (Chen et al., 2008) that the normalized magnitudes of the upper subcircuit 

uRAT1  and uRAT2  should be smaller than 1% in order to achieve accurate low frequency 
approximation. The frequency values in the 1n]freq[ data vector are in the range 
[Fmin; Fmax]. Fmin is the start frequency and Fmax is the end frequency at which the input two-
port Y- or S-parameters are measured. The values of these two frequencies can be easily 
defined in MATLAB using min and max functions over the vector 1n]freq[ : 
Fmin = min(freq); 
Fmax = max(freq); 
 

The expressions (14) and (15), written as a MATLAB code are in the form: 
Ysh1 = Y11 + Y12;    Ysh2 = Y22 + Y12; 
rat1u = 100*abs(Ysh1./Y12);    rat2u = 100*abs(Ysh2./Y12); 
The maximal frequencies, at which the normalized magnitudes of the vector components are 
less than 1%, can be found using the following code over the matrices 1n]freq[ , 11 nu ]RAT[   
and 12 nu ]RAT[  : 
for i = 1:DATA_ROWS 
    if(rat1u(i) <= 1.0) 
           freq_low_rat1u = freq(i); 
    elseif(rat1u_min > 1.0) 
           freq_low_rat1u = freq_low_rat1u_min; 
           ErrorMsg 
    end 
    if(rat2u(i) <= 1.0) 
           freq_low_rat2u = freq(i); 
    elseif(rat2u_min > 1.0) 
           freq_low_rat2u = freq_low_rat2u_min; 
           ErrorMsg 
    end 
end 
F1 = min(freq_low_rat1u, freq_low_rat2u); 
Here n = DATA_ROWS and an error message ErrorMsg is written in case when there are no 
component values in 11 nu ]RAT[  and 12 nu ]RAT[ , smaller than 1%. This occurs when the 
input data have not enough number of points or they are not precisely measured. The 
minimum values found in vectors 11 nu ]RAT[  and 12 nu ]RAT[ (freq_low_rat1u_min and 
freq_low_rat2u_min) are taken into account in this case and this could cause deviations in 
the calculations.   
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The expressions (23) – (27), written as a MATLAB code, are in the form: 
Zs = j*w*Ls0 + (1./((1/Rs0) + (1./(Rs1 + j*w*Ls1))));   Ys = 1./Zs;    Y11l = Y11 - Ys;  
Y12l = Y12 + Ys;    Y22l = Y22 - Ys;    Ysh1l = Y11l + Y12l;  Ysh2l = Y22l + Y12l;  Yserl = -Y12l;  
 rat1l = 100.*abs(Yserl./Ysh1l);   rat2l = 100.*abs(Yserl./Ysh2l); 
The maximal frequencies, at which the components of the vector of normalized magnitudes 
have values less than 5%, can be found using the following code over the matrices 

1n]frequency[ , 11 nl ]RAT[  and 12 nl ]RAT[ : 
for i = 1:DATA_ROWS 
    if(freq(i) >= F1) 
        if(rat1l(i) <= 5.0)  
               freq_low_rat1l = freq(i); 
        elseif(rat1l_min > 5.0) 
               freq_low_rat1l = freq_low_rat1l_min; 
               ErrorMsg 
        end 
        if(rat2l(i) <= 5.0)  
               freq_low_rat2l = freq(i); 
        elseif(rat2l_min > 5.0) 
               freq_low_rat2l = freq_low_rat2l_min; 
               ErrorMsg 
        end  
    end 
end 
F2 = min(freq_low_rat1l, freq_low_rat2l); 
ErrorMsg is written in case there are no component values in 11 nl ]RAT[  and 12 nl ]RAT[ , 
smaller than 5%. The minimum values found in vectors 11 nl ]RAT[  and 12 nl ]RAT[  namely 
freq_low_rat1l_min and freq_low_rat2l_min are taken into account in this case and this 
could cause deviations in the calculations.   
The frequency range, where the lower subcircuit from Fig. 1a represents the approximate 
behaviour of the spiral inductor model is then fixed to [F1; F2], where F2 is the minimal 
frequency between freq_low_rat1l and freq_low_rat2l.  
Once F2 is calculated, the middle frequency vector [freq_mid]freq_mid_rows x freq_mid_columns can be 
found, which will be needed for the further indexing of the matrices in the calculations: 
for i = 1:DATA_ROWS 
    if(freq(i) <= F2)  
           freq_mid(i, 1) = freq(i); 
    end            
end   
[freq_mid_rows, freq_mid_columns] = size(freq_mid); 
Then Cox1 and Cox2 can be extracted as maximal values in the range [F1; F2] using the 
expressions from (Chen et al., 2008): 
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Using the equations (16) – (21), the upper subcircuit parameter extraction can be done with 
the following MATLAB source code: 
Zu = -1./Y12;  Ruf = real(Zu([1 : freq_low_rows], 1)); Rdc = (Ruf*Fmin)./freq_low; 
Luf = imag(Zu([1 : freq_low_rows], 1))./(w([1 : freq_low_rows], 1)); 
Rdc_max = max(Rdc) + 1.0e-15; Ldc_max = max(Luf) + 1.0e-15; 
DRuf = Ruf - Rdc_max; DLuf = Ldc_max - Luf; 
T = ((freq_low./F1).*DRuf)./DLuf; %Luf(x,x) = Ldc_max => Warning: Divide by zero. 
T_max = max(T); Tw = T_max./w([1 : freq_low_rows], 1); 
M = DRuf.*(1 + (Tw.*Tw)); M_max = max(M); Rs0 = M_max + Rdc_max; 
Rs1 = (Rs0*Rdc_max)/M_max; Rt = Rs0 + Rs1; Ls0 = Ldc_max - (M_max/T_max); 
Ls1 = (Rs0+Rs1)/T_max; 
A small number of 15101   is added to calculate Rdcmax and Ldcmax to avoid division by zero.  

 
4.2. Extraction of Cox1 and Cox2 
Once the model parameters Rs0, Rs1, Ls0 and Ls1 are calculated, based on measured data in 
the frequency range [Fmin, F1], the equivalent series impedance Zs and admittance Ys of the 
upper subcircuit can be found using the following expressions:  
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For frequencies greater than F1 the lower subcircuit has to be taken into account. The  
Y-matrix of the lower subcircuit [Yl] is obtained in the form: 
 
      sl YYY  , (24) 
 
where [Ys] is the admittance matrix of the upper subcircuit; 
            [Y]  - admittance matrix of the entire model. 
 
 sl YYY  1111   ;   sl YYY  1212   ;   sl YYY  2222 . (25) 
 
The lower subcircuit from Fig. 1a can be represented again as a π-network. The following 
expressions are valid for this subcircuit (Chen et al., 2008): 
 
 lllsh YYY 12111  ;     lllsh YYY 12222  ;       llser YY 12 , (26) 
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It is shown in (Chen et al., 2008) that the normalized magnitudes of the lower subcircuit 
lRAT1  and lRAT2  should be smaller than 5% in order to achieve accurate high frequency 

approximation.  



Analysis, model parameter extraction and optimization of planar inductors using MATLAB 287

 

The expressions (23) – (27), written as a MATLAB code, are in the form: 
Zs = j*w*Ls0 + (1./((1/Rs0) + (1./(Rs1 + j*w*Ls1))));   Ys = 1./Zs;    Y11l = Y11 - Ys;  
Y12l = Y12 + Ys;    Y22l = Y22 - Ys;    Ysh1l = Y11l + Y12l;  Ysh2l = Y22l + Y12l;  Yserl = -Y12l;  
 rat1l = 100.*abs(Yserl./Ysh1l);   rat2l = 100.*abs(Yserl./Ysh2l); 
The maximal frequencies, at which the components of the vector of normalized magnitudes 
have values less than 5%, can be found using the following code over the matrices 

1n]frequency[ , 11 nl ]RAT[  and 12 nl ]RAT[ : 
for i = 1:DATA_ROWS 
    if(freq(i) >= F1) 
        if(rat1l(i) <= 5.0)  
               freq_low_rat1l = freq(i); 
        elseif(rat1l_min > 5.0) 
               freq_low_rat1l = freq_low_rat1l_min; 
               ErrorMsg 
        end 
        if(rat2l(i) <= 5.0)  
               freq_low_rat2l = freq(i); 
        elseif(rat2l_min > 5.0) 
               freq_low_rat2l = freq_low_rat2l_min; 
               ErrorMsg 
        end  
    end 
end 
F2 = min(freq_low_rat1l, freq_low_rat2l); 
ErrorMsg is written in case there are no component values in 11 nl ]RAT[  and 12 nl ]RAT[ , 
smaller than 5%. The minimum values found in vectors 11 nl ]RAT[  and 12 nl ]RAT[  namely 
freq_low_rat1l_min and freq_low_rat2l_min are taken into account in this case and this 
could cause deviations in the calculations.   
The frequency range, where the lower subcircuit from Fig. 1a represents the approximate 
behaviour of the spiral inductor model is then fixed to [F1; F2], where F2 is the minimal 
frequency between freq_low_rat1l and freq_low_rat2l.  
Once F2 is calculated, the middle frequency vector [freq_mid]freq_mid_rows x freq_mid_columns can be 
found, which will be needed for the further indexing of the matrices in the calculations: 
for i = 1:DATA_ROWS 
    if(freq(i) <= F2)  
           freq_mid(i, 1) = freq(i); 
    end            
end   
[freq_mid_rows, freq_mid_columns] = size(freq_mid); 
Then Cox1 and Cox2 can be extracted as maximal values in the range [F1; F2] using the 
expressions from (Chen et al., 2008): 
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Using the equations (16) – (21), the upper subcircuit parameter extraction can be done with 
the following MATLAB source code: 
Zu = -1./Y12;  Ruf = real(Zu([1 : freq_low_rows], 1)); Rdc = (Ruf*Fmin)./freq_low; 
Luf = imag(Zu([1 : freq_low_rows], 1))./(w([1 : freq_low_rows], 1)); 
Rdc_max = max(Rdc) + 1.0e-15; Ldc_max = max(Luf) + 1.0e-15; 
DRuf = Ruf - Rdc_max; DLuf = Ldc_max - Luf; 
T = ((freq_low./F1).*DRuf)./DLuf; %Luf(x,x) = Ldc_max => Warning: Divide by zero. 
T_max = max(T); Tw = T_max./w([1 : freq_low_rows], 1); 
M = DRuf.*(1 + (Tw.*Tw)); M_max = max(M); Rs0 = M_max + Rdc_max; 
Rs1 = (Rs0*Rdc_max)/M_max; Rt = Rs0 + Rs1; Ls0 = Ldc_max - (M_max/T_max); 
Ls1 = (Rs0+Rs1)/T_max; 
A small number of 15101   is added to calculate Rdcmax and Ldcmax to avoid division by zero.  

 
4.2. Extraction of Cox1 and Cox2 
Once the model parameters Rs0, Rs1, Ls0 and Ls1 are calculated, based on measured data in 
the frequency range [Fmin, F1], the equivalent series impedance Zs and admittance Ys of the 
upper subcircuit can be found using the following expressions:  
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For frequencies greater than F1 the lower subcircuit has to be taken into account. The  
Y-matrix of the lower subcircuit [Yl] is obtained in the form: 
 
      sl YYY  , (24) 
 
where [Ys] is the admittance matrix of the upper subcircuit; 
            [Y]  - admittance matrix of the entire model. 
 
 sl YYY  1111   ;   sl YYY  1212   ;   sl YYY  2222 . (25) 
 
The lower subcircuit from Fig. 1a can be represented again as a π-network. The following 
expressions are valid for this subcircuit (Chen et al., 2008): 
 
 lllsh YYY 12111  ;     lllsh YYY 12222  ;       llser YY 12 , (26) 
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It is shown in (Chen et al., 2008) that the normalized magnitudes of the lower subcircuit 
lRAT1  and lRAT2  should be smaller than 5% in order to achieve accurate high frequency 

approximation.  
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Csi2 = max((freq([freq_mid_rows : freq_high_rows], 1)/Fmax).*imag(DV2([freq_mid_rows : 
freq_high_rows], 1)./DV([freq_mid_rows : freq_high_rows], 1))./w([freq_mid_rows : 
freq_high_rows], 1)); 
The following expression for the admittance Ysub can be used to extract Rsub and Csub: 
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Expressions (35) and (36) are represented in MATLAB using the following code over matrix 
operations: 
Ysub = ((DV2./DV) + j*w*Cox2)./((V1a./V2a) - 1); 
Rsub = 1/max((freq([freq_mid_rows : freq_high_rows], 1)/Fmax).* 
real(Ysub([freq_mid_rows : freq_high_rows], 1))); 
Csub = max(imag(Ysub([freq_mid_rows : freq_high_rows], 1))./w([freq_mid_rows : 
freq_high_rows], 1)); 

 
4.4. Results of the extraction procedure of the wide-band inductor model 
The presented procedure for parameter extraction of wide-band on-chip spiral inductor 
model in MATLAB was verified according to the published data in (Gil  & Shin, 2003). The 
relative error over the frequency range for the real and the imaginary part of the measured 
and the extracted Y-parameters is used to estimate the accuracy of the extraction procedure 
for various geometry RF spiral inductors. The maximal relative error is calculated over the 
modules of the Y-parameters, using formula (13). The obtained results are presented in 
Table 2. They are in agreement with the measured results from (Gil & Shin, 2003; Chen et al., 
2008). The maximal relative error is less than 0.5% which makes the parameter on-chip 
spiral inductor parameter extraction procedure very accurate. For example the extracted 
values for the case of 4.5 x 30 x 14.5 x 2 geometry (Table 2) are: Rs0 = 6.681 Ω, Rs1 = 7.589 Ω, 
Ls0 = 3.02 nH, Ls1 = 1.183 nH, Cox1 = 119.571 fF, Cox2 = 112.745 fF, Rsi1 = 291.377 Ω, Rsi2 = 
286.832 Ω, Csi1 = 34.134 fF, Csi2 = 32.994 fF, Rsub = 946.544 Ω and Csub = 72.41 fF. 
 

Dimension 
(N x R x W x S) 

RelErrY, % 

Y11 Y12 Y21 Y22 
2.5 x 60 x 14.5 x 2 0.173 0.054 0.054 0.164 
4.5 x 60 x 14.5 x 2 0.451 0.101 0.101 0.391 
6.5 x 60 x 14.5 x 2 0.479 0.151 0.151 0.436 
4.5 x 30 x 14.5 x 2 0.254 0.062 0.062 0.239 
3.5 x 60 x 9 x 7.5 0.235 0.065 0.065 0.216 

                             * N: number of turns, R: inner radius (μm), W: metal width (μm), S: spacing (μm) 
Table 2. Error estimation of the extraction procedure 

 

 

The following MATLAB source code is used for the calculation of Cox1 and Cox2: 
Cox1 = max(-1./(imag(1./(Y11l([freq_low_rows : freq_mid_rows], 1) + Y12l([freq_low_rows 
: freq_mid_rows], 1))).*w([freq_low_rows : freq_mid_rows], 1))); 
Cox2 = max(-1./(imag(1./(Y22l([freq_low_rows : freq_mid_rows], 1) + Y12l([freq_low_rows 
: freq_mid_rows], 1))).*w([freq_low_rows : freq_mid_rows], 1))); 

 
4.3. Extraction of Rsi1, Rsi2, Csi1, Csi2, Rsub and Csub 
The lower subcircuit represents the behavior of the model in the range [F2; Fmax]. It is 
analyzed for the extraction of Rsi1, Rsi2, Csi1, Csi2, Rsub and Csub based on the relations between 
the lower subcircuit Y-parameters and the input and output voltages 1V and 2V using the 
previously extracted values for the model parameters Cox1 and Cox2 . 
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As a result, the model parameters Rsi1, Rsi2, Csi1, Csi2 can be extracted directly as follows: 
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Expressions (29) – (34) are represented in MATLAB using the following code over matrices 
operations: 
Zcox1 = 1./(j*w*Cox1);  Zcox2 = 1./(j*w*Cox2);  V1a = 1 - (Y11l.*Zcox1); 
V2a = -(Y12l.*Zcox2); V2b = 1 - (Y22l.*Zcox2); V1b = -(Y12l.*Zcox1);  
DV = (V1a.*V2b) - (V1b.*V2a); 
DV1 = ((Y11 + Y12).*V2b) - ((Y22 + Y12).*V2a);  
DV2 = (V1a.*(Y22 + Y12)) - (V1b.*(Y11 + Y12)); 
Rsi1 = max((freq([freq_mid_rows : freq_high_rows], 1)/Fmax)./real(DV1([freq_mid_rows : 
freq_high_rows], 1)./DV([freq_mid_rows : freq_high_rows], 1))); 
Rsi2 = max((freq([freq_mid_rows : freq_high_rows], 1)/Fmax)./real(DV2([freq_mid_rows : 
freq_high_rows], 1)./DV([freq_mid_rows : freq_high_rows], 1))); 
Csi1 = max((freq([freq_mid_rows : freq_high_rows], 1)/Fmax).*imag(DV1([freq_mid_rows : 
freq_high_rows], 1)./DV([freq_mid_rows : freq_high_rows], 1))./w([freq_mid_rows : 
freq_high_rows], 1)); 
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Csi2 = max((freq([freq_mid_rows : freq_high_rows], 1)/Fmax).*imag(DV2([freq_mid_rows : 
freq_high_rows], 1)./DV([freq_mid_rows : freq_high_rows], 1))./w([freq_mid_rows : 
freq_high_rows], 1)); 
The following expression for the admittance Ysub can be used to extract Rsub and Csub: 
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Expressions (35) and (36) are represented in MATLAB using the following code over matrix 
operations: 
Ysub = ((DV2./DV) + j*w*Cox2)./((V1a./V2a) - 1); 
Rsub = 1/max((freq([freq_mid_rows : freq_high_rows], 1)/Fmax).* 
real(Ysub([freq_mid_rows : freq_high_rows], 1))); 
Csub = max(imag(Ysub([freq_mid_rows : freq_high_rows], 1))./w([freq_mid_rows : 
freq_high_rows], 1)); 

 
4.4. Results of the extraction procedure of the wide-band inductor model 
The presented procedure for parameter extraction of wide-band on-chip spiral inductor 
model in MATLAB was verified according to the published data in (Gil  & Shin, 2003). The 
relative error over the frequency range for the real and the imaginary part of the measured 
and the extracted Y-parameters is used to estimate the accuracy of the extraction procedure 
for various geometry RF spiral inductors. The maximal relative error is calculated over the 
modules of the Y-parameters, using formula (13). The obtained results are presented in 
Table 2. They are in agreement with the measured results from (Gil & Shin, 2003; Chen et al., 
2008). The maximal relative error is less than 0.5% which makes the parameter on-chip 
spiral inductor parameter extraction procedure very accurate. For example the extracted 
values for the case of 4.5 x 30 x 14.5 x 2 geometry (Table 2) are: Rs0 = 6.681 Ω, Rs1 = 7.589 Ω, 
Ls0 = 3.02 nH, Ls1 = 1.183 nH, Cox1 = 119.571 fF, Cox2 = 112.745 fF, Rsi1 = 291.377 Ω, Rsi2 = 
286.832 Ω, Csi1 = 34.134 fF, Csi2 = 32.994 fF, Rsub = 946.544 Ω and Csub = 72.41 fF. 
 

Dimension 
(N x R x W x S) 

RelErrY, % 

Y11 Y12 Y21 Y22 
2.5 x 60 x 14.5 x 2 0.173 0.054 0.054 0.164 
4.5 x 60 x 14.5 x 2 0.451 0.101 0.101 0.391 
6.5 x 60 x 14.5 x 2 0.479 0.151 0.151 0.436 
4.5 x 30 x 14.5 x 2 0.254 0.062 0.062 0.239 
3.5 x 60 x 9 x 7.5 0.235 0.065 0.065 0.216 

                             * N: number of turns, R: inner radius (μm), W: metal width (μm), S: spacing (μm) 
Table 2. Error estimation of the extraction procedure 

 

 

The following MATLAB source code is used for the calculation of Cox1 and Cox2: 
Cox1 = max(-1./(imag(1./(Y11l([freq_low_rows : freq_mid_rows], 1) + Y12l([freq_low_rows 
: freq_mid_rows], 1))).*w([freq_low_rows : freq_mid_rows], 1))); 
Cox2 = max(-1./(imag(1./(Y22l([freq_low_rows : freq_mid_rows], 1) + Y12l([freq_low_rows 
: freq_mid_rows], 1))).*w([freq_low_rows : freq_mid_rows], 1))); 

 
4.3. Extraction of Rsi1, Rsi2, Csi1, Csi2, Rsub and Csub 
The lower subcircuit represents the behavior of the model in the range [F2; Fmax]. It is 
analyzed for the extraction of Rsi1, Rsi2, Csi1, Csi2, Rsub and Csub based on the relations between 
the lower subcircuit Y-parameters and the input and output voltages 1V and 2V using the 
previously extracted values for the model parameters Cox1 and Cox2 . 
 

 1
11

1 1 V
Cj

YV
1ox

l
a












  ;        1
12

2 V
Cj

YV
2ox

l
a












 , (29) 

 

  2
2

22
2 1 V

Cj
YV

ox

l
b












  ;        2
12

1 V
Cj

YV
1ox

l
b












 , (30) 

 

 abaaV VVVV 2121
  ;         abV VYYVYY 21222212111

  , (31) 
 

     baV VYYVYY 11211112222
  . (32) 

 
As a result, the model parameters Rsi1, Rsi2, Csi1, Csi2 can be extracted directly as follows: 
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Expressions (29) – (34) are represented in MATLAB using the following code over matrices 
operations: 
Zcox1 = 1./(j*w*Cox1);  Zcox2 = 1./(j*w*Cox2);  V1a = 1 - (Y11l.*Zcox1); 
V2a = -(Y12l.*Zcox2); V2b = 1 - (Y22l.*Zcox2); V1b = -(Y12l.*Zcox1);  
DV = (V1a.*V2b) - (V1b.*V2a); 
DV1 = ((Y11 + Y12).*V2b) - ((Y22 + Y12).*V2a);  
DV2 = (V1a.*(Y22 + Y12)) - (V1b.*(Y11 + Y12)); 
Rsi1 = max((freq([freq_mid_rows : freq_high_rows], 1)/Fmax)./real(DV1([freq_mid_rows : 
freq_high_rows], 1)./DV([freq_mid_rows : freq_high_rows], 1))); 
Rsi2 = max((freq([freq_mid_rows : freq_high_rows], 1)/Fmax)./real(DV2([freq_mid_rows : 
freq_high_rows], 1)./DV([freq_mid_rows : freq_high_rows], 1))); 
Csi1 = max((freq([freq_mid_rows : freq_high_rows], 1)/Fmax).*imag(DV1([freq_mid_rows : 
freq_high_rows], 1)./DV([freq_mid_rows : freq_high_rows], 1))./w([freq_mid_rows : 
freq_high_rows], 1)); 
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The parameters Rs , Ls , Rsi and Cox are obtained for lower frequencies (f = fl). The parameter 
Csi  is determined for high frequencies  (f  =  fh): 
 
  ls ZR 3   ;           lls ZL  3   ;         lsi ZR 1 ,  (37) 
 

        ll
ox Z

C
1

1


 ;       
 

ox
h

si

C
Z

C 1
1

1 
 . (38) 

 
The series resistance Rsw is obtained for the working frequency fw. Cs is obtained for the 
resonant frequency: 
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The series resistance Rs in Fig. 4 is frequency dependent. If the geometry of the extracted 
spiral inductor is known, Rs can be calculated using the formula (Yue et al., 1996): 
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where w is the width of the metal strips, δ is the skin-effect depth into the metal layers, σ is 
the conductivity of metal layers, l is the length of the spiral, t is the thickness of the metal 
layer of the spiral (Yue et al., 1996). In case when the geometry of the spiral inductor is not 
known, Rs can be calculated using the formula (Ashby et al., 1994): 
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where the coefficients K1 and K2 determine the frequency dependence of Rs.  
The model parameters results after the application of the described direct extraction 
procedure are given in Table 3. 
 

Model 
Param. 

Extraction Results
(N x R x W x S) 

6.5 x 60 x 14.5 x 2 
fw = 1.09GHz 

(N x R x W x S) 
4.5 x 60 x 14.5 x 2 

fw = 1.81GHz 

(N x R x W x S) 
3.5 x 60 x 9 x 7.5 

fw = 2.91GHz 
Rs0(Ω) 7.6 5.06 5.68 
Rsw(Ω) 9.08 6.351 5.7 
Ls(nH) 11.9 5.67 3.56 
Cox(fF) 232.92 157.02 86.78 
Rsi(Ω) 138.62 225.48 340.28 
Csi(fF) 123.59 79.98 67.58 
Cs(fF) 45.76 96.04 152.99 

                             * N: number of turns, R: internal radius (μm), W: metal width (μm), S: spacing (μm) 
Table 3. Model parameter values after the application of the direct extraction procedure 

 

5. Parameter Extraction of Physical Geometry  
Dependent RF Planar Inductor Model 

The physical model of planar spiral inductor on silicon (Yue et al., 1996) is a very popular 
model used in microelectronic design. Its model parameter values can be expressed directly 
using the geometry of the spiral inductor. The skin effect at high frequencies is modeled 
using a frequency dependent series resistance. Several extraction procedures are developed 
for the physical spiral inductor model – direct procedures (Shih et al., 1992), optimization 
based procedures (Post, 2000). A number of approaches to geometry optimization of spiral 
inductors are proposed based on geometric programming optimization (Wenhuan & 
Bandler, 2006), parametric analysis  (Hristov et al., 2003), etc. An approach is developed in 
(Durev et al., 2010) to direct parameter extraction based on the measured S-parameters. The 
approach gives excellent results for frequencies around the working frequency. GA based 
approach is used to refine the simulated S-parameters and to minimize the post extraction 
errors for the full investigated frequency range. 
 
5.1. Analysis of the spiral inductor model 
The physical model of spiral inductor (Yue et al., 1996)  is shown in Fig. 4. The model 
parameters are Rs, Rsi, Cs, Cox, Csi and Ls. The series resistance takes into account the skin depth 
of the conductor. Ls is the inductance of the spiral, Cox represents the capacitance between the 
spiral and the substrate. Rsi and Csi model the resistance and the capacitance of the substrate, 
and  Cs models the parallel-plate capacitance between the spiral and the center-tap underpass. 
The presented extraction procedure is based on the measured two-port S-parameters. 
 

 
Fig. 4. Physical model of spiral inductor 
 
As the model parameters can be easily expressed by the two-port Y-parameters, the 
measured S-parameters Sijm are converted to Y-parameters Yijm, i, j = 1, 2. The parameter 
extraction procedure is based on determination of the admittances Y1, Y2 and Y3 (Fig. 4) as a 
function of the two-port Y-parameters. The next step is to express the admittances Y1 and Y3 
as well as the corresponding impedances Z1 and Z3 by the model parameters. 
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Matlab - Modelling, Programming and Simulations292

 

The optimization procedure is realized using the GA Toolbox (Chipperfield et al., 1994) in 
MATLAB. The GA procedure has the following parameters: NIND = 300, MAXGEN = 200, 
NVAR = 5, PRECI = 200, GGAP = 0.7, where NIND is the number of individuals, MAXGEN 
is the maximal number of iterations, NVAR is the number of the optimized model 
parameters, PRECI is the precision factor, and GGAP is the generation gap (Chipperfield et 
al., 1994).  
The obtained results are given in Table 5. As the model in Fig. 4 is verified up to 10GHz 
(Yue et al., 1996), the values of the optimized model parameters for geometries 
6.5 x 60 x 14.5 x 2 and 4.5 x 60 x 14.5 x 2 preserve their dependence on the geometry of the 
inductor. The model parameters for geometry 3.5 x 60 x 9 x 7.5 are optimized in the 
frequency range 50MHz ÷ 14.4GHz and they do not preserve the dependence on the 
geometry of the inductor.  
The comparison between the measured (Gil & Shin, 2003) and GA optimized results of S11 
and S12 of 6.5 x 60 x 14.5 x 2 inductor is shown in Fig. 5. As a result of the GA optimization 
the obtained relative RMS error is less than 5%. 
 

Model 
Param. 

Extraction Results from MATLAB 
(N x R x W x S) 

6.5 x 60 x 14.5 x 2 
fw = 1.09GHz 

(N x R x W x S) 
4.5 x 60 x 14.5 x 2 

fw = 1.81GHz 

(N x R x W x S) 
3.5 x 60 x 9 x 7.5 

fw = 2.91GH 
Rs0(Ω) Calculated using expression (40) 
Ls(nH) 11.7 5.48 3.5 
Cox(fF) 220 140 40 
Rsi(Ω) 150 240 360 
Csi(fF) 150 76.7 20 
Cs(fF) 6.22 20 15.7 

* N: number of turns, R: internal radius (μm), W: metal width (μm), S: spacing (μm) 
Table 5. Model parameter  values after the GA optimization in MATLAB 
 

 
 

Fig. 5. Comparison between the measured (Gil & Shin, 2003) and GA optimized  
S-parameters of 6.5 x 60 x 14.5 x 2 inductor 

 

5.2. Error Estimation 
The error estimation is given in Table 4. The relative RMS error is used over the investigated 
frequency range between the measured and the obtained S-parameters for three different 
geometries spiral inductors, published in (Gil & Shin, 2003): 
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where j, k = 1, 2; )m(

jkS  – measured S-parameters (Gil & Shin, 2003);  

           jkS  – obtained S-parameters;  

            n – number of frequency points. 
 

Geometry 
(N x R x W x S) 

Freq. range 

RMSErrS, % 
|S11| |S12| 

6.5 x 60 x 14.5 x 2 
50MHz   1.3GHz 2.94 1.21 
4.5 x 60 x 14.5 x 2 
50MHz   2.1GHz 7.02 1.85 
3.5 x 60 x 9 x 7.5 
50MHz   3.2GHz 10.19 4.07 

                            * N: number of turns, R: internal radius (μm), W: metal width (μm), S: spacing (μm) 
Table 4. Error estimation of the direct extraction procedure 
 
Because of the determination of Cs for the working frequency fw the frequency ranges in 
Table 3 are limited. To enlarge the frequency ranges a GA approach is applied to optimize 
the model parameter values. 

 
5.3. Optimization of the Model Parameters Based on GA 
The model parameter values are varied in a certain range by the GA according to the value 
of its purpose function. This range is determined to be  20% around the values from  
Table 3. As the capacitance Cs is determined at the working frequency, it is expected to 
decrease at high frequencies. This determines its broader range of variation. The purpose 
function minimizes the difference between the measured and the obtained Y-parameters: 
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where  
            k = 1, 3;  
            ik fY        – current admittances; 

            i
)req(

k fY    – admittances obtained by S- to Y-transformation of the measured  
                                  S-parameters; 

  n – number of frequency points. 



Analysis, model parameter extraction and optimization of planar inductors using MATLAB 293

 

The optimization procedure is realized using the GA Toolbox (Chipperfield et al., 1994) in 
MATLAB. The GA procedure has the following parameters: NIND = 300, MAXGEN = 200, 
NVAR = 5, PRECI = 200, GGAP = 0.7, where NIND is the number of individuals, MAXGEN 
is the maximal number of iterations, NVAR is the number of the optimized model 
parameters, PRECI is the precision factor, and GGAP is the generation gap (Chipperfield et 
al., 1994).  
The obtained results are given in Table 5. As the model in Fig. 4 is verified up to 10GHz 
(Yue et al., 1996), the values of the optimized model parameters for geometries 
6.5 x 60 x 14.5 x 2 and 4.5 x 60 x 14.5 x 2 preserve their dependence on the geometry of the 
inductor. The model parameters for geometry 3.5 x 60 x 9 x 7.5 are optimized in the 
frequency range 50MHz ÷ 14.4GHz and they do not preserve the dependence on the 
geometry of the inductor.  
The comparison between the measured (Gil & Shin, 2003) and GA optimized results of S11 
and S12 of 6.5 x 60 x 14.5 x 2 inductor is shown in Fig. 5. As a result of the GA optimization 
the obtained relative RMS error is less than 5%. 
 

Model 
Param. 

Extraction Results from MATLAB 
(N x R x W x S) 

6.5 x 60 x 14.5 x 2 
fw = 1.09GHz 

(N x R x W x S) 
4.5 x 60 x 14.5 x 2 

fw = 1.81GHz 

(N x R x W x S) 
3.5 x 60 x 9 x 7.5 

fw = 2.91GH 
Rs0(Ω) Calculated using expression (40) 
Ls(nH) 11.7 5.48 3.5 
Cox(fF) 220 140 40 
Rsi(Ω) 150 240 360 
Csi(fF) 150 76.7 20 
Cs(fF) 6.22 20 15.7 

* N: number of turns, R: internal radius (μm), W: metal width (μm), S: spacing (μm) 
Table 5. Model parameter  values after the GA optimization in MATLAB 
 

 
 

Fig. 5. Comparison between the measured (Gil & Shin, 2003) and GA optimized  
S-parameters of 6.5 x 60 x 14.5 x 2 inductor 

 

5.2. Error Estimation 
The error estimation is given in Table 4. The relative RMS error is used over the investigated 
frequency range between the measured and the obtained S-parameters for three different 
geometries spiral inductors, published in (Gil & Shin, 2003): 
 

 

















n

i
)m(

jk

jk
S S

S
n

RMSErr
1

2

11100 , (42) 

 
where j, k = 1, 2; )m(

jkS  – measured S-parameters (Gil & Shin, 2003);  

           jkS  – obtained S-parameters;  

            n – number of frequency points. 
 

Geometry 
(N x R x W x S) 

Freq. range 

RMSErrS, % 
|S11| |S12| 

6.5 x 60 x 14.5 x 2 
50MHz   1.3GHz 2.94 1.21 
4.5 x 60 x 14.5 x 2 
50MHz   2.1GHz 7.02 1.85 
3.5 x 60 x 9 x 7.5 
50MHz   3.2GHz 10.19 4.07 

                            * N: number of turns, R: internal radius (μm), W: metal width (μm), S: spacing (μm) 
Table 4. Error estimation of the direct extraction procedure 
 
Because of the determination of Cs for the working frequency fw the frequency ranges in 
Table 3 are limited. To enlarge the frequency ranges a GA approach is applied to optimize 
the model parameter values. 

 
5.3. Optimization of the Model Parameters Based on GA 
The model parameter values are varied in a certain range by the GA according to the value 
of its purpose function. This range is determined to be  20% around the values from  
Table 3. As the capacitance Cs is determined at the working frequency, it is expected to 
decrease at high frequencies. This determines its broader range of variation. The purpose 
function minimizes the difference between the measured and the obtained Y-parameters: 
 

             



n

i
i

req
kik

n

i
i

)req(
kikfun fYfYfYfYG

11
, (43) 

where  
            k = 1, 3;  
            ik fY        – current admittances; 
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k fY    – admittances obtained by S- to Y-transformation of the measured  
                                  S-parameters; 

  n – number of frequency points. 
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PERL = 0.5; % lower limit 
PERU = 1.5; % upper limit 
%          %Dout                          w                                   sp                                 n     
FieldD = [PRECI                     PRECI                          PRECI                        PRECI; 
                 300.0e-6*PERL       13.0e-6*PERL               7.0e-6*PERL        7.0*PERL; 
                 300.0e-6*PERU      13.0e-6*PERU              7.0e-6*PERU        7.0*PERU; 
                 1                                1                                   1                            1; 
                 0                                0                                   0                            0; 
                 1                                1                                   1                            1; 
                 1                                1                                   1                            1]; 
Based on these parameters, the dependent inductor parameters are calculated: the inner 
diameter  Din , the average diameter Davg = 0.5(Dout + Din), the trace length l = 4nDavg, the 
area (Mohan et al., 1999; Post, 2000). The computer-aided design model is based on the two-
port  equivalent circuit of the spiral inductor  shown in Fig. 4 (Yue et al., 1996). The 
parameters Rs , Rsi, Cs, Cox and Csi are in the form (Yue et al., 1996): 
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where  is the metal conductivity at dc, t is the metal thickness,  is the metal skin depth, tox 
is the oxide thickness between spiral and substrate, tox M1 M2 is the oxide thickness between 
spiral and centertap, l is the overall length of spiral, w is the line width,  Csub is the ubstrate 
capacitance per unit area, and Gsub is the substrate conductance per unit area. 
The parallel equivalent circuit of the spiral inductor shown in Fig. 7 is used for calculating 
the quality factor  Q of the inductor (Mohan et al., 1999): 
 

 
Fig. 7. The parallel equivalent circuit of the spiral inductor 
 

 

6. Optimization of geometric parameters  
of spiral inductors using genetic algorithms in MATLAB 

Based on the physical model for planar spiral inductors (Yue et al., 1996; Sieiro et al., 2002; 
Nieuwoudt et al., 2005) and the simple accurate expressions for the inductance (Mohan et 
al., 1999), a geometry optimization procedure is proposed in (Post, 2000). It allows the 
obtaining optimal trace width that maximizes the quality factor of the spiral inductor with a 
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where  is the metal conductivity at dc, t is the metal thickness,  is the metal skin depth, tox 
is the oxide thickness between spiral and substrate, tox M1 M2 is the oxide thickness between 
spiral and centertap, l is the overall length of spiral, w is the line width,  Csub is the ubstrate 
capacitance per unit area, and Gsub is the substrate conductance per unit area. 
The parallel equivalent circuit of the spiral inductor shown in Fig. 7 is used for calculating 
the quality factor  Q of the inductor (Mohan et al., 1999): 
 

 
Fig. 7. The parallel equivalent circuit of the spiral inductor 
 

 

6. Optimization of geometric parameters  
of spiral inductors using genetic algorithms in MATLAB 

Based on the physical model for planar spiral inductors (Yue et al., 1996; Sieiro et al., 2002; 
Nieuwoudt et al., 2005) and the simple accurate expressions for the inductance (Mohan et 
al., 1999), a geometry optimization procedure is proposed in (Post, 2000). It allows the 
obtaining optimal trace width that maximizes the quality factor of the spiral inductor with a 
required inductance at a given frequency. Optimal design of the parameters of spiral 
inductors is proposed in (Gadjeva & Hristov, 2004), based on PSpice model and parametric 
analysis. Computer models are developed in (Gadjeva et al., 2006) using the possibilities of 
MATLAB and GA toolbox (Chipperfield et al., 1994). GA program designed using GA 
toolbox in MATLAB is used for optimization the geometric parameters of spiral inductors.  

 
6.1. Optimal design of spiral inductors using GA 
The optimal design of the spiral inductors is based on a precise mathematical model, which 
consists of multiple parameters – dependent and independent. The independent geometry 
parameters characterizing the spiral inductor are the number of turns n, the trace width  w,  
the spacing  sp, and the outer diameter Dout (Fig. 6).  
 

 
 

Fig. 6. The geometry parameters of a square spiral inductor 
 
Each of the independent parameters has its own value range, which depends on the used 
microelectronic technology. The independent geometry parameters - number of turns n, the 
trace width w, the spacing  sp, and the outer diameter Dout are fixed in the range: 
 
n = 7  50%; 
w = 13e-6  50%; 
sp = 7e-6  50%; 
Dout = 300e-6  50%; 
 
The variables PERL and PERU fix the variation range to  50%.  
In MATLAB this is done in the following way (Chipperfield et al., 1994): 
%Variation percent 



Matlab - Modelling, Programming and Simulations296

 

2. Explicitly enter the independent geometric parameters in order to be recognized from the 
GA: 
 
      Dout = Chrom(:,1) 
      w = Chrom(:,2) 
      sp = Chrom(:,3) 
      n = Chrom(:,4) 
 
3. Enter the sequence of calcuations  in order to obtain the members which take part in the 
expression for the objective function: 
 
Din = (Dout - 2.0.*(n.*(sp + w) - sp));  
Davg = 0.5.*(Dout + Din); 
L = 4.0.*n.*Davg;  
Cs = (n.*(w.^2).*Eox)./toxM1M2;  
delta = sqrt(2.0/(omg*mju*sigma)); 
Cox = (0.5.*L.*w.*Eox)./tox;  
Csi = 0.5.*L.*w.*Csub;  
Rsi = 2.0./(L.*w.*Gsub); 
Rs = L./(w.*sigma.*delta.*(1.0 - exp(-t./delta))); 
Cs = (n.*(w.^2).*Eox)./toxM1M2; 
Rp = (1./(omg.^2.*Cox.^2.*Rsi)) + (Rsi.*(Cox + Csi).^2)./Cox.^2; 
Cp = Cox.*((1 + omg.^2.*(Cox + Csi).*Csi.*Rsi.^2)./(1 + omg.^2.*(Cox + Csi).^2.*Rsi.^2)); 
Ls = beta*((Dout*1.0e6).^al1).*((w*1.0e6).^al2).*((Davg*1.0e6).^al3).*(n.^al4).* 
((sp*1.0e6).^al5).*1.0e-9; 
Q = (omg.*Ls./Rs).*(Rp./(Rp + ((omg.*Ls./Rs).^2 + 1).*Rs)).*(1 - Rs.^2.*(Cs + Cp)./Ls - 
omg.^2.*Ls.*(Cs + Cp)); 
Qrec = abs(1.0./Q); 
 
4. Calculation the objective function: 
 
      g_fun =  Qrec + 10e8*abs(Ls - Lsreq); 
 
Fig. 8 represents the optimization of the Q-factor using the genetic algorithm in MATLAB, 
described above. After some itterations the GA finds the global minimum for its objective 
function, which gives the optimized value for the Q-factor. 
The optimized geometry parameters using MATLAB GA are: sp = 7.99 m , w = 13.15 m , 
n = 3.74, Dout = 365.64 m . 
The GA procedure has the following parameters: NIND = 100, MAXGEN = 100, NVAR = 4, 
PRECI = 100, GGAP = 0.7. The obtained results are in agreement with the simulated and test 
results obtained in (Mohan et al., 1999; Post, 2000; Gadjeva & Hristov, 2004).  
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The following monomial expression (Post, 2000) is used to model the inductance Ls:  
 
 54321  spnDwDL avgouts . (50) 
 
The dimensions are in m and the inductance is in  nH. The coefficients i,  , i = 1,2,...,5 
depend on the inductor shape – square, hexagonal and octagonal (Mohan et al., 1999). The 
data for square  inductor are  =1.62e-3, α1= –1.21, α2 = – 0.147, α3 =2.4, α4 =1.78,  
α5 = – 0.03.  
The expression ensures good accuracy and agreement between the calculated inductor value 
and the measured one (Mohan et al., 1999; Post, 2000). 
The required inductance Lsreq, the frequency fs , the technological parameters and the 
coefficients i,  , i = 1,2,...,5, are introduced as input data in MATLAB m-file. The 
optimization was done for Lsreq = 7.28 nH and fs  = 2 GHz.  
The object function finds the global minimum g_fun for its expression: 
 
 g_fun =  Qreq + W.|Ls – Lsreq| , (51) 
 
where Qreq = 1/Q and W is a weighting coefficient. The minimum value of g_fun 
guarantees the maximal value for the Q-factor for Lsreq = 7.28 nH. The implementation of 
the procedure is done in the following way: 
 

1. Introducing the input data: 
    mju = 1.256e-6;  beta = 1.62e-3;    
    al1 = -1.21;  al2 = -0.147;   al3 = 2.4; 
    al4 = 1.78;  al5 = -0.03;  Eox = 3.45e-11; 
    toxM1M2 = 1.3e-6;  
    tox = 4.5e-6;  Csub = 1.6e-6; 
    Gsub = 4.0e4; sigma = 1/3e-8;  
    ro_spec = 1/sigma;  t = 1e-6;   
   frequency = 2e9; %2GHz 
    math_pi=3.1415965;  omg = 2*math_pi*frequency; 
    delta = sqrt(2.0/(omg*mju*sigma));  
    Lsreq = 7.28e-9;  



Analysis, model parameter extraction and optimization of planar inductors using MATLAB 297

 

2. Explicitly enter the independent geometric parameters in order to be recognized from the 
GA: 
 
      Dout = Chrom(:,1) 
      w = Chrom(:,2) 
      sp = Chrom(:,3) 
      n = Chrom(:,4) 
 
3. Enter the sequence of calcuations  in order to obtain the members which take part in the 
expression for the objective function: 
 
Din = (Dout - 2.0.*(n.*(sp + w) - sp));  
Davg = 0.5.*(Dout + Din); 
L = 4.0.*n.*Davg;  
Cs = (n.*(w.^2).*Eox)./toxM1M2;  
delta = sqrt(2.0/(omg*mju*sigma)); 
Cox = (0.5.*L.*w.*Eox)./tox;  
Csi = 0.5.*L.*w.*Csub;  
Rsi = 2.0./(L.*w.*Gsub); 
Rs = L./(w.*sigma.*delta.*(1.0 - exp(-t./delta))); 
Cs = (n.*(w.^2).*Eox)./toxM1M2; 
Rp = (1./(omg.^2.*Cox.^2.*Rsi)) + (Rsi.*(Cox + Csi).^2)./Cox.^2; 
Cp = Cox.*((1 + omg.^2.*(Cox + Csi).*Csi.*Rsi.^2)./(1 + omg.^2.*(Cox + Csi).^2.*Rsi.^2)); 
Ls = beta*((Dout*1.0e6).^al1).*((w*1.0e6).^al2).*((Davg*1.0e6).^al3).*(n.^al4).* 
((sp*1.0e6).^al5).*1.0e-9; 
Q = (omg.*Ls./Rs).*(Rp./(Rp + ((omg.*Ls./Rs).^2 + 1).*Rs)).*(1 - Rs.^2.*(Cs + Cp)./Ls - 
omg.^2.*Ls.*(Cs + Cp)); 
Qrec = abs(1.0./Q); 
 
4. Calculation the objective function: 
 
      g_fun =  Qrec + 10e8*abs(Ls - Lsreq); 
 
Fig. 8 represents the optimization of the Q-factor using the genetic algorithm in MATLAB, 
described above. After some itterations the GA finds the global minimum for its objective 
function, which gives the optimized value for the Q-factor. 
The optimized geometry parameters using MATLAB GA are: sp = 7.99 m , w = 13.15 m , 
n = 3.74, Dout = 365.64 m . 
The GA procedure has the following parameters: NIND = 100, MAXGEN = 100, NVAR = 4, 
PRECI = 100, GGAP = 0.7. The obtained results are in agreement with the simulated and test 
results obtained in (Mohan et al., 1999; Post, 2000; Gadjeva & Hristov, 2004).  

 

 
  

   



















 pss

s

pss

sssp

p

s

s CCL
L

CCR
.

RRLR

R
.

R
LQ 2

2

2
1

1
, (47) 

 
where 
 

 
2

22 11













ox

si
si

siox
p C

CR
RC

R ,    (48) 

 

  
  222

22

1
1

sisiox

sisisiox
oxp RCC

RCCCCC



   .    (49) 
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the procedure is done in the following way: 
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Fig. 8. Optimization of the Q-factor of the spiral inductor using GA in MATLAB 

 
7. Conclusion 

The extended possibilities of the general-purpose software MATLAB for modeling,  
simulation and optimization can be successfully used in RF microelectronic circuit design.  
Based on description of the device models, various optimization problems can be solved. 
Automated model parameter extraction procedure for on-chip wide-band spiral inductor 
model has been developed and realized in the MATLAB environment. The obtained results 
for the simulated two-port Y- and S-parameters of the spiral inductor model using extracted 
parameters are compared with the measurement data. The achieved maximal relative error 
is less than 0.5% which makes the developed parameter extraction procedure of the on-chip 
spiral inductor model very accurate.  
Based on genetic algorithm and GA tool in MATLAB, optimization of geometric parameters 
of planar spiral inductors for RF applications is performed with respect to the quality factor 
Q. The optimization maximizes the Q-factor for a given value range of the input 
independent geometric parameters. The methodology is useful in microelectronics, as every 
mathematical technological model can be analysed in similar way, which gives an 
advantage in solving complex problems, based on the technology parameters optimization.  
The automated approaches to model parameter extraction and optimizaton of on-chip spiral 
inductors in the MATLAB environment are universal and flexible and can be similarly 
applied to various passive and active microelectronic components such as planar 
transformers, MOSFETs, heterojunction transistors (HBT), etc. 
The rich possibilities for analysis and optimization of MATLAB are of great importance in 
the design process of RF circuits at component and system level. 
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1. Introduction 

Restructuring of metallurgical industry is strongly influenced by the modernization of 
manufacturing processes from the sintering plants. Sintering, as physical-chemical process 
of iron ores preparation and obtaining of a controlled situation, is of maximum importance 
because the resulted agglomerate allows the obtaining of quality cast-irons as they are 
required currently on the market. The current technology of cast-iron making imposes more 
and more rigorous conditions to the quality of the charge that should allow the optimization 
of the entire process, increasing the productivity and reducing the coke consumption. 
In this respect, the major cast-iron producing countries are using iron ores previously 
prepared as agglomerate, meant to ensure the achievement of some charges with high iron 
content and homogeneous from chemical and grading viewpoint. From the processes with 
special influence on preparation, will be analyze: dosing, sintering and cooling (fig.1).  
Dosing flow includes the quantitative dosing of the charge components, their pre-
homogenization into the primary mixing drum (TAP) and the conveying flow of the 
mixture/blend from the dosing station into the main body to the charge bunker of the 
sintering machine. Materials extraction from the dosing station's bunkers and their further 
dosing is achieved by means of dozers with extracting belt. These are mounted in the 
bunker’s entry and they extract the material from the bunker at the flow required by the 
charge recipe. The mixture, which is formed in accordance with the calculated recipe, is 
collected by the conveyor belts and transported to the TAP primary mixing station. During 
the process, to the dosed mixture is added further the hot return brought by the metallic 
belts to the return bunker (Diniş et al., 2008) 
From the TAP, which has an inclination of 2 – 30, the charge mixture is overflowed on the 
conveyors and the transport is continued on other two conveyor belts towards the main 
section of the sintering plant from the charge bunker. The above description shows that the 
conveying process contains a multitude of working machines and is undergoing based on a 
complex algorithm, being suitable for organization into a hierarchical structure an a 
software-oriented control. The analyzed belt conveyor system in this work contains the 
following main elements: a main belt, a collector belt and two working belts. On the two 
working belts are delivered: the hot return from the return bunker (BRET) and the 
limestone, coke and iron ores from BKCM bunker (Aguilar et al., 2008). 

15
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The entire charge mixture is discharged from the bus-belt into the charge bunker (BSRJ). The 
presence of these belts is controlled by level transducers. Each conveyor is served by three 
transducers: of speed, overflow and emergency and is driven by a motor, being present also 
a preventive signaling horn. 
Sintering flow includes the following steps: mixing/blending, humectation and forming of 
micro-pellets in the secondary mixing drum (TAS); loading the mixture on the sintering 
machine’s carriers; burning-up the charge; sintering of the mixture/blend; sizing of the 
agglomerate and recirculation of the return. The material from the charge bunker is 
extracted by a gravimetric dozer with extracting belt, and loaded further in the secondary 
mixing drum. Inside the TAS, the material is brought to the necessary humidity for the 
sintering process (7-10%), by adding water.  
The humid material, homogenized and micro-palletized in TAS, is loaded on the sintering 
machine, uniformly on the entire machine’s surface, by an oscillating belt. Repartition of the 
protection bed on the sintering machine’s grills should be made in a uniform layer on the 
entire width of the machine.  
The height of the layer on the sintering machine is adjusted by changing the position of the 
shield against the machine’s grills and is established depending on the material’s gas 
permeability. 
Cooling flow includes the following steps: cooling of the agglomerate after the hot 
screening; conveying in cold condition to the screening station; conveying to the furnaces 
silos and to the agglomerate’s shipment station. 
Cooling of the agglomerate is made on two linear coolers, one for each sintering machine. 
The cooling air is supplied by 5 fans with an air flow of 200000 m3/h, blow by each fan. At 
the entrance on the cooler, the agglomerate has a temperature of 700-8000C and leaves the 
cooler with 80-1000C, fact which allows it to be transported by some special rubber belts. 
Each cooling machine is served by an auxiliary belts flow, with the role to collect and 
convey the material which is returning on the inferior line of the linear cooler and the one 
which falls under the cooling machines (Diniş et al., 2008). 
Each cooling machine is served by an auxiliary belts flow, with the role to collect and 
convey the material which is returning on the inferior line of the linear cooler and the one 
which falls under the cooling machines.  
The continuous transportation process using belt conveyors is one of the most used 
solutions in various activity fields, starting with sorting of substances from industrial shops, 
going further with material processing from the sintering plants and ending with flexible 
robotized lines or the conveyors flow from airports. 
As overview, the control of such transportation flow is very complex, both concerning the 
necessary hardware equipment and the implementation of control algorithms. Nowadays, 
the major part of conveyors’ control systems is hardware-oriented. These contain many 
hardware components, such as: electromechanical elements, logical and analogical devices, 
discrete components, power electronics, etc. The control program is reduced to minimum 
and is implemented, usually, on the microcontroller (Ho & Ranky, 1997) 
A microcontroller is an integrated circuit that achieves many of a typical computing 
system’s functions. This contains in a single chip a microprocessor as central processing 
unit, memories, counters, converters, input-output peripherals. One of the advantages of the 
systems with microcontroller is using the software to replace a complex logic, without 
modifying anything in the hard structure. Another advantage is that it uses  software  

Fig. 1. Technological diagram of the sintering process 
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mixture called currently “homogenized” which has the deviations at Fe, SiO2, CaO within the 
limits of 0.5%. This homogenized is dosed separately as a self-sustained component; 
- by the sintering process, the materials are calcinated and, knowing the calcinations 
percent “p%”, the quantity of material found in agglomerate will be: 
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- the coke Ci , after burning, participates in the agglomerate by its ash. For each coke Ci 
knowing the ash Cei%, it results the account of ash in the agglomerate: 
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- the total ash quantity is: 
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- the return results: from the hot screening, having 0w
1r   (R1); from the cold screening, 

having 0w
2r   (R2) and from the screening from the blast-furnace’s day-shift bunkers, 

which is wet for not causing dust %10w
3r   (R3);  

- for all three types of return will be considered 0wr  , and the total return is: 
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where: R1 does not pass through dosing, but is discharged on the conveyor belt from the 
burdening downstream and R2 and R3 are dosed through the dosing bunkers. 

instead of some complex and expensive hardware components. Thus, by using 
microcontrollers are saved the costs due to some expensive hardware components, and the 
necessary physical space is much more reduced. In many cases, the hardware equipment 
reduces the reliability and flexibility of the entire system.  
On the other hand, this control system, together with the power electronics, is higher in 
volume and price than the working machine itself. 
Development of computerized technologies emphasized that very many control elements, 
controls, automation, etc. of mechanical, electrical and electronically nature can be achieved 
by program, reducing the complexity and saving materials and labor, with positive effect on 
cost and safety in operation. 
Thus has been developed a new trend, which is currently dominant in designing of technical 
systems, called „software-oriented technology”. This technology contains maximum of 
integrated software resources in product (software-embedded) and minimum of hardware 
resources, the  software resources being in fact products of human intelligence, materialized 
in programs and included in the equipment, forming its artificial intelligence. In chapter is 
presenting a software-oriented control system, hierarchically distributed and conceived for a 
belt conveyors flow, with application for material dosing (Ho & Ranky, 1997).  

 
2. Modelling and simulation of sub-processes from an iron ore sintering plant 

In the dosing process from the sintering plants will be taken into account the following 
conditions: 
- the materials supplied for sintering are wet; 
- the supplied material quantities are bigger by about 0.5%, percents which represent the 
losses from manipulation ma % ; 
- if M is the quantity of wet material (iron ore) that should reach to dosing, the quantity Ma 
of supplied material is:  
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- the quality of the dosed materials is given in anhydrous condition (dry), therefore, to 
determine the account of iron, basic oxides and acid oxides, is taken as basis the dry 
material. Having w% the humidity percent, the calculation with wet materials will be made 
by bringing them to the dry condition. The dry iron ore will be: 
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- the dosed charge is formed by the total of wet iron ores which are taken as unit or 100% and 
against which are reported the other additions: coke, limestone, return, as percentages against the 
total iron ores, or as proportion against the total iron ores, these being also in wet condition;  
- a part of the iron ores, before reaching the sintering plant, are passed through the raw 
materials preparation sector, where are mixed and homogenized, having as result the iron ore 
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In the above equations: M – represents the iron ore flow; K – limestone flow; R – return flow; 
C – coke flow; S – charge flow; I – basicity ratio; si, ki – lime and silica from the iron ores; sk, 
kk – lime and silica from the limestone ; sCe, kCe – lime and silica from the coke ashes; sr, kr – 
lime and silica from the return; r0 – the return participation against the total iron ore ; c0 – 
the coke participation against the total iron ore. In case when is taken into account the 
humidity of the charge components, we have the following mathematic model: 
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Maximization of the good-quality agglomerate production is based on the optimization of 
the sintering machine’s speed. The mathematic model contains equations for calculating the 
necessary corrections for the value of the sintering machine’s speed, respectively for the 
carbon quantity in the charge, by which is adjusted the quantity of the produced ore fines. 
Optimization of the sintering machine’s speed vm is based on the coincidence principle of 
the longitudinal sintering front’s length La with the machine’s working length Lu. 
The mathematic model of the sintering sub-process is described by the following equations.  
In the above equations intervene the following quantities : vm – sintering machine’s 
prescribed speed; Hs – layer’s height; k – proportionality factor; B – sintering machine’s 
width; Tn, Tn-1, Tn-2 – temperatures in the last three suction chambers; r = R/M - proportion 
of the return against the total iron ore; r0 = Rmp/M - proportion of the fine-grained produced 
against the total iron ore; a, b – constants which are determined statistically for each 
installation in part; w – speed agglomeration in layer; ta – agglomeration time; Qat – total 
agglomeration flow; v – sinter density; a – agglomeration yield (Meré et al., 2005). 
         

The limestone quantity is not dosed by a given average ratio, but determined by the need of 
basic oxides account, so that in the agglomerate’s participation assembly the sum of basic 
oxides reported to the sum of acid oxides to be in a prescribed ratio, called basicity ratio I. 
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The dosed iron ores charge is (400  500) t/h at daily productions of (8000  10000) tons of 
agglomerate/day. The ratio between the quantity of the produced agglomerate and the iron 
ore charge is sensitively around value 1, because at basicity I = 1.2  1.4 as are prescribed the 
iron ores’ calcinations losses, they are compensated by the participation of limestone into 
agglomerate plus the coke’s ash, the return having a null effect, because it’s a constant 
quantity that recirculates (outputs = inputs). 
The mathematic model of the dosing sub-process is described by the following equations: 
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In the above equations: M – represents the iron ore flow; K – limestone flow; R – return flow; 
C – coke flow; S – charge flow; I – basicity ratio; si, ki – lime and silica from the iron ores; sk, 
kk – lime and silica from the limestone ; sCe, kCe – lime and silica from the coke ashes; sr, kr – 
lime and silica from the return; r0 – the return participation against the total iron ore ; c0 – 
the coke participation against the total iron ore. In case when is taken into account the 
humidity of the charge components, we have the following mathematic model: 
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Maximization of the good-quality agglomerate production is based on the optimization of 
the sintering machine’s speed. The mathematic model contains equations for calculating the 
necessary corrections for the value of the sintering machine’s speed, respectively for the 
carbon quantity in the charge, by which is adjusted the quantity of the produced ore fines. 
Optimization of the sintering machine’s speed vm is based on the coincidence principle of 
the longitudinal sintering front’s length La with the machine’s working length Lu. 
The mathematic model of the sintering sub-process is described by the following equations.  
In the above equations intervene the following quantities : vm – sintering machine’s 
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installation in part; w – speed agglomeration in layer; ta – agglomeration time; Qat – total 
agglomeration flow; v – sinter density; a – agglomeration yield (Meré et al., 2005). 
         

The limestone quantity is not dosed by a given average ratio, but determined by the need of 
basic oxides account, so that in the agglomerate’s participation assembly the sum of basic 
oxides reported to the sum of acid oxides to be in a prescribed ratio, called basicity ratio I. 
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The dosed iron ores charge is (400  500) t/h at daily productions of (8000  10000) tons of 
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Because the return is in fact fine-grained agglomerate which is recycled in the process, the 
silica and lime from the return is equal with the silica and lime of the agglomerate.  
The subsystem from fig. 3 makes the calculation of the silica and lime from the return based 
on the following formulas: 
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Fig. 2. Block diagram for calculation of the material flows from the charge [m3/h] 
 
Using the Simulink program from Matlab environment it was determined the sintering 
machine’s optimal speed variation. 
The simulation allowed also to computing the carbon correction from the charge, as well as 
the charge flow (Diniş et al., 2009). The calculation subsystem of the sintering machine’s 
optimal speed from fig. 4 has as input measures the following: temperatures in the last three 
suction chambers (Tn, Tn-1, Tn-2), the sintering machine’s useful length (Lu), the length up to 
the penultimate suction chamber (Ln-1) and the suction chambers’ distance (pC). 
The sintering machine’s useful length, the length up to the penultimate suction chamber and 
the suction chambers’ distance are considered constant measures (Lu=42 m, Ln-1=40 m, pC=2 
m), and the temperatures in the last three suction chambers are considered measures that 
take different values at certain moments of time. 
The  sub-system from fig. 5 calculates the carbons correction (coke) that should be made at 
dosing, in order that the fine-grained return produced in the sintering process (which is 
scaled) to be equal with the return which is introduced in the sintering charge at dosing. 
This sub-system is achieved based on the equations (39) and (40). 
The input measure S (the sintering charge’s flow) is calculated with a separate subsystem 
presented in fig. 6 based on the following parameters: the sintering band’s speed, the 
sintering layer’s height and the sintering band’s width. The calculation subsystem of the 
charge flow presented in fig. 6 is achieved based on the equation (41). 
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Based on the mathematic model and using the Simulink program from Matlab environment, 
were executed the diagrams that achieve the simulation of the dosing sub-process of the 
sintering ores, as well as the simulation of the iron ores’ sintering sub-process. The 
subsystem from fig. 2 makes the calculation of the material flow that compose the sintering 
charge, e.g.: the iron ore flow, limestone flow, coke flow and the return flow considering 
that in the agglomerate’s manufacturing recipe enter four types of iron ore : Romanian iron 
ore (iron ore 1), Krivoi-Rog iron ore (iron ore 2), Brazilian iron ore (iron ore 3) and scale (iron 
ore 4), each with its own chemical composition, i.e. with different lime and silica. Based on 
the laboratory analysis, are established the values of the following input measures: silica 
and lime of iron ores, silica and lime of the limestone, as well as the silica and lime from the 
coke ashes. 
Other input measures are prescribed measures, i.e.: basicity ratio (I), coke ashes’ proportion 
(Ce%), c0 – ratio between coke and iron ore, r0 – ratio between the return and iron ore, m1 – 
proportion of iron ore 1 against the total iron ore, m2 – proportion of iron ore 2 against the 
total iron ore, m3 – proportion of iron ore 3 against the total iron ore and m4 – proportion of 
iron ore 4 against the total iron ore. Because in the sintering charge the total iron ore is 
considered 100%, it should be fulfilled the condition  m1+m2+m3+m4 = 1, where : 
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M1 – Romanian iron ore flow; M2 – Krivoi-Rog iron ore flow; M3 – Brazilian iron ore flow; 
M4 – scale flow; M – total iron ore flow. 
The input measures sr (silica in return) and kr (lime in return) is calculated with a separate 
subsystem presented in fig. 3. 



Modelling and simulation of processes from an iron ore sintering plants 309

Because the return is in fact fine-grained agglomerate which is recycled in the process, the 
silica and lime from the return is equal with the silica and lime of the agglomerate.  
The subsystem from fig. 3 makes the calculation of the silica and lime from the return based 
on the following formulas: 
 

r0kCe0iir srMsKsCecMsmMsS    (48) 

Isk;
MrS

sKsCecMsmMs rr
0

kCe0ii
r 


 

  (49) 

 

 
Fig. 2. Block diagram for calculation of the material flows from the charge [m3/h] 
 
Using the Simulink program from Matlab environment it was determined the sintering 
machine’s optimal speed variation. 
The simulation allowed also to computing the carbon correction from the charge, as well as 
the charge flow (Diniş et al., 2009). The calculation subsystem of the sintering machine’s 
optimal speed from fig. 4 has as input measures the following: temperatures in the last three 
suction chambers (Tn, Tn-1, Tn-2), the sintering machine’s useful length (Lu), the length up to 
the penultimate suction chamber (Ln-1) and the suction chambers’ distance (pC). 
The sintering machine’s useful length, the length up to the penultimate suction chamber and 
the suction chambers’ distance are considered constant measures (Lu=42 m, Ln-1=40 m, pC=2 
m), and the temperatures in the last three suction chambers are considered measures that 
take different values at certain moments of time. 
The  sub-system from fig. 5 calculates the carbons correction (coke) that should be made at 
dosing, in order that the fine-grained return produced in the sintering process (which is 
scaled) to be equal with the return which is introduced in the sintering charge at dosing. 
This sub-system is achieved based on the equations (39) and (40). 
The input measure S (the sintering charge’s flow) is calculated with a separate subsystem 
presented in fig. 6 based on the following parameters: the sintering band’s speed, the 
sintering layer’s height and the sintering band’s width. The calculation subsystem of the 
charge flow presented in fig. 6 is achieved based on the equation (41). 

n1n2n

n2n
c1n

u
moptm

TT2T
TTp5,0L

Lvv












 
(37) 
































1

TT2T
TTp5,0L

Lvv

n1n2n

n2n
c1n

u
mm  (38) 

Mc25.1C   (39) 
   rbarbac 0   (40) 

BHvkS soptm   (41) 

3
min

s

u
minm 10w

H
Lv   [m/min] (42) 

3
max

s

u
maxm 10w

H
Lv   [m/min] (43) 

20...10
w

H
v
Lt

med

s

med

u
a   [min] (44) 

  60vc1HBQ medvasat   [t/h] (45) 
6.1v  [t/m3]; 96.0...93.0a  ; 13.0...06.0c   (46) 

 
Based on the mathematic model and using the Simulink program from Matlab environment, 
were executed the diagrams that achieve the simulation of the dosing sub-process of the 
sintering ores, as well as the simulation of the iron ores’ sintering sub-process. The 
subsystem from fig. 2 makes the calculation of the material flow that compose the sintering 
charge, e.g.: the iron ore flow, limestone flow, coke flow and the return flow considering 
that in the agglomerate’s manufacturing recipe enter four types of iron ore : Romanian iron 
ore (iron ore 1), Krivoi-Rog iron ore (iron ore 2), Brazilian iron ore (iron ore 3) and scale (iron 
ore 4), each with its own chemical composition, i.e. with different lime and silica. Based on 
the laboratory analysis, are established the values of the following input measures: silica 
and lime of iron ores, silica and lime of the limestone, as well as the silica and lime from the 
coke ashes. 
Other input measures are prescribed measures, i.e.: basicity ratio (I), coke ashes’ proportion 
(Ce%), c0 – ratio between coke and iron ore, r0 – ratio between the return and iron ore, m1 – 
proportion of iron ore 1 against the total iron ore, m2 – proportion of iron ore 2 against the 
total iron ore, m3 – proportion of iron ore 3 against the total iron ore and m4 – proportion of 
iron ore 4 against the total iron ore. Because in the sintering charge the total iron ore is 
considered 100%, it should be fulfilled the condition  m1+m2+m3+m4 = 1, where : 
 

M
Mm 1

1  ;
M

M
m 2

2   ;
M

M
m 3

3   ;
M

M
m 4

4    (47) 

 
M1 – Romanian iron ore flow; M2 – Krivoi-Rog iron ore flow; M3 – Brazilian iron ore flow; 
M4 – scale flow; M – total iron ore flow. 
The input measures sr (silica in return) and kr (lime in return) is calculated with a separate 
subsystem presented in fig. 3. 
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Fig. 5. Block diagram for calculation of the coke content’s variation from the charge 

 

 
Fig. 6. Block diagram for calculation of the charge flow 
 
For the temperature values Tn-2, Tn-1 and Tn (the temperatures in the last three suction 
chambers of the sintering band) expressed at different moments of time, will be obtained the 
variation curve of the sintering machine’s optimal speed. This time-variation curve of the 
sintering machine’s optimal speed can  be used  successfully  for  the  optimal control of the 
process from the sintering band (Diniş et al., 2009). 
The temperature values Tn-2, Tn-1 and Tn at different moments of time can be modified, 
obtaining, depending on these and the other subsystem’s inputs, other time-variation curves 
of the sintering machine’s optimal speed. 
 

 
Fig. 7. The temperature values for the three suction chambers, in time, for the simulation 
from fig.8 

 
Fig. 3. Block diagram for calculation of the lime and silica from the return 
 

 
Fig. 4. Block diagram for calculation of the sintering line’s optimal speed 
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Fig. 12. Variation of the sintering machine’s optimal speed – case 3 
 

 
Fig. 13. The temperature values for the three suction chambers, in time, for the simulation 
from fig.14 
 

 
Fig. 14. Variation of the sintering machine’s optimal speed – case 4 
 

 
Fig. 15. The temperature values for the three suction chambers, in time, for the simulation 
from fig.16 

 
Fig. 8. Variation of the sintering machine’s optimal speed – case 1 

 

 
Fig. 9. The temperature values for the three suction chambers, in time, for the simulation 
from fig.10 
 

 
Fig. 10. Variation of the sintering machine’s optimal speed – case 2 
 

 
Fig. 11. The temperature values for the three suction chambers, in time, for the simulation 
from fig.12 
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- 176 RAM 8-bit; 
- 8 Kbytes EEPROM for programming; 
- 256 EEPROM 8-bit; 
- 16 bi-directional inputs/outputs;  
- counter of 16 bits;  
- 2 capture inputs; 
- software reset of the main counter; 
- 8 channels for 8-bit analogue-digital conversion; 
- 2 conversion channels 8-bit digital-analogue; 
- serial asynchronous communication interface 
The conveyor belts T2 and T3 are supplied with material from silos S1 and S2. These are 
discharging the charge on the basic belt T1. The transport flows on the belt system are on 
directions Ta1-T2-T1, respectively Ta2-T3-T1 indicated by arrows. 
The power part contains five motors (MT1, MT2, MT3, MTa1, MTa2) for driving each conveyor 
belt and belt feeders (fig.18). Each motor is protected by fusible fuses (F12, F22, F32, F42, F52 
against short-circuits) and by thermo-bimetallic relays (F1, F2, F3, Fa1, Fa2 for overload 
protection). As commutation elements are used contactors (K1, K2, K3, Ka1, Ka2). The 
contactors’ coils are supplied at 380 V c.a., being controlled by the normally open contacts of 
the micro-relays K11, K21, K31, Ka11, Ka21 by the system with microcontroller (fig.19). 
 

 
Fig. 18. Branched system of conveyor belts 
 

 
Fig. 16. Variation of the sintering machine’s optimal speed – case 5 
 
In fig. 8, 10, 12, 14, 16 are presented the variations of the sintering machine’s optimal speed for 
different distributions of the iron ore’s temperatures on the sintering band.  
The temperature distributions in time, for the last three suction chambers of the sintering 
machine   (Tn-2, Tn-1, Tn) are given under vectorial form and are presented in fig. 7, 9, 11, 13, 15. 
The prescribed speed (for the simulations from fig. 8, 10, 12, 14, 16) for the adjustment system is 
2.2 m/s. The temperatures are considered to be measured each with a temperature transducer for 
each chamber. The simulation time is 150 s, and the temperature readings are made from 30 to 30 
s. The measurement of the material’s temperature on the sintering band is a difficult operation. 
From practice, are known the temperature domains for each suction chamber: Tn-2  [250-
300] 0C; Tn-1  [300-350] 0C; Tn  [250-300] 0C. 
Depending on the temperatures measured  (fig.17) in the suction chambers, the adjustment 
system imposes a certain modification of the sintering band. For simulations were used the 
experimental data from fig.17 (graph 3, 40 cm layer). 
 

 
Fig. 17. Distribution temperatures, under the layer: graph 1: 20 cm layer; graph 2: 30 cm 
layer; graph 3: 40 cm layer  
 
3. Control of a belt conveyors system, with MC68HC05B6 – Motorola 
microcontroller  

Microcontroller MC68HC05B6 (Motorola) is an HCMOS integrated circuit, which has the 
following resources: 
- 8-bit arithmetic and logical unit, which can execute adding, subtracting, multiplying, 
incrementing, decrementing, logical and rotating operations; 
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protection). As commutation elements are used contactors (K1, K2, K3, Ka1, Ka2). The 
contactors’ coils are supplied at 380 V c.a., being controlled by the normally open contacts of 
the micro-relays K11, K21, K31, Ka11, Ka21 by the system with microcontroller (fig.19). 
 

 
Fig. 18. Branched system of conveyor belts 
 

 
Fig. 16. Variation of the sintering machine’s optimal speed – case 5 
 
In fig. 8, 10, 12, 14, 16 are presented the variations of the sintering machine’s optimal speed for 
different distributions of the iron ore’s temperatures on the sintering band.  
The temperature distributions in time, for the last three suction chambers of the sintering 
machine   (Tn-2, Tn-1, Tn) are given under vectorial form and are presented in fig. 7, 9, 11, 13, 15. 
The prescribed speed (for the simulations from fig. 8, 10, 12, 14, 16) for the adjustment system is 
2.2 m/s. The temperatures are considered to be measured each with a temperature transducer for 
each chamber. The simulation time is 150 s, and the temperature readings are made from 30 to 30 
s. The measurement of the material’s temperature on the sintering band is a difficult operation. 
From practice, are known the temperature domains for each suction chamber: Tn-2  [250-
300] 0C; Tn-1  [300-350] 0C; Tn  [250-300] 0C. 
Depending on the temperatures measured  (fig.17) in the suction chambers, the adjustment 
system imposes a certain modification of the sintering band. For simulations were used the 
experimental data from fig.17 (graph 3, 40 cm layer). 
 

 
Fig. 17. Distribution temperatures, under the layer: graph 1: 20 cm layer; graph 2: 30 cm 
layer; graph 3: 40 cm layer  
 
3. Control of a belt conveyors system, with MC68HC05B6 – Motorola 
microcontroller  

Microcontroller MC68HC05B6 (Motorola) is an HCMOS integrated circuit, which has the 
following resources: 
- 8-bit arithmetic and logical unit, which can execute adding, subtracting, multiplying, 
incrementing, decrementing, logical and rotating operations; 
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define f3 port [8] 'Port thermal protection motor conveyor T3 
define fa1 port [9] 'Port thermal protection motor feeder Ta1 
define fa2 port [10] 'Port thermal protection motor feeder Ta2 
define sp1 port [11] 'start-up button flow 1 
define so1 port [12] 'shut-down button flow 1 
define sp2 port [13] 'start-up button flow 2 
define so2 port [14] 'shut-down button flow 2 
define led1 port [15] 'LED operation flow 1 
define led2 port [16] 'LED operation flow 2 
'Main Program  
'Initializations 
ports = off 
10 if sp1=off then led1=on 
 if sp1=off then gosub flow1 
 if so1=off then led1=off 
 if so1=off then ta1=off 
 pause 25 
 if so1=off then t2=off 
 pause 25 
 if so1=off then t1=off 
 if f1=on or f2=on or fa1=on then ta1=off 
 if f1=on or f2=on or fa1=on then t2=off 
 if f1=on or f2=on or fa1=on then t1=off 
 if f1=on or f2=on or fa1=on then ta2=off 
 if f1=on or f2=on or fa1=on then t3=off 
 if sp2=off then led2=on 
 if sp2=off then gosub flow2 
 if so2=off then led2=off 
 if so2=off then ta2=off 
 pause 25 
 if so2=off then t3=off 
 pause 25 
 if so2=off then t1=off 
 if f1=on or f3=on or fa2=on then ta2=off 
 if f1=on or f3=on or fa2=on then t3=off 
 if f1=on or f3=on or fa2=on then t1=off 
 if f1=on or f3=on or fa2=on then ta1=off 
 if f1=on or f3=on or fa2=on then t2=off 
 goto 10 
 ‘Subroutine flow1 
 #flow1 
 t1=on 
 pause 100 
 if f1=on then t1=off 
 if f1=on then led1=off 
 if f1=on then goto 10 

Micro-relays K11, K21, K31, Ka11, Ka21 are controlled by 1 logic. The system by microcontroller 
is supplied at 5V. All components were connected at the first 16 digital ports (P1,…,P16). The 
normally closed contacts of the thermal protections (F1, F2, F3, Fa1, Fa2) were connected by 
resistances of 10 k to 5V. Thus, if the protections don’t act, their normally closed contacts 
do not open and the microcontroller interprets this status as 0 logic. If a protection is 
actuating, the related contact is open and on the respective input is applied signal 1 logic. 
The two flows can be controlled separately: flow 1 (T1-T2-Ta1) and flow 2 (T1-T3-Ta2). Flow 1 
is started by button Sp1, and flow 2 by button Sp2. Flows’ stopping is made by the stop 
buttons So1, respectively So2. If the buttons are not actuated, it’s interpreted 1 logic, and if 
they are closed, is interpreted 0 logic. There are also connected two LEDs – LED1 and LED 
2- that indicates the operation of flow 1 respectively flow 2. The LEDs’ control is made by 1 
logic. 
 

 
Fig. 19. The power and control diagram of the conveyor belt system 
 
Is presented the control program’s listing of the conveyor belt system achieved in CCBasic. 
‘Program for controlling the conveyor belts 
define ports wordport [1] 'Ports 1 - 16 
define t1 port [1] 'Port command contactor K1, for conveyor T1 
define t2 port [2] 'Port command contactor K2, for conveyor T2 
define t3 port [3] 'Port command contactor K3, for conveyor T3 
define ta1 port [4] 'Port command contactor Ka1, for feeder Ta1 
define ta2 port [5] 'Port command contactor Ka2, for feeder Ta2 
define f1 port [6] 'Port thermal protection motor conveyor T1 
define f2 port [7] 'Port thermal protection motor conveyor T2 
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define f3 port [8] 'Port thermal protection motor conveyor T3 
define fa1 port [9] 'Port thermal protection motor feeder Ta1 
define fa2 port [10] 'Port thermal protection motor feeder Ta2 
define sp1 port [11] 'start-up button flow 1 
define so1 port [12] 'shut-down button flow 1 
define sp2 port [13] 'start-up button flow 2 
define so2 port [14] 'shut-down button flow 2 
define led1 port [15] 'LED operation flow 1 
define led2 port [16] 'LED operation flow 2 
'Main Program  
'Initializations 
ports = off 
10 if sp1=off then led1=on 
 if sp1=off then gosub flow1 
 if so1=off then led1=off 
 if so1=off then ta1=off 
 pause 25 
 if so1=off then t2=off 
 pause 25 
 if so1=off then t1=off 
 if f1=on or f2=on or fa1=on then ta1=off 
 if f1=on or f2=on or fa1=on then t2=off 
 if f1=on or f2=on or fa1=on then t1=off 
 if f1=on or f2=on or fa1=on then ta2=off 
 if f1=on or f2=on or fa1=on then t3=off 
 if sp2=off then led2=on 
 if sp2=off then gosub flow2 
 if so2=off then led2=off 
 if so2=off then ta2=off 
 pause 25 
 if so2=off then t3=off 
 pause 25 
 if so2=off then t1=off 
 if f1=on or f3=on or fa2=on then ta2=off 
 if f1=on or f3=on or fa2=on then t3=off 
 if f1=on or f3=on or fa2=on then t1=off 
 if f1=on or f3=on or fa2=on then ta1=off 
 if f1=on or f3=on or fa2=on then t2=off 
 goto 10 
 ‘Subroutine flow1 
 #flow1 
 t1=on 
 pause 100 
 if f1=on then t1=off 
 if f1=on then led1=off 
 if f1=on then goto 10 

Micro-relays K11, K21, K31, Ka11, Ka21 are controlled by 1 logic. The system by microcontroller 
is supplied at 5V. All components were connected at the first 16 digital ports (P1,…,P16). The 
normally closed contacts of the thermal protections (F1, F2, F3, Fa1, Fa2) were connected by 
resistances of 10 k to 5V. Thus, if the protections don’t act, their normally closed contacts 
do not open and the microcontroller interprets this status as 0 logic. If a protection is 
actuating, the related contact is open and on the respective input is applied signal 1 logic. 
The two flows can be controlled separately: flow 1 (T1-T2-Ta1) and flow 2 (T1-T3-Ta2). Flow 1 
is started by button Sp1, and flow 2 by button Sp2. Flows’ stopping is made by the stop 
buttons So1, respectively So2. If the buttons are not actuated, it’s interpreted 1 logic, and if 
they are closed, is interpreted 0 logic. There are also connected two LEDs – LED1 and LED 
2- that indicates the operation of flow 1 respectively flow 2. The LEDs’ control is made by 1 
logic. 
 

 
Fig. 19. The power and control diagram of the conveyor belt system 
 
Is presented the control program’s listing of the conveyor belt system achieved in CCBasic. 
‘Program for controlling the conveyor belts 
define ports wordport [1] 'Ports 1 - 16 
define t1 port [1] 'Port command contactor K1, for conveyor T1 
define t2 port [2] 'Port command contactor K2, for conveyor T2 
define t3 port [3] 'Port command contactor K3, for conveyor T3 
define ta1 port [4] 'Port command contactor Ka1, for feeder Ta1 
define ta2 port [5] 'Port command contactor Ka2, for feeder Ta2 
define f1 port [6] 'Port thermal protection motor conveyor T1 
define f2 port [7] 'Port thermal protection motor conveyor T2 
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Fig. 20. Development board Keil MCB167-NET 
 
In figure 21 is shown the block-diagram of the PLCi afferent to the “i” conveyor and the 
elements which it serves. For a  Ti conveyor have been made the following notes: VITi – 
speed transducer; DEVi – overflow transducer (filling-up); AVRi – emergency transducer 
(in-line); SERi – serial communication between PLC and PC; STARTi – start signal for PLCi; 
STOPi – stop signal for PLCi; STARTi+1 – start signal for the upstream conveyor; STOPi+1 – 
stop signal for the downstream conveyor; CLXi – control signal for the horn; MOTi – control 
signal for starting the motor or motors group. 
  

 
Fig. 21. Block-diagram PLCi 

 
The control algorithm implements the following 14 conditions: 1) Completely automatic 
operation with acoustic and graphic signaling in real-time; 2) At commissioning, the 
correctness of its integrity is tested; 3) Starting-up is made on the routes depending on the 
material's presence transducer; 4) Starting-up of a conveyor is made only after it was made 
the preventive acoustic signaling; 5) The minimum value of the material from the bunker 
stops the route in the direct sense of the material flow; 6) The duration of a conveyor's 

 t2=on 
 pause 100 
 if f2=on then t2=off 
 if f2=on then t1=off 
 if f2=on then led1=off 
 if f2=on then goto 10 
 ta1=on 
 pause 100 
 if fa1=on then ta1=off 
 if fa1=on then t2=off 
 if fa1=on then t1=off 
 if fa1=on then led1=off 
 return 
 ‘Subroutine flow2 
 #flow2 
 t1=on 
 pause 100 
 if f1=on then t1=off 
 if f1=on then led2=off 
 if f1=on then goto 10 
 t3=on 
 pause 100 
 if f3=on then t3=off 
 if f3=on then t1=off 
 if f3=on then led2=off 
 if f3=on then goto 10 
 ta2=on 
 pause 100 
 if fa2=on then ta2=off 
 if fa2=on then t3=off 
 if fa2=on then t1=off 
 if fa2=on then led2=off 
 return 

 
4. Hierarchical control of a belt conveyors system   

To achieve the control by software orientation method, will be used a hierarchical structure 
on three levels, having at the superior level an industrial PC, at the middle level a number of 
PLCs, one for each conveyor, an date execution and feedback level the working machines 
and the process transducers (Da Silveira & Combacau, 2006). To achieve control software, 
after orientation method, is used for each belt conveyor a PLC, made with development 
board Keil MCB167-NET (fig.20) having the following characteristics: 5 ports I/O, 1 input 
port, two serial communication channels (asynchronous serial channel/synchronous ASC0 
and a high-speed synchronous serial channel SSC), 1 x RS232 Interface, 2 x CAN Interfaces, 
1 x Ethernet Controller. Local display of belt conveyor operation is achieved by a liquid 
crystal panel (LCD) (Diniş et al., 2008) 



Modelling and simulation of processes from an iron ore sintering plants 319

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 20. Development board Keil MCB167-NET 
 
In figure 21 is shown the block-diagram of the PLCi afferent to the “i” conveyor and the 
elements which it serves. For a  Ti conveyor have been made the following notes: VITi – 
speed transducer; DEVi – overflow transducer (filling-up); AVRi – emergency transducer 
(in-line); SERi – serial communication between PLC and PC; STARTi – start signal for PLCi; 
STOPi – stop signal for PLCi; STARTi+1 – start signal for the upstream conveyor; STOPi+1 – 
stop signal for the downstream conveyor; CLXi – control signal for the horn; MOTi – control 
signal for starting the motor or motors group. 
  

 
Fig. 21. Block-diagram PLCi 
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operation with acoustic and graphic signaling in real-time; 2) At commissioning, the 
correctness of its integrity is tested; 3) Starting-up is made on the routes depending on the 
material's presence transducer; 4) Starting-up of a conveyor is made only after it was made 
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4. Hierarchical control of a belt conveyors system   

To achieve the control by software orientation method, will be used a hierarchical structure 
on three levels, having at the superior level an industrial PC, at the middle level a number of 
PLCs, one for each conveyor, an date execution and feedback level the working machines 
and the process transducers (Da Silveira & Combacau, 2006). To achieve control software, 
after orientation method, is used for each belt conveyor a PLC, made with development 
board Keil MCB167-NET (fig.20) having the following characteristics: 5 ports I/O, 1 input 
port, two serial communication channels (asynchronous serial channel/synchronous ASC0 
and a high-speed synchronous serial channel SSC), 1 x RS232 Interface, 2 x CAN Interfaces, 
1 x Ethernet Controller. Local display of belt conveyor operation is achieved by a liquid 
crystal panel (LCD) (Diniş et al., 2008) 
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titleApp   db      " Control a conveyors system",0 
titleKeys   db " Keys used:",0 
titleMessages  db " Messages:",0 
titleState   db " State transducers:",0 
trsp1   db " TR1",0 
trsp2   db " TR2",0 
trsp3   db "  TR3",0 
trsp4   db "  TR4",0 
damage   db " AVR:",0 
discharge  db " DEV:",0 
speed   db " VIT:",0 
MesDamage  db " DAMAGE",0 
MesSintering  db " SINTERING",0 
MesSpeeding      db " SPEEDING",0 
MesSpeedNormal  db " NORMAL SPEED",0 
MesSpeedAbnormal  db   " ABNORMAL SPEED",0 
MesRest   db " REST",0 
MesBNCfull             db " FULL",0 
MesBNCempty        db " EMPTY",0 
MesBNCprocessed   db            " MEDIUM",0 
keys02   db  " BKCM",0 
keys03   db  " BRET",0 
keys1   db  " Higher level (START):",0 
keys2   db  " Lower level (STOP) :",0 
keys32   db  " Q",0 
keys33   db  " W",0 
keys42   db  " A",0 
keys43   db  " S",0 
keys10   db  " ESC = exit program",0 
cmdCLX   db   00001011b ; port control = 37ah 
cmdMOT  db   00000000b ; port date = 378h 
flagM1   db   0 ; 0=stop & 1=start 
flagM2   db   0 ; 0=stop & 1=start 
flagM3   db   0 ; 0=stop & 1=start 
flagM4   db   0 ; 0=stop & 1=start 
. code 
; main program 
start: call portzero ; initial state 
call getcar 
call getcar8x16 
mov ax,@data 
mov ds,ax 
call far for whichvga 
call svgamode 
call doInitScreen  ;virtual instruments 
call MainLoop  ; monitoring 

starting-up is controlled by the speed transducer through the watchdog; 7) The upstream 
conveyor starts-up after the one from the downstream has started; 8) If a conveyor has 
stopped, all the others which overflow on it will stop also; 9) The upstream conveyor will be 
stopped if the downstream bunker has filled-up; 10) The conveyor will stop if the 
emergency transducer AVRi is actuated; 11) If the watchdog has been actuated, the conveyor 
will stop; 12) Emergency detection produces the locking-up of starting the belt until the 
remedy of the defect; 13) Signaling of the system's condition is ensured at superior and local 
level; 14) Signaling of the transducers condition is ensured at superior and local level.  
Structure of the hierarchical control system is presented in figure 22 and can be extended for 
any configuration by cascade connections (CASC). 
 

 
Fig. 22. Structure of the hierarchical control system 

 
5. Modelling and implementation of the hierarchical control software        

Testing of the control system’s feasibility was done at the beginning by modeling and 
simulation of PLCi in the MatLab-Simulink. In this chapter, was developed the mathematic 
model which was used as basis for development of Simulink model from figure 23. In the 
chapter is presented the simulations results for individual PLC. Based on the model and the 
simulation results, it started the development and implementation of the hierarchical control 
software (Diniş et al., 2008).  
The hierarchical control software at high level was achieved in I80X86 assembling language 
and contains about 8000 instruction lines. The program ensures a real-time graphic interface 
on PC's screen from the dispatcher, with the following elements: representing of the 
transportation flow in real time; real condition of the transducers; the condition of each belt; 
automatic or manual control; choosing a route in automatic mode, depending on the 
material from bunkers (Zamai et al., 1998). Further are shown few program sequences, i.e. 
the data segment and the main control routine. 
.model small 
.stack 
.data 
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titleApp   db      " Control a conveyors system",0 
titleKeys   db " Keys used:",0 
titleMessages  db " Messages:",0 
titleState   db " State transducers:",0 
trsp1   db " TR1",0 
trsp2   db " TR2",0 
trsp3   db "  TR3",0 
trsp4   db "  TR4",0 
damage   db " AVR:",0 
discharge  db " DEV:",0 
speed   db " VIT:",0 
MesDamage  db " DAMAGE",0 
MesSintering  db " SINTERING",0 
MesSpeeding      db " SPEEDING",0 
MesSpeedNormal  db " NORMAL SPEED",0 
MesSpeedAbnormal  db   " ABNORMAL SPEED",0 
MesRest   db " REST",0 
MesBNCfull             db " FULL",0 
MesBNCempty        db " EMPTY",0 
MesBNCprocessed   db            " MEDIUM",0 
keys02   db  " BKCM",0 
keys03   db  " BRET",0 
keys1   db  " Higher level (START):",0 
keys2   db  " Lower level (STOP) :",0 
keys32   db  " Q",0 
keys33   db  " W",0 
keys42   db  " A",0 
keys43   db  " S",0 
keys10   db  " ESC = exit program",0 
cmdCLX   db   00001011b ; port control = 37ah 
cmdMOT  db   00000000b ; port date = 378h 
flagM1   db   0 ; 0=stop & 1=start 
flagM2   db   0 ; 0=stop & 1=start 
flagM3   db   0 ; 0=stop & 1=start 
flagM4   db   0 ; 0=stop & 1=start 
. code 
; main program 
start: call portzero ; initial state 
call getcar 
call getcar8x16 
mov ax,@data 
mov ds,ax 
call far for whichvga 
call svgamode 
call doInitScreen  ;virtual instruments 
call MainLoop  ; monitoring 

starting-up is controlled by the speed transducer through the watchdog; 7) The upstream 
conveyor starts-up after the one from the downstream has started; 8) If a conveyor has 
stopped, all the others which overflow on it will stop also; 9) The upstream conveyor will be 
stopped if the downstream bunker has filled-up; 10) The conveyor will stop if the 
emergency transducer AVRi is actuated; 11) If the watchdog has been actuated, the conveyor 
will stop; 12) Emergency detection produces the locking-up of starting the belt until the 
remedy of the defect; 13) Signaling of the system's condition is ensured at superior and local 
level; 14) Signaling of the transducers condition is ensured at superior and local level.  
Structure of the hierarchical control system is presented in figure 22 and can be extended for 
any configuration by cascade connections (CASC). 
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Testing of the control system’s feasibility was done at the beginning by modeling and 
simulation of PLCi in the MatLab-Simulink. In this chapter, was developed the mathematic 
model which was used as basis for development of Simulink model from figure 23. In the 
chapter is presented the simulations results for individual PLC. Based on the model and the 
simulation results, it started the development and implementation of the hierarchical control 
software (Diniş et al., 2008).  
The hierarchical control software at high level was achieved in I80X86 assembling language 
and contains about 8000 instruction lines. The program ensures a real-time graphic interface 
on PC's screen from the dispatcher, with the following elements: representing of the 
transportation flow in real time; real condition of the transducers; the condition of each belt; 
automatic or manual control; choosing a route in automatic mode, depending on the 
material from bunkers (Zamai et al., 1998). Further are shown few program sequences, i.e. 
the data segment and the main control routine. 
.model small 
.stack 
.data 
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Fig. 24. Simulink model for simulations 

exitDOS: call portzero ; initial state 
call txtmode 
mov ax,4c00h 
int 21h 
end start 
 

 

 
Fig. 23. Simulink model for PLCi  



Modelling and simulation of processes from an iron ore sintering plants 323

 

 
Fig. 24. Simulink model for simulations 

exitDOS: call portzero ; initial state 
call txtmode 
mov ax,4c00h 
int 21h 
end start 
 

 

 
Fig. 23. Simulink model for PLCi  
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The values r0 and c0 are established by independent criteria, e.g.: balancing the ore fines 
circulation, respectively ensuring the optimal compromise, between the agglomerate  
production on one side and the coke specific consumption on the other side, and between 
the agglomerate’s reducibility and resistance.  
Also, the achieved model allows the visualization of the optimal speed in time, which leads 
to the optimal charge of the sintering machine from the viewpoint of the charge’s chemical 
and mineralogical composition. The obtained results are in accordance with the practical 
ones, and the model can be implemented to a real installation (Diniş et al., 2009). 
The current technology of cast-iron making imposes more and more rigorous conditions to 
the quality of the charge that should allow the optimization of the entire process, increasing 
the productivity and reducing the coke consumption.  
As regards the modernization of the iron ores’ sintering plants, will be considered the 
following research directions:  
- Development of an expert system for correcting the sintering belt’s speed based on fuzzy 
logic; 
- Development of computerized control systems for adjusting the water quantity in the raw 
materials and the agglomerate’s chemical composition; 
- Implementation of a surveillance system in the iron ores’ sintering process. 
Without the control systems by contacts and relays or by logical gates, the control by 
microcontroller ensures flexibility in programs’ achievement and is achieved by 
programming without intervene upon the hard components. 
It were designed and made a transport control flexible system on the basis of software 
orientation technology (Antipov & Malov, 2005). It was made a hierarchical control 
structure of the transport flux, that was modeled and simulated in Matlab/Simulink with 
good results. Based on the model, was conceived a hierarchical control software of the belt 
conveying process, adaptable to any configuration in space of the conveyors. 
The obtain results may be a support for revamping the belt conveying flows used in 
sintering plants, lignite quarries or for the distribution conveyors from the robotic 
manufacturing cells, etc. 
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In fig. 24 are shown the results of modeling the conveying flow in MatLab-Simulink. One can 
see the variation in time of the control and feedback signals, in accordance with the imposed 
technological conditions (Lupu et al., 2008). In fig. 25 is shown the work screen of the PC from 
the superior level in start regime for a configuration of 4 conveyors from a sintering plant. 
When the materials' presence transducer detects the superior level in the BRET return 
bunker or in the mixing bunker of limestone, coke and iron ores BKCM, the conveyors 
system starts as follows: 
- PLC1 gives the preventive acoustic warning command to the CLX1 horn, then is given the 
start command for MOT1 motor, which drives the conveyor 1 (TR1); 
- The speed transducer VIT1 detects the normal operation regime of the TR1 conveyor, and 
PLC1 will give the START command for PLC2; 
- PLC2 controls the preventive acoustic warning by CLX2 horn, then is given the start 
command for MOT2 motor of the conveyor 2 (TR2); 
- The speed transducer VIT2 detects the normal operation regime of the TR2 conveyor, and 
PLC2 will give the START command for PLC3 and the process continue; 
- Any emergency detected by the transducers generates the initiation of STOP subroutines, 
by displaying the condition on the PC screen. 
 

 
Fig. 25. Work screen when conveyors 1, 2 and 3 are started and discharged from BKCM 
bunker 

 
6. Conclusion       

The model achieved in Matlab/Simulink and its simulation allows the determination of the 
material flows in the charge, either at the variation of their chemical composition, or at 
variation of the reference values of the parameters S, I, r0, c0. The value of the charge flow S 
varies as result of the transitory adjusting regime of the sintering machine’s speed.  
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1. Introduction 

Furnaces are a versatile class of equipment where heat is liberated and transferred directly 
or indirectly to a solid or fluid mass for the purpose of effecting a physical or chemical 
change. In industrial practice many and varied types of furnaces are used which may differ 
in function, overall shape or mode of firing, and furnaces may be classified accordingly on 
the basis of their function such as smelting or roasting, their shape such as crucibles, shafts 
and hearths or they may be classified according to their mode of firing into electrical, 
nuclear, solar, and combustion furnaces. Combustion furnaces are of two general types: 
fired heaters and converters. A converter is a type of furnace in which heat is liberated by 
the oxidation of impurities or other parts of the material to be heated. Fired heaters, on the 
other hand, are furnaces that produce heat as a result of the combustion of fuel. The heat 
liberated is transferred to the material to be heated directly (in internally-heated furnaces) or 
indirectly (in externally-heated furnaces). Examples of internally-heated furnaces include 
submerged heaters and blast furnaces where a solid mass is heated by a blast of hot gases. 
Externally-heated furnaces include ovens, fire-tube boilers and tubular heaters. 
 
In tubular or pipe-still heaters process fluids flowing inside tubes mounted inside the 
furnace are heated by gases produced by the combustion of a liquid or gaseous fuel. Such 
heaters were first introduced in the oil industry by M. J. Trumble. Two advantages were 
thereby gained, viz. the achievement of continuous operation and the reduction of foam 
formation. These heaters are widely used for heating purposes in petroleum refining, 
petrochemical plants and other chemical process industries. The calculation and design of 
fired heaters in petroleum refineries in particular remains one of the most important 
applications of heat transfer. 
 
Tubular fired heaters are generally built with two distinct heating sections: a radiant section, 
variously called a combustion chamber or firebox, and a convection section followed by the 
stack. The hot flue gases arising in the radiation section flow next into the convection section 
where they circulate at high speed through a tube bundle before leaving the furnace 
through the stack. A third section, known as a shield or shock section, separates the two 
major heating sections. It contains those tubes close to the radiation section that shield the 
remaining convection section tubes from direct radiation. The shield section normally 
consists of two to three rows of bare tubes that are directly exposed to the hot gasses and 

16
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Cylindrical heaters with vertical tubes (Fig. 2) are commonly used in hot oil services and 
other processes where the duties are usually small, but larger units, 100 million kJ/hr and 
higher, are not uncommon.  
 

Cylindrical heaters are often preferred to box-type heaters. This is mainly due to the more 
uniform heating rate in cylindrical heaters and higher thermal efficiency. Furthermore, 
cylindrical heaters require smaller foundations and construction areas and their 
construction cost is less. High chimneys are not essential in cylindrical furnaces because 
they normally produce sufficient draught. 

 
2. Analysis and evaluation of heat transfer 

In the usual practice, the process fluid is first heated in the convection section preheat coil 
which is followed by further heating in the radiant section. In both sections heat is 
transferred by both mechanisms of heat transfer, viz. radiation and convection, where 
radiation is the dominant mode of heat transfer at the high temperatures prevalent in the 
radiant section and convection predominates in the convection section where the average 
temperature is much lower. Most of the heat transferred to the process fluid takes place in 
the radiant section while the convection section serves only to make up the difference 
between the heat duty of the furnace and the part absorbed in the radiant section. Roughly-
speaking, about 45-55% of the total heat release in the furnace is transferred to the process 
fluid in the radiant section, leaving about 25-45% of the total heat release to be either 
transferred to the process fluid in the convection section or carried by the flue gases through 
the stack and is lost. 
 
Generally speaking, the chief mechanism by which heat is transferred to the process fluid is 
radiative heat transfer. In the radiant section the process fluids are mainly heated by direct 
radiation from the flame. About 70-90 % of the heat absorbed by the tubes in the radiant and 
shield sections of a furnace is transferred by radiation. This clearly indicates that heat 
transfer by radiation is of particular significance for the thermal analysis and design of fired 
heaters in general. Furthermore, the fundamental understanding of heat transfer by 
radiation is essential for a better appraisal of the expected effects of any modifications of 
existing heaters or suggestions for possible future developments. Heat transfer by radiation 
can not however be considered in isolation, but it must be considered in conjunction with 
other mechanisms of heat transfer such as conduction and convection, in addition to heat 
liberation by such chemical reactions as may take place inside heater tubes. 
 
The heat-absorbing surface in both sections of the heater is the outside wall of the tubes 
mounted inside the heater. The overall thermal efficiency of the fired heater is dependent to 
a large extent on the effectiveness of the recovery of heat from the flue gases, which depends 
in turn on the size of the heat exchange surface area in the furnace. In order to increase the 
heat transfer area and thus further increase the overall efficiency of the heater, finned or 
studded tubes are normally used in the convection section. By this means it is often possible 
to attain heat flux in the convection section comparable to that in the radiation section. 
 
Different methods are available for the calculations involved in the thermal evaluation and 
design of fired heaters and some of these methods may be based in theory on fundamental 

flame in the radiant section, but the arrangement varies widely for the many different heater 
designs. In certain fired heater designs, known as the all-radiant type, there is no separate 
convection section. 
 
The functions served by fired heaters in chemical plants are many ranging from simple 
heating or providing sensible heat and raising the temperature of the charge to heating and 
partial evaporation of the charge, where equilibrium is established between the unvaporised 
liquid and the vapour. The charge leaves the furnace in the form of a partially evaporated 
liquid in equilibrium. Fired heaters may also be used to provide the heat required for 
cracking or reforming reactions. In this case the furnace would be divided into two parts: a 
heater, where the temperature of the charge is raised, and a soaker, where heat is provided 
in order to maintain a constant temperature. The soaker may be a part of either the radiation 
or convection sections. Radiation soakers are generally to be preferred to convection soakers 
for better control of heat input. 
 
Fired heaters are usually classified as vertical cylindrical or box-type heaters depending on 
the geometrical configuration of the radiant section.  
 
In box-type heaters, the radiant section has generally a square cross section (as in older 
furnaces, where the reduced height is compensated for by a larger construction site) or a 
rectangular cross section (with its height equal to 1.5 to 2.5 times its width) as in cabin-type 
heaters. The configuration of the cabin type heater with horizontal tubes may have a so-
called hip, or the radiant section may be just a rectangular box.  
 
The tubes in the radiant section may be arranged horizontally or vertically along the heater 
walls including the hip and the burners are located on the floor or on the lower part of the 
longest side wall where there are no tubes. A fire wall is often built down the centre of the 
combustion chamber in heaters fired from the sides.  
 
Box-type furnaces are best suited for large capacities and large heat duties. This makes such 
furnaces particularly suitable for topping units where it is possible to increase tube length in 
both the radiation and convection sections reducing thereby the required number of headers 
or return bends. It is possible in such furnaces to open the headers for cleaning, something 
which makes cleaning the tubes in the radiation section easier; this is especially significant 
in furnaces used to heat easily-coking oils.  
 
In the cylindrical-type furnace, the radiation section is in the shape of a cylinder with a 
vertical axis, and the burners are located on the floor at the base of the cylinder. The heat 
exchange area covers the vertical walls and therefore exhibits circular symmetry with 
respect to the heating assembly. In the radiant section, the tubes may be in a circular pattern 
around the walls of the fire box or they may be in a cross or octagonal design which will 
expose them to firing from both sides. Older designs have radiating cones in the upper part 
of the radiant section as well as longitudinal fins on the upper parts of tubes. The shield and 
convection tubes are normally horizontal. 
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higher, are not uncommon.  
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The basic objection to the zone model in the considered opinion of many designers is that it 
assumes discontinuous changes from one homogenous gas zone to the next. This makes this 
model not a very realistic one. The flux model which allows for variation in gas properties 
as a smooth function throughout space would be a more realistic model than the zone 
model. The flux method should be used when accuracy demands that continuous changes in 
gas temperature or optical properties cannot be represented by discrete homogeneous gas 
zones. In the flux method radiative transfer through gases is considered as beams of photons 
which are absorbed and scattered according to the laws of astrophysics.  
 
Modelling of fired heaters is generally based on the two heater sections, namely the 
radiation and the convection sections. Within each section three heat transfer elements need 
to be considered. These are the flue gas, the process fluid and the heat exchange surfaces 
including the tubes and the refractory walls of the heater. In addition to the calculation of 
heat exchange areas and heat transfer rates to the process fluid, other key variables serve as 
a basis for the determination of heater performance. These include: 
(1) Process fluid and flue gas temperatures. 
(2) Flame and tube skin or tube wall temperatures.  
(3) Process fluid flow rate. 
(4) Fuel flow rate and composition. 
(5) Process fluid pressure drop and the pressure profile in the heater and stack.  
 
For most furnace designers and operators, however, the thermal efficiency remains the most 
important single performance factor. This is particularly so in view of the current trend of 
rising fuel costs and environmental concerns. The successful design and operation of a fired 
heater must aim first and foremost at the highest possible thermal efficiency with due 
regards to other performance and pollution considerations. 

 
3. Heat transfer in the radiant section  

Heat transfer by radiation is governed in theory by the Stefan-Boltzman law for black body 
radiation, QR = σ T4. In practice, the mathematical solution of radiative heat transfer is more 
complicated however as it involves the calculation of heat exchange factors as a function of 
the furnace geometry and the calculation of the absorptivity and emissivity of the 
combustion gases. There are also other factors to be considered such as the emissivities of 
the surface and the effects of re-radiation of the tubes. 
 
There are two primary sources of heat input to the radiant section, the combustion heat of 
fuel, Qrls, and the sensible heat of the combustion air, Qair, fuel, Qfuel and the fuel atomization 
fluid (for liquid fuel when applicable), Qfluid. Part of this heat input liberated in the radiant 
section is absorbed by the tubes in the radiant QR and shield Qshld sections, while the 
remaining heat is either carried as sensible heat by the exiting flue gas, Qflue gases or is lost by 
radiation through the furnace walls or casing, Qlosses. The temperature of the flue gas can 
then be calculated by setting up a heat balance equation. 
 
Radiation heat losses through furnace walls depend on the size of the furnace, where greater 
heat losses are to be expected in small furnaces as the ratio between the walls area and the 

considerations, but more usually the calculation of heat transfer in heaters is based on 
empirical methods and the construction of such units precedes in general theoretical 
developments. The validity and significance of a method is determined to a large extent by 
its general application for different furnace designs. Such a method would take into 
consideration a larger number of variables that affect the process of heat transfer.      
 
While some of the empirical methods available are simplified methods that can be used for 
an overall evaluation of the heater in a relatively simple and rapid manner, other methods 
are more rigorous where it is possible to obtain a better approximation, but the application 
of such methods requires more information and longer time, and would in fact require the 
use of a computer. Using computer programmes greatly simplifies the procedure for the 
computations involved in fired heaters’ evaluation and analysis and makes it possible to use 
more rigorous methods giving better and more accurate results. Most computer 
programmes available in the literature are written in Basic, but there are also some 
programmes written in other more advanced computer languages such as Matlab, a 
programming language which is widely used in all scientific fields and in engineering 
sciences in particular.  
 
The use of computer simulation and modelling for the optimization of fired heaters 
operation and design can be a powerful tool indispensable to combustion researchers, 
furnace designers and manufacturers in their efforts to develop and design advanced 
heaters with higher performance and efficiency and lower pollutant emissions. Modelling in 
most cases, however, involves the use of numerical methods and simplifying assumptions 
which may lead if not approached with care to serious errors, given in particular the 
complexity of the problems involved. 
 
In most methods available in the literature for the modelling and design of fired heaters, the 
heater is divided into surface and volume (gas) zones of different heights where each gas 
zone is treated as well-stirred and completely mixed and temperatures may be calculated at 
the inlet and outlet to each zone. For a rough analysis of heat transfer by radiation, the 
surface zones may be assumed to be black bodies and the volume zones grey gases, but for 
more accurate work the surface zones may have to be considered as grey and the volume 
zones as real gases. 
 
In the stirred furnace model, which is an early design method, three zones are assumed: two 
surface zones (the sink and the refractory) and a gas zone comprising the combustion 
products. This is a simple and approximate method which may be further refined for greater 
accuracy by increasing the number of zones, particularly where significant changes in gas 
temperature and composition and in the surface temperature and emissivity are expected. 
Dividing the furnace into a series of well stirred zones approximates to the long furnace 
model where plug flow and radial radiation are assumed, with no axial radiation and 
negligible back mixing. In the Monte Carlo model, on the other hand, the zone model may 
also be refined by the appropriate choice of the shape of the zones so that they fit the heater 
geometry. In this method radiative exchange between zones is calculated by tracing 
"parcels" of radiation moving along random paths.  
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enthalpy profiles. Vancini wrote a programme in assembly language for the calculation of 
the average flame temperature, taking into account dissociation at higher temperatures. 
 
A simple heat balance normally serves as the basis for calculating the flame temperature. 
The increase in enthalpy between the unburned and burned mixtures is assumed to be equal 
to the heat produced by the combustion. When the fuel is fired, the heat liberated raises the 
temperature of the combustion products from t1 to t2 so that the following relationship is 
satisfied: 
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Where: 
Qcombustion = Heat of combustion of fuel based on the gross calorific value. 
Wi = Mass of a flue gas component. The five components considered are CO2, N2, O2, SO2 
and water vapour.  
Cpi = Molar heat of a flue gas component. 
t1 and t2 = Initial and final temperatures. 
The use of Equation (14) allows the calculation of the flame temperature by iteration using a 
programmable calculator. The variation of Cpi with temperature can be approximated by a 
polynomial, having the obvious advantage of being integrated easily. Using a third-degree 
polynomial, Cpi can be written as: 
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i i i i iCp =a +b ×t+c ×t +d ×t  (15) 

 
Where, ai, bi, ci and di are constants dependent on the nature of the gas. Assuming t1 to be 
negligible (= 0), Equation (14) thus becomes: 
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It is customary to call the parenthetic term in Equation (17) the mean molar heat: 
 

  (18) 
 

By taking mean molar heats instead of true molar heats, the integration of Equation (14) may 
be dispensed with. The molar heats at constant pressure for air and flue gases are given in 
Table (1). 
 

volume of the radiation section decreases with furnace size increase. For furnaces of 10 MW 
or more, they range from 2 to 5% of the net calorific value. Apart from furnace size, 
however, radiation heat losses depend also on the material composing the insulating 
refractory lining and its thickness, and these losses may be low for an economically 
optimum insulating lining. 
 
For the radiant section, the heat balance equations are: 
 
 Qin = Qrls + Qair + Qfuel + Qfluid          (1) 
 Qrls= mfuel × NCV                        (2) 
 Qair = mair × Cpair ×(Tair-Tdatum)          (3) 
 Qfuel = mfuel × Cpfuel ×(Tfuel-Tdatum)    (4) 
 Qfluid = Cpfluid ×(Tfluid -Tdatum)                   (5) 
 Qout = QR + Qshld + Qlosses + Qflue gases          (6) 
 QR = Qr + Qconv.             (7) 

   4 4
r cp g wQ A F T T        = radiant heat transfer                      (8) 

  conv conv t g wQ h A T T               (9) 

    = convective heat transfer in the radiant section 

    4 4
shld cp g wshld

Q A F T T                       (10) 

 Qlosses = (2-5)% × mfuel × NCV  = Radiation heat losses       (11) 
 Qflue gases = mflue gases × Cpflue gases×(Tg-Tdatum)          (12) 
 
The heat balance equation is:  
 

 Qrls + Qair + Qfuel + Qfluid = QR + Qshld + Qlosses + Qflue gases     (13) 

 
4. Calculation of Flame and Effective Gas Temperatures. 

Flame and effective gas temperatures are key variables that need to be accurately 
determined before analysis of the heat transfer in the radiant section of fired heaters can be 
meaningfully undertaken.  
 
Flame temperature is the temperature attained by the combustion of a fuel. This 
temperature depends essentially on the calorific value of the fuel. A theoretical or ideal 
flame temperature may be calculated assuming complete combustion of the fuel and perfect 
mixing. But even when complete combustion is assumed, the actual flame temperature 
would always be lower than the theoretical temperature. There are several reasons for this, 
chiefly the dissociation reactions of the combustion products at higher temperatures (greater 
than about 1370◦C), which are highly endothermic and absorb an enormous amount of heat, 
and heat losses by radiation and convection to the walls of the combustion chamber. 
 
Some work has been done on the calculation of flame temperature, including work by 
Stehlik and others who studied furnace combustion and drew furnace temperature and 
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may have to be considered. The usual approach is to divide the radiant section into zones 
for the energy balance calculations, or temperature gradients in the fired heater may be 
evaluated in order to predict the bridgewall and effective gas temperatures. 
The average tube wall temperature is given by: 
 

 in out
W

T +TT =100+0.5
2
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 (23) 

 
The Newton-Raphson method is then used to solve the heat balance equation (Eq. 13) and 
determine the effective gas temperature, for which two Matlab programmes are written 
(Appendices 2 and 3). 
 
To illustrate the use of the above programmes, an example is worked out for an actual crude 
oil heater used in an atmospheric topping unit at the Homs Oil Refinery (Cabin 43-5-16/21 
N). In this example, fuel gas is fired with 25% excess air. Ambient temperature = 15◦C, exit 
gas temperature = 400◦C. Table (2) shows the geometrical characteristics for the heater, and 
Table (3) shows its Process data sheet and the characteristics of the fuel (natural gas), flue 
gas, process fluid and air.   
 

External Dimensions of heater (m) 20.000×4.800×19.650 
Total Number of tubes 100 
Weight of heater (kg) 307000 
Weight of refractory (kg)  298000 
Geometrical Characteristics of Radiant Section 
Number of passes 2 
Number of tubes  60 
Overall tube length (m) 20.824 
Effective tube length (m)  20.024 
Tube spacing, centre-to-centre (mm) 394 
Tube spacing, centre-to-furnace wall 
(mm)  

220 

Outside diameter of tube (mm) 219 
Wall thickness of tube (mm) 8 
Tube materials  Stainless steel 18 Cr-8 Ni, Type AISI 304 
Geometrical Characteristics of Convection Section 
Total number of tubes 40 
Number of passes 2 
Number of shield tubes 8 
Overall tube length (m) 20.824 
Effective tube length (m)  20.024 
Tube spacing, centre-to-centre (mm) 250 
Outside diameter of tube (mm) 168 
Wall thickness of tube (mm) 8 
Tube materials  Stainless steel 18 Cr-8 Ni, Type AISI 304 

Table 2. Geometrical Characteristics of Box-Type Fired Heater. 

For heat transfer at constant pressure: 

  
5

combustion i m,i 2 1
i=1

Q = W×Cp × t -t   (19)       

 

Equation (19) allows the calculation of the theoretical flame temperature, t2, by iteration via 
a programmable calculator. In order to compensate for the factors that tend to lower the 
theoretical flame temperature, the heat of combustion is usually multiplied by an empirical 
coefficient. The values normally used for this coefficient are only estimates; this is why the 
temperature calculated with any method can only approximate actual values. For an 
accurate calculation of the actual flame temperature, account must be taken of heat losses 
through the casing by setting up heat balance equation for fuel gas as follows: 
 

 
5

combustion losses m,i 2 1
i=1

Q -Q = Wi×Cp ×(t -t )  (20) 

Where: 
 Qcombustion = Mfuel × GCV (21) 
 Qlosses= 5% × Qcombustion (22) 
 

The Newton-Raphson method is used to solve the heat balance equation and determine the 
actual flame temperature, for which two Matlab programmes are written (Appendices 1 and 2).  
 

Gas Molar heat (kJ/ kmol.K) Temp.  Range 

Air 33.915 +1.214 ×10-3 ×T 50-1500   K 
CO2 43.2936 +0.01147 ×T -818558.5/T2 273-1200  K 

N2 27.2155 +4.187 ×10-3 ×T 300-3000  K 
O2 34.63 +1.0802×10-3 ×T -785900/T2 300-5000  K 

SO2 32.24 +0.0222 ×T -3.475 ×10-6×T2 300-2500  K 

*H2O(g) 34.42 +6.281 ×10-4×T +5.611×10-6×T2 300-2500  K 
*H2O(g) is gas phase 
Table 1. Molar heats at constant pressure for air and flue gases 
 
The effective gas temperature is the temperature controlling radiant transfer in the heater 
radiant section. For most applications complete flue gas mixing in the radiant section is 
normally assumed and the effective gas temperature is taken to be equal to the bridgewall 
temperature, i.e. the exit temperature of the flue gases leaving the radiant section. This is 
normally assumed in most methods used for the estimation of the effective gas and other 
radiant section temperatures, including the widely-used Lobo-Evans method. In general, 
this is an acceptable assumption with the notable exception of high temperature heaters 
with tall narrow fireboxes and wall firing where longitudinal and transverse temperature 
gradients may not be ignored and the effective gas temperature may be 95 to 150◦C higher 
than the bridgewall temperature. In this and other cases where the two temperatures differ 
widely and an adjustment may be necessary, the use of a more accurate gas temperature 
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may have to be considered. The usual approach is to divide the radiant section into zones 
for the energy balance calculations, or temperature gradients in the fired heater may be 
evaluated in order to predict the bridgewall and effective gas temperatures. 
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The flame temperature equation, derived using programme (1), has the following form: 
 

 2 -1 3
f f f f fF(t )=a×t +b×t +c×t +d×t +e  (24) 

 

The first derivative of the flame temperature equation is: 
 

 -2 2f
f f f

f

dF(t ) =a+2×b×t -c×t +3×d×t
dt

 (25) 

 

Where a, b, c, d and e are constants estimated dependent on the type of fuel and its gross 
calorific value, the percentage of excess air and the operating conditions of the fired heater. 
These constants can then be estimated using Programme 2 as follows (Table 4): 
 

 2 4 -1 -7 3 4
f f f f fF(t )=29.9825×t +0.0021×t +9.7421×10 t +2.9648×10 ×t -6.4657×10   (26) 

 

 4 -2 -7 2f
f f f

f

dF(t )
=29.9825+0.0042×t -9.7421×10 ×t +8.8943×10 ×t

dt
          (27) 

 
These equations were solved by the Newton-Raphson method using programme 2 to give 
the actual flame temperature of 2128 K. 
 
The effective gas temperature equation, derived using programme (3), has the following 
form: 

 4F(Tg)=C×Tg +D×Tg-B  (28) 
 
The first derivative of the effective gas temperature equation is: 
 

 3dF(Tg) =4×C×Tg +D
dTg

  (29) 

 

where B, C and D are constants dependent on the type of fuel, percentage of excess air, 
operating conditions and geometrical characteristics of the fired heater. These constants can 
then be estimated using Programme 2 as follows (Table 5): 
 

 -5 4 4 8F(Tg)=9.0748×10 ×Tg +7.9153×10 ×Tg-1.5533×10  (30)  
 

 -4 3 4dF(Tg) =3.6299×10 ×Tg +7.9153×10
dTg

 (31) 

 
These equations were solved by the Newton-Raphson method in programme (2) to give an 
effective gas temperature in the fire box equal to 1278 K. 
 

Design thermal load (Duty) (kJ/h) 8.482×107 

Unit process conditions 
Process fluid Heavy Syrian Crude oil  
Fluid flow rate (kg/h) 225700 
Specific gravity at 15 °C 0.9148  
UOP K 12.1 
Molecular weight 105.183 
Specific heat (kJ/kg. K) 2.5744 
Inlet conditions 
Temperature (°C) 210 
Pressure  (bar) Max 19.5 
Liquid density kg/m3 914.8 
Liquid viscosity (cst at 70°C) 30 
Percentage of weight of vapour 0.0 
Outlet conditions 

Temperature (°C) 250 from convection  
355 from radiant section 

Pressure (Mpa) 0.91 
Percentage of weight of vapour 0.0 
Design conditions  
Minimum calculated efficiency % 75.78 
Radiation losses  % 5.0 
Flue gas velocity though convection  2.677  (kg/m2.s) 
Fuel characteristics 
Type of fuel Natural gas 
Nett calorific value (kJ/kmol) 927844.41  
Molar heat (kJ/kmol.K) 39.26 
Temperature (◦C) 25 
Flow of fuel (kmol/h) 120 
Molecular weight (kg/kmol) 19.99 

Composition (% mol) 

CH4 (80.43), C2H6 (9.02), C3H8 (4.54), 
iso-C4H10 (0.20), n-C4H10 (0.32), iso-
C5H12 (0.04), n-C5H12 (0.02), CO2 (3.52), 
H2S (0.09), N2 (1.735). 

Air characteristics 
Molar heat (kJ/kmol.K) 33.915+1.214×10-3×T 
Flow of air (kmol/h) 1589.014 
Air temperature (◦C) 25 
Percentage of excess air 25% 
Flue gas characteristics 
Molar heat (kJ/kmol.K) 29.98+3.157×10-3×T 
Specific heat(kJ/kg.K) 1.0775+1.1347×10-4×T 
Flow of flue gas (kmol/h) 1720.9 
Molecular weight (kg/kmol) 27.82336 

Composition (% mol) CO2 (8.234), H2O (15.968), O2 (3.82), N2 

(71.79), SO2 (0.188) 
Table 3. Process data sheet for box-type fired heater. 
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The flame temperature equation, derived using programme (1), has the following form: 
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Minimum calculated efficiency % 75.78 
Radiation losses  % 5.0 
Flue gas velocity though convection  2.677  (kg/m2.s) 
Fuel characteristics 
Type of fuel Natural gas 
Nett calorific value (kJ/kmol) 927844.41  
Molar heat (kJ/kmol.K) 39.26 
Temperature (◦C) 25 
Flow of fuel (kmol/h) 120 
Molecular weight (kg/kmol) 19.99 

Composition (% mol) 

CH4 (80.43), C2H6 (9.02), C3H8 (4.54), 
iso-C4H10 (0.20), n-C4H10 (0.32), iso-
C5H12 (0.04), n-C5H12 (0.02), CO2 (3.52), 
H2S (0.09), N2 (1.735). 

Air characteristics 
Molar heat (kJ/kmol.K) 33.915+1.214×10-3×T 
Flow of air (kmol/h) 1589.014 
Air temperature (◦C) 25 
Percentage of excess air 25% 
Flue gas characteristics 
Molar heat (kJ/kmol.K) 29.98+3.157×10-3×T 
Specific heat(kJ/kg.K) 1.0775+1.1347×10-4×T 
Flow of flue gas (kmol/h) 1720.9 
Molecular weight (kg/kmol) 27.82336 

Composition (% mol) CO2 (8.234), H2O (15.968), O2 (3.82), N2 

(71.79), SO2 (0.188) 
Table 3. Process data sheet for box-type fired heater. 
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 Cpflue gas=1.0775+1.1347+3.157×10-4×Tqvg (33) 
 
2. Direct radiation from the combustion gases. 
An approximate value for the radiation coefficient of the hot flue gas may be obtained using 
the following equation: 
 

 29.2 10 34rg avgh T     (34) 

 
3. Radiation from refractory walls. 
Re-radiation from the walls of the convection section usually ranges from 6 to 15% of the 
total heat transfer by both direct convection and radiation from the combustion gases. A 
value of 10% represents a typical average, i.e. 0.1 (hc + hrg).   
 
Based on the above equations the total convection heat transfer coefficient can be calculated 
from the following equation: 
 
 (1.1) ( )o c rgh h h    (35) 

 
and the coefficient of overall heat transfer by convection and radiation (overall heat 
exchange coefficient, Uc) can then be determined using the following equation: 
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and λ is the thermal conductivity of the tube wall which can be determined using an 
equation derived by curve-fitting thermal conductivity data for tube wall materials.  
 

 4 2 30.157 10 79.627 10 28.803w wT T            (38) 
 
The value of hi for turbulent flow, 10000<Re<120000, and L/Do≥60, is given by equation 39: 
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where k is the thermal conductivity of the process fluid which can be estimated using an 
equation derived by curve-fitting thermal conductivity data of the process fluid. 
 
 k = 0.49744-29.4604×10-5×t     (40) 

Flow rate of fuel (kmol/h) = 120 
Flow rate of flue gases (kmol/h) = 1720.9 
Percentage of heat losses = 0.05 
Gross calorific value of fuel (kJ/kmol) = 976029.6 
Molar fraction of CO2 = 0.08234 
Molar fraction of H2O = 0.15968 
Molar fraction of N2 = 0.7179 
Molar fraction of O2 = 0.382 
Molar fraction of SO2 = 0.00188 

Table 4. Data for the determination of flame temperature equation. 
 

Inlet temperature of process fluid (C) = 210 
Outlet temperature of process fluid (C) = 355 
Stack temperature (C) = 400 
Flow rate of fuel (kmol/h) = 120 
Flow rate of combustion air (kmol/h) = 1589.014 
Flow rate of flue gases (kmol/h) = 1720.9 
Number of tubes in radiation section = 60 
Number of shield tubes = 8 
Effective tube length (m) = 20.024 
External diameter of tube in convection section (m) = 0.219 
Centre-to-Centre distance of tube spacing (m) = 0.394 
Net Calorific Value of fuel (kJ/kmol) = 927844.41 
Molar heat of fuel (kJ/kmol.K) = 39.26 

Table 5. Data for determination of the effective gas temperature equation. 

 
5. Simulation of Heat Transfer in the Convection Section  

The bases for the calculation of heat transfer in the convection section were laid for the first 
time by Monrad. Subsequently Schweppe and Torrijos developed a method based on the 
work done by Lobo and Evans on the radiation section. Other work done on the heat 
transfer in the convection section includes work by Briggs and Young and the work of 
Garner on the efficiency of finned tubes.  
 
Heat transfer in the convection section is composed in general of the following: 
1. Direct convection from the combustion gases. 
A film coefficient based on pure convection for flue gas flowing normal to a bank of bare 
tubes may be estimated using an equation developed by Monrad: 
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where Cpflue gas is the average specific heat of flue gas, and can be determined using equation (33): 
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where Cpflue gas is the average specific heat of flue gas, and can be determined using equation (33): 
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The following algorithm may be used for the calculation of the intermediate flue gas and 
process fluid temperatures.  
 

1. Assume heat absorption by the first layer of tubes. 
2. Calculate the flue gas and process fluid temperatures by means of an appropriate 

heat balance. 
3. Calculate the log mean temperature difference. 
4. Calculate the heat transfer coefficient for convection and radiation from the flue 

gas. 
5. Determine the contributions of escaping radiation if the tubes in the convection 

section are close to the combustion chamber. 
6. Compare the calculated heat absorption with the assumed value, and if close 

agreement found, proceed to the following layer of tubes. The total heat absorption 
in the convection section is determined by the summation of the amounts of heat 
absorbed in all layers.  

 
Based on the above analysis, a Matlab computer programme (Appendix 4) was written for 
the convection section of the box-type fired heater used for heating crude oil at Homs Oil 
Refinery. The results obtained by this analysis are given in Table 6. 
 
Fig. 1 shows a flow sketch for the furnace in which are indicated the combustion products, 
mass balance and overall energy balance and heat losses. Fig. 2 shows the temperature 
profiles for the process fluid, flue gas and tube wall and the amount of heat absorbed per 
layer in the convection section.  
 

Outlet temperature of radiation gases (°C) 800 
Outlet temperature of convection gases(°C) 400 
Process fluid at radiation inlet (°C) 250 

Heat liberated by combustion (kJ/h) 1.1193×108 

Calculated heat absorption  (kJ/h) 8.821×107 

Heat absorbed in radiation section (kJ/h) 6.182×107

Heat absorbed in convection section (kJ/h) 2.30×107 
Flow of fuel (kmol/h) 120 
Transfer area required  (m2) 464.77 
Number of required shield tubes  8 

Table 6. Results of the Box-Type Heater heat transfer Simulation. 
 
6. Thermal Efficiency 

Furnace thermal efficiency is usually defined as the percent ratio of the total heat absorbed 
by the process fluid to the total heat input. The total heat input is the sum of the calorific 
value of the fuel (gross or net) and the sensible heat of all incoming streams including 
combustion air, fuel and atomization steam (if used). Heat losses calculated from the 
difference between the heat input and heat absorbed comprise both stack heat losses and 
radiation heat losses through furnace walls. 

 2ln( ) 0.2207 ln ( ) 0.5052 ln( ) 11.8201t t        (41) 
 
Equation (41) was also obtained by curve-fitting viscosity values of the process fluid. 
4. Radiation escaping from the combustion chamber into the shield section. This can be 
estimated using the general equation for radiation heat transfer: 
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f shld g wQ Acp F T T              (42) 

where: 
 

  sldshld tube tubetubeAcp N S L          (43) 

 
and Tw is the mean tube wall temperature which can be estimated in terms of the inlet and 
outlet process fluid temperatures, Tin and Tout, respectively using equation 23. 
Since all heat directed towards the shield tubes leaves the radiant section and is absorbed by 
these tubes, the relative absorption effectiveness factor, , for the shield tubes can be taken 
to equal one. 
 
Total heat transfer in the convection section is then equal to the sum of the total heat 
transferred by convection and radiation into the tubes and the escaping radiation across the 
shield section, if applicable.  
 
 Qc = Qf + Uc×Ac×LMTD             (44) 
 
Where: 
Qc= total heat transfer in the convection section. 
Qf= Escaping radiation. 
Ac= Area of heat transfer. 
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A method proposed by Davalos, Fernandez and Vallejo for the simulation of cylindrical 
fired heaters may be used for predicting the overall behaviour of the convection section 
without giving information on the heat flux and temperature gradients. Such information 
may, however, be obtained by carrying out calculations for each layer or segment of the 
tubes in the convection section. This implies the use of iterative methods. A pre-requisite for 
such heat transfer analysis is the determination of the flue gas and process fluid 
temperatures in the zone separating the convection and the radiation sections, which may be 
calculated by solving the heat balance equation given above (Eq. 13) using the Newton-
Raphson method, as previously mentioned. The intermediate flue gas and process fluid 
temperatures can then be calculated and the results presented in the form of temperature 
profiles for the combustion gases, tube walls and process fluid.  
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A method proposed by Davalos, Fernandez and Vallejo for the simulation of cylindrical 
fired heaters may be used for predicting the overall behaviour of the convection section 
without giving information on the heat flux and temperature gradients. Such information 
may, however, be obtained by carrying out calculations for each layer or segment of the 
tubes in the convection section. This implies the use of iterative methods. A pre-requisite for 
such heat transfer analysis is the determination of the flue gas and process fluid 
temperatures in the zone separating the convection and the radiation sections, which may be 
calculated by solving the heat balance equation given above (Eq. 13) using the Newton-
Raphson method, as previously mentioned. The intermediate flue gas and process fluid 
temperatures can then be calculated and the results presented in the form of temperature 
profiles for the combustion gases, tube walls and process fluid.  
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Stack heat losses are sensible and latent heats carried by the hot flue gases discharged 
through the stack. They are a function of the flue gas flow rate and temperature. Of these 
two factors, flue gas temperature is the main factor in furnace heat losses, and the thermal 
efficiency may be greatly improved if the flue gases are cooled before being discharged from 
the chimney. In order to cool the flue gases, a cold fluid must be available that needs to be 
heated. Flue gas cooling is limited, however, by corrosion problems caused by sulphuric 
acid condensation due to the presence of sulphur compounds in the fuels burned. If the 
fluid to be heated is at a temperature that is too high to give a sufficiently low flue gas 
temperature, i.e. a satisfactory thermal efficiency, either one of these two solutions may be 

Fig. 2. Temperature profiles for combustion gases, tubewall and fluid process and absorbed 
heat per layer in the convection section 

 Fig. 1. Flowsketch of fired process heater 
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The thermal efficiency of the fired heater can then be written as:  
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A Matlab programme (Appendix 5) based on the direct method may be used to calculate a 
complete energy balance for all types of fuel.  
 
A detailed procedure for calculating the fired heater efficiency using the indirect method is 
given below. 
Step 1: Calculate the theoretical air requirement: 
Theoretical air requirement 
= [(11.43×C)+{34.5×(H2-O2/8)}+(4.32×S)]/100 Kg/Kg of fuel 
Step 2: Calculate the percentage of excess air supplied (EA): 
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Step 3: Calculate the actual mass of air supplied per Kg of fuel (AAS) 
AAS = (1+EA/100)×theoretical air 
Step 4: Estimate all heat losses: The following equations are used to determine the losses in a 
fired heater after combustion calculations are performed. 
1. Dry gas loss, L1=100×Mdg×0.96×(tg-ta)/GCV 
    Where: Mdg = mass of dry products of combustion/kg of fuel + mass of N2 in fuel on 1 kg      

basis + mass of N2 in actual mass of air supplied 
2. Percentage heat loss due to the evaporation of moisture present in the fuel. 
    L2=100×Mmoist×(2445.21+1.88×(tg-ta)/GCV 
3. Loss due to moisture formed by the combustion of H2.   
     L3=100×9×H2×(2445.21+1.88×(tg - ta)/GCV  
Where 9×H2 is used for fuel oil. For gases it must be calculated  
4. Loss due to moisture in the air supplied.  
     L4=100×1.88×humidity factor ×AAS× (tg-ta)/GCV 
5. Unburned fuel loss, L5: This is a figure based on experience, excess air used, type of furnace, 

burner design, unit size, etc. Poor design or combustion results in a lot of unburned fuel, 
especially coal, to go along with ash to the bottom of the heater or to be carried away with 
flue gases. This is normally negligible for oil and gaseous fuels, but for coals it varies from 
0.25 to1.0%. However, field data from similar units give good guidance. 

6. Loss due to radiation, L6: Since it is impossible to prevent any insulated surface from 
radiating energy to a lower-temperature source such as ambient air, some losses are 
inevitable. Heater surfaces, although insulated, are 15 to 25 ºC above ambient temperature. 
ABMA has published a chart that gives the radiation losses. 

7. Unmeasured losses, L7: Each manufacturer must take care of certain normally 
unmeasured losses. CO formation leads to some losses, though low. Ash in the ash pit and 
flue gases is heated to the temperature at the pit and the stack temperature respectively by 
the energy in the fuel, which is a loss. 

used: (1) Steam production, which does not reduce fuel consumption, but is advantageous if 
the steam can be exploited, (2) Recycling the flue gas and utilizing its heat for preheating the 
combustion air. Preheating the combustion air allows a thermal efficiency of approximately 
90% of the net calorific value, but this requires an air blower.  
 
While flue gas temperature is the main factor in furnace heat losses, the effect of flow gas 
rate is by no means negligible. This depends to a large extent on the excess air ratio, and for 
higher efficiency the furnace should operate with the least possible excess air while ensuring 
at the same time complete combustion of the fuel. Operation with too little excess air may 
lead to unburned fuel losses that may be greater than the efficiency gained by reducing the 
excess air. Incomplete combustion is undesirable not only on account of calorific value loss, 
but also because of fouling problems often associated with the unburned fuel. If the flue 
gases are cooled, excess air will no longer have any importance since all the heat transferred 
to the excess air will be recovered from it. 
 
For efficiency calculation either of two main methods may be used. These are: the input-output 
or direct method and the heat-loss or indirect method. The input-output method is based on 
the ratio of useful heat output (heat absorbed by the process fluid) to the heat input, where the 
net calorific value is used. It is an elaborate and detailed method involving complete mass and 
heat balances for which accurate measurements of the fuel calorific value as well as the 
quantities of incoming streams (fuel, air, steam) and outgoing combustion products are 
required. In the heat loss method, on the other hand, the gross calorific value is used and 
percentages of all losses occurring in the heater as a result of incomplete combustion and 
radiation and flue-gas heat losses are calculated and subtracted from the total of 100%. With 
this method it is possible to gain insight where the losses in efficiency occur and then be able to 
reduce such losses to increase the efficiency. For heat loss determination the ASME Power Test 
Code heat method is often used. Of the two methods available for the calculation of the 
thermal efficiency, the direct method is often preferred because of its many advantages for it is 
a quick and easy method for assessing the efficiency of fired heaters where laboratory facilities 
or analysis are not required for the computations involved. Its main disadvantage, however, is 
that there is no breakdown of losses by individual streams, and no clues are provided as to the 
causes of a lower heater efficiency. 
 
The results of the heat balances carried on fired heaters are often represented by means of 
Sankey diagrams where all the heat transfers in the heater are summarized and represented 
by means of arrows or lines whose thicknesses are proportional to the amount of heat 
transfer. Sankey diagrams are widely used in technology where material and energy 
balances can be easily visualized making it easier to fully understand all the process steps 
and their interrelationships.  
 
The heat balance equations for the input-output method are: 
 
 Qin = Qrls + Qair + Qfuel + Qflu          (45) 
 Qout = Qu + Qlosses + Qstack   (46) 
Where: 
Qu = Heat duty or heat absorbed by the heated fluid  
Qstack = Sensible heat of the flue gases which include CO2, H2O, SO2, N2 and excess O2 and 
the atomization fluid if applicable.   



Fired process heaters 345

The thermal efficiency of the fired heater can then be written as:  
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A Matlab programme (Appendix 5) based on the direct method may be used to calculate a 
complete energy balance for all types of fuel.  
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Step 3: Calculate the actual mass of air supplied per Kg of fuel (AAS) 
AAS = (1+EA/100)×theoretical air 
Step 4: Estimate all heat losses: The following equations are used to determine the losses in a 
fired heater after combustion calculations are performed. 
1. Dry gas loss, L1=100×Mdg×0.96×(tg-ta)/GCV 
    Where: Mdg = mass of dry products of combustion/kg of fuel + mass of N2 in fuel on 1 kg      

basis + mass of N2 in actual mass of air supplied 
2. Percentage heat loss due to the evaporation of moisture present in the fuel. 
    L2=100×Mmoist×(2445.21+1.88×(tg-ta)/GCV 
3. Loss due to moisture formed by the combustion of H2.   
     L3=100×9×H2×(2445.21+1.88×(tg - ta)/GCV  
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4. Loss due to moisture in the air supplied.  
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5. Unburned fuel loss, L5: This is a figure based on experience, excess air used, type of furnace, 

burner design, unit size, etc. Poor design or combustion results in a lot of unburned fuel, 
especially coal, to go along with ash to the bottom of the heater or to be carried away with 
flue gases. This is normally negligible for oil and gaseous fuels, but for coals it varies from 
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6. Loss due to radiation, L6: Since it is impossible to prevent any insulated surface from 
radiating energy to a lower-temperature source such as ambient air, some losses are 
inevitable. Heater surfaces, although insulated, are 15 to 25 ºC above ambient temperature. 
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7. Unmeasured losses, L7: Each manufacturer must take care of certain normally 
unmeasured losses. CO formation leads to some losses, though low. Ash in the ash pit and 
flue gases is heated to the temperature at the pit and the stack temperature respectively by 
the energy in the fuel, which is a loss. 

used: (1) Steam production, which does not reduce fuel consumption, but is advantageous if 
the steam can be exploited, (2) Recycling the flue gas and utilizing its heat for preheating the 
combustion air. Preheating the combustion air allows a thermal efficiency of approximately 
90% of the net calorific value, but this requires an air blower.  
 
While flue gas temperature is the main factor in furnace heat losses, the effect of flow gas 
rate is by no means negligible. This depends to a large extent on the excess air ratio, and for 
higher efficiency the furnace should operate with the least possible excess air while ensuring 
at the same time complete combustion of the fuel. Operation with too little excess air may 
lead to unburned fuel losses that may be greater than the efficiency gained by reducing the 
excess air. Incomplete combustion is undesirable not only on account of calorific value loss, 
but also because of fouling problems often associated with the unburned fuel. If the flue 
gases are cooled, excess air will no longer have any importance since all the heat transferred 
to the excess air will be recovered from it. 
 
For efficiency calculation either of two main methods may be used. These are: the input-output 
or direct method and the heat-loss or indirect method. The input-output method is based on 
the ratio of useful heat output (heat absorbed by the process fluid) to the heat input, where the 
net calorific value is used. It is an elaborate and detailed method involving complete mass and 
heat balances for which accurate measurements of the fuel calorific value as well as the 
quantities of incoming streams (fuel, air, steam) and outgoing combustion products are 
required. In the heat loss method, on the other hand, the gross calorific value is used and 
percentages of all losses occurring in the heater as a result of incomplete combustion and 
radiation and flue-gas heat losses are calculated and subtracted from the total of 100%. With 
this method it is possible to gain insight where the losses in efficiency occur and then be able to 
reduce such losses to increase the efficiency. For heat loss determination the ASME Power Test 
Code heat method is often used. Of the two methods available for the calculation of the 
thermal efficiency, the direct method is often preferred because of its many advantages for it is 
a quick and easy method for assessing the efficiency of fired heaters where laboratory facilities 
or analysis are not required for the computations involved. Its main disadvantage, however, is 
that there is no breakdown of losses by individual streams, and no clues are provided as to the 
causes of a lower heater efficiency. 
 
The results of the heat balances carried on fired heaters are often represented by means of 
Sankey diagrams where all the heat transfers in the heater are summarized and represented 
by means of arrows or lines whose thicknesses are proportional to the amount of heat 
transfer. Sankey diagrams are widely used in technology where material and energy 
balances can be easily visualized making it easier to fully understand all the process steps 
and their interrelationships.  
 
The heat balance equations for the input-output method are: 
 
 Qin = Qrls + Qair + Qfuel + Qflu          (45) 
 Qout = Qu + Qlosses + Qstack   (46) 
Where: 
Qu = Heat duty or heat absorbed by the heated fluid  
Qstack = Sensible heat of the flue gases which include CO2, H2O, SO2, N2 and excess O2 and 
the atomization fluid if applicable.   
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Example #2: Natural gas is fired with 25% excess air in a horizontal, box-type crude oil heater. 
Ambient temperature=15°C, exit gas temperature= 446°C and relative humidity is 40%. 
Fuel composition: 80.43 % CH4, 9.02 % C2H6, 4.54 % C3H8, 0.20 % iso-C4H10, 0.32 % n-C4H10, 
0.04 % iso-C5H12, 0.04 %n-C5H12 , 3.61 % CO2  and  1.73 % N2 

NCV (kJ/kmol): 927844.41 
Temperature on burner inlet: 100~120°C 
Data for fuel gas are given in Table 9, and the results shown in Table 10.  
Sankey diagrams for both examples are shown in figures 3 and 4. 
 

Heat value of fuel is  4.62e+008 kJ/h 
Sensible heat of fuel is  2.04e+005 kJ/h 
Sensible heat of wet air is  6.60e+006 kJ/h 
Sensible heat of steam  1.17e+007 kJ/h 
Energy Input is  4.81e+008 kJ/h 
Sensible heat of Combustion gases is  1.03e+008 Kcal/h 
Heat losses is  2.31e+007 kJ/h 
Useful energy is  3.55e+008 kJ/h 
Thermal efficiency   = 73.81 % 

Table 8. Results for example 1 
 

Net calorific value of fuel, kJ/Kmol= 927844.41 
Molar heat of gas fuel, kJ/Kmol.K = 39.26 
Molar flow rate of gas fuel Kmol/h = 120 
Molar flow rate of entering air to fired heater, Kmol/h = 1589.014 
Molar flow rate of combustion gases exiting from stack, Kmol/h = 1720.9 
Percentage of excess air =.25 
Humidity of air, kg of water vapor/kg of wet air = .4 
Molar fraction of water is equivalent to humidity of air =:.015 
Molar fraction of CO2, XCO2 =.08234 
Molar fraction of H2O, XH2O =.15968 
Molar fraction of O2, XO2 =.0382 
Molar fraction of N2,XN =.7197 
Molar fraction of SO2,XSO2=6.276×10-5 

Temperature of combustion air °C = 25 
Temperature of burner fuel °C = 25 
Flue gas temperature °C = 446

Table 9. Data for example 2 
 

Heat value of fuel is  1.11e+008 kJ/h 
Sensible Heat of fuel is  3.93e+002 kJ/h 
Sensible Heat of air is  5.39e+005 kJ/h 
Sensible Heat of Combustion gases is  2.15e+007 kJ/h 
Heat Losses are  5.57e+006 kJ/h 
Energy Output is  2.71e+007 kJ/h 
Useful Energy is  8.48e+007 kJ/h 
Thermal efficiency =  75.78 % 

Table 10. Results for example 2 

If CO is formed instead of CO2, it is a loss of 24,656 KJ/Kg. This is the difference between the 
heat of reactions of : C + O2 → CO2  and C + ½ O2 → CO. Loss due to CO formation L7 is given by:  
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The thermal efficiency can be calculated by subtracting the heat loss fractions from 100 as 
follows: 

E =100-(L1+L2+L3+L4+L5+L6+L7) 
 

A Matlab programme (Appendix 6) based on the indirect method may be used to calculate 
all heat losses and the thermal efficiency for all types of fuel. Two examples are given below 
in order to illustrate the use of the programmes.  
 

Example #1: Fuel oil is fired with 40% excess air in a horizontal, box-type crude oil heater in 
an atmospheric distillation unit. Ambient temperature =15°C, exit gas temperature = 446°C 
and relative humidity is 40%.  
Ultimate analysis of fuel oil (by weight): 83% C, 10% H, 5% S, 1% N and 1% O.   
Flow rate of fuel (kg/h): 12000 
Sp. gr. of fuel at 15°C/15°C: 0.969 
Temperature on burner inlet: 100~120°C 
NCV (kJ/kg): 38456 
Flow rate of air  (kg/h): 222965.572  
Superheated steam for atomization of fuel oil at 8.5 bars and 190 C, flow rate: 4200 kg/h. 
On running the program the screen asks for the fuel type used in the heater, where INPUT 
(a=1) is selected for fuel oil and INPUT (a=2) for fuel gas. Other data are given in Table 7, 
and the results shown in Table 8.  
 
 

Net Calorific Value of fuel, kJ/kg: 38520.4 
Flow rate of fuel, m1, kg/h: 12000 
Specific heat of fuel, kJ/kg.K: 1.7 
Flow rate of steam, m2 ,kg: 4200 
Enthalpy of steam, kJ/g: 2777 
Mass of flue gas, m3, kg: 239165.73 
Mass of Wet air, kg: 222965.572 
Percentage of excess air:.4 
Humidity of air ,kg of water vapor/kg of wet air:.4 
Molar fraction of water is equivalent to humidity of air:.015 
Mass fraction of CO2,XCO2=.1527 
Mass fraction of H2O,XH2O=.0715 
Mass fraction of O2,XO2=.062 
Mass fraction of N2,XN2=.709 
Mass fraction of SO2,XSO2=.502×10-2 
Temperature of combustion air °C: 40 
Temperature of fuel °C: 25  
Flue gas temperature °C:446 

Table 7. Data for example 1 
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If CO is formed instead of CO2, it is a loss of 24,656 KJ/Kg. This is the difference between the 
heat of reactions of : C + O2 → CO2  and C + ½ O2 → CO. Loss due to CO formation L7 is given by:  
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The thermal efficiency can be calculated by subtracting the heat loss fractions from 100 as 
follows: 

E =100-(L1+L2+L3+L4+L5+L6+L7) 
 

A Matlab programme (Appendix 6) based on the indirect method may be used to calculate 
all heat losses and the thermal efficiency for all types of fuel. Two examples are given below 
in order to illustrate the use of the programmes.  
 

Example #1: Fuel oil is fired with 40% excess air in a horizontal, box-type crude oil heater in 
an atmospheric distillation unit. Ambient temperature =15°C, exit gas temperature = 446°C 
and relative humidity is 40%.  
Ultimate analysis of fuel oil (by weight): 83% C, 10% H, 5% S, 1% N and 1% O.   
Flow rate of fuel (kg/h): 12000 
Sp. gr. of fuel at 15°C/15°C: 0.969 
Temperature on burner inlet: 100~120°C 
NCV (kJ/kg): 38456 
Flow rate of air  (kg/h): 222965.572  
Superheated steam for atomization of fuel oil at 8.5 bars and 190 C, flow rate: 4200 kg/h. 
On running the program the screen asks for the fuel type used in the heater, where INPUT 
(a=1) is selected for fuel oil and INPUT (a=2) for fuel gas. Other data are given in Table 7, 
and the results shown in Table 8.  
 
 

Net Calorific Value of fuel, kJ/kg: 38520.4 
Flow rate of fuel, m1, kg/h: 12000 
Specific heat of fuel, kJ/kg.K: 1.7 
Flow rate of steam, m2 ,kg: 4200 
Enthalpy of steam, kJ/g: 2777 
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Percentage of excess air:.4 
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F  Exchange factor 
GCV          Gross calorific value of fuel (kJ/h) 
Gmax  Mass velocity of flue gas at minimum cross section (kg/m2.h) 
hc  Convection film coefficient (kJ/m2.K.h) 
hi    Convection coefficient between process fluid and the inside wall 
           of the tubes (kJ/m2.K.h) 
hc  Pure convection film coefficient (kJ/m2.K.h) 
ho  Total convection heat transfer coefficient (kJ/m2.K.h) 
hrg  Gas radiation coefficient (kJ/m2.K.h) 

k   Thermal conductivity of process fluid (kJ/m.K.h) 

L1  Dry gas heat loss % 
L2  Heat loss due to moisture in fuel % 
L3  Heat loss due to moisture formed by the combustion of H2 %  
L4  Heat loss due to moisture in air supplied % 
L5  Unburned fuel heat loss %  
L6  Heat loss due to radiation % 
L7  Unmeasured heat losses % 
Ltube  Effective tube length (m) 
LMTD  Log mean temperature difference (°C) 
mair  Flow rate of combustion air (kg/h) 
Mdg   Dry flue gases produced (Mass of dry flue gas in kg /kg of fuel) 
mflue gas  Flow rate of flue gas (kg/h) 
mfuel        Flow rate of fuel (kg/h) 
Mmoist  % moisture in 1 kg fuel 
N(tube)shld  Number of shield tubes 
NCV  Net calorific value of fuel (kJ/h) 

Pr  Prandtl number at the process fluid temperature (Pr pC
k




) 

Qair     Sensible heat of combustion air (kJ/h) 
QC  Total heat transfer (kJ/h) 
Qcombustion           Combustion heat of fuel based on the gross calorific value (kJ/h) 
Qconv      Convective heat transfer in the radiant section (kJ/h) 
Qf  Radiation escaping into the shield section (kJ/h) 
Qflue gas  Sensible heat of flue gas leaving radiant section (kJ/h) 
Qfluid   Sensible heat of atomization fluid (kJ/h) 
Qfuel  Sensible heat of fuel (kJ/h) 
Qlosses  Assumed radiation heat loss through furnace casing (kJ/h) 
QR  Total heat transferred to radiant tubes (heat absorbed by radiant 
                tubes) (kJ/h) 
Qr  Radiant heat transfer (kJ/h) 
Qrls  Combustion heat of fuel based on the net calorific value (kJ/h) 
Qshld  Radiant heat to shield tubes (kJ/h) 
Qstack  Sensible heat of the flue gases (kJ/h)  
Qu  Heat duty or useful heat (kJ/h) 
Re  Reynolds number at the process fluid temperature  

 
 

 
 
7. Nomenclature 

Ac  Area of tubes bank in convection section (m2) 
Acp  Cold plane area of tubes bank in radiation section (m2)  
Acp shld      Cold plane area of shield tubes bank (m2) 
At  Area of tubes bank in Radiation section (m2) 
AAS        Actual mass of air supplied per Kg of fuel 
CPair        Molar heat of combustion air (kJ/kmol.K) 
Cpfluid  Specific heat of atomization fluid (kJ/kg.K)    

Cpflue gas  Average specific heat of flue gases flowing to a bank of bare 
              tubes (kJ/kg.K) 
CPfuel  Specific heat of fuel (kJ/kg.K) 
Cpi    Molar heat of a flue gas component (kJ/kmol.K)  
Di  Inside diameter of tube (mm) 
Do  Outside diameter of tube (mm) 
E  Thermal efficiency % 
EA  Percentage of excess air 

Fig. 3. Sankey diagram for the energy balance of a fuel oil fired heater of example 1 

Fig. 4. Sankey diagram for the energy balance of a natural gas fired heater of example 2 
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Fig. 3. Sankey diagram for the energy balance of a fuel oil fired heater of example 1 

Fig. 4. Sankey diagram for the energy balance of a natural gas fired heater of example 2 
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Ri  Inside radius of tube (mm) 
Ro  Outside radius of tube (mm) 
Si  Inside heat surface area of tube (m2) 
So  Outside heat surface area of tube (m2) 
Stube  Tube spacing (m) 

ta  Ambient temperature (ºC) 

Tavg  Average flue gases temperature (K) 
tf  Flame temperature (°C)  
Tf  Flame temperature (K) 
tg    Flue  gas temperature (ºC) 

Tg  Effective gas temperature in firebox (K) 
Tw  Average tube-wall temperature (K)  
Tin, Tout  Inlet and outlet process fluid temperatures, respectively (K)  
Uc  Over all heat exchange coefficient (kJ/m2.K.h) 
Wi       Mass of flue gas component (kmol/h) 
α  Relative effectiveness factor of the tubes bank 
λ  Thermal conductivity of tube wall (kJ/m.K.h) 
ρ  Density of  process fluid (kg/m3). 
σ  Stefan-Boltzman constant = 2.041×10-7 kJ/m2.K4.h 
μ   Viscosity of process fluid at the average temperature (Pa.s) 
μw  Viscosity of process fluid at the tube-wall temperature (Pa.s) 
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Ri  Inside radius of tube (mm) 
Ro  Outside radius of tube (mm) 
Si  Inside heat surface area of tube (m2) 
So  Outside heat surface area of tube (m2) 
Stube  Tube spacing (m) 

ta  Ambient temperature (ºC) 

Tavg  Average flue gases temperature (K) 
tf  Flame temperature (°C)  
Tf  Flame temperature (K) 
tg    Flue  gas temperature (ºC) 

Tg  Effective gas temperature in firebox (K) 
Tw  Average tube-wall temperature (K)  
Tin, Tout  Inlet and outlet process fluid temperatures, respectively (K)  
Uc  Over all heat exchange coefficient (kJ/m2.K.h) 
Wi       Mass of flue gas component (kmol/h) 
α  Relative effectiveness factor of the tubes bank 
λ  Thermal conductivity of tube wall (kJ/m.K.h) 
ρ  Density of  process fluid (kg/m3). 
σ  Stefan-Boltzman constant = 2.041×10-7 kJ/m2.K4.h 
μ   Viscosity of process fluid at the average temperature (Pa.s) 
μw  Viscosity of process fluid at the tube-wall temperature (Pa.s) 
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Appendix 2: 
% Solution of effective gas and flame temperature by … 
% Newton Raphson method 
function root=newtraph(func,dfunc,xr,es,maxit) 
% newtraph(func,dfunc,xguess,es,maxit): 
% Uses Newton-Raphson method to find a function 
%  input: 
% func=name of function 
% dfunc=name of derivative of function 
% xguess=initial guess 
% es=(optional) stopping maximum allowable iterations 
% output: 
% root =real root 
% if necessary, assign default values 
if nargin<5, maxit=50; end  % if maxit blank set to 50 
if nargin<4, es=0.001; end  % if es blank set to 0,001 
% Newton-Raphson 
iter=0; 
while (1) 
xrold=xr; 
xr=xr-func(xr)/dfunc(xr); 
iter=iter+1; 
if xr~=0, ea=abs((xr-xrold)/xr)*100; end 
if ea<=es|iter>=maxit, break, end 
end 
root=xr; 
if root>1300 
root=root+273; 
fprintf('The actual flame temperature is %8.0f K\n',root) 
else root=xr+273; 
fprintf('The Effective gas temperature is%8.0f K\n',root) 
end 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix 1: 
% Programme for determination of flame temperature equation. 
% Input: 
% Flow rate of fuel (kmol/h) 
% Flow rate of flue gases (kmol/h) 
% Molar Composition of flue gases: XCO2, XH2O, XN2, … 
% XO2 and XSO2 
% Molar heats of flue gases (kJ/kmol.K) 
% Percentage of heat losses 
% Output: 
% Flame temperature (K) 
Mfuel=input('Flow rate of fuel(kmol/h)=:'); 
Mfluegas=input('Flow rate of flue gases(kmol/h)=:'); 
X=input('percentage of heat losses=:'); 
GCV=input('Gross calorific value of fuel (kJ/kmol)=:'); 
XC=input('Molar fraction of CO2=:'); 
XH=input('Molar fraction of H2O=:'); 
XN=input('Molar fraction of N2=:'); 
XO=input('Molar fraction of O2=:'); 
XS=input('Molar fraction of SO2=:'); 
td=15;   % Datum temperature (C) 
% Molar heats at constant pressure for flue gases 
% CpCO2=43.2936+0.01147*T-818558.5*T^(-2) 
% CpH2O=34.42+6.281*10^(-4)*T+5.611*10^(-6)*T^2 
% CpN2=27.2155+4.187*10^(-3)*T 
% CpO2=34.63+1.0802*10^(-3)*T-785900*T^(-2) 
% CpSO2=32.24+0.0222*T-3.475*10^(-6)*T^(2) 
% Heat evolved by fuel during combustion (kJ/h) 
Q=GCV*Mfuel; 
% Heat losses (kJ/h) 
Qloss=X*Q; 
Qt=Q-Qloss; 
syms tf 
CpCO2=43.2936+0.01147*tf-818558.5*tf^(-2); 
CpH2O=34.42+6.281*10^(-4)*tf+5.611*10^(-6)*tf^2; 
CpN2=27.2155+4.187*10^(-3)*tf; 
CpO2=34.63+1.0802*10^(-3)*tf-785900*tf^(-2); 
CpSO2=32.24+0.0222*tf-3.475*10^(-6)*tf^(2); 
% Integration of mean molar heats 
Cpm=int(XC*CpCO2+XH*CpH2O+XN*CpN2+XO*CpO2+XS*CpSO2); 
H=Cpm-Qt/Mfluegas; 
disp('Equation of actual flame temperature') 
func=H 
% Finding of first derivative of flame temperature equation. 
disp('Finding of first derivative of flame temperature equation') 
dfun=diff(func) 
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% Uses Newton-Raphson method to find a function 
%  input: 
% func=name of function 
% dfunc=name of derivative of function 
% xguess=initial guess 
% es=(optional) stopping maximum allowable iterations 
% output: 
% root =real root 
% if necessary, assign default values 
if nargin<5, maxit=50; end  % if maxit blank set to 50 
if nargin<4, es=0.001; end  % if es blank set to 0,001 
% Newton-Raphson 
iter=0; 
while (1) 
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xr=xr-func(xr)/dfunc(xr); 
iter=iter+1; 
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Appendix 1: 
% Programme for determination of flame temperature equation. 
% Input: 
% Flow rate of fuel (kmol/h) 
% Flow rate of flue gases (kmol/h) 
% Molar Composition of flue gases: XCO2, XH2O, XN2, … 
% XO2 and XSO2 
% Molar heats of flue gases (kJ/kmol.K) 
% Percentage of heat losses 
% Output: 
% Flame temperature (K) 
Mfuel=input('Flow rate of fuel(kmol/h)=:'); 
Mfluegas=input('Flow rate of flue gases(kmol/h)=:'); 
X=input('percentage of heat losses=:'); 
GCV=input('Gross calorific value of fuel (kJ/kmol)=:'); 
XC=input('Molar fraction of CO2=:'); 
XH=input('Molar fraction of H2O=:'); 
XN=input('Molar fraction of N2=:'); 
XO=input('Molar fraction of O2=:'); 
XS=input('Molar fraction of SO2=:'); 
td=15;   % Datum temperature (C) 
% Molar heats at constant pressure for flue gases 
% CpCO2=43.2936+0.01147*T-818558.5*T^(-2) 
% CpH2O=34.42+6.281*10^(-4)*T+5.611*10^(-6)*T^2 
% CpN2=27.2155+4.187*10^(-3)*T 
% CpO2=34.63+1.0802*10^(-3)*T-785900*T^(-2) 
% CpSO2=32.24+0.0222*T-3.475*10^(-6)*T^(2) 
% Heat evolved by fuel during combustion (kJ/h) 
Q=GCV*Mfuel; 
% Heat losses (kJ/h) 
Qloss=X*Q; 
Qt=Q-Qloss; 
syms tf 
CpCO2=43.2936+0.01147*tf-818558.5*tf^(-2); 
CpH2O=34.42+6.281*10^(-4)*tf+5.611*10^(-6)*tf^2; 
CpN2=27.2155+4.187*10^(-3)*tf; 
CpO2=34.63+1.0802*10^(-3)*tf-785900*tf^(-2); 
CpSO2=32.24+0.0222*tf-3.475*10^(-6)*tf^(2); 
% Integration of mean molar heats 
Cpm=int(XC*CpCO2+XH*CpH2O+XN*CpN2+XO*CpO2+XS*CpSO2); 
H=Cpm-Qt/Mfluegas; 
disp('Equation of actual flame temperature') 
func=H 
% Finding of first derivative of flame temperature equation. 
disp('Finding of first derivative of flame temperature equation') 
dfun=diff(func) 
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% Cold plane area of the tube bank 
Acp=N*C*L; 
% Qconv=hconv*At*(Tg-Tw) 
At=N*pi*Do*L;    % Area of the tubes in bank 
hconv=30.66;  % Film convective heat transfer coefficeint; (kJ/h.m2.c) 
% Radiant heat to shield tubes 
% Qshld=Nshld*sigma*(alpha*Acp)shld*F*(Tg^4-Tw^4) 
% alpha=1, for the shield tubes can be taken to be equal to one. 
Acpshld=Nshld*C*L; 
% Qshld=Nshld*sigma*(1*Acpshld)*F*(Tg^4-Tw^4) 
% Heat losses through setting 
Qlosses=0.05*Qrls; 
% Qflue=mflue*Cpflue*(Tg-Tdatum) 
Tdatum=tdatum+273; 
% Molar heat of flue gases  
Ts=ts+273; 
Cpflue=29.98+3.157*10^(-3)*(Ts-Tdatum); 
% Sensible heat of flue gases 
% Qflue=mflue*Cpflue*(Tg-Tdatium) 
A=Qin-Qlosses; 
A=A+Sigma*F*(alpha*Acp+Acpshld)*Tw^4+hconv*At*Tw-mflue*Cpflue*Tdatum; 
B=Sigma*F*(alpha*Acp+Acpshld); 
D=hconv*At+mflue*Cpflue; 
syms Tg 
% Equation for effective temperature. 
y=B*Tg^4+D*Tg-A 
func=y; 
% Finding of first derivative of effective gas temperature equation. 
dfunc=diff(func) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix 3: 
% Program for determination of effective gas temperature. 
% Qin=Qrls+Qair+Qfuel 
Tin=input(' Inlet temperature of process fluid(C)='); 
Tin=Tin+273; 
Tout=input(' Outlet temperature of process fluid(C)='); 
Tout=Tout+273; 
ts=input('Temperature of stack (C)='); 
mfuel=input(' Flow rate of fuel(kmol/h)='); 
mair=input(' Flow rate of combustion air (kmol/h)='); 
mflue=input(' Flow rate of flue gases (kmol/h)='); 
N=input (' Number of tubes in radiation section='); 
Nshld=input(' Number of shield tube='); 
L=input (' Effective tube length(m)='); 
Do=input(' External diameter of tube in convection section(m)='); 
C=input(' Center-to-Center distance of tube spacing(m)='); 
NCV=input('Net Calorific Value of fuel(kJ/kmol)='); 
Cpfuel=input(' Molar heat of fuel(kJ/kmol.deg.)='); 
% Consrtant : 
Sigma=2.041056*10^(-7); % Stefan-Boltzman Constant(kJ/h.m2.K4 
F=0.97; % Exhange factor 
alpha=0.835; % Relative effectiveness factor of the tubes bank 
% Heat input to the radiant section 
% Combustion heat of fuel 
Qrls=mfuel*NCV; 
% Q=mair*Cpair*(tair-tdatum) 
tair=25; 
tdatum=15; 
% Molar heat of air 
Cpair=33.915+1.214*10^(-3)*(tair+tdatum)/2; 
% Sensible heat of air 
Qair=mair*Cpair*(tair-15);  
% Qfuel=mfuel*Cpfuel*(tfuel-tdatum) 
tfuel=25; 
% Sensible heat of fuel 
Qfuel=mfuel*Cpfuel*(tfuel-tdatum); 
Qin=Qrls+Qair+Qfuel; 
% Heat is taken out of the radiant section 
% Qout=QR+Qshld+Qlosses+Qflue 
% Heat absorbed by radiant tubes 
% QR=Qr+Qconv 
% Radiant heat transfer 
% Qr=sigma+(alpha*Acp)*F*(Tg^4-Tw^4) 
% Tw = Average tube wall temperature in Kelvin 
% Tg = Effective gas temperature in Kelvin  
Tw=100+0.5*(Tin+Tout); 
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% Cold plane area of the tube bank 
Acp=N*C*L; 
% Qconv=hconv*At*(Tg-Tw) 
At=N*pi*Do*L;    % Area of the tubes in bank 
hconv=30.66;  % Film convective heat transfer coefficeint; (kJ/h.m2.c) 
% Radiant heat to shield tubes 
% Qshld=Nshld*sigma*(alpha*Acp)shld*F*(Tg^4-Tw^4) 
% alpha=1, for the shield tubes can be taken to be equal to one. 
Acpshld=Nshld*C*L; 
% Qshld=Nshld*sigma*(1*Acpshld)*F*(Tg^4-Tw^4) 
% Heat losses through setting 
Qlosses=0.05*Qrls; 
% Qflue=mflue*Cpflue*(Tg-Tdatum) 
Tdatum=tdatum+273; 
% Molar heat of flue gases  
Ts=ts+273; 
Cpflue=29.98+3.157*10^(-3)*(Ts-Tdatum); 
% Sensible heat of flue gases 
% Qflue=mflue*Cpflue*(Tg-Tdatium) 
A=Qin-Qlosses; 
A=A+Sigma*F*(alpha*Acp+Acpshld)*Tw^4+hconv*At*Tw-mflue*Cpflue*Tdatum; 
B=Sigma*F*(alpha*Acp+Acpshld); 
D=hconv*At+mflue*Cpflue; 
syms Tg 
% Equation for effective temperature. 
y=B*Tg^4+D*Tg-A 
func=y; 
% Finding of first derivative of effective gas temperature equation. 
dfunc=diff(func) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix 3: 
% Program for determination of effective gas temperature. 
% Qin=Qrls+Qair+Qfuel 
Tin=input(' Inlet temperature of process fluid(C)='); 
Tin=Tin+273; 
Tout=input(' Outlet temperature of process fluid(C)='); 
Tout=Tout+273; 
ts=input('Temperature of stack (C)='); 
mfuel=input(' Flow rate of fuel(kmol/h)='); 
mair=input(' Flow rate of combustion air (kmol/h)='); 
mflue=input(' Flow rate of flue gases (kmol/h)='); 
N=input (' Number of tubes in radiation section='); 
Nshld=input(' Number of shield tube='); 
L=input (' Effective tube length(m)='); 
Do=input(' External diameter of tube in convection section(m)='); 
C=input(' Center-to-Center distance of tube spacing(m)='); 
NCV=input('Net Calorific Value of fuel(kJ/kmol)='); 
Cpfuel=input(' Molar heat of fuel(kJ/kmol.deg.)='); 
% Consrtant : 
Sigma=2.041056*10^(-7); % Stefan-Boltzman Constant(kJ/h.m2.K4 
F=0.97; % Exhange factor 
alpha=0.835; % Relative effectiveness factor of the tubes bank 
% Heat input to the radiant section 
% Combustion heat of fuel 
Qrls=mfuel*NCV; 
% Q=mair*Cpair*(tair-tdatum) 
tair=25; 
tdatum=15; 
% Molar heat of air 
Cpair=33.915+1.214*10^(-3)*(tair+tdatum)/2; 
% Sensible heat of air 
Qair=mair*Cpair*(tair-15);  
% Qfuel=mfuel*Cpfuel*(tfuel-tdatum) 
tfuel=25; 
% Sensible heat of fuel 
Qfuel=mfuel*Cpfuel*(tfuel-tdatum); 
Qin=Qrls+Qair+Qfuel; 
% Heat is taken out of the radiant section 
% Qout=QR+Qshld+Qlosses+Qflue 
% Heat absorbed by radiant tubes 
% QR=Qr+Qconv 
% Radiant heat transfer 
% Qr=sigma+(alpha*Acp)*F*(Tg^4-Tw^4) 
% Tw = Average tube wall temperature in Kelvin 
% Tg = Effective gas temperature in Kelvin  
Tw=100+0.5*(Tin+Tout); 
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if Qc~=0 
Qs=Qc; 
end 
T=T1-Qs/(Mgases*Cpav);       
% Qs=Mfluid*Cpf*(t2-t) 
% x=0.01; 
% H=286.8; 
t=t2-Qs/(Mfluid*Cpf); 
% Calcualtion of the log mean temperature difference (LMTD) 
Def1=T1-t2; 
Def2=T-t; 
LMTD=(Def1-Def2)/log(Def1/Def2); 
% Calculation of Escaping radiation  
% Caculation tubewall temperature at tube layer 
Tw=100+0.5*(t+t2)+273; 
Qe_rad=sigma*alpha*Acpshld*F*((T+273)^4-Tw^4); 
% Calculation of overall heat exchange coefficient : 
% 1/U=(1/hi)+fy+(1/ho)*(Si/So) 
% Calculation of convection coefficient between the process fluid and ... 
% the inside wall of the tubes 
% hi=0.023*(k/Di)*pr^(1/3)*Re^0.8*(u/uw)^0.14 
% Let u/uw=1.0 for small variation in viscosity between ... 
% bulk and wall temperatures 
% k is thermal conductivity of oil(process fluid) 
k=0.49744-29.4604*10^(-5)*(t2+t)/2; 
% Calculation of Reynolds number ,Re=Di*w*ro/u 
% u is viscosity of process fluid at average temperatute of process fluid 
u=-0.1919*log((t2+t)/2)*log((t2+t)/2)+0.2295*log((t2+t)/2)-2.9966; 
u=u/3600; 
u=exp(u); 
ri=Di/2; 
ro=Do/2; 
w=Mfluid/(pi*ri^2*ru); 
Re=Di*w*ru/u; 
% Calc of prandtl number at the average temperature of process fluid 
pr=Cpf*u/k; 
hi=0.023*(k/Di)*pr^(1/3)*Re^0.8; 
% Calculation of radiation and convection coefficient ..... 
% between the flue gases and the outside surface of the tubes: 
% Estimating of a film coefficient based on pure convection... 
% for flue gas flowing normal to a bank of bare tubes 
% hc=0.018*Cpg*G^(2/3)*Tgai^0.3/Do 
% Tga is average flue gas temperature at each a tybe layer 
Tga=(T1+T)/2; 
Cpav=1.0775+1.1347*10^(-4)*(T1+T)/2; 
hc=0.018*Cpav*G^(2/3)*Tga^0.3/Do; 

Appendix 4: 
% Simulation of convection section of fired heater 
% Program calculates heat duty, working fluid, flue gas and ... 
% tube wall temperature and draft profiles for convection bank on ... 
% a row-by-row basis 
% Input data required for simulation: 
t1=input('Inlet temperature of working fluid for heating ,C='); 
t2=input('Outlet temperature of working fluid from convection section ,C='); 
T1=input('Leaving flue gas temperature from radiation section ,C='); 
T2=input('Leaving flue gas temperature from convection section, C='); 
Cpf=input('average specific heat of process fluid, Kj/kg.C='); 
td=15;                                 % datum temperature (c)  
Cpav=1.0775+1.1347*10^(-4)*(T2+td)/2;   % average specific heat of flue gases 
Mfluid=input('Flow rate of process fluid ,kg/h='); 
Mgases=input('Flow rate of flue gas ,kg/h='); 
ru=input('density of process fluid ,kg/m3='); 
G=input('Flue gas velocity through convection section ,kg/m2.s='); 
L=input('Effective tube length ,m='); 
Do=input('External diameter of tube ,m='); 
Di=input('Internal diameter of tube ,m='); 
n=input('Number of tubes in a layer='); 
Nshld=input('Number of shield tubes='); 
c=input('Center-to-center distance of tube spacing ,m='); 
N=input('Number of tube layers='); 
% ntube=input('Number of tubes at each row of tubes in convection section ='); 
% Assumed heat absorption by the first layer of tubes 
Qs=input('Assumed heat absorption by the first layer of tubes, Kj/h ='); 
% Constants 
sigma=2.041*10^(-7);  % Boltzman Constant 
alpha=1;                 % Relative effectiveness factor of the shield tubes 
F=0.97;                  % Exchange factor 
for I=1:N 
% Calculation of cold plane area of shield tubes 
Acpshld=Nshld*c*L; 
% Calculation of inside tube surface area 
Si=pi*Di*L; 
% Calculation of outside tube surface area 
So=pi*Do*L; 
% Calculation heat exchange surface area at each layer of tubes 
S=n*Si; 
% From the assumed heat absorption ,calculate the temperatures of... 
% the flue gas process fluid by means of appropriate balances ... 
% at each tube layer 
% Qs=Mgases*Cpav*(T1-T) 
Qc=0; 
while abs(Qc-Qs)>=0.001; 
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if Qc~=0 
Qs=Qc; 
end 
T=T1-Qs/(Mgases*Cpav);       
% Qs=Mfluid*Cpf*(t2-t) 
% x=0.01; 
% H=286.8; 
t=t2-Qs/(Mfluid*Cpf); 
% Calcualtion of the log mean temperature difference (LMTD) 
Def1=T1-t2; 
Def2=T-t; 
LMTD=(Def1-Def2)/log(Def1/Def2); 
% Calculation of Escaping radiation  
% Caculation tubewall temperature at tube layer 
Tw=100+0.5*(t+t2)+273; 
Qe_rad=sigma*alpha*Acpshld*F*((T+273)^4-Tw^4); 
% Calculation of overall heat exchange coefficient : 
% 1/U=(1/hi)+fy+(1/ho)*(Si/So) 
% Calculation of convection coefficient between the process fluid and ... 
% the inside wall of the tubes 
% hi=0.023*(k/Di)*pr^(1/3)*Re^0.8*(u/uw)^0.14 
% Let u/uw=1.0 for small variation in viscosity between ... 
% bulk and wall temperatures 
% k is thermal conductivity of oil(process fluid) 
k=0.49744-29.4604*10^(-5)*(t2+t)/2; 
% Calculation of Reynolds number ,Re=Di*w*ro/u 
% u is viscosity of process fluid at average temperatute of process fluid 
u=-0.1919*log((t2+t)/2)*log((t2+t)/2)+0.2295*log((t2+t)/2)-2.9966; 
u=u/3600; 
u=exp(u); 
ri=Di/2; 
ro=Do/2; 
w=Mfluid/(pi*ri^2*ru); 
Re=Di*w*ru/u; 
% Calc of prandtl number at the average temperature of process fluid 
pr=Cpf*u/k; 
hi=0.023*(k/Di)*pr^(1/3)*Re^0.8; 
% Calculation of radiation and convection coefficient ..... 
% between the flue gases and the outside surface of the tubes: 
% Estimating of a film coefficient based on pure convection... 
% for flue gas flowing normal to a bank of bare tubes 
% hc=0.018*Cpg*G^(2/3)*Tgai^0.3/Do 
% Tga is average flue gas temperature at each a tybe layer 
Tga=(T1+T)/2; 
Cpav=1.0775+1.1347*10^(-4)*(T1+T)/2; 
hc=0.018*Cpav*G^(2/3)*Tga^0.3/Do; 

Appendix 4: 
% Simulation of convection section of fired heater 
% Program calculates heat duty, working fluid, flue gas and ... 
% tube wall temperature and draft profiles for convection bank on ... 
% a row-by-row basis 
% Input data required for simulation: 
t1=input('Inlet temperature of working fluid for heating ,C='); 
t2=input('Outlet temperature of working fluid from convection section ,C='); 
T1=input('Leaving flue gas temperature from radiation section ,C='); 
T2=input('Leaving flue gas temperature from convection section, C='); 
Cpf=input('average specific heat of process fluid, Kj/kg.C='); 
td=15;                                 % datum temperature (c)  
Cpav=1.0775+1.1347*10^(-4)*(T2+td)/2;   % average specific heat of flue gases 
Mfluid=input('Flow rate of process fluid ,kg/h='); 
Mgases=input('Flow rate of flue gas ,kg/h='); 
ru=input('density of process fluid ,kg/m3='); 
G=input('Flue gas velocity through convection section ,kg/m2.s='); 
L=input('Effective tube length ,m='); 
Do=input('External diameter of tube ,m='); 
Di=input('Internal diameter of tube ,m='); 
n=input('Number of tubes in a layer='); 
Nshld=input('Number of shield tubes='); 
c=input('Center-to-center distance of tube spacing ,m='); 
N=input('Number of tube layers='); 
% ntube=input('Number of tubes at each row of tubes in convection section ='); 
% Assumed heat absorption by the first layer of tubes 
Qs=input('Assumed heat absorption by the first layer of tubes, Kj/h ='); 
% Constants 
sigma=2.041*10^(-7);  % Boltzman Constant 
alpha=1;                 % Relative effectiveness factor of the shield tubes 
F=0.97;                  % Exchange factor 
for I=1:N 
% Calculation of cold plane area of shield tubes 
Acpshld=Nshld*c*L; 
% Calculation of inside tube surface area 
Si=pi*Di*L; 
% Calculation of outside tube surface area 
So=pi*Do*L; 
% Calculation heat exchange surface area at each layer of tubes 
S=n*Si; 
% From the assumed heat absorption ,calculate the temperatures of... 
% the flue gas process fluid by means of appropriate balances ... 
% at each tube layer 
% Qs=Mgases*Cpav*(T1-T) 
Qc=0; 
while abs(Qc-Qs)>=0.001; 
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Appendix 5:  
Direct method programme for determining the thermal efficiency for fired heaters 
function directmethod=directeficiency 
% The direct Method for determining the thermal efficiency   
% Input :The data required for calculation of fired heater efficiency ... 
% using the direct method are: 
% Temperature of fuel tf  
% Flow rate of fuel  
% Temperature of combustion air ta  
% percentage of exsess air 
% Humidity of air 
% Flue gas temperature tg  
% Net Calorific Value (NCV)of fuel 
% output: 
% Thermal Efficiency 
char('if you use liquid fuel then let s(select)=1 or if you use gas fuel then s(select)=2') 
a=input('if you use liquid fuel then let [a=(select)=1] or of you use gas fuel then 
[a=(select)=2]') 
if a==1 
NCV=input('Net Calorific Value of fuel ,kJ/kg=:'); 
m1=input('flow rate of fuel ,m1=kg/h:'); 
Cpf=input('specific heat of fuel,=kJ/kg.K:'); 
m2=input('flow rate of steam ,m2 ,kg=:'); 
Hs=input('Enthalpy of steam ,kJ/g=:'); 
m3=input('Mass of flue gas ,m3 ,kg=:'); 
mairwet=input('Mass of Wet air ,kg='); 
airper=input('percentage of excess air=:'); 
hum=input('humidity of air ,kg of water vapor/kg of wet air=:'); 
Xh=input('molar fraction of water is equivalent to humidity of air =:'); 
% Input :Composition of flue gas 
xc=input('Mass fraction of CO2,Xco2='); 
xh=input('Mass fraction of H2O,XH2O='); 
xo=input('Mass fraction of O2,Xo2='); 
xn=input('Mass fraction of N2,XN='); 
xs=input('Mass fraction of SO2,Xso2='); 
td=15;      % Datum temperature    
ta=input('temperature of combustion air ,C=:'); 
tf=input('temperature of fuel ,C=:'); 
tg=input('flue gas temperature ,C=:'); 
% Energy balance of furnace 
% Energy input 
Qv=m1*NCV;      % heating value of fuel 
fprintf('Heat value of fuel is %10.2e kJ/h\n',Qv) 
Qseniseble=m1*Cpf*(tf-15);   % Sensible heat of fuel 
fprintf('sensible heat of fuel is %10.2e kJ/h\n',Qseniseble) 
Qf=Qseniseble+Qv;    

% Estimating of a radiation coefficient of the hot gases : 
hrg=9.2*10^(-2)*Tga-34; 
% Estimating of the total heat-transfer coefficient for the bare tube... 
% convection section : 
ho=1.1*(hc+hrg); 
% calculation of f(e,lampda)=fy: 
% fy=(ro/lampda)*log(ro/ri) 
% Lampda is thermal coductivity of the tube wall: 
lampda=-0.157*10^(-4)*(Tw)^2+79.627*10^(-3)*(Tw)+28.803; 
% Assume uniform distribution of the the flux over ... 
% the whole periphery of the tube. 
fy=(ro/lampda)*log(ro/ri); 
% Calculation of the overall heat exchange coefficient: 
% 1/U=(1/hi)+fy+(1/ho)*(Si/So) 
K=1/((1/hi)+fy+(1/ho)*(Si/So)); 
% U=1/K; 
% Uc=U; 
Uc=K; 
% The heat transferred by convection and radiation ... 
% into the tubes: 
% Qc=Qe_rad+Uc*Atubes*LMTD 
% Atube is exchange surface are at each raw of tubes 
Atubes=S; 
Qc=Qe_rad+Uc*Atubes*LMTD; 
end 
I 
Tg=T+273; 
fprintf('The temperature of the flue gas is %5.1f Kelvin \n\n',Tg) 
t; 
Tf=t+273; 
fprintf('The temperature of the process fluid is %5.1f Kelvin \n\n',Tf) 
Tw=Tw; 
fprintf('The tube wall temperature is %5.1f Kelvin \n\n',Tw) 
Qc; 
fprintf('Heat absorbed by heated fluid is %10.2e kJ/h\n',Qc) 
if t==t1 
T==T2 
break 
else 
t2=t; 
T1=T; 
Cpav=1.0775+1.1347*10^(-4)*(T2+T)/2; 
end 
end 
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Appendix 5:  
Direct method programme for determining the thermal efficiency for fired heaters 
function directmethod=directeficiency 
% The direct Method for determining the thermal efficiency   
% Input :The data required for calculation of fired heater efficiency ... 
% using the direct method are: 
% Temperature of fuel tf  
% Flow rate of fuel  
% Temperature of combustion air ta  
% percentage of exsess air 
% Humidity of air 
% Flue gas temperature tg  
% Net Calorific Value (NCV)of fuel 
% output: 
% Thermal Efficiency 
char('if you use liquid fuel then let s(select)=1 or if you use gas fuel then s(select)=2') 
a=input('if you use liquid fuel then let [a=(select)=1] or of you use gas fuel then 
[a=(select)=2]') 
if a==1 
NCV=input('Net Calorific Value of fuel ,kJ/kg=:'); 
m1=input('flow rate of fuel ,m1=kg/h:'); 
Cpf=input('specific heat of fuel,=kJ/kg.K:'); 
m2=input('flow rate of steam ,m2 ,kg=:'); 
Hs=input('Enthalpy of steam ,kJ/g=:'); 
m3=input('Mass of flue gas ,m3 ,kg=:'); 
mairwet=input('Mass of Wet air ,kg='); 
airper=input('percentage of excess air=:'); 
hum=input('humidity of air ,kg of water vapor/kg of wet air=:'); 
Xh=input('molar fraction of water is equivalent to humidity of air =:'); 
% Input :Composition of flue gas 
xc=input('Mass fraction of CO2,Xco2='); 
xh=input('Mass fraction of H2O,XH2O='); 
xo=input('Mass fraction of O2,Xo2='); 
xn=input('Mass fraction of N2,XN='); 
xs=input('Mass fraction of SO2,Xso2='); 
td=15;      % Datum temperature    
ta=input('temperature of combustion air ,C=:'); 
tf=input('temperature of fuel ,C=:'); 
tg=input('flue gas temperature ,C=:'); 
% Energy balance of furnace 
% Energy input 
Qv=m1*NCV;      % heating value of fuel 
fprintf('Heat value of fuel is %10.2e kJ/h\n',Qv) 
Qseniseble=m1*Cpf*(tf-15);   % Sensible heat of fuel 
fprintf('sensible heat of fuel is %10.2e kJ/h\n',Qseniseble) 
Qf=Qseniseble+Qv;    

% Estimating of a radiation coefficient of the hot gases : 
hrg=9.2*10^(-2)*Tga-34; 
% Estimating of the total heat-transfer coefficient for the bare tube... 
% convection section : 
ho=1.1*(hc+hrg); 
% calculation of f(e,lampda)=fy: 
% fy=(ro/lampda)*log(ro/ri) 
% Lampda is thermal coductivity of the tube wall: 
lampda=-0.157*10^(-4)*(Tw)^2+79.627*10^(-3)*(Tw)+28.803; 
% Assume uniform distribution of the the flux over ... 
% the whole periphery of the tube. 
fy=(ro/lampda)*log(ro/ri); 
% Calculation of the overall heat exchange coefficient: 
% 1/U=(1/hi)+fy+(1/ho)*(Si/So) 
K=1/((1/hi)+fy+(1/ho)*(Si/So)); 
% U=1/K; 
% Uc=U; 
Uc=K; 
% The heat transferred by convection and radiation ... 
% into the tubes: 
% Qc=Qe_rad+Uc*Atubes*LMTD 
% Atube is exchange surface are at each raw of tubes 
Atubes=S; 
Qc=Qe_rad+Uc*Atubes*LMTD; 
end 
I 
Tg=T+273; 
fprintf('The temperature of the flue gas is %5.1f Kelvin \n\n',Tg) 
t; 
Tf=t+273; 
fprintf('The temperature of the process fluid is %5.1f Kelvin \n\n',Tf) 
Tw=Tw; 
fprintf('The tube wall temperature is %5.1f Kelvin \n\n',Tw) 
Qc; 
fprintf('Heat absorbed by heated fluid is %10.2e kJ/h\n',Qc) 
if t==t1 
T==T2 
break 
else 
t2=t; 
T1=T; 
Cpav=1.0775+1.1347*10^(-4)*(T2+T)/2; 
end 
end 
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Ql=0.05*m1*NCV;  
fprintf('Heat Losses is %10.2e kJ/h\n',Ql) 
Qout=Qstack+Ql; 
% The useful energy or heat absorbed by heated fluid  
Qu=Qin-(Qstack+Ql); 
fprintf('Useful Energy is %10.2e kJ/h\n',Qu) 
% calculation of thermal efficiency 
E=100*Qu/Qin;  
fprintf('thermal efficiency %8.2f %%\n',E) 
end 
if a~=1 
NCV=input('Net calorific value of fuel ,kJ/Kmol=:'); 
Cpf=input('Molar heat of gas fuel,=kJ/Kmol.K:'); 
n1=input('Molar flow rate of gas fuel Kmol/h=:'); 
n2=input('Molar flow rate of entering air to fired heater ,Kmol/h=:'); 
n3=input('Molar flow rate of combustion gases exiting from stack,Kmol/h=:'); 
airper=input('percentage of excess air=:'); 
hum=input('humidity of air ,kg of water vapor/kg of wet air=:'); 
Xh=input('molar fraction of water is equivalent to humidity of air =:'); 
% Input :Composition of flue gas 
XCO2=input('Molar fraction of CO2,Xco2='); 
XH2O=input('Molar fraction of H2O,XH2O='); 
XO2=input('Molar fraction of O2,Xo2='); 
XN2=input('Molar fraction of N2,XN='); 
XSO2=input('Molar fraction of SO2,Xso2='); 
td=15;     % Datum temperature ©  
ta=input('temperature of combustion air ,c=:'); 
tf=input('temperature of burner fuel ,c=:'); 
tg=input('flue gas temperature ,c=:'); 
% Energy balance of furnace 
% Energy input 
Qv=n1*NCV ;      % heating value of fuel 
fprintf('Heat value of fuel is %10.2e kJ/h\n',Qv) 
Qsensible=Cpf*(tf-15);   % Sensible heat of fuel 
fprintf('Sensible Heat of fuel is %10.2e kJ/h\n',Qsensible) 
Qf=Qv+n1*Qsensible; 
% Calculation of Molecular weight of wet air 
Mwair=(1-Xh)*28.84+Xh*18; 
% Molar heat of dry air 
Cpa=33.915+1.214*10^(-3)*(ta+15)/2;     
% Molar heat of water as humidity in air 
Cphum=34.42+6.281*10^(-4)*(ta+15)/2+5.6106*10^(-6)*((ta+15)/2)^2 ; 
% Sensible heat of wet air 
Ha=((1-Xh)*Cpa+Xh*Cphum)*(ta-15);         
Qa=n2*Ha; 
fprintf('Sensible Heat of air is %10.2e kJ/h\n',Qa) 

% Calculation of Molecular weight of wet air 
Mwair=(1-Xh)*28.84+Xh*18; 
Mair=mairwet/Mwair;   % Molar mass of wet air 
Cpa=33.915+1.214*10^(-3)*(ta+15)/2 ;   % Molar heat of dry air 
% Molar heat of water as humidity in air 
Cphum=34.42+6.281*10^(-4)*(ta+15)/2+5.6106*10^(-6)*((ta+15)/2)^2 ; 
Ha=((1-Xh)*Cpa+Xh*Cphum)*(ta-15);         
% Enthalpy of wet air 
Qa=Mair*Ha; 
fprintf('sensible heat of wet air is %10.2e kJ/h\n',Qa) 
% Sensible of steam at 8.5 bar and 190 C  
Qs=m2*Hs; 
fprintf('sensible heat of steam %10.2e kJ/h\n',Qs) 
Qin=Qf+Qa+Qs;  
fprintf('Energy Input is %10.2e kJ/h\n',Qin) 
% Energy output 
% Molar heat of CO2 
Cpco2=43.2936+0.0115*(tg+15)/2-818558.5/((tg+15)/2)^2;        
Nco2=xc*m3/44; 
% Sensible heat of carbon dioxide 
HCO2=Nco2*Cpco2*(tg-15);  
% Molar heat of O2 
Cpo2=34.627+1.0802*10^(-3)*(tg+15)/2-785900/((tg+15)/2)^2 ;    
No2=xo*m3/32; 
% Sensible heat of excess O2 
HO2=No2*Cpo2*(tg-15);   
% Molar heat  of N2 
Cpn2=27.2155+4.187*10^(-3)*(tg+15)/2 ;                        
NN2=xn*m3/28; 
% sensible heat of N2 
HN2=NN2*Cpn2*(tg-td);   
% Molar heat of H2O 
Cph2o=34.417+6.281*10^(-4)*(tg+15)/2-5.611*10^(-6)*((tg+15)/2)^2 ;            
NH2O=xh*m3/18; 
% Sensible heat of H2O 
HH2O=NH2O*Cph2o*(tg-15);  
% Molar heat of SO2 
Cpso2=32.24+0.0222*(tg+15)/2-3.475*10*10^(-6)*((tg+15)/2)^2 ;   
Nso2=xs*m3/64; 
% Sensible hear of SO2 
HSO2=Nso2*Cpso2*(tg-15);  
Qstack=HCO2+HO2+HN2+HH2O+HSO2; 
fprintf('Sensible Heat of Combustion gases is %10.2e Kcal/h\n',Qstack) 
% Percentage heat losses  due to radiation and other unaccounted loss ... 
% for a fired heater ,These losses are between 2% and 5% 
% Ql=percentage of heating value of fuel 
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Ql=0.05*m1*NCV;  
fprintf('Heat Losses is %10.2e kJ/h\n',Ql) 
Qout=Qstack+Ql; 
% The useful energy or heat absorbed by heated fluid  
Qu=Qin-(Qstack+Ql); 
fprintf('Useful Energy is %10.2e kJ/h\n',Qu) 
% calculation of thermal efficiency 
E=100*Qu/Qin;  
fprintf('thermal efficiency %8.2f %%\n',E) 
end 
if a~=1 
NCV=input('Net calorific value of fuel ,kJ/Kmol=:'); 
Cpf=input('Molar heat of gas fuel,=kJ/Kmol.K:'); 
n1=input('Molar flow rate of gas fuel Kmol/h=:'); 
n2=input('Molar flow rate of entering air to fired heater ,Kmol/h=:'); 
n3=input('Molar flow rate of combustion gases exiting from stack,Kmol/h=:'); 
airper=input('percentage of excess air=:'); 
hum=input('humidity of air ,kg of water vapor/kg of wet air=:'); 
Xh=input('molar fraction of water is equivalent to humidity of air =:'); 
% Input :Composition of flue gas 
XCO2=input('Molar fraction of CO2,Xco2='); 
XH2O=input('Molar fraction of H2O,XH2O='); 
XO2=input('Molar fraction of O2,Xo2='); 
XN2=input('Molar fraction of N2,XN='); 
XSO2=input('Molar fraction of SO2,Xso2='); 
td=15;     % Datum temperature ©  
ta=input('temperature of combustion air ,c=:'); 
tf=input('temperature of burner fuel ,c=:'); 
tg=input('flue gas temperature ,c=:'); 
% Energy balance of furnace 
% Energy input 
Qv=n1*NCV ;      % heating value of fuel 
fprintf('Heat value of fuel is %10.2e kJ/h\n',Qv) 
Qsensible=Cpf*(tf-15);   % Sensible heat of fuel 
fprintf('Sensible Heat of fuel is %10.2e kJ/h\n',Qsensible) 
Qf=Qv+n1*Qsensible; 
% Calculation of Molecular weight of wet air 
Mwair=(1-Xh)*28.84+Xh*18; 
% Molar heat of dry air 
Cpa=33.915+1.214*10^(-3)*(ta+15)/2;     
% Molar heat of water as humidity in air 
Cphum=34.42+6.281*10^(-4)*(ta+15)/2+5.6106*10^(-6)*((ta+15)/2)^2 ; 
% Sensible heat of wet air 
Ha=((1-Xh)*Cpa+Xh*Cphum)*(ta-15);         
Qa=n2*Ha; 
fprintf('Sensible Heat of air is %10.2e kJ/h\n',Qa) 

% Calculation of Molecular weight of wet air 
Mwair=(1-Xh)*28.84+Xh*18; 
Mair=mairwet/Mwair;   % Molar mass of wet air 
Cpa=33.915+1.214*10^(-3)*(ta+15)/2 ;   % Molar heat of dry air 
% Molar heat of water as humidity in air 
Cphum=34.42+6.281*10^(-4)*(ta+15)/2+5.6106*10^(-6)*((ta+15)/2)^2 ; 
Ha=((1-Xh)*Cpa+Xh*Cphum)*(ta-15);         
% Enthalpy of wet air 
Qa=Mair*Ha; 
fprintf('sensible heat of wet air is %10.2e kJ/h\n',Qa) 
% Sensible of steam at 8.5 bar and 190 C  
Qs=m2*Hs; 
fprintf('sensible heat of steam %10.2e kJ/h\n',Qs) 
Qin=Qf+Qa+Qs;  
fprintf('Energy Input is %10.2e kJ/h\n',Qin) 
% Energy output 
% Molar heat of CO2 
Cpco2=43.2936+0.0115*(tg+15)/2-818558.5/((tg+15)/2)^2;        
Nco2=xc*m3/44; 
% Sensible heat of carbon dioxide 
HCO2=Nco2*Cpco2*(tg-15);  
% Molar heat of O2 
Cpo2=34.627+1.0802*10^(-3)*(tg+15)/2-785900/((tg+15)/2)^2 ;    
No2=xo*m3/32; 
% Sensible heat of excess O2 
HO2=No2*Cpo2*(tg-15);   
% Molar heat  of N2 
Cpn2=27.2155+4.187*10^(-3)*(tg+15)/2 ;                        
NN2=xn*m3/28; 
% sensible heat of N2 
HN2=NN2*Cpn2*(tg-td);   
% Molar heat of H2O 
Cph2o=34.417+6.281*10^(-4)*(tg+15)/2-5.611*10^(-6)*((tg+15)/2)^2 ;            
NH2O=xh*m3/18; 
% Sensible heat of H2O 
HH2O=NH2O*Cph2o*(tg-15);  
% Molar heat of SO2 
Cpso2=32.24+0.0222*(tg+15)/2-3.475*10*10^(-6)*((tg+15)/2)^2 ;   
Nso2=xs*m3/64; 
% Sensible hear of SO2 
HSO2=Nso2*Cpso2*(tg-15);  
Qstack=HCO2+HO2+HN2+HH2O+HSO2; 
fprintf('Sensible Heat of Combustion gases is %10.2e Kcal/h\n',Qstack) 
% Percentage heat losses  due to radiation and other unaccounted loss ... 
% for a fired heater ,These losses are between 2% and 5% 
% Ql=percentage of heating value of fuel 
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Appendix 6:  
The indirect method programme for the determination of the thermal efficiency of fired 
heaters 
function indirectmethod=indirectefficiency 
% The indirect Method for determining the thermal efficiency of fired heat 
% Input : 
% The required data for calculation of fired heater efficiency... 
% by using the direct method are : 
% Ultimate analysis of fuel (H ,O ,C ,S) , moisture content and ash content 
% Percentage of Oxygen or CO2 in flue gas 
% Flue gas temperature tf in C 
% Ambient temperature ta in C 
% Humidity of air in kg/kg of dry air 
% Gross calorific value of fuel in kJ/kg (GCV)  
% Mass of dry flue gas in kg/kg of fuel  
% Output : 
% L1 percentage heat losses due to dry flue gas 
% L2 Heat loss to evaporation of water formed ... 
% due to H2 in fuel 
% L3 Heat loss due to moisture present in air 
% L4 Percentage heat loss due to evaporation of moisture present if fuel 
% moisture present if fuel 
% L5 Percentage heat loss due to radiation and other unaccounted loss ...  
%  for a fired heater ,These losses are between 2% and 5% 
% Thermal efficiency of fired heater 
tf=input('Flue gas temperature in C,tf=:'); 
ta=input('Ambient temperature in  C,ta=:');  
GCV=input('Gross Calorific Value of fuel ,kJ/kg=:'); 
H=input('percentage of H in fuel by weight ,H='); 
C=input('percentage of C in fuel by weight ,C='); 
O=input('percentage of O in fuel by weight ,O='); 
S=input('percentage of H in fuel by weight ,S='); 
M=input('moisture content in 1 kg of fuel ,M=:'); 
mfuel=input('mass of fuel supplied ,(mfuel)=:'); 
h=input('humidity of air ,h=:'); 
% calculate the theoretical air requirement 
air=((11.43*C)+(34.5*(H-O/8))+(4.32*S))/100  
% calculate the % excess air supplied (EA) 
 EA=O*100/(21-O) 
% calculate actual mass of air supplied /kg of fuel (AAS) 
AAS=(1+EA/100)*air 
% calculate mass of dry flue gas in kg /kg of fuel  
% m(total of lue gas)=mass of actual air supplied(ASS) + ... 
% mass of fuel supplied (mfuel) 
m=AAS+mfuel 
% Output : 

Qin=Qf+Qa; 
% Energy output 
% Molar heat of CO2 
CpCO2=43.2936+0.0115*(tg+15)/2-818558.5/((tg+15)/2)^2;          
QCO2=XCO2*n3*CpCO2*(tg-15); 
% Molar heat of O2 
CpO2=34.627+1.0802*10^(-3)*(tg+15)/2-785900/((tg+15)/2)^2 ;     
QO2=XO2*n3*CpO2*(tg-15); 
% Molar heat  of N2 
CpN2=27.2155+4.187*10^(-3)*(tg+15)/2 ;                          
QN2=XN2*n3*CpN2*(tg-15); 
% Molar heat of H2O 
CpH2O=34.417+6.281*10^(-4)*(tg+15)/2-5.611*10^(-6)*((tg+15)/2)^2 ;             
QH2O=XH2O*n3*CpH2O*(tg-15);  
% Molar heat of SO2 
CpSO2=32.24+0.0222*(tg+15)/2-3.475*10^(-6)*((tg+15)/2)^2 ;   
QSO2=XSO2*n3*CpSO2*(tg-15); 
Qstack=QCO2+QO2+QN2+QH2O+QSO2; 
fprintf('Sensible Heat of Combustion gases is %10.2e kJ/h\n',Qstack) 
% Percentage heat losses  due to radiation and other unaccounted loss ... 
% for a fired heater ,These losses are between 2% and 5% 
Ql=0.05*n1*NCV; 
fprintf('Heat Losses is %10.2e kJ/h\n',Ql) 
Qout=Qstack+Ql; 
fprintf('Energy Output is %10.2e kJ/h\n',Qout) 
% The useful energy or heat absorbed by heated fluid  
Qu=Qin-Qout; 
fprintf('Usful Energy is %10.2e kJ/h\n',Qu) 
% calculation of thermal efficiency 
E=100*Qu/Qin; 
fprintf('thermal efficiency %8.2f %%\n',E) 
end 
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Appendix 6:  
The indirect method programme for the determination of the thermal efficiency of fired 
heaters 
function indirectmethod=indirectefficiency 
% The indirect Method for determining the thermal efficiency of fired heat 
% Input : 
% The required data for calculation of fired heater efficiency... 
% by using the direct method are : 
% Ultimate analysis of fuel (H ,O ,C ,S) , moisture content and ash content 
% Percentage of Oxygen or CO2 in flue gas 
% Flue gas temperature tf in C 
% Ambient temperature ta in C 
% Humidity of air in kg/kg of dry air 
% Gross calorific value of fuel in kJ/kg (GCV)  
% Mass of dry flue gas in kg/kg of fuel  
% Output : 
% L1 percentage heat losses due to dry flue gas 
% L2 Heat loss to evaporation of water formed ... 
% due to H2 in fuel 
% L3 Heat loss due to moisture present in air 
% L4 Percentage heat loss due to evaporation of moisture present if fuel 
% moisture present if fuel 
% L5 Percentage heat loss due to radiation and other unaccounted loss ...  
%  for a fired heater ,These losses are between 2% and 5% 
% Thermal efficiency of fired heater 
tf=input('Flue gas temperature in C,tf=:'); 
ta=input('Ambient temperature in  C,ta=:');  
GCV=input('Gross Calorific Value of fuel ,kJ/kg=:'); 
H=input('percentage of H in fuel by weight ,H='); 
C=input('percentage of C in fuel by weight ,C='); 
O=input('percentage of O in fuel by weight ,O='); 
S=input('percentage of H in fuel by weight ,S='); 
M=input('moisture content in 1 kg of fuel ,M=:'); 
mfuel=input('mass of fuel supplied ,(mfuel)=:'); 
h=input('humidity of air ,h=:'); 
% calculate the theoretical air requirement 
air=((11.43*C)+(34.5*(H-O/8))+(4.32*S))/100  
% calculate the % excess air supplied (EA) 
 EA=O*100/(21-O) 
% calculate actual mass of air supplied /kg of fuel (AAS) 
AAS=(1+EA/100)*air 
% calculate mass of dry flue gas in kg /kg of fuel  
% m(total of lue gas)=mass of actual air supplied(ASS) + ... 
% mass of fuel supplied (mfuel) 
m=AAS+mfuel 
% Output : 

Qin=Qf+Qa; 
% Energy output 
% Molar heat of CO2 
CpCO2=43.2936+0.0115*(tg+15)/2-818558.5/((tg+15)/2)^2;          
QCO2=XCO2*n3*CpCO2*(tg-15); 
% Molar heat of O2 
CpO2=34.627+1.0802*10^(-3)*(tg+15)/2-785900/((tg+15)/2)^2 ;     
QO2=XO2*n3*CpO2*(tg-15); 
% Molar heat  of N2 
CpN2=27.2155+4.187*10^(-3)*(tg+15)/2 ;                          
QN2=XN2*n3*CpN2*(tg-15); 
% Molar heat of H2O 
CpH2O=34.417+6.281*10^(-4)*(tg+15)/2-5.611*10^(-6)*((tg+15)/2)^2 ;             
QH2O=XH2O*n3*CpH2O*(tg-15);  
% Molar heat of SO2 
CpSO2=32.24+0.0222*(tg+15)/2-3.475*10^(-6)*((tg+15)/2)^2 ;   
QSO2=XSO2*n3*CpSO2*(tg-15); 
Qstack=QCO2+QO2+QN2+QH2O+QSO2; 
fprintf('Sensible Heat of Combustion gases is %10.2e kJ/h\n',Qstack) 
% Percentage heat losses  due to radiation and other unaccounted loss ... 
% for a fired heater ,These losses are between 2% and 5% 
Ql=0.05*n1*NCV; 
fprintf('Heat Losses is %10.2e kJ/h\n',Ql) 
Qout=Qstack+Ql; 
fprintf('Energy Output is %10.2e kJ/h\n',Qout) 
% The useful energy or heat absorbed by heated fluid  
Qu=Qin-Qout; 
fprintf('Usful Energy is %10.2e kJ/h\n',Qu) 
% calculation of thermal efficiency 
E=100*Qu/Qin; 
fprintf('thermal efficiency %8.2f %%\n',E) 
end 
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% Estimate all heat losses 
% percentage heat losses due to dry flue gas 
L1=m*0.96*(tf-ta)*100/GCV; 
fprintf('percentage heat losses due to dry flue gas %10.2e kJ/h\n',L1) 
% Heat loss to evaporation of water formed due to H2 in fuel 
L2=0.09*H*(2445.2+1.884*(tf-ta))*100/GCV; 
fprintf('Heat loss due to evaporation of water formed due to H2 in fuel %10.2e kJ/h\n',L2) 
% Heat loss due to moisture present in air 
L3=AAS*h*1.9*(tf-ta)*100/GCV ; 
fprintf('Heat loss due to moisture in air %10.2e kJ/h\n',L3) 
% Percentage heat loss due to evaporation of moisture present in fuel 
L4=M*(2445.21+1.8842*(tf-ta))*100/GCV;  
fprintf('Heat loss to evaporation of water formed due evaporation of moisture present in 
fuel %10.2e kJ/h\n',L4) 
% Percentage heat loss due to radiation and other unaccounted loss ... 
% for a fired heater ,these losses are between 2% and 5% 
L5=5; 
fprintf('Heat losses due to radiation and other unaccounted loss %10.2e kJ/h\n',L5)  
% calculate thermal efficiency by indirect method 
E=100-(L1+L2+L3+L4+L5); 
fprintf('thermal efficiency %8.2f %%\n',E) 
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1. Introduction 
 Many researchers are interested in magneto-hydro-dynamics MHD since the last century 
due to its important applications. For example, MHD steam plants and MHD generators are 
used in the modern power plants. The basic concept of the MHD generator is to generate 
electrical energy from the motion of conductive liquid that is crossing a perpendicular 
magnetic field. Carnot efficiency is improved by the presence of MHD unit. Another 
example is the MHD pumps and flow meters. In this type of pumps, the electrical energy is 
converted directly to a force which is applied on the working fluid. MHD separation in 
metal casting with superconducting coils is another important application. 
A very useful proposed application which involves MHD is the lithium cooling blanket in a 
nuclear fusion reactor. The high-temperature plasma is maintained in the reactor by means 
of a toroidal magnetic field. The liquid-lithium circulation loops, which will be located 
between the plasma and magnetic windings, are called lithium blankets. The lithium 
performs two functions: it absorbs the thermal energy released by the reaction (and 
subsequently used for power generation) and it participates in nuclear reactions in which 
tritium is produced. The lithium blanket is thus a very important reactor component. On 
other hand, the blanket will be acted upon by an extremely strong magnetic field. 
Consequently, to calculate the flow of liquid metal in channels or pipes situated at different 
angles to the magnetic field, and to determine the required pressure drop, heat transfer, etc., 
a knowledge of the appropriate MHD relationships will be necessary.  
Magnetohydrodynamics (MHD) has been studied since the 19th century, but extensive 
investigations in this field accelerated only at the beginning of the 20th century. The first 
theoretical and laboratory studies of MHD flows in pipes and ducts were carried out in the 
1930s. Williams published results of experiments with electrolytes flowing in insulated 
tubes. The tubes were placed between the poles of a magnet, and the potential difference 
across the flow was measured using wires passed through the walls. Hartmann and Lazarus 
made some very comprehensive theoretical and experimental studies of this subject. They 
performed their experiments with mercury which has an electrical conductivity 100,000 
times greater than that of an electrolyte. This made it possible to observe a wider range of 
phenomena than in the experiments by Williams. In particular, Hartmann and Lazarus were 
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and Sahai studied numerically the effect of temperature-dependent transport properties on 
the developing magnetohydrodynamic flow and heat transfer in a parallel-plate channel 
whose walls are held at constant and equal temperatures. 
In addition, the problem of the combined free-and-forced convection in horizontal tubes in 
the absence of magnetic field was investigated considerably in the 1960s. Morton solved the 
problem of laminar convection in uniformly heated horizontal pipes at low Rayleigh 
numbers Ra using a perturbation method to obtain a formula for Nusselt number Nu which 
is valid only for ReRa = 3,000. Here, Re and Ra are Reynolds and Rayleigh numbers based 
on diameter, respectively. Mori, Futagami, Tokuda and Nakamura analyzed the same 
problem experimentally for air but for high Ra, and they noticed that Nusselt numbers 
would be about twice as large as those calculated by neglecting the effect of the secondary 
flow caused by buoyancy at ReRa = 4 × 105. They concluded that buoyancy has little effect 
on the velocity and temperature fields in turbulent flow. The critical Reynolds number 
(laminar-turbulent transition) was, however, affected by the secondary flow. Later, Mori 
and Futagami, investigated this problem theoretically on a fully developed laminar flow. On 
the assumption of a boundary layer (by making the velocity and temperature distributions 
are affected only by viscosity and thermal conductivity) along the tube wall and by use of 
the boundary-layer integral method, they obtained (after assuming the velocity and 
temperature fields are affected only by the secondary flow in the core region) the relations 
between Nusselt number and ReRa(= 104) for Prandtl number Pr not far from unity. Faris 
and Viskanta examined this problem analytically using a perturbation method. They 
presented approximate analytical solutions as well as average Nusselt numbers graphically 
for a range of Prandtl and Grashof numbers of the physical interest.  Eckert and Peterson 
measured the temperature profile along the vertical diameter and calculated Nusselt 
number as a function of Peclet number Pe for the problem of the heat transfer to mercury in 
laminar flow through a horizontal tube with a constant heat flux. Siegwarth and Hanratty, 
measured the fully developed temperature field and axial velocity profile for Prandtl 
number Pr = 80 at the outlet of a long horizontal tube which is heated electrically. They also 
solved this problem by finite difference techniques to obtain the secondary flow pattern as 
well as the temperature field and axial velocity field. Newell and Bergles, formulated a 
numerical investigation of the effects of free convection on fully developed laminar flow in 
horizontal circular tubes with uniform heat flux. They obtained solutions for heat transfer 
and pressure drop, with both heating and cooling, for water with two limiting tube-wall 
conditions: low thermal conductivity (glass tube) and infinite thermal conductivity. They 
found that the infinite-conductivity tube exhibits higher Nu and friction factor f than the 
glass tube, with Nu being over five times the Poiseuille value at Grashof number (based on 
the difference of wall and bulk mean temperatures) ~ 106 . Yousef and Tarasuk, investigated 
experimentally the influence of free convection due to buoyancy on forced laminar flow of 
air in the entrance region of a horizontal isothermal tube for a narrow range of Grashof 
numbers (based on logarithmic mean temperature difference) from 0.8 × 104 to 8.7 × 104. 
That same year, Hishida, Nagano and Montesclaros, published numerical solutions without 
the aid of a large Prandtl number assumption for combined free-and-forced laminar 
convection in the entrance region of a horizontal pipe with uniform wall temperature. Chou 
and Hwang, studied numerically, without the aid of the large Prandtl number assumption, 
the Graetz problem with the effect of natural convection in a uniformly heated horizontal 
tube by a relatively novel vorticity-velocity method. They showed the variations in local 

able to investigate the change in drag (friction) and, indirectly, the suppression of turbulence 
caused by magnetic field. Hartmann obtained the exact solution of the flow between two 
parallel, non-conducting walls with the applied magnetic field normal to the walls. 
Shercliff, in 1956, has solved the problem of rectangular duct, from which he noticed that for 
high Hartmann numbers M the velocity distribution consists of a uniform core with a 
boundary layer near the walls. This result enabled him to solve the problem for a circular 
pipe in an approximate manner (a first approximation which gives rise to errors of order 
M−1) for large M assuming walls of zero conductivity and, subsequently, walls with small 
conductivity. In 1962, Gold and Lykoudis has obtained an analytical solution for the MFM 
flow in a circular tube with zero wall conductivity while in 1968, Gardner and Lykoudis 
have acquired experimentally some results for circular tube with and without heat transfer. 
The MFM flow is also examined numerically by Al-Khawaja et al. for the case of circular 
tube with heat transfer and for the case of uniform wall heat flux with and without free 
convection. The solution for MFM square duct flow is obtained using spectral method by 
Al-Khawaja and Selmi for the case of uniform wall temperature. 
Also, the MFM combined free-and-forced convection duct flow was considered by many 
researchers.  Chang & Lundgren considered the effect of wall conductivity for this problem. 
Gold analytically solved the MHD problem in a circular pipe with zero wall conductivity. 
His solution was an infinite series of Bessel functions, which was approximated for large M 
with the first few terms. For the same problem, Shercliff used the second approximation 
(which gives rise to errors of order M-2) to get the solution for large M. Gardner used Gold's 
solution to evaluate the exact solution for temperature profile, which turned out to be very 
complex. Then, he approximated velocity profile for small to moderate M with a polynomial 
form from which he calculated the Nusselt number Nu. For large M, he used Gold's 
approximation to determine Nu. Gardner and Lykoudis experimentally studied MFM 
turbulent pipe flow in a transverse magnetic field with and without heat transfer. Gardner 
and Lo tried to solve the problem of a circular pipe flow with combined forced-and-free 
convection analytically using a perturbation technique in which the solutions were 
generated in inverse powers of the Lykoudis number, Ly. They obtained only the 
distribution of stream function and azimuthal velocity for some small Hartmann numbers 
M. Weiss studied a nonlinear two-dimensional magnetoconvective flow in a Boussinesq 
fluid with a series of numerical experiments. Tabeling and Chabrerie analyzed the 
secondary laminar flows in annular ducts of rectangular cross-section subjected to a 
constant axial magnetic field. They considered the cases for high M and treated the 
equations of flow by a perturbation method involving an infinite series expansion. In 
addition, some researchers investigated the case of non-uniform magnetic field. Petrykowski 
and Walker examined the liquid-metal flows in rectangular ducts having electrically 
insulating top and bottom walls and perfectly conducting sides and in the presence of 
strong, polar, non-uniform, transverse magnetic field. They presented solutions for the 
boundary layers adjacent to the sides that are parallel to the magnetic field. Singh and Lal 
have calculated numerically the temperature distribution for steady MHD axial flow 
through a rectangular pipe with discontinuity in wall temperature. Mittal, Nataraja and 
Naidu obtained a numerical solution of the equations governing the flow of an electrically 
conducting, viscous, compressible gas with variable fluid properties in the presence of a 
uniform magnetic field. They analyzed the velocity and temperature distributions for 
subsonic and supersonic flows as these occur in the duct of an MHD generator. Setayesh 
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and Sahai studied numerically the effect of temperature-dependent transport properties on 
the developing magnetohydrodynamic flow and heat transfer in a parallel-plate channel 
whose walls are held at constant and equal temperatures. 
In addition, the problem of the combined free-and-forced convection in horizontal tubes in 
the absence of magnetic field was investigated considerably in the 1960s. Morton solved the 
problem of laminar convection in uniformly heated horizontal pipes at low Rayleigh 
numbers Ra using a perturbation method to obtain a formula for Nusselt number Nu which 
is valid only for ReRa = 3,000. Here, Re and Ra are Reynolds and Rayleigh numbers based 
on diameter, respectively. Mori, Futagami, Tokuda and Nakamura analyzed the same 
problem experimentally for air but for high Ra, and they noticed that Nusselt numbers 
would be about twice as large as those calculated by neglecting the effect of the secondary 
flow caused by buoyancy at ReRa = 4 × 105. They concluded that buoyancy has little effect 
on the velocity and temperature fields in turbulent flow. The critical Reynolds number 
(laminar-turbulent transition) was, however, affected by the secondary flow. Later, Mori 
and Futagami, investigated this problem theoretically on a fully developed laminar flow. On 
the assumption of a boundary layer (by making the velocity and temperature distributions 
are affected only by viscosity and thermal conductivity) along the tube wall and by use of 
the boundary-layer integral method, they obtained (after assuming the velocity and 
temperature fields are affected only by the secondary flow in the core region) the relations 
between Nusselt number and ReRa(= 104) for Prandtl number Pr not far from unity. Faris 
and Viskanta examined this problem analytically using a perturbation method. They 
presented approximate analytical solutions as well as average Nusselt numbers graphically 
for a range of Prandtl and Grashof numbers of the physical interest.  Eckert and Peterson 
measured the temperature profile along the vertical diameter and calculated Nusselt 
number as a function of Peclet number Pe for the problem of the heat transfer to mercury in 
laminar flow through a horizontal tube with a constant heat flux. Siegwarth and Hanratty, 
measured the fully developed temperature field and axial velocity profile for Prandtl 
number Pr = 80 at the outlet of a long horizontal tube which is heated electrically. They also 
solved this problem by finite difference techniques to obtain the secondary flow pattern as 
well as the temperature field and axial velocity field. Newell and Bergles, formulated a 
numerical investigation of the effects of free convection on fully developed laminar flow in 
horizontal circular tubes with uniform heat flux. They obtained solutions for heat transfer 
and pressure drop, with both heating and cooling, for water with two limiting tube-wall 
conditions: low thermal conductivity (glass tube) and infinite thermal conductivity. They 
found that the infinite-conductivity tube exhibits higher Nu and friction factor f than the 
glass tube, with Nu being over five times the Poiseuille value at Grashof number (based on 
the difference of wall and bulk mean temperatures) ~ 106 . Yousef and Tarasuk, investigated 
experimentally the influence of free convection due to buoyancy on forced laminar flow of 
air in the entrance region of a horizontal isothermal tube for a narrow range of Grashof 
numbers (based on logarithmic mean temperature difference) from 0.8 × 104 to 8.7 × 104. 
That same year, Hishida, Nagano and Montesclaros, published numerical solutions without 
the aid of a large Prandtl number assumption for combined free-and-forced laminar 
convection in the entrance region of a horizontal pipe with uniform wall temperature. Chou 
and Hwang, studied numerically, without the aid of the large Prandtl number assumption, 
the Graetz problem with the effect of natural convection in a uniformly heated horizontal 
tube by a relatively novel vorticity-velocity method. They showed the variations in local 

able to investigate the change in drag (friction) and, indirectly, the suppression of turbulence 
caused by magnetic field. Hartmann obtained the exact solution of the flow between two 
parallel, non-conducting walls with the applied magnetic field normal to the walls. 
Shercliff, in 1956, has solved the problem of rectangular duct, from which he noticed that for 
high Hartmann numbers M the velocity distribution consists of a uniform core with a 
boundary layer near the walls. This result enabled him to solve the problem for a circular 
pipe in an approximate manner (a first approximation which gives rise to errors of order 
M−1) for large M assuming walls of zero conductivity and, subsequently, walls with small 
conductivity. In 1962, Gold and Lykoudis has obtained an analytical solution for the MFM 
flow in a circular tube with zero wall conductivity while in 1968, Gardner and Lykoudis 
have acquired experimentally some results for circular tube with and without heat transfer. 
The MFM flow is also examined numerically by Al-Khawaja et al. for the case of circular 
tube with heat transfer and for the case of uniform wall heat flux with and without free 
convection. The solution for MFM square duct flow is obtained using spectral method by 
Al-Khawaja and Selmi for the case of uniform wall temperature. 
Also, the MFM combined free-and-forced convection duct flow was considered by many 
researchers.  Chang & Lundgren considered the effect of wall conductivity for this problem. 
Gold analytically solved the MHD problem in a circular pipe with zero wall conductivity. 
His solution was an infinite series of Bessel functions, which was approximated for large M 
with the first few terms. For the same problem, Shercliff used the second approximation 
(which gives rise to errors of order M-2) to get the solution for large M. Gardner used Gold's 
solution to evaluate the exact solution for temperature profile, which turned out to be very 
complex. Then, he approximated velocity profile for small to moderate M with a polynomial 
form from which he calculated the Nusselt number Nu. For large M, he used Gold's 
approximation to determine Nu. Gardner and Lykoudis experimentally studied MFM 
turbulent pipe flow in a transverse magnetic field with and without heat transfer. Gardner 
and Lo tried to solve the problem of a circular pipe flow with combined forced-and-free 
convection analytically using a perturbation technique in which the solutions were 
generated in inverse powers of the Lykoudis number, Ly. They obtained only the 
distribution of stream function and azimuthal velocity for some small Hartmann numbers 
M. Weiss studied a nonlinear two-dimensional magnetoconvective flow in a Boussinesq 
fluid with a series of numerical experiments. Tabeling and Chabrerie analyzed the 
secondary laminar flows in annular ducts of rectangular cross-section subjected to a 
constant axial magnetic field. They considered the cases for high M and treated the 
equations of flow by a perturbation method involving an infinite series expansion. In 
addition, some researchers investigated the case of non-uniform magnetic field. Petrykowski 
and Walker examined the liquid-metal flows in rectangular ducts having electrically 
insulating top and bottom walls and perfectly conducting sides and in the presence of 
strong, polar, non-uniform, transverse magnetic field. They presented solutions for the 
boundary layers adjacent to the sides that are parallel to the magnetic field. Singh and Lal 
have calculated numerically the temperature distribution for steady MHD axial flow 
through a rectangular pipe with discontinuity in wall temperature. Mittal, Nataraja and 
Naidu obtained a numerical solution of the equations governing the flow of an electrically 
conducting, viscous, compressible gas with variable fluid properties in the presence of a 
uniform magnetic field. They analyzed the velocity and temperature distributions for 
subsonic and supersonic flows as these occur in the duct of an MHD generator. Setayesh 
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For very small magnetic Reynolds number RM (i.e. the induced magnetic field produced as a 
result of interaction of applied field, B0, will be assumed negligibly small compared to B0), 
the induction equation, Eq. (2), can be derived from Maxwell's equations along with the two 
solenoidal conditions, Eqs. (4). The last two terms in the right hand of the energy equation, 
Eq. (3), represent the viscous and Joulean dissipations, respectively.  Those terms can be 
neglected compared to the other ones in the equation. 
After many simplifications by assuming fully developed flow, i.e. 2-D problem (See Fig. 1), 
and since the flow is laminar due to damping of the fluctuations of turbulence in the 
presence of magnetic field, the dimensionless governing equations for this flow become 
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Fig. 1. MFM flow geometry 

friction factor and Nusselt number with Rayleigh number for Prandtl numbers Pr = 5, 2 and 
0.7. Rustum and Soliman, investigated numerically the steady, fully-developed, laminar, 
mixed convection in horizontal internally-finned tubes for the case of uniform axial heat 
input and circumferentially uniform wall temperature. At Pr = 7 and for modified Grashof 
number varies from 0 to 2 × 106, they obtained numerical results which include the 
secondary flow (velocity) components, axial velocity and temperature distributions, wall-
heat flux, friction factor and average Nusselt number for different fin geometries. Finally, 
Al-Khawaja, Agarwal, and Gardner considered numerically the problem of MFM combined-
free-and-forced convection pipe flow using modified third-order-accurate upwind scheme 
to handle the problem of high Grashof number. However, for high Hartmann number, they 
refined the mesh near the boundary. 

 
2. Background 

The problem considered herein is one of the forced convection in a horizontal, circular pipe 
of radius a in a uniform, vertical, transverse magnetic field B0. A homogeneous, 
incompressible, viscous, electrically-conducting fluid flows through a horizontal circular 
pipe and is subjected to a uniform surface temperature and a uniform surface heat flux. In 
conjunction with defining this problem, the following assumptions are made: 

a) All fluid properties are constant (the fluid considered is incompressible) and 
independent of the temperature. 

b) The pipe is sufficiently long that it can be assumed the flow and heat transfer are 
fully developed and entrance or exit effects can be neglected. Further, it can be 
deduced that none of the variables except pressure and temperature vary linearly 
with axial direction. 

c) The contributions of viscous  and Joulean dissipation in the energy equation are 
small and can be neglected. This assumption has been shown to be applicable to a 
similar problem when no external electric field is imposed on the flow. 

d) The induced magnetic field produced as a result of interaction of applied field, B0, 
with either main or secondary flow, will be assumed negligibly small compared to 
B0. This assumption follows from the fact that the magnetic Reynolds number 
based on the flow is much smaller than unity under conditions found in typical 
applications. 

 
3. Basic Conservation Equations 

For incompressible newtonian liquid metal fluid and steady-state conditions, the modified 
Navier-Stokes equations under the effect of magnetic field body force including induction 
and energy equations in vector forms are, respectively, 
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friction factor and Nusselt number with Rayleigh number for Prandtl numbers Pr = 5, 2 and 
0.7. Rustum and Soliman, investigated numerically the steady, fully-developed, laminar, 
mixed convection in horizontal internally-finned tubes for the case of uniform axial heat 
input and circumferentially uniform wall temperature. At Pr = 7 and for modified Grashof 
number varies from 0 to 2 × 106, they obtained numerical results which include the 
secondary flow (velocity) components, axial velocity and temperature distributions, wall-
heat flux, friction factor and average Nusselt number for different fin geometries. Finally, 
Al-Khawaja, Agarwal, and Gardner considered numerically the problem of MFM combined-
free-and-forced convection pipe flow using modified third-order-accurate upwind scheme 
to handle the problem of high Grashof number. However, for high Hartmann number, they 
refined the mesh near the boundary. 
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The problem considered herein is one of the forced convection in a horizontal, circular pipe 
of radius a in a uniform, vertical, transverse magnetic field B0. A homogeneous, 
incompressible, viscous, electrically-conducting fluid flows through a horizontal circular 
pipe and is subjected to a uniform surface temperature and a uniform surface heat flux. In 
conjunction with defining this problem, the following assumptions are made: 

a) All fluid properties are constant (the fluid considered is incompressible) and 
independent of the temperature. 

b) The pipe is sufficiently long that it can be assumed the flow and heat transfer are 
fully developed and entrance or exit effects can be neglected. Further, it can be 
deduced that none of the variables except pressure and temperature vary linearly 
with axial direction. 

c) The contributions of viscous  and Joulean dissipation in the energy equation are 
small and can be neglected. This assumption has been shown to be applicable to a 
similar problem when no external electric field is imposed on the flow. 

d) The induced magnetic field produced as a result of interaction of applied field, B0, 
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4.1.2 First-Order and Second-Order-Accurate Upwind Schemes 
The first-order-accurate upwind scheme has been used by many researchers to handle 
stability problem in the convective terms for high Reynolds number (in the present case is 
the square root of Grashof number). The diffusion operator and the source terms could be 
left as central-differenced.  
There are two main disadvantages of employing these difference operators. First, the 
introduction of large artificial diffusion in the direction of the bias, thereby resulting in 
considerable loss of accuracy. Second, the overall accuracy of the algorithm being 
O({Gr}1/2h), at high Grashof number, even with a reasonably fine mesh, the error of 
O({Gr}1/2h) may become so dominant as to obscure the effects of physical diffusivity on the 
flow. Here, Gr is the Grashof number and h is the mesh size. Although considerable grid 
refinement, in principle, can alleviate the problem, the necessary degree of refinement is 
often impractical because of computer-time and storage limitations. For flow problem in a 
two-dimensional driven-square cavity (this flow structure has become a standard test case 
for evaluating the accuracy, stability and efficiency of various Navier-Stokes algorithm), 
only few investigators have computed the flowfield beyond Reynolds numbers of 1000. 
Atias, Wolfshtein and Israeli employed a second-order-accurate upwind scheme to 
discretize the convective terms in the vorticity transport equation.  
The overall accuracy of this scheme is O(Re h2), based on Reynolds number. However, Atias, 
Wolfshtein and Israeli on the basis of Von Neumann type stability analysis for the linearized 
vorticity equation, find that a Gauss-Seidel solution of the second-order upwind scheme is 
stable if the mesh Reynolds number is less than 2+(8)1/2 (compared with value 2 for a central 
difference scheme). 

 
4.1.3 Third-Order-Accurate Upwind Scheme 
This scheme was first introduced by Agarwal for computing Navier-Stokes solutions at high 
Reynolds numbers. He used this scheme to solve for example, flow in a 2-D driven square 
cavity, 2-D flow in a channel with sudden symmetric expansion, 2-D flow in a channel with 
a symmetrical placed blunt base, the flowfield of a 2-D impinging jet and 3-D flow in a 
driven cubic box. For all cases, he obtained a good agreement with computations of other 
investigators as well as with available experimental data. He obtained a highly accurate 
solution for Reynolds numbers up to 10,000 for flow in a 2-D driven square cavity. 
However, this scheme suffers from two main disadvantages. First, the numerical treatment 
of the boundary conditions requires extra care because the algorithm uses a five-point 
difference formula instead of the standard three-point formula for the first derivatives. 
Second, the solution by line relaxation requires a pentadiagonal matrix inversion. 

 
4.1.4 Modified Third-Order-Accurate Upwind Scheme 
A modification to the third-order upwind scheme also was presented by Agarwal which 
makes the scheme second-order-accurate, but frees it from the disadvantages discussed 
above. The new algorithm has low artificial diffusion compared to the second order upwind 
scheme. 
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Where the negative dimensionless pressure gradient γ is related to w* by 
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From the force and energy balances one can show, respectively, that fRe = −2γ and Nu = 
−1/θm.  Where the mean dimensionless temperature is given by 
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Definitions of other dimensionless variables are described in the notation section. The 

boundary conditions are *w = 0 (from no-slip condition), *H = 0 (from electrically insulated 
surface), and θ = 0 (for isothermal surface and constant surface heat flux). 

 
4. Numerical Investigations 

4.1 Finite Difference Schemes 
The partial differential equations considered here are of the elliptic type because of the 
steady state behavior of those equations. Some important schemes must be introduced in 
order to discretize those equations and get a system of linear algebraic equations with 
reasonable accuracy and stability if they are solved using one of the iterative methods that 
will be discussed below. 

 
4.1.1 Central Difference Scheme 
Central difference schemes are very well known and have been used extensively for elliptic 
equations, particularly, Laplace's and Poisson's equations. This scheme, for 2-D, can be 
represented by five-points formula, diagonal five formula, or nine-point formula, etc.. 
Unfortunately, these schemes do not work with all types of the elliptic equations since, for 
example, the numerical solutions of steady Navier-Stokes equations by relaxation methods 
using central difference scheme may become unstable and fail to converge if the grid 
Reynolds number exceeds the value 2. This instability occurs when both the convective and 
diffusion terms in the Navier-Stokes equations are central-differenced. The standard central-
difference of the convective terms destroys the ellipticity of the difference equations at high 
Reynolds numbers because of loss of diagonal dominance in the resulting matrix. 
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 Successive under-relaxation (SUR) appears to be most appropriate when the convergence at 
a point is taking on an oscillatory pattern and tending to overshoot the final solution. Over-
relaxation is usually appropriate for numerical solutions to Laplace's equation with Dirichlet 
boundary conditions. Under-relaxation is sometimes called for in elliptic problems when the 
equations are nonlinear. Occasionally, for nonlinear problems, under-relaxation is even 
observed to be necessary for convergence. 
In general, there is no specific formula which determines the optimum value of relaxation 
factor. Sometimes the determination of optimum factor could be obtained by numerical 
experiments. 

 
4.2.4 Line-Iterative Relaxation Method   
Line-iterative relaxation algorithm sometimes is referred to as block-iterative method and 
since this method has an implicit nature, then it is known as implicit-iterative method. 
Although this procedure is workable with almost any iterative algorithm, it makes sense to 
work within the framework of the Gauss-Seidel method with SOR or SUR.  
Again, over-relaxation or under-relaxation can be used here. There are many alternative 
ways in applying SOR or SUR. 

 
5. Solution 

In this paper, the MFM problem for two heat transfer limits; constant temperature and 
constant heat flux boundary conditions, is investigated numerically for square duct (See Fig. 
1). The modified dimensionless Navier-Stokes equations with uniform-temperature-
condition having energy equation (Eq. 7), and uniform-heat-flux-condition having energy 
equation (Eq. 8) are transferred into finite-difference equations (using the central-difference 
scheme) and given as 

 * * * * * * * * * 21w w w w 4w MΔ x (H H ) (Δ x )i 1, j i 1, j i, j 1 i, j 1 i, j i 1, j i 1, j2
             (11) 

 

 * * * * * * * *1H H H H 4H MΔ x (w w ) 0i 1, j i 1, j i, j 1 i, j 1 i, j i 1, j i 1, j2
              (12) 
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and 

 * 2θ θ θ θ 4θ 4(Δ x ) w 0i 1, j i 1, j i, j 1 i, j 1 i, j i, j           (14) 

 
with the following definitions of dimensionless pressure gradient and mean dimensionless 
temperature given, respectively, as 
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4.2 Iterative Methods for Solving Systems of Linear Algebraic Equations 
Methods for solving systems of linear algebraic equations are classified as either direct or 
iterative. Direct methods are those which give the solution (exactly, if round-off error does 
not exist) in a finite and predeterminable number of operations using an algorithm which is 
often quite complicated. Iterative methods consist of a repeated application of an algorithm 
which is usually quite simple. They yield the exact answer only as a limit of a sequence, but, 
if the iterative procedure converges, one can come within ε (small value) of the answer in a 
finite but usually not predeterminable number of operations. Thus, the iterative methods 
will be used. This class of methods is sometimes referred to by relaxation methods. Those 
methods are broken into point- (or explicit-) iterative methods and block- (or implicit-) 
iterative methods. In brief, for point-iterative methods, the same simple algorithm is applied 
to each point where the unknown function is to be determined in successive iterative 
sweeps whereas in block iterative methods, subgroups of points are singled out for solution 
by elimination (direct) schemes in an overall iterative procedure. 

 
4.2.1 Point-Gauss-Seidel Iteration 
overall This method is explicit and the steps which summarize the application of the point 
Gauss-Seidel iteration on a general system of algebraic equations would be as following, 
(a) Make initial guesses for all unknowns. 
(b) Solve each equation for the unknown whose coefficient is largest in magnitude (to satisfy 
stability criteria as it will be seen later), using the guessed values initially and the most 
recently computed values thereafter for the other unknowns in each equation. 
(c) Repeat iteratively the solution of the equations in this manner until changes in the 
unknown become small. 

 
4.2.2 Sufficient Condition for Convergence of The Gauss-Seidel Procedure 
The point-Gauss-Seidel iterative method is simple but only converges under certain 
conditions related to diagonal dominance of the matrix of coefficients. Fortunately, the 
differencing of many steady-state conservation statements provides this diagonal 
dominance. Then, the sufficient condition for convergence of this method which is applied 
on a system of algebraic equations can be if the system is irreducible (cannot be arranged so 
that some of the unknowns can be determined by solving less than m equations) and if the 
resulting matrix of coefficient from the difference equation has a property of diagonal 
dominance. This is a sufficient condition which means that the convergence may sometimes 
be observed when the above condition is not met. 
Now, the above iterative convergence criteria can be related to the system of algebraic 
equations, which results from differencing the elliptic equations. By inspection, it can be 
shown that the coefficient largest in magnitude belongs to si,j, where s is dependent variable. 
Then, those equations would establish a sparse matrix which has a property of the diagonal 
dominance, and hence, the Gauss-Seidel iteration would converge. 

 
4.2.3 Successive Over-Relaxation (SOR) 
Successive over-relaxation is a technique which can be used to accelerate any iterative 
procedure but it is proposed here primarily as a refinement to the Gauss-Seidel method.  
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residual can be reached if the number of iterations exceeds 29500. However, the number of 
iterations, at M = 0, should approach 7700 to have a residual value of 10-3 (See Fig. 4). 
Second, the residual for uniform heat flux condition, converges to 10-3 if number of 
iterations reaches 33800 for M = 200, while at M = 0, the residual will converge to same 
value if number of iterations exceeds 10600 (See Fig. 5). 
 

 
Fig. 3. Residuals for normalized magnetic field 
 

 
Fig. 4. Residuals for dimensionless temperature with uniform temperature boundary condition  
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Fig. 2. Residuals for normalized axial velocity 
 
Beside the following boundary conditions: H* = 0 (for electrically insulated wall), w* = 0 
(from no-slip condition), and θ = 0 (from the definition of dimensionless temperature). The 
last boundary condition is valid for the two heat transfer limits as given in the reference. It 
should be noted that the above finite-difference equations are derived by making the mesh 
size (either in x or y direction) to be uniform and to have the same value for both directions. 
The non-linear energy equation (Eq. 13) for constant temperature condition or the linear 
equation (Eq. 14) for constant heat flux condition is solved simultaneously with the axial 
momentum (Eq. 11) and induction (Eq. 12) equations using Gauss-Seidel iterative method. 
The program utilized to achieve this task is MatLab software. For low to moderate 
Hartmann number (M = 0 to 100), a uniform 101 by 101 mesh is used while for high 
Hartmann number (M = 200), a uniform 201 by 201 mesh is used. The convergence of the 
solution is tested by using root-mean-square residual R (defined in the nomenclature section 
given below). The significance of this residual R is that once it reaches a very small number 
compared to unity, then the solution will be acceptable. As shown in Fig. 2, the convergence 
of normalized axial velocity residuals increases as the Hartman number increases. The 
residual at M = 200 reaches 10-3 after 500 iterations while the residual, without magnetic 
field, reaches 10-3 after 5800 iterations. The same behavior can be said for the normalized 
magnetic field residuals (See Fig. 3). The situation will be different for the dimensionless 
temperature. There are two cases. First, the residual for uniform temperature case converges 
more slowly, particularly, for M = 200. In this Hartmann number a value of 10-3 for the 
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Fig. 6. Negative dimensionless temperature distribution along magnetic field and at the mid 
plane (y* = 0.5) for both thermal boundary conditions with M = 0 
 

 
Fig. 7. Negative dimensionless temperature distribution along and normal to magnetic field and 
at the mid plane for both directions and for both thermal boundary conditions with M = 20 

 
Fig. 5. Residuals for dimensionless temperature with uniform heat flux boundary condition 
 
6. Results 

Some noticeable heat transfer results are obtained for the MFM square duct flow with 
uniform temperature and heat flux boundary conditions. The flow (velocity and pressure) 
was studied so extensively in reference for the same flow conditions. For more details, the 
reader should refer to reference to notice, in the provided figures, the flattening of the axial 
velocity (due to the presence of the magnetic field) and the increase of the friction factor 
with the field. The negative dimensionless temperature distributions at the mid-plane 
(either along or normal to the magnetic field) always decrease as the Hartmann number 
increases for both boundary condition limits, See Figs. 6, 7, and 8. This is because the 
temperature distributions are more homogenous as the magnetic field is turned on. This can 
be seen from the results presented in and is due to the fact that velocity profile becomes 
more flattened as M increases, particularly along the direction of the magnetic field. Also we 
notice that the temperature distributions along and normal to the field are almost identical 
for any Hartmann number. This is supported by the color bands shown in Figs. 9. Figures 9 
(a), (b), and (c) are the color bands for the case of uniform heat flux boundary conditions, 
whereas Figs. 9 (d), (e), and (f) show the color bands for uniform temperature boundary 
condition. The uniformity of the temperature across the duct is greater for the former case. 
This explains the reasons why this case has higher Nusselt number for any Hartmann 
number as  will be further explained in the next paragraph. 
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Fig. 6. Negative dimensionless temperature distribution along magnetic field and at the mid 
plane (y* = 0.5) for both thermal boundary conditions with M = 0 
 

 
Fig. 7. Negative dimensionless temperature distribution along and normal to magnetic field and 
at the mid plane for both directions and for both thermal boundary conditions with M = 20 

 
Fig. 5. Residuals for dimensionless temperature with uniform heat flux boundary condition 
 
6. Results 

Some noticeable heat transfer results are obtained for the MFM square duct flow with 
uniform temperature and heat flux boundary conditions. The flow (velocity and pressure) 
was studied so extensively in reference for the same flow conditions. For more details, the 
reader should refer to reference to notice, in the provided figures, the flattening of the axial 
velocity (due to the presence of the magnetic field) and the increase of the friction factor 
with the field. The negative dimensionless temperature distributions at the mid-plane 
(either along or normal to the magnetic field) always decrease as the Hartmann number 
increases for both boundary condition limits, See Figs. 6, 7, and 8. This is because the 
temperature distributions are more homogenous as the magnetic field is turned on. This can 
be seen from the results presented in and is due to the fact that velocity profile becomes 
more flattened as M increases, particularly along the direction of the magnetic field. Also we 
notice that the temperature distributions along and normal to the field are almost identical 
for any Hartmann number. This is supported by the color bands shown in Figs. 9. Figures 9 
(a), (b), and (c) are the color bands for the case of uniform heat flux boundary conditions, 
whereas Figs. 9 (d), (e), and (f) show the color bands for uniform temperature boundary 
condition. The uniformity of the temperature across the duct is greater for the former case. 
This explains the reasons why this case has higher Nusselt number for any Hartmann 
number as  will be further explained in the next paragraph. 
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Fig. 9. Dimensionless temperature color bands. (a) M = 0, uniform heat flux; (b) M = 20, 
uniform heat flux with the same contour value shown in a; (c) M = 200, uniform heat flux 
with the same contour value shown in a; (d) M = 0, uniform temperature; (e) M = 20, 
uniform temperature with the same contour value shown in d; (f) M = 200, uniform 
temperature with the same contour value shown in d 
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Fig. 8. Negative dimensionless temperature distribution along and normal to magnetic field 
and at the mid plane for both directions and for both thermal boundary conditions with M = 
200 
 
Finally, as expected the Nusselt number, Nu, increases as M increases for both cases of 
constant wall temperature and constant heat flux boundary conditions. Starting from 
conventional flow (M = 0), results for Nu coincide well with those obtained by the analytical 
approach given in reference for both boundary conditions. The present work gives values 
for Nu as 3.606 and 2.977 for constant heat flux and constant temperature boundary 
conditions, respectively, while the analytical Nu values for the same conditions are 3.61 and 
2.98. For any Hartmann number M, the highest Nusselt number is shown by the results to 
correspond always to the case of circular tube with constant heat flux taken from reference, 
whilst the case of square duct with uniform temperature has the lowest Nu values  (See Fig. 
10). The solution for the present work agrees very well with the reference where spectral 
method was used for the case of uniform temperature boundary condition.  
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uniform heat flux with the same contour value shown in a; (c) M = 200, uniform heat flux 
with the same contour value shown in a; (d) M = 0, uniform temperature; (e) M = 20, 
uniform temperature with the same contour value shown in d; (f) M = 200, uniform 
temperature with the same contour value shown in d 
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Fig. 8. Negative dimensionless temperature distribution along and normal to magnetic field 
and at the mid plane for both directions and for both thermal boundary conditions with M = 
200 
 
Finally, as expected the Nusselt number, Nu, increases as M increases for both cases of 
constant wall temperature and constant heat flux boundary conditions. Starting from 
conventional flow (M = 0), results for Nu coincide well with those obtained by the analytical 
approach given in reference for both boundary conditions. The present work gives values 
for Nu as 3.606 and 2.977 for constant heat flux and constant temperature boundary 
conditions, respectively, while the analytical Nu values for the same conditions are 3.61 and 
2.98. For any Hartmann number M, the highest Nusselt number is shown by the results to 
correspond always to the case of circular tube with constant heat flux taken from reference, 
whilst the case of square duct with uniform temperature has the lowest Nu values  (See Fig. 
10). The solution for the present work agrees very well with the reference where spectral 
method was used for the case of uniform temperature boundary condition.  
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9. Appendix  

The four basic dimensionless equations were simplified using the finite difference scheme to 
get a system of algebraic equations. The central difference approximation was used since it 
is more accurate than the forward and backward differences. Equations 5, 6, 7 and 8 
represent the four basic dimensionless equations, which are transformed equations 11, 12, 13 
and 14, respectively. We used 101 by 101 mesh size for low and moderate Hartmann 
number M (from 0 to 100). For high Hartmann number (= 200), we used 201 by 201 mesh 
size. The algebraic equations were solved numerically using the MatLab software. Equations 
11 and 12 were solved simultaneously by employing Gauss Seidel method. Then γ is 
determined (from Eq. 9) once w* is obtained.  The double integration was approximated by 
the summation in both x* and y* directions as given in Eq. 15. For the constant surface heat 
flux boundary condition, Eq. 14 (linear) is solved by employing the iterative Gauss Seidel 
method. Also θm can be obtained once θ is determined. θm is found from Eq. 10. The double 
integration was approximated by the summation in both x* and y* directions as given in Eq. 
16. 
For constant surface temperature boundary conditions, an initial guess for Nusselt number 
Nu was assumed, then Eq. 14 (non linear) was solved using successive substitution.  From 
Eq. 10, θm is obtained and a more accurate Nu is found, then another approximation of θ was 
solved using the new value of Nu. This process was repeated until the error becomes very 
small. 

7. Conclusion 

The problem considered here is a square duct flow with electrically conducting fluid and 
with two heat transfer limits. The problem is analyzed numerically when a uniform 
transverse magnetic field is applied to the duct. The assumption of laminar flow is mostly 
valid in MFM flows since the turbulences will be damped out due the opposing force 
induced in the flow. 
In reference, the fluid mechanic part of this problem was considered extensively and the 
results were shown using the spectral method. Also, the heat transfer results for only 
uniform temperature boundary condition were shown. In the present work, we consider 
two heat transfer limits (uniform heat flux and temperature boundary conditions) 
numerically using iterative Gauss-Seidel method, and the software package MatLab is 
utilized to achieve this approach. The results obtained for the case of constant temperature 
condition agree very well with reference. 
In future, we can extend this work to include the aspect ratio (i.e. general rectangular cross 
section). This ratio will be added to the problem as dimensionless independent parameter 
beside Hartmann number M.  Also, it is a good idea to include the natural convection, which 
makes us to be concerned with a problem of combined forced-and-free convection flow in a 
transverse magnetic field. Off course, it will be highly non-linear and we must employ an 
accurate and stable algorithm. This dilemma will add extra complexity to the problem, 
beside the independent Grashof number will appear in the governing equations. 
 

 
Fig. 10. Nusselt number versus Hartmann number for different flow geometries 
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        Hs(1,j)=0; 
        Hs(n+1,j)=0;         
    end    
    for it=1:num_iter 
    wsave=w; 
    Hsave=H;  
    Rws=0; 
    RHs=0; 
   % Solution for w* & H*    
    for i=2:n 
        for j=2:m 
       ws(i,j)= c1*(ws(i,j+1)+ws(i,j-1)+ws(i+1,j)+ws(i-1,j))-c2*(Hs(i+1,j)-Hs(i-1,j))-c3; 
       Hs(i,j)= c1*(Hs(i,j+1)+Hs(i,j-1)+Hs(i+1,j)+Hs(i-1,j))-c2*(ws(i+1,j)-ws(i-1,j));      
            % Rws = Root mean square residuals for w* 
            % RHs = Root mean square residuals for H*             
            Rws=Rws+sqrt((w(i,j)-wsave(i,j))^2); 
            RHs=RHs+sqrt((H(i,j)-Hsave(i,j))^2); 
        end 
    end 
   Rwss(it,1)=Rws; 
   RHss(it,1)=RHs; 
    if (RHs<1e-8 & Rws<1e-8) 
        break 
    end 
end 
% gamma = Non-dimensional pressure gradient 
% w = Dimensionless axial velocity 
% H = Dimensionless induced axial magnetic field 
% f = friction factor 
gamma=1/sum(sum(ws*h^2)); 
w=ws*gamma; 
H=Hs*gamma; 
f=-2*gamma; 
% t = Dimensionless temperature (theta) 
t=zeros(n+1,m+1); 
%B.C.'s at the four corners for theta (uniform surface heat flux) 
    t(1,1)=0; 
    t(1,m+1)=0; 
    t(n+1,1)=0; 
    t(n+1,m+1)=0; 
%B.C.'s at the four sides for theta (uniform surface heat flux) 
    for i=2:n 
         t(i,m+1)=0; 
         t(i,1)=0; 
     end 
    for j=2:m 

In our calculations, we used the root mean square residuals R (defined in the program) to 
check the convergence for each flow variable. Once R< 10-7, then the iterations are stopped.  
From the definition of θ, the thermal boundary condition at the surfaces, for both the 
uniform surface heat flux and constant surface temperature, is θ = 0. 
The problem was solved by many researchers and they employed different software 
packages to solve  the resulting simultaneous algebraic equations. They used, for example, 
Fortran and C++ languages and spectral method. But here, the matLab is employed and 
noticed that this program is so efficient and powerful for solving such problem.  
The Matlab programs for uniform surface heat flux and uniform surface temperature are 
presented below. 

 
9.1 Uniform Surface Heat Flux 
%Solution for MHD flow inside square duct for const. heat flux B.C.'s 
% a<x<b , c<y<d 
% M = Hartmann number 
% n = number of subintervals for x 
% m = number of subintervals for y 
% h = delta x* 
% k = delta y* 
% Note: In this program delta x = delta y 
a=0; b=1; c=0; d=1; num_iter=20000; M=100; 
n=100; m=100; h=(b-a)/n; k=(d-c)/m; 
c1=1/4;    c2=(h*M)/8;  c3=(h^2)/4; 
% ws = negative normalized axial velocity (w*) 
% Hs = normalized induced axial magnetic field (H*) 
ws=zeros(n+1, m+1); 
Hs=zeros(n+1, m+1); 
%B.C.'s at the four corners for w*(no slip conditions) & H* (electrically insulated surface) 
    ws(1,1)=0; 
    ws(n+1,1)=0; 
    ws(1,m+1)=0; 
    ws(n+1,m+1)=0; 
    Hs(1,1)=0; 
    Hs(n+1,1)=0; 
    Hs(1,m+1)=0; 
    Hs(n+1,m+1)=0; 
%B.C.'s at the four sides for w*(no slip conditions) & H* (electrically insulated surface) 
    for i=2:n 
        ws(i,1)=0; 
        ws(i,m+1)=0; 
        Hs(i,1)=0; 
        Hs(i,m+1)=0; 
    end 
    for j=2:m 
        ws(1,j)=0; 
        ws(n+1,j)=0; 
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        Hs(1,j)=0; 
        Hs(n+1,j)=0;         
    end    
    for it=1:num_iter 
    wsave=w; 
    Hsave=H;  
    Rws=0; 
    RHs=0; 
   % Solution for w* & H*    
    for i=2:n 
        for j=2:m 
       ws(i,j)= c1*(ws(i,j+1)+ws(i,j-1)+ws(i+1,j)+ws(i-1,j))-c2*(Hs(i+1,j)-Hs(i-1,j))-c3; 
       Hs(i,j)= c1*(Hs(i,j+1)+Hs(i,j-1)+Hs(i+1,j)+Hs(i-1,j))-c2*(ws(i+1,j)-ws(i-1,j));      
            % Rws = Root mean square residuals for w* 
            % RHs = Root mean square residuals for H*             
            Rws=Rws+sqrt((w(i,j)-wsave(i,j))^2); 
            RHs=RHs+sqrt((H(i,j)-Hsave(i,j))^2); 
        end 
    end 
   Rwss(it,1)=Rws; 
   RHss(it,1)=RHs; 
    if (RHs<1e-8 & Rws<1e-8) 
        break 
    end 
end 
% gamma = Non-dimensional pressure gradient 
% w = Dimensionless axial velocity 
% H = Dimensionless induced axial magnetic field 
% f = friction factor 
gamma=1/sum(sum(ws*h^2)); 
w=ws*gamma; 
H=Hs*gamma; 
f=-2*gamma; 
% t = Dimensionless temperature (theta) 
t=zeros(n+1,m+1); 
%B.C.'s at the four corners for theta (uniform surface heat flux) 
    t(1,1)=0; 
    t(1,m+1)=0; 
    t(n+1,1)=0; 
    t(n+1,m+1)=0; 
%B.C.'s at the four sides for theta (uniform surface heat flux) 
    for i=2:n 
         t(i,m+1)=0; 
         t(i,1)=0; 
     end 
    for j=2:m 

In our calculations, we used the root mean square residuals R (defined in the program) to 
check the convergence for each flow variable. Once R< 10-7, then the iterations are stopped.  
From the definition of θ, the thermal boundary condition at the surfaces, for both the 
uniform surface heat flux and constant surface temperature, is θ = 0. 
The problem was solved by many researchers and they employed different software 
packages to solve  the resulting simultaneous algebraic equations. They used, for example, 
Fortran and C++ languages and spectral method. But here, the matLab is employed and 
noticed that this program is so efficient and powerful for solving such problem.  
The Matlab programs for uniform surface heat flux and uniform surface temperature are 
presented below. 

 
9.1 Uniform Surface Heat Flux 
%Solution for MHD flow inside square duct for const. heat flux B.C.'s 
% a<x<b , c<y<d 
% M = Hartmann number 
% n = number of subintervals for x 
% m = number of subintervals for y 
% h = delta x* 
% k = delta y* 
% Note: In this program delta x = delta y 
a=0; b=1; c=0; d=1; num_iter=20000; M=100; 
n=100; m=100; h=(b-a)/n; k=(d-c)/m; 
c1=1/4;    c2=(h*M)/8;  c3=(h^2)/4; 
% ws = negative normalized axial velocity (w*) 
% Hs = normalized induced axial magnetic field (H*) 
ws=zeros(n+1, m+1); 
Hs=zeros(n+1, m+1); 
%B.C.'s at the four corners for w*(no slip conditions) & H* (electrically insulated surface) 
    ws(1,1)=0; 
    ws(n+1,1)=0; 
    ws(1,m+1)=0; 
    ws(n+1,m+1)=0; 
    Hs(1,1)=0; 
    Hs(n+1,1)=0; 
    Hs(1,m+1)=0; 
    Hs(n+1,m+1)=0; 
%B.C.'s at the four sides for w*(no slip conditions) & H* (electrically insulated surface) 
    for i=2:n 
        ws(i,1)=0; 
        ws(i,m+1)=0; 
        Hs(i,1)=0; 
        Hs(i,m+1)=0; 
    end 
    for j=2:m 
        ws(1,j)=0; 
        ws(n+1,j)=0; 
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Hs=zeros(n+1, m+1); 
%B.C.'s at the four corners for w*(no slip conditions) & H* (electrically insulated surface) 
    ws(1,1)=0; 
    ws(n+1,1)=0; 
    ws(1,m+1)=0; 
    ws(n+1,m+1)=0; 
    Hs(1,1)=0; 
    Hs(n+1,1)=0; 
    Hs(1,m+1)=0; 
    Hs(n+1,m+1)=0; 
    %B.C.'s at the four sides for w*(no slip conditions) & H* (electrically insulated surface) 
    for i=2:n 
        ws(i,1)=0; 
        ws(i,m+1)=0; 
        Hs(i,1)=0; 
        Hs(i,m+1)=0; 
    end 
    for j=2:m 
        ws(1,j)=0; 
        ws(n+1,j)=0;         
        Hs(1,j)=0; 
        Hs(n+1,j)=0; 
    end 
    for it=1:num_iter 
    wsave=w; 
    Hsave=H;  
    Rws=0; 
    RHs=0; 
   % Solution for w* & H* 
    for i=2:n 
        for j=2:m 
       ws(i,j)= c1*(ws(i,j+1)+ws(i,j-1)+ws(i+1,j)+ws(i-1,j))-c2*(Hs(i+1,j)-Hs(i-1,j))-c3; 
       Hs(i,j)= c1*(Hs(i,j+1)+Hs(i,j-1)+Hs(i+1,j)+Hs(i-1,j))-c2*(ws(i+1,j)-ws(i-1,j));      
            % Rws = Root mean square residuals for w* 
            % RHs = Root mean square residuals for H*             
            Rws=Rws+sqrt((w(i,j)-wsave(i,j))^2); 
            RHs=RHs+sqrt((H(i,j)-Hsave(i,j))^2); 
        end 
    end 
   Rwss(it,1)=Rws; 
   RHss(it,1)=RHs; 
    if (RHs<1e-8 & Rws<1e-8) 
        break 
    end 
end 
% gamma = Non-dimensional pressure gradient 

         t(1,j)=0; 
         t(n+1,j)=0; 
     end 
for itt=1:num_iter 
     tsave=t; 
     Rt=0; 
     % Solution for theta 
     for i=2:n 
         for j=2:m 
             t(i,j)=1/4*(t(i-1,j)+t(i+1,j)+t(i,j-1)+t(i,j+1))-h^2*w(i,j); 
             % Rt = Root mean square residuals for theta              
             Rt=Rt+sqrt((t(i,j)-tsave(i,j))^2); 
         end 
     end 
     Rtt(itt,1)=Rt; 
         if Rt<1e-8 
        break 
    end 
 end      
% thetam = Mean dimensionless temperature 
% nu = Nusselt number (Nu) 
thetam=(sum(sum(t.*w*h^2)))/(sum(sum(w*h^2)));      
nu=-1/thetam;    
% Display solution with x from left to right  
ws=[ws'];  
w=[w']; 
Hs=[Hs'];  
H=[H']; 
t=[t']; 
x= a:h:b; y=c:k:d; 

 
9.2 Uniform Surface Temperature 
%Solution for MHD flow inside square duct for const. temperature B.C.'s 
% a<x<b , c<y<d 
% M = Hartmann number 
% n = number of subintervals for x 
% m = number of subintervals for y 
% h = delta x* 
% k = delta y* 
% Note: In this program delta x = delta y 
a=0; b=1; c=0; d=1; num_iter=20000; M=100; 
n=100; m=100; h=(b-a)/n; k=(d-c)/m; 
c1=1/4;    c2=(h*M)/8;  c3=(h^2)/4; 
% ws = negative normalized axial velocity (w*) 
% Hs = normalized induced axial magnetic field (H*) 
ws=zeros(n+1, m+1); 
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Hs=zeros(n+1, m+1); 
%B.C.'s at the four corners for w*(no slip conditions) & H* (electrically insulated surface) 
    ws(1,1)=0; 
    ws(n+1,1)=0; 
    ws(1,m+1)=0; 
    ws(n+1,m+1)=0; 
    Hs(1,1)=0; 
    Hs(n+1,1)=0; 
    Hs(1,m+1)=0; 
    Hs(n+1,m+1)=0; 
    %B.C.'s at the four sides for w*(no slip conditions) & H* (electrically insulated surface) 
    for i=2:n 
        ws(i,1)=0; 
        ws(i,m+1)=0; 
        Hs(i,1)=0; 
        Hs(i,m+1)=0; 
    end 
    for j=2:m 
        ws(1,j)=0; 
        ws(n+1,j)=0;         
        Hs(1,j)=0; 
        Hs(n+1,j)=0; 
    end 
    for it=1:num_iter 
    wsave=w; 
    Hsave=H;  
    Rws=0; 
    RHs=0; 
   % Solution for w* & H* 
    for i=2:n 
        for j=2:m 
       ws(i,j)= c1*(ws(i,j+1)+ws(i,j-1)+ws(i+1,j)+ws(i-1,j))-c2*(Hs(i+1,j)-Hs(i-1,j))-c3; 
       Hs(i,j)= c1*(Hs(i,j+1)+Hs(i,j-1)+Hs(i+1,j)+Hs(i-1,j))-c2*(ws(i+1,j)-ws(i-1,j));      
            % Rws = Root mean square residuals for w* 
            % RHs = Root mean square residuals for H*             
            Rws=Rws+sqrt((w(i,j)-wsave(i,j))^2); 
            RHs=RHs+sqrt((H(i,j)-Hsave(i,j))^2); 
        end 
    end 
   Rwss(it,1)=Rws; 
   RHss(it,1)=RHs; 
    if (RHs<1e-8 & Rws<1e-8) 
        break 
    end 
end 
% gamma = Non-dimensional pressure gradient 

         t(1,j)=0; 
         t(n+1,j)=0; 
     end 
for itt=1:num_iter 
     tsave=t; 
     Rt=0; 
     % Solution for theta 
     for i=2:n 
         for j=2:m 
             t(i,j)=1/4*(t(i-1,j)+t(i+1,j)+t(i,j-1)+t(i,j+1))-h^2*w(i,j); 
             % Rt = Root mean square residuals for theta              
             Rt=Rt+sqrt((t(i,j)-tsave(i,j))^2); 
         end 
     end 
     Rtt(itt,1)=Rt; 
         if Rt<1e-8 
        break 
    end 
 end      
% thetam = Mean dimensionless temperature 
% nu = Nusselt number (Nu) 
thetam=(sum(sum(t.*w*h^2)))/(sum(sum(w*h^2)));      
nu=-1/thetam;    
% Display solution with x from left to right  
ws=[ws'];  
w=[w']; 
Hs=[Hs'];  
H=[H']; 
t=[t']; 
x= a:h:b; y=c:k:d; 

 
9.2 Uniform Surface Temperature 
%Solution for MHD flow inside square duct for const. temperature B.C.'s 
% a<x<b , c<y<d 
% M = Hartmann number 
% n = number of subintervals for x 
% m = number of subintervals for y 
% h = delta x* 
% k = delta y* 
% Note: In this program delta x = delta y 
a=0; b=1; c=0; d=1; num_iter=20000; M=100; 
n=100; m=100; h=(b-a)/n; k=(d-c)/m; 
c1=1/4;    c2=(h*M)/8;  c3=(h^2)/4; 
% ws = negative normalized axial velocity (w*) 
% Hs = normalized induced axial magnetic field (H*) 
ws=zeros(n+1, m+1); 
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Hs=[Hs'];  
H=[H']; 
t=[t']; 
x= a:h:b; y=c:k:d; 

 
9.3 Derivation of the Energy Equations 
The detailed derivation of the simplified energy equation are given in the literature and the 
key behind this derivation is to neglect the last two terms, in Eq. 3, which represent the 
viscous and Joulean dissipations, respectively, and to apply the energy balance given by: 
Heat supply to fluid from surface = Energy removed by fluid by convection 
Then the simplified dimensionless energy equations, Eqs. 15 and 16 given above , can be 
obtained if the above assumptions are applied, the axial conductive term is omitted, and 
proper dimensionless variables are defined. 
 
 
 

% w = Dimensionless axial velocity 
% H = Dimensionless induced axial magnetic field 
% f = friction factor 
gamma=1/sum(sum(ws*h^2)); 
w=ws*gamma; 
H=Hs*gamma; 
f=-2*gamma; 
% t = Dimensionless temperature (theta) 
t=zeros(n+1,m+1); 
%B.C.'s at the four corners for theta (uniform surface temperature) 
    t(1,1)=0; 
    t(1,m+1)=0; 
    t(n+1,1)=0; 
    t(n+1,m+1)=0; 
%B.C.'s at the four sides for theta (uniform surface temperature) 
    for i=2:n 
         t(i,m+1)=0; 
         t(i,1)=0; 
     end 
    for j=2:m 
         t(1,j)=0; 
         t(n+1,j)=0; 
     end 
for itt=1:num_iter 
     tsave=t; 
     Rt=0; 
     % Solution for theta 
     for i=2:n 
         for j=2:m 
             t(i,j)=(t(i-1,j)+t(i+1,j)+t(i,j-1)+t(i,j+1))/(4-4*h^2*nu*w(i,j)); 
             % Rt = Root mean square residuals for theta 
             Rt=Rt+sqrt((t(i,j)-tsave(i,j))^2); 
         end 
     end 
     % thetam = Mean dimensionless temperature 
     % nu = Nusselt number (Nu) 
     thetam=(sum(sum(t.*w*h^2)))/(sum(sum(w*h^2)));      
     nu=-1/thetam;         
     Rtt(itt,1)=Rt; 
         if Rt<1e-8 
        break 
    end 
 end      
% Display solution with x from left to right  
ws=[ws'];  
w=[w']; 
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Hs=[Hs'];  
H=[H']; 
t=[t']; 
x= a:h:b; y=c:k:d; 

 
9.3 Derivation of the Energy Equations 
The detailed derivation of the simplified energy equation are given in the literature and the 
key behind this derivation is to neglect the last two terms, in Eq. 3, which represent the 
viscous and Joulean dissipations, respectively, and to apply the energy balance given by: 
Heat supply to fluid from surface = Energy removed by fluid by convection 
Then the simplified dimensionless energy equations, Eqs. 15 and 16 given above , can be 
obtained if the above assumptions are applied, the axial conductive term is omitted, and 
proper dimensionless variables are defined. 
 
 
 

% w = Dimensionless axial velocity 
% H = Dimensionless induced axial magnetic field 
% f = friction factor 
gamma=1/sum(sum(ws*h^2)); 
w=ws*gamma; 
H=Hs*gamma; 
f=-2*gamma; 
% t = Dimensionless temperature (theta) 
t=zeros(n+1,m+1); 
%B.C.'s at the four corners for theta (uniform surface temperature) 
    t(1,1)=0; 
    t(1,m+1)=0; 
    t(n+1,1)=0; 
    t(n+1,m+1)=0; 
%B.C.'s at the four sides for theta (uniform surface temperature) 
    for i=2:n 
         t(i,m+1)=0; 
         t(i,1)=0; 
     end 
    for j=2:m 
         t(1,j)=0; 
         t(n+1,j)=0; 
     end 
for itt=1:num_iter 
     tsave=t; 
     Rt=0; 
     % Solution for theta 
     for i=2:n 
         for j=2:m 
             t(i,j)=(t(i-1,j)+t(i+1,j)+t(i,j-1)+t(i,j+1))/(4-4*h^2*nu*w(i,j)); 
             % Rt = Root mean square residuals for theta 
             Rt=Rt+sqrt((t(i,j)-tsave(i,j))^2); 
         end 
     end 
     % thetam = Mean dimensionless temperature 
     % nu = Nusselt number (Nu) 
     thetam=(sum(sum(t.*w*h^2)))/(sum(sum(w*h^2)));      
     nu=-1/thetam;         
     Rtt(itt,1)=Rt; 
         if Rt<1e-8 
        break 
    end 
 end      
% Display solution with x from left to right  
ws=[ws'];  
w=[w']; 
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1. Introduction 

The global positioning system (GPS) is known as its positioning and timing applications. 
Besides that, GPS multi-antenna system has become a high-accurate approach for attitude 
determination(Cohen et al. 1994; Van Grass and Braasch 1991). In comparison with the 
traditional inertial sensors, the GPS multi-antenna system provides attitude results without 
drift effects, and it has the advantages due to the cost-effectiveness and the flexible 
installation. The drawback is that GPS signals can be interfered or blocked in some shadow 
environments. Also, resolving the carrier phase ambiguity is another challenging task for 
single-frequency receiver and real-time applications. 
 
This MATLAB toolbox is developed for attitude determination using GPS code data, which 
is partly introduced in (Dai et al. 2008). However, the implementation aspects will be 
highlighted herein. Some development details will be stressed and some problems occurred 
during the development procedure will also be presented in the following parts. It derives 
the attitude parameters based on the double-differenced (carrier phase smoothed) C/A code 
measurement. After the baselines between the antennas have been calculated, two 
algorithms can be invoked to determine the attitude: a direct computation method and a 
least-squares estimation approach(Lu 1995). The motivation of developing such a toolbox is 
not to provide a powerful and reliable software package for real applications, but to present 
the basic functions needed for GPS-based attitude determination.  
It should be pointed out that this toolbox contains no functions to resolve double-
differenced integer phase ambiguities. However, there is already some source code available 
(Chang and Zhou 2007; Jonge de and Tiberius 1996), so that those who want to employ the 
phase measurement to achieve a precise attitude result can choose the proper source code 
and combine it with our programs. As an example, we provide a demo program with a set 
of resolved ambiguities to show the results based on carrier phase.    
 
In the following parts, we will first introduce the theoretical background of the attitude 
determination using GPS multiple antenna system, and then the implementation aspects 
will be highlighted. The test results will be presented to show the performance of the 
toolbox. Finally this study will be summarized and the future work will be suggested. 
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2.2 Euler angles 
A three-dimensional rotation can be decomposed into three individual rotations with each 
around a single axis. Euler angles represent the rotation angles with respect to three axes and 
usually comprise of yaw, pitch and roll angles, as shown in Fig. 2. Note that in the right-handed 
frame, the Euler angles describe counter-clockwise rotations when viewed from the end of the 
positive axes and clockwise rotation when viewed from the origin of the positive axes.  

 

 
LLF=Local Level Frame 

Fig. 2. Euler angles 

Each rotation can be described by a Direction Cosine Matrix (DCM). A three-dimensional 
rotation can be obtained by multiplying the three DCMs into a specific order, yielding the 
combined rotation matrix. An example using the yaw-pitch-roll sequence is given below 
 

 
where y, p and r are short-hand notations for yaw, pitch and roll angles, respectively; c and s 
denote the cosine and sine operators, respectively. 

 
3. Algorithms used for attitude determination in the toolbox  

In section 2, the general mathematic model for attitude determination is presented. 
However, how to resolve the attitude parameters using this model is still an issue. In this 
section, we will introduce two algorithms, the direct attitude computation and least-squares 
attitude determination. 

 
3.1 Least-squares attitude determination 
In order to resolve the three dimensional unknown Euler angles using the nonlinear model 
given in (1), more than three equations are needed, or in other words, more than three 
baseline vectors are needed. Each master-slave antenna baseline provides three baseline 
vectors, and hence we need a minimum of two non-collinear slave antennas. Based on the 
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2. Coordinate frames and general mathematic model 

In this section, the coordinate frames involved in the attitude determination system will be 
first explained. Then the attitude parameterization based on the Euler angles will be 
introduced. The general mathematic model for attitude determination will be presented. 

 
2.1 Coordinate frames 
 In order to clarify the attitude determination using GPS multiple antennas, several 
coordinate frames needs to be distinguished, including the Earth-Centered-Earth-Fixed 
(ECEF) frame, the Local Level Frame (LLF), the Antenna Body Frame (ABF)   
 

Y-axis 

X-axis 

Z-axis 
b12 

 
Fig. 1. Coordinate frames (Left: ECEF and local level frame; Right: antenna body frame) 
 
The ECEF, also referred to as terrestrial equatorial system, is defined as follows: the origin is 
the geocenter; XECEF is located in the equatorial plane and points towards then Greenwich 
meridian; ZECEF is the rotation axis of the earth; YECEF completes the right-handed Cartesian 
system along with ZECEF and XECEF.  
 
The local level frame (LLF) describes the local coordinates of a point with respect to a 
reference point, and it is usually expressed in East-North-Up directions. The origin of LLF is 
chosen as the reference point. XLLF points to ellipsoidal east and YLLF to north; ZLLF is along 
with the ellipsoidal norm and points upwards. LLF is usually adopted as the reference 
frame in the attitude determination frame.  
 
The antenna body application (ABF) is formed by the GPS antennas. Here we assume that 
the antennas are mounted on a rigid platform, i.e. the relative distances between the 
antennas remain unchanged. One antenna is chosen as the master antenna, and the other 
antennas are called slave antennas. Actually, three antennas are sufficient to determine the 
antenna body frame. The origin is chosen as the position of the phase center of antenna 1, 
namely the master antenna. YABF is assumed along with the baseline from antenna 1 to 
antenna 2. XABF is perpendicular with YABF and lies in the plane defined by antenna 1, 2 and 
3. ZABF is perpendicular to both of the XABF and YABF axis and points upwards.  
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Each rotation can be described by a Direction Cosine Matrix (DCM). A three-dimensional 
rotation can be obtained by multiplying the three DCMs into a specific order, yielding the 
combined rotation matrix. An example using the yaw-pitch-roll sequence is given below 
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In section 2, the general mathematic model for attitude determination is presented. 
However, how to resolve the attitude parameters using this model is still an issue. In this 
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Fig. 1. Coordinate frames (Left: ECEF and local level frame; Right: antenna body frame) 
 
The ECEF, also referred to as terrestrial equatorial system, is defined as follows: the origin is 
the geocenter; XECEF is located in the equatorial plane and points towards then Greenwich 
meridian; ZECEF is the rotation axis of the earth; YECEF completes the right-handed Cartesian 
system along with ZECEF and XECEF.  
 
The local level frame (LLF) describes the local coordinates of a point with respect to a 
reference point, and it is usually expressed in East-North-Up directions. The origin of LLF is 
chosen as the reference point. XLLF points to ellipsoidal east and YLLF to north; ZLLF is along 
with the ellipsoidal norm and points upwards. LLF is usually adopted as the reference 
frame in the attitude determination frame.  
 
The antenna body application (ABF) is formed by the GPS antennas. Here we assume that 
the antennas are mounted on a rigid platform, i.e. the relative distances between the 
antennas remain unchanged. One antenna is chosen as the master antenna, and the other 
antennas are called slave antennas. Actually, three antennas are sufficient to determine the 
antenna body frame. The origin is chosen as the position of the phase center of antenna 1, 
namely the master antenna. YABF is assumed along with the baseline from antenna 1 to 
antenna 2. XABF is perpendicular with YABF and lies in the plane defined by antenna 1, 2 and 
3. ZABF is perpendicular to both of the XABF and YABF axis and points upwards.  
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where the subscript l indicate the local level frame. Based on this model, the least-squares 
adjustment can be carried out. The correction values for the three Euler angles 
corresponding to a rotation matrix R0 are computed by:  
 

 
where the short-hand notation Cov(·) denotes the error covariance matrix. The least-squares 
adjustment proceeds until the correction values converge to a certain threshold or the 
maximal iteration number is reached. 

 
3.2 Direct attitude computation approach 
Another fast algorithm for attitude determination is referred to as direct attitude 
computation approach. Based on the definition of antenna body frame, the coordinates of 
the slave antenna in the antenna body frame can be expressed as b2=[0 b12 0]T, where b12 is 
the magnitude of baseline from the master antenna (antenna 1) to the slave antenna 
(antenna 2), as shown in Fig. 1. Substituting the antenna body frame coordinate of the slave 
antenna into model (1) and using the orthogonality of the rotation matrix yields the local 
level frame coordinate of slave antenna: 
 

 
After that, the yaw angle and pitch angle can be directly obtained as: 
 

 
From both of the expressions of pitch given in (7) it can be seen that the pitch angle is 
acquirable using only the local level frame coordinate of the slave antenna instead of using 
the baseline length b12. This reveals a significant advantage of the direct attitude 
computation that the magnitude of baseline length does not need to be measured in 
advance. 
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linearization of the DCM around the proper attitude parameters y0, r0 and p0, we have the 
following model to construct the least-squares attitude estimation (Lu 1995):  
 
 

 
In order to describe the matrix Ai for i=2,3,…,n, we express the combined rotation matrix R 
in terms of row vectors, i.e. R=[r1 r2 r3]T, then the matrix Ai has the form: 
 

 
In model (2), R0 is the DCM at y0, r0 and p0; ∆bi  and ∆li are the errors contained in the 
antenna body frame and the local level frame of the antenna i, respectively; I denotes the 
identity matrix and O the zero matrix. A detailed Ai can be seen below: 
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where the subscript l indicate the local level frame. Based on this model, the least-squares 
adjustment can be carried out. The correction values for the three Euler angles 
corresponding to a rotation matrix R0 are computed by:  
 

 
where the short-hand notation Cov(·) denotes the error covariance matrix. The least-squares 
adjustment proceeds until the correction values converge to a certain threshold or the 
maximal iteration number is reached. 
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(antenna 2), as shown in Fig. 1. Substituting the antenna body frame coordinate of the slave 
antenna into model (1) and using the orthogonality of the rotation matrix yields the local 
level frame coordinate of slave antenna: 
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linearization of the DCM around the proper attitude parameters y0, r0 and p0, we have the 
following model to construct the least-squares attitude estimation (Lu 1995):  
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Fig. 3. Flowchart of the toolbox 

 
4.1 Graphic user interface  
After copying all the files into a directory and loading the main program ControlPanel() into 
the MATLAB environment, the toolbox can be executed. Shown first is the GUI for setting 
the application scenarios and assigning the relevant parameters. 

Yes 

No 

GUI 

Read RINEX files 

Data synchonization and verification 

Single point positioning for master antenna 

Form double differences to estimate the baselines 

Direct attitude compuation 

 Antennas>3? 

Identification the antenna body frame 

Attitude determination by least squares 

Output the results 

END 

 

The coordinate of antenna 3 in the local level frame is then required to fix the value of roll. 
We can first rotate the antenna 3 by yaw and pitch resulted from (7) in order to obtain the 
rotation matrix including roll: 
 

      
              
             

3, 3,

3, 3,

3, 3,

1 0 0 ( ) ( ) 0
0 ( ) ( ) ( ) ( ) 0
0 ( ) ( ) 0 0 1

l l

l l

l l

x c y s y x
y c p s p s y c y y
z s p c p z

 (8) 

 
Then following relationship holds by employing the coordinate of antenna 3 into the 
antenna body frame: 
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Note that the first two scalars x3,b and y3,b in the body frame vector are not to be explicitly 
specified, from the scalar 0 in body frame of the antenna 3 we can simply derive the roll 
angle: 
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The direct attitude computation and least-squares approaches apply to different scenarios. If 
the baselines are not given in advance, the direct attitude computation can still yield the 
attitude results. However, it does not take all the measurement into calculation and hence 
leads to a non-optimal solution. 

 
4. Implementation aspects 

The flowchart of the toolbox is given in Fig. 3. Some key points at each step will be 
highlighted in each subsection.  
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and is mainly used to calculate the information related to the satellites, like the satellite 
coordinates. The RINEX observation file is mainly composed of the available GPS 
measurement of each time epoch. 
 
As the first task for analyzing the RINEX observation data, the head part should be read. 
The head part includes some global information, like the available measurement types 
supported by this receiver and their corresponding orders recorded in the following 
paragraphs. Only the C/A code data and carrier phase data on L1 signal are used in this 
toolbox. The carrier phase data will not be directly used for positioning, but can smooth the 
code data to reduce the potential multipath error and improve the quality of code data. 
Another important factor is the starting and end time of the data records, as well as the 
sampling interval.  Based on these information, the total epochs involved can be calculated. 
In this toolbox the measurement of each antenna is recorded in a matrix with the first order 
being the time index and second order being the measurement type. After knowing the total 
number of epochs and measurement types, the matrix can be predefined. However, the 
starting and end epoch are not always available for some receivers. In this case, the matrix 
has to be extended dynamically epoch by epoch, and this can significantly reduce the 
processing efficiency for a large data set.  
 
Each paragraph of the RINEX observation file represents the measurement of each epoch. 
The fist line of the paragraph indicates the visible satellites. Due to the all-in-view function 
and the integration of GPS with other GNSS system like GLONASS, a single line might not 
be enough to identify all the satellites in view, so that the an additional line(s) follows, like 
the following example from a GPS/GLONASS receiver: 

08 11 20 14 56 36.0000000  0 16G19G 8G 3G22G18G 6G15G 7G16G21R 7R14 
R22R13R21R 6 

This case must be taken into account in order to prevent the ignorance of the satellites. In 
this toolbox, only GPS data will be used and the other GNSS data are excluded. 
 
When processing the GPS ephemeris data, more than one ephemeris data for a satellite 
might appear in a single navigation file. In this case, the ephemeris data close to the current 
epoch will be utilized. This is realized in the function SeekEpheEpoch(). 
 
Each line of a standard RINEX file should be composed of exactly 80 characters. However, in 
some lines without meaningful words at the end, the line terminator always appears before the 
80th character. This always causes the problem when analyzing the RINEX data. We use a 
function Getline80() to solve this problem. This function first invokes the function fgetl() to read 
each line and add space characters to the end if the length of the line is less than 80 characters.  
 
4.3 Data synchronization and verification 
The data synchronization is to collect the GPS measurement of the common satellites 
acquired at the same time epoch. In most receivers, the time can be accurate to the second 
level or deci-second level. Nevertheless, some low cost receivers output the time with a 
slight floating part. For example the data at the same epoch from two different receivers 
with 1 Hz sampling rate: 
08 11 20 14 16 35.0000000  0 11G03G06G07G15G16G18G19G21G22G25G26 
08 11 20 14 16 35.0040000  0 07G03G07G15G18G19G21G25 

 

 
Fig. 4. Graphical user interface for toolbox 
 
The layout of the GUI is composed of three columns. In the left column, the user can choose 
the RINEX observation files (upper) and navigation file (lower). Note that only the 
navigation file of an antenna is needed because all the antennas were receiving the satellite 
information simultaneously. In the upper parts of the middle column, the user can input the 
magnitude of the baselines between antennas in units of meters. In the lower parts, three 
parameters can be assigned, including a) the smoothing interval which determines the 
length of epochs for code data smoothing, b) the processed epochs which allows the user to 
process the data at a certain length in a large data set, and c) the elevation mask angle which 
excludes some low angle satellites due to the their potential large troposphere error and 
multipath error. Note that the parameters in the middle column are only optional items. The 
user can leave them blank, and in this case, only the direct attitude computation will be 
carried out and the default values of the parameters will be used instead. In the right 
column there are two buttons for viewing the readme file and starting the calculation. 

 
4.2 Processing of RINEX data 
Receiver Independent Exchange Format (RINEX) is a standard format widely accepted by 
the receiver manufactures to record the GPS navigation and measurement messages. 
However, there are slight differences in the files outputted from different receivers. A robust 
program should take these differences into account in order to expand the application 
scenarios. The main program for reading and analyzing the RINEX data can be seen from 
the function ProcessRINEX(). This function will invoke two functions LoadRinexNav() and 
LoadRinexOBS() to read the navigation file and the observation file, respectively. 
 
This toolbox is dedicated to the post-processing, so that the data will be analyzed and saved 
into MATLAB data files (.MAT file). The RINEX navigation file contains the ephemeris data 
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and is mainly used to calculate the information related to the satellites, like the satellite 
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The data synchronization is to collect the GPS measurement of the common satellites 
acquired at the same time epoch. In most receivers, the time can be accurate to the second 
level or deci-second level. Nevertheless, some low cost receivers output the time with a 
slight floating part. For example the data at the same epoch from two different receivers 
with 1 Hz sampling rate: 
08 11 20 14 16 35.0000000  0 11G03G06G07G15G16G18G19G21G22G25G26 
08 11 20 14 16 35.0040000  0 07G03G07G15G18G19G21G25 

 

 
Fig. 4. Graphical user interface for toolbox 
 
The layout of the GUI is composed of three columns. In the left column, the user can choose 
the RINEX observation files (upper) and navigation file (lower). Note that only the 
navigation file of an antenna is needed because all the antennas were receiving the satellite 
information simultaneously. In the upper parts of the middle column, the user can input the 
magnitude of the baselines between antennas in units of meters. In the lower parts, three 
parameters can be assigned, including a) the smoothing interval which determines the 
length of epochs for code data smoothing, b) the processed epochs which allows the user to 
process the data at a certain length in a large data set, and c) the elevation mask angle which 
excludes some low angle satellites due to the their potential large troposphere error and 
multipath error. Note that the parameters in the middle column are only optional items. The 
user can leave them blank, and in this case, only the direct attitude computation will be 
carried out and the default values of the parameters will be used instead. In the right 
column there are two buttons for viewing the readme file and starting the calculation. 

 
4.2 Processing of RINEX data 
Receiver Independent Exchange Format (RINEX) is a standard format widely accepted by 
the receiver manufactures to record the GPS navigation and measurement messages. 
However, there are slight differences in the files outputted from different receivers. A robust 
program should take these differences into account in order to expand the application 
scenarios. The main program for reading and analyzing the RINEX data can be seen from 
the function ProcessRINEX(). This function will invoke two functions LoadRinexNav() and 
LoadRinexOBS() to read the navigation file and the observation file, respectively. 
 
This toolbox is dedicated to the post-processing, so that the data will be analyzed and saved 
into MATLAB data files (.MAT file). The RINEX navigation file contains the ephemeris data 
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4.6 Selection of the algorithms for attitude determination 
In this toolbox, the user can fix the baseline length between antennas once this has been 
measured in advance using other sensors or approaches. A simple way to determine the 
baseline is to collect the GPS data for a long observation session and perform the differential 
GPS technique using carrier phase data. There are also some free internet services for this 
purpose, like AUSPOS and CSRS-PPP services. However, inputting the baseline is not a 
prerequisite for resolving the attitude from GPS data. As stated before, the direct attitude 
computation approach does not need the premeasured baseline. If the baselines are not 
identified, the direct attitude computation will be the only approach. One drawback of this 
approach is that the measurements are not fully utilized so that it yields non-optimal 
estimates. Once the baselines are given by the user, the least-squares attitude determination 
will also be performed. The user can input the GPS data from 3 or more redundant 
receivers. The redundant data can only be employed once the corresponding baselines are 
provided. 

 
4.7 Attitude determination 
The baseline between each master-slave antenna pair is obtained initially in ECEF frame and 
will be project into the local level frame using the function ECEF2ENU(). After that, the 
aforementioned approaches can be carried out to determine the attitude. Both can be seen in 
the function AD_Direct() and AD_LSQ(), respectively. The least-squares adjustment needs an 
initial guess of the Euler angles. The initial values can be chosen freely using the value like 
zeros. The attitude results obtained from the direct approach can also be used to initialize the 
least-squares adjustment in order to reduce the iteration number. The range of the Euler angles 
should be fixed, and in this toolbox the Euler angles can range from –180 to 180 degrees. 
 
Before applying the least-squares approach, the antenna body frame needs to be fixed from 
the given baselines, and this can be seen from the function GetBodyCoordinates(). If we have 
three antennas, the antenna body frame can be simply calculated according to the definition. 
Once more than three antennas are available, the coordinate of the redundant antennas in 
the antenna body frames can be fixed based on the least-squares principle. As the 
coordinates of the first three antennas have been obtained, and the distance between the 
redundant antenna to the first three antennas are known, the coordinate of the redundant 
antenna should result in the minimal least-squares residuals. However, this is a multiple-
solution problem, as we cannot explicitly calculate the sign of the Z value of the coordinate 
of the slave antenna, namely we do not know whether the redundant antenna is above or 
under the X-Y plane. However, taking the redundant antennas into calculation should yield 
a compatible result with the results from other algorithms. For this reason, the attitude 
parameters can be first resolved by applying the direct attitude computation or the least-
squares approach involving only the first three antennas. The resulted attitude parameters 
are then used to identify the sign of the Z-value of the redundant antenna in the antenna 
body frame.  

 
 

 

The slight floating part can be seen from the second receiver (35.0040000 s). Both data cannot 
be synchronized due to the slight time difference. For this reason, it is recommended to use 
the receivers of the same model and the same manufacture. The synchronization manifests 
itself also in the search for the common satellites. The common satellites herein mean the 
satellites tracked simultaneously by all the receivers. According to the different tracking 
abilities, different receivers might not track the same number of satellites, especially at the 
first several epochs. However, only the common satellites will be employed. 
 
The data verification is mainly to check if the measurement of a receiver is continuously 
available. If the receiver is working properly, the measurement from more than 4 satellites 
should be always acquirable in an open-air environment. The sampling rate is needed to 
check the data interruption. If the sampling interval is identified in the RINEX file, it will be 
directly used; otherwise the program will calculate this quantity from the first several 
epochs. Once the data of the current epoch is available, the data of the next epoch with the 
known time interval should also be presented, otherwise the data interruption can be 
concluded. In this case, the program should warn the user regarding this issue and the data 
will be synchronized again from the next common epochs. The data synchronization and 
verification are implemented in the function ProcessRINEX(). 

 
4.4 Single point positioning for master antenna  
The position of the master antenna serves as the reference point for the coordinate 
transformation from the ECEF to the local level frame(Hofmann-Wellenhof et al. 2001). The 
master antenna can be positioned by the single point positioning. Although the single point 
positioning yields only an accuracy of several meters to several tens of meters, it will bring 
just millimeter error to the transformed coordinate of the slave antennas(Lu 1995).  
  
As the first step, the GPS code data will be smoothed by the carrier phase data in order to 
reduce the potential multipath error and thermal noise(Hatch 1982), and this is done by the 
function Smoothing(). The length of data sequence for smoothing can be identified in 
advance in the GUI. A zero-valued length means that the code will be directly used for 
positioning without smoothing. For simplicity, the ionosphere correction and troposphere 
correction are not implemented in the algorithm for single point positioning.  
 
Another operation of the single point positioning is to obtain the satellite coordinates at each 
epoch. These coordinates will be saved and further used for the differential positioning 
applied later because these satellites can be tracked by all the receivers. A key satellite with 
the highest elevation angle will be identified and used for the differential positioning.  
However, if the carrier phase data will be used, this criterion for key satellite selection can 
be changed to choosing the satellite having the longest observation time. This is done in the 
function SinglePointGPS(). 
 
4.5 Differential positioning for each master-slave antenna baseline estimation 
The baseline between the master and slave antennas needs to be determined precisely. Here 
we apply the double-differential positioning to determine the baseline. The resulted baseline 
should be at the decimeter level for high-level receiver and smoothed code data. Related 
information can be seen in the function DGPS_code(). 
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be synchronized due to the slight time difference. For this reason, it is recommended to use 
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positioning yields only an accuracy of several meters to several tens of meters, it will bring 
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reduce the potential multipath error and thermal noise(Hatch 1982), and this is done by the 
function Smoothing(). The length of data sequence for smoothing can be identified in 
advance in the GUI. A zero-valued length means that the code will be directly used for 
positioning without smoothing. For simplicity, the ionosphere correction and troposphere 
correction are not implemented in the algorithm for single point positioning.  
 
Another operation of the single point positioning is to obtain the satellite coordinates at each 
epoch. These coordinates will be saved and further used for the differential positioning 
applied later because these satellites can be tracked by all the receivers. A key satellite with 
the highest elevation angle will be identified and used for the differential positioning.  
However, if the carrier phase data will be used, this criterion for key satellite selection can 
be changed to choosing the satellite having the longest observation time. This is done in the 
function SinglePointGPS(). 
 
4.5 Differential positioning for each master-slave antenna baseline estimation 
The baseline between the master and slave antennas needs to be determined precisely. Here 
we apply the double-differential positioning to determine the baseline. The resulted baseline 
should be at the decimeter level for high-level receiver and smoothed code data. Related 
information can be seen in the function DGPS_code(). 
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Fig. 5. Result based on C/A code (upper) and phase data (lower) 
 
In the plotted attitude results, the X-axis shows the epochs and the Y-axis shows the 
estimated Euler angles in units of degrees. The title for each subplot also shows the mean 
value and the standard deviation of the results. It can be seen that the attitude results from 
the carrier phase data are more precise than that from code data. 
 

 

4.8 A demo example using carrier phase data 
The only difference between the attitude determination using code data and carrier phase 
data lies in the integer ambiguity resolution. Although the ambiguity resolution algorithm is 
not included in the toolbox, we still provide a set of resolved integer ambiguities to 
demonstrate the attitude results using carrier phase data. The ambiguity set is recorded into 
the file ambiguity.mat and only corresponds to the test data embedded in the toolbox. Note 
that the ambiguity is related to a common key satellite during the entire observation session. 
The differential positioning based on carrier phase is implemented in the function 
DGPS_phase(), where the ambiguity appears in the variable statements of the function. 

 
5. Results 

In the toolbox, a set of RINEX files obtained from a static experiment is provided to 
demonstrate the performance of the toolbox. The GPS measurements are acquired by using 
a NovAtel® DL-4 receiver and IFEN NavX® RF GPS simulator. The GPS simulator will 
generate the GPS RF signals according to the antenna position in ECEF frame specified by 
the user. The signals are then transferred to the GPS receiver and the measurements will be 
outputted in RINEX format. By setting four antenna reference points we can obtain an 
antenna frame composed of four distributed antennas, and we also know the true baselines. 
The observation session takes about 10 minutes with 1 Hz data rate. The reference 
coordinates of four antennas in ECEF and the true values of yaw, roll and pitch are given in 
Table 1.   
 

Ant. X (m) Y (m) Z (m) Attitude  
1 3991096.821 563014.827 4927065.332 Yaw=51.6656° 

Roll=26.1822° 
Pitch=-39.1834° 

2 3991081.107 562998.402 4927061.001 
3 3991081.400 563019.756  4927065.029 
4 3991093.445 563007.247 4927059.915 

Table 1. True antenna coordinates and attitude parameters 
 
Depicted below are two sets of results, one is based on the C/A coda data and the other one 
is based on the carrier phase data with resolved phase ambiguities. Both results are obtained 
using least-squares attitude determination approach. 
 



Toolbox for GPS-based attitude determination: An implementation aspect 401

 

50 100 150 200 250 300 350
50.96
51.28
51.59
51.91
52.22

Mean=51.5634 Std=0.3928

Y
aw

 [
de

g]

Epoch

50 100 150 200 250 300 350
24.93
25.50
26.07
26.64
27.21

Mean=26.1853 Std=0.6480

P
itc

h 
[d

eg
]

Epoch

50 100 150 200 250 300 350
-39.93
-39.35
-38.78
-38.21
-37.63

Mean=-38.8712 Std=0.8531

R
ol

l [
de

g]

Epoch
 

50 100 150 200 250 300 350
51.66
51.67
51.68
51.69
51.69

Mean=51.6773 Std=0.0045

Y
aw

 [d
eg

]

Epoch

50 100 150 200 250 300 350
26.22
26.23
26.25
26.26
26.28

Mean=26.2520 Std=0.0100

P
itc

h 
[d

eg
]

Epoch

50 100 150 200 250 300 350
-39.11
-39.10
-39.09
-39.08
-39.07

Mean=-39.0946 Std=0.0070

R
ol

l [
de

g]

Epoch  
Fig. 5. Result based on C/A code (upper) and phase data (lower) 
 
In the plotted attitude results, the X-axis shows the epochs and the Y-axis shows the 
estimated Euler angles in units of degrees. The title for each subplot also shows the mean 
value and the standard deviation of the results. It can be seen that the attitude results from 
the carrier phase data are more precise than that from code data. 
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demonstrate the performance of the toolbox. The GPS measurements are acquired by using 
a NovAtel® DL-4 receiver and IFEN NavX® RF GPS simulator. The GPS simulator will 
generate the GPS RF signals according to the antenna position in ECEF frame specified by 
the user. The signals are then transferred to the GPS receiver and the measurements will be 
outputted in RINEX format. By setting four antenna reference points we can obtain an 
antenna frame composed of four distributed antennas, and we also know the true baselines. 
The observation session takes about 10 minutes with 1 Hz data rate. The reference 
coordinates of four antennas in ECEF and the true values of yaw, roll and pitch are given in 
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Depicted below are two sets of results, one is based on the C/A coda data and the other one 
is based on the carrier phase data with resolved phase ambiguities. Both results are obtained 
using least-squares attitude determination approach. 
 



Matlab - Modelling, Programming and Simulations402

 

The accuracy of the estimated magnitude of the baseline error from carrier phase data is at 
centimeter level, whereas the results from code data are at decimeter level.  
 
Following the user manual the user can also process other data set by using the toolbox. The 
result will be saved into a data file results.txt for further analysis, as shown below: 
…… 
At Epoch 2006.10.29  01:44:30.00 -> YAW=50.875  ROLL=24.440  PITCH=-38.319 
At Epoch 2006.10.29  01:44:31.00 -> YAW=50.886  ROLL=24.484  PITCH=-38.332 
 …… 

 
6. Conclusion 

This MATLAB toolbox presents some basic functions needed for the attitude determination 
of a rigid non-dedicated GPS multiple antenna system. Since RINEX observation and 
navigation files are required, this toolbox can only be used for post-processing. This toolbox 
is oriented to the (smoothed) GPS C/A code. If the baseline between antennas are not 
measured in advance, the direct attitude computation approach offers a rapid solution. If 
the baselines are identified, the least-squares attitude estimation provides an optimal 
solution based on the pre-defined antenna body frame.  
 
As is already mentioned in (Dai et al. 2008), dual-frequency data processing and ambiguity 
resolution technique should be added into the toolbox. These functions are currently under 
the development in order to fully extend this toolbox to the processing of carrier phase data. 
Besides that, a robust cycle-slip detection algorithm for carrier phase data per satellite 
should be implemented and the attitude results based on float ambiguities should also be 
provided. Also, the source code given in this toolbox can be further refined by using more 
efficient mathematical or MATLAB internal functions. 
 
The toolbox can be accessed via the website of ZESS (http://www.zess.uni-
siegen.de/cms/upload/navigroup/AttDet_16_3_2009.zip). Any suggestions, corrections, or 
comments about this toolbox are sincerely welcomed and can be emailed to dai@zess.uni-
siegen.de. Other contact information can be read from the user manual in the toolbox. 
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Besides the attitude results, the magnitude of the errors contained in the estimated baselines 
are also outputted. The baseline is a fixed value for the rigid platform and hence can be used 
to evaluate the positioning error from GPS. The function is only activated if the baseline 
lengths are already given in the toolbox. Examples for code data and carrier phase data are 
given in Fig. 6.  
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Fig. 6. Baseline length estimated by code data (upper) and carrier phase data (lower) 
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Fig. 6. Baseline length estimated by code data (upper) and carrier phase data (lower) 
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1. Introduction 

This chapter presents a workflow to invert post-stack seismic reflection data into acoustic 
impedance through the sequential use of several Matlab® codes. Acoustic impedance is 
defined as the product of density and seismic velocity and, as such, it is an intrinsic physical 
property of rocks. This physical property is closely related to variables that are of 
fundamental importance in the context of hydrocarbon reservoir characterization, such as 
lithology, porosity and, in some cases, water or oil saturation. 
The basic premise of the vast majority of seismic inversion methods is the local validity of 
the 1-D convolutional model. Recursive methods were developed first in the late 70s (e.g. 
Lavergne and Willm, 1977; Lindseth, 1979) while sparse-spike methods were developed in 
the 80s. The later consists of techniques that use an additional premise that the reflections 
occur as sparsely distributed spikes within a layered Earth (e.g. Russell, 1988). Nowadays 
both methods are still widely jointly used even in sophisticated commercial seismic 
processing packages. Two well known methods that fall in this category are the L1-norm 
sparse-spike inversion (e.g. Sacchi and Ulrych, 1996) and the maximum likelihood inversion 
(e.g. Hampson and Russell, 1988). When the sparse-spike inversion is constrained by a low-
frequency model derived from acoustic impedance well logs or geologic models, it is 
commonly referred to as model-based inversion (Russel, 1988). 
The idea of the proposed workflow is to apply a L1-norm sparse-spike inversion algorithm 
in the time domain, followed by a recursive inversion performed in the frequency domain. 
A low-frequency impedance model estimated at well-logs is incorporated as constraints 
during the recursive process. While it is clear that a similar inversion methodology can 
readily be applied using commercial packages, there is no consistent workflow designed for 
this type of application in low-cost scientific platforms such as Matlab. Therefore, the 
processing and visualization tools presented here are potentially useful especially for 
academic users of seismic data aiming at reservoir characterization. 

 
2. Seismic-Well Tie 

Before applying seismic inversion, an accurate depth-to-time conversion must be performed 
in order to make the vertical scale of the well log AI data match the vertical scale of the 
seismic data so as to allow spatial correlation. This conversion is carried out by using the 
sonic log and the initial two-way travel time for the first log sample that provides the 
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After estimating r from the seismic amplitudes, then r is inverted into AI according to the 
following sequential steps (Ferguson and Margrave, 1996): 
 
(1) compute the linear trend of a spatial correspondent AI vector and subtract it, obtaining a 
residual AIres vector; 
(2) compute the Fourier spectra of AIres; 
(3) apply Equation (2) to the reflectivity series, obtaining a relative AIrel vector; 
(4) compute the Fourier spectra of AIrel; 
(5) determine a scalar  to match the mean power of AIrel and AIres; 
(6) multiply the spectra of AIrel by ; 
(7) low-pass filter AIres and add to the result of step (6); 
(8) inverse Fourier transform the result of step (7); and 
(9) add the low-frequency trend from step (1) to the result of  step (8). 
 
For the particular dataset used in this work, the wells are sparsely distributed through the 
oil field (Figure 1). Thus, the low-frequency trend of step (1) was extracted from the spatial 
correspondent AI trace estimated by kriging. A low cut-off for coupling the low frequency 
trend and a high cut-off is defined by finding where the energy content of the original 
seismic traces approaches to zero in the amplitude spectrum. This characterizes the band-
limited nature of the seismic data. The basic workflow is presented in Figure 2. 
 

 
Fig. 1. 3D seismic data and spatial location of wells. Size of 3D matrix is 301 x 61 x 375. In-
lines and cross-lines are spaced of about 13 and 27 m, respectively. Time interval is equal to 
4 ms. 
 

 

highest correlation coefficient between synthetic and observed trace. This is commonly 
known as seismic-well tie (e.g White and Hu, 1998). 
Synthetic traces are calculated using the convolutional model given by Equation 1. This 
requires knowledge of the wavelet that represents the seismic pulse. By writing Equation 1 
as a linear system and solving for w(t), a deterministic wavelet extraction is conducted 
(Broadhead, 2008). 

 
3. Model-Based Seismic Inversion 

The fundamental premises behind all seismic inversion methods in the context of this work 
are: (i) the Earth can be represented locally by a stack of plane and parallel layers with 
constant physical properties; (ii) the seismic trace s(t) can be represented by the convolution 
of the reflectivity coefficient series r(t) with a band-limited wavelet w(t) and the addition of a 
random noise n(t): 
 

( ) ( ) ( ) ( )s t r t w t n t   . 
 
For zero incident angles, r(t) is directly related to the contrast in the acoustic impedance (AI) 
of superposed layers through a simple equation that, after some algebraic manipulations 
and mathematical approximations, leads to the expression 
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which is the equation used in practice for recursive inversion with the aim of transform 
reflectivities into impedances. AI1 is the known acoustic impedance in the top layer and AIM 
is that of the Mth layer. rj is the reflection coefficient of the jth layer. This approximation is 
valid for most of the practical cases where 0.3jr   (e.g. Berteussen & Ursin, 1983). 
The low-frequency AI model is obtained by estimating the AI values over the entire seismic 
volume through ordinary kriging of the AI values at the wells. The AI values at the wells are 
obtained by simple multiplication of the measured density values and the inverted sonic 
logs (i.e. interval transit time). For a properly usage of the recursive inversion, the seismic 
traces should be deconvolved into reflectivity series as suggested by Equation 2. To 
accomplish that, one has to apply a constrained sparse-spike optimization procedure that 
minimizes the objective function 
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using, for example, a conjugate-gradient algorithm. The first term of Equation 3 minimizes 
the L1-norm of the reflectivities where  controls the sparsity of the solution. The second 
term minimizes the difference between the synthetic seismic traces (Wr) and the observed 
traces (s). W is a wavelet coefficient matrix and  is the standard deviation of the seismic 
data noise. 

(1) 

(2) 

(3) 
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To generate low-frequency models from known AI values at the wells, ordinary kriging is 
applied using mGstat3 function krig. mGstat is a very flexible package for geoestatistical 
analysis and also provides interfaces to GSTAT, VISIM and SGeMS. 
In the last step, recursive inversion is employed in order to map AI(t) from r(t). The blint 
function from CREWES4 group is used. This function calculates the summation that appears 
in Equation 2 in the frequency domain. Domain conversion is applied by using Matlab® 
native functions fft and ifft with few adaptations. Low and high frequency cut-offs must be 
provided and the integration filter rolls off as a smoth gaussian. This is not a problem 
because the seismic data is inherently of band-limited nature, so the task of the interpreter is 
to find these cut-offs. 
To incorporate the low-frequency AI model, firstly log trends are subtracted from the AI 
logs. These log trends correspond to the lowest frequencies of the AI spectrum and they are 
simply fitted polynomials whose coefficientes are calculated by using native Matlab® polyfit 
function. Its value for a given time is obtained by polyval, which is also a native Matlab® 
function. Having removed the trends, the logs are converted to the frequency domain and a 
low-pass filters are applied to them. Finally, the results are merged with the band-limited 
outputs from blint by using mergetrcs function. After merging, the output log is converted 
back to time domain and the log trends are restored. 
Visualizations can be performed using functions s_wplot and s_cplot for 2D seismic data, 
s_volume_browser for 3D seismic data and l_plot for well log data. These are powerful 
functions found in SeisLab. 

 
5. Application Example 

An example of depth-to-time conversion for Well 2 can be visualized in Figure 3, where it is 
shown the acoustic impedance log, the estimated reflectivity, the synthetic traces and the 
observed traces. Seismic-well ties were conducted by adjusting five traces around each well 
and retaining the local means. A global mean was calculated and used for inversion of the 
traces away from the wells. 
Figure 4 shows the spectral content of the reflectivity, the wavelet, the synthetic traces and 
the observed traces. The spectral content of the other four wells is similar and low and high 
cut-offs were defined as 5 Hz and 60 Hz respectively. 
In this case, the hydrocarbon reservoir top and base is estimated from well log markers 
allowing the definition of a minimum and maximum time values, thus establishing vertical 
boundaries for the seismic 3D grid. Lateral boundaries is defined so as to embrace wells that 
were previously found to have some hydrocarbon content. The 3D AI inverted model is 
shown in Figure 5. The average correlation coefficient of a synthetic seismic model 
calculated from this inverted model and the observed seismic data is equal to 0.95. 
 

                                                                 
3 http://mgstat.sourceforge.net/ 
4 http://www.crewes.org/ 

 

 
Fig. 2. Flowchart of the proposed inversion methodology. Each AI log is obtained by 
multiplying density log and inverted sonic log. 

 
4. Matlab Algorithms 

Seismic-well tie is conducted using functions from Seislab 3.011. The core functions are 
l_depth2time and s_wavextra. The former computes two-way travel time by inverting and 
integrating sonic log starting from a given depth and a given time. Because at the beginning 
of the process we do not know the correct depth/time pair to be used, a range of values 
must be tested. The later performs deterministic wavelet extraction, as long as a reflectivity 
series and an observed seismic trace around the well are provided. The reflectivity series is 
obtained by rearranging Equation 2 and solving for each r(t). s_wavextra also outputs a 
synthetic trace and the correlation coefficient with respect to the observed trace. The best 
depth/time pair is that for which this correlation coefficient is higher. 
Sparse-spike inversion is applied by using the function sparse_decon from SeismicLab 
package2. This function performs L1 regularization with Iterative Reweighted Least Squares 
(Sacchi, 1997). In this step, a reflectivity series is obtained from an observed seismic trace 
and a wavelet for each vertical column of seismic data. 

                                                                 
1 http://www.mathworks.fr/matlabcentral/fileexchange/15674 
2 http://www-geo.phys.ualberta.ca/saig/SeismicLab/index.html 
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Fig. 5. AI obtained through the proposed inversion methodology. 
Color bar is in m/s x g/cm3. 

 
6. Conclusions and recommendations 

A simple methodology for mapping acoustic impedance and effective porosity from 3D 
seismic amplitude data using Matlab® was presented. This methodology can be used for a 
quick evaluation of reservoir properties, especially when powerful commercial programs 
are not available. An example with real data was also presented, showing that consistent 3D 
acoustic impedance models can be obtained if well-logs and 3D seismic data are available. A 
further improvement would be to obtain the low-frequency model by taking into account 
stratigraphic horizons, i.e., trend surfaces extracted from seismic data. This can be 
performed through universal kriging, or kriging with a trend. In Matlab®, universal kriging 
can be applied, for example, from mGstat toolbox. The use of stratigraphic horizons would 
allow the creation of low-frequency models that are spatially more consistent with the 
geological layering of a given reservoir area. Hopefully a Graphical User Interface will be 
developed in the near future integrating all this functions building a complete framework 
for performing seismic model-based inversion. 
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Fig. 3. Example of seismic-well tie for Well 2. (a) Impedance log converted to two-way time 
and resampled to the interval of 4 ms (values in m/s x g/cm3 x 104). (b) Reflectivity. (c) 
Synthetic traces. (d) Observed traces. 
 

 
Fig. 4. Normalized Amplitude spectrum of (a) reflectivity; (b) wavelet; (c) synthetic traces; 
and (d) observed traces near Well 2. 
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1. Introduction

Portfolio insurance is based on the principal of risk transfer i.e., one person’s protection is
another person’s liability. The cost of portfolio insurance is the mechanism to equilibrate its
demand with supply. In the theory of finance minimum-cost portfolio insurance has been
characterized as a very important investment strategy. In this chapter, we discuss the invest-
ment strategy called minimum-cost portfolio insurance as a solution of a cost minimization
problem and we propose computational methods that translate the economics problem into
the language of computing. This strategy not only enables an investor to avoid losses but also
allows him/her to capture the gains at the minimum cost. In general, it is well known that
the minimum-cost insured portfolio depends on security prices. The cases where it is price-
independent (i.e., it does not depend on arbitrage-free security prices) are very important
not only because the insured portfolio can be selected without knowledge of current secu-
rity prices but also because we can present it in a simple form. Market structures in which
minimum-cost portfolio insurance is price-independent relies on the theory of vector lattices
(Riesz spaces). In particular, we focus our study in two very important classes of subspaces of
a vector lattice, namely vector sublattices and lattice-subspaces. Vector lattices have been used
by Brown & Ross (1991) and by Green & Jarrow (1987) in the framework of options markets.
Also, Ross (1976) gave a characterization of complete markets by observing that derivative
markets are complete if and only if the asset span is a vector sublattice of Rk. Completeness of
derivative markets is a sufficient but not necessary condition for the minimum-cost portfolio
insurance to be price-independent. Let us denote by X the subspace of payoffs of all portfolios
of securities; then in Aliprantis et al. (2000) it is proved that the minimum-cost insured port-
folio exists and is price-independent for every portfolio and at every floor if and only if X is a
lattice-subspace of Rk. An equivalent necessary and sufficient condition so that X is a lattice-
subspace is the existence of a positive basis for X, that is a basis of limited liability payoffs
such that every marketed limited liability payoff has a unique representation as a nonnega-
tive linear combination of basis payoffs. The notion of a positive basis for X is a generalization
to incomplete markets of a basis of Arrow securities for complete markets. From the previous
discussion, it is evident that the mathematical theory of lattice-subspaces has been used in or-
der to provide a characterization of market structures in which the cost minimizing portfolio
is price-independent. In general, the theory of lattice-subspaces has been extensively used in
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the reader will find in this Section a study that involves the computational techniques pre-
sented in Section 3 and Section 5 in order to calculate the minimum-cost insured portfolio
both in the case of Rk and C[a, b]. Section 7 provides a computational technique, based on
Section 3, in order to solve the problem of completion by options of a two-period security
market in which the space of marketed securities is a subspace of Rk. Methods on computing
the efficient funds of the market are also presented. Conclusions and research directions are
provided in Section 8.
In this chapter, all the numerical tasks have been performed using the Matlab 7.8 (R2009a)
environment on an Intel(R) Pentium(R) Dual CPU T2310 @ 1.46 GHz 1.47 GHz 32-bit system
with 2 GB of RAM memory running on the Windows Vista Home Premium Operating System.

2. Lattice-subspaces and vector sublattices of Rk

In this section, a brief introduction is provided to the theory of lattice-subspaces and vector
sublattices of Rk. In addition, we present the solution to the problem of whether a finite
collection of linearly independent, positive vectors of Rk generates a lattice-subspace or a
vector sublattice.

2.1 Preliminaries and notation
We view Rk as an ordered space, then the pointwise order relation in Rk is defined by

x ≤ y if and only if x(i) ≤ y(i), for each i = 1, ..., k.

The positive cone of Rk is defined by Rk
+ = {x ∈ Rk|x(i) ≥ 0, for each i} and if we suppose

that X is a vector subspace of Rk then X ordered by the pointwise ordering is an ordered
subspace of Rk with positive cone X+ defined by X+ = X ∩Rk

+. For a two-point set S = {x, y},
we denote by x ∨ y (x ∧ y) the supremum of S i.e., its least upper bound (the infimum of S i.e.,
its greatest lower bound). Thus, x ∨ y (x ∧ y) is the componentwise maximum (minimum) of
x and y defined by

(x ∨ y)(i) = max{x(i), y(i)} ((x ∧ y)(i) = min{x(i), y(i)}), for all i = 1, ..., k.

An ordered subspace X of Rk is a lattice-subspace of Rk if it is a vector lattice in the induced
ordering, i.e., for any two vectors x, y ∈ X the supremum and the infimum of {x, y} both exist
in X. Note that the supremum and the infimum of the set {x, y} are, in general, different in
the subspace than the supremum and the infimum of this set in the initial space. An ordered
subspace Z of Rk is a vector sublattice or a Riesz subspace of Rk if for any x, y ∈ Z the
supremum and the infimum of the set {x, y} in Rk belong to Z. Suppose that X is an ordered
subspace of Rk and B = {b1, b2, ..., bm} is a basis for X. Then B is a positive basis of X if the
positive cone X+ of X has the form,

X+ = {x =
m

∑
i=1

λibi|λi ≥ 0, for each i}.

Therefore, if x = ∑m
i=1 λibi and y = ∑m

i=1 µibi then x ≤ y if and only if λi ≤ µi for each
i = 1, 2, ..., m. The existence of positive bases is not always ensured, but in the case where
X is a vector sublattice of Rk then X has always a positive basis. Moreover, it holds that
an ordered subspace of Rk has a positive basis if and only if it is a lattice-subspace of Rk. If
B = {b1, b2, ..., bm} is a positive basis for a lattice-subspace (or a vector sublattice) X then the

the last years in Mathematical Economics, especially in the areas of incomplete markets and
portfolio insurance (e.g., Aliprantis et al. (1997; 2000; 2002); Polyrakis (2003)) as well as in com-
pletion of security markets (Kountzakis & Polyrakis (2006)). The study of finite-dimensional
lattice-subspaces is important since many economic models are finite, such as, for example,
the well-known Arrow-Debreu model. Additional applications of lattice-subspaces in eco-
nomics appear in Aliprantis et al. (1998); Henrotte (1992). In this chapter, the main advantage
of the computational techniques that we present is that we are able to solve the minimization
problem without making use of any linear programming method. This is possible by using
the theory of positive bases in vector lattices; specifically, we are able to provide a practical
numerical way to check whether a subspace X is a lattice-subspace or a vector sublattice.
In Polyrakis (1996; 1999), lattice-subspaces and vector sublattices are studied in the space of
continuous real valued functions C(Ω) defined on a compact Hausdorff topological space
Ω. In the case where Ω is finite, for example Ω = {1, 2, . . . , k}, then C(Ω) = Rk and the
results of Polyrakis (1996; 1999) can be applied for the determination of the lattice-subspaces
and vector sublattices of Rk. In particular, in Polyrakis (1996) it is provided a solution to
the problem of whether a finite collection of linearly independent positive functions in C(Ω)
generates a lattice-subspace. In addition, he proposed an algorithm under which one can
check whether the vector subspace1 X = [x1, ..., xn] is a lattice-subspace, where x1, ..., xn are
linearly independent positive functions in C(Ω). Another approach to the same problem of
whether X forms a lattice-subspace of Rk is presented in Abramovich et al. (1994).
In Katsikis (2007), based on Abramovich et al. (1994), a computational solution is given to the
problem of whether a finite collection of linearly independent, positive vectors of Rk gener-
ates a lattice-subspace. In addition, in Katsikis (2007), applications to the cost minimization
problem that ensures the minimum-cost insured portfolio are discussed. The same reference
concludes with a Matlab function which is an elegant and accurate tool in order to provide
whether or not a given collection of vectors forms a lattice-subspace.
Also, in Katsikis (2008), a different computational method is presented based upon the
Polyrakis algorithm (1996), in order to solve the corresponding problem in C[a, b]. This com-
putational method implements a general algorithmic process and when slightly modified, this
process can also be used in the case of lattice-subspaces of Rk. Following this remark, Katsikis
(2009) presents the translation followed by the implementation of this algorithm in Rk within
a Matlab function. This function provides an important tool in order to investigate lattice-
subspaces and vector sublattices of Rk with direct applications to portfolio insurance. Finally,
the results of Katsikis (2009) can be applied in completion of security markets and the theory
of efficient funds.
The material in this chapter is spread out in 8 sections. Section 2 gives the fundamental prop-
erties of lattice-subspaces and vector sublattices of Rk together with the solution to the prob-
lem of whether a finite collection of linearly independent, positive vectors of Rk generates
a lattice-subspace or a vector sublattice. Section 3 studies, in detail, from the computational
point of view the mathematical problem stated in Section 2 and presents an efficient compu-
tational method in order to solve it. Comparison results with other existing computational
methods are also provided. Section 4 studies finite dimensional lattice-subspaces of C[a, b]
and presents the solution to the problem stated in Section 2, in the case where the initial space
is C[a, b]. Section 5 presents computational methods in order to determine finite dimensional
lattice-subspaces of C[a, b]. Section 6 provides the most important interrelationship between
lattice-subspaces and the minimization problem of minimum-cost portfolio insurance. Also,

1 [x1, ..., xn] denotes the n-dimensional vector subspace generated by x1, ..., xn.
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Matlab - Modelling, Programming and Simulations416

Theorem 0.1. Suppose that the above assumptions are satisfied. Then,

(i) X is a vector sublattice of Rk if and only if R(β) has exactly n points (i.e., m = n) and a positive
basis {b1, b2, ..., bn} for X is defined by the formula

(b1, b2, ..., bn)
T = A−1(x1, x2, ..., xn)

T ,

where A is the n × n matrix whose ith column is the vector Pi, for each i = 1, 2, ..., m.

(ii) X is a lattice-subspace of Rk if and only if the polytope K has n vertices (i.e., d = n) and a
positive basis {b1, b2, ..., bn} for X is defined by the formula

(b1, b2, ..., bn)
T = A−1(x1, x2, ..., xn)

T ,

where A is the n × n matrix whose ith column is the vector Pi, for each i = 1, 2, ..., d.

2.3 The algorithm
The basic steps of an algorithmic process that will accurately implement the ideas of Theorem
0.1 are the following:

(1) Determine R(β).

(2) Compute the number m = cardR(β), and the number d of vertices of the polytope K.

(3) If n = m (vector sublattice case) or n = d (lattice-subspace case) then, determine a
positive basis for X.

Based on a theorem of Edmonds, Lovász and Pulleybank in Edmond et al. (1982), we close
this section with some remarks on the existence of a polynomial-time decision procedure, in
order to decide whether the collection of vectors {x1, x2, ..., xn} generates a lattice-subspace
or a vector sublattice. We shall present this result, in a suitable form for our analysis, as it is
presented in Aliprantis et al. (1997).

Theorem 0.2. There exists a polynomial-time algorithm that for any polytope, P, defined as the convex
hull of a given finite set of vectors, determines the affine hull of P. Specifically the algorithm finds
affinely independent vertices u0, u1, ..., u� of P such that

aff(P) = aff({u0, u1, ..., u�}).

Recall that, algorithms which have a polynomial or sub-polynomial time complexity (that
is, they take time O(g(n)) where g(n) is either a polynomial or a function bounded by a
polynomial), are practical. Such algorithms with running times of orders O(log n), O(n),
O(n log n), O(n2), O(n3) etc. are called polynomial-time algorithms. There are several ar-
guments to support the thesis that “polynomial” is a synonym to practical and the general
conclusion is that a problem can be considered “efficiently solved” when a polynomial-time
algorithm has been found for it.
In order to implement algorithm 2.3, we shall use the Quickhull algorithm from Barber et
al. (1996) for computing the convex hull of a given set of points. According to Barber et al.
(1996) (Theorem 3.2) if d is the dimension, n is the number of input points, r the number of
processed points, and fr the maximum number of facets of r vertices ( fr = O(r�

d
2 �/� d

2 �!) then
the worst-case complexity of Quickhull is O(n log r) for d ≤ 3 and O(n fr/r) for d ≥ 4.

lattice operations in X, namely x�y for the supremum and x � y for the infimum of the set
{x, y} in X, are given by

x�y =
m

∑
i=1

max{λi, µi}bi and x � y =
m

∑
i=1

min{λi, µi}bi,

for each x = ∑m
i=1 λibi, y = ∑m

i=1 µibi ∈ X. A vector sublattice is always a lattice-subspace, but
the converse is not true as shown in the next example.

Example 0.1. Let X = [x1, x2, x3] be the subspace of R4 generated by the vectors x1 =
(6, 0, 0, 1), x2 = (6, 4, 0, 0), x3 = (8, 4, 2, 0). An easy argument shows that the set B = {b1, b2, b3}
where 


b1
b2
b3


 =




2 0 2 0
12 8 0 0
6 0 0 1




forms a positive basis of X therefore X is a lattice-subspace of R4. On the other hand, let us
consider the vectors y1 = 2x1 + x2 = (18, 4, 0, 2) and y2 = x3 − x2 = (2, 0, 2, 0) of X. Then,
y1 ∨ y2 = (18, 4, 2, 2) and since y1 = 1

2 b2 + 2b3, y2 = b1, it follows that y1�y2 = b1 +
1
2 b2 +

2b3 = (20, 4, 2, 2). Therefore, X is not a vector sublattice of R4, since the supremum on the
subspace X is different than the supremum on the whole space.

For an extensive presentation of lattice-subspaces, vector sublattices and positive bases the
reader may refer to Abramovich et al. (1994); Polyrakis (1996; 1999).

2.2 The mathematical problem
Suppose that {x1, x2, ..., xn} is a collection of linearly independent, positive vectors of Rk. The
problem is, under what conditions the subspace X = [x1, x2, ..., xn] is a lattice-subspace or a
vector sublattice of Rk?
Let us denote by β the basic function of x1, x2, ..., xn, that is, β : {1, 2, ..., k} → Rk such that

β(i) =
( x1(i)

z(i)
,

x2(i)
z(i)

, ...,
xn(i)
z(i)

)
,

for each i ∈ {1, 2, ..., k} with z(i) > 0, where z = ∑n
i=1 xi. The set

R(β) = {β(i)|i = 1, 2, ..., k, with z(i) > 0},

is the range of the basic function and the cardinal number, cardR(β), of R(β) is the number of
different elements of R(β). Let cardR(β) = m then it is clear that n ≤ m ≤ k. Denote by K the
convex hull of R(β). Since K is the convex hull of a finite subset of Rk it is a polytope with d
vertices and each vertex of K belongs to R(β) therefore n ≤ d ≤ m.
Suppose that R(β) = {P1, P2, ..., Pm} such that, under a proper enumeration, the vertices
P1, P2, ..., Pn are linearly independent and P1, P2, ..., Pd are the vertices of K, i.e.,

R(β) = {

vertices of K︷ ︸︸ ︷
P1, P2, ...Pn︸ ︷︷ ︸

linearly independent

, Pn+1, ...Pd, ..., Pm}.

The following theorem, from (Polyrakis, 1999), provides a full answer to the stated problem.
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Theorem 0.1. Suppose that the above assumptions are satisfied. Then,

(i) X is a vector sublattice of Rk if and only if R(β) has exactly n points (i.e., m = n) and a positive
basis {b1, b2, ..., bn} for X is defined by the formula

(b1, b2, ..., bn)
T = A−1(x1, x2, ..., xn)
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where A is the n × n matrix whose ith column is the vector Pi, for each i = 1, 2, ..., m.

(ii) X is a lattice-subspace of Rk if and only if the polytope K has n vertices (i.e., d = n) and a
positive basis {b1, b2, ..., bn} for X is defined by the formula

(b1, b2, ..., bn)
T = A−1(x1, x2, ..., xn)
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where A is the n × n matrix whose ith column is the vector Pi, for each i = 1, 2, ..., d.

2.3 The algorithm
The basic steps of an algorithmic process that will accurately implement the ideas of Theorem
0.1 are the following:
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(2) Compute the number m = cardR(β), and the number d of vertices of the polytope K.

(3) If n = m (vector sublattice case) or n = d (lattice-subspace case) then, determine a
positive basis for X.
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presented in Aliprantis et al. (1997).
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hull of a given finite set of vectors, determines the affine hull of P. Specifically the algorithm finds
affinely independent vertices u0, u1, ..., u� of P such that

aff(P) = aff({u0, u1, ..., u�}).

Recall that, algorithms which have a polynomial or sub-polynomial time complexity (that
is, they take time O(g(n)) where g(n) is either a polynomial or a function bounded by a
polynomial), are practical. Such algorithms with running times of orders O(log n), O(n),
O(n log n), O(n2), O(n3) etc. are called polynomial-time algorithms. There are several ar-
guments to support the thesis that “polynomial” is a synonym to practical and the general
conclusion is that a problem can be considered “efficiently solved” when a polynomial-time
algorithm has been found for it.
In order to implement algorithm 2.3, we shall use the Quickhull algorithm from Barber et
al. (1996) for computing the convex hull of a given set of points. According to Barber et al.
(1996) (Theorem 3.2) if d is the dimension, n is the number of input points, r the number of
processed points, and fr the maximum number of facets of r vertices ( fr = O(r�

d
2 �/� d

2 �!) then
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for each x = ∑m
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,
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is the range of the basic function and the cardinal number, cardR(β), of R(β) is the number of
different elements of R(β). Let cardR(β) = m then it is clear that n ≤ m ≤ k. Denote by K the
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vertices and each vertex of K belongs to R(β) therefore n ≤ d ≤ m.
Suppose that R(β) = {P1, P2, ..., Pm} such that, under a proper enumeration, the vertices
P1, P2, ..., Pn are linearly independent and P1, P2, ..., Pd are the vertices of K, i.e.,
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vertices of K︷ ︸︸ ︷
P1, P2, ...Pn︸ ︷︷ ︸
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Example 0.2. Consider the following 7 vectors x1, x2, ..., x7 in R10,



x1
x2
x3
x4
x5
x6
x7



=




1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
1 0 0 0 1 1 0 0 1 0
0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0 1




According to the definition of the β function, the rows of the following matrix u are the differ-
ent elements of R(β),

u =
0 0 0 0 0 0 1
0 0 0 0 0 0.5 0.5
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0.5 0 0 0 0 0.5
0 1 0 0 0 0 0
0.5 0 0 0 0.5 0 0

Thus, m = 8 and it is clear that rows u(1), . . . , u(5), u(7), u(8) of u are linearly indepen-
dent. This means that these vectors belong to the convex hull of R(β). Also, it is easy to
see that row u(6) of u is a convex combination of the other rows. Therefore, d = 7 and
X = [x1, x2, x3, x4, x5, x6, x7] is a lattice-subspace.
For a numerical solution, we invoke the SUBlatSUB function by typing in the command
window of the Matlab environment:

>> [positive basis,dimensions]=SUBlatSUB(a)

The results, then, are as follows:

lattice-subspace
positivebasis =
0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 2 0 0 0
0 0 0 0 1 1 0 0 1 0
0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0
2 0 0 0 0 0 0 0 0 0

dimensions =
7
8
7
10

3. The computational method

3.1 Method presentation
In this section we present the translation followed by the implementation of algorithm 2.3
within a Matlab function named SUBlatSUB from Katsikis (2009). This function provides an
important tool in order to investigate lattice-subspaces and vector sublattices of Rk since we
are able to perform fast testing for a variety of dimensions and subspaces. Recall that, the
numbers n, m, d, k denote the dimension of X, the cardinality of R(β), the number of vertices
of the convex hull of R(β) and the dimension of the initial Euclidean space, respectively.
The function SUBlatSUB first checks if the given collection of vectors generates a vector sub-
lattice by examining the validity of condition (i) of Theorem 0.1. In the case of a vector sub-
lattice, i.e., m = n, the program responds with the output:

vector sublattice

followed by a n × k matrix whose rows are the vectors of the positive basis.
If, instead, the collection does not generate a vector sublattice, that is m �= n, then the function
SUBlatSUB checks if the given collection generates a lattice-subspace by examining the va-
lidity of condition (ii) of Theorem 0.1. In the case of a lattice-subspace, i.e., d = n, the program
responds with the output:

lattice-subspace

followed by a n × k matrix whose rows are the vectors of the positive basis.
If m �= n and d �= n then the program responds with the output:

not a lattice-subspace
ans=

[]

So, in order to decide whether a given collection of linearly independent, positive vectors
generates a lattice-subspace or a vector sublattice of Rk, we construct a matrix whose columns
are the vectors of the given collection and then we apply the function SUBlatSUB on that
matrix. It is possible to produce the numbers n, m, d, k, with this order, as a 4 × 1 matrix with
the following code,

>> [positivebasis,dimensions]=SUBlatSUB(a)

where a is the matrix whose columns are the given vectors.

3.2 Numerical examples
In order to describe the most important features of SUBlatSUB, we illustrate some examples
featured in Katsikis (2007) for various collections and dimensions. Also, we close this section
with comparison results of the SUBlatSUB function and the alternative function, namely K
function, presented in Katsikis (2007).
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Example 0.2. Consider the following 7 vectors x1, x2, ..., x7 in R10,



x1
x2
x3
x4
x5
x6
x7



=




1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
1 0 0 0 1 1 0 0 1 0
0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0 1




According to the definition of the β function, the rows of the following matrix u are the differ-
ent elements of R(β),

u =
0 0 0 0 0 0 1
0 0 0 0 0 0.5 0.5
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0.5 0 0 0 0 0.5
0 1 0 0 0 0 0
0.5 0 0 0 0.5 0 0

Thus, m = 8 and it is clear that rows u(1), . . . , u(5), u(7), u(8) of u are linearly indepen-
dent. This means that these vectors belong to the convex hull of R(β). Also, it is easy to
see that row u(6) of u is a convex combination of the other rows. Therefore, d = 7 and
X = [x1, x2, x3, x4, x5, x6, x7] is a lattice-subspace.
For a numerical solution, we invoke the SUBlatSUB function by typing in the command
window of the Matlab environment:

>> [positive basis,dimensions]=SUBlatSUB(a)

The results, then, are as follows:

lattice-subspace
positivebasis =
0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 2 0 0 0
0 0 0 0 1 1 0 0 1 0
0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0
2 0 0 0 0 0 0 0 0 0

dimensions =
7
8
7
10

3. The computational method

3.1 Method presentation
In this section we present the translation followed by the implementation of algorithm 2.3
within a Matlab function named SUBlatSUB from Katsikis (2009). This function provides an
important tool in order to investigate lattice-subspaces and vector sublattices of Rk since we
are able to perform fast testing for a variety of dimensions and subspaces. Recall that, the
numbers n, m, d, k denote the dimension of X, the cardinality of R(β), the number of vertices
of the convex hull of R(β) and the dimension of the initial Euclidean space, respectively.
The function SUBlatSUB first checks if the given collection of vectors generates a vector sub-
lattice by examining the validity of condition (i) of Theorem 0.1. In the case of a vector sub-
lattice, i.e., m = n, the program responds with the output:

vector sublattice

followed by a n × k matrix whose rows are the vectors of the positive basis.
If, instead, the collection does not generate a vector sublattice, that is m �= n, then the function
SUBlatSUB checks if the given collection generates a lattice-subspace by examining the va-
lidity of condition (ii) of Theorem 0.1. In the case of a lattice-subspace, i.e., d = n, the program
responds with the output:

lattice-subspace

followed by a n × k matrix whose rows are the vectors of the positive basis.
If m �= n and d �= n then the program responds with the output:

not a lattice-subspace
ans=

[]

So, in order to decide whether a given collection of linearly independent, positive vectors
generates a lattice-subspace or a vector sublattice of Rk, we construct a matrix whose columns
are the vectors of the given collection and then we apply the function SUBlatSUB on that
matrix. It is possible to produce the numbers n, m, d, k, with this order, as a 4 × 1 matrix with
the following code,

>> [positivebasis,dimensions]=SUBlatSUB(a)

where a is the matrix whose columns are the given vectors.

3.2 Numerical examples
In order to describe the most important features of SUBlatSUB, we illustrate some examples
featured in Katsikis (2007) for various collections and dimensions. Also, we close this section
with comparison results of the SUBlatSUB function and the alternative function, namely K
function, presented in Katsikis (2007).



Matlab - Modelling, Programming and Simulations420

lattice-subspace
positivebasis =
0 0 0 0 0 0 0 8 0 0
0 7/4 0 7 7/4 7/4 7/4 0 0 0
6 3/2 6 0 3/2 3/2 3/2 0 0 0
0 0 0 0 0 0 0 0 0 6
0 7/4 0 0 7/4 7/4 7/4 0 7 0

dimensions =
5
6
5
10

In this case it holds
(B1, B2, B3, B4, B5) = (8b3, 7b2, 6b1, 6b5, 7b4).

For the purpose of monitoring the performance, we present in Table 1 the execution times of
the SUBlatSUB function and the method presented in Katsikis (2007) (K function).

Matlab functions Example 0.2 Example 0.3 Example 0.4
SUBlatSUB 0.052 0.030 0.035

K 0.516 0.828 0.969
Table 1. Time in seconds

3.3 The case of coplanar points
The correct performance of the SUBlatSUB function requires the use of the convhulln Matlab
function which is based on Qhull3 and Qhull implements the Quickhull algorithm (Barber et
al. (1996)) for computing the convex hull of a given set of points. Suppose that a denotes the
matrix whose rows are the coefficients of the given points, then the convhulln function returns
the indices of the points in a that comprise the facets of the convex hull of a. The convhulln
function is facing problems during the calculation of the convex hull of points that lie in a
q-manifold, with q ≤ n − 1, in the n-dimensional space of the given data. So, we cannot use
convhulln to solve our problem directly.
We illustrate the details in this case through the following example and we also provide an
improvement technique to solve the resultant problem in this particular case.

Example 0.5. Consider the following four vectors x1, x2, x3, x4 in R7,



x1
x2
x3
x4


 =




1 2 1 0 1 1 4
0 1 1 1 1 0 2
2 1 0 1 1 1 2
1 0 1 1 1 0 0


 .

Following the second step of algorithm 2.3, the calculation of the convex hull of R(β) is re-
quired to check whether X = [x1, x2, x3, x4] is a lattice-subspace or a vector sublattice of R7.

3 For information about Qhull see http://www.qhull.org/

We conclude with some comments based on the results of the SUBlatSUB function. A positive
basis is unique in the sense of positive multiples since each element of the basis is an extremal2

point of the positive cone of the subspace. If we denote by {b1, b2, ..., b7} the positive basis that
we obtained by using the K function (see Katsikis (2007)) and by {B1, B2, ..., B7} the positive
basis we found with the SUBlatSUB function then it holds

(B1, B2, B3, B4, B5, B6, B7) = (b7, 2b5, b4, b3, b2, b6, 2b1).

Example 0.3. Consider the following 7 vectors x1, x2, ..., x7 in R10,



x1
x2
x3
x4
x5
x6
x7



=




2 2 4 3 0 0 0 0 1 1
0 0 1 1 2 3 1 3 4 4
3 3 0 0 0 0 4 0 0 0
1 1 0 1 0 1 0 1 0 0
0 0 1 0 1 0 1 0 1 1
0 0 0 0 0 0 6 0 0 0
0 0 0 0 0 0 0 0 6 6




where following the same procedure, as before, one gets

vector sublattice
positivebasis =
0 0 0 0 0 0 12 0 0 0
0 0 0 0 3 0 0 0 0 0
0 0 0 0 0 4 0 4 0 0
0 0 0 0 0 0 0 0 12 12
6 6 0 0 0 0 0 0 0 0
0 0 0 5 0 0 0 0 0 0
0 0 6 0 0 0 0 0 0 0

dimensions =
7
7
10

If we denote by {b1, b2, ..., b7} the positive basis that we obtained by using the K function and
by {B1, B2, ..., B7} the positive basis we found with the SUBlatSUB function then it holds

(B1, B2, B3, B4, B5, B6, B7) = (12b6, 3b4, 4b5, 12b7, 6b1, 5b3, 6b2).

Example 0.4. Consider the following 5 vectors x1, x2, ..., x5 in R10,



x1
x2
x3
x4
x5



=




1 1 1 1 1 1 1 1 2 1
1 1 1 2 1 1 1 2 1 2
1 1 1 2 1 1 1 2 1 1
1 1 1 1 1 1 1 2 2 1
2 1 2 1 1 1 1 1 1 1




For the above set, the program yields

2 A nonzero element x0 of X+ is an extremal point of X+ if, for any x ∈ X, 0 ≤ x ≤ x0 implies x = λx0
for a real number λ.
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lattice-subspace
positivebasis =
0 0 0 0 0 0 0 8 0 0
0 7/4 0 7 7/4 7/4 7/4 0 0 0
6 3/2 6 0 3/2 3/2 3/2 0 0 0
0 0 0 0 0 0 0 0 0 6
0 7/4 0 0 7/4 7/4 7/4 0 7 0

dimensions =
5
6
5
10

In this case it holds
(B1, B2, B3, B4, B5) = (8b3, 7b2, 6b1, 6b5, 7b4).

For the purpose of monitoring the performance, we present in Table 1 the execution times of
the SUBlatSUB function and the method presented in Katsikis (2007) (K function).

Matlab functions Example 0.2 Example 0.3 Example 0.4
SUBlatSUB 0.052 0.030 0.035

K 0.516 0.828 0.969
Table 1. Time in seconds

3.3 The case of coplanar points
The correct performance of the SUBlatSUB function requires the use of the convhulln Matlab
function which is based on Qhull3 and Qhull implements the Quickhull algorithm (Barber et
al. (1996)) for computing the convex hull of a given set of points. Suppose that a denotes the
matrix whose rows are the coefficients of the given points, then the convhulln function returns
the indices of the points in a that comprise the facets of the convex hull of a. The convhulln
function is facing problems during the calculation of the convex hull of points that lie in a
q-manifold, with q ≤ n − 1, in the n-dimensional space of the given data. So, we cannot use
convhulln to solve our problem directly.
We illustrate the details in this case through the following example and we also provide an
improvement technique to solve the resultant problem in this particular case.

Example 0.5. Consider the following four vectors x1, x2, x3, x4 in R7,



x1
x2
x3
x4


 =




1 2 1 0 1 1 4
0 1 1 1 1 0 2
2 1 0 1 1 1 2
1 0 1 1 1 0 0


 .

Following the second step of algorithm 2.3, the calculation of the convex hull of R(β) is re-
quired to check whether X = [x1, x2, x3, x4] is a lattice-subspace or a vector sublattice of R7.

3 For information about Qhull see http://www.qhull.org/

We conclude with some comments based on the results of the SUBlatSUB function. A positive
basis is unique in the sense of positive multiples since each element of the basis is an extremal2

point of the positive cone of the subspace. If we denote by {b1, b2, ..., b7} the positive basis that
we obtained by using the K function (see Katsikis (2007)) and by {B1, B2, ..., B7} the positive
basis we found with the SUBlatSUB function then it holds

(B1, B2, B3, B4, B5, B6, B7) = (b7, 2b5, b4, b3, b2, b6, 2b1).

Example 0.3. Consider the following 7 vectors x1, x2, ..., x7 in R10,



x1
x2
x3
x4
x5
x6
x7



=




2 2 4 3 0 0 0 0 1 1
0 0 1 1 2 3 1 3 4 4
3 3 0 0 0 0 4 0 0 0
1 1 0 1 0 1 0 1 0 0
0 0 1 0 1 0 1 0 1 1
0 0 0 0 0 0 6 0 0 0
0 0 0 0 0 0 0 0 6 6




where following the same procedure, as before, one gets

vector sublattice
positivebasis =
0 0 0 0 0 0 12 0 0 0
0 0 0 0 3 0 0 0 0 0
0 0 0 0 0 4 0 4 0 0
0 0 0 0 0 0 0 0 12 12
6 6 0 0 0 0 0 0 0 0
0 0 0 5 0 0 0 0 0 0
0 0 6 0 0 0 0 0 0 0

dimensions =
7
7
10

If we denote by {b1, b2, ..., b7} the positive basis that we obtained by using the K function and
by {B1, B2, ..., B7} the positive basis we found with the SUBlatSUB function then it holds

(B1, B2, B3, B4, B5, B6, B7) = (12b6, 3b4, 4b5, 12b7, 6b1, 5b3, 6b2).

Example 0.4. Consider the following 5 vectors x1, x2, ..., x5 in R10,



x1
x2
x3
x4
x5



=




1 1 1 1 1 1 1 1 2 1
1 1 1 2 1 1 1 2 1 2
1 1 1 2 1 1 1 2 1 1
1 1 1 1 1 1 1 2 2 1
2 1 2 1 1 1 1 1 1 1




For the above set, the program yields

2 A nonzero element x0 of X+ is an extremal point of X+ if, for any x ∈ X, 0 ≤ x ≤ x0 implies x = λx0
for a real number λ.
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>> rot = orth(ytrans’)
rot =

0.5 -0.64505 0.28967
0.5 -0.28967 -0.64505
-0.5 0.64505 -0.28967
0.5 0.28967 0.64505

Recall that, if {v1, v2, . . . , vr} is an orthonormal basis for a finite dimensional subspace W of
an inner product space V and u is any vector of V, then the projection of the vector u in W is
given by the formula projW u =< u, v1 > v1 + . . .+ < u, vr > vr.
Now, we project the points into an equivalent lower dimensional space where rot is a basis
for this space. Hence,

>> yproj = ytrans*rot
yproj =

0.16667 0.21502 -0.096557
-0.25 0.23368 0.088845
-0.5 3.0531e-16 5.5511e-17
0.16667 -0.21502 0.096557
-0.25 -0.23368 -0.088845
0 0 0

Note that, the rows of yproj matrix are the coordinates of the initial points in terms of the
basis in the lower dimensional space.
Finally, we form the convex hull triangulation in the projected subspace yproj.That is,

>> tri = convhulln(yproj)
tri =

1 2 3
2 4 3
4 2 1
5 1 3
4 5 3
5 4 1

Since we are only interested for the number of vertices of the convex hull of R(β), we can only
determine the number of vertices of the convex hull in the projected subspace. Therefore,

>> length(unique(tri(:)))
ans =

5

So, there are 5 vertices in the hull. This procedure is included in the SUBlatSUB function
therefore, for a direct answer in the previous example, one can apply the SUBlatSUB function
directly to the given collection by using the code,

>> [positive basis,dimensions]=SUBlatSUB(a)

the results, then, are as follows:

In this case, and after the necessary calculations it is clear that R(β) = {P1, P2, P3, P4, P5, P6}
where 



P1
P2
P3
P4
P5
P6



=




0 1
3

1
3

1
3

1
4 0 1

2
1
4

1
2 0 1

2 0
1
3

1
3 0 1

3
1
2

1
4

1
4 0

1
4

1
4

1
4

1
4




.

Therefore, in order to determine the convex hull of R(β) we have used the convhulln function.
In this case the convhulln function yields with the following warning message:

??? qhull precision warning: The initial hull is narrow (cosine of
min. angle is 1.0000000000000002). A coplanar point may lead to a
wide facet.

If we use the following simple rank test:

>> y=[0 1/3 1/3 1/3;1/4 0 1/2 1/4;1/2 0 1/2 0;1/3 1/3 0 1/3;

1/2 1/4 1/4 0;1/4 1/4 1/4 1/4];
>> rank(bsxfun(@minus,y,y(6,:)))

then one gets

ans =
3

Thus, by our previous analysis it is clear that the points P1, P2, P3, P4, P5, P6 of R4 lie in a 3-
manifold and we cannot use convhulln to solve our problem directly. A solution to this prob-
lem can be given under the following methodology:

• Translate the points to a hyper-plane that passes through the origin.

• Determine a set of basis vectors for the subspace.

• Transform the points into an equivalent lower dimensional space.

• Form the convex hull triangulation in the lower dimensional space.

Let us describe, in detail, the procedure for this particular example. First, one has to translate
the given points to a hyper-plane that passes through the origin by subtracting one of the
vectors from the others,

>> ytrans = bsxfun(@minus,y,y(6,:))
ytrans =
-0.2500 0.0833 0.0833 0.0833

0 -0.2500 0.2500 0
0.2500 -0.2500 0.2500 -0.2500
0.0833 0.0833 -0.2500 0.0833
0.2500 0 0 -0.2500

0 0 0 0

Then, we form an orthonormal basis for the range of ytrans.



Computational and mathematical methods in portfolio insurance - A MATLAB-based approach 423

>> rot = orth(ytrans’)
rot =

0.5 -0.64505 0.28967
0.5 -0.28967 -0.64505
-0.5 0.64505 -0.28967
0.5 0.28967 0.64505

Recall that, if {v1, v2, . . . , vr} is an orthonormal basis for a finite dimensional subspace W of
an inner product space V and u is any vector of V, then the projection of the vector u in W is
given by the formula projW u =< u, v1 > v1 + . . .+ < u, vr > vr.
Now, we project the points into an equivalent lower dimensional space where rot is a basis
for this space. Hence,

>> yproj = ytrans*rot
yproj =

0.16667 0.21502 -0.096557
-0.25 0.23368 0.088845
-0.5 3.0531e-16 5.5511e-17
0.16667 -0.21502 0.096557
-0.25 -0.23368 -0.088845
0 0 0

Note that, the rows of yproj matrix are the coordinates of the initial points in terms of the
basis in the lower dimensional space.
Finally, we form the convex hull triangulation in the projected subspace yproj.That is,

>> tri = convhulln(yproj)
tri =

1 2 3
2 4 3
4 2 1
5 1 3
4 5 3
5 4 1

Since we are only interested for the number of vertices of the convex hull of R(β), we can only
determine the number of vertices of the convex hull in the projected subspace. Therefore,

>> length(unique(tri(:)))
ans =

5

So, there are 5 vertices in the hull. This procedure is included in the SUBlatSUB function
therefore, for a direct answer in the previous example, one can apply the SUBlatSUB function
directly to the given collection by using the code,

>> [positive basis,dimensions]=SUBlatSUB(a)

the results, then, are as follows:

In this case, and after the necessary calculations it is clear that R(β) = {P1, P2, P3, P4, P5, P6}
where 



P1
P2
P3
P4
P5
P6



=




0 1
3

1
3

1
3

1
4 0 1

2
1
4

1
2 0 1

2 0
1
3

1
3 0 1

3
1
2

1
4

1
4 0

1
4

1
4

1
4

1
4




.

Therefore, in order to determine the convex hull of R(β) we have used the convhulln function.
In this case the convhulln function yields with the following warning message:

??? qhull precision warning: The initial hull is narrow (cosine of
min. angle is 1.0000000000000002). A coplanar point may lead to a
wide facet.

If we use the following simple rank test:

>> y=[0 1/3 1/3 1/3;1/4 0 1/2 1/4;1/2 0 1/2 0;1/3 1/3 0 1/3;

1/2 1/4 1/4 0;1/4 1/4 1/4 1/4];
>> rank(bsxfun(@minus,y,y(6,:)))

then one gets

ans =
3

Thus, by our previous analysis it is clear that the points P1, P2, P3, P4, P5, P6 of R4 lie in a 3-
manifold and we cannot use convhulln to solve our problem directly. A solution to this prob-
lem can be given under the following methodology:

• Translate the points to a hyper-plane that passes through the origin.

• Determine a set of basis vectors for the subspace.

• Transform the points into an equivalent lower dimensional space.

• Form the convex hull triangulation in the lower dimensional space.

Let us describe, in detail, the procedure for this particular example. First, one has to translate
the given points to a hyper-plane that passes through the origin by subtracting one of the
vectors from the others,

>> ytrans = bsxfun(@minus,y,y(6,:))
ytrans =
-0.2500 0.0833 0.0833 0.0833

0 -0.2500 0.2500 0
0.2500 -0.2500 0.2500 -0.2500
0.0833 0.0833 -0.2500 0.0833
0.2500 0 0 -0.2500

0 0 0 0

Then, we form an orthonormal basis for the range of ytrans.
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Rank SUBlatSUB K Rank SUBlatSUB K
(Time in seconds) (Time in seconds) (Time in seconds) (Time in seconds)

3 0.141 0.205 17 0.553 5.548
4 0.140 0.322 18 0.665 6.230
5 0.073 0.641 19 0.853 6.992
6 0.115 0.805 20 1.100 7.681
7 0.113 1.090 21 1.290 8.545
8 0.207 1.257 22 1.620 9.457
9 0.191 1.572 23 1.882 10.420

10 0.198 1.980 24 2.292 11.382
11 0.209 2.358 25 2.823 12.470
12 0.153 2.858 26 3.353 13.662
13 0.371 3.161 27 4.154 14.854
14 0.308 3.694 28 5.030 16.040
15 0.272 4.135 29 5.815 17.384
16 0.477 4.781 30 6.978 18.617

Table 2. Results for 50 tested full rank matrices for each rank n, n = 3, ..., 30.

mathematical problem of whether the vector subspace X = [x1, ..., xn] is a lattice-subspace of
C[a, b], where x1, ..., xn are linearly independent positive functions in C[a, b].

4.1 Preliminaries and notation
Let C[a, b]+ be the positive cone of C[a, b] and assume that X is a subspace of C[a, b]. The
induced ordering on X is the ordering defined by X+ = X ∩ C[a, b]+ (induced cone of X). An
ordered subspace of C[a, b] is a subspace of C[a, b] under the induced ordering. A lattice-subspace
of C[a, b] is an ordered subspace X of C[a, b] which is a vector lattice in its own, that is, for
each x, y ∈ X the supremum and the infimum of the set {x, y} exists in X. If X is a lattice-
subspace of C[a, b] then we will denote by x�y the supremum of the set {x, y} in X. Similarly,
x � y stands for the infimum of the set {x, y} in X. If x ∨ y denotes the supremum and x ∧ y
the infimum in E of the set {x, y} and we suppose that x � y, x ∧ y, x ∨ y, x�y exists, then it
follows that

x � y ≤ x ∧ y ≤ x ∨ y ≤ x�y (1)

For example, consider C[0, 1], the space of all continuous real functions in the interval [0, 1]
and X = {ax + b|a, b ∈ R}. Then X is a lattice-subspace of C[0, 1] and (1) holds for each
x, y ∈ X (Figure 2).
One of the most serious difficulties in the study of lattice-subspaces comes from the fact that
the supremum and the infimum depend both on the subspace.
For a general definition of a positive basis, let E be a (partially) ordered Banach space. Then a
sequence {en} of positive vectors of E is a positive basis if it is a Schauder basis of E and

E+ = {x =
∞

∑
i=1

λiei ∈ E|λn ≥ 0, for all n ∈ N}.

Equivalently, one can say that {en} is a positive basis of E if

x =
∞

∑
i=1

λiei ≥ 0 ⇔ λn ≥ 0, for all n ∈ N.

Let Y be a closed subspace of E = C[a, b] with basis {bn} (not necessarily positive). Fix t ∈
[a, b] and m ∈ N. Following the terminology introduced in Polyrakis (1996), if bm(t) �= 0 and

not a lattice-subspace
positivebasis =

[]
dimensions =

4
6
5
7

where a denotes a matrix that has the vectors xi, i = 1, 2, 3, 4 as columns.

3.4 Comparison results
In this section, we compare the performance of the SUBlatSUB function to that of the K func-
tion. The numerical method, based on the introduction of the SUBlatSUB function, enables
us to perform fast and accurate estimations of the lattice-subspace or the vector sublattice for a
finite collection of positive, linearly independent vectors of Rk for a variety of dimensions. For
this purpose we have used the Matlab function rand in order to produce 50 full rank matrices
for each rank n, n = 3, ..., 30. The cumulative results are presented in Figure 1 (Figure 1 shows
the time efficiency curves, i.e., the rank of the 50 tested matrices versus the total computation
time (in seconds)) and in Table 2. From the previous results (see Figure 1,Table 2) it is evident
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Fig. 1. Time efficiency curves for the K function and the SUBlatSUB function

that using the SUBlatSUB function the interested user can reach a fast computational solution
using a reduced amount of computational resources.

4. Finite dimensional lattice-subspaces of C[a, b]

In what follows we shall denote by C[a, b] the space of all continuous real functions defined
on the interval [a, b]. As in the case of Rk, lattice-subspaces of C[a, b] are subspaces which are
vector lattices in the induced ordering, i.e., for any two vectors x, y of the subspace the supre-
mum and the infimum of the set {x, y} both exist in the subspace. Recall that the supremum
and the infimum of the set {x, y} are, in general, different in the subspace than the supremum
and the infimum of this set in the initial space. In this section we present a brief introduction
to the theory of lattice-subspaces in C[a, b]. In addition, we describe in detail the construction
of a powerful and efficient package for the translation, into the language of computing, of the
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Rank SUBlatSUB K Rank SUBlatSUB K
(Time in seconds) (Time in seconds) (Time in seconds) (Time in seconds)

3 0.141 0.205 17 0.553 5.548
4 0.140 0.322 18 0.665 6.230
5 0.073 0.641 19 0.853 6.992
6 0.115 0.805 20 1.100 7.681
7 0.113 1.090 21 1.290 8.545
8 0.207 1.257 22 1.620 9.457
9 0.191 1.572 23 1.882 10.420

10 0.198 1.980 24 2.292 11.382
11 0.209 2.358 25 2.823 12.470
12 0.153 2.858 26 3.353 13.662
13 0.371 3.161 27 4.154 14.854
14 0.308 3.694 28 5.030 16.040
15 0.272 4.135 29 5.815 17.384
16 0.477 4.781 30 6.978 18.617

Table 2. Results for 50 tested full rank matrices for each rank n, n = 3, ..., 30.
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In this section, we compare the performance of the SUBlatSUB function to that of the K func-
tion. The numerical method, based on the introduction of the SUBlatSUB function, enables
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that using the SUBlatSUB function the interested user can reach a fast computational solution
using a reduced amount of computational resources.

4. Finite dimensional lattice-subspaces of C[a, b]

In what follows we shall denote by C[a, b] the space of all continuous real functions defined
on the interval [a, b]. As in the case of Rk, lattice-subspaces of C[a, b] are subspaces which are
vector lattices in the induced ordering, i.e., for any two vectors x, y of the subspace the supre-
mum and the infimum of the set {x, y} both exist in the subspace. Recall that the supremum
and the infimum of the set {x, y} are, in general, different in the subspace than the supremum
and the infimum of this set in the initial space. In this section we present a brief introduction
to the theory of lattice-subspaces in C[a, b]. In addition, we describe in detail the construction
of a powerful and efficient package for the translation, into the language of computing, of the
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The following theorem, is a criterion for lattice-subspaces and provides a full answer to the
problem of whether a collection of positive functions x1, x2, ..., xn of C[a, b] generates a lattice-
subspace. In addition, if we are in the case of a lattice-subspace then the theorem determines
a positive basis for X = [x1, x2, ..., xn].

Theorem 0.4. The following statements are equivalent,

(i) X is a lattice-subspace of C[a, b].

(ii) There exist n linearly independent P1, P2, ..., Pn vectors in Rn, belonging to the closure of the
range of β such that for each t ∈ D(β) the vector β(t) is a convex combination of the vectors
P1, P2, ..., Pn, i.e., R(β) ⊆ co({P1, P2, ..., Pn}).
If (ii) is true, Pi = limν→∞ β(ωiν) for each i, A is the n × n matrix whose ith column is the
vector Pi and b1, b2, ..., bn are the functions defined by the formula

(b1(t), b2(t), ..., bn(t)) = A−1(x1(t), x2(t), ..., xn(t))T ,

then X has the following properties:

(a) The set {b1, b2, ..., bn} is a positive basis of X. In addition, if ti is a limit point of the sequence
{ωiν : ν = 1, 2, ...}, then ti ∈ suppbi and bk(ti) = 0, for each k �= i.

(b) The closed convex hull of R(β) and the convex polygon with vertices the points P1, P2, ..., Pn
coincide.

(c) If Pk = β(tk), then tk is a k-node of the basis {b1, b2, ..., bn}.

(d) If Pk = β(tk) for some interior point tk of [a, b] and xi are C2− functions in a neighborhood of
tk, then

β′(tk) = 0.

The set E(β) is the extreme subset of the basic curve β if there exists a subset G of R(β) consisting
of n linearly independent vectors such that R(β) ⊆ co(G), then we put E(β) = G, otherwise
we put E(β) = ∅.
From Theorem 0.4 and the preceding definition the following proposition should be immedi-
ate.

Proposition 0.1. The subspace X satisfies the properties

(i) X is a lattice-subspace if and only if E(β) �= ∅.

(ii) If β(t) ∈ E(β), then t is a node of the positive basis of X.

(iii) X has a positive basis with nodes if and only if E(β) is a nonempty subset of R(β).

From Theorem 0.4 it is evident that if P ∈ E(β) and P /∈ R(β), then we have that P =
limν→∞ β(tν), where tν is a sequence of D(β) having all limit points in the boundary ∂D(β) of
D(β).
So, the limit set L(β) of the curve β is defined as follows:

L(β) = {P ∈ Rn : ∃{tν} ⊆ D(β) with its limit points in ∂D(β), P = lim
ν→∞

β(tν)}.

Also, if a, b ∈ D(β) then we shall denote by β(∂[a, b]) the set

β(∂[a, b]) = {β(a), β(b)}.
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Fig. 2. Relation (1) for x=t, y=1-t,t∈[0,1].

bn(t) = 0 for each n �= m, then we shall say that the point t is an m-node (or simply a node) of the
basis {bn}. If for each n there exists an n-node tn of the basis {bn}, then we shall say that {bn}
is a basis of Y with nodes and that tn is a sequence with nodes of {bn}. If dim Y = n and for each
m ∈ {1, 2, ..., n} there exists an m-node tm of the basis of Y, then we shall say that {b1, b2, ..., bn}
is a basis of Y with nodes and that the points t1, t2, ..., tn are nodes of the basis {b1, b2, ..., bn}.
The support of a function x ∈ C[a, b] is the closure of the set {t ∈ [a, b] : x(t) > 0} and shall be
denoted by suppx.

4.2 The mathematical problem
In this section, we present the method developed in Polyrakis (1996), for the determination
of the finite-dimensional lattice-subspaces of C[a, b] and we shall discuss the necessary and
sufficient conditions for a collection of linearly independent, positive functions, x1, x2, ..., xn of
C[a, b] to generate a lattice-subspace. Recall that the Wronski determinant of the functions xi,
i = 1, ..., n is the n × n determinant which ith row is constituted of the (i − 1)th derivatives of
the functions xi. Our first approach to the problem is given through the following Wronskian
criterion:

Theorem 0.3. Consider the closed interval [a, b] of R and dim X > 2, where X = [x1, x2, ..., xn].
Suppose that (c, d) is an open interval of R which contains [a, b]. If the functions xi have continuous
derivatives up to the nth order in (c, d) and the Wronskian of the functions xi is nonzero for any point
of (c, d), then X is not a lattice-subspace of C[a, b].

As in the case of Rk, let x1, ..., xn in C[a, b], we shall denote by z the sum z = ∑n
i=1 xi and by β

the function β : [a, b] → Rn such that

β(t) =
( x1(t)

z(t)
,

x2(t)
z(t)

, ...,
xn(t)
z(t)

)

for each t ∈ [a, b] with z(t) > 0. We shall refer to β as the basic curve of the functions
x1, x2, ..., xn. Also, we shall denote by D(β) the domain and by R(β) the range of the basic
curve β of x1, x2, ..., xn. If K is a subset of Rn then we shall denote by K the closure of K, by
int(K) the interior of K and by ∂K the boundary of K. We shall denote by co(K) the convex
hull of K and by co(K) the closure of co(K).
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The Wronskian has at least one root in [a,b]

and it yields the roots of the Wronskian. If, instead, the Wronskian does not have any roots in
the interval [a, b], then the program provides only the roots outside the interval [a, b] (if there
exist any).
Suppose that the given collection passes the Wronskian test, then we try to determine the
possible extreme subsets of the basic curve β starting with the computation of the set β(∂[a, b]).
So, in our next step we call the function V. Function V first checks whether there are any real
roots of the function z(t) = ∑n

i=1 xi. If that is the case it displays the message

Possible non empty limit set

so that we can continue in order to determine the limit set of the curve β. Function V responds
with a matrix whose columns are the elements of the set β(∂[a, b]).
In the case of a non empty limit set, we use the function L in order to determine the limit set
of the curve β. The output of the function L is a matrix whose columns are the elements of the
set L(β).
In order to determine the set

I(β) = {β(t) : t ∈ Int([a, b]) ∩ D(β) and t is root of the equation (2)},

we use the function I. The function I provides a matrix whose columns are the elements of the
set I(β).
Suppose that {P1, ..., Pn} is a possible extreme subset of β and

β(t) = ξ1(t)P1 + ... + ξn(t)Pn.

In order to prove that {P1, ..., Pn} is an extreme subset of β we must show that ξi(t) ≥ 0, for
each i and each t ∈ [a, b]. So, for the next step in our approach, we need to construct all the
possible extreme subsets of β and check whether there exists an extreme subset of β. To this
end, we make use of the function sisets in order to generate all the possible extreme subsets of
the curve β. Note that, sisets calls automatically the function xitest in order to determine the
domain where each one of the ξi(t) are negative. Let us denote by ∆i the domain of negativity
that corresponds to the function ξi(t), for i = 1, ..., n then, if for at least one of the ξi(t), ∆i
has non empty intersection with the interval [a, b], the set {P1, ..., Pn} is not an extreme subset
of β. In the case where an extreme subset exists we determine the positive basis by using the
formula

(b1(t), b2(t), ..., bn(t)) = A−1(x1(t), x2(t), ..., xn(t))T ,

from Theorem 0.4.

5.2 Numerical examples
For the purpose of monitoring the performance, in the following we present some examples in
C[a, b] for various collections of functions together with the time responses we obtained when
running these examples (Table 3).

Example 0.6. Let x1(t) = t2 − 2t + 2, x2(t) = −t3 + 2t2 − t + 2 and x3(t) = t3 − 3t2 + 3t and
X be the subspace of C[0, 2] generated by the functions x1, x2, x3.
Our first step consists of loading the data of the problem by using the following commands:

If t is an interior point of [a, b] and β(t) ∈ E(β), then t is a root of the equation

β′(t) = 0, (2)

and we shall denote by I(β) the images of the roots of equation (2), i.e.,

I(β) = {β(t) : t ∈ Int([a, b]) ∩ D(β) and t is root of the equation (2)}.

Any subset of L(β) ∪ I(β) ∪ β(∂[a, b]) consisting of n linearly independent vectors will be
called a possible extreme subset of β.

Proposition 0.2. If the functions x1, x2, ..., xn are C2−functions in the set Int([a, b]) ∩ D(β), then
E(β) ⊆ L(β) ∪ I(β) ∪ β(∂[a, b]).

The set β(∂[a, b]) is known because ∂[a, b] = {a, b} and if D(β) = [a, b] then L(β) = ∅. In
addition, if we assume that the domain of β has the form

D(β) = [a, t1) ∪ (t1, t2) ∪ ... ∪ (tn−1, tn) ∪ (tn, b]

and the limits
Pi = lim

t→ti
β(t)

exist for each i, then
L(β) = {P1, P2, ..., Pn}.

In view of Proposition 0.2 one has to determine the set L(β) ∪ I(β) ∪ β(∂[a, b]) and then must
investigate when one of the possible extreme subsets of β is indeed an extreme subset of β.
The details are included in the next algorithm.

4.3 The algorithm
Based upon Theorem 0.3, Theorem 0.4 and the discussion in Subsection 4.2, next, we illustrate
the steps of an algorithm in order to decide whether the collection {x1, x2, ..., xn} generates a
lattice-subspace.

(1) Does the Wronskian of the functions x1, x2, ..., xn have at least one root in the interval
[a, b]?

(2) Determine the sets L(β), I(β), β(∂[a, b]) and the possible extreme subsets of β.

(3) Is one of the possible extreme subsets an extreme subset of β ?

(4) If step (3) holds, determine a positive basis of X.

5. The computational method

5.1 Method presentation
In this section, we present a procedure that will accurately implement the ideas of algorithm
4.3 while the main concern is to further calculate the positive basis (if one exists) in order to
provide an exact description of the lattice-subspace. So, the first step of our approach consists
of describing the functionality of the functions wr, V, L, I, sisets and xitest from Katsikis
(2008).
According to Theorem 0.3, function wr checks if the Wronskian of the given collection
{x1, x2, ..., xn} of C[a, b] has at least one root in the interval [a, b]. In addition, the wr function
provides the roots (if there exist any) of the Wronskian. So, in this case the program responds
with the output:
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The Wronskian has at least one root in [a,b]

and it yields the roots of the Wronskian. If, instead, the Wronskian does not have any roots in
the interval [a, b], then the program provides only the roots outside the interval [a, b] (if there
exist any).
Suppose that the given collection passes the Wronskian test, then we try to determine the
possible extreme subsets of the basic curve β starting with the computation of the set β(∂[a, b]).
So, in our next step we call the function V. Function V first checks whether there are any real
roots of the function z(t) = ∑n

i=1 xi. If that is the case it displays the message

Possible non empty limit set

so that we can continue in order to determine the limit set of the curve β. Function V responds
with a matrix whose columns are the elements of the set β(∂[a, b]).
In the case of a non empty limit set, we use the function L in order to determine the limit set
of the curve β. The output of the function L is a matrix whose columns are the elements of the
set L(β).
In order to determine the set

I(β) = {β(t) : t ∈ Int([a, b]) ∩ D(β) and t is root of the equation (2)},

we use the function I. The function I provides a matrix whose columns are the elements of the
set I(β).
Suppose that {P1, ..., Pn} is a possible extreme subset of β and

β(t) = ξ1(t)P1 + ... + ξn(t)Pn.

In order to prove that {P1, ..., Pn} is an extreme subset of β we must show that ξi(t) ≥ 0, for
each i and each t ∈ [a, b]. So, for the next step in our approach, we need to construct all the
possible extreme subsets of β and check whether there exists an extreme subset of β. To this
end, we make use of the function sisets in order to generate all the possible extreme subsets of
the curve β. Note that, sisets calls automatically the function xitest in order to determine the
domain where each one of the ξi(t) are negative. Let us denote by ∆i the domain of negativity
that corresponds to the function ξi(t), for i = 1, ..., n then, if for at least one of the ξi(t), ∆i
has non empty intersection with the interval [a, b], the set {P1, ..., Pn} is not an extreme subset
of β. In the case where an extreme subset exists we determine the positive basis by using the
formula

(b1(t), b2(t), ..., bn(t)) = A−1(x1(t), x2(t), ..., xn(t))T ,

from Theorem 0.4.

5.2 Numerical examples
For the purpose of monitoring the performance, in the following we present some examples in
C[a, b] for various collections of functions together with the time responses we obtained when
running these examples (Table 3).

Example 0.6. Let x1(t) = t2 − 2t + 2, x2(t) = −t3 + 2t2 − t + 2 and x3(t) = t3 − 3t2 + 3t and
X be the subspace of C[0, 2] generated by the functions x1, x2, x3.
Our first step consists of loading the data of the problem by using the following commands:

If t is an interior point of [a, b] and β(t) ∈ E(β), then t is a root of the equation

β′(t) = 0, (2)

and we shall denote by I(β) the images of the roots of equation (2), i.e.,

I(β) = {β(t) : t ∈ Int([a, b]) ∩ D(β) and t is root of the equation (2)}.

Any subset of L(β) ∪ I(β) ∪ β(∂[a, b]) consisting of n linearly independent vectors will be
called a possible extreme subset of β.

Proposition 0.2. If the functions x1, x2, ..., xn are C2−functions in the set Int([a, b]) ∩ D(β), then
E(β) ⊆ L(β) ∪ I(β) ∪ β(∂[a, b]).

The set β(∂[a, b]) is known because ∂[a, b] = {a, b} and if D(β) = [a, b] then L(β) = ∅. In
addition, if we assume that the domain of β has the form

D(β) = [a, t1) ∪ (t1, t2) ∪ ... ∪ (tn−1, tn) ∪ (tn, b]

and the limits
Pi = lim

t→ti
β(t)

exist for each i, then
L(β) = {P1, P2, ..., Pn}.

In view of Proposition 0.2 one has to determine the set L(β) ∪ I(β) ∪ β(∂[a, b]) and then must
investigate when one of the possible extreme subsets of β is indeed an extreme subset of β.
The details are included in the next algorithm.

4.3 The algorithm
Based upon Theorem 0.3, Theorem 0.4 and the discussion in Subsection 4.2, next, we illustrate
the steps of an algorithm in order to decide whether the collection {x1, x2, ..., xn} generates a
lattice-subspace.

(1) Does the Wronskian of the functions x1, x2, ..., xn have at least one root in the interval
[a, b]?

(2) Determine the sets L(β), I(β), β(∂[a, b]) and the possible extreme subsets of β.

(3) Is one of the possible extreme subsets an extreme subset of β ?

(4) If step (3) holds, determine a positive basis of X.

5. The computational method

5.1 Method presentation
In this section, we present a procedure that will accurately implement the ideas of algorithm
4.3 while the main concern is to further calculate the positive basis (if one exists) in order to
provide an exact description of the lattice-subspace. So, the first step of our approach consists
of describing the functionality of the functions wr, V, L, I, sisets and xitest from Katsikis
(2008).
According to Theorem 0.3, function wr checks if the Wronskian of the given collection
{x1, x2, ..., xn} of C[a, b] has at least one root in the interval [a, b]. In addition, the wr function
provides the roots (if there exist any) of the Wronskian. So, in this case the program responds
with the output:
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Suppose that
β(t) = ξ1(t)P1 + ξ2(t)P2 + ξ3(t)P3.

In order to prove that {P1, P2, P3} is an extreme subset of β we must show that ξi(t) ≥ 0,
for each i and each t ∈ [0, 2] and that ∑3

i=1 ξi(t) = 1. Since, in the present example, there is
only one possible extreme subset of the curve β we can use the xitest function directly as the
following code suggests:

>> b=[1/2 1/2 1/4;1/2 0 1/2;0 1/2 1/4];
>> xitest(K,b);

The results, then, are as follows:

sumofxi =
1

ans =
RealRange(Open(2), infinity)

ans =
RealRange(-infinity,Open(0)),RealRange(Open(2),infinity)

ans =
RealRange(-infinity, Open(0))

Thus, we have that ∑3
i=1 ξi(t) = 1. Also, ∆1 = (2,+∞), ∆2 = (−∞, 0) ∪ (2,+∞) and ∆3 =

(−∞, 0), therefore ∆i ∩ [0, 2] = ∅ for each i. As a result we have that {P1, P2, P3} is an extreme
subset of β. Note that in the above code we denote by b the matrix whose columns are the
elements of the set {P1, P2, P3}. According to Theorem 0.4(ii), a positive basis {b1, b2, b3} of
X = [x1, x2, x3] is given by the following code:

>> positivebasis=factor(inv(b)*K)

The results, then, are as follows:

positivebasis =
[ 2]
[-2(t - 2)(t - 1) ]
[ -4t(t - 2) ]
[ 2 ]
[ 2t(t - 1) ]

hence b1(t) = −2(t − 2)(t − 1)2, b2(t) = −4t(t − 2), b3(t) = 2t(t − 1)2.

Example 0.7. Let x1(t) = t2(t − 1)2, x2(t) = t4(t − 1)2 and x3(t) = t4(t − 1)4 and X be the
subspace of C[−1, 2] generated by the functions x1, x2, x3. Working as before, we load the data
of the problem by using the following commands:

>> syms t
>> f=t^2*(t-1)^2;
>> g=t^4*(t-1)^2;
>> h=t^4*(t-1)^4;
>> K=[f g h];

and for the above set we start our analysis by using the Wroskian criterion as follows:

>> syms t
>> f=t^2-2*t+2;
>> g=-t^3+2*t^2-t+2;
>> h=t^3-3*t^2+3*t;
>> K=[f g h];

For the above set we start our analysis by using the Wroskian criterion (Theorem 0.3) through
the wr function as follows:

>> wr(K,0,2);

The results, then, are as follows:

The Wronskian has at least one root in [a,b]
ans =

1

Since, the Wroskian has at least one root in the interval [0,2], then we determine the set
β(∂[a, b]) by using the V function as the following code suggests:

>> betathetaomega=V(K,0,2);

As a result we get

limit set is empty
betathetaomega=

1/2 1/2
1/2 0
0 1/2

Let us denote P1(
1
2 , 1

2 , 0), P2(
1
2 , 0, 1

2 ). Note that, if there is a possibility of a non empty limit set
then the V function displays the message

Possible non empty limit set

Our next step is to determine the set I(β) by using the I function which it provides a matrix
whose columns are the elements of the set I(β). Therefore,

>> I(K,0,2);

In this case the program yields

iotabeta =
1/4
1/2
1/4

Let us denote P3(
1
4 , 1

2 , 1
4 ). Then, the set

{P1(
1
2

,
1
2

, 0), P2(
1
2

, 0,
1
2
), P3(

1
4

,
1
2

,
1
4
)}

is the only possible extreme subset of β.
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Suppose that
β(t) = ξ1(t)P1 + ξ2(t)P2 + ξ3(t)P3.

In order to prove that {P1, P2, P3} is an extreme subset of β we must show that ξi(t) ≥ 0,
for each i and each t ∈ [0, 2] and that ∑3

i=1 ξi(t) = 1. Since, in the present example, there is
only one possible extreme subset of the curve β we can use the xitest function directly as the
following code suggests:

>> b=[1/2 1/2 1/4;1/2 0 1/2;0 1/2 1/4];
>> xitest(K,b);

The results, then, are as follows:

sumofxi =
1

ans =
RealRange(Open(2), infinity)

ans =
RealRange(-infinity,Open(0)),RealRange(Open(2),infinity)

ans =
RealRange(-infinity, Open(0))

Thus, we have that ∑3
i=1 ξi(t) = 1. Also, ∆1 = (2,+∞), ∆2 = (−∞, 0) ∪ (2,+∞) and ∆3 =

(−∞, 0), therefore ∆i ∩ [0, 2] = ∅ for each i. As a result we have that {P1, P2, P3} is an extreme
subset of β. Note that in the above code we denote by b the matrix whose columns are the
elements of the set {P1, P2, P3}. According to Theorem 0.4(ii), a positive basis {b1, b2, b3} of
X = [x1, x2, x3] is given by the following code:

>> positivebasis=factor(inv(b)*K)

The results, then, are as follows:

positivebasis =
[ 2]
[-2(t - 2)(t - 1) ]
[ -4t(t - 2) ]
[ 2 ]
[ 2t(t - 1) ]

hence b1(t) = −2(t − 2)(t − 1)2, b2(t) = −4t(t − 2), b3(t) = 2t(t − 1)2.

Example 0.7. Let x1(t) = t2(t − 1)2, x2(t) = t4(t − 1)2 and x3(t) = t4(t − 1)4 and X be the
subspace of C[−1, 2] generated by the functions x1, x2, x3. Working as before, we load the data
of the problem by using the following commands:

>> syms t
>> f=t^2*(t-1)^2;
>> g=t^4*(t-1)^2;
>> h=t^4*(t-1)^4;
>> K=[f g h];

and for the above set we start our analysis by using the Wroskian criterion as follows:

>> syms t
>> f=t^2-2*t+2;
>> g=-t^3+2*t^2-t+2;
>> h=t^3-3*t^2+3*t;
>> K=[f g h];

For the above set we start our analysis by using the Wroskian criterion (Theorem 0.3) through
the wr function as follows:

>> wr(K,0,2);

The results, then, are as follows:

The Wronskian has at least one root in [a,b]
ans =

1

Since, the Wroskian has at least one root in the interval [0,2], then we determine the set
β(∂[a, b]) by using the V function as the following code suggests:

>> betathetaomega=V(K,0,2);

As a result we get

limit set is empty
betathetaomega=

1/2 1/2
1/2 0
0 1/2

Let us denote P1(
1
2 , 1

2 , 0), P2(
1
2 , 0, 1

2 ). Note that, if there is a possibility of a non empty limit set
then the V function displays the message

Possible non empty limit set

Our next step is to determine the set I(β) by using the I function which it provides a matrix
whose columns are the elements of the set I(β). Therefore,

>> I(K,0,2);

In this case the program yields

iotabeta =
1/4
1/2
1/4

Let us denote P3(
1
4 , 1

2 , 1
4 ). Then, the set

{P1(
1
2

,
1
2

, 0), P2(
1
2

, 0,
1
2
), P3(

1
4

,
1
2

,
1
4
)}

is the only possible extreme subset of β.
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>> V=[1/6 1/9 1 1/2;1/6 4/9 0 1/2;2/3 4/9 0 0];
>> sisets(K,V);

where by V we denote the matrix whose columns are the elements of the set I(β) ∪ L(β) ∪
β(∂Ω). Note that the sisets function not only calculates all the possible extreme subsets of the
curve β but it also calls, automatically, the function xitest in order to determine the domain
where each one of the ξi(t) are negative. The results, then, are as follows:

S =
1/6 1/9 1
1/6 4/9 0
2/3 4/9 0

ans =
RealRange(Open(0.),Open(2.))

ans =
RealRange(-infinity,Open(-1.)), RealRange(Open(3.),infinity)

ans =
RealRange(-infinity,Open(-1.)), RealRange(Open(2.),infinity)

S =
1/6 1/9 1/2
1/6 4/9 1/2
2/3 4/9 0

ans =
RealRange(Open(1.),Open(2.))

ans =
RealRange(Open(-1.),Open(1.))

ans =
RealRange(-infinity,Open(-1.)), RealRange(Open(2.),infinity)

S =
1/6 1 1/2
1/6 0 1/2
2/3 0 0

ans =
NULL

ans =
RealRange(-infinity,Open(-1.)), RealRange(Open(1.),infinity)

ans =
RealRange(-infinity,Open(-1.)), RealRange(Open(3.),infinity)

S =
1/9 1 1/2
4/9 0 1/2
4/9 0 0

ans =
NULL

ans =
RealRange(Open(1.),Open(2.))

ans =
RealRange(-infinity,Open(0.)), RealRange(Open(2.),infinity)

>> wr(K,-1,2);

The results, then, are as follows:

The Wronskian has at least one root in [a,b]
ans =

0
3/4
1

Thus, 0, 3/4 and 1 are the roots of the Wroskian in the interval [−1, 2]. In this case, we deter-
mine the set β(∂[−1, 2]) with the following code:

>> betathetaomega=V(K,-1,2);

As a result we get

>> Possible non empty limit set
betathetaomega =

1/6 1/9
1/6 4/9
2/3 4/9

Let us denote P1(
1
6 , 1

6 , 2
3 ), P2(

1
9 , 4

9 , 4
9 ), then, from the above results, the possibility of a non

empty limit set is further investigated. We can determine the limit set L(β) of the curve β with
the L function as the following code suggests:

>> limitset=L(K,-1,2);

In this case the program yields

limitset =
1 1/2
0 1/2
0 0

Let us denote P3(1, 0, 0), P4(
1
2 , 1

2 , 0). Our next step is to determine the set I(β). So,

>> iotabeta=I(K,-1,2);

The results, then, are as follows:

iotabeta is empty
iotabeta =

[]

Thus, we have

I(β) ∪ L(β) ∪ β(∂Ω) = {P1(
1
6

,
1
6

,
2
3
), P2(

1
9

,
4
9

,
4
9
), P3(1, 0, 0), P4(

1
2

,
1
2

, 0)}.

In order to determine all the possible extreme subsets of the curve β we shall use the sisets
function under the following code:
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>> V=[1/6 1/9 1 1/2;1/6 4/9 0 1/2;2/3 4/9 0 0];
>> sisets(K,V);

where by V we denote the matrix whose columns are the elements of the set I(β) ∪ L(β) ∪
β(∂Ω). Note that the sisets function not only calculates all the possible extreme subsets of the
curve β but it also calls, automatically, the function xitest in order to determine the domain
where each one of the ξi(t) are negative. The results, then, are as follows:

S =
1/6 1/9 1
1/6 4/9 0
2/3 4/9 0

ans =
RealRange(Open(0.),Open(2.))

ans =
RealRange(-infinity,Open(-1.)), RealRange(Open(3.),infinity)

ans =
RealRange(-infinity,Open(-1.)), RealRange(Open(2.),infinity)

S =
1/6 1/9 1/2
1/6 4/9 1/2
2/3 4/9 0

ans =
RealRange(Open(1.),Open(2.))

ans =
RealRange(Open(-1.),Open(1.))

ans =
RealRange(-infinity,Open(-1.)), RealRange(Open(2.),infinity)

S =
1/6 1 1/2
1/6 0 1/2
2/3 0 0

ans =
NULL

ans =
RealRange(-infinity,Open(-1.)), RealRange(Open(1.),infinity)

ans =
RealRange(-infinity,Open(-1.)), RealRange(Open(3.),infinity)

S =
1/9 1 1/2
4/9 0 1/2
4/9 0 0

ans =
NULL

ans =
RealRange(Open(1.),Open(2.))

ans =
RealRange(-infinity,Open(0.)), RealRange(Open(2.),infinity)

>> wr(K,-1,2);

The results, then, are as follows:

The Wronskian has at least one root in [a,b]
ans =

0
3/4
1

Thus, 0, 3/4 and 1 are the roots of the Wroskian in the interval [−1, 2]. In this case, we deter-
mine the set β(∂[−1, 2]) with the following code:

>> betathetaomega=V(K,-1,2);

As a result we get

>> Possible non empty limit set
betathetaomega =

1/6 1/9
1/6 4/9
2/3 4/9

Let us denote P1(
1
6 , 1

6 , 2
3 ), P2(

1
9 , 4

9 , 4
9 ), then, from the above results, the possibility of a non

empty limit set is further investigated. We can determine the limit set L(β) of the curve β with
the L function as the following code suggests:

>> limitset=L(K,-1,2);

In this case the program yields

limitset =
1 1/2
0 1/2
0 0

Let us denote P3(1, 0, 0), P4(
1
2 , 1

2 , 0). Our next step is to determine the set I(β). So,

>> iotabeta=I(K,-1,2);

The results, then, are as follows:

iotabeta is empty
iotabeta =

[]

Thus, we have

I(β) ∪ L(β) ∪ β(∂Ω) = {P1(
1
6

,
1
6

,
2
3
), P2(

1
9

,
4
9

,
4
9
), P3(1, 0, 0), P4(

1
2

,
1
2

, 0)}.

In order to determine all the possible extreme subsets of the curve β we shall use the sisets
function under the following code:
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The solution of the following cost minimization problem is referred to as the minimum-cost
insured portfolio,

min
η∈RN

p · η

subject to
P(η) ≥ P(θ) ∨ k.

It is evident from the previous analysis that in order to calculate the minimum-cost insured
portfolio we have to solve a linear programming problem. In Aliprantis et al. (2000), it is
proved that if the supremum P(θ) ∨ k exists relative to X, i.e., if P(θ) ∨X k exists, then a
portfolio that generates this payoff is the minimum-cost insured portfolio. The details are
presented in the next theorem,

Theorem 0.5. The minimum-cost portfolio exists and it is price-independent for every portfolio θ =
(θ1, θ2, ..., θN) and at every floor k if and only if X is a lattice-subspace of RS, then the minimum-cost
insured portfolio θk is given by the formula

P(θk) = P(θ) ∨X k.

Therefore, it is evident that in the special case where the subspace X is a lattice subspace we
can find the minimum-cost insured portfolio by expressing the payoff vector and the floor
vector in terms of the positive basis. Under these conditions, we can calculate the minimum-
cost insured portfolio without making use of a linear programming method.
To this end, one can follow the following methodology:

• Calculate, by using the SUBlatSUB function, a positive basis {b1, b2, ..., bN} for the sub-
space X.

• If we denote by x and k the payoff and the floor vector, respectively, then express x, k
in terms of the positive basis i.e., determine λi, µi, i = 1, 2, ..., N such that x = ∑N

i=1 λibi
and k = ∑N

i=1 µibi.

• Determine the supremum of the expressed payoff and floor vector i.e, determine the
following supremum

x ∨X k =
N

∑
i=1

max{λi, µi}bi.

• If we denote by θk = (θ1, θ2, ..., θN) the minimum-cost insured portfolio then θk is the
solution of the following linear system

N

∑
n=1

θnxn =
N

∑
i=1

max{λi, µi}bi.

The above algorithmic procedure can be implemented through the following Matlab function,
namely mcpinsurance:

function [theta_k]=mcpinsurance(a,floorvector,portfolio)
%a denotes a matrix whose columns are the given
%vectors x_1,x_2,...,x_N
%floorvector denotes the vector (k,k,...,k)
%portfolio denotes the theta vector

In the previous results, S denotes each one of the possible extreme subsets of the curve β
followed by the intervals of negativity of the corresponding ξi(t). The conclusion here is that
X = [x1, x2, x3] is not a lattice subspace of C[−1, 2] since, from the above results, no set from
the above candidates is an extreme subset.

We close this section with the time responses we obtained when running Example 0.6 and
Example 0.7. Note that despite the relatively small collections of functions featured in these
two examples the programs needed to perform a large number of elaborate checks in order
to produce an answer. It easily follows that the wr, V, L, I sisets and xitest functions provide
a practical numerical way to check whether the subspace X is a lattice-subspace, and thus
allows us to simplify an extremely challenging task if it were to be done manually.

Matlab Function Total time (in seconds) Matlab Function Total time (in seconds)
wr 0.035 wr 0.047
V 0.084 V 0.213
I 0.053 I 0.166

xitest 0.036 sisets 0.404
L 0.108

Table 3. Time responses for Example 0.6 Time responses for Example 0.7

6. Applications in portfolio insurance

The theory of vector sublattices and lattice-subspaces has been extensively used in the last
years in Mathematical Economics, especially in the areas of incomplete markets and portfolio
insurance. In this section, we shall discuss this interconnection and we shall present com-
putational methods in order to calculate the minimum-cost insured portfolio both in Rk and
C[a, b].

6.1 Portfolio insurance in Rk

Let us assume that in the beginning of a time period there are N securities traded in a market.
Let S = {1, ..., S} denote a finite set of states and xn ∈ RS

+ be the payoff vector of security
n in S states. The payoffs x1, x2, ..., xN are assumed linearly independent so that there are no
redundant securities. By ys we denote the N-dimensional vector of payoffs of all securities in
state s. If θ = (θ1, θ2, ..., θN) ∈ RN is a non-zero portfolio then its payoff is the vector

P(θ) =
N

∑
n=1

θnxn

and the set of payoffs of all portfolios is the linear span of the payoffs vectors x1, x2, ..., xN in
RS which we shall denote it by X, i.e.,

X = [x1, x2, ...xN ].

Let us also assume that p = (p1, p2, ..., pN) ∈ RN is a vector of security prices and k =
{k, k, ..., k}, k ∈ R denotes a vector with S coordinates. Then, the insured payoff on a portfolio
θ = (θ1, θ2, ..., θN) at a floor k is the contingent claim P(θ) ∨ k where

(P(θ) ∨ k)(s) = max{P(θ)(s), k(s)} = max{P(θ)(s), k}, for s = 1, ..., S.
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The solution of the following cost minimization problem is referred to as the minimum-cost
insured portfolio,

min
η∈RN

p · η

subject to
P(η) ≥ P(θ) ∨ k.

It is evident from the previous analysis that in order to calculate the minimum-cost insured
portfolio we have to solve a linear programming problem. In Aliprantis et al. (2000), it is
proved that if the supremum P(θ) ∨ k exists relative to X, i.e., if P(θ) ∨X k exists, then a
portfolio that generates this payoff is the minimum-cost insured portfolio. The details are
presented in the next theorem,

Theorem 0.5. The minimum-cost portfolio exists and it is price-independent for every portfolio θ =
(θ1, θ2, ..., θN) and at every floor k if and only if X is a lattice-subspace of RS, then the minimum-cost
insured portfolio θk is given by the formula

P(θk) = P(θ) ∨X k.

Therefore, it is evident that in the special case where the subspace X is a lattice subspace we
can find the minimum-cost insured portfolio by expressing the payoff vector and the floor
vector in terms of the positive basis. Under these conditions, we can calculate the minimum-
cost insured portfolio without making use of a linear programming method.
To this end, one can follow the following methodology:

• Calculate, by using the SUBlatSUB function, a positive basis {b1, b2, ..., bN} for the sub-
space X.

• If we denote by x and k the payoff and the floor vector, respectively, then express x, k
in terms of the positive basis i.e., determine λi, µi, i = 1, 2, ..., N such that x = ∑N

i=1 λibi
and k = ∑N

i=1 µibi.

• Determine the supremum of the expressed payoff and floor vector i.e, determine the
following supremum

x ∨X k =
N

∑
i=1

max{λi, µi}bi.

• If we denote by θk = (θ1, θ2, ..., θN) the minimum-cost insured portfolio then θk is the
solution of the following linear system

N

∑
n=1

θnxn =
N

∑
i=1

max{λi, µi}bi.

The above algorithmic procedure can be implemented through the following Matlab function,
namely mcpinsurance:

function [theta_k]=mcpinsurance(a,floorvector,portfolio)
%a denotes a matrix whose columns are the given
%vectors x_1,x_2,...,x_N
%floorvector denotes the vector (k,k,...,k)
%portfolio denotes the theta vector

In the previous results, S denotes each one of the possible extreme subsets of the curve β
followed by the intervals of negativity of the corresponding ξi(t). The conclusion here is that
X = [x1, x2, x3] is not a lattice subspace of C[−1, 2] since, from the above results, no set from
the above candidates is an extreme subset.

We close this section with the time responses we obtained when running Example 0.6 and
Example 0.7. Note that despite the relatively small collections of functions featured in these
two examples the programs needed to perform a large number of elaborate checks in order
to produce an answer. It easily follows that the wr, V, L, I sisets and xitest functions provide
a practical numerical way to check whether the subspace X is a lattice-subspace, and thus
allows us to simplify an extremely challenging task if it were to be done manually.

Matlab Function Total time (in seconds) Matlab Function Total time (in seconds)
wr 0.035 wr 0.047
V 0.084 V 0.213
I 0.053 I 0.166

xitest 0.036 sisets 0.404
L 0.108

Table 3. Time responses for Example 0.6 Time responses for Example 0.7

6. Applications in portfolio insurance

The theory of vector sublattices and lattice-subspaces has been extensively used in the last
years in Mathematical Economics, especially in the areas of incomplete markets and portfolio
insurance. In this section, we shall discuss this interconnection and we shall present com-
putational methods in order to calculate the minimum-cost insured portfolio both in Rk and
C[a, b].

6.1 Portfolio insurance in Rk

Let us assume that in the beginning of a time period there are N securities traded in a market.
Let S = {1, ..., S} denote a finite set of states and xn ∈ RS

+ be the payoff vector of security
n in S states. The payoffs x1, x2, ..., xN are assumed linearly independent so that there are no
redundant securities. By ys we denote the N-dimensional vector of payoffs of all securities in
state s. If θ = (θ1, θ2, ..., θN) ∈ RN is a non-zero portfolio then its payoff is the vector

P(θ) =
N

∑
n=1

θnxn

and the set of payoffs of all portfolios is the linear span of the payoffs vectors x1, x2, ..., xN in
RS which we shall denote it by X, i.e.,

X = [x1, x2, ...xN ].

Let us also assume that p = (p1, p2, ..., pN) ∈ RN is a vector of security prices and k =
{k, k, ..., k}, k ∈ R denotes a vector with S coordinates. Then, the insured payoff on a portfolio
θ = (θ1, θ2, ..., θN) at a floor k is the contingent claim P(θ) ∨ k where

(P(θ) ∨ k)(s) = max{P(θ)(s), k(s)} = max{P(θ)(s), k}, for s = 1, ..., S.



Matlab - Modelling, Programming and Simulations436

In our model we consider E to be the space of real valued continuous functions C[a, b] defined
in an interval [a, b]. A portfolio is a vector θ = (θ1, θ2, ..., θn) of Rn where θi is the number of
shares of the ith security. The space Rn is then known as portfolio space. If θ = (θ1, θ2, ..., θn) ∈
Rn is a non-zero portfolio then its payoff is the vector

P(θ) =
n

∑
i=1

θixi ∈ C[a, b].

The operator P is called the payoff operator. The pointwise ordering in C[a, b], induces the
partial ordering ≥P in the portfolio space Rn and is defined as follows: For each θ, φ ∈ Rn we
have

θ ≥P φ, if and only if P(θ) ≥ P(φ).

This ordering is known as the portfolio dominance ordering. The set of payoffs of all portfolios,
or the range space of the payoff operator, is the linear span of the payoffs vectors x1, x2, ..., xn
in C[a, b] which we shall denote it by X, i.e.,

X = [x1, x2, ..., xn].

The subspace X of C[a, b] is called the asset span of securities or the space of marketed securities.
Let us assume that p = (p1, p2, ..., pn) ∈ Rn is a vector of security prices and θ, φ are two
portfolios. Then, the insured payoff on the portfolio θ = (θ1, θ2, ..., θn) at the floor φ and in the
price p is the contingent claim P(θ) ∨ P(φ).
As in the case of Rk, the solution of the following cost minimization problem is referred to as
the minimum-cost insured portfolio, or a minimum-cost insurance of the portfolio θ at the floor φ and
in the price p,

min
η∈Rn

p · η

subject to
P(η) ≥ P(θ) ∨ P(φ).

In Aliprantis et al. (2000) it is proved that if the supremum P(θ) ∨ P(φ) exists relative to X,
i.e., if P(θ) ∨X P(φ) exists and X contains the order unit (risk-free payoff 1) then a portfolio
that generates this payoff is the minimum-cost insured portfolio. The details are presented in
the next theorem,

Theorem 0.6. The minimum-cost insured portfolio exists and it is price-independent for every portfo-
lio θ = (θ1, θ2, ..., θn) and at every floor φ if and only if the asset span X, which contains the risk-free
payoff, is a lattice-subspace of C[a, b]. In this case, the minimum-cost insured portfolio θφ is given by
the formula

P(θφ) = P(θ) ∨X P(φ).

Therefore, if X is a lattice-subspace and {b1, b2, ..., bn} is a positive basis of the asset span X,
then the minimum-cost insured portfolio θφ can be calculated with the following methodol-
ogy:

• Expand P(θ) and P(φ) in terms of the positive basis {b1, b2, ..., bn}.

• Suppose that P(θ) = ∑n
i=1 λibi, P(φ) = ∑n

i=1 µibi. Then

P(θφ) =
n

∑
i=1

(λi ∨ µi)bi.

%Note that mcpinsurance requires the presence of the
%SUBlatSUB function
payoffvector=sum(a*diag(portfolio),2);
positivebasis=SUBlatSUB(a)’;
r=(positivebasis\payoffvector);
k=(positivebasis\floorvector’);
w=max(r,k)’;
sup=w*positivebasis’;
theta_k=a\sup’;

We illustrate the above with the following example:

Example 0.8. We consider seven securities with payoffs in ten states given by

x1 = (2, 2, 4, 3, 0, 0, 0, 0, 1, 1), x2 = (0, 0, 1, 1, 2, 3, 1, 3, 4, 4),

x3 = (3, 3, 0, 0, 0, 0, 4, 0, 0, 0), x4 = (1, 1, 0, 1, 0, 1, 0, 1, 0, 0),

x5 = (0, 0, 1, 0, 1, 0, 1, 0, 1, 1), x6 = (0, 0, 0, 0, 0, 0, 6, 0, 0, 0)

x7 = (0, 0, 0, 0, 0, 0, 0, 0, 6, 6).

Their linear span X = [x1, x2, x3, x4, x5, x6, x7] is a seven-dimensional subspace of R10. Con-
sider the portfolio θ = (0, 3, 0, 0, 0, 0, 0) of three shares of security 2 at floor
1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1). It follows that one can calculate the minimum-cost insured portfo-
lio, i.e., the portfolio that generates the payoff x2 ∨X 1, by using the following code,

>> theta_k=mcpinsurance(a,floorvector,portfolio)

Here the result is θk = (0, 3, 0.3333, 0, 0,−0.2222, 0).

It is clear that the mcpinsurance function is an important tool in order to calculate the
minimum-cost insured portfolio.

6.2 Portfolio insurance in C[a, b]
In this section, we shall discuss the investment strategy called minimum-cost portfolio insur-
ance in the case where the initial space is C[a, b], the space of all continuous real functions
defined on the interval [a, b]. In our model we use a method of comparing portfolios called
portfolio dominance ordering from Aliprantis et al. (1998). This method compares portfolios
by means of the ordering of their payoffs and under this consideration we are able to use the
order structure of the payoff space together with the theory of lattice-subspaces. As in the case
of Rk, we calculate the minimum-cost insured portfolio under the general assumption that the
asset span X is a lattice-subspace of the initial space C[a, b]. Also, in what follows we shall use
the notation from Katsikis (2008).
The model of security markets we study here is extended over two periods, the period 0 and
the period 1. We assume n securities labeled by the natural numbers 1, 2, ..., n, acquired the
period 0 and that these n securities are described by their payoffs at date 1. The payoff of the
ith security is in general a positive element xi of an ordered space E which is called payoff
space. In addition, we assume that the payoffs x1, x2, ..., xn are linearly independent so that
there are no redundant securities and that the securities have limited liability which ensures
the positivity of x1, x2, ..., xn.
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In our model we consider E to be the space of real valued continuous functions C[a, b] defined
in an interval [a, b]. A portfolio is a vector θ = (θ1, θ2, ..., θn) of Rn where θi is the number of
shares of the ith security. The space Rn is then known as portfolio space. If θ = (θ1, θ2, ..., θn) ∈
Rn is a non-zero portfolio then its payoff is the vector

P(θ) =
n

∑
i=1

θixi ∈ C[a, b].

The operator P is called the payoff operator. The pointwise ordering in C[a, b], induces the
partial ordering ≥P in the portfolio space Rn and is defined as follows: For each θ, φ ∈ Rn we
have

θ ≥P φ, if and only if P(θ) ≥ P(φ).

This ordering is known as the portfolio dominance ordering. The set of payoffs of all portfolios,
or the range space of the payoff operator, is the linear span of the payoffs vectors x1, x2, ..., xn
in C[a, b] which we shall denote it by X, i.e.,

X = [x1, x2, ..., xn].

The subspace X of C[a, b] is called the asset span of securities or the space of marketed securities.
Let us assume that p = (p1, p2, ..., pn) ∈ Rn is a vector of security prices and θ, φ are two
portfolios. Then, the insured payoff on the portfolio θ = (θ1, θ2, ..., θn) at the floor φ and in the
price p is the contingent claim P(θ) ∨ P(φ).
As in the case of Rk, the solution of the following cost minimization problem is referred to as
the minimum-cost insured portfolio, or a minimum-cost insurance of the portfolio θ at the floor φ and
in the price p,

min
η∈Rn

p · η

subject to
P(η) ≥ P(θ) ∨ P(φ).

In Aliprantis et al. (2000) it is proved that if the supremum P(θ) ∨ P(φ) exists relative to X,
i.e., if P(θ) ∨X P(φ) exists and X contains the order unit (risk-free payoff 1) then a portfolio
that generates this payoff is the minimum-cost insured portfolio. The details are presented in
the next theorem,

Theorem 0.6. The minimum-cost insured portfolio exists and it is price-independent for every portfo-
lio θ = (θ1, θ2, ..., θn) and at every floor φ if and only if the asset span X, which contains the risk-free
payoff, is a lattice-subspace of C[a, b]. In this case, the minimum-cost insured portfolio θφ is given by
the formula

P(θφ) = P(θ) ∨X P(φ).

Therefore, if X is a lattice-subspace and {b1, b2, ..., bn} is a positive basis of the asset span X,
then the minimum-cost insured portfolio θφ can be calculated with the following methodol-
ogy:

• Expand P(θ) and P(φ) in terms of the positive basis {b1, b2, ..., bn}.

• Suppose that P(θ) = ∑n
i=1 λibi, P(φ) = ∑n

i=1 µibi. Then

P(θφ) =
n

∑
i=1

(λi ∨ µi)bi.

%Note that mcpinsurance requires the presence of the
%SUBlatSUB function
payoffvector=sum(a*diag(portfolio),2);
positivebasis=SUBlatSUB(a)’;
r=(positivebasis\payoffvector);
k=(positivebasis\floorvector’);
w=max(r,k)’;
sup=w*positivebasis’;
theta_k=a\sup’;

We illustrate the above with the following example:

Example 0.8. We consider seven securities with payoffs in ten states given by

x1 = (2, 2, 4, 3, 0, 0, 0, 0, 1, 1), x2 = (0, 0, 1, 1, 2, 3, 1, 3, 4, 4),

x3 = (3, 3, 0, 0, 0, 0, 4, 0, 0, 0), x4 = (1, 1, 0, 1, 0, 1, 0, 1, 0, 0),

x5 = (0, 0, 1, 0, 1, 0, 1, 0, 1, 1), x6 = (0, 0, 0, 0, 0, 0, 6, 0, 0, 0)

x7 = (0, 0, 0, 0, 0, 0, 0, 0, 6, 6).

Their linear span X = [x1, x2, x3, x4, x5, x6, x7] is a seven-dimensional subspace of R10. Con-
sider the portfolio θ = (0, 3, 0, 0, 0, 0, 0) of three shares of security 2 at floor
1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1). It follows that one can calculate the minimum-cost insured portfo-
lio, i.e., the portfolio that generates the payoff x2 ∨X 1, by using the following code,

>> theta_k=mcpinsurance(a,floorvector,portfolio)

Here the result is θk = (0, 3, 0.3333, 0, 0,−0.2222, 0).

It is clear that the mcpinsurance function is an important tool in order to calculate the
minimum-cost insured portfolio.

6.2 Portfolio insurance in C[a, b]
In this section, we shall discuss the investment strategy called minimum-cost portfolio insur-
ance in the case where the initial space is C[a, b], the space of all continuous real functions
defined on the interval [a, b]. In our model we use a method of comparing portfolios called
portfolio dominance ordering from Aliprantis et al. (1998). This method compares portfolios
by means of the ordering of their payoffs and under this consideration we are able to use the
order structure of the payoff space together with the theory of lattice-subspaces. As in the case
of Rk, we calculate the minimum-cost insured portfolio under the general assumption that the
asset span X is a lattice-subspace of the initial space C[a, b]. Also, in what follows we shall use
the notation from Katsikis (2008).
The model of security markets we study here is extended over two periods, the period 0 and
the period 1. We assume n securities labeled by the natural numbers 1, 2, ..., n, acquired the
period 0 and that these n securities are described by their payoffs at date 1. The payoff of the
ith security is in general a positive element xi of an ordered space E which is called payoff
space. In addition, we assume that the payoffs x1, x2, ..., xn are linearly independent so that
there are no redundant securities and that the securities have limited liability which ensures
the positivity of x1, x2, ..., xn.
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vector P(θ) = ∑n
i=1 θixi. The set of payoffs of all portfolios is referred as the space of marketed

securities and it is the linear span of the payoffs vectors x1, x2, ..., xn in Rm which we shall
denote it by X, i.e., X = [x1, x2, ...xn].
For any x, u ∈ Rm and any real number a the vector

cu(x, a) = (x − au)+

is the call option and
pu(x, a) = (au − x)+

is the put option of x with respect to the strike vector u and exercise price a.
In what follows we shall use the theoretical background introduced in Kountzakis & Polyrakis
(2006). Let U be a fixed subspace of Rm which is called strike subspace and the elements of U
are the strike vectors. Then, the completion by options of the subspace X with respect to U is the
space FU(X) which is defined inductively as follows:

• X1 is the subspace of Rm generated by O1, where O1 = {cu(x, a)|x ∈ X, u ∈ U, a ∈ R},
denotes the set of call options written on the elements of X,

• Xn is the subspace of Rm generated by On, where On = {cu(x, a)|x ∈ Xn−1, u ∈ U, a ∈
R}, denotes the set of call options written on the elements of Xn−1,

• FU(X) = ∪∞
n=1Xn.

The completion by options FU(X) of X with respect to U is the vector sublattice of Rm gener-
ated by the subspace Y = X ∪ U. The details are presented in the next theorem,

Theorem 0.7. In the above notation, we have

(i) Y ⊆ X1,

(ii) FU(X) is the sublattice S(Y) of Rm generated by Y, and

(iii) if U ⊆ X, then FU(X) is the sublattice of Rm generated by X.

Any set {y1, y2, . . . , yr} of linearly independent positive vectors of Rm such that FU(X) is the
sublattice of Rm generated by {y1, y2, . . . , yr} is a basic set of the market.

Theorem 0.8. Any maximal subset {y1, y2, . . . , yr} of linearly independent vectors of A is a basic set
of the market, where A = {x+1 , x−1 , . . . , x+n , x−n }, if U ⊆ X and
A = {x+1 , x−1 , . . . , x+n , x−n , u+

1 , u−
1 , . . . , u+

d , u−
d }, if U � X.

The space of marketed securities X is complete by options with respect to U if X = FU(X).

Theorem 0.9. The space X of marketed securities is complete by options with respect to U if and only
if U ⊆ X and cardR(β) = n.

Theorem 0.10. The dimension of FU(X) is equal to the cardinal number of R(β). Therefore, FU(X) =
Rm if and only if cardR(β) = m.

It is clear, from the previous discussion that we can use the SUBlatSUB function to the prob-
lem of calculating the completion of security markets. Let us describe, in detail, the procedure
with an example:

We shall illustrate the above with a simple example.

Example 0.9. Let C[0, 2] be the payoff space. Suppose that our model has three securities with
payoff vectors x1(t) = t2 − 2t + 2, x2(t) = −t3 + 2t2 − t + 2 and x3(t) = t3 − 3t2 + 3t. The
asset span X is the subspace of C[0, 2] generated by the functions x1, x2, x3.
We will investigate whether X is a lattice-subspace and in the case of a lattice-subspace we
shall determine a positive basis for X. Also, we shall calculate the minimum-cost insured
portfolio θφ of the portfolio θ = (1, 3, 0) at the floor φ = (2, 1, 1).
From Example 0.6, we have that X is a lattice-subspace of C[0, 2] and the positive basis is
defined by the functions

b1(t) = −2(t − 2)(t − 1)2, b2(t) = −4t(t − 2), b3(t) = 2t(t − 1)2.

Let us denote by S, the matrix whose columns are the numeric coefficients of the symbolic

polynomials of the positive basis, then S =




−2 0 2
8 −4 −4

−10 8 2
4 0 0




It follows that one can calculate the minimum-cost insured portfolio, i.e., the portfolio that
generates the payoff P(θ) ∨X P(φ), with the following code:

>> syms t
>> x1=t^2-2*t+2;
>> x2=-t^3+2*t^2-t+2;
>> x3=t^3-3*t^2+3*t;
>> a=[x1;x2;x3];
>> theta=[1 3 0];
>> phi=[2 1 1];
>> Ptheta=sym2poly(theta*a);
>> Pphi=[0 sym2poly(phi*a)];
>> Rthetanew=S\Rtheta’;
>> Pphinew=S\Pphi’;
>> theta_phi=max(Pthetanew,Pphinew)

As a result we get θφ = (2, 1.75, 1.5) which is the minimum-cost insured portfolio at every
arbitrage price.

The procedure we followed in Example 0.9 allowed us to solve the minimization problem,
without making use of any linear programming method and can be used in conjunction with
the wr, V, L, I, sisets and xitest functions, in order to calculate minimum-cost insured portfo-
lios.

7. Applications in the theory of efficient funds

In this section, we shall apply the SUBlatSUB function in order to determine the completion
of security markets and the efficient funds of the market.
Let us assume that in the beginning of a time period there are n securities traded in a market.
Let S = {1, ..., m} denote a finite set of states and xj ∈ Rm

+ be the payoff vector of security
j in m states. The payoffs x1, x2, ..., xn are assumed linearly independent so that there are no
redundant securities. If θ = (θ1, θ2, ..., θn) ∈ Rm is a non-zero portfolio then its payoff is the
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vector P(θ) = ∑n
i=1 θixi. The set of payoffs of all portfolios is referred as the space of marketed

securities and it is the linear span of the payoffs vectors x1, x2, ..., xn in Rm which we shall
denote it by X, i.e., X = [x1, x2, ...xn].
For any x, u ∈ Rm and any real number a the vector

cu(x, a) = (x − au)+

is the call option and
pu(x, a) = (au − x)+

is the put option of x with respect to the strike vector u and exercise price a.
In what follows we shall use the theoretical background introduced in Kountzakis & Polyrakis
(2006). Let U be a fixed subspace of Rm which is called strike subspace and the elements of U
are the strike vectors. Then, the completion by options of the subspace X with respect to U is the
space FU(X) which is defined inductively as follows:

• X1 is the subspace of Rm generated by O1, where O1 = {cu(x, a)|x ∈ X, u ∈ U, a ∈ R},
denotes the set of call options written on the elements of X,

• Xn is the subspace of Rm generated by On, where On = {cu(x, a)|x ∈ Xn−1, u ∈ U, a ∈
R}, denotes the set of call options written on the elements of Xn−1,

• FU(X) = ∪∞
n=1Xn.

The completion by options FU(X) of X with respect to U is the vector sublattice of Rm gener-
ated by the subspace Y = X ∪ U. The details are presented in the next theorem,

Theorem 0.7. In the above notation, we have

(i) Y ⊆ X1,

(ii) FU(X) is the sublattice S(Y) of Rm generated by Y, and

(iii) if U ⊆ X, then FU(X) is the sublattice of Rm generated by X.

Any set {y1, y2, . . . , yr} of linearly independent positive vectors of Rm such that FU(X) is the
sublattice of Rm generated by {y1, y2, . . . , yr} is a basic set of the market.

Theorem 0.8. Any maximal subset {y1, y2, . . . , yr} of linearly independent vectors of A is a basic set
of the market, where A = {x+1 , x−1 , . . . , x+n , x−n }, if U ⊆ X and
A = {x+1 , x−1 , . . . , x+n , x−n , u+

1 , u−
1 , . . . , u+

d , u−
d }, if U � X.

The space of marketed securities X is complete by options with respect to U if X = FU(X).

Theorem 0.9. The space X of marketed securities is complete by options with respect to U if and only
if U ⊆ X and cardR(β) = n.

Theorem 0.10. The dimension of FU(X) is equal to the cardinal number of R(β). Therefore, FU(X) =
Rm if and only if cardR(β) = m.

It is clear, from the previous discussion that we can use the SUBlatSUB function to the prob-
lem of calculating the completion of security markets. Let us describe, in detail, the procedure
with an example:

We shall illustrate the above with a simple example.

Example 0.9. Let C[0, 2] be the payoff space. Suppose that our model has three securities with
payoff vectors x1(t) = t2 − 2t + 2, x2(t) = −t3 + 2t2 − t + 2 and x3(t) = t3 − 3t2 + 3t. The
asset span X is the subspace of C[0, 2] generated by the functions x1, x2, x3.
We will investigate whether X is a lattice-subspace and in the case of a lattice-subspace we
shall determine a positive basis for X. Also, we shall calculate the minimum-cost insured
portfolio θφ of the portfolio θ = (1, 3, 0) at the floor φ = (2, 1, 1).
From Example 0.6, we have that X is a lattice-subspace of C[0, 2] and the positive basis is
defined by the functions

b1(t) = −2(t − 2)(t − 1)2, b2(t) = −4t(t − 2), b3(t) = 2t(t − 1)2.

Let us denote by S, the matrix whose columns are the numeric coefficients of the symbolic

polynomials of the positive basis, then S =




−2 0 2
8 −4 −4

−10 8 2
4 0 0




It follows that one can calculate the minimum-cost insured portfolio, i.e., the portfolio that
generates the payoff P(θ) ∨X P(φ), with the following code:

>> syms t
>> x1=t^2-2*t+2;
>> x2=-t^3+2*t^2-t+2;
>> x3=t^3-3*t^2+3*t;
>> a=[x1;x2;x3];
>> theta=[1 3 0];
>> phi=[2 1 1];
>> Ptheta=sym2poly(theta*a);
>> Pphi=[0 sym2poly(phi*a)];
>> Rthetanew=S\Rtheta’;
>> Pphinew=S\Pphi’;
>> theta_phi=max(Pthetanew,Pphinew)

As a result we get θφ = (2, 1.75, 1.5) which is the minimum-cost insured portfolio at every
arbitrage price.

The procedure we followed in Example 0.9 allowed us to solve the minimization problem,
without making use of any linear programming method and can be used in conjunction with
the wr, V, L, I, sisets and xitest functions, in order to calculate minimum-cost insured portfo-
lios.

7. Applications in the theory of efficient funds

In this section, we shall apply the SUBlatSUB function in order to determine the completion
of security markets and the efficient funds of the market.
Let us assume that in the beginning of a time period there are n securities traded in a market.
Let S = {1, ..., m} denote a finite set of states and xj ∈ Rm

+ be the payoff vector of security
j in m states. The payoffs x1, x2, ..., xn are assumed linearly independent so that there are no
redundant securities. If θ = (θ1, θ2, ..., θn) ∈ Rm is a non-zero portfolio then its payoff is the
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Theorem 0.11. Suppose that {b1, b2, . . . , bµ} is a positive basis of Fu(X), u = ∑
µ
i=1 λibi, and λi > 0

for each i. Then the vector e = ∑
µ
i=1 kibi of Fu(X) is an Fu(X)-efficient fund if and only if ki

λi
�= kj

λj
for

each i �= j.

We shall describe the computation procedure with an example:

Example 0.11. Suppose that in a security market, the payoff space is R12 and the primitive
securities are as in Example 0.10 and U = [u], where u = (20, 36, 40, 3, 18, 16, 3, 24, 2, 2, 2, 4).
Then the vector e = (84, 16, 168, 4, 8, 20, 4, 30, 15, 15, 15, 30) is an Fu(X)-efficient fund of the
market. Indeed, working as in Example 0.10 we have that a positive basis {b1, b2, b3, b4, b5} for
Fu(X) has the following form:

Positivebasis =
0 0 0 0 0 0 0 0 3 3 3 6
0 0 0 4 0 0 4 0 0 0 0 0
0 0 0 0 0 20 0 30 0 0 0 0
21 0 2 0 0 0 0 0 0 0 0 0
0 40 0 0 20 0 0 0 0 0 0 0

Then, it easy to see that,

e =
µ

∑
i=1

kibi = 5b1 + b2 + b3 + 4b4 +
2
5

b5

and

u =
µ

∑
i=1

λibi =
2
3

b1 +
3
4

b2 +
4
5

b3 +
20
21

b4 +
9
10

b5.

Therefore, ki
λi

�= kj
λj

for each i �= j, and by Theorem 0.11 we have that e is an Fu(X)-efficient
fund of the market.

8. Conclusions

This chapter describes new computational methods in order to determine vector sublattices
and lattice-subspaces of Rk and C[a, b]. In order to reach our goal the study of a vector-valued
function β is further involved by introducing new Matlab functions, namely SUBlatSUB ,
wr, V, L, I, sisets and xitest. The results of this work (cf. mcpinsurance function) can give
us important tools in order to study the interesting problems of finding the minimum-cost
insured portfolio and calculating the completion by options of a two-period security market
as well as the efficient funds of the market.
The material of this chapter provides the opportunity for several research directions. In partic-
ular, we are convinced that, from the mathematical point of view, the proposed algorithms and
methods can be further analyzed independently, in terms of formal numerical analysis. Also,
the construction of a computational method that can solve the problem of whether a collection
of linearly independent, positive functions, x1, x2, ..., xn of C(Ω) generates a lattice-subspace,
where Ω denotes a compact Hausdorff topological space remains open. Finally, applications
of the theory of lattice-subspaces and positive bases must be further investigated.

Example 0.10. Suppose that in a security market, the payoff space is R12 and the primitive
securities are:

x1 = (1, 2, 2,−1, 1,−2,−1,−3, 0, 0, 0, 0),

x2 = (0, 2, 0, 0, 1, 2, 0, 3,−1,−1,−1,−2),

x3 = (1, 2, 2, 0, 1, 0, 0, 0,−1,−1,−1,−2).

and that the strike subspace is the vector subspace U generated by the vector
u = (1, 2, 2, 1, 1, 2, 1, 3,−1,−1,−1,−2). Then, a maximal subset of linearly independent vec-
tors of {x+1 , x−1 , x+2 , x−2 , x+3 , x−3 , u+

1 , u−
1 } can be calculated by using the following code:

>> XX = [max(X,zeros(size(X)));max(-X,zeros(size(X)))];
>> S = rref(XX’);
>> [I,J] = find(S);
>> Linearindep = accumarray(I,J,[rank(XX),1],@min)’;
>> W = XX(Linearindep,:)

where X denotes a matrix whose rows are the vectors x1, x2, x3, u. The results, then, are as
follows:

W =
1 2 2 0 1 0 0 0 0 0 0 0
0 2 0 0 1 2 0 3 0 0 0 0
20 36 40 3 18 16 3 24 2 2 2 4
0 0 0 1 0 2 1 3 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 2

We can determine the completion by options of X i.e., the space FU(X), with the SUBlatSUB
function by using the following code:

>> [VectorSublattice,Positivebasis]=SUBlatSUB(W’)

The results then are as follows

vector sublattice
positivebasis =
0 0 0 0 0 0 0 0 3 3 3 6
0 0 0 4 0 0 4 0 0 0 0 0
0 0 0 0 0 20 0 30 0 0 0 0
21 0 42 0 0 0 0 0 0 0 0 0
0 40 0 0 20 0 0 0 0 0 0 0

Since we know a positive basis for FU(X), then we know the completion by options of X.

In the following we assume that U is the one-dimensional subspace of Rm generated by a
vector u �= 0 of Rm. The notion of efficient funds have been studied in many economic articles
(cf. John (1981); Ross (1976)). In Kountzakis & Polyrakis (2006) the authors introduced a
definition that generalizes the notion of efficient funds. In particular, a vector e ∈ Fu(X) is
an Fu(X) -efficient fund if Fu(X) is the linear subspace of Rm which is generated by the set of
nontrivial call options and the set of nontrivial put options of e.
It is clear that in order to calculate the efficient funds of the market we must determine , by
using the SUBlatSUB function, a positive basis for Fu(X). Then, in order to decide when an
element e is an efficient fund of the market one has to apply the following theorem.
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Theorem 0.11. Suppose that {b1, b2, . . . , bµ} is a positive basis of Fu(X), u = ∑
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for each i. Then the vector e = ∑
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i=1 kibi of Fu(X) is an Fu(X)-efficient fund if and only if ki
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Then the vector e = (84, 16, 168, 4, 8, 20, 4, 30, 15, 15, 15, 30) is an Fu(X)-efficient fund of the
market. Indeed, working as in Example 0.10 we have that a positive basis {b1, b2, b3, b4, b5} for
Fu(X) has the following form:

Positivebasis =
0 0 0 0 0 0 0 0 3 3 3 6
0 0 0 4 0 0 4 0 0 0 0 0
0 0 0 0 0 20 0 30 0 0 0 0
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Therefore, ki
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�= kj
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for each i �= j, and by Theorem 0.11 we have that e is an Fu(X)-efficient
fund of the market.

8. Conclusions

This chapter describes new computational methods in order to determine vector sublattices
and lattice-subspaces of Rk and C[a, b]. In order to reach our goal the study of a vector-valued
function β is further involved by introducing new Matlab functions, namely SUBlatSUB ,
wr, V, L, I, sisets and xitest. The results of this work (cf. mcpinsurance function) can give
us important tools in order to study the interesting problems of finding the minimum-cost
insured portfolio and calculating the completion by options of a two-period security market
as well as the efficient funds of the market.
The material of this chapter provides the opportunity for several research directions. In partic-
ular, we are convinced that, from the mathematical point of view, the proposed algorithms and
methods can be further analyzed independently, in terms of formal numerical analysis. Also,
the construction of a computational method that can solve the problem of whether a collection
of linearly independent, positive functions, x1, x2, ..., xn of C(Ω) generates a lattice-subspace,
where Ω denotes a compact Hausdorff topological space remains open. Finally, applications
of the theory of lattice-subspaces and positive bases must be further investigated.

Example 0.10. Suppose that in a security market, the payoff space is R12 and the primitive
securities are:

x1 = (1, 2, 2,−1, 1,−2,−1,−3, 0, 0, 0, 0),

x2 = (0, 2, 0, 0, 1, 2, 0, 3,−1,−1,−1,−2),

x3 = (1, 2, 2, 0, 1, 0, 0, 0,−1,−1,−1,−2).

and that the strike subspace is the vector subspace U generated by the vector
u = (1, 2, 2, 1, 1, 2, 1, 3,−1,−1,−1,−2). Then, a maximal subset of linearly independent vec-
tors of {x+1 , x−1 , x+2 , x−2 , x+3 , x−3 , u+

1 , u−
1 } can be calculated by using the following code:

>> XX = [max(X,zeros(size(X)));max(-X,zeros(size(X)))];
>> S = rref(XX’);
>> [I,J] = find(S);
>> Linearindep = accumarray(I,J,[rank(XX),1],@min)’;
>> W = XX(Linearindep,:)

where X denotes a matrix whose rows are the vectors x1, x2, x3, u. The results, then, are as
follows:

W =
1 2 2 0 1 0 0 0 0 0 0 0
0 2 0 0 1 2 0 3 0 0 0 0
20 36 40 3 18 16 3 24 2 2 2 4
0 0 0 1 0 2 1 3 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 2

We can determine the completion by options of X i.e., the space FU(X), with the SUBlatSUB
function by using the following code:

>> [VectorSublattice,Positivebasis]=SUBlatSUB(W’)

The results then are as follows

vector sublattice
positivebasis =
0 0 0 0 0 0 0 0 3 3 3 6
0 0 0 4 0 0 4 0 0 0 0 0
0 0 0 0 0 20 0 30 0 0 0 0
21 0 42 0 0 0 0 0 0 0 0 0
0 40 0 0 20 0 0 0 0 0 0 0

Since we know a positive basis for FU(X), then we know the completion by options of X.

In the following we assume that U is the one-dimensional subspace of Rm generated by a
vector u �= 0 of Rm. The notion of efficient funds have been studied in many economic articles
(cf. John (1981); Ross (1976)). In Kountzakis & Polyrakis (2006) the authors introduced a
definition that generalizes the notion of efficient funds. In particular, a vector e ∈ Fu(X) is
an Fu(X) -efficient fund if Fu(X) is the linear subspace of Rm which is generated by the set of
nontrivial call options and the set of nontrivial put options of e.
It is clear that in order to calculate the efficient funds of the market we must determine , by
using the SUBlatSUB function, a positive basis for Fu(X). Then, in order to decide when an
element e is an efficient fund of the market one has to apply the following theorem.
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