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Preface

Nowadays, embedded systems have permeated various aspects of industry. Therefore,
we can hardly discuss our life or society from now on without referring to embedded
systems. For wide-ranging embedded systems to continue their growth, a number of
high-quality fundamental and applied researches are indispensable.

This book addresses a wide spectrum of research topics on embedded systems,
including basic researches, theoretical studies, and practical work. The book consists of
nineteen chapters. In Part 1, real-time property, task scheduling, predictability,
reliability and safety, which are key factors in real-time embedded systems and will be
further treated as important, are introduced by five chapters.

Then, design/evaluation methodology, verification, and development environment,
which are indispensable to embedded systems development, are dealt with in Part 2,
through ten chapters.

In Part 3, two chapters present high-level synthesis technologies, which can raise
design abstraction and make system development periods shorter. The third chapter
reveals embedded low-power SRAM cells for future embedded system, and the last
one addresses the important issue, energy efficient applications.

Embedded systems are part of products that can be made only after fusing
miscellaneous technologies together. I expect that various technologies condensed in
this book would be helpful to researchers and engineers around the world.

The editor would like to express his appreciation to the authors of this book for
presenting their precious work. The editor would like to thank Ms. Marina Jozipovic,
the publishing process manager of this book, and all members of InTech for their
editorial assistance.

Kiyofumi Tanaka
School of Information Science
Japan Advanced Institute of Science and Technology

Japan
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Predictability, Reliability, and Safety






Ways for Implementing Highly-Predictable
Embedded Systems Using Time-Triggered
Co-Operative (TTC) Architectures

Mouaaz Nahas and Ahmed M. Nahhas

Department of Electrical Engineering, College of Engineering and Islamic Architecture,
Umm Al-Qura University, Makkah,
Saudi Arabia

1. Introduction

Embedded system is a special-purpose computer system which is designed to perform a
small number of dedicated functions for a specific application (Sachitanand, 2002; Kamal,
2003). Examples of applications using embedded systems are: microwave ovens, TVs, VCRs,
DVDs, mobile phones, MP3 players, washing machines, air conditions, handheld
calculators, printers, digital watches, digital cameras, automatic teller machines (ATMs) and
medical equipments (Barr, 1999; Bolton, 2000; Fisher et al., 2004; Pop et al., 2004). Besides
these applications, which can be viewed as “noncritical” systems, embedded technology has
also been used to develop “safety-critical” systems where failures can have very serious
impacts on human safety. Examples include aerospace, automotive, railway, military and
medical applications (Redmill, 1992; Profeta et al., 1996; Storey, 1996; Konrad et al., 2004).

The utilization of embedded systems in safety-critical applications requires that the system
should have real-time operations to achieve correct functionality and/or avoid any
possibility for detrimental consequences. Real-time behavior can only be achieved if the
system is able to perform predictable and deterministic processing (Stankovic, 1988; Pont,
2001; Buttazzo, 2005; Phatrapornnant, 2007). As a result, the correct behavior of a real-time
system depends on the time at which these results are produced as well as the logical
correctness of the output results (Avrunin et al., 1998; Kopetz, 1997). In real-time embedded
applications, it is important to predict the timing behavior of the system to guarantee that
the system will behave correctly and consequently the life of the people using the system
will be saved. Hence, predictability is the key characteristic in real-time embedded systems.

Embedded systems engineers are concerned with all aspects of the system development
including hardware and software engineering. Therefore, activities such as specification,
design, implementation, validation, deployment and maintenance will all be involved in the
development of an embedded application (Fig. 1). A design of any system usually starts
with ideas in people’s mind. These ideas need to be captured in requirements specification
documents that specify the basic functions and the desirable features of the system. The
system design process then determines how these functions can be provided by the system
components.
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Fig. 1. The system development life cycle (Nahas, 2008).

For successful design, the system requirements have to be expressed and documented in a
very clear way. Inevitably, there can be numerous ways in which the requirements for a
simple system can be described.

Once the system requirements have been clearly defined and well documented, the first step
in the design process is to design the overall system architecture. Architecture of a system
basically represents an overview of the system components (i.e. sub-systems) and the
interrelationships between these different components. Once the software architecture is
identified, the process of implementing that architecture should take place. This can be
achieved using a lower-level system representation such as an operating system or a
scheduler. Scheduler is a very simple operating system for an embedded application (Pont,
2001). Building the scheduler would require a scheduling algorithm which simply provides
the set of rules that determine the order in which the tasks will be executed by the scheduler
during the system operating time. It is therefore the most important factor which influences
predictability in the system, as it is responsible for satisfying timing and resource
requirements (Buttazzo, 2005). However, the actual implementation of the scheduling
algorithm on the embedded microcontroller has an important role in determining the
functional and temporal behavior of the embedded system.

This chapter is mainly concerned with so-called “Time-Triggered Co-operative” (TTC)
schedulers and how such algorithms can be implemented in highly-predictable, resource-
constrained embedded applications.

The layout of the chapter is as follows. Section 2 provides a detailed comparison between
the two key software architectures used in the design of real-time embedded systems,
namely "time-triggered" and "event-triggered". Section 3 introduces and compares the two
most known scheduling policies, "co-operative" and "pre-emptive", and highlights the
advantages of co-operative over pre-emptive scheduling. Section 4 discusses the
relationship between scheduling algorithms and scheduler implementations in practical
embedded systems. In Section 5, Time-Triggered Co-operative (TTC) scheduling algorithm
is introduced in detail with a particular focus on its strengths and drawbacks and how such
drawbacks can be addressed to maintain its reliability and predictability attributes. Section 6
discusses the sources and impact of timing jitter in TTC scheduling algorithm. Section 7
describes various possible ways in which the TTC scheduling algorithm can be
implemented on resource-constrained embedded systems that require highly-predictable
system behavior. In Section 8, the various scheduler implementations are compared and
contrasted in terms of jitter characteristics, error handling capabilities and resource
requirements. The overall chapter conclusions are presented in Section 9.

2. Software architectures of embedded systems

Embedded systems are composed of hardware and software components. The success of an
embedded design, thus, depends on the right selection of the hardware platform(s) as well
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as the software environment used in conjunction with the hardware. The selection of
hardware and software architectures of an application must take place at early stages in the
development process (typically at the design phase). Hardware architecture relates mainly
to the type of the processor (or microcontroller) platform(s) used and the structure of the
various hardware components that are comprised in the system: see Mwelwa (2006) for
further discussion about hardware architectures for embedded systems.

Provided that the hardware architecture is decided, an embedded application requires an
appropriate form of software architecture to be implemented. To determine the most
appropriate choice for software architecture in a particular system, this condition must be
fulfilled (Locke, 1992): “The [software] architecture must be capable of providing a provable
prediction of the ability of the application design to meet all of its time constraints.”

Since embedded systems are usually implemented as collections of real-time tasks, the
various possible system architectures may then be determined by the characteristics of these
tasks. In general, there are two main software architectures which are typically used in the
design of embedded systems:

Event-triggered (ET): tasks are invoked as a response to aperiodic events. In this case, the
system takes no account of time: instead, the system is controlled purely by the response to
external events, typically represented by interrupts which can arrive at anytime (Bannatyne,
1998; Kopetz, 1991b). Generally, ET solution is recommended for applications in which
sporadic data messages (with unknown request times) are exchanged in the system (Hsieh
and Hsu, 2005).

Time-triggered (TT): tasks are invoked periodically at specific time intervals which are
known in advance. The system is usually driven by a global clock which is linked to a
hardware timer that overflows at specific time instants to generate periodic interrupts
(Bennett, 1994). In distributed systems, where multi-processor hardware architecture is
used, the global clock is distributed across the network (via the communication medium) to
synchronise the local time base of all processors. In such architectures, time-triggering
mechanism is based on time-division multiple access (TDMA) in which each processor-node
is allocated a periodic time slot to broadcast its periodic messages (Kopetz, 1991b). TT
solution can suit many control applications where the data messages exchanged in the
system are periodic (Kopetz, 1997).

Many researchers argue that ET architectures are highly flexible and can provide high
resource efficiency (Obermaisser, 2004; Locke, 1992). However, ET architectures allow
several interrupts to arrive at the same time, where these interrupts might indicate (for
example) that two different faults have been detected at the same time. Inevitably, dealing
with an occurrence of several events at the same time will increase the system complexity
and reduce the ability to predict the behavior of the ET system (Scheler and Schroder-
Preikschat, 2006). In more severe circumstances, the system may fail completely if it is
heavily loaded with events that occur at once (Marti, 2002). In contrast, using TT
architectures helps to ensure that only a single event is handled at a time and therefore the
behavior of the system can be highly-predictable.

Since highly-predictable system behavior is an important design requirement for many
embedded systems, TT software architectures have become the subject of considerable
attention (e.g. see Kopetz, 1997). In particular, it has been widely accepted that TT
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architectures are a good match for many safety-critical applications, since they can help to
improve the overall safety and reliability (Allworth, 1981; Storey, 1996; Nissanke, 1997;
Bates; 2000; Obermaisser, 2004). Liu (2000) highlights that TT systems are easy to validate,
test, and certify because the times related to the tasks are deterministic. Detailed
comparisons between the TT and ET concepts were performed by Kopetz (1991a and 1991b).

3. Schedulers and scheduling algorithms

Most embedded systems involve several tasks that share the system resources and
communicate with one another and/or the environment in which they operate. For many
projects, a key challenge is to work out how to schedule tasks so that they can meet their

timing constraints. This process requires an appropriate form of scheduler!. A scheduler can
be viewed as a very simple operating system which calls tasks periodically (or aperiodically)
during the system operating time. Moreover, as with desktop operating systems, a
scheduler has the responsibility to manage the computational and data resources in order to
meet all temporal and functional requirements of the system (Mwelwa, 2006).

According to the nature of the operating tasks, any real-time scheduler must fall under one
of the following types of scheduling policies:

Pre-emptive scheduling: where a multi-tasking process is allowed. In more details, a task
with higher priority is allowed to pre-empt (i.e. interrupt) any lower priority task that is
currently running. The lower priority task will resume once the higher priority task finishes
executing. For example, suppose that - over a particular period of time - a system needs to
execute four tasks (Task A, Task B, Task C, Task D) as illustrated in Fig. 2.

A o
[ ] -
[c] -
ICH

Time

Fig. 2. A schematic representation of four tasks which need to be scheduled for execution on
a single-processor embedded system (Nahas, 2008).

Assuming a single-processor system is used, Task C and Task D can run as required where
Task B is due to execute before Task A is complete. Since no more than one task can run at
the same time on a single-processor, Task A or Task B has to relinquish control of the CPU.

! Note that schedulers represent the core components of “Real-Time Operating System” (RTOS) kernels.
Examples of commercial RTOSs which are used nowadays are: VxWorks (from Wind River), Lynx
(from LynxWorks), RTLinux (from FSMLabs), eCos (from Red Hat), and QNX (from QNX Software
Systems). Most of these operating systems require large amount of computational and memory
resources which are not readily available in low-cost microcontrollers like the ones targeted in this
work.
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In pre-emptive scheduling, a higher priority might be assigned to Task B with the
consequence that - when Task B is due to run - Task A will be interrupted, Task B will run,
and Task A will then resume and complete (Fig. 3).

[A-]B[-A[[€] D |

-
Time

Fig. 3. Pre-emptive scheduling of Task A and Task B in the system shown in Fig. 2: Task B,
here, is assigned a higher priority (Nahas, 2008).

Co-operative (or “non-pre-emptive”) scheduling: where only a single-tasking process is
allowed. In more details, if a higher priority task is ready to run while a lower priority task
is running, the former task cannot be released until the latter one completes its execution.
For example, assume the same set of tasks illustrated in Fig. 2. In the simplest solution, Task
A and Task B can be scheduled co-operatively. In these circumstances, the task which is
currently using the CPU is implicitly assigned a high priority: any other task must therefore
wait until this task relinquishes control before it can execute. In this case, Task A will
complete and then Task B will be executed (Fig. 4).

A [sfelfo]

Time

Fig. 4. Co-operative scheduling of Task A and Task B in the system shown in Fig. 2 (Nahas,
2008).

Hybrid scheduling: where a limited, but efficient, multi-tasking capabilities are provided
(Pont, 2001). That is, only one task in the whole system is set to be pre-emptive (this task is
best viewed as “highest-priority” task), while other tasks are running co-operatively (Fig. 5).
In the example shown in the figure, suppose that Task B is a short task which has to execute
immediately when it arrives. In this case, Task B is set to be pre-emptive so that it acquires
the CPU control to execute whenever it arrives and whether (or not) other task is running.

|A-|B[-A| | €-|B|-C| D

Time

Fig. 5. Hybrid scheduling of four-tasks: Task B is set to be pre-emptive, where Task A, Task
C and Task D run co-operatively (Nahas, 2008).

Overall, when comparing co-operative with pre-emptive schedulers, many researchers have
argued that co-operative schedulers have many desirable features, particularly for use in
safety-related systems (Allworth, 1981; Ward, 1991; Nissanke, 1997; Bates, 2000; Pont, 2001).
For example, Bates (2000) identified the following four advantages of co-operative
scheduling over pre-emptive alternatives:
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e  The scheduler is simpler.

e  The overheads are reduced.

o  Testing is easier.

e  Certification authorities tend to support this form of scheduling.

Similarly, Nissanke (1997) noted: “[Pre-emptive] schedules carry greater runtime overheads
because of the need for context switching - storage and retrieval of partially computed results. [Co-
operative] algorithms do not incur such overheads. Other advantages of co-operative algorithms
include their better understandability, greater predictability, ease of testing and their inherent
capability for quaranteeing exclusive access to any shared resource or data.”

Many researchers still, however, believe that pre-emptive approaches are more effective
than co-operative alternatives (Allworth, 1981; Cooling, 1991). This can be due to different
reasons. As in (Pont, 2001), one of the reasons why pre-emptive approaches are more widely
discussed and considered is because of confusion over the options available. Pont gave an
example that the basic cyclic scheduling, which is often discussed by many as an alternative
to pre-emptive, is not a representative of the wide range of co-operative scheduling
architectures that are available.

Moreover, one of the main issues that concern people about the reliability of co-operative
scheduling is that long tasks can have a negative impact on the responsiveness of the
system. This is clearly underlined by Allworth (1981): “[The] main drawback with this co-
operative approach is that while the current process is running, the system is not responsive to
changes in the environment. Therefore, system processes must be extremely brief if the real-time
response [of the] system is not to be impaired.”

However, in many practical embedded systems, the process (task) duration is extremely
short. For example, calculations of one of the very complicated algorithms, the
“proportional integral differential” (PID) controller, can be carried out on the most basic (8-
bit) 8051 microcontroller in around 0.4 ms: this imposes insignificant processor load in most
systems - including flight control - where 10 ms sampling rate is adequate (Pont, 2001).
Pont has also commented that if the system is designed to run long tasks, “this is often
because the developer is unaware of some simple techniques that can be used to break down these tasks
in an appropriate way and - in effect — convert long tasks called infrequently into short tasks called
frequently”: some of these techniques are introduced and discussed in Pont (2001).

Moreover, if the performance of the system is seen slightly poor, it is often advised to
update the microcontroller hardware rather than to use a more complex software
architecture. However, if changing the task design or microcontroller hardware does not
provide the level of performance which is desired for a particular application, then more
than one microcontroller can be used. In such cases, long tasks can be easily moved to
another processor, allowing the host processor to respond rapidly to other events as
required (for further details, see Pont, 2001; Ayavoo et al., 2007).

Please note that the very wide use of pre-emptive schedulers can simply be resulted from a
poor understanding and, hence, undervaluation of the co-operative schedulers. For
example, a co-operative scheduler can be easily constructed using only a few hundred lines
of highly portable code written in a high-level programming language (such as ‘C’), while
the resulting system is highly-predictable (Pont, 2001).
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It is also important to understand that sometimes pre-emptive schedulers are more widely
used in RTOSs due to commercial reasons. For example, companies may have commercial
benefits from using pre-emptive environments. Consequently, as the complexity of these
environments increases, the code size will significantly increase making ‘in-house’
constructions of such environments too complicated. Such complexity factors lead to the
sale of commercial RTOS products at high prices (Pont, 2001). Therefore, further academic
research has been conducted in this area to explore alternative solutions. For example, over
the last few years, the Embedded Systems Laboratory (ESL) researchers have considered
various ways in which simple, highly-predictable, non-pre-emptive (co-operative)
schedulers can be implemented in low-cost embedded systems.

4. Scheduling algorithm and scheduler implementation

A key component of the scheduler is the scheduling algorithm which basically determines the
order in which the tasks will be executed by the scheduler (Buttazzo, 2005). More
specifically, a scheduling algorithm is the set of rules that, at every instant while the system
is running, determines which task must be allocated the resources to execute.

Developers of embedded systems have proposed various scheduling algorithms that can be
used to handle tasks in real-time applications. The selection of appropriate scheduling
algorithm for a set of tasks is based upon the capability of the algorithm to satisfy all timing
constraints of the tasks: where these constraints are derived from the application
requirements. Examples of common scheduling algorithms are: Cyclic Executive (Locke,
1992), Rate Monotonic (Liu & Layland, 1973), Earliest-Deadline-First (Liu & Layland, 1973;
Liu, 2000), Least-Laxity-First (Mok, 1983), Deadline Monotonic (Leung, 1982) and Shared-
Clock (Pont, 2001) schedulers (see Rao et al., 2008 for a simple classification of scheduling
algorithms). This chapter outlines one key example of scheduling algorithms that is widely
used in the design of real-time embedded systems when highly-predictable system behavior
is an essential requirement: this is the Time Triggered Co-operative scheduler which is a
form of cyclic executive.

Note that once the design specifications are converted into appropriate design elements, the
system implementation process can take place by translating those designs into software
and hardware components. People working on the development of embedded systems are
often concerned with the software implementation of the system in which the system
specifications are converted into an executable system (Sommerville, 2007; Koch, 1999). For
example, Koch interpreted the implementation of a system as the way in which the software
program is arranged to meet the system specifications.

The implementation of schedulers is a major problem which faces designers of real-time
scheduling systems (for example, see Cho et al., 2005). In their useful publication, Cho and
colleges clarified that the well-known term scheduling is used to describe the process of
finding the optimal schedule for a set of real-time tasks, while the term scheduler
implementation refers to the process of implementing a physical (software or hardware)
scheduler that enforces - at run-time - the task sequencing determined by the designed
schedule (Cho et al., 2007).
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Generally, it has been argued that there is a wide gap between scheduling theory and its
implementation in operating system kernels running on specific hardware, and for any
meaningful validation of timing properties of real-time applications, this gap must be
bridged (Katcher et al., 1993). The relationship between any scheduling algorithm and the
number of possible implementation options for that algorithm - in practical designs - has
generally been viewed as ‘one-to-many’, even for very simple systems (Baker & Shaw, 1989;
Koch; 1999; Pont, 2001; Baruah, 2006; Pont et al., 2007; Phatrapornnant, 2007). For example,
Pont et al. (2007) clearly mentioned that if someone was to use a particular scheduling
architecture, then there are many different implementation options which can be available.
This claim was also supported by Phatrapornnant (2007) by noting that the TTC scheduler
(which is a form of cyclic executive) is only an algorithm where, in practice, there can be
many possible ways to implement such an algorithm.

The performance of a real-time system depends crucially on implementation details that
cannot be captured at the design level, thus it is more appropriate to evaluate the real-time
properties of the system after it is fully implemented (Avrunin et al., 1998).

5. Time-triggered co-operative (TTC) scheduling algorithm

A key defining characteristic of a time-triggered (TT) system is that it can be expected to
have highly-predictable patterns of behavior. This means that when a computer system has
a time-triggered architecture, it can be determined in advance - before the system begins
executing - exactly what the system will do at every moment of time while the system is
operating. Based on this definition, completely defined TT behavior is - of course - difficult
to achieve in practice. Nonetheless, approximations of this model have been found to be
useful in a great many practical systems. The closest approximation of a “perfect” TT
architecture which is in widespread use involves a collection of periodic tasks which operate
co-operatively (or “non-pre-emptively”). Such a time-triggered co-operative (TTC)
architecture has sometimes been described as a cyclic executive (e.g. Baker & Shaw, 1989;
Locke, 1992).

According to Baker and Shaw (1989), the cyclic executive scheduler is designed to execute
tasks in a sequential order that is defined prior to system activation; the number of tasks is
fixed; each task is allocated an execution slot (called a minor cycle or a frame) during which
the task executes; the task - once interleaved by the scheduler - can execute until completion
without interruption from other tasks; all tasks are periodic and the deadline of each task is
equal to its period; the worst-case execution time of all tasks is known; there is no context
switching between tasks; and tasks are scheduled in a repetitive cycle called major cycle. The
major cycle can be defined as the time period during which each task in the scheduler
executes - at least - once and before the whole task execution pattern is repeated. This is
numerically calculated as the lowest common multiple (LCM) of the periods of the
scheduled tasks (Baker & Shaw, 1989; Xu & Parnas, 1993). Koch (1999) emphasized that
cyclic executive is a “proof-by-construction” scheme in which no schedulability analysis is
required prior to system construction.

Fig. 6 illustrates the (time-triggered) cyclic executive model for a simple set of four periodic
tasks. Note that the final task in the task-group (i.e. Task D) must complete execution before
the arrival of the next timer interrupt which launches a new (major) execution cycle.
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Fig. 6. A time-triggered cyclic executive model for a set of four periodic tasks (Nahas,
2011b).

In the example shown, each task is executed only once during the whole major cycle which
is, in this case, made up of four minor cycles. Note that the task periods may not always be
identical as in the example shown in Fig. 6. When task periods vary, the scheduler should
define a sequence in which each task is repeated sufficiently to meet its frequency
requirement (Locke, 1992).

Fig. 7 shows the general structure of the time-triggered cyclic executive (i.e. time-triggered
co-operative) scheduler. In the example shown in this figure, the scheduler has a minor cycle
of 10 ms, period values of 20, 10 and 40 ms for the tasks A, B and C, respectively. The LCM
of these periods is 40 ms, therefore the length of the major cycle in which all tasks will be
executed periodically is 40 ms. It is suggested that the minor cycle of the scheduler (which is
also referred to as the tick interval: see Pont, 2001) can be set equal to or less than the
greatest common divisor value of all task periods (Phatrapornnant, 2007). In the example
shown in Fig. 7, this value is equal to 10 ms. In practice, the minor cycle is driven by a
periodic interrupt generated by the overflow of an on-chip hardware timer or by the arrival
of events in the external environment (Locke, 1992; Pont, 2001). The vertical arrows in the
figure represent the points at which minor cycles (ticks) start.

Major cycle

A|B| B A | B

0 10 20 30 40 t(ms)

A|B| B|C

Fig. 7. A general structure of the time-triggered co-operative (TTC) scheduler (Nahas, 2008).

Overall, TTC schedulers have many advantages. A key recognizable advantage is its
simplicity (Baker & Shaw, 1989; Liu, 2000; Pont, 2001). Furthermore, since pre-emption is not
allowed, mechanisms for context switching are, hence, not required and, as a consequence,
the run-time overhead of a TTC scheduler can be kept very low (Locke, 1992; Buttazzo,
2005). Also, developing TTC schedulers needs no concern about protecting the integrity of
shared data structures or shared resources because, at a time, only one task in the whole
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system can exclusively use the resources and the next due task cannot begin its execution
until the running task is completed (Baker & Shaw, 1989; Locke, 1992).

Since all tasks are run regularly according to their predefined order in a deterministic
manner, the TTC schedulers demonstrate very low levels of task jitter (Locke, 1992; Bate,
1998; Buttazzo, 2005) and can maintain their low-jitter characteristics even when complex
techniques, such as dynamic voltage scaling (DVS), are employed to reduce system power
consumption (Phatrapornnant & Pont, 2006). Therefore, as would be expected (and unlike
RM designs, for example), systems with TTC architectures can have highly-predictable
timing behavior (Baker & Shaw, 1989; Locke, 1992). Locke (1992) underlines that with cyclic
executive systems, “if is possible to predict the entire future history of the state of the machine, once
the start time of the system is determined (usually at power-on). Thus, assuming this future history
meets the response requirements generated by the external environment in which the system is to be
used, it is clear that all response requirements will be met. Thus it fulfills the basic requirements of a
hard real time system.”

Provided that an appropriate implementation is used, TTC architectures can be a good
match for a wide range of low-cost embedded applications. For example, previous studies
have described - in detail - how these techniques can be applied in various automotive
applications (e.g. Ayavoo et al., 2006; Ayavoo, 2006), a wireless (ECG) monitoring system
(Phatrapornnant & Pont, 2004; Phatrapornnant, 2007), various control applications (e.g.
Edwards et al., 2004; Key et al., 2004; Short & Pont, 2008), and in data acquisition systems,
washing-machine control and monitoring of liquid flow rates (Pont, 2002). Outside the ESL
group, Nghiem et al. (2006) described an implementation of PID controller using TTC
scheduling algorithm and illustrated how such architecture can help increase the overall
system performance as compared with alternative implementation methods.

However, TTC architectures have some shortcomings. For example, many researchers argue
that running tasks without pre-emption may cause other tasks to wait for some time and
hence miss their deadlines. However, the availability of high-speed, COTS microcontrollers
nowadays helps to reduce the effect of this problem and, as processor speeds continue to
increase, non-pre-emptive scheduling approaches are expected to gain more popularity in
the future (Baruah, 2006).

Another issue with TTC systems is that the task schedule is usually calculated based on
estimates of Worst Case Execution Time (WCET) of the running tasks. If such estimates
prove to be incorrect, this may have a serious impact on the system behavior (Buttazzo,
2005).

One recognized disadvantage of using TTC schedulers is the lack of flexibility (Locke, 1992;
Bate, 1998). This is simply because TTC is usually viewed as ‘table-driven” static scheduler
(Baker & Shaw, 1989) which means that any modification or addition of a new functionality,
during any stage of the system development process, may need an entirely new schedule to
be designed and constructed (Locke, 1992; Koch, 1999). This reconstruction of the system
adds more time overhead to the design process: however, with using tools such as those
developed recently to support “automatic code generation” (Mwelwa et al., 2006; Mwelwa,
2006; Kurian & Pont, 2007), the work involved in developing and maintaining such systems
can be substantially reduced.
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Another drawback of TTC systems, as noted by Koch (1999), is that constructing the cyclic
executive model for a large set of tasks with periods that are prime to each other can be
unaffordable. However, in practice, there is some flexibility in the choice of task periods (Xu
& Parnas, 1993; Pont, 2001). For example, Gerber et al. (1995) demonstrated how a feasible
solution for task periods can be obtained by considering the period harmonicity relationship
of each task with all its successors. Kim et al. (1999) went further to improve and automate
this period calibration method. Please also note that using a table to store the task schedule
is only one way of implementing TTC algorithm where, in practice, there can be other
implementation methods (Baker & Shaw, 1989; Pont, 2001). For example, Pont (2001)
described an alternative to table-driven schedule implementation for the TTC algorithm
which has the potential to solve the co-prime periods problem and also simplify the process
of modifying the whole task schedule later in the development life cycle or during the
system run-time.

Furthermore, it has also been reported that a long task whose execution time exceeds the
period of the highest rate (shortest period) task cannot be scheduled on the basic TTC
scheduler (Locke, 1992). One solution to this problem is to break down the long task into
multiple short tasks that can fit in the minor cycle. Also, possible alternative solution to this
problem is to use a Time-Triggered Hybrid (TTH) scheduler (Pont, 2001) in which a limited
degree of pre-emption is supported. One acknowledged advantage of using TTH scheduler
is that it enables the designer to build a static, fixed-priority schedule made up of a
collection of co-operative tasks and a single (short) pre-emptive task (Phatrapornnant, 2007).
Note that TTH architectures are not covered in the context of this chapter. For more details
about these scheduling approaches, see (Pont, 2001; Maaita & Pont, 2005; Hughes & Pont,
2008; Phatrapornnant, 2007).

Please note that later in this chapter, it will be demonstrated how, with extra care at the
implementation stage, one can easily deal with many of the TTC scheduler limitations
indicated above.

6. Jitter in TTC scheduling algorithm

Jitter is a term which describes variations in the timing of activities (Wavecrest, 2001). The
work presented in this chapter is concerned with implementing highly-predictable
embedded systems. Predictability is one of the most important objectives of real-time
embedded systems which can simply be defined as the ability to determine, in advance,
exactly what the system will do at every moment of time in which it is running. One way in
which predictable behavior manifests itself is in low levels of task jitter.

Jitter is a key timing parameter that can have detrimental impacts on the performance of
many applications, particularly those involving period sampling and/or data generation
(e.g. data acquisition, data playback and control systems: see Torngren, 1998). For example,
Cottet & David (1999) show that - during data acquisition tasks - jitter rates of 10% or more
can introduce errors which are so significant that any subsequent interpretation of the
sampled signal may be rendered meaningless. Similarly, Jerri (1977) discusses the serious
impact of jitter on applications such as spectrum analysis and filtering. Also, in control
systems, jitter can greatly degrade the performance by varying the sampling period
(Torngren, 1998; Marti et al., 2001).
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When TTC architectures (which represent the main focus of this chapter) are employed,
possible sources of task jitter can be divided into three main categories: scheduling overhead
variation, task placement and clock drift.

The overhead of a conventional (non-co-operative) scheduler arises mainly from context
switching. However, in some TTC systems the scheduling overhead is comparatively large
and may have a highly variable duration due to code branching or computations that have
non-fixed lengths. As an example, Fig. 8 illustrates how a TTC system can suffer release
jitter as a result of variations in the scheduler overhead (this relates to DVS system).
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Fig. 8. Release jitter caused by variation of scheduling overhead (Nahas, 2011a).

Even if the scheduler overhead variations can be avoided, TTC designs can still suffer from
jitter as a result of the task placement. To illustrate this, consider Fig. 9. In this schedule
example, Task C runs sometimes after A, sometimes after A and B, and sometimes alone.
Therefore, the period between every two successive runs of Task C is highly variable.
Moreover, if Task A and B have variable execution durations (as in Fig. 8), then the jitter

levels of Task C will even be larger.
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Fig. 9. Release jitter caused by task placement in TTC schedulers (Nahas, 2011a).

For completeness of this discussion, it is also important to consider clock drift as a source of
task jitter. In the TTC designs, a clock “tick” is generated by a hardware timer that is used
to trigger the execution of the cyclic tasks (Pont, 2001). This mechanism relies on the
presence of a timer that runs at a fixed frequency. In such circumstances, any jitter will arise
from variations at the hardware level (e.g. through the use of a low-cost frequency source,
such as a ceramic resonator, to drive the on-chip oscillator: see Pont, 2001). In the TTC
scheduler implementations considered in this study, the software developer has no control
over the clock source. However, in some circumstances, those implementing a scheduler
must take such factors into account. For example, in situations where DVS is employed (to
reduce CPU power consumption), it may take a variable amount of time for the processor’s
phase-locked loop (PLL) to stabilize after the clock frequency is changed (see Fig. 10).

Expected Expected Expected
Tick Period Tick Period Tick Period
Timer / Timer o / Timer
Counter Counter / Counter

Speed

‘% Task

Fig. 10. Clock drift in DVS systems (Nahas, 2011a).
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As discussed elsewhere, it is possible to compensate for such changes in software and
thereby reduce jitter (see Phatrapornnant & Pont, 2006; Phatrapornnant, 2007).

7. Various TTC scheduler implementations for highly-predictable embedded
systems

In this section, a set of “representative” examples of the various classes of TTC scheduler
implementations are reviewed. In total, the section reviews six TTC implementations.

7.1 Super loop (SL) scheduler

The simplest practical implementation of a TTC scheduler can be created using a “Super
Loop” (SL) (sometimes called an “endless loop: Kalinsky, 2001). The super loop can be used
as the basis for implementing a simple TTC scheduler (e.g. Pont, 2001; Kurian & Pont, 2007).
A possible implementation of TTC scheduler using super loop is illustrated in Listing 1.

int main(void)

{

while(1)

{

TaskA();
Delay_éms();
TaskB();
Delay_éms();
TaskC();
Delay_éms();

// Should never reach here
return 1

}

Listing 1. A very simple TTC scheduler which executes three periodic tasks, in sequence.

By assuming that each task in Listing 1 has a fixed duration of 4 ms, a TTC system with a
10 ms “tick interval” has been created using a combination of super loop and delay
functions (Fig. 11).

— — —
Task A Task B Task C
10 ms Time
System

Tick
Fig. 11. The task executions resulting from the code in Listing 1 (Nahas, 2011b).
In the case where the scheduled tasks have variable durations, creating a fixed tick interval

is not straightforward. One way of doing that is to use a “Sandwich Delay” (Pont et al.,
2006) placed around the tasks. Briefly, a Sandwich Delay (SD) is a mechanism - based on a
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hardware timer - which can be used to ensure that a particular code section always takes
approximately the same period of time to execute. The SD operates as follows: [1] A timer is
set to run; [2] An activity is performed; [3] The system waits until the timer reaches a pre-
determined count value.

In these circumstances - as long as the timer count is set to a duration that exceeds the
WCET of the sandwiched activity - SD mechanism has the potential to fix the execution
period. Listing 2 shows how the tasks in Listing 1 can be scheduled - again using a 10 ms
tick interval - if their execution durations are not fixed

int main(void)

while(1)
{
// Set up a Timer for sandwich delay
SANDWICH_DELAY_Start();
// Add Tasks in the first tick interval
Task_A();
// Wait for 10 millisecond sandwich delay
// Add Tasks in the second tick interval
SANDWICH_DELAY Wait(10);
Task_B();
// Wait for 20 millisecond sandwich delay
// Add Tasks in the second tick interval
SANDWICH_DELAY Wait(20);
Task_C();
// Wait for 30 millisecond sandwich delay
SANDWICH_DELAY_Wait(30);

// Should never reach here
return 1

}
Listing 2. A TTC scheduler which executes three periodic tasks with variable durations, in
sequence.

Using the code listing shown, the successive function calls will take place at fixed intervals,
even if these functions have large variations in their durations (Fig. 12). For further
information, see (Nahas, 2011b).

6ms 9ms 4ms
Task A Task B ‘ Task C ‘ ,,,,,,,,,,,,,
10 ms Time

System
Tick

Fig. 12. The task executions expected from the TTC-SL scheduler code shown in Listing 2
(Nahas, 2011b).

7.2 ATTC-ISR scheduler

In general, software architectures based on super loop can be seen simple, highly efficient
and portable (Pont, 2001; Kurian & Pont, 2007). However, these approaches lack the
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provision of accurate timing and the efficiency in using the power resources, as the system
always operates at full-power which is not necessary in many applications.

An alternative (and more efficient) solution to this problem is to make use of the hardware
resources to control the timing and power behavior of the system. For example, a TTC
scheduler implementation can be created using “Interrupt Service Routine” (ISR) linked to
the overflow of a hardware timer. In such approaches, the timer is set to overflow at regular
“tick intervals” to generate periodic “ticks” that will drive the scheduler. The rate of the tick
interval can be set equal to (or higher than) the rate of the task which runs at the highest
frequency (Phatrapornnant, 2007).

In the TTC-ISR scheduler, when the timer overflows and a tick interrupt occurs, the ISR will
be called, and awaiting tasks will then be activated from the ISR directly. Fig. 13 shows how
such a scheduler can be implemented in software. In this example, it is assumed that one of
the microcontroller’s timers has been set to generate an interrupt once every 10 ms, and
thereby call the function Update (). This Update () function represents the scheduler ISR.
At the first tick, the scheduler will run Task A then go back to the while loop in which the
system is placed in the idle mode waiting for the next interrupt. When the second interrupt
takes place, the scheduler will enter the ISR and run Task B, then the cycle continues. The
overall result is a system which has a 10 ms “tick interval” and three tasks executed in
sequence (see Fig. 14)

BACKGROUND FOREGROUND
PROCESSING PROCESSING
/I/ 10ms timer
while (1) void Update (void)
{ {
Go_To Sleep(); Tick G++;

}
switch(Tick_G)
{
case 1:
Task A();
break;
case 2:
Task B();
break;
case 3:
Task C();
Tick G = 0;

}
Fig. 13. A schematic representation of a simple TTC-ISR scheduler (Nahas, 2008).

Whether or not the idle mode is used in TTC-ISR scheduler, the timing observed is largely
independent of the software used but instead depends on the underlying timer hardware
(which will usually mean the accuracy of the crystal oscillator driving the microcontroller).
One consequence of this is that, for the system shown in Fig. 13 (for example), the successive
function calls will take place at precisely-defined intervals, even if there are large variations
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in the duration of tasks which are run from the Update () function (Fig. 14). This is very
useful behavior which is not easily obtained with implementations based on super loop.

Major
cycle
A
Tick interval
Idle
A B mode |- C | | v
Tick 0 Tick 1 Tick 2 Tick 3 Time

Fig. 14: The task executions expected from the TTC-ISR scheduler code shown in Fig. 13
(Nahas, 2008).

The function call tree for the TTC-ISR scheduler is shown in Fig. 15. For further information,
see (Nahas, 2008).

Main () —> | Update () | —> Task () — Sleep () J

Fig. 15: Function call tree for the TTC-ISR scheduler (Nahas, 2008).

7.3 TTC-dispatch scheduler

Implementation of a TTC-ISR scheduler requires a significant amount of hand coding (to
control the task timing), and there is no division between the “scheduler” code and the
“application” code (i.e. tasks). The TTC-Dispatch scheduler provides a more flexible
alternative. It is characterized by distinct and well-defined scheduler functions.

Like TTC-ISR, the TTC-Dispatch scheduler is driven by periodic interrupts generated from
an on-chip timer. When an interrupt occurs, the processor executes an Update () function.
In the scheduler implementation discussed here, the Update () function simply keeps track
of the number of ticks. A Dispatch () function will then be called, and the due tasks (if
any) will be executed one-by-one. Note that the Dispatch () function is called from an
“endless” loop placed in the function Main(): see Fig. 16. When not executing the
Update () or Dispatch () functions, the system will usually enter the low-power idle
mode.

In this TTC implementation, the software employs a SCH Add Task() and a
SCH Delete Task () functions to help the scheduler add and/or remove tasks during the
system run-time. Such scheduler architecture provides support for “one shot” tasks and
dynamic scheduling where tasks can be scheduled online if necessary (Pont, 2001). To add a
task to the scheduler, two main parameters have to be defined by the user in addition to the
task’s name: task’s offset, and task’s period. The offset specifies the time (in ticks) before the
task is first executed. The period specifies the interval (also in ticks) between repeated
executions of the task. In the Dispatch () function, the scheduler checks these parameters
for each task before running it. Please note that information about tasks is stored in a user-
defined scheduler data structure. Both the “sTask” data type and the “SCH MAX TASKS”
constant are used to create the “Task Array” which is referred to throughout the scheduler
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as “sTask SCH tasks G[SCH MAX TASKS]”. See (Pont, 2001) for further details. The
function call tree for the TTC-Dispatch scheduler is shown in Fig. 16.

Main () — | Update () | — | Dispatch ()| —» Task () —_— Sleep () J

Fig. 16. Function call tree for the TTC-Dispatch scheduler (Nahas, 2011a).

Fig. 16 illustrates the whole scheduling process in the TTC-Dispatch scheduler. For example,
it shows that the first function to run (after the startup code) is the Main () function. The
Main () calls Dispatch () which in turn launches any tasks which are currently scheduled
to execute. Once these tasks are complete, the control will return back to Main () which calls
Sleep () to place the processor in the idle mode. The timer interrupt then occurs which
will wake the processor up from the idle state and invoke the ISR Update (). The function
call then returns all the way back to Main (), where Dispatch () is called again and the
whole cycle thereby continues. For further information, see (Nahas, 2008).

7.4 Task Guardians (TG) scheduler

Despite many attractive characteristics, TTC designs can be seriously compromised by tasks
that fail to complete within their allotted periods. The TTC-TG scheduler implementation
described in this section employs a Task Guardian (TG) mechanism to deal with the impact
of such task overruns. When dealing with task overruns, the TG mechanism is required to
shutdown any task which is found to be overrunning. The proposed solution also provides
the option of replacing the overrunning task with a backup task (if required).

The implementation is again based on TTC-Dispatch (Section 7.3). In the event of a task
overrun with ordinary Dispatch scheduler, the timer ISR will interrupt the overrunning task
(rather than the Sleep () function). If the overrunning task keeps executing then it will be
periodically interrupted by Update () while all other tasks will be blocked until the task
finishes (if ever): this is shown in Fig. 17. Note that (a) illustrates the required task schedule,
and (b) illustrates the scheduler operation when Task A overrun by 5 tick interval.

interrupt

(a)
A1 | B1 A2 | A3 A4 A5 A6 | B2

t=0 1 2 3 4 5 t (ms)

interrupt

At Bl

t=0 1 2 3 4 5 t(ms)

Fig. 17. The impact of task overrun on a TTC scheduler (Nahas, 2008).
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In order for the TG mechanism to work, various functions in the TTC-Dispatch scheduler
are modified as follows:

e Dispatch () indicates that a task is being executed.

e Update () checks to see if an overrun has occurred. If it has, control is passed back to
Dispatch (), shutting down the overrunning task.

e If a backup task exists it will be executed by Dispatch ().

¢ Normal operation then continues.

In a little more detail, detecting overrun in this implementation uses a simple, efficient
method employed in the Dispatch () function. It simply adds a “Task_Overrun” variable
which is set equal to the task index before the task is executed. When the task completes,
this variable will be assigned the value of (for example) 255 to indicate a successful
completion. If a task overruns, the Update () function in the next tick should detect this
since it checks the Task_overrun variable and the last task index value. The Update () then
changes the return address to an End_Task () function instead of the overrunning task. The
End_Task () function should return control to Dispatch. Note that moving control from
Update () to End Task() is a nontrivial process and can be done by different ways
(Hughes & Pont, 2004).

The End Task() has the responsibility to shutdown the overrunning task. Also, it
determines the type of function that has overrun and begins to restore register values
accordingly. This process is complicated which aims to return the scheduler back to its
normal operation making sure the overrun has been resolved completely. Once the overrun
is dealt with, the scheduler replaces the overrunning task with a backup task which is set to
run immediately before running other tasks. If there is no backup task defined by the user,
then the TTC-TG scheduler implements a mechanism which turns the priority of the task
that overrun to the lowest so as to reduce the impact of any future overrunning by this task.
The function call tree for the TTC-TTG scheduler can be shown in Fig. 18.

Backup

Main () —> Update () | —>» | End Task () | —> | Dispatch () | —> Task ()

Fig. 18. Function call tree for the TTC-TG scheduler (Nahas, 2008).

Note that the scheduler structure used in TTC-TG scheduler is same as that employed in the
TTC-Dispatch scheduler which is simply based on ISR Update linked to a timer interrupt
and a Dispatch function called periodically from the Main code (Section 7.3). For further
details, see (Hughes & Pont, 2008).

7.5 Sandwich Delay (SD) scheduler

In Section 6, the impact of task placement on “low-priority” tasks running in TTC
schedulers was considered. The TTC schedulers described in Sections 7.1 - 7.4 lack the
ability to deal with jitter in the starting time of such tasks. One way to address this issue is to
place “Sandwich Delay” (Pont et al., 2006) around tasks which execute prior to other tasks in
the same tick interval.
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In the TTC-SD scheduler described in this section, sandwich delays are used to provide
execution “slots” of fixed sizes in situations where there is more than one task in a tick
interval. To clarify this, consider the set of tasks shown in Fig. 19. In the figure, the required
SD prior to Task C - for low jitter behavior - is equal to the WCET of Task A plus the WCET
of Task B. This implies that in the second tick (for example), the scheduler runs Task A and
then waits for the period equals to the WCET of Task B before running Task C. The figure
shows that when SDs are placed around the tasks prior to Task C, the periods between
successive runs of Task C become equal and hence jitter in the release time of this task is
significantly reduced.

Tick TaskC TaskC
Interrupt Period Period

Task SD | Task || Task N‘do‘: Task SD | Task SD Task
A B c 9 A c c
S

t=0 1 2 t(Ticks)

Fig. 19: Using Sandwich Delays to reduce release jitter in TTC schedulers (Nahas, 2011a).

Note that - with this implementation - the WCET for each task is input to the scheduler
through a SCH Task WCET () function placed in the Main code. After entering task
parameters, the scheduler employs Calc Sch Major Cycle() and
Calculate Task RT () functions to calculate the scheduler major cycle and the required
release time for the tasks, respectively. The release time values are stored in the “Task
Array” using the variable SCH tasks G[Index].Rls_ time. Note that the required
release time of a task is the time between the start of the tick interval and the start time of
the task “slot” plus a little safety margin. For further information, see (Nahas, 2011a).

7.6 Multiple Timer Interrupts (MTI) scheduler

An alternative to the SD technique which requires a large computational time, a “gap
insertion” mechanism that uses “Multiple Timer Interrupts” (MTIs) can be employed.

In the TTC-MTI scheduler described in this section, multiple timer interrupts are used to
generate the predefined execution “slots” for tasks. This allows more precise control of
timing in situations where more than one task executes in a given tick interval. The use of
interrupts also allows the processor to enter an idle mode after completion of each task,
resulting in power saving. In order to implement this technique, two interrupts are required:

e Tick interrupt: used to generate the scheduler periodic tick.
o Task interrupt: used - within tick intervals - to trigger the execution of tasks.

The process is illustrated in Fig. 20. In this figure, to achieve zero jitter, the required release
time prior to Task C (for example) is equal to the WCET of Task A plus the WCET of Task B
plus scheduler overhead (i.e. ISR Update () function). This implies that in the second tick
(for example), after running the ISR, the scheduler waits - in idle mode - for a period of time
equals to the WCETs of Task A and Task B before running Task C. Fig. 20 shows that when
an MTI method is used, the periods between the successive runs of Task C (the lowest
priority task in the system) are always equal. This means that the task jitter in such
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implementation is independent on the task placement or the duration(s) of the preceding
task(s).

Tick i H 1
Intermapt Task i Task C i Task C

Interrupts N Period B Period

I [ Idle Idle Idle |I
| A B C Mode B |vode| € | Mode |§] [
>

Tick 0 Tick 1 Tick 2 Time

Fig. 20. Using MTIs to reduce release jitter in TTC schedulers (Nahas, 2011a).

In the implementation considered in this section, the WCET for each task is input to the
scheduler through SCH Task WCET () function placed in the Main () code. The scheduler
then employs Calc Sch Major Cycle() and Calculate Task RT() functions to
calculate the scheduler major cycle and the required release time for the tasks, respectively.
Moreover, there is no Dispatch () called in the Main () code: instead, “interrupt request
wrappers” - which contain Assembly code - are used to manage the sequence of operation
in the whole scheduler. The function call tree for the TTC-MTT scheduler is shown in Fig. 21
(compare with Fig. 16).

If Task () is the last due task in the tick

l If Task () is not the last due task in the tick
. Tick Task
Main () | —> Update () —> | Sleep () | > Update () —> | Task () [—>| Sleep () —

Fig. 21. Function call tree for the TTC-MTI scheduler (in normal conditions) (Nahas, 2011a).

Unlike the normal Dispatch schedulers, this implementation relies on two interrupt
Update () functions: Tick Update () and Task Update (). The Tick Update () - which
is called every tick interval (as normal) - identifies which tasks are ready to execute within
the current tick interval. Before placing the processor in the idle mode, the Tick Update ()
function sets the match register of the task timer according to the release time of the first due
task running in the current interval. Calculating the release time of the first task in the
system takes into account the WCET of the Tick Update () code.

When the task interrupt occurs, the Task Update () sets the return address to the task that
will be executed straight after this update function, and sets the match register of the task
timer for the next task (if any). The scheduled task then executes as normal. Once the task
completes execution, the processor goes back to Sleep () and waits for the next task
interrupt (if there are following tasks to execute) or the next tick interrupt which launches a
new tick interval. Note that the Task Update () code is written in such a way that it always
has a fixed execution duration for avoiding jitter at the starting time of tasks.

It is worth highlighting that the TTC-MTI scheduler described here employs a form of “task
guardians” which help the system avoid any overruns in the operating tasks. More
specifically, the described MTI technique helps the TTC scheduler to shutdown any
overrunning task by the time the following interrupt takes place. For example, if the
overrunning task is followed by another task in the same tick, then the task interrupt -
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which triggers the execution of the latter task - will immediately terminate the overrun.
Otherwise, the task can overrun until the next tick interrupt takes place which will terminate
the overrun immediately. The function call tree for the TTC-MTI scheduler - when a task
overrun occurs - is shown in Fig. 22. The only difference between this process and the one
shown in Fig. 21 is that an ISR will interrupt the overrunning task (rather than the Sleep ()
function). Again, if the overrunning task is the last task to execute in a given tick, then it will
be interrupted and terminated by the Tick Update () at the next tick interval: otherwise, it
will be terminated by the following Task Update (). For further information, see (Nahas,
2011a).

If Task () is the last due task in the tick

l If Task () is not the last due task in the tick
. Tick Task ||
Main () [— Update () —> | Sleep () | = Update () —>» | Task ()

Fig. 22. Function call tree for the TTC-MTI scheduler (with task overrun) (Nahas, 2008).

8. Evaluation of TTC scheduler implementations

This section provides the results of the various TTC implementations considered in the
previous section. The results include jitter levels, error handling capabilities and resource
(i.e. CPU and memory) requirements. The section begins by briefing the experimental
methodology used in this study.

8.1 Experimental methodology

The empirical studies were conducted using Ashling LPC2000 evaluation board supporting
Philips LPC2106 processor (Ashling Microsystems, 2007). The LPC2106 is a modern 32-bit
microcontroller with an ARM7 core which can run - under control of an on-chip PLL - at
frequencies from 12 MHz to 60 MHz.

The compiler used was the GCC ARM 4.1.1 operating in Windows by means of Cygwin (a
Linux emulator for windows). The IDE and simulator used was the Keil ARM development
kit (v3.12).

For meaningful comparison of jitter results, the task-set shown in Fig. 23 was used to allow
exploring the impact of schedule-induced jitter by scheduling Task A to run every two ticks.
Moreover, all tasks were set to have variable execution durations to allow exploring the
impact of task-induced jitter.

For jitter measurements, two measures were recorded: Tick Jitter: represented by the
variations in the interval between the release times of the periodic tick, and Task Jitter:
represented by the variations in the interval between the release times of periodic tasks.
Jitter was measured using a National Instruments data acquisition card ‘NI PCI-6035E
(National Instruments, 2006), used in conjunction with appropriate software LabVIEW 7.1
(LabVIEW, 2007). The “difference jitter” was reported which is obtained by subtracting the
minimum period (between each successive ticks or tasks) from the maximum period
obtained from the measurements in the sample set. This jitter is sometimes referred to as
“absolute jitter” (Buttazzo, 2005).
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Fig. 23. Graphical representation of the task-set used in jitter test (Nahas, 2011a).

The CPU overhead was measured using the performance analyzer supported by the Keil
simulator which calculates the time required by the scheduler as compared to the total
runtime of the program. The percentage of the measured CPU time was then reported to
indicate the scheduler overhead in each TTC implementation.

For ROM and RAM memory overheads, the CODE and DATA memory values required to
implement each scheduler were recorded, respectively. Memory values were obtained using
the “.map” file which is created when the source code is compiled. The STACK usage was
also measured (as DATA memory overhead) by initially filling the data memory with
‘DEAD CODE’ and then reporting the number of memory bytes that had been overwritten
after running the scheduler for sufficient period.

8.2 Results

This section summarizes the results obtained in this study. Table 1 presents the jitter levels,
CPU requirements, memory requirements and ability to deal with task overrun for all
schedulers. The jitter results include the tick and tasks jitter. The ability to deal with task
overrun is divided into six different cases as shown in Table 2. In the table, it is assumed
that Task A is the overrunning task.

Lo Task A |Task B|Task C

Scheduler Tick Jitter Jitter |Jitter |Jitter gPU I;OItVI I;Alt\/l Ability to deal with task overrun
(],J,S) (Hs) (Hs) (HS) ° ( Yy es) ( Y es)

TTC-SL 1.2 15 4016.2 |5772.2 |100 (2264 |124 1b

TTC-ISR 0.0 0.1 4016.7 |5615.8 [39.5 [2256 |127 la

TTC Dispatch |0.0 0.1 4022.7 |5699.8 (39.7 (4012 |325 1b

TTC-TG 0.0 0.1 4026.2 |5751.9 |39.8 [4296 |446 2b

TTC-SD 0.0 0.1 1.5 1.5 74.0 (5344 |310 1b

TTC-MTI 0.0 0.1 0.0 0.0 39.6 13620 |514 3a

Table 1. Results obtained in the study detailed in this chapter.

From the table, it is difficult to obtain zero jitter in the release time of the tick in the TTC-SL
scheduler, although the tick jitter can still be low. Also, the TTC-SL scheduler always
requires a full CPU load (~ 100%). This is since the scheduler does not use the low-power
“idle” mode when not executing tasks: instead, the scheduler waits in a “while” loop. In the
TTC-ISR scheduler, the tick interrupts occur at precisely-defined intervals with no
measurable delays or jitter and the release jitter in Task A is equal to zero. Inevitably, the
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memory values in the TTC-Dispatch scheduler are somewhat larger than those required to
implement the TTC-SL and TTC-ISR schedulers. The results from the TTC-TG scheduler are
very similar to those obtained from the TTC-Dispatch scheduler except that it requires
slightly more data memory. When the TTC-SD scheduler is used, the low-priority tasks are
executed at fixed intervals. However, there is still a little jitter in the release times of Tasks B
and Task C. This jitter is caused by variation in time taken to leave the software loop -
which is used in the SD mechanism to check if the required release time for the concerned
task is matched - and begin to execute the task. With the TTC-MTI scheduler, the jitter in the
release time of all tasks running in the system is totally removed, causing a significant
increase in the overall system predictability.

Regarding the ability to deal with task overrun, the TTC-TG scheduler detects and hence
terminates the overrunning task at the beginning of the tick following the one in which the
task overruns. Moreover, the scheduler allows running a backup task in the same tick in
which the overrun is detected and hence continues to run the following tasks. This means
that one tick shift is added to the schedule. Also, the TTC-MTI scheduler employs a simple
TG mechanism and - once an interrupt occurs - the running task (if any) will be terminated.
Note that the implementation employed here did not support backup tasks.

Shut down
Schedule|time (after|Backup task |[Comment
Ticks)
Not Overrunning task is not shut down. The number of elapsed
la - o ticks - during overrun - is not counted and therefore tasks due
applicable . . .
to run in these ticks are ignored.
Overrunning task is not shut down. The number of elapsed
1 . Not ticks - during overrun - is counted and therefore tasks due to
applicable |run in these ticks are executed immediately after overrunning
task ends.
. Not Overrunning task is detected at the time of the next tick and
2a 1 Tick .
available  |shut down.
Available - Overrunning task is detected at the time of the next tick and
2b 1 Tick varab® “lshut down: a replacement (backup) task is added to the
BK(A)
schedule.
Not Overrunning task is shut down immediately after it exceeds its
3 WCET(Ax) available  |estimated WCET.
3b WCET(Ax) Available -|{Overrunning task is shut down immediately after it exceeds its
BK(A) estimated WCET. A backup task is added to the schedule.

Table 2. Examples of possible schedules obtained with task overrun (Nahas, 2008).

9. Conclusions

The particular focus in this chapter was on building embedded systems which have severe
resource constraints and require high levels of timing predictability. The chapter provided
necessary definitions to help understand the scheduling theory and various techniques used
to build a scheduler for the type of systems concerned with in this study. The discussions
indicated that for such systems, the “time-triggered co-operative” (TTC) schedulers are a
good match. This was mainly due to their simplicity, low resource requirements and high
predictability they can offer. The chapter, however, discussed major problems that can affect
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the performance of TTC schedulers and reviewed some suggested solutions to overcome
such problems.

Then, the discussions focused on the relationship between scheduling algorithm and
scheduler implementations and highlighted the challenges faced when implementing
software for a particular scheduler. It was clearly noted that such challenges were mainly
caused by the broad range of possible implementation options a scheduler can have in
practice, and the impact of such implementations on the overall system behavior.

The chapter then reviewed six various TTC scheduler implementations that can be used for
resource-constrained embedded systems with highly-predictable system behavior. Useful
results from the described schedulers were then provided which included jitter levels,
memory requirements and error handling capabilities. The results suggested that a “one size
fits all” TTC implementation does not exist in practice, since each implementation has
advantages and disadvantages. The selection of a particular implementation will, hence, be
decided based on the requirements of the application in which the TTC scheduler is
employed, e.g. timing and resource requirements.
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1. Introduction

Currently, both fail safe and fail operational architectures are based on hardware redundancy
in automotive embedded systems. In contrast to this approach, safety is either a result
of diverse software channels or of one channel of specifically coded software within the
framework of Safely Embedded Software. Product costs are reduced and flexibility is
increased. The overall concept is inspired by the well-known Vital Coded Processor approach.
There the transformation of variables constitutes an (AN+B)-code with prime factor A and
offset B, where B contains a static signature for each variable and a dynamic signature for
each program cycle. Operations are transformed accordingly.

Mealy state machines are frequently used in embedded automotive systems. The given Safely
Embedded Software approach generates the safety of the overall system in the level of the
application software, is realized in the high level programming language C, and is evaluated
for Mealy state machines with acceptable overhead. An outline of the comprehensive safety
architecture is given.

The importance of the non-functional requirement safety is more and more recognized in the
automotive industry and therewith in the automotive embedded systems area. There are two
safety categories to be distinguished in automotive systems:

e The goal of active safety is to prevent accidents. Typical examples are Electronic Stability
Control (ESC), Lane Departure Warning System (LDWS), Adaptive Cruise Control (ACC),
and Anti-lock Braking System (ABS).

¢ If an accident cannot be prevented, measures of passive safety will react. They act jointly in
order to minimize human damage. For instance, the collaboration of safety means such as
front, side, curtain, and knee airbags reduce the risk tremendously.

Each safety system is usually controlled by the so called Electronic Control Unit (ECU). In
contrast to functions without a relation to safety, the execution of safety-related functions on
an ECU-like device necessitates additional considerations and efforts.

The normative regulations of the generic industrial safety standard IEC 61508 (IEC61508, 1998)
can be applied to automotive safety functions as well. Independently of its official present and
future status in automotive industry, it provides helpful advice for design and development.
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In the future, the automotive safety standard ISO/WD 26262 will be available. In general,
based on the safety standards, a hazard and risk graph analysis (cf. e.g. (Braband, 2005)) of
a given system determines the safety integrity level of the considered system functions. The
detailed safety analysis is supported by tools and graphical representations as in the domain
of Fault Tree Analysis (FTA) (Meyna, 2003) and Failure Modes, Effects, and Diagnosis Analysis
(FMEDA) (Boersoek, 2007; Meyna, 2003).

The required hardware and software architectures depend on the required safety integrity
level. At present, safety systems are mainly realized by means of hardware redundant
elements in automotive embedded systems (Schaueffele, 2004).

In this chapter, the concept of Safely Embedded Software (SES) is proposed. This concept is
capable to reduce redundancy in hardware by adding diverse redundancy in software, i.e. by
specific coding of data and instructions. Safely Embedded Software enables the proof of safety
properties and fulfills the condition of single fault detection (Douglass, 2011; Ehrenberger,
2002). The specific coding avoids non-detectable common-cause failures in the software
components. Safely Embedded Software does not restrict capabilities but can supplement
multi-version software fault tolerance techniques (Torres-Pomales, 2000) like N version
programming, consensus recovery block techniques, or N self-checking programming. The
new contribution of the Safely Embedded Software approaches the constitution of safety in
the layer of application software, that it is realized in the high level programming language C
and that it is evaluated for Mealy state machines with acceptable overhead.

In a recently published generic safety architecture approach for automotive embedded
systems (Mottok, 2006), safety-critical and safety-related software components are
encapsulated in the application software layer. There the overall open system architecture
consists of an application software, a middleware referred to as Runtime-Environment, a basic
software, and an operating system according to e.g. AUTOSAR (AUTOSAR, 2011; Tarabbia,
2005). A safety certification of the safety-critical and the safety-related components based on
the Safely Embedded Software approach is possible independently of the type of underlying
layers. Therefore, a sufficiently safe fault detection for data and operations is necessary in
this layer. It is efficiently realized by means of Safely Embedded Software, developed by the
authors.

The chapter is organized as follows: An overview of related work is described in Section 2. In
Section 3, the Safely Embedded Software Approach is explained. Coding of data, arithmetic
operations and logical operations is derived and presented. Safety code weaving applies these
coding techniques in the high level programming language C as described in Section 4. A case
study with a Simplified Sensor Actuator State Machine is discussed in Section 5. Conclusions and
statements about necessary future work are given in Section 6.

2. Related work

In 1989, the Vital Coded Processor (Forin, 1989) was published as an approach to design
typically used operators and to process and compute vital data with non-redundant hardware
and software. One of the first realizations of this technique has been applied to trains for
the metro A line in Paris. The Vital technique proposes a data mapping transformation also
referred to in this chapter. The Vital transformation for generating diverse coded data x, can
be roughly described by multiplication of a date x with a prime factor A such that xc = A *xy
holds. The prime A determines the error detection probability, or residual error probability,
respectively, of the system. Furthermore, an additive modification by a static signature for



Safely Embedded Software for State Machines in Automotive Applications 33

each variable By and a dynamic signature for each program cycle D lead finally to the code of
the type x = Axx r+Bx+D. The hardware consists of a single microprocessor, the so called
Coded Monoprocessor, an additional dynamic controller, and a logical input/output interface.
The dynamic controller includes a clock generator and a comparator function. Further on, a
logical output interface is connected to the microprocessor and the dynamic controller. In
particular, the Vital Coded Processor approach cannot be handled as standard embedded
hardware and the comparator function is separated from the microprocessor in the dynamic
controller.

The ED*I approach (Oh, 2002) applies a commercial off-the-shelf processor. Error detection by
means of diverse data and duplicated instructions is based on the SIHFT technique that detects
both temporary and permanent faults by executing two programs with the same functionality
but different data sets and comparing their outputs. An original program is transformed into
a new program. The transformation consists of a multiplication of all variables and constants
by a diversity factor k. The two programs use different parts of the underlying hardware
and propagate faults in different ways. The fault detection probability was examined to
determine an adequate multiplier value k. A technique for adding commands to check the
correct execution of the logical program flow has been published in (Rebaudengo, 2003).
These treated program flow faults occur when a processor fetches and executes an incorrect
instruction during the program execution. The effectiveness of the proposed approach is
assessed by several fault injection sessions for different example algorithms.

Different classical software fail safe techniques in automotive applications are, amongst
others, program flow monitoring methods that are discussed in a survey paper (Leaphart,
2005).

A demonstration of a fail safe electronic accelerator safety concept of electronic control units
for automotive engine control can be found in (Schaueffele, 2004). The electronic accelerator
concept is a three-level safety architecture with classical fail safe techniques and asymmetric
hardware redundancy.

Currently, research is done on the Safely Embedded Software approach. Further results were
published in (Mottok, 2007; Steindl, 2009;?; Mottok, 2009; Steindl, 2010; Raab, 2011; Laumer,
2011). Contemporaneous Software Encoded Processing was published (Wappler, 2007). This
approach is based on the Vital transformation. In contrast to the Safely Embedded Software
approach it provides the execution of arbitrary programs given as binaries on commodity
hardware.

3. The safely embedded software approach
3.1 Overview

Safely Embedded Software (SES) can establish safety independently of a specific processing
unit or memory. It is possible to detect permanent errors, e. g. errors in the Arithmetic Logical
Unit (ALU) as well as temporary errors, e.g. bit-flips and their impact on data and control
flow. SES runs on the application software layer as depicted in Fig. 1. Several application
tasks have to be safeguarded like e. g. the evaluation of diagnosis data and the check of the
data from the sensors. Because of the underlying principles, SES is independent not only of
the hardware but also of the operating system.

Fig. 2 shows the method of Safety Code Weaving as a basic principle of SES. Safety Code
Weaving is the procedure of adding a second software channel to an existing software channel.
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Fig. 1. The Safely Embedded Software approach.

In this way, SES adds a second channel of the transformed domain to the software channel of
the original domain. In dedicated nodes of the control flow graph, comparator functionality is
added. Though, the second channel comprises diverse data, diverse instructions, comparator
and monitoring functionality. The comparator or voter, respectively, on the same ECU has to
be safeguarded with voter diversity (Ehrenberger, 2002) or other additional diverse checks.

It is not possible to detect errors of software specification, software design, and software
implementation by SES. Normally, this kind of errors has to be detected with software
quality assurance methods in the software development process. Alternatively, software fault
tolerance techniques (Torres-Pomales, 2000) like N version programming can be used with
SES to detect software design errors during system runtime.

As mentioned above, SES is also a programming language independent approach. Its
implementation is possible in assembler language as well as in an intermediate or a high
programming language like C. When using an intermediate or higher implementation
language, the compiler has to be used without code optimization. A code review has to assure,
that neither a compiler code optimization nor removal of diverse instructions happened.
Basically, the certification process is based on the assembler program or a similar machine
language.

Since programming language C is the de facto implementation language in automotive
industry, the C programming language is used in this study exclusively. C code quality can be
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Fig. 2. Safety Code Weaving.

assured by application of e. g. the MISRA-2 (MISRA, 2004). A safety argument for dedicated
deviation from MISRA-2 rules can be justified.

3.2 Detectable faults by means of safely embedded software

In this section, the kind of faults detectable by means of Safely Embedded Software is
discussed. For this reason, the instruction layer model of a generalized computer architecture

is presented in Fig. 3. Bit flips in different memory areas and in the central processing unit can
be identified.

Table 1 illustrates the Failure Modes, Effects, and Diagnosis Analysis (FMEDA). Different
faults are enumerated and the SES strategy for fault detection is related.

In Fig. 2 and in Table 1, the SES comparator function is introduced. There are two alternatives
for the location of the SES comparator. If a local comparator is used on the same ECU,
the comparator itself has also to be safeguarded. If an additional comparator on a remote
receiving ECU is applied, hardware redundancy is used implicitely, but the inter-ECU
communication has to be safeguarded by a safety protocol (Mottok, 2006). In a later system
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Fig. 3. Model of a generalized computer architecture (instruction layer). The potential
occurrence of faults are marked with a label.

FMEDA, the appropriate fault reaction has to be added, regarding that SES is working on the
application software layer.

The fault reaction on the application software layer depends on the functional and physical
constraints of the considered automotive system. There are various options to select a fault
reaction. For instance, fault recovery strategies, achieving degraded modes, shut off paths in
the case of fail-safe systems, or the activation of cold redundancy in the case of fail-operational
architectures are possible.

3.3 Coding of data

Safely Embedded Software is based on the (AN+B)-code of the Coded Monoprocessor (Forin,
1989) transformation of original integer data x¢ into diverse coded data x.. Coded data are
data fulfilling the following relation:

Xc = Axxp+By+D where xc,xfEZ,A€N+, By, D € Ny,
and By+ D < A. (1)
The duplication of original instructions and data is the simplest approach to achieve a
redundant channel. Obviously, common cause failures cannot be detected as they appear

in both channels. Data are used in the same way and identical erroneous results could be
produced. In this case, fault detection with a comparator is not sufficient.
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[label[area of action  [fault [error |detection ‘
1 stack, bitflip |incorrect data SES comparator
global data incorrect address |SES logical program flow monitoring
and heap

2 code segment  |bitflip |incorrect operator |SES comparator
(but right PC) SES logical program flow monitoring
3 program counter|bitflip |jump to incorrect |SES logical program flow monitoring

instruction
in the code
4 stack pointer bitflip |incorrect data SES comparator
incorrect address |SES logical program flow monitoring
5 general bitflip |incorrect data SES comparator
purpose incorrect address |SES logical program flow monitoring
registers
6 operand register |bitflip |incorrect data SES comparator
7 |ALU bitflip |incorrect operator|SES comparator
8 control unit incorrect data SES comparator

incorrect operator |SES logical program flow monitoring

Table 1. Faults, errors, and their detection ordered by their area of action. (The labels
correspond with the numbers presented in Fig. 3.)

The prime number A (Forin, 1989; Ozello, 1992) determines important safety characteristics
like Hamming Distance and residual error probability P = 1/ A of the code. Number A has
to be prime because in case of a sequence of i faulty operations with constant offset f, the
final offset will be i x f. This offset is a multiple of a prime number A if and only if i or f is
divisible by A. If A is not a prime number then several factors of i and f may cause multiples
of A. The same holds for the multiplication of two faulty operands. Additionally, so called
deterministic criteria like the above mentioned Hamming distance and the arithmetic distance
verify the choice of a prime number.

Other functional characteristics like necessary bit field size etc. and the handling of overflow
are also caused by the value of A. The simple transformation x. = A x* xy is illustrated in
Fig. 4.

The static signature By ensures the correct memory addresses of variables by using the
memory address of the variable or any other variable specific number. The dynamic signature
D ensures that the variable is used in the correct task cycle. The determination of the dynamic
signature depends on the used scheduling scheme (see Fig. 6). It can be calculated by a
clocked counter or it is offered directly by the task scheduler.

The instructions are coded in that way that at the end of each cycle, i. e. before the output
starts, either a comparator verifies the diverse channel results z. = A * z r+B:+D? or the
coded channel is checked directly by the verification condition (z; — B, — D) mod A = 0? (cf.
Equation 1).

In general, there are two alternatives for the representation of original and coded data. The
first alternative is to use completely unconnected variables for original data and the coded
ones. The second alternative uses a connected but separable code as shown in Fig. 5. In the
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Fig. 4. Simple coding xc = A * x from the original into the transformation domain.

separable code, the transformed value x, contains the original value x;. Obviously, x; can be
read out easily from x.

The coding operation for separable code is introduced in (Forin, 1989):

Separable coded data are data fulfilling the following relation:
X¢ :Zk*xf+(—Zk*xf)moduloA—i—Bx—&—D 2)

The factor 2¥ causes a dedicated k-times right shift in the n-bit field. Therefore, one variable
can be used for representing original data x ¢ and coded data xc.

Without loss of generality, independent variables for original data x; and coded data x. are
used in this study.

In automotive embedded systems, a hybrid scheduling architecture is commonly used, where
interrupts, preemptive tasks, and cooperative tasks coexist, e.g. in engine control units on
base of the OSEK operating system. Jitters in the task cycle have to be expected. An inclusion
of the dynamic signature into the check will ensure that used data values are those of the
current task cycle.

Measures for logical program flow and temporal control flow are added into the SES
approach.

One goal is to avoid the relatively high probability that two instruction channels using
the original data x; and produce same output for the same hardware fault. When using
the transformation, the corresponding residual error probability is basically given by the
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Fig. 5. Separable code and conditions for its application.

reciprocal of the prime multiplier, A~L. The value of A determines the safe failure fraction
(SFF) in this way and finally the safety integrity level of the overall safety-related system
(IEC61508, 1998).

3.4 Coding of operations

A complete set of arithmetic and logical operators in the transformed domain can be derived.
The transformation in Equation (1) is used. The coding of addition follows (Forin, 1989)
whereas the coding of the Greater or Equal Zero operator has been developed within the
Safely Embedded Software approach.

A coded operator OP. is an operator in the transformed domain that corresponds to an
operator OP in the original domain. Its application to uncoded values provides coded values
as results that are equal to those received by transforming the result from the original domain
after the application OP for the original values. The formalism is defined, such that the
following statement is correct for all x Yf from the original domain and all x., y, from the

transformed domain, where x. = o(xf) and y. = o'(yy) is valid:
Xf o—e X,
yf o—e .
Zf o—e Z,

zf:xfOny o—e x.OPcyc = z¢ 3)
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Accordingly, the unary operators are noted as:
zf:Ony o—e OP.y. =z (4)

In the following, the derivation steps for the addition operation and some logical operations
in the transformed domain are explained.

3.4.1 Coding of addition

The addition is the simplest operation of the four basic arithmetic operations. Defining a
coded operator (see Equation (3)), the coded operation @ is formalized as follows:

zf =Xf+ Yy = Ze = X DYe ®)

Starting with the addition in the original domain and applying the formula for the inverse
transformation, the following equation can be obtained for z.:

2f = xf T yf
Zc_Bz_D:xc_Bx_D+yC_BV_D
A A A

zZe—B;—D=x—Bx—D+y.—By,—D
Ze =% —By—D+y.—By+B;
zc = Xc +Yc + (B, — By — By) =D 6)
o

The Equations (5) and (6) state two different representations of z.. A comparison leads
immediately to the definition of the coded addition @:

ze=x®Yc = xc+Yyc+ (B —By—By)—D (7)

3.4.2 Coding of comparison: Greater or equal zero

The coded (unary) operator geqz. (greater or equal zero) is applied to a coded value x.. geqz.
returns TRUE,, if the corresponding original value xy is greater than or equal to zero. It
returns FALSE,, if the corresponding original value x is less than zero. (This corresponds to
the definition of a coded operator (see Definition 3) and the definition of the > 0 operator of
the original domain.)

TRUE., ifx; >0,

8
FALSE, if x <O0. ®

geqzc(xc) = {
Before deriving the transformation steps of the coded operator geqz., the following theorem

has to be introduced and proved.

The original value xy is greater than or equal to zero, if and only if the coded value x. is greater
than or equal to zero.

xfEO(:)xc20withxf€Zandxc:(7(xf):A*xf+Bx+D
where A € Nt, By, DENy, By+D < A 9)
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Proof.
Xc >0
& A*xf—l—Bx—i—D >0
= A*Xf 2_(Bx+D)
<A
By + D
=4 >_ X
Xf = A
N —
€11,0]
& xf >0, since Xf € Z

O

The goal is to implement a function returning TRUE,, if and only if the coded value x. (and
thus x) is greater or equal to zero. Correspondingly, the function has to return FALSE,, if and
only if x. is less than zero. As an extension to Definition 8, ERROR. should be returned in case
of a fault, e. g. if x¢ is not a valid code word.

By applying the > operator according to Equation (9), it can be checked whether x. is negative
or non-negative, but it cannot be checked whether x. is a valid code word. Additionally, this
procedure is very similar to the procedure in the original domain. The use of the unsigned
modulo function umod is a possible solution to that problem. This function is applied to the
coded value x.. The idea of this approach is based on (Forin, 1989):

xcumod A = unsigned(x;) mod A = unsigned(A x xs + By + D) mod A

In order to resolve the unsigned function, two different cases have to be distinguished:

case 1: xf >0
Xcumod A =unsigned( Axxf+By+D ) modA
—,_/
x>0 = x>0 (cf. Eqn. (9))
=((A*x¢) mod A+ By + D) mod A
N———

| ——
=) <A

=By +D

case2: xy < 0
xcumod A =unsigned( Ax*xf+Byx+D )modA
—_————
xr<0 = x:<0 (cf. Eqn. (9))
=(Axxf+ By +D+2") mod A

resolved unsigned function
=((Axx¢) mod A +By + D +2") mod A
=0
=(Bx+D+2") mod A
=(Bx+ D+ (2" mod A)) mod A
———

known constant
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Conclusion of these two cases:

Result of case 1:
x>0 = xcumodA=By+D (10)
Result of case 2:
xp<0 = xcumodA = (By+ D+ (2" mod A)) mod A (11)
Remark: The index n represents the minimum number of bits necessary for storing x.. If x. is
stored in an int32 variable, n is equal to 32.
It has to be checked, if in addition to the two implications (10) and (11) the following
implications
xcumod A = By + D = xf20
xcumod A = (By + D + (2" mod A)) mod A = x;<0
hold. These implications are only valid and applicable, if the two terms By + D and (By + D +

(2" mod A)) mod A are never equal. In the following, equality is assumed and conditions on
A are identified that have to hold for a disproof:

Bx+D = (Bx+D+(2"mod A)) mod A
N — R
€10, A-1] €10, A-1]

€[0,2A-2]

casel: 0 < (By+D+(2"modA)) < A

Bx+D = (Bx+D+ (2" mod A)) mod A
€ [0, A-1]
& By + D = By+ D+ (2" mod A)
& 2" mod A =0
& 2" = kxA VkeNT
o
& A = T

Since A € NT and 2" is only divisible by powers of 2, k has to be a power of 2, and, therefore,
the same holds for A. That means, if A is not a number to the power of 2, inequality holds in
case 1.

case2: A < (Bxy+D+(2"mod A)) < 2A-2

Bx+D = (By+D+ (2" mod A)) mod A
€[A,2A2]
& By+D = By+D+(2"mod A) — A
& A = 2"mod A
Nl s

€ [0, A-1]
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This cannot hold since the result of the modulo-operation is always smaller than A.

The two implications (10) and (11) can be extended to equivalences, if A is chosen not as
a number to the power of 2. Thus for implementing the geqz. operator, the following
conclusions can be used:

1. IF x,umod A = B, + D THEN xp > 0.
2. ELSEIF x,umod A = (Bx + D + (2" mod A)) mod A THEN xp <O0.
3. ELSE x. is not a valid code word.

The geqz. operator is implemented based on this argumentation. Its application is presented
in Listing 2, whereas its uncoded form is presented in Listing 1.

4. Safety code weaving for C control structures

In the former sections, a subset of SES transformation was discussed. The complete set of
transformations for data, arithmetic operators, and Boolean operators are collected in a C
library. In the following, the principle procedure of safety code weaving is motivated for C
control structures. An example code is given in Listing 1 that will be safeguarded in a further
step.

Listing 1. Original version of the code. It will be safeguarded in further steps.

int af = 1;
int xf 5;

if ((xf>=0)

af

4;

2V
-~
1l

9;

In general, there are a few preconditions for the original, non-coded, single channel C source
code: e.g. operations should be transformable and instructions with short expressions are
preferred in order to simplify the coding of operations.

Safety code weaving is realized in compliance with nine rules:

1. Diverse data. The declaration of coded variables and coded constants have to follow the
underlying code definition.

2. Diverse operations. Each original operation follows directly the transformed operation.

3. Update of dynamic signature. In each task cycle, the dynamic signature of each variable has
to be incremented.

4. Local (logical) program flow monitoring. The C control structures are safeguarded against
local program flow errors. The branch condition of the control structure is transformed
and checked inside the branch.
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5. Global (logical) program flow monitoring. This technique includes a specific initial key value
and a key process within the program function to assure that the program function has
completed in the given parts and in the correct order (Leaphart, 2005). An alternative
operating system based approach is given in Raab (2011).

6. Temporal program flow monitoring. Dedicated checkpoints have to be added for monitoring
periodicity and deadlines. The specified execution time is safeguarded.

7. Comparator function. Comparator functions have to be added in the specified granularity
in the program flow for each task cycle. Either a comparator verifies the diverse channel
results zc = A xz; + B; + D?, or the coded channel is checked directly by checking the
condition (z; — B; — D) mod A = 0?.

8. Safety protocol. Safety critical and safety related software modules (in the application
software layer) communicate intra or inter ECU via a safety protocol (Mottok, 2006).
Therefore a safety interface is added to the functional interface.

9. Safe communication with a safety supervisor. Fault status information is communicated to a
global safety supervisor. The safety supervisor can initiate the appropriate (global) fault
reaction (Mottok, 2006).

The example code of Listing 1 is transformed according to the rules 1, 2, 4, and 5 in
Listing 2. The C control structures while-Loop, do-while-Loop, for-Loop, if-statement, and
switch-statement are transformed in accordance with the complete set of rules. It can be
realized that the geqz. operator is frequently applied for safeguarding C control structures.

5. The case study: Simplified sensor actuator state machine

In the case study, a simplified sensor actuator state machine is used. The behavior of a sensor
actuator chain is managed by control techniques and Mealy state machines.

Acquisition and diagnosis of sensor signals are managed outside of the state machine in the
input management whereas the output management is responsible for control techniques
and for distributing the actuator signals. For both tasks, a specific basic software above
the application software is necessary for communication with D/A- or A/D-converters. As
discussed in Fig. 1, a diagnosis of D/ A-converter is established, too.

The electronic accelerator concept (Schaueffele, 2004) is used as an example. Here diverse
sensor signals of the pedal are compared in the input management. The output management
provides diverse shut-off paths, e. g. power stages in the electronic subsystem.

Listing 2. Example code after applying the rule 1, 2, 4 and 5.

int af; int ac;
int xf; int xc;
int tmpf; int tmpc;

cf = 152; /+ begin basic block 152 =/

af = 1; ac = 1A + Ba + D; //coded 1
xf = 5; Xc = 5+xA + Bx + D; //coded 5
tmpf = ( xf >= 0 ); tmpc = geqz_c( xc );

// greater/equal zero operator

if ( cf != 152 ) { ERROR } /* end basic block 152 +/
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if ( tmpf )
{

cf 153; /* begin basic block 153 */

if ( tmpc — TRUE.C ) { ERROR }
af = 4; ac = 4xA + Ba + D; //coded 4
if ( cf !'= 153 ) { ERROR } /* end basic block 153 %/
}
else
{
cf = 154; /+ begin basic block 154 =/
if ( tmpc — FALSE C ) { ERROR }
af = 9; ac = 9xA + Ba + D; //coded 9
if ( cf != 154 ) { ERROR } /* end basic block 154 =/

The input management processes the sensor values (sl and s2 in Fig. 6), generates an event,
and saves them on a blackboard as a managed global variable. This is a widely used
implementation architecture for software in embedded systems for optimization performance,
memory consumption, and stack usage. A blackboard (Noble, 2001) is realized as a kind of
data pool. The state machine reads the current state and the event from the blackboard, if
necessary executes a transition and saves the next state and the action on the blackboard. If a
fault is detected, the blackboard is saved in a fault storage for diagnosis purposes.

Finally, the output management executes the action (actuator values al, a2, a3, and a4 in
Fig. 6). This is repeated in each cycle of the task.

The Safety Supervisor supervises the correct work of the state machine in the application
software. Incorrect data or instruction faults are locally detected by the comparator function
inside the state machine implementation whereas the analysis of the fault pattern and the
initiation of a dedicated fault reaction are managed globally by a safety supervisor (Mottok,
2006). A similar approach with a software watchdog can be found in (Lauer, 2007).

The simplified state machine was implemented in the Safely Embedded Software approach.
The two classical implementation variants given by nested switch statement and table driven
design are implemented. The runtime and the file size of the state machine are measured and
compared with the non-coded original one for the nested switch statement design.

The measurements of runtime and file size for the original single channel implementation and
the transformed one contain a ground load corresponding to a simple task cycle infrastructure
of 10,000,000 cycles. Both the NEC Fx3 V850ES 32 bit microcontroller, and the Freescale S12X
16 bit microcontroller were used as references for the Safely Embedded Software approach.

5.1 NEC Fx3 V850ES microcontroller

The NEC Fx3 V850ES is a 32 bit microcontroller, being compared with the Freescale 512X
more powerful with respect to calculations. It runs with an 8 MHz quartz and internally
with 32 MHz per PLL. The metrics of the Simplified Sensor Actuator State Machine (nested
switch implemented) by using the embedded compiler for the NEC are shown in Table 2. The
compiler “Green Hills Software, MULTI v4.2.3C v800” and the linker “Green Hills Software,
MULTI v4.2.3A V800 SPR5843” were used.
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Fig. 6. Simplified sensor actuator state machine and a scheduling schema covering tasks for
the input management, the state machine, the output management and the safety supervisor.
The task cycle is given by dynamic signature D, which can be realized by a clocked counter.

5.2 Freescale S12X microcontroller

The Freescale S12X is a 16 bit microcontroller and obviously a more efficient control unit
compared to the NEC Fx3 V850ES. It runs with an 8 MHz quartz and internally with 32 MHz
per PLL. The processor is exactly denominated as “PC9512X DP512MFV”. The metrics of the
Simplified Sensor Actuator State Machine (nested switch implemented) by using the compiler
for the Freescale S12X are shown in Table 3. The compiler “Metrowerks 5.0.28.5073” and the
linker “Metrowerks SmartLinker 5.0.26.5051” were used.
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minimal |original |trans- |factor |annotation
code code formed
code
CS 2 48 184 3.96 init code, run once
(init)
CS 2 256 2,402 9.45 state machine, run cyclic
(cycle)
CS 0 0 252 - 8 functions for the transformed
(lib) domain used: add_c, div_c, geqz_c,
1z_c, ov2cv, sub_c, umod, updD

DS 0 40 84 2.10 global variables
SUM 4 344 2,922 8.58 sum of CS(init), CS(cycle), CS(lib)
(CS, DS) and DS
RUN- 0.20 4.80 28.80 [6.22 average runtime of the cyclic function
TIME in us
FILE- 4264, (4,267, (4,284, |6.72 size (in bytes) of the binary,
SIZE 264 288 592 executable file

Table 2. Metrics of the Simplified Sensor Actuator State Machine (nested switch

implemented) using the NEC Fx3 V850ES compiler.

minimal |original |trans- |factor |annotation
code code formed
code
CS 1 41 203 5.05 init code, run once
(init)
CS 1 212 1,758 8.33 state machine, run cyclic
(cycle)
CS 0 0 234 - 8 functions for the transformed
(lib) domain used: add_c, div_c, geqz_c,
1z_c, ov2cv, sub_c, umod, updD

DS 0 20 42 2.10 global variables
SUM 2 273 2,237 8.25 sum of CS(init), CS(cycle), CS(lib)
(CS, DS) and DS
RUN- 0.85 6.80 63.30 10.50  |average runtime of the cyclic function
TIME in s
FILE- 2,079, 2,080, 2,088, 8.16 size (in bytes) of the binary,
SIZE 061 225 557 executable file

Table 3. Metrics of the Simplified Sensor Actuator State Machine (nested switch
implemented) using the Freescale S12X compiler.

5.3 Results

The results in this section are based on the nested switch implemented variant of the
Simplified Sensor Actuator State Machine of Section 5. The two microcontrollers NEC Fx3
V850ES and Freescale S12X need roundabout nine times memory for the transformed code
and data as it is necessary for the original code and data. As expected, there is a duplication
of data segement size for both investigated controllers because of the coded data.
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There is a clear difference with respect to the raise of runtime compared to the need of
memory. The results show that the NEC handles the higher computational efforts as a result
of additional transformed code much better than the Freescale does. The runtime of the NEC
only increases by factor 6 whereas the runtime of the Freescale increases by factor 10.

5.4 Optimization strategies

There is still a potential for optimizing memory consumption and performance in the SES
approach:
* Run time reduction can be achieved by using only the transformed channel.

* Reduction of memory consumption is possible by packed bit fields, but more effort with
bit shift operations and masking techniques.

¢ Using of macros like inline functions.

¢ Using initializations at compile time.

* Caching of frequently used values.

¢ Using efficient assembler code for the coded operations from the first beginning.

¢ First ordering frequently used cases in nested switch(Analogously: entries in the state
table).

* Coded constants without dynamic signature.

In the future, the table driven implementation variant will be verified for file size and runtime
with cross compilers for embedded platforms and performance measurements on embedded
systems.

6. Comprehensive safety architecture and outlook

Safely Embedded Software gives a guideline to diversify application software. A significant
but acceptable increase in runtime and code size was measured. The fault detection is realized
locally by SES, whereas the fault reaction is globally managed by a Safety Supervisor.

An overall safety architecture comprises diversity of application software realized with the
nine rules of Safely Embedded Software in addition to hardware diagnosis and hardware
redundancy like e.g. a clock time watchdog. Moreover environmental monitoring (supply
voltage, temperature) has to be provided by hardware means.

Temporal control flow monitoring needs control hooks maintained by the operation system
or by specialized basic software.

State of the art implementation techniques (IEC61508, 1998; 15026262, 2011) like actuator
activation by complex command sequences or distribution of command sequences
(instructions) in different memory areas have been applied. Furthermore, it is recommended
to allocate original and coded variables in different memory branches.

Classical RAM test techniques can be replaced by SES since fault propagation techniques
ensures the propagation of the detectability up to the check just before the output to the plant.

A system partitioning is possible, the comparator function might be located on another
ECU. In this case, a safety protocol is necessary for inter ECU communication. Also a
partitioning of different SIL functions on the same ECU is proposed by coding the functions
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with different prime multipliers A;, A; and Az depending on the SIL level. The choice of
the prime multiplier is determined by maximizing their pairwise lowest common multiple.
In this context, a fault tolerant architecture can be realized by a duplex hardware using in
each channel the SES approach with different prime multipliers A;. In contrast to classical
faul-tolerant architectures, here a two channel hardware is sufficient since the correctness of
data of each channel are checked individually by determination of their divisibility by A;.

An application of SES can be motivated by the model driven approach in the automotive
industry. State machines are modeled with tools like Matlab or Rhapsody. A dedicated safety
code weaving compiler for the given tools has been proposed. The intention is to develop a
single channel state chart model in the functional design phase. A preprocessor will add the
duplex channel and comparator to the model. Afterwards, the tool based code generation can
be performed to produce the required C code.

Either a safety certification (IEC61508, 1998; ISO26262, 2011; Barwald, 2010) of the used tools
will be necessary, or the assembler code will be reviewed. The latter is easier to be executed in
the example and seems to be easier in general. Further research in theory as well as in practice
will be continued.
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1. Introduction

Intelligent systems, such as intelligent automotive systems or intelligent robots, require a
rigorous reliability/safety while the systems are in operation. As system-on-chip (SoC)
becomes more and more complicated, the SoC could encounter the reliability problem due
to the increased likelihood of faults or radiation-induced soft errors especially when the chip
fabrication enters the very deep submicron technology [Baumann, 2005; Constantinescu,
2002; Karnik et al., 2004; Zorian et al., 2005]. SoC becomes prevalent in the intelligent safety-
related applications, and therefore, fault-robust design with the safety validation is required
to guarantee that the developed SoC is able to comply with the safety requirements defined
by the international norms, such as IEC 61508 [Brown, 2000; International Electrotechnical
Commission [IEC], 1998-2000]. Therefore, safety attribute plays a key metric in the design of
SoC systems. It is essential to perform the safety validation and risk reduction process to
guarantee the safety metric of SoC before it is being put to use.

If the system safety level is not adequate, the risk reduction process, which consists of the
vulnerability analysis and fault-robust design, is activated to raise the safety to the required
level. For the complicated IP-based SoCs or embedded systems, it is unpractical and not
cost-effective to protect the entire SoC or system. Analyzing the vulnerability of
microprocessors or SoCs can help designers not only invest limited resources on the most
crucial regions but also understand the gain derived from the investments [Hosseinabady et
al., 2007; Kim & Somani, 2002; Mariani et al., 2007; Mukherjee et al., 2003; Ruiz et al., 2004;
Tony et al., 2007; Wang et al., 2004].

The previous literature in estimating the vulnerability and failure rate of systems is based on
either the analytical methodology or the fault injection approach at various system modeling
levels. The fault injection approach was used to assess the vulnerability of high-performance
microprocessors described in Verilog hardware description language at RTL design level
[Kim & Somani, 2002; Wang et al., 2004]. The authors of [Mukherjee et al., 2003] proposed a
systematic methodology based on the concept of architecturally correct execution to
compute the architectural vulnerability factor. [Hosseinabady et al., 2007] and [Tony et al.,
2007] proposed the analytical methods, which adopted the concept of timing vulnerability
factor and architectural vulnerability factor [Mukherjee et al., 2003] respectively to estimate
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the vulnerability and failure rate of SoCs, where a UML-based real time description was
employed to model the systems.

The authors of [Mariani et al, 2007] presented an innovative failure mode and effects
analysis (FMEA) method at SoC-level design in RTL description to design in compliance
with IEC61508. The methodology presented in [Mariani et al., 2007] was based on the
concept of sensible zone to analyze the vulnerability and to validate the robustness of the
target system. A memory sub-system embedded in fault-robust microcontrollers for
automotive applications was used to demonstrate the feasibility of their FMEA method.
However, the design level in the scheme presented in [Mariani et al., 2007] is RTL level,
which may still require considerable time and efforts to implement a SoC using RTL
description due to the complexity of oncoming SoC increasing rapidly. A dependability
benchmark for automotive engine control applications was proposed in paper [Ruiz et al.,
2004]. The work showed the feasibility of the proposed dependability benchmark using a
prototype of diesel electronic control unit (ECU) control engine system. The fault injection
campaigns were conducted to measure the dependability of benchmark prototype. The
domain of application for dependability benchmark specification presented in paper [Ruiz
et al., 2004] confines to the automotive engine control systems which were built by
commercial off-the-shelf (COTS) components. While dependability evaluation is performed
after physical systems have been built, the difficulty of performing fault injection campaign
is high and the costs of re-designing systems due to inadequate dependability can be
prohibitively expensive.

It is well known that FMEA [Mikulak et al., 2008] and fault tree analysis (FTA) [Stamatelatos
et al., 2002] are two effective approaches for the vulnerability analysis of the SoC. However,
due to the high complexity of the SoC, the incorporation of the FMEA/FTA and fault-
tolerant demand into the SoC will further raise the design complexity. Therefore, we need to
adopt the behavioral level or higher level of abstraction to describe/model the SoC, such as
using SystemC, to tackle the complexity of the SoC design and verification. An important
issue in the design of SoC is how to validate the system dependability as early in the
development phase to reduce the re-design cost and time-to-market. As a result, a SoC-level
safety process is required to facilitate the designers in assessing and enhancing the
safety /robustness of a SoC with an efficient manner.

Previously, the issue of SoC-level vulnerability analysis and risk assessment is seldom
addressed especially in SystemC transaction-level modeling (TLM) design level [Thorsten et
al., 2002; Open SystemC Initiative [OSCI], 2003]. At TLM design level, we can more
effectively deal with the issues of design complexity, simulation performance, development
cost, fault injection, and dependability for safety-critical SoC applications. In this study, we
investigate the effect of soft errors on the SoCs for safety-critical systems. An IP-based SoC-
level safety validation and risk reduction (SVRR) process combining FMEA with fault
injection scheme is proposed to identify the potential failure modes in a SoC modeled at
SystemC TLM design level, to measure the risk scales of consequences resulting from
various failure modes, and to locate the vulnerability of the system. A SoC system safety
verification platform was built on the SystemC ColWare Platform Architect design
environment to demonstrate the core idea of SVRR process. The verification platform
comprises a system-level fault injection tool and a vulnerability analysis and risk assessment
tool, which were created to assist us in understanding the effect of faults on system
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behavior, in measuring the robustness of the system, and in identifying the critical parts of
the system during the SoC design process under the environment of CoWare Platform
Architect.

Since the modeling of SoCs is raised to the level of TLM abstraction, the safety-oriented
analysis can be carried out efficiently in early design phase to validate the safety/robustness
of the SoC and identify the critical components and failure modes to be protected if
necessary. The proposed SVRR process and verification platform is valuable in that it
provides the capability to quickly assess the SoC safety, and if the measured safety cannot
meet the system requirement, the results of vulnerability analysis and risk assessment will
be used to help us develop a feasible and cost-effective risk reduction process. We use an
ARM-based SoC to demonstrate the robustness/safety validation process, where the soft
errors were injected into the register file of ARM CPU, memory system, and AMBA AHB.

The remaining paper is organized as follows. In Section 2, the SVRR process is presented. A
risk model for vulnerability analysis and risk assessment is proposed in the following
section. In Section 4, based on the SVRR process, we develop a SoC-level system safety
verification platform under the environment of CoWare Platform Architect. A case study with
the experimental results and a thorough vulnerability and risk analysis are given in Section
5. The conclusion appears in Section 6.

2. Safety validation and risk reduction process

We propose a SVRR process as shown in Fig. 1 to develop the safety-critical electronic
systems. The process consists of three phases described as follows:

Phase 1 (fault hypothesis): this phase is to identify the potential interferences and develop
the fault injection strategy to emulate the interference-induced errors that could possibly
occur during the system operation.

Phase 2 (vulnerability analysis and risk assessment): this phase is to perform the fault
injection campaigns based on the Phase 1 fault hypothesis. Throughout the fault injection
campaigns, we can identify the failure modes of the system, which are caused by the
faults/errors injected into the system while the system is in operation. The probability
distribution of failure modes can be derived from the fault injection campaigns. The risk-
priority number (RPN) [Mollah, 2005] is then calculated for the components inside the
electronic system. A component’s RPN aims to rate the risk of the consequence caused by
component’s failure. RPN can be used to locate the critical components to be protected. The
robustness of the system is computed based on the adopted robustness criterion, such as
safety integrity level (SIL) defined in the IEC 61508 [IEC, 1998-2000]. If the robustness of the
system meets the safety requirement, the system passes the validation; else the
robustness/safety is not adequate, so Phase 3 is activated to enhance the system
robustness/safety.

Phase 3 (fault-tolerant design and risk reduction): This phase is to develop a feasible risk-
reduction approach by fault-tolerant design, such as the schemes presented in [Austin, 1999;
Mitra et al., 2005; Rotenberg, 1999; Slegel et al., 1999; ], to improve the robustness of the
critical components identified in Phase 2. The enhanced version then goes to Phase 2 to
recheck whether the adopted risk-reduction approach can satisfy the safety/robustness
requirement or not.
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Fig. 1. Safety validation and risk reduction process.

3. Vulnerability analysis and risk assessment

Analyzing the vulnerability of SoCs or systems can help designers not only invest limited
resources on the most crucial region but also understand the gain derived from the
investment. In this section, we propose a SoC-level risk model to quickly assess the SoC’s
vulnerability at SystemC TLM level. Conceptually, our risk model is based on the FMEA
method with the fault injection approach to measure the robustness of SoCs. From the
assessment results, the rank of component vulnerability related to the risk scale of causing
the system failure can be acquired. The notations used in the risk model are developed

below.

e m:number of components to be investigated in the SoC;

e z:number of possible failure modes of the SoC;

e (C(i): the i" component, where 1 <i <n;

e ER_C(i): raw error rate of the i" component;

e SFR_C(i): the part of SoC failure rate contributed from the error rate of the ith
component;

e  SFR: SoC failure rate;

e FM(k): the kt' failure mode of the SoC, where 1 <k <z;

e NE: no effect which means that a fault/error happening in a component has no impact
on the SoC operation at all;

e P (i, FM(K)): probability of FM(K) if an error occurs in the i component;

e P (i, NE): probability of no effect for an error occurring in the i» component;

[ ]

P(i, SF): probability of SoC failure for an error occurring in the it component;
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e SR_FM(k): severity rate of the effect of kth failure mode, where 1 <k <z;
e RPN_C(i): risk priority number of the if* component;
e RPN_FM(k): risk priority number of the k' failure mode.

3.1 Fault hypothesis

It is well known that the rate of soft errors caused by single event upset (SEU) increases
rapidly while the chip fabrication enters the very deep submicron technology [Baumann,
2005; Constantinescu, 2002; Karnik et al., 2004; Zorian et al., 2005]. Radiation-induced soft
errors could cause a serious dependability problem for SoCs, electronic control units, and
nodes used in the safety-critical applications. The soft errors may happen in the flip-flop,
register file, memory system, system bus and combinational logic. In this work, single soft
error is considered in the derivation of risk model.

3.2 Risk model

The potential effects of faults on SoC can be identified from the fault injection campaigns.
We can inject the faults into a specific component, and then investigate the effect of
component’s errors on the SoC behaviors. Throughout the injection campaigns for each
component, we can identify the failure modes of the SoC, which are caused by the errors of
components in the SoC. The parameter P(i, FM(k)) defined before can be derived from the
fault injection campaigns.

In general, the following failure behaviors: fatal failure (FF), such as system crash or process
hang, silent data corruption (SDC), correct data/incorrect time (CD/IT), and infinite loop
(IL) (note that we declare the failure as IL if the execution of benchmark exceeds the 1.5
times of normal execution time), which were observed from our previous work, represent
the possible SoC failure modes caused by the faults occurring in the components. Therefore,
we adopt those four SoC failure modes in this study to demonstrate our risk assessment
approach. We note that a fault may not cause any trouble at all, and this phenomenon is
called no effect of the fault.

One thing should be pointed out that to obtain the highly reliable experimental results to
analyze the robustness/safety and vulnerability of the target system we need to perform the
adequate number of fault injection campaigns to guarantee the validity of the statistical data
obtained. In addition, the features of benchmarks could also affect the system response to
the faults. Therefore, several representative benchmarks are required in the injection
campaigns to enhance the confidence level of the statistical data.

In the derivation of P(i, FM(K)), we need to perform the fault injection campaigns to collect
the fault simulation data. Each fault injection campaign represents an experiment by
injecting a fault into the i component, and records the fault simulation data, which will be
used in the failure mode classification procedure to identify which failure mode or no effect
the SoC encountered in this fault injection campaign. The failure mode classification
procedure inputs the fault-free simulation data, and fault simulation data derived from the
fault injection campaigns to analyze the effect of faults occurring in the i* component on the
SoC behavior based on the classification rules for potential failure modes.

The derivation process of P(i, FM(K)) by fault injection process is described below. Several
notations are developed first:
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e SoC_FM: a set of SoC failure modes used to record the possible SoC failure modes
happened in the fault injection campaigns.

e counter(i, k): an array which is used to count the number of the k" SoC failure mode
occurring in the fault injection experiments for the i* component, where 1 <i <n, and 1
<k < z. counter(i, z+1) is used to count the number of no effect in the fault injection
campaigns.

o no_fi(i): the number of fault injection campaigns performed in the i*» component, where
1<i<n.

Fault injection process:

z=4; SoC_FM = {FF, SDC, CD/IT, IL};
fori=1ton / /fault injection experiments for the it" component;//
{for j =1 to no_fi(i)
{//injecting a fault into the if* component, and investigating the effect of component’s
fault on the SoC behavior by failure mode classification procedure; the result of classification
is recorded in the parameter “classification’./ /
switch (classification)
{ case ‘FF’: counter(i, 1) = counter(i, 1) + 1;
case ‘SDC’: counter(i, 2) = counter(i, 2) + 1;
case ‘CD/IT’: counter(i, 3) = counter(i, 3) + 1;
case ‘IL": counter(i, 4) = counter(i, 4) + 1;
case ‘NE’: counter(i, 5) = counter(i, 5) + 1;}

i

The failure mode classification procedure is used to classify the SoC failure modes caused by
the component’s faults. For a specific benchmark program, we need to perform a fault-free
simulation to acquire the golden results that are used to assist the failure mode classification
procedure in identifying which failure mode or no effect the SoC encountered in this fault
injection campaign.

Failure mode classification procedure:

Inputs: fault-free simulation golden data and fault simulation data for an injection
campaign;

Output: SoC failure mode caused by the component’s fault or no effect of the fault in this
injection campaign.

{if (execution of fault simulation is complete)

then if (execution time of fault simulation is the same as execution time of fault-free
simulation)

then if (execution results of fault simulation are the same as execution results of
fault-free simulation)

then classification := ‘NE’;
else classification := ‘SDC’;

else if (execution results of fault simulation are the same as execution results of fault-
free simulation)
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then classification := ‘CD/IT’;
else classification := ‘SDC’;
else if (execution of benchmark exceeds the 1.5 times of normal execution time)
then classification = ‘IL’;
else / /execution of fault simulation was hung or crash due to the injected fault;//

classification := ‘FF’;

}

After carrying out the above injection experiments, the parameter of P(i, FM(K)) can be
computed by

counter(i, k)

no_ fi(i)

Where 1 <i <nand 1 <k <z. The following expressions are exploited to evaluate the terms
of P(i, SF) and P(i, NE).

P(i, FM(K)) =

Z
P(i,SF) =Y P(i,FM(k))
k=1

P(i,NE) =1- P(i,SF)

The derivation of the component’s raw error rate is out of the scope of this paper, so we here
assume the data of ER_C(i), for 1 <i <n, are given. The part of SoC failure rate contributed
from error rate of the i component can be calculated by

SFR_C(i) = ER_C(i)x P(i,SF)

If each component C(i), 1 <i <n, must operate correctly for the SoC to operate correctly and
also assume that other components not shown in C(i) list are fault-free, the SoC failure rate
can be written as

SFR =) SFR_C(i)

i=1

The meaning of the parameter SR_FM(k) and the role it playing can be explained from the
aspect of FMEA process [Mollah, 2005]. The method of FMEA is to identify all possible failure
modes of a SoC and analyze the effects or consequences of the identified failure modes. In
general, an FMEA records each potential failure mode, its effect in the next level, and the cause
of failure. We note that the faults occurring in different components could cause the same SoC
failure mode, whereas the severity degree of the consequences resulting from various SoC
failure modes could not be identical. The parameter SR_FM(k) is exploited to express the
severity rate of the consequence resulting from the k# failure mode, where 1 <k <z.

We illustrate the risk evaluation with FMEA idea using the following example. An ECU
running engine control software is employed for automotive engine control. Its outputs are



58 Embedded Systems — Theory and Design Methodology

used to control the engine operation. The ECU could encounter several types of output failures
due to hardware or software faults in ECU. The various types of failure mode of ECU outputs
would result in different levels of risk/criticality on the controlled engine. A risk assessment is
performed to identify the potential failure modes of ECU outputs as well as the likelihood of
failure occurrence, and estimate the resulting risks of the ECU-controlled engine.

In the following, we propose an effective SoC-level FMEA method to assess the risk-priority
number (RPN) for the components inside the SoC and for the potential SoC failure modes. A
component’s RPN aims to rate the risk of the consequences caused by component’s faults. In
other words, a component’s RPN represents how serious is the impact of component’s errors
on the system safety. A risk assessment should be carried out to identify the critical
components within a SoC and try to mitigate the risks caused by those critical components.
Once the critical components and their risk scales have been identified, the risk-reduction
process, for example fault-tolerant design, should be activated to improve the system
dependability. RPN can also give the protection priority among the analyzed components.
As a result, a feasible risk-reduction approach can be developed to effectively protect the
vulnerable components and enhance the system robustness and safety.

The parameter RPN_C(i), i.e. risk scale of failures occurring in the i component, can be
computed by

RPN _C(i)= ER_C(i z (i, EM(k)) x SR _FM(k)

where 1 <i <n. The expression of RPN_C(i) contains three terms which are, from left to
right, error rate of the i* component, probability of FM(K) if a fault occurs in the it
component, and severity rate of the kf failure mode. As stated previously, a component’s
fault could result in several different system failure modes, and each identified failure mode
has its potential impact on the system safety. So, RPN_C(i) is the summation of the following
expression ER_C(i) x P (i, FM(K)) x SR_FM(k), for k from one to z. The term of ER_C(i) x P (i,
FM(K)) represents the occurrence rate of the k failure mode, which is caused by the it
component failing to perform its intended function.

The RPN_FM(k) represents the risk scale of the kf failure mode, which can be calculated by

RPN _FM(k) = SR _FM(k) x iER_C(i) x P(i, FM(k))

where 1 <k <z. ZER_C(i) x P(i,FM(k)) expresses the occurrence rate of the k! failure mode
i=1

in a SoC. This sort of assessment can reveal the risk levels of the failure modes to its system

and identify the major failure modes for protection so as to reduce the impact of failures to

the system safety.

4. System safety verification platform

We have created an effective safety verification platform to provide the capability to quickly
handle the operation of fault injection campaigns and dependability analysis for the system
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design with SystemC. The core of the verification platform is the fault injection tool [Chang
& Chen, 2007; Chen et al., 2008] under the environment of ColWare Platform Architect
[CoWare, 2006], and the vulnerability analysis and risk assessment tool. The tool is able to
deal with the fault injection at the following levels of abstraction [Chang & Chen, 2007; Chen
et al., 2008]: bus-cycle accurate level, untimed functional TLM with primitive channel
sc_fifo, and timed functional TLM with hierarchical channel. An interesting feature of our
fault injection tool is to offer not only the time-triggered but also the event-triggered
methodologies to decide when to inject a fault. Consequently, our injection tool can
significantly reduce the effort and time for performing the fault injection campaigns.
Combining the fault injection tool with vulnerability analysis and risk assessment tool, the
verification platform can dramatically increase the efficiency of carrying out the system
robustness validation and vulnerability analysis and risk assessment. For the details of our
fault injection tool, please refer to [Chang & Chen, 2007; Chen et al., 2008].

However, the IP-based SoCs designed by CoWare Platform Architect in SystemC design
environment encounter the injection controllability problem. The simulation-based fault
injection scheme cannot access the fault targets inside the IP components imported from
other sources. As a result, the injection tool developed in SystemC abstraction level may lack
the capability to inject the faults into the inside of the imported IP components, such as CPU
or DSP. To fulfill this need, we exploit the software-implemented fault injection scheme
[Sieh, 1993; Kanawati et al., 1995] to supplement the injection ability. The software-
implemented fault injection scheme, which uses the system calls of Unix-type operating
system to implement the injection of faults, allows us to inject the faults into the targets of
storage elements in processors, like register file in CPU, and memory systems. As discussed,
a complete IP-based SoC system-level fault injection tool should consist of the software-
implemented and simulation-based fault injection schemes.

Due to the lack of the support of Unix-type operating system in CoWare Platform Architect,
the current version of safety verification platform cannot provide the software-implemented
fault injection function in the tool. Instead, we employed a physical system platform built by
ARM-embedded SoC running Linux operating system to validate the developed software-
implemented fault injection mechanism. We note that if the CoWare Platform Architect can
support the UNIX-type operating system in the SystemC design environment, our software-
implemented fault injection concept should be brought in the SystemC design platform.
Under the circumstances, we can implement the so called hybrid fault injection approach,
which comprises the software-implemented and simulation-based fault injection
methodologies, in the SystemC design environment to provide more variety of injection
functions.

5. Case study

An ARM926E]-based SoC platform provided by CoWare Platform Architect [CoWare, 2006]
was used to demonstrate the feasibility of our risk model. The illustrated SoC platform was
modeled at the timed functional TLM abstraction level. This case study is to investigate
three important components, which are register file in ARM926E], AMBA Advanced High-
performance Bus (AHB), and the memory sub-system, to assess their risk scales to the SoC-
controlled system. We exploited the safety verification platform to perform the fault
injection process associated with the risk model presented in Section 3 to obtain the risk-
related parameters for the components mentioned above. The potential SoC failure modes
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classified from the fault injection process are fatal failure (FF), silent data corruption (SDC),
correct data/incorrect time (CD/IT), and infinite loop (IL). In the following, we summarize
the data used in this case study.

e n =3, {C(1), C2), C@3) = {AMBA AHB, memory sub-system, register file in
ARMO926EJ}.

o z=4,{FM(1), FM(2), FM(3), FM(4)} = {FF, SDC, CD/IT, IL}.

e  The benchmarks employed in the fault injection process are: JPEG (pixels: 255 x 154),
matrix multiplication (M-M: 50 x 50), quicksort (QS: 3000 elements) and FFT (256
points).

5.1 AMBA AHB experimental results

The system bus, such as AMBA AHB, provides an interconnected platform for IP-based SoC.
Apparently, the robustness of system bus plays an important role in the SoC reliability. It is
evident that the faults happening in the bus signals will lead to the data transaction errors
and finally cause the system failures. In this experiment, we choose three bus signals
HADDR[31:0], HSIZE[2:0], and HDATA[31:0] to investigate the effect of bus errors on the
system. The results of fault injection process for AHB system bus under various benchmarks
are shown in Table 1 and 2. The results of a particular benchmark in Table 1 and 2 were
derived from the six thousand fault injection campaigns, where each injection campaign
injected 1-bit flip fault to bus signals. The fault duration lasts for the length of one-time data
transaction. The statistics derived from six thousand times of fault injection campaigns have
been verified to guarantee the validity of the analysis.

From Table 1, it is evident that the susceptibility of the SoC to bus faults is benchmark-
dependent and the rank of system bus vulnerability over different benchmarks is JPEG > M-
M > FFT > QS. However, all benchmarks exhibit the same trend in that the probabilities of
FF show no substantial difference, and while a fault arises in the bus signals, the occurring
probabilities of SDC and FF occupy the top two ranks. The results of the last row offer the
average statistics over four benchmarks employed in the fault injection process. Since the
probabilities of SoC failure modes are benchmark-variant, the average results illustrated in
Table 1 give us the expected probabilities for the system bus vulnerability of the developing
SoC, which are very valuable for us to gain the robustness of the system bus and the
probability distribution of failure modes. The robustness measure of the system bus is only
26.78% as shown in Table 1, which means that a fault occurring in the system bus, the SoC
has the probability of 26.78% to survive for that fault.

The experimental results shown in Table 2 are probability distribution of failure modes with
respect to the various bus signal errors for the used benchmarks. From the data illustrated in
the NE column, we observed that the most vulnerable part is the address bus HADDR[31:0].
Also from the data displayed in the FF column, the faults occurring in address bus will have
the probability between 38.9% and 42.3% to cause a serious fatal failure for the used
benchmarks. The HSIZE and HDATA signal errors mainly cause the SDC failure. In
summary, our results reveal that the address bus HADDR should be protected first in the
design of system bus, and the SDC is the most popular failure mode for the demonstrated
SoC responding to the bus faults or errors.
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FF (%) | SDC (%) | CD/IT (%) [ 1L(%) | SF (%) | NE (%)
JPEG | 1857 | 45.90 0.16 1588 | 80.51 | 19.49
M-M | 1895 | 55.06 215 357 | 79.73 | 2027
FFT | 2018 | 21.09 15.74 638 | 6339 | 36.61
QS | 2006 | 1752 12.24 567 | 5550 | 4450
Avg. | 1941 | 3816 7.59 8.06 | 7322 | 2678

Table 1. P (1, FM(K)), P (1, SF) and P (1, NE) for the used benchmarks.

FF (%) SDC (%) CD/IT (%)
1 [ 2 [ 3[al 1234 1[]2]37]a
HADDR | 389 | 39.7 | 42.3 | 42 | 42.9 | 436 | 182 | 152 | 0.08 | 1.94 | 144 | 114
HSIZE | 016 | 0.0 | 0.0 | 0 | 682 | 67.6 | 25.6 | 22.6 | 0.25 | 9.64 | 37.4 | 385
HDATA | 00 | 00 | 00 | 0 | 46.8 | 654 | 23.6 | 194 | 0.24 | 1.66 | 15.0 | 10.6

IL (%) NE (%)
1 [ 2 | 3[4 1[2]37]a
HADDR | 115 | 2.02 | 341 | 202 | 6.62 | 127 | 21.7 | 294
HSIZE | 116 | 2.38 [ 6.97 | 753 | 19.8 | 20.4 | 30.0 | 314
HDATA | 207 | 5.23 | 9.29 | 915 | 323 | 27.7 | 521 | 60.9

Table 2. Probability distribution of failure modes with respect to various bus signal errors
for the used benchmarks (1, 2, 3 and 4 represent the jpeg, m-m, fft and gs benchmark,
respectively).

5.2 Memory sub-system experimental results

The memory sub-system could be affected by the radiation articles, which may cause the bit-
flipped soft errors. However, the bit errors won’t cause damage to the system operation if
one of the following situations occurs:

e Situation 1: The benchmark program never reads the affected words after the bit errors
happen.

e  Sjtuation 2: The first access to the affected words after the occurrence of bit errors is the
‘write” action.

Otherwise, the bit errors could cause damage to the system operation. Clearly, if the first
access to the affected words after the occurrence of bit errors is the ‘read’ action, the bit
errors will be propagated and could finally lead to the failures of SoC operation. So, whether
the bit errors will become fatal or not, it all depends on the occurring time of bit errors, the
locations of affected words, and the benchmark’s memory access patterns after the
occurrence of bit errors.

According to the above discussion, two interesting issues arise; one is the propagation
probability of bit errors and another is the failure probability of propagated bit errors. We
define the propagation probability of bit errors as the probability of bit errors which will be
read out and propagated to influence the execution of the benchmarks. The failure
probability of propagated bit errors represents the probability of propagated bit errors
which will finally result in the failures of SoC operation.
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Initially, we tried performing the fault injection campaigns in the CoWare Platform Architect
to collect the simulation data. After a number of fault injection and simulation campaigns,
we realized that the length of experimental time will be a problem because a huge amount
of fault injection and simulation campaigns should be conducted for each benchmark and
several benchmarks are required for the experiments. From the analysis of the campaigns,
we observed that a lot of bit-flip errors injected to the memory sub-system fell into the
Situation 1 or 2, and therefore, we must carry out an adequate number of fault injection
campaigns to obtain the validity of the statistical data.

To solve this dilemma, we decide to perform two types of experiments termed as Type 1
experiment and Type 2 experiment, or called hybrid experiment, to assess the propagation
probability and failure probability of bit errors, respectively. As explained below, Type 1
experiment uses a software tool to emulate the fault injection and simulation campaigns to
quickly gain the propagation probability of bit errors, and the set of propagated bit errors.
The set of propagated bit errors will be used in the Type 2 experiment to measure the failure
probability of propagated bit errors.

Type 1 experiment: we develop the experimental process as described below to measure the
propagation probability of bit errors. The following notations are used in the experimental
process.

®  Npenai: the number of benchmarks used in the experiments.

e Ni(): the number of fault injection campaigns performed in the j# benchmark’s
experiment.

o Cppent counter of propagated bit errors.

®  Npper: the expected number of propagated bit errors.

e S, address space of memory sub-system.

e  Ngyg the number of read/write data transactions occurring in the memory sub-system
during the benchmark execution.

®  Teror: the occurring time of bit error.

o Aenor: the address of affected memory word.

®  Spven(j): set of propagated bit errors conducted in the j# benchmark’s experiment.

e Py propagation probability of bit errors.

Experimental Process: We injected a bit-flipped error into a randomly chosen memory
address at random read/write transaction time for each injection campaign. As stated
earlier, this bit error could either be propagated to the system or not. If yes, then we add one
to the parameter Cy.pcrr. The parameter N,.p..,r is set by users and employed as the terminated
condition for the current benchmark’s experiment. When the value of Cp...,r reaches to N
e, the process of current benchmark’s experiment is terminated. The Py can then be
derived from N,y divided by Ni,;. The values of Nienc, S and Ny are given before
performing the experimental process.

for j =1 to Npenan

{

Step 1: Run the j# benchmark in the experimental SoC platform under CoWare Platform
Architect to collect the desired bus read/write transaction information that include
address, data and control signals of each data transaction into an operational profile
during the program execution. The value of N, can be obtained from this step.
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Step 2: Cpfbferr = O; ij(]) = 0;
While Cp.b.m < Np_b_m do
{Terror can be decided by randomly choosing a number x between one and Ng.. It
means that Te,r is equivalent to the time of the x data transaction occurring in the
memory sub-system. Similarly, A is determined by randomly choosing an address
between one and S,;.. A bit is randomly picked up from the word pointed by Acrror,
and the bit selected is flipped. Here, we assume that the probability of fault
occurrence of each word in memory sub-system is the same.
If ((Situation 1 occurs) or (Situation 2 occurs))
then {the injected bit error won’t cause damage to the system operation;}
else {Cpfhferr = Cpfbferr +1;
record the related information of this propagated bit error to Syp-en())
including Terror, Aerror and bit location. }
// Situation 1 and 2 are described in the beginning of this Section. The operational
profile generated in Step 1 is exploited to help us investigate the resulting situation
caused by the current bit error. From the operational profile, we check the memory
access patterns beginning from the time of occurrence of bit error to identify which
situation the injected bit error will lead to. //
Ninj(j) = Ninj(j) + 1;}
}

For each benchmark, we need to perform the Step 1 of Type 1 experimental process once to
obtain the operational profile, which will be used in the execution of Step 2. We then created
a software tool to implement the Step 2 of Type 1 experimental process. We note that the
created software tool emulates the fault injection campaigns required in Step 2 and checks
the consequences of the injected bit errors with the support of operational profile derived
from Step 1. It is clear to see that the Type 1 experimental process does not utilize the
simulation-based fault injection tool implemented in safety verification platform as
described in Section 4. The reason why we did not exploit the safety verification platform in
this experiment is the consideration of time efficiency. The comparison of required
simulation time between the methodologies of hybrid experiment and the pure simulation-
based fault injection approach implemented in ColWare Platform Architect will be given later.

The Type 1 experimental process was carried out to estimate Ppy.p.rr, where Neenc, Sw and Np-p.
orr Were set as the values of 4, 524288, and 500 respectively. Table 3 shows the propagation
probability of bit errors for four benchmarks, which were derived from a huge amount of
fault injection campaigns to guarantee their statistical validity. It is evident that the
propagation probability is benchmark-variant and a bit error in memory would have the
probability between 0.866% and 3.551% to propagate the bit error from memory to system.
The results imply that most of the bit errors won’t cause damage to the system. We should
emphasize that the size of memory space and characteristics of the used benchmarks (such
as amount of memory space use and amount of memory read/write) will affect the result of
Pp.perr. Therefore, the data in Table 3 reflect the results for the selected memory space and
benchmarks.

Type 2 experiment: From Type 1 experimental process, we collect Ny, bit errors for each
benchmark to the set S,p(j). Those propagated bit errors were used to assess the failure
probability of propagated bit errors. Therefore, Ny, simulation-based fault injection
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Benchmark | Ny Npverr | Ppbeerr

M-M 14079 | 500 3.551%
Qs 23309 | 500 2.145%
JPEG 27410 | 500 1.824%
FFT 57716 | 500 0.866 %

Table 3. Propagation probability of bit errors.

campaigns were conducted under CoWare Platform Architect, and each injection campaign
injects a bit error into the memory according to the error scenarios recorded in the set S
err(j). Therefore, we can examine the SoC behavior for each injected bit error.

As can be seen from Table 3, we need to conduct an enormous amount of fault injection
campaigns to reach the expected number of propagated bit errors. Without the use of Type 1
experiment, we need to utilize the simulation-based fault injection approach to assess the
propagation probability and failure probability of bit errors as illustrated in Table 3, 5, and
6, which require a huge number of simulation-based fault injection campaigns to be
conducted. As a result, an enormous amount of simulation time is required to complete the
injection and simulation campaigns. Instead, we developed a software tool to implement the
experimental process described in Type 1 experiment to quickly identify which situation the
injected bit error will lead to. Using this approach, the number of simulation-based fault
injection campaigns performed in Type 2 experiment decreases dramatically. The
performance of software tool adopted in Type 1 experiment is higher than that of
simulation-based fault injection campaign employed in Type 2 experiment. Therefore, we
can save a considerable amount of simulation time.

The data of Table 3 indicate that without the help of Type 1 experiment, we need to carry
out a few ten thousand simulation-based fault injection campaigns in Type 2 experiment. As
opposite to that, with the assistance of Type 1 experiment, only five hundred injection
campaigns are required in Type 2 experiment. Table 4 gives the experimental time of the
Type 1 plus Type 2 approach and pure simulation-based fault injection approach, where the
data in the column of ratio are calculated by the experimental time of Type 1 plus Type 2
approach divided by the experimental time of pure simulation-based approach. The
experimental environment consists of four machines to speed up the validation, where each
machine is equipped with Intel® Core™2 Quad Processor Q8400 CPU, 2G RAM, and
CentOS 4.6. In the experiments of Type 1 plus Type 2 approach and pure simulation-based
approach, each machine is responsible for performing the simulation task for one
benchmark. According to the simulation results, the average execution time for one
simulation-based fault injection experiment is 14.5 seconds. It is evident that the
performance of Type 1 plus Type 2 approach is quite efficient compared to the pure
simulation-based approach because Type 1 plus Type 2 approach employed a software tool
to effectively reduce the number of simulation-based fault injection experiments to five
hundred times compared to a few ten thousand simulation-based fault injection
experiments for pure simulation-based approach.

Given Npperand Spper(j), i.e. five hundred simulation-based fault injection campaigns, the
Type 2 experimental results are illustrated in Table 5. From Table 5 we can identify the
potential failure modes and the distribution of failure modes for each benchmark. It is clear
that the susceptibility of a system to the memory bit errors is benchmark-variant, and the M-
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M is the most critical benchmark among the four adopted benchmarks, according to the
results of Table 5.

We then manipulated the data of Table 3 and 5 to acquire the results of Table 6. Table 6
shows the probability distribution of failure modes if a bit error occurs in the memory sub-
system. Each datum in the row of ‘Avg. was obtained by mathematical average of the
benchmarks’ data in the corresponding column. This table offers the following valuable
information: the robustness of memory sub-system, the probability distribution of failure
modes and the impact of benchmark on the SoC dependability. Probability of SoC failure for
a bit error occurring in the memory is between 0.738% and 3.438%. We also found that the
SoC has the highest probability to encounter the SDC failure mode for a memory bit error. In
addition, the vulnerability rank of benchmarks for memory bit errors is M-M > QS > JPEG >
FFT.

Table 7 illustrates the statistics of memory read/write for the adopted benchmarks. The
results of Table 7 confirm the vulnerability rank of benchmarks as observed in Table 6.
Situation 2 as mentioned in the beginning of this section indicates that the occurring
probability of Situation 2 increases as the probability of performing the memory write
operation increases. Consequently, the robustness of a benchmark rises with an increase in
the probability of Situation 2.

Benchmark | Type 1 + 2 (minute) | Pure approach (minute) | Ratio
M-M 312 1525 20.46%
Qs 835 2719 30.71%
JPEG 7596 15760 48.20%
FFT 3257 9619 33.86%

Table 4. Comparison of experimental time between type 1 + 2 & pure simulation-based
approach.

Benchmark FF SDC CD/IT IL NE
M-M 0 484 0 0 16
Qs 0 138 103 99 160
JPEG 0 241 1 126 132
FFT 0 177 93 156 74

Table 5. Type 2 experimental results.
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FF (%) SDC (%) CD/IT (%) IL (%) SF (%) NE (%)
M-M 0.0 3.438 0.0 0.0 3.438 96.562
Qs 0.0 0.592 0.442 0.425 1.459 98.541
JPEG 0.0 0.879 0.004 0.460 1.343 98.657
FFT 0.0 0.307 0.161 0.270 0.738 99.262
Avg. 0.0 1.304 0.152 0.289 1.745 98.255
Table 6. P (2, FM(K)), P (2, SF) and P (2, NE) for the used benchmarks.
#R/W #R R(%) #W W(%)
M-M 265135 255026 96.187% 10110 3.813%
Qs 226580 196554 86.748% 30027 13.252%
JPEG 1862291 1436535 77.138% 425758 22.862%
FFT 467582 240752 50.495% 236030 49.505%

Table 7. The statistics of memory read/write for the used benchmarks.

5.3 Register file experimental results

The ARM926E] CPU used in the experimental SoC platform is an IP provided from ColWare
Platform Architect. Therefore, the proposed simulation-based fault injection approach has a
limitation to inject the faults into the register file inside the CPU. This problem can be solved
by software-implemented fault injection methodology as described in Section 4. Currently,
we cannot perform the fault injection campaigns in register file under CoWare Platform
Architect due to lack of the operating system support. We note that the literature [Leveugle
et al., 2009; Bergaoui et al., 2010] have pointed out that the register file is vulnerable to the
radiation-induced soft errors. Therefore, we think the register file should be taken into
account in the vulnerability analysis and risk assessment. Once the critical registers are
located, the SEU-resilient flip-flop and register design can be exploited to harden the register
file. In this experiment, we employed a similar physical system platform built by
ARM926E]-embedded SoC running Linux operating system 2.6.19 to derive the
experimental results for register file.

The register set in ARM926E] CPU used in this experiment is RO ~ R12, R13 (SP), R14 (LR),
R15 (PC), R16 (CPSR), and R17 (ORIG_RO0). A fault injection campaign injects a single bit-flip
fault to the target register to investigate its effect on the system behavior. For each
benchmark, we performed one thousand fault injection campaigns for each target register
by randomly choosing the time instant of fault injection within the benchmark simulation
duration, and randomly choosing the target bit to inject 1-bit flip fault. So, eighteen
thousand fault injection campaigns were carried out for each benchmark to obtain the data
shown in Table 8. From Table 8, it is evident that the susceptibility of the system to register
faults is benchmark-dependent and the rank of system vulnerability over different
benchmarks is QS > FFT > M-M. However, all benchmarks exhibit the same trend in that
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while a fault arises in the register set, the occurring probabilities of CD/IT and FF occupy
the top two ranks. The robustness measure of the register file is around 74% as shown in
Table 8, which means that a fault occurring in the register file, the SoC has the probability of
74% to survive for that fault.

FF (%) | SDC (%) | CD/IT (%) | IL (%) | SF (%) | NE (%)
M-M | 694 1.71 10.41 0.05 | 1911 | 80.89
FFT | 8.63 1.93 15.25 004 | 2586 | 74.14
Qs | 5.68 0.97 2344 051 | 3059 | 69.41
Avg. | 7.08 154 16.36 02 | 2519 | 7481

Table 8. P (3, FM(K)), P (3, SF) and P (3, NE) for the used benchmarks.

e [y iy [ ey
RO 79 13.0 5.6 R9 12.4 7.3 20.6
R1 311 18.3 19.8 R10 23.2 325 19.9
R2 19.7 14.6 19.2 R11 375 25.3 19.2
R3 18.6 17.0 15.4 R12 22.6 13.1 25.3
R4 4.3 12.8 21.3 R13 34.0 39.0 20.3
R5 4.0 15.2 20.4 R14 5.1 100.0 100.0
R6 7.4 8.8 21.6 R15 100.0 100.0 100.0
R7 5.0 14.6 239 R16 3.6 8.3 494
R8 4.0 9.7 24.7 R17 3.6 15.9 24.0

Table 9. Statistics of SoC failure probability for each target register with various benchmarks.

Table 9 illustrates the statistics of SoC failure probability for each target register under the
used benchmarks. Throughout this table, we can observe the vulnerability of each register
for different benchmarks. It is evident that the vulnerability of registers quite depends on
the characteristics of the benchmarks, which could affect the read/write frequency and
read/write syndrome of the target registers. The bit errors won't cause damage to the
system operation if one of the following situations occurs:

e Situation 1: The benchmark never uses the affected registers after the bit errors happen.
e Situation 2: The first access to the affected registers after the occurrence of bit errors is
the “write” action.

It is apparent to see that the utilization and read frequency of R4 ~ R8 and R14 for
benchmark M-M is quite lower than FFT and QS, so the SoC failure probability caused by
the errors happening in R4 ~ R8 and R14 for M-M is significantly lower than FFT and QS as
illustrated in Table 9. We observe that the usage and write frequency of registers, which
reflects the features and the programming styles of benchmark, dominates the soft error
sensitivity of the registers. Without a doubt, the susceptibility of register R15 (program
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counter) to the faults is 100%. It indicates that the R15 is the most vulnerable register to be
protected in the register set. Fig. 2 illustrates the average SoC failure probabilities for the
registers RO ~ R17, which are derived from the data of the used benchmarks as exhibited in
Table 9. According to Fig. 2, the top three vulnerable registers are R15 (100%), R14 (68.4%),
as well as R13 (31.1%), and the SoC failure probabilities for other registers are all below 30%.

R17
R16
R15
R14
R13
Rl12
RI11
R10
RO
RE
R7
RE
R5
R4
R3
RZ
R1
RO

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 (%)

Fig. 2. The average SoC failure probability from the data of the used benchmarks.

5.4 SoC-level vulnerability analysis and risk assessment

According to IEC 61508, if a failure will result in a critical effect on system and lead human’s
life to be in danger, then such a failure is identified as a dangerous failure or hazard. IEC 61508
defines a system’s safety integrity level (SIL) to be the Probability of the occurrence of a
dangerous Failure per Hour (PFH) in the system. For continuous mode of operation (high
demand rate), the four levels of SIL are given in Table 10 [IEC, 1998-2000].

SIL PFH
4 >107 to <1078
3 >108 to <1077
2 >1077 to <107°
1 >10 t0 <107

Table 10. Safety integrity levels.

In this case study, three components, ARM926E] CPU, AMBA AHB system bus and memory
sub-system, were utilized to demonstrate the proposed risk model to assess the scales of
failure-induced risks in a system. The following data are used to show the vulnerability
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analysis and risk assessment for the selected components {C(1), C(2), C(3)} = {AMBA AHB,
memory sub-system, register file in ARM926EJ}: {ER_C(1), ER_C(2), ER_C(3)} = {10-¢ ~ 10-
8/hour }; {SR_FM(1), SR_FM(2), SR_FM(3), SR_FM(4)} = {10, 8, 4, 6}. According to the
expressions presented in Section 3 and the results shown in Section 5.1 to 5.3, the SoC failure
rate, SIL and RPN are obtained and illustrated in Table 11, 12 and 13.

ER_C/hour 1 x 106 0.5 x 10-6 1 x107 0.5 x 107 1x108
SFR_C(1) 7.32 x107 3.66 x 107 7.32 x 108 3.66 x 108 7.32 x 109
SFR_C(2) 1.75 x 108 8.73 x 109 1.75 x 109 8.73 x 10-10 1.75 x 10-10
SFR_C(3) 2.52 x 107 1.26 x 107 2.52 x 108 1.26 x 108 2.52 x 10

SFR 1.0 x 106 5.0 x 107 1.0 x 107 5.0 x 10-8 1.0 x 10-8
SIL 1 2 2 3 3
Table 11. SoC failure rate and SIL.

ER_C/hour 1x10-6 0.5 x 10-6 1x107 0.5 x107 1x 108
RPN_C(1) 5.68 x 10-¢ 2.84 x 106 5.68 x 10-7 2.84 x 107 5.68 x 108
RPN_C(2) 1.28 x 107 6.38 x 108 1.28 x 108 6.38 x 109 1.28 x 109
RPN_C(3) 1.5 x 106 7.49 x 107 1.5 %107 7.49 x 108 1.5%x 108

Table 12. Risk priority number for the target components.

ER_C/hour 1x 10 0.5 x 10-6 1x107 0.5 x 107 1x108

RPN_FM(1) 2.65 x 106 1.32 x 106 2.65 x 107 1.32 x 107 2.65 x 108

RPN_FM(2) 3.28 x 10-¢ 1.64 x 106 3.28 x 107 1.64 x 107 3.28 x 108

RPN_FM(3) 9.64 x 107 4.82 x 107 9.64 x 108 4.82 x 108 9.64 x 109

RPN_FM(4) 5.13 x 107 2.56 x 107 5.13 x 108 2.56 x 108 5.13 x 10

Table 13. Risk priority number for the potential failure modes.

We should note that the components” error rates used in this case study are only for the
demonstration of the proposed robustness/safety validation process, and the more realistic
components’ error rates for the considered components should be determined by process
and circuit technology [Mukherjee et al., 2003]. According to the given components’ error
rates, the data of SFR in Table 11 can be used to assess the safety integrity level of the
system. One thing should be pointed out that a SoC failure may or may not cause the
dangerous effect on the system and human life. Consequently, a SoC failure could be
classified into safe failure or dangerous failure. To simplify the demonstration, we make an
assumption in this assessment that the SoC failures caused by the faults occurring in the
components are always the dangerous failures or hazards. Therefore, the SFR in Table 11 is
used to approximate the PFH, and so the SIL can be derived from Table 10.
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With respect to safety design process, if the current design does not meet the SIL
requirement, we need to perform the risk reduction procedure to lower the PFH, and in the
meantime to reach the SIL requirement. The vulnerability analysis and risk assessment can
be exploited to identify the most critical components and failure modes to be protected. In
such approach, the system safety can be improved efficiently and economically.

Based on the results of RPN_C(i) as exhibited in Table 12, for i = 1, 2, 3, it is evident that the
error of AMBA AHB is more critical than the errors of register set and memory sub-system.
So, the results suggest that the AHB system bus is more urgent to be protected than the
register set and memory. Moreover, the data of RPN_FM(k) in Table 13, k from one to four,
infer that SDC is the most crucial failure mode in this illustrated example. Throughout the
above vulnerability and risk analyses, we can identify the critical components and failure
modes, which are the major targets for design enhancement. In this demonstration, the top
priority of the design enhancement is to raise the robustness of the AHB HADDR bus
signals to significantly reduce the rate of SDC and the scale of system risk if the system
reliability /safety is not adequate.

6. Conclusion

Validating the functional safety of system-on-chip (SoC) in compliance with international
standard, such as IEC 61508, is imperative to guarantee the dependability of the systems
before they are being put to use. It is beneficial to assess the SoC robustness in early design
phase in order to significantly reduce the cost and time of re-design. To fulfill such needs, in
this study, we have presented a valuable SoC-level safety validation and risk reduction
process to perform the hazard analysis and risk assessment, and exploited an ARM-based
SoC platform to demonstrate its feasibility and usefulness. The main contributions of this
study are first to develop a useful SVRR process and risk model to assess the scales of
robustness and failure-induced risks in a system; second to raise the level of dependability
validation to the untimed/timed functional TLM, and to construct a SoC-level system safety
verification platform including an automatic fault injection and failure mode classification
tool on the SystemC CoWare Platform Architect design environment to demonstrate the core
idea of SVRR process. So the efficiency of the validation process is dramatically increased;
third to conduct a thorough vulnerability analysis and risk assessment of the register set,
AMBA bus and memory sub-system based on a real ARM-embedded SoC.

The analyses help us measure the robustness of the target components and system safety,
and locate the critical components and failure modes to be guarded. Such results can be
used to examine whether the safety of investigated system meets the safety requirement or
not, and if not, the most critical components and failure modes are protected by some
effective risk reduction approaches to enhance the safety of the investigated system. The
vulnerability analysis gives a guideline for prioritized use of robust components. Therefore,
the resources can be invested in the right place, and the fault-robust design can quickly
achieve the safety goal with less cost, die area, performance and power impact.
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1. Introduction

A single event upset (SEU) is a change of state which is caused by a high-energy particle
striking to a sensitive node in semiconductor devices. An SEU in an integrated circuit (IC)
component often causes a false behavior of a computer system, or a soft error. A soft error
rate (SER) is the rate at which a device or system encounters or is predicted to encounter soft
errors during a certain time. An SER is often utilized as a metric for vulnerability of an IC
component.

May first discovered that particles emitted from radioactive substances caused SEUs in
DRAM modules (May & Wood, 1979). Occurrence of SEUs in SRAM memories is increasing
and becoming more critical as technology continues to shrink (Karnik et al., 2001; Seifert et
al.,, 2001a, 2001b). The feature size of integrated circuits has reached nanoscale and the nano-
scale transistors have become more soft-error sensitive (Baumann, 2005). Soft error
estimation and highly-reliable design have become of utmost concern in mission-critical
systems as well as consumer products. Shivakumar et al. predicted that the SER of
combinational logic would increase to be comparable to the SER of memory components in
the future (Shivakumar et al., 2002). Embedding vulnerable IC components into a computer
system deteriorates its reliability and should be carefully taken into account under several
constraints such as performance, chip area, and power consumption. From the viewpoint of
system design, accurate reliability estimation and design for reliability (DFR) are becoming
critical in order that one applies reasonable DFR to vulnerable part of the computer system
at an early design stage. Evaluating reliability of an entire computer system is essential
rather than separately evaluating that of each component because of the following reasons.

1. A computer system consists of miscellaneous IC components such as a CPU, an SRAM
module, a DRAM module, an ASIC, and so on. Each IC component has its own SER
which may be entirely different from one another.

2. Depending on DFR techniques such as parity coding, the SER, access latency and chip
area may be completely different among SRAM modules. A DFR technique should be
chosen to satisfy the design requirement of the computer system so that one can avoid a
superfluous cost rise, performance degradation, and power rise.

3. The behavior of a computer system is determined by hardware, software, and input to
the system. Largely depending on a program, the behavior of the computer system
varies from program to program. Some programs use large memory space and the
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others do not. Furthermore, some programs efficiently use as many CPU cores of a
multiprocessor system as possible and the others do not. The behavior of a computer
system determines temporal and spatial usage of vulnerable components.

This chapter reviews a simulation technique for soft error vulnerability of a microprocessor
system (Sugihara et al., 2006, 2007b) and a synthesis technique for a reliable microprocessor
system (Sugihara et al., 2009b, 2010b).

2. Simulation technique for soft error vulnerability of microprocessors
2.1 Introduction

Recently, several techniques for estimating reliability were proposed. Fault injection
techniques were discussed for microprocessors (Degalahal et al., 2004; Rebaudengo et al.,
2003; Wang et al., 2004). Soft error simulation in logic circuits was also studied and
developed (Tosaka, 1997, 1999, 2004a, 2004b). In contrast, the structure of memory modules
is so regular and monotonous that it is comparatively easy to estimate their vulnerability
because that can be calculated with the SERs obtained by field or accelerated tests.
Mukherjee et al. proposed a vulnerability estimation method for microprocessors
(Mukherjee et al., 2003). Their methodology estimates only vulnerability of a microprocessor
whereas a computer system consists of various components such as CPUs, SRAM modules
and DRAM modules. Their approach would be effective in case the vulnerability of a CPU is
most dominant in a computer system. Asadi et al. proposed a vulnerability estimation
method for computer systems that had L1 caches (Asadi et al., 2005). They pointed out that
SRAM-based L1 caches were most vulnerable in most of current designs and gave a
reliability model for computing critical SEUs in L1 caches. Their assumption is true in most
of current designs and false in some designs. Vulnerability of DRAM modules would be
dominant in entire vulnerability of a computer system if plain DRAM modules and ECC
SRAM ones are utilized. As technology proceeds, a latch becomes more vulnerable than an
SRAM memory cell (Baumann, 2005). It is important to obtain a vulnerability estimate of an
entire system by considering which part of a computer system is vulnerable.

An SER for a memory module is a vulnerability measurement characterizing it rather than
one reflecting its actual behavior. SERs of memory modules become pessimistic when they
are embedded into computer systems. More specifically, every SEU occurring in memory
modules is regarded as a critical error when memory modules are under field or accelerated
tests. This implicitly assumes that every SEU on memory cells of a memory module makes a
computer system faulty. Since memory modules are used spatially and temporally in
computer systems, some of SEUs on the memory modules make the computer system faulty
and the others not. Therefore, the soft errors in an entire computer system should be
estimated in a different way from the way used for memory modules.

Accurate soft error estimation of an entire computer system is one of the themes of urgent
concern. The SER is the rate at which a device or system encounters or is predicted to
encounter soft errors. The SER is quite effective measurement for evaluating memory
modules but not for computer systems. Accumulating SERs of all memories in a computer
system causes pessimistic soft error estimation because memory cells are used spatially and
temporally during program execution and some of SEUs make the computer system faulty.
This chapter models soft errors at the architectural level for a computer system, which has
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several memory hierarchies with it, in order that one can accurately estimate the reliability
of the computer system within reasonable computation time. We define a critical SEU as one
which is a possible cause of faulty behavior of a computer system. We also define an SEU
vulnerability factor for a job to run on a computer system as the expected number of critical
SEUs which occur during executing the job on the computer system, unlike a classical
vulnerability factor such as the SER one. The architectural-level soft-error model identifies
which part of memory modules is utilized temporally and spatially and which SEUs are
critical to the program execution of the computer system at the cycle-accurate ISS
(instruction set simulation) level. Our architectural-level soft-error model is capable of
estimating the reliability of a computer system that has several memory hierarchies with it
and finding which memory module is vulnerable in the computer system. Reliability
estimation helps one apply reliable design techniques to vulnerable part of their design.

2.2 SEUs on a word item

Unlike memory components, the SER of a computer system varies every moment because
the computer system uses memory modules spatially and temporally. Since only active
part of the memory modules affects reliability of the computer system, it is essential to
identify the active part of memory modules for accurately estimating the number of soft
errors occurring in the computer system. A universal soft error metric other than an SER
is necessary to estimate reliability of computer systems because an SER is a reliability
metric suitable for components of regular and monotonous structure like memory
modules but not for computer systems. In this chapter, the number of soft errors which
occur during execution of a program is adopted as a soft error metric for computer
systems. In computer systems, a word item is a basic element for computation in CPUs. A
word item is an instruction item in an instruction memory while that is a data item in a
data memory. A collective of word items is required to be processed in order to run a
program. We consider the reliability to process all word items as the reliability of a
computer system. The total number of SEUs which are expected to occur on all the word
items is regarded as the number of SEUs of the computer system. This section discusses
an estimation model for the number of soft errors on a word item. A CPU-centric
computer system typically has the hierarchical structure of memory modules which
includes a register file, cache memory modules, and main memory modules. The
computer system at which we target has Npe, levels of memory modules,
My, My, -+, My, in order of accessibility from/to the CPU. In the hierarchical memory
system, instruction items are generally processed as follows.

1. Instruction items are generated by a compiler and loaded into a main memory. The
birth time of an instruction item is the time when the instruction item is loaded into the
main memory, from the viewpoint of program execution.

2. When the CPU requires an instruction item, it fetches the instruction item from the
memory module closest to it. The instruction item is duplicated into all levels of
memory modules which reside between the CPU and the source memory module.

Note that instruction items are basically read-only. Duplication of instruction items are
unidirectionally made from a low level to a high level of a memory module. Data items in
data memory are processed as follows.
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1. Some data items are given as initial values of a program when the program is generated
with a compiler. The birth time of such a data item is the time when the program is
loaded into a main memory. The other data items are generated during execution of the
program by the CPU. The birth time of the data item which is made on-line is the time
when the data item is made and saved to the register file.

2. When a data item is required by a CPU, the CPU fetches it from the memory module
closest to the CPU. If the write allocate policy is adopted, the data item is duplicated at
all levels of memory modules which reside between the CPU and the master memory
module, and otherwise it is not duplicated at the interjacent memory modules.

Note that data items are writable as well as readable. This means that data items can be
copied from a high level to a low level of a memory module, and vice versa. In CPU centric
computer systems, data items are utilized as constituent elements. The data items vary in
lifetime and the numbers of soft errors on the data items vary from data item to data item.

Let an SER of a word item in Memory Module M; be SER,,. When a word item w is retained
during Time time(w) in Memory Module M;, the number of soft errors, errory, (w), which is
expected to occur on the word item, is described as follows:

errory,(w) = SERy, - time(w). 1)

Word item w is required to be retained during Time retain_timey,(w) in Memory Module
M; to transfer to the CPU. The number of soft errors, errory) mems(W), which occur from the
birth time to the time when the CPU fetches is given as

errory mems(W) = X; SERy, * retain_timey, (w) 2)

where retain_timey, (w) is necessary and minimal time to transfer the word item from the
master memory module to the CPU, and depends on the memory architecture. This kind of
retention time is exactly obtained with cycle-accurate simulation of the computer system.

2.3 SEUs in instruction memory

Each instruction item has its own lifetime while a program runs. The lifetime of each
instruction item is different from that of one another and is not necessarily equal to the
execution time of a program. Generally speaking, the birth time of instruction items is the
time when they are loaded into main memory, from the viewpoint of program execution. It
is necessary to identify which part of retention time of an instruction item in a memory
module affects reliability of the computer system. Now let us break down into the number
of soft errors in an instruction item before we discuss the total number of soft errors in
instruction memory. The time when a CPU fetches an instruction item of Address a for the
i-th time is shown by if (a, ). if (a,0) denotes the time when the instruction is loaded into
the main memory. An example of several instruction fetches is shown in Fig. 1. In this
figure, the boxes show that the copies of the instruction item reside in the corresponding
memory modules. The labels on the boxes show when the copies of the instruction items are
born. In this example, the instruction item is fetched three times by the CPU.

On the first instruction fetch for the instruction item, a copy of the instruction item exists in
neither the L1 nor L2 cache memories. The instruction item resides only in the main
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[ SEUs counted on ifa,3) [] SEUs which does not affect the computer system

Fig. 1. SEUs which are read by the CPU.

memory. The instruction item is required to be transferred from the main memory to the
CPU. On transferring the instruction item to the CPU, its copies are made in the L1 and L2
cache memory modules. In this example, we assume that some latency is necessary to
transfer the instruction item between memory modules. When the instruction item in a
source memory module is fetched by the CPU, any SEUs which occur after completing
transferring the instruction item have no influence on the instruction fetch. In the figure, the
boxes with slanting lines are the retention times whose SEUs make the instruction fetch at
if(a,1) faulty. The SEUs during any other retention times are unknown to make the
computer system faulty.

On the second instruction fetch for the instruction item, the instruction item resides only in
the main memory, same as on the first instruction fetch. The instruction item is fetched from
the main memory to the CPU, same as on the first instruction fetch. The dotted boxes are
found to be the retention times whose SEUs make the instruction fetch at if (a, 2) faulty.
Note that the SEUs on the box with slanting lines in the main memory are already treated on
the instruction fetch at if (a,1) and are not treated on the one at if (a,2) in order to avoid
counting SEUs duplicately.

On the third instruction fetch for the instruction item, the highest level of memory module
that retains the instruction item is the L1 cache memory. SEUs on the gray boxes are treated
as the ones which make Instruction Fetch if (a, 3) faulty. The SEUs on any other boxes are
not counted for the instruction fetch at if (a, 3). Now assume that a program is executed in a
computer system. Given an input data to a program, let an instruction fetch sequence be
i1,i3, ", iy, to run the program. And let the necessary and minimal retention time for
Instruction Fetch i; to be on Memory Module M; be retain_timeM].(ii). The number of soft
errors on Instruction Fetch i;, error(i;), is given as follows.

erT0Tgingle_inst({) = X SERy;, -retain_timeM].(ii). 3)
The total number of soft errors in the computer system is shown as follows:

errorall_insts(i) = Zi errorsingle_inst(ii)
Yij SERy, - retain_timeMj(ii)

)

where i={i_1,i_2,...,i_N_inst}. Given the program of the computer system, retain_timeMj(ii)
can be exactly obtained by performing cycle-accurate simulation for the computer system.
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2.4 SEUs in data memory

Data memory is writable as well as readable. It is more complex than instruction memory
because word items are bidirectionally transferred between a high level of memory and a
low level of memory. Some data items are given as an input to a program and the others are
born during the program execution. Some data items are used and the others are unused
even if they reside in memory modules. The SEUs which occur during some retention time
of a data item are influential in a computer system. The SEUs which occur during the other
retention time are not influential even if the data item is used by the CPU. A data item has
valid or invalid part of time with regard to soft errors of the computer system. It is quite
important to identify valid or invalid part of retention time of a data item in order to
accurately estimate the number of soft errors of a computer system. In this chapter, valid
retention time is sought out by using the following rules.

e A data item which is generated on compilation is born when it is loaded into main
memory.

e A data item as input to a computer system is born when it is inputted to the computer
system.

e A data item is born when the CPU issues a store instruction for the data item.

e A data item is valid at least until the time when the CPU loads the data item and uses it
in its operation.

e A data item which a user explicitly specifies as a valid one is valid even if the CPU does
not issue a load instruction for the data item.

The bidirectional copies between high-level and low-level memory modules must be taken
into account in data memory because data memory is writable as well as readable. There are
two basic options on cache hit when writing to the cache as follows (Hennessy & Patterson,
2002).

e Write through: the information is written to both the block in the cache and to the block
in the lower-level memory.

e Write back: the information is written only to the block in the cache. The modified cache
block is written to main memory only when it is replaced.

The write policies affect the estimation for the number of soft errors and should be taken
into account.

2.4.1 Soft error model in a write-back system

A soft-error estimation model in write-back systems is discussed in this section. Let the time
when the i-th store operation of a CPU at Address a is issued be s(a, i) and the time when
the j-th load operation at Address a is issued be [(a,j). Fig. 2 shows an example of the
behavior of a write-back system. Each box in the figure shows the existence of the data item
in the corresponding memory module. The labels on the boxes show when the data items
are born. In the example, two store operations and two load operations are executed. First, a
store operation is executed and only the L1 cache is updated with the data item. The L2
cache or main memory is not updated with the store operation. A load operation on the data
item which resides at Address a follows. The data item resides in the L1 cache memory and
is transferred from the L1 cache to the CPU. The SEUs on the boxes with slanting lines are
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influential in reliability of the computer system by the issue of a load at I(a, 1). The other
boxes with Label s(a, 1) are unknown to be influential in the reliability. Next, the data item
in the L1 cache goes out to the L2 cache by the other data item. The L2 cache memory
becomes the highest level of memory which retains the data item. Next, a load operation at
I(a, 2) is issued and the data item is transferred from the L2 cache memory to the CPU. With
the load operation at I(a, 2), the SEUs on the dotted boxes are found to be influential in
reliability of the computer system. SEUs on the white boxes labeled as s(a,2) are not
counted on the load at I(a, 2).

RAM

L2 Cache

L1 Cache =77 s@))

Register (a,1
s(a,1) Ia,1) s(@,2) L1 flushed 1(a;2) Time
SEUs counted on /(a,1) SEUs counted on /(a,2) [] SEUSs which does not affect the computer system

Fig. 2. Critical time in the write-back system.

2.4.2 Soft error model in a write-through system

A soft-error estimation model in write-through systems is discussed in this section. An
example of the behavior of a write-through system is shown in Fig. 3. First, a store operation
at Address a is issued. The write-through policy makes multiple copies of the data item in
the cache memories and the main memory. Next, a load operation follows. The CPU fetches
the data item from the L1 cache and SEUs on the boxes with slanting lines are found to be
influential in reliability of the computer system. Next, a store operation at s(a, 2) comes. The
previous data item at Address a is overridden and the white boxes labeled as s(a, 1) are no
longer influential in reliability of the computer system. Next, the data item in the L1 cache is
replaced with the other data item. The L2 cache becomes the highest level of memory which
has the data item of Address a. Next, a load operation at I(a, 2) follows and the data item is
transferred from the L2 cache to the CPU. With the load operation at I(a, 2), SEUs on the
dotted boxes are found to be influential in reliability of the computer system.

RAM { s(a,1) s(@2) —

L2 Cache

L1 Cache |— % s(a,1) ‘ s(a,2)

5(a,2) |

Register 7 \a,l;% @)t
s(a,1) Ia,1) s@2)  Liflushed  Ka2) e
SEUs counted on /(a,1) SEUs counted on /(a,2) [] SEUSs which does not affect the computer system

Fig. 3. Critical time in the write-through system.



80 Embedded Systems — Theory and Design Methodology

2.5 Simulation-based soft error estimation

As discussed in the previous sections, the retention time of every word item in memory
modules needs to be obtained so that the number of soft errors in a computer system can be
estimated. We adopted a cycle-accurate ISS which can obtain the retention time of every
word item. A simplified algorithm to estimate the number of soft errors for a computer
system to finish a program is shown in Fig. 4. The input to the algorithm is an instruction
sequence, and the output from the algorithm is the accurate number of soft errors,
err0Tgystem, Which occur during program execution.

First, several variables are initialized. Variable errorgystem is initialized with 0. The birth
times of all data items are initialized with the time when the program starts. A for-loop
sentence follows. A cycle-accurate ISS is executed in the for-loop. An iteration loop
corresponds to an execution of an instruction. The number of soft errors is counted for every
instruction item and is accumulated to variable errorsysiem. When variable errorgystem is
updated, the birth time of the corresponding word item is also updated with the present
time. Some computation is additionally done when the present instruction is a store or a
load operation. If the instruction is a load operation, the number of SEUs on the data item
which is found to be critical in the reliability of the computer system is added to variable
erroTystem- A load operation updates the birth time of the data item with the present time. If
the instruction is a store operation, the birth time of all changed word items is updated with
the present time. After the above procedure is applied to all instructions, errorgystem is
outputted as the number of soft errors which occur during the program execution.

Procedure EstimateSoftError
Input: Instruction sequence given by a trace.
Output: the number of soft errors for the system, errorgysem
begin
eTT 0T ystem 18 initialized with 0.
Birth time of every word iterm is initialized with the beginning time.
for all instructions do
// Computation for soft errors in instruction memory
Add the number of critical soft errors of the instruction item to errorgystem-
Update the birth time on the instruction item with the present time.

// Computation for soft errors in data memory

if the current instruction is a load then

Fig. 4. A soft error estimation algorithm.

2.6 Experiments

Using several programs, we examined the number of soft errors during executing each of
them.
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2.6.1 Experimental setup

We targeted a microprocessor-based system consisting of an ARM processor (ARMvA4T,
200MHz), an instruction cache module, and a data cache module, and a main memory
module as shown in Fig. 5. The cache line size and the number of cache-sets are 32-byte and
32, respectively. We adopted the least recently used (LRU) policy as the cache replacement
policy. We evaluated reliability of computer systems with the two write policies, write-
through and write-back ones. The cell-upset rates of both SRAM and DRAM modules are
shown in Table 1. We used the cell-upset rates shown in (Slayman, 2005) as the cell-upset
rates of plain SRAMs and DRAMs. According to Baumann, error detection and correction
(EDAC) or error correction codes (ECC) protection will provide a significant reduction in
failure rates (typically 10k or more times reduction in effective error rates) (Baumann, 2005).
We assumed that introducing an ECC circuit makes reliability of memory modules 10k
times higher.

[-Cache

}

CPU core

—>
Main Memory
ID-Cache[

4

Fig. 5. The target system.

Cell Upset Rate
[FIT/bit] [errors/word/cycle]
w/o ECC w. ECC w/o ECC w. ECC
SRAM 1.0 x 107* 1.0 x 1078 4.4 x 10724 4.4 x 10728
DRAM 1.0 x 10~8 1.0 x 107%2 44 x 10~ 4.4 x 10732

Table 1. Cell upset rates for experiments.

We used three benchmark programs: Compress version 4.0 (Compress), JPEG encoder
version 6b (JPEG), and MPEG2 encoder version 1.2 (MPEG2). We used the GNU C compiler
and debugger to generate address traces. We chose to execute 100 million instructions in
each benchmark program. This allowed the simulations to finish in a reasonable amount of
time. All programs were compiled with “-O3” option. Table 2 shows the code size, activated
code size, and activated data size in words for each benchmark program. The activated code
and data sizes represent the number of instruction and data addresses which were accessed
during the execution of 100 million instructions, respectively.

Code size Activated code size Activated data size
Scode [Words] AS oge [Words] ASgata [words]
Compress 10,716 1,874 140,198
JPEG 30,867 6,129 33,105
MPEG2 33,850 7,853 258,072

Table 2. Specification for benchmark programs.
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2.6.2 Experimental results

Figures 6, 7, and 8 show the results of our soft error estimation method. Four different
memory configurations were considered as follows:

1. non-ECC L1 cache memory and non-ECC main memory,
2. non-ECC L1 cache memory and ECC main memory,
3. ECCL1 cache memory and non-ECC main memory,
4. and ECC L1 cache memory and ECC main memory.

Note that Asadi’s vulnerability estimation methodology (Asadi et al., 2005) does not cover
vulnerability estimation for the second configuration above because their approach is
dedicated to estimating vulnerability of L1 caches. The vertical axis presents the number of
soft errors occurring during the execution of 100 million instructions. The horizontal axis
presents the number of cache ways in a data cache. The other cache parameters, i.e., the line
size and the number of lines in a cache way, are unchanged. The size of the data cache is,
therefore, linear to the number of cache ways in this experiment. The cache sizes
corresponding to the values shown on the horizontal axis are 1 KB, 2 KB, 4 KB, 8 KB, 16 KB,
32 KB, and 64 KB, respectively.
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Fig. 6. Experimental results for Compress.
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According to the experimental results shown in Figures 6, 7, and 8, the number of soft errors
which occurred during a program execution depends on the reliability design of the
memory hierarchy. When the cell-upset rate of SRAMs was higher than that of DRAMs, the
soft errors on cache memories became dominant in the whole soft errors of the computer
systems. The number of soft errors in a computer system, therefore, increased as the size of
cache memories increased. When the cell-upset rate of SRAM modules was equal to that of
DRAM ones, the soft errors on main memories became dominant in the system soft errors in
contrast. The number of soft errors in a computer system, therefore, decreased as the size of
cache memories increased because the larger size of cache memories reduced runtime of a
program as well as usage of the main memory. Table 3 shows the number of CPU cycles to
finish executing the 100 million instructions of each program.

The number of cache ways in a cache memory (1 way = 1 KB)
1 2 4 8 16 32 64
Compress WT 968 523 422 405 390 371 348
WB 1,058 471 325 303 286 267 243
JPEG WT 548 455 364 260 247 245 244
WB 474 336 237 129 110 104 101
WT 497 179 168 168 167 167 167
MPEG2 WB 446 124 110 110 110 110 110

Table 3. The number of CPU cycles for 100 million instructions.

Table 4 shows the results of more naive approaches and our approach. The two naive
approaches, M1 and M2, calculated the number of soft errors using the following equations.

SE; = {Scache *SERg + (Scode + ASdata) 'SERD} ' Ncycle (5)
SE; = {Scache " SERs + (AScode + ASqata) * SERp} - Ncycle (6)

where Scaches Scoder AScoder ASdatar Neycler SERs, SERp denote the cache size, the code size, the
activated code size, the activated data size, the number of CPU cycles, the SER per word per
cycle for SRAM, and the SER per word per cycle for DRAM, respectively. M1 and M2
appearing in Table 4 correspond to the calculations using Equations (5) and (6), respectively.
Our method corresponds to M3. It is obvious that the simple summation of SERs resulted in
large overestimation of soft errors. This indicates that accumulating SERs of all memory
modules in a system resulted in pessimistic estimation. The universal soft error metric other
than the SER is necessary to estimate reliability of computer systems which behave
dynamically. The number of soft errors which occur during execution of a program would
be the universal soft error metric of computer systems.
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The number of cache ways

1 2 4 8 16 32 64

M1 | 2267 | 2417 | 3869 | 7394 | 14216 27068 50755

WT | M2 | 2263 | 2415 | 3867 | 7393 | 14214 27067 50754

Compress M3 | 776 852 1248 | 1458 1541 1724 2446
M1 | 2478 | 2175 | 2976 | 5530 | 10423 19461 35410

WB | M2 | 2474 | 2173 | 2975 | 5529 | 10439 19460 35410

M3 | 999 881 1101 | 1372 1722 2484 4426

M1 | 1262 | 2083 | 3324 | 4735 9013 17867 35556

WT | M2 | 1255 | 2078 | 3320 | 4732 9010 17864 35553

JPEG M3 | 384 670 1355 | 2209 3417 4801 7977

M1 | 1092 | 1540 | 2160 | 2355 4024 7593 14759

WB | M2 | 1087 | 1536 | 2157 | 2354 4023 7592 14758

M3 | 369 558 941 1147 1664 2323 3407

M1 | 1197 | 838 1550 | 3167 6310 12217 24411

WT | M2 | 1191 836 1548 | 3069 6118 12215 24410

MPEG2 M3 | 561 453 613 705 718 754 813
M1 | 1073 578 1019 | 2016 4016 8017 16016

WB | M2 | 1067 | 577 1018 | 2015 4015 8016 16015

M3 | 494 321 410 474 492 534 616

Table 4. The number of soft errors which occur during execution [10~7errors/instruction].

2.7 Conclusion

This section discussed the simulation-based soft error estimation technique which sought the
accurate number of soft errors for a computer system to finish running a program. Depending
on application programs which are executed on a computer system, its reliability changes. The
important point to emphasize is that seeking for the number of soft errors to run a program is
essential for accurate soft-error estimation of computer systems. We estimated the accurate
number of soft errors of the computer systems which were based on ARM V4T architecture.
The experimental results clearly showed the following facts.

e It was found that there was a great difference between the number of soft errors
derived with our technique and that derived from the simple summations of the static
SERs of memory modules. The dynamic behavior of computer systems must be taken
into account for accurate reliability estimation.

e The SER of a computer system virtually increases with a larger cache memory adopted
because the SER is calculated by summing up the SERs of memory modules utilized in
the system. It was, however, found that the number of soft errors to finish a program
was reduced with larger cache memories in the computer system that had an ECC L1
cache and a non-ECC main memory. This is because the soft errors in cache memories
were negligible and the retention time of data items in the main memory was reduced

by the performance improvement.
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3. Reliable microprocessor synthesis for embedded systems

DER is one of the themes of urgent concern. Coding and parity techniques are popular
design techniques for detecting or correcting SEUs in memory modules. Exploiting triple
modular redundancy (TMR) is also a popular design technique which decides a correct
value by voting on a correct value among three identical modules. These techniques have
been well studied and developed. Elakkumanan et al. proposed a DFR technique for logic
circuits, which exploits time redundancy by using scan flip-flops (Elakkumanan, 2006).
Their approach updates a pair of flip-flops at different moments for an output signal to
duplicate for higher reliability. Their approach is effective in ICs which have scan paths. We
reported that there exists a trade-off between performance and reliability in a computer
system and proposed a DFR technique by adjusting the size of vulnerable cache memory
online (Sugihara et al., 2007a, 2008b). The work presented a reliable cache architecture which
offered performance and reliability modes. More cache memory is used in the performance
mode while less cache memory is used in the reliability mode to avoid SEUs. All tasks are
statically scheduled under real-time and reliability constraints. The demerit of the approach
is that switching operation modes causes performance and area overheads and might be
unacceptable to high-performance or general-purpose microprocessors. We also proposed a
task scheduling scheme which minimized SEU vulnerability of a heterogeneous
multiprocessor under real-time constraints (Sugihara, 2008a, 2009a). Architectural
heterogeneity among CPU cores offers a variety of reliability for a task. We presented a task
scheduling problem which minimized SEU vulnerability of an entire system under a real-
time constraint. The demerit of the approach is that the fixed heterogeneous architecture
loses general-purpose programmability. We also presented a dynamic continuous signature
monitoring technique which detects a soft error on a control signal (Sugihara, 2010a, 2011).

This section reviews a system synthesis approach for a heterogeneous multiprocessor
system under performance and reliability constraints (Sugihara, 2009b, 2010b). To our best
knowledge, this is the first study to synthesize a heterogeneous multiprocessor system with
a soft error issue taken into account. In this section we use the SEU vulnerability factor as a
vulnerability factor. The other vulnerability factors, however, are applicable to our system
synthesis methodology as far as they are capable to estimating task-wise vulnerability on a
processor. If a single event transient (SET) is a dominant factor to fail a system, a
vulnerability factor which can treat SETs should be used in our heterogeneous
multiprocessor synthesis methodology. Our methodology assumes that a set of tasks are
given and that several variants of processors are given as building blocks. It also assumes
that real-time and vulnerability constraints are given by system designers. Simulation with
every combination of a processor model and a task characterizes performance and
reliability. Our system synthesis methodology uses the values of the chip area of every
building block, the characterized runtime and vulnerability, and the given real-time and
vulnerability constraints in order to synthesize a heterogeneous multiprocessor system
whose chip area is minimal under the constraints.

3.1 Performance and reliability in various processor configurations

A processor configuration, which specifies instruction set architecture, the number of
pipeline stages, the size of cache memory, cache architecture, coding redundancy, structural
redundancy, temporal redundancy, and so on, is a major factor to determine chip area,
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performance and reliability of a computer system. One must carefully select a processor
configuration for each processor core of their products so that they can make the price of
their products competitive. From the viewpoint of reliability, processor configurations are
mainly characterized by the following design parameters.

e  Coding techniques, i.e. parity and Hamming codes.

e Modular redundancy techniques i.e. double modular redundancy (DMR) and triple
modular redundancy (TMR).

e Temporal redundancy techniques, i.e. multiple executions of a task and multi-timing
sampling of outputs of a combinational circuit.

o  The size of cache memory. We reported that SRAM is a vulnerable component and the
size of cache memory would be one of the factors which characterize processor
reliability (Sugihara et al., 2006, 2007b).

Design parameters are required to offer various alternatives which cover a wide range of
chip area, performance, and reliability for building a reliable and small multiprocessor. This
chapter mainly focuses on the size of cache memory as an example of variable design
parameters in explanation of our design methodology. The other design parameters as
mentioned above, however, are applicable to our heterogeneous multiprocessor synthesis
paradigm.
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Fig. 9. Cache size vs SEU vulnerability and performance for susan (input_small, smooth).

Fig. 9 is an example that the cache size, which is one of design parameters, changes runtime
and reliability of a computer system. We assumed that the cache line size is 32 bytes and
that the number of cache-sets is 32. Changing the number of cache ways from 0 to 64 ranges
from 0 to 64 KB of cache memory. For plotting the graph, we utilized an ARM CPU core
(ARMvAT instruction set, 200 MHz) and a benchmark program susan, which is a program
from the MiBench benchmark suite (Guthaus et al., 2001), with an input file input small and
an option “-s”. We utilized the vulnerability estimation approach we had formerly proposed
(Sugihara, 2006 2007b). For the processor configuration, we assumed that SRAM and
DRAM modules have their own SEC-DED (single error correction and double error
detection) circuits. We regarded SETs in logic circuitry as negligible ones because of its
infrequency. Note that vulnerability of SRAM in the L1 cache is dominant in the entire
vulnerability of the system and that of DRAM in main memory is too small to see in the
figure. The figure shows that, as the cache size increases, runtime decreases and SEU
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vulnerability increases. The figure shows that the SEU vulnerability converged at 16 KB of a
cache memory. This is because using more cache ways than 16 ones did not contribute to
reducing conflict misses and did not increase temporal and spatial usage of the cache
memory, which determined the SEU vulnerability factor. The cache size at which SEU
vulnerability converges depends on a program, input to the program, and cache parameters
such as the size of a cache line, the number of cache sets, the number of cache ways, and its
replacement policy. The figure shows that most of SEU vulnerability of a system is caused
by SRAM circuitry. It clearly shows that there is a trade-off between performance and
reliability. A design paradigm in which chip area, performance and reliability can be taken
into account is of critical importance in the multi-CPU core era.

3.2 Heterogeneous multiprocessor synthesis

It is quite important to consider the trade-off among chip area, performance, and reliability
of a system which one develops. As we discussed in the previous section, chip area,
performance and reliability vary among processor configurations. This section discusses a
heterogeneous multiprocessor synthesis methodology in which an optimal set of processor
configurations are sought under real-time and reliability constraints so that the chip area of
a multiprocessor system is minimized.

3.2.1 Overview of heterogeneous multiprocessor synthesis

We show an overview of a heterogeneous multiprocessor synthesis methodology, that is a
design paradigm in which a heterogeneous multiprocessor is synthesized and its chip area
is minimized under real-time and SEU vulnerability constraints. Figure 10 shows the design
flow based on our design paradigm. In the design flow, designers begin with specifying
their system. Once they fix their specification, they begin to develop their hardware and
software. They may use IP (intellectual property) of processor cores which they designed or
purchased before. They may also develop a new processor core if they do not have one
appropriate to their system. Various processor configurations are to be prepared by
changing design parameters such as their cache size, structural redundancy, temporal
redundancy, coding redundancy, and anything else which strongly affects vulnerability,
performance, and chip area. Increasing design parameters expands the number of processor
configurations, enlarges design space to explore, and causes a long synthesis time. Design
parameters should be chosen to offer design alternatives among chip area, performance, and
reliability. Even if any design parameter can be treated in a general optimization procedure,
design parameters should be carefully chosen in order to avoid large design space
exploration. A design parameter which offers slight difference regarding chip area,
performance, and reliability would result in a long synthesis time and should be possibly
excluded from our multiprocessor synthesis. Software is mainly developed at a granularity
level of tasks. ISS is performed with the object codes for obtaining accurate runtime and SEU
vulnerability on every processor configuration. SEU vulnerability can be easily obtained
with the vulnerability estimation techniques previously mentioned. We used the reliability
estimation technique (Sugihara et al., 2006, 2007b) throughout this chapter but any other
technique can be used as far as it is capable of estimating task-wise reliability on a processor
configuration. When SETs become dominant in reliability of a computer system, one should
use a reliability estimation technique which treats SETs. Our heterogeneous multiprocessor
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synthesis paradigm is basically independent of a reliability estimation technique as far as it
characterizes task-wise runtime and vulnerability. One should specify reliability and
performance constraints from which one obtains the upper bound of the SEU vulnerability
factor for every task, the upper bound of the SEU vulnerability for total tasks, and arrival
and deadline times of all tasks. From the specification and the hardware and software
components which one has given, a mixed integer linear programming (MILP) model to
synthesize a heterogeneous multiprocessor system is automatically generated. By solving
the MILP model with the generic solving procedure, an optimal configuration of the
heterogeneous multiprocessor is sought. This chapter mainly focuses on defining the
heterogeneous multiprocessor synthesis problem and building an MILP model to synthesize
a heterogeneous multiprocessor system. Subsection 3.2.2 formally defines the heterogeneous
multiprocessor synthesis problem and Subsection 3.2.3 gives an MILP model for the
problem.

Determine all
specification items
of the system

i

Specify possible
Code all tasks processor
configurations
I I :
Arrival and deadline
times of all tasks and
the upper bounds of
SEU vulnerability factors,

Specify timing and
reliability constraints

Architecture
models

l l

Synthesize a netlist with
Compile RTL data for all processor
configurations

! !

Area and delay of
all processors

Programs

Object codes

!
Peform ISS to estimate
runtime and
SEU vulnerability

!

Estimates for
runtime and
SEU vulnerability,

Generate an MILP model
to synthesize a heterogeneous
multiprocessor system

!

A heterogeneous
multiprocessor

Fig. 10. Our design paradigm.

3.2.2 Problem definition

We now address a mathematical problem in which we synthesize a heterogeneous
multiprocessor system and minimize its chip area under real-time and SEU vulnerability
constraints. We synthesize a heterogeneous multiprocessor on which Ny, tasks are
executed. Ncpy processor configurations are given as building blocks for the heterogeneous
multiprocessor system. The chip area of Processor Configuration k, 1 < k < Ncpy, is given
with A,. We assume that all the tasks are non-preemptive on the heterogeneous
multiprocessor system. Preemption causes large deviations between the worst-case
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execution times (WCET) of tasks that can be statically guaranteed and average-case
behavior. Non-preemptivity gives a better predictability on runtime since the worst-case is
closer to the average case behavior. Task i, 1 < i < Ni,gx, becomes available to start at its
arrival time Typriva;, and must finish by its deadline time Tgcagiine;- Task i runs for Duration
Druntime;, on Processor Configuration k. The SEU vulnerability factor for Task i to run on
Processor Configuration k, V;y, is the number of critical SEUs which occur during the task
execution. We assume that one specifies the upper bound of the SEU vulnerability factor of
Task i, Vconst,, and the upper bound of the SEU vulnerability factor of the total tasks, Veonst,,-

The heterogeneous multiprocessor synthesis problem that we address in this subsection is to
minimize the chip area of a heterogeneous multiprocessor system by optimally determining
a set of processor cores constituting a heterogeneous multiprocessor system, the start times
51,82, Sy, fOr all tasks, and assignments of a task to a processor core. The heterogeneous
multiprocessor synthesis problem Py is formally stated as follows.

e Pyys: For given Ny tasks, Ncpy processor configurations, the chip area Ay of Processor
Configuration k, arrival and deadline times of Task i, Tarriva; and Tgeadiine;, duration
Druntime;, for which Task i runs on Processor Configuration k, the SEU vulnerability
factor V;, for Task i to run on Processor Configuration k, the upper bound of the SEU
vulnerability factor for Task i, Veons, , and the upper bound of the SEU vulnerability
factor for total tasks, Vonst,,, determine an optimal set of processor cores, assign every
task to an optimal processor core, and determine the optimal start time of every task
such that (1) every task is executed on a single processor core, (2) every task starts at or
after its arrival time and completes by its deadline, (3) the SEU vulnerability of every
task is less than or equal to that given by system designers, (4) the total SEU
vulnerability of the system is less than or equal to that given by system designers and
(5) the chip area is minimized.

3.2.3 Problem definition

We now build an MILP model for Problem Pyys. From the assumption of non-preemptivity,
the upper bound of the number of processors of the multiprocessor system is given by the
number of tasks, Nygk. Let x;j, 1 <i < Nyygr, 1 < j < Niugi be a binary variable defined as
follows:

Yoo = {1 if Task i is assigned to Processor j, @)
10 otherwise.
Let yjx, 1 <j < Ngask, 1 < k < Ngpy be a binary variable defined as follows:
o {1 if one takes Processor Configuration k as the one of Processor j, ®)
Yik =10 otherwise.

The chip area of the heterogeneous multiprocessor is the sum of the total chip areas of all
processor cores used in the system. The total chip area Ag;p, which is the objective function,
is, therefore, stated as follows:

Achip = X jk AxYjk- )
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The assumption of non-preemptivity causes a task to run on only a single processor. The
following constraint is, therefore, introduced.

21 xl-’]- = 1, 1<Vvi< Ntask- (10)

If a task is assigned to a single processor, the processor must have its entity. The following
constraint, therefore, is introduced.

Xij=1-XkYjk =11 Vi< Nigg, 1 < V) < Neage (11)

The reliability requirement varies among tasks, depending on the disprofit of a failure event
of a task. We assume that one specifies the upper bound of the SEU vulnerability factor for
each task. The SEU vulnerability factor of Task i must be less than or equal to Vonst,. The
SEU vulnerability factor of a task is determined by assignment of the task to a processor.
The following constraint, therefore, is introduced.

Zj,k Vi,k Xi,jVjk < Vconsti' 1svi< Ntask- (12)

The SEU vulnerability factor of the heterogeneous multiprocessor system is the sum of the
SEU vulnerability factors of all tasks. The SEU vulnerability of the computer system Veyp,
therefore, is stated as follows.

Venip = Zijie Vik Xi,jYj k- (13)

We assume that one specifies an SEU vulnerability constraint, which is the upper bound of
the SEU vulnerability of the system, and so the following constraint is introduced.

Vchip < Vconstan . (14)

Task i starts between its arrival time Taprivay, and its deadline time Tgeaqiine;. A variable for
start time s; is, therefore, bounded as follows.

Tarrivali =5 = Tdeadlinei/ 1svis Ntask (15)

Task i must finish by its deadline time Tyeagiine;- A constraint on the deadline time of the
task is introduced as follows.

si+ Zj,k Druntimei,k Xi,jYjk = Tdeadlineir l<svis< Ntask (16)

Now assume that two tasks il and i2 are assigned to Processor j and that its processor
configuration is Processor Configuration k. Formal expressions for these assumptions are
shown as follows:

Xi1,j = Xizj = Yjx = 1. 17)

Two tasks are simultaneously inexecutable on the single processor. The two tasks must be
sequentially executed on the single processor. Two tasks il and i2 are inexecutable on the
single processor if s;; < iz + Druntime;,, @1d Si1 + Druntimey, , > Siz- The two tasks, inversely,
are executable on the processor under the following constraints.

Xinj = Xizj = Vi =1 {(sa + Druntimegy o < si2) V (si2 + Druntimey, e < si1)},
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1<Vil<Vi2 < Ntaskr 1< V] < Ntaskr and 1< vk < Ncpu. (18)

The heterogeneous multiprocessor synthesis problem is now stated as follows.

Minimize the cost function Achip = Xk Ak Vjx

subject to
Y% =1,1< Vi< Ngge.
xj=1- Zkyj,k =1,1 Vi < Nigsy 1 £ Vj < Nigske
2k Vik XijVik < Veonstp 1 < Vi < Neggk-

1.

2

3

4. YiiVikxijVik < Veonsty-

5 si+ Zj,k Druntimei,k Xi,jVjk < Tdeadlinei' 1svi< Ntask-
6

X =Xz =Yg =1-{(su+ Druntime;y o < siz) V (siz + Druntime, ; < sin)}, 1<vil<
Vi2 < Ntask' 1< V] < Ntaskr and 1 < Vk < Ncpu.

Variables
e x;;isabinary variable, 1 < Vi < Ny, 1 < Vj < Negge
® ;i isabinary variable, 1 < Vj < Niuek, 1 < VK < Nepy.

e s;isareal variable, 1 < Vi < Niyggi-

Bounds

® Tarrival,- <5 < Tdeadlinei' 1 < Vi < Nigske

The above nonlinear mathematical model can be transformed into a linear one using
standard techniques (Williams, 1999) and can be solved with an LP solver. Seeking optimal
values for the above variables determines hardware and software for the heterogeneous
system. Variables x; ; and s; determine the optimal software and Variable y;; determines
the optimal hardware. The other variables are the intermediate ones in the problem. As we
showed in Subsection 3.2.2, the values Niasi, Ncpu, Ak Tarrivalyy Druntime; s Vi Veonst; - and
Veonst,, are given. Once these values are given, the above MILP model can be generated
automatically. Solving the generated MILP model optimally determines a set of processors,
assignment of every task to a processor core, and start time of every task. The set of
processors constitutes a heterogeneous multiprocessor system which satisfies the minimal
chip area under real-time and SEU vulnerability constraints.

3.3 Experiments and results
3.3.1 Experimental setup

We experimentally synthesized heterogeneous multiprocessor systems under real-time and
SEU vulnerability constraints. We prepared several processor configurations in which the
system consists of multiple ARM CPU cores (ARMv4T, 200 MHz). Table 5 shows all the
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processor configurations we hypothetically made. They are different from one another
regarding their cache sizes. For the processor configurations, we adopted write-through
policy (Hennessy & Patterson, 2002) as write policy on hit for the cache memory. We also
adopted the LRU policy (Hennessy & Patterson, 2002) for cache line replacement. For
experiment, we assumed that each of ARM cores has its own memory space and does not
interfere the execution of the others. The cache line size and the number of cache-sets are 32
bytes and 32, respectively. We did not adopt error check and correct (ECC) circuitry for all
memory modules. Note that the processor configurations given in Table 5 are just examples
and the other design parameters such as coding redundancy, structural redundancy,
temporal redundancy, and anything else which one wants, are available. The units for

runtime and vulnerability in the table are M cycles/execution and 1078 errors/execution
respectively.
L1 cache size [KB] Hypothetical chip area [a.u.]

Conf. 1 0 64

Conf. 2 1 80

Conf. 3 2 96

Conf. 4 4 128

Conf. 5 8 192

Conf. 6 16 320

Table 5. Hypothetical processor configurations for experiment.

We used 11 benchmark programs from MiBench, the embedded benchmark suite (Guthaus
et al., 2001). We assumed that there were 25 tasks with the 11 benchmark programs. Table 6
shows the runtime, the SEU vulnerability, and the SER of a task on every processor
configuration.

As the size of input to a program affects its execution time, we regarded execution instances
of a program, which are executed for distinct input sizes, as distinct jobs. We also assumed
that there was no inter-task dependency. The table shows runtime and SEU vulnerability for
every task to run on all processor configurations. These kinds of vulnerabilities can be
obtained by using the estimation techniques formerly mentioned. In our experiments, we
assumed that the SER of SRAM modules is 1.0 x 10™* [FIT/bit], for which we referred to
Slayman’s paper (Slayman, 2005), and utilized the SEU vulnerability estimation technique
which mainly estimated the SEU vulnerability of the memory hierarchy of systems
(Sugihara et al., 2006, 2007b). Note that our synthesis methodology does not restrict
designers to a certain estimation technique. Our synthesis technique is effective as far as the
trade-off between performance and reliability exists among several processor
configurations.

We utilized an ILOG CPLEX 11.2 optimization engine (ILOG, 2008) for solving MILP
problem instances shown in Section 3.2 so that optimal heterogeneous multiprocessor
systems whose chip area was minimal were synthesized. We solved all heterogeneous
multiprocessor synthesis problem instances on a PC which has two Intel Xeon X5365
processors with 2 GB memory. We gave 18000 seconds to each problem instance for
computation. We took a temporal schedule for unfinished optimization processes.
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Task 1 Task 2 Task 3 | Task4 | Task5 | Task 6 Task 7
Program name bscmth bitcnts bf bf bf cre dijkstra
Input bscmth_sml | bitents_sml | bf_sml1 |bf_sml2 |bf_sml3 | crc_sml | dijkstra_sml
Runtime on Conf. 1 1980.42 239.91 328.69 1.37 2.46 188.22 442 .41
Runtime on Conf. 2 1011.63 53.32 185.52 1.05 1.66 43.72 187.67
Runtime on Conf. 3 834.11 53.25 93.68 0.32 0.63 42.97 134.31
Runtime on Conf. 4 684.62 53.15 75.03 0.26 0.51 42.97 93.31
Runtime on Conf. 5 448.90 53.15 74.86 0.26 0.51 42.97 86.51
Runtime on Conf. 6 205.25 53.15 74.86 0.26 0.51 42.97 83.05
Vulnerability on Conf. 1 4171.4 315.1 376.1 1.7 3.1 171.2 2370.3
Vulnerability on Conf.2 | 965179.8 41038.1 |334963.9| 1708.0 | 2705.0 |132178.3| 277271.4
Vulnerability on Conf. 3 | 1459772.8 94799.9 |546614.4| 1540.6 | 3154.7 |152849.7| 385777.1
Vulnerability on Conf. 4 | 2388614.3 222481.6 [709463.0| 1301.9 | 3210.0 {186194.8| 591639.0
Vulnerability on Conf. 5 | 5602028.0 424776.5 |740064.1| 1354.9 | 3367.6 |191300.9| 846289.5
Vulnerability on Conf. 6 | 6530436.1 426503.9 |740064.1| 1354.9 | 3367.6 |193001.8| 1724177.3

Task 8 Task 9 Task 10 | Task 11 Task 12 Task 13 Task 14 | Task15 | Task 16

dijkstra fft fft jpeg jpeg jpeg jpeg gsort sha
dijkstra_lrg | fft_smll | fft_ sml2 |jpeg smll |jpeg_sml2 | jpeg Irgl |jpeg lrg2 | gqsort_sml | sha_sml
2057.38 850.96 | 1923.92 238.82 66.30 896.22 229.97 153.59 95.28
832.04 412.71 935.99 86.04 32.56 319.03 111.72 75.57 20.04
626.39 286.91 641.06 58.85 18.51 270.63 59.29 46.12 17.23
434.72 224.98 479.29 52.79 14.62 198.36 51.36 45.00 17.06
40041 183.04 417.04 51.17 14.12 192.59 50.00 44.05 16.74
382.88 182.60 417.02 50.89 14.12 191.62 49.23 43.04 16.74

11417.5 3562.3 12765.0 4160.3 169.2 56258.2 755.9 10589.2 140.6
1252086.8 | 463504.7 |1091299.2 | 140259.8 | 53306.2 |11540509.4 | 161705.0 | 118478.2 | 30428.2
1811976.1 | 667661.5 |1598447.8 | 1844171.5 | 70113.3 |11850739.6 | 206141.0 | 130503.2 | 46806.2
2880579.7 |1133958.1 | 2651166.5 | 316602.2 | 118874.8 | 1151005.5 | 415712.0 | 174905.9 | 88481.7
4148898.8 |1476214.0|3038682.2 | 501870.4 | 197558.2 | 1855734.6 | 620950.8 | 223119.3 |153368.5
8638330.6 |4042453.5|3223703.4 | 655647.4 | 283364.1 | 2480431.9 |1181311.0 | 323458.3 |153589.2

Task 17 Task 18 Task 19 Task 20 | Task21 | Task22 | Task23 | Task24 | Task?25
sha strsrch strsrch ssn ssn ssn ssn ssn ssn
sha_lrg | strgsrch_sml | strsrch_lrg | ssn_smll | ssn_sml2 | ssn_sml3 | ssn_Irgl | ssn_Irg2 |ssn_lrg3
991.69 1.75 43.02 143.30 28.42 12.13 2043.75 849.21 226.69
208.21 1.04 23.63 30.08 11.71 5.10 390.87 379.17 105.44
177.25 0.62 14.33 20.96 7.45 2.82 282.18 245.82 58.83
173.88 0.45 10.49 20.25 5.09 242 279.57 148.28 43.05
173.88 0.45 10.48 20.24 5.07 242 279.48 147.57 43.02
173.88 0.45 10.48 20.24 5.05 242 279.45 147.57 43.01
1465.8 1.2 68.7 2229 121.9 443 16179.7 38144.7 | 11476.0
317100.1 1106.5 27954.0 52800.4 | 12776.3 7369.5 | 515954.7 | 467280.9 |267585.5
487613.4 1611.7 51986.9 55307.3 | 21487.3 8247.0 665690.1 | 930325.9 |309314.3
929878.2 1732.8 80046.3 79470.4 | 24835.8 | 10183.9 |2215638.8 | 1152520.6 | 315312.6
1618482.9 1773.3 87641.1 168981.9 | 31464.6 | 13495.2 |2748450.9 | 1373224.1 | 377518.1
1620777.6 1773.3 89015.0 | 196048.8 | 46562.1 | 16895.8 |2896506.3 | 1662613.3 | 439999.9

Table 6. Benchmark programs.
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3.3.2 Experimental results

We synthesized heterogeneous multiprocessor systems under various real-time and SEU
vulnerability constraints so that we could examine their chip areas. We assumed that the
arrival time of every task was zero and that the deadline time of every task was same as the
others. We also assumed that there was no SEU vulnerability constraint on each task, that is
Veonstraint; = . Generally speaking, the existence of loosely-bounded variables causes long
computation time. It is quite easy to guess that the assumptions make exploration space
huge and result in long computation time. The assumption, however, is helpful to obtaining
the lower bound on chip area for given SEU vulnerability constraints. The deadline time of
all tasks ranged from 3500 to 9500 million cycles and SEU vulnerability constraints of an
entire system ranged from 500 to 50000 [10~%5 errors/system]. Fig. 11 shows the results of
heterogeneous multiprocessor synthesis. Chip area ranged from 80 to 320 in arbitrary unit.
When we tightened the SEU vulnerability constraints under fixed real-time constraints,
more processor cores which have no cache memory were utilized. Similarly, when we
tightened the real-time constraints under fixed SEU vulnerability constraints, more
processor cores which had a sufficient and minimal size of cache memory were utilized.
Tighter SEU vulnerability constraints worked for selecting a smaller size of a cache memory
while tighter real-time constraints worked for selecting a larger size of a cache memory. The
figure clearly shows that relaxing constraints reduced the chip area of a multiprocessor
system.

Chip area
150  [aul

100

50

3500
4500
5500 0

6500 1000

7500 5000
10000

Real ti traint 850
eal time constrain 50000 SEU vulnerability
(deadline time) constraint

[M cycles] [107"% errors/system]

Fig. 11. Heterogeneous multiprocessor synthesis result.

We show four synthesis examples in Tables 7, 8, 9, and 10. We name them HS;, HS,, HS3,
and HS, respectively. For Synthesis HS;, we gave the constraints that Tycadiine; = 3500 [M
cycles] and Vggnst,, = 5000 [107*> errors/system]. In this synthesis, a heterogeneous
multiprocessor was synthesized which had two Conf. 1 processor cores and a Conf. 2
processor core as shown in Table 7.
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For Synthesis HS,, we gave the constraints that Tgeaqiine; = 3500 [M cycles] and Veopst,, =
500 [107% errs/syst]. Only the constraint on Veopst,, became tighter in Synthesis HS, than in
Synthesis HS;. Table 8 shows that more reliable processor cores were utilized for achieving
the tighter vulnerability constraint.

For Synthesis HS;, we gave the constraints that Tgeaqiine; = 3500 [M cycles] and Veonst,, =
50000 [107%5 errs/syst]. Only the constraint on Veonst,, became looser than in Synthesis HS;.
In this synthesis, a single Conf. 4 processor core was utilized as shown in Table 9. The looser
constraint caused that a more vulnerable and greater processor core was utilized. The chip
area was reduced in total.

For Synthesis HS,, we gave the constraints that Tgeadline, = 4500 and Veonet,, = 5000 [1071°
errs/syst]. Only the constraint on Tgeaqiine; Pecame looser than in Synthesis HS;. In this
synthesis, a Conf. 1 processor core and a Conf. 2 processor core were utilized as shown in
Table 10. The looser constraint on deadline time caused that a subset of the processor cores
in Synthesis HS; were utilized to reduce chip area.

| Tasks
CPU 1 (Conf. 1) {10, 13, 20, 25}
CPU 2 (Conf. 1) {17, 23}
CPU 3 (Conf. 2) {1,2,3,4,5,6,7,8,9,11,12, 14, 15, 16, 18, 19, 21, 22, 24}

Table 7. Result for HS; (Tgeadiine; = 3.5 X 10° cycles, Veonst,, = 5 X 1072 errs/syst).

| Tasks
CPU 1 (Conf. 1) {1,2,3,4,5,6,7,11, 18, 22}
CPU 2 (Conf. 1) {8,9, 14, 15, 16, 21}
CPU 3 (Conf. 1) {10, 12, 13, 19, 25}
CPU 4 (Conf. 1) {17, 20, 23}
CPU 5 (Conf. 1) {24}

Table 8. Result for HS, (Tgeadiine; = 3-5 X 10° cycles, Vegngt,, = 5 X 10713 errs/syst).

| Tasks
CPU 1 (Conf. 4)[{1,2,3,4,5,6,7,8,9,10,11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}

Table 9. Result for HS3 (Tgeadiine; = 3-5 X 10° cycles, Vegngt,, = 5 X 1071 errs/syst).

| Tasks
CPU 1 (Conf. 1) {1, 6,10, 14, 16, 19, 21, 25}
CPU 2 (Conf. 2) {2,3,4,5,7,89,11,12,13,14, 15,17, 18, 20, 22, 23, 24}

Table 10. Result for HS, (Tgeadiine; = 4.5 X 10° cycles, Voot = 5 X 1072 errs/syst).

3.3.3 Conclusion

We reviewed a heterogeneous multiprocessor synthesis paradigm in which we took real-
time and SEU vulnerability constraints into account. We formally defined a heterogeneous
multiprocessor synthesis problem in the form of an MILP model. By solving the problem
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instances, we synthesized heterogeneous multiprocessor systems. Our experiment showed
that relaxing constraints reduced chip area of heterogeneous multiprocessor systems. There
exists a trade-off between chip area and another constraint (performance or reliability) in
synthesizing heterogeneous multiprocessor systems.

In the problem formulation we mainly focused on heterogeneous “multi-core” processor
synthesis and ignored inter-task communication overhead time under two assumptions: (i)
computation is the most dominant factor in execution time, (ii) sharing main memory and
communication circuitry among several processor cores does not affect execution time.
From a practical point of view, runtime of a task changes, depending on the other tasks
which run simultaneously because memory accesses from multiple processor cores may
collide on a shared hardware resource such as a communication bus. If task collisions on a
shared communication mechanism cause large deviation on runtime, system designers may
generate a customized on-chip network design with both a template processor configuration
and the Drinic’s technique (Drinic et al., 2006) before heterogeneous system synthesis so that
such collisions are reduced.

From the viewpoint of commodification of ICs, we think that a heterogeneous
multiprocessor consisting of a reliable but slow processor core and a vulnerable but fast one
would be sufficient for many situations in which reliability and performance requirements
differ among tasks. General-purpose processor architecture should be studied further for
achieving both reliability and performance in commodity processors.

4. Concluding remarks

This chapter presented simulation and synthesis technique for a computer system. We
presented an accurate vulnerability estimation technique which estimates the
vulnerability of a computer system at the ISS level. Our vulnerability estimation technique
is based on cycle-accurate ISS level simulation which is much faster than logic, transistor,
and device simulations. Our technique, however, is slow for simulating large-scale
programs. From the viewpoint of practicality fast vulnerability estimation techniques
should be studied.

We also presented a multiprocessor synthesis technique for an embedded system. The
multiprocessor synthesis technique is powerful to develop a reliable embedded system. Our
synthesis technique offers system designers a way to a trade-off between chip area,
reliability, and real-time execution. Our synthesis technique is mainly specific to “multi-
core” processor synthesis because we simplified overhead time for bus arbitration. Our
synthesis technique should be extended to “many-core” considering overhead time for
arbitration of communication mechanisms.
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1. Introduction

Real-time embedded systems were originally oriented to industrial and military special
purpose equipments. Nowadays, mass market applications also have real-time requirements.
Results do not only need to be correct from an arithmetic-logical point of view but they
also need to be produced before a certain instant called deadline (Stankovic, 1988). For
example, a video game is a scalable real-time interactive application that needs real-time
guarantees; usually real-time tasks share the processor with other tasks that do not have
temporal constraints. To organize all these tasks, a scheduler is typically implemented.
Scheduling theory addresses the problem of meeting the specified time requirements and it is
at the core of a real-time system.

Paradoxically, the significant growth of the market of embedded systems has not been
accompanied by a growth in well-established developing strategies. Up to now, there is not an
operating system dominating the market; the verification and testing of the systems consume
an important amount of time.

A sign of this is the contradictory results between two prominent reports. On the one hand,
The Chaos Report (The Chaos Report, 1994) determined that about 70 % had problems; 60 % of
those projects had problems with the statement of requirements. On the other hand, a more
recent evaluation (Maglyas et al., 2010) concluded that about 70% of them could be considered
successful. The difference in the results between both studies comes from the model adopted
to analyze the collected data. While in The Chaos Report (1994) a project is considered to be
successful if it is completed on time and budget, offering all features and functions as initially
specified, in (Maglyas et al., 2010) a project is considered to be successful even if there is a
time overrun. In fact, in (Maglyas et al., 2010) only about 30% of the projects were finished
without any overruns, 40% have time overrun and the rest of the projects have both overruns
(budget and time) or were cancelled. Thus, in practice, both studies coincide in that 70 % of
the projects had some kind of overrun but they differ in the criteria used to evaluate a project
as successful.

In the literature there is no study that conducts this kind of analysis for real time projects in
particular. The evidence from the reports described above suggests that while it is difficult
to specify functional requirements, specifying non functional requirements such as temporal
constraints, is likely to be even more difficult. These usually cause additional redoes and
errors motivated by misunderstandings, miscommunications or mismanagement. These
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errors could be more costly on a time critical application project than on a non real time one
given that not being time compliant may cause a complete re-engineering of the system. The
introduction of non-functional requirements such as temporal constraints makes the design
and implementation of these systems increasingly costly and delays the introduction of the
final product into the market. Not surprisingly, development methodologies for real-time
frameworks have become a widespread research topic in recent years.

Real-time software development involves different stages:  modeling, temporal
characterization, implementation and testing. In the past, real-time systems were developed
from the application level all the way down to the hardware level so that every piece of code
was under control in the development process. This was very time consuming. Given that the
software is at the core of the embedded system, reducing the time needed to complete these
activities reduces the time to market of the final product and, more importantly, it reduces the
final cost. In fact, as hardware is becoming cheaper and more powerful, the actual bottleneck
is in software development. In this scenario, there is no guarantee that during the software
life time the hardware platform will remain constant or that the whole system will remain
controlled by a unique operating system running the same copy of the operating embedded
software. Moreover, the hardware platform may change even while the application is being
developed. Therefore, it is then necessary to introduce new methods to extend the life time of
the software (Pleunis, 2009).

In this continuously changing environment it is necessary to introduce certainty for the
software continuity. To do such a thing, in the last 15 years the paradigm Write Once Run
Anywhere (WORA) has become dominant. There are two alternatives for this: Java and
NET. The first one was first introduced in the mid nineties and it is supported by Sun
Microsystems and IBM among others (Microsystems, 2011). Java introduces a virtual machine
that eventually runs on any operating system and hardware platform. .NET was released at
the beginning of this century by Microsoft and is oriented to Windows based systems only
and does not implement a virtual machine but produces a specific compilation of the code for
each particular case. (Zerzelidis & Wellings, 2004) analyze the requirements for a real-time
framework for .NET.

Java programming is well established as a platform for general purpose applications.
Nevertheless, hardware independent languages like Java are not used widely for the
implementation of control applications because of low predictability, no real-time garbage
collection implementation and cumbersome memory management (Robertz et al., 2007).
However, this has changed in the last few years with the definition and implementation of
the Real-Time Specification for Java. In 2002, the specification for the real-time Java (RTS])
proposed in (Gosling & Bollella, 2000) was finally approved (Microsystems, 2011). The first
commercial implementation was issued in the spring of 2003. In 2005, the RTS] 1.0.1 was
released together with the Real-Time Specification (RI). In September 2009 Sun released the
Java Real-Time System 2.2 version which is the latest stable one. The use of RTSJ as a
development language for real-time systems is not generalized, although there have been
many papers on embedded systems implementations based on RTS] and even several full Java
microprocessors on different technologies have been proposed and used (Schoeberl, 2009).
However, Java is penetrating into more areas ranging from Internet based products to small
embedded mobile products like phones as well as from complex enterprise systems to small
components in a sensor network. In order to extend the life of the software, even over a
particular device, it becomes necessary to have transparent development platforms to the
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hardware architecture, as it is the case of RTS]. This is undoubtedly a new scenario in the
development of embedded real time systems. There is a wide range of hardware possibilities
in the market (microcontrollers, microprocessors and DSPs); also there are many different
programming languages, like C, C++, C#, Java, Ada; and there are more than forty real-time
operating systems (RTOS) like RT-Linux, Windows Embedded or FreeRTOS. This chapter
offers a road-map for the design of real-time embedded systems evaluating the pros and cons
of the different programming languages and operating systems.

Organization: This chapter is organized in the following way. Section 2 describes the
main characteristics that a real-time operating system should have. Section 3 discusses the
scope of some of the more well known RTOSs. Section 4 introduces the languages used
for real-time programming and compares the main characteristics. Section 5 presents and
compares different alternatives for the implementation of real-time Java. Finally, Section 6
concludes.

2. Real time operating system

The formal definition of a real-time system was introduced in Section 1. In a nutshell these
are systems which have additional non-functional requirements that are as important as the
functional ones for the correct operation. It is not enough to produce correct logical-arithmetic
results; these results must also be accomplished before a certain deadline (Stankovic, 1988).
This timeliness behavior imposes extra constraints that should be carefully considered during
the whole design process. If these constraints are not satisfied, the system risks severe
consequences. Traditionally, real-time systems are classified as hard, firm and soft. The first
class is associated to critical safety systems where no deadlines can be missed. The second
class covers some applications where occasional missed deadlines can be tolerated if they
follow a certain predefined pattern. The last class is associated to systems where the missed
deadlines degrade the performance of the applications but do not cause severe consequences.
An embedded system is any computer that is a component of a larger system and relies on
its own microprocessor (Wolf, 2002). It is said to work in real-time when it has to comply
with time constraints, being hard, firm or soft. In this case, the software is encapsulated in
the hardware it controls. There are several examples of real-time embedded systems such as
the controller for the power-train in cars, voice processing in digital phones, video codecs for
DVD players or Collision Warning Systems in cars and video surveillance cam controllers.

RTOS have special characteristics that make them different to common OS. In the particular
case of embedded systems, the OS usually allows direct access to the microprocessor registers,
program memory and peripherals. These characteristics are not present in traditional OS as
they preserve the kernel areas from the user ones. The kernel is the main part of an operating
system. It provides the task dispatching, communication and synchronization functions. For
the particular case of embedded systems, the OS is practically reduced to these main functions.
Real-time kernels have to provide primitives to handle the time constraints for the tasks and
applications (deadlines, periods, worst case execution times (WCET)), a priority discipline to
order the execution of the tasks, fast context switching, a small footprint and small overheads.

The kernel provides services to the tasks such as I/O and interrupt handling and memory
allocation through system-calls. These may be invoked at any instant. The kernel has to be
able to preempt tasks when one of higher priority is ready to execute. To do this, it usually has
the maximum priority in the system and executes the scheduler and dispatcher periodically
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based on a timer tick interrupt. At these instants, it has to check a ready task queue structure
and if necessary remove the running task from the processor and dispatch a higher priority
one. The most accepted priority discipline used in RTOS is fixed priorities (FP) (eCosCentric,
2011; Enea OSE, 2011; LynxOS RTOS, The real-time operating system for complex embedded systems,
2011; Minimal Real-Time Operating System, 2011; RTLinuxFree, 2011; The free RTOS Project,
2011; VxWorks RTOS, 2011; Windows Embedded, 2011). However, there are some RTOSs that
are implementing other disciplines like earliest deadline first (EDF) (Erika Enterprise: Open
Source RTOS for single- and multi-core applications, 2011; Service Oriented Operating System, 2011;
S.Ha.R.K.: Soft Hard Real-Time Kernel, 2007). Traditionally, real-time systems scheduling theory
starts considering independent, preemptive and periodic tasks. However, this simple model
is not useful when considering a real application in which tasks synchronize, communicate
among each other and share resources. In fact, task synchronization and communication
are two central aspects when dealing with real-time applications. The use of semaphores
and critical sections should be controlled with a contention policy capable of bounding the
unavoidable priority inversion and preventing deadlocks. The most common contention
policies implemented at kernel level are the priority ceiling protocol (Sha et al., 1990) and
the stack resource policy (Baker, 1990). Usually, embedded systems have a limited memory
address space because of size, energy and cost constraints. It is important then to have a
small footprint so more memory is available for the implementation of the actual application.
Finally, the time overhead of the RTOS should be as small as possible to reduce the interference
it produces in the normal execution of the tasks.

The IEEE standard, Portable Operating System Interface for Computer Environments (POSIX
1003.1b) defines a set of rules and services that provide a common base for RTOS (IEEE, 2003).
Being POSIX compatible provides a standard interface for the system calls and services that
the OS provides to the applications. In this way, an application can be easily ported across
different OSs. Even though this is a desirable feature for an embedded RTOS, it is not always
possible to comply with the standard and keep a small footprint simultaneously. Among the
main services defined in the POSIX standard, the following are probably the most important
ones:

* Memory locking and Semaphore implementations to handle shared memory accesses and
synchronization for critical sections.

¢ Execution scheduling based on round robin and fixed priorities disciplines with thread
preemption. Thus the threads can be waiting, executing, suspended or blocked.

* Timers are at the core of any RTOS. A real-time clock, usually the system clock should
be implemented to keep the time reference for scheduling, dispatching and execution
of threads.Memory locking and Semaphore implementations to handle shared memory
accesses and synchronization for critical sections.

2.1 Task model and time constraints

A real-time system is temporally described as a set of tasks S(m) = {7,..., T, ..., T}
where each task is described by a tuple (WCET;, T;, D;) where T; is the period or minimum
interarrival time and D; is the relative deadline that should be greater than or equal to the
worst case response time. With this description, the scheduling conditions of the system for
different priority disciplines can be evaluated. This model assumes that the designer of the
system can measure in a deterministic way the worst case execution time of the tasks. Yet,
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this assumes knowledge about many hardware dependent aspects like the microprocessor
architecture, context switching times and interrupts latencies. It is also necessary to know
certain things about the OS implementation such as the timer tick and the priority discipline
used to evaluate the kernel interference in task implementation. However, these aspects are
not always known beforehand so the designer of a real-time system should be careful while
implementing the tasks. Avoiding recursive functions or uncontrolled loops are basic rules
that should be followed at the moment of writing an application. Programming real-time
applications requires the developer to be specially careful with the nesting of critical sections
and the access to shared resources. Most commonly, the kernel does not provide a validation
of the time constraints of the tasks, thus these aspects should be checked and validated at the
design stage.

2.2 Memory management

RTOS specially designed for small embedded system should have very simple memory
management policies. Even if dynamic allocations can provide a better performance and
usage, they add an important degree of complexity. If the embedded system is a small one
with a small address space, the application is usually compiled together with the OS and the
whole thing is burnt into the ROM memory of the device. If the embedded system has a
large memory address space, such as the ones used in cell phones or tablets, the OS behaves
more like a traditional one and thus, dynamic handling of memory allocations for the different
tasks is possible. The use of dynamic allocations of memory also requires the implementation
of garbage collector functions for freeing the memory no longer in use.

2.3 Scheduling algorithms

To support multi-task real-time applications, a RTOS must be multi-threaded and
preemptible. The scheduler should be able to preempt any thread in the system and dispatch
the highest priority active thread. Sometimes, the OS allows external interrupts to be enabled.
In that case, it is necessary to provide proper handlers for these. These handlers include
a controlled preemption of the executing thread and a safe context switch. Interrupts are
usually associated to kernel interrupt service routines (ISR), such as the timer tick or serial port
interfaces management. The ISR in charge of handling the devices is seen by the applications
like services provided by the OS.

RTOS should provide a predictable behavior and respond in the same way to identical
situations. This is perhaps the most important requirement that has to be satisfied. There are
two approaches to handle the scheduling of tasks: time triggered or event triggered. The main
characteristic of the first approach is that all activities are carried out at certain points in time
known a prori. For this, all processes and their time specifications must be known in advance.
Otherwise, an efficient implementation is not possible. Furthermore, the communication and
the task scheduling on the control units have to be synchronized during operation in order
to ensure the strict timing specifications of the system design (Albert, 2004). In this case the
task execution schedule is defined off-line and the kernel follows it during run time. Once
a feasible schedule is found, it is implemented with a cycle-executive that repeats itself each
time. It is difficult to find an optimum schedule but onces it is found the implementation is
simple and can be done with a look-up table. This approach does not allow a dynamic system
to incorporate new tasks or applications. A modification on the number of executing tasks
requires the recomputation of the schedule and this is rather complex to be implemented on
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line. In the second approach, external or internal events are used to dispatch the different
activities. This kind of designs involve creating systems which handle multiple interrupts.
For example, interrupts may arise from periodic timer overflows, the arrival of messages on a
CAN bus, the pressing of a switch, the completion of an analogue-to-digital conversion and so
on. Tasks are ordered following a priority order and the highest priority one is dispatched each
time. Usually, the kernel is based on a timer tick that preempts the current executing task and
checks the ready queue for higher priority tasks. The priority disciplines most frequently used
are round robin and fixed priorities. For example, the Department of Defense of the United
States has adopted fixed priorities Rate Monotonic Sheduling (priority is assigned in reverse
order to periods, giving the highest priority to the shortest period) and with this has made
it a de facto standard Obenza (1993). The event triggered scheduling can introduce priority
inversions, deadlocks and starvation if the access to shared resources and critical sections
is not controlled in a proper manner. These problems are not acceptable in safety critical
real-time applications. The main advantage of event-triggered systems is their ability to fastly
react to asynchronous external events which are not known in advance (Albert & Gerth, 2003).
In addition, event-triggered systems possess a higher flexibility and allow in many cases the
adaptation to the actual demand without a redesign of the complete system (Albert, 2004).

2.4 Contention policies for shared resources and critical sections

Contention policies are fundamental in event-triggered schedulers. RTOSs have different
approaches to handle this problem. A first solution is to leave the control mechanism in hands
of the developers. This is a non-portable, costly and error prone solution. The second one
implements a contention protocol based on priority inheritance (Sha et al., 1990). This solution
bounds the priority inversions to the longest critical section of each lower priority task. It does
not prevent deadlocks but eliminates the possibility of starvation. Finally, the Priority Ceiling
Protocol (PCP) (Sha et al., 1990) and the Stack Resource Policy (SRP) (Baker, 1990) bound the
priority inversion to the longest critical section of the system, avoid starvation and deadlocks.
Both policies require an active kernel controlling semaphores and shared resources. The SRP
performs better since it produces an early blocking avoiding some unnecessary preemptions
present in the PCP. However, both approaches are efficient.

3. Real time operating system and their scope

This section presents a short review on some RTOS currently available. The list is not
exhaustive as there are over forty academic and commercial developments. However, this
section introduces the reader to a general view of what can be expected in this area and the
kind of OS available for the development of real-time systems.

3.1 RTOS for mobile or small devices

Probably one of the most frequently used RTOS is Windows CE. Windows CE is now known
as Windows Embedded and its family includes Windows Mobile and more recently Windows
Phone 7 (Windows Embedded, 2011). Far from being a simplification of the well known OS
from Microsoft, Windows CE is a RTOS with a relatively small footprint and is used in several
embedded systems. In its actual version, it works on 32 bit processors and can be installed
in 12 different architectures. It works with a timer tick or time quantum and provides 256
priority levels. It has a memory management unit and all processes, threads, mutexes, events
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and semaphores are allocated in virtual memory. It handles an accuracy of one millisecond
for SLEEP and WAIT related operations. The footprint is close to 400 KB and this is the main
limitation for its use in devices with small memory address spaces like the ones present in
wireless sensor networks microcontrollers.

eCos is an open source real-time operating system intended for embedded applications
(eCosCentric, 2011). The configurability technology that lies at the heart of the eCos system
enables it to scale from extremely small memory constrained SOC type devices to more
sophisticated systems that require more complex levels of functionality. It provides a highly
optimized kernel that implements preemptive real-time scheduling policies, a rich set of
synchronization primitives, and low latency interrupt handling. The eCos kernel can be
configured with one of two schedulers: The Bitmap scheduler and the Multi-Level Queue
(MLQ) scheduler. Both are preemptible schedulers that use a simple numerical priority to
determine which thread should be running. The number of priority levels is configurable
up to 32. Therefore thread priorities will be in the range of 0 to 31, with 0 being the highest
priority. The bitmap scheduler only allows one thread per priority level, so if the system is
configured with 32 priority levels then it is limited to only 32 threads and it is not possible
to preempt the current thread in favor of another one with the same priority. Identifying
the highest-priority runnable thread involves a simple operation on the bitmap, and an array
index operation can then be used to get hold of the thread data structure itself. This makes the
bitmap scheduler fast and totally deterministic. The MLQ scheduler allows multiple threads
to run at the same priority. This means that there is no limit on the number of threads
in the system, other than the amount of memory available. However operations such as
finding the highest priority runnable thread are a slightly bit more expensive than for the
bitmap scheduler. Optionally the MLQ scheduler supports time slicing, where the scheduler
automatically switches from one runnable thread to another when a certain number of clock
ticks have occurred.

LynxOS (LynxOS RTOS, The real-time operating system for complex embedded systems, 2011)
is a POSIX-compatible, multiprocess, multithreaded OS. It has a wide target of hardware
architectures as it can work on complex switching systems and also in small embedded
products. The last version of the kernel follows a microkernel design and has a minimum
footprint of 28KB. This is about 20 times smaller than Windows CE. Besides scheduling,
interrupt, dispatch and synchronize, there are additional services that are provided in the
form of plug-ins so the designer of the system may choose to add the libraries it needs for
a special purposes such as file system administration or TCP/IP support. The addition of
these services obviously increases the footprint but they are optional and the designer may
choose to have them or not. LynxOS can handle 512 priority levels and can implement several
scheduling policies including prioritized FIFO, dynamic deadline monotonic scheduling,
prioritized round robin, and time slicing among others.

FreeRTOS is an open source project (The free RTOS Project, 2011). It provides porting to 28
different hardware architectures. It is a multi-task operating system where each task has its
own stack defined so it can be preempted and dispatched in a simple way. The kernel provides
a scheduler that dispatches the tasks based on a timer tick according to a Fixed Priority
policy. The scheduler consists of an only-memory-limited queue with threads of different
priority. Threads in the queue that share the same priority will share the CPU with the round
robin time slicing. It provides primitives for suspending, sleeping and blocking a task if a
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synchronization process is active. It also provides an interrupt service protocol for handling
I/0 in an asynchronous way.

MaRTE OS is a Hard Real-Time Operating System for embedded applications that follows
the Minimal Real-Time POSIX.13 subset (Minimal Real-Time Operating System, 2011). It was
developed at University of Cantabria, Spain, and has many external contributions that have
provided drivers for different communication interfaces, protocols and I/O devices. MaRTE
provides an easy to use and controlled environment to develop multi-thread Real-Time
applications. It supports mixed language applications in ADA, C and C++ and there is
an experimental support for Java as well. The kernel has been developed with Ada2005
Real-Time Annex (ISO/IEC 8526:AMD1:2007. Ada 2005 Language Reference Manual (LRM),
2005). Ada 2005 Language Reference Manual (LRM), 2005). It offers some of the services
defined in the POSIX.13 subset like pthreads and mutexes. All the services have a time
bounded response that includes the dynamic memory allocation. Memory is managed as a
single address space shared by the kernel and the applications. MaRTE has been released
under the GNU General Public License 2.

There are many other RTOS like SHArK (S.Ha.R.K.: Soft Hard Real-Time Kernel, 2007), Erika
(Erika Enterprise: Open Source RTOS for single- and multi-core applications, 2011), SOOS (Service
Oriented Operating System, 2011), that have been proposed in the academic literature to validate
different scheduling and contention policies. Some of them can implement fault-tolerance and
energy-aware mechanisms too. Usually written in C or C++ these RTOSs are research oriented
projects.

3.2 General purpose RTOS

VxWorks is a proprietary RTOS. It is cross-compiled in a standard PC using both Windows
or Linux (VxWorks RTOS, 2011). It can be compiled for almost every hardware architecture
used in embedded systems including ARM, StrongARM and xScale processors. It provides
mechanisms for protecting memory areas for real-time tasks, kernel and general tasks. It
implements mutual exclusion semaphores with priority inheritance and local and distributed
messages queues. It is able to handle different file systems including high reliability file
systems and network file systems. It provides the necessary elements to implement the Ipv6
networking stack. There is also a complete development utility that runs over Eclipse.

RT-Linux was developed at the New Mexico School of Mines as an academic project
(RTLinuxFree, 2011)(RTLinuxFree, 2011). The idea is simple and consists in turning the base
GNU/Linux kernel into a thread of the Real-Time one. In this way, the RTKernel has control
over the traditional one and can handle the real-time applications without interference from
the applications running within the traditional kernel. Later RT-Linux was commercialized by
FMLabs and finally by Wind River that also commercializes VxWorks. GNU/Linux drivers
handle almost all I/O. First-In-First-Out pipes (FIFOs) or shared memory can be used to share
data between the operating system and RTCore. Several distributions of GNU/Linux include
RTLinux as an optional package.

RTALI is another real-time extension for GNU/Linux (RTAI - the RealTime Application Interface
for Linux, 2010). It stands for Real-Time Application Interface. It was developed for several
hardware architectures such as x86, x86_64, PowerPC, ARM and m68k. RTAI consists in
a patch that is applied to the traditional GNU/Linux kernel and provides the necessary
real-time primitives for programming applications with time constraints. There is also a
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toolchain provided, RTAI-Lab, that facilitates the implementation of complex tasks. RTAI
is not a commercial development but a community effort with base at University of Padova.

QNX is a unix like system that was developed in Canada. Since 2009 it is a proprietary OS
(QNX RTOS v4 System Documentation, 2011). It is structured in a microkernel fashion with the
services provided by the OS in the form of servers. In case an specific server is not required it is
not executed and this is achieved by not starting it. In this way, QNX has a small footprint and
can run on many different hardware platforms. It is available for different hardware platforms
like the PowerPC, x86 family, MIPS, SH-4 and the closely related family of ARM, StrongARM
and XScale CPUs. It is the main software component for the Blackberry PlayBook. Also Cisco
has derived an OS from QNX.

OSE is a proprietary OS (Enea OSE, 2011). It was originally developed in Sweden. Oriented
to the embedded mobile systems market, this OS is installed in over 1.5 billion cell phones in
the world. It is structured in a microkernel fashion and is developed by telecommunication
companies and thus it is specifically oriented to this kind of applications. It follows an event
driven paradigm and is capable of handling both periodic and aperiodic tasks. Since 2009, an
extension to multicore processors has been available.

4. Real-time programming languages

Real-time software is necessary to comply not only with functional application requirements
but also with non functional ones like temporal restrictions. The nature of the applications
requires a bottom-up approach in some cases a top-down approach in others. This makes
the programming of real-time systems a challenge because different development techniques
need to be implemented and coordinated for a successful project.

In a bottom-up approach one programming language that can be very useful is assembler. It
is clear that using assembler provides access to the registers and internal operations of the
processor. It is also well known that assembler is quite error prone as the programmer has to
implement a large number of code lines. The main problem however is that using assembler
makes the software platform dependent on the hardware and it is almost impossible to port
the software to another hardware platform. Another language that is useful for a bottom-up
approach is C. C provides an interesting level of abstraction and still gives access to the
details of the hardware, thus allowing for one last optimization pass of the code. There
are C compilers developed for almost every hardware platform and this gives an important
portability to the code. The characteristics of C limits the software development in some
cases and this is why in the last few years the use of C++ has become popular. C++ extends
the language to include an object-oriented paradigm. The use of C++ provides a more
friendly engineering approach as applications can be developed based on the object- oriented
paradigm with a higher degree of abstraction facilitating the modeling aspects of the design.
C++ compilers are available for many platforms but not for so many as in the C case. With this
degree of abstraction, ADA is another a real-time language that provides resources for many
different aspects related to real-time programming as tasks synchronization and semaphores
implementations. All the programming languages mentioned up to now require a particular
compiler to execute them on a specific hardware platform. Usually the software is customized
for that particular platform. There is another approach in which the code is written once and
runs anywhere. This approach requires the implementation of a virtual machine that deals
with the particularities of the operating system and hardware platform. The virtual machine
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presents a simple interface for the programmer, who does not have to deal with these details.
Java is probably the most well known WORA language and has a real-time extension that
facilitates the real-time programming.

In the rest of this section the different languages are discussed highlighting their pros and
cons in each case are given so the reader can decide which is the best option for his project.

4.1 Assembler

Assembler gives the lowest possible level access to the microprocessor architecture such as
registers, internal memory, I/O ports and interrupts handling. This direct access provides the
programmer with full control over the platform. With this kind of programming, the code
has very little portability and may produce hazard errors. Usually the memory management,
allocation of resources and synchronization become a cumbersome job that results in very
complex code structures. The programmer should be specialized on the hardware platform
and should also know the details of the architecture to take advantage of such a low level
programming. Assembler provides predictability on execution time of the code as it is
possible to count the clock states to perform a certain operation.

There is total control over the hardware and so it is possible to predict the instant at which the
different activities are going to be done.

Assembler is used in applications that require a high degree of predictability and are
specialized on a particular kind of hardware architecture. The verification, validation and
maintenance of the code is expensive. The life time of the software generated with this
language is limited by the end-of-life of the hardware.

The cost associated to the development of the software, which is high due to the high degree
of specialization, the low portability and the short life, make Assembler convenient only for
very special applications such as military and space applications.

4.2C

C is a language that was developed by Denis Ritchie and Brian Kernighan. The language
is closely related to the development of the Unix Operating System. In 1978 the authors
published a book of reference for programming in C that was used for a 25 years. Later,
C was standardized by ANSI and the second edition of the book on included the changes
incorporated in the standardization of the language (ISO/IEC 9899:1999 - Programming
languages - C, 1999). Today, C is taught in all computer science and engineering courses and
has a compiler for almost every available hardware platform.

C is a function oriented language. This important characteristic allows the construction of
special purpose libraries that implement different functions like Fast Fourier Transforms,
Sums of Products, Convolutions, I/O ports handling or Timing. Many of these are available
for free and can be easily adapted to the particular requirements of a developer.

C offers a very simple I/O interface. The inclusion of certain libraries facilitates the
implementation of I/O related functions. It is also possible to construct a Hardware
Adaptation Layer in a simple way and introduce new functionalities in this way . Another
important aspect in C is memory management. C has a large variety of variable types that
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include, among others, char, int, long, float and double. C is also capable of handling pointers
to any of the previous types of variables and arrays. The combination of pointers, arrays and
types produce such a rich representation of data that almost anything is addressable. Memory
management is completed with two very important operations: calloc and malloc that
reserve space memory and the corresponding free operation to return the control of the
allocated memory to the operating system.

The possibility of writing a code in C and compiling it for almost every possible hardware
platform, the use of libraries, the direct access and handling of I/ O resources and the memory
management functions constitute excellent reasons for choosing this programming language
at the time of developing a real-time application for embedded systems.

4.3C++

The object-oriented extension of C was introduced by Bjarne Stroustrup in 1985. In 1999
the language received the status of standard (ISO/IEC 14882:2003 - Programming languages
C++, 2003). C++ is backward compatible with C. That means that a function developed in
C can be compiled in C++ without errors. The language introduces the concept of Classes,
Constructors, Destructors and Containers. All these are included in an additional library that
extends the original C one.

In C++ it is possible to do virtual and multiple inheritance. As an object oriented language it
has a great versatility for implementing complex data and programming structures. Pointers
are extended and can be used to address classes and functions enhancing the rich addressable
elements of C. These possibilities require an important degree of expertise for the programmer
as the possibility of introducing errors is important.

C++ compilers are not as widespread as the C ones. Although the language is very powerful
in the administration of hardware, memory management and modeling, it is quite difficult
to master all the aspects it includes. The lack of compilers for different architectures limits
its use for embedded systems. Usually, software developers prefer the C language with its
limitations to the use of the C++ extensions.

4.4 ADA

Ada is a programming language developed for real-time applications (ISO/IEC
8526:AMD1:2007. Ada 2005 Language Reference Manual (LRM), 2005). Like C++ it supports
structured and object-oriented programming but also provides support for distributed and
concurrent programming. Ada provides native synchronization primitives for tasks. This is
important when dealing with real-time systems as the language provides the tools to solve a
key aspect in the programming of this kind of systems. Ada is used in large scale programs.
The platforms usually involve powerful processors and large memory spaces. Under these
conditions Ada provides a very secure programming environment. On the other hand, Ada is
not suitable for small applications running on low end processors like the ones implementing
wireless sensors networks with reduced memory spaces and processor capacities.

Ada uses a safe type system that allows the developer to construct powerful abstractions
reflecting the real world while the compiler can detect logic errors. The software can be built in
modules facilitating development of large systems by teams. It also separates interfaces from
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implementation providing control over visibility. The strict definition of types and the syntax
allow the code to be compiled without changes on different compliant compilers on different
hardware platforms. Another important feature is the early standardization of the language.
Ada compilers are officially tested and are accepted only after passing the test for military
and commercial work. Ada also has support for low level programming features. It allows
the programmer to do address arithmetic, directly access to memory address space, perform
bit wise operations and manipulations and the insert of machine code. Thus Ada is a good
choice for programming embedded systems with real-time or safety-critical applications.
These important features have facilitated the maintainability of the code across the life time
of the software and this facilitates its use in aerospace, defense, medical, rail-road and nuclear
applications.

4.5C#

Microsoft’s integrated development environment (.NET) includes a new programming
language C# which targets the NET Framework. Microsoft does not claim that C# and .NET
are intended for real-time systems. In fact, C# and the .NET platform do not support many
of the thread management constructs that real-time systems, particularly hard ones, often
require. Even Anders Hejlsberg (Microsoft’s C# chief architect) states, “I would say that "hard
real-time’ kinds of programs wouldn’t be a good fit (at least right now)” for the NET platform
(Lutz & Laplante, 2003). For instance, the Framework does not support thread creation at a
particular instant in time with the guarantee that it will be completed by a certain in time. C#
supports many thread synchronization mechanisms but none with high precision.

Windows CE has significantly improved thread management constructs. If properly
leveraged by C# and the NET Compact Framework, it could potentially provide a reasonably
powerful thread management infrastructure. Current enumerations for thread priority in
the NET Framework, however, are largely unsatisfactory for real-time systems. Only five
levels exist: AboveNormal, BelowNormal, Highest, Lowest, and Normal. By contrast
Windows CE, specifically designed for real time systems has 256 thread priorities. Microsoft’s
ThreadPriority enumeration documentation also states that “the scheduling algorithm used
to determine the order of thread execution varies with each operating system.” This
inconsistency might cause real-time systems to behave differently on different operating
systems.

4.6 Real-time java

Java includes a number of technologies ranging from JavaCard applications running in tens
of kilobytes to large server applications running with the Java 2 Enterprise Edition requiring
many gigabytes of memory. In this section, the Real-time specification for Java (RTS]) is
described in detail. This specification proposes a complete set of tools to develop real-time
applications. None of the other languages used in real-time programming provide classes,
templates and structures on which the developer can build the application. When using other
languages, the programmer needs to construct classes, templates and structures and then
implement the application taking care of the scheduler, periodic and sporadic task handling
and the synchronization mechanism.

RTS] is a platform developed to handle real-time applications on top of a Java Virtual
Machine (JVM). The JVM specification describes an abstract stack machine that executes



Real-Time Operating Systems and Programming Languages for Embedded Systems 113

bytecodes, the intermediate code of the Java language. Threads are created by the JVM
but are eventually scheduled by the operating system scheduler over which it runs. The
Real-Time Specification for Java (Gosling & Bollella, 2000; Microsystems, 2011) provides a
framework for developing real-time scheduling mostly on uniprocessors systems. Although
it is designed to support a variety of schedulers only the PriorityScheduler is currently
defined and is a preemptive fixed priorities one (FPP). The implementation of this abstraction
could be handled either as a middleware application on top of stock hardware and
operating systems or by a direct hardware implementation (Borg et al., 2005). RTS Java
guarantees backward compatibility so applications developed in traditional Java can be
executed together with real-time ones. The specification requires an operating system
capable of handling real-time threads like RT-Linux. The indispensable OS capabilities
must include a high-resolution timer, program-defined low-level interrupts, and a robust
priority-based scheduler with deterministic procedures to solve resource sharing priority
inversions. RTS] models three types of tasks: Periodic, Sporadic and Aperiodic. The
specification uses a FPP scheduler (PriorityScheduler) with 28 different priority levels.
These priority levels are handled under the Schedulable interface which is implemented
by two classes: RealtimeThread and AsyncEventHandler. The first ones are tasks
that run under the FPP scheduler associated to one of the 28 different priority levels and
are implementations of the javax.realtime.RealtimeThread, RealtimeThread for
short. Sporadic tasks are not in the FPP scheduler and are served as soon as they are
released by the AsyncEventHandler. Thelast ones do not have known temporal parameters
and are handled as standard java.lang.Thread (Microsystems, 2011). There are two
classes of parameters that should be attached to a schedulable real-time entity. The first
one is specified in the class SchedulingParameters. In this class the parameters that are
necessary for the scheduling, for example the priority, are defined. The second one, is the
class ReleaseParameters. In this case, the parameters related to the mode in which the
activation of the thread is done such as period, worst case computation time, and offset are
defined.

Traditional Java uses a Garbage Collector (GC) to free the region of memory that is not
referenced any more. The normal memory space for Java applications is the HeapMemory.
The GC activity interferes with the execution of the threads in the JVM. This interference is
unacceptable in the real-time domain as it imposes blocking times for the currently active
threads that are neither bounded nor can they be determined in advance. To solve this, the
real-time specification introduces a new memory model to avoid the interference of the GC
during runtime. The abstract class MemoryArea models the memory by dividing it in regions.
There are three types of memory: HeapMemory, ScopedMemory and InmortalMemory. The
first one is used by non real time threads and is subject to GC activity. The second one, is used
by real time threads and is a memory that is used by the thread while it is active and it is
immediately freed when the real-time thread stops. The last one is a very special type of
memory that should be used very carefully as even when the JVM finishes it may remain
allocated. The RTSJ defines a sub-class NoHeapRealtimeThread of RealtimeThread
in which the code inside the method run () should not reference any object within the
HeapMemory area. With this, a real-time thread will preempt the GC if necessary. Also when
specifying an AsyncEventHandler itis possible to avoid the use of HeapMemory and define
instead the use of ScopedMemory in its constructor.
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4.6.1 Contention policy for shared resources and task synchronization

The RTSJ virtual machine supports priority-ordered queues and performs by default a basic
priority inheritance and a ceiling priority inheritance called priority ceiling emulation. The
priority inheritance protocol has the problem that it does not prevent deadlocks when a wrong
nested blocking occurs. The priority ceiling protocol avoids this by assigning a ceiling priority
to a critical section which is equal to the highest priority of any task that may lock it. This is
effective but it is more complex to implement. The mix of the two inheritance protocols avoid
unbounded priority inversions caused by low priority thread locks.

Each thread has a base and an active priority. The base priority is the priority allocated by the
programmer. The active priority is the priority that the scheduler uses to sort the run queue.
As mentioned before, the real-time JVM must support priority-ordered queues and perform
priority inheritance whenever high priority threads are blocked by low priority ones. The
active priority of a thread is, therefore, the maximum of its base priority and the priority it has
inherited.

The RTSJ virtual machine supports priority-ordered queues and performs by default a basic
priority inheritance and a ceiling priority inheritance called priority ceiling emulation. The
priority inheritance protocol has the problem that it does not prevent deadlocks when a wrong
nested blocking occurs. The priority ceiling protocol avoids this by assigning a ceiling priority
to a critical section which is equal to the highest priority of any task that may lock it. This is
effective but it is more complex to implement. The mix of the two inheritance protocols avoid
unbounded priority inversions caused by low priority threads locks.

Each thread has a base and an active priority. The base priority is the priority allocated by the
programmer. The active priority is the priority that the scheduler uses to order the run queue.
As mentioned before, the real-time JVM must support priority-ordered queues and perform
priority inheritance whenever high priority threads are blocked by low priority ones. The
active priority of a thread is, therefore, the maximum of its base priority and the priority it has
inherited.

4.7 C/C++ or RTJ

In real-time embedded systems development flexibility, predictability and portability are
required at the same time. Different aspects such as contention policies implementation and
asynchronous handling, are managed naturally in RTS]. Other languages, on the other hand,
require a careful programming by the developer. However, RTS] has some limitations when it
is used in small systems where the footprint of the system should be kept as small as possible.
In the last few years, the development of this kind of systems has been dominated by C/C++.
One reason for this trend is that C/C++ exposes low-level system facilities more easily and the
designer can provide ad-hoc optimized solutions in order to reach embedded-system real time
requirements. On the other hand, Java runs on a Virtual Machine, which protects software
components from each other. In particular, one of the common errors in a C/C++ program
is caused by the memory management mechanism of C/C++ which forces the programmers
to allocate and deallocate memory manually. Comparisons between C/C++ and Java in the
literature recognize pros and cons for both. Nevertheless, most of the ongoing research on this
topic concentrates on modifying and adapting Java. This is because its environment presents
some attributes that make it attractive for real-time developers. Another interesting attribute
from a software designer point of view is that Java has a powerful, portable and continuously
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updated standard library that can reduce programming time and costs. In Table 1 the different
aspects of the languages discussed are summarized. VG stands for very good, G for good, R
for regular and B for bad.

Language |Portability|Flexibility| Abstraction|Resource Handling|Predictability
Assembler B B B VG VG
C G G G VG G
C++ R VG VG VG G
Ada R VG VG VG G
RTS] VG VG VG R R

Table 1. Languages characteristics

5. Java implementations

In this section different approaches to the implementation of Java are presented. As explained,
ajava application requires a virtual machine. The implementation of the JVM is a fundamental
aspect that affects the performance of the system. There are different approaches for this. The
simplest one, resolves everything at software level. The jave bytecodes of the application are
interpreted by the JVM that passes the execution code to the RTOS and this dispatches the
thread. Another option consists in having a Just in Time (JIT) compiler to transform the java
code in machine code and directly execute it within the processor. And finally, it is possible
to implement the JVM in hardware as a coprocessor or directly as a processor. Each solution
has pros and cons that are discussed in what follows for different cases. Figure 1 shows the
different possibilities in a schematic way.

[- lava Bytecodes —”— Java Bytecodes —”— lava Bytecodes jlv Java Bytecodes _I
l— IM Interpreter —l |— JVM Jit Compiler _”_ E:::Er:t;‘:hﬂ
I' RTOS —”- RTOS _”. RTOS

[- General CPU —l [ General CPU —”— Partial Java CPU j |- Java CPU —l

Fig. 1. Java layered implementations

In the domain of small embedded devices, the JVM turns out to be slow and requires
an important amount of memory resources and processor capabilities. These are serious
drawbacks to the implementation of embedded systems with RTS]. In order to overcome these
problems, advances in JIT compilers promote them as the standard execution mode of the JVM
in desktop and server environments. However, this approach introduces uncertainties to the
execution time due to runtime compilation. Thus execution times are not predictable and this
fact prevents the computation of the WCET forbidding its use in hard real-time applications.
Even if the program execution speeds up, it still requires an important amount of memory.
The solution is not practical for small embedded systems.
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In the embedded domain, where resources are scarce, a Java processors or COprocessors are
more promising options. There are two types of hardware JVM implementations:

® A coprocessor works in concert with a general purpose processor translating java byte
codes to a sequence of instructions specific to this coupled CPU.

* Java chips entirely replace the general CPU. In the Java Processors the JVM bytecode is the
native instruction set, therefore programs are written in Java. This solution can result in
quite a small processor with little memory demand.

In the embedded domain, where resources are scarce, a Java processors or COprocessors are
more promising options. There are two types of hardware JVM implementations:

¢ A coprocessor works in concert with a general purpose processor translating java
bytecodes to a sequence of instructions specific for this coupled CPU.

¢ Java chips entirely replace the general CPU. In the Java Processors the JVM bytecode is the
native instruction set, therefore programs are written in Java. This solution can result in
quite a small processor with little memory demand.

Table 2 shows a short list of Java processors.

Name Target technology Size Speed [MHz]
Jopr Altera, Xilinx FPGA 2050 LCs, 3KB Ram 100
picoJava No realization 128K gates, 38KB
picoJava II | Altera Cyclone FPGA 27.5KLCs;47.6 KB
aJile aJ102 aJ200 ASIC 0.25u 100
Gjip ASIC 0.35u 70K gates, 55MB ROM, RAM 80
Moon Altera FPGA 3660 LCs, 4KB RAM
Lightfoot Xilinx FPGA 3400 LCs 40
LavaCORE Xilinx FPGA 3800 LCs 30K gates 33
Komodo 2600 LCs 33
FemtoJava Xilinx FPGA 2710 LCs 56

Table 2. Java Processors List

In 1997 Sun introduced the first version of picoJava and in 1999 it launched the picoJava-II
processor. Its core provides an optimized hardware environment for hosting a JVM
implementing most of the Java virtual machine instructions directly. Java bytecodes are
directly implemented in hardware. The architecture of picoJava is a stack-based CISC
processor implementing 341 different instructions (O’Connor & Tremblay, 1997). Simple Java
bytecodes are directly implemented in hardware and some performance critical instructions
are implemented in microcode. A set of complex instructions are emulated by a sequence
of simpler instructions. When the core encounters an instruction that must be emulated,
it generates a trap with a trap type corresponding to that instruction and then jumps to an
emulation trap handler that emulates the instruction in software. This mechanism has a high
variability latency that prevents its use in real-time because of the difficulty to compute the
WCET (Borg et al., 2005; Puffitsch & Schoeberl, 2007).

Komodo (Brinkschulte et al.,, 1999) is a Java microcontroller with an event handling
mechanism that allows handling of simultaneous overlapping events with hard real-time
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requirements. The Komodo microcontroller design adds multithreading to a basic Java design
in order to attain predictability of real time threads requirements. The exclusive feature of
Komodo is the instruction fetch unit with four independent program counters and status flags
for four threads. A priority manager is responsible for hardware real-time scheduling and can
select a new thread after each bytecode instruction. The microcontroller holds the contexts of
up to four threads. To scale up for larger systems with more than three real-time threads the
authors suggest a parallel execution on several microcontrollers connected by a middleware
platform.

FemtoJava is a Java microcontroller with a reduced-instruction-set Harvard architecture (Beck
& Carro, 2003). It is basically a research project to build an -application specific- Java dedicated
microcontroller. Because it is synthesized in an FPGA, the microcontroller can also be adapted
to a specific application by adding functions that could includes new Java instructions.
The bytecode usage of the embedded application is analyzed and a customized version of
FemtoJava is generated (similar to LavaCORE) in order to minimize resource usage: power
consumption, small program code size, microarchitecture optimizations (instruction set, data
width, register file size) and high integration (memory communications on the same die).

Hardware designs like JOP (Java Optimized Processor) and AONIX PERC processors
currently provide a safety certifiable, hard real-time virtual machine that offers throughput
comparable to optimized C or C++ solutions (Schoeberl, 2009)

The Java processor JOP (Altera or Xilinx FPGA) is a hardware implementation of the Java
virtual machine (JVM). The JVM bytecodes are the native instruction set of JOP. The main
advantage of directly executing bytecode instructions is that WCET analysis can be performed
at the bytecode level. The WCET tool WCA is part of the JOP distribution. The main
characteristics of JOP architecture are presented in (Schoeberl, 2009). They include a dynamic
translation of the CISC Java bytecodes to a RISC stack based instruction set that can be
executed in a three microcode pipeline stages: microcode fetch, decode and execute. The
processor is capable of translating one bytecode per cycle giving a constant execution time
for all microcode instructions without any stall in the pipeline. The interrupts are inserted
in the translation stage as special bytecodes and are transparent to the microcode pipeline.
The four stages pipeline produces short branch delays. There is a simple execution stage with
the two top most stack elements (registers A and B). Bytecodes have no time dependencies
and the instructions and data caches are time-predictable since ther are no prefetch or store
buffers (which could have introduced unbound time dependencies of instructions). There is
no direct connection between the core processor and the external world. The memory interface
provides a connection between the main memory and the core processor.

JOP is designed to be an easy target for WCET analysis. WCET estimates can be obtained
either by measurement or static analysis. (Schoeberl, 2009) presents a number of performance
comparisons and finds that JOP has a good average performance relative to other non
real-time Java processors, in a small design and preserving the key characteristics that
define a RTS platform. A representative ASIC implementation is the aJile aJ102 processor
(Ajile Systems, 2011). This processor is a low-power SOC that directly executes Java Virtual
Machine (JVM) instructions, real-time Java threading primitives, and secured networking. It
is designed for a real-time DSP and networking. In addition, the aJ-102 can execute bytecode
extensions for custom application accelerations. The core of the aJ102 is the JEMCore-III
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low-power direct execution Java microprocessor core. The JEMCore-III implements the entire
JVM bytecode instructions in silicon.

JOP includes an internal microprogrammed real-time kernel that performs the traditional
operating system functions such as scheduling, context switching, interrupt preprocessing,
error preprocessing, and object synchronization. As explained above, a low-level analysis
of execution times is of primary importance for WCET analysis. Even though the
multiprocessors systems are a common solution to general purpose equipments it makes
static WCET analysis practically impossible. On the other hand, most real-time systems are
multi-threaded applications and performance could be highly improved by using multi core
processors on a single chip. (Schoeberl, 2010) presents an approach to a time-predictable chip
multiprocessor system that aims to improve system performance while still enabling WCET
analysis. The proposed chip uses a shared memory statically scheduled with a time-division
multiple access (TDMA) scheme which can be integrated into the WCET analysis. The static
schedule guarantees that thread execution times on different cores are independent of each
other.

6. Conclusions

In this chapter a critical review of the state of the art in real-time programming languages and
real-time operating systems providing support to them has been presented. The programming
lan guages are limited mainly to five: C, C++, Ada, RT Java and for very specific applications,
Assembler. The world of RTOS is much wider. Virtually every research group has created its
own operating system. In the commercial world there is also a range of RTOS. At the top of
the preferences appear Vxworks, QNX, Windows CE family, RT Linux, FreeRTOS, eCOS and
OSE. However, there are many others providing support in particular areas. In this paper, a
short list of the most well known ones has been described.

At this point it is worth asking why while there are so many RTOSs available there are
so few programming languages. The answer probably is that while a RTOS is oriented to
a particular application area such as communications, low end microprocessors, high end
microprocessors, distributed systems, wireless sensors network and communications among
others, the requirements are not universal. The programming languages, on the other hand
need to be and are indeed universal and useful for every domain.

Although the main programming languages for real-time embedded systems are almost
reduced to five the actual trend reduces these to only C/C++ and RT Java. The first option
provides the low level access to the processor architecture and provides an object oriented
paradigm too. The second option has the great advantage of a WORA language with
increasing hardware support to implement the JVM in a more efficient.

In the last few years, there has been an important increase in ad-hoc solutions based on special
processors created for specific domains. The introduction of Java processors changes the
approach to embedded systems design since the advantages of the WORA programming are
added to a simple implementation of the hardware.

The selection of an adequate hardware platform, a RTOS and a programming language will be
tightly linked to the kind of embedded system being developed. The designer will choose the
combination that best suits the demands of the application but it is really important to select
one that has support along the whole design process.
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1. Introduction

During the last three decades the architecting of embedded software has changed by i) the
ever-enhancing processing performance of processors and their parallel usage, ii) design
methods and languages, and iii) tools. The role of software has also changed as it has
become a more dominant part of the embedded system. The progress of hardware
development regarding size, cost and energy consumption is currently speeding up the
appearance of smart environments. This necessitates the information to be distributed to our
daily environment along with smart, but separate, items like sensors. The cooperation of the
smart items, by themselves and with human beings, demands new kinds of embedded
software.

The architecting of embedded software is facing new challenges as it moves toward smart
environments where physical and digital environments will be integrated and interoperable.
The need for human beings to interact is decreasing dramatically because digital and
physical environments are able to decide and plan behavior by themselves in areas where
functionality currently requires intervention from human beings, such as showing a barcode
to a reader in the grocery store. The smart environment, in our mind, is not exactly an
Internet of Things (IoT) environment, but it can be. The difference is that the smart
environment that we are thinking of does not assume that all tiny equipment is able to
communicate via the Internet. Thus, the smart environment is an antecedent for the IoT
environment.

At the start of the 1990s, hardware and software co-design in real time and embedded
systems were seen as complicated matters because of integration of different modeling
techniques in the co-design process (Kronlof, 1993). In the smart environment, the co-design
is radically changing, at least from the software perspective. This is due to the software
needing to be more and more intelligent by, e.g., predicting future situations to offer
relevant services for human beings. The software needs to be interoperable, as well as
scattered around the environment, with devices that were previously isolated because of
different communication mechanisms or standards.

Research into pervasive and ubiquitous computing has been ongoing for over a decade,
providing many context-aware systems and a multitude of related surveys. One of those
surveys is a literature review of 237 journal articles that were published between 2000 and
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2007 (Hong et al., 2009). The review presents that context-aware systems i) are still
developing in order to improve, and ii) are not fully implemented in real life. It also
emphasizes that context-awareness is a key factor for new applications in the area of
ubiquitous computing, i.e., pervasive computing. The context-aware system is based on
pervasive or ubiquitous computing. To manage the complexity of pervasive computing,
the context-aware system needs to be designed in new way —from the bottom up —while
understanding the eligible ecosystem, and from small functionalities to bigger ones. The
small functionalities are formed up to the small architectures, micro-architectures.
Another key issue is to reuse the existing, e.g., communication technologies and devices,
as much as possible, at least at the start of development, to minimize the amount of new
things.

To get new perspective on the architecting of context-aware systems, Section two
introduces the major factors that have influenced the architecting of embedded and real-
time software for digital base stations, as needed in the ecosystem of the mobile network.
This introduction also highlights the evolution of the digital base station in the revolution
of the Internet. The major factors are standards and design and modeling approaches, and
their usefulness is compared for architecting embedded software for context-aware
systems. The context of pervasive computing calms down when compared to the context
of digital signal processing software as a part of baseband computing which is a part of
the digital base station. It seems that the current challenges have similarities in both
pervasive and baseband computing. Section two is based on the experiences gathered
during software development at Nokia Networks from 1993 to 2008 and subsequently in
research at the VIT Technical Research Centre of Finland. This software development
included many kinds of things, e.g., managing the feature development of subsystems,
specifying the requirements for the system and subsystem levels, and architecting
software subsystems. The research is related to enable context-awareness with the help of
ontologies and unique micro-architecture.

Section three goes through the main research results related to designing context-aware
applications for smart environments. The results relate to context modeling, storing, and
processing. The latter includes a new solution, a context-aware micro-architecture (CAMA),
for managing context when architecting embedded software for context-aware systems.
Section four concludes this chapter.

2. Architecting real-time and embedded software in the 1990s and 2000s
2.1 The industrial evolution of the digital base station

Figure 1 shows the evolution of the Internet compared with a digital base station (the base
station used from now on) for mobile networks. It also shows the change from proprietary
interfaces toward open and Internet-based interfaces. In the 1990s, the base station was not
built for communicating via the Internet. The base station was isolated in the sense that it
was bound to a base station controller that controlled a group of base stations. That meant
that a customer was forced to buy both the base stations and the base station controller from
the same manufacturer.

In the 2000s, the industrial evolution brought the Internet to the base station and it opened
the base station for module business by defining interfaces between modules. It also
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dissolved the “engagement” between the base stations and their controllers as it moved
from the second generation mobile network (2G) to third one (3G). Later, the baseband
module of the base station was also reachable via the Internet. In the 2010s, the baseband
module will go to the cloud to be able to meet the constantly changing capacity and
coverage demands on the mobile network. The baseband modules will form a centralized
baseband pool. These demands arise as smartphone, tablet and other smart device users
switch applications and devices at different times and places (Nokia Siemens Networks,
2011).

Embedded
systems with

Embedded
systems asa

Isolated
embedded

systems with open / web- part of the
proprietary based Internet of
interfaces interfaces Things

1990 2005 2020

Fig. 1. The evolution of the base station.

The evolution of base-band computing in the base station changes from distributed to
centralized as a result of dynamicity. The estimation of needed capacity per mobile user was
easier when mobiles were used mainly for phone calls and text messaging. The more fancy
features that mobiles offer and users demand, the harder it is to estimate the needed base-
band capacity.

The evolution of the base station goes hand-in-hand with mobile phones and other network
elements, and that is the strength of the system architecture. The mobile network ecosystem
has benefited a lot from the system architecture of, for example, the Global System for
Mobile Communications (GSM). The context-aware system is lacking system architecture
and that is hindering its breakthrough.

2.2 The standardization of mobile communication

During the 1980s, European telecommunication organizations and companies reached a
common understanding on the development of a Pan-European mobile communication
standard, the Global System for Mobile Communications (GSM), by establishing a dedicated
organization, the European Telecommunications Standards Institute (ETSI, www.etsi.org),
for the further evolvement of the GSM air-interface standard. This organization has
produced the GSM900 and 1800 standard specifications (Hillebrand, 1999). The
development of the GSM standard included more and more challenging features of
standard mobile technology as defined by ETSI, such as High Speed Circuit Switched Data
(HSCSD), General Packet Radio Service (GPRS), Adaptive Multirate Codec (AMR), and
Enhanced Data rates for GSM Evolution (EDGE) (Hillebrand, 1999).
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The Universal Mobile Telecommunication System (UMTS) should be interpreted as a
continuation of the regulatory regime and technological path set in motion through GSM,
rather than a radical break from this regime. In effect, GSM standardization defined a path
of progress through GPRS and EDGE toward UMTS as the major standard of 3G under the
3GPP standardization organization (Palmberg & Martikainen, 2003). The technological path
from GSM to UMTS up to LTE is illustrated in Table 1. High-Speed Downlink Packet Access
(HSDPA) and High-Speed Uplink Packet Access (HSUPA) are enhancements of the UMTS
to offer a more interactive service for mobile (smartphone) users.

| GSM -> HSCD, GPRS, AMR, EDGE | UMTS -> HSDPA, HSUPA | LTE |
2G => 3G => 4G

Table 1. The technological path of the mobile communication system

It is remarkable that standards have such a major role in the telecommunication industry.
They define many facts via specifications, like communication between different parties. The
European Telecommunications Standards Institute (ETSI) is a body that serves many players
such as network suppliers and network operators. Added to that, the network suppliers
have created industry forums: OBSAI (Open Base Station Architecture Initiative) and CPRI
(Common Public Radio Interface). The forums were set up to define and agree on open
standards for base station internal architecture and key interfaces. This, the opening of the
internals, enabled new business opportunities with base station modules. Thus, module
vendors were able to develop and sell modules that fulfilled the open, but specified,
interface and sell them to base station manufacturers. In the beginning the OBSAI was
heavily driven by Nokia Networks and the CPRI respectively by Ericsson. Nokia Siemens
Networks joined CPRI when it was merged by Nokia and Siemens.

The IoT ecosystem is lacking a standardization body, such as ETSI has been for the mobile
networking ecosystem, to create the needed base for the business. However, there is the
Internet of Things initiative (IoT-i), which is working and attempting to build a unified IoT
community in Europe, www.iot-i.eu.

2.3 Design methods

The object-oriented approach became popular more than twenty years ago. It changed the
way of thinking. Rumbaugh et al. defined object-oriented development as follows, i) it is a
conceptual process independent of a programming language until the final stage, and ii) it is
fundamentally a new way of thinking and not a programming technique (Rumbaugh et al.,
1991). At the same time, the focus was changing from software implementation issues to
software design. In those times, many methods for software design were introduced under
the Object-Oriented Analysis (OOA) method (Shlaer & Mellor, 1992), the Object-Oriented
Software Engineering (OOSE) method (Jacobson et al., 1992), and the Fusion method
(Coleman et al., 1993). The Fusion method highlighted the role of entity-relationship graphs
in the analysis phase and the behavior-centered view in the design phase.

The Object Modeling Technique (OMT) was introduced for object-oriented software
development. It covers the analysis, design, and implementation stages but not integration
and maintenance. The OMT views a system via a model that has two dimensions
(Rumbaugh et al., 1991). The first dimension is viewing a system: the object, dynamic, or
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functional model. The second dimension represents a stage of the development: analysis,
design, or implementation. The object model represents the static, structural, “data” aspects
of a system. The dynamic model represents the temporal, behavioral, “control” aspects of a
system. The functional model illustrates the transformational, “function” aspects of a
system. Each of these models evolves during a stage of development, i.e. analysis, design,
and implementation.

The OCTOPUS method is based on the OMT and Fusion methods and it aims to provide a
systematic approach for developing object-oriented software for embedded real-time
systems. OCTOPUS provides solutions for many important problems such as concurrency,
synchronization, communication, interrupt handling, ASICs (application-specific integrated
circuit), hardware interfaces and end-to-end response time through the system (Awad et al.,
1996). It isolates the hardware behind a software layer called the hardware wrapper. The
idea for the isolation is to be able to postpone the analysis and design of the hardware
wrapper (or parts of it) until the requirements set by the proper software are realized or
known (Awad et al., 1996).

The OCTOPUS method has many advantages related to the system division of the
subsystems, but without any previous knowledge of the system under development the
architect was able to end up with the wrong division in a system between the controlling
and the other functionalities. Thus, the method was dedicated to developing single and
solid software systems separately. The OCTOPUS, like the OMT, was a laborious method
because of the analysis and design phases. These phases were too similar for there to be any
value in carrying them out separately. The OCTOPUS is a top-down method and, because of
that, is not suitable to guide bottom-up design as is needed in context-aware systems.

Software architecture started to become defined in the late 1980s and in the early 1990s.
Mary Shaw defined that i) architecture is design at the level of abstraction that focuses on
the patterns of system organization which describe how functionality is partitioned and the
parts are interconnected and ii) architecture serves as an important communication,
reasoning, analysis, and growth tool for systems (Shaw, 1990). Rumbaugh et al. defined
software architecture as the overall structure of a system, including its partitioning into
subsystems and their allocation to tasks and processors (Rumbaugh et al., 1991). Figure 2
represents several methods, approaches, and tools with which we have experimented and
which have their roots in object-oriented programming,.

For describing software architecture, the 4+1 approach was introduced by Philippe
Kriichten. The 4+1 approach has four views: logical, process, development and physical. The
last view, the +1 view, is for checking that the four views work together. The checking is
done using important use cases (Kriichten, 1995). The 4+1 approach was part of the
foundation for the Rational Unified Process, RUP. Since the introduction of the 4+1
approach software architecture has had more emphasis in the development of software
systems. The most referred definition for the software architecture is the following one:

The structure or structures of the system, which comprises software elements, the
externally visible properties of those elements, and the relationships among them,
(Bass et al., 1998)

Views are important when documenting software architecture. Clements et al. give a
definition for the view: “A view is a representation of a set of system elements and the
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relationships associated with them”. Different views illustrate different uses of the software
system. As an example, a layered view is relevant for telling about the portability of the
software system under development (Clements, 2003). The views are presented using, for
example, UML model elements as they are more descriptive than pure text.

*UML, MARTE
*Microsoft Visio
sRational Rhapsody

Design,
Modeling Tools

*OMT, Octopus
Desigh Methods «SW Architecture
+4+1 approach

Object-Oriented
Programming

Fig. 2. From object-oriented to design methods and supporting tools.

Software architecture has always has a role in base station development. In the beginning it
represented the main separation of the functionalities, e.g. operation and maintenance,
digital signal processing, and the user interface. Later on, software architecture was
formulated via architectural views and it has been the window to each of these main
functionalities, called software subsystems. Hence, software architecture is an efficient
media for sharing information about the software and sharing the development work, as
well.

2.4 Modeling

In the model-driven development (MDD) vision, models are the primary artifacts of
software development and developers rely on computer-based technologies to transform
models into running systems (France & Rumpe, 2007). The Model-Driven Architecture
(MDA), standardized by the Object Management Group (OMG, www.omg.org), is an
approach to using models in software development. MDA is a known technique of MDD. It
is meant for specifying a system independently of the platform that supports it, specifying
platforms, choosing a particular platform for the system, and transforming the system
specification into a particular platform. The three primary goals of MDA are portability,
interoperability and reusability through the architectural separation of concerns (Miller &
Mukerji, 2003).

MDA advocates modeling systems from three viewpoints: computational-independent,
platform-independent, and platform-specific viewpoints. The computational-independent
viewpoint focuses on the environment in which the system of interest will operate in and on
the required features of the system. This results in a computation-independent model (CIM).
The platform-independent viewpoint focuses on the aspects of system features that are not
likely to change from one platform to another. A platform-independent model (PIM) is used
to present this viewpoint. The platform-specific viewpoint provides a view of a system in
which platform-specific details are integrated with the elements in a PIM. This view of a
system is described by a platform-specific model (PSM), (France & Rumpe, 2007).
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The MDA approach is good for separating hardware-related software development from the
application (standard-based software) development. Before the separation, the maintenance
of hardware-related software was done invisibly under the guise of application
development. By separating both application- and hardware-related software development,
the development and maintenance of previously invisible parts, i.e., hardware-related
software, becomes visible and measurable, and costs are easier to explicitly separate for the
pure application and the hardware-related software.

Two schools exist in MDA for modeling languages: the Extensible General-Purpose
Modeling Language and the Domain Specific Modeling Language. The former means
Unified Modeling Language (UML) with the possibility to define domain-specific extensions
via profiles. The latter is for defining a domain-specific language by using meta-modeling
mechanisms and tools. The UML has grown to be a de facto industry standard and it is also
managed by the OMG. The UML has been created to visualize object-oriented software but
also used to clarify the software architecture of a subsystem that is not object-oriented.

The UML is formed based on the three object-oriented methods: the OOSE, the OMT, and
Gary Booch’s Booch method. A UML profile describes how UML model elements are
extended using stereotypes and tagged values that define additional properties for the
elements (France & Rumpe, 2007). A Modeling and Analysis of Real-Time Embedded
Systems (MARTE) profile is a domain-specific extension for UML to model and analyze real
time and embedded systems. One of the main guiding principles for the MARTE profile
(www.omgmarte.org) has been that it should support independent modeling of both
software or hardware parts of real-time and embedded systems and the relationship
between them. OMG’s Systems Modeling Language (SysML, www.omgsysml.org) is a
general-purpose graphical modeling language. The SysML includes a graphical construct to
represent text-based requirements and relate them to other model elements.

Microsoft Visio is usually used for drawing UML-figures for, for example, software
architecture specifications. The UML-figures present, for example, the context of the
software subsystem and the deployment of that software subsystem. The MARTE and
SysML profiles are supported by the Papyrus tool. Without good tool support the MARTE
profile will provide only minimal value for embedded software systems.

Based on our earlier experience and the MARTE experiment, as introduced in (Pantsar-
Syvaniemi & Ovaska, 2010), we claim that MARTE is not as applicable to embedded systems
as base station products. The reason is that base station products are dependent on long-
term maintenance and they have a huge amount of software. With the MARTE, it is not
possible to i) model a greater amount of software and ii) maintain the design over the years.
We can conclude that the MARTE profile has been developed from a hardware design point
of view because software reuse seems to have been neglected.

Many tools exist, but we picked up on Rational Rhapsody because we have seen it used for
the design and code generation of real-time and embedded software. However, we found
that the generated code took up too much of the available memory, due to which Rational
Rhapsody was considered not able to meet its performance targets. The hard real-time and
embedded software denotes digital signal processing (DSP) software. DSP is a central part
of the physical layer baseband solutions of telecommunications (or mobile wireless)
systems, such as mobile phones and base stations. In general, the functions of the physical
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layer have been implemented in hardware, for example, ASIC (application-specific
integrated circuits), and FPGA (field programmable gate arrays), or near to hardware
(Paulin et al., 1997), (Goossens et al., 1997).

Due to the fact that Unified Modeling Language (UML) is the most widely accepted
modeling language, several model-driven approaches have emerged (Kapitsaki et al., 2009),
(Achillelos et al., 2010). Typically, these approaches introduce a meta-model enriched with
context-related artifacts, in order to support context-aware service engineering. We have
also used UML for designing the collaboration between software agents and context storage
during our research related to the designing of smart spaces based on the ontological
approach (Pantsar-Syvaniemi et al., 2011a, 2012).

2.5 Reuse and software product lines

The use of C language is one of the enabling factors of making reusable DSP software
(Purhonen, 2002). Another enabling factor is more advanced tools, making it possible to
separate DSP software development from the underlying platform. Standards and
underlying hardware are the main constraints for DSP software. It is essential to note that
hardware and standards have different lifetimes. Hardware evolves according to ‘Moore’s
Law’ (Enders, 2003), according to which progress is much more rapid than the evolution of
standards. From 3G base stations onward, DSP software has been reusable because of the
possibility to use C language instead of processor-specific assembly language. The
reusability only has to do with code reuse, which can be regarded as a stage toward overall
reuse in software development, as shown in Figure 3.

Regarding the reuse of design outputs and knowledge, it was the normal method of
operation at the beginning of 2G base station software developments and was not too tightly
driven by development processes or business programs. We have presented the
characteristics of base station DSP software development in our previous work (Pantsar-
Syvéniemi et al., 2006) that is based on experiences when working at Nokia Networks. That
work introduces the establishment of reuse actives in the early 2000s. Those activities were
development ‘for reuse’” and development ‘with reuse’. ‘For reuse’ means development of
reusable assets and ‘with reuse’ means using the assets in product development or
maintenance (Karlsson, 1995).

"Overall” Reuse; Software
Product Line

Code Reuse

Object-Oriented
Programming

Fig. 3. Toward the overall reuse in the software development.
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The main problem within this process-centric, ‘for reuse” and ‘with reuse’, development was
that it produced an architecture that was too abstract. The reason was that the domain was
too wide, i.e., the domain was base station software in its entirety. In addition to that, the
software reuse was “sacrificed” to fulfill the demand to get a certain base station product
market-ready. This is paradoxical because software reuse was created to shorten products’
time-to-market and to expand the product portfolio. The software reuse was due to business
demands.

In addition to Karlsson’s ‘for and with reuse’” book, we highlight two process-centric reuse
books among many others. To design and use software architectures is written by Bosch
(Bosch, 2000). This book has reality aspects when guiding toward the selection of a suitable
organizational model for the software development work that was meant to be built around
software architecture. In his paper, (Bosch, 1999), Bosch presents the main influencing
factors for selecting the organization model: geographical distribution, maturity of project
management, organizational culture, and the type of products. In that paper, he stated that a
software product built in accordance with the software architecture is much more likely to
fulfill its quality requirements in addition to its functional requirements.

Bosch emphasized the importance of software architecture. His software product line (SPL)
approach is introduced according to these phases: development of the architecture and
component set, deployment through product development and evolution of the assets
(Bosch, 2000). He presented that not all development results are sharable within the SPL but
there are also product-specific results, called artifacts.

The third interesting book introduces the software product line as compared to the
development of a single software system at a time. This book shortly presents several ways
for starting software development according to the software product line. It is written by
Pohl et al. (Pohl et al., 2005) and describes a framework for product-line engineering. The
book stresses the key differences of software product-line engineering in comparison with
single-software system development:

e The need for two distinct development processes: domain engineering and application
engineering. The aim of the domain-engineering process is to define and realize the
commonality and the variability of the software product line. The aim of the
application-engineering process is to derive specific applications by exploiting the
variability of the software product line.

e The need to explicitly define and manage variability: During domain engineering,
variability is introduced in all domain engineering artifacts (requirements, architecture,
components, test cases, etc.). It is exploited during application engineering to derive
applications tailored to the specific needs of different customers.

A transition from single-system development to software product-line engineering is not
easy. It requires investments that have to be determined carefully to get the desired benefits
(Pohl et al., 2005). The transition can be introduced via all of its aspects: process,
development methods, technology, and organization. For a successful transition, we have to
change all the relevant aspects, not just some of them (Pohl et al., 2005). With the base
station products, we have seen that a single-system development has been powerful when
products were more hardware- than software-oriented and with less functionality and
complexity. The management aspect, besides the development, is taken into account in the
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product line but how does it support long-life products needing maintenance over ten
years? So far, there is no proposal for the maintenance of long-life products within the
software product line. Maintenance is definitely an issue to consider when building up the
software product line.

The strength of the software product line is that it clarifies responsibility issues in creating,
modifying and maintaining the software needed for the company’s products. In software
product-line engineering, the emphasis is to find the commonalities and variabilities and
that is the huge difference between the software product-line approach and the OCTOPUS
method. We believe that the software product-line approach will benefit if enhanced with a
model-driven approach because the latter strengthens the work with the commonalities and
variabilities.

Based on our experience, we can identify that the software product-line (SPL) and model-
driven approach (MDA) alike are used for base station products. Thus, a combination of
SPL and MDA is good approach when architecting huge software systems in which
hundreds of persons are involved for the architecting, developing and maintaining of the
software. A good requirement tool is needed to keep track of the commonalities and
variabilities. The more requirements, the more sophisticated tool should be with the
possibility to tag on the requirements based on the reuse targets and not based on a single
business program.

The SPL approach needs to be revised for context-aware systems. This is needed to guide
the architecting via the understanding of an eligible ecosystem toward small functionalities
or subsystems. Each of these subsystems is a micro-architecture with a unique role. Run-
time security management is one micro-architecture (Evesti & Pantsar-Syvaniemi, 2010) that
reuses context monitoring from the context-awareness micro-architecture, CAMA (Pantsar-
Syvéaniemi et al., 2011a). The revision needs a new mindset to form reusable micro-
architectures for the whole context-aware ecosystem. It is good to note that micro-
architectures can differ in the granularity of the reuse.

2.6 Summary of section 2

The object-oriented methods, like Fusion, OMT, and OCTOPUS, were dedicated for single-
system development. The OCTOPUS was the first object-oriented method that we used for
an embedded system with an interface to the hardware. Both the OCTOPUS and the OMT
were burdening the development work with three phases: object-oriented analysis (OOA)
object-oriented design (OOD), and implementation. The OOD was similar to the
implementation. In those days there was a lack of modeling tools. The message sequence
charts (MSC) were done with the help of text editor.

When it comes to base station development, the software has become larger and more
complicated with the new features needed for the mobile network along with the UML, the
modeling tools supporting UML, and the architectural views. Thus, software development
is more and more challenging although the methods and tools have become more helpful.
The methods and tools can also hinder when moving inside the software system from one
subsystem to another if the subsystems are developed using different methods and tools.

Related to DSP software, the tight timing requirements have been reached with optimized
C-code, and not by generating code from design models. Thus, the code generators are too
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ineffective for hard real time and embedded software. One of the challenges in DSP software
is the memory consumption because of the growing dynamicity in the amount of data that
flows through mobile networks. This is due to the evolution of mobile network features like
HSDPA and HSUPA that enable more features for mobile users. The increasing dynamicity
demands simplification in the architecture of the software system. One of these
simplifications is the movement from distributed baseband computing to centralized
computing.

Simplification has a key role in context-aware computing. Therefore, we recall that by
breaking the overall embedded software architecture into smaller pieces with specialized
functionality, the dynamicity and complexity can be dealt with more easily. The smaller
pieces will be dedicated micro-architectures, for example, run-time performance or security
management. We can see that in smart environments the existing wireless networks are
working more or less as they currently work. Thus, we are not assuming that they will
converge together or form only one network. By taking care of and concentrating the data
that those networks provide or transmit, we can enable the networks to work seamlessly
together. Thus, the networks and the data they carry will form the basis for interoperability
within smart environments. The data is the context for which it has been provided.
Therefore, the data is in a key position in context-aware computing.

The MSC is the most important design output because it visualizes the collaboration
between the context storage, context producers and context consumers. The OCTOPUS
method is not applicable but SPL is when revised with micro-architectures, as presented
earlier. The architecting context-aware systems need a new mindset to be able to i) handle
dynamically changing context by filtering to recognize the meaningful context, ii) be
designed bottom-up, while keeping in mind the whole system, and iii) reuse the legacy
systems with adapters when and where it is relevant and feasible.

3. Architecting real-time and embedded software in the smart environment

Context has always been an issue but had not been used as a term as widely with regard to
embedded and real-time systems as it has been used in pervasive and ubiquitous
computing. Context was part of the architectural design while we created architectures for
the subsystem of the base station software. It was related to the co-operation between the
subsystem under creation and the other subsystems. It was visualized with UML figures
showing the offered and used interfaces. The exact data was described in the separate
interface specifications. This can be known as external context. Internal context existed and
it was used inside the subsystems.

Context, both internal and external, has been distributed between subsystems but it has
been used inside the base station. It is important to note that external context can be context
that is dedicated either for the mobile phone user or for internal usage. The meaning of
context that is going to, or coming from, the mobile phone user is meaningless for the base
station but it needs memory to be processed. In pervasive computing, external context is
always meaningful and dynamic. The difference is in the nature of context and the
commonality is in the dynamicity of the context.

Recent research results into the pervasive computing state that:
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e due to the inherent complexity of context-aware applications, development should be
supported by adequate context-information modeling and reasoning techniques (Bettini
et al., 2010)

e distributed context management, context-aware service modeling and engineering,
context reasoning and quality of context, security and privacy, have not been well
addressed in the Context-Aware Web Service Systems (Truong & Dustdar, 2009)

e development of context-aware applications is complex as there are many software
engineering challenges stemming from the heterogeneity of context information
sources, the imperfection of context information, and the necessity for reasoning on
contextual situations that require application adaptations (Indulska & Nicklas, 2010)

e proper understanding of context and its relationship with adaptability is crucial in
order to construct a new understanding for context-aware software development for
pervasive computing environments (Soylu et al., 2009)

e ontology will play a crucial role in enabling the processing and sharing of information
and knowledge of middleware (Hong et al., 2009)

3.1 Definitions

Many definitions for context as well for context-awareness are given in written research. The
generic definition by Dey and Abowd for context and context-awareness are widely cited
(Dey & Abowd, 1999):

‘Context is any information that can be used to characterize the situation of an entity. An
entity is a person, place, or object that is considered relevant to the interaction between a
user and an application, including the user and the application themselves. ’

‘Context-awareness is a property of a system that uses context to provide relevant
information and/ or services to the user, where relevancy depends on the user’s task. ’

Context-awareness is also defined to mean that one is able to use context-information (Hong
et al., 2009). Being context-aware will improve how software adapts to dynamic changes
influenced by various factors during the operation of the software. Context-aware
techniques have been widely applied in different types of applications, but still are limited
to small-scale or single-organizational environments due to the lack of well-agreed
interfaces, protocols, and models for exchanging context data (Truong & Dustdar, 2009).

In large embedded-software systems the user is not always the human being but can also be
the other subsystem. Hence, the user has a wider meaning than in pervasive computing
where the user, the human being, is in the center. We claim that pervasive computing will
come closer to the user definition of embedded-software systems in the near future.
Therefore, we propose that ‘A context defines the limit of information usage of a smart space
application” (Toninelli et al., 2009). That is based on the assumption that any piece of data, at
a given time, can be context for a given smart space application.

3.2 Designing the context

Concentrating on the context and changing the design from top-down to bottom-up while
keeping the overall system in the mind is the solution to the challenges in the context-aware
computing. Many approaches have been introduced for context modeling but we introduce
one of the most cited classifications in (Strang & Linnhoff-Popien, 2004):
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1.

Key-Value Models

The model of key-value pairs is the most simple data structure for modeling contextual
information. The key-value pairs are easy to manage, but lack capabilities for
sophisticated structuring for enabling efficient context retrieval algorithms.

Markup Scheme Models

Common to all markup scheme modeling approaches is a hierarchical data structure
consisting of markup tags with attributes and content. The content of the markup tags is
usually recursively defined by other markup tags. Typical representatives of this kind
of context modeling approach are profiles.

Graphical Model

A very well-known general purpose modeling instrument is the UML which has a
strong graphical component: UML diagrams. Due to its generic structure, UML is also
appropriate to model the context.

Object-Oriented Models

Common to object-oriented context modeling approaches is the intention to employ the
main benefits of any object-oriented approach - namely encapsulation and reusability -
to cover parts of the problems arising from the dynamics of the context in ubiquitous
environments. The details of context processing are encapsulated on an object level and
hence hidden to other components. Access to contextual information is provided
through specified interfaces only.

Logic-Based Models

A logic defines the conditions on which a concluding expression or fact may be derived
(a process known as reasoning or inferencing) from a set of other expressions or facts.
To describe these conditions in a set of rules a formal system is applied. In a logic-based
context model, the context is consequently defined as facts, expressions and rules.
Usually contextual information is added to, updated in and deleted from a logic based
system in terms of facts or inferred from the rules in the system respectively. Common
to all logic-based models is a high degree of formality.

Ontology-Based Models

Ontologies are particularly suitable to project parts of the information describing and
being used in our daily life onto a data structure utilizable by computers. Three
ontology-based models are presented in this survey: i) Context Ontology Language
(CoOL), (Strang et al., 2003); ii) the CONON context modeling approach (Wang et al.,
2004); and iii) the CoBrA system (Chen et al., 2003a).

The survey of context modeling for pervasive cooperative learning covers the above-
mentioned context modeling approaches and introduces a Machine Learning Modeling
(MLM) approach that uses machine learning (ML) techniques. It concludes that to achieve
the system design objectives, the use of ML approaches in combination with semantic
context reasoning ontologies offers promising research directions to enable the effective
implementation of context (Moore et al., 2007).
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The role of ontologies has been emphasized in multitude of the surveys, e.g., (Baldauf et al.,
2007), (Soylu et al., 2009), (Hong et al., 2009), (Truong & Dustdar, 2009). The survey related
to context modeling and reasoning techniques (Bettini et al, 2010) highlights that
ontological models of context provide clear advantages both in terms of heterogeneity and
interoperability. Web Ontology Language, OWL, (OWL, 2004) is a de facto standard for
describing context ontology. OWL is one of W3C recommendations (www.w3.org) for a
Semantic Web. Graphical tools, such as Protégé and NeOnToolkit, exist for describing
ontologies.

3.3 Context platform and storage

Eugster et al. present the middleware classification that they performed for 22 middleware
platforms from the viewpoint of a developer of context-aware applications (Eugster et al.,
2009). That is one of the many surveys done on the context-aware systems but it is
interesting because of the developer viewpoint. They classified the platforms according to i)
the type of context, ii) the given programming support, and iii) architectural dimensions
such as decentralization, portability, and interoperability. The most relevant classification
criteria of those are currently the high-level programming support and the three
architectural dimensions.

High-level programming support means that the middleware platform adds a context
storage and management. The three architectural dimensions are: (1) decentralization, (2)
portability, and (3) interoperability. Decentralization measures a platform’s dependence
on specific components. Portability classifies platforms into two groups: portable
platforms can run on many different operating systems, and operating system-dependent
platforms, which can only run on few operating systems (usually one). Interoperability
then measures the ease with which a platform can communicate with heterogeneous
software components.

Ideal interoperable platforms can communicate with many different applications,
regardless of the operating system on which they are built or of the programming
language in which they are written. This kind of InterOperabilility Platform (IOP) is
developed in the SOFIA-project (www.sofia-project.eu). The IOP’s context storage is a
Semantic Information Broker (SIB), which is a Resource Description Framework, RDF,
(RDF, 2004) database. Software agents which are called Knowledge Processors (KP) can
connect to the SIB and exchange information through an XML-based interaction protocol
called Smart Space Access Protocol (SSAP). KPs use a Knowledge Processor Interface
(KPI) to communicate with the SIB. KPs consume and produce RDF triples into the SIB
according to the used ontology.

The IOP is proposed to be extended, where and when needed, with context-aware
functionalities following ‘the separation of concern’ principle to keep application free of the
context (Toninelli et al., 2009).

Kuusijérvi and Stenius illustrate how reusable KPs can be designed and implemented, i.e.,
how to apply ‘for reuse’ and ‘with reuse’ practices in the development of smart
environments (Kuusijarvi & Stenius, 2011). Thus, they cover the need for programming level
reusability.
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3.4 Context-aware micro-architecture

When context information is described by OWL and ontologies, typically reasoning
techniques will be based on a semantic approach, such as SPARQL Query Language for
RDF (SPARQL), (Truong & Dustdar, 2009).

The context-awareness micro-architecture, CAMA, is the solution for managing adaptation
based on context in smart environments. Context-awareness micro-architecture consists of
three types of agents: context monitoring, context reasoning and context-based adaptation
agents (Pantsar-Syvéaniemi et al.,, 2011a). These agents share information via the semantic
database. Figure 4 illustrates the structural viewpoint of the logical context-awareness
micro-architecture.

2.
Consuming, Context
«— producing, —| Reasoning
1. updating, -
Context Producing, Semantic (removing)
Monitoring [€—consuming,—%  Database
(removing), 3. Context-
updatin Consuming,
P 9 ; based
producing, ;
updating Adaptation

Fig. 4. The logical structure of the CAMA.

The context-monitoring agent is configured via configuration parameters which are defined
by the architect of the intelligent application. The configuration parameters can be updated
at run-time because the parameters follow the used context. The configuration parameters
can be given by the ontology, i.e., a set of triples to match, or by a SPARQL query, if the
monitored data is more complicated. The idea is that the context monitoring recognizes the
current status of the context information and reports this to the semantic database. Later on,
the reported information can be used in decision making.

The rule-based reasoning agent is based on a set of rules and a set of activation conditions
for these rules. In practice, the rules are elaborated 'if-then-else' statements that drive
activation of behaviors, i.e., activation patterns. The architect describes behavior by MSC
diagrams with annotated behavior descriptions attached to the agents. Then, the behavior is
transformed into SPARQL rules by the developer who exploits the MSC diagrams and the
defined ontologies to create SPARQL queries. The developer also handles the dynamicity of
the space by providing the means to change the rules at run-time. The context reasoning is a
fully dynamic agent, whose actions are controlled by the dynamically changing rules (at
run-time).

If the amount of agents producing and consuming inferred information is small, the rules
can be checked by hand during the development phase of testing. If an unknown amount of
agents are executing an unknown amount of rules, it may lead to a situation where one rule
affects another rule in an unwanted way. A usual case is that two agents try to change the
state of an intelligent object at the same time resulting in an unwanted situation. Therefore,
there should be an automated way of checking all the rules and determining possible
problems prior to executing them. Some of these problems can be solved by bringing
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priorities into the rules, so that a single agent can determine what rules to execute at a given
time. This, of course, implies that only one agent has rules affecting certain intelligent
objects.

CAMA has been used:

e to activate required functionality according to the rules and existing situation(s)
(Pantsar-Syvianiemi et al., 2011a)

e to map context and domain-specific ontologies in a smart maintenance scenario for a
context-aware supervision feature (Pantsar-Syvéniemi et al., 2011b)

e in run-time security management for monitoring situations (Evesti & Pantsar-
Syvéniemi, 2010)

The Context Ontology for Smart Spaces, (CO4SS), is meant to be used together with the
CAMA. It has been developed because the existing context ontologies were already few
years old and not generic enough (Pantsar-Syvaniemi et al, 2012). The objective of the
CO4SS is to support the evolution management of the smart space: all smart spaces and
their applications ‘understand’ the common language defined by it. Thus, the context
ontology is used as a foundational ontology to which application-specific or run-time
quality management concepts are mapped.

4. Conclusion

The role of software in large embedded systems, like in base stations, has changed
remarkably in the last three decades; software has become more dominant compared to the
role of hardware. The progression of processors and compilers has prepared the way for
reuse and software product lines by means of C language, especially in the area of DSP
software. Context-aware systems have been researched for many years and the maturity of
the results has been growing. A similar evolution has happened with the object-oriented
engineering that comes to DSP software. Although the methods were mature, it took many
years to gain proper processors and compilers that support coding with C language. This
shows that without hardware support there is no room to start to use the new methods.

The current progress of hardware development regarding size, cost and energy
consumption is speeding up the appearance of context-aware systems. This necessitates that
the information be distributed to our daily environment along with smart but separated
things like sensors. The cooperation of the smart things by themselves and with human
beings demands new kinds of embedded software. The new software is to be designed by
the ontological approach and instead of the process being top-down, it should use the
bottom-up way. The bottom-up way means that the smart space applications are formed
from the small functionalities, micro-architecture, which can be configured at design time,
on instantiation time and during run-time.

The new solution to designing the context management of context-aware systems from the
bottom-up is context-aware micro-architecture, CAMA, which is meant to be used with
CO4SS ontology. The CO4SS provides generic concepts of the smart spaces and is a common
‘language’. The ontologies can be compared to the message-based interface specifications in
the base stations. This solution can be the grounds for new initiatives or a body to start
forming the ‘borders’, i.e., the system architecture, for the context-aware ecosystem.
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1. Introduction

Current VLSI technology allows the design of sophisticated digital systems with escalated
demands in performance and power/energy consumption. The annual increase of chip
complexity is 58%, while human designers productivity increase is limited to 21% per annum
(ITRS, 2011). The growing technology-productivity gap is probably the most important
problem in the industrial development of innovative products. A dramatic increase in
designer productivity is only possible through the adoption of methodologies/tools that
raise the design abstraction level, ingeniously hiding low-level, time-consuming, error-prone
details. New EDA methodologies aim to generate digital designs from high-level descriptions,
a process called High-Level Synthesis (HLS) (Coussy & Morawiec, 2008) or else hardware
compilation (Wirth, 1998). The input to this process is an algorithmic description (for example
in C/C++/SystemC) generating synthesizable and verifiable Verilog/VHDL designs (IEEE,
2006; 2009).

Our aim is to highlight aspects regarding the organization and design of the targeted hardware
of such process. In this chapter, it is argued that a proper Model of Computation (MoC) for
the targeted hardware is an adapted and extended form of the FSMD (Finite-State Machine
with Datapath) model which is universal, well-defined and suitable for either data- or
control-dominated applications. Several design examples will be presented throughout the
chapter that illustrate our approach.

2. Higher-level representations of FSMDs

This section discusses issues related to higher-level representations of FSMDs (Gajski &
Ramachandran, 1994) focusing on textual intermediate representations (IRs). It first provides
a short overview of existing approaches focusing on the well-known GCC GIMPLE and
LLVM IRs. Then the BASIL (Bit-Accurate Symbolic Intermediate Language) is introduced
as a more appropriate lightweight IR for self-contained representation of FSMD-based
hardware architectures. Lower-level graph-based forms are presented focusing on the CDFG
(Control-Data Flow Graph) procedure-level representation using Graphviz (Graphviz, 2011)
files. This section also illustrates a linear CDFG construction algorithm from BASIL. In
addition, an end-to-end example is given illustrating algorithmic specifications in ANSI
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C, BASIL, Graphviz CDFGs and their visualizations utilizing a 2D Euclidean distance
approximation function.

2.1 Overview of compiler intermediate representations

Recent compilation frameworks provide linear IRs for applying analyses, optimizations and
as input for backend code generation. GCC (GCC, 2011) supports the GIMPLE IR. Many
GCC optimizations have been rewritten for GIMPLE, but it is still undergoing grammar and
interface changes. The current GCC distribution incorporates backends for contemporary
processors such as the Cell SPU and the baseline Xtensa application processor (Gonzalez,
2000) but it is not suitable for rapid retargeting to non-trivial and/or custom architectures.
LLVM (LLVM, 2011) is a compiler framework that draws growing interest within the
compilation community. The LLVM compiler uses the homonymous LLVM bitcode, a
register-based IR, targeted by a C/C++ companion frontend named clang (clang homepage,
2011). Itis written in a more pleasant coding style than GCC, but similarly the IR infrastructure
and semantics are excessive.

Other academic infrastructures include COINS (COINS, 2011), LANCE (LANCE, 2011) and
Machine-SUIF (Machine-SUIF, 2002). COINS is written entirely in Java, and supports two
IRs: the HIR (high level) and the LIR (low-level) which is based on S-expressions. COINS
features a powerful SSA-based optimizer, however its LISP-like IR is unsuitable for directly
expressing control and data dependencies and to fully automate the construction of a
machine backend. LANCE (Leupers et al., 2003) introduces an executable IR form (IR-C),
which combines the simplicity of three-address code with the executability of ANSI C code.
LANCE compilation passes accept and emit IR-C, which eases the integration of LANCE
into third-party environments. However, ANSI C semantics are neither general nor neutral
enough in order to express vastly different IR forms. Machine-SUIF is a research compiler
infrastructure built around the SUIFvm IR which has both a CFG (control-flow graph) and
SSA form. Past experience with this compiler has proved that it is overly difficult both to alter
or extend its semantics. It appears that the Phoenix (Microsoft, 2008) compiler is a rewrite and
extension of Machine-SUIF in C#. As an IR, the CIL (Common Intermediate Language) is used
which is entirely stack-based, a feature that hinders the application of modern optimization
techniques. Finally, CoSy (CoSy, 2011) is the prevalent commercial retargetable compiler
infrastructure. It uses the CCMIR intermediate language whose specification is confidential.
Most of these frameworks fall short in providing a minimal, multi-purpose compilation
infrastructure that is easy to maintain and extend.

The careful design of the compiler intermediate language is a necessity, due to its dual purpose
as both the program representation and an abstract target machine. Its design affects the
complexity, efficiency and ease of maintenance of all compilation phases; frontend, optimizer
and effortlessly retargetable backend.

The following subsection introduces the BASIL intermediate representation. BASIL supports
semantic-free n-input/m-output mappings, user-defined data types, and specifies a virtual
machine architecture. BASIL’s strength is its simplicity: it is inherently easy to develop a
CDFG (control/data flow graph) extraction API, apply graph-based IR transformations for
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Data type Regular expression Example

UNSIGNED_ INT [Uu] [1-9] [0-9]%* u32

SIGNED_ INT [Ss] [1-9] [0-9]%* sll

UNSIGNED/ [Qq] [0-97+.[0-9]1+([S|U] g4.4u, g2.14s

SIGNED_ FXP

FLP [FE] [0]1].[0-9]+.[0-9]+ F1.8.23
fields: sign, exponent,
mantissa

Table 1. Data type specifications in BASIL.

domain specialization, investigate SSA (Static Single Assignment) construction algorithms
and perform other compilation tasks.

2.2 Representing programs in BASIL

BASIL provides arbitrary n-to-m mappings allowing the elimination of implicit side-effects,
a single construct for all operations, and bit-accurate data types. It supports scalar,
single-dimensional array and streamed I/O procedure arguments. BASIL statements are
labels, n-address instructions or procedure calls.

BASIL is similar in concept to the GIMPLE and LLVM intermediate languages but with
certain unique features. For example, while BASIL supports SSA form, it provides very light
operation semantics. A single construct is required for supporting any given operation as an
m-to-n mapping between source and destination sites. An n-address operation is actually the
specification of a mapping from a set of n ordered inputs to a set of m ordered outputs. An
n-address instruction (or else termed as an 1, m-operation) is formatted as follows:

outpl, ..., outpm <= operation inpl, ..., inpn; where:
® operation isamnemonic referring to an IR-level instruction

* outpl, ..., outpmarethe m outputs of the operation

e inpl, ..., inpn are the ninputs of the operation

In BASIL all declared objects (global variables, local variables, input and output procedure
arguments) have an explicit static type specification. BASIL uses the notions of “globalvar”
(a global scalar or single-dimensional array variable), “localvar” (a local scalar or
single-dimensional array variable), “in” (an input argument to the given procedure), and
“out” (an output argument to the given procedure).

BASIL supports bit-accurate data types for integer, fixed-point and floating-point arithmetic.
Data type specifications are essentially strings that can be easily decoded by a regular
expression scanner; examples are given in Table 1.

The EBNF grammar for BASIL is shown in Fig. 1 where it can be seen that rules “nac” and
“pcall” provide the means for the n-to-m generic mapping for operations and procedure calls,
respectively. It is important to note that BASIL has no predefined operator set; operators are
defined through a textual mnemonic.

For instance, an addition of two scalar operands is written: a <= add b, c;.
Control-transfer operations include conditional and unconditional jumps explicitly visible in
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basil top = {gvar_def} {proc_def}.
gvar_def = "globalvar" anum decl_item list ";".
proc_def = "procedure" [anum] " (" [arg list] ")"
"{" [{lvar_decl}] [{stmt}] "}".
stmt = nac | pcall | id ":".
nac = [id_list "<="] anum [id_list] ";".
pcall = [n(n id_list |l)|l n<=n] anum [n(n id_list n)n] n;n_
id_list = id4 {"," id}.
decl_item_list = decl_item {"," decl_item}.
decl_item = (anum | uninitarr | initarr).
arg list = arg decl {"," arg decl}.
arg decl = ("in" | "out") anum (anum | uninitarr).
lvar _decl = "localvar" anum decl_item_ list ";".
initarr = anum ||[|| id n]n n_n ||{|| numer {"/" nu.mer} n}n.
uninitarr = anum " [" [id] "]".
anum = (letter | "_") {letter | digit}.
id = anum | (["-"] (integer | fxpnum)) .

Fig. 1. EBNF grammar for BASIL.

the IR. An example of an unconditional jump would be: BB5 <= jmpun; while conditional
jumps always declare both targets: BB1, BB2 <= jmpeqg i, 10;. This statement enables
a control transfer to the entry of basic block BB1 when i equals to 10, otherwise to BB2.
Multi-way branches corresponding to compound decoding clauses can be easily added.

An interesting aspect of BASIL is the support of procedures as non-atomic operations by
using a similar form to operations. In (y) <= sqrt(x); the square root of an operand
x is computed; procedure argument lists are indicated as enclosed in parentheses.

2.3 BASIL program structure and encoding

A specification written in BASIL incorporates the complete information of a translation unit
of the original program comprising of a list of “globalvar” definitions and a list of procedures
(equivalently: control-flow graphs). A single BASIL procedure is captured by the following
information:

® procedure name

¢ ordered input (output) arguments

¢ “localvar” definitions

¢ BASIL statements.

* basic block labels.

Label items point to basic block (BB) entry points and are defined as name, bb, addr
3-tuples, where name is the corresponding identifier, bb the basic block enumeration, and addr
the absolute address of the statement succeeding the label.

Statements are organized in the form of a C struct or equivalently a record (in other
programming languages) as shown in Fig. 2.

The Statement ADT therefore can be used to model an (1, m)-operation. The input and output
operand lists collect operand items, as defined in the OperandItem data structure definition
shown in Fig. 3.
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typedef struct
char smnemonic; /x Designates the statement type. =/
NodeType ntype; /% OPERATION or PROCEDURE CALL. %/

List opnds_in; /#* Collects all input operands. =/
List opnds_out; /x Collects all output operands. x/
int bb; /* Basic block number. */

int addr; /+ Absolute statement address. x*/

} _Statement;
typedef _Statement xStatement;

Fig. 2. C-style record for encoding a BASIL statement.

typedef struct

char xname; /% Identifier name. x/

char xdataspec; /+ Data type string spec. %/
OperandType otype; /* Operand type representation. =/
int ix; /+ Absolute operand item index. x*/

} _OperandItem;
typedef _OperandItem xOperandItem;

Fig. 3. C-style record for encoding an OperandItem.

The Operandltem data structure is used for representing input arguments (INVAR), output
arguments (OUTVAR), local (LOCALVAR) and global (GLOBALVAR) variables and constants
(CONSTANT). If using a graph-based intermediate representation, arguments and constants
could use node and incoming or outgoing edge representations, while it is meaningful to

represent variables as edges as long as their storage sites are not considered.

The typical BASIL program is structured as follows:

<Global variable declarations>

procedure name_1 (
<comma-separated input arguments>,
<comma-separated output arguments>
) |
<Local variable declarations>
<BASIL labels, instructions, procedure calls>

}

procedure name_n (
<comma-separated input arguments>,
<comma-separated output arguments>
) A
<Local variable declarations>
<BASIL labels, instructions, procedure calls>

Fig. 4. Translation unit structure for BASIL.
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Mnemonic Description (Ni, Np)
ldc Load constant (1D
neg, mov Unary arithmetic op. (1,1)
add, sub, abs, min, max, |Binary arithmetic op. 2,0
mul, div, mod, shl, shr
not, and, ior, xor Logical 2,1
szz Comparison for zz: 2,1
(eq,ne,1lt,le,gt,ge)
muxzz Conditional selection 3,1)
load, store Load/Store register[(2,1)
from/to memory
sxt, zxt, trunc Type conversion (1,1)
jmpun Unconditional jump 0,1
jmpzz Conditional jump 2,2)
print Diagnostic output (1,0)

Table 2. A set of basic operations for a BASIL-based IR.

2.4 A basic BASIL implementation

A basic operation set for RISC-like compilation is summarized in Table 2. N; (N,) denotes the
number of input (output) operands for each operation.

The memory access model defines dedicated address spaces per array, so that both loads
and stores require the array identifier as an explicit operand. For an indexed load in C (b
= a[i];), afrontend would generate the following BASIL: b <= load a, i;,whileforan
indexed store (a[i] = b;)itisa <= store b, 1ij;.

Pointer accesses can be handled in a similar way, although dependence extraction requires
careful data flow analysis for non-trivial cases. Multi-dimensional arrays are handled through
matrix flattening transformations.

2.5 CDFG construction

A novel, fast CDFG construction algorithm has been devised for both SSA and non-SSA
BASIL forms producing flat CDFGs as Graphviz files (Fig. 5). A CDFG symbol table
item is a node (operation, procedure call, globalvar, or constant) or edge (localvar) with
user-defined attributes: the unique name, label and data type specification; node and edge
type enumeration; respective order of incoming or outgoing edges; input/output argument
order of a node and basic block index. Further attributes can be defined, e.g. for scheduling
bookkeeping.

This approach is unique since it focuses on building the CDFG symbol table (st) from which
the associated graph (cdfg) is constructed as one possible of many facets. It naturally supports
loop-carried dependencies and array accesses.

2.6 Fixed-point arithmetic

The use of fixed-point arithmetic (Yates, 2009) provides an inexpensive means for improved
numerical dynamic range, when artifacts due to quantization and overflow effects can be
tolerated. Rounding operators are used for controlling the numerical precision involved in a
series of computations; they are defined for inexact arithmetic representations such as fixed-
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BASILtoCDFG ()
input List BASILs, List variables, List labels, Graph cfg;
output SymbolTable st, Graph cdfg;

begin
Insert constant, input/output arguments and global
variable operand nodes to st;
Insert operation nodes;
Insert incoming {global/constant/input, operation} and
outgoing {operation, global/output} edges;
Add control-dependence edges among operation nodes;
Add data-dependence edges among operation nodes,
extract loop-carried dependencies via cfg-reachability;
Generate cdfg from st;

end

Fig. 5. CDFG construction algorithm accepting BASIL input.

and floating-point. Proposed and in-use specifications for fixed-point arithmetic of related
practice include:

e the C99 standard (ISO/IEC JTC1/SC22, 2007)
¢ lightweight custom implementations such as (Edwards, 2006)

¢ explicit data types with open source implementations (Mentor Graphics, 2011; SystemC,
2006)

Fixed-point arithmetic is a variant of the typical integral representation (2’s-complement
signed or unsigned) where a binary point is defined, purely as a notational artifact to signify
integer powers of 2 with a negative exponent. Assuming an integer part of width IW > 0
and a fractional part with —FW < 0, the VHDL-2008 sfixed data type has a range of
2IW=1 _olEW| to —2IW-1 with a representable quantum of 2FW! (Bishop, 2010a;b). The
corresponding ufixed type has the following range: 2/" — 2/FW| to 0. Both are defined
properly given a IW-1: -FW vector range.

BASIL currently supports a proposed list of extension operators for handling fixed-point
arithmetic:

* conversion from integer to fixed-point format: i2ufx, i2sfx

* conversion from fixed-point to integer format: ufx21, sfx21

e operand resizing: resize, using three input operands; source operand srcl and src2,
src3 as numerical values that denote the new size (high-to-low range) of the resulting
fixed-point operand

¢ rounding primitives: ceil, fix, floor, round, nearest, convergent for rounding
towards plus infinity, zero, minus infinity, and nearest (ties to greatest absolute value, plus
infinity and closest even, respectively).

2.7 Scan-based SSA construction algorithms for BASIL

In our experiments with BASIL we have investigated minimal SSA construction schemes — the
Appel (Appel, 1998) and Aycock-Horspool (Aycock & Horspool, 2000) algorithms — that don’t
require the computation of the iterated dominance frontier (Cytron et al., 1991).
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App. LOC|LOC| P/V/E#¢ps| #nstr.
(BASIL)|(dot)
atsort 155| 484|2/136/336| 10| 6907
coins 105| 509|2/121/376| 10| 405726
cordic 56| 178| 1/57/115| 7| 256335
easter 47| 111 1/46/59| 2| 3082
fixsqrt 32| 87| 1/29/52| 6| 833900
perfect 31| 65| 1/23/36| 4(6590739
sieve 82| 199| 2/64/123| 12| 515687
xorshift 26| 80| 1/29/45/ 0| 2000

Table 3. Application profiling with a BASIL framework.

In traditional compilation infrastructures (GCC, LLVM) (GCC, 2011; LLVM, 2011), Cytron’s
approach (Cytron et al., 1991) is preferred since it enables bit-vector dataflow frameworks
and optimizations that require elaborate data structures and manipulations. It can be argued
that rapid prototyping compilers, integral parts of heterogeneous design flows, would benefit
from straightforward SSA construction schemes which don’t require the use of sophisticated
concepts and data structures (Appel, 1998; Aycock & Horspool, 2000).

The general scheme for these methods consists of series of passes for variable numbering,
¢-insertion, ¢-minimization, and dead code elimination. The lists of BASIL statements,
localvars and labels are all affected by the transformations.

The first algorithm presents a “really-crude” approach for variable renaming and ¢-function
insertion in two separate phases (Appel, 1998). In the first phase, every variable is split at BB
boundaries, while in the second phase ¢-functions are placed for each variable in each BB.
Variable versions are actually preassigned in constant time and reflect a specific BB ordering
(e.g. DFS). Thus, variable versioning starts from a positive integer 7, equal to the number of
BBs in the given CFG.

The second algorithm does not predetermine variable versions at control-flow joins but
accounts ¢s the same way as actual computations visible in the original CFG. Due to this
fact, ¢p-insertion also presents dissimilarities. Both methods share common ¢-minimization
and dead code elimination phases.

2.8 Application profiling with BASILVM

BASIL programs can be translated to low-level C for the easy evaluation of nominal
performance on an abstract machine, called BASILVM. To show the applicability of BASILVM
profiling, a set of small realistic integer/fixed-point kernels has been selected: atsort (an all
topological sorts algorithm (Knuth, 2011)), coins (compute change with minimum amount
of coins), easter (Easter date calculations), fixsqrt (fixed-point square root (Turkowski, 1995)),
perfect (perfect number detection), sieve (prime sieve of Eratosthenes) and xorshift (100 calls
to George Marsaglia’s PRNG (Marsaglia, 2003) with a 2128 — 1 period, which passes Diehard
tests).

Static and dynamic metrics have been collected in Table 3. For each application (App.),
the lines of BASIL and resulting CDFGs are given in columns 2-3, number of CDFGs (P:
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void eda(int inl, int in2, A procedure eda (in s16 inl, in s16 in2,
int woutl) out ulé outl)
{ {
int tl1, t2, t3, localvar ulé x, y,
t4, t5, t6, t7; tl, t2, t3,
int x, y; t4, t5, t6, t7;
s_1:
tl = ABS(inl); t1l <= abs inil;
t2 = ABS(in2); t2 <= abs in2;
x = MAX(tl, t2); X <= max tl, t2;
y = MIN(tl, t2); Y <= min tl, t2;
t3 = x >> 3; t3 <= shr x, 3;
td =y >> 1; t4 <= shr y, 1;
t5 = x - t3; t5 <= sub x, t3;
t6 = t4 + t5; t6 <= add t4, t5;
t7 = MAX(t6, x); t7 <= max t6, x;
*outl = t7; outl <= mov t7;
} }
(a) ANSIC code. (b) BASIL code.

(c) CDEFG code.

Fig. 6. Different facets of an euclidean distance approximation computation.

procedures), vertices and edges (for each procedure) in columns 4-5, amount of ¢ statements
(column 6) and the number of dynamic instructions for the non-SSA case. The latter is
measured using gcc-3.4.4 on Cygwin/XP by means of the executed code lines with the gcov
code coverage tool.

2.9 Representative example: 2D Euclidean distance approximation

A fast linear algorithm for approximating the euclidean distance of a point (x,y) from the
origin is given in (Gajski et al., 2009) by the equation: eda = MAX((0.875 % x + 0.5 % y), x)
where x = MAX(]a|,|b]) and y = MIN(|al,|b]). The average error of this approximation
against the integer-rounded exact value (dist = Va2 + b2) is 4.7% when compared to the
rounded-down | dist | and 3.85% to the rounded-up [dist] value.

Fig. 6 shows the three relevant facets of eda: ANSI C code (Fig. 6(a)), a manually derived BASIL
implementation (Fig. 6(b)) and the corresponding CDFG (Fig. 6(c)). Constant multiplications
have been reduced to adds, subtracts and shifts. The latter subfigure naturally also shows the
ASAP schedule of the data flow graph, which is evidently of length 7.

3. Architecture and organization of extended FSMDs

This section deals with aspects of specification and design of FSMDs, especially their
interface, architecture and organization, as well as communication and integration issues. The
section is wrapped-up with realistic examples of CDFG mappings to FSMDs, alongside their
performance investigation with the help of HDL simulations.
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3.1 FSMD overview

A Finite State Machine with Data (FSMD) specification (Gajski & Ramachandran, 1994) is
an upgraded version of the well-known Finite State Machine representation providing the
same information as the equivalent CDFG (Gajski et al.,, 2009). The main difference is
the introduction of embedded actions within the next state generation logic. An FSMD
specification is timing-aware since it must be decided that each state is executed within a
certain amount of machine cycles. Also the precise RTL semantics of operations taking place
within these cycles must be determined. In this way, an FSMD can provide an accurate
model of an RTL design’s performance as well as serve as a synthesizable manifestation of
the designer’s intent. Depending on the RT-level specification (usually VHDL or Verilog) it
can convey sufficient details for hardware synthesis to a specific target platform, e.g. Xilinx
FPGA devices (Xilinx, 2011b).

3.2 Extended FSMDs

The FSMDs of our approach follow the established scheme of a Mealy FSM with
computational actions embedded within state logic (Chu, 2006). In this work, the extended
FSMD MoC describing the hardware architectures supports the following features, the most
relevant of which will be sufficiently described and supported by short examples:

® Support of scalar and array input and output ports.

* Support of streaming inputs and outputs and allowing mixed types of input and output
ports in the same design block.

¢ Communication with embedded block and distributed LUT memories.

* Design of a latency-insensitive local interface of the FSMD units to master FSMDs,
assuming the FSMD is a locally-interfaced slave.

* Design of memory interconnects for the FSMD units.
Advanced issues in the design of FSMDs that are not covered include the following:

* Mapping of SSA-form (Cytron et al., 1991) low-level IR (BASIL) directly to hardware, by
the hardware implementation of variable-argument ¢ functions.

e External interrupts.

¢ Communication to global aggregate type storage (global arrays) from within the context of
both root and non-root procedures using a multiplexer-based bus controlled by a scalable
arbiter.

3.2.1 Interface

The FSMDs of our approach use fully-synchronous conventions and register all their outputs
(Chu, 2006; Keating & Bricaud, 2002). The control interface is rather simple, yet can service all
possible designs:

® clk: signal from external clocking source

e reset (rst or arst): synchronous or asynchronous reset, depending on target specification
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clk —p —p ready
reset —p —» valid
(srst) —p| FSMD —» done
T ]
din | | dout
—> —

Fig. 7. FSMD 1/0 interface.

e ready: the block is ready to accept new input

* wvalid: asserted when a certain data output port is streamed-out from the block (generally
it is a vector)

¢ done: end of computation for the block

ready signifies only the ability to accept new input (non-streamed) and does not address the
status of an output (streaming or not).

Multi-dimensional data ports are feasible based on their equivalent single-dimensional
flattened array type definition. Then, port selection is a matter of bitfield extraction. For
instance, data input din is defined as din: in std logic_vector (M«N-1 downto
0) ;, where M, N are generics. The flattened vector defines M input ports of width N. A
selection of the form din ( (i+1) «N-1 downto 1N) is typical for a for-generate loop
in order to synthesize iterative structures.

The following example (Fig. 8) illustrates an element-wise copy of array b to ¢ without the use
of a local array resource. Each interface array consists of 10 elements. It should be assumed
that the physical content of both arrays lies in distributed LUT RAM, from which custom
connections can be implemented.

Fig. 8(a) illustrates the corresponding function funcl. The VHDL interface of funcl is
shown in Fig. 8(b), where the derived array types b_type and c_type are used for b, c,
respectively. The definitions of these types can be easily devised as aliases to a basic type
denoted as: type cdt_type is array (9 downto 0) of std logic vector (31
downto 0) ;. Then, the alias forbis: alias b_type is cdt_type;

3.2.2 Architecture and organization

The FSMDs are organized as computations allocated into n + 2 states, where 7 is the number
of required control steps as derived by an operation scheduler. The two overhead states are
the entry (S_ENTRY) and the exit (S_EXIT) states which correspond to the source and sink
nodes of the control-data flow graph of the given procedure, respectively.

Fig. 9 shows the absolute minimal example of a compliant FSMD written in VHDL. The FSMD
is described in a two-process style using one process for the current state logic and another
process for a combined description of the next state and output logic. This code will serve as
a running example for better explaining the basic concepts of the FSMD paradigm.



154 Embedded Systems — Theory and Design Methodology

procedure funcl (in s32 b[10],
out s32 c[10]) {

1 . s N\
s 1?ca1var s32 1, & entity funcl is
. . port (
; ;_ Ed?mo(m‘ clk : in  std_logic;
s 2. <= Jmpun; reset : in std_logic;
S 3, S EXIT <= jmplt i, 10; start : in  std_logic;
s 3. b : in b_type;
_t <= load b, i; € : out c_type; .
c <= store t, i: done : out std_logic;
i <: add i Il ! ready : out std_logic
- , )i
S_2 <= jmpun; .
S_EXIT: \end funcl; )
nop; .
} (b) VHDL interface.

(a) BASIL code.
Fig. 8. Array-to-array copy without intermediate storage.

The example of Fig. 9(a), 9(b) implements the computation of assigning a constant value to
the output port of the FSMD: outp <= 1dc 42;. Thus, lines 5-14 declare the interface
(entity) for the hardware block, assuming that outp is a 16-bit quantity. The FSMD requires
three states. In line 17, a state type enumeration is defined consisting of types S_ENTRY,
S_EXIT and S_1. Line 18 defines the signal 2-tuple for maintaining the state register, while
in lines 19-20 the output register is defined. The current state logic (lines 25-34) performs
asynchonous reset to all storage resources and assigns new contents to both the state and
output registers. Next state and output logic (lines 37-57) decode current_state in order
to determine the necessary actions for the computational states of the FSMD. State S_ENTRY
is the idle state of the FSMD. When the FSMD is driven to this state, it is assumed ready to
accept new input, thus the corresponding status output is raised. When a start prompt is
given externally, the FSMD is activated and in the next cycle, state S_1 is reached. In S_1 the
action of assigning CNST_42 to outp is performed. Finally, when state S_EXIT is reached,
the FSMD declares the end of all computations via done and returns to its idle state.

It should be noted that this design approach is a rather conservative one. One possible
optimization that can occur in certain cases is the merging of computational states that
immediately prediate the sink state (S_EXIT) with it.

Fig. 9(c) shows the timing diagram for the “minimal” design. As expected, the overall latency
for computing a sample is three machine cycles.

In certain cases, input registering might be desired. This intent can be made explicit by
copying input port data to an internal register. For the case of the eda algorithm, a new
localvar, a would be introduced to perform the copy as a <= mov inl;. The VHDL
counterpart is given as a_1 next <= inl;, making this data available through register
a_1 reg in the following cycle. For register r, signal r next represents the value that is
available at the register input, and r_reg the stored data in the register.
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1 | library IEEE;
i 31 t_state <= t_state;
2 | use IEEE.std_logic_1164.all; » A oo Do stane
3 | use IEEE.numeric_std.all; P ona i‘f’j g <= outp_mext;
4 . P . 34 end process;
5 entity minimal is 35
g po::k( . in std logic;: 36 -- next state and output logic
T —1og1¢e/ 37 process (current_state, start, outp_reg)
8 reset : in std_logic; 38 begin
9 start : in std_logic; P e e o
10 outp : out std_logic_vector (15 downto 0); ;0 ready ; '0;-
B e Rt
13 )s v —tog 42 case current_state is
p - 43 when S_ENTRY =>
14 end minimal;
15 44 ready <= '1’;
16 | architecture fsmd of minimal is i? iE [stare - 1) them
17 type state_type is (S_ENTRY, S_EXIT, S_1); 4; cloe T D
18 signal current_state, next_state: state_type; 8 Soxt. state <~ § ENTRY;
19 signal outp_next: std_logic_vector (15 downto 0); 9 ond if; = i
20 signal outp_reg: std_logic_vector (15 downto 0); 50 when S’l .
21 constant CNST_42: std_logic_vector(1l5 downto 0) P ato mext <= CNST 42
2 1= "0000000000101010"; pey nex’t’*stau s mxim
3 i - = S8_] i
23 | begin ) 53 when S_EXIT >
24 -- current state logic 54 done <- 11/,
25 process (clk, reset) 55 next s;_ate ;7 s ENTRY:
2 begin 56 end case;
27 if (reset = '1’) then 57 end process:
28 current_state <= S_ENTRY; o8 hine p(f ot reg:
29 outp reg <= (others => '0'); 2 | ena fzmdf P_reg;
30 elsif (clk = '1’ and clk’EVENT) then 7 i )
(a) VHDL code. (b) VHDL code (cont.)
. 25300 ps
Time T T T T T T T T T T T

0% < I N e e s Y A O B A |
reset | |
start [
ready | | [ 1 [ 1 1

done [ 1 [ 1 [ [

outp[15:0] [oooo Mooza

(c) Timing diagram.

Fig. 9. Minimal FSMD implementation in VHDL.

3.2.3 Communication with embedded memories

Array objects can be synthesized to block RAMs in contemporary FPGAs. These embedded
memories support fully synchronous read and write operations (Xilinx, 2005). A requirement
for asynchronous read mandates the use of memory residing in distributed LUT storage.

In BASIL, the 1oad and store primitives are used for describing read and write memory
access. We will assume a RAM memory model with write enable, and separate data input
(din) and output (dout) sharing a common address port (rwaddr). To control access to
such block, a set of four non-trivial signals is needed: mem_we, a write enable signal, and
the corresponding signals for addressing, data input and output.

store is the simpler operation of the two. It requires raising mem_we in a given single-cycle
state so that data are stored in memory and made available in the subsequent state/machine
cycle.
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when STATE_1 =>
mem_addr <= index;
waitstate_next <= not (waitstate_reg) ;
if (waitstate_reg = ’'1’) then
mysignal_ next <= mem_ dout;
next_state <= STATE_2;
else
next_state <= STATE_1;
end if;
when STATE_2 =>

Fig. 10. Wait-state-based communication for loading data from a block RAM.

Synchronous 1oad requires the introduction of a waitstate register. This register assists in
devising a dual-cycle state for performing the load. Fig. 10 illustrates the implementation of
a load operation. During the first cycle of STATE_ 1 the memory block is addressed. In the
second cycle, the requested data are made available through mem_dout and are assigned to
register mysignal. This data can be read from mysignal_regduring STATE_2.

3.2.4 Hierarchical FSMDs

Our extended FSMD concept allows for hierarchical FSMDs defining entire systems with
calling and callee CDFGs. A two-state protocol can be used to describe a proper
communication between such FSMDs. The first state is considered as the “preparation” state
for the communication, while the latter state actually comprises an “evaluation” superstate
where the entire computation applied by the callee FSMD is effectively hidden.

The calling FSMD performs computations where new values are assigned to x_next signals
and registered values are read from x_reg signals. To avoid the problem of multiple signal
drivers, callee procedure instances produce x_eval data outputs that can then be connected
to register inputs by hardwiring to the x_next signal.

Fig. 11 illustrates a procedure call to an integer square root evaluation procedure. This
procedure uses one input and one output std_logic_vector operands, both considered
to represent integer values. Thus, a procedure call of the form (m) <= isgrt(x); is
implemented by the given code segment in Fig. 11.

STATE 1 sets up the callee instance. The following state is a superstate where control is
transferred to the component instance of the callee. When the callee instance terminates its
computation, the ready signal is raised. Since the start signal of the callee is kept low, the
generated output data can be transferred to the m register via its m_next input port. Control
then is handed over to state STATE_ 3.

The callee instance follows the established FSMD interface, reading x_reg data and
producing an exact integer square root in m_eval. Multiple copies of a given callee are
supported by versioning of the component instances.
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when STATE_1 =>
isqgrt_start <= '1’;
next_state <= SUPERSTATE_2;
when SUPERSTATE_2 =>
if ((isqgqrt_ready = ’'1l’) and (isqgrt_start = ‘0’)) then
m_next <= m_eval;
next_state <= STATE_3;
else
next_state <= SUPERSTATE_2;
end if;
when STATE_3 =>

isgqrt_0 : entity WORK.isqrt (£smd)
port map (
clk, reset,
isqgrt_start, x_reg, m_eval,
isqrt_done, isqrt_ready

) ;

Fig. 11. State-superstate-based communication of a caller and callee procedure instance in
VHDL.

Fig. 12. Example of a functional pipeline in BASIL.

3.2.5 Steaming ports

ANSI C is the archetypical example of a general-purpose imperative language that does
not support streaming primitives, i.e. it is not possible for someone to express and
process streams solely based on the semantics of such language. Streaming (e.g. through
queues) suits applications with near-complete absence of control flow. Such example would
be the functional pipeline of the form of Fig. 12 with A,B,C,D either compound types
(arrays/vectors). Control flow in general applications is complex and it is not easy to intermix
streamed and non-streamed inputs/outputs for each FSMD, either calling or callee.

3.2.6 Other issues

3.2.6.1 VHDL packages for implicit fixed-point arithmetic support

The latest approved IEEE 1076 standard (termed VHDL-2008) (IEEE, 2009) adds signed
and unsigned (sfixed, ufixed) fixed-point data types and a set of primitives for their
manipulation. The VHDL fixed-point package provides synthesizable implementations of
fixed-point primitives for arithmetic, scaling and operand resizing (Ashenden & Lewis, 2008).

3.2.6.2 Design organization of an FSMD hardware IP

A proper FSMD hardware IP should seamlessly integrate to a hypothetical system. FSMD IPs
would be viewed as black boxes adhering to certain principles such as registered outputs.
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globalvar B [...]=...;

() <= func2 (

() .<= funcl (A);
)
() <= fune3d ();

Fig. 13. The functional pipeline of Fig. 12 after argument globalization.

Unconstrained vectors help in maintaining generic blocks without the need of explicit
generics, and it is an interesting idea, however not easily applicable when derived types are
involved.

The outer product of two vectors A and B could be a theoretical case for a hardware block. The
outer (or “cross”) product is given by C = A x B or C = cross(A, B) for reading two matrices
A, B to calculate C. Matrices A, B, C will have appropriate derived types that are declared in
the cross_pkg.vhd package; a prerequisite for using the cross. vhd design file.

Regarding the block internals, the cross product of A, B is calculated and storedina localvar
array called Clocal. Clocal is then copied (possibly in parallel) to the C interface array with
the help of a for-generate construct.

3.2.6.3 High-level optimizations relevant to hardware block development

Very important optimizations for increasing the efficiency of system-level communication are
matrix flattening and argument globalization. The latter optimization is related to choices at
the hardware interconnect level.

Matrix flattening deals with reducing the dimensions of an array from N to one. This
optimization creates multiple benefits:

¢ addressing simplification
¢ direct mapping to physical memory (where addressing is naturally single-dimensional)

e interface and communication simplifications

Argument globalization is useful for replacing multiple copies of a given array by a
single-access “globalvar” array. One important benefit is the prevention of exhausting
interconnect resources. This optimization is feasible for single-threaded applications. For
the example in Fig. 12 we assume that all changes can be applied sequentially on the B array,
and that all original data are stored in A.

The aforementioned optimization would rapidly increase the number of “globalvar” arrays.
A “safe” but conservative approach would apply a restriction on “globalvar” access, allowing
access to globals only by the root procedure of the call graph. This can be overcome by
the development of a bus-based hardware interface for “globalvar” arrays making globals
accessible by any procedure.

3.2.6.4 Low-level optimizations relevant to hardware block development

A significant low-level optimization that can boost performance while operating locally
at the basic block level is operation chaining. A scheduler supporting this optimization
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would assign to a single control step, multiple operations that are associated through
data dependencies. Operation chaining is popular for deriving custom instructions or
superinstructions that can be added to processor cores as instruction-set extensions (Pozzi
et al., 2006). Most techniques require a form of graph partitioning based on certain criteria
such as the maximum acceptable path delay.

A hardware developer could resort in a simpler means for selective operation chaining by
merging ASAP states to compound states. This optimization is only possible when a single
definition site is used per variable (thus SSA form is mandatory). Then, an intermediate
register is eliminated by assigning to a x_next signal and reusing this value in the subsequent
chained computation, instead of reading from the stored x_reg value.

3.3 Hardware design of the 2D Euclidean distance approximation

The eda algorithm shows good potential for speedup via operation chaining. Without this
optimization, 7 cycles are required for computing the approximation, while chaining allows
to squeeze all computational states into one; thus three cycles are needed to complete the
operation. Fig. 14 depicts VHDL code segments for an ASAP schedule with chaining disabled
(Fig. 14(a)) and enabled (Fig. 14(b)). Figures 14(c) and 14(d) show cycle timings for the relevant
I/0 signals for both cases.

4. Non-trivial examples
4.1 Integer factorization

The prime factorization algorithm (p factor) is a paramount example of the use of streaming
outputs. Output outp is streaming and the data stemming from this port should be accessed
based on the valid status. The reader can observe that outp is accessed periodically in
context of basic block BB3 as shown in Fig. 15(b).

Fig. 15 shows the four relevant facets of pfactor: ANSI C code (Fig. 15(a)), a manually
derived BASIL implementation (Fig. 15(b)) and the corresponding CFG (Fig. 15(c)) and CDFG
(Fig. 15(d)) views.

Fig. 16 shows the interface signals for factoring values 6 (a composite), 7 (a prime), and 8 (a
composite which is also a power-of-2).

4.2 Multi-function CORDIC

This example illustrates a universal CORDIC IP core supporting all directions (ROTATION,
VECTORING) and modes (CIRCULAR, LINEAR, HYPERBOLIC) (Andraka, 1998; Volder,
1959). The input/ouput interface is similar to e.g. the CORDIC IP generated by Xilinx
Core Generator (Xilinx, 2011a). It provides three data inputs (x;,, yi,, ziy) and three data
outputs (Xout, Yout, Zout) as well as the direction and mode control inputs. The testbench will
test the core for computing cos (x;,), sin (y;,), arctan(yi,/xin), Yin/Xin, Vv, 1/+/w, with
Xy, = w+1/4, y;,, = w— 1/4, but it can be used for anything computable by CORDIC
iterations. The computation of 1/+/w is performed in two stages: a) y = 1/w, b) z = /. The
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type state_type is (S_ENTRY, S_EXIT, S 1.1, S_1 2,
s_1.3, s14, S15, 816, S17);
signal current_state, next_state: state_type;

case current_state is
when S_ENTRY =>
ready <= '1’;

type state_type is (S_ENTRY, S_EXIT, S_1_1);
signal current_state, next_state: state_type;

if (start = ‘1’) then o s
case current_state is
next_state <= S 1 1;
else o
h =
next_state <= S_ENTRY; when S_ENTRY ->
end if; ready <= '1’;
’ if (start = ’'1’) then
when S_1 3 => el::xt,state <= 8.1.1;
t3_next <= "000" & x reg(l5 downto 3); next_state < S_ENTRY;
t4_next <= " & y_reg (15 downto 1); end if;

next_state <= S 1 4;
when S_1 4 =>
t5_next <= std_logic_vector (unsigned (x_reg)
- unsigned (t3_reg));
next_state <= S_1_5;
when S 1.5 =>
t6_next <= std_logic_vector (unsigned(t4_reg)
+ unsigned (t5_reg)) ;
next_state <= S_1_6;

when S_1.1 =>

t3_next <= "000" & x next (15 downto 3);

t4_next <= "0" & y_next (15 downto 1);

t5_next <= std_logic_vector (unsigned (x_next)
- unsigned(t3_next));

t6_next <= std_logic_vector (unsigned (t4_next)
+ unsigned(t5_next)) ;

when 8.1 7 => outl next <= t7_next;

outl _next <= t7_reg;
next_state <= S_EXIT;
h S_EXIT = . e
vhen 8_ExIT - (b) VHDL code with chaining.
next_state <= S_ENTRY;

(a) VHDL code without chaining.

eue LU LT L PO L P P P U P T P P T P P L L L LT
reset
start
inl[15:0] [z
inz[15:0] [5 J s e
ouri[15:0] [g o
ready 1 1 1
done 1 1 1
neyeles o s 1 s e o Jo o e ¥ % & 6 o o e Mo e s A6 o Jo

(c) Timing diagram without chaining.

Tine T 2499500 ps, T T T T T T T 2222 DEI.psl T T
(35 3| e A
reset
start
ini[15:0] |7
inz[15:0] |3 & e e Iz s 1]
ouri[15:0] [ ) Jao
ready 1 [ 1 [ 1 [ 1 [ 1
done | [ ] [ 1 [ 1 |1 |

(d) Timing diagram with chaining.

Fig. 14. FSMD implementation in VHDL and timing for the eda algorithm.
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void pfactor (unsigned int x,
unsigned int xoutp)
{
unsigned int i, n;
i=2;
n = x;
while (i <= n)
({
while ((n % i) == 0)
({
n=mn/1ij;
*outp = i;
// emitting to file stream
PRINT (i) ;

-
procedure pfactor

localvar ul6 i,
BB1:

n <= mov Xx;

i <= ldc 2;

BB2 <= jmpun;
BB2:

BB3, BB_EXIT <=
BB3:

t0 <= rem n, i;

BB4:
n <= div n, i;
outp <= mov i;
BB3 <= jmpun;
BBS5:
i <= add i, 1;
BB2 <= jmpun;
BB_EXIT:

nop;

(a) ANSIC code.

}

~
(in ul6 x, out ulé outp)

n, to;

jmple i, n;

BB4, BB5 <= jmpeq t0, 0;

(b) BASIL code.

(d) CDFG.

Fig. 15. Different facets of a prime factorization algorithm.
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%[15:0] |o+iooos Noooz Nooos Yo
valid | | 1 L]
ready _ﬂ ﬂ ﬂ H.
done _ﬂ ” ﬂ ”_
outp[15:0] [ooos  foooz Jooos hoooz

Fig. 16. Non-trivial interface signals for the p factor FSMD design.

Design Description Max. Area
frequency |(LUTs)
cordiclcyc|I-cycle/iteration; uses asynchronous 204.5 741
read LUT RAM
cordicbcyc|5-cycles/iteration; uses synchronous 271.5(571, 1 BRAM
read (Block) RAM

Table 4. Logic synthesis results for multi-function CORDIC.

design is a monolithic FSMD that does not include post-processing needed such as the scaling
operation for the square root.

The FSMD for the CORDIC uses Q2 .14 fixed-point arithmetic. While the required lines
of ANSI C code are 29, the hand-coded BASIL representation uses 56 lines; the CDFG
representation and the VHDL design, 178 and 436, respectively, showing a clear tendency
among the different abstraction levels used for design representation.

The core achieves 18 (CIRCULAR, LINEAR) and 19 cycles (HYPERBOLIC) per sample or
n+4 and n + 5 cycles, respectively, where 7 is the fractional bitwidth. When the operation
chaining optimization is not applied, 5 cycles per iteration are required instead of a single
cycle where all operations all collapsed. A single-cycle per iteration constraint imposes the
use of distributed LUT RAM, otherwise 3 cycles are required per sample.

Fig.17(a) shows a C-like implementation of the multi-function CORDIC inspired by recent
work (Arndt, 2010; Williamson, 2011). CNTAB is equivalent to fractional width n, HYPER,
LIN and CIRC are shortened names for CORDIC modes and ROTN for the rotation direction,
cordic_tab is the array of CORDIC coefficients and cordic_hyp steps an auxiliary
table handling repeated iterations for hyperbolic functions. cordic_tab is used to access
coefficients for all modes with different offsets (0, 14 or 28 for our case).

Table 4 illustrates synthesis statistics for two CORDIC designs. The logic synthesis results with
Xilinx ISE 12.3i reveal a 217MHz (estimated) design when branching is entirely eliminated in
the CORDIC loop, otherwise a faster design can be achieved (271.5 MHz). Both cycles and
MHz could be improved by source optimization, loop unrolling for pipelining, and the use of
embedded multipliers (pseudo-CORDIC) that would eliminate some of the branching needed
in the CORDIC loop.
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X = xin; y = yin; z = zin;

xl = x - ybyk; x2 = x + ybyk;

vl = y + xbyk; y2 = y - xbyk;
zl = z - tabval; z2 = z + tabval;
x = ((d == 0) ? x1 x2) ;
y = ((d==0) 2yl : y2);
z = ((d==0) 2 z1 : 22);}

*xout = x; xyout = y; xzout = z;

void cordic (dir, mode, xin, yin, zin, xxout, xyout, xzout) {

offset = ((mode == HYPER) ? 0 : ((mode == LIN) ? 14 28)) ;
kfinal = ((mode != HYPER) ? CNTAB : CNTAB+1) ;
for (k = 0; k < kfinal; k++) {

d = ((dir == ROTN) ? ((z>=0) ? 0 : 1) : ((y<0) ? 1)) ;

kk = ((mode != HYPER) ? k

cordic_hyp_steps(k]);
xbyk = (x>>kk);
ybyk = ((mode == HYPER) ? - (y>>kk) : ((mode == LIN) ? 0
(y>>kk))) ;
tabval = cordic_tab[kk+offset];

(a) C-like code.

process (x)
begin

case current_state is
when S_3 =>
tl_next <= cordic_hyp_steps(
to_integer (unsigned (k_reg (3 downto
if (mode /= CNST_2) then
kk_next <= k_reg;
else
kk_next <= tl_next;
end if;
t2_next <= shr(y reg, kk next, '1’);

x1 next <= x reg - ybyk next;
vl _next <= y_reg + xbyk next;
z1l next <= z_reg - tabval_next;

when S_4 =>
xout_next <= x_5_reg;
yout_next <= y 5 reg;
zout_next <= z_5_reg;
next_state <= S_EXIT;

end process;

zout <= zout_reg;
yout <= yout_reg;
xout <= xout_reg;

(b) Partial VHDL code.

Fig. 17. Multi-function CORDIC listings.
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5. Conclusion

In this chapter, a straightforward FSMD-style model of computation was introduced that
augments existing approaches. Our FSMD concept supports inter-FSMD communication,
embedded memories, streaming outputs, and seamless integration of user IPs/black boxes.
To raise the level of design abstraction, the BASIL typed assembly language is introduced
which can be used for capturing the user’s intend. We show that it is possible to convert this
intermediate representation to self-contained CDFGs and finally to provide an easier path for
designing a synthesizable VHDL implementation.

Along the course of this chapter, representative examples were used to illustrate the key
concepts of our approach such as a prime factorization algorithm and an improved FSMD
design of a multi-function CORDIC.
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1. Introduction

Reactive systems are becoming extremely complex with the huge increase in high
technologies. Despite technical improvements, the increasing size of the systems makes
the introduction of a wide range of potential errors easier. Among reactive systems,
the asynchronous systems communicating by exchanging messages via buffer queues are
often characterized by a vast number of possible behaviors. To cope with this difficulty,
manufacturers of industrial systems make significant efforts in testing and simulation to
successfully pass the certification process. Nevertheless revealing errors and bugs in this huge
number of behaviors remains a very difficult activity. An alternative method is to adopt formal
methods, and to use exhaustive and automatic verification tools such as model-checkers.

Model-checking algorithms can be used to verify requirements of a model formally and
automatically. Several model checkers as (Berthomieu et al., 2004; Holzmann, 1997; Larsen
etal., 1997), have been developed to help the verification of concurrent asynchronous systems.
It is well known that an important issue that limits the application of model checking
techniques in industrial software projects is the combinatorial explosion problem (Clarke
et al., 1986; Holzmann & Peled, 1994; Park & Kwon, 2006). Because of the internal complexity
of developed software, model checking of requirements over the system behavioral models
could lead to an unmanageable state space.

The approach described in this chapter presents an exploratory work to provide solutions
to the problems mentioned above. It is based on two joint ideas: first, to reduce behaviors
system to be validated during model-checking and secondly, help the user to specify the
formal properties to check. For this, we propose to specify the behavior of the entities that
compose the system environment. These entities interact with the system. Their behaviors are
described by use cases (scenarios) called here contexts. They describe how the environment
interacts with the system. Each context corresponds to an operational phase identified as
system initialization, reconfiguration, graceful degradation, etc.. In addition, each context is
associated with a set of properties to check. The aim is to guide the model-checker to focus on
a restriction of the system behavior for verification of specific properties instead on exploring
the global system automaton.
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In this chapter, we describe the formalism called CDL (Context Description Language), such
as DSL!. This language serves to support our approach to reduce the state space. We report a
feedback on several case studies industrial field of aeronautics, which was conducted in close
collaboration with engineers in the field.

This chapter is organized as follows: Section 2 presents related work on the techniques to
improve model checking by state reduction and property specification. Section 3 presents the
principles of our approach for context aware formal verification. Section 4 describes the CDL
language for context specification. Our toolset used for the experiments is presented section
5. In Section 6, we give results of industrial case studies. Section 7 discusses our approach and
presents future work.

2. Related works

Several model checkers such as SPIN (Holzmann, 1997), Uppaal (Larsen et al.,, 1997),
TINA-SELT (Berthomieu et al., 2004), have been developed to assist in the verification of
concurrent asynchronous systems. For example, the SPIN model-checker based on the
formal language Promela allows the verification of LTL (Pnueli, 1977) properties encoded
in "never claim" formalism and further converted into Buchi automata. Several techniques
have been investigated in order to improve the performance of SPIN. For instance the
state compression method or partial-order reduction contributed to the further alleviation of
combinatorial explosion (Godefroid, 1995). In (Bosnacki & Holzmann, 2005) the partial-order
algorithm based on a depth-first search (DFS) has been adapted to the breadth first search
(BFS) algorithm in the SPIN model-checker to exploit interesting properties inherent to the
BFS. Partial-order methods (Godefroid, 1995; Peled, 1994; Valmari, 1991) aim at eliminating
equivalent sequences of transitions in the global state space without modifying the falsity of
the property under verification. These methods, exploiting the symmetries of the systems,
seemed to be interesting and were integrated into many verification tools (for instance SPIN).

Compositional (modular) specification and analysis techniques have been researched for a
long time and resulted in, e.g., assume/guarantee reasoning or design-by-contract techniques.
A lot of work exists in applying these techniques to model checking including, e.g. (Alfaro
& Henzinger, 2001; Clarke et al., 1999; Flanagan & Qadeer, 2003; Tkachuk & Dwyer, 2003)
These works deal with model checking/analyzing individual components (rather than whole
systems) by specifying, considering or even automatically determining the interactions that
a component has or could have with its environment so that the analysis can be restricted
to these interactions. Design by contract proposes to verify a system by verifying all its
components one by one. Using a specific composition operator preserving properties, it allows
assuming that the system is verified.

Our approach is different from compositional or modular analysis. =~ We propose to
formally specify the context behavior of components in a way that allows a fully automatic
divide-and-conquer algorithm. We choose to explicit contexts separately from the model to be
validated. However, our approach can be used in conjunction with design by contract process.
It is about using the knowledge of the environment of a whole system (or model) to conduct
a verification to the end.

Another difficulty is about requirement specification. = Embedded software systems
integrate more and more advanced features, such as complex data structures, recursion,

1 Domain Specific Language
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multithreading. Despite the increased level of automation, users of finite-state verification
tools are still constrained to specify the system requirements in their specification language
which is often informal. While temporal logic based languages (example LTL or CTL (Clarke
et al., 1986)) allow a great expressivity for the properties, these languages are not adapted
to practically describe most of the requirements expressed in industrial analysis documents.
Modal and temporal logics are rather rudimentary formalisms for expressing requirements,
i.e,, they are designed having in mind the straightforwardness of its processing by a tool such
as a model-checker rather than the user-friendliness. Their concrete syntax is often simplistic,
tailored for easing its processing by particular tools such as model checkers. Their efficient
use in practice is hampered by the difficulty to write logic formula correctly without extensive
expertise in the idioms of the specification languages.

It is thus necessary to facilitate the requirement expression with adequate languages by
abstracting some details in the property description, at a price of reducing the expressivity.
This conclusion was drawn a long time ago and several researchers (Dwyer et al., 1999;
Konrad & Cheng, 2005; Smith et al.,, 2002) proposed to formulate the properties using
definition patterns in order to assist engineers in expressing system requirements. Patterns
are textual templates that capture common logical and temporal properties and that can be
instantiated in a specific context. They represent commonly occurring types of real-time
properties found in several requirement documents for embedded systems.

3. Context aware verification

To illustrate the explosion problem, let us consider the example in Figure 1. We are trying
to verify some requirements by model checking using the TINA-SELT model checker. We
present the results for a part of the S_CP model. Then, we introduce our approach based on
context specifications.

3.1 An illustration

We present one part of an industrial case study: the software part of an anti-aircraft system
(S_CP). This controller controls the internal modes, the system physical devices (sensors,
actuators) and their actions in response to incoming signals from the environment. The S_CP
system interacts with devices (Dev) that are considered to be actors included in the S_CP
environment called here context.

The sequence diagrams of Figure 2 illustrate interactions between context actors and the S_CP
system during an initialization phase. This context describes the environment we want to
consider for the verification of the S_CP controller. This context is composed of several actors
Dev running in parallel or in sequence. All these actors interleave their behavior. After the
initializing phase, all actors Dev; (i € [1...n]) wait for orders goInitDev from the system.
Then, actors Dev; send login; and receive either ackLog(id) (Figure 2.a and 2.c) or nackLog(err)
(Figure 2.b) as responses from the system. The logged devices can send operate(op) (Figure
2.a and 2.c) and receive either ackOper(role) (Figure 2.a) or nackOper(err) (Figure 2.c). The
messages golnitDev can be received in parallel in any order. However, the delay between
messages login; and ackLog(id) (Figure 1) is constrained by maxD_log. The delay between
messages operate(op) and ackOper(role) (Figure 1) is constrained by maxD_oper. And finally
all Dev; send logout; to end the interaction with the S_CP controller.
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Fig. 2. An example of S_CP context scenario with 3 devices.
3.2 Model-checking results

To verify requirements on the system model?, we used the TINA-SELT model checker. To do
so, the system model is translated into FIACRE format (Farail et al., 2008) to explore all the
S_CP model behaviors by simulation, S_CP interacting with its environment (devices). Model
exploration generates a labeled transition system (LTS) which represents all the behaviors of
the controller in its environment. Table 1 shows® the exploration time and the amount of
configurations and transitions in the LTS for different complexities (1 indicates the number of
considered actors). Over four devices, we see a state explosion because of the limited memory
of our computer.

3.3 Combinatorial explosion reduction

When checking the properties of a model, a model-checker explores all the model behaviors
and checks whether the properties are true or not. Most of the time, as shown by previous

2 Here by system or system model, we refer to the model to be validated.
3 Tests were executed on Linux 32 bits - 3 Go RAM computer, with TINA vers.2.9.8 and Frac parser
vers.1.4.2.
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N.of |Exploration time| N.of LTS N.of LTS
devices (sec) configurations |transitions
1 10 16 766 82 541
2 25 66 137 320388
3 91 269 977 1297 987
4 118 939 689 4506 637

5 Explosion - -

Table 1. Table highlighting the verification complexity for an industrial case study (S_CP).

results, the number of reachable configurations is too large to be contained in memory (Figure
3.a). We propose to restrict model behavior by composing it with an environment that
interacts with the model. The environment enables a subset of the behavior of the model. This
technique can reduce the complexity of the exploration by limiting the scope of the verification
to precise system behaviors related to some specific environmental conditions.

This reduction is computed in two stages: Contexts are first identified by the user (context;, i €
[1.n] in Figure 3.b). They correspond to patterns of use of the component being modeled. The
aim is to circumvent the combinatorial explosion by restricting the behavior system with an
environment describing different configurations in which one wishes to check requirements.
Then each context is automatically partitioned into a set of sub-contexts. Here we precisely
define these two aspects implemented in our approach.

The context identification focuses on a subset of behavior and a subset of properties. In the
context of reactive embedded systems, the environment of each component of a system is
often well known. It is therefore more effective to identify this environment than trying reduce
the configuration space of the model system to explore.

[Fprier
System Model

(@)| Model Checker
-
(+ context)
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Fig. 3. Traditional model checking (a) vs. context-aware model checking (b).

....... » State space,

300

In this approach, we suppose that the designer is able to identify all possible interactions
between the system and its environment. We also consider that each context expressed
initially is finite, (i.e., there is a non infinite loop in the context). We justify this strong
hypothesis, particularly in the field of embedded systems, by the fact that the designer of
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a software component needs to know precisely and completely the perimeter (constraints,
conditions) of its system for properly developing it. It would be necessary to study formally
the validity of this working hypothesis based on the targeted applications. In this chapter, we
do not address this aspect that gives rise to a methodological work to be undertaken.

Moreover, properties are often related to specific use cases (such as initialization,
reconfiguration, degraded modes). Therefore, it is not necessary for a given property to take
into account all possible behaviors of the environment, but only the subpart concerned by the
verification. The context description thus allows a first limitation of the explored space search,
and hence a first reduction in the combinatorial explosion.

The second idea is to automatically split each identified context into a set of smaller
sub-contexts (Figure 4). The following verification process is then equivalent: (i) compose
the context and the system, and then verify the resulting global system, (ii) partition the
environment into k sub-contexts (scenarios), and successively deal each scenario with the
model and check the properties on the outcome of each composition. Actually, we transform
the global verification problem into k smaller verification sub problems. In our approach, the
complete context model can be split into pieces that have to be composed separately with the
system model. To reach that goal, we implemented a recursive splitting algorithm in our OBP
tool. Figure 4 illustrates the function explore_mc() for exploration of a model, with a context
and model-checking of a set of properties pty. The context is represented by acyclic graph.
This graph is composed with the model for exploration. In case of explosion, this context is
automatically split into several parts (taking into account a parameter d for the depth in the
graph for splitting) until the exploration succeeds.

Unfolding,
Interleaving

U523 —

Context ;

Splitting

Global context ;

explore_mc (model, context ;, pty, d) Set of K sub-contexts

{ /I exploration --—--
Its = explore (model, context ;; Model l l l l

11— model-checking--——- to be
K explorations
and verifications

if Its |= error model_check (Its, pty): Validated
Fig. 4. Context splitting and verification for each partition (sub-context).

else 5
{ set_c = split (context, d); / splitting (Fiacre)

for k : O to sizeof set_c

explore_mc (model, set_cy, pty, d); qf

}

}

In summary, the context aware method provides three reduction axes: the context behavior is
constrained, the properties are focused and the state space is split into pieces. The reduction
in the model behavior is particularly interesting while dealing with complex embedded
systems, such as in avionic systems, since it is relevant to check properties over specific
system modes (or use cases) which is less complex because we are dealing with a subset
of the system automata. Unfortunately, only few existing approaches propose operational
ways to precisely capture these contexts in order to reduce formal verification complexity
and thus improve the scalability of existing model checking approaches. The necessity of
a clear methodology has also to be identified, since the context partitioning is not trivial,
i.e., it requires the formalization of the context of the subset of functions under study. An
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associated methodology must be defined to help users for modeling contexts (out of scope of
this chapter).

4. CDL language for context and property specification

We propose a formal tool-supported framework that combines context description and model
transformations to assist in the definition of requirements and of the environmental conditions
in which they should be satisfied. Thus, we proposed (Dhaussy et al., 2009) a context-aware
verification process that makes use of the CDL language. CDL was proposed to fill the gap
between user models and formal models required to perform formal verifications. CDL is
a Domain Specific Language presented either in the form of UML like graphical diagrams
(a subset of activity and sequence diagrams) or in a textual form to capture environment
interactions.

4.1 Context hierarchical description

CDL is based on Use Case Charts of (Whittle, 2006) using activity and sequence diagrams. We
extended this language to allow several entities (actors) to be described in a context (Figure
5). These entities run in parallel. A CDL* model describes, on the one hand, the context
using activity and sequence diagrams and, on the other hand, the properties to be checked
using property patterns. Figure 5 illustrates a CDL model for the partial use cases of Figures
1 and 2. Initial use cases and sequence diagrams are transformed and completed to create the
context model. All context scenarios are represented, combined with parallel and alternative
operators, in terms of CDL.

A diagrammatical and textual concrete syntax is created for the context description and
a textual syntax for the property expression. CDL is hierarchically constructed in three
levels: Level-1 is a set of use case diagrams which describes hierarchical activity diagrams.
Either alternative between several executions (alternative/merge) or a parallelization of
several executions (fork/join) is available. Level-2 is a set of scenario diagrams organized
in alternatives. Each scenario is fully described at Level-3 by sequence diagrams. These
diagrams are composed of lifelines, some for the context actors and others for processes
composing the system model. Counters limit the iterations of diagram executions. This
ensures the generation of finite context automata.

From a semantic point of view, we can consider that the model is structured in a set of
sequence diagrams (MSCs) connected together with three operators: sequence (seq), parallel
(par) and alternative (alt). The interleaving of context actors described by a set of MSCs
generates a graph representing all executions of the actors of the environment. This graph
is then partitioned in such a way as to generate a set of subgraphs corresponding to the
sub-contexts as mentioned in 3.3.

The originality of CDL is its ability to link each expressed property to a context diagram,
i.e. a limited scope of the system behavior. The properties can be specified with property
pattern definitions that we do not describe here but can be found in (Dhaussy & Roger, 2011).
Properties can be linked to the context description at Level 1 or Level 2 (such as P1 and P3
in Figure 5) by the stereotyped links property/scope. A property can have several scopes
and several properties can refer to a single diagram. CDL is designed so that formal artifacts

4For the detailed syntax, see (Dhaussy & Roger, 2011) available (currently in french) on
http://www.obpcdl.org.
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required by existing model checkers could be automatically generated from it. This generation
is currently implemented in our prototype tool called OBP (Observer Based Prover) described
briefly in Section 5. We will now present the CDL formal syntax and semantics.

4.2 Formal syntax

A CDL model (also called “context”) is a finite generalized MSC C, following the formal
grammar:

C =M | Cy;C | CG+G ‘ C1HC2

M:=0|a;M|a; M
In other words, a context is either (1) a single MSC M composed as a sequence of event
emissions a! and event receptions a? terminated by the empty MSC (0) which does nothing, or
(2) a sequential composition (seq denoted ;) of two contexts (Cy; Cy), or (3) a non deterministic
choice (alt denoted +) between two contexts (C; 4+ Cp), or (4) a parallel composition (par
denoted ||) between two contexts (Cq]|Cp).

For instance, let us consider the context Figure 5 graphically described. This context describes
the environment we want to consider for the validation of the system model. We consider that
the environment is composed of 3 actors Devy, Dev; and Devs. All these actors run in parallel
and interleave their behavior. The model can be formalized, with the above textual grammar
as follows®.

C = Devy || Dev, || Devy

Dev; = Log;; (Oper + (nackLog (err)?; ... .0))

Log; = (goInitDev ? ; login; !)

Oper = (ackLog (id) ? ; operate (op) ! ( Ack; + (nackOper (err)?; ... ;0)))
Ack; = (ackOper (role) ? ; logout; !; ...; 0)

Devq, Devy, Devy = Dev; withi = 1,2, 3

5 In this chapter, as an illustration, we consider that the behavior of actors extends, noted by the "...".
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4.3 Semantics

The semantics is based on the semantics of the scenarios and expressed by construction rules
of sets of traces built using seq, alt and par operators. A scenario trace is an ordered events
sequence which describes a history of the interactions between the context and the model.

To describe the formal semantics, let us define a function wait(C) associating the context C
with the set of events awaited in its initial state:

Wait (0) o Wait (a; M) @ Wait (a2, M) X {a)

Wait (Cy + Cp) % Wait (C;) UWait (C)  Wait (Cy; C) & Wait (C1)if C; # 0

Wait (0;Co) % Wait (C,) Wit (C1]|Ca) % Wait (Cy) U Wait (C,)

We consider that a context is a process communicating in an asynchronous way with the
system, memorizing its input events (from the system) in a buffer. The semantics of CDL

is defined by the relation (C,B) % (C', B’) to express that the context C with the buffer B

“produces” a (which can be a sending or a receiving signal, or the null, signal if C does not
evolve) and then becomes the new context C’ with the new buffer B’. This relation is defined
by the 8 rules in Figure 6 (In these rules, a represents an event which is different from null;).

The prefl rule (without any preconditions) specifies that an MSC beginning with a sending
event a! emits this event and continues with the remaining MSC. The pref2 rule expresses that
if an MSC begins by a reception a? and faces an input buffer containing this event at the
head of the buffer, the MSC consumes this event and continues with the remaining MSC. The
seql rule establishes that a sequence of contexts Cy; C, behaves as C; until it has terminated.
The seq2 rule says that if the first context C; terminates (i.e., becomes 0), then the sequence
becomes Cy. The parl and par2 rules say that the semantics of the parallel operation is based
on an asynchronous interleaving semantics. The alt rule expresses that the alternative context
C1 + C; behaves either as C; or as Cy. Finally, the discard rule says that if an event a at the
head of the input buffer is not expected, then this event is lost (removed from the head of the
buffer).

4.4 Context and system composition

We can now formally define the “closure” composition < (C,By) | (s,S,B,) > of a system S
in a state s € X (X is the set of system states), with its input buffer By, with its context C, with
its input buffer By (note that each component, system and context, has its own buffer). The
evolution of S closed by C is given by two relations: the relation (1):

<(CB)|(s,S8,By) > 3 < (C',BY)|(s',8,By) > (1)
to express that S in the state s evolves to state s’ receiving event a, potentially empty (nulle),

(sent by the context) and producing the sequence of events o, potentially empty (null;) (to the
context). and the relation (2):

<(C,B1)|(5,8,B2) > & < (C,B)|(s,S,By) > (2)

to express that S in state s evolves to the state s’ by progressing time ¢, and producing the
sequence of events o potentially empty (null;) (to the context). Note that in the case of timed



176 Embedded Systems — Theory and Design Methodology
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Fig. 6. Context semantics.

evolution, only the system evolves, the context is not timed. The semantics of this composition
is defined by the four following rules (Figure 7).

Rule cp1: If S can produce o, then S evolves and ¢ is put at the end of the buffer of C. Rule
cp2: If C can emit a, C evolves and a is queued in the buffer of S. Rule cp3: If C can consume
a, then it evolves whereas S remains the same. Rule cp4: If the time can progress in S, then
the time progress in the composition S and C.

Note that the “closure” composition between a system and its context can be compared with
an asynchronous parallel composition: the behavior of C and of § are interleaved, and they

communicate through asynchronous buffers. We will denote < (C,B)|(s,S,B’) > / to

express that the system and its context cannot evolve (the system is blocked or the context
terminated). We then define the set of traces (called runs) of the system closed by its context
from a state s, by:

def
[C|(s,8)] = {a1-01- ... an-0,-endc |
< (C,nully) | (s,nully) > %119 < (Cy,Bq) | (s1,8,B}) >

(—t;? %:‘? <(Cn,Bn) | (SHIS/B;l) > 74}

[C|(s,S)] is the set runs of S closed by C from the state s. Note that a context is built as
sequential or parallel compositions of finite loop-free MSCs. Consequently the runs of a
system model closed by a CDL context are necessarily finite. We then extend each run of
[C|(s,8)] by a specific terminal event endc allowing the observer to catch the ending of a
scenario and accessibility properties to be checked.
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(s,S,B2) 5 (5, S, B)) [ep1]

< (C,By)|(s,S,By) > Mdls < (C,By.0)|(s', S, By) >

(C,B1) = (C', By) [ep2]

< (C,B1)|(s,S,By) > o> < (C',B})|(s, S, By.a) >

=
&
)

(C,B1) % (C',B))

[cp3]
< (C,B)|(s,S,By) > Mile < (C',BY)|(5,S,By) >

to(of !
(s,S,B2) » (s',S,By) [epd]

< (C,By)[(s,8,By) > L < (C,B)|(s',S,By) >
Fig. 7. CDL context and system composition semantics.

4.5 Property specification patterns

Property specifying needs to use powerful yet easy mechanisms for expressing temporal
requirements of software source code. As example, let’s see a requirement of the S_CP
system described in section 3.1. This requirement was found in a document of our partner
and is shown in Listing 1. It refers to many events related to the execution of the model or
environment. It also depends on an execution history that has to be taken into account as a
constraint or pre-condition.

Requirement R: During initialization procedure, S_CP shall associate an identifier to each device
(Dev), after login request and before maxD_log time units.

Listing 1. Initialization requirement for the S_CP system described in section 3.

If we want to express this requirement with a temporal logic based language as LTL or CTL,
the logical formulas are of great complexity and become difficult to read and to handle by
engineers. So, for the property specification, we propose to reuse the categories of Dwyer
patterns (Dwyer et al., 1999) and extend them to deal with more specific temporal properties
which appear when high-level specifications are refined. Additionally, a textual syntax is
proposed to formalize properties to be checked using property description patterns (Konrad
& Cheng, 2005). To improve the expressiveness of these patterns, we enriched them with
options (Pre-arity, Post-arity, Immediacy, Precedence, Nullity, Repeatability) using annotations
as (Smith et al., 2002). Choosing among these options should help the user to consider the
relevant alternatives and subtleties associated with the intended behavior. These annotations
allow these details to be explicitly captured. During a future work, we will adapt these
patterns taking into account the taxonomy of relevant properties, if this appears necessary.

We integrate property patterns description in the CDL language. Patterns are classified in
families, which take into account the timed aspects of the properties to be specified. The
identified patterns support properties of answer (Response), the necessity one (Precedence), of
absence (Absence), of existence (Existence) to be expressed. The properties refer to detectable
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events like transmissions or receptions of signals, actions, and model state changes. The
property must be taken into account either during the entire model execution, before, after or
between occurrences of events. Another extension of the patterns is the possibility of handling
sets of events, ordered or not ordered similar to the proposal of (Janssen et al., 1999). The
operators AN and ALL respectively specify if an event or all the events, ordered (Ordered) or
not (Combined), of an event set are concerned with the property.

We illustrate these patterns with our case study. The given requirement R (Listing 1) must
be interpreted and can be written with CDL in a property P1 as follow (cf. Listing 2). P1 is
linked to the communication sequence between the S_CP and device (Dev;). According to the
sequence diagram of figure 5, the association to other devices has no effect on P1.

Property P1;
ALL Ordered

exactly one occurence of S_CP_hasReachState_Init
exactly one occurence of loginl

end
eventually leads — to [0..maxD_log]
AN
one or more occurence of ackLog(id)
end

S_CP_hasReachState_Init may never occurs
loginl may never occurs

one of ackLog(id) cannot occur before loginl
repeatibility : true

Listing 2. S_CP case study: A response pattern from R requirement.

P1 specifies an observation of event occurrences in accordance with figure 5. loginl refers
to loginy reception event in the model, ackLog refers to ackLog reception event by Dev;.
S_CP_hasReachState_Init refers a state change in the model under study.

For the sake of simplicity, we consider in this chapter that properties are modeled as observers.
Our OBP toolset transforms each property into an observer automaton including a reject node.
An observer is an automaton which observes the set of events exchanged by the system S
and its context C (and thus events occurring in the runs of [C|(init, S)]) and which produces
an event reject whenever the property becomes false. With observers, the properties we
can handle are of safety and bounded liveness type. The accessibility analysis consists of
checking if there is a reject state reached by a property observer. In our example, this reject
node is reached after detecting the event sequence of S_CP_hasReachState_Init and loginy,
in that order, if the sequence of one or more of ackLog is not produced before maxD_log
time units. Conversely, the reject node is not reached either if S_CP_hasReachState_Init or
login; are never received, or if ackLog event above is correctly produced with the right delay.
Consequently, such a property can be verified by using reachability analysis implemented in
our OBP Explorer. For that purpose, OBP translates the property into an observer automaton,
depicted in figure 8.

4.6 Formalization of observers

The third part of the formalization relies on the expression of the properties to be fulfilled. We
consider in the following that an observer is an automaton O = (%,, init,, T, Sig, {reject}, Sv,)
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ackLog (id)

m_log

§_CP_hasReachState_lInit

login1
ck:=0

ackLog (id)

Fig. 8. Observer automaton for the property P1 of Listing 2.

(a) emitting a single output event: reject, (b) where Sig is the set of matched events by the
observer; events produced and received by the system and its context and (c) such that all
transitions labelled reject arrive in a specific state called “unhappy”.

Semantics. We say that S in the state s € £. S closed by C satisfies O, denoted C|(s,S) = O,
if and only if no execution of O faced to the runs r of [C|(s, S)] produces a reject event. This
means:

Cl(s,S)EO <= Vre|[C]|(sS)],
(inito,O,r)m(sl,O,rl)m m(sn,(?,rn) -

Remark: executing O on a run r of [C|(s, S)] is equivalent to put r in the input buffer of O
and to execute O with this buffer. This property is satisfied if and only if only the empty event
(nully) is produced (i.e., the reject event is never emitted).

5. OBP toolset

To carry out our experiments, we used our OBP? tool (Figure 9). OBP is an implementation
of a CDL language translation in terms of formal languages, i.e. currently FIACRE (Farail
etal., 2008). As depicted in Figure 9, OBP leverages existing academic model checkers such as
TINA or simulators such as our explorer called OBP Explorer. From CDL context diagrams,
the OBP tool generates a set of context graphs which represent the sets of the environment
runs. Currently, each generated graph is transformed into a FIACRE automaton. Each graph
represents a set of possible interactions between model and context. To validate the model
under study;, it is necessary to compose each graph with the model. Each property on each
graph must be verified. To do so, OBP generates either an observer automaton (Halbwachs
et al., 1993) from each property for OBP Explorer, or SELT logic formula (Berthomieu et al.,
2004) for the TINA model checker. With OBP Explorer, the accessibility analysis is carried out
on the result of the composition between a graph, a set of observers and the system model
as described in (Dhaussy et al., 2009). If, for a given context, we face state explosion, the
accessibility analysis or model-checking is not possible. In this case, the context is split into a
subset of contexts and the composition is executed again as mentioned in 3.3.

To import models with standard format such as UML, SysML, AADL, SDL, we necessarily
need to implement adequate translators such as those studied in TopCased” or Omega®
projects to generate FIACRE programs.

6 OBP; (OBP for TINA) is available on http:/ /www.obpcdl.org.
7 http:/ /www.topcased.org
8 http:/ /www-Omega.imag.fr
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Fig. 9. CDL model transformation with OBP.

6. Experiments and results

Our approach was applied to several embedded systems applications in the avionic or
electronic industrial domain. These experiments were carried out with our French industrial
partners. We reported here the results of these experiments.

6.1 Requirement specification

This section reports on six case studies (CS; to CSg). Four of the software components
come from an industrial A and two from a BY. For each industrial component, the industrial
partner provided requirement documents (use cases, requirements in natural language) and
the component executable model. Component executable models are described with UML,
completed by ADA or JAVA programs, or with SDL language. The number of requirements
in Table 2 evaluates the complexity of the component. To validate these models, we specify
properties and contexts.

CSq CS; CS3 CSy CSs5 CSq
Modeling SDL SDL SDL SDL UML2 | UML2
language
Number of 4000 15000 | 30000 | 15000 | 38000 | 25000
code lines
Number of 49 94 136 85 188 151
requirements

Table 2. Industrial case study classification.

6.1.1 Property specification

Requirements are inputs of our approach. Here, the work consists in transforming
natural language requirements into temporal properties. To create the CDL models with
patterns-based properties, we analyzed the software engineering documents of the proposed
case studies. We transformed textual requirements. We focused on requirements which

9 CSs5 corresponds to the case study partially described in section 3.1.
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can be translated into observer automata. Firstly, we note that most of requirements had
to be rewritten into a set of several properties. Secondly, model requirements of different
abstraction levels are mixed. We extracted requirement sets corresponding to the model
abstraction level. Finally, we observe that most of the textual requirements are ambiguous. We
had to rewrite them consequently to discussion with industrial partners. Table 3 shows the
number of properties which are translated from requirements. We consider three categories
of requirements. Provable requirements correspond to requirements which can be captured
with our approach and can be translated into observers. The proof technique can be
applied on a given context without combinatorial explosion. Non-Computable requirements are
requirements which can be interpreted by a pattern but cannot be translated into an observer.
For example, liveness properties cannot be translated because they are unbounded. Observers
capture only bounded liveness properties. From the interpretation, we could generate
another temporal logic formula, which could feed a model checker as TINA. Non-Provable
requirements are requirements which cannot be interpreted at all with our patterns. It is the
case when a property refers to undetectable events for the observer, such as the absence of a
signal.

CSq CS; CS3 CSy CSs CSg Average
Provable 38/49 | 73/94 | 72/136 | 49/85 | 155/188| 41/151 | 428/703
properties (78%) | (78%) | (53%) (58%) | (82%) 27%) (61%)
Non-computable | 0/49 2/94 24/136 | 2/85 18/188 | 48/151 | 94/703
properties (0%) (2%) (18%) (2%) (10%) (32%) (13%)
Non-Provable 11/49 | 19/94 | 40/136 | 34/85 | 15/188 | 62/151 | 181/703
properties (22%) | (20%) | (29%) (40%) | (8%) (41%) (26%)

Table 3. Table highlighting the number of expressible properties in 6 industrial case studies.

For the CS5 , we note that the percentage (82%) of provable properties is very high. One reason
is that the most of 188 requirements was written with a good property pattern matching. For
the CSg, we note that the percentage (27%) is very low. It was very difficult to re-write the
requirements from specification documentation. We should have spent much time to interpret
requirements with our industrial partner to formalize them with our patterns.

6.2 Context specification

For the S_CP case study, we constructed several CDL models with different complexities
depending on the number of devices. The tests are performed on each CDL model composed
with S_CP system.

N.of Exploration N.of N.of LTS N.of LTS
devices time (sec) sub-contexts config. trans.

1 11 3 16 884 82 855
2 26 3 66 255 320802
3 92 3 270 095 1298 401
4 121 3 939 807 4507 051
5 240 3 2 616 502 12 698 620
6 2161 40 32064 058 | 157 361 783
7 4518 55 64746 500 | 322 838 592

Table 4. Exploration with TINA explorer with context splitting using OBP; (S_CP case study).
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Table 4 shows the amount of TINA exploration'? for CDL examples with the use of context
splitting. The first column depicts the number n of Dev asking for login to the S_CP. The
other columns depict the exploration time and the cumulative amount of configurations and
transitions of all LTS generated during exploration by TINA with context splitting. Table 4
also shows the number of contexts split by OBP. For example, with 7 devices, we needed to
split the CDL context in 55 parts for successful exploration. Without splitting, the exploration
is limited to 4 devices by state explosion as shown Table 1. It is clear that device number limit
depends on the memory size of used computer.

7. Discussion and future work

CDL is a prototype language to formalize contexts and properties. However, CDL concepts
can be implemented in another language. For example, context diagrams are easily described
using full UML2. CDL permits us to study our methodology. In future work, CDL can
be viewed as an intermediate language. Today, the results obtained using the currently
implemented CDL language and OBP are very encouraging. For each case study, it was
possible to build CDL models and to generate sets of context graphs with OBP.

CDL contributes to overcoming the combinatorial explosion by allowing partial verification
on restricted scenarios specified by the context automata. CDL permits contexts and non
ambiguous properties to be formalized. Property can be linked to whole or specific contexts.
During experiments, we noted that some contexts and requirements were often described in
the available documentation in an incomplete way. With the collaboration between engineers
responsible for developing this documentation and ourselves, these engineers were motivated
to consider a more formal approach to express their requirements, which is certainly a positive
improvement.

In some case study, 70% textual requirements can be rewritten more easily with pattern
property. So, CDL permits a better formal verification appropriation by industrial partners.
Contexts and properties are verification data useful to perform proof activities and to validate
models. These data have to be capitalized if the implementation evolves over the development
life cycle.

In case studies, context diagrams were built, on the one hand, from scenarios described in
the design documents and, on the other hand, from the sentences of requirement documents.
Two major difficulties have arisen. The first is the lack of complete and coherent description
of the environment behavior. Use cases describing interactions between the system (S_CP for
instance) and its environment are often incomplete. For instance, data concerning interaction
modes may be implicit. CDL diagram development thus requires discussions with experts
who have designed the models under study in order to make explicit all context assumptions.
The problem comes from the difficulty in formalizing system requirements into formal
properties. These requirements are expressed in several documents of different (possibly
low) levels. Furthermore, they are written in a textual form and many of them can have
several interpretations. Others implicitly refer to an applicable configuration, operational
phase or history without defining it. Such information, necessary for verification, can only
be deduced by manually analyzing design and requirement documents and by interviewing
expert engineers.

10 Tests with same computer as for Table 1.
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The use of CDL as a framework for formal and explicit context and requirement definition
can overcome these two difficulties: it uses a specification style very close to UML and
thus readable by engineers. In all case studies, the feedback from industrial collaborators
indicates that CDL models enhance communication between developers with different levels
of experience and backgrounds. Additionally, CDL models enable developers, guided by
behavior CDL diagrams, to structure and formalize the environment description of their
systems and their requirements. Furthermore, constraints from CDL can guide developers
to construct formal properties to check against their models. Using CDL, they have a means
of rigorously checking whether requirements are captured appropriately in the models using
simulation and model checking techniques.

One element highlighted when working on embedded software case studies with industrial
partners, is the need for formal verification expertise capitalization. Given our experience in
formal checking for validation activities, it seems important to structure the approach and the
data handled during the verifications. That can lead to a better methodological framework,
and afterwards a better integration of validation techniques in model development processes.
Consequently, the development process must include a step of environment specification
making it possible to identify sets of bounded behaviors in a complete way.

Although the CDL approach has been shown scalable in several industrial case studies,
the approach suffers from a lack of methodology. The handling of contexts, and then the
formalization of CDL diagrams, must be done carefully in order to avoid combinatorial
explosion when generating context graphs to be composed with the model to be validated.
The definition of such a methodology will be addressed by the next step of this work.
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1. Introduction

Embedded systems are extensively used in various small devices, such as mobile phones,
in transportation systems, such as those in cars or aircraft, and in large-scale distributed
systems, such as cloud computing environments. We need a technology that can be used
to develop low-cost, high-performance embedded systems. This technology would be useful
for designing, testing, implementing, and evaluating embedded prototype systems by using
a software simulator.

So far, embedded systems are typically used only in machine controls, but it seems that they
will soon also have an information processing function. Recent embedded systems target
not only industrial products but also consumer products, and this appears to be spreading
across various fields. In the United States and Europe, there are large national projects related
to the development of embedded systems. Embedded systems are increasing in size and
becoming more complicated, so the development of methodologies and efficient testing for
them is highly desirable.

The authors have been engaged in the development of a software development environment
based on graph theory, which includes graph drawing theory and graph grammars [2—4]. In
our research, we use Hichart, which is a program diagram methodology originally introduced
by Yaku and Futatsugi [5].

There has been a substantial amount of research devoted to Hichart. A prototype formulation
of attribute graph grammar for Hichart was reported in [6]. This grammar consists of Hichart
syntax rules, which use a context-free graph grammar [7], and semantic rules for layout.
The authors have been developing a software development environment based on graph
theory that includes graph drawing theory and various graph grammars [2, 8]. So far, we
have developed bidirectional translators that can translate a Pascal, C, or DXL source into
Hichart and can alternatively translate Hichart into Pascal, C, or DXL [2, 8]. For example,
HiChart Graph Grammar (HCGG) [9] is an attribute graph grammar with an underlying

“Part of the results have previously been reported by [1]
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graph grammar based on edNCE graph grammar [10] and intended for use with DXL. It
is problematic, however, in that it cannot parse very efficiently. Hichart Precedence Graph
Grammar (HCPGG) was introduced in [11].

In recent years, model checking methodologies have been applied to embedded systems. In
our current work, we constructed a visual software development environment to support
a developed embedded system. The target of this research is NQC, which is the program
language for LEGO MINDSTORM. Our visual software development system for embedded
systems can

1. generate Promela codes for given Hichart diagrams, and
2. detect problems by using visual feedback features.

Our previously developed environment was not sufficiently functional, so we created an
effective testing environment for the visual environment.

In this chapter, we describe our visual software development environment that supports the
development of embedded systems.

2. Preliminaries

2.1 Embedded systems

An embedded system is a system that controls various components and specific functions of
the industrial equipment or consumer electronic device it is built into [12, 13]. Product life
cycles are currently being shortened, and the period from development to verification has
now been trimmed down to about three months. Four requirements are needed to implement
modern embedded systems.

¢ Concurrency
Multi-core and/or multi processors are becoming dominant in the architecture of
processors as a solution to the limits in circuit line width (manufacturing process),
increased generation of heat, and clock speed limits. Therefore, it is necessary to
implement applications by using methods with parallelism descriptions.

e Hierarchy
System modules are arranged in a hierarchal fashion in main systems, subsystems,
and sub-subsystems. Diversity and recycling must be improved, and the number of
development processes should be reduced as much as possible.

¢ Resource Constraints
It is necessary to comply with the constraints of built-in factors like memory and power
consumption.

* Safety and Reliability
System failure is a serious problem that can cause severe damage and potentially fatal
accidents. It is extremely important to guarantee the safety of a system.

LEGO MINDSTORMS [14] is a robotics environment that was jointly developed by the REGO
and MIT. MINDSTORMS consists of a block with an RCX or NXT micro processor. Robots that
are constructed with RCX or NXT and sensors can work autonomously, so a block with RCX
or NXT can control a robot’s behavior. RCX or NXT detects environment information through
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attached sensors and then activates motors in accordance with the programs. RCX and NXT
are micro processors with a touch sensor, humidity sensor, photodetector, motor, and lamp.

ROBOLAB is a programming environment developed by National Instruments, the REGO,
and Tufts University. It is based on LABVIEW (developed by National Instruments) and
provides a graphical programming environment that uses icons.

It is easy for users to develop programs in a short amount of time because ROBOLAB uses
templates. These templates include various icons that correspond to different functions which
then appear in the developed program in pilot level. ROBOLAB has fewer options than
LABVIEW, but it does have some additional commands that have been customized for RCX.

Two programming levels, pilot level and inventor level, can be used in ROBOLAB. The steps
then taken to construct a program are as follows.

1. Choose icons from palette.

2. Puticons in a program window.

3. Set orders of icons and then connect them.
4. Transfer obtained program to the RCX.

Not Quite C (NQC) [15] is a language that can be used in LEGO MINDSTORM RCX. Its
specification is similar to that of C language, but differs in that it does not provide a pointer
but instead has functions specialized for LEGO MINDSTORMS, including "turn on motors,"
"check touch sensors value," and so on.

A typical NQC program starts from a “main” task and can handle a maximum of ten tasks.
When we write NQC source codes, the below description is required.

Listing 1. Examplel

task main ()
{
}

Here, we investigate functions and constants. The below program shows MINDSTORMS
going forward for four seconds, then backward for four seconds, and then stopping.

Listing 2. Example2

task main ()

{
OnFwd (OUT_A+OUT C);
Wait (400);
OnRev (OUT_A+OUT C);
Wait(400);
Off (OUT_A+OUT C);

}

Here, the functions “OnFwd,” “OnRev,” etc. control RCX. Table 1 shows an example of
functions customized for NQC.
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[Functions |Explanation |Example of description
SetSensor(<sensor set type and mode of|SetSensor(SENSOR_1,
name>, sensors SENSOR_TOUCH)
<configuration>)

SetSensorMode(<sensgset a sensor’s mode
name>, <mode>)
OnFwd(<outputs>)

SetSensorMode(SENSOR_2,
SENSOR_MODE_PERCENT)
set direction and turn|OnFwd(OUT_A)

on

Table 1. Functions of RCX

As for the constants, they are constants with names and work to improve programmers’
understanding of NQC programs.

Table 2 shows an example of constants.

(Constants category  |Constants |

SENSOR_MODE_RAW, SENSOR_MODE_BOOL,
SENSOR_MODE_EDGE, SENSOR_MODE_PULSE,
SENSOR_MODE_PERCENT,
SENSOR_MODE_CELCIUS,
SENSOR_MODE_FAHRENHEIT,
SENSOR_MODE_ROTATION
for[SENSOR_MODE_RAW, SENSOR_MODE_BOOL,
SENSOR_MODE_EDGE, SENSOR_MODE_PULSE,
SENSOR_MODE_PERCENT,
SENSOR_MODE_CELCIUS,
SENSOR_MODE_FAHRENHEIT,
SENSOR_MODE_ROTATION

Setting for SetSensor()

Mode
SetSensorMode

Table 2. Constants of RCX

We adopt REGO MINDSTORMS as an example of embedded systems with sensors.

2.2 Program diagrams

In software design and development, program diagrams are often used for software
visualization. Many kinds of program diagrams, such as the previously mentioned
hierarchical flowchart language (Hichart), problem analysis diagram (PAD), hierarchical and
compact description chart (HCP), and structured programming diagram (SPD), have been
used in software development [2, 16]. Moreover, software development using these program
diagrams is steadily on the increase.

In our research, we used the Hichart program diagram [17], which was first introduced by
Yaku and Futatsugi [5]. Figure 1 shows a program called “Tower of Hanoi” that was written
in Hichart.

Hichart has three key features:

1. A tree-flowchart diagram that has the flow control lines of a Neumann program flowchart,
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Fig. 1. Example of Hichart: “Tower of Hanoi”.

)

a) process

c) continuous iteration

Fig. 2. Example of Hichart symbols.

b) exclusive selection

< )

d) caption

2. Nodes of the different functions in a diagram that are represented by differently shaped

cells, and

3. A data structure hierarchy (represented by a diagram) and a control flow that are
simultaneously displayed on a plane, which distinguishes it from other program diagram

methodologies.

Hichart is described by cell and line. There are various type of cells, such as "process,”

"o nn

"exclusive selection," "continuous iteration,
of some of the Hichart symbols.

3. Program diagrams for embedded systems

caption,” and so on. Figure 2 shows an example

In this section, we describe program diagrams for embedded systems, specifically, a detailed
procedure for constructing program diagrams for an embedded system using Hichart for

NQC.
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Fig. 3. Overview of our previous study.

Figure 3 shows an overview of our previous study on a Hichart-C translation system.

In our previous system, it is possible to obtain internal Hichart data from C source code via a
C-to-H translator implemented using JavaCC. Users can edit a Hichart diagram on a Hichart
editor that visualizes the internal Hichart data as a Hichart diagram. The H-to-C translator
can generate C source codes from the internal Hichart data, and then we can obtain the C
source code corresponding to the Hichart diagrams. Our system can illustrate programs as
diagrams, which leads to an improved understanding of programs.

We expanded the above framework to treat embedded system programming. Specifically we
extended H-to-C and C-to-H specialized for NQC. Some of the alterations we made are as
follows.

1. task

The “task” is a unique keyword of NQC, and we therefore added it to the C-to-H function.
2. start, stop

We added “start” and “stop” statements in Hichart (as shown in List 3) to control tasks.

Listing 3. Example3

task main()

{
SetSensor (SENSOR_1,SENSOR TOUCH ) ;
start check_sensors;
start move_square;

}

task move_square ()

{

while(true)

{
OnFwd (OUT_A+OUT_C); Wait(100);
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Fig. 4. Screenshot of Hichart for NQC that correspond to List 3.

OnRev (OUT_C); Wait(68);
}
}

task check_sensors ()

{

while(true)

{
if (SENSOR_1 == 1)

{

stop move_square;

OnRev (OUT_A+OUT_C); Wait(50);
OnFwd (OUT_A); Wait (85);
start move_square;

}

There are some differences between C syntax and NQC syntax; therefore, we modified
JavaCC, which defines syntax, to cover them. Thus, we obtained program diagrams for

embedded systems.

Figure 4 shows a screenshot of Hichart for NQC that correspond to List 3.
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4. A visual software development environment

We propose a visual software development environment based on Hichart for NQC. We
visualize NQC code by the abovementioned Hichart diagrams through a Hichart visual
software development environment called Hichart editor. Hichart diagrams or NQC source
codes are inputted into the editor, and the editor outputs NQC source codes after editing code
such as parameter values in diagrams.

In the Hichart editor, the program code is shown as a diagram. List 4 shows a sample program
of NQC, and Figure 5 shows the Hichart diagram corresponding to List 4.
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Fig. 5. Screen of Hichart editor.

Listing 4. anti-drop program

task main()
{
SetSensor (SENSOR_2,SENSOR_LIGHT) ;
OnFwd (OUT_A+OUT C);
while(true)
{
if (SENSOR_2 < 40)
{
OnRev (OUT_A+OUT_C);
Wait(50);
OnFwd (OUT_A) ;
Wait(68);
until (SENSOR_2 >= 40);
OnFwd (OUT_A+OUT _C);
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This Hichart editor for NQC has the following characteristics.

1. Generation of Hichart diagram corresponding to NQC

2. Editing of Hichart diagrams

3. Generation of NQC source codes from Hichart diagrams

4. Layout modification of Hichart diagrams

Users can edit each diagram directly on the editor. For example, cells can be added by

double-clicking on the editor screen, after which cell information, such as type and label, is
embedded into the new cell.

Figure 6 shows the Hichart screen after diagram editing. In this case, some of the parameter’s
values have been changed.

< FRMA.ngc

| B | toc | P2 | B r“i‘ T A S |[FYUEE #:0F

[
1v] L« [ES]

“pragrar | [2[*function® ¥ Func_tine' [+
a0 nae[ | mfsin task

g

8 "SetSensol'

(SENSOR_2 SENSOR_LIGHT)
9 "OnFud”

(OUT_A+OUT] )
10"wvhile" 11"hegin®
true

I

{‘Func,hw

12'F 13"begin® 14°OnRe"
SENSOR_p430 (OUT_a+oUT| ©)

18*untir
(SENSOR_25F20)
19"DnFwd"
(OUT_a-ouT ) ||

4] 0 |

Fig. 6. Hichart editor screen after editing.

The Hichart editor can read NQC source codes and convert them into Hichart codes using
the N-to-H function, and it can generate NQC source codes from Hichart codes by using the
H-to-N function. The Hichart codes consist of tree data structure. Each node of the structure
has four pointers (to parent node, to child cell, to previous cell, and to next cell) and node
information such as node type, node label, node label, and so on. To generate NQC codes by
the H-to-N function, tree structures can be traversed in preorder.

The obtained NQC source code can be transferred to the LEGO MINDSTORM RCX via
BricxCC. Figure 7 shows a screenshot of NQC source code generated by the Hichart editor.
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Fig. 7. Screenshot of NQC source code generated by Hichart editor.
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Table 3. Behavioral specifications table.

5. Testing environment based on behavioral specification and logical checking

To test embedded system behaviors, especially for those that have physical devices such as
sensors, two areas must be checked: the value of the sensors and the logical correctness of the
embedded system. Embedded systems with sensors are affected by the environment around
the machine, so it is important that developers are able to set the appropriate sensor value.
Of course, even if the physical parameters are appropriate, if there are logical errors in a
machine’s program, the embedded systems will not always work as we expect.

In this section, we propose two testing methods to check the behaviors of embedded systems.

5.1 Behavioral specifications table

A behavioral specifications table is used when users set the physical parameters of RCX.
An example of such a table is shown in Table 3. The leftmost column lists the behavioral
specifications and the three columns on the right show the parameter values. A circle indicates
an expected performance; a cross indicates an unexpected one. The numerical values indicate
the range of sensitivity parameters s.

For example, when the sensitivity parameter s was between 0 and 32, the moving object did
not recognize a table edge (the specifications for “recognizes a table edge” were not met) and
did not spin around on that spot. When the sensitivity parameter s was between 33 and 49,
the specifications for “recognizes a table edge” and “does not spin around on that spot” were
both met.
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Fig. 8. Screenshot of Hichart editor and behavioral specifications table.

The results in the table show that the RCX with a sensor value from 0 to 32 cannot distinguish
the edge of the table and so falls off. Therefore, users need to change the sensor value to the
optimum value by referencing the table and choosing the appropriate value. In this case, if
users only choose the column with the values from 33 to 49, the chosen value is reflected in
the Hichart diagram. This modified Hichart diagram can then generate an NQC source code.
This is an example of how developers can easily set appropriate physical parameters by using
behavioral specifications tables.

The behavioral specifications function has the following characteristics.

1. The editor changes the colors of Hichart cells that are associated with the parameters in the
behavioral specifications table.

2. The editor sets the parameter value of Hichart cells that are associated with the parameters
in the behavioral specifications table.

Here, we show an example in which an RCX runs without falling off a desk. In this example,
when a photodetector on the RCX recognizes the edge of the desk, the RCX reverses and turns.
Figure 8 shows a screenshot of the Hichart editor and the related behavioral specifications
table.

In the Hichart editor, the input-output cells related to a behavioral specifications table are
redrawn in green when the user chooses a menu that displays the behavioral specifications
table.

Figure 9 shows the behavior of an RCX after setting the appropriate physical parameters. The
RCX can distinguish the table edge and turn after reversing.

We also constructed a function that enables a behavioral specification table to be stored in a
database that was made using MySQL. After we test a given device, we can input the results
via the database function in the Hichart editor. Using stored information, we can construct a
behavioral specification table with an optimized parameter’s value.
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Fig. 9. Screenshot of RCX that recognizes table edge.

5.2 Model checking

We propose a method for checking behavior in the Hichart development environment by
using the model checking tool SPIN [18, 19] to logically check whether a given behavior
specification is fulfilled before applying the program to a real machine. As described
previously, the behavioral specifications table can check the physical parameters of a real
machine. However, it cannot check logical behavior. We therefore built a model checking
function into our editor that can translate internal Hichart data into Promela code.

The major characteristics of the behavior specification verification function are listed below.

¢ Generation of Promela codes
Generating Promela codes from Hichart diagrams displayed on the Hichart editor.

e Execution of SPIN

Generating pan.c or LTL-formulas.
¢ Compilation

Compiling obtained pan.c to generate .exe file for model checking.
e Analyzing

* Analysis
We found that programs do not bear the behavior specification by model checking and so
generated trail files. The function then analyzes the trail files and feeds them back to the
Hichart diagrams.

The Promela code is used to check whether a given behavior specification is fulfilled.
Feedback from the checks is then sent to a Hichart graphical editor. If a given behavioral
specification is not fulfilled, the result of the checking is reflected in the implicated location of
the Hichart.

To give an actual example, we consider the specifications that make the RCX repeat forward
movements and turn left. If it is touch sensitive, the RCX changes course. This specification
means that RCX definitely swerves when touched. In this study, we checked whether the
created program met the behavior specification by using SPIN before applying the program
to real machines.
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Listing 5. Source code of NQC

task move_square () {
while (true){
OnFwd (OUT_A + OUT.C);
Wait(1000);
OnRev (OUT_C);
Wait (85);
}
}

Listing 6. Promela code

proctype move_square () {

do
state = OnFwd;
state = Wait;
state = OnRev;
state = Wait;
od

}

Lists 5 and 6 show part of the NQC source code corresponding to the above specification and
the automatically generated Promela source code.

We explain the feedback procedure, which is shown in Fig. 10.

An assertion statement of “state == OnFwd” is an example. If a moving object (RCX) is
moving forward at the point where the assertion is set, the statement is true. Otherwise, it
is false. For example, we can verify by steps (3)-(7) in Fig. 10 whether the moving object is
always moving forward or not.

Here, we show an example of manipulating our Hichart editor. We can embed an assertion
description through the Hichart editor, as shown in Fig. 11, and then obtain a Promela code
from the Hichart code. When we obtain this code, we have to specify the behaviors that we
want to check. Figure 12 shows a result obtained through this process.

Next, we execute SPIN. If we embed assertions in the Hichart code, we execute SPIN as it
currently stands, while if we use LTL-formulas, we execute SPIN with an “-f* option and then
obtain pan.c. The model is checked by compiling the obtained pan.c. Figure 13 is a screenshot
of the model checking result using the Hichart editor.

If there are any factors that do not meet the behavioral specifications, trail files are generated.
Figure 14 shows some of the result of analyzing the trail file.

The trail files contain information on how frequently the processing calls and execution paths
were made. We use this information to narrow the search area of the entire program by using
the visual feedback. Users can detect a problematic area interactively by using the Hichart
editor with the help of this visual feedback.
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1. Read NQC source codes
on Hichart editor.

2. Embed verification property (assertion)

to Hichart node.

3. Translate from Hichart internal data into

Promela codes to verify the property.

4. Generate a pan.c from Promela codes

and compile and execute the pan.c.

5.If there are errors, generate a trail file

or else end the feedback procedure.

6. Analyze the trail file.

7. Reflect analyzed result to Hichart editor.

Fig. 10. Feedback procedure.
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Fig. 15. Part of Hichart editor feedback screen.

After analyzing the trail files, we can obtain feedback from the Hichart editor. Figure 15 shows
part of a Hichart editor feedback screen.

If the result is that programs did not meet the behavior specification by using SPIN, the
tasks indicated as the causes are highlighted. The locations that do not meet the behavior
specifications can be seen by using the Hichart feedback feature. This is an example of efficient
assistance for embedded software.

6. Conclusion

We described our application of a behavioral specification table and model-checking
methodologies to a visual software development environment we developed for embedded

software.
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A key element of our study was the separation of logical and physical behavioral
specifications. It is difficult to verify behaviors such as those of robot sensors without access
to the behaviors of real machines, and it is also difficult to simulate behaviors accurately.
Therefore, we developed behavioral specification tables, a model-checking function, and a
method of giving visual feedback.

It is rather difficult to set exact values for physical parameters under development
circumstances using a tool such as MATLAB/simulink because the physical parameters vary
depending on external conditions (e.g., weather), and therefore, there were certain limitations
to the simulations. We obtained a couple of examples demonstrating the validity of our
approach in both the behavioral specification table and the logical specification check by using
SPIN.

In our previous work, some visual software development environments were developed
based on graph grammar; however, the environment for embedded systems described in this
article is not yet based on graph grammars. A graph grammar for Hichart that supports NQC
is currently under development.

In our future work, we will construct a Hichart development environment with additional
functions that further support the development of embedded systems.
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1. Introduction

The complexity of embedded systems and their safety requirements have risen significantly
in the last years. The model based development approach helps to handle the complexity.
However, the support for analysis of non-functional properties based on development models,
and consequently the integration of these analyses in a development process exist only
sporadically, in particular concerning scheduling analysis. There is no methodology that
covers all aspects of doing a scheduling analysis, including process steps concerning the
questions, how to add necessary parameters to the UML model, how to separate between
experimental decisions and design decisions, or how to handle different variants of a system.
In this chapter, we describe a methodology that covers these aspects for an integration of
scheduling analyses into a UML based development process. The methodology describes
process steps that define how to create a UML model containing the timing aspects, how to
parameterise it (e.g., by using external specialised tools), how to do an analysis, how to handle
different variants of a model, and how to carry design decision based on analysis results over
to the design model. The methodology specifies guidelines on how to integrate a scheduling
analysis for systems using static priority scheduling policies in a development process. We
present this methodology on a case study on a robotic control system.

To handle the complexity and fulfil the sometimes safety critical requirements, the model
based development approach has been widely appreciated. The UML (Object Management
Group (2003)) has been established as one of the most popular modelling languages. Using
extension, e.g., SysML (Object Management Group (2007)), or UML profiles, e.g., MARTE
(Modelling and Analysis of Real-Time and Embedded Systems) (Object Management Group
(2009)), UML can be better adapted to the needs of embedded systems, e.g., the non functional
requirement scheduling. Especially MARTE contains a large number of possibilities to add
timing and scheduling aspects to a UML model. However, because of the size and complexity
of the profile it is hard for common developers to handle it. Hence, it requires guidance in
terms of a methodology for a successful application of the MARTE profile.

Besides specification and tracing of timing requirements through different design stages,
the major goal of enriching models with timing information is to enable early validation
and verification of design decisions. As designs for an embedded or safety critical systems
may have to be discarded if deadlines are missed or resources are overloaded, early timing
analysis has become an issue and is supported by a number of specialised analysis tools,
e.g., SymTA /S (Henia et al. (2005)), MAST (Harbour et al. (2001)), and TIMES (Fersman & Yi
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(2004)). However, the meta models used by these tools differ from each other and in particular
from UML models used for design. Thus, to make an analysis possible and to integrate itinto a
development process, the developer has to remodel the system in the analysis tool. This leads
to more work and possibly errors made by the remodelling. Additionally, the developer has
to learn how to use the chosen analysis tool. To avoid this major effort, an automatic model
transformation is needed to build an interface that enables automated analysis of a MARTE
extended UML model using existing real-time analysis technology.

There has been some work done developing support for the application of the MARTE profile
or to enable scheduling analysis based on UML models. The Scheduling Analysis View
(SAV) (Hagner & Huhn (2007), Hagner & Huhn (2008)) is one example for guidelines to
handle the complexity of the UML and the MARTE profile. A transformation from the SAV
to an analysis tool SymTA/S is already realised (Hagner & Goltz (2010)). Additional tool
support was created (Hagner & Huhn (2008)) to help the developer to adapt to guidelines
of the SAV. Espinoza et al. (2008) described how to use design decisions based on analysis
results and showed the limitations of the UML concerning these aspects. There are also
methodical steps identified, how the developer can make such a design decision. However,
there are still important steps missing to integrate the scheduling analysis into a UML based
development process. In Hagner et al. (2008), we observed the possibilities MARTE offers
for the development in the rail automation domain. However, no concrete methodology is
described. In this chapter, we want to address open questions like: Where do the scheduling
parameters come from (e.g., priorities, execution patterns, execution times), considering the
development stages (early development stage: estimated values or measured values from
components-off-the-shelf, later development stages: parameters from specialised tools, e.g.,
aiT (Ferdinand et al. (2001))? How to bring back design decision based on scheduling analysis
results into a design model? How to handle different criticality levels or different variants of
the same system (e.g., by using different task distributions on the hardware resources)? In this
chapter, we want to present a methodology to integrate the scheduling analysis into a UML
based development process for embedded real-time systems by covering these aspects. All
implementations presented in this chapter are realised for the case tool Papyrus for UMLL.

This chapter is structured as follows: Section 2 describes our methodology, Section 3 gives
a case study of a robotic control system on which we applied our methodology, Section 4
shows how this approach could be adopted to other non-functional properties, and Section 5
concludes the chapter.

2. A methodology for the integration of scheduling analysis into a UML based
development process

The integration of scheduling analysis demands specified methodologies, because the UML
based development models cannot be used as an input for analysis tools. One reason is
that these tools use their own input format/meta model, which is not compatible with UML.
Another reason is that there is important scheduling information missing in the development
model. UML profiles and model transformation help to bridge the gap between development
models and analysis tools. However, these tools have to be adapted well to the needs of the
development. Moreover, the developer needs guidelines to do an analysis as this cannot be
fully automated.

! http:/ /www.papyrusuml.org
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Figure 1 depicts our methodology for integrating the scheduling analysis into a UML
based development process. On the left side, the Design Model is the starting point of
our methodology. It contains the common system description by using UML and SysML
diagrams. We assume that it is already part of the development process before we add our
methodology. Everything else depicted in Figure 1 describes the methodology.

. Parameterisation @ Completeness Check

Abstraction

®

Scheduling D Scheduling

Design Model . . ; .
esign Viode nalysis Vie Analysis | Analysis Tool

F Var|ant

o management
Synchronisation

@ Variants

Fig. 1. Methodology for the integration of scheduling analysis in a UML based development
process

The centre of the methodology is the Scheduling Analysis View (SAV). It is a special view on
the system under a scheduling analysis perspective. It leaves out not relevant information
for a scheduling analysis, but offers possibilities to add important scheduling information
that are usually difficult to specify in a common UML model and are often left out of the
normal Design Model. The SAV consists of UML diagrams and MARTE elements. It is an
intermediate step between the Design Model and the scheduling analysis tools. The rest of
the methodology is based on the SAV. It connects the different views and the external analysis
tools. It consists of:

® an abstraction, to create a SAV based on the Design Model using as much information from
the Design Model as possible,

® aparameterisation, to add the missing information relevant for the analysis (e.g., priorities,
execution times),

* acompleteness check, to make sure the SAV is properly defined,
¢ the analysis, to perform the scheduling analysis,

* variant management, to handle different variants of the same system (e.g., using different
distribution, other priorities), and

¢ asynchronisation, to keep the consistency between the Design Model and the SAV.
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The developer does not need to see or learn how to use the analysis tools, as a scheduling
analysis can be performed automatically from the SAV as an input.

The following subsections describe these steps in more detail. Figure 1 gives an order in which
the steps should be executed (using the letters A, B, ...). A (the abstraction) is performed only
once and F (the synchronisation) only if required. Concerning the other steps, B, C, D, E can
be executed repeatedly until the developer is satisfied. Then, F can be performed.

2.1 The scheduling analysis view

Independent, non-functional properties should be handled separately to allow the developer
to concentrate on the particular aspect he/she is working on and masking those parts of a
model that do not contribute to it. This is drawn upon the cognitive load theory (Sweller
(2003)), which states that human cognitive productivity dramatically decreases when more
different dimensions have to be considered at the same time. As a consequence in software
engineering a number of clearly differentiated views for architecture and design have been
proposed (Kruchten (1995)).

As a centre of this methodology, we use the Scheduling Analysis View (SAV) (Hagner & Huhn
(2008)) as a special view on the system. The SAV is based on UML diagrams and the MARTE
profile (stereotypes and tagged values). MARTE is proposed by the “ProMarte” consortium
with the goal of extending UML modelling facilities with concepts needed for real-time
embedded systems design like timing, resource allocation, and other non-functional runtime
properties. The MARTE profile is a successor of the profile for Schedulability, Performance,
and Time (SPT profile) (Object Management Group (2002)) and the profile for Modelling
Quality of Service and Fault Tolerance Characteristics and Mechanisms (QoS profile) (Object
Management Group (2004)).

The profile consists of three main packages. The MARTE Foundations package defines the
basic concepts to design and analyse an embedded, real-time system. The MARTE Design
Model offers elements for requirements capturing, the specification, the design, and the
implementation phase. Therefore, it provides a concept for high-level modelling and a
concept for detailed hard- and software description. The MARTE Analysis Model defines
specific model abstractions and annotations that could be used by external tools to analyse
the described system. Thus, the analysis package is divided into three parts, according to the
kind of analysis. The first part defines a general concept for quantitative analysis techniques;
the second and third parts are focused on schedulability and performance analysis.

Because runtime properties and in particular timing are important in each development phase,
the MARTE profile is applicable during the development process, e.g., to define and refine
requirements, to model the partitioning of software and hardware in detail, or to prepare and
complete UML models for transformation to automated scheduling or performance analysis.
One application of the MARTE profile is shown in Figure 2. MARTE is widespread in the field
of developing of embedded systems (e.g., Argyris et al. (2010); Arpinen et al. (2011); Faugere
et al. (2007)).

We only use a small amount of the stereotypes and tagged values for the SAV, as the MARTE
profile offers much more applications. One goal of the SAV is to keep it as simple as possible.
Therefore, only elements are used that are necessary to describe all the information that is
needed for an analysis. In Table 1 all used stereotypes and tagged values are presented.
Additionally, we offer guidelines and rules, how to define certain aspects of the systems in the
SAV. The SAV was designed regarding the information required by a number of scheduling
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Fig. 2. Example of a UML profile

analysis tools. It concentrates on and highlights timing and scheduling aspects. It is based on
the Design Model, but abstracts /leaves out all information that is not needed for a scheduling
analysis (e.g., data structure). On the other side, it includes elements that are usually not
part of the Design Model, but necessary for scheduling analysis (e.g., priorities, deadlines,
scheduling algorithms, execution times of tasks).

Stereotype used on Tagged Values
«saExecHost» Classes, |Utilization, mainScheduler, isSched
Objects
«saCommHost» Classes, |Utilization, mainScheduler, isSched
Objects
«scheduler» Classes, schedPolicy, otherSchedPolicy
Objects
«schedulableResource»| Classes,
Objects
«saSharedResources» Classes,
Objects
«saExecStep» Methods deadline, priority, execTime,
usedResource, respT
«saCommStep» Methods deadline, priority, execTime,
msgSize, respT
«saEndToEndFlow» Activities end2endT, end2endD, isSched
«gaWorkloadEvent» |Initial-Node pattern
«allocated» Associations

Table 1. The MARTE stereotypes and tagged values used for the SAV

Another advantage of the SAV is the fact, that it is separate from the normal Design Model.
Besides the possibility to focus just on scheduling, it also gives the developer the possibility to
test variants/design decisions in the SAV without changing anything in the Design Model. As
there is no automatic and instant synchronisation (see Section 2.6), it does not automatically
change the Design Model if the developer wants to experiment or e.g., has to add provisional
priorities to the system to analyse it, although at an early stage these priorities are not a design
decision.

Moreover, an advantage of using the SAV is that the tagged values help the developer to keep
track of timing requirements during the development, as these parameters are part of the
development model. This especially helps to keep considering them during refinement.
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Class diagrams are used to describe the architectural view/the structure of the modelled
system. The diagrams show resources, tasks, and associations between these elements.
Furthermore, schedulers and other resources, like shared memory, can be defined. Figure
3 shows a class diagram of the SAV that describes the architecture of a sample system.
The functionalities/the tasks and communication tasks are represented by methods. The
tasks are described using the «saExecStep» stereotype. The methods that represent the
communication tasks (transmitting of data over a bus) are extended with the «saCommStep»
stereotype. The tasks or communication tasks, represented as methods, are part of schedulable
resource classes (marked with the «schedulabeResource» stereotype), which combine tasks
or communications that belong together, e.g., since they are part of the same use case or
all of them are service routines. Processor resources are represented as classes with the
«saExecHost» stereotype and bus resources are classes with the «saCommHost» stereotype.
The tasks and communications are mapped on processors or busses by using associations
between the schedulable resources and the corresponding bus or processor resource. The
associations are extended with the «allocated» stereotype. Scheduling relevant parameters
(deadlines, execution times, priorities, etc.) are added to the model using tagged values (see
an example in Figure 2).

<<schedulableResource>> <<schedulableResource>> <<schedulableResource>> K
GUI Communiction DataControl deadline=(5,ms)
<<saExecStep>> run() <<saCommStep>> send() <<saExecStep>> save()- - - - - { Priority=5
respT=[$r1,ms]
<<allocateds> <<allocated>> <<allocated>> execTime=[1,ms]
<<saExecHost>> <<saCommHost>> <<saExecHost>>
CPU i ' Bus i ' CPU2 i

Fig. 3. Architectural Part of the SAV

The object diagram or runtime view is based on the class diagram/architectural view of the
SAV. It defines how many instances are parts of the runtime system respectively and what
parts are considered for the scheduling analysis. It is possible that only some elements defined
in the class diagram are instantiated. Furthermore, some elements can be instantiated twice
or more (e.g., if elements are redundant). Only instantiated objects will later be taken into
account for the scheduling analysis.

Activity diagrams are used to describe the behaviour of the system. Therefore, workload
situations are defined that outline the flow of tasks that are executed during a certain mode
of the system. The dependencies of tasks and the execution order are illustrated. The
«gaWorkloadEvent» and the «saEnd2EndFlow» stereotypes and their corresponding tagged
values are used to describe the workload behaviour parameters like the arrival pattern of
the event that triggers the flow or the deadline of the outlined task chain. For example,
in Figure 4 it is well defined that at first cpu.run() has to be completely executed, before
communication.send() is scheduled etc.. As activity diagrams are more complex concerning
their behaviour than most analysis tools, there are restrictions for the modelling of runtime
situations, e.g., no hierarchy is allowed.

The SAV can be easily extended, if necessary. If a scheduling analysis tool offers more
possibilities to describe or to analyse a system (e.g., a different scheduling algorithm) and
needs more system parameters for it, these parameters have to be part of the SAV. Therefore,
the view can be extended with new tagged values that offer the possibility to add the
necessary parameters to the system description (added to Table 1).
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(<<saEnd2EndFIow>> )

.—)( cpu.run() )
(communication.send() >
( datacontrol.save() }@

_

Fig. 4. Workload situation in a SAV

2.2 Abstraction of the design model

The first step of the methodology is the abstraction of the Design Model to the SAV. The Design
Model is used as a basis for the scheduling analysis. The basic idea is to find the relevant
parts from the Design Model and abstract them in the format of the SAV. Hence, all relevant
information for the analysis is identified and transformed into the format of the SAV.

The UML offers many possibilities to describe things. Consequently, most UML Design
Models do look different. Even similar things can be described using different expressions
(e.g., behaviour could be described using activity diagrams, sequence diagrams, or state
charts; deployment can be described using deployment diagrams, but it is also possible to
describe it using class diagrams). As a result, an automatic abstraction of the parts necessary
for a scheduling analysis is not possible.

As the integration of the scheduling analysis in a UML based development process should
be an adaption to the already defined and established development process and not the
other way around, our approach offers a flexibility to abstract different Design Models. Our
approach uses a rule-based abstraction. The developer creates rules, e.g., “all elements of type
device represent a CPU”. Based on these rules, the automatic abstraction creates a SAV with
the elemgnts of the Design Model. This automatic transformation is implemented for Papyrus
for UML-.

There are two types of rules for the abstraction. The first type describes the element in the
Design Model and its representation in the SAV:

ID (element_type, diagram_name, limitl, ...) —> sav_element_type

The rule begins with a unique ID, afterwards the element type is specified (element_type).
The following element types can be abstracted: method, class, device, artifact. Then, the
diagram can be named on which the abstraction should be done (diagram_name). Finally, it
is possible to define limitations, all separated by commas. Limitations can be string filtering
or stereotypes. After the arrow, the corresponding element in the SAV can be named. All
elements that have a stereotype in the SAV are possible (see Table 1).

2 http:/ /www.papyrusuml.org
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The second type of rules abstracts references:

(element_type, diagram_name, ID_refl, ID_ref2)—> Allocation

The rule specifies mappings in the SAV. It begins with the element type. Here, only deploys
or associations are allowed. After the name of the diagram, the developer has to give two IDs
of the basic rules. The abstraction searches for all elements that are affected by the first given
rule (ID_refl) and the second given rule (ID_ref2) and checks, if there is a connection between
them, specified through the given element_type. If this is the case, an allocation between the
abstracted elements in the SAV is created.

Additionally, it is possible to use the ID_ref as a starting point to use different model elements
that are connected to the affected element (e.g., ID_refl affects methods, then ID_refl.class
affects the corresponding classes that contain the methods).

Figure 5 gives a simple example of an abstraction. On the left side the Design Model is
represented and on the right side, the abstracted SAV. At the beginning, only the left side
exists. In this example, one modelling convention for the Design Model was to add the string
“_task” to all method names that represent tasks. Another convention was to add “_res” to all
class names that represent a CPU.

Design View § Scheduling Analysis View
| Y | [ B | <<schedulableResource>> <<schedulableResource>>
A_task B_task : A B
'ﬁu bu ' <<saExecStep>> A_task() <<saExecStep>> B_task()
<<allocated>> <<allocated>>
C res D_res <<saExecHost>> <<saExecHost>>
H h‘ : C_res D_res
—- <<saExecHost>>
: F_res

Fig. 5. Simple example of an abstraction from the Design Model to the SAV

The following rules define the abstraction of tasks and CPUs:

Al(Class, “‘=’7, “’‘x_res’’)—>CPU

A2(Method, ““x’7, “’s_task’’)—>Task

The mapping is described using the following rule:

(Association, ““x’’, A2.class, Al)—>Allocation

This rule is used on associations in all diagrams (Association, ““+”” ). All methods that are

part of classes (A2.class), which are affected by rule A2, that do have an association with a
class that is affected by rule A1, are abstracted to allocations.

It is also possible to define, that model elements in one diagram are directly connected to a
model element in another diagram using “<=>" (e.g., a package in one diagram represents a
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device in another diagram by using the construct “package<=>device”, for more information
see our case study in Section 3 and Bruechert (2011).

The automatic abstraction of the behaviour using activity diagrams for scheduling analysis is
as follows: Using the defined rules, it will be determined which methods are to be considered
in the SAV. The corresponding activity diagrams are analysed (all actions that represent a
task). All other actions will be deleted and skipped. All activities that do not contain a method
representing a task will be removed. In a similar way this is done with sequence diagrams and
state machines.

Besides the creating of the SAV during the process of abstraction, there is also a
synchronisation table created that documents the abstraction. The table describes the elements
in the Design Model and their representation in the SAV. This table is later used for the
synchronisation (see Section 2.6). More details about the abstraction and the synchronisation
(including a formal description) can be found in Bruechert (2011).

As it is possible that there is still architectural or behaviour information missing after the
abstraction, we created additional tool support for the UML case tool Papyrus to help the
developer add elements to the SAV (Hagner & Huhn (2008)). We implemented a palette for
simpler adding of SAV elements to the system model. Using this extension, the developer
does not need to know the relevant stereotypes of how to apply them.

2.3 Parameterisation

After the abstraction, there is still important information missing, e.g., priorities, execution
times. The MARTE profile elements are already attached to the corresponding UML element
but the values to the parameters are missing. Depending on the stage of the development,
these parameters must be added by experts or specialised tools. In early development phases,
an expert might be able to give information or, if COTS® are used, measured values from
earlier developments can be used. In later phases, tools, like aiT (Ferdinand et al. (2001)), T14,
or Traceanalyzer® can be used for automatic parameterisation of the SAV. These tools use static
analysis or simple measurement for finding the execution times or the execution patterns of
tasks. aiT observes the binary and finds the worst-case execution cycles. As the tool also
knows the processor the binary will be executed on, it can calculate the worst-case execution
times of the tasks. T1 orchestrates the binary and logs parameters while the tasks are executed
on the real platform. Traceanalyzer uses measured values and visualises them (e.g., examines
patterns, execution times).

In other development approaches, the parameters are classified with an additional parameter
depending on its examination. For example, AUTOSAR® separates between worst-case
execution time, measured execution time, simulated execution time, and rough estimation
of execution time. There are possibilities to add these parameters to the SAV, too. This helps
the developer understanding the meaningfulness of the analysis results (e.g., results based
on worst-case execution times are more meaningful than results based on rough estimated
values).

3 Components-off-the-shelf

4 http://www.gliwa.com/e/products-T1.html

5 http://www.symtavision.com/traceanalyzer.html

6The AUTOSAR Development Partnership. Automotive Open System Architecture.
http://www.autosar.org
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Additionally, depending on the chosen scheduling algorithm, one important aspect in this
step is the definition of the task priorities. Especially in early phases of a development this
can be difficult. There are approaches to find automatically parameters like priorities based
on scheduling analysis results. In our method, we suggest to define the priorities manually,
do the analysis, and create new variants of the system (see Section 2.5). If, at an early stage,
priorities are not known and (more or less) unimportant, the priorities can be set arbitrary, as
analysis tools demand these parameters to be set.

2.4 Completeness check and analysis

After the parameterisation is finished and the system is completely described, with respect to
the scheduling parameters, an analysis is possible. Before the analysis is done, the system is
checked if all parameters are set correctly (e.g., every tasks has to have an execution time; if
round robin is set as a scheduling algorithm, tasks need to have a parameter that defines the
slot size).

For the analysis, specialised tools are necessary. There are e.g., SymTA /S (Henia et al. (2005)),
MAST (Harbour et al. (2001)), and TIMES (Fersman & Yi (2004)). All of these tools are using
different meta models. Additionally, these tools have different advantages and abilities.

We created an automatic transformation of the SAV to the scheduling analysis tool SymTA /S
(Hagner & Goltz (2010)) and to TIMES (Werner (2006)) by using transformation languages
(e.g., ATLAS Group (INRIA & LINA) (2003)). As all information necessary for an analysis is
already included in the SAV, a transformation puts all information of the SAV into the format
of the analysis tool, triggers the analysis, and brings back the analysis results into the SAV.
The developer does not need to see SymTA /S or TIMES, remodel the system in the format of
the analysis tool, and does not need to know how the analysis tool works.

SymTA/S links established analysis algorithms with event streams and realises a global
analysis of distributed systems. At first, the analysis considers each resource on its own and
identifies the response time of the mapped tasks. From these response times and the given
input event model it calculates the output event model and propagates it by the event stream.
If there are cyclic dependencies, the system is analysed from a starting point iteratively until
reaching convergence.

SymTA /S is able to analyse distributed systems using different bus architectures and different
scheduling strategies for processors. However, SymTA /S is limited concerning behavioural
description, as it is not possible to describe different workload situations. The user has to
define the worst-case workload situation or has to analyse different situation independently.
Anyhow, as every analysis tool has its advantages it is useful not to use only one analysis tool.

trigger run send save
CPU Bus CPU2

Fig. 6. Representation in SymTA /S

The example depicted in Figure 6 is the SymTA/S representation of the system described
in Section 2.1 and illustrated in Figure 3 and Figure 4. There is one source (trigger), two
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CPUs (CPU and CPU2), which execute two tasks (run and save), and a bus (Bus) with one
communication task (send). All tasks are connected using event streams, representing task
chains.

As already mentioned, it is also possible to use other tools for scheduling analysis, e.g., TIMES
(Fersman & Yi (2004)). TIMES is based on UPPAAL (Behrmann et al. (2004)) and uses timed
automata (Alur & Dill (1994)) for an analysis. Consequently, the results are more precise
compared to the over approximated results from SymTA /S. Besides this feature, it also offers
code generator for automatic synthesis of C-code on LegoOS platform from the model and
a simulator, in which the user can validate the dynamic behaviour of the system and see
how the tasks execute according to the task parameters and a given scheduling policy. The
simulator shows a graphical representation of the generated trace showing the time points
when the tasks are released, invoked, suspended, resumed, and completed. On the other side,
as UPPAAL is a model checker, the analysis time could be very long for complex systems due
to state space explosion. TIMES is only able to analyse one processor systems. Consequently,
for an analysis of distributed systems other tools are necessary.

Figure 7 gives a TIMES representation of the system we described in Section 2.1, with
the limitation that all tasks are executed on the same processor. The graph describes the
dependencies of the tasks.

Fig. 7. Representation in TIMES

In TIMES it is also possible to specify a more complex task behaviour/dependency description
by using timed automata. Figure 8 gives the example from Section 2.1 using timed automata
to describe the system. Timed automata contain locations (in Figure 8 Location_1, Location_2,
and Location_3) and switches, which connect the locations. Additionally, the system can
contain clocks and other variables. A state of a system is described using the location, the
value of the clocks, and the value of other variables. The locations describe the task triggering.
By entering a location, the task connected to the location is triggered. Additionally, invariants
in locations or guards on the switches are allowed. The guards and the invariants can refer on
clocks or other variables.

After the analysis is finished, the analysis results are published in the SAV. In the SAV, the
developer can see if there are tasks or task chains that miss their deadlines or if there are
resources with a utilisation higher than 100%. The SAV provides tagged values that are used
to give the developer a feedback about the analysis results. One example is given in Figure 2,
where the respT tagged value is set with a variable ($r1), which means that the response time
of the corresponding task is entered at this point after the analysis (this is done automatically
by our implemented transformations). There are also other parameters, which give a feedback
to the developer (see also Table 1, all are set automatically by the transformations):

e The respT tagged values gives a feedback about the worst-case response time of the
(communication) tasks and is offered by the «saExecStep» and the «saCommHost»
stereotype.

* As the respT, the end2endT tagged values offers the worst case response time, in this case
for task paths/task chains and is offered by the «saEnd2EndFlow» stereotype. It is not
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Location_1
run

x==200

Location_3
time=timeaout save

Fig. 8. More advanced representation in TIMES

a summation of all worst-case response times of the tasks that are part of the path, but a
worst-case calculated response time of the whole path examined by the scheduling analysis
tool (for more details see Henia et al. (2005)).

* The «saExecHost» and the «saCommHost» stereotypes offer a Utilization tagged value
that gives a feedback about the load of CPUs or busses. If the value is higher than 100% this
resource is not schedulable (and the isShed tagged value is false, too). If this value is under
100%, the system might be schedulable (depending on the other analysis results). A high
value for this variable always indicates a warning that the resource could be overloaded.

e The tagged value isShed gives a feedback if the tasks mapped on this resource are
schedulable or not and is offered by the «saExecHost» and the «saCommHost»
stereotypes. The tagged values are connected to the Utilization tagged value (e.g., if
the utilisation is higher than 100%, the isShed tagged value is false). The isShed is also
offered by the «saEnd2EndFlow» stereotype. As the «saEnd2EndFlow» stereotype defines
parameters for task paths/task chains, the isShed tagged value gives a feedback whether
the deadline for the path is missed or not.

Using these tagged values, the developer can find out if the system is schedulable by checking
the isShed tagged value of the «seEnd2EndFlow» stereotype. If the value is false, the
developer has to find the reason why the scheduling failed using the other tagged values. The
end2EndT tagged value shows to what extent the deadline is missed, as it gives the response
time of the task paths/task chains. The response times of the tasks and the utilisation of the
resources give also a feedback where the bottleneck might be (e.g., a resource with a high
utilisation and tasks scheduled on it with long response times are more likely a bottleneck
compared to resources with low utilisation).

If this information is not sufficient, the developer has to use the scheduling analysis tools for
more detailed information. TIMES offers a trace to show the developer where deadlines are
missed. SymTA /S offers Gantt charts for more detailed information.
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2.5 Variant management

Variant management helps the developer to handle different versions of a SAV. In case of
an unsuccessful analysis result (e.g., system is not schedulable) the developer might want to
change parameters or distributions directly in the SAV without having to synchronise with
the Design Model first, but wants to keep the old version as a backup. Even when the system
is schedulable, the developer might want to change parameters to see if it is possible to save
resources by using lower CPU frequencies, slower CPUs, or slower bus systems.

It is also possible to add external tools that find good distributions of tasks on resources.
Steiner et al. (2008) explored the problem to determine an optimised mapping of tasks to
processors, one that minimises bus communication and still, to a certain degree, balances the
algorithmic load. The number of possibilities for the distribution of N tasks to M resources
is MN. A search that evaluates all possible patterns for their suitability can be extremely
costly and will be limited to small systems. However, not all patterns represent a legal
distribution. Data dependencies between tasks may cause additional bus communication
if they are assigned to different resources and communication over a bus is much slower
than a direct communication via shared memory or message passing on a single processor.
Thus, minimising bus communication is an important aspect when a distribution pattern is
generated. To use additionally provided CPU resources and create potential for optimisations
also the balance of the algorithmic load has to be considered.

In Steiner et al. (2008) the distribution pattern generation is transformed into a graph
partitioning problem. The system is represented as an undirected graph, its node weights
represent the worst-case execution time of a task and an edge weight corresponds to the
amount of data that is transferred between two connected tasks. The algorithm presented
searches for a small cut that splits the graph into a number of similar sized partitions. The
result is a good candidate for a distribution pattern, where bus communication is minimised
and the utilisation of CPU resources is balanced.

Another need for variant management is different criticality levels, necessary e.g., in the
ISO 26262 (Road Vehicles Functional Safety (2008)). Many safety-critical embedded systems
are subject to certification requirements; some systems are required to meet multiple sets of
certification requirements from different certification authorities. For every Safety Integrity
Level (SIL) a different variant of the system can be used. In every different variant, the
mapping of the tasks and the priorities will be the same. However, the values for the
scheduling parameters can be different, e.g., the execution times, as they have to be examined
using different methods for each different SIL and consequently for each variant representing
a different SIL (see Section 2.3 for different possibilities to parameterise the SAV).

2.6 Synchronisation

If the developer changes something in the SAV (due to analysis results) later and wants to
synchronise it with the Design Model, it is possible to use the rule-based approach. During
the abstraction (Section 2.2), a matching table/synchronisation table is created and can be used
for synchronisation. This approach also works the other way around (changes in the Design
Model are transferred to the SAV). During a synchronisation, our implementation is updating
the synchronisation table automatically.

One entry in the synchronisation table has two columns. The first specifies the item in
the Design Model and the second the corresponding element in the SAV. According to the
two rule types (basic rule or reference rule), two types of entries are distinguished in the
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C_res D_res

Design View : Scheduling Analysis View
Ste 1: [ A |} [ B | <<schedulableResource>> <<schedulableResource>>
p i [Atask) | [Biask) |
<<saExecStep>> A_task() <<saExecStep>> B_task()
: <<allocated>>
: <<allocated>>
C_res ‘ D_res : <<saExecHost>> <<saExecHost>>
: C_res D_res
Ste 2: [ A ] | B | : <<schedulableResource>> <<schedulableResource>>
pe< | A_task() | [ B_task() | A B
<<saExecStep>> A_task() <<saExecStep>> B_task()
. <<allocated>>
: <<allocated>>
C_res ‘ D_res i ' <<saExecHost>> I ' <<saExecHost>>

Fig. 9. Synchronisation of the Design Model and the SAV

synchronisation table. The basic entry corresponds to the abstraction of an item that is
described by a basic rule. The single entry is described in a Design Model column and a
SAV column. The Design Model column contains the element type in the Design Model, the
XMI” ID in the Design Model, and the name in the Design Model. The SAV column contains
the element type, the XMI ID, and the name in the SAV. Regarding a reference entry, based
on the reference rules, the Design Model column contains the element type, the XMI ID, the
XMI IDs of the two elements with the connection from the Design Model. The SAV column
contains the element type, the XMI ID, and, again the XMI IDs from the elements that are
connected.

Design Model SAV
Class, ID_C_res, C_res CPU, ID_C_res, C_res
Class, ID_D_res, D_res CPU, ID_D_res, D_res
Method, ID_A_task, A_task Task, ID_A_task, A_task
Method, ID_B_task, B_task Task, ID_B_task, B_task
Association, ID, ID_A_task, ID_C_res|Allocation, ID, ID_A_task, ID_C_res
Association, ID, ID_B_task, ID_D_res|Allocation, ID, ID_B_task, ID_D_res

Table 2. The synchronisation table before the synchronisation

Figure 9 gives a simple example, where synchronisation is done. It is based on the
example given in Section 2.2 and illustrated in Figure 5. Table 2 gives the corresponding
synchronisation table before the synchronisation (for simplification we use a variable name
for the XMI IDs).

Because of analysis results, the mapping has been changed and B_task() will now be
executed on CPU C_res. Consequently, the mapping has changed in the SAV column in the
synchronisation table (see last row in Table 3). Additionally, this is happening in the Design

7 XML Interchange Language (Object Management Group (1998))
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Design Model SAV
Class, ID_C_res, C_res CPU, ID_C_res, C_res
Class, ID_D_res, D_res CPU, ID_D_res, D_res
Method, ID_A_task, A_task Task, ID_A_task, A_task
Method, ID_B_task, B_task Task, ID_B_task, B_task
Association, ID, ID_A_task, ID_C_res|Allocation, ID, ID_A_task, ID_C_res
Association, ID, ID_B_task, ID_C_res | Allocation, ID, ID_B_task, ID_C_res

Table 3. The synchronisation table after the synchronisation

Model column and finally in the Design Model, too (see Figure 9). More details can be found
in Bruechert (2011)

3. Case study

In this Section we want to apply the above introduced methodology to the development of
a robotic control system of a parallel robot developed in the Collaborative Research Centre
562 (CRC 562)%. The aim of the Collaborative Research Centre 562 is the development
of methodological and component-related fundamentals for the construction of robotic
systems based on closed kinematic chains (parallel kinematic chains - PKMs), to improve
the promising potential of these robots, particularly with regard to high operating speeds,
accelerations, and accuracy (Merlet (2000)). This kind of robots features closed kinematic
chains and has a high stiffness and accuracy. Due to low moved masses, PKMs have a
high weight-to-load-ratio compared to serial robots. The demonstrators which have been
developed in the research centre 562 move very fast (up to 10 m/s) and achieve high
accelerations (up to 100 m/s?). The high velocities induced several hard real-time constraints
on the software architecture PROSA-X (Steiner et al. (2009)) that controls the robots. PROSA-X
(Parallel Robots Software Architecture - eXtended) can use multiple control PCs to distribute
its algorithmic load. A middleware (MiRPA-X) and a bus protocol that operates on top of a
FireWire bus (IEEE 1394, Anderson (1999)) (IAP) realise communication satisfying the hard
real-time constraints (Kohn et al. (2004)). The architecture is based on a layered design with
multiple real-time layers within QNX? to realise e.g., a deterministic execution order for
critical tasks (Maass et al. (2006)). The robots are controlled using cyclic frequencies between
1 and 8 kHz. If these hard deadlines are missed, this could cause damage to the robot and
its environment. To avoid such problems, a scheduling analysis based on models ensures the
fulfilment of real-time requirements.

Figure 10 and Figure 11 present the Design Model of the robotic control architecture. Figure
10 shows a component diagram of the robotic control architecture containing the hardware
resources. In this variant, there is a “Control_PC1” that performs various computations.
The “Control_PC1” is connected via a FireWire data bus with a number of digital signal
processors (“DSP_1-7"), which are supervising and controlling the machine. Additionally,
there are artefacts ( «artifact») that are deployed (using the associations marked with the
«deploy» stereotype) to the resources. These artefacts represent software that is executed on
the corresponding resources.

The software is depicted in Figure 10. This diagram contains packages where every package
represents an artefact depicted in Figure 11 (the packages IAP_Nodes_2-7 have been omitted

8 http:/ /www.tu-braunschweig.de /sfb562
9 QNX Neutrino is a micro kernel real-time operating system.
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Fig. 10. Component diagram of the robotic control architecture
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Fig. 11. Package diagram of the robotic control architecture

due to space and are only represented by IAP_Nodes_1). The packages are containing
the software that is executed on the corresponding resource. The packages are containing
classes and the classes are containing methods. Some methods represent tasks. These
methods are marked using the addition of “_Task” to their name (e.g., the package “Control”
contains the class “DriveControl” and this class contains three methods, where method
DC_Task() represents a task). The tasks that are represented using methods have the following
functionality:

e JAP_D: This instance of the IAP bus protocol receives the DDTs (Device Data Telegram) that
contain the instantaneous values of the DSP nodes over the FireWire bus.
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e HWM: The Hardware Monitoring takes the instantaneous values received by the JAP_D and
prepares them for the control.

® DC: The Drive Controller operates the actuators of the parallel kinematic machine.

e SMC: The Smart Material Controller operates the active vibration suppression of the
machine.

e JAP_M: This instance of the bus protocol IAP sends the setpoint values, calculated by DC
and SMC, to the DSP node.

e CC: The Central Control activates the currently required sensor and motion modules (see
below) and collects their results.

e CON: Contact Planner. Combination of power and speed control. For the end effector of
the robot to make contact with a surface.

e FOR: Force Control, sets the force for the end effector of the robot.

e CFF: Another Contact Planner, similar to CON.

e VEL: Velocity Control, sets the speed for the end effector of the robot.
e POS: The Position Controller sets the position of the end effector.

e SAP: The Singularity Avoidance Planner plans paths through the work area to avoid
singularities.

e SEN: An exemplary Sensor Module.

There are three task paths/task chains with real-time requirements. The first task chain
receives the instantaneous values and calculates the new setpoint values (using the tasks
IAP_D, HWM, DC, SMC). The deadline for this is 250 microseconds. The second task chain
contains the sending of the setpoint values to the DSPs and their processing (using tasks
IAP_M, MDT, IAP_N1, ..., IAP_N7, DDT], ..., DDT?). This must be finished within 750
microseconds. The third chain comprises the control of the sensor and motion modules
(using tasks CC, CON, FOR, CFF, POS, VEL, SEN, SAP) and has to be completed within 1945
microseconds. The tasks chains including their dependencies were described using activity
diagrams.

To verify these real-time requirements we adapted out methodology to the Design Model of
the robotic control architecture. The first step was the abstraction of the scheduling relevant
information and the creation of the corresponding SAV. As described in Section 2.2, we had to
define rules for the abstraction. The following rules were used:

Al(Device, ’‘ComponentDiagram’’, *’+’’)—>CPU
A2(Method, ‘‘PackageDiagram’’, ‘’x_Task’’)—>Task

Rule Al creates all CPUs in the SAV (classes containing the «saExecHost» stereotype).
Rule A2 creates schedulable resources containing the tasks (methods with the «saExecStep»
stereotype). Here, we were using the option to sum all tasks that are scheduled on one
resource into one schedulable resource representing class (see Figure 12). The corresponding
rule to abstract the mapping is:

a0

(Deploy, +’7, A2.class.package<=>Artifact , Al)—>Allocation
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Fig. 12. The architectural view of the PROSA-X system

The packages that contain classes that contain methods that are effected by rule A2, under the
assumption that there is an artefact that represents the package in another diagram, are taken
into account. It is observed if there is a deploy element between the corresponding artefact and
a device element that is effected by rule Al. If this is the case, there is an allocation between
these elements. As not all necessary elements are described in the Design Model, e.g., the
FireWire bus was not abstracted; it has to be modelled manually in the SAV, as it is important
for the scheduling analysis. The result (the architectural view of the SAV) is presented in
Figure 3

<<saEnd2EndFlow>>

iap_nodes.IAP_N1() >—>< fweom2.DDT1() >—>©
.—»( cp1_tasks.JAP_M() )
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oo —®
Comm —®
Crmmron @
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v
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iap_nodes_6.1AP_N6()

iap_nodes_7.IAP_N7()

( fwcom1.MDT() Y|

7

Fig. 13. Sending of the setpoint values to the DSPs

Additionally, a runtime view is created and the behaviour (the workload situations) are
created. Figure 13 represents the task chain that sends the setpoint values to the DSPs and
describes their processing (IAP_M, MDT, IAP_N1, ..., IAP_N7, DDT1, ..., DDT7). The
deadline is 750 microseconds.

Besides the SAV, a synchronisation table is created. Exemplarily, it is presented in Table 4.

After the SAV is created, it can be parameterised. We have done this by expert knowledge,
measuring, and monitoring prototypes. Using these methods, we were able to set the
necessary parameters (e.g., execution times, activation pattern, priorities).
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SAV
Task, ID, IAP_D_Task
CPU, ID, Control_PC1
Association, ID, IAP_D_Task,
Control_PC1

Design View
Method, ID, IAP_D_Task
Device, ID, Control_PC1
Deploy, ID,
IAP_D_Task.JAP_Control.Control
<=>Control, Control_PC1

Table 4. The synchronisation table of the robotic control system

As we have created automatic transformation to the scheduling analysis tool SymTA/S, the
transformation creates a corresponding SymTA /S model and makes it possible to analyse the
system. The completeness check is included in the transformation. Afterwards, the output
model was analysed by SymTA/S and the expectations were confirmed: The analysis was
successful, all paths keep their real-time requirements, and the resources are not overloaded.
The SymTA /S model is depicted in Figure 14.
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Fig. 15. The new architectural view of the PROSA-X system containing a second control pc

After the successful analysis, the results are automatically published back into the SAV
(see Section 2.4). However, we created a new variant of the same system to observe if a
faster distribution is possible by adding a new control pc (“Control_PC2”). Consequently,
we changed the distribution and added tasks to the second control pc that were originally
executed on “Control_PC1”) (see Figure 15). As the tasks are more distributed now, we had to
add an additional communication task (sendVal()) to transfer the results of the calculations. We
went through the parameterisation and the analysis again and found out, that this distribution
is also valid in terms of scheduling.

As a next step, we can synchronise our results with the Design Model. During the
synchronisation, the relevant entries in the synchronisation table were examined. New entries
(e.g., for the new control pc) are created and, consequently, the mapping of the artefact
“Control” is created corresponding to the SAV. The result is depicted in Figure 16.
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Fig. 16. Component diagram after the synchronisation containing the new device

4. Adapting the approach to other non-functional properties

The presented approach can be adapted to other non-functional requirements (e.g., power
consumption or reliability). For every non-functional requirement, there can be an individual
view to help the developer concentrate on the aspect he/she is working on. This is
drawn upon the cognitive load theory (Sweller (2003)). Consequently, besides the view, a
methodology (like the one in this paper) is necessary. Depending on which requirements
are considered, the methodologies differ from each other; other steps are necessary and the
analysis is different. Additionally, there can be dependencies between the different views (e.g.,
between the SAV and a view for power consumption as we will explain later).

Power is one of the important metrics for optimisation in the design and operation of
embedded systems. One way to reduce power consumption in embedded computing systems
is processor slowdown using frequency or voltage. Scaling the frequency and voltage of a
processor leads to an increase in the execution time of a task. In real-time systems, we want
to minimise energy while adhering to the deadlines of the tasks. Dynamic voltage scaling
(DVS) techniques exploit the idle time of the processor to reduce the energy consumption of a
system (Aydin et al. (2004); Ishihara & Yasuura (1998); Shin & Kim (2005); Walsh et al. (2003);
Yao et al. (1995)).

We defined a Power Consumption Analysis View (PCAV), according to the SAV (Hagner et al.
(2011)), to give the developer the possibility to add energy and power consumption relevant
parameters to the UML model. Therefore, we created the PCAV profile as an extension of
the MARTE profile and an automatic analysis algorithm. The PCAV supports DVS systems.
In Figure 17 an example for a PCAV is given. It uses different stereotypes than the SAV as
there are different parameters to describe. However, the implementation is similar to the SAV.
Additionally, we developed and implemented an algorithm to find a most power aware, but
still real-time schedulable system configuration for a DVS system.
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Fig. 17. Power Consumption Analysis View (PCAV)

The power consumption and the scheduling depend on each other (Tavares et al. (2008)). If
slower hardware is used to decrease the power consumption, the scheduling analysis could
fail due to deadlines that are missed because tasks are executed slower. If faster hardware is
used, the power consumption increases. The solution is to find a system configuration that
is most power aware but still real-time with respect to their deadline. For our algorithm, we
were using both, the SAV and the PCAV. Based on the Design Model we created both views,
used the PCAV to do the power consumption analysis and to calculate the execution times
and then used the SAV to check the real-time capabilities (Aniculaesei (2011)).

5. Conclusion

In this chapter we have presented a methodology to integrate the scheduling analysis in a
UML based development. The methodology is based on the Scheduling Analysis View and
contains steps, how to create this view, independently how the UML Design Model looks
like, how to process with this view, analyse it, handle variants, and synchronise it with the
Design Model. We have presented this methodology in a case study of a robotic control
system. Additionally, we have given an outlook on the possibility to create new views for
other non-functional requirements.

Future work can be to add additional support concerning the variant management to comply
with standards (e.g., Road Vehicles Functional Safety (2008)). Other work can be done by
creating different views for other requirements and observe the dependencies between the
views.
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Spain

1. Introduction

Technological evolution is provoking an increase in the complexity of embedded systems
derived from the capacity to implement a growing number of elements in a single, multi-
processing, system-on-chip (MPSoC).

Embedded system heterogeneity leads to the need to understand the system as an
aggregation of components in which different behavioural semantics should cohabit.
Heterogeneity has two dimensions. On the one hand, during the design process, different
execution semantics, specifically in terms of time (untimed, synchronous, timed) can be
required in order to provide specific behaviour characteristics for the concurrent system
elements. On the other hand, different system components may require different models of
computation (MoCs) in order to better capture their functionality, such as Kahn Process
Networks (KPN), Synchronous Reactive (SR), Communicating Sequential Processes (CSP),
TLM, Discrete Event (DE), etc.

Another aspect affecting the complexity of current embedded systems derives from their
structural concurrency. The system should be conceived as an understandable architecture
of cooperating, concurrent processes. The cooperation among these concurrent processes is
implemented through information exchange and synchronization mechanisms. Therefore, it
is essential to deal with the massive concurrency and parallelism found in current
embedded systems and provide adequate mechanisms to specify and verify the system
functionality, taking into account the effects of the different architectural mappings to the
platform resources.

In this context, the challenge of designing embedded systems is being dealt with by
application of methodologies based on Model Driven Architecture (MDA) (MDA guide,
2003). MDA is a developing framework that enables the description of systems by means of
models at different abstraction levels. MDA separates the specification of the system’s
generic characteristics from the details of the platform where the system will be
implemented. Specifically, in Platform Independent Models (PIMs), designers capture the
relevant properties that characterize the system; the internal structure, the communication
mechanisms, the behavior of the different components, etc. Therefore, PIMs provide a
general, synthetic representation that is independent and, thus, decoupled from the final
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system implementation. High-level PIM models are the starting point of ESL methodologies,
and they are crucial for fast validation and Design Space Exploration (DSE). PIMs can be
implemented on different platforms leading to different Platform Specific Models (PSMs).
PSMs enable the analysis of performance characteristics of the system implementation.

The most widely accepted and used language for MDA is the Unified Modelling Language
(UML) (UML, 2010). UML is a standard graphical language to visualize, specify and
document the system. From the first application as object-oriented software system
modelling, the application domain of UML has been extended. Nowadays, UML is used to
deal with electronic system design (Lavagno et al. 2003). Nevertheless, UML lacks the
specific semantics required to support embedded system specification, modelling and
design. This lack of expressivity is dealt with by means of specific profiles that provide the
UML elements with the necessary, precise semantics to apply the UML modelling
capabilities to the corresponding domain.

Specifically in the embedded system domain, UML should be able to deal with design
aspects such as specification, analysis, architectural mapping and implementation of
complex, HW/SW embedded systems. The MARTE UML profile (UML Profile for MARTE,
2009), which was created recently, was developed in order to model and analyze real-time
embedded systems, providing the concepts needed to describe real-time features that
specify the semantics of this kind of systems at different abstraction levels. The MARTE
profile has the necessary concepts to create models of embedded systems and provide the
capabilities that enable the analysis of different aspects of the behaviour of such systems in
the same framework. By using this UML profile, designers will be able to specify the system
both as a generic entity, capturing the high-level system characteristics and, after a
refinement process, as a detailed architecture of heterogeneous components. In this way,
designers will be assisted by design flows with a generic system model as an initial stage.
Then, by means of a refinement process supported by modelling and analysis tools, they
will be able to decide on the most appropriate architectural mapping.

As with any UML profile, MARTE is not associated with any explicit execution semantics.
As a consequence, no executable model can be directly extracted for simulation, functional
verification and performance estimation purposes. In order to address this need, SystemC
(Open SystemC) has been proposed as the specification and simulation framework for
MARTE models. From the MARTE model, an executable model in SystemC can be inferred
establishing a MARTE/SystemC relationship.

The MARTE/SystemC relationship is established in a formal way. The corresponding
formalism should be as general as possible in order to enable the integration of
heterogeneous components interacting in a predictable and well-understood way
(horizontal heterogeneity) and to support the vertical heterogeneity, that is, refinement of
the model from one abstraction level to another. Finally, this formalism should remove the
ambiguity in the execution semantics of the models in order to provide a basis for
supporting methodologies that tackle embedded system design.

For this purpose, the ForSyDe (Formal System Design) meta-model (Jantsch, 2004) was
introduced. ForSyDe was developed to support the design of heterogeneous embedded
systems by means of a formal notation. ForSyDe enables the production of a formal
specification that captures the functionality of the system as a high abstraction-level model.
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From these initial formal specifications, a set of transformations can be applied to refine the
model into the final system model. This refinement process generally involves MoC
transformation.

A system-level modelling and specification methodology based on UML/MARTE is
proposed. A subset of UML and MARTE elements is selected in order to provide a generic
model of the system. This subset of UML/MARTE elements is focused on capturing the
generic concurrency and the communication aspects among concurrent elements. Here,
system-level refers to a PIM able to capture the system structure and functionality
independently of its final implementation on the different platform resources. The internal
system structure is modelled by means of Composite Structure diagrams. MARTE
concurrency resources are used to model the concurrent processes composing the concurrent
structure of the system. The communication elements among the concurrent processes are
modelled using the CommunicationMedia stereotype. The concurrent processes and the
communication media compose the Concurrent&Communication (C&C) structure of the
system. The explicit identification of the concurrent elements facilitates the allocation of the
system application to platforms with multiple processing elements in later design phases.

In order to avoid any restrictions on the designer, the methodology does not impose any
specific functionality modelling of concurrent processes. Nevertheless, with no loss of
generality, UML activity diagrams are used as a meta-model of functionality. The activity
diagram will provide formal support to the C&C structure of the system, explaining when
each concurrent process takes input values, how it computes them and when the
corresponding outputs are delivered.

MDA

ESL

SystemC

Fig. 1. ForSyDe formal link between MDA and ESL.

Based on the MARTE/SystemC formal link supported by ForSyDe, the methodology
enables untimed SystemC executable specifications to be obtained from UML/MARTE
models. The untimed SystemC executable specification allows the simulation, validation
and analysis of the corresponding UML/MARTE model based on a clear simulation
semantics provided by the underlying formal model. Although the formal model could be
kept transparent to the user, the model defines clear simulation semantics associated with
the MARTE model and its implementation in the SystemC model, which can be fully
understood by any designer. Therefore, the ForSyDe meta-model formally supports
interoperability between MARTE and SystemC.

In this way, the gap between MDA and ESL is formally bridged by means of a conceptual
mapping. The mapping established among UML/MARTE and SystemC will provide
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consistency in order to ensure that the SystemC executable specification obtained is
equivalent to the original UML/MARTE model. The formal link provided by ForSyDe
enables the abstract executive semantics of both the UML/MARTE model and its
corresponding SystemC executable specification to be reflected (Figure 4.). This
demonstrates the equivalence among the two design flow stages, provides the required
consistency to the mapping established between the two languages and ensures that the
transformation process is correct-by-construction.

2. Related work

Several works have shown the advantages of using the MARTE profile for embedded
system design. For instance, in (Taha et al, 2007) a methodology for modelling hardware by
using the MARTE profile is proposed. In (Vidal et al, 2009), a co-design methodology for
high-quality real-time embedded system design from MARTE is presented.

Several research lines have tackled the problem of providing an executive semantics for
UML. In this context, two main approaches for generating SystemC executable specifications
from UML can be distinguished. One research line is to create a SystemC profile in order to
capture the semantics of SystemC facilities in UML diagrams (Bocchio et al., 2008). In this
case, SystemC is used both as modelling and action language, while UML enables a
graphical capture. A second research line for relating UML and SystemC consists in
establishing mapping rules between the UML metamodel and the SystemC constructs. In
this case, pure UML is used for system modelling, while the SystemC model generated is
used as the action language. Mapping rules enable automatic generation of the executable
SystemC code (Andersson & Host, 2008). In (Kreku et al., 2007) a mapping between UML
application models and the SystemC platform models is proposed in order to define
transformation rules to enable semi-automatic code generation.

A few works have focused on obtaining SystemC executable models from MARTE.
Gaspard2 (Piel et al. 2008) is a design environment for data-intensive applications which
enables MARTE description of both the application and the hardware platform, including
MPSoC and regular structures. Through model transformations, Gaspard2 is able to
generate an executable TLM SystemC platform at the timed programmers view (PVT) level.
Therefore, Gaspard?2 enables flows starting from the MARTE post-partitioning models, and
the generation of their corresponding post-partitioning SystemC executables.

Several works have confronted the challenge of providing a formal basis for UML and
SystemC-based methodologies. Regarding UML formalization, most of the effort has been
focused on providing an understanding of the different UML diagrams under a particular
formalism. In (Stérrle & Hausmann, 2005) activity diagrams are understood through the
Petri net formalism. In (Eshuis & Wieringa, 2001) formal execution semantics for the activity
diagrams is defined to support the execution workflow. In the context of MARTE, the Clock
Constraint Specification Language (CCSL) (Mallet, 2008) is a formalism developed for
capturing timing information from MARTE models. However, further formalization effort is
still required.

A significant formalization effort has also been made in the SystemC context. The need to
conceive the whole system in a model has brought about the formalization of abstract and
heterogeneous specifications in SystemC. In (Kroening & Sharygna, 2005) SystemC
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specifications including software and hardware domains are formalized to support
verification. In (Maraninchi et al., 2005) TLM descriptions are related to synchronous systems
are formalized. In (Traulsem et al., 2007) TLM descriptions related to asynchronous systems
are formalized. Comprehensive untimed SystemC specification frameworks have been
proposed, such as SysteMoC (Falk et al.,, 2006) and HetSC (Herrera & Villar 2006). These
methodologies take advantage of the formal properties of the specific MoCs they support but
do not provide formal support for untimed SystemC specifications in general. Previous work
on the formalization of SystemC was focused on simulation semantics. These approaches were
inspired by previous formalization work carried out for hardware design languages such as
VHDL and Verilog. In (Mueller et al., 2001), SystemC processes were seen as distributed
abstract state machines which consume and produce data in each delta cycle. In this way the
corresponding model is strongly related to the simulation semantics. In (Salem, 2003),
denotation semantics was provided for the synchronous domain. Efforts towards more
abstract levels address the formalization of TLM specifications. In (Ecker et al., 2006), SystemC
specifications including software and hardware functions are formalized. In (Moy et al., 2008)
TLM descriptions are related to synchronous and asynchronous formalisms.

Nevertheless, a formal framework for UML/MARTE-SystemC mapping based on common
formal models of both languages is required. A good candidate to provide this formal
framework is the ForSyDe metamodel (Janstch, 2004). The Formal System Design (ForSyDe)
formalism is able to provide a synthetic notation and understanding of concurrent and
heterogeneous specifications. ForSyDe covers modelling of time at different abstraction
levels, such as untimed, synchronous and timed. Moreover, ForSyDe supports verification
and transformational design (Raudvere et al. 2008).

3. ForSyDe

ForSyDe provides the mechanism to enable a formal description of a system. ForSyDe is
mainly focused on understanding concurrency and time in a formal way representing a
system as a concurrent model, where processes communicate through signals. In this way,
ForSyDe provides the foundations for the formalization of the C&C structure of the system.
Furthermore, ForSyDe formally supports the functionality descriptions associated with each
concurrent process.

Processes and signals are metamodelling concepts with a precise and unambiguous
mathematical definition. A ForSyDe signal is a sequence of events where each event has a
tag and a value. The tag is often given implicitly as the position in the signal and it is used to
denote the partial order of events. In ForSyDe, processes have to be seen as mathematical
relations among signals. The processes are concurrent elements with an internal state
machine. The relation among processes and signals is shown in Figure 2.

MO 1O
f.o..fio
go

Fig. 2. ForSyDe metamodel representation.
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From a general point of view; a ForSyDe process p is characterized by the expression:

p(sq...s,) =s"1...5", 1)

The process p takes a set of signals (s1...sn) as inputs and produces a set of outputs (s'1...5'm),
where V 1<i<n A 1<j<m with n, m € N; s;, sj € S where sy are individual signals and S is the
set of all ForSyDe signals.

ForSyDe distinguishes three kinds of signals namely untimed signals, synchronous signals
and timed signals. Each kind of MoC is determined by a set of characteristics which define
it. Based on these generic characteristics, it is possible to define a particular MoC’s specific
semantics.

Expressions (2) and (4) denote an important, relevant aspect that characterizes the ForSyDe
processes, the data consumed/produced.

7(v1,51)=(a,(2))

2
7(v,,5,) =(a (2))
with 3
v,(2)=7(@,) )
7(v1'%) =(a' (2))
()
7, 8,) = (@' (2))
with
(5)

v, '(2) = length(a’ (2))

A partition 11(v,s) of a signal s defines an ordered set of signals (a,) that “almost” forms the
original signal s. The brackets (...) denote a set of ordered elements (events or signals). The
function v(z) defines the length of the subsignal an(z); the semantics associated with the v(z)
function is: vn(0) = length(an(0)); va(1) = length(an(1)) ... where z denotes the number of the
data partition.

For the input signals, the length of these subsignals depends on which state the process is,
denoted by the expression (3), where y is the function that determines the number of events
consumed in this state. The internal state of the process is denoted by wq with q € No. In
some cases, vn(z) does not depend on the process state and thus vi(z) is a constant, denoted
by the expression v(z) = ¢ with c € N.

For the output signals, the length is denoted by expression (5). The output subsignals
a’1...a'm are determined by the corresponding output function f, that depends on the input
subsignals a;...an and the internal state of the process @q, expression (6).
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fol(a,..a,),0)=(a', ...a' ) (6)

m

where V 1<agjAjeN

The next internal state of the process is calculated using the function g:
g((al "'an)'wq) = a)q+1 (7)

where V 1<i<n An € No,a; € S, V q € No, @q€ E. E is the set of all events, that is, untimed
events, synchronous events and timed events respectively.

ForSyDe processes can be characterized by the four tuple TYPEs (TI, TO, NI, NO). TI and
TO are the sets of signal types for the input and output signals respectively. The signal type
is specified by the value type of its corresponding events that made up the signal. NI =
{vi(i)...vn(i)} is the set of partitioning functions for the n input signals; NO={v{'(i)...vy' (i)} is
the set of partitioning functions of the m output signals.

The advance of time in ForSyDe processes is understood as a totally ordered sequence of
evaluation cycles. In each evaluation cycle (ec) “a process consumes inputs, computes its
new internal state, and emits outputs” (Jantsch, 2004). After receiving the inputs, the process
reacts and then, it computes the outputs depending on its inputs and the process’s internal
state.

4. AVD system

In order to illustrate the formal foundations between UML/MARTE and SystemC a video
decoder is used, specifically an Adaptive Video decoder (AVD) system. Adaptive software
is a new paradigm in software programming which addresses the need to make the
software more effective and thus reusable for new purposes or situations it was not
originally designed for. Moreover, adaptive software has to deal with a changing
environment and changing goals without the chance of rewriting and recompiling the
program. Therefore, dynamic adaptation is required for these systems. Adaptive software
requires the representation of the set of alternative actions that can be taken, the goals that
the program is trying to achieve and the way in which the program automatically manages
change, including the way the information from the environment and from the system itself
is taken.

|frame_50urce| > fUMGB —>{ fuDCR = fulS = fulQ [-—=>={ fulT == fuVR H—>= YUV_create|

I S S W W

frame_decoder

Fig. 3. Block diagram of the Adaptive Video decoder.

Specifically, the AVD specification is based on the RVC decoder architecture (Jang et al.,
2008). Figure 3 illustrates a simplified scheme of the AVD architecture. The RVC architecture
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divides the decoder functionality into a set of functional units (fu). Each of these functional
units is in charge of a specific video decoding functionality. The frame_decoder functional
unit is in charge of parsing and decoding the incoming MPEG frame. This functional unit is
enabled to parse and extract the forward coding information associated with every frame of
the input video stream. The coding information is provided to the functional units fulS and
fulQ. The macroblock generator (fuMGB) is in charge of structuring the frame information
into macroblocks (where a macroblock is a basic video information unit, composed of a
group of blocks). The inverse scan functional unit (fulS) implements the Inverse zig-zag
scan. The normal process converts a matrix of any size into a one-dimensional array by
implementing the zig-zag scan procedure. The inverse function takes in a one-dimensional
array and by specifying the desired number of rows and columns, it returns a matrix having
the specified dimensions. The inverse scan constructs an array of 8x8 DCT coefficients from
a one-dimensional sequence. The fulQ functional unit performs the Inverse Quantization.
This functional unit implements a parameter-based adaptive process. The fulT functional
unit can perform the Inverse Transformation by applying an inverse DCT algorithm (IDCT),
or an inverse Haar algorithm (IHAAR). Finally, the fuVR functional unit is in charge of
video reconstruction.

The frame _source and the YUV _create blocks make up the environment of the AVD system.
The frame_source block provides the frames of a video file that the AVD system decodes
later. The YUV_create block rebuilds the video (in a .YUV video file) and checks the results
obtained.

4.1 UML/MARTE model from the AVD system

The system is designed as a concurrent entity; the functionality of each functional unit is
implemented by concurrent elements. Each one of these concurrent elements is allocated to
an UML component and identified by the MARTE stereotype <<ConcurrencyResource>>.
This MARTE generic resource models the elements that are capable of performing its
associated execution flow concurrently with others. Concurrency resources enable the
functional specification of the system as a set of concurrent processes. The information is
transmitted among the concurrent resources by means of communicating elements identified
by the MARTE stereotype <<CommunicationMedia>>. Both ConcurrencyResource and
CommunicationMedia are included in MARTE subprofile Generic Resource Modelling
(GRM). This gives the designer complete freedom in deciding on the most appropriate
mapping of the different functional components of the system specification to the available
executing resources. These MARTE elements are generic in the sense that they do not
assume a specific platform mapping to HW or to SW. Thus, they are suitable for system-
level pre-partition modelling.

Depending on the parameters defining the communication media, several types of channels
can be identified. Based on the type of channels used, several MoCs can be identified (Pefiil
et al, 2009). When a specific MoC is found, the design methodologies associated with it can
be used taking advantage of the properties that that MoC provides. Additional kinds of
channels can be identified, the border channels. A border channel is a communication media
that enables the connections of different MoC domains, which have their own properties
and characteristics. The basic principle of the border channel semantics is that from each
MoC side, the border channel is seen as the channel associated with the MoC. In the case of
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channel_4 of Figure 4, this communication media establishes the connection among the KPN
MoC domains (Kanh,1974) and the CSP MoC domains (Hoare, 1978). This border channel is
inferred from a communication media with a storage capacity provided by the stereotype
<<StorageResource>>. In order to capture the unlimited storage capacity that characterizes
the KPN channels, the tag resMult should not be defined. The communication is carried by
the calls to a set of methods that a communication media provides. These methods are MARTE
<<RtService>>. The RtService associated with the KPN side should be asynchronous and
writer. In the CSP side, the RtService should be delayedSynchronous. This attribute value
expresses synchronization with the invoked service when the invoked service returns a
value. In this RtService the value of concPolicy should be writer so that the data received from
the communication media in the synchronization is consumed and, thus, producing side
effects in the communication media. The RtServices are the methods that should be called by
the concurrency resources in order to obtain/transmit the information.

Another communication (and interaction) mechanisms used for communicating threads is
performed through protected shared objects. The most simple is the shared variable. A
shared variable is inferred from a communication media that requires storage capacity
provided by the MARTE stereotype <<StorageResource>>. Shared variables use the same
memory block to store the value of a variable. In order to model this memory block, the tag
resMult of the StorageResource stereotype should be one. The communication media accesses
that enable the writings are performed using Flowport typed as in. A RtService is provided by
this FlowPort and this RtService is specified as asynchronous and as writer in the tags
synchKind and concPolicy respectively. The tag value writer expresses that a call to this
method produces side effects in the communication media, that is, the stored data is modified
in each writing access. Regarding the reading accesses, they are performed through out flow
ports. The value of the synchKind should be synchronous to denote that the corresponding
concurrency resource waits until receiving the data that should be delivered by the
communication media. The value of concPolicy should be reader to denote that the stored data
is not modified and, thus, several readings of the same data are enabled.

Figure 4 shows a sketch of a complete UML/MARTE PIM that describes the AVD system.
Figure 4 is focused on the MGB component showing the components that are connected to
the MGB component and the channels used for the exchange of information between this
component and its specific environment. Based on this AVD component, a complete
example of the ForSyDe interrelation between UML/MARTE and SystemC will be
presented. However, before introducing this example, it is necessary to describe the
ForSyDe formalization of the subset of UML/MARTE elements selected. For that purpose,
the IS component is used.

4.2 Computation & communication structure

The formalization is done by providing a semantically equivalent ForSyDe model of the
UML/MARTE PIM. Such a model guarantees the determinism of the specification and
enables the application of the formal verification and refinement methodologies associated
with ForSyDe. As was mentioned before, the ForSyDe metamodel is focused on the formal
understanding of the communication and processing structure of a system and the timing
semantics associated with each processing element’s behaviour. Therefore, in order to obtain
a ForSyDe model, all the system information associated with an UML/MARTE model
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Fig. 4. Sketch of the UML/MARTE model that describes the AVD system.

related to the system structure has to be ignored. All the model elements that determine the
hierarchy system structure such as UML components, UML ports, etc. have to be removed.
In this way, the resulting abstraction is a model composed of the processing elements
(concurrency resources) and the communicating elements (communication media). This C&C
model determines the abstract semantics associated with the model and, by extension,
determines the system execution semantics. Figure 5 shows the C&C abstraction of Figure 4
where only the concurrency resources and the communication media are presented.
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Fig. 5. C&C abstraction of the model in Figure 4.

4.3 ForSyDe representation of C&C structure

While the extraction of the C&C model is maintained in the UML/MARTE domain, the
second step of the formalization consists in the abstraction of this UML/MARTE C&C
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model as the semantically equivalent ForSyDe model. More specifically, the ForSyDe
abstraction means the specification from the UML/MARTE C&C model of the
corresponding processes and signals; the timing abstraction (untimed, synchronous, etc); the
input and output partitions; and the specific type of process constructors, which establish
the relationships between the input partitions and the output partitions. The first step of the
ForSyDe abstraction is to obtain a ForSyDe model in which the different processes and
signals are identified. In order to obtain this abstract model, a direct mapping between
ConcurrencyResource-processes and CommunicationMedia-signals is established. Figure 6
shows the C&C abstract model of Figure 5 using ForSyDe processes and signals. Therefore,
with this first abstraction, the ForSyDe Cé&C system structure is obtained.

There is a particular case related to the ForSyDe abstraction of the CommunicationMedia-
signal. Assume that in channel_6 of the example in Figure 4 another MARTE stereotype has
been applied, specifically the <<ConcurrencyResource>> stereotype. In this way, the
communicating element has the characteristic of performing a specific functionality. This
combination of concurrency resource and communication media semantics can be used in order
to model system elements that transmit data and, moreover, perform a transformation of
this data. The ForSyDe representation of this kind of channels consists in a process that
represents the functionality associated with the channel and a signal that represents the
output data generated by the channel after the input data is computed.

Process

Process
DCR

Process MGB
framedecoder,

Se

Process
Q

Fig. 6. ForSyDe representation of the C&C model of the Figure 5.

4.4 Concurrency resource’s behaviour description

A concurrent element can be described by a finite state machine where in each state the
concurrent element receives inputs, computes these inputs and calculates their new state
and the corresponding outputs. The structure of the behaviour of each concurrency resource
is modelled by means of an Activity Diagram. The activity diagram can model the complete
resource behaviour. In this case, there is no clear identification of the class states; the states
executed by the class during its execution are implicit. Activity diagrams represent activity
executions that are composed of single steps to be performed in order to model the complete
behaviour of a particular class. These activities can be composed of single actions that
represent different behaviours, related to method calls or algorithm descriptions. In this
case, the complete behaviour captured in an activity diagram can be structured as a
sequence of states fulfilling the following definition: each state is identified as a stage where
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the concurrency resource receives the data from its environment; these data are computed
by an atomic function, producing the corresponding output data. Therefore, in the most
general approach, an implicit state in an activity diagram is determined between two
waiting stages, that is, between two stages that represent input data. In this kind of stages,
the concurrency resource has to wait until the required data are available in all the inputs
associated with the corresponding function. In the same way, if code were directly written,
an equivalent activity diagram could be derived. Additionally, the behavioural modelling of
the concurrent resources can be modelled by an explicit UML finite state machine. This
UML diagram is focused on which states the object covers throughout its execution and the
well-defined conditions that trigger the transitions among these states (the states are
explicitly identified). Each UML state can have an associated behaviour denoted by the label
do. This label identifies the specific behaviour that is performed as long as the concurrent
element is in the particular state. Therefore, in order to describe the functionality in each
state, UML activity diagrams is used.

Figure 7 shows the activity diagram that captures the functionality performed by the
concurrency resource of the IS component. According to the aforementioned internal state
definition, this diagram identifies two states; one state where the concurrency resource is only
initialized and another state where the tuple data-consumption/computation/data
generation is modelled. The data consumption is modelled by a set of AcceptEventAction. In
the general case, this UML action represents a service call owned by a communication media
from which the data are required. Then, these data are computed by the atomic function
Scan. The data generated from this computation (in this case, data3) are sent to another
system component; the sending of data is modelled by SendObjectAction that represents the
corresponding service call for the computing data transmissions.

Apart from the UML elements related to the data transmission and the data computation,
another set of UML elements are used in order completely specify the functionality to be
modelled. The fork node (==——-=) establishes concurrent flows in order to enable the
modelling of data inputs required from different channels in the same state. The UML
pins (the white squares) associated to the AcceptEventAction, function Scan and
SendQObjectAction represent the data received from the communication, the data
required/generated by the atomic function execution and the data sending, respectively.
An important characteristic needed to define the concurrency resource functionality
behaviour is the number of data required/generated by a specific atomic function. This
characteristic is denoted by the multiplicity value. Multiplicity expresses the minimum
and the maximum number of data that can be accepted by or generated from each
invocation of a specific atomic function. Additionally, the minimum multiplicity value
means that some atomic functions cannot be executed until the receipt of the minimum
number of data in all atomic function incoming edges. In Figure 7, the multiplicity values
are annotated in blue UML comments.

As was mentioned, concurrent resource behaviour is composed of pure functionality
represented by atomic functions and communication media accesses; the structure of the
behaviour of a concurrency resource specifies how pure functionality and communication
accesses are interlaced. This structure is as relevant as the C&C structure, since both are
involved in the executive semantics of the process network.



Formal Foundations for the Generation
of Heterogeneous Executable Specifications in SystemC from UML/MARTE Models 239

So

Init

.y
) accessToChannel_3.read > accessTotChannel_5.read

datal ’{J data? [TJ

evq E }
L Secan

]

accessToChannel_6 write

Fig. 7. Activity diagram that describes the functionality implemented by the IS component.

4.5 ForSyDe representation of concurrency resource functionality modelling

In the behavioural model in Figure 7 two implicit states (Sp and S;) can be indentified. The
activity diagram implicit states are represented as @; in ForSyDe. A state ®; is understood to
be a state composed of two different states, P; and D;. In the general case, P; denotes
segments of the behavioural description that are between two consecutive waiting stages. In
this case, such waiting stages are identified by two consecutive sets of AcceptEventActions.
Therefore, Pj corresponds to the basic structure described in the previous section. D;
expresses all internal values that characterize the state. The change in the internal state of a
concurrency resource is denoted by the next state function g((a1...an), ®j) =wj+1 wWhere @
represents the current state and a;...an the input data consumed in this state. The function
8() calculates both Dj+1 and Pj+1.

The atomic function implemented in a state o (for instance, in the example in Figure 7 the
function Scan) is represented by the ForSyDe output function f;(). This function generates the
outputs (represented as the subsignals a’1...a"m) as a result of computing the data inputs.

The multiplicity values of the input and output data sequences are abstracted by a partition
function v :

Input partition functions ... 8)
vi(2)=7(®) =1

Vz,ieNya{p,q}eN
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v'i(2) =length(a';)=a
Output partition functions length(f;(a,... a,), ;) =1 ... )
v'y(2) =length(a'y) =b

Vz,ieNya{a,bjeN

A partition function enables a signal partition 1(v,s), that is, the division of a signal s into a
sequence of sub-signals a;. The partition function denotes the amount of data
consumed/produced in each input/output in each ForSyDe process computation, referred
to as evaluation cycle.

The data received by the concurrency resource through the AcceptEventActions are
represented by the ForSyDe signal ai...an. Regarding the data transmitted through
SendObjectActions, they are represented by a'1...a"m.

In addition, the behavioural description has a ForSyDe time interpretation; Figure 7
corresponds to two evaluation cycles (evp and evi) in ForSyDe. The corresponding time
interpretation can be different depending on the specific time domain. These evaluation
cycles will have different meanings depending on which MoC the designer desires to
capture in the models. In this case, the timing semantics of interest is the untimed
semantics.

5. UML/MARTE-SystemC mapping

The UML/MARTE-SystemC mapping enables the generation of SystemC executable code
from UML/MARTE models.

This mapping enables the association of a corresponding SystemC executable code which
reflects the same concurrency and communication structure through processes and
channels. Similarly, the SystemC code can reflect the same hierarchical structure as the
MARTE model by means of modules, ports, and the different types of SystemC binding
schemes (port-port, channel-port, etc). However, other mapping alternatives maintaining
the semantic correspondence, using port- export connections, are feasible thanks to the
ForSyDe formal link. Figure 8 shows the first approach to the UML/MARTE-SystemC
mapping regarding the C&C structure and the system hierarchy. The correspondence
among the system hierarchy elements, component-module and port-port, is straightforward.
In the same way, the correspondence concurrency resource-process is straightforward. A
different case is the communicating elements. As a general approach, a communication
media corresponds to a SystemC channel. However, the type of SystemC channel depends
on the communication semantics captured in the corresponding communication media. As can
be seen in (Peqil et al., 2009), depending on the characteristics allocated to the communication
media, different communication semantics can be identified in UML/MARTE models which
implies that the SystemC channel to be mapped should implement the same communication
semantics.

Regarding the functional description, the AcceptEventActions and SendObjectActions are
mapped to channel accesses. If channel instances are beyond the scope of the module, the
accesses to them become port accesses. The multiplicity value of each data transmission in
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frameDecoder

framedecoder_proc

Fig. 8. SystemC representation of the UML/MARTE model in Figure 4.

the activity diagram corresponds to multiple channel accesses (of a single data value) in the
SystemC code. Execution of pure functionality captured as atomic functions represents the
individual functions that compose the complete concurrency resource functionality. The
functions can correspond to a representation of functions to be implemented in a later
design step according to a description attached to this function or pure C/C++ code
allocated to the model. Additionally, loops and conditional structures are considered in
order to complement the behaviour specification of the concurrency resource. Figure 9 shows
the SystemC code structure that corresponds to the functional description of Figure 7. Lines
(2-3-4) are the declarations of the variables typed as T; used for communication and
computation. Then, an atomic function for initializing some internal aspects of the
concurrency resource is executed. Line 5 denotes the statement that defines the infinite loop.
Line 6 is the data access to the communication media channel_3. In this case, the channel access
is done through the port fromMGB. In the same way, line 7 is the statement for reading the
six data from channel 5 through the port fromDCR. The atomic functions Scan is represented
as a function call, specifying the function parameters (line 9). Finally, the output data
resulting from the Scan computation (data3) are sent through the port toIQ by using the
communication media channel_6.

(1) void IS::IS_proc(){

(2) T1 datal;

(3) T2 data2[ ];

(4) T3 data3[ ];

(5) Init();

(6) while (true) {

(7) datal = fromMGB.read();

(8) for(int i=0;i<6;i++) data2[i]= fromDCR.read();
(9) Scan (datl, data2, data3);

(10) for(int i=0;i<6;i++) tolQ.write(data3[i]);

1

)

Fig. 9. SystemC code corresponding to the model in Figure 7.

5.1 UML/MARTE-SystemC mapping: ForSyDe formal foundations

As was described, there are similarities which lead to the conclusion that the link of these
MARTE and SystemC methodologies is feasible. However, there are obvious differences in
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terms of UML and SystemC primitives. Moreover, there is no exact a one to one
correspondence, e.g., in the elements for hierarchical structure. Even when correspondence
seems to be straightforward (e.g. ConcurrencyResource = SystemC Process), doubts can arise
about whether every type of SystemC process can be considered in this relationship. A more
subtle, but important consideration in the relationship is that the SystemC code is executable
over a Discrete Event (DE) timed simulation kernel, which provides the code with low level
execution semantics. SystemC channel implementation internally relies on event
synchronizations, shared variables, etc, which map the abstract communication mechanism
of the channel onto the DE time axis. In contrast, the execution semantics of the MARTE
model relies on the attributes of the communication media (Pefil et al, 2009) and on CCSL
(Mallet, 2008). A common representation of the abstract semantics of the SystemC channel
and of the communication media is required. All these reasons make the proposed formal link
necessary.

The UML/MARTE-SystemC mapping enables the generation of SystemC executable code
from UML/MARTE models. The transformation process should maintain the C&C
structure, the behaviour semantics, and the timing information captured in the
UML/MARTE models in the corresponding SystemC executable model. This information
preservation is supported by ForSyDe, which provides the required semantic consistency.
This consistency is provided by a common formal annotation that captures the previous
relevant information that characterizes the behaviour of a concurrency resource and
additional relevant information such as the internal states of the process, the atomic
functionality performed in each state, the inputs and the number of inputs required for this
atomic functionality to be performed and the resulting data generated outputs from this
atomic function execution.

An important characteristic is the timing domain. This article is focused on high-level
(untimed) UML/MARTE PIMs. In the untimed models, the time modelling is abstracted as
a causality relation; the events communicated by the concurrent elements do not contain any
timing information. An order relation is denoted; the event sent first by a producer is
received first by a consumer, but there is no relation among events that form different
signals. Additionally, the computation and the communication take an arbitrary and
unknown amount of time.

Figure 10 shows the ForSyDe abstract, formal annotation of the IS concurrency resource
behaviour description and the functional specification of the SystemC process IS_proc. Line
1 specifies the type of processor constructor; in this case the processor constructor is a mealyU.
The U suffix denotes untimed execution semantics. The mealylU process constructor defines a
process with internal states that take the output function f(), the next state functions g(), the
function ) for defining the signal partitions, and the initial state @ as arguments. In general
7, f() and g()are state-dependent functions. In this case, the abstraction splits f(), g() and x)
into state-independent functions. The function »() is the function used to calculate the new
partition functions vy of the inputs signals. Specifically, output function f{) of the IS process
is divided into 2 functions corresponding to the two internal state that the concurrency
resource has. The first output function fy() models the Init() function; the output function f;()
models the function Scan(). In this function, the partition functions vy of each input data
required for the computing of the Scan() (line [7]) are annotated. Line [9] represents the
partition function of the resulting output signal s1. In the same way as in the case of the
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function f{), next state of the function g() is divided into 2 functions, in order to specify the
state transitions (lines [5] and [10]) identified in the activity diagram. The data
communicated by the IS concurrent resource datal, data2, data3 are represented by the signals
S1 and S; for the inputs (datal, data2) and S; for the output signal data3. The implicit states
identified in the activity diagram Sto and St; are abstracted as the states wo and w1,
respectively.

[1] IS = mealyU(y, g, f, o)
[2] IS (s1, 52) = <s'1>

[3] if (statei = wo) then
[4] ful)i = Init()

[5] stateir1 = g(wg) = o,
[6] elseif (state; = @)

[7] [ vsi(i) = 6, n(vs1, 81) = <ali>
ve(i) =1, n(vey, s1) = <a2p>

[8] al’i=fi(al; a2;) = Scan(al;, a2;)
[9] V5'1(i) =6. TE(V5'1, S'1) =<al’>
[10] statei+1 = g(w)) = o,

Fig. 10. ForSyDe annotation of the UML/MARTE model in Figure 7 and the SystemC code
in Figure 9.

According to the definition of evaluation cycle presented in section 3, both implicit states
that can be identified in the activity diagram shown in Figure 7 correspond to a specific
ForSyDe evaluation cycle (ev0 and ev1).

Therefore, the abstract, formal notation shown in Figure 10 captures the same, common
behaviour semantics modelled in Figure 7 and specified in Figure 9, and, thus, provides
consistency in the mapping between UML/MARTE and SystemC in order to enable the later
code generation (Figure 11).

UML/MARTE Consistency

.
. ‘| ForSyDe
i
r "S-\ / e (1) void IS::1S_proc(){
Ay @) T datat;
. ™ (3) T2 data2[};
Sesemaa) Jeceva . N, (@) T3 datad[ |
“. g : (5) Init();
¥sc (6) while (true) {
IS = mealyU(7, g, f coo)

[2]1S (s1, S2) = <8's>

Fig. 11. Representation of mapping between UML/MARTE and SystemC formally
supported by ForSyDe.
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5.2 Formal support for untimed UML/MARTE-SystemC models

The main problem when trying to define a formal mapping between MARTE and SystemC
is to define the untimed semantics of a DE simulation language such as SystemC. Under this
untimed semantics, the strict ordering of events imposed by the DE simulation mechanism
of SystemC’s simulation kernel has to be relaxed. In principle, the consecutive events in a
particular SystemC object (a channel, accesses to a shared variable, etc.) should be
considered as totally ordered as they originate from the execution of a sequential algorithm.
Any change in this order in any implementation of the algorithm should be based on a
sound optimization methodology or should be clearly explained by the designer. Events in
objects corresponding to different concurrent processes related by causal dependencies are
also ordered and, again, any change should be fully justified. However, events in objects
corresponding to different concurrent processes without any causal dependency can be
implemented in any order. This is the flexibility required by the design process in order to
ensure optimal implementations under the imposed design constraints.

As was commented previously, SystemC processes and MARTE concurrency resources can be
directly abstracted as ForSyDe processes. Nevertheless, and in the most general case, the
abstraction of a SystemC communication mechanism and the communication media relating
two processes is more complex. The type of communication in this article is addressed
through channels and shared variables. When the communication mechanism fulfils the
required conditions, then, it can be straightforwardly abstracted as a ForSyDe signal.

The MGB component shown in figure 4 is connected to its particular environment through
four communication media. Assuming that in these communication media four different
communication semantics can be identified. The communication media channel_1 represents
an infinite FIFO that implements the semantics associated to the KPN MoC. The channel_3
establishes a rendezvous communication with data transmission. The way to identify the
properties that characterize these communication mechanisms in UML/MARTE models
was presented in (Pefiil et al, 2009). The channel_2 represents a shared variable and the
channel_4 is a border channel between the domains KPN-CSP. Therefore, the MGB
concurrency resource is a border process. A border process is a sort of process which channel
accesses are connections to different communication media that captured different
communication semantics. In this way, the AVD system is a heterogeneous entity where
different behaviour semantics can exist.

The data transmission dealt with the MGB concurrency resource is carried out by means of
a different sort of communication media: unlimited FIFO, shared memory, rendezvous and
a KPN-CSP border channel. Those communication media accesses are denoted by the
corresponding AcceptEventActions and SendObjectActions identified by the port or channel
used by the data transmission and the service called for that data transmission (see Figure
1a)). All these communication semantics captured in the UML/MARTE communication
media have to be mapped to specific SystemC communication mechanism ensuring the
semantic preservation. The communication media channel_1, channel_2 and channel_4 can be
mapped to SystemC channels provided by the HetSC methodology (HetSC, 2007). HetSC
is a system methodology based on the ForSyDe foundations for the creation of formal
execution specifications for heterogeneous systems. Additionally, HetSC provides a set of
communications mechanisms required to implement the semantics of several MoCs.
Therefore, the mapping process from the previous communication media to the SystemC
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channels ensures the semantic equivalence since HetSC provides the required SystemC
channels that implement the same communication semantics captured in the
corresponding communication media. Additionally, these communication media fulfil, by
construction, the condition that the data obtained by the consumer process are the same
and in the same order as the data generated by the producer process. In this way, they can
be abstracted as a ForSyDe signal which implies that the communication media-SystemC
channel mapping is correct-by-construction. As an example of SystemC channel accesses,
in Figure 12 b), line (5) denotes a channel access through a port and line (7) specifies a
direct channel access.

An additional application of the extracted ForSyDe model is the generation of some
properties that the SystemC specification should satisfy under any dynamic condition in
any feasible testbench. Note that the ForSyDe model is static in nature and does not
include the synchronization and firing mechanism used by the SystemC model. In the
example of MGB component, a mechanism for communication among processes can be
implemented through a shared variable, specifically the channel 2. Nevertheless, the
communication of concurrent processes through shared variables is a well-known
problem in system engineering. As the SystemC simulation semantics is non-preemptive,
protecting the access to the shared variables does not make any difference. However, this
is an implementation issue when mapping SystemC processes to SW or HW. A variable
shared between two SystemC processes correctly implements a ForSyDe signal when the
following conditions apply:

1. Every data token written by the producer process is read by the consumer process.
2. Every data token written by the producer process is read only once by the consumer
process.

In some cases, in order to simplify the design, the designer may decide to use the shared
variable as local memory. As commented above, this problem can be avoided by renaming.
A new condition can be applied:

1. If a consumer uses a shared variable as local memory, no new data can be written by
the producer until after the last access to local memory by the consumer, that is, during
the local memory lifetime of the shared variable.

Additionally, other conditions have to be considered in order to enable a ForSyDe
abstraction to be obtained which provides properties to be satisfied in the system design.
Another condition to be considered in the concurrent resource behaviour description is the
use of fork nodes and thus, the modelling of the internal concurrency in a concurrent
element. As a design condition, the specification of internal concurrency is not permitted in
the concurrency resource behaviour (except for the previously mentioned modelling of the
data requirements from different inputs). The behaviour description consists of a sequence
of internal states to create a complete activity diagram that models the concurrent resource
behaviour. As a general first approach, it is possible to use the fork node to describe internal
concurrent behaviour of a concurrent element if and only if the corresponding inputs and
outputs of each concurrent flow are univocal. Among several concurrent flows, it is essential
to know from which inputs the data are being taken and to which the outputs are being
sent; in a particular state, only one concurrent flow can access specific communication
media.
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(1) void MBG::MGB_proc(){

(2) T1 datal[ ]; T2 data6] J;

(3) T3 data2; T4 data3; T5 data4; T6 data5; T7 data7;

(4) while (true) {

(5) for(int i=0;i<6;i++) datal[i]= fromFrameDeco.read();
(6) Init QFS(datal, data2);

(7) channel4.write(data2);

(28) } while(intra_mb_and_block_in_mb() );
(29)} // end MGB process loop code
(30)} // end MGB process code
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Fig. 12. ForSyDe abstraction (c) of the MBG
its corresponding SystemC code (b).

concurrency resource functionality model (a) and
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Another modelling condition that can be considered in the concurrency resource behaviour
description is the specification of the multiplicity values of the data inputs and outputs. This
multiplicity specification has to be explicit and unequivocal, that is, expressions such as
[1...3] are not allowed. A previous multiplicity specification is not consistent with the
ForSyDe formalization since ForSyDe defines that in each process state, each input and
output partition is well defined. The multiplicity specification [a...b] presents indeterminacy
in order to define the process behaviour; it is not possible to know univocally the number of
data required/produced by a computation. This fact can yield an inconsistent functionality
and, thus, can present risks of incorrect performance.

As was mentioned before, not only the communication semantics defined in the
communication media is necessary to specify the behaviour semantics of the system, but
the way that each communication access is interlaced with pure functionality is also
required in order to specify the execution semantics of the processes network. The
communication media channel_3 implements a rendezvous communication among the MGB
concurrency resource and the IS concurrency resource which involves a synchronization and,
thus, a partial order in the execution of functions of the two processes. The atomic
function Scan shown in Figure 7 requires a datum provided by the communication media
channel_3. This data is provided when either the function Calculate_ AC_coeff_esc has
finished or when the function Calculate_AC_coeff_no_esc has finished, depending on which
internal state the MGB concurrency resource is in. In the same way, the MGB concurrency
resource needs the IS concurrency resource to finish the atomic function Scan() in order to go
on with the block computation. In this way, the two processes synchronize their
independent execution flows, waiting for each other at this point for data exchange.
Therefore, besides the semantics captured in the communication media, the way the calls to
this communication media and the computation stages are established in order to model the
concurrency resource’s behaviour defines its execution semantics, affecting the behaviour of
others concurrency resources.

The ForSyDe model is a formal representation that enables the capture of the relevant
properties that characterize the behaviour of a system. Figure 12 c) shows the ForSyDe
formal annotation of the functional model of the MGB concurrency resource’s behaviour
shown in Figure 12 a) and the SystemC code in Figure 12 b), which is the execution
specification of the previous UML/MARTE model. This ForSyDe model specifies the
different internal states that can be identified in the activity diagram in Figure 12 a) (all of
them identified by a rectangle and the annotation S;). Additionally, ForSyDe formally
describes all data requirements for the computations, the functions executed in each state,
the data generated in each of these computations and the conditions for the state transitions.
This relevant information defines the concurrency resource’s behaviour. Therefore, the
ForSyDe model provides an abstract untimed semantics associated with the UML/MARTE
model which could be used as a reference model for any specification generated from it,
specifically, a SystemC specification, in order to guarantee the equivalence between the two
system representations.

6. Conclusions

This chapter proposes ForSyDe as a formal link between MARTE and SystemC. This link
is necessary to maintain the coherence between MARTE models and their corresponding
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SystemC executable specifications, in order to provide safe and productive methodologies
integrating MDA and ESL design methodologies. Moreover, the chapter provides the
formal foundations for enabling this ForSyDe-based link between PIM UML/MARTE
models and their corresponding SystemC executable code. The most immediate
application of the results of this work will be in the automation of the generation of
heterogeneous executable SystemC specifications from untimed UML/MARTE models
which specify the system concurrency and communication structure and the behaviour of
concurrency resources.
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1. Introduction

In 2002, (Kish, 2002) warned about the danger of the abrupt break in Moore’s law.
Fortunately, nowadays integration capabilities are still growing and 20nm and 14nm
technologies are envisaged, (Chiang, 2011). However, the frequency of integrated circuits
cannot grow anymore. Therefore, in order to achieve a continuous improvement of
performance, computer architectures are evolving towards the integration of more and more
parallel computing resources. Examples of this include modern Graphical Processing Units
(GPUs), such as the new CUDA architecture, named Fermi, which will use 512 cores,
(Halfhill, 2012). Embedded system architectures show a similar trend with General Purpose
Processors (GPPs), and some mobile phones already included between 2 and 8 RISC
processors a few years ago, (Martin, 2006). Moreover, many embedded architectures are
heterogeneous, and enclose different types of truly parallel computing resources such as
(GPPs), Co-Processors, Digital Signal Processors,