TOOLS IN ARTIFICIAL INTELLIGENGCE

TOOLS IN ARTIFICIAL INTELLIGENCE

EDITED BY
PAULA FRITZSCHE

I-Tech

Published by In-Teh

In-Teh is Croatian branch of I-Tech Education and Publishing KG, Vienna, Austria.

Abstracting and non-profit use of the material is permitted with credit to the source. Statements and
opinions expressed in the chapters are these of the individual contributors and not necessarily those of
the editors or publisher. No responsibility is accepted for the accuracy of information contained in the
published articles. Publisher assumes no responsibility liability for any damage or injury to persons or
property arising out of the use of any materials, instructions, methods or ideas contained inside. After
this work has been published by the In-Teh, authors have the right to republish it, in whole or part, in
any publication of which they are an author or editor, and the make other personal use of the work.

© 2008 In-teh

www.in-teh.org

Additional copies can be obtained from:
publication@ars-journal.com

First published August 2008
Printed in Croatia

A catalogue record for this book is available from the University Library Rijeka under no. 111220071
Tools in Artificial Intelligence, Edited by Paula Fritzsche
p. cm.
ISBN 978-953-7619-03-9
1. Artificial Intelligence. 2. Tools. I. Paula Fritzsche

Preface

Artificial Intelligence (Al) is often referred to as a branch of science which deals with
helping machines find solutions to complex problems in a more human-like fashion. It is
generally associated with Computer Science, but it has many important links with other
fields such as Maths, Psychology, Cognition, Biology and Philosophy. The Al success is due
to its technology has diffused into everyday life. Neural networks, fuzzy controls, decision
trees and rule-based systems are already in our mobile phones, washing machines and
business applications.

The book “Tools in Artificial Intelligence” offers in 27 chapters a collection of all the tech-
nical aspects of specifying, developing, and evaluating the theoretical underpinnings and
applied mechanisms of Al tools. Topics covered include neural networks, fuzzy controls,
decision trees, rule-based systems, data mining, genetic algorithm and agent systems,
among many others.

The goal of this book is to show some potential applications and give a partial picture of
the current state-of-the-art of Al Also, it is useful to inspire some future research ideas by
identifying potential research directions. It is dedicated to students, researchers and practi-
tioners in this area or in related fields.

Editor

Paula Fritzsche

Computer Architecture and Operating Systems Department
University Autonoma of Barcelona

Spain

e-mail: paula.fritzsche@caos.uab.es

Vi

10.

11.

Contents
Preface v
Computational Intelligence in Software Cost Estimation: Evolving 001

Conditional Sets of Effort Value Ranges
Efi Papatheocharous and Andreas S. Andreou

Towards Intelligible Query Processing in Relevance Feedback-Based
Image Retrieval Systems
Belkhatir Mohammed

GNGS: An Atrtificial Intelligent Tool for Generating and Analyzing
Gene Networks from Microarray Data
Austin H. Chen and Ching-Heng Lin

Preferences over Objects, Sets and Sequences
Sandra de Amo and Arnaud Giacometti

Competency-based Learning Object Sequencing using Particle Swarms
Luis de Marcos, Carmen Pages, José Javier Martinez and José Antonio Gutiérrez

Image Thresholding of Historical Documents Based on Genetic Algorithms
Carmelo Bastos Filho, Carlos Alexandre Mello, Julio Andrade, Marilia Lima,
Wellington dos Santos, Adriano Oliveira and Davi Falcdo

Segmentation of Greek Texts by Dynamic Programming
Pavlina Fragkou, Athanassios Kehagias and Vassilios Petridis

Applying Artificial Intelligence to Predict the Performance of
Data-dependent Applications
Paula Fritzsche, Dolores Rexachs and Emilio Luque

Agent Systems in Software Engineering
Vasilios Lazarou and Spyridon Gardikiotis

A Joint Probability Data Association Filter Algorithm for

Multiple Robot Tracking Problems

Aliakbar Gorji Daronkolaei, Vahid Nazari, Mohammad Bagher Menhaj, and
Saeed Shiry

Symbiotic Evolution of Rule Based Classifiers
Ramin Halavati and Saeed Bagheri Shouraki

021

035

049

077

093

101

121

139

163

187

Vil

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

A Multiagent Method to Design Open Embedded Complex Systems
Jamont Jean-Paul and Occello Michel

Content-based Image Retrieval Using Constrained Independent
Component Analysis: Facial Image Retrieval Based on Compound Queries
Tae-Seong Kim and Bilal Ahmed

Text Classification Aided by Clustering: a Literature Review
Antonia Kyriakopoulou

A Review of Past and Future Trends in Perceptual Anchoring.
Silvia Coradeschi and Amy Loutfi

A Cognitive Vision Approach to Image Segmentation
Vincent Martin and Monique Thonnat

An Introduction to the Problem of Mapping in Dynamic Environments
Nikos C. Mitsou and Costas S. Tzafestas

Inductive Conformal Prediction: Theory and Application to Neural Networks
Harris Papadopoulos

Robust Classification of Texture Images using Distributional-based
Multivariate Analysis

Vasileios K. Pothos, Christos Theoharatos,

George Economou and Spiros Fotopoulos

Recent Developments in Bit-Parallel Algorithms
Pablo San Segundo, Diego Rodriguez-Losada and Claudio Rossi

Multi-Sensor Fusion for Mono and Multi-Vehicle Localization
using Bayesian Network
C. Smaili, M. E. El Najjar, F. Charpillet and C. Rose

On the Definition of a Standard Language for Modelling
Constraint Satisfaction Problems
Ricardo Soto, Laurent Granvilliers

Software Component Clustering and Retrieval: An Entropy-based
Fuzzy k-Modes Methodology
Constantinos Stylianou and Andreas S. Andreou

An Agent-Based System to Minimize Earthquake-Induced Damages
Yoshiya Takeuchi, Takashi Kokawa, Ryota Sakamoto,
Hitoshi Ogawa and Victor V. Kryssanov

205

223

233

253

265

295

315

331

349

369

387

399

421

25.

26.

27.

A Methodology for the Extraction of Reader’'s Emotional State
Triggered from Text Typography
Dimitrios Tsonos and Georgios Kouroupetroglou

Granule Based Inter-transaction Association Rule Mining
Wanzhong Yang, Yuefeng Li and Yue Xu

Countering Good Word Attacks on Statistical Spam Filters with
Instance Differentiation and Multiple Instance Learning
Yan Zhou, Zach Jorgensen and Meador Inge

439

455

473

Computational Intelligence in Software Cost
Estimation: Evolving Conditional Sets of
Effort Value Ranges

Efi Papatheocharous and Andreas S. Andreou
Department of Computer Science, University of Cyprus,
Cyprus

1. Introduction

In the area of software engineering a critical task is to accurately estimate the overall project
costs for the completion of a new software project and efficiently allocate the resources
throughout the project schedule. The numerous software cost estimation approaches
proposed are closely related to cost modeling and recognize the increasing need for
successful project management, planning and accurate cost prediction. Cost estimators are
continually faced with problems stemming from the dynamic nature of the project
development process itself. Software development is considered an intractable procedure
and inevitably depends highly on several complex factors (e.g., specification of the system,
technology shifting, communication, etc.). Normally, software cost estimates increase
proportionally to development complexity rising, whereas it is especially hard to predict
and manage the actual related costs. Even for well-structured and planned approaches to
software development, cost estimates are still difficult to make and will probably concern
project managers long before the problem is adequately solved.

During a system’s life-cycle, one of the most important tasks is to effectively describe the
necessary development activities and estimate the corresponding costs. This estimation,
once successful, allows software engineers to optimize the development process, improve
administration and control over the project resources, reduce the risks caused by
contingencies and minimize project failures (Lederer & Prasad, 1992). Subsequently, a
commonly investigated approach is to accurately estimate some of the fundamental
characteristics related to cost, such as effort and schedule, and identify their inter-
associations. Software cost estimation is affected by multiple parameters related to
technologies, scheduling, manager and team member skills and experiences, mentality and
culture, team cohesion, productivity, project size, complexity, reliability, quality and many
more. These parameters drive software development costs either positively or negatively
and are considerably very hard to measure and manage, especially at an early project
development phase. Hence, software cost estimation involves the overall assessment of
these parameters, even though for the majority of the projects, the most dominant and
popular metric is the effort cost, typically measured in person-months.

Recent attempts have investigated the potential of employing Artificial Intelligence-oriented
methods to forecast software development effort, usually utilising publicly available

2 Tools in Artificial Intelligence

datasets (e.g., Dolado, 2001; Idri et al., 2002; Jun & Lee, 2001; Khoshgoftaar et al., 1998; Xu &
Khoshgoftaar, 2004) that contain a wide variety of cost drivers. However, these cost drivers
are often ambiguous because they present high variations in both their measure and values.
As a result, cost assessments based on these drivers are somewhat unreliable. Therefore, by
detecting those project cost attributes that decisively influence the course of software costs
and similarly define their possible values may constitute the basis for yielding better cost
estimates. Specifically, the complicated problem of software cost estimation may be reduced
or decomposed into devising and evolving bounds of value ranges for the attributes
involved in cost estimation using the theory of conditional sets (Packard, 1990). These
ranges may then be used to attain adequate predictions in relation to the effort located in the
actual project data. The motivation behind this work is the utilization of rich empirical data
series of software project cost attributes (despite suffering from limited quality and
homogeneity) to produce robust effort estimations. Previous work on the topic has
suggested high sensitivity to the type of attributes used as inputs in a certain Neural
Network model (MacDonell & Shepperd, 2003). These inputs are usually discrete values
from well-known and publicly available datasets. The data series indicate high variations in
the attributes or factors considered when estimating effort (Dolado, 2001). The hypothesis is
that if we manage to reduce the sensitivity of the technique by considering indistinct values
in terms of ranges, instead of crisp discrete values, and if we employ an evolutionary
technique, like Genetic Algorithms, we may be able to address the effect of attribute variations
and thus provide a near-to-optimum solution to the problem. Consequently, the technique
proposed in this chapter may provide some insight regarding which cost drivers are the most
important. In addition, it may lead to identifying the most favorable attribute value ranges for
a given dataset that can yield a ‘secure’ and more flexible effort estimate, again having the
same reasoning in terms of ranges. Once satisfactory and robust value ranges are detected and
some confidence regarding the most influential attributes is achieved, then cost estimation
accuracy may be improved and more reliable estimations may be produced.

The remainder of this work is structured as follows: Section 2 presents a brief overview of
the related software cost estimation literature and mainly summarizes Artificial Intelligence
techniques, such as Genetic Algorithms (GA) exploited in software cost estimation. Section 3
encompasses the description of the proposed methodology, along with the GA variance
constituting the method suggested, a description of the data used and the detailed
framework of our approach. Consequently, Section 4 describes the experimental procedure
and the results obtained after training and validating the genetic evolution of value ranges
for the problem of software cost estimation. Finally, Section 5 concludes the chapter with a
discussion on the difficulties and trade-offs presented by the methodology in addition to
suggestions for improvements in future research steps.

2. Related work

Traditional model-based approaches to cost estimation, such as COCOMO, Function Point
Analysis (FPA) and SLIM, assume that if we use some independent variables (i.e., project
characteristics) as inputs and a dependent variable as the output (namely development
effort), the resulted complex I/O relationships may be captured by a formula (Pendharkar et
al., 2005). In reality, this is never the case. In COCOMO (Boehm, 1981), one of the most
popular models for software cost estimation, the development effort is calculated using the
estimated delivered source instructions and an effort adjustment factor, applied to three

Computational Intelligence in Software Cost Estimation: Evolving Conditional Sets
of Effort Value Ranges 3

distinct levels (basic, intermediate and advanced) and two constant parameters. COCOMO
was revised in newer editions (Boehm et al., 1995; Boehm et al., 2000), using software size as
the primary factor and 17 secondary cost factors. The revised model is regression-based and
involves a mixture of three cost models, each corresponding to a stage in the software life-
cycle namely: Applications Composition, Early Design and Post Architecture. The
Application Composition stage involves prototyping efforts; the Early Design stage includes
only a small number of cost drivers as there is not enough information available at this point
to support fine-grained cost estimation; the Post Architecture stage is typically applied after
the software architecture has been defined and provides estimates for the entire
development life-cycle using effort multipliers and exponential scale factors to adjust for
project, platform, personnel, and product characteristics.

Models based on Function Points Analysis (FPA) (Albrecht & Gaffney, 1983) mainly involve
identifying and classifying the major system components such as external inputs, external
outputs, logical internal files, external interface files and external inquiries. The classification
is based on their characterization as ‘simple’, ‘average’ or ‘complex’, depending on the
number of interacting data elements and other factors. Then, the unadjusted function points
are calculated using a weighting schema and adjusting the estimations utilizing a
complexity adjustment factor. This is influenced by several project characteristics, namely
data communications, distributed processing, performance objective, configuration load,
transaction rate, on-line data entry, end-user efficiency, on-line update, complex processing,
reusability, installation ease, operational ease, multiple sites and change facilitation.

In SLIM (Fairley, 1992) two equations are used: the software productivity level and the
manpower equation, utilising the Rayleigh distribution (Putnam & Myers, 1992) to estimate
project effort schedule and defect rate. The model uses a stepwise approach and in order to
be applicable the necessary parameters must be known upfront, such as the system size -
measured in KDSI (thousand delivered source instructions), the manpower acceleration and
the technology factor, for which different values are represented by varying factors such as
hardware constraints, personnel experience and programming experience. Despite being the
forerunner of many research activities, the traditional models mentioned above, did not
produce the best possible results. Even though many existing software cost estimation
models rely on the suggestion that predictions of a dependent variable can be formulated if
several (in)dependent project characteristics are known, they are neither a silver bullet nor
the best-suited approaches for software cost estimation (Shukla, 2000).

Over the last years, computational intelligence methods have been used attaining promising
results in software cost estimation, including Neural Networks (NN) (Jun & Lee, 2001;
Papatheocharous & Andreou, 2007; Tadayon, 2005), Fuzzy Logic (Idri et al., 2002; Xu &
Khoshgoftaar , 2004), Case Based Reasoning (CBR) (Finnie et al., 1997; Shepperd et al., 1996),
Rule Induction (RI) (Mair et al., 2000) and Evolutionary Algorithms.

A variety of methods, usually evolved into hybrid models, have been used mainly to predict
software development effort and analyze various aspects of the problem. Genetic
Programming (GP) is reported in literature to provide promising approximations to the
problem. In (Burgess & Leftley, 2001) a comparative evaluation of several techniques is
performed to test the hypothesis of whether GP can improve software effort estimates. In
terms of accuracy, GP was found more accurate than other techniques, but does not
converge to a good solution as consistently as NN. This suggests that more work is needed
towards defining which measures, or combination of measures, is more appropriate for the

4 Tools in Artificial Intelligence

particular problem. In (Dolado, 2001) GP evolving tree structures, which represent software
cost estimation equations, is investigated in relation to other classical equations, like the
linear, power, quadratic, etc. Different datasets were used in that study yielding diverse
results, classified as ‘acceptable’, ‘moderately good’, ‘moderate” and “bad” results. Due to the
reason that the datasets examined varied extremely in terms of complexity, size,
homogeneity, or values’ granularity consistent results were hard to obtain. In (Lefley, &
Shepperd 2003) the use of GP and other techniques was attempted to model and estimate
software project effort. The problem was modeled as a symbolic regression problem to offer
a solution to the problem of software cost estimation and improve effort predictions. The so-
called “Finnish data set” collected by the software project management consultancy
organization SSTF was used in the context of within and beyond a specific company and
obtained estimations that indicated that with the approaches of Least-Square Regression,
NN and GP better predictions could be obtained. The results from the top five percent
estimators yielded satisfactory performance in terms of Mean Relative Error (MRE) with the
GP appearing to be a stronger estimator achieving better predictions, closer to the actual
values more often than the rest of the techniques. In the work of (Huang & Chiu, 2006) a GA
was adopted to determine the appropriate weighted similarity measures of effort drivers in
analogy-based software effort estimation models. These models identify and compare the
software project developed with similar historical projects and produce an effort estimate.
The ISBSG and the IBM DP services databases were used in the experiments and the results
obtained showed that among the applied methods, the GA produced better estimates and
the method could provide objective weights for software effort drivers rather than the
subjective weights assigned by experts.

In summary, software cost estimation is a complicated activity since there are numerous cost
drivers, displaying more than a few value discrepancies between them, and highly affecting
development cost assessment. Software development metrics for a project reflect both
qualitative measures, such as, team experiences and skills, development environment,
group dynamics, culture, and quantitative measures, for example, project size, product
characteristics and available resources. However, for every project characteristic the data is
vague, dissimilar and ambiguous, while at the same time formal guidelines on how to
determine the actual effort required to complete a project based on specific characteristics or
attributes do not exist. Previous attempts to identify possible methods to accurately estimate
development effort were not as successful as desired, mainly because calculations were
based on certain project attributes of publicly available datasets (Jun & Lee, 2001).
Nevertheless, the proportion of evaluation methods employing historical data is around
55% from a total of 304 research papers investigated by Jorgensen & Shepperd in 2004
(Jorgensen & Shepperd, 2007). According to the same study, evaluation of estimation
methods requires that the datasets be as representative as possible to the current or future
projects under evaluation. Thus, if we wish to evaluate a set of projects, we might consider
going a step back, and re-define a more useful dataset in terms of conditional value ranges.
These ranges may thus lead to identifying representative bounds for the available values of
cost drivers that constitute the basis for estimating average cost values.

3. The proposed cost estimation framework

The framework proposed in this chapter encompasses the application of the theory of
conditional sets in combination with Genetic Algorithms (GAs). The idea is inspired by the

Computational Intelligence in Software Cost Estimation: Evolving Conditional Sets
of Effort Value Ranges 5

work presented by Packard et al. (Meyer & Packard, 1992; Packard, 1990) utilising GAs to
evolve conditional sets. The term conditional set refers to a set of boundary conditions. The
main concept is to evaluate the evolved value ranges (or conditional sets) and extract
underlying determinant relationships among attributes and effort in a given dataseries. This
entails exploring a vast space of solutions, expressed in ranges, utilising additional
manufactured data than those located into a well-known database regularly exploited for
software effort estimation.

What we actually propose is a method for investigating the prospect of identifying the exact
value ranges for the attributes of software projects and determining the factors that may
influence development effort. The approach proposed implies that the attributes’ value
ranges and corresponding effort value ranges are automatically generated, evaluated and
evolved through selection and survival of the fittest in a way similar to natural evolution
(Koza, 1992). The goal is to provide complementing weights (representing the notion of
ranked importance to the associated attributes) together with effort predictions, which could
possibly result in a solution more efficient and practical than the ones created by other
models and software cost estimation approaches.

3.1 Conditional sets theory and software cost

In this section we present some definitions and notations of conditional sets theory in
relation to software cost based on paradigms described in (Adamopoulos et al., 1998;
Packard, 1990).

Consider a set of n cost attributes {A1, A,,..., Ay}, where each A; has a corresponding discrete
value x;. A software project may be described by a vector of the form:

L={x,x,,...x,} @
Let us consider a condition C; of the form:
C:(Ib<x <ub,),i=1.n (2a)
where Ib; and ub; are the lower and upper bounds of C; respectively for which:
VC, :|Ib,—ub| <& (2b)

that is, Ib; and ub; have minimal difference in their value, under a specific threshold ¢.
Consider also a conditional set S; we say that S is of length [(<n) if it entails [conditions of
the form described by equations (2a) and (2b), which are coupled via the logical operators of
AND and OR as follows:

Sop =CAC, A LAC, 3)

Sp=CvC(Cv..v(4)

We consider each conditional set S as an individual in the population of our GA, which will
be thoroughly explained in the next section as part of the proposed methodology. We use
equations (3) and (4) to describe conditional sets representing cost attributes, or to be more
precise, cost metrics. What we are interested in is the definition of a set of software projects,

6 Tools in Artificial Intelligence

M, the elements of which are vectors as in equation (1) that hold the values of the specific
cost attributes used in relation with a conditional set. More specifically, the set M can be
defined as follows:

M={L,L,,..L,} ()

L= {xi’l,xi’z,...,xiﬂ,} , i=1l.m (6)
where [denotes the number of cost attributes of interest.

A conditional set S is related to M according to the conditions in equations (3) or (4) that are
satisfied as follows:

i

VL : x, satisfies C, ,i=1..m, k=1.1 (AND))

x,, satisfies C, OR x,, satisfies C,,...

8
..., OR x,, satisfies C,, i=1..m, (OR) ®

3.2 Methodology

Before proceeding to describe the methodology proposed we provide a short description of
the dataset used. The dataset was obtained from the International Software Benchmarking
Standards Group (ISBSG, Repository Data Release 9 - ISBSG/R9, 2005) and contains an
analysis of software project costs for a group of projects. The projects come from a broad
cross section of industry and range in size, effort, platform, language and development
technique data. The release of the dataset used contains 92 variables for each of the projects
and hosts multi-organizational, multi-application domain and multi-environment data that
may be considered fairly heterogeneous (International Software Benchmarking Standards
Group, http://www.isbsg.org/). The dataset was recorded following data collection
standards ensuring broad acceptance. Nevertheless, it contains more than 4,000 data from
more than 20 countries and hence it is considered highly heterogeneous. Therefore, data
acquisition, investigation and employment of the factors that impact planning, management
and benchmarking of software development projects should be performed very cautiously.
The proposed methodology is divided into three steps, namely the data pre-processing step,
the application of the GA and the evaluation of the results. Figure 1 summarizes the
methodology proposed and the steps followed for evolving conditional sets and providing
effort range predictions. Several filtered sub-sets of the ISBSG/R9 dataset were utilized for
the evolution of conditional sets, initially setting up the required conditional sets. The
conditional sets are coupled with two logical operators (AND and OR) and the investigation
lies with extracting the ranges of project features or characteristics that describe the
associated project effort. Furthermore, the algorithm creates a random set or initial
population of conditions (individuals). The individuals are then evolved through specific
genetic operators and evaluated internally using the fitness functions. The evolution of
individuals continues while the termination criteria are not satisfied, among these a
maximum number of iterations (called generations or epochs) or no improvement in the
maximum fitness value occurs for a specific number of generations. The top 5% individuals
resulting in the higher fitness evaluations are accumulated into the optimum range

Computational Intelligence in Software Cost Estimation: Evolving Conditional Sets
of Effort Value Ranges 7

population, which then are advanced to the next algorithm generation (repetition). At the
end, the final population produced that satisfies the criteria is used to estimate the mean
effort, whereas at the evaluation step, the methodology is assessed through various
performance metrics. The most successful conditional sets evolved by the GA that have
small assembled effort ranges with relatively small deviation from the mean effort, may
then be used to predict effort of new, unknown projects.

INITIATION

Set up Conditional Sets
@ {5 em Tart

R
'

|Aﬂribute1@ attibute 2 @B .. @8 AtributeN

G,) @B, U ub) @D - @D O Budy)

Produce a Random Range
Population Satisfying the
Criteria of Conditional Seis

(Galculala the Fitness of g Next Ganeration

each Individual ~ J” GENETIC
COPERATORS
Temination Criteria? N »| Selection
EVALUATION v Y
Apply Apply Oplimum Optimum Range Elicitation
Evaluation Population to Estimate Population
Metrics Mean Effort
* # Crossover
“Agorthm
Performance: Effort Range Prediction
(& o, HR) P =EET

Fig. 1. Methodology followed for evolving conditional sets

3.2.1 Data pre-processing

In this step the most valuable set of attributes, in terms of contribution to effort estimation,
are assembled from the original ISBSG/R9 dataset. After careful consideration of guidelines
provided by the ISBSG and other research organizations, we decided to the formation of a
reduced ISBSG dataset including the following main attributes: the project id (ID), the
adjusted function points of the product (AFP), the project’s elapsed time (PET), the project’s
inactive time (PIT), the project’s delivery rate (productivity) in functional size units (PDRU),
the average team size working on the project (ATS), the development type (DT), the
application type (AT), the development platform (DP), the language type (LT), the primary
programming language (PPL) and the resource level (RL) and the work effort expensed
during the full development life-cycle (EFF) which will be used as a sort of output by the
corresponding evolutionary algorithm. The attributes selected from the original, wider pool
of ISBSG, were further filtered to remove those attributes with categorical-type data and
other attributes that could not be included in the experimentation. Also, some attributes
underwent value transformations, for example instead of PET and PIT we used their
subtraction, normalized values for AFP and specific percentiles defining acceptance
thresholds for filtering the data.

The first experiments following our approach indicated that further processing of the
attributes should be performed, as the approach was quite strict and not applicable for
heterogeneous datasets containing many project attributes with high deviations in their

8 Tools in Artificial Intelligence

values and measurement. Therefore, this led us to examine smaller, more compact,
homogeneous and free from outlier subsets. In fact, we managed to extract three final
datasets which we used in our final series of experiments. The first dataset (DS-1) contained
the main attributes suggested by Function Point Analysis (FPA) to provide measurement of
project software size, and included: Adjusted Function Points (AFP), Enquiry Count (EC),
File Count (FC), Added Count (AC) and Changed Count (CC). These attributes were
selected based on previous findings that considered them to be more successful in
describing development effort after applying sensitivity analysis on the inputs with Neural
Networks (Papatheocharous & Andreou, 2007). The second dataset (DS-2) is a variation of
the previous dataset based on the preliminary results of DS-1, after performing
normalization and removing the outliers according to the lower and upper thresholds
defined by the effort box-plots. This resulted to the selection of the attributes: Normalized
PDR-AFP (NAFP), Enquiry Count (EC), File Count (FC) and Added Count (AC). Finally, the
third dataset (DS-3) created included the project attributes that can be measured early in the
software life-cycle consisting of: Adjusted Function Points (AFP), Project’s Delivery Rate
(PDRU), Project’s Elapsed Time (PET), Resource Level (RL) and Average Team Size (ATS)
attributes in which also box-plots and percentile thresholds were used to remove outliers.

30428
*
40007 30428 27951
*
407
o
o
2407 “oapat
i 14769
3,000 o I
23031
2,000
27951
*
27951
14769 *
1000 o 20441
20441 TR
6932 =
- 15364129437 £14769 1, oo, 26589
25975 27951 14769
861 0430%1105
22823 22823 apa0m 19364 30406 é
_ Y & Y 441 2282
o 31407 04267023 B1938 14518 2597
145152943 725075
T T T T T T T T T T T T T
Funfosl fdusted Proect PETPIT Resowee MaxTean fveage bpntoost Oupst Bnqury Flecoud beios fdded
Siza '_:J“':f.'.u'l PDR {uip) Lerve Sizes Team Soa ot ot ot ot

Fig. 2. Example of box-plots for the ISBSG project attributes (original full dataset)

It is noteworthy that each dataset also contained the values of the development work effort
(EFF), the output attribute that we wanted to predict. As we already mentioned, the last data
pre-processing step of the three datasets constructed included the cleaning of null and
outlying values. The theory of box-plots was used to locate the outlying figures from the
datasets and project cleaning was performed for each project variable separately. Figure 2
above shows an example of the box-plots created for each variable on the original full dataset.
We decided to disregard the extreme outliers (marked as asterisks) occurring in each of the
selected attributes and also exclude those projects considered as mild outliers (marked as
circles), thus imposing more strict filtering associated with the output variable effort (EFF).

Computational Intelligence in Software Cost Estimation: Evolving Conditional Sets
of Effort Value Ranges 9

3.2.2 Genetic algorithm application

Genetic Algorithms (GAs) are evolutionary computational approaches that are domain-
independent, and aim to find approximated solutions in complex optimization and search
problems (Holland, 1992). They achieve this by pruning a population of individuals based
on the Darwinian principle of reproduction and ‘survival of the fittest’” (Koza, 1992). The
fitness of each individual is based on the quality of the simulated individual in the
environment of the problem investigated. The process is characterized by the fact that the
solution is achieved by means of a cycle of generations of candidate solutions that are
pruned by using a set of biologically inspired operators. According to evolutionary theories,
only the most suited solutions in a population are likely to survive and generate offspring,
and transmit their biological heredity to the new generations. Thus, GAs are much superior
to conventional search and optimization techniques in high-dimensional problem spaces
due to their inherent parallelism and directed stochastic search implemented by
recombination operators. The basic process of our GA operates through a simple cycle of
three stages, as these were initially described by (Michalewicz, 1994):

Stage 1: Randomly create an initial population of individuals P, which represent solutions to
the given problem (in our case, ranges of values in the form of equations (3) or (4)).
Stage 2: Perform the following steps for each generation:
2.1. Evaluate the fitness of each individual in the population using equations (9) or (10)
below, and isolate the best individual(s) of all preceding populations.
2.2. Create a new population by applying the following genetic operators:

2.2.1. Selection; based on the fitness select a subset of the current population for
reproduction by applying the roulette wheel method. This method of
reproduction allocates offspring values using a roulette wheel with slots sized
according to the fitness of the evaluated individuals. It is a way of selecting
members from a population of individuals in a natural way, proportional to
the probability set by the fitness of the parents. The higher the fitness of the
individual is, the greater the chance it will be selected, however it is not
guaranteed that the fittest member goes to the next generation. So,
additionally, elitism is applied, where the top best performing individuals are
copied in the next generation and thus, rapidly increase the performance of the
algorithm.

2.2.2. Crossover; two or more individuals are randomly chosen from the population
and parts of their genetic information are recombined to produce new
individuals. Crossover with two individuals takes place either by exchanging
their ranges at the crossover point (inter-crossover) or by swapping the upper
or lower bound of a specific range (intra-crossover). The crossover takes place
on one (or more) randomly chosen crossover point(s) along the structures of
the two individuals.

2.2.3. Mutation; randomly selected individuals are altered randomly and inserted
into the new population. The alteration takes place at the upper or lower
bound of a randomly selected range by adding or subtracting a small random
number. Mutation intends to preserve the diversity of the population by
expanding the search space into regions that may contain better solutions.

2.3. Replace the current population with the newly formed population.

10 Tools in Artificial Intelligence

Stage 3: Repeat from stage 2 unless a termination condition is satisfied. Output the
individual with the best fitness as the near to optimum solution.

Each loop of the steps is called a generation. The entire set of iterations from population

initialization to termination is called a run. At the termination of the process the algorithm

promotes the “best-of-run” individual.

3.2.3 Evaluation
The individuals evolved by the GA are evaluated according to the newly devised fitness
functions of AND or OR, specified as:

F =k+l+ !)

AND]
i=1

=i(+—+ ! j w, (10)

or o o, ub —Ib,

where k represents the number of projects satisfying the conditional set, k; the number of
projects satisfying only condition C;, and o, 0; are the standard deviations of the effort of the
kand k; projects, respectively.

By using the standard deviation in the fitness evaluation we promote the evolved
individuals that have their effort values close to the mean effort value of either the k projects
satisfying S (AND case) or either the k; projects satisfying C; (OR case). Additionally, the
evaluation rewards individuals whose difference among the lower and upper range is
minimal. Finally, w; in equations (9) and (10) is a weighting factor corresponding to the
significance given by the estimator to a certain cost attribute.

The purpose of the fitness functions is to define the appropriateness of the value ranges
produced within each individual according to the ISBSG dataset. More specifically, when an
individual is evaluated the dataset is used to define how many records of data (a record
corresponds to a project with specific values for its cost attributes and effort) lay within the
ranges of values of the individual according to the conditions used and the logical operator
connecting these conditions. It should be noted at this point that in the OR case the
conditional set is satisfied if at least one of its conditions is satisfied, while in the AND case
all conditions in S must be satisfied. Hence, k (and o) is unique for all ranges in the AND
case, while in the OR case k may have a different value for each range i. That is why the
fitness functions of the two logical operators are different. The total fitness of the population
in each generation is calculated as the sum of the fitness values of the individuals in P.

Once the GA terminates the best individual is used to perform effort estimation. More
specifically, in the AND case we distinguish the projects that satisfy the conditional set used
to train the GA, while in the OR case the projects that satisfy one or more conditions of the
set. Next we find the mean effort value (¢) and standard deviation (o) of those projects. If we
have a new project for which we want to estimate the corresponding development effort, we
first check whether the values of its attributes lay within the ranges of the best individual
and that it satisfies the form of the conditional set (AND or OR). If this holds, then the effort
of the new project is estimated to be:

Computational Intelligence in Software Cost Estimation: Evolving Conditional Sets
of Effort Value Ranges 11

=eto (11)

where ¢4 is the mean value of the effort of the projects satisfying the conditional set S.

4. Experimental process

This section explains in detail the series of experiments conducted and also presents some
preliminary results of the methodology. The methodology was tested on the three different
datasets described in the previous section.

4.1 Design of the experiments

Each dataset was separated into two smaller sub-datasets, the first of which was used for
training and the second for validation. This enables the assessment of the generalization and
optimization ability of the algorithm, firstly under training conditions and secondly with
new, unknown to the algorithm, data. At first, a series of initial setup experiments was
performed to define and tune the parameters of the GA. These are summarized in Table 1.
The values for the GA parameters were set after experimenting with different generation
epochs, as well as mutation and crossover rates and various number of points of crossover.
A number of control parameters were modified for experimenting and testing the sensitivity
of the solution to their modification.

Category Value Details
Attributes set { Sanp, Sor }
Solution L
representation
Generation size 1000 epochs
Population size 100 individuals
Selection Roulette wheel based on fitness of each individual
Elitism Best individuals are forwarded (5%)
Mutation Ratio 0.01-0.05 Random mutation
Crossover Ratio 0.25-0.5 Random crossover (inter-, intra-)
- Generations size is reached or

Termination .

o no improvements are noted for more than 100
criterion .

generations

Table 1. Genetic Algorithm main parameters

We then proceeded to produce a population of 100 individuals representing conditional sets
S (or ranges of values coupled with OR or AND conditions), as opposed to the discrete
values of the attributes found in the ISBSG dataset. These quantities, as shown in equations
(2a) and (2b), were generated to cover a small range of values of the corresponding
attributes, but are closely related to (or within) the actual values found in the original data
series.

Throughout an iterative production of generations the individuals were evaluated using the
fitness functions specified in equations (9) or (10) with respect to the approach adopted. As
previously mentioned, this fitness was assessed based on the:

e Standard deviation

12 Tools in Artificial Intelligence

¢ Number of projects in L satisfying (7) and (8)

e Ranges produced for the attributes

Fitness is also affected by the weights given by the estimator to separate between more and
less important attributes. From the fitness equations we may deduce that the combination of
a high number of projects in L, a low standard deviation with respect to the mean effort and
a small range for the cost attributes (at least the most significant) produces high fitness
values. Thus, individuals satisfying these specific requirements are forwarded to the next
population until the algorithm terminates. Figure 3 depicts the total fitness value of a
sample population through generations, which, as expected, rises as the number of epochs
increases. A plateau is observed in the range 50-400 epochs which may be attributed to a
possible trapping of the GA to a local minimum. The algorithm seems to escape from this
minimum with its total fitness value constantly being improved along the segment of 400-
450 epochs and then stabilizing. Along the repetitions of the GA algorithm execution, the
total population fitness improves showing that the methodology performs consistently well.

725

~

[=]

S
L

total fitness
(=]
N
o

625

575

550 -

525

500

0 100 200 300 400 500 epochs 600

Fig. 3. Total Fitness Evolution

4.2 Experimental results

The experimental evaluation procedure was based on both the AND and OR approaches.
We initially used the attributes of the datasets with equal weight values and then
subsequently with combinations of different weight values. Next, as the weight values were
modified it was clear that various assumptions about the importance of the given attributes
for software effort could be drawn. In the first dataset for example, the Adjusted Function
Point (AFP) attribute was found to have a minimal effect on development effort estimations
and therefore we decided to re-run the experiments without this attribute taking part. The
process was repeated for all attributes of the dataset by continuously updating the weight
values and reducing the number of attributes participating in the experiments, until no more
insignificant attributes remained in the dataset. The same process was followed for all the
three datasets respectively, while the results summarized in this section represent only a few
indicative results obtained throughout the total series of experiments.

Tables 2 and 3 present indicative best results obtained with the OR and AND approaches,
respectively, that is, the best individual of each run for a given set of weights (significance)

Computational Intelligence in Software Cost Estimation: Evolving Conditional Sets
of Effort Value Ranges 13

that yield the best performance with the first dataset (DS-1). Table 4 presents the best results
obtained with the AND and OR approach with the second dataset (DS-2) and Table 5 lists
the best obtained results with the third attribute dataset (DS-3).

Attribute Weights / Ranges Evaluation Metrics

FC AC cC EC e o HR

01 04 01 04 3014.2 | 1835.1 | 81/179
[11,240] | [1,1391] | [206,1739] | [14, 169]

03 01 04 02 31255 | 1871.5 | 81/184
[11,242] | [1,1363] | [60, 1498] [1,350]

03 04 0.1 0.2 3204.5 | 1879.2 | 81/187
[11, 242] | [1,1391] | [1616,2025] | [14, 268]

02 04 01 03 3160.3 | 1880.7 | 81/178
[19,298] | [1,1377] | [1590, 3245] | [14, 268]

02 02 04 02 3075.1 | 1857.2 | 79/183
[11,240] | [1, 1377] [46, 573] [1,350]

02 04 02 0.2 3254.5 | 1857 | 83/191
[3,427] | [1,1377] [46, 579] [1, 347]

Table 2. Indicative Results of conditional sets using the OR approach and DS-1

Evaluation metrics were used to assess the success of the experiments, based on (i) the total
mean effort, (ii) the standard deviation and, (iii) the hit ratio. The hit ratio (given in equation
(12)) provides a complementary piece of information about the results. It basically assesses
the success of the best individual evolved by the GA on the testing set. Recall that the GA
results in conditional set of value ranges which are used to compute the mean effort and
standard deviation of the projects satisfying the conditional set. Next, the number of projects
n in the testing set that satisfy the conditional set is calculated. Of those n projects we
compute the number of projects b that have additionally a predicted effort value satisfying
equation (11). The latter may be called the “hit-projects”. Thus, equation (12) essentially
calculates the ratio of hit-projects in the testing set:

hit ratio(HR) = é (12)
n

The results are expressed in a form satisfying equations (3)-(8). A numerical example could
be a set of range values produced to satisfy equations (2a) and (2b) coupled with the logical
operator of AND as follows:

S, =[1700, 2000] A[16, 205] A ... A[180 200] (13)

The projects that satisfy equation (7) are then accumulated in set L (numbers represent
project IDs):

L={1827, 1986, 1987,...,1806} (14)

14 Tools in Artificial Intelligence

Using L the ¢, 0 and HR figures may be calculated. The success of the experiments is a
combination of the aforementioned metrics. Finally, we characterize an experiment as
successful if its calculated standard deviation is adequately lower than the associated mean
effort and achieves a hit ratio above 60%.

Indicative results of the OR conditional sets are provided in Table 2. We observe that the OR
approach may be used mostly for comparative analysis of the cost attributes by evaluating
their significance in the estimation process, rather the estimation itself, as results indicate
low performance. Even though the acceptance level of the hit ratio is better than average, the
high value of the standard deviation compared to the mean effort (measured in person
days) indicates that the results attained are dispersed and not of high practical value. The
total mean effort of the best 100 experiments was found equal to 2929 and the total standard
deviation equal to 518. From these measures the total standard error was estimated at 4.93,
which is not satisfactory, but at the same time it cannot be considered bad. However, in
terms of suggesting ranges of values for specific cost attributes on which one may base an
estimation, the results do not converge to a clear picture. It appears that when evaluating
different groups of data in the dataset we attain large dissimilarities, suggesting that
clustered groups of data may be present in the series. Nevertheless, various assumptions
can be drawn from the methodology as regards to which of the attributes seem more
significant and to what extent. The selected attributes, namely Added Count (AC), File
Count (FC), Changed Count (CC) and Enquiry Count (EC) seem to have a descriptive role
over effort as they provide results that may be considered promising for estimating effort.
Additionally, the best results of Table 2 (in bold) indicate that the leading factor is Added
Count (AC), with its significance being ranked very close to that of the File Count (FC).

Attribute Weights / Ranges Evaluation Metrics
FC AC CcC e o HR
0.1 0.2 0.7 3503 | 1963.6 | 3/4
[22,223] | [187,504] | [9, 195]

05 03 02 3329.4 | 2014.2 | 3/4
[22,223] | [114, 420] | [9, 197]

0.2 0.4 04 | 3omeg | 20614 | 34
[14,156] | [181, 489] | [9,197]

04 04 02 3850.3 | 2014.3 | 3/4
[22,223] | [167, 390] | [9, 195]

02 08 0 2331.2 | 18594 | 12/16
[14,154] | [35, 140] 0

07 03 0 2331.2 | 18594 | 12/16
[14,152] | [35, 141] 0

Table 3. Indicative Results of conditional sets using the AND approach with DS-1

On the other hand, the AND approach (Table 3) provides more solid results since it is based
on a more strict method (i.e. satisfy all ranges simultaneously). The results indicate again
some ranking of importance for the selected attributes. To be specific, Added Count (AC)

Computational Intelligence in Software Cost Estimation: Evolving Conditional Sets
of Effort Value Ranges 15

and File Count (FC) are again the dominant cost attributes, a finding which is consistent
with the OR approach. We should also note that the attribute Enquiry Count (EC) proved
rather insignificant in this approach, thus it was omitted from Table 3. Also, the fact that the
results produced converge in terms of producing similar range bounds shows that the
methodology may provide empirical indications regarding possible real attribute ranges. A
high hit ratio of 75% was achieved for nearly all experiments in the AND case for the
specified dataset, nevertheless this improvement is obtained with fewer projects, as
expected, satisfying the strict conditional set compared to the more loose OR case. This led
us to conclude that the specific attributes can provide possible ranges solving the problem
and providing relatively consistent results.

The second dataset (DS-2) used for experimentation included the Normalized AFP (NAFP)
and some of the previously investigated attributes for comparison purposes. The dataset
was again tested using both the AND and OR approaches. The first four rows of the results
shown in Table 4 individuals were obtained with the AND approach and the last two results
with the OR approach. The figures listed in Table 4 show that the method ‘approves” more
individuals (satisfying the equations) because the ranges obtained are wider. Conclusively,
the values used for effort estimation result to increase of the total standard error. The best
individuals (in bold) were obtained after applying box-plots in relation to the first result
shown, while the rest two results did not use this type of filtering. It is clear from the
lowering of the value of the standard deviation that after box-plot filtering on the attributes
some improvement was indeed achieved. Nevertheless, the HR stays quite low, thus we
cannot argue that the ranges of values produced are robust to provide new effort estimates.

Attribute Weights / Ranges Evaluation Metrics

NAFP AC FC EC e o HR

0.25 0.25 0.25 0.25 11386.7 | 90054 | 9/58
[2,134] | [215,1071] | [513,3678] | [4, 846]

0.25 0.25 0.25 0.25 28617 | 25159 | 7766
[7, 80] [34, 830] [88,1028] | [37,581]

0.25 0.25 0.25 0.25 3188.6 | 24709 | 37221
[1,152] | [22,859] [58,3192] | [20, 563]

0.25 0.25 0.25 0.25 31516 | 23779 | 4139
[1,156] | [34,443] | [122,2084] | [37,469]

0-25 025 0-25 0-25 4988.5 | 8521.2 | 10/458
[1,36] | [449,837] | [23,1014] [7,209]

0-25 025 025 025 4988.5 | 8521.2 | 10/458
[1,159] | [169, 983] [78,928] | [189, 567]

Table 4. Indicative Results of conditional sets using the AND and OR approaches with DS-2

The purpose of the final dataset (DS-3) used in the experiments is to test whether a selected
subset of attributes that can be measured early in the development life-cycle can provide
adequately good predictions. Results showed that the attributes of Adjusted Function Points

16 Tools in Artificial Intelligence

(AFP), Project Delivery Rate (PDRU), Project Elapsed Time (PET), Resource Level (RL) and
Average Team Size (ATS) may provide improvements for selecting ranges with more
accurate effort estimation abilities. For these experiments only the AND approach is
presented as the results obtained were regarded to be more substantial. In the experiments
conducted with this dataset (DS-3) we tried to impose even stricter ranges, after the box-
plots and outlier’s removal in the initial dataset, by applying an additional threshold to
retain the values falling within the 90% (percentile). This was performed for the first result
listed in Table 5, whereas the threshold within the 70% percentile was also applied for the
second result listed on the same table. We noticed that this led to a significant optimization
of the results. Even though very few individuals are approved, satisfying the equations, the
HR is almost always equal to 100%. The obtained ranges are more clearly specified and in
addition, sound predictions can be made regarding effort since the best obtained standard
deviation of effort falls to 74.9 which also constitutes one of the best predictions yielded by
the methodology. This leads us to conclude that when careful removal of outliers is
performed the proposed methodology may be regarded as achieving consistently successful
predictions, yielding optimum ranges that are adequately small and suggesting effort
estimations that lay within reasonable mean values and perfectly acceptable deviation from
the mean.

Attribute Weights / Ranges Evaluation Metrics
AFP PDRU | PET RL ATS | e o HR
0.2 0.2 0.2 0.2 0.2 26576 | 9137 | 3/3
[48,1207] | [, 71 | 13,121] [1,3] | [2.5]
0.2 0.2 0.2 0.2 0.2 21310 | 74.9 2”2
[57,958] |[2,13] | [510]) [24] | [1,6]
0.2 0.2 0.2 0.2 0.2

2 2986.6 | 1220.0 [5/5
[133,1409] | [1,25] | [7,21] | [2 4] 10’]
0.2 0.2 0.2 0.2 0.2 23800 | 4345 | 2/3
[173,1131] | [1,20] | [2,20] | [2,4] | [1,7]
0.25 0.25 0 0.25 | 0.25

2 2477.8 | 838.2 | 5/5
[189,1301] | [2,26] | O [1,3] 11’]
0.25 0.25 0 025 |[0.25 24780 | 5656 | 2/2
[693,1166] | [2,23] | O [1,3] | [1,4]

Table 5. Indicative Results of conditional sets using the AND approach with DS-3

5. Conclusions

In this approach we aimed at addressing the problem of large variances found in available
historical data that are used in software cost estimation. Project data is expensive to collect,
manage and maintain. Therefore, if we wish to lower the dependence of the estimation to

Computational Intelligence in Software Cost Estimation: Evolving Conditional Sets
of Effort Value Ranges 17

the need of gathering accurate and homogenous data, we might consider simulating or
generating data ranges instead of real crisp values.

The theory of conditional sets was applied in the present work with Genetic Algorithms
(GAs) on empirical software cost estimation data. GAs are ideal for providing efficient and
effective solutions in complex problems; there are, however, several trade-offs. One of the
major difficulties in adopting such an approach is that it requires a thorough calibration of
the algorithm’s parameters. We have tried to investigate the relationship between software
attributes and effort, by evolving attribute value ranges and evaluating estimated efforts.
The algorithm promotes the best individuals in the reproduced generations through a
probabilistic manner. Our methodology attempted to reduce the variations in performance
of the model and achieve some stability in the results. To do so we approached the problem
from the perspective of minimizing the differences in the ranges and the actual and
estimated effort values to decisively determine which attributes are the most important in
software cost estimates.

We used the ISBSG repository containing a relatively large quantity of data; nevertheless,
this data suffers from heterogeneity thus presents low quality level from the perspective of
level of values. We formed three different subsets selecting specific cost attributes from the
ISBSG repository and filtering out outliers using box-plots on these attributes. Even though
the results are of average performance when using the first two datasets, they indicated
some importance ranking for the attributes investigated. According to this ranking, the
attributes Added Count (AC) and File Count (FC) were found to lay among the most
significant cost drivers for the ISBSG dataset. The third dataset included Adjusted Function
Points (AFP), Project Delivery Rate (PDRU), Project Elapsed Time (PET), Resource Level
(RL) and Average Team Size (ATS). These attributes may be measured early in the software
life-cycle, thus this dataset may be regarded more significant than the previous two from a
practical perspective. A careful and stricter filtering of this dataset provided prediction
improvements, with the yielded results suggesting small value ranges and fair estimates for
the mean effort of a new project and its deviation. There was also an indication that within
different areas of the data, significantly different results may be produced. This is highly
related to the scarcity of the dataset itself and supports the hypothesis that if we perform
some sort of clustering in the dataset we may further minimize the deviation differences in
the results and obtain better effort estimates.

Although the results of this work are at a preliminary stage it became evident that the
approach is promising. Therefore, future research steps will concentrate on ways to improve
performance, examples of which may be: (i) Pre-processing of the ISBSG dataset and
appropriate clustering into groups of projects that will share similar value characteristics. (ii)
Investigation of the possibility of reducing the attributes in the dataset by utilizing a
significance ranking mechanism that will promote only the dominant cost drivers. (iii)
Better tuning of the GA’s parameters and modification/enhancement of the fitness functions
to yield better convergence. (iv) Optimization of the trial and error weight factor assignment
used in the present work by utilizing a GA. (v) Experimentation with other datasets
containing selected attributes again proposed by a GA. Finally, we plan to perform a
comparative evaluation of the proposed approach with other well established algorithms,
like for example the COCOMO model.

18 Tools in Artificial Intelligence

6. References

Adamopoulos, A.V.; Likothanassis, S.D. & Georgopoulos, E.F. (1998). A Feature Extractor of
Seismic Data Using Genetic Algorithms, Signal Processing IX: Theories and
Applications, Proceedings of EUSIPCO-98, the 9t European Signal Processing Conference,
Vol. 2, pp. 2429-2432, Typorama, Greece.

Albrecht, AJ. & Gaffney J.R. (1983). Software Function Source Lines of Code, and
Development Effort Prediction: A Software Science Validation, IEEE Transactions on
Software Engineering. Vol. 9, No. 6, pp. 639-648.

Boehm, B.W. (1981). Software Engineering Economics, Prentice Hall, New Jersey.

Boehm, B.W.; Clark, B.; Horowitz, E.; Westland, C.; Madachy, R.J. & Selby R.W. (1995). Cost
Models for Future Software Life Cycle Processes: COCOMO 2.0, Annals of Software
Engineering, Vol.1, pp. 57-94, Springer, Netherlands.

Boehm, B.W.; Abts, C. & Chulani, S. (2000). Software Development Cost Estimation
Approaches - A Survey, Annals of Software Engineering, Vol.10, No. 1, pp. 177-205,
Springer, Netherlands.

Burgess, C.J. & Lefley, M. (2001). Can Genetic Programming Improve Software Effort
Estimation? A Comparative Evaluation, Information and Software Technology, Vol. 43,
No. 14, pp. 863-873, Elsevier, Amsterdam.

Dolado, J.J. (2000). A Validation of the Component-Based Method for Software Size
Estimation, IEEE Transactions on Software Engineering, Vol. 26, No. 10, pp. 1006-1021,
IEEE Computer Press, Washington D.C..

Dolado, J.J. (2001). On the Problem of the Software Cost Function, Information and Software
Technology, Vol. 43, No. 1, pp. 61-72, Elsevier, Amsterdam.

Fairley, R.E. (1992). Recent Advances in Software Estimation Techniques, Proceedings of the
14t International Conference on Software Engineering, pp. 382-391, ACM, Melbourne,
Australia.

Finnie, G.R.; Wittig, G.E. & Desharnais, J.-M. (1997). Estimating software development effort

with case-based reasoning, Proceedings of the 2 International Conference on Case-Based
Reasoning Research and Development ICCBR, pp.13-22, Springer.

Holland, J.H. (1992). Genetic Algorithms, Scientific American, Vol. 267, No. 1, pp. 66-72, New
York.

Huang, S. & Chiu, N. (2006). Optimization of analogy weights by genetic algorithm for
software effort estimation, Information and Software Technology, Vol. 48, pp. 1034-
1045, Elsevier.

Idri, A.; Khoshgoftaar, T.M. & Abran, A. (2002). Can Neural Networks be Easily Interpreted
in Software Cost Estimation?, Proceedings of the 2002 IEEE World Congress on
Computational Intelligence, pp. 1162-1167 IEEE Computer Press, Washington D.C..

International Software Benchmarking Standards Group (ISBSG), Estimating, Benchmarking
& Research Suite Release 9, ISBSG, Victoria, 2005.

International Software Benchmarking Standards Group, http:/ /www.isbsg.org/

Jorgensen, M. & Shepperd, M. (2007). A Systematic Review of Software Development Cost
Estimation Studies, IEEE Transactions on Software Engineering, Vol. 33, No. 1, pp. 33-
53, IEEE Computer Press, Washington D.C..

Computational Intelligence in Software Cost Estimation: Evolving Conditional Sets
of Effort Value Ranges 19

Jun, ES. & Lee, JK. (2001). Quasi-optimal Case-selective Neural Network Model for
Software Effort Estimation, Expert Systems with Applications, Vol. 21, No. 1, pp. 1-14
Elsevier, New York.

Khoshgoftaar, T.M.; Evett, M.P.; Allen, E.B. & Chien, P. (1998). An Application of Genetic
Programming to Software Quality Prediction Computational Intelligence in Software
Engineering, Series on Advances in Fuzzy Systems - Applications and Theory, Vol. 16,
pp- 176-195, World Scientific, Singapore.

Koza, J.R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural
Selection, MIT Press, Massachusetts.

Lederer, A.L. & Prasad, J. (1992). Nine Management Guidelines for Better Cost Estimating,
Communications of the ACM, Vol. 35, No. 2, pp. 51-59, ACM, New York.

Lefley, M. & Shepperd, M.]. (2003). Using Genetic Programming to Improve Software Effort
Estimation Based on General Data Sets, Proceedings of GECCO, pp. 2477-2487.

MacDonell, S.G. & Shepperd, M.]. (2003). Combining Techniques to Optimize Effort
Predictions in Software Project Management, Journal of Systems and Software, Vol.
66, No. 2, pp. 91-98, Elsevier, Amsterdam.

Mair, C; Kadoda, G.; Lefley, M.; Phalp, K.; Schofield, C.; Shepperd, M. & Webster, S. (2000).
An investigation of machine learning based prediction systems, Journal of Systems
Software, Vol. 53, pp. 23-29, Elsevier.

Meyer, T.P. & Packard, N.H. (1992). Local Forecasting of High-dimensional Chaotic
Dynamics, Nonlinear Modeling and Forecasting, Addison-Wesley.

Michalewicz, Z. (1994). Genetic Algorithms + Data Structures = Evolution Programs, Springer,
Berlin.

Packard, N.H. (1990). A Genetic Learning Algorithm for the Analysis of Complex Data,
Complex Systems, Vol. 4, No. 5, pp. 543-572, Illinois.

Pendharkar, P.C.; Subramanian, G.H. & Rodger, J.A. (2005). A Probabilistic Model for
Predicting Software Development Effort, IEEE Transactions on Software Engineering,
IEEE Computer Press, Vol. 31, No. 7, pp. 615-624, Washington D.C..

Papatheocharous, E. & Andreou, A. (2007). Software Cost Estimation Using Artificial Neural
Networks with Inputs Selection, Proceedings of the 9t International Conference on
Enterprise Information Systems, pp. 398-407, Madeira, Portugal.

Putnam, L.H. & Myers, W. (1992). Measures for Excellence, Reliable Software on Time, Within
Budget, Yourdan Press, New Jersey.

Shepperd, M. & Kadoda, G. (2001). Comparing Software Prediction Techniques Using
Simulation, IEEE Transactions on Software Engineering, Vol. 27, No. 11, pp. 1014-1022,
IEEE Computer Press, Washington D.C..

Shepperd, M.].; Schofield, C. & Kitchenham, B. A. (1996). Effort estimation using analogy,
Proceedings of the 18t International Conference on Software Engineering, pp. 170-178,
Berlin.

Shukla, K.K. (2000). Neuro-genetic Prediction of Software Development Effort, Information
and Software Technology, Vol. 42, No. 10, pp. 701-713, Elsevier, Amsterdam.

Tadayon, N. (2005). Neural Network Approach for Software Cost Estimation. Proceedings of
the International Conference on Information Technology: Coding and Computing, pp. 815-
818, IEEE Computer Press, Washington D.C..

20 Tools in Artificial Intelligence

Xu, Z. & Khoshgoftaar, T.M. (2004). Identification of Fuzzy Models of Software Cost
Estimation, Fuzzy Sets and Systems, Vol. 145, No. 1, pp. 141-163, Elsevier, New York.

2

Towards Intelligible Query Processing
in Relevance Feedback-Based
Image Retrieval Systems

Belkhatir Mohammed

Faculty of IT, Monash University
22?

1. Introduction

We propose in this paper the specification of an image retrieval architecture based on a
relevance feedback framework which operates on high-level image descriptions instead of
their extracted low-level features. This framework features a conceptual model which
integrates visual semantics as well as symbolic relational characterizations and operates on
image objects, abstractions of visual entities within a physical image. Also, it manipulates a
rich query language, consisting of both boolean and quantification operators, which
therefore leads to optimized user interaction and increased retrieval performance. Let us
first introduce the context of our research.

In order to cope with the storing and retrieval of ever-growing digital image collections, the
first retrieval systems (cf. [Smeulders et al. 00] for a review of the state-of-the-art), known as
content-based, propose fully automatic processing methods based on low-level signal
features (color, texture, shape...). Although they allow the fast processing of queries, they do
not make it possible to search for images based on their semantic content and consider for
example red apples or Ferraris as being the same entities simply because they have the same
color distribution. Failing to relate low-level features to semantic characterization (also
known as the semantic gap) has slowed down the development of such solutions since, as
shown in [Hollink 04], taking into account aspects related to the image content is of prime
importance for efficient retrieval. Also, users are more skilled in defining their information
needs using language-based descriptors and would therefore rather be given the possibility
to differentiate between red roses and red cars.

In order to overcome the semantic gap, a class of frameworks within the framework of the
European Fermi project proposed to model the image semantic and signal contents
following a sharp process of human-assisted indexing [Mechkour 95] [Meghini et al. 01].
These approaches, based on elaborate knowledge-based representation models, provide
satisfactory results in terms of retrieval quality but are not easily usable on large collections
of images because of the necessary human intervention required for indexing.

Automated systems which attempt to deal with the semantics/signal integration (e.g. iFind
[Lu et al. 00] and the prototype presented in [Zhou & Huang 02]) propose solutions based
on textual annotations to characterize semantics and on a relevance feedback (RF) scheme
operating on low-level features. RF techniques are based on an interaction with a user

22 Tools in Artificial Intelligence

providing judgment on displayed images as to whether and to what extent they are relevant
or irrelevant to his need. For each loop of the interaction, these images are learnt and the
system tries to display images close in similarity to the ones targeted by the user. As any
learning process, it requires an important number of training images to achieve reasonable
performance. The user is therefore solicited through several tedious and time-consuming
loops to provide feedback for the system in real time, which penalizes user interaction and
involves costly computations over the whole set of images. Moreover, starting from a textual
query on semantics, these state-of-the art systems are only able to manage opaque RF (i.e. a
user selects relevant and/or non-relevant documents and is then proposed a revised
ranking without being given the possibility to ‘understand” how his initial query was
transformed) since it operates on extracted low-level features. Finally, these systems do not
take into account the relational spatial information between visual entities, which affects the
quality of the retrieval results.

Our RF process is a specific case of state-of-the-art RF frameworks reducing the user’s
burden since it involves a unique loop returning the relevant images. Moreover, as opposed
to the opacity of state-of-the-art RF frameworks, it holds the advantage of being transparent
(i-e. the system displays the query generated from the selected documents) and penetrable
(i.e. the modification of the generated query is possible before processing), which increases
the quality of retrieval results. Through the use of a symbolic representation, the user is
indeed able to visualize and comprehend the intelligible query being processed. We manage
transparent and penetrable interactions by considering a conceptual representation of
images and model their conveyed visual semantics and relational information through a
high-level and expressive representation formalism. Given a user’s feedback (i.e. judgment
or relevance or irrelevance), our RF process, operating on both visual semantics and
relational spatial characterization, is therefore able to first generate and then display a query
for eventual further modifications operated by the user. It enforces computational efficiency
by generating a symbolic query instead of dealing with costly learning algorithms and
optimizes user interaction by displaying this ‘readable’ symbolic query instead of operating
on hidden low-level features.

As opposed to state-of-the-art loosely-coupled solutions penalizing user interaction and
retrieval performance with an opaque RF framework operating on low-level features, our
architecture combines a keyword-based module with a transparent and penetrable RF
process which refines the retrieval results of the first. Moreover, we offer a rich query
language consisting of several Boolean operators.

At the core of our work is the notion of image objects (I0s), abstract structures representing
visual entities within an image. Their specification is an attempt to operate beyond simple
low-level signal features since IOs convey the semantic and relational information.

In the remainder, we first detail the processes allowing to abstract the extracted low-level
features to high-level relational description in section 2. Section 3 deals with the visual
semantic characterization. We specify in section 4 the image model and develop its
conceptual instantiation integrating visual semantics and relational (spatial) features.
Section 5 is dedicated to the presentation of the RF framework.

2. From low-level spatial features to high-level relational description

Taking into account spatial relations between semantically-defined visual entities is crucial
in the framework of an image retrieval system since it enriches the index structures and

Towards Intelligible Query Processing in Relevance Feedback-Based Image Retrieval Systems 23

expands the query language. Also, dealing with relational information between image
components allows to enhance the quality of the results of an information retrieval system
[Ounis&Pasca 98]. However, relating low-level spatial characterizations to high-level textual
descriptions is not a straightforward task as it involves highligting a spatial vocabulary and
specifying automatic processes for this mapping. We first study in this section methods used
to represent spatial data and deal with the automatic generation of high-level spatial
relations following a first process of low-level extraction.

2.1 Defining a spatial vocabulary through the relation-oriented approach

We consider two types of spatial characterizations: the first describes the absolute positions

of visual entities and the second their relative locations.

In order to model the spatial data, we consider the «relation-oriented» approach which

allows explicitly representing the relevant spatial relations between IOs without taking into

account their basic geometrical features. Our study features the four modeling and
representation spaces:

- The Euclidean space gathers the image pixels coordinates. Starting with this
information, all knowledge related to the other representation spaces can be inferred.

- The Topological space is itself linked to the notions of continuity and connection. We
consider five topological relations and justify this choice by the fact that these relations
are exhaustive and relevant in the framework of an image indexing and retrieval
system. Let iol and io2 two IOs. These relations are (s;=P,iol,io2) : “iol is a part of io2’,
(s2=T,i0l,i02) : ‘iol touches io2 (is externally connected)’, (s3=D,iol,i02): ‘iol is
disconnected from io2’, (s4=C,iol,io2): ‘iol partially covers (in front of) io2" and
(s5=C_B,iol,i02) : “iol is covered by (behind) i02". Let us note that these relations are
mutually exclusive and characterized by the important property that each pair of 10s is
linked by only one of these relations.

- The Vectorial space gathers the directional relations: Right (ss=R), Left (s;=L), Above
(ss=A) and Below (so=B). These relations are invariant to basic geometrical
transformations such as translation and scaling.

- In the metric space, we consider the fuzzy distance relations Near (si0=N) and Far
(s11=F). Discrete relations are not considered since providing a query language which
allows a user to quantify the distance between two visual entities would penalize the
fluidity of the interaction.

2.2 Automatic spatial characterization

Topological relations. In our spatial modeling, an IO io is characterized by its center of
gravity io_c and by two pixel sets: its interior, noted io_i and its border io_b. We define for
an image an orthonormal axis with its origin being the image left superior border and the
basic measure unity, the pixel. All spatial characterizations of an object such as its border,
interior and center of gravity are defined with respect to this axis.

In order to highlight topological relations between 1Os, we consider the intersections of their
interior and border pixel sets through a process adapted from [Egenhofer 91]. Let iol and
i02 be two IOs, the four intersections are: iol_i Nio2_i, iol_i Nio2_b, iol_b Nio2_i and iol_b
N i02_b. Each topological relation is linked to the results of these intersections as illustrated
in table 1. The strength of this computation method relies on associating topological

24

Tools in Artificial Intelligence

relations to a set of necessary and sufficient conditions linked to spatial attributes of 1Os (i.e.
their interior and border pixel sets).

Topologienl Relaﬁir;cersectlons i01 bNio2 b liol iNio2 b |iol bNio2 i [iol iNio2 i
(P, i01, i02) %) * %) O
(T, iol, i02) * o Z Z Z

(D, iol, i02) % % % 2

(C, iol, i02) %) %) %) %
(C_B, iol, i02) Z * o Z =2

Table 1. Characterization of topological relations with the intersections of interior and
border pixel sets of two IOs

Directional relations. The computation of directional relations between iol and io2 is based
on their centers of gravity iol_c(xl,, ylc) and i02_c(x2., y2.), the minimal and maximal
coordinates along x axis (XImin, X2min & Xlmax X2max) as well as the minimal and maximal
coordinates along y axis (y1lmin, ¥2min & Y1lmax ¥2max) of their four extremities.

We will say that iol is at the left of i02, noted (L,iol,io2) iff.
(xLe<x2c) A (XLmin<X2min) A (XL max<X2max)-

iol is at the right of i02, noted (R,io1,i02) iff. (x1c>X%2c) A (X1min>X2min) A (XL max>X2max)-

We will say that iol is above i02, noted (Aiol,io2) iff.

(y1c>y25) A (ylmin>y2min) A (ylmax>y2max)-

iol is below i02, noted (B,i01,i02) iff. (y1c<y2c) A (Y1min<Y2min) A (Y1max<y2max)-

We illustrate these definitions in figure 1 where the IO corresponding to huts (iol) is above
the IO corresponding to the grass (i02). It is however not at the left of the latter since x1.<x2.
but X1 min>X2min.

© >

Figure 1. Characterization of directional relations
Metric relations. In order to distinguish between the Near and Far relations, we use the
constant Dgp= d(6 ,0.5*[01,02]T) where d is the Euclidean distance between the null

vector 0 and [01,02]T is the vector of standard deviations of the localization of centers of
gravity for each IO in each dimension from the overall spatial distribution of all IOs in the
corpus. Dy, is therefore a measure of the spread of the distribution of centers of gravity of
IOs. This distance agrees with results from psychophysics and can be interpreted as the
bigger the spread, the larger the distances between centers of gravity are. We will say that

Towards Intelligible Query Processing in Relevance Feedback-Based Image Retrieval Systems 25

two IOs are near if the Euclidean distance between their centers of gravity is inferior to Dsp,
far otherwise.

2.3 From low-level features to symbolic spatial relations

So as to deduct knowledge from partial spatial information and to enforce computational

efficiency, composition rules are used to infer relations between two IOs iol and i0o2 from

the relations generated between iol, i02 and a third IO io3. For example, if iol is at the left of

i03 and io3 at the left of i02 then io1 is at the left of i02.

Composition rules on spatial relations are dynamically processed when constructing index

spatial representations. Let us note moreover that there are existing implications between

spatial relations characterized in different modeling spaces. We identified the following

implications related to the topological relations only:

e (Pjiol,io2)> — (T, iol,i02) A — (D, i01,i02) A —(C, iol, i02) A — (C_B, iol, i02)

e (T,iol,i02)> — (P, i0l, i02) A = (D, iol,i02) A — (C, iol, i02) A — (C_B, iol, io2)
(D,iol,io2)> — (P, iol,i02) A — (T, i01, i02) A = (C, i0l,i02) A — (C_B, iol, io2)

e (Ciol,io2)> — (P, iol,i02) A — (T, i01,i02) A = (D, i0l, i02) A = (C_B, iol, i02)

e (C_Bjiol,io2)> — (P, iol,i02) A — (T, iol, i02) A — (D, iol, i02) A — (C, iol, i02)

These implications illustrate the fact that there exists a unique topological relation between

two IOs.

We identified the following implications related to the directional relations:

e (Liol,io2) > — (Rjiol,io2); (Rjiol,io2) 2 — (L,iol,i02)

e (Ajol,io2) 2> — (B,iol,i02); (B,iol,i02) 2 — (A,iol,i02)

These implications illustrate the fact that an IO iol is either at the left or at the right of a

second IO i02. Also, it is either above, either below i02.

We identified the following implications between metric relations only:

e (N,iol,io2) > — (F,iol,io2); (F,iol,io2) > — (N,iol,io2)

These implications illustrate the fact that an IO iol is either near, either far from a second IO

i02.

Finally, we identified the following implications between spatial relations of distinct

natures:

e (P, iol,i02) > N, iol, io2), if io] is part of i02, then it is near io2.

e (T,i0l,i02) 2> (N, iol, i02), if iol touches i02, then it is near i02.

We propose in the next section to highlight the image visual semantics, i.e. semantic

concepts linked to IOs.

3. Characterizing the visual semantics

Semantic concepts are learned and then automatically extracted given a visual ontology. Its
specification is strongly constrained by the application domain. Indeed, the development of
cross-domain multimedia ontologies is currently limited by the difficulty to automatically
map low-level signal features to semantic concepts [Naphade et al. 06]. Our efforts have
been focused towards developing an ontology for general-purpose photography.

Several experimental studies presented in [Mojsilovic&Rogowitz 01] have led to the
specification of twenty categories or picture scenes describing the image content at a global
level. Web-based image search engines (google, altavista) are queried by textual keywords

26 Tools in Artificial Intelligence

corresponding to these picture scenes and 100 images are gathered for each query. These
images are used to establish a list of semantic concepts characterizing objects that can be
encountered in these scenes. A total of 72 semantic concepts to be learnt and automatically
extracted are specified.

[

Figure 2. Image patches corresponding to semantic concepts: ground, sky, vegetation,
water, people, mountain, building

A three-layer feed-forward neural network with dynamic node creation capabilities is used
to learn these semantic concepts. Labeled image patches cropped from home photographs
constitute the training corpus T (example images are provided in figure 3). Low-level color
and texture features are computed for each of the training images as an input vector for the
neural network.

v} e

Csem r1 = | T T [Csem 11 =
water people

L {VI'éS} {vr43 }

a)Learning framework linking each grid-based region with a semantic-concept and its
recognition result

b)Recognition results are reconciled across all regions to highlight IOs

Figure 3. Architecture for the highlighting of IOs and the characterization of their
corresponding semantic concept

Once the neural network has learned the visual vocabulary, the approach subjects an image
to be indexed to a multi-scale, grid-based recognition against these semantic concepts. An
image to be processed is scanned with grids of several scales. Each one features visual
regions {vri} characterized by a feature vector of low-level color and texture features. The
latter is compared against feature vectors of labeled image patches corresponding to
semantic concepts in the training corpus T (figure 3.a)). Recognition results for all semantic
concepts are computed and then reconciled across all grid regions which are aggregated
according to configurable spatial tessellation (figure 3.b)) in order to highlight I0s. Each IO
is linked to a semantic concept with maximum recognition value.

Towards Intelligible Query Processing in Relevance Feedback-Based Image Retrieval Systems 27

4. A model for semantic/relational integration

We propose an image model combining visual semantics and relational characterization

through a bi-facetted representation (cf. figure 4). The image model consists of both a

physical image level representing an image as a matrix of pixels and a conceptual level. IOs

convey the visual semantics and the relational information at the conceptual level. The latter

is itself a bi-facetted framework:

- The visual semantics facet describes the image semantic content and is based on
labeling IOs with a semantic concept. E.g., in figure 4, the second IO (Io2) is tagged by
the semantic concept Water. Its conceptual specification is dealt with in section 4.1.

- The relational facet features the image relational content in terms of symbolic spatial
relations. E.g., in figure 4, Iol is inside Io2. Its conceptual specification is dealt with in
section 4.2.

Physical image level ‘ People| [Water] ‘

Visual semantics facet

Relational facet

Conceptual image level

Figure 4. Image Model

To instantiate this model within an image retrieval framework, we use a representation
formalism capable to model IOs as well as the conveyed visual semantics and relational
information. This formalism should moreover make it easy to visualize the image
information, especially as far as the interaction with the user within a RF framework is
concerned. A graph-based representation and particularly conceptual graphs (CGs) [Sowa
84] is an efficient solution to describe an image and characterize its components. CGs have
indeed proven to adapt to the symbolic approach of image retrieval [Mechkour 96]
[Belkhatir et al. 04] [Belkhatir 05a] [Belkhatir et al. 05b]. CGs allow to represent components
of our image retrieval architecture and to specify expressive index and query frameworks.
Formally, a CG is a finite, bipartite and directed graph. It features two types of nodes:
concept and relation nodes. In the graph [Tools with Artificial Intelligence] < (Entitled)
< [Book]-> (Published_by)->[I-Tech], concepts are between brackets and relations between
parentheses. This graph is equivalent to a first-order logical expression where concepts and
relations are connected by the conjunction operator (boolean AND):

3 x,y,z s.t. (Book=x) A (Tools with Artificial Intelligence=y) A (I-Tech=z) A Entitled(x,y) A
Published_by(x,z).

It is semantically interpreted as: the book entitled Tools with Artificial Intelligence is
published by I-Tech. Concepts and conceptual relations are organized within a lattice
structure partially ordered by the IS-A (<) relation. Person < Man, e.g., denotes that the
concept Man is a specialization of the concept Person, and will therefore appear in the
offspring of the latter within the lattice organizing these concepts. In our model, CGs are
used to represent the image content at the conceptual level.

28 Tools in Artificial Intelligence

4.1 Representation of the visual semantics facet

An instance of the visual semantics facet is represented by a set of CGs, each one containing
an Jo concept linked through the conceptual relation is a2 to a semantic concept:
[Io]>(is_a)>[csem[i]]. E.g., graphs [lo1]->(is_a)->[People] and [lo2]-> (is_a)>[Water] are the
representation of the visual semantics facet in figure 4 and can be translated as: the first IO
(Iol) is associated with the semantic concept people and the second IO (Io2) with the
semantic concept water. We use WordNet to elaborate a visual ontology that reflects the is_a
relation among the semantic concepts. They are organized within a multi-layered lattice
ordered by a specific/ generic partial order (a part of the lattice is given in figure 5).

Tsc

Physicq!/O ject Sky hmgﬂwmmﬂm
Manmade Object Ground Livin thing\ aterNForest

Wamon Field Forest Beachfront Floor Organism
V—) Ny —
Road Stairs Window TPillar Building ence all Beach Lake Pool

Person Plant

Natural Object /\
Rock Pmﬁ Body Part Geological Form Flower Grass
Pebble Leaf Foliage Trunk Face Beach Mountains Dune

lsc

Figure 5. Lattice organizing semantic concepts

We now focus on the relational facet by first proposing structures for the integration of
relational information within our strongly-integrated framework and then specifying their
representation in terms of CGs.

4.2 Conceptual representation of the relational facet

Each pair of IOs are related through an index spatial meta-relation (ISR), compact structure
summarizing spatial relationships between these IOs. ISRs are supported by a vector
structure Sp with eleven elements corresponding to the previously explicited spatial
relations. Values Spli], i € [1,11] are booleans stressing that the spatial relation s; links the
two considered IOs. E.g., the first and second IOs (Io2) respectively corresponding to
semantic concepts person and water in figure 4 are related by the ISR <P:1, T:0, D:0, C:0,
C_B:0, R:0, L:0, A:0, B:0, N:0, F:0>, which is translated by Iol being inside (part of) Io2.

Our framework proposes an expressive query language which integrates visual semantics
and symbolic spatial characterization through boolean operators. A query which associates
visual semantics with a boolean disjunction of spatial relations such as Q: “Find images with
people at the left OR at the right of buildings” can therefore be processed (user-formulated
queries are studied in [Belkhatir 05b]). Or spatial concepts (OSCs) are conceptual structures
semantically linked to the disjunction boolean operator and specified for the processing of
such a query. They are supported by the vector structure Sp,r such that Sp(i), i€[1,11], is a
non-null boolean value if the spatial relation s; is mentioned in the disjunction of spatial
relations within the query. The OSR <P:0, T:0, D:0, C:0, C_B:0, R:1, L:1, A:0, B:0, N:0, F:0>0r
corresponds to the spatial characterization expressed in Q.

Towards Intelligible Query Processing in Relevance Feedback-Based Image Retrieval Systems 29

In our conceptual representation of the spatial facet, spatial meta-relations are elements of
partially-ordered lattices organized with respect to the type of the query processed. There
are two types of basic graphs controlling the generation of all the relational facet graphs.
Index spatial graphs link two IOs through an ISR: [Io1]->(ISR)->[Io2]. Query spatial
graphs link two IOs through And, Or or Not spatial meta-relations [Io1]—(ASR)—[Io2];
[Io1]—(OSR)—[Io2] and [Io1]—(NSR)—[lIo2]. Eg, the index spatial graph [lo1]—(<P:1, T:0,
D:0, C:0, C_B:0, R:0, L:0, A:0, B:0, N:0, F:0>)—[Io2] is the index representation of the spatial
facet in figure 4 and is interpreted as the first IO (Iol) is related to the second 1O (Io2)
through the ISR <P:1, T:0, D:0, C:0, C_B:0, R:0, L:0, A:0, B:0, N:0, F:0>. The query spatial
graph [lol]—(<P:0, T:0, D:0, C:0, C_B:0, R:1, L:1, A:0, B:0, N:0, F:0>or)—[l02] is the
representation of query Q.

4.3 Image index and query representations

Image index and query representations are obtained through the combination (join
operation [Sowa 84]) of CGs over the visual semantics and relational facets. We propose the
graph unifying all visual semantics and spatial CG representations of the image proposed in
figure 4:

<P:1, T:0, D:0, C:0, C_B:0,R:0,L:0, A:0, B:0, N:0, F:0:

/

5. A relevance feedback framework strongly integrating visual semantics and
relational descriptions

We present a RF framework enhancing the state-of-the-art techniques as far as two major
issues are concerned. First, while most image RF architectures are designed to deal with
global image features, our framework operates at the IO level and the user is therefore able
to select visual entities of interest to refine his search. Moreover, the user has a total control
of the query process since the system displays the query generated from the images he
selects and allows its modification before processing.

5.1 Use case scenario
Our RF framework operates on the whole corpus or on a subset of images displayed after an
initial query image was proposed. The user refines his search by selecting IOs of interest. In
case the user wants to refine the spatial characterization between a pair of visual entities
(e.g. the user is interested in retrieving people either inside, in front of or at the right of a
water area), he first queries with the semantic concepts corresponding to these entities (here
‘water and people’) and then enrich his characterization through RF. The system translates the
phrase query ‘water and people’ in a visual semantics graph:
[Image] > (composed_of)->[lo1]> (is_a)> [water]

- [lo2] > (is_a)—>[people]

30 Tools in Artificial Intelligence

The latter is processed and the results are given in figure 6.

[Retevant i 654 | Relevant id: 525 | [Relevant id: 339
img0754.jpg img0625 jpg img0433.Jpg

[Relevant [Relevant

img0338 jpg

(] Relevant i 522 | (] Relevant id: 523 [] Relevant id: 527

1ng0622 jpy = mm |img0523 jpg = m 90627 jpy ==

Figure 6. First retrieval for the query “water and people”

When the RF mode is chosen, the system displays all IOs within images relevant to the
query ‘water and people’. The user chooses to highlight 3 pairs of 1O0s (figure 7) within
displayed images which are relevant to his need (i.e. present the specific visual semantic and
spatial characterizations he is interested in).

L/
@ Person|

Figure 7. Selected IOs and their conceptual representation

The system is then expected to generate a generalized and accurate representation of the
user’s need from the conceptual information conveyed by the selected IOs.

According to the user’s selection, the system should find out that the user focuses on images
containing a person either being inside, in front of or at the right of water. Our RF
framework therefore processes the ISRs of the selected pairs of IOs so as to construct the
OSR <P:1, T:0, D:0, C:1, C_B:0, R:1, L:0, A:0, B:0, N:0, F:0>0r. The spatial query graph
[lo1]—[<P:1, T:0, D:0, C:1, C_B:0, R:1, L:0, A:0, B:0, N:0, F:0>0r]—[l02] is then generated.
Finally, visual semantics and spatial query graphs are aggregated to build the full query
graph:

Towards Intelligible Query Processing in Relevance Feedback-Based Image Retrieval Systems 31

Composed_of To; @

|<P:1, T:0,D:0,C:1,C _B:0,R:1,L:0,A:0, B:0,N:0, F:O>0KI

5.2 Relevance feedback algorithm
The algorithm summarizing the RF mode is as follows:

Given a query with semantic concepts SC;, generate a visual semantics graph Gsem.
Process the graph and display relevant images.
If the user selects the RF mode, highlight IOs then take into account the n pairs of IOs
selected by the user.
Regarding the spatial subfacet
The n selected pairs of IOs are characterized by n ISRs supported by vector structures
[Splk (ke[1,n]) such that values [Sp(i)]x, i€[1,11] are booleans stressing that in the kth ISR
the spatial relation s; links the considered pair of 1Os.
Generate four Or spatial relations respectively corresponding to the topological relations,
the right/left and above/below directional relations and finally the metric relations
considering the n ISRs (let us note that we generate an OSR for each group of relations
which are said incompatible, i.e. one IO cannot be both at the left and at the right of an
other IO, also one IO cannot be both near and far from an other IO etc...). These OSRs are
supported by vector structures [Spor]j(i), je[1,4] , i€[1,11] such that:

® [Sporli(i) is a boolean value equal to 1 if a topological relation s; (i€[1,5]) relates the
IOs in one of the n pairs selected by the user and all other boolean values are null
([Sporl1(i)=0 V ie[6,11]).

e [Spor]2(i) is a boolean value equal to 1 if a directional relation right/left s; (i=6 or i=7)
relates the IOs in one of the pairs selected by the user and all other boolean values are
null.

e [Spor]s(i) is a boolean value equal to 1 if a directional relation above/below s; (i=8 or
i=9) relates the IOs in one of the pairs selected by the user and all other boolean
values are null.

® [Sporla(i) is a boolean value equal to 1 if a metric relation s; (i=10 or i=11) relates the
IOs in one of the pairs selected by the user and all other boolean values are null.

Generate the respective Or query graphs Ggpa 1 [IO]2 (<[Spor]i(i)>)2>[1O], je[14], i €

[1,11]

Aggregate (join operation [Sowa 84]) CGs Gspa_1, Gspa_2, Gspa_s and Gspa 4 to generate the

spatial query graph Ggpa.

Aggregate (join operation) visual semantics and spatial query graphs Gsem and Ggpa. Each

query (like document index representations) is indeed represented by a global CG

resulting from the aggregation of CGs over the visual semantics and relational facets
called image query graph.

5.3 Matching query and index structures
The Projection Operator. An operational model of image retrieval based on the CG
formalism uses the graph projection operation for the comparison of an image query graph

32 Tools in Artificial Intelligence

and an image document graph. This operator allows to identify within a graph g sub-

graphs with the same structure as a given graph g», with nodes being possibly restricted, i.e.

their types are specialization of g» node types. If a projection of an image query graph Ig

within an image document graph Ip exists then the image document indexed by Ip is
relevant for the image query Io.

Formally, the projection operation g : Iq = Ip exists if there is a sub-graph of Ip verifying the

two following properties:

- There is a unique document concept which is a specific of a query concept, this being
valid for any query concept. This property ensures that all elements describing the
query are present within the image document, and their image is unique.

- For any relation linking concepts cq1 and cq; of Ig, there is the same relation between the
two concepts cp1 and cp; of Ip, such as @ (cq1) = corand @ (cq2) = cp2.

However, brute-force implementations of the projection would result in exponential
execution times. Based on the work in [Ounis&Pasca 98], we use an adaptation of the
inverted file approach for image retrieval. We specify lookup tables associating visual
semantics concepts to the set of image documents whose index contain it. Treatments that
are part of the projection are performed during indexing following a specific organization of
CGs which does not affect the expressiveness of the formalism. Moreover, lattices
organizing spatial relations are defined by mathematical partial orders and not hard-coded,
which allows fast query processing. We discuss in the next section the organization of the
lattice for processing queries with OSMs.
Processing queries with OSMs. ISRs are organized within an Or lattice to process a query
conveying a boolean disjunction of spatial relations such as “Find images with people at the
left or at the right of buildings”. This query is first translated in its graph representation (cf.
section 4.2). Semantic concepts huts and grass are processed by the lattice of semantic
concepts. The link between the generated OSR <P:0, T:0, D:0, C:0, C_B:0, R:1, L:1, T:0, B:0,
N:0, F:0>0r and its equivalent ISR is not straightforward. A new category of meta-relations
eliciting this link by taking into account dominant spatial relations (i.e. spatial relations
mentioned in a query as they have a higher importance in the ordering process of ISRs
within the lattice, other spatial relations are called secondary) shall be introduced. These
concepts are index spatial meta-relations with dominant dor, where dor is the set of
dominant spatial relations. They are supported by a vector structure sq with eleven elements
corresponding to spatial relations s;. Values sq[i]icq11] such that siedor characterize the
presence of dominant spatial relations and values sgjljcf1,117 such that j # i, the presence of
secondary spatial relations within the spatial characterization of the considered 1Os. Index
spatial meta-relations with dominant dor are specializations of OSRs and generalizations of
ISRs as far as the lattice organization is concerned. The OSR <B:0...D:1,I:0...U:1...>0r is
related to its equivalent ISR with dominant {left, right}: <P:0, T:0, D:0, C:0, C_B:0, R:1, L:1,
T:0, B:0, N:0, F:0> as highlighted in the lattice of figure 8. As a matter of fact, the most
relevant images provided by the system present people at the left or at the right of
buildings, i.e. people and buildings related through only dominant spatial relations. This
symbolic spatial characterization is represented by the highlighted ISR (sr) in figure 8. Other
images are composed of people either at the right or at the left of buildings with at least one
additional spatial relation not mentioned in the query linking the two semantic concepts. In
the lattice, ISRs representing such characterizations are descendants of sr. Formally, sub-
lattices of index spatial meta-relations with dominant dor are partially ordered by <o:

Towards Intelligible Query Processing in Relevance Feedback-Based Image Retrieval Systems 33

Va,b index spatial meta-relations with dominant dOR, a <OR b < (a=1OR)
v (b=TOR) v [(Vie[1,11], sie dor, (a =0 Abp=1) v (ag=1Abi=1)) A
(Vje[1,11], sj¢ dor, (b =0 A ap=1) v (byy=1Aay=1))]

<P:0, T:0,D:0, C:0,C_B:0,R:1,L:1, T:0, B:0,N:0,

é//%‘%%

1000 () 0001 () 0.110..0(sT) () L1

11001 10.011 10100 (09..01 0110 0 10. 010 10. 901

. 01 01l M

Figure 8. Lattice Processing Or Spatial Meta-relations

7. Conclusion

We have specified within the scope of this paper a framework combining semantics and
relational (spatial) characterizations within a coupled architecture in order to address the
semantic gap.

This framework is instantiated by an operational model based on a sound logic-based

formalism, allowing to define a representation for image documents and a matching

function to compare index and query structures.

We have specified a query framework coupling keyword-based querying with a relevance

feedback module managing transparent and penetrable interactions by considering

conceptual characterizations of images.

The choice of conceptual graphs as an operational model is the most natural in the sense that

it holds several advantages in our application context. It indeed allows the symbolic

representation of all components of a multimedia indexing and retrieval architecture:
queries, index documents and matching function. Moreover its simple representation is
particularly well-suited for user interaction in the framework of relevance feedback.

To stress the relevance of our approach, the theoretical contributions of this paper in the

domain of image indexing and retrieval are summarized below:

- We have first proposed a neural-network based architecture for the highlighting of
image objects, structures abstracting the image visual entites, and the characterization
of their associated semantics.

- In the perspective of unifying the semantic and relational characterizations, we have
proposed an integrated model featuring a bi-facetted organization. The visual semantics
facet describes the image semantic content and is based on labeling IOs with a semantic
concept. The relational facet is itself based on the relational (spatial) characterizations
between pairs of image objects obtained after highlighting a correspondence process
between extracted low-level information and symbolic relations.

34 Tools in Artificial Intelligence

- To overcome the limitations of the keyword-based approach to query on the image
content, we have proposed a high-level relevance feedback framework, allowing in
particular the relational characterization of the image objects.

- We have finally proposed a correspondence model based on the conceptual graph
projection operator. Its instantiation is optimized through the use of specific data
structures to boost retrieval. In particular, semantic and spatial index structures are
organized in lattices defined by mathematical partial orders.

8. References

Belkhatir, M. et al. (2004). Integrating perceptual signal features within a multi-facetted
conceptual model for automatic image retrieval, ECIR, pp. 267-282

Belkhatir, M. (2005). Combining semantics and texture characterizations for precision-
oriented automatic image retrieval, ECIR, pp. 457-474

Belkhatir, M. et al.: A full-text framework for the image retrieval signal/semantic
integration, DEXA (2005), pp. 113-123

Egenhofer, M. et al. (1991). Reasoning about binary topological relations, SSD, 143-160

Hollink, L. et al. (2004). Classification of user image descriptions. Int. J. Hum.-Comput. Stud.
61(5), pp. 601-626

Lu, Y. et al. (2000). A unified framework for semantics and feature based relevance feedback
in image retrieval systems. ACM MM, pp. 31-37

Mechkour, M. (1995). EMIR2: An Extended Model for Image Representation and Retrieval,
DEXA, pp. 395-404

Meghini, C. et al. (2001). A model of multimedia information retrieval,]. ACM 48(5), pp.
909-970

Mojsilovic, A. & Rogowitz, B. (2001). Capturing image semantics with low-level descriptors,
ICIP, pp. 18-21

Naphade, M. et al. (2006). A Large-Scale Concept Ontology for Multimedia, IEEE
MultiMedia 13(3), pp. 86-91

Ounis, 1. & Pasca, M. (1998): RELIEF: Combining expressiveness and rapidity into a single
system. ACM SIGIR, pp. 266-274

Smeulders, A.W.M. et al. (2000). Content-based image retrieval at the end of the early years.
IEEE PAMI 22(12), pp. 1349-1380

Sowa, J.F. (1984). Conceptual structures: information processing in mind and machine,
Addison-Wesley publishing company

Zhou, X.S. & Huang, T.S. (2002). Unifying Keywords and Visual Contents in Image
Retrieval. IEEE Multimedia 9(2), pp. 23-33

3

GNGS: An Artificial Intelligent Tool for
Generating and Analyzing Gene Networks
from Microarray Data

Austin H. Chen! and Ching-Heng Lin?2

Department of Medical Informatics, Tzu-Chi University
L2Graduate Institute of Medical Informatics, Tzu-Chi University
Taiwan

1. Introduction

The completion of the Human Genome Project has been recognized as a great achievement
in the study of biomedicine; the project not only provides information regarding human
genes but also provides new ways to study human diseases such as cancers. High-
throughput techniques, such as microarray experiments, have emerged as a method of
study that measures the level of gene expression in gene networks. Since microarray
experiments can produce thousands of datasets under various experimental conditions
simultaneously, it is now feasible to study gene interactions and regulatory networks. How
to analyze and interpret the results of these analyses, however, has become an important
research area in bioinformatics.

In the study of biological cellular behavior, understanding how biological activities are
governed by the relationships among genes, RNA, and proteins is a common challenge.
Gene networks represent such connectivity. A gene network consists of a group of genes
that interact among themselves in order to synthesize proteins. Recently, genome-wide gene
expression microarray data relevant to the yeast cell cycle has been collected (Spellman et
al.,, 1998; Cho et al., 1998; Zhu et al., 2000). Since the gene expression profile data is a record
of the network interactions between the regulators and the target genes, it is possible to use
this information to trace these complex relationships. A variety of computer clustering
methods have been developed in order to group together genes with similar patterns of
expression (Eisen et al., 1998; Tamayo et al., 1999; Tavazoie et al, 1999).

Previous efforts at modeling gene networks from high dimensional datasets have generally
fallen into one of three classes, either employing Boolean networks (D’haeseleer et al., 1999;
Husmeier et al., 2005), which are restricted to logical relationships between variables, or
using systems of differential equations (Chen et al., 1999; Sakamoto & Iba, 2001; Thomas,
1990) to model the continuous dynamics of coupled biological reactions. The work of
Friedman et al. (2000) uses Bayesian networks to analyze expression data. The statistical
framework of Bayesian learning, since it deals with uncertainly, is designed for domains

36 Tools in Artificial Intelligence

with a large number of variables and for handling noisy data. Another advantage of this
probabilistic approach is the ability to combine prior knowledge with the information
extracted from data.

A Bayesian network is a graphical model that finds probabilistic relationships among
variables (i.e. genes) of the system. Bayesian networks are popular decision support models
(Cooper & Herskovits, 1992; Husmeier, 2005) because they inherently model the uncertainty
in the data. In addition, Bayesian networks successfully amalgamate probability theory and
graph theory to efficiently model multidimensional probability distributions by searching
for independent relationships in the data (Gevaert et al., 2006; Heckerman, 1995). Other
features that make Bayesian networks attractive candidates for modeling gene expression
data include the ability to handle noisy or missing information, handle hidden variables,
and make causal inferences. (Beal et al, 2005)

Currently, a user-friendly system that can display and analyze various gene networks from
microarray experimental datasets is urgently needed. In this study, our goal is to develop a
gene network generating system (GNGS) that can generate the gene networks of the yeast
cell cycle from experimental microarray data as well as analyze the performance of gene
networks using five different Bayesian network algorithms.

2. Methods

In this study, three kinds of datasets were used. The first two datasets are Alarm (Beinlich,
1989) and Asia (Lauritzen & Spiegelhalter, 1988) networks. These two datasets were
commonly used in Bayesian networks, and the known structure of the Alarm and Asia
networks are used to compare the performance of different Bayesian network algorithms.
The third dataset used in this study is S. cerevisiae cell cycle gene expression data collected
by Spellman et al. (1998). This dataset contains four medium time series: 18, 24, 17 and 14
time series points for alpha, cdc15, cdc28 and elu respectively. In the assessment of a gene
network, we use each of the three medium time series: alpha, cdc15, and cdc28.

After normalizing the gene expression data, we sorted these values into three classes based
on Friedman’s threshold value of 0.5 (Friedman et al., 2000). The data was then translated
into 3 discrete values:

over-expressed = +1
Data representation normal expressed = 0

under-expressed = -1

The results were compared with a known YPL256C sub network (Dejori, 2002). In order to
compare the performance of gene networks generated from different Bayesian network
algorithms (Kim et al., 2004), we defined specificity and sensitivity as Formula 1 and
Formula 2.

correctly estimated edges

Sensitivity = -
edges in the reference network

Formula 1: Sensitivity of gene network

GNGS: An Artificial Intelligent Tool for Generating and
Analyzing Gene Networks from Microarray Data 37

correctly estimated edges

Specificity = -
all estimated edges
Formula 2: Specificity of gene network
The greater the number of correct edges, the better the sensitivity. A higher value for
sensitivity and specificity indicates better performance of the gene network.

3. Bayesian network algorithms

The gene networks of the yeast cell cycle were constructed using Bayesian network
algorithms from data recorded in four different microarray experimental datasets. Five
computer algorithms were developed in the construction of these gene networks. Among
them are the Power Constructor (PC) algorithm, Hill Climbing (HC) algorithm, Maximum-
Weight Spanning Tree (MWST) algorithm, K2 algorithm and MWST+K2 algorithm. Table 1
shows a comparison of these five algorithms.

K2 is the most widely used algorithm in Bayesian network
structure learning. It is well known as a general method for
inferring inter-node relations in a given node group based
on a complete database free of missing data [22].

The MWST algorithm was developed by Chow and Liu [4].
This algorithm searches for an optimal tree structure by
using the computed mutual information as edge weights
MWST [4]. The MWST associates a weight to each connection,
algorithm where each weight represents the mutual information
between the two variables. When the weight matrix is
created, the MWST algorithm gives an optimal tree
structure.

K2 algorithm

Combining the K2 and MWST algorithms provides a better
K2+MWST quality of network by speeding the execution efficiency. A
algorithm known order of nodes is first calculated using the MWST
algorithm, and these results are then used in K2.

The sub-optimal hill climbing method is the heuristic K2
algorithm. The method focuses solely on precision and
Hill climbing computation time at the expense of reliability, and it
algorithm mainly relies on local exploitation. The more intensive the
local exploitation, the stronger the need for specialized
information about the function to be minimized [15, 16].

PC is one of several dependent-based algorithms. This
algorithm has an intuitive basis, and under some ideal
conditions, it guarantees a graph that is equivalent to a true
model of the data. It can be considered a smart selection
and can intelligently order the questions needed to recover
a causal structure.

PC algorithm

Table 1. Comparison of five Bayesian network algorithms

38 Tools in Artificial Intelligence

Before constructing a gene network, it is necessary to preprocess the gene expression data.
The gene expression data in Spellman’s experiment is first normalized into the value of log2.
We then categorize these values into three classes based on Friedman’s threshold value of
0.5. These classes are represented by 3 discrete values: under-expressed (-1), normal
expressed (0), and over-expressed (+1). In this section, we use the K2 algorithm to
demonstrate how to construct a gene network. K2 is a search and score algorithm. Initially, a
node order is set. Since the quality of the network structure is sensitive to the order of the
nodes, an estimation of the nodes ordering is important. At first, the initial state of every
node does not include the parent nodes. We use formula 3 to appraise whether the set of

parent nodes, 7,, belongs to variable I . By finding every variable (node) that maximizes
g(i,z,), we maximize the probability of Bayesian network structure B belonging to data D .

The algorithm will stop when there are no parent nodes could increase the score.

g(i ”,)zﬁ&ﬁN.,l
o (N, +r, =Dt ™

Jj=1 k=1

Formula 3: Estimating function

As an example of how to calculate the partial conditional probability among genes, the data
calculated between gene CLN2 and gene RNR3 in CDC15 conditions is computed and
shown on Table 2. From Table 2, the conditional probability of P(RNR3|CLN2)
can be expressed as P(-1|-1) = 0.0, P(0|-1) = 0.0, P(1|-1) = 0.556, P(-1|0) = 0.5,
P(0]0) =0.444 ,P(1|0) = 0.444 , P(-1|1) = 0.5, P(0|1) = 0.556, P(1|1) = 0. The conditional
probability is 0.0 when both RNR3 and CLN2 are under-expressed as well as 0.444 and 0.0
when both RNR3 and CLN2 are normal expressed and over-expressed. The Bayesian Gene
Networks are then generated from these values using five algorithms.

RNR3 CDC5

1 0 1 -1 0 1

% 1|l o 0 0.556 % 1] 1 0 0

O |o] 05 | 0444 | 0444 < |lo| o | 0909 | 0375

1| o5 | 0556 0 1] o | 0091 | 0625
CLB2 CLN2

1 0 1 1 0 1

% a1l o o143 | 06 g al o 025 | 0.625

O |o] 028 | 0714 | 03 O |o]o12s]| 0375 | 0375

110714 | 0143 | 01 10875 | 0375 0

Table 2. Partial conditional probability tables of genes in CDC15 dataset

GNGS: An Artificial Intelligent Tool for Generating and
Analyzing Gene Networks from Microarray Data 39

4. GNGS system implementation

During this study, we developed a gene network generating system (GNGS) that is capable
of generating the gene networks of the yeast cell cycle from experimental microarray data as
well as comparing the performance of gene networks using five different Bayesian network
algorithms. GNGS utilizes both MatLab’s powerful processing ability and LabVIEW’s
dynamic interfaces in a single platform.

4.1 System architecture

GNGS is an innovative system that generates gene networks of the yeast cell cycle using
Bayesian network algorithms. LabVIEW is the abbreviation for Laboratory Virtual
Instrument Engineering Workbench. It is a kind of graphical programming language, or G
language. The difference between the LabVIEW language and a general programming
language is that LabVIEW can be written through encoded icons and can be used to
construct a system. LabVIEW is an entirely graphical language which looks somewhat like
an electronic schematic. It is hierarchical in that any virtual instrument that you design can
be quickly converted into a module which can be a sub-unit of another virtual instrument
(VD).

For example, every icon in Figure 1 has its own function. Programmers design the system
by establishing connections between icons. Different data types can be expressed using color
variations in the lines.

E2F 01.00:01.000]
1904/

Figure 1. The VIs of displaying network function and executing time

MatLab, meanwhile, is an interactive, matrix-oriented programming language that enables
us to express our mathematical ideas very concisely and directly; it considerably reduces
development time and keeps code short, readable, and fully portable.

This system converts code written in MatLab and integrates the results onto the LabVIEW
interface. In Figure 2 we show a Matlab scrip node (a VI provided by LabVIEW) which is
the kernel that integrates the MatLab and LabVIEW languages together. The results
computed from the Matlab scrip node can be seen as a VI output that transmits to another
VL

40 Tools in Artificial Intelligence

[Tre =}

IMATLAB Script Node,

bnet = mk_yeast_bet;
n=12;
names={ 'ALK1', MNN1', CDC5', CLN2', CLB1', 'ACE2',
SWIS, SR04, CLN1,RNE3, MYO1,8V51" };
asurement File 5 [L3

e _type={ bulax, tabular), ebular) bl tabulas’ tabulax
‘abufar’ ebular, tebula tabular' tabular’, tbular'}

(LD \GensDA Thledc28 bt

[Eead From Me:

date=lata';

fiag best weddag,

metid MATLAB L. s
‘atnal_info
codes

fprintf (- E

draw_graph(dag,namesearre,ice,yy); Heae);

set(S5D, position’,[900 330 405 405], eolor) i);fhe----rmrwcmeemmeee
title(MWST DAGY;

print{-djpeg, 80}t \raw B WET cell cyele with ede_28%

close all;

endok=1;

naims=BWST cell eyele with cde_38';

Figure 2. The Matlab scrip node generated from LabVIEW

4.2 System flow path

Figure 3 shows an overall flow path in the design of this system. A Select interface will be
displayed to guide the users in running the program. By selecting the desired algorithm,
GNGS will load the gene data and the system-constructed network from the selected gene
dataset. After the gene network is displayed, the performance will then be calculated and
shown in the summary table.

Select algorithm
and dataset

Load gene data

interface —
A v
Generate gene
Send report via network
e-mail
A v
Show gene
Generate report network
A
\ 4
Display system Analyze gene
performance network

Figure 3. Design flow path of the system

GNGS: An Artificial Intelligent Tool for Generating and
Analyzing Gene Networks from Microarray Data 41

5. System demonstration

The main functions of the GNGS interface include:

Algorithm selection section: users select the desired algorithm.

Network selection section: users select a desired network.

Dataset selection section: only displayed if the cell cycle button is clicked.

Execute icon: users click to run the program.

Clear icon: users click to clear all selections and release memory space.

Gene network display section: displays the resulting gene network.

Status slide bar section: shows the current execute status.

Summary table: displays summaries of users’ requests.

Report icon: users click to generate reports that include the network graph and
summary table.

10. Send icon: the system will send a report to the user through e-mail.

11. Exit icon: exits the interface.

When the users select one of the five Bayesian Network algorithms, the available network
will be automatically displayed. Furthermore, if the users select cell cycle, four dataset types
will then be displayed. After selecting the data set and clicking the Execute button, the light
will turn to green as shown in Figure 4. The red light informs the user that the process is
currently running. The slider bar on the right-hand side will show the execution status.

0O NSO N

GNGS: A tool to generate and analyze gene networks from microarrary data

R ST (e Step L. Select a algorithm
Algorithm Gene Network
K2+MWST

n MWST
atatype Exccue time
e PC a
Specificity Sensitivity '
0% 0% Step 2. Select a network type

Alam i

Asia

Cell Cyclel

Step3. Select a cell cycle dataset
All Data =

cde_15

b
|
J RunTi) Alpha =
v
E-mail addres:

Clear

N N d)

Execute

[=]

< >

Figure 4. A screen of the system interface when the Execute icon is clicked

Figure 5 shows the final computation time and the gene network for the selected conditions.
The result column will display information for the users, including algorithm, network type,
dataset type, computation time, sensitivity, and specificity. The Clear button is also
provided in case the users wish to clear the information. When the Clear button is clicked,
the memory space will be released. Doing so assures that there are no memory overflow
problems.

42

Tools in Artificial Intelligence

sy e

GNGS: A tool to generate and analyze gene networks from microarrary data

K2_Cell Cycle with cdc_28

=l

Summary table
Algorithm Gene Network
K2 Cell cycle

Data type
cdc_28

Execute time
978 S

Specificity Sensitivity
21.78 % 50

clollElloBN]+ (G

‘ Run Time(

E-mail addres:

Step 1. Select a algorithm
]
K2+MWST
MWST

PC

\{

Step 2. Select a network type

Execute Clear

=

<

Figure 5. A screen of the system interface when the execution is finished.

6. Performance comparison
6.1 Alarm and Asia networks

Both the Alarm and Asia networks were used in this study to compare the performance for
five different Bayesian network algorithms. Using the K2 algorithm as an example, the
results of the Alarm and Asia network comparisons are shown in Figures 6 and Figure 7,
respectively. In Figure 7, two structures are displayed: a known Asia network structure on

the left and a K2-generated network on the right.

GNGS: A tool to generate and analyze gene networks from microarrary data
. Summary table
K2_Alam © | Algorithm Gene Network
K2 Alam
-wxv,\y 9)
‘\ ‘ \1\@ Data type Ex;c;tc time.
\.h =7/
/) Specificity Sensitivity
x“/“‘ , 7963 % 87.5
\
&
a!/m
§
B
7
ol
oY
[v]
)
o
v el
< [l
I
‘ Run Timer)
E-mail addres:

Step 1. Select a algorithm

Step 2. Select a network type

1
Asia
Cell Cycle

Step3. Select a cell cycle dataset

v

Execute Clear

o]

Figure 6. A screen of the system interface after the execution is completed for the K2

algorithm and the Alarm network.

GNGS: An Artificial Intelligent Tool for Generating and
Analyzing Gene Networks from Microarray Data 43

GNGS: A tool to generate and analyze gene networks from microarrary data

= Summary table Step 1. Select a algorithn
a
2SI oiginal an. K2 Asia coro Algorithm Gene Network
K2 Asia K2+MWST
N MWST
atatype Exccute time
745 ¢ PC]
Specificity Sensitivity '
00 % wo % Step 2. Select a network type
Report Alam
Cell Cycle
Step3. Select a cell cycle dataset
]
=l Gl
I

‘ Run Time() =
S s

“ Clear

Execute

=

< >

Figure 7. A screen of the system interface after the execution is completed for the K2
algorithm and the Asia network.

6.2 Gene networks of the yeast cell cycle

GNGS can generate gene networks based on the selected algorithm and dataset. In Figure 8,
we show two gene networks generated from two experimental microarray datasets: one
from the cdc_28 dataset and one from the cdc_15 dataset.

6.3 Comparison of computer execution time

In this section we compare the computer execution time for six datasets based on the K2
algorithm. The Alarm network, as expected, had the longest execution time at 28.1 seconds
because it had the largest amount of data; gene networks from four cell cycle datasets all
had an execution time of less than 1 second (Figure 9). The quantity of data within the
dataset can affect the computer’s execution time. Thus, we compared the system’s execution
time for five algorithms based on the same dataset. The times for K2, MWST, and
K2+MWST were all less than one second. More complex search algorithms, such as the PC
and HC algorithms, had a longer computer execution time; these, however, were still less
than one minute (Figure 10).

44 Tools in Artificial Intelligence

(b)
Figure 8. Gene networks generated from the K2 algorithm by two different microarrary
datasets: (a) the cdc_28 dataset, and (b) the cdc_15 dataset.

Céll cycle Alpha
Cell cyclecdc_15
Cell cyclecdc_28
Cell cycleal data

Asia

Alarm

0 5 10 15 20 25 30
Executing time(sec)

Figure 9. Comparison of execution time for 6 datasets based on the K2 algorithm

cdc_28

HC

PC
K2+MWST
MWST

K2

0 10 20 30 40 50 60
Executing time

Figure 10. Comparison of execution time for 5 algorithms using cdc_28 dataset.

GNGS: An Atrtificial Intelligent Tool for Generating and
Analyzing Gene Networks from Microarray Data 45

6.4 Comparison of sensitivity and specificity

By comparing the sensitivity and specificity of gene networks generated from six datasets
using the K2 algorithm, it was found that the gene network constructed from the Asia
dataset had the best performance (Figure 11). Both sensitivity and specificity were at 100
percent accuracy. The gene networks constructed from the cell cycle datasets, however,
produced approximately 50 percent sensitivity.

In addition, we compared gene networks constructed based on five algorithms from the
same dataset. It was notable that the HC algorithm required the longest computer time
(Figure 10 and 12).

K2

120

10000

100

80

B sensitivity
B Shecificity

(%)

60

40
20

Alarm Asia Cdl cycle Cdl cycle Cell cycle Cell cycle
dldata cdc 28 cdc 15 Alpha

Figure 11. Comparison of sensitivity and specificity for 6 datasets based on the K2 algorithm

cdc_15

100

3 gl B Sensitivity
= .15 B Shecificity

2018.18 538 515 201818

K2 MWST K2+MWST PC HC

Figure 12. Comparison of sensitivity and specificity for 6 algorithms based on cdc_15 data
set

46 Tools in Artificial Intelligence

6.5 Summaries of system performance

Finally, the system performance for all gene networks generated from the four experimental
microarray datasets using five Bayesian network algorithms is summarized in Table 3. It
was noted that the computer execution times for K2, MWST, and K2+MWST were all less
than one second. Even for the more complicated operations such as the PC and HC
algorithms, the execution time was still less than one minute.

A comparison of characteristics for each algorithm and its performance is summarized in
Tables 3. Among these six algorithms, K2 has the best performance in terms of execution
time, sensitivity, and specificity. In essence, the more nodes within a network structure
(such as the Alarm network), the more run time is needed. This study found that the search
and score method (K2) is the best strategy to find the optimal gene network due to its
excellent performance and short execution time. The GNGS system is capable of running
these algorithms, displaying the resulting networks, and analyzing system performance
simultaneously.

Algorithm | Network]t:;;;[: Eﬁiz(l:g;;g Sensitivity | Specificity
Alarm - 28.1 87.5 79.63
Asia - 7.72 100 100
K All data 0.76 70 63.64
Cell cdc_28 0.98 50 27.78
cycle cdc_15 0.85 60 46.15
Alpha 0.89 50 33.33
Alarm - 448 32.61 41.67
Asia - 7.92 62.5 71.43
All data 0.73 30 27.27
MWST Cell cdc_28 0.75 20 18.18
cycle cdc_15 0.75 20 18.18
Alpha 0.75 18.18 18.18
Alarm - 26.2 36.96 26.98
All data 0.9 30 27.27
K2+MWST Cell cdc_28 0.95 30 23.08
cycle cdc_15 0.9 30 15.38
Alpha 1 30 15.38
Asia - 20.6 75 100
All data 20.7 100 15.15
PC Cell cdc_28 28.6 100 15.15
cycle cdc_15 28.9 100 15.15
Alpha 28.5 100 15.15
Asia - 57 37.5 30
All data 55.1 20 18.18
HC Cell cdc_28 49 30 33.33
cycle cde_15 51.4 20 18.18
Alpha 52.7 30 27.27

Table 3. Summaries of system performance for all gene networks generated from four
experimental microarray datasets using five Bayesian network algorithms.

GNGS: An Artificial Intelligent Tool for Generating and
Analyzing Gene Networks from Microarray Data 47

7. Conclusion

In this paper, we have described a novel method to approach the study of gene networks.
Firstly, we have developed and written five Bayesian network algorithms to construct gene
networks of the yeast cell cycle based on four different microarray datasets. Secondly, we
have implemented a gene network generating system that is more user-friendly. GNGS is
capable of generating gene networks of the yeast cell cycle from experimental microarray
data and comparing the performance of gene networks using five different Bayesian
network algorithms. Our system utilizes both the powerful processing abilities of MatLab
and the dynamic interface of LabVIEW in a single platform. Thirdly, we have compared the
performance of each algorithm through measures such as execution time, sensitivity, and
specificity for all five algorithms based on four different datasets.

In the near future, we intend to further improve performance by utilizing dynamic Bayesian
network algorithms that more accurately reflect living cells’ dynamic behavior. Our
approach will then be used to explore the gene networks of human cells based on the
microarray datasets of human cancers.

8. References

Beal et al (2005) A Bayesian approach to reconstructing genetic regulatory networks with
hidden factors, Bioinformatics, Vol 21, No. 3, 349 - 356

Beinlich, I.A., Suermondt, H.J., Chavez, R M., and Cooper, G.F. (1989) The alarm monitoring
system: A case study with two probabilistic inference techniques for belief
networks, Technical Report KSL-88-84, Knowledge Systems Lab, Medical Computer
Science, Stanford University.

Chen, T.,, He, H.L.,, Church, GM. (1999) Modeling Gene Expression with Differential
Equations, Proc. of Pacific Symposium on Biocomputing, pp. 29-40.

Cho,R.J. et al. (1998) A genome-wide transcriptional analysis of the mitotic cell cycle”. Mol.
Cell, 2, 65-73.

Chow, C., and Liu, C., (1968) Approximating discrete probability distributions with
dependence trees, IEEE Transactions on Information Theory, 14(3), 462-467.

Cooper, G.F., Herskovits, E. (1992) A Bayesian method for the induction of probabilistic
networks from data. Mach. Learning J. 9, 309-347.

Dejori, J. (2002) Analyzing Gene-Expression Data with Bayesian Networks, MS Thesis,
Elektro- und Biomedizinische Technik Technische Universit at Graz. 2002.

D’haeseleer, P, Liang, S, and Somogyi, R. (1999) Tutorial: Gene Expression Data Analysis
and Modeling, Pacific Symposium on Biocomputing ‘99 (PSB’99).

Eisen,M.B., Spellman,P.T., Brown,P.O., and Bostein,D. (1998) Cluster analysis and display of
genome-wide expression patterns., Proc. Natl Acad. Sci., USA, 95, 14863-14868.

Friedman, N., Linial, M., Nachman, I., and Pe’er, D. (2000) Using Bayesian networks to
Analyze Expression data, Journal of Computational Biology, 7, 601-620.

Gevaert,O. et al. (2006) Predicting the prognosis of breast cancer by integrating clinical and
microarray data with Bayesian networks. Bioinformatics, 22, 184-190.

Heckerman, D., Geiger, D. and Chickering, D.(1995) Learning Bayesian networks: The
combination of knowledge and statistical data, Machine Learning, 20(3), 197-243.

Husmeier,D., Dybowski,R. and Roberts,S.,, eds (2005) Probabilistic modelling in
bioinformatics and medical informatics. Springer-Verlag, London, UK.

48 Tools in Artificial Intelligence

Kim, S., Imoto, S., and Miyano, S. (2004) Dynamic Bayesian network and nonparametric
regression for nonlinear modeling of gene networks from time series gene
expression data, Biosystems, 75, 57-65.

Lauritzen, S.L., and Spiegelhalter, D.J. (1988) Local computations with probabilties on
graphical structures and their application to expert systems, |. Royal Statistical
society B, 50:154-227.

Ovalle-Martinez, F.J., Gonz’alez,].S., and Stojmenovi’c, L., (2004) A parallel hill climbing
algorithm for pushing dependent data in clients-providers-servers systems, Mobile
Network and Applications, 9:257-264.

Renders, J.-M. and H. Bersini (1994) Hybridizing genetic algorithms with hill-climbing
methods for global optimization: Two possible ways, Proceedings of the First IEEE
International Conference on Evolutionary Computation, pp. 312-317. IEEE Press.

Sakamoto, E. and Iba, H. (2001) Inferring a System of Differential Equations for a Gene
Regulatory Network by using Genetic Programming, IEEE Press, Congress on
Evolutionary Computation, pp.720-726,.

Spellman, P.T., et al. (1998) Comprehensive Identification of cell cycleregulated genes of the
yeast saccharomyces cerevisiae by microarray hybridization, Molecular Biology of the
Cell, 9, 3273-3297.

Tamayo, P. et al. (1999) Interpreting patterns of gene expression with self-organizing maps:
methods and application to hematopoietic differentiation, Proc. Natl Acad. Sci.,
USA, 96, 2907-2912.

Tavazoie, S. et al. .(1999) Systematic determination of genetic network architecture. Nat.
Genet., 22, 281-285.

Thomas H. Cormen, Charles E. Leiserson, and Ronald R. Rivest (1990) Introduction to
Algorithms., MIT Press.

Wright, R. and Yang, Z. (2004) Privacy-preserving Bayesian network structure computation
on distributed heterogeneous data, In 10th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD), Seattle, WA, USA.

Zhu, G. et al. (2000) Two yeast forkhead genes regulate the cell cycle and pseudohyphal
growth.” Nature,406, 90-94.

4

Preferences over Objects, Sets and Sequences

Sandra de Amo and Arnaud Giacometti
Universidade Federal de Uberlandia

Université de Tours

Brazil

France

1. Introduction

Recently, a lot of interest arose in the artificial intelligence and database communities
concerning the topic of preference elicitation, modelling and reasoning. In fact, due to the
huge amount of information users are faced up to daily, the development of formalisms
allowing preference specification and reasoning turns out to be an essential task. A lot of
work has been done in this area so far (Boulilier et al.,, 2004); (Brafman et al., 2006a);
(Chomicki, 2003); (Kieling, 2002); (Wilson, 2004). Most of this work focus on specifying and
reasoning with preferences over objects in some universe U. In most applications, mainly
those related to the database field, one deals with huge set of objects, which makes
unfeasible for the users to specify their preferences in a quantitative way, that is, by explicitly
associating to each object (or tuple) o a number pref(o) standing for her degree of preference
concerning this object. A qualitative framework for expressing preferences over objects is
more suitable in this case. The user is asked to provide a set of statements or rules which
express her generic preferences over the attribute values of the objects. For instance, the user
can express her preferences about films by stating that (1) concerning comedies, she prefers
those from Woody Allen to those from Nanni Moretti (2) concerning Nanni Moretti’s
movies, she prefers comedies to dramas. Such frameworks, besides providing a compact
way for expressing preferences, are also supposed to derive an explicit preference ordering
over the objects, given the compact specification provided by the user, and produce an
algorithm to determine the most preferred objects according to this ordering.

Some recent research on preference elicitation and reasoning has focused on preference over
more complex entities, like sets of objects (Brafman et al., 2006b); (des Jardin & Wagstaff,
2005). Indeed, in many situations, instead of selecting a most preferred object, one may be
interested in selecting a best set of objects whose components satisfy certain criteria of
diversity and mutual compatibility. For instance, in the creation of a film festival program, a
criteria for a “good” program could be “a program including a comedy is better than a program
which doesn’t include one”.

However, more complex entities other than simple sets of objects have been appearing in
recent applications. For instance, in the design of a web page, the developer can take into
account user preferences about hyperlink structures (trees). In our example of the film
festival program, an optimal program should not only be characterized by the quality,
diversity and compatibility of its components but also by the ordering in which each film is

50 Tools in Artificial Intelligence

presented in the program. So, it is natural to think about preference elicitation and reasoning

over structures rather than merely over simple objects or non-structured sets of objects.

In this chapter, we cover with some details some classical and important formalisms to

specify preferences over objects and sets of objects and we address the problem of

specifying and reasoning with preferences over sequences of objects. The material we present
here addressing this topic is an extension of our previous work (de Amo & Giacometti,

2007). Preferences over sequences of objects naturally appear when a decision maker is faced

to the problem of producing an optimal sequence of objects. The following example

illustrates the kind of preference statements we will deal with.

Example 1 Let us suppose a decision maker who works on the creation of a program for a

film festival. Based on his past experiences on film festivals, there are some rules he thinks

are crucial to the success of such an event.

1. For comedies, it is better to choose those by Woody Allen than those by Nanni Moretti.
Concerning Nanni Moretti’s movies, comedies are better than dramas.

2. Itis better to start the festival by presenting a comedy.

3. If the previous film was a comedy, then it is better to follow it by a drama. However, if
the previous film was a drama, then it is better to follow it by a comedy, unless it is a
film by Nanni Moretti, in which case, it is better to follow it by another drama.

4. If there is a drama in the program, then it is better to present a comedy sometime before
it.

We introduce the logic framework TPref allowing preference elicitation and reasoning over

sequences of objects as well as an algorithm to yield the most preferred sequences satisfying

a given set of temporal constraints. Our elicitation procedure consists in obtaining from the

user (1) a set of temporal conditions which affects her preferences over sequences of objects

and (2) a set of statements or rules involving these temporal conditions, which express her
preferences. The four statements illustrated in Example 1 are preference statements we treat
in this paper.

After preference elicitation, the statements provided by the user are translated into formulae

of the logic TPref. Our formalism, which is based on Propositional Temporal Logic (PTL),

generalizes the language introduced in (Wilson, 2004) for expressing preference over single
objects. We show a procedure to decide the consistency of a set of statements in the past

fragment of the logic TPref, that is, if a set of statements ® (a compact preference
representation) derives an explicit preference ordering > over sequences of objects. We

discuss the difficulties for using this same idea in proving consistency in the general case of
preference statements involving past and future conditions. Finally, we provide an
algorithm for producing the best sequences of objects given a set of temporal preference

statements ®.

1.1 Related work

The research literature on preference reasoning and elicitation over objects is extensive. The
approach of CP-Nets (Boutilier et al., 2004) uses a very simple graphical model which
captures users qualitative conditional preference over objects, under a ceferis paribus
semantics. The order on objects induced by a CP-Net is rather restrictive, due mainly to the
ceteris paribus semantics and also by the fact that all attributes are equally important where
comparing two objects. The approach of TCP-Nets (Brafman et al., 2006a) generalizes the

Preferences over Objects, Sets and Sequences 51

CP-Nets by introducing the ability of expressing a relative importance and conditional
relative importance of object attributes. Thus, a TCP-Net is a more refined tool for
comparing objects than CP-Nets. The approach introduced in (Wilson, 2004) uses a logical
framework for expressing conditional preference statements. It consists of a formalism in the
same lines of CP-Nets but with a richer language allowing to express not only the usual CP-
Nets ceteris paribus statements but also TCP-Nets statements and more general conditional
statements (called stronger conditional statements). The temporal conditional preference
statements we introduce in Section 4 for specifying preferences over sequences of objects is a
generalization, in the temporal context, of the stronger conditional statements of (Wilson,
2004). The conditions in a stronger conditional statement can be viewed as a propositional
logic formula. In our approach for specifying preferences over sequences of objects, the
conditions are propositional temporal logic formulae.

In the database area, the problem of enhancing well-known query languages with
preference features has been tackled in several recent and important works in the area. In
(Chomicki, 2003), a simple logical framework is proposed for expressing preferences.
Preferences are expressed by preference formulae. These formulae are incorporated into
relational algebra and into SQL, through the operator winnow parameterized by a preference
formula. (Kiefiling, 2002) introduced Preference SQL which extends SQL by a preference
model based on strict partial orders. Several built-in base preference constructors are
proposed. The optimizer uses an efficient rewriting procedure which transforms preference
queries into standard SQL queries.

Recent work on preference modelling in AI has focused on sets of objects instead of single
objects. In (Brafman et al., 2006b), a language for specifying qualitative preferences over sets
is introduced. The language allows users to express preferences over sets of objects taking
into account a class of basic properties which affect their choice. It is shown that a set-
preference statement specified in this language can be transformed into a conditional
preference statement over attributed objects. The language introduced in (des
Jardins&Wagstaff, 2005) allows quantitative preference specification over sets of objects. It
supports two important preference notions: diversity and depth. Diversity specifies the
amount of variability among objects in a set, and depth specifies preferred feature values.
Most work on temporal reasoning with preferences is related to automated plannning.

Preferences concerns the relative execution times of a set of events {ei, ..., e,} (Khatib, 2001);
(Kumar, 2007). A preference statement in such an explicit temporal framework may establish
for instance that event e; must be scheduled between 2;and y; seconds before event ¢;.

Propositional Temporal Logic (PTL) was introduced in (Prior, 1997) as a formal system for
specifying and reasoning with paralell programs. Recently, PTL has been used in the
automated planning context, as a formalism to specify “good” executing plans (which can
be viewed as sequences of state transitions). In (Bacchus et al., 1996), PTL has been used in
the automated planning context where actions depend on past and current states. The
problem considered there is of rewarding temporally extended behaviors, that is, rewarding
sequence of actions (or state transitions) achieving a predefined goal. Rewards are
associated to properties that sequences must satisfy. Such properties are expressed by PTL
formulae. In (Bienvenue et al., 2006), a formalism based on temporal logic and situation
calculus was introduced in order to express qualitative preferences about executing plans.
Such formalism allows to specify, to reason and to generated preferred plans. This approach
generalizes the one proposed in (Son & Pontelli, 2006), which also uses temporal logic for

52 Tools in Artificial Intelligence

expressing preferences over executing plans with an implementation using answer-set
programming. At the best of our knowledge, there are no work treating qualitative
conditional preferences elicitation and reasoning over sequernce of attributed objects in the lines
of the CP-Net formalism. The approach we propose in this chapter is a first step towards
incorporating a formalism for reasonning with preferences over sequences of objects into a
temporal relational query language, and so, building a bridge between the two disciplines
(AI and Temporal Databases), in the lines of which has been done in (Endres & Kieflling,
2006), where a method for transforming TCP-Nets queries into database preference queries
has been proposed.

Chapter Organization. This chapter is organized as follows. In Section 2, we present three
classical approaches for preference specification over objects, the CP-Nets, the TCP-Nets and
the strong conditional statements of (Wilson, 2004). We discuss important problems related
to this topic, such as finding the most preferred objects, comparing objects (dominance
queries) and ordering objects (ordering queries). We describe the third approach (Wilson,
2004) with more details since it constitutes a necessary background for our work on
sequences of objects. In Section 3, we present a simple approach for specifying preferences
over sets of objects. In Section 4, we present our approach for eliciting and reasoning with
preference over sequences of objects. In this Section, we introduce the syntax and semantics of
the language TPref allowing to express preferences over sequence of objects, we show how

to test the consistency of a set of statements ® in TPref, and discuss its complexity. Besides,

we present an algorithm to produce the optimal sequences satisfying a set of simple
temporal constraints.

2. Preferences over objects

In most Al applications involving the ability of making decisions, users are required to
compare different alternatives and must be able to choose those which better conform to
their needs or personal preferences. Thus, such applications must support the ability of
automate the preference elicitation process. In this section we will present three important
approaches for representing and reasoning with preferences over objects. The first approach
is based on a graphical model focusing on the notion of conditional preferential
independence. The second approach is also based on a graphical model and generalizes the
first one. The third approach is quite general and is based on a logical framework allowing
users to express their preferences through a set of rules.

2.1 Conditional preference networks (CP-Nets)

The graphical model we describe in this section was introduced in (Boutilier et al., 2004) and
is similar to a Baysesian Network (Pearl, 1988) from a syntactical point of view. Nevertheless
both models differ with respect to their semantics. The model we present here, called
Conditional Preference Networks (CP-Nets) uses a graph in order to capture statements of
qualitative conditional preference independence. The semantics of the model is based on the
ceteris paribus semantics which has been largely exploited in the Al field in the past (Doyle et
al.,, 1991). Other approaches for representing and reasoning with preferences have employed
graphical representations of preference relations such as (Bacchus & Grove, 1995) and
(Bacchus and Grove, 1996), but with a different semantics.

Preferences over Objects, Sets and Sequences 53

In the CP-Net preference model, the user is required to specify, for any specific attribut A of
interest, which other attributes can influence her preferences for values of A. For each
instantiation of the relevant attributes for A (the parents of A in the graphical
representation) the user must specify her preference ordering over values of A according to
the values of its parents. For instance, let us consider a set of objects with attributes A,B,C,D
and let us suppose that preference over attribute A depends on attributes B and C. So, the
user may specify that if the value of B is by and the value of C is ¢y, and everything else is equal then
she prefers az to a1 as a value for attribute A. Based on this preference rule, the user can decide
that between two objects 01 = (a1, by, 2, d1) and 02 = (a2, by, ¢2, di) she prefers object 0> to object
01. On the other hand, this rule cannot allow her to decide that object 0, is preferred to object
03 = (a1, by, 2, dy), since the values of the attribute D in both objects are different. The ceteris
paribus semantics (everything else being equal) imposes that we can only compare objects
according to a given preference rule r if the objects have the same values on the attributes
not appearing in .

Notation. We suppose a set V = {X1, X, .., Xy} of attributes. For each attribute X € V , we
denote by dom(X) the finite set of values of X (the domain of X). For Z = {Z, ..., Z,}cV we
denote by dom(Z) the set dom(Z;) x dom(Zy) x ... x dom(Z,,). If Z =V, we denote by O the

set dom(Z). The elements of O are called objects, tuples or outcomes. If 0 = (z1, ..., z;) is an
object, we denote by o[X;] the element x;edom(X;). If Z = {Z,, ..., Z,,} <V, we denote by o[Z]
the tuple of elements (0[Z1], ..., 0[Z,]). Sometimes we abbreviate this tuple by z.

Definition 1 (CP-Net Preference Model) A CP-Net over a set of attributes V is a directed
graph N'= (V, E) where each node XeV is annotated with a conditional preference table (CP

table) CPT(X). Each CP table CPT(X) associates a total order > , with each instantiation u of
the attributes which are parents of X in the graph.

The following example illustrates the concept of CP-Net as a formalism for specifying user’s
preferences.

Example 2 Let V = {Director (D), Genre (G) }, dom(D) = {Woody Allen (w), Nanni Moretti
(n), Hitchcock (h)}, dom(G) = {comedy (c), drama (d), thriller (#)}. Let us suppose that I
strictly prefer comedies to dramas and thrillers to comedies but my preference about film
directors is conditioned to the film genre: I prefer Nanni Moretti's dramas toWoody Allen’s
dramas, and Woody Allen’s dramas to Hitchcock’s dramas. However, I prefer Woody
Allen’s comedies to Nanni Moretti’s comedies and Nanni Moretti’s comedies to Hitchcock’s
comedies. On the other hand, for thrillers I largely prefer Hitchcock’s ones than Woody
Allen’s. But if I had to choose between a Woody Allen’s thriller and a Nanni Moretti’s
thriller I would choose a Woody Allen’s thriller. These preference rules can be expressed by
the CP-Net depicted in Figure 1(a).

A CP-Net aims at capturing a preference ordering (a total order) over the objects in O. Thus,

the semantics of a CP-Net is defined as the set of preference orderings which are consistent
with the preference constraints imposed by the given CP-Net. In Figure 1(b) one represents
by thin arrows the relationships between objects which are entailed by the CP-Net of Figure
1(a). An arrow from object o to object 0" means that o > o’. The arrows resulting from

transitivity (e.g. from (¢, h) to (d, n)) are not showed in the figure. The thick arrows are not
entailed by the CP-Net of Figure 1(a) but are consistent with it (see the discussion following
Theorem 1 below).

54 Tools in Artificial Intelligence

e c>d
t>c (d,n) (cw) (th)

P INY

gty (dw) \ (cn) (t,w)
d:w>h
e th >w 1 \ l 1
tw>n
cw>n (dh) =—(ch) (tn)
cn >h
(@) (b)
Fig. 1. (a) A CP-Net V (b) A preference ordering satisfying N/

Definition 2 (Satisfiability of a CP-Net) Let \ be a CP-Net over the set of attributes V , X
eV and U < V the set of parents of X in NV. Let Y be the set of attributes other than X and its
parents. Let >, be the ordering over dom(X) imposed by the CPT(X) for a given
instantiation u of the attributes in U. We say that a preference ordering > over O is
compatible with > iff for all instantiations y of the attributes in Y we have yxu > yx'u iff x >,
x’. A preference ordering - satisfies the CP table CPT(X) iff it is compatible with >, for any
instantiation u of the attributes in U. We say that the preference ordering > satisfies the CP-
Net N iff it satisfies all the CP tables of N. A CP-Net N is satisfiable iff there exists some
preference ordering > satifying it.

In Figure 1(b) it is depicted a preference ordering satisfying the CP-Net of Figure 1(a). The
following theorem guarantees that for acyclic CP-Nets it is possible to build an ordering
satisfying it.

Theorem 1 Every acyclic CP-Net is satisfiable.

The detailed proof of Theorem 1 can be found in (Boutilier et al., 2004). The ordering given
by this theorem is built by induction on the number of attributes in the CP-Net and uses the
topological ordering on these attributes induced by the acyclic graph. The preference
ordering depicted in Figure 1(b) is obtained by using the construction of Theorem 1. The
thick arrows are specific to this particular ordering. They are built respecting the ordering
given in the CP table CPT(G). A preference ordering satisfying an acyclic CP-Net is not
unique in general. For instance, if we consider an arrow going from (d, n) to (c, h) in Figure 1(a)
instead of the opposite arrow depicted in this figure, and we keep the other arrows, we

obtain another ordering satisfying V.

Best Outcomes. Given an acyclic CP-Net N, the task of determining the best outcomes with
respect to the preference orderings satisfying N 'is very simple. Even if the preference
ordering satisfying A is not unique, surprisingly, the best outcome is unique and independs

on the particular preference ordering satisfying N. The algorithm for building this unique
best outcome consists in sweeping through the graph from ancestors to descendents
instantiating each attribute to its most preferred value given the instantiation of its parents.
We describe the process of determining the best outcome in the following example.

Preferences over Objects, Sets and Sequences 55

Example 3 (Producing the best outcome determined by a CP-Net) Let us consider the
CP-Net of Example 2. We begin by choosing the best value for attribute G (the attribute with
no ancestors). This best value is t. Next, we take the children of attribute G. In our case, we
have only one child, the attribute D. For G instantiated as t, the best value for the attribute D
is h. Then, the best outcome is the object (¢ h), that is, the most preferred movie is a
Hitchcock’s thriller.

This process of sweeping through the graph from ancestors to descendents and instantiating
the attributes with the most preferred values given the instantiation of their parents is called
forward sweep. The following theorem guarantees that this procedure produces the best
outcome. The proof can be found in (Boutilier et al., 2004).

Theorem 2 Let A be an acyclic CP-Net. The best outcome with respect to any preference

ordering satisfying A\ is unique and is produced by the forward sweep procedure.

Discussion. The CP-Net model for preference reasoning is not restricted to acyclic graphs.
The advantage of considering acyclic CP-Nets is that the acyclicity of the graph implies that
the model is consistent, that is, the CP-Net induces a preference ordering over the objects. If
the graph is cyclic, the existence of such preference ordering is not guaranteed. In
(Domshlak & Brafman, 2002) some initial results on consistency testing for cyclic CP-Nets
were presented. More recently (Prestwich et al., 2005) showed that the optimal outcomes of
an unconstrained (and possibly cyclic) CP-Net are the solutions of a set of hard constraints.
They proposed a new algorithm for finding optimal outcomes which makes use of hard
constraint solving. This new algorithm works even for cyclic CP-Nets. Besides, it works also
with any preference formalism which produces a preorder over the outcomes. Another
aspect which has to be considered is the constraint enforcing that in each CP table CPT(X),
the domain dom(X) is totally ordered. The general definition of a CP-Net allows an arbitrary
total preorder over dom(X), that is, the antisymmetric property is not required to be satisfied
(@ =band b = a do not imply a = b). The difficulty with such general CP-Nets is that

consistency is not verified in general. In (Boutilier et al., 2004) it is proved that consistency
can be guaranteed if some special conditions are verified by the acyclic CP-Net.

Besides the problem of finding the best outcomes determined by a CP-Net N, two other
problems are particularly important: the dominance problem and the ordering problem.
Both problems involve the task of comparing two objects 0 and o’. The first problem asks if
N can deduce o = o'(denoted by N |= 0 = 0). That is, it asks if for all preference orderings =

consistent with N it is true that o »= o’. The second problem asks if the CP-Net is incapable of
deducing 0" - o (denoted by NV |# 0’ = 0). That is, it asks if there exists a preference ordering =
consistent with N such that o = o’. The second problem is easier than the first one. It can be
proven that for acyclic CP-Nets, the complexity of determining the truth of at least one of
the orderings queries N |# 0’ = 0 or N |# 0 = 0" is O(n) over the number n of attributes
involved in the CP-Net A (Boutilier et al., 2004). On the other hand, the dominance problem

is polynomial (when the graph verifies some conditions) and NP-complete in general. For a
deeper discussion on these topics, see (Boutilier et al, 2004). In (Boutilier et al. 1997) it was
shown that the dominance problem is intrinsically related to the problem of finding optimal
outcomes satisfying a set of given constraints (the constraint-based preferential optimization
problem in CP-Nets).

56 Tools in Artificial Intelligence

2.2 Tradeoffs-enhanced conditional preference networks (TCP-Nets)

In preference elicitation with CP-Nets the user describes how her preference over the values
of an attribute depends on the values of other attributes. CP-Nets are able to specify a class
of intuitive and useful preference statements of the form: “I prefer the value ao for attribute A
given that B = b and C = ¢”. However, there are other intuitive and important preference
statements which cannot be represented by a CP-Net. These statements have the form: “It is
more important to me that the value of attribute A be better than the value of attribute B be better”.
For instance, I could say that when choosing a movie, a most preferred genre is more

important than a most preferred director. So, when comparing the films f; = (c,w) and fo = (¢,
n) in Example 2, I would prefer f; to fi. Notice that the CP-Net A given in Example 2 is not

able to infer f, = fi nor fi = fo. Another kind of intuitive statements which cannot be

represented by a CP-Net has the form: “Given that C = c, a better assignement of attribute A is
more important to me than a better assignement of attribute B”. For instance, I could say that
when choosing a movie produced in the 50’s, a most preferred genre is more important than
a most preferred director. However, for movies produced during the 60’s, directors play a
more important role in my decision than the movie genre.

A CP-Net is able to specify only one kind of relationship between attributes, the conditional
preference dependence relationship. In this section we consider an extension of the CP-Net
formalism allowing two other kind of relationships between attributes: relative importance
(atribute A is more important than attribute B in my decision) and conditional relative
importance (attribute A is more important than attribute B in my decision given that the
value for attribute C is ¢g). This enhanced model, introduced in (Brafman et al., 2006a), is
called Tradeoffs-enhanced Conditional Preference Network (TCP-Nets).

Like CP-Nets, TCP-Nets are annotaded graphs where nodes are attributes. Unlike CP-Nets,
TCP-Nets have three types of edges. The first one corresponds to CP-Nets edges, indicating
conditional preference between attributes. The second edge type (directed) capture relative
importance of attribute X over attribute Y . More precisely, let X and Y be two attributes
mutually preferenctially independent given Z = V - {X, Y }, that is, for every fixed
instantiation of the attributes in Z, the ranking of X values is independent of the value of Y .

We say that X is more important than Y, denoted X >V, if for every instantiation z of the

attributes in Z and for every x, X’ € dom(X) such that x > x" given z, we have that xyz >
xX'y'z.

The third edge type (undirected) captures conditional relative importance. More precisely, let X
and Y be a pair of attributes in V and let Z cV - {X, Y }. We say that X is more important
than Y given z € dom(Z) iff for every w € dom(V —-({X, Y } U Z)) we have: xyzw >x"y'zw

whenever x > x” given zw. We denote this relation by X >, Y . Thus, an undirected edge of
the third type between attributes X and Y, labelled with the set of attributes Z, means that X
>, Y or Y >, X, depending on the values of the attributes in Z. As in CP-Nets, each node X in
a TCP-Net is annotaded with a CP table CPT(X). In addition, in TCP-Nets, each undirected
edge labelled with Z between attributes X and Y is annotaded with a conditional importance
table (or CI table) CIT(X, Y, Z), describing the relative importance of X and Y given the value
of the corresponding importance-conditioning attributes Z.

Definition 3 (TCP-Net Preference Model) A TCP-Net NV is a tuple (V, cp, i, ci, cpt, cit) where:

(1) V is a set of attributes (the nodes of N); (2) cp (conditional preference arcs) is a set of

Preferences over Objects, Sets and Sequences 57

directed arcs (X, Y), for X, YeV; (3) i (importance arcs) is a set of direct arcs (X, Y), for X, Y
€ Vsuch that X > Y'; ci (conditional importance) is a set of undirected arcs {X, Y } labelled

with a set of attributes Z such that X >, Y or Y >, X depending on the assignement z of

attributes in Z ; cpt associates a CP table CPT(X) to each node X of N, where CPT(X) is a

mapping from dom(Parents(X)) to strict partial orders over dom(X); cit associates a CI table
CTI(X, Y, Z) indicating, for each instantiation z € dom(Z), the relative importance of X and
Y.

The following example illustrates the concept of TCP-Net as a formalism for specifying
preferences.

Example 4 Let V = {Director (D), Genre (G), Year (Y) }, dom(D) = {Woody Allen (w), Nanni
Moretti (1)}, dom(G) = {comedy (c), drama (d)}, dom(Y) = {80,90}. Let us suppose that I
strictly prefer comedies to dramas but my preference about directors is conditioned to the
film genre: When choosing dramas, I prefer Nanni Moretti’s to Woody Allen’s. However, for
comedies, I prefer Woody Allen’s to Nanni Moretti’'s. When choosing a film, the year of
production is more important for my decision than the director. When choosing a Woody
Allen’s film, its genre is more important to me than its year of production. But for Nanni
Moretti’s films, the year of production is more important than the genre. These preference
rules can be expressed by the TCP-Net depicted in Figure 2(a).

w:G—Y
n:Y—G

D (d,n,80) «— (c,n,80)
(O —=—) N OO

(d,w,80) (c,w,80)

(d,n,90) (c,n,90)

Q (d,vi,%) -~ (C,IN‘,90) Q

d:n>w|
cw>n

@) (b) ©
Fig. 2. (a) A TCP-net \V (b) The partial ordering induced by N (c) The dependence graph

The semantics of a TCP-Net is defined in terms of the set of strict partial orders consistent
with the constraints imposed by the preference and importance relations expressed by the
graph edges, the CP and CI tables. As for CP-Nets, TCP-Nets semantics is based on the
ceteris paribus semantics. We present here only the intuitive idea behind the semantics of a

TCP-Net. For a more formal presentation, see (Brafman et al., 2006a). A strict partial order >
satisfies a TCP-Net N if the following intuitive conditions are verified: (1) in each CP table
CPT(X), for every z € dom(Z) (where Z = Parents(X)), two objects 0 and o’differing only on
the attribute X and whose values on Z are given by z, are ordered by > consistently with the
ordering on the X values given in CPT(X); (2) if X Y, then any two objects 0 and o’differing
only on the values of X and Y are ordered as o > 0'if the relationship o[X] > o[X'] appears in
the CP table CPT(X) corresponding to the instantiation given by o[Parents(X)]; (3) in each CI

58 Tools in Artificial Intelligence

table CPI(X, Y,Z), for every z € dom(Z) such that X >, Y, any two objects 0 and o’ differing
only on the attributes X and Y and whose values on Z are given by z are ordered as o > o’ if

the relationship o[X] > o[X'] appears in the CP table CPT(X) corresponding to the
instantiation given by o[Parents(X)]. In Figure 2(b) one represents the relationships between
objects which are entailed by the TCP-Net in Figure 2(a). The arrow from object o to object o’
means that o > 0. The arrows resulting from transitivity are not showed in the figure. Notice
that the arrow from film (d, n, 80) to film (c, n, 90) is inferred using the CI table CIT(G, Y,D)
which imposes that, for Nanni Moretti’s movies, the year of production is more important
than the genre. So, as I prefer films produced in the 80’s than films produced in the 90's, I
prefer the first film to the second one, even if the first film is a drama and the second one is a
comedy.

Definition 4 (Satisfiability of a TCP-Net) A TCP-Net N is satisfiable (or consistent) iff there
is some strict partial order > over O that satisfies it. Let o, 0" € O. We say that 0 > 0" is
implied (or inferred) by the TCP-Net N iff it is verified by all strict partial orders > over O
satisfying V.

Satisfiability is a desired property for TCP-Nets since it is important to guarantee that the
preference rules provided by the users do not lead to inconsistencies like “I prefer object o to
object 0 and object o’ to object 0”. However, the definition of TCP-Net satisfiability does not
provide a mechanism for testing TCP-Net consistency. Fortunately, for a large class of TCP-
Nets consistency is guaranteed. This class of TCP-Nets is referred as conditionally acyclic and
is defined as follows:

Definition 5 (Conditionally Acyclic TCP-Nets) Let N'be a TCP-Net over the set of
attributes V . We associate to A a graph N?*, called the dependency graph of N in the following
way: the nodes of A* are the same as the nodes of N. Each directed edge of NV is a directed
edge of A*. For each undirected edge {X, Y } of A, labelled by the set of attributes Z, we
insert in M* two directed edges (A,X) and (A, Y) for each attribute A e Z. Besides, for each
assignement z € dom(Z) of the attributes in Z, we insert a direct edge (X,Y) or (Y,X)
depending on the information given in the CI table CIT(X,Y,Z) corresponding to the
assignement z. In that way, we are able to associate a set of directed graphs G(N) to the TCP-
Net N, one for each assignement of the attributes labelling the undirected edges of N. We
say that the TCP-Net is conditionally acyclic if each graph of G(N) is acyclic.

For instance, the dependence graph associated to the TCP-Net of Figure 2(a) is given in
Figure 2(c). As we see, this TCP-Net is not conditionally acyclic, since the graph A* is cyclic.
Now, if we consider the TCP-Net depicted in Figure 3(a), it is easy to see that it is
conditionally acyclic, since all graphs in G(N) (showed in Figure 3(b)) are acyclic.

For conditionally acyclic TCP-Nets we have the following result, whose proof can be found
in (Brafman et al. 2006a).

Theorem 3 Every conditionally acyclic TCP-Net is satisfiable.

Discussion. (1) Complexity: Unfortunately, testing for conditionally acyclicity is not an easy
task. This problem is shown to be coNP-hard in (Brafman et al. 2006a). (2) Best Outcomes:

Preferences over Objects, Sets and Sequences 59

One of the central properties of the CP-Net model is that, given an acyclic CP-Net NV and a

(possibly empty) partial instantiation x of some of its attributes, it is simple to determine a
best object consistent with x. In the previous section, we presented the forward sweep
procedure which produces the best object of an acyclic CP-Net. This procedure works also
for conditionally acyclic TCP-Nets. The relative importance relations do not have any
influence in the process of obtaining the optimal outcome. In order to obtain the best object,

we simply consider the CP-Net part of the TCP-Net N (ignoring the i-edges and the ci-
edges) and we apply the forward sweep procedure for the resulting CP-Net. This simple
algorithm for finding the best outcome can be applied to all TCP-Nets for which the CP-Net
part is acyclic. In particular, it is applicable for conditionally acyclic TCP-Nets. However,
finding the best outcome associated to a TCP-Net N satisfying a set of hard constraints is not
trivial. In (Brafman et al., 2006a), an algorithm (Search-TCP) is developed for producing the
best outcomes associated to a conditionally acyclic TCP-Net N satisfying a set of hard

constraints C on the attributes of N.

®
() (E)

:b>b' (:)—>
aib b (B) (®)[=><] ® e o

(be)-graph
|oj2tep-2rel = b:d>d
b:c'>c @ BE @ b:d'>d

, (b'e) graph
be :C—D e G
be:D—C

be :D—C ©<—®
(b',e)-graph = (b,e')-graph

(@) (b)
Fig. 3. (a) A conditionally acyclic TCP-net A/ (b) The set of acyclic graphs ()

()

2.3 A logical framework for preferences over objects

In this section we present a third approach for preference elicitation and reasoning
introduced in (Wilson, 2004). This approach is based on a logical framework and generalizes
the CP-Nets and TCP-Nets approaches.

The Preference Language L. The language £ is constituted by statemets of the form ¢: u
—(X'=x) > (X =x), where u is a formula of the form (Xi =x1) A ... A(Xi, =xi), withX; , e V
- {X} and xj € dom(X;) for all j € {1, ..., k} and x, x" € dom(X). We call such statements
conditional preference rules or cp-rules for short. The formula u is called the condition of the cp-
rule ¢. The set of attributes appearing in u is denoted by Attr(u). If ¢ is the statement u— (X

60 Tools in Artificial Intelligence

= x) > (X = x') then sometimes we denote u by u , X by X and x, x’ by x, and x
respectively. A conditional preference theory over V is a finite set of statements of L.

Example 5 Let V = {G,D} as in Example 2. Let ¢; and ¢» the following conditional preference
rules:

p1:(G=¢)—> (D=w)> (D =n),

w2 (D=n)— (G=c)>(G=4d).

Then T’ = {1, 2} is a conditional preference theory which expresses the first preference
statement of Example 1.

A conditional preference statement ¢ : u — (X = x) > (X = x") induces a preference ordering
on objects over V. Let 0 = tyx and o’ = tyx’ be objects over V, where y is an object over Attr(u),

t is an object over V — (Attr(u) U {X}). We say that o is preferred to o according . The set of

pairs of objects (0, o) where o is preferred to 0" according to ¢ is denoted by ¢*. If I' is a

conditional preference theory, we denote by >r the transitive closure of the binary relation

= U pel’ 99*'

Example 6 Let us compare the objects 01 = (c,w) and 02 = (d, n) according to I'. We have that
(cw) is preferred to (¢, n) according to ¢1. And (¢, n) is preferred to (d, n) according to ¢».
Then, using transitivity, we conclude that (c,w) is preferred to (d, n), that is, 01 >roz.
Consistency Test. One important feature of preference conditional theories is that there is
no need of eliciting a total order on the values of an attribute given each assignement to its
parents, as in the CP-Net preference model. So, a conditional preference theory is a compact
way of expressing preference: we can reason with any theory I' specified by the user,
provided this theory satisfies some properties which guarantee its consistency. Besides, the
user can add new statements later on; because the logic used in the deduction system is
monotonic, all previous deductions concerning preferences will hold.

Now, we present the concept of consistency for a preference conditional theory I'. A model of
I is a strict partial order (that is, a transitive and irreflexive relation) > on objects O over V
such that > contains the induced ordering >r. We say that T is consistent if there exists a
model > for I'. It is easy to see that a theory I’ is consistent if and only if its induced relation
>ris irreflexive, since >ris transitive by definition.

Example 7 The theory I presented in Example 5 is consistent. Indeed >r = {(01, 03), (03, 04), (01,
04)} is a strict partial order over the set of objects O = {01,02, 03, 04 }, where 01 = (cw), 02 =

(dw), 03= (c, n), 04 = (d, n). Note that (01, 03) € ¢, , (03 0s) € , and (01, 04) is inferred by
transivity. However, the theory I'= T U {¢3, ¢4} where: p3: (G=d) — (D =n) > (D = w) and
¢a: (D =w) —(G =d) > (G = ¢), is not consistent. Indeed, (04, 02) € , and (02, 01) € ¢, . So, 01
>p 04, since (04, 01) € > and (01, 0s) € >, which proves that > is not irreflexive.

We associate to each preference conditional theory I' a graph G(I') defined as follows: the
nodes of G(I') are the attributes appearing in the rules of I' and the set of edges is given by
{(Y,Xy) : Y € Uy}, where Uy denotes the set of attributes appearing in the condition u,. The
preference conditional theory T is acyclic if its graph G(I') is acyclic.

Preferences over Objects, Sets and Sequences 61

As we will see in Theorem 4, in order to ensure consistency for acyclic theories it will be
sufficient to ensure local consistency. More precisely : Let o be a fixed object over V and X be
an attribute in V . Let x, " € dom(X). We say that (x, x) is validated by o if there exists a

statement (¢ : up— X =x > X =x") € I such that o satisfies the formula u, (the conditions of

). We define the relation >* on dom(X) as the transitive closure of the set of all pairs (x, x')
validated by 0. We say that the preference theory I’ is locally consistent if for all objects 0 and
all attributes X, the relation > f is irreflexive.

Example 8 Let us consider the situation of Example 7 except that the set of attributes V is
augmented with a third attribute Y (year of production), so V ={G,D, Y }. Let us consider the
preference theory I't = {¢1, s}, where ¢5: (Y =1990) — (D = n) > (D = w). Let 0 = (c,w, 1990)

and let us fix the attribute D. Then w >f n since (w, n) is validated by o, if we consider the

statement 1. But (n,w) is also validated by o, if we consider the statement ¢s. Thus, I' is not
locally consistent.

The following theorem gives necessary and sufficient conditions for ensuring consistency of
a preference theory I

Theorem 4 Let I' be a conditional preference theory. Then, we have : (1) If I is consistent
then T is local consistent. (2) If I is local consistent and acyclic then I is consistent. (3) If all
the attributes in V are binary, local consistency can be determined in time proportional to
| T2 [V].

The theory I'y presented in Example 8 is not locally consistent, so it is not consistent by
Theorem 4. Notice that its graph G(I' 1) = {(G,D),(Y,D)} is acyclic. On the other hand, the
theory T given in Example 5 is consistent but its graph G(I) = {(G,D),(D,G)} is cyclic. By
Theorem 4 we can conclude that it is local consistent. This is an example of a local consistent
theory whose graph is cyclic.

Finding optimal outcomes. Let I be a preference conditional theory over a set of attributs V.
Given an object 0 over V' < V, we say that a value x; € dom(X;) is undominated given the
object o if there is no statement u — (X; = x) > (X; = x;) in I, such that o satisfies u. The
algorithm for finding optimal objects with respect to a locally consistent preference theory I
with acyclic G(I') works as follows: (1) enumerate the attributes of V in such a way that the

ordering (Xy, ..., Xy) is compatible with the graph G(I') (that is, if i > j then there is no path
going from X to X;in G(I')). (2) For eachi € {1, ..., n} let o (X;) = x, where x € dom(X;) and x is
undominated with respect to the object 0 = (a(X1), ..., a(Xi-1)). Local consistency of I" ensures

that such x always exists.
Example 9 Let us consider V = {G, D, Y } as in Example 8. Let us consider the preference

theory I't = {¢1, s}, where @s: (G = d) — (Y =1990) > (Y = 2000). We have G(I'1) = {(G,D), (G,
Y')}. Then, the ordering (G, D, Y') is compatible with G(I'1). We choose «(G) = c. For (D), the
only undominated value given (c) is w. For «(Y), both values 1990 and 2000 are
undominated given (c,w). So, a best object is 01 = (c,w, 1990). Another one is 0, = (c,w, 2000).
By choosing «(G) = d, we also get 03 = (d,w, 1990) and 04 = (d, 1, 1990) as best objects.

62 Tools in Artificial Intelligence

3. Preferences over sets of objects

For the time being, we have been interested in formalisms allowing to eliciting and
reasoning with preferences over objects. We have introduced some important frameworks
for specifying user’s preferences in a compact way, besides discussing important issues
related to this topic, such as decidability and complexity of the problems of finding the best
objects, dominance and ordering queries and introduction of hard constraints. In this section
we tackle these issues in a broader context, by considering a simple framework for dealing
with preferences over sefs of objects. This problem arises naturally in the context of our
running example. Let us suppose the task of creating a program for a film festival. Here, the
crucial task is not to obtain user’s preferences about movies considered individually, but
about several possible sets of movies. Thus, the user has to be able to specify her preferences
about a group of films, taking into account aspects like genre diversity, genre adaptability
(for instance, a user may not be interested in programs containing both comedies and
dramas), etc. In such situation, we would like to be able to determine the preferred
characteristics which must be satisfied by a group of objects, and then to be able to select from
a set of objects the best subset satisfying these preference rules. A simple way to treat the
problem of finding the best subset of objects is to produce a set containing the k best
elements according to a set of preference rules on individual objects. This naive solution is
not suitable since the attractiveness of particular objects does not imply that these same
objects put together would constitute an atractive set. If one of the requirements for a
“good” set is the diversity of its elements, putting together a set of good objects would not
necessarily produce the required diversity. Several recent works on preference modelling in
Al have focused on eliciting and reasoning with preference over sets of objects, from a
quantitative and a qualitative perspectives. In (des Jardins & Wagstaff, 2005) for instance, it
was proposed a formalism to deal with preferences over sets of objects supporting the
notions of diversity and depth. These concepts allows expressing preferences in a quantitative
way, by measuring in some sort the degree of diversity and depth of a preferred set of
objects. Since in this chapter we are focusing on formalisms based on a qualitative
perspective, we will describe here the very simple and elegant approach of (Brafman et al.,
2006b). This approach allows the user to specify a broad class of interesting properties about
sets of objects. And surprisingly, such set-preference statements can be naturally
transformed into conditional preference statements over attributed objects.

The Specification Language. Most properties of sets of objects which are important for
users when specifying their preferences take the forms: (1) “at least one object in the set satisfies

C=cand D =d or A = a; (2) the number of objects satisfying C = c is 2. Let L the propositional
language where the propositions are of the form X = x, where X is an attribute in the set V of
attributes and x € dom(X). An object 0 € O satisfies X = x if o[X] = x. This notion of
satisfaction is extended to formulae ¢ € L as usually in Propositional Logic. It is denoted by
0 |= ¢. Now we consider the following class of properties C over sets of objects : (| ¢| 0n),
where p € £, f € {=, <, 2, >, <}, n € N. Using such statements, the user is able to express the

properties about sets of objects which may affect her preferences. These properties refers to
the number of objects in the selected subset O of objects verifying some constraints. The
following example illustrates these properties:

Preferences over Objects, Sets and Sequences 63

Example 10 Let us consider the situation depicted in Example 2, but with an extra attribute
standing for the film title. So, V = {G,D, T}. Let us suppose the following properties which
affect user’s preferences about a film program: the fact the it contains at most two Woody
Allen’s comedies, at least two Hitchcock’s thrillers and no dramas. This can be specified by
the following set-preference properties:

Pi: (|G=cAD=w]| <2)

Py (|G=tAaD=h|22)Ps: (|G=d]| =0)

Let us consider the following set of films: O = {(c,w, 1), (cw,), (cw, t3), (d, n, ta), (, h, ts5), (¢,
h, ts)}. For this set we have P1(O) = false, P»(0) = true and P3(0) = false.

Now, let us consider a set of properties P = {Py, ..., P} € C. Each property P;can be treated as
an attribute taking values in the set {true, false} (dom(P;) = {true, false}). Each subset of
objects O c O corresponds to an “object” in V = dom(P1) X x dom(P,). That is, abstractly,
each subset O can be viewed as a vector of truth-values (an object). Moreover, any
preference order over objects in V implicitly induces a preference order over sets of objects
of O. So, in order to specify preferences over sets of objects, the user must simply specify (1)
which are the properties about sets that affects her preferences and (2) her specific
preference rules involving the validity of these properties. After such specifications, the
problem of extracting a preference ordering over sets of objects satisfying the user’s
requirements is reduced to the problem of extracting a preference ordering over objects.
Thus, we can use one of the formalisms introduced in the previous section for reasoning
with preferences over objects in order to infer a preference ranking over sets of objects. The
following example illustrates this idea.

Example 11 Let us consider the situation of our Example 10. Let us suppose the user
specifies the following preference statements: (1) She prefers programs containing at most
two Woody Allen’s comedies; (2) For programs containing more than two Woody Allen’s
comedies she prefers a program containing at least one drama; (2) For programs containing
no dramas he prefers a program containing at least two Hitchcock’s thrillers. These
preference statements can be represented by the TCP-Net depicted in Figure 4.

®)
e false: false > true

@ true: true > false

Fig. 4. A TCP-Net representing set-preference statements

4. Preferences over sequences of objects

In this section, we present our formalism allowing to specify compact preference statements
provided by the users. First, we will formalize the notion of temporal conditions used for
ranking sequences of objects. By viewing each object in a sequence c as a state, we propose

64 Tools in Artificial Intelligence

to use the formalism of Propositional Linear Temporal Logic (PTL) to capture the desired
properties of sequence of objects, which we call temporal conditions. After formalizing our
temporal conditions, we introduce the language TPref for expressing conditional
preferences over sequences of objects. Preference statements in TPref use temporal
conditions in their formulation.

4.1 Temporal conditions

The language we use for expressing temporal condition is basicly the Propositional
Temporal Logic (PTL), adapted to our context. In PTL, the basic formulae are propositional
variables py, ..., px. In our case, basic formulae or propositions are of the form X = a where X €
V and a € dom(X). In order to emphasize the fact that our language assume a particular
basic formula format, we will call it STL (for Simple Temporal Logic) instead of PTL. We
stress however that both logics are essentially the same.

Definition 6 (The language STL for temporal conditions) The STL formulae are defined as
follows: (1) true and false are STL formulae. (2) if P is a proposition then P is a STL formula.
(3) if F and G are STL formulae then F A G, F v G and —F are STL formulae. (4) if F and G are
STL formulae then F Until G and F Since G are STL formulae. A temporal condition is a STL
formula. If F is a temporal condition, we denote by Attr(F) the set of attributes appearing in
F.

Next, we present the semantics of temporal conditions. Temporal conditions are evaluated
over sequences of objects. A sequence of objects of O is a structure consisting of a set of objects
{o1, 02, ..., o} with an (temporal) ordering 01 < 02 < ... < oy, telling us that o; comes before 0;+1.
We denote this structure simply by ¢ = (01, 0, ..., 0x). If 6 = (01, ..., o) then k is called the
length of ¢ and is denoted by |c|. We denote by Seq(O) the set of sequences of objects in O

and by Seq,(0O) the set of sequences of length 1 in Seq(O).

Definition 7 (STL Semantics) The notion of satisfaction of a STL formula by a sequence of
objects 6 = (01, ..., 0x) at a state i € {1, ..., k} (denoted by (o, i) | = F) is inductively defined as
follows: (1) (o, i) |= (X = a) iff 0i[X] = a; (2) (5,0) |= FAGiff (5, i) |=Fand (o, i) |=G;
(@) (c,i) |=FvGiff(c,i) |=For (o, i) |=G;(4) (o, 1) |=—Fiff (5,i) |#E

(5) (o, i) | = F Until G iff there exists j such that i <j < |o| and (o, j) |= G and for all k such
thati <k <jwe have (s, k) |=F.

(6) (o, i) | = F Since G iff there exists j such that 1 <j <iand (o, j) |= G and for all k such that
j<k<iwehave (o, k) |=F.

We say that o satisfies a STL formula F (denoted by ¢ |=F) if (o, k) |=F, wherek = |c|. We
say that F is satisfiable if there exists ¢ € Seq(O) such that ¢ |= F. The formula true (resp.

false) is satisfied by any sequence (resp. by no sequence) ¢ € Seq(0). We say that two STL

formulae F,G are equivalent iff for every sequence o, o |= F iff ¢ |= G. We say that F,G are
globally equivalent (g-equivalent) iff for every sequence o, (o, i) |= Fiff (5,i) |=G, foralli
1., |ol})

Derived Formulae:

Prev F = false Since F (“in the previous state F”); Next F = false Until F (“in the next state
F”); First = = Prev true ("I am at the first state”); Last = = Next true (“I am at the last state”).; ¢F
= true Since F (“Sometimes in the past F”); OF = true Until F (“Sometimes in the future F”); mF =
—¢—F (“Always in the past F”); oF = ~0—F (meaning “Always in the future F”)

Preferences over Objects, Sets and Sequences 65

A very important property verified by PTL formulae (and consequently, by STL formula) is
the separability property: it says that every PTL formula is g-equivalent to a boolean
combination of pure past, pure future and pure present formulae. Let us define these kind of
formulae:

Definition 8 (Present, Past and Future Formulae) A pure present formula is inductively
defined by the following rules: (1) a proposition X = a is a pure present formula. (2) a
boolean combination of pure present formulae is a pure present formula. A pure past
formula (resp. a pure future formula) is inductively defined as follows: (1) if F and G are pure
present formulae then F Since G (resp. F Until G) are pure past formula (resp. a pure future
formula). (2) If F and G are pure past formulae (resp. pure future formulae) then F Since G
(resp. F Until G) is a pure past formula (resp. a pure future formula). (3) a boolean
combination of pure past formulae (resp. pure future formulae) is a pure past formula (resp.
a pure future formula). We say that a formula F is separated if F is of the form Fiv ... v F,,

with each F; of the form F{ A F/ A F, , where F is pure present formula, F; is a pure

future formula and F; is a pure past formula.

From a semantic point of view, the pure present, pure past and pure future formulae verifies
the following properties which are easily proved by induction on the formulae construction.
Proposition 1 Let F be a STL formula.

e Fisa pure present formula iff for all 6 = {0y, ..., 0i-1, 0;, 0i+1, ..., 0k) € Seqi(O) we have: (o,
i) |= ¢ iff (¢, i) |= ¢ for any sequence ¢’= {0y, ..., 0i-1, 0}, 0i+1, ..., 0k) € Seqi(O) which
differ from o only at state i.

e Fis pure past formula iff for all 6 = (01, ..., 0i-1, 0y, ..., 0k) € Seqx(O) we have: (5, 1) |=¢
iff (o', i) | = ¢ for any sequence ¢’ = (0y, ..., 0i-1, 0}, ..., 0}).

e Fis pure future formula iff for all ¢ = {0y, ..., 0;, Oi+1..., 0k) € Seqr(O) we have: (c,1) |=¢
iff (¢, i) | = ¢ for any sequence ¢’ = (0}, ..., 0}, Oj+1, ..., Ok).

Intuitively, pure past formulae are not “aware” of what is happening in the current state or
in future states. Pure present formulae are not “aware” of what has happened in the past
states or of what is going to happen in future states. And pure future formulae are not
“aware” of what is happening in the current state or has happened in past states.
Theorem 5 (Separation Theorem (Gabbay, 1989)) Let F be a STL formula. Then F is g-
equivalent to a separated formula.
For instance, 0((X = a) A m(Y = b)) is not separated but is equivalent to the separated formula
(Y =b)A(Y =b)A((Y = b) Until (X = a)). The property of separation of propositional temporal
formulae is not trivial. In fact, separation is closely related to the expressivity power of a
temporal language. For details on this important subject see (Gabbay, 1989). For a discussion
about open problems concerning the complexity of separating a formula into its past, future
and present components see (Hodkinson & Reynolds, 2005).

4.2 A temporal preference language

Now, we introduce the specification language for our temporal preference model. A
temporal preference will be characterized by a set of temporal conditional preference rules that
we formally define next.

66 Tools in Artificial Intelligence

Definition 9 (Temporal Conditional Preference Rule) Atemporal conditional preference rule
(or tcp-rule) is an expression of the form: ¢ : F —» (X =x > X =x") where X € V , x, ¥ €
dom(X) and F is a STL separated formula. A simple tcp-rule is a tcp-rule where the temporal
condition contains a unique disjunct. It is easy to see that a tcp-rule is equivalent to a set of
simple tcp-rules.

Definition 10 (Temporal Conditional Preference Theory) A Temporal Conditional Preference-

Theory is a finite set ® of simple tcp-rules F — (X = x) > (X = x"), where X ¢ Attr(Fo). In what
follows, sometimes it will be useful to use the following notation for the elements appearing
in a tcp-rule ¢: F_ A Fi A F denotes its temporal condition and (X, = x¢) > (Xp = x'y)
denotes the expression appearing in its right side.

Example 12 Let us consider the situation of our film festival program presented in Example
1. The statements are expressed by the following tcp-rules:

1. ¢:(G=c)—>D=w)>D =)

2. ¢p:(G=d)— (D =n)> (D =w). Here, the conditions in the tcp-rules are pure present
formulae.

3. 3: First » (G = ¢) > (G = d). Here, the condition in the tcp-rule is a pure past formula
since First = Prev False.

4. @4:Prev(G=¢) - (G=d)>(G=¢)
¢s: Prev((G =d) A (D =w)) = (G=c¢) > (G=4d)

s : Prev((G = d) A (D = n)) — (G = d) > (G = ¢). Here, the conditions in the tcp-rule are
pure past formulae.

7. 7 (UG =4d) A &G =c)) - (G=c) > (G = d)). Here, the conditions in the tcp-rules are
separated formulae of the form F- A F+ (with pure past and pure future components
only).

The ord};)ring induced by a Temporal Preference Theory. First of all we will show how two

sequences in Seq(0), differing at one single position i, can be compared via a temporal

preference theory. Afterwards, we show how two sequences in Seq(0), differing in k

positions iy, ..., ixcan be compared.

Definition 11 (Sequences differing at one single position) Let ¢ be a tcp-rule. Let Ry be the

relation over Seq,(O) defined as follows: if 6 = (01, ..., 0,) and o’ = (0 ;,..., 0 ;) then 6Ryc’
iff there exists j {1, . . ., n} such that: (1) 0;# 0 ; ando;=o; foreveryie {1,..., n]\{j}; 2) (o,
j) |=Feand (¢, j) | = Fy; (3) 0j[X¢] = xpand 0 [Xe] = x; (4) Forevery Y e V\ {X¢}, 0j[Y] =
o', [Y']. If such position j exists, it is unique and denoted by 5(c, ¢').

Thus, two sequences of the same size can be compared via Ry only if they differ at one single
position. Roughly speaking, in order to compare two sequences differing at k > 1 positions,
via a temporal conditional preference theory ®, we will consider the union of Ry, for pe®

and the transitive closure of this union. More precisely: Given a set ® of tcp-rules, we denote

by Re the set | J R, and by >¢ the transitive closure of Re. We say that o is preferred to o’

ed

Preferences over Objects, Sets and Sequences 67

w.r.t. the theory ® if 6 >» ¢’. Lemma 1 below gives a necessary and sufficient condition in

order to a sequence ¢ be preferred to a sequence ¢” w.r.t. ®. Before stating this result, we

need the following definition:
Definition 12 (Improving Flipping Sequence (IFS)) Let 6 and ¢’ be two sequences of length

n. We say that there exists an Improving Flipping Sequence (IFS) from ¢ to ¢’ w.r.t ¢ if there
exists a set of sequences {cy, . . ., 6p+1} and a set of tcp-rules {¢y, . . ., ¢} in ® such that 61 =,
op+1= 0 and ok Ry or+1 for every k e {1, ..., p}.

Lemma 1 Let ® be a set of tcp-rules. Let ¢ and ¢” be two sequences of length n. Then ¢ ># ¢’
iff there exists an IFS from ¢ to ¢’ w.r.t. .

Example 13 Let us consider the theory ® = {¢1, ..., @7} of Example 12 and the following
sequences: 61 = ((¢, n), (d,w)), c2= ((d, n), (dw)) and o3 = {(d, n), (c;w)). Note that 5(cy, 52) =1

and §(c2, 03) = 2. So, o1 and o3 differ in two positions, 1 and 2. We have o1 Ry7 62 and 62 Res
o3. Then there exists an IFS from o7 to o3, and so 61 > 63.

As we see, a temporal conditional preference theory ® is a compact way of expressing
preference between sequences of objects: we can reason with any theory ® the user gives us,
provided this theory is consistent. More precisely:

Definition 13 (Consistency) Let ® be a temporal preference theory. We say that ¢ is
consistent iff >3 is irreflexive, that is, ># is a partial order over Seq,(0), for all n > 0 (remind

that, by definition, ># is transitive; and that transitivity and irreflexivity imply anti-
symmetry).

4.3 Consistency test
The main purpose of this section is to give necessary and sufficient conditions for a temporal

conditional preference theory ® to be consistent. In this paper, we only give necessary and
sufficient conditions when tcp-rules in ® use only conjunctions of pure past and pure
present formulae of STL, i.e. for all pe ®, Fo = F ~F 2 In the following, we denote by

TPref* the set of all tcp-rules of this form.
A Method for Testing Consistency. We will show (Theorem 6) that testing the consistency

of a temporal conditional preference theory ® reduces to test the consistency of a number
I[(®) of conditional preference theories over objects. Before proving this result, we need to
introduce some notation first.

Let 6 = (01, ..., o) be a sequence in Seq,(O) and 0,+1 be an object in O. In the following, we
denote by rlo (for Remove Last Object) and add the operators defined by: rlo(c) = (01, . . .,
op-1) and add(c, oy+1) = (01, . . ., O, Ou+1). Let ¢ be a tcp-rule where F, = E_ A FZ A F;. We
denote by 0 the cp-rule defined by: ¢0: F — (X¢= xy) > (X¢= x;). Given a tcp-theory ® and
a sequence ¢ € Seq(0), we define for every integer j € {1, ..., ||} the cp-theory I'}(®, o) as
follows:

68 Tools in Artificial Intelligence

T5(®,0) = {¢° | ¢ € ® A (0,5) = Fy AFS Y.
Intuitively, I}(®, o) is the set of the present components of the tcp-rules conditions whose
past and future components are satisfied by ¢ at position j. Note that if ¢ and ¢ are two
sequences in Seq,(O) such that rlo(c) = rlo(c’) then I'y(®,06) = I'i(®,6”). The following lemma
gives a necessary condition for two sequences ¢ and ¢’ satisfy ¢ ># ¢’, where ® is a theory in
TPref* (without future components).
Lemma 2 Let @ be a tcp-theory such that for every ¢ € ®, ¢ € TPref*. For every pair of

sequences 6 = (01, ..., opr1) and 6" = (0 ;, ..., 0,) in Segu+1(O) with n > 0, if 6 >¢ ¢’, then

rlo(c) >a rlo(c’), or rlo(c) = rlo(c”) and 0,+1>T0 ;,, where I' = T'141(®,0) = I’ (P,07).

Proof. Letc = (01, ..., 0ps1) and 6" = (0 ;, ..., 0) be two sequences such that c >ec". If &

n+l

>3 o, it means that there exists an IFS from o to ¢’ w.r.t. ®. Thus, there exists a set of
sequences {11, . . ., Tp+1} in Seq,+1(0) and a set of tcp-rules {¢, . . ., @y} such that 11 = o, Tp+1 =
o’ and for every k € {1, ..., p}, & Rek Tr+1. Forevery k € {1, ..., p + 1}, let T, be the sequence
in Seq,(O) defined by t; = rlo(t). It can be easily seen that for every k € {1, .. ., p}, we have:

o 1, =1, iffu[n+1]#wnaln+1],or

o 1, #1,, if 7 [n+1] = ye[n+1]. In that case, we have j = &(t, 1) =8 (1, ,7,,,) <n+ 1.

Therefore, since ¢ € TPref*, (1, j) |= Fexand (t+1,) |= Fex implies that (t;, j) |= Fex

and (t,,, j) | = Fex. Since tx Rex T+1, it follows that we also have 1), Ry 7,

+17/ k+1°

We now have to distinguish two cases:

1. Assume that there exists an integer k € {1, .. ., p} such that t, #t,,, . In that case, since

e+l

T, =rlo(o)T,

shows that rlo(c) > rlo(c”).

, = rlo(c’), we have shown that there exists an IFS from ¢ to ¢’ w.r.t. ®. It

2. Assume now that for every k € {1, ..., p}, we have t; =1 . It means that for every k
{1, ..., p+1}, rlo(w) = rlo(c) = rlo(c’). Moreover, since tx Rox Tr+1 and 8(tx, Tr+1) = n+1, we

have (1, n + 1) |= Fe. It follows that (w, n + 1) |= F_, . Thus, since rlo(w) = rlo(c), we

have (o,n+1) [=F , and ¢, € I(®,6). Now, it is easy to see that (ti[nn + 1] = 041) >r

(tp+1[n + 1] = 0:,,,) where I = T';+1(®P,0), which completes the proof of Proposition 2. m
We now are ready to state the main result of this section. Its proof uses Lemma 2.
Theorem 6 Let ® be a set of tcp-rules such that for every ¢ € ®, p € TPref*. ® is consistent iff
for every sequence c of length k > 0, I'x(®,0) is consistent.
Proof. In order to prove that ® is consistent, we have to show that >¢ is irreflexive. First, we

show that if for every sequence o of length k > 0, T(®,0) is consistent, then the relation >4 is
irreflexive. We show this property by induction on the length of sequences.
Let o = (0) be a sequence of length n = 1. If 6 >¢ 5, it means that there exists an IFS from ¢ to o,

i.e. a set of sequences {(01), . .., (0p+1)} and a set of tcp-rules {¢, . . ., ¢y} such that 0 = 0= 0p+1

Preferences over Objects, Sets and Sequences 69

and for every k € {1, ..., p}, (0k)Rek (0x+1). By Definition 11, for every k € {1, . . ., p}, we have
({ox), 1) |= Fer. Thus, we have ({ox), 1) |=F ,, and gpf e I'(®,(ox)) =T 1(P,(0)) because rlo({ox))

ok

= rlo((0)). Finally, for every k € {1, . . ., p}, we have ox R , ox1. It shows that 0 >r 0 with

I' = T'1(®,(0)), which contradicts the hypothesis that I (®,0%) is consistent for every sequence

orof length k > 0 and proves that >, is irreflexive on Seqi(O).

Assuming that >¢ is irreflexive on Seq,(O), we now have to prove that > is a irreflexive on

Segqq+1(O). Suppose that there exists a sequence 6,+1= (01, . . ., 0p+1) in Segu+1(O) such that 6,41

>o 6,+1. Using Proposition 2, we have to distinguish two cases:

1. If rlo(ou+1) >@ rlo(o,+1), it shows that >e is not irreflexive on Segq,(O), which contradicts
the hypothesis.

2. If rlo(op+1) = rlo(ou+1), then we have 0,+1 >T 0,41 Where I' = T}141(®,0,+1). It shows that >ris
not irreflexive, which contradicts the hypothesis that T'i(®,0x) is consistent for every
sequence oy of length k > 0.

So, we have proved by induction that if for every sequence ¢ of length k > 0, I'W(®,0) is

consistent, then >4 is a SPO on Seq,(O) for every integer n > 1.

We now prove that if >¢ is a SPO, then I't(®,0) is consistent for every sequence o of length

k> 0. Assume that there exists a sequence o of length k such that I" = I'y(®,c) is not consistent.

It means that >4 is not irreflexive, i.e. that there exists an object ox+1 such that ox+1 > 0x+1. Let
or+1 be the sequence defined by oy+1 = add(c, ox+1). It is easy to see that ox+1 >¢ or+1, which
contradicts the fact that >¢is irreflexive and completes the proof. o

Theorem 6 is not true when the tcp-rules in ® contain past and future components, as we

show in the following example:
Example 14 Let @ = { @1, 2, 93, 4 } be the set of tcp-rules defined by:

o ¢1:Next(G=d)— (D=n)> (D =w)

e ¢1:Next(G=c)— (D=w)>(D=n)

o ¢:Prev(D=n)— (G=¢c)>(G=d)

o ¢2:Prev(D=w)— (G=d)>(G=¢)

Since the STL formulae ¢1 A ¢'1and g2 A ¢’2 cannot be satisfied, it is easy to see that for every
sequence ¢ of length k, T' = I'«(®, o) is locally consistent. Moreover, for every sequence ¢ of
length k, GIT(®,0)) = ({GD}, 3) is acyclic. Therefore, for every sequence o of length k,
I' =T (®, o) is consistent. We now show that ® is not consistent, which does not contradict

Theorem 6 since ® uses past and future STL formulae in the conditions of the tcp-rules.
Given the objects 01 = (¢, n), 0= (d,w), 0’1 = (cw) and 0> = (c,w), consider the sequences c; =
(01, 02), 2= (0"1, 02), 3= (0"1, 0'2) and o4 = {01, 0"2). It is easy to verify the following:

¢ o1 Re1oosince (o1, 1) |= Next(G =d), (o2, 1) | = Next(G = d), 01[D] = n and 0'1[D] = w.

e o2 Ry o3since (o, 2) | = Prev(D = w), (03, 2) | = Prev(D = w), 02[G] = d and 0'5[G] = c.

70 Tools in Artificial Intelligence

e 03 Ry ogsince (o3, 1) | = Next(G = ¢), (o4, 1) | = Next(G = c), 0'1[D] = w and 01[D] = n.

e o4 Rexorsince (o4 2) | = Prev(D = n), (o1, 2) | = Prev(D = n), 0'2[G] = c and 02[G] = d.
Thus, we have o1 >¢ o1, which shows that > is not consistent since it is not irreflexive.
Complexity Issues. In practice, the condition provided by Theorem 6 to test consistency is
unfeasible, since it involves testing consistency of the non-temporal theories I'(®, o) for
every sequence ¢ of length k. Fortunately, for some fragments of STL, we can find a very
satisfatory bound for the size of the sequences ¢ which must be considered in the tests.
Theorem 7 Let L(#, 0) be the fragment of STL whose formulae satisfy the following
conditions: (1) negation appear only in front of basic propositions; (2) the only temporal
operators are ¢ and ¢. Let F € L(#,0) be satisfiable. Then there exists a sequence ¢ such that
|o| < length(F) and such that o satisfies F. The length of a formula F (denoted by length(F)) is
the number of symbols appearing in F.

Proof. Let 6 = {0y, ..., 0x) be a sequence. A subsequence of ¢ is a sequence t = (uy, ..., Uy) such

that for all i € {1, ..., m} there exists j; € {1, ..., k} such that o, = u;. We denote the fact that 7 is

a subsequence of c by 1 < G.

Let F € STL and o = (01, ..., o) such that (o, i) |= F. We will prove that there exists a

subsequence t < o such that (1) T contains the object 0;, (2) |t | < length(F) and (3) for all

sequence ¢’ such that 1 < 6’ < o we have (¢’, i) | = F. Particularly, we can affirm that (7, i) |=

F,sincet <t <o0.

The proof is by induction on the structure of F.

e If Fis atomic and (o, i) |=F, then let t =< 0;>. We have that t < 5, |t | =1 = length(F)
and for all 6" such that T < 6" < 6 we have (¢’, i) | = F, since ¢’ contains the object o;.

e If Fis ~F;, where F; is an atomic formula, the proof is similar: we take t =< 0; >. In this
case, |t | =1 <length(F) = 2.

e The cases where F = GvH and F = GAH do not present any difficulty and we omit it
here.

e If F=0Fand (o, i) |= F. Then there exists j > i such that (o, j) |= Fi. By the induction
hypothesis, we can affirm that there exist a subsequence t < o, such that t contains the
object 0j, |t |< length(F1), and for all ¢ verifying t < ¢’ < ¢ we have (¢, j) |= F1. If
0; € twe define v = 1. Otherwise, 1" is obtained from t by inserting the object o;in it (in
the same order as it appears in ¢). Then, it is clear that (7', i) |= 0Fy, since (7, j) |= Fi.
Moreover, t” < T + 1 = length(F). The proof is similar for F = ¢F;.

e If F=Next Fiand (o, i) |= F. Then i < |o| and (o, i+1) |= Fi. By the induction
hypothesis, we can affirm that there exist a subsequence 1 < o, such that 1 contains the
object 041, |1 | <length(Fy), and for all ¢’ verifying 1 < ¢’ < 6 we have (¢’, i +1) |= F1.
If 0; € T we define 1" = 1. Otherwise, 1" is obtained from 1 by inserting the object 0;+1 in it
(following the object 0;). Then, it is clear that (v, i) |= Next F; since (v, i + 1) |= Fi.
Moreover v’ <t + 1 = length(F). The proof is similar for F = Prev F.

According to (Sistla & Clarke, 1985), the satifiability problem for STL is NP-complete for

L(¢, 0) and PSPACE-complete for the logic STL.

Preferences over Objects, Sets and Sequences 71

Proposition 2 Let ¢ be a set of tcp-rules in TPref* such that the temporal conditions are
formula of L(#, 0). Then @ is consistent iff I'+(P, o) is consistent for every sequence ¢ of length

< length(®), where length(®) = max{ length(y) | ¢ € ®}.

Notice that if we place ourselves in a context where the universe of sequences is finite, then
there is no need to restrict the conditions of the tcp-rules to be formulae in L(¢, 0). As the
whole universe of sequences is contained in Seq,(0), for some n > 0, then in order to test

consistency of a tcp theory &, it suffices to test the consistency of the non-temporal theories

I'(®, o) for each sequence o of size k < n. In such cases, there is no relation between the size

of the temporal conditions and the maximal size of the sequences to be tested. A situation
where restricting the type of the formulas considered in the conditions of tcp-rules is
worthwhile is when working in a context where the universe of sequences is potentially
infinite, that is, the maximal size of the sequences evolves with time (for instance, in a
temporal database context).

The following proposition relates the result stated in Theorem 4 and the result given in
Proposition 2.

Proposition 3 Let ® be a tcp-theory and I(®) be the length of ®. Let us suppose that G(®) is

acyclic and for every ¢ € ®, ¢ € TPref*. Then, ® is consistent iff for every sequence ¢ of

length k < 1(®), I'(®, o) is locally consistent. Besides, if all variables in V are binary, then

consistency of ® can be determined in time proportional to |T'|2x |V | x 2 @

4.4 Finding optimal sequences

In this section, given a tcp-theory ®, we show how to determine the optimal sequences in
Seqq(0), i.e. the maximal sequences in Seq,(0) with respect to >& that satisfy some set of
simple temporal constraints. Our approach is incremental, meaning that for every integer n,
we show how to compute the optimal sequences in Seq,+1(0) from the set of optimal
sequences in Seq,(O).

First, we specify the set of temporal constraints that we consider. For every integer k > 0, let
At (X = a) be the temporal formula defined as (Isx A(X = a))ve(Isy A(X = a)) where Is; is
defined by induction on k as: Is; = First and Is;+; = Prev Is; for every integer i > 0. We can see
that for every sequence ¢ € Seq(0), o |= At(X = a) iff (o, k) |= (X = a). Intuitively, the
formula Aty(X = a) means that in a sequence of objects, the object at state k has value a for the
variable X.

In the following, we denote by AtState the set of formulas of the form Aty(X = a). Given a
subset C of AtState, we say that C is consistent if there exists a sequence ¢ € Seq(O) such that
for every F € C, o satisfies F (denoted by ¢ |= C). We can easily see that C is consistent iff for
every pair (F, F') in C 2where F = Aty(X =a) and F' = Aty (X' =a'), if k =k and X = X, then
we have a = a’. Given a consistent subset C of AtState and an integer k, we denote by: (1)
Attri(C) the set of attributes X € V such that there exists a formula Aty(X = a) in C. (1) Cx the
subset of C defined by: Cx = {At(X =a) € C | (i £k)}. (2) Tuple(C) the set of present STL
formulae defined by: Tupley(C) ={(X=a) | At(X=a) e C}.

72 Tools in Artificial Intelligence

Example 15 Let C = {At;(G = ¢),Atx(G = d),At> (D = n)}. It is easy to see that C is consistent.
Moreover, Tuple1(C) = {(G = c)} and Tuple(C) = {(G = d), (D = n)}. Finally, we have C; =
{Ati(G=c¢)} and C;=C.

Let C be a consistent subset of AtState. Given a consistent TPref theory ®, we now show
how to compute for every integer 7, the subset S,(®, C) of Seq.(O) defined by: Sy(®, C) =
maxse{c € Seq,(O) | o |=C.}). The set S,(D, C) contains the optimal sequences in Seq,(O), i.e.
the maximal sequences in Seq,(O) w.r.t. >¢ that satisfy the constraints in C,.

Let o be a sequence of length k. In the following, given the cp-theory I = I'(®, ox) and the set
of present STL formula 7 = Tuplei(C), we denote by BestObjs(I', T') the set of optimal objects
in O that satisfy 7, i.e.

BestObjs(I', T) = max>r{o € O | o |= T}. It is shown in (Wilson, 2004) how to compute this set
of optimal objects.

Finally, given a tcp-theory ® such that for every tcp-rule ¢ € ®, ¢ € TPref*. We can notice
that for every sequence ¢ and o’ of length n + 1, if rlo(c) = rlo(c’), then I'+1(®,0) = I'1+1(®,0”).
Therefore, for every sequence o of length #n, we introduce the following notation: I'*(®, c) =
I'.(®, add(s, 0)) where o is any object in O.

We now state the following theorem that shows how to compute S,+1(®, C) from S,(®, C).
Theorem 8 Let ¢ be a consistent tcp-theory such that for every tcp-rule ¢ € ®, ¢ € TPref*.
Let C be a consistent subset of AtState. For every sequence ¢ = (01, . . ., 04+1) € Sequ+1(0), o is
in Sp(®, C) iff rlo(o) € Su(P, C) and 0,41 € BestObjs(I', T) where I' = T*(®, rlo(c)) and 7 =
Tupley+1(C).

Proof Assume thatc = (01, . . ., 04+1) is in Sp+1(®, C). Let o, = rlo(0). If 6, ¢ Su(®P, C), it means
that there exists a sequence 6", € S,,(®, C) such that 6", |= C and 6", >4 6,.. Since ¢’ >3 o,
there exists an IFS from ¢’, to o, w.r.t. ®, i.e. there exist a set of sequences {1y, . . ., 1«1} and a
set of tcp-rules {¢, . . ., ¢y} such that 11 = 6", 1«1 = o, and for every ke {1, ..., p}, t Rox Ts1.

For every k {1, ..., p + 1}, let s = add(ty, ox+1). Since for every tcp-rule Foe = F,

AF ik and
Tk Rek Tk +1, we also have t'x Ry vk +1. Thus, since 1’541 = o, there exists an IFS from 1’1 to ¢
w.r.t. ®, ie. t'1 >¢ 6. Moreover, we can easily see that t; |= C. Thus, we have 11 >¢ ¢ and
11 | = C which contradicts the fact that ¢ €S,+1(®, C).

On the other hand, assume that 0,+1 ¢ BestObjs(I, 7). It means that there exists an object 0",+1
€ BestObjs(I, T) such that 0'y+1 |= T and 0’41 >r 04+1. Let ¢’ = add(cy, 0'n+1). We can easily
show that ¢’ >¢c and ¢’ | = C where 6" = add(c,, 0’4+1) which contradicts the hypothesis that
c is in Si+1(P, C). Thus, we have proved that if ¢ is in Sy+1(®, C), then rlo(c) € Su(®, C) and

0n+1 € BestObjs(T, T).

Preferences over Objects, Sets and Sequences 73

Conversely, assume that 6, = rlo(c) € S,(®, C) and 0,+1 € BestObjs(I, 7). If ¢ is not in S,+1(P,

C), then there exists a sequence 6" = (01, . .., 0'y+1) € Su1(P, C) such that 6" >ecand ¢” |=C.

Using Proposition 2, we now distinguish two cases:

. Ifrlo(c’) ># rlo(c), then it is easy to see that we also have rlo(c”) | = C,. Thus rlo(c”) >3 o,
and rlo(c”) | = Cs, which contradicts the fact that 6, € Sy(®, C).

o Ifrlo(c”) = rlo(c”), then 0" y+1 > r0y+1 With T’ = T'41(®,0,+1). Moreover, we can easily see that
0’ 41 | = Tsince 6’ | = C. Thus, we have 0’41 >ro,+1 and 0’,+1 | = 7, which contradicts the
fact that 0,+1 € BestObjs(I, T).

Thus, we show that if rlo(c) € S\(®, C) and 0,+1 € BestObjs(I’, T), then o is in Sy+1(P, C),

which completes the proof.
Using Theorem 8, it is easy to see that for every consistent tcp-theory and every consistent

subset C of AtState, we have S,(®, C) = BestSeqs((),®, C, n) where () represents the empty

sequence and BestSegs is the algorithm presented in Figure 5.

Function BestSeqs(o, ®,C,n)

Input: A sequence o of length k such that o |= Cg
A consistent tcp-theory ®
A consistent subset C of AtState
Aninteger n > k
Output: The set of optimal sequences S of size n and
prefix o that satisfy C,,

1. LetS =0 and k = |o|

2. If (k < n)

3. LetI' =T"(®,0)

4. Let 7 = Tupler+1(C)

5. For every oi4+1 € BestObjs(I', T) do
6. Let o’ = add(o, 0k+1)

7. 8 = SU BestSeqs(a’,®,C,n)
8. End for

9. Return §

10. Else

11. Return §

Fig. 5. Computation of Optimal Sequences

Example 16 Let ® = {1, . . ., we} be the tcp-theory presented in our Running Example. Let C
= {At(G = ¢), At3(D = w)}. We show in this example how the set S3(®, C) is computed using
the algorithm presented Figure 5. Initially, we compute S = BestSegqs({),®, C, 3). First, we
have I'1 =T*(®, ()) = {¢1, @2} since Fyr and Fy; are STL formulae in Present. Moreover, we have
T1 = Tupley(C) = {(G = c)}. Thus, we compute BestObjs(I', 71) = {01} where 01 = (G = ¢,D = w).
Then, we build the sequence ¢’y = add((), 0’1) = (01) and compute S = BestSeqs(c'1,®, C, 3).

74 Tools in Artificial Intelligence

Computing S = BestSeqs(c’1,®, C, 3), we successively obtain I'> = T*(®, (01))= {1, ¢2 <p2 }, Ta=
Tuplex(C) = 3 and BestObjs(I'y, 12) = {02} where 0= (G = d,D = n). Thus, we build the sequence
o’2=add({01), 02) = (01, 02) and compute S = BestSeqs(c2 P, C, 3).

Then, computing S = BestSeqs(c’2,®, C, 3), we successively obtain I's = T*(®, (01, 02)) = {¢1, ¢2,
¢+), Ts = Tuples(C) = {(D = w)} and BestObjs(Ts, T5) = {os} where 03 = (G = d,D = w). Thus, we
build the sequence 63 = add ({01, 02), 03) = (01, 02, 03) and compute S = BestSeqs(c’3,®, C, 3).
Since |63 | = 3, we finally obtain S = BestSeqs((),®, C, 3) = {(01, 02 03)}. Note that in this

example, we only obtain one optimal sequence. In general, we can obtain a set of optimal
sequences since >¢is a partial order.

5. Conclusion and further research

In this chapter, we have presented several approaches for treating preferences over objects,
sets of objects and sequences of objects. The main contribution is centered in Section 4 which
presents a method for preference elicitation and reasoning over sequence of objects. An
algorithm for finding the most preferred sequences satisfying a set of temporal constraints is
introduced. A lot of work has to be done to improve our approach. (1) Concerning the
algorithm for finding the best sequences, we intend to generalize our method in order to
treat more general temporal constraints. (2) Concerning the expressivity power of our
preference language: we note that in TPref the temporal aspect is related only to the rule
conditions, that is, only to the left side of the preference rules. We are not able, for the time
being, to treat preference statements such as I prefer “this” before “that”. (3) Concerning the
consistency test: we must investigate methods to ensure consistency when the temporal
conditions involve both past and future operators. (4) Concerning dominance queries: we
have to investigate efficient methods to determine, given two sequences, which is the
preferred one. That implies investigating efficient methods to decide, given two sequence, if
there exists a IFS between them. (5) Finally, concerning a database context, the work
proposed in this paper is a first step towards incorporating a formalism for reasoning with
preferences over sequences of objects into a temporal relational query language, and so,
building a bridge between the two disciplines (Al and Temporal Databases).

6. References

Bacchus, F.; Boutilier, C. & Grove, A. (1996). Rewarding behaviors, Proceedings of the
Thirteenth National Conference on Artificial Intelligence (AAAI-96), pp 1160-1167,
Portland, Oregon, USA, 1996. AAAI Press / The MIT Press.

Bacchus, F. & Grove, A. (1995). Graphical models for preference and utility. In Proceedings of
the Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 3-10, Montreal.

Bacchus, F. & Grove, A. (1996). Utility independence in qualitative decision theory,
Proceedings of the Sixth International Conference on Principles of Knowledge
Representation and Reasoning, pp. 542-552, Cambridge.

Bienvenu, M.; Fritz, C. & Mcllraith, S. A. (2006). Planning with qualitative temporal
preferences. KR, 134-144, 2006.

Preferences over Objects, Sets and Sequences 75

Boutilier, C.; Brafman, R.; Geib, C. & Poole, D. (1997). A constraint-based approach to
preference elicitation and decision making, AAAI Spring Symposium on Qualitative
Decision Theory, Stanford, 1997.

Boutilier, C.; Brafman, R.; Hoos, H. & Poole, D. (2004). Cp-nets: A tool for representing and
reasoning about conditional ceteris paribus preference statements. Journal of
Artificial Intelligence Research, 21:135-191, 2004.

Brafman, R.; Domshlak, C. & Shimony, S.E. (2006a). On graphical modeling of preference
and importance. Journal of Artificial Intelligence Research, 25:389-424, 2006.

Brafman, R.; Domshlak, C. & Shimony, S.E. (2006b). Preferences over sets. AAAI 2006.

Chomicki, J. (2003). Preference formulas in relational queries. ACM Transactions on Database
Systems, pp. 427-466, 2003.

de Amo, S. & Giacometti, A. (2007). Temporal Conditional Preferences over Sequences of
Objects. 19th IEEE International Conference on Tools with Artificial Intelligence, Patras,
Greece, pp. 246-253, 2007.

des Jardins, M. & Wagstaff, K. (2005). Dd-pref: A language for expressing preferences over
sets. AAAI pp. 620-626, 2005.

Domshlak, C. & Brafman, R. (2002). CP-nets - reasoning and consistency testing, Proceedings
of the Eighth International Conference on Principles of Knowledge Representation and
Reasoning, pp. 121-132, Toulouse, France, 2002.

Doyle, J.; Shoham, Y. & Wellman, M. (1991). A logic of relative desire (preliminary report),
Proceedings of the Sixth International Symposium on Methodologies for Intelligent
Systems (ISMIS 91), Lecture Notes in Computer Science, pp. 16-31. Springer-Verlag,
1991.

Endres, M. & Kiefiling, W. (2006). Transformation of tcp-net queries into preference database
queries. Proceedings of the ECAI 2006 Multidisciplinary Workshop on Advances in
Preference Handling Riva del Garda, Italy, August 2006, pp. 23-30.

Gabbay, D. M. (1989). The declarative past and imperative future: Executable temporal logic
for interactive systems. Lecture Notes in Computer Science, Volume 398, pp 67-89.

Springer-Verlag, 1989. Hodksinson, I. & Reynolds, M. (2005). Separation - past, present, and
future. We Will Show Them! Essays in Honour of Dov Gabbay, Volume 2, 2005.

Khatib, L.; Morris, P.; Morris, R.A. & Rossi, F. (2001). Temporal Constraint Reasoning With
Preferences. Proceedings of the 17th International Joint Conference on Artificial
Intelligence, pp. 322-327, 2001.

Kieflling, W. (2002). Foundations of preferences in database systems. Proceedings of 28th
International Conference on Very Large Data Bases, Hong Kong, China, pp. 311-322,
2002.

Kielling, W. & Kostler, G. (2002). Preference SQL - design, implementation, experiences.
Proceedings of 28th International Conference on Very Large Data Bases, Hong Kong,
China, pp. 990-1001, 2002.

Kumar, T.K.S. (2007). Fast (Incremental) Algorithms for Useful Classes of Simple Temporal
Problems with Preferences. Proceedings of the Twentieth International Joint Conference
on Artificial Intelligence, 2007.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, San Mateo, 1988.

Prestwich, S. D.; Rossi, F.; Venable, K. B. & Walsh, T. (2005). Constraint-Based Preferential
Optimization. AAAI 2005, pp. 461-466, 2005.

76 Tools in Artificial Intelligence

Prior, A. N. (1997). Past, Present and Future, Oxford: Clarendon Press, 1967.

Sistla, A. P. & Clarke, E.M. (1985). The complexity of propositional linear temporal logic.
Journal of the ACM, 32(3), pp 733-749, 1985.

Son, T.C. & Pontelli, E. (2006). Planning with preferences using logic programming.
TPLP,6(5):559-607, 2006.

Wilson, N. (2004). Extending cp-nets with stronger conditional preference statements. AAAI,

pp. 735-741, 2004.

5

Competency-based Learning Object
Sequencing using Particle Swarms

Luis de Marcos, Carmen Paggés, José Javier Martinez
and José Antonio Gutiérrez

University of Alcald.

Spain

1. Introduction

Brusilovsky (1999) envisaged Web-based adaptive courses and systems as being able to
achieve some important features including the ability to substitute teachers and other
students support, and the ability to adapt to (and so be used in) different environments by
different users (learners). These systems may use a wide variety of techniques and methods.
Among them, curriculum sequencing technology is “to provide the student with the most
suitable individually planned sequence of knowledge units to learn and sequence of
learning tasks [...] to work with”. These methods derive from the adaptive hypermedia field
(Brusilovsky, 1996) and rely on complex conceptual models, usually driven by sequencing
rules (De Bra et al., 1999; Karampiperis, 2006). E-learning traditional approaches and
paradigms, that promote reusability and interoperability, are generally ignored, thus
resulting in (adaptive) proprietary systems (such as AHA! (De Bra et al., 2003)) and non-
portable courseware.

On the other side, traditional approaches promote standards usage to ensure
interoperability but they lack of flexibility which is in increasing demand. “In offering
flexible [e-learning] programmes, providers essentially rule out the possibility of having
instructional designers set fixed paths through the curriculum” (van den Berg et al., 2005).
But offering personalized paths to each learner will impose prohibitive costs to these
providers, because sequencing process is usually performed by instructors. So, “it is critical
to automate the instructor’s role in online training, in order to reduce the cost of high quality
learning” (Barr, 2006) and, among these roles, sequencing seems to be a priority.

In this chapter an innovative sequencing technique that automates teacher’s role is
proposed. E-Learning standards and the learning object paradigm are encouraged in order
to promote and ensure interoperability. Learning units’ sequences are defined in terms of
competencies in such a way that sequencing problem can be modelled like a classical
Constraint Satisfaction Problem (CSP) and Artificial Intelligent (AI) approaches could be
used to solve it. Particle Swarm Optimization (PSO) is an Al technique and it has proven
with a good performance for solving a wide variety of problems. So, PSO is used to find a
suitable sequence within the solution space respecting the constraints. In section 2, the
conceptual model for competency-based learning object sequencing is presented. Section 3
describes the PSO approach for solving the problem. Section 4 presents the results obtained

78 Tools in Artificial Intelligence

from the intelligent algorithm implementation and testing in a real world situation (course
sequencing in an online Master in Engineering program). And finally, in Section 5
conclusions are summarized and future research lines are presented.

2. Competency-based sequencing

Within e-learning, the learning object paradigm drives almost all initiatives. This paradigm
encourages the creation of small reusable learning units called Learning Objects (LOs).
These LOs are then assembled and/or aggregated in order to create greater units of
instruction (lessons, courses, etc) (Wiley, 2000).

LOs must be arranged in a suitable sequence prior to its delivery to learners. Currently,
sequencing is performed by instructors who do not create a personalized sequence for each
learner, but instead they create generic courses, which are targeted to generic learner
profiles. Then, these sequences are coded using a standard specification to ensure
interoperability. The most commonly used specification is SCORM (ADL, 2004). Courseware
that conforms to SCORM’s Content Aggregation Model is virtually portable among a wide
variety of Learning Management Systems (LMSs). Though, SCORM usage hinders the
automatic LO sequencing due to its system-centered view. Other metadata-driven
approaches offer better possibilities i.e. just LO metadata will enable automatic sequencing
process to be performed, and the appropriate combination of metadata and competencies
will allow personalized and automatic content sequencing. This section describes how to
overcome these problems by defining a conceptual data model for learning object
sequencing through competencies.

2.1 Competency definition

As for many other terms, there are a wide variety of definitions that try to catch the essence
of the word competency in the e-learning environment. The confusion has even been
increased by the work developed, often independently, in the three main fields that are
nowadays primarily concerned with competencies, namely, pedagogy, human resources
management and computer science. Anyway, we consider competencies as
“multidimensional, comprised of knowledge, skills and psychological factors that are
brought together in complex behavioural responses to environmental cues” (Wilkinson,
2001). This definition emphasizes that competencies are not only knowledge but a set of
factors and that competencies are employed (bring together) in real or simulated contexts
(or environments). Conceptual models for competency definitions also use to consider this
multidimensionality. As an example, RDCEO specification (IMS, 2002a) describes a
competency as four-dimensional element (fig. 1).

The competency ‘Definition” is the record that contains general information about the
competency. Each competency can be exhibited in one or more different ‘Contexts’. And a
set of factual data must be used to ‘Evidence’ that an individual has or has not acquired a
particular competency. Finally ‘Dimensions’ are used to relate each context with its
particular evidence and to store relation information such as the proficiency level.

Some e-learning trends (RDCEO have just been mentioned) are trying to formalize
competency definitions. It is worth quoting the following specifications: (1) IMS "Reusable
Definition of Competency or Educational Objective” (RDCEO) specification (IMS, 2002b), (2)
IEEE Learning Technology Standards Committee (LTSC) “Draft Standard for Learning

Competency-based Learning Object Sequencing using Particle Swarms 79

Technology - Standard for Reusable Competency Definitions " specification (currently an

approved draft) (IEEE, 2008), (3) HR-XML Consortium "Competencies (Measurable
Characteristics) Recommendation" (HR-XML, 2006) and (4) CEN/ISSS “A European Model
for Learner Competencies” workshop agreement (CEN/ISSS, 2006).

Definition Context

.;;9@

‘ g
Evidence ¢

Fig. 1. RDCEO competency conceptual model (from (IMS, 2002a))

Every specification offers its own understanding of what a competency is (i.e. the definition
of competency) plus a formal way to define competencies (i.e. competency definitions) so
that they can be interchanged and processed by machines. A deeper analysis of these
recommendations shows that, although they do not present great differences in its own
definition of competency, great dissimilarities arise when the information that must conform
a competency definition are confronted. In this way, it could be said that IMS and IEEE
specifications are minimalist recommendations that define a small set of fields that the
competency definitions should contain (in fact, only an identifier and a name are required
for a conformant record). Deeper definitions of some dimensions that concern competencies
(namely evidence and context) are left without specification or free to developers’
interpretation. On the other hand, HR-XML specification provides competency users with a
huge set of entities, fields and relations that they must fulfil in order to get conformant
competency records (although many of them are optional too).

For the purpose of our study we just needed a universal way to define, identify and access
to competency definitions and that is exactly what RDCEO specification offers. Moreover,
RDCEO is also the oldest specification and so the most used (and the most criticized). These
factors lead us to employ RDCEO records for our competency definitions. Code fragment 1
shows a sample RDCEO competency record.

<?xml version="1.0" encoding="utf-8"?>
<rdceo xsi:schemaLocation="http://www.imsglobal.org/xsd/imsrdceo rootvlpO"
xmlns="http://www.imsglobal.org/xsd/imsrdceo rootvlp0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<identifier>
http://www.uah.es/cc/comps/CompsTaxon.xml#lIntroWeb
</identifier>
<title>
<langstring xml:lang="en">
Web, Internet and Distributed Systems Introduction
</langstring>
</title>
</rdceo>

Code 1. Sample Competency Record.

80 Tools in Artificial Intelligence

2.2 Competencies for interoperable learning object sequencing

According to RDCEO and IEEE nomenclature, a competency record is called ‘Reusable
Competency Definition” (or RCD). RCDs can be attached to LOs in order to define its
prerequisites and its learning outcomes. We have used this approach to model LO
sequences. By defining a competency (or a set of competencies) as a LO outcome, and by
identifying the same competency as the prerequisite for another LO (fig. 2), a constraint
between the two LOs is established so that the first LO must precede the second one in a
valid sequence.

Meta-Data (MD) definitions are attached to LOs, and within those definitions references to
competencies (prerequisites and learning outcomes) are included. LOM (IEEE, 2002) records
have been used for specifying LO Meta-Data. LOM element 9, ‘Classification’, is used to
include competency references as recommended in by IMS (2002a). So, LOM element 9.1,
‘Purpose’, is set to ‘prerequisite’ or ‘educational objective’ from among the permitted
vocabulary for this element; and LOM element 9.2 “Taxon Path’, including its sub-elements,
is used to reference the competency. Note that more than one ‘Classification” element can be
included in one single LO in order to specify more than one prerequisite and/or learning
outcome. In code fragment 2 it is shown a sample LO metadata record that holds two
competency references, a prerequisite relation and a learning outcome relation.

Competency
(RCD)

Fig. 2. LO sequencing through competencies

<?xml version="1.0" encoding="iso-8859-1"7?>
<lom:lom xmlns:lom="http://ltsc.ieee.org/xsd/LOM">
<lom:general>
<lom:title>
<lom:string language="en">HTML</lom:string>
</lom:title>
<lom:language>en</lom:language>
<lom:description>
<lom:string language="en">HTML Course</lom:string>
</lom:description>
</lom:general>
<lom:1lifeCycle>
<lom:version>
<lom:string language="en">1.0</lom:string>
</lom:version>

Competency-based Learning Object Sequencing using Particle Swarms 81

<lom:contribute>
<lom:date>
<lom:dateTime>2007-01-10</lom:dateTime>
</lom:date>
</lom:contribute>
</lom:1lifeCycle>
<lom:educational>
<lom:difficulty>
<lom:value>easy</lom:value>
</lom:difficulty>
<lom:typicallLearningTime>
<lom:duration>PT50H</lom:duration>
</lom:typicallearningTime>
<lom:language>en</lom:language>
</lom:educational>
<lom:classification>
<lom:purpose>prerequisite</lom:purpose>
<lom: taxonPath>
<lom:source>
<lom:string language="en">
http://www.uah.es/cc/comps/CompsTaxon/
</lom:string>
</lom:source>
<lom:id>1IntroWeb</lom:id>
</lom: taxonPath>
</lom:classification>
<lom:classification>
<lom:purpose>educational objective</lom:purpose>
<lom: taxonPath>
<lom:source>
<lom:string language="en">
http://www.uah.es/cc/comps/CompsTaxon/
</lom:string>
</lom:source>
<lom:id>3HTML</lom:id>
</lom: taxonPath>
</lom:classification>
</lom:lom>

Code 2. Sample LO metadata record containing competency references

Simple metadata (i.e. LOM records) is enough to model LOs” sequences in a similar way.
Then, Why use competencies? Competency usage is encouraged, besides its usefulness for
modelling prerequisites and learning outcomes, because competencies are also useful for
modelling user current knowledge and learning initiatives’ expected outcomes (future
learner knowledge).We are proposing a wider framework (fig. 3) in which learner (user)
modelling is done in terms of competencies, which are also used to define the expected
learning outcomes from a learning program. Both sets of competencies constitute the input
for a gap analysis process. This process performs a search in local and/or distributed remote
repositories in order to identify the set of learning objects that fill the gap between learner
current knowledge and the learning objectives. Gap analysis process returns a set of
unordered LOs that must be assembled and structured in a comprehensive way, so that
basic units (LOs) are presented to the learner previously to advanced lessons. These actions
will be performed by the LO sequencing process depicted in figure 3.

82 Tools in Artificial Intelligence

e

LO Repository

r,—LG Selection
w -~
l’/ \\ . . y s ‘.\

Lo
Gap Analysis R . . . —I—: LO Sequencing
hY - _ /’F . I.O. . 1‘\ - //
L J

_—————

. /
~Learner Info earning Objectives—,
Competency —Course | Module | Lesson———
Competency Competency
“
v
[N J L

Fig. 3. Competency-driven content generation model

3. Competency-based intelligent sequencing

Given a random LOs" sequence modelled as described above (with competencies
representing LOs prerequisites and learning outcomes), the question of finding a correct
sequence can be envisaged as a classical artificial intelligent Constraint Satisfaction Problem
(CSP). In this way, the solution space comprises all possible sequences (n! will be its size,
total number of states, for n LOs), and a (feasible) solution is a sequence that satisfies all
established constraints. LO permutations inside the sequence are the operations that define
transitions among states. So we face a permutation problem, which is a special kind of CSP.
PSO is an Al evolutionary computing technique that can be used to solve CSP problems
(among other kind of problems). This section presents a mathematical characterization of
the learning object sequencing problem so that a PSO implementation can be formally
specified. Then this PSO implementation is presented and some improvements over the
original algorithm are proposed.

3.1 Mathematical characterization
According to (Tsang, 1993) a CSP is a triple (X,D,C) where X = {x,, x1,...,Xn.1} is finite set of
variables, D is a function that maps each variable to its corresponding domain D(X), and

Competency-based Learning Object Sequencing using Particle Swarms 83

Cijc D; x Djis a set of constraints for each pair of values (i, j) with 0 < i <j<n. To solve
the CSP is to assign all variables x; in X a value from its domain D, in such a way that all
constraints are satisfied. A constraint is satisfied when (x;, xj) € C;j and (x; ,x)) it is said to be a
valid assignment. If(x;,xj) € C i, then the assignment (x;, x;j) violates the constraint.

If all solutions from a CSP are permutations of a given tuple then it is said that the problem
is a permutation CSP or PermutCSP. A PermutCSP is defined by a quadruple (X,D,C,P)
where (X,D,C) is a CSP and P=<vy, v, ..., v,1> is a tuple of | X|=n values. A solution S of a
PermutCSP must be a solution of (X,D,C) and a complete permutation of P.

The learning object sequencing problem could be modeled as a PermutCSP. For example,
considering five learning objects titled 1,2,3,4 and 5, the PermutCSP which only solution is
the set S = {1,2,3,4,5} (all learning objects must be ordered) can be defined as:

X'= {x1, X2, X3, X4, X5}
D (Xl) = {112/3/4/5} v Xi € X
C={xin-x>0:x €X,i€(1,2,34}}

P=<1,23,4,5>

As it will be demonstrated later a good definition of the constraint set C critically affects the
solving algorithm performance and even its completeness.

3.2 Particle swarm optimization

Particle Swarm Optimization (PSO) is an evolutionary computing optimization algorithm.
PSO mimics the behaviour of social insects like bees. A random initialized particles’
population (states) flies through the solution space sharing the information they gather.
Particles use this information to dynamically adjust its velocity and cooperate towards
finding a solution. Best solution found: (1) by a particle is called pbest, (2) within a set of
neighbour particles is called nbest, (3) and within the whole swarm is called gbest. Goodness
of each solution is calculated using a function called fitness function. A basic PSO
procedure, adapted from (Hu et al., 2003), is showed in code fragment 3. PSOs have been
used to solve a wide variety of problems (Hinchey et al., 2007).

The original PSO (Eberhart & Kennedy, 1995; Kennedy & Eberhart, 1995) is intended to
work on continuous spaces, and velocity is computed for each dimension x; € X
Particles’ initial position and initial velocity are randomly assigned when the population
(swarm) is initialized. A discrete binary version of the PSO was presented by Kennedy and
Eberhart (1997). This version uses the concept of velocity as a probability of changing a bit
state from zero to one or vice versa. A version that deals with permutation problems was
introduced by Hu et al., (2003). In this latter version, velocity is computed for each element
in the sequence, and this velocity is also used as a probability of changing the element, but
in this case, the element is swapped establishing its value to the value in the same position
in nbest. Velocity is updated using the same formula for each variable in the permutation set
(xi € X), but it is also normalized to the range 0 to 1 by dividing each x; by the maximum
range of the particle (i.e. maximum value of all x;e X). The mutation concept is also
introduced in this permutation PSO version; after updating each particle’s velocity, if the
current particle is equal to nbest then two randomly selected positions from the particle

84 Tools in Artificial Intelligence

sequence are swapped. Hu et al.,, (2003) have also demonstrated that permutation PSO
outperforms genetic algorithms for the N-Queens problem. So we decided to try PSO, before
any other technique, for the LO sequencing problem.

initialize the population
do {
for each particle {
calculate fitness value
if (new fitness > pBest)
set pbest = current value
}
nbest = particle with the best fitness value of all the topological neighbors
for each particle {
Calculate new velocity as

V ew=w x V oia + ¢l x rand () x (P pest - X) + 2 x rand() x (P npesc- X)
Update particle position
X new= X old + V new
}

} until termination criterion is met

Code 3. PSO Procedure Pseudo-code

rand() is a function that returns a random number between 0 and 1. Each instance of rand() in
the algorithm represents a new call to the function, i.e. a new random number is computed
and returned.

Each particle shares its information with a, usually fixed, number of neighbor particles to
determine nbest value. Determining the number of neighbor particles (the neighbor size) and
how neighborhood is implemented has been a subject of deep research in an area that has
been called sociometry. Topologies define structures that determine neighborhood relations,
and several of them (ring, four cluster, pyramid, square and all topologies) have been
studied. It has been proved that fully informed approaches outperform all other methods
(Mendes et al., 2004). The fully informed approach prompts using an ‘all’ topology and a
neighborhood size equal to the total number of particles in the swarm (i.e. every particle is
connected with all other particles when nbest values are calculated, hence gbest is always
equal to nbest).

3.3 PSO for learning object sequencing

Discrete full-informed version of the PSO was implemented in order to test its performance
for solving the LO sequencing problem. Code fragment 4 shows the basic procedure for LO
sequencing pseudo code. Several other issues concerning design and implementation have
to be decided. In the rest of this section each of these issues is discussed and the selection
criteria are explained.

Fitness Function. It is critical to choose a function that accurately represents the goodness of
a solution (Robinson & Rahmat-Samii, 2004). In PSO, like in other evolutionary techniques
algorithms and meta-heuristics search procedures, there is usually no objective function to
be maximized. A common used fitness function when dealing with CSP problems is a
standard penalty function (Schoofs & Naudts, 2000):

Competency-based Learning Object Sequencing using Particle Swarms 85

fX)= 2V, (x.x) 1)

0<i<j<n

where Vi j : Di x Dj —{0,1} is the violation function

0if(x,x,)eC,
V. (%, X)) _
1 otherwise

i.j

)

initialize the population
do {
for each particle {
calculate fitness value
if (new fitness < gBest)
set gbest = currentValue
if (new fitness < pBest)
set pbest = currentValue
Calculate new velocity as

V vew =w x 1701(1+ ¢l x rand() x(ﬁpbest - X) +c2xrand()x(1;gbest— X)

Normalize Velocity as

V norm = I7 new /max (V new)
Update particle value

for each v[i] in V norm {
if(rand() < v[i])
swap currentValue[i] for indexOf(currentValue, gBest[i])

1
Check Mutation

if (currentValue = gBest) swap two random positions from currentValue

}

} until termination criterion is met

Code 4. PSO Procedure for LO Sequencing

The standard penalty function returns the number of constraints violated, so PSO objective
is to minimize that function (sentence if (new fitness > pBest) was changed to if (new fitness
< pBest)). When a particle returns a fitness value of 0, a sequence that satisfies all constraints
has been found and the algorithm processing is finished.

This fitness function works well if the constraint set C for the PermutCSP has been
accurately defined. In the example presented in section 3.1 that represents a 5 LO sequence
with only one feasible solution, the restriction set was defined as C={xj+1-x; > 0: ;€ X,
i€{1,2,3,4}}. A more accurate definition will be C= {xi-x>0: ;i€ X, ;€ {x1,....xi}}. If we
consider the sequence {2,3,4,5,1} the standard penalty function will return 1 if the first
definition of C is used, while the returned value will be 4 if the second definition is used.
The second definition is more accurate because it returns a better representation of the
number of swaps required to turn the permutation into the valid solution. Moreover, the
first definition of C has additional disadvantages because some really different sequences (in
terms of its distance to the solution) return the same fitness value. For example sequences

86 Tools in Artificial Intelligence

{2,3,4,51}, {1,3,4,5,2}, {1,2,4,5,3} and {1,2,3,5,4} will return a fitness value of 1. Fortunately, the
accurate constraint definition problem could be solved programmatically. A function that
recursively processes all restrictions and calculates the most precise set of restrictions
violated by a given sequence was developed and called over the input PSO sequence. This
process was called the ‘real” constraint calculator. The user (instructor, content provider,...)
will usually define the minimum necessary number of constraints and the system will
compute real constraints in order to ensure algorithm convergence, so user obligations are
lightened simultaneously.

PSO Parameters. One important PSO advantage is that it uses a relatively small number of
parameters compared with other techniques like genetic algorithms. However, much
literature on PSO parameter selection has been written. Among it, Hu et. al. (2003)
established the set of parameters in such a way that PSO works properly for solving
permutation problems. So we decided to follow their recommendations, and parameters
were set as follows: Learning rates (c1, c2) are set to 1.49445 and the inertial weight (w) is
computed according to the equation (3).

w= 0.5 + (rand()/2) (3)

where rand() represents a call to a function that returns a random number between 0 and 1.
Population size was set to 20 particles. As the fully informed was used, it was not necessary
to make any consideration concerning the neighborhood size.

Initialization. The algorithm receives an initial sequence I as an input. This input is used to
initialize the first particle. All other particles are initialized randomly by permuting I. Initial
velocity for each particle is also randomly initialized as follows: Each v; € V is randomly
assigned a value from the range {0, |I|}, where|I| is the total number of learning objects in
the sequence.

Termination criteria. Agent processing stops when a fitness evaluation of a particle returns
0 or when a fixed maximum number of iterations is reached. So the number of iterations was
also defined as an input parameter. It was used as a measurement of the number of calls to
the fitness function that were allowed to find a solution. It should be noted that some
problems may not have a solution, so the number of iterations setting can avoid infinite
computing.

Proposed improvements. During the initial agent development we found that in some
situations the algorithm got stuck in a local minimum, and it was not able to find a feasible
solution. For that reason, two enhancements were envisaged in order to improve algorithm
performance for LO sequencing. First improvement was to decide randomly whether the
permutation of a particle’s position was performed from gbest or from pbest (p=0.5). In the
original version all permutations were done regarding gbest. The second improvement was
consisted in changing pbest and gbest values when an equal or best fitness value was found
by a particle. In other words all particle’s comparisons concerning pbest and gbest against the
actual state were set to less or equal (<=) because the fitness function is to be minimized. The
original algorithm determines that pbest and gbest only change if a better state is found
(comparisons strictly <). Code fragment 5 presents the final sequencing algorithm pseudo
code that includes these improvements. Changes respecting the basic procedure are showed
underscored.

These changes resemble to be quite logical ways for increasing particles’ mobility and for
avoiding quick convergence to local minimums. And they were tested later in the results
phase.

Competency-based Learning Object Sequencing using Particle Swarms

87

initialize the population
do {
for each particle {
calculate fitness value
if (new fitness <= gBest)
set gbest = currentValue
if (new fitness <= pBest)
set pbest = currentValue
Calculate new velocity as

V' ew =wx ? old + ¢ x rand () x (P ppest- X) + 2 x ran() x (F gbest“Y)
Normalize Velocity as

V norm = V new /max (V new)
Update particle value

for each v[i] in ? norm {
if(rand() < v[i])
if(rand() < 0.5)

swap currentValue[i] for currentValue[indexOf(currentValue, pBest[i]])

else
swap currentValue[i] for currentValue[indexOf(currentValue, gBest[i]])

1
Check Mutation

if (currentValue = gBest) swap two random positions from currentValue

}

} until termination criterion is met

Code 5. Improvements on PSO Procedure

4. Experimental results and discussion

The PSO algorithm for LOs sequencing described above was designed and implemented
using the object oriented paradigm. We wanted to test its performance in a real scenario so a
problem concerning course sequencing for a Master in Engineering (M.Eng.) program in our
institution, the Computer Science School from the University of Alcald in Madrid (Spain),
was chosen for testing. The (web engineering) M.Eng, program comprises 23 courses

(subjects) grouped in:

e Basic courses (7) that must be taken before any other (kind of course). There may be
restrictions between two basic courses, for example ‘HTML’ course must precede

Javascript course.
e ’ltinerary’ courses (5) that must be taken in a fixed ordered sequence.

e Compulsory courses (5). There may be restrictions between two compulsory courses.

e Elective courses (6). Additional constraints with respect to any other course may be set.

All courses have an expected learning time that ranges from 30 to 50 hours. They are
delivered online using a LMS, namely EDVI LMS (Barchino et al., 2005), and every course
has its metadata record. Competency records were created to specify LOs’ restrictions, and
LOM metadata records were updated to reflect prerequisite and learning outcome

88 Tools in Artificial Intelligence

competencies as detailed in section 2. A feasible sequence must have 23 LOs satisfying all

constraints. The graph showing all LOs and constraints is very complex, and so it is to

calculate the exact number of feasible solutions. Some estimations have been used, we have
estimated that the relation among feasible solutions and total solutions order is 8,9x1012.

This number reflects the number of states (non-feasible solutions) for each feasible solution.

Once the problem was established, PSO agent parameters were set to test four different

configurations that reflect all possibilities concerning proposed improvements introduced in

Section 3. These configurations are:

e Configuration 1. Permutation of the particle position is randomly selected from gbest or
from pbest. Comparison for changing particle pbest and gbest values is set to less or equal
(<=)-

e Configuration 2. Permutations from gbest/pbest. Comparison set to strictly less (<).

e Configuration 3. All permutations are performed from gbest. Comparison set to less or
equal (<=).

e Configuration 4. Permutations from gbest. Comparison set to strictly less (<).

Figure 4 shows the results. Each configuration was run 1000 times allowing 20, 30, 40, 50, 75,

100, 150, 200, 300 and 500 iterations, and the succeed ratio was observed. From the results, it

can be seen that all configurations converge to a feasible solution, but configuration 4

(original settings) outperform all others. Figure 4 also shows that original settings need less

fitness evaluations. This argument is supported by table 1 results, where it is showed the

mean number of evaluation function calls required for each configuration to find a solution

(1000 runs) if the number of iterations parameter is set to a number high enough (i.e. a

number of iterations that ensures a success ratio of 1 for each configuration).

0,9

0,8

0,7

0,6

0,5

0,4

Success Proportion

0,3

0,2

0,1

0 50 100 150 200 250 300
Iterations

=+4= Confl ==-B==Conf2 =—de—Conf3 =-«-k--Conf4
Fig. 4. PSO Configurations Comparison

An example of the PSO sequencing agent execution for the test case is shown in figure 5. The
input is a random sequence of learning objects and the output is a valid sequence (i.e. a
sequence that satisfies all restrictions). In the output sequence (1) all basic courses are placed

Competency-based Learning Object Sequencing using Particle Swarms 89

in the initial positions of the sequence, (2) itinerary courses are properly ordered, and (3)
compulsory, itinerary and elective courses are intercalated respecting all constraints. Output
is also complemented by the number of fitness function calls required to find the solution.
The tested scenario may seem to have many feasible solutions that would make doubtful
PSO performance in not-so-kind scenarios, so PSO agent was tested in ‘more’ difficult
situations. Test sequences containing 5, 10, 20, 30, 40, 50, 60, 75 and 100 learning objects with
only one feasible solution in the solution space were designed. Configuration 4 was used
because it showed the best performance for the above test case and unlimited iterations were
allowed to find the solution. Fitness evaluation means were observed for 100 runs (fig. 6).
Although fitness evaluations does not increase linearly to the number of learning objects, it
should be noted that learning objects increment entails an exponential explosion of solution
space size (remember that solution space size for n learning objects will be n!). For example,
the solution space with 100 learning objects will be 104 times bigger than the solution space
with 75 learning objects, but the number of fitness evaluations required for finding a
solution is only twice bigger. In other words, X-axis could also be interpreted as the solution
space size expressed in a logarithmic scale. Therefore, the intelligent agent also handles
reasonably the combinatorial explosion inherent to many Al problems.

Fitness Evaluations
Configuration 1 1412
Configuration 2 1817
Configuration 3 1237
Configuration 4 1158

Table 1. Number of Fitness Evaluations

Output

Input

Fitness Function Value: 0

C1 - Software Engineering Fitness Funtion Calls: 1102

C3 - Interface Design and Web Usability .
C5 - Software Testing B1 - Web, Internet and Distr. Sys. Intr.

E2 - Flash B3 - HTML

B2 - Object Oriented Programing
B6 - Databases (SQL) o B5 Cascade Style Sheets (CSS)
15 - Components and Web Services with NET B6 - Databases (SQL)
C2 - Development Methodologies

B5 Cascade Style Sheets (CSS) B7 - Basic JavaScript
B4 - XML
14 - ASP .NET .) .
- " 11 - Basic .NET Programing
13 - Web Servers ; \
PSO] 12 - ADO .NET
12 - ADO .NET o))
; : ——» Sequencing —| E1 - .NET for Mobile Devices
E3 - ActionScript !
Agent | E2 - Flash
B4 - XML o
B1 - Web, Internet and Distr. Sys. Intr C1 - Software Engineering
E6 UML' - oys. ntr E5 - Advanced JavaScript and DOM
C4 - Design Patterns
B3 - HTML 9

E5 - Advanced JavaScript and DOM :i : xvseg ie;_ers
B2 - Object Oriented Programing Cc2- Devélo ment Methodologies
E4 - PHP P 9

11 - Basic .NET Programing C5 - Software Testing

_ X . C3 - Interface Design and Web Usability
E1-.NET for Mobile Devices Legend 15 - Components and Web Services with NET
B7 - Bastc JavaScript B = Basic Course E4 - PHP
C4 - Design Patterns | = Itinerary Course E3 - ActionScript

C = Compulsory Course E6 - UML
E = Elective Course

Fig. 5. PSO Agent Execution Example

90 Tools in Artificial Intelligence

5. Conclusions

Automated LO sequencing is a recurring problem in the e-learning field that could be
undertaken employing models that ensure interoperability and artificial intelligent
techniques. The purpose of the study was to design, develop and test a PSO agent that
performs automatic LO sequencing through competencies. A model that employs
competencies as a mean for defining constraints between learning object has been presented,
so that a sequence of LOs is defined by relations among LOs and competencies. New
sequences can be derived if permutation operations are allowed between LOs in the
sequence. Hence the sequencing problem is turn into a permutation problem, and the aim is
to find a sequence that satisfies all restrictions expressed in the original model. The PSO for
permutation problem has been extended to LO sequencing problem. Testing two envisaged
improvements was also performed. Results show that: (1) PSO succeeds in solving the
problem, and (2) the original configuration is the best one.

120

[y
=] =
= =

Fitness Evaluations (in thousnads)
o @
= 2

=]
=
>

0 20 40 60 30 100

Learning Objects
Fig. 6. Number of fitness evaluations required for different number of LOs

Further implications arise from the model proposal and from the study conclusions: (1) E-
learning standards are promoted. XML records and bindings are used, so elements will be
easily interchanged and processed by compliant systems. (2) Instructor’s role is automated
reducing costs. Sequencing process works even in complex scenarios where humans face
difficulties. Instructors could spend saved time in performing other activities within the
learning action. And (3), the model can be extended to an automated intelligent system for
building personalized e-learning experiences. But this third implication is linked to future
work. This model has been envisaged and it was depicted in figure 3 (Section 2.2).
Sequencing process can be complemented with gap analysis process and competency
learner modelling techniques to build personalized courses. These courses could also be
SCORM (ADL, 2004) compliant, so they could be imported to current LMSs.

6. Acknowledgments

This research is co-funded by: (1) the University of Alcala FPI research staff education
program, (2) the Spanish Ministry of Industry, Tourism and Commerce PROFIT program

Competency-based Learning Object Sequencing using Particle Swarms 91

(grants FIT-350200-2007-6 and FIT-350101-2007-9) and Plan Avanza program (grant PAV-
070000-2007-103), (3) the Spanish Ministry of Education and Science PROFIT program (grant
CIT-410000-2007-5), (4) Castilla-La Mancha autonomous community under the educational
innovation cooperation program (grant EM2007-004) by (5) research groups’ support
program from the University of Alcala and CAM Madrid Region (grant CCG06-UAH/TIC-
0732).

7. References

ADL (2004) Shareable Content Object Reference Model (SCORM). The SCORM 2004
Overview. Advanced Distributed Learning (ADL) Initiative.

Barchino, R.; Gutiérrez, J. M. & Otén, S. (2005) An Example of Learning Management System. In
Isafas, P., Baptista, M. & Palma, A. (Eds.) IADIS Virtual Multi Conference on
Computer Science and Information Systems (MCCSIS 2005). Virtual, IADIS Press.

Barr, A. (2006) Revisiting the -ilities: Adjusting the Distributed Learning Marketplace,
Again? Learning Technology Newsletter, 8, 3-4.

Brusilovsky, P. (1996) Methods and techniques of adaptive hypermedia. User Modeling and
User-Adapted Interaction, 6, 87-129.

Brusilovsky, P. (1999) Adaptive and Intelligent Technologies for Web-based Education.
Kiinstliche Intelligenz, Special Issue on Intelligent Systems and Teleteaching, 4, 19-25.

CEN/ISSS (2006) European Model for Learner Competencies. Comité Européen de
Normalisation / Information Society Standardization System (CEN/ISSS).

De Bra, P.; Aerts, A.; Berden, B.; Lange, B. D.; Rousseau, B.; Santic, T.; Smits, D. & Stash, N.
(2003) AHA! The adaptive hypermedia architecture. Proceedings of the fourteenth
ACM conference on Hypertext and hypermedia. Nottingham, UK, ACM Press.

De Bra, P., Houben, G.-J. & Wu, H. (1999) AHAM: a Dexter-based reference model for
adaptive hypermedia. Proceedings of the tenth ACM Conference on Hypertext and
hypermedia. Darmstadt, Germany, ACM Press.

Eberhart, R. & Kennedy, J. (1995) A new optimizer using particle swarm theory. Proceedings
of the Sixth International Symposium on Micro Machine and Human Science. MHS '95.
Nagoya, Japan.

Hinchey, M. G., Sterritt, R. & Roulff, C. (2007) Swarms and Swarm Intelligence. Computer, 40,
111-113.

HR-XML (2006) Competencies (Measurable Characteristics) Recommendation. HR-XML
Consortium.

Hu, X., Eberhart, R. C. & Shi, Y. (2003) Swarm intelligence for permutation optimization: a
case study of n-queens problem. Proceedings of the 2003 IEEE Swarm Intelligence
Symposium. Indianapolis, USA, IEEE Press.

IEEE (2002) Learning Technology Standards Committee (LTSC). Learning Object Metadata
(LOM). 1484.12.1. IEEE.

IEEE (2008) Learning Technology Standards Committee (LTSC). Standard for
LearningTechnology - Data Model for Reusable Competency Definitions. IEEE.

IMS (2002a) Reusable Definition of Competency or Educational Objective - Best Practice and
Implementation Guide. IMS Global Learning Consortium.

IMS (2002b) Reusable Definition of Competency or Educational Objective - Information
Model. IMS Global Learning Consortium.

92 Tools in Artificial Intelligence

Karampiperis, P. (2006) Automatic Learning Object Selection and Sequencing in Web-Based
Intelligent Learning Systems. IN ZONGMIN, M. (Ed.) Web-Based Intelligent E-
Learning Systems: Technologies and Applications. London. UK., Idea Group.

Kennedy, J. & Eberhart, R. (1995) Particle swarm optimization. Proceedings., IEEE
International Conference on Neural Networks. Perth, WA, Australia.

Kennedy, J. & Eberhart, R. C. (1997) A discrete binary version of the particle swarm
algorithm. 1997 IEEE International Conference on Systems, Man, and Cybernetics.
'Computational Cybernetics and Simulation'.

Mendes, R., Kennedy, J. & Neves, J. (2004) The fully informed particle swarm: simpler,
maybe better. Evolutionary Computation, IEEE Transactions on, 8, 204-210.

Robinson, J. & Rahmat-Samii, Y. (2004) Particle swarm optimization in electromagnetics.
Antennas and Propagation, IEEE Transactions on, 52, 397-407.

Schoofs, L. & Naudts, B. (2000) Ant colonies are good at solving constraint satisfaction
problems. Proceedings of the 2000 Congress on Evolutionary Computation. La Jolla, CA.

Tsang, E. (1993) Foundations of Constraint Satisfaction, Academic Press.

Van Den Berg, B., Van Es, R., Tattersall, C., Janssen, J., Manderveld, J., Brouns, F., Kurvers,
H. & Koper, R. (2005) Swarm-based sequencing recommendations in e-learning.
Proceedings 5th International Conference on Intelligent Systems Design and Applications,
2005. ISDA '05. Wroclaw, Poland.

Wiley, D. A. (2000) Connecting learning objects to instructional design theory: A definition,
a metaphor, and a taxonomy. IN WILEY, D. A. (Ed.) The Instructional Use of Learning
Objects.

Wilkinson, J. (2001) A matter of life or death: re-engineering competency-based education
through the use of a multimedia CD-ROM. IEEE International Conference on
Advanced Learning Technologies, 2001. Proceedings.

6

Image Thresholding of Historical Documents
Based on Genetic Algorithms

Carmelo Bastos Filho, Carlos Alexandre Mello, Julio Andrade,

Marilia Lima, Wellington dos Santos, Adriano Oliveira and Davi Falcao
Department of Computing and Systems, University of Pernambuco

Brazil

1. Introduction

Digital Libraries have been developed nowadays as a way to dispose digital information
through the Internet. This is particularly very useful when the information comes from
historical documents. This research takes place in the PROHIST Project [Mello et al., 2008]
which aims the creation of a digital library with methods to preserve and broadcast images
of historical documents. In general, the access to original documents has to be done carefully
as, because of its age, the paper is more susceptible to the wear and tear over time. In order
to make the documents more easily accessible, digitization comes as the most efficient
solution. In a digital media, as digital images, the documents can be visualized and copied.
This also helps the preservation of the documents as they are digitized in high resolution
and in true color format. It is common to use JPEG file format (Sayood, 1996) to store these
images ensuring a good space storage/quality ratio. However, even in this format, to access
an archive of thousands of high quality true color images is not an easy task even with the
extended use of broad band Internet.

The storage space of the images can be reduced with its conversion to black-and-white
images. In this bi-level format and stored using GIF file format, the size of the file can be five
times lower than the original true color JPEG image. Binarization or thresholding (Parker,
1997) is the process that converts an image into black-and-white: a threshold value is
defined and the colors above that value are converted into white, while the colors below it
are converted into black. This is a very simple process in digital image processing when one
has a document with black ink written on a white paper. Historical documents, however,
have several types of noises. The degradation yellows the sheet of paper and creates some
noise that is perceptible to the digitizing process. Even more, in some cases, the ink has
faded. This is particularly important when the document is written on both sides of the
paper. In some cases, the ink of one side interferes in the other creating an effect called “ink
bleeding”. Because of these problems, it is very difficult to find the best threshold value that
separates the colors that belong to the paper from the colors that belong to the ink. An
example of such a document is presented in Figure 1-left.

In this paper, we present a new thresholding algorithm for color quantization based on
genetic algorithms and image fidelity metrics. These metrics are used to define the
convergence point of the genetic algorithm. The quantized image is then binarized based on

94 Tools in Artificial Intelligence

the number of classes defined in the quantization phase. The algorithm is adjusted to work
on images of historical documents. Figurel-centre presents the final bi-level image of Figure
1-left. This is the final kind of image that we are looking for in our method. Fig. 1-right
presents the results of an incorrect choice of a threshold value. The comprehension of the
foreground text is severely damaged.

a /e/[wr o
Fig. 1. (left) Zooming into part of an historical document written on both sides of the paper,

presenting the ink bleeding effect, (centre) the ideal bi-level image and (right) an incorrect
threshold value can create a highly noisy image.

In the next Section, we briefly review some important aspects of color quantization, genetic
algorithms and image fidelity assessment. Section 3 describes our method while Section 4
presents and analyzes the results. Section 5 concludes the Chapter.

2. Fundamentals

2.1 Color quantization

Color quantization (Parker, 1997) is the process of selecting a set of significant colors to
represent an image. This must be necessary to show images in devices which have limited
color support or broadcast capacity as hand held devices as PDA’s (Personal Digital
Assistants), mobile phones, etc. After a color quantization, an image has its color resolution
decreased to a specific quantity. This process can reduce the quality of the image if the
process were not applied with high precision and specific algorithms. The images produced
by the color quantization must be as similar as possible as the original ones which can be
evaluated with the use of image fidelity indexes.

Color quantization algorithms can be classified into two classes: splitting algorithms and
clustering algorithms. Splitting algorithms divide the color space of an image interactively
into disjoint cells according to some criteria until the number of desired cells is reached.
Some of the splitting algorithms are: popularity algorithm (Heckbert, 1982), median-cut
(Heckbert, 1982), error diffusion (Kang, 1999), Floyd-Steinberg (Kang, 1999), and Stucki
(Stucki, 1981). Clustering-based algorithms perform a clustering of the color space into K-
desired clusters. The methods involve an initial selection of color map followed by
repeatedly updating cluster representatives. C-Means (Parker, 1997) is the most common
algorithm of this class.

Algorithms for dithering also work with the reduction of the color space. A review about
dithering algorithms is shown in (Alasseur et al, 2003). Dithering is not the best solution for
some applications as image processing of historical documents where the background (the
paper) must be removed for a character recognition process. A dithering algorithm based on
genetic algorithms (GA) and K-Means is proposed in (Freisleben & Schrader, 1997).

The use of computational intelligence for quantization is not new: a technique based on
Competitive Hopfield Neural Networks is presented in (Wu et al. 2001). However, this
algorithm converges rapidly but it easily finds a local minimum as the solution.

Image Thresholding of Historical Documents Based on Genetic Algorithms 95

Another problem associated with color quantization is the analysis of the performance of
color quantization algorithms. The authors in (Tremeau et al., 1994) define two metrics: LSE
(Local Squared Error) and SCAP (Spatial Correlation Among Pixels). Nowadays, however,
there are most appropriated metrics as the use of the concepts of image fidelity indexes
(Janssen, 2001). We use herein image fidelity metrics in order to evaluate the similarity of
the quantized image and the original one.

Thresholding or binarization is a specific type of color quantization that reduces the color
palette to just two colors; in general, black and white tones. Some well-known algorithms
are: Pun, Kapur, Renyi, Brink, Otsu, Kittler, Percentage of Black and C-Means, for example.
Details on these and other algorithms can be found in (Sezgin & Sankur, 2004).

2.2 Image fidelity assessment

Image quality can be defined (Janssen, 2001) “in terms of the satisfaction of two
requirements: usefulness (i.e. discriminality of image content) and naturalness
(identifiability of image content)”. When one has two images and wants to compare them, it
is a fidelity value that is searched. This is the main problem of fidelity metrics: the
requirement of two images (a reference image and a target one) to make this comparison.
The definition of image fidelity metrics is subject of several studies that come from
subjective measures as Mean Opinion Score (MOS) to objective ones as Peak Signal-to-Noise
Ratio (PSNR) and Mean Square Error (MSE). Our interest is in objective measures as our
work involves sets of thousand of images. PSNR (in dB) is evaluated by:

CZ
PSNR =10log, (—— 1
g, (MSE) @)
where C represents the maximum color value (for images).
A fidelity index, Q, is defined in (Wang & Bovik, 2001) in terms of the linear correlation
coefficient and the similarities between the mean and variance of two images. This index is
defined as:

d.u .1 o
= 2 /uleuy zxy 2 @
(u, +p,)(o, +0;)

where x and y are the original and tested images respectively, 1 and u, are their means, o
and oy are their variances and oy, is the correlation. As defined in (Wang & Bovik, 2001), the
range of Q is [-1, 1]. The value of 1 happens when the images are the same (or y; = x;, for
every i). The lowest value, i.e. Q = -1, occurs when y; = 2.4, - x;, for every i.

2.3 Genetic algorithms

Genetic algorithms are very useful to solve search problems (Mitchell, 1998), especially for
complex, multivariable and non-analytical problems. Therefore, it can be used to solve
problems such as identify grayscale levels and the limits between them in a quantization
process. This intelligent computing technique is important for the thresholding process
proposed herein.

The Genetic Algorithm used in our method follows the flow chart presented in Fig. 2. First,
an initial population with P individuals is created. In our method, each individual

96 Tools in Artificial Intelligence

represents a set of grayscale levels involved in the process codified in a bit string. For each
individual, a simulation tool is run and the fitness function value is returned. Therefore,
individuals with the best performance are the stronger ones. For each generation, new
individuals are created through crossover processes to compose the next generation. The
mutation operator helps to avoid local minimum. The selection operation finds the P
individuals with higher fitness function and deletes the weakest individuals. At the end of
the selection operation, the algorithm checks if the predefined number of generations was
reached. The algorithm keeps running until it reaches the limit of generations or it finds a
predefined condition.

‘ Generate P individuals|

!

Evaluate Fitness of
each individual

v

Sort by fitness

Select Pindividuals

Stop
Criteria?

Mutation

Fig. 2. Flow chart of the genetic algorithm used in our simulations.

Return
Best solution

The crossover operation is applied to two individuals and it generates two new individuals
mixing information of the parents bit strings. Only new individuals are added to the
population, clones are discarded. Two individuals in the population have a probability P. of
performing crossover in each generation. In this work we used P, = 50%.

The mutation operation is applied in a single individual. It consists of complementing bits in
the individual string of bits. An individual in the population have a probability P, of
suffering mutation in each generation and, considering mutation in an individual, each bit
has a probability of suffering mutation P,». We used Py, = 5% and P,y = 10% in our
simulations.

3. Proposed thresholding algorithm

The main objective of this method is to generate a bi-level image from a historical document.
This image shall represent the text as black and background or back-to-front interference as
white. So forth, we introduced an intelligent algorithm using genetic algorithm to quantize
the original image. The target is to reduce the palette so that the remaining colors (or gray
levels) represent classes such as text, background or back-to-front interference. Notice that
those classes can be represented by more than one color.

Furthermore, supposing that the text is composed by the darkest grayscale levels, the
process is followed by a threshold to classify the pixels as text or non-text, excluding the
background and the back-to-front interference. The thresholding divides the classes as text
(darkest remaining colors) and non-text.

We used historical documents images stored in 256 gray levels. The information about each
gray level that represents a class was codified into a binary bit string. We also codified the

Image Thresholding of Historical Documents Based on Genetic Algorithms 97

limits that define the threshold in the quantization process. We used 8 bits to represent each
color and each limit. Therefore, the individual consists of a bit string with 2z-1 segments,
where z is the number of gray levels in the novel palette. We used Wang and Bovik’s fidelity
index (Q) as the fitness function. The fitness for an individual is obtained by performing the
Q factor comparison between the image after the quantization process and the original
image. We observed that the Q values obtained in our simulation were always in the
interval [0, 1]; so this range is considered instead of [-1, 1] as defined by Wang and Bovik.
After crossover or mutation, the individual segments shall be sorted according their values.
To illustrate the method we present an example: consider the Figure 1-left as the document
to be treated. Figure 1-center shows the best result achieved from binarization and manual
exclusion of non desired information. Therefore the target is to define the method to achieve
automatically images as showed in Figure 1-center without a priori knowledge.

The first step is to execute the quantization based on genetic algorithm, maximizing the Q
factor.

The second step is to define which of the new gray levels from the quantization should be
classified as text. If one considers the image presented in Fig. 1-Left quantized to 4 gray
levels, there are three different possibilities to threshold that image: the first one is to classify
the darkest grayscale level as text and the others as non text (up ahead classify just the
darkest grayscale level will be called limitl); the second possibility is to classify the two
darkest grayscale levels as text and the others as non text (up ahead classify the two darkest
grayscale levels will be called [imit2). The last possibility is to classify the three darkest
grayscale levels as text and the other as non text (from now on this classification will be
called limit3). Figure 2 shows the resultant images after binarization considering these three
limits. The threshold limits were defined as 53, 106 and 137, for limitl, limit2 and limit3,
respectively. Visually, the best image was achieved for limit1.

a dokires

Fig. 3. Thresholding images of the example for binarization with
106 and (right) 137, after the intelligent quantization.

w |l SR

threshold (left) 53, (center)

4. Results

It is necessary to determine how many gray levels should be used in the quantization to
achieve the best results. For the first step (quantization), the Q factor compared with the
original grayscale image increases as the number of the gray levels increases. We achieved Q
= 0.949594, Q = 0.967749, Q = 0.978475, Q = 0.980648, Q = 0.985494, Q = 0.987862, Q =
0.987115, Q = 0.99008, Q = 0.991768 and Q = 0.992203 for 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 gray
levels, respectively. But it must be observed that as our final purpose is binarization as the
number of gray levels increases more difficult is to find the better threshold value.

A visual approach is not the best way to quantify the quality of an image. To provide an
efficient way to validate the method and to find the optimum point, we compared Q factor,
PSNR (Peak Signal-to-Noise Ratio) and ROC (Receiver Operating Characteristics) curves of

98 Tools in Artificial Intelligence

the generated images to the perfect binary image of the example. Figure 3 shows the Q
factor and PSNR results of the binarized images as a function of the number of grayscale
levels in the GA quantization and the number of grayscale levels classified as text (the
darkest ones). The best results were obtained for 3 gray levels in the quantization process
and limitl (Q = 0.577892 and PSNR = 15.18) and 10 gray levels in the quantization process
and limit2 (Q = 0.5533 and PSNR = 15.86). The second option presents the best Q factor and
PSNR. In spite of this, all the three options are quite similar and the first option seems to be
more adequate to generalize the data for a group of documents.

0,584

PSNR
s\\\\
P

.
g 0444
8 042d 81 g}
o 0409 1 Y —
9381 / /] 4] / = lim1
034] / —e— lim2 v —o— lim2
0,32 /) —a—lim3 2 —alim3
0,30 £/ —v—lim4| 0 —v—limd]
T T T T T T T T r T
2 4 6 8 10 12 2 4 6 8 10 12
Number of grayscale levels in GA quantization Number of grayscale levels in GA quantization

Fig. 3. (left) Q factor and (right) PSNR results as a function of the number of grayscale levels
in the GA quantization for each limit case defined.

Another way to evaluate the method is using some measures from Signal Detection Theory
(McMillan & Creelman, 2005): precision, recall, accuracy and specificity. Figure 4 presents
the plotting of these measures for limit1 and limit2 cases.

Limit 1 Limit 2
e = o S 10]

A

e 0,94
0,8
0,74

0,64

0,754 — 0,54 —=— Precision

! —=— Precision —e— Recall
0,70 L —e— Recall 0,44 —— Accuracy
—4— Accuracy 03] —v— Specificit

0,65 | —v— Specificit 8 -
T T T T T 0,2 T T T T T
2 4 6 8 10 12 2 4 6 8 10 12

Number of grayscale levels in GA quantization Number of grayscale levels in GA quantization

Fig. 4. Precision, recall, accuracy and specificity for (left) Limit 1 and (right) Limit 2 cases as
a function of the number of grayscale levels in the GA quantization for each limit case
defined.

In order to evaluate the performance of the algorithm using these metrics, a “clean” image
was produced for each image in a set of 140 documents. This “clean” image is a bi-level
document with only the pixels of the ink. These images were generated manually by visual
inspection. With these clean images, we can evaluate the values precision, recall, accuracy
and specificity. An efficient algorithm must have these four measures tending to 1.

Table 1 presents the average result for these measures in a comparison between a set of 140
documents binarized by classical algorithms (Sezgin & Sankur, 2004) and the best response

Image Thresholding of Historical Documents Based on Genetic Algorithms 99

achieved by the new proposed algorithm (images with the higher Q value) with their
“clean” images. The new algorithm (labeled as GA) achieved high values for all four
measures. Table 1 also presents the average values of PSNR and MSE for this set.

Algorithm Precision | Recall | Accuracy | Specificity | PSNR MSE
GA 0.8290 | 0.8273 | 0.9851 0.9694 21.5167 | 0.0306
Bernsen 0.839 0.8135 | 0.9636 0.9847 21.4086 | 0.0364
Brink 0.8972 | 0.7176 | 0.9378 0.9898 20.5486 | 0.0622
C-Means 0.9656 | 04752 | 0.7276 0.9919 15.5124 | 0.2724
daSilva-Lins-Rocha | 0.8882 | 0.7277 | 0.9459 0.9908 20.3931 | 0.0541
Fisher 0.9085 | 0.7274 | 0.9329 0.9903 20.5406 | 0.0671
Huang 09174 | 0.6946 | 0.9146 0.9904 19.8345 | 0.0854
Johannsen 0.9398 | 0.6548 | 0.9317 0.9942 19.3038 | 0.0683
Kapur 0.0148 | 0.4073 | 0.9021 0.9013 16.8976 | 0.0979
Kittler 0.8587 | 0.7982 | 0.9429 0.9847 21.1809 | 0.0571
Li-Lee 0.872 0.7313 | 0.9447 0.9899 20.3123 | 0.0553
Mean Grey Level 09116 | 0.7518 | 0.9654 0.9891 21.11 0.0346
Niblack 0.862 0.3911 | 0.8531 0.985 14.6877 | 0.1469
Otsu 0.8431 | 0.7128 | 0.9422 0.9683 19.1462 | 0.0578
Percentage of Black | 0.9902 | 0.2156 | 0.6165 0.9985 10.3754 | 0.3835
Pun 0.941 0.6513 | 0.9395 0.9957 19.3791 | 0.0605
Renyi 0.9894 | 0.1716 | 0.3683 0.9011 8.6996 | 0.6317
Sauvola 0.8925 | 0.1888 | 0.6045 0.9755 10.0915 | 0.3955
Iterative Selection 0.3368 | 0.3356 | 0.9418 0.9514 18.9542 | 0.0582
TwoPeaks 0.9402 | 0.6288 | 0.9236 0.9947 18.7636 | 0.0764
White 0.3855 0.757 0.7348 0.9524 15.6284 | 0.2652
Wu-Lu 07792 | 07711 | 0.9411 0.9595 19.7098 | 0.0589
Yager 0.7985 | 0.2502 | 0.7475 0.9609 12.0418 | 0.2525
Yen 0.5276 | 0.8058 | 0.9358 0.944 19.0102 | 0.0642

Table 1. Average value of precision (P), recall (R), accuracy (A), specificity (S), PSNR and
MSE evaluated by a comparison of bi-level images without noise and the images generated
by classical algorithms and the new proposal (labeled GA).

7. Conclusion

It is presented in this paper a technique for automatic thresholding images of historical
documents, in special, documents written on both sides of the paper, presenting back-to-
front interference. The new method uses genetic algorithms to achieve a quantized image
and proceed with a binarization. The resulting images were analyzed using a fidelity index,
PSNR and measures from signal detection theory. The method can also be extended to
optimize quantization processes for other types of images.

The method proved to be more efficient than several other classical thresholding algorithms
in an evaluation using precision, recall, accuracy and specificity.

Currently the bi-level images are being used to improve several steps on an optical character
recognition process of these documents such as text segmentation and the recognition per se.

100 Tools in Artificial Intelligence

8. References

Mello, C.A.B.; Oliveira, A.L.IL; Sanchez, A. Historical Document Image Binarization,
Proceedings of the International Conference on Computer Vision Theory and Applications,
pp. 108-113, ISBN 9789898111210, Funchal, January 2008, INSTICC, Portugal.

Sayood, K. (1996). Introduction to data Compression, Morgan Kauffman, ISBN 1558603468, San
Francisco.

Parker, J.R. (1997). Algorithms for Image Processing and Computer Vision, John Wiley and Sons,
ISBN 0471140562, New York.

Heckbert, P. (1982). Color image quantization for frame buffer display. ACM SIGGRAPH
Computer Graphics, Vol. 16, No. 3, (July 1982), pp. 297-307, ISSN 00978930.

Stucki, P. (1981). MECCA - A multiple error correcting computation algorithm for bilevel
image hardcopy reproduction, Research Report RZ1060, IBM Research Laboratory,
Zurich, Switzerland.

Alasseur, C.; Constantinides, A.G.; Husson, L. (2003). Colour Quantisation Through
Dithering Techniques, Proceedings of International Conference on Image Processing, pp.
469-472, ISBN 0780377516, Barcelona, September 2003, IEEE Press, New Jersey.

Freisleben, B.; Schrader, A. (1997). Color Quantization with a Hybrid Genetic Algorithm,
Proceedings of the International Conference on Image Processing and its Applications, pp.
86-90, ISBN 085296692X, Ireland, July 1997, IEEE Press, New Jersey.

Wu, Y.; C.Yang; T.Wang. (2001). A New Approach of Color Quantization of Image Based on
Neural Networks, Poceedings of International Joint Conference on Neural Networks, pp.
973-977, ISBN 0780370465, Washington, USA, July 2001, IEEE Press, New Jersey.

Tremeau, A.; Calonnier, M.; Laget, B. (1994). Color Quantization Error in Terms of
Perceived Image Quality, Proceedings of the International Conference on Acoustic,
Speech and Signal Processing, pp. V93-V96, ISBN 078031775094, Adelaide, Australia,
June 1994, IEEE Press, New Jersey.

Janssen, T.JJW.M. (2001). Understanding image quality, Proceedings of the International
Conference on Image Processing, pp. 7, ISBN 0780367251, Thessaloniki, Greece,
October 2001, IEEE Press, New Jersey.

Sezgin, M.; Sankur, B. (2004). Survey over image thresholding techniques and quantitative
performance evaluation, Journal of Electronic Imaging, Vol. 1, No.13, (January 2004),
pp- 146-165, ISSN 10179909.

Wang, Z.; Bovik, A.C. (2002). A Universal Image Quality Index. IEEE Signal Processing
Letters, Vol. 9, No. 3, (March 2002), pp. 81-84, ISSN 10709908.

Mitchell, M. (1998). An Introduction to Genetic Algorithms, MIT Press, ISBN 0262631857,
Cambridge.

McMillan, N.A.; Creelman, C.D. (2005). Detection Theory. LEA Publishing, ISBN 0805842306,
New Jersey.

7

Segmentation of Greek Texts by
Dynamic Programming

Pavlina Fragkou!, Athanassios Kehagias? and Vassilios Petridis!
'Department of Electrical and Computer Engineering,
2Department of Math., Phys., and Computer Sciences,

Faculty of Engineering, Aristotle University of Thessaloniki,
Greece

1. Introduction

In this paper we present an approach for the segmentation of concatenated texts. The text
segmentation problem can be stated as follows: given a text which consists of several parts
(each part dealing with a different subject) it is required to find the boundaries between the
parts. In other words, the goal is to divide a text into homogeneous segments so that each
segment deals with a particular subject while contiguous segments deal with different
subjects. In this manner, documents relevant to a query can be retrieved from a large
database of unformatted (or loosely formatted) text. The problem appears often in
information retrieval and text processing.

Our approach combines elements from several previously published text segmentation
algorithms and achieves a significant improvement in segmentation accuracy by following a
supervised approach. More specifically, we perform linear segmentation of concatenated
texts by minimizing a segmentation cost which consists of two parts: (a) within-segment
word similarity (expressed in terms of dotplot density) and (b) prior information about
segment length. The minimization is effected by dynamic programming, which guarantees
that the globally optimal segmentation is obtained. We are concerned with linear text
segmentation, which should be distinguished from hierarchical text segmentation (Yaari,
1997; Yaari, 1999); the latter attempts to find a tree-like structure in the text segments, while
linear segmentation is based on the assumption that text has a linear structure thus
segments appear in sequential “flat” order. Let us note that hierarchical segmentation is
perhaps more appropriate for discourse segmentation because it creates a hierarchy of all
topics discussed. Every sub-topic is appropriately related to the topic with which is related
to in a deeper level placed in a form of “leaf”.

Our method has successfully applied to Greek texts proving to be very innovating and
promising. Results regarding segmentation of English texts can be found in (Kehagias et al.,
2004(a); Kehagias et al., 2004(b)). The remainder of the paper is organized as follows: in
Section 2 we present research approaches on the area of text segmentation, in Section 3 we
introduce our algorithm, in Section 4 we present experiments to evaluate the algorithm.
Finally, in Section 5 we discuss our results.

102 Tools in Artificial Intelligence

2. Related work

Text segmentation approaches are based in the theory of Halliday and Hasan (Halliday &
Hasan, 1976) according to which, each text is described by two complementing elements:
cohesion and coherence. Cohesion is described as the quality property of a text and is detected
by the simultaneous appearance of semantically similar words. Cohesion is present when an
element in the text is best interpreted in light of a previously (or rarely a subsequent)
element within the text. Coherence on the other hand holds between two tokens in the text
which are either of the same type or are semantically related in a particular way (such as a
word or group of words having a clearly definable relationship with a previously used
word i.e. belonging to the same theme or topic). According to Halliday and Hasan semantic
coherence and cohesion are identified by the following five semantic relations: (1) repetition
with similarity, (2) repetition without similarity (3) repetition through reference to a higher
category in which the aforementioned word entity belongs to (4) systematic semantic
relationship (5) non- systematic semantic relationship. In the same spirit, Raskin and Weiser
(Raskin & Weiser, 1987) defined as a criterion for cohesion and coherence word repetition
and comparative apposition, where the first focus on word repetition or synonyms of them
and the latter on words that present the tendency to co-occur within a document.

In this paper, the focus is stressed towards (concatenated) text segmentation, which is often
distinguished from discourse segmentation. The goal of discourse segmentation is to split a
single large text into its constituent parts (e.g. to segment an article into sections); this
problem is addressed, for instance, in (Hearst, 1994; Hearst & Plaunt, 1993; Heinonen, 1998;
Yaari, 1997; Yaari, 1999). On the other hand, the goal of (concatenated) text segmentation is
to split a stream of independent, concatenated texts (e.g. to segment a transcript of news into
separate stories); this problem is addressed, for example, in (Beeferman et al., 1999; Choi,
2000; Choi et al., 2001; Ponte & Croft, 1997; Reynar, 1994; Reynar & Ratnaparkhi, 1997;
Utiyama & Isahara, 2001). The two problems are similar but not identical; our algorithm
could conceivably be applied to discourse segmentation, but our main interest is in
concatenated text segmentation and all the experiments we present here fall into this
category.

Generally speaking, text segmentation is a two step procedure. The first step involves the
calculation of segment homogeneity while the second the identification of segment
boundaries. The calculation of segment homogeneity (or alternatively heterogeneity)
performed by methods appearing in the literature presents a strong variation. On the one
hand, a family of methods makes use of linguistic criteria such as cue phrases, punctuation
marks, prosodic features, reference, syntax and lexical attraction (Beeferman et al. (1997),
Hirschberg & Litman (1993), Passoneau & Litman (1993)). On the other hand the second
family, following Halliday and Hasan’s theory (Halliday & Hasan (1976)), utilizes statistical
similarity measures such as word co-occurrence. Roughly speaking, two parts of the text are
considered similar if they have many words in common. This is a popular approach,
according to which parts of a text having similar vocabulary are likely to belong to a
coherent topic segment. For example the linear discourse segmentation algorithm proposed
by Morris and Hirst (Morris & Hirst (1991)) is based on lexical cohesion relations determined
by use of Roget’s thesaurus (Roget (1977)). In the same direction Kozima’s algorithm
(Kozima (1993), Kozima & Furugori (1993)) computes the semantic similarity between
words using a semantic network constructed from a subset of the Longman Dictionary of
Contemporary English. Local minima of the similarity scores correspond to the positions of

Segmentation of Greek Texts by Dynamic Programming 103

topic boundaries in the text. Other authors have used fairly sophisticated word co-
occurrence statistics such as LSA, LCA, ranking etc. Choi, 2000; Choi et al., 2001; Hearst,
1994; Hearst & Plaunt, 1993; Utiyama & Isahara, 2001).

The identification of segment boundaries usually requires the minimization of a
segmentation cost function. An efficient way to perform this is by the use of techniques such
as dynamic programming. This is due to the fact that dynamic programming is based on the
intuition that a longer problem can be solved by properly combining the solution to various
sub-problems. For example, consider the sequence or “path” of transformed words that
comprise the minimum edit distance between the strings “intention” and “exention”.
Imagine one string (perhaps it is exention) that is in this optimal path (whatever it is). The
intuition of dynamic programming is that if exention is in the optimal operation list, then
the optimal sequence must also include the optional path from intention to exention. This is
because, if there were a shorter path from intention to exention then we could use it instead,
resulting in the shortest path and the optimal sequence wouldn’t be optimal, thus leading to
contradiction. Another benefit of dynamic programming is that at every point of execution
the optimal solution from the previously examined observations was calculated avoiding
thus backtracking (Berteskas, 1987). This approach has been used in the past (in Heinonen,
1998; Ponte & Croft, 1997; Xiang & Hongyuan, 2003) and also, implicitly, in (Utiyama &
Isahara, 2001). Other authors do not cast segmentation as a formal optimization problem;
rather they construct a similarity matrix which they segment using divisive clustering,
which can be considered as a form of approximate and local optimization (Choi, 2000; Choi
et al., 2001; Reynar, 1994; Reynar & Ratnaparkhi, 1997; Yaari, 1997; Yaari, 1999).

As we have already mentioned, we formulate segmentation as the minimization of a
segmentation cost which depends on within-segment homogeneity and deviation from
expected segment length. We measure within-segment homogeneity by word co-occurrence
by operating at the sentence level and consider two sentences to be similar if they have even
a single word in common. We use a “global” similarity comparison, i.e. we evaluate the
similarity between all parts of a text (for example between every pair of sentences that
appear in the text, even if they are not adjacent to each other). This approach is used by
several authors (Choi, 2000; Choi et al., 2001; Ponte & Croft, 1997; Reynar, 1994; Reynar &
Ratnaparkhi, 1997; Xiang & Hongyuan, 2003), but it should be noted that “local”
comparison (i.e. only between adjacent sentences) has also been used in the past (Hearst,
1994; Hearst & Plaunt, 1993; Heinonen, 1998). To penalize deviations from the expected
segment length we use a “length-model”; this approach has been used in the past by several
authors (Heinonen, 1998; Ponte & Croft, 1997). We find the globally minimal segmentation
cost by dynamic programming.

Current approaches to text segmentation include an improvement of the dotplotting
technique (Ye et al., 2005) introduced by Reynar (Reynar, 2004), an improvement of Latent
Semantic Analysis for text segmentation (Bestgen, 2006), a model of text segmentation based
on ideas from multilabel classification for segmenting sentences into tokens (McDonald et
al., 2005) as well as a novel parameter-free unsupervised text segmentation method, which
is formulated as (variational) Bayes estimation of an HMM from an input text stream
(Koshinaka et al., 2005). Teo Yung Kiat’ master thesis present an attempt to extend and
improve our method (Kiat, 2005). Advances to topic segmentation (closely related to text
segmentation) include methods performing topic segmentation method based on weighted
lexical chains (Sitbon & Bellot, 2005), as well as a new informative similarity measure based
on word co-occurrences (Dias & Alves, 2005).

104 Tools in Artificial Intelligence

It is worth mentioning that text segmentation is widely used in other closely related
scientific areas such as speech segmentation i.e. to identify breaks and discourse boundaries
by expert and/or naive listeners (Auran et al., 2005), spoken multiparty dialogue and
tutorial dialogue segmentation (Olney & Cai, 2005; Hsueh et al., 2006). Text segmentation
techniques are also applied to entity extraction and noun-phrase chunking (Ursu et al., 2005)
as well as to semantic annotation of transcripts of television news broadcasts produced
through automatic speech recognition (ASR) (Dowman et al., 2005). Text segmentation
proves to be beneficial in a number of scientific areas such as corpus linguistics, discourse
psychology and even education. This is due to the fact that text segmentation is based on
topic change. Topic change or topic coherence is highly related to the vocabulary used by
each author, the subconscious mechanism of language variation, the part of speech of words
that he/she uses which may reveal positivity, sociability, complexity or negativity, self
concern emphasis and implicitness. In psychological perspective, text segmentation may
reveal if an author express its subject in question by following a coherence and progressive
apposition of his arguments or it interrupts his argumentation by making references to less
important or even non relevant subjects. Thus, text segmentation can be found useful in
studies concerning topic and authorship attribution where topic change can highly be
related to the vocabulary used by each author (Stamatatos et al.,, 2001). Finally, text
segmentation can easily be applied as a preliminary step to text summarization.

3. Method and algorithm

3.1 Text representation

A text consists of words which are organized in sentences. We assume that sentence
boundaries are correctly marked in the text. Hence we will assume from now on that the
basic text unit is the sentence and that segment boundaries occur only at the end of
sentences. Consider a text which contains T sentences and L distinct words (i.e. a vocabulary
of size L). We define a T x T similarity matrix D as follows (s, t=1, 2,..., T)

@)

D {l,if sentences s and t have at least a common word and s # t}
s,t =

0, otherwise

It is worth mentioning that, by the term “words” we mean any word used by the author of
that segment but not its grammatical form. In our study we do not perform an in depth
linguistic process i.e. grammatical parsing and co-reference resolution in order to discover
the context under which each word appears or the sequence of appearance of words. Our
research is based on the hypothesis that each segment corresponds to a different topic. The
description of that topic tends to be performed by using a small number of characteristic
words that belong to a limited size vocabulary. On the other hand, highly informative
words tend to appear more that one times, thus, the importance of them is reinforced in the
similarity matrix. Finally, it is worth mentioning that, none of the algorithms dealing with
the same problem make use of grammatical items. An opposite approach would lead to a
misleading comparison of obtained results. Additionally, it is our belief that, it is the choice
of words that the authors use in order to express their topic than the grammatical property
of those that it acts as a discriminative factor in the topic i.e. segment change identification.
Lastly, we believe that in case where high informative combination of words i.e. n-grams
appear in the segment, the fact that the information that they contain is represented not as a

Segmentation of Greek Texts by Dynamic Programming 105

whole but with their consisting words as individuals does not lead to “loss” of the
information contained.
Hence, if Dy =1 we assume that the s-th and t-th sentence are similar. Figure 1 provides

the dotplot (Choi, 2000; Choi et al., 2001; Reynar, 1994; Reynar & Ratnaparkhi, 1997) of a D
matrix corresponding to a 91-sentences text; black squares correspond to 1's and white
squares to 0’s. Consecutive groups of sentences which have many words in common
appears as submatrices of D with many 1’s; in Figure 1 they appear as high density squares.
Candidate segments appear, for example, between sentences 11 and 18, 41 and 52 etc. Hence
the dotplot gives a visual representation of the structure of the text.

20 3 4 50 80 70 80

Figure 1: The similarity matrix D corresponding to a text containing 91 sentences, hence D is
a 91 x 91 matrix. A black dot at position (s, t) indicates that the s-th and t-th sentence have at
least one word in common

It is worth mentioning that, the total number of shared words is indirectly depicted in the
dotplot similarity matrix. Sentences that have an important number of shared words lead to
regions containing a lot of “1’s. Sentence length is not considered here, as it would require
the calculation of the total number of words belonging to each sentence, the number of
common and non common words between sentences as well as sentence length
normalization. Such approach is left for future research.

3.2 Segmentation cost
A segmentation is a partition of the set {1,2,...,T} into K subsets (i.e. segments) of the form
{1,2,., t1 } {tl +1, t1+2,.., ty | - {tK-l +1, tg_1+2 ,...,T}(where K is a variable

number and K < T). A more economical description of the segmentation is given by a
(variable length) vector t = (to,tl,....,tK), where, ty, t1, ... tgare the segment
boundaries which satisfy 0 = tg < tg <<ty -1 < tg = T.

We now introduce a “segmentation cost” function J(t): for every segmentation t, J(t) returns

a real number; J(t) will be designed in such a way that it achieves small values when t
designates high-density submatrices of D. We start with the function

106 Tools in Artificial Intelligence

et =l

(tk - tk—l)f @

which can be interpreted as follows. The numerator is the total number of 1’s contained into
the D submatrix which corresponds to the k-th segment {t; ¢ +1,t} _1 +2,...,t; }. When

), (0 ==

the parameter r=2, the denominator (tk -ty _1)' corresponds to the area of the sub-matrix
and Jo(@) is the “segment density”. In the case r#2, Jo(#) corresponds to a “generalized

density” which balances the degree of influence of the surface with regard to the
“information” (i.e. the number of 1’s) included in it. A “good” segmentation t is
characterized by large values of J(#) , which indicate strong within-segment similarity.

In many cases some information will be available regarding the expected segment length;
for instance we may use training data to estimate its mean value g and standard

deviation o . We incorporate this information into a function:

J4 ()= iw ©)
1 pam Qe 02

A “good” segmentation t is characterized by small values of J;(#), which indicate small

deviation from the expected segment length (1).
Finally, we form] by a weighted combination of Jo and Jq:

Iy 3

(tk —t,, _/u)z ‘| z Z Ds.t

2 . UZ _ (1 _ 7) ° s=ty_+l 1=t +1 (4)

JE&p o1, 7)=ye],(0-1=p)e], () :;[W (6=t)

where we stress the dependence of] on the parameters, x, o, randy .

3.3 Minimization by dynamic programming
A “good” segmentation vector t yields a small value of the corresponding J(t; 1, o, 1, 7) (i.e.

segments with high density and small deviation from average segment length). The optimal

segmentation ¢ is the one which yields the global minimum of J(t; &, 0,1, ¥); note that ¢
specifies not only the optimal positions of the segment boundaries t, tq ,...., ty but also the

optimal number of segments K; in other words, our algorithm automatically determines the
optimal K.

! Many other functional forms can be used for J;(¢); in Kehagias et al, 2004(a) and

Kehagias et al., 2004(b), we have explored some alternatives but we have found that the
form used here gives the best results.

Segmentation of Greek Texts by Dynamic Programming 107

Our J(t; 4, 0,1,) has an additive form which is well suited for the global minimization by

dynamic programming. The following algorithm implements the basic dynamic
programming idea (for a detailed justification the reader can consult (Bertsekas, 1987)).
Dynamic Programming for Text Segmentation
Input: The T x T similarity matrix D; the parameters iz, 0,1, 7 :
Initialization
Fort=1,2,...,T
q=0

For s=1,2,...,t-1

9=9* Dg ¢

q
(t=9)"

Ss+1,t =

End
End
Minimization
CO = 0, ZO = 0
Fort=1,2,...,T
Ct =0

Fors=0,1, .., t-1
If
2
t—s—u
Cq +7.(2.—O_2)_(1_7)'Ss+1,t <Cy

Then

(t=s—u)
Ce=Correr —5 0= Se
oc

End
End
BackTracking
K= 0, SK =T
While Z, >0
K=K+1
SK = ZSK—I
End

A

K=K+1, SKZO,tOZO
Fork=1,2,..,K

tk = SK*k
End

108 Tools in Artificial Intelligence

A A A A

Output: The optimal segmentation vector t = (ty,ty ..., tyg)

Upon completion of the minimization part of the algorithm we have computed the optimal
segmentation cost for sentences 1 until T, i.e. for the entire text. The backtracking part first
creates the sequence s),sq,...sg which are the optimal segment boundaries in reverse order

A A A A

and then reverses this sequence to produce the optimal t = (t,t{ ,..., ti). Note that K, the

optimal number of segments is computed automatically.

4. Experiments - results

In this section we present the experiments we conducted to evaluate our algorithm. We
evaluate the algorithm using the following three indices: Precision, Recall and Beeferman’s
Py metric (Beeferman et al, 1999). Precision is defined as “the number of the estimated

segment boundaries which are actual segment boundaries” divided by “the number of the
estimated segment boundaries”. Recall is defined as “the number of the estimated segment
boundaries which are actual segment boundaries” divided by “the number of the true
segment boundaries”. It is worth mentioning that the F measure, which combines the results
of Precision and Recall, is not used here, due to the fact that both Precision and Recall
penalize equally segment boundaries that are “close” to the actual i.e. true boundaries with
those that are less close to the true boundary. For that reason, Beeferman proposed an new
metric Py which measures segmentation inaccuracy; intuitively, Pj measures the

proportion of “sentences which are wrongly predicted to belong to different segments
(while actually they belong to the same segment)” or “sentences which are wrongly
predicted to belong to the same segment (while actually they belong in different segments)”
(for a precise definition of P see (Beeferman et al., 1999).

The variation of the P; measure named WindowDiff index which was proposed by Pevzner
and Hearst (Pevzer & Hearst, 2002) and remedies several problems of the P} measure is not

used in this paper due to the number of experiments conducted and the fact that already
published results used for comparison are only reported in terms of P} .

While several papers regarding the segmentation of English texts have appeared in the
literature, we are not aware of any similar work regarding Greek texts. Furthermore,
because Greek is a highly inflected language (much more than English) the segmentation
problem is harder for Greek, as will be explained in the following. Hence some
enhancements to the basic segmentation algorithm are required.

In the sequel we present experiments which use a Greek text collection compiled from
Stamatatos’corpus 2(Stamatatos et al., 2001) comprising of text downloaded from the
website http://tovima.dolnet.gr of the newspaper entitled ‘To Vima’. This newspaper
contains articles belonging to one of the following categories: 1) Editorial, diaries, reportage,
politics, international affairs, sport reviews 2) cultural supplement 3) Review magazine 4)
Business, finance 5) Personal Finance 6) Issue of the week 7) Book review supplement 8) Art
review supplement 9) Travel supplement. Stamatatos et al. (Stamatatos et al., 2001)

2 The authors would like to thank professor E. Stamatatos for providing us the corpus of
Greek articles.

Segmentation of Greek Texts by Dynamic Programming 109

constructed a corpus collecting texts from supplement no. 2) which includes essays on
science, culture, history etc. Stamatatos et al. selected 10 authors and used 30 texts per
author. They didn’t perform any manual text preprocessing or text sampling; however, they
removed all the unnecessary heading irrelevant to the text itself. In order to minimize the
potential change of the personal style of an author over time, they chose to download texts
taken from the issues published from 1997 till early 1999. The thematic areas of each author
are shown in Table 1.

Due to the nature of the newspaper supplement, texts included in, undergo some low-level
post editing -as opposed to editorial or reportage articles, which are subject to a stricter
editing- so that they conform to the overall style of the newspaper. Therefore, the style of the
specific authors is more personal and independent of outer influences. An example of those
documents is listed in Appendix B.

Author Thematic Area
Alachiotis Biology

Babiniotis Linguistics

Dertilis History, Society
Kiosse Archeology

Liakos History, Society
Maronitis Culture, Society
Ploritis Culture, History
Tassios Technology, Society
Tsukalas International Affairs
Vokos Philosophy

Table 1. List of Authors and their Thematic Areas in the Stamatatos’s collection of Greek texts.

We created several texts, each consisting of segments by various authors. Each author is
characterized by her/his vocabulary hence our goal is to segment the text into the parts
written by the various authors. Before creating the actual texts, some preprocessing
(performed in a totally automatic manner) of the Stamatatos collection was necessary.
Because Greek is a heavily inflected language, a word may appear in many different forms.
Then, if one considers each inflected form as a separate element of the vocabulary, the result
is a larger vocabulary, which considerably complicates the segmentation problem. To
address this issue, we must identify various inflected forms as belonging to the same word;
but for Greek this cannot be done using a simple approach such as stemming. Instead, we
used the POS tagger developed by Orphanos et al. (see Orphanos & Christodoulakis, 1999;
Orphanos & Tsalidis,1999) and the Appendix A, 3) to substitute each word by a “canonical”,
lemmatized form. More specifically, at the first stage, punctuation marks and numbers were
removed as well as all words that aren’t either nouns, verbs, adjectives or adverbs (the stop
list used here is very similar to the one used for English texts). After that, every remaining
word in the text was substituted by its lemma, determined by the tagger. In case the tagger
could not find the lemma of a particular word (usually this happened because the word was

3 The authors would like to thank professor G. Orphanos for kindly letting us use the POS
Tagger.

110 Tools in Artificial Intelligence

not contained in the tagger Lexicon) no substitution was made and the word was kept in the
form appearing in the text. We also kept the information regarding sentence ends.

We present two groups of experiments, which differ in the length of segments created and
the number of authors used for the creation of the texts to segment.

4.1 Experiment group 1

The collection of texts used for the first group of experiments consists of 6 datasets: Set0,...,
Set5. Each of those datasets differ in the number of authors used for the generation of the
texts to segment and consequently in the number of texts used from the entire collection, as
listed in Table 2.

For each of the above datasets, we constructed four subsets, which differ in the number of

the sentences appearing in each segment. LetL . and L ... be the smallest and largest

number of sentences which a segment may contain. We have used four different
(Limin’ Lmax) pairs: (3,11), (3,5), (6,8) and (9,11). Hence Set0 contains 4 subsets: Set01,

Set02, Set03 and similarly for Setl, Set2, ..., Setb. The datasets Set*l are the ones with
(Lmin s Lmax) = (311), the datasets Set*2 are the ones with (L ..., L.) =(35), and so
on. Let also {Xl,...,Xn}be the authors contributing to the generation of the dataset. We
generated the texts in the dataset by the following procedure.

Each text is the concatenation of ten segments. For each segment we do the following.

1. We select randomly an author from {Xl ,,..,Xn } Let I be the selected author.

2. We select randomly a text among the 30 available that belong to the I author. Let k be
the selected text of author L.

We select randomly a number 1 € (L min - Lmax)-

We extract 1 consecutive lines from text k (starting at the first sentence of the text).
Those sentences constitute the generated segment.
Once we have created a dataset, we split it into a training set and a test set, we use the
training data to compute p, 0 and optimal y and r values (by the validation procedure
explained in the sequel) and finally run our algorithm on the test data.

Dataset | Authors No. of docs per set
Set0 Kiosse, Alachiotis 60

Setl Kiosse, Maronitis 60

Set2 Kiosse, Alachiotis, Maronitis 90

Set3 Kiosse, Alachiotis, Maronitis, Ploritis 120

Set4 Kiosse, Alachiotis, Maronitis, Ploritis, Vokos | 150

Dataset All Authors 300

Table 2. List of the sets complied in the 1st group of experiments using Greek texts and the
author’s texts used for each of those.

Recall that the segmentation algorithm uses four parameters: x,o, r and y . As already
mentioned and o can be interpreted as the average and standard deviation of segment
length; it is not immediately obvious how to choose values for r and y . We use training data
and a parameter validation procedure to determine appropriate yz, o, r and y values; then
we evaluate the algorithm on (previously unseen) test data. More specifically:

Segmentation of Greek Texts by Dynamic Programming 111

1. We choose randomly half of the texts in the dataset to be used as training texts; the rest
of the samples are set aside to be used as test texts.

2. We determine appropriate x and o values using all the training texts and the standard
statistical estimators.

3. We determine appropriate r andy values by running (on the training texts) the
segmentation algorithm with 80 possible combinations of r and y values; namely we let
y take the 20 values 0.00, 0.01, 0.02, ..., 0.09, 0.1, 0.2, 0.3, ..., 1.0 and let r take the values
0.33, 0.5, 0.66, 1. The optimal (y , r) combination is the one which yields the minimum
P value.

4. We apply the algorithm to the test texts using previously estimated u,o, r
and y values.

The aforementioned procedure is repeated five times for all sets; the resulting values of

Precision, Recall and P) are averaged. This is performed in order to avoid any problems

that can arise from the fact that the various sets of corpus are composed of many segments
repeatedly drawn from a small number of different texts. Moreover the fact that texts
consisting the training and testing set are randomly selected and the aforementioned
procedure is repeated five times, minimizes the probability that a (probably) significant part
of the training and testing set is in fact in common. Even this was the case the remaining not
common texts would act as “negative” examples i.e. as far as the calculation of the mean and
standard deviation is concerned.

In Table 3 we give the values of Precision, Recall and Pk obtained by our algorithm. We also

run Choi’s and Utiyama'’s algorithms on the same task; the results are given in Tables 4 and 5.
In Tables 6, 7 and 8 we give the same results averaged over all datasets which have
segments of same length. It can be seen that in all cases our algorithm performs significantly
better than both Choi’s and Utiyama’s algorithms. Let us note that the best performance has
been achieved for y in the range [0.08, 0.4] and for r equal to either 0.5 or 0.66.

4.2 Experiment group 2

The second group of experiments also uses Stamatatos’s collection; however, the texts are
generated using a somewhat different procedure. We constructed a single dataset which
contains 200 texts, with every author represented (in other words, the author set is always
{X1=X2’~~~7 xlo}). Each text is the concatenation of ten segments. For each segment we do the

following;:

1. We select randomly an author from {)(1,)(2,___,x10 {- Let I be the selected author.

2. We select randomly a text among the 30 available that belong to the I author. Let k be
the selected text of author I. The selected text is read and scanned in order to determine
the number of paragraphs it contains. Let Z be the number of paragraphs that k-th text
contains.

3. We select randomly a number p &{l,...,Z} corresponding to the number of paragraphs
that the generated segment will contain.

4. We select randomly a number m &{l,..,Z-p}corresponding to the “starting

paragraph”. Thus the segment contains all the paragraphs of text k starting from
paragraph m and ending at the paragraph m + p.

112

Tools in Artificial Intelligence

The procedure described above gives texts which are longer than the ones used in
Experiment Group 1. Hence the segmentation task in the current group of experiments
segmentation of such texts is more difficult than the previous one. Table 9 lists the results
we obtained using our algorithm and the ones by Choi and Utiyama. It can be seen again
that our algorithm performs better than both Choi’s and Utiyama’s algorithms.

Dataset Precision | Recall | Pp Dataset Precision | Recall | Py
Set01(3-11) | 70.65% 71.11% | 14.04% | Set31 (3-11) | 59.99% 58.67% | 17.93%
Set02 (3-5) | 86.82% 87.11% | 6.20% | Set32 (3-5) 84.44% 83.56% | 7.36%
Set03 (6-8) | 96.44% 96.44% | 0.82% | Set33 (6-8) 86.22% 86.22% | 3.28%
Set04(9-11) | 93.33% 93.33% | 0.84% Set34 (9-11) | 91.11% 91.11% | 1.45%
Set11(3-11) | 63.86% 67.11% | 15.82% | Set4l (3-11) | 57.99% 51.11% | 17.38%
Set12 (3-5) | 82.98% 83.56% | 8.47% | Setd2 (3-5) 85.00% 84.89% | 6.76%
Set13 (6-8) | 91.11% 91.11% | 2.81% Set43 (6-8) 88.89% 88.89% | 2.65%
Set14(9-11) | 94.67% 94.67% | 0.98% | Set44 (9-11) | 91.11% 91.11% | 1.39%
Set21(3-11) | 71.14% 60.89% | 14.42% | Set51 (3-11) | 65.74% 61.78% | 14.54%
Set22 (3-5) | 90.00% 89.78% |3.45% | Set52 (3-5) 81.56% 81.78% | 6.49%
Set23 (6-8) | 91.11% 91.11% | 2.15% | Set53 (6-8) 89.33% 89.33% | 3.57%
Set24(9-11) | 92.44 92.44 1.25% | Set54 (9-11) | 88.89% 88.89% | 1.86%

Table 3. The precision, recall and P} values obtained by our algorithm for the 1st group of

experiments using Greek texts.

Dataset Precision |Recall | P} Dataset Precision |Recall | P

Set01 (3-11) |65.75% 65.75% |17.06% |Set31 (3-11) |57.75% 57.75% |20.38%
Set02 (3-5) | 74.50% 7450% |16.68% |Set32 (3-5) [70.75% 70.75% | 17.40%
Set03 (6-8) |76.50% 76.50% |11.72% |Set33 (6-8) [62.00% 62.00% |17.12%
Set04 (9-11) |64.75% 64.75% |15.08% |Set34 (9-11) |62.00% 62.00% |16.10%
Setll (3-11) |67.50% 67.50% |16.91% |Set4l (3-11) |57.50% 57.50% |17.38%
Setl2 (3-5) [67.75% 67.75% |19.23% |Setd2 (3-5) |73.25% 73.25% |15.76%
Set13 (6-8) |72.50% 72.50% |14.74% |Set43 (6-8) |62.50% 62.50% |17.41%
Set14 (9-11) |68.25% 68.25% |14.00% |Set44 (9-11) |63.75% 63.75% |13.70%
Set21 (3-11) |61.00% 61.00% |19.93% |Set51 (3-11) |60.36% 60.50% |17.63%
Set22 (3-5) |73.50% 73.50% [16.15% |Set52 (3-5) |70.50% 70.50% |16.39%
Set23 (6-8) [69.00% 69.00% |15.40% |Set53 (6-8) |67.25% 67.25% |15.85%
Set24 (9-11) |71.75% 71.75% [12.26% |Set54 (9-11) |70.00% 70.00% |12.43%

Table 4. The precision, recall and P} values obtained by Choi’s algorithm for the 1st group

of experiments using Greek texts.

Segmentation of Greek Texts by Dynamic Programming

113

Dataset Precision | Recall Py Dataset Precision | Recall Py
Set01 (3-11) | 69.94% 65.55% | 15.33% | Set31 (3-11) | 61.25% 58.44% | 17.64%
Set02 (3-5) | 74.16% 59.11% |19.99% | Set32 (3-5) | 66.45% 52.88% | 20.98%
Set03 (6-8) | 80.60% 76.88% | 8.94% Set33 (6-8) | 71.88% 70.66% | 11.80%
Set04 (9-11) | 76.18% 74.45% | 8.84% Set34 (9-11) | 67.60% 71.78% | 8.75%
Setll (3-11) | 71.41% | 68.44% |14.99% |Set41(3-11) |57.77% |56.44% |20.61%
Setl2 (3-5) | 74.75% 59.11% | 18.70% | Setd2 (3-5) | 71.25% 56.22% | 20.07%
Set13 (6-8) | 84.77% 83.33% | 7.08% Set43 (6-8) | 67.96% 66.44% | 12.64%
Set14 (9-11) | 81.71% 7911% | 9.10% Setd4 (9-11) | 70.23% 72.88% | 8.50%
Set21 (3-11) | 63.59% 61.11% |18.26% | Set51 (3-11) | 60.00% 56.61% | 17.41%
Set22 (3-5) | 70.57% 53.33% | 21.51% | Set52 (3-5) | 62.83% 4755% | 23.51%
Set23 (6-8) | 77.73% 74.00% | 10.75% Set53 (6-8) | 69.56% 66.89% | 13.84%
Set24 (9-11) | 74.53% 77.33% | 7.80% Set54 (9-11) | 68.55% 70.22% | 9.99%

Table 5. The precision, recall and Pk values obtained by Utiyama and Isahara’s algorithm for

the 1st group of experiments using Greek texts.

Dataset Precision Recall Pk
Set*1 (3-11) 64.90% 61.77% 15.69%
Set*2 (3-5) 85.13% 85.11% 6.45%
Set*3 (6-8) 90.51% 90.51% 2.54%
Set*4 (9-11) 91.92% 91.92% 1.29%

Table 6. The precision, recall and Pk values obtained by our algorithm for the 1st group of

experiments using Greek texts, averaged over datasets with same-length segments.

Table 7. The precision, recall and Py

experiments using Greek texts, averaged over datasets with same-length se
Dataset Precision Recall P
Set*1 (3-11) 64.00% 61.10% 17.37%
Set*2 (3-5) 70.00% 54.70% 20.79%
Set*3 (6-8) 75.42% 73.03% 10.84%
Set*4 (9-11) 73.13% 74.29% 8.83%

Dataset Precision Recall Pk

Set*1 (3-11) 61.64% 61.66% 18.43%
Set*2(3-5) 71.70% 71.70% 16.93%
Set*3 (6-8) 68.29% 68.29% 15.37%
Set*4 (9-11) 66.75% 66.75% 13.93%

values obtaine

d by Choi’s algorithm for the 1st group of
gments

Table 8. The precision, recall and Pk values obtained by Utiyama and Isahara’s algorithm for
the 1st group of experiments using Greek texts, averaged over datasets with same-length

segments.

114 Tools in Artificial Intelligence

Algorithm Precision Recall P

Ours 60.60% 57.00% 11.07%
Choi 44.62% 44.62% 19.44%
Utiyama 56.76% 67.22% 12.28%

Table 9. The precision, recall and Py values for the 2nd group of experiments using Greek
texts.

It is worth mentioning that, the experiments were conducted in a Pentium III 600 MHz with
256 Mbyte RAM memory. The training time of each group was calculated and proved that it
is less than two minutes. The average time of calculation for the segmentation of a text by
our algorithm was 0.91 seconds.

5. Conclusion

We have presented a text segmentation algorithm following a supervised approach which

we applied to the segmentation of Greek texts. On greek text collection our algorithm

outperforms Choi’s and Utiyama’s algorithms. This is largely important particularly in the
case of texts exhibiting strong variation as far as the average length is concerned. Let us
conclude this paper by discussing the reasons for this performance.

Our algorithm is characterized by (a) the use of dotplot similarity, (b) the form of our

similarity function, (c) the use of a length model, (d) the use of dynamic programming, (e)

the use of training data. We discuss each of these items in turn.

1. Dotplot similarity. We use a very simple similarity criterion but it is based on the
dotplot and hence it captures global similarities, i.e. similarities between every pair of
sentences in the document. Dotplots have also been used by Choi (Choi, 2000; Choi et
al., 2001), Reynar (Reynar, 1994; Reynar & Ratnaparkhi, 1997) and Xiang and Hongyuan
(Xiang & Hongyuan. 2003). On the other hand, Hearst (Hearst, 1994; Hearst & Plaunt,
1993), and Heinonen (Heinonen, 1998) use a cost function which depends only on the
similarity of adjacent sentences, hence it is local. Utiyama and Isahara (Utiyama &
Isahara, 2001) take an intermediate position: they use a cost function which depends on
within-segment statistics, hence it is “somewhat” global, i.e. it considers similarities of
all sentences within each segment. Ponte and Croft (Ponte and Croft, 1997) also use an
intermediate approach, computing the similarities of all sentences which are at most n
sentences apart.

2. Generalized density. We use a very simple similarity function based on a single very
simple feature (i.e. we consider sentences similar when they share even a single word).
However there is a special characteristic in our function, which we believe to be crucial
to the success of our algorithm. Namely, we use the “generalized density” (i.e. r # 2)
and this greatly improves the performance of our algorithm. Other authors have only
used dotplot densities with r = 2 only (Choi, 2000; Choi et al., 2001; Utiyama & Isahara,
2001; Xiang & Hongyuan, 2003).

3. Length model. A term for the expected length of segments has been used by Ponte and
Croft (Ponte and Croft, 1997) and Heinonen (Heinonen, 1998). Utiyama and Isahara
(Utiyama & Isahara, 2001) mention the possibility but do not seem to actually use such
a model. However, Choi (Choi, 2000; Choi et al., 2001), Reynar (Reynar, 1994; Reynar &

Segmentation of Greek Texts by Dynamic Programming 115

Ratnaparkhi, 1997) and several other authors do not use a length model. We have
noticed that the use of the length model greatly enhances the performance of our
algorithm.

4. Dynamic programming effects global optimization of the cost function and hence is a
very critical factor in the success of our algorithm. As far as we know, the only other
authors who have used dynamic programming are Ponte and Croft (Ponte and Croft,
1997), Heinonen (Heinonen, 1998), Xiang (Xiang & Hongyuan, 2003) and, implicitly,
Utiyama and Isahara (Utiyama & Isahara, 2001) (their shortest path algorithm is
actually a dynamic programming algorithm). On the other hand Choi (Choi, 2000; Choi
et al, 2001) and Reynar (Reynar, 1994; Reynar & Ratnaparkhi, 1997) use divisive
clustering which, strictly speaking, does not solve an optimization problem; in fact
clustering performs a greedy, local optimization. Note also the heuristic approach to
segmentation, first used by Hearst (Hearst, 1994; Hearst & Plaunt, 1993) and then by
several other authors.

5. Training data. It should not be overlooked that our algorithm depends crucially on the
availability of training data, for the estimation of the parametersu,oc, r andy.
Training data are also used by Choi (Choi, 2000; Choi et al., 2001) for a tuning step of
his clustering algorithm; Utiyama and Isahara’s algorithm does not depend on training
data. However, we should note that in many practical segmentation problems training
data will be available (see also (Beeferman et al., 1999)).

6. Finally, for the segmentation of Greek texts we should not overlook the importance of
the POS tagger; if the Greek words were not lemmatized, the vocabulary of the text
collection would increase by an order of magnitude, making the segmentation problem
much harder.

In short, we believe that our algorithm outperforms Choi’s and Utiyama’s algorithms
because it performs global optimization of a global cost function. This should be compared
to the local optimization of global information (used by Choi) and the global optimization of
local information (used by Utiyama and Isahara).
In future work, we plan to apply our dynamic programming method to other similarity
metrics such as the one proposed by Hearst (WindowDiff) in order to assess the difference
in segmentation accuracy.
An interesting point would be to test our algorithm in text of continuous stream i.e. longer
texts than the one used for the second experiment for the greek texts. Another interesting
point to examine is to enhance the vector space model used in order to calculate the
similarity between sentences with the ranking (3x3 grid which is roughly equal to the one
common word measure) measure in order to avoid any stability issues that may rise by the
similarity metric used by our algorithm.
In order to combine our algorithm with psychological issues such as the words used by
different authors, we plan to examine some of the at least well known 1000 textual attributes
relevant to authorship. The selection of those variables is based on their ability to reveal
subconscious mechanisms of language variation which are unique to each author and have
an impact on the discrimination of the author among every possible author, thus in our case,
topic i.e. segment change. As it was proposed by Bestgen (Bestgen, 2006) our algorithm can
benefit from the addition of semantic knowledge for capturing semantic relations between
words appearing in sentences, which will be a future step.

116 Tools in Artificial Intelligence

6. References

Auran, C.; Colas, A.; Portes, C. & Vion, M. (2005). Perception of breaks and discourse
boundaries in spontaneous speech: developing an on-line technique. IDP05 -
Discours et Prosodie comme Interface Complexe.

Beeferman, D.; Berger, A. & Lafferty, J. (1999). Statistical models for text segmentation.
Machine Learning, vol. 34, pp. 177-210.

Beeferman, D.; Berger, A. & Lafferty, J. (1997). Text segmentation using exponential models.
In Proceedings of the 2nd Conference on Empirical Methods in Natural Language
Processing, pp. 35-46.

Bertsekas, D. (1987). Dynamic Programming: Deterministic and Stochastic Models. Prentice
Hall.

Bestgen, Y. (2006). Improving Text Segmentation Using Latent Semantic Analysis: A
Reanalysis of Choi, Wiemer-Hastings Deterministic and Moore (2001).
Computational Linguistics, vol. 1, pp. 5-12.

Choi, F.Y.Y. (2000). Advances in domain independent linear text segmentation. In
Proceedings of the 1st Meeting of the North American Chapter of the Association for
Computational Linguistics, pp. 26-33.

Choi, F.Y.Y.; Wiemer-Hastings, P. & Moore, J. (2001). Latent semantic analysis for text
segmentation. In Proceedings of the 6th Conference on Empirical Methods in Natural
Language Processing, pp. 109-117.

Dias, G. & Alves, E. (2005). Unsupervised Topic Segmentation Based on Word Cooccurrence
and Multi-Word Units for Text Summarization. ELECTRA Workshop Methodologies
and Evaluation of Lexical Cohesion Techniques in Real-world Applications Beyond Bag of
Words (in association with SIGIR-2005), pp. 41-48.

Dowman, M.; Tablan, V.,; Cunningham, H.; Ursu, C. & Popov, B. (2005). Semantically
Enhanced Television News through Web and Video Integration. In Proceedings of
the ESWC05 Workshop on Multimedia and the Semantic Web.

Halliday, M. & Hasan, R. (1976). Cohesion in English. Longman.

Hearst, M. A. (1994). Multi-paragraph segmentation of expository texts. In Proceedings of the
32nd Annual Meeting of the Association for Computational Linguistic, pp. 9-16.

Hearst, M. A. & Plaunt, C. (1993). Subtopic structuring for full-length document access. In
Proceedings of the 16th Annual International Conference on Research and Development in
information Retrieval of the Association of Computer Machinery - Special Interest Group
on Information Retrieval (ACM-SIGIR), pp. 59-68.

Heinonen, O. (1998). Optimal Multi-Paragraph Text Segmentation by Dynamic
Programming. In Proceedings of 17th International Conference on Computational
Linguistics (COLING-ACL’98), pp. 1484-1486.

Hirschberg, J. & Litman, D. (1993). Empirical studies on the disambiguation and cue
phrases. Computational Linguistics, vol.19, pp. 501-530.

Hsueh, P-Y.; Moore,].D. & Renals, S. (2006). Automatic Segmentation of Multiparty
Dialogue. In Proceedings of the 11th Conference of the European Chapter of the
Association for Computational Linguistics (EACL) 2006, pp. 273-280.

Kehagias, Ath.; Nicolaou A. ; Fragkou P. & Petridis V. (2004)(a). Text Segmentation by
Product Partition Models and Dynamic Programming. Mathematical and Computer
Modeling, vol. 39, pp. 209-217.

Segmentation of Greek Texts by Dynamic Programming 117

Kehagias, Ath.; Fragkou P. & Petridis V. (2004)(b). A Dynamic Programming Algorithm for
Linear Text Segmentation. Journal of Int. Information Systems, vol. 23, pp. 179-197.

Kiat T.Y. (2005). Linear and Hierarchical Text Segmentation Using Product Partition Models.
Master Thesis, Department of Computer Science, School of Computing, National
University of Singapore 2004 /2005.

Koshinaka, T.; Iso, K.-I. & Okumura, A. (2005). An HMM-based text segmentation method
using variational Bayes approach and its application to LVCSR for broadcast news.
IEEE International Conference on Acoustics, Speech, and Signal Processing, vol.1, pp.
485- 488.

Kozima, H. (1993). Text Segmentation based on similarity between words. In Proceedings of
the 31st Annual Meeting of the Association for Computational Linguistics, pp. 286-288.

Kozima, H & Furugori, T. (1993). Similarity between words computed by spreading
activation on an English dictionary. In Proceedings of 6th Conference of the European
Chapter of the Association or Computational Linguistics, pp. 232-239.

McDonald, R.; Crammer, K. & Pereira, F. (2005). Flexible Text Segmentation with Structured
Multilabel Classification. In Proceedings of Human Language Technology Conference
and Conference on Empirical Methods in Natural Language Processing (HLT/EMNLP),
Association for Computational Linguistics, pp. 987-994.

Morris, J. & Hirst, G. (1991). Lexical cohesion computed by thesaural relations as an
indicator of the structure of text. Computational Linguistics, vol. 17, pp. 21-42.

Olney, A. & Cai, Z. (2005). An Orthonormal Basis for Topic Segmentation in Tutorial
Dialogue. In Proceedings of Human Language Technology Conference and Conference on
Empirical Methods in Natural Language Processing, 2005, AAAI Press, pp. 971-978.

Orphanos, G. & Christodoulakis, D. (1999). Part-of-speech disambiguation and unknown
word guessing with decision trees. In Proceedings of EACL’99.

Orphanos, G. & Tsalidis, C. (1999). Combining handcrafted and corpus-acquired lexical
knowledge into a morphosyntactic tagger. In Proceedings of the 2nd Research
Colloquium for Computational Linguistics in United Kingdom (CLUK).

Passoneau, R. & Litman, D.J. (1993). Intention - based segmentation: Human reliability and
correlation ith linguistic cues. In Proceedings of the 31st Meeting of the Association for
Computational Linguistics, pp. 148-155.

Pevzner, L. & Hearst, M. (2002). A critique and improvement of an evaluation metric for text
segmentation. Computational Linguistics, vol.28(1), pp. 19-36.

Ponte, J. M. & Croft, W. B. (1997). Text segmentation by topic. In Proceedings of the 1st
European Conference on Research and Advanced Technology for Digital Libraries, pp. 120
-129.

Raskin, V., & Weiser, J. (1987). Language and Writiing: Applications of linguistics to rhetoric
and composition. Norwood, New Jersey: ABLEX: Publishing Corporation.

Reynar, J.C. (1994). An automatic method of finding topic boundaries. In Proceedings of the
32nd Annual Meeting of the Association for Computational Linguistics, pp. 331-333.

Reynar, J.C. & Ratnaparkhi, A. (1997). A maximum entropy approach to identifying
sentence boundaries. In Proceedings of the 5th Conference on Applied Natural Language
Processing, pp. 16-19.

Roget, P.M. (1977). Roget’s International Thesaurus. Harper and Row, 4th edition.

Sitbon, L. & Bellot, P. (2005). Segmentation thématique par chaines lexicales pondérées.
Actes de TALN 2005, Dourdan, France.

118 Tools in Artificial Intelligence

Stamatatos, E.; Fakotakis, N. & Kokkinakis, G. (2001). Computer-based authorship
attribution without lexical measures. Computer and the Humanities, Kluwer
Academic Publishers, vol. 35, pp. 193 - 214.

Utiyama, M., & Isahara, H. (2001). A statistical model for domain - independent text
segmentation. In Proceedings of the 9th Conference of the European Chapter of the
Association for Computational Linguistics, pp. 491-498.

Ursu, C; Tablan, V. & Cunningham, H. (2005). Semantic Analysis for tomorrow’s audio-
visual digital archives. In Proceedings of 2nd European Workshop on the Integration of
Knowledge, Semantic and Digital Media Technologies (EWIMT-2005).

Xiang J. & Hongyuan Z. (2003). Domain-independent Text Segmentation Using Anisotropic
Diffusion and Dynamic Programming. In Proceedings of the 26th ACM SIGIR
Conference. on Research and Development in Information Retrieval.

Yaari, Y. (1997). Segmentation of expository texts by hierarchical agglomerative clustering.
In Proceedings of the Conference on Recent Advances in Natural Language Processing, pp.
59-65.

Yaari, Y. (1999). Intelligent exploration of expository texts. Ph.D. thesis. Dept. of Computer
Science, Bar-Ilan University.

Ye, N.; Zhu, J.; Luo, H.; Wang, H. & Zhang, B. (2005). Improvement of the dotplotting
method for linear text segmentation. Natural Language Processing and Knowledge
Engineering, pp. 636- 641.

Appendix A: The Morphosyntactic Tagger

The Greek texts were preprocessed using the morphosyntactic tagger (better known as Part-
Of-Speech tagger) developed by Ophanos et al. (Orphanos & Christodoulakis, 1999;
Orphanos & Tsalidis, 1999). This is a Part-Of-Speech (POS) tagger for modern Greek (a high
inflectional language) and is based on a Lexicon capable of assigning full morphosyntactic
attributes (i.e. Part-Of-Speech, Number, Gender, Tense, Voice, Mood and Lemma) to 876.000
Greek word forms. Orphanos et al. created a tagged corpus capable of exhibiting the
capability of the POS tagger to identify and resolve all POS ambiguity schemes present in
Modern Greek (e.g. Pronoun-Clitic-Article, Pronoun-Clitic, Adjective-Adverb, Verb-Noun,
etc) as well as the characteristics of unknown words by using the Lexicon. They used this
corpus in order to induce decision trees, which along with the Lexicon are integrated into a
robust POS tagger for Modern Greek texts. The tagger has three parts: the Tokenizer, the
Lexicon and finally the Disambiguator and Guesser. The Tokenizer takes as input raw text
and converts it into a stream of tokens. The Tokenizer resolves non-word tokens (e.g.
punctuation marks, numbers, dates etc.) and provides them a tag corresponding to their
category. As for the word tokens, they are looked up in the Lexicon and those found receive
one or more tags. The Disambiguator/Guesser takes as input words that received more than
one tags and words that were not found in the Lexicon and decides their contextually
appropriate tag. The Disambiguator/Guesser is a ‘forest’ of decision trees, one tree for each
ambiguity scheme present in Modern Greek and one tree for unknown guessing. The
ambiguity scheme of words that received by the Lexicon more than one tag is identified and
the corresponding decision tree is selected. This tree is traversed according to the values of
the morphosyntactic features extracted from contextual tags. The result of this traversal is

Segmentation of Greek Texts by Dynamic Programming 119

the contextually appropriate POS tag along with its corresponding lemma. In order to
resolve the ambiguity, tag(s) with different POS than the one returned by the decision tree,
is (are) eliminated. In order to determine the POS of an unknown word, the decision tree for
unknown words is traversed and examines contextual features along with the word ending
and capitalization. As a result the open class POS and the corresponding lemma of the
unknown word are returned.

Appendix B

<CC>

I'. AEPTIAHX TO BHMA, 23-03-1997 Kwdwkog apbpov: B12421B062 </CC>

<TITLE>

Zaenvela kat ap@iPoiia

</TITLE>

<TEXT>

IMpotmobeorn) Tov Kahov LoV, 1) cagnveld eivat avaykaia 16oo ot Aoyotexvia 000 Kat
OtV EmMOTNHOVIKI ypagr. ANA npokettat yia dvo dtagpopetikég oagprnveteg. H pia eivat
ITOWTIKT), 1) GAAN eSnynpuatiky.

Me 1) oca@rvela tov DPOLS TOV, 0 AOYyOoTEXVNG «mIolel» TV moAvonuia. Etot avoiyet
UIIPOOTA OTOV AVAYV®OTI) €Va PUIiOlo avayvaoemV: ToV eDKOADVEL va dtaBdoet Kat va
€PUINVEDOEL TO TOADOT IO KelPevo pe TOAAITAODG TPOIIONG.

AN\G 0 ovyypa@eag evog EMOTNUOVIKOD €pyoD (auTog mov Koping Oa pag amacyolrjoet
orjuepa) eSagavidel pe) oagrvela ToL LPOVG TOL OAEG TIG AUPLONHIEG KAl IIOADOIieg
Tov Kelévoo. Amoxheiet €10t Tig au@iPoAieg TOL AVAYV®OTH Yl Ta 00d O OLYYPAPEAS
toxvpiletat Kat S1eDKOADVEL TOV AVA-YVAOOTIKO, EMOTHOVIKO éAeyyo. H moAvonuia moo
npoonabel va ex@pdaoet o Aoyotéxvng potadet, eSaAov, ald dev tavtifetal pe my
apgiPolia mov KArote eKPPAlet OTO Keiplevo Tov évag emotrpovag. Tnv exppdadet emetdr)
ovvatodaverat Ta Opta TOL eaLTOD TOV, TOL CLYKEKPLUEVOD EPYOD TOV, TOV IIPOCOITIKOV
oL Oe@pldV, aKOUn Kat TG EMOTHUNG ToL. ANNG IIAPANEVEL 1) AVAYKD VA elvat oagelg
ot Oewpleg Tov, oagég kat to Keipevo tov. Etot, o ovyypagéag amd) pia karaypaget
mv ap@iPolria, amo v aA\n Opwg vrootnpifel pe oagrveld) CLANOYIOTIKI) TOV, TI§
AmoWelg KAt TI§ epUnveleg TOL: e1etdr) O EMOTHOVIKOS Aoyog, €€ oplopov, dev emdexetat
AVTLPAOELS.

Onawg etvatl @ooko, o xavovag g oagrvelag dev exet eviaia epappoyr). YIAapyoovv ot
O1a(OPOIION|OELg TTOL SAPTMVTAL AIIO TNV MPOCMITIKOTITA KAl TI§ KAVOTNTEG TOL Kdade
ovyypagéa. Evag emotpovag pe xalo ovyypa@iko Talévio pmopel iowg va Ppet
e\enlep1oTEPOLG TPOIIOLE TIAPOLOIAOHG TOV 0V TOV, va erektabel oe vrawviypovg, oe
ap@onpieg Kat oe AMOCLOIIOELS IOV €XoLV T1) Olkr) Tovg Aettovpyla Kat aiodnTikin.
AN\G aoto dev avaipel TV EMOTUOVIKE] TOL dIIOXPEMOT va deifet pe oagrjvela, oe GAAa
OnMELT TOV KEWPEVOD, TIG AITOWELG KAl TIG EPUIVELEg TOD.

Yndpyoov énetta S1a@opomou|oelg avaloyeg He Td YVOOTIKA avtikeipeva kat Ta eidn
ToL ypamItov emotnpuovikod Aoyov. H Iotopia, m.y., agrjvet meplocotepeg DPOAOYIKEG
duVATOTNTEG OTOV OLYYPAPEA aItd omotadnmote dAAn emotnun. Tov emrpémnel, Kamote
tou emPalet KIOAag, va avadeilel TI¢ e0OOTEPIKEG AVTILPATELG TOL AVOP®IIOL KAl TOV
avlpomivey Koweviov: tov polo teov avipemivev nabeov: tn onupacia tov
OLUITOOE®Y KAt TG TOXNG: TOo PAPog TOV HATIKOV KOWMVIK®OV OOVAULEDV *© TODG

120 Tools in Artificial Intelligence

avarodpacTong PPAyHong TG QOOIG.

Qot000, 0 10ToPKOG dev delyvel TIg AVTIPAOELS OVOLAG Pe AVTIPAOELS DPOVG, AN e
oagprvewa. Ta ndbn dev ta deiyvet pe Wpeodopopavtiky acdetd, aA\d pe T oagrvela
eketvr) moo Oa avadeiler v ayunpotta tovg. Tovilel TIg OCOUMT®OEG KAl TV
ToXOOTNTA HE DPOG OaPeg Kai Oyt Toxdapraocto. Tn «poipa» dev v amodidet oe
UETAPOOLKEG DOVALELS - EPOCOV Kavel emotrur). Mmopet va v tavtifet pe dovapetg moo
Bewpovdoav avelrynteg Kat petagooikég ot avipmrrot mov peletd - alda o diog Oivet
ovopa otig SOVANELG ALTEG* KAl TLG EVIAOOEL, Ie OAPVEL, O EVaV AtTaKO COANOYLONO,
0€ &V EPUIVEDTIKO OXTLLCL

Eva eotoyég 10toploypa@iko épyo amnattei Evav Kald OOYKEPAONO TG EMIOTH NG HE TV
TEXVI] TOL DPOLE. ATO ekel KAl MEPT, DIAPYEL HOVO 1) DIEPPAOI KAt TNg EMOTUNG KAt
TOL DPOVG. ZTOV VLIIEPPATIKO ADTO XMPO, €KEL OIMOL O OLYKEPAOHOG Yivetal TabvTion
YVOO1G Kat TV, 0dnyet évag dpopog oxedov dpatog. Tomog mov overpedbovTat moANot,
EMOTHLOVEG KAl TEXVITEG, TOIOG APOAOTOG yia HAg TOvg MOANODG - Ox1, OU®S, OLTOIId.
Mag tov éyovv deifet o1 eddyiototl mov é@taocav exel, ot ddokalol pag, o kabévag pe
MeYAAn Kat T WIKPI] Tov totopla, ovia Stohov petapooikd, mold avipomva. Evag
am\og avBpwrog Oev rtav dpaye o dAOKAAOG oV, TPV Aarto dVOULOL ALHOVEG, OKAPDVE
kdbe pépa T @oyr] Tov MmPOG Ta ekel, pe éva amhd, dAAd KAA®G ODYKEPAOUEVO
KAewdoxvuPalo;

O k. I. B. Aeptidr)g etvan xaBnyntr|g g Iotopiag oto ITavemotrpio Abnvav.

</TEXT>

8

Applying Artificial Intelligence to Predict the
Performance of Data-dependent Applications

Paula Fritzsche, Dolores Rexachs and Emilio Luque
DACSO, University Autonoma of Barcelona
Spain

1. Introduction

Computational science (CS) is an emerging discipline that unites science and mathematics
with disciplinary experience in biology, chemistry, physics, and other applied scientific
fields. Within the scientific method, it is often referred to as the third science paradigm,
complementing both theoretical and laboratory science (Miller & Boxer, 2005). In this work,
CS involves the collaboration of the computing discipline, the mathematical support
represented by the knowledge discovery process and by the models, and the computing
parallel environment capability. Central to this computational science problem is the
performance prediction of data-dependent applications, as shown on Figure 1. By the way,
CS allows doing things that were previously too difficult to do due to the complexity of the
mathematics, the large number of calculations involved, or a combination of both.
Therefore, new challenges are continuously arising although CS is still at an early stage of
development.

Computing parallel
environment capability

Interest problem
(performance prediction)

Scientific or technologic discipline Mathematics
(computing discipline) (KDD process + models)

Figure 1. Computational science complementing both theoretical and laboratory science

Parallel computers provide an efficient and economical way to solve large-scale and/or
time-constrained scientific, engineering, medicine, industry, and commerce problems. It is
an alternative that makes easy to reach a solution in a fraction of the original time that
would consume a single computer. Consequently, the research community, the computer

122 Tools in Artificial Intelligence

designers, the professional engineers, and the end-users of these systems have a vested
interest in knowing and predicting the performance order of parallel algorithms. Although
measuring the performance of a parallel algorithm for all possible input values would allow
answering any question about how the algorithm will respond under any set of conditions,
it is impossible to make it. The situation is even worse for data-dependent algorithms where
similar input data sets may cause significant variability in execution times. For this kind of
algorithms, the performance does not depend only on the number of processors used (P)
and on the data size (N). Other parameters have to be taken into account, the values of
which are data-dependent. Great examples of this type of programs are the sorting
algorithms, the searching algorithms, the satisfiability problem, the graph partition, the
knapsack problem, the bin packing, the motion planning, and the traveling salesman
problem (TSP). Furthermore, there are important cases of practical problems that can be
formulated as TSP problems and many other problems are generalizations of this problem.
The goal of this chapter is to present a general novel methodology to the problem of
predicting the performance of data-dependent algorithms. This is a good starting point for
understanding some facts related with the non-deterministic algorithms. Briefly, the
methodology works as follows. It begins by designing a certain number of instances and
measuring their execution times. A well-designed instance guides the experimenters in
choosing what experiments actually need to be performed in order to provide a
representative sample. A data mining process then explores the collected data in search of
patterns and /or relationships detecting the main parameters that affect performance. These
common properties are modelled numerically so as to generate an analytical formulation of
the execution time, a multiple-linear-regression model. Finally, the regression equation
allows predicting how the algorithm will perform when given new input data sets.

A global pruning algorithm (GP-TSP) is used to analyze the influence of indeterminism in
performance prediction, and also to show the usefulness of the proposed methodology. It is
a branch-and-bound algorithm which recursively searches all possible paths and prunes
large parts of the search space by maintaining a global variable containing the length of the
shortest path found so far. If the length of a partial path is bigger than the current minimal
length, this path is not expanded further and a part of the search space is pruned.

The GP-TSP execution time depends on the number of processors (P), number of cities (C),
and other parameters. As a result of this investigation, right now the sum of the distances
from one city to the other cities (SD) and the mean deviation of SDs values (MDSD) are the
numerical parameters characterizing the different input data beyond the number of cities.
The preliminary experimental results of predictions are quite promising. An important fact
has been reached beyond was originally sought. Choosing the city which has minimum SD
associated value, it is possible to obtain the exact TSP solution investing less amount of time.
This chapter is organized as follows. The next section presents the novel methodology to the
problem of predicting the performance of data-dependent algorithms. Section 3 reviews the
traveling salesman problem (TSP) and provides detailed coverage of a parallel TSP
implementation called GP-TSP. Section 4 focuses on the discovering process carried out to
find the significant input parameters for the GP-TSP algorithm. Section 5 explains how to
build a prediction model and then the evaluation process in order to estimate times. Finally,
Section 6 summarizes and draws the main conclusions of this chapter identifying
challenging future research.

Applying Artificial Intelligence to Predict the Performance of Data-dependent Applications 123

2. Entire approach

The general novel methodology attempts to estimate the performance order of a parallel
algorithm that solves a data-dependent problem. The defined methodology consists of three
main phases: the design and composition of experiments to obtain and fit the prediction
model, the validation of the model, and the use of the model developed, see Figure 2.

KDD process

I I
I I
1 1
1 1
: U
| 4 4 4 :
| [|
| |
A, @ ______________ D)
5"'é'§nce of i \

possible ! k |
. hypotheses 3 ! X \

; \ ! \
e /\ | \

‘ Experiments + / k
Execution of the W p: \
parallel algorithm ‘

— Training ! |
data | \

Experiments

—

J

- Analysis
Training Experiments +
data

ecution Time: ' |
—— —_— L \\
Validation ! \ zs:;
Validation data ! \
data ! \ /
Prediction of
Multiple-linear-regression

performance
/ mOdEI (T: bD+bIX1+I."bPXP)

order (T)
Figure 2. The performance prediction methodology

(

(

New input data
(%1, xp)

2.1 Design and composition of experiments to obtain and fit the prediction model

In principle, it is important to understand the application domain and the relevant prior
knowledge, and to analyze their behavior step by step, in a deep way. It is a try-and-error
method that requires specialists to manually or automatically identify the relevant
parameters that can affect the execution time of the algorithm studied. Discovering the
proper set of parameters is the basis to obtain a good capacity of prediction. Including too
many parameters may lead to an accurate but too complicated or even unsolvable model.
Hence, great care should be taken in selecting parameters and a reasonable trade-off should
be made.

Designing an experiment involves articulating a goal, choosing an output that characterizes
an aspect of that goal and specifying the data that will be used in the study. A well-designed
instance guides the experimenters in choosing what experiments actually need to be
assessed. Once a training data has been defined, the studied parallel algorithm reads and
processes the experiments one by one obtaining their execution times.

A data mining application analyzes the quantitative measured values of the main
parameters that affect performance and summarizes these into a useful multiple-linear-

124 Tools in Artificial Intelligence

regression model (MLR model, T=by+bix1+...+ byxy). It allows including the effects of several
input variables that are all linearly related to a single output variable (T). This is a first
approximation to deal with the problem. Figure 3 shows the knowledge construction model.
Note that the instances must provide a representative sample (a training data set) first to
obtain and fit the model and then to estimate the regression coefficients.

‘ :
| transformed i
: preprocessed data i
| source |
! data data patterns |
! 1
‘ :
| |
| E— —) | p— ;
V‘ preprocessing data i
."--S_ﬁgé;of A Transformation mining '
‘ possible | s A ;
._hypotheses ! | i o
- Execution of the } | | und:r‘STur(:ldllng !
. ' | | 1 |
1’ parallel algorithm 1 ! ; € mode i
| | | i
| | | !
| ! 1

Experiments +
execution times

Training
data

Training
data

KDD process

Figure 3. The knowledge construction model

2.2 Validation of the model

A new data set is used to be able to validate the created model. The validation data set
constitutes a hold-out sample and is not used in building of the model. This enables to
estimate the error in the predictions without having the assume that the execution times
follow a particular distribution.

The training data set is used to estimate the regression coefficients (by,...,b,). These
coefficients are used to make predictions for each case in the validation data. The quality
analysis is a relevant issue in this stage and has to include interest measurements. The
prediction for each case is then compared to the value of the dependent variable that was
actually observed in the validation data obtaining the prediction error. The average of the
square of this error enables to compare different models and to assess the accuracy of the
model in making predictions. Figure 4 exhibits the model validation phase.

Execution of the
parallel algorithm

Experiments +
execution times,

Analysis

-

Validation Multiple-linear-regression /4P I
model (T=bgsbrx;s . +byx rediction of
data (T=Borbrxye..+bpxy) performance
order (T)

Figure 4. The validation of the model

Applying Artificial Intelligence to Predict the Performance of Data-dependent Applications 125

Great care should be taken in analyzing the first approximations because it is difficult to
know the degree of complexity of the relationship between the parameters and execution
time. It is important to take in mind that the model aids in testing hypothesis and finding
solution to performance prediction problems.

From the scientific point of view is essential to find confidence intervals for the regression
parameters to provide some indication of how well they model the measured values. Taking
this as a basis, it could determine the necessary number of elements in the sample.

2.3 Prediction of performance order

Once a MLR model has been fit, it is used to predict how the studied parallel algorithm will
perform when given a new input data set. The by,...,b, values are the estimated regression
parameters. To predict the dependent value (T), it is necessary to replace the independent
values xj,...,x, with known values.

At this point, it is necessary to emphasize that the MLR model provides a prediction
framework easy to use and useful, see Figure 5.

Analysis

Multiple-linear-regression ié)\i:

— \ model (T=bg+tbixi+..+byx,) | —*

New input data Prediction of
(X1, Xp) performance

order (T)

Figure 5. The prediction framework

3. Traveling salesman problem

The traveling salesman problem (TSP) is one of the most famous problems (and the best one
perhaps studied) in the field of combinatorial optimization. In spite of the apparent
simplicity of its formulation, the TSP is a complex data-dependent. Not only the complexity
of its solution has been a continue challenge to the researchers but also the prediction of its
performance due to there are many practical problems that can be formulated as TSP
problems.

3.1 Problem statement

The TSP for C cities is the problem of finding a tour visiting all the cities exactly once and
returning to the starting city such that the sum of the distances between consecutive cities is
minimized (TSP, 2008). The requirement of returning to the starting city does not change the
computational complexity of the problem.

3.2 TSP computational complexity
The TSP has been shown to be NP-hard (Karp, 1972). More precisely, it is complete for the
complexity class (FPNP)1, and the decision problem version is NP-complete. If an efficient

1 The class NP is the set of decision problems that can be solved by a non-deterministic
Turing machine in polynomial time. FP means function problems.

126 Tools in Artificial Intelligence

algorithm is found for the TSP problem, then efficient algorithms could be found for all
other problems in the NP-complete class. Although it has been shown that, theoretically, the
Euclidean TSP is equally hard with respect to the general TSP (Garey et al., 1976), it is
known that there exists a sub exponential time algorithm for it.

The most direct solution for a TSP problem would be to calculate the number of different
tours through C cities. Given a starting city, it has C-1 choices for the second city, C-2 choices
for the third city, etc. Multiplying these together it gets (C-1)! for one city and C! for the C
cities. Another solution is to try all the permutations (ordered combinations) and see which
one is cheapest. At the end, the order is also factorial of the number of cities. Generally, the
presented solutions are quite similar.

3.3 TSP practical problems

Besides the drilling of printed circuits boards (Duman, 2004), transportation and logistics
areas (TSP, 2008), problems having the TSP structure occur in the analysis of the structure of
crystals (Bland & Shallcross, 1989), in material handling in a warehouse (Ratliff & Rosenthal,
1983), in clustering of data arrays (Lenstra & Kan, 1975), in sequencing of jobs on a single
machine (Gilmore & Gomory, 1964), in physical mapping problems (Alizadeh et al., 1993),
in genome rearrangement (Sankoff & Blanchette, 1997), and in phylogenetic tree
construction (Korostensky & Gonnet, 2000) among others. Related variations on the TSP
include the resource constrained traveling salesman problem which has applications in
scheduling with an aggregate deadline (Miller & Pekny, 1991). The prize collecting TSP
(Balas, 1989) and the orienteering problem (Golden et al., 1987) are special cases of the
resource constrained TSP. The problem of finding a tour of maximum length is the objective
in MAX TSP (Barvinok et al., 2003). The maximum scatter TSP is the problem of computing
a path on a set of points in order to maximize the minimum edge length in the path. It is
motivated by applications in manufacturing and medical imaging (Arkin et al., 1996). Most
importantly, the TSP often comes up as a subproblem in more complex combinatorial
problems, the best known and important one of which is the vehicle routing problem, that
is, the problem of determining for a fleet of vehicles which customers should be served by
each vehicle and in what order each vehicle should visit the customers assigned to it
(Christofides, 1985).

3.4 GP-TSP algorithm

An implementation, called global pruning algorithm (GP-TSP), to obtain the exact TSP
Euclidean solution in a parallel machine has been used. For simplicity of implementation,
they were considered cities in R2 instead of Rn. The most straightforward way of computing
distances between cities in a two-dimensional space is to compute Euclidean distances.
Anyway, the election of distance measure (Euclidean, Manhattan, Chebychev) is irrelevant.
Also would be the same to work with an equivalent formulation in terms of graph theory.
This is 'given a complete weighted graph (where the vertices would represent the cities, the
edges would represent the roads, and the weights would be the cost or distance of that
road), find a Hamiltonian circuit with the least weight' (Gutin & Punnen, 2006). Therefore,
the ideas of this paper can be generalized.

The GP-TSP algorithm analyzes the influence of indeterminism in performance prediction. It
is a branch-and-bound algorithm which recursively search all possible paths. It follows the
Master-Worker programming paradigm (Fritzsche, 2007). Each city is represented by two

Applying Artificial Intelligence to Predict the Performance of Data-dependent Applications 127

coordinates in the Euclidean plane. Considering C different cities, the Master defines a
certain level L to divide the tasks. Tasks are the possible permutations of C-1 cities in L
elements. The granularity G of a task is the number of cities that defines the task sub-tree: G
= C- L. At the execution start-up the Master sends the cities coordinates to every Worker.

A diagram of the possible permutations for 5 cities, considering the salesman starts and
ends his trip at the city 1, can be seen in Figure 6. The Master can divide this problem into 1
task of level 0 or 4 tasks of level 1 or 12 tasks of level 2 for example. The tasks of the first
level would be represented by the cities 1 and 2 for the first task, 1 and 3 for the second,
followed by 1 and 4 and 1 and 5. The requirement of returning to the starting city is without
detracting from the generality. In this closed cycle the salesman may begin and end in the
city who wants.

Figure 6. Possible paths for the salesman considering 5 cities

Workers are responsible for calculating the distance of the permutations left in the task and
sending to the Master the best path and distance of these permutations. One of the
characteristics of the TSP is that once the distance for a path is superior to the already
computed minimum distance it is possible to prune this path tree.

] 17 22
city i i
2 1 6: @
3| 4 6 10 ===
- A A
@ (3) (%)
I\
4| s 15 | 10 ! l l
SN
@ {) lg)
<~ -
5| 22 20 14 1 2 /-
1 2 3 4 @

city
Figure 7. (a) Matrix of distances between cities (b) Pruning process in the GP-TSP algorithm

128 Tools in Artificial Intelligence

Figure 7(a) shows a strictly lower triangular matrix of distances; meanwhile Figure 7(b)
exhibits the pruning process for the GP-TSP algorithm where each arrow has the distance
between the two cities it connects. Analyzing Figure 7(b), the total distance for the first
followed path (in the left) is of 40 units. The distance between 1 and 2 on the second path (in
the right) is already of 42 units. It is then not necessary for the algorithm to keep calculating
distances from the city 2 on because it is impossible to reach a better distance for this branch.

4. Discovering the significant GP-TSP input parameters

It is clear that the GP-TSP execution time order depends on the number of processors (P), on
the number of cities (C), and ‘other parameters’. Discovering the ‘other parameters’ is the
key to obtain a good or an acceptable prediction of performance order. Undoubtedly, the
knowledge discovery in databases process (KDD process) has been one of the most
profitable stages in the scientific examination. A huge amount of data sets was processed
with the only goal of finding some common properties. First intuitions guided the different
tests in order to determine the characteristics, the relationships, and the patterns between
the data sets. As a result of the investigation, right now the sum of the distances from one
city to the other cities (SD) and the mean deviation of SDs values (MDSD) are the numerical
parameters characterizing the different input data beyond the number of cities (C). But how
these final parameters have been obtained? Next, it is described the followed way to
discover the above mentioned dependencies (SD and MDSD), the construction of a model,
and finally the evaluation of the obtained regression equation.

4.1 First hypothesis > location of the cities (geographical pattern)

For simplicity, only a particular training data set is analyzed and shown along different
sections. It consists of five different geographical patterns of fifteen cities each one (named
GI1 to G)5). Figure 8 illustrates the five patterns handled at the beginning.

100 100 100 10 100
9% S @ S . % * . % . 0 A
. N » . .
s ° “l @as) *1 (9,15) R
x .
70 N) 70 ’ 70 ’ 70
5,15 1,15
60 (3’15) 60 () 60 60 60 ()
50 5 50 50 50
40 40 40 40 40
30 0 30 30 30
20 . 2 I 20 PR 2 } t 20
1 (1,2) © (1.4) 1 (1,6) v (1,8) 1
0 0 0 0 0
0 10 20 30 4 0 10 20 30 40 0 10 20 30 40 0 10 20 0 40 0 10 20 30 40
(a) G1 (b) G2 (c) G3 (d) G4 (e) G5

Figure 8. Five patterns defined for fifteen cities

The GP-TSP implementation receives the number of cities and their coordinates, and the
level as input parameters. In order to find the shortest path, it proceeds recursively
searching all possible paths and applying the global pruning strategy whenever it is feasible.

Applying Artificial Intelligence to Predict the Performance of Data-dependent Applications 129

Hence before continuing, there are two important concepts to refresh. The main objective of
data mining is finding useful patterns and knowledge in data. Clustering is one of the major
data mining techniques, grouping objects together into clusters that exhibit internal
cohesion (similar execution time) and external isolation.

As depicted in Figure 9, five clusters were found using a k-means algorithm (MacQueen,
1967) included in Cluster-Frame environment, see Appendix B for extra information. The
idea was to obtain quite similar groups with respect to the groups (patterns) used at the
beginning. The initial centroids were randomly selected by the clustering application and
the squared error function, Equation (1), was the selected objective function

kn
) 2
22 0x —c |)
J=1 =l
where |xi0)-cj|2 is a chosen distance measure between a data point x;() and the cluster
centroid ¢;. The entire function is an indicator of the distance of the n data points from their
respective cluster centroids.

. ClusterFrame - [Method 1] |._HEHZ‘
iur Method Databases Table Distances Quallty Graphics Wiew Window .8 %

O [Fee (v ° e Ed 4

Source Database H C:\rchivos de programatClusterFrame\DatosTSPAT. mdb Ruality: Iterations
Results Database m C:varchivos de programatClusterFrametDatosTSPI7. mdb Maximum number of iterations
=
Samples Table [E DatosTSP_méi_b_15 Samples % = [=

Random - Clusters quantity ﬂ

Dutput

Iteration: 1

Elements moved. 75

Guality: 0,1280501 82044604

Euclidean Distance

dix.y) = [Sum [xi - yi]"2]"1/2

~
v

Field | Type | Digtance function
Tiempo ejec Double | Distancia para dobles

| EEREERS
[20,0000 %
[20,0000 %

26 BGET %
W 20,0000 %

Ready 29/04/2008 12:52

Figure 9. Cluster-Frame environment

Table 1 presents the obtained GP-TSP execution times (in sec.) by pattern (columns GI to
G5) and starting city using 8 nodes of the parallel machine described in Appendix A.
Columns CI1,.., CI5 show the assigned cluster for each sample after running k-means
algorithm. For the clusters 1 to 5, the final centroids values were 92.22 sec., 16.94 sec., 37.17
sec., 10.19 sec., and 7.94 sec., respectively. A simple remark derived from pattern columns is
that the execution times belonging to a group are quite similar except for some cases.

The quality evaluation involves the validation of the above mentioned hypothesis. For each
sample, the assigned cluster was confronted with the previously defined graphic pattern.
The percentage of hits expresses the capacity of prediction. A simple observation is that the
execution times were clustered in a similar way to patterns fixed at starting; the capacity of

130 Tools in Artificial Intelligence

prediction was of 75% for this example (56 hits on 75 possibilities). There was a close
relationship between the patterns and the execution times.

Pattern
Starting
city Gl |Cll| G2 |CI2| G3 |CI3| G4 |Cl4| G5 |CI5
1 21617 1 |36.50| 3 |1534| 2 (1051 | 4 |8.03| 5
2 21444| 1 |36.82| 3 |1519| 2 [1049| 4 |7.82| 5
3 7725 | 1 |38.09| 3 |1557| 2 |10.02| 4 |[7.71| 5
4 7264 | 1 (3729 3 |15.02| 2 |1030| 4 [791]| 5
5 7094 | 1 (1854 2 |1584| 2 |1041| 4 [7.83| 5
6 7421 | 1 |17.83| 2 (1524| 2 |1024| 4 |(7.71| 5
7 7559 | 1 |1816| 2 |1031| 4 |1036| 4 [793| 5
8 7372 | 1 |(18.03| 2 |1034| 4 |1026| 4 |[7.87| 5
9 6947 | 1 |17.79| 2 (1027 4 | 998 | 4 (8.14| 5
10 7496 | 1 (1748| 2 |1023| 4 | 988 | 4 [822] 5
11 7589 | 1 (1707 2 |1024| 4 | 985 | 4 [8.04| 5
12 7017 | 1 (1739| 2 |1028| 4 | 987 | 4 [812] 5
13 7373 | 1 (1810 2 |1036| 4 | 988 | 4 [798| 5
14 7087 | 1 (1737 2 |1017| 4 | 995 | 4 [8.02| 5
15 7330 | 1 (1800 2 |1032| 4 | 997 | 4 |778] 5
Mean | 92.23 22.97 12.32 10.14 7.94

Table 1. Execution times (in sec.) and assigned cluster for the GP-TSP algorithm

Conclusions: The initial hypothesis for the GP-TSP was corroborated. At this stage, the
asymptotic time complexity was defined as O(C, P, pattern). The capacity of prediction was
greater than 70% for the full range of experiments worked. This value gave evidence of the
existence of other significant parameters. Therefore, a deep analysis of results revealed an
open issue remained for discussion and resolution, the singular execution times by pattern.
Another major hypothesis was formulated.

4.2 Second hypothesis - location of the cities and starting city

Comparing Figure 8 with Table 1 it is easy to infer some important facts. The two far cities
in Figure 8(a) correspond with the two higher time values of Table 1(G1). The four far cities
in Figure 8(b) correspond with the four higher execution time values of Table 1(G2). The six
far cities in Figure 8(c) correspond with the six higher time values of Table 1(G3). The cities
in Figure 8(d) are distributed among two zones so, the times turn out to be enough similar,
see Table 1(G4). Finally, the cities in Figure 8(e) are enough closed so, the times are quite
similar, see Table 1(G5).

An additional important observation is that the mean of execution times by pattern
decreases as the cities approach (92.23, ..., 7.94).

Conclusions: Without doubt, the location of the cities and the starting city (C;) play an
important role in execution times; the hypothesis was corroborated. At this point, the
asymptotic time complexity for the GP-TSP was redefined as O(C, P, pattern, C1). Anyway,

Applying Artificial Intelligence to Predict the Performance of Data-dependent Applications 131

an open issue remained for discussion and resolution, how to relate a pattern (in general)
with the value of the execution time. This relationship would be able to establish a
numerical characterization of patterns. On this basis, a new original hypothesis was
formulated.

4.3 Third hypothesis = sum of distances and mean deviation of sum of distances
What parameters could be used to quantitatively characterize different geographical
patterns in the distribution of cities? Right now for each pattern, the sum of the distances
from one city to the other cities (SD;), as shown on Equation (2) and the mean deviation of
SDs values (MDSD) are the worked inputs.

C

vj:1<j<C SDJ.:;)

In the following sub sections, three different kinds of experimentations are done. One of

these is useful to see the necessity to include the both SD and MDSD parameters in the

complexity expression. Another one proves that a pattern is univariate regardless of their

scale or position. The last one is a singular case where the cities are uniformly distributed in
a circumference.

4.3.1 Experimentation 1

Columns SD1,.., SD5 in Table 2 show the values obtained by applying the Equation (2) to
each pattern and starting city. If a particular city j is very remote of the others, its SD; will be
considerably greater to the rest and consequently the execution time will grow also.

Starting Pattern

city G1 SD1 G2 SD2 G3 | SD3 | G4 | SD4 | G5 | SD5
1 216.17 | 853.94 | 36.50 | 746.10 |15.34 | 664.60 | 10.51 | 643.75 | 8.03 | 148.74
2 21444 | 887.44 | 36.82 | 740.49 |15.19|649.14|10.49 | 635.54 | 7.82|104.16
3 *77.25 | *315.51 | 38.09 | 820.63 |15.57|707.70|10.02 | 555.70 | 7.71 | 141.15
4 072.64|0230.11 | 37.29 | 789.80 |15.02|678.07 |10.30|599.99 | 7.91 | 103.35
5 70.94 | 226.88 | 18.54 | 345.83 |15.84 | 643.65 10.41 | 611.45|7.83 | 111.79
6 7421 | 24456 | 17.83 | 330.76 |15.24 | 638.04 | 10.24 | 595.58 | 7.71 | 102.81
7 7559 | 276.09 | 18.16 | 369.56 |10.31 |467.99 [10.36 | 592.68 | 7.93 | 111.28
8 73.72 | 294.62 | 18.03 | 383.38 |10.34 | 490.55 |10.26 | 639.61 | 7.87 | 147.14
9 69.47 | 23353 | 17.79 | 370.10 |10.27 | 491.52| 9.98 |574.23 | 8.14 | 123.19
10 074.96 | 0234.84 | *17.48 | * 323.12 | 10.23 | 446.48 | 9.88 | 578.78 | 8.22 | 172.52
11 75.89 | 259.19 | 17.07 | 332.87 |10.24 | 477.42 | 9.85 |544.61 |8.04 | 124.64
12 70.17 | 234.22 | 17.39 | 325.19 |10.28 | 449.03 | 9.87 |534.91 |8.12 | 131.68
13 73.73 | 306.99 | 18.10 | 383.11 |10.36 | 504.79 | 9.88 |530.72|7.98 | 109.78
14 70.87 | 23919 | 17.37 | 327.02 |10.17 | 451.21| 9.95 | 574.97 | 8.02 | 124.96
15 7330 | 295.27 | 18.00 | 372.00 |10.32|494.09 | 9.97 |534.36|7.78 | 96.29

MDSD 140.94 165.47 90.60 31.56 16.78

Table 2. Execution times (in sec.) and sum of the distances for the GP-TSP algorithm

132 Tools in Artificial Intelligence

Why is it needed to consider MDSD in addition to SD as a significant parameter? Quite
similar SD values from the same experiment (same column) of Table 2 imply similar
execution times. The SD; values for the starting cities 4 and 10 are 230.11 and 234.84,
respectively. Their execution times (G1) are similar 72.64 and 74.96 (labelled with the symbol
0). Instead, this relation is not true considering similar SD values from different patterns
(different columns). The SD; value for starting city 3 and the SD; value for the starting city
10 are similar (315.51 and 323.12, respectively) but the execution times are completely
dissimilar (labelled with the symbol *). Therefore, the different MDSD(SD1) and MDSD(SD>)
values explain the different execution times for similar SD; and SD, values.

4.3.2 Experimentation 2

Make geometric transformations (shifting, scaling, and rotation) to well-known patterns is a
fundamental test. The idea is to prove that a given pattern is univariate regardless of their
scale or position. Applying each one of the transformations to a data set, similar times are
expected using the same algorithm.

The coordinates of a city shifted by Ax in the x-dimension and Ay in the y-dimension are
given by

xX'=x+Ax V=y+Ay ©)

where x and y are the original and x” and y” are the new coordinates.

The coordinates of a city scaled by a factor S, in the x-direction and y-direction (the city is
enlarged in size when S is greater than 1 and reduced in size when Sy is between 0 and 1)
are given by

x'=xS y'= ySy 4)

x

The coordinates of a city rotated through an angle 6 about the origin of the coordinate
system are given by

X'=xcosé@+ ysinf y'=-xsin@+ ycosd @)

A data set consisting of fifteen cities is chosen from the historical database (Hist). The
shifting and rotation transformations are obtained interchanging x-coordinate by y-
coordinate (Sh+Rot), and the scaling transformation dividing by two both coordinates
(Scaled). While Figure 10 shows these three patterns together, Table 3 exhibits a comparison
of the execution times by pattern and starting city using 32 nodes of the parallel described in
Appendix A. Analyzing the information by row, the historical execution times and the
execution times of the geometric transformations for a sample are quite similar as it was to
be expected. The mean deviations are smaller than 2%.

4.3.3 Experimentation 3

A singular case is to have the cities uniformly distributed in a circumference. The MDSD
will be near to 0 so, similar times are expected applying any worked algorithm. Different
patterns consisting of 15 to 24 cities have been studied. One of these circumferences which is
composed of 24 cities is shown in Figure 11.

Applying Artificial Intelligence to Predict the Performance of Data-dependent Applications

133

25000 -

20000 -

15000 -

10000 -

5000 -

L
M.

A Hist
* Sh+Rot
= Scaled

0 5000 10000 15000 20000 25000 30000 35000

x-coordinate

Figure 10. A historical pattern, a shifted and rotated historical pattern, and a scaled
historical pattern consisting of fifteen cities

Table 3. Comparison of execution times (in sec.) for the three patterns using 32 nodes

Staﬁing : Pattern MDeo
city Hist | Sh+Rot | Scaled
1 46.25 | 48.52 | 47.30 | 0.78
2 100.30 | 105.60 | 102.77 | 1.81
3 7348 | 76.34 7452 | 1.04
4 3292 | 3452 | 33.75 | 0.54
5 30.83 | 31.96 | 31.35 | 0.39
6 3049 | 31.92 | 31.22 | 048
7 31.77 | 33.00 | 32.21 | 0.45
8 30.10 | 31.06 3043 | 0.35
9 31.08 | 3213 | 31.92 | 042
10 3098 | 3224 | 31.60 | 0.42
11 2994 | 31.09 | 30.36 | 0.42
12 30.33 | 31.53 | 30.85 | 0.42
13 3145 | 32.82 3214 | 0.46
14 3267 | 33.44 | 3253 | 037
15 3249 | 3349 | 32.89 | 0.36

134 Tools in Artificial Intelligence

[
® 1150
£
B
o
$ 1100 =
> . -
3 .
1050 * *
* *
1000 . -
* *
950 * *
3 .
* *
900 e
850 T T T T T
850 900 950 1000 1050 1100 1150
x-coordinate

Figure 11. A circumference pattern composed of 24 uniformly distributed cities

Table 4 shows a comparative study of behaviour of different circumference patterns
applying the GP-TSP algorithm. As it can be appreciated in Table 4, there is a minimum
progressive increase in the times. It is remarkable that in every case, the mean deviations of
execution times were smaller than 1%.

#Cities | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 23 24
Mean |12.71|17.47|23.42 [32.93 | 42.95 | 54.94 | 68.67 | 129.53 | 367.29 | 1085.57
Mean 1,03 1 0.04 | 0.08 | 0.08 | 0.07 | 010 | 010 | 011 | 030 | 212
deviation

Table 4. Mean and mean deviation of execution times (in sec.) by number of cities for the
GP-TSP algorithm using 32 nodes

Conclusions: It is important to emphasize that the GP-TSP algorithm obtains good results of
prediction. Their asymptotic time complexity should be defined as O(C, P, SD, MDSD).
Another important fact has been reached beyond what was originally sought. Choosing the
city which has minimum SD associated value, it is possible to obtain the exact TSP solution
investing less amount of time.

5. Predicting the GP-TSP execution time

The GP-TSP algorithm has been executed for a great amount of training patterns in order to
take enough experimental data to validate this experimental approach. At this point, the
methodology views the algorithm being study as a black box in which the normalized
measured values for the input variables (C, P, SD, MDSD) arrive, are processed, and then
produce a MLR model. A desired normalization converts values to a common basis for
comparison. It is important to take in mind that the MLR model is a first approximation to
deal with the performance prediction problem.

Applying Artificial Intelligence to Predict the Performance of Data-dependent Applications 135

5.1 Building a MLR model for the GP-TSP algorithm
There are four independent input variables (C, P, SD, MDSD) and the basis form of the four-
dimensional regression model for the execution time (T) is

T=b,+bC+b,P+bSD+bMDSD (6)

where by, b1, by, b3, and by are the regression parameters to estimate. There exist m
measurements of the output T for various combinations of the inputs C, P, SD, and MDSD.
Each measurement can be expressed as

T, =b,+bC,+b,P+bSD, +bMDSD, +e, ()

where e; is the residual for the data (C;, P;, SD;, MDSD;, Ty).
To find the regression parameters, it is necessary to minimize the sum of squares of the
residuals, denoted SSE.

SSE =Y e => (T, —b,-bC,—b,P—b,SD,—b,MDSD,)’ 8)
i=l i=l
The Equation (8) takes on its minimum value when the partial derivatives of SSE with
respect to by, by, by, b3, and by are all set to zero. This procedure then leads to a system of five
equations. The solution could be found by using any of the standard methods for solving
systems of equations, or using any available software package designed for this purpose
(Lilja, 2000).

5.2 Evaluating the regression equation

Finally, the regression equation is used to predict how the GP-TSP algorithm will perform
when given new input data sets. Replacing C, P, SD, and MDSM with real values in
Equation (6), it is possible to estimate the time required (T) to find the shortest path for this
master-worker global pruning TSP algorithm.

6. Conclusions

This chapter introduces a general novel methodology to estimate the performance order of
data-dependent parallel algorithms. It is important to understand that the parallel
performance achieved depends on several factors, including the application, the parallel
computer, the data distribution, and also the methods used for partitioning the application
and mapping its components onto the architecture.

Briefly, the general methodology works as follows. It begins by designing a certain number
of instances and collecting their execution-time data. A well-designed instance guides the
experimenters in choosing what experiments actually need to be performed in order to
provide a representative sample. A data-mining process then explores these collected data
in search of patterns and/or relationships detecting the main parameters that affect
performance. These common properties are modelled numerically so as to generate an
analytical formulation of the execution time. The methodology views the algorithm being
study as a black box in which the measured values for this limited number of inputs arrive,
are processed, and then produce a multiple-linear-regression model. Finally, the regression
equation allows for predicting how the algorithm will perform when given new input data
sets.

136 Tools in Artificial Intelligence

A TSP parallel implementation has been studied. The GP-TSP algorithm analyzes the
influence of indeterminism in performance prediction, and also shows the usefulness and
the profits of the methodology. Their execution time depends on the number of cities (C),
the number of processors (P), and other parameters. As a result of the investigation, right
now the sum of the distances from one city to the other cities (5D) and the mean deviation of
SDs values (MDSD) are the numerical parameters characterizing the different input data
beyond the number of cities (C). The followed way to discover these proper set of
parameters has been exhaustively described. Finally, their asymptotic time complexity has
been defined O(C, P, SD, MDSD).

Building a MLR model with the four independent input variables (C, P, SD, MDSD) and,
then, using the regression equation, a prediction of performance order for a new data set it is
possible to give. Another important fact has been reached beyond what was originally
sought. Choosing the city which has minimum SD associated value, it is possible to obtain
the exact TSP solution investing less amount of time.

This work has raised certain issues that it would be interesting to address. The utility,
applicability and implementation of the methodology to other data-dependent problem still
remain to be studied. Another issue concerns the problem of the obtained performance
model. The existence of more or less parameters that affect performance may suggest
strategies to fit the final model. Last but not least, how to provide automatic useful feedback
in order to asses more studies and experiments.

Appendix

A. Specification of the parallel machine

The execution were reached with a 32 node homogeneous PC Cluster Pentium IV 3.0GHz.,
1Gb DDR-DSRAM 400Mhz., Gigabit Ethernet) at the Computer Architecture and Operating
Systems Department, University Autonoma of Barcelona. All the communications have been
accomplished using a switched network with a mean distance between two communication
end-points of two hops. The switches enable dynamic routes in order to overlap
communication.

B. Specification of Cluster-Frame environment

Cluster-Frame is a dynamic and open environment of clustering (Fritzsche, 2007). It permits
the evaluation of clustering methods such as K-Means, K-Prototypes, K-Modes, K-Medoid,
K-Means*, K-Means** for the same data set. Using Cluster-Frame, the results reached
applying different methods and using several parameters can be analyzed and compared.

6. References

Alizadeh, F.; Karp, R.; Newberg, L. & Weisser, D. (1993). Physical mapping of chromosomes:
A combinatorial problem in molecular biology. Symposium on Discrete Algorithms,
pp- 371-381, ACM Press.

Arkin, E.; Chiang, Y.; Mitchell, J.; Skiena, S. & Yang, T. (1996). On the Maximum Scatter
TSP, In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 97), pp. 211-220, ACM New York.

Applying Artificial Intelligence to Predict the Performance of Data-dependent Applications 137

Balas, E. (1989). The Prize Collecting Traveling Salesman Problem. Networks, Vol.19, pp. 621-
636.

Barvinok, A.; Tamir, A.; Fekete, S.; Woeginger, G; Johnson, D. & Woodroofe, R. (2003). The
Geometric Maximum Traveling Salesman Problem. Journal of the ACM, Vol.50,
No.5, pp. 641-664.

Bland, R. & Shallcross, D. (1989). Large Traveling Salesman Problems Arising from
Experiments in X-ray Crystallography: a Preliminary Report on Computation.
Operations Research Letters, Vol.8, pp. 125-128.

Christofides, N. (1985). Vehicle Routing. N. Christofides, A. Mingozzi, P. Toth, and C. Sandi,
editors, Combinatorial Optimization, pp. 315-338, Wiley, Chichester, UK.

Duman, E. & Or, 1. (2004). Precedence constrained TSP arising in printed circuit board
assembly. International Journal of Production Research, Vol.42, No.l, pp. 67-78, 1
January 2004, Taylor and Francis Ltd.

Fritzsche, P. (2007). ;Podemos Predecir en Algoritmos Paralelos No-Deterministas?, PhD
Thesis, University Autonoma of Barcelona, Computer Architecture and Operating Systems
Department, Spain. http:/ /caos.uab.es/

Garey, M.; Graham, R. & Johnson, D. (1976). Some NP-complete geometric problems, STOC
'76: Proceedings of the eighth annual ACM symposium on Theory of computing,
pp- 10-22, Hershey, Pennsylvania, United States, ACM, New York, NY, USA.

Gilmore, P. & Gomory, R. (1964). Sequencing a One-State-Variable Machine: A Solvable
Case of the Traveling Salesman Problem. Operations Research, Vol.12, No.5, pp.
655-679.

Golden, B.; Levy, L. & Vohra, R. (1987). The Orienteering Problem. Naval Research Logistics,
Vol.34, pp. 307-318.

Gutin, G. & Punnen, P. (2006). The Traveling Salesman Problem and Its Variations, Springer, 0-
387-44459-9, New York.

Karp, R. (1972). Reducibility among combinatorial problems: In Complexity of Computer
Computations. Plenum Press, pp. 85-103. New York.

Korostensky, C. & Gonnet, G. (2000). Using traveling salesman problem algorithms for
evolutionary tree construction. BIOINF: Bioinformatics, Vol.16, No.7, pp. 619-627.

Lenstra,]. & Kan, A. (1975). Some simple applications of the Travelling Salesman Problem.
Operations Research Quarterly, Vol.26, No.4, pp. 717-732.

Lilja, D. (2000). Measuring computer performance: a practitioner's quide, Cambridge University
Press, ISBN: 0-521-64105-5, New York, NY, USA.

MacQueen, J. (1967). Some Methods for Classification and Analysis of MultiVariate
Observations, Proc. of the fifth Berkeley Symposium on Mathematical Statistics and
Probability, Vol.1, pp. 281-297, L. M. Le Cam and]J. Neyman, University of
California Press.

Miller, D. & Pekny, J. (1991). Exact Solution of Large Asymmetric Traveling Salesman
Problems. Science, Vol.251, pp. 754-761.

Miller, R. & Boxer, L. (2005). Algorithms Sequential and Parallel: A Unified Approach, Charles
River Media. Computer Engineering Series, 1-58450-412-9.

138 Tools in Artificial Intelligence

Ratliff, H. & Rosenthal, A. (1983). Order-Picking in a Rectangular Warehouse: A Solvable
Case for the Traveling Salesman Problem. Operations Research, Vol.31, No.3, pp.
507-521.

Sankoff, D. & Blanchette, M. (1997). The median problem for breakpoints in comparative
genomics, Proceedings of the 3rd Annual International Conference on Computing and
Combinatorics (COCOON'97), Vol.1276, pp. 251-264, New York.

TSP page (2008). http:/ /www.tsp.gatech.edu/history/.

9

Agent Systems in Software Engineering

Vasilios S. Lazarou!, Spyridon K. Gardikiotis? and Nicos Malevris2
INational & Kapodistrian University of Athens
2Athens University of Economics and Business

Greece

1. Introduction

During the last decade the continuous growth of the Web resulted in a significant development
shift from simple types of software applications to distributed multi-tier web-based
applications. In general, distributed systems are by nature more complex than centralized
systems. As a result, the software engineering tasks of these systems are also complicated.
Unlike traditional software applications, Web-based applications are associated with a
plethora of special characteristics that impede the appliance of conventional software
engineering techniques. Among them, the most important include the distributed and
stateless nature of the Web, the impressively high changing frequency of implementation
technologies and the spread of dynamic Web pages. Furthermore, the vital role of databases
in both web and distributed applications raises a demand for introducing software
engineering techniques tailored for these applications. These applications, known as
database applications (DA), contain embedded SQL statements in the source code. Similarly
to web applications, the presence of such special statements turns out to impose a number of
limitations to the applicability of existing software engineering techniques while also
originating new issues.

In this chapter, the use of agent technology to confront with the software engineering task
will be illustrated. More precisely, the focus will be on the application of agent systems in
order to confront with the requirements of the software engineering process for distributed
software systems in general, paying particular attention to distributed database applications
and web applications.

Software agents can be described as intelligent and autonomous software entities that have
the ability to exhibit proactive behaviour and to collaborate with each other. The software
engineering process can be greatly enhanced by utilising agent technology and adopting the
architecture of an intelligent, flexible and extensible agent system. The multi-tier
architecture of most distributed applications offers a suitable foundation because of its
inherent complication that highlights the significant and novel contribution of a multi-agent
architecture.

The rationale behind utilizing agent technology has to do with the interoperability of the
software resources belonging to potentially disparate application components and disparate
domains. Towards this direction, agents offer a unified platform of interaction through
agent communication.

The application of agent technology for the software engineering task is certainly a new and
promising research area. However, a variety of approaches that attempt to exploit the

140 Tools in Artificial Intelligence

benefits of agent technology have already made their appearance and it is expected that this
tendency will further evolve. At this point, it needs to be clarified that the chapter will not
focus on the research area that deals with the employment of software engineering
technology for agent systems. Although similar in title, this research area deals with
applying software engineering methodologies to assist the creation of multi-agent systems;
something completely different.

The first one has as a goal to provide an agent infrastructure to support software testing.
This is realised by suggesting multi-agent frameworks that can be used as a model to build
agent systems for testing service-oriented web applications. This research track aims at
presenting an agent system for tackling the issues of software maintenance and testing of
distributed applications.

Mlustrating the research attempts that employ software agents on software engineering
tasks, they can be categorised according to two key target levels. The first one has an
infrastructural target. Some research work focuses on presenting communication and
coordination infrastructures for agents engaged in web software testing. Another research
direction targets the creation of a multi-agent framework for software testing but the goal is
on how an agent infrastructural framework can assist the job of constructing concrete agents
systems for service-oriented applications.

The second one has a more applied target. As a representative work, research in which
multi-agent system architectures are used in software testing of web-based applications can
be mentioned. Moreover, there is ongoing research where an agent system is being utilised
for the software engineering of distributed database applications. The first primary objective
is to assess the maintainability and to facilitate the maintenance of such applications in the
presence of changes on the schema of the underlying database. The second primary
objective is to support another major software engineering task namely structural and
regression software testing.

The remainder of this chapter is organised as follows. Section 2 outlines the fundamental
background scientific areas of Agent Systems and Software Engineering. Section 3
introduces the first primary research direction where agent frameworks are used in software
engineering. Section 4 continues the illustration covering the second primary research
direction where multi-agent systems are used in software engineering. Section 5 is about
Agent-Oriented Software Engineering and gives a brief description of the opposite view
where the idea of an agent is being utilised as a generic software engineering model. Finally,
section 6 concludes the chapter by offering an overall analysis of the current research status
by highlighting the commonalities and the differences of the above research approaches, in
a form of comparative evaluation, and providing a view of the scope of the current
approaches and potential future research courses of action.

2. Background concepts

In this section, the background concepts relevant to the chapter are going to be illustrated.
However, besides the primary concepts of Software Engineering and Agent Systems, some
special topics within the research area of Software Engineering, namely Web-based Software
Systems and Service-Oriented Systems, will be particularly described. The reason is that a
significant amount of research that applies agent system technology to software engineering
has been evolved around these topics. This section concludes by describing the current
convergence of the two main concepts of this chapter.

Agent Systems in Software Engineering 141

2.1 Software engineering
Software engineering is the application of a systematic, disciplined, quantifiable approach
to the development, operation, and maintenance of software (IEEE, 1990). The discipline of
software engineering includes knowledge, tools, and methods for software requirements,
software design, software construction, software testing, and software maintenance tasks
(SWEBOK, 2004). Among them, the interest is focused on the processes of software
engineering that can be performed by fully automated computing techniques. In particular,
such processes are software testing and software maintenance.
Software testing is the process used to assess the quality of computer software. Towards
this direction, two objectives are usually identified: the verification and validation of the
software. Software verification examines the way that the software is built and verifies that
this matches its specifications. Software validation examines the derived software and
validates that this product matches the customer requirements. In practice, software testing
accomplishes its intended scope by revealing the amount of embedded software faults. Its
results guide the software engineering process to reduce the amount of these faults ending
up in an acceptable defect rate according to the specific software’s nature. Software testing
techniques are traditionally divided into black box and white box techniques. The former type
treats the software as a black-box without any understanding of internal behaviour and
aims to test its functionality according to its requirements. Examples of black box testing
techniques include random testing, equivalence partitioning, boundary value analysis,
model-based testing etc. The latter type of testing presumes that the tester has access to the
source code of the software and derives tests that satisfy some code coverage or data
adequacy criteria. Examples of such criteria include control flow based criteria (e.g. path,
branch and statement coverage), text-based adequacy criteria (e.g. LCSAJ) and data flow
criteria (e.g. definitions, uses, predicate uses, computational uses etc.).
Software maintenance is the modification of a software product after delivery to correct
faults, to improve performance or other attributes, or to adapt the product to a modified
environment (IEEE, 2004). Thus, software maintenance includes a number of both pre-
delivery and post-delivery processes, which according to (IEEE, 1996) are summarized to
the following: process implementation, problem and modification analysis, modification
implementation, maintenance review/acceptance, migration and retirement. The
maintenance processes can further be classified into categories. Among many alternative
suggestions, the (ISO, 2006) proposes the four major categories of software maintenance:
e Corrective maintenance is the reactive modification of a software product performed
after delivery to correct discovered problems.
e Adaptive maintenance is the modification of a software product performed after
delivery to keep a software product usable in a changed or changing environment.
e Perfective maintenance is the modification of a software product after delivery to
improve performance or maintainability.
Preventive maintenance is the modification of a software product after delivery to detect
and correct latent faults in the software product before they become effective faults.

2.1.1 Service oriented architecture

Service oriented computing (SOC) is an emerging cross-disciplinary paradigm for
distributed computing that is changing the way software applications are designed,
architected, delivered and consumed (Erl, 2005). Service Oriented Architecture (SOA) is a
form of distributed system architecture; its properties are consolidated by the W3C working

142 Tools in Artificial Intelligence

group of web service architecture. Services are autonomous and platform-independent
computational elements that can be used to build networks of collaborating applications
distributed within and across organizational boundaries.

Service-Oriented Architecture (SOA) and its Web implementation Web Services (WS)
promote an open standard-based and loosely coupled architecture for integrating
applications in a distributed heterogeneous environment. Such applications are
characterized by service orientation, task distribution, collaboration among development
parties, run-time behaviour and open standards for interfacing among their components.
Service dependability is critical for establishing a trustworthy service-oriented computing
environment. However, the paradigm shift from product-oriented software development to
SOA and WS brings many new issues to traditional verification and validation techniques.
In SOA, an application is created by dynamically discovering, binding to, and integrating
the discovered services from the Internet, possibly created by third party service providers.
Due to the open standards and open platform, a large number of services satisfying the
same requirements can co-exist, and new services can be published at any time. Hence,
during system evolution, the application can dynamically rebind to different services and
the architecture can be reconfigured at runtime. The dynamic and collaborative nature of
SOA brings new challenges to testing WS applications including system complexity due to
the flexibility of system configuration, interoperability among third-party developed
components, runtime fault detection and reliability evaluation, dynamic re-composition,
and implementation transparency.

2.1.2 Web application testing

A Web application can be considered as a distributed system, with a client-server or multi-

tier architecture, including the following main characteristics:

1. A wide number of users distributed all over the world and accessing it concurrently.

2. Heterogeneous execution environments composed of different hardware, network
connections, operating systems, Web servers and Web browsers.

3. An extremely heterogeneous nature that depends on the large variety of software
components that it usually includes. These components can be constructed of different
technologies (i.e., different programming languages and models), and can be of
different natures (i.e, new components generated from scratch, legacy ones,
hypermedia components).

4. The ability of generating software components at run time according to user inputs and
server status.

Web applications are difficult to understand and test due to lack of abstraction, highly
unstructured, heterogeneous representation, mixture of presentation and application logic
and dynamic page generation. Web applications testing need to address challenges
introduced by new control structures like hyperlinks (navigation, request and redirection),
new data flow issues (e.g., scripts that are not compiler checked, HTML/XML documents as
variables, storing data as hidden elements, JSP tags-defined variables and parameters and
passing data via HTTP hyperlinks) and new dynamic behaviour like navigation behaviour
and Web state behaviour.

In (Di Lucca & Fasolino, 2006), they considered testing of the functional requirements with

respect to four main aspects, i.e., testing scopes, test models, test strategies, and testing tools.

More specifically, testing strategies define the approaches for designing test cases. They can

Agent Systems in Software Engineering 143

be responsibility based (also known as black box), implementation based (or white box), or
hybrid (also known as grey box). In (Nguyen, 2000) it is said that ‘Gray-box testing is well
suited for Web application testing because it factors in high-level design, environment, and
interoperability conditions. It will reveal problems that are not as easily considered by a
black-box or white-box analysis, especially problems of end-to-end information flow and
distributed hardware/software system configuration and compatibility. Context-specific
errors that are germane to Web systems are commonly uncovered in this process.

2.2 Agents and multi-agent systems

Agents and multi-agent systems (MAS) have recently emerged as a powerful technology to

face the complexity of a variety of modern Information Systems (Zambonelli & Omicini,

2004). For instance, several industrial experiences already testify to the advantages of using

agents in Web services and Web-based computational markets and distributed network

management. In addition, several studies advise on the possibility of exploiting agents and

MAS as enabling technologies for a variety of future scenarios, i.e., pervasive computing,

grid computing and semantic web.

The core concept of agent-based computing is, of course, that of an agent. However, the

definition of an agent comes along with a further set of relevant agent-specific concepts and

abstractions. Generally speaking, an agent can be viewed as a software entity with the

following characteristics (Jennings, 2001):

e Autonomous: an agent is not passively subject to a global, external flow of control in its
actions. That is, an agent has its own internal execution activity (whether a Java thread
or some other sort of goal-driven intelligent engine, this is irrelevant in this context),
and it is pro-actively oriented to the achievement of a specific task on user’s behalf.

e Situated: an agent performs its actions while situated in a particular environment,
whether a computational (e.g., a Web site) or a physical one (e.g., a manufacturing
pipeline), and it is able to sense and affect (portions of) such an environment in order to
meet its design objectives.

e Social: in the majority of cases, agents work in open operational environments hosting
the execution of a multiplicity of agents, possibly belonging to different stakeholders
(think, e.g., of agent-mediated marketplaces). In these MAS, the global behaviour
derives from the interactions among the constituent agents. In fact, agents may
communicate/coordinate with each other (in a dynamic way and possibly according to
high-level languages and protocols) either to achieve a common objective or because
this is necessary for them to achieve their own objectives.

It is clear that an agent system cannot be simply reduced to a group of interacting agents.

Instead, the complete modelling of the system requires explicitly focusing also on the

environment in which the MAS and its constituent agents are situated and on the society

that a group of interacting agents give rise to. Modelling the environment implies
identifying its basic features, the resources that can be found in the environment, and the
way via which agents can interact with it. Modelling agent societies implies identifying the
overall rules that should drive the expected evolution of the MAS and the various roles that
agents can play in such a society (Zambonelli et al., 2003).

2.3 Agent systems and software engineering
The emergent general understanding is that agent systems, more than an effective
technology, represent indeed a novel general-purpose paradigm for software development.

144 Tools in Artificial Intelligence

Agent-based computing promotes designing and developing applications in terms of

autonomous software entities (agents), situated in an environment, and that can flexibly

achieve their goals by interacting with one another in terms of high-level protocols and
languages.

These features are well suited to tackle the complexity of developing software in modern

scenarios since:

1. The autonomy of application components reflects the intrinsically decentralised nature
of modern distributed systems and can be considered as the natural extension to the
notions of system modularity and encapsulation;

2. The flexible way in which agents operate and interact (both with each other and with
the environment) is suited to the dynamic and unpredictable scenarios where software
is expected to operate (Zambonelli et al., 2001);

3. The concept of agency provides for a unified view of artificial intelligence (Al) results
and achievements, by making agents and MAS act as sound and manageable
repositories of intelligent behaviours (Russel & Norvig, 2003).

2.3.1 Agent systems and web systems

Engineering distributed systems is a challenging task due to issues such as concurrency,
fault tolerance, security and interoperability (Sommerville, 2004; Tsai et al., 2003). With
respect to engineering web service systems, applying agent techniques to service orientation
field has proven a natural choice. The research on agent-based applications has so far
demonstrated that agents can glue together independently developed legacy systems. The
control of a system can be distributed among autonomous agents and still maintain global
coherence. Moreover, system’s capability improves greatly when systems (represented by
agents) cooperate.

Therefore, applying the MAS technique in WS has been a focus of WS research, such as
service discovery, selection, and orchestration (Buhler & Vidal, 2003; Maamar et al., 2005;
Richards et al., 2003; Sycara et al., 2001).

However, agents correspond to a broader concept with respect to services. In (Qi et al.,
2005), the notion of agent-based web services (AWS) is proposed, including architecture and
meta-model and integration. The key challenge is to develop an integration framework for
the two paradigms, agent- and service-oriented, in a way that capitalizes on their individual
strengths.

3. Agent infrastructures in software engineering

In this section, the research work relevant to defining agent infrastructural frameworks will
be covered. This work targets distributed software systems in general but also web services
and web-based applications in particular.

3.1 A multi-agent framework for testing distributed systems

In (Yamany et al., 2006), a design for testing distributed systems is proposed. They use a
three-tier distributed system structure consisting of a server, middleware and multiple
clients. The server contains the data repository of the distributed application, whereas the
middleware is considered to be the software bus associated with those clients.

Agent Systems in Software Engineering 145

Agents in the proposed multi-agent architecture consist typically of two generic types: social
(immobile) agents and mobile agents. Social agents are used to monitor the three-tier
architecture of these distributed systems (i.e. server, middleware and clients) and to execute
various scheduled testing types such as unit testing and integration testing. Moreover,
mobile agents are used to carry out an urgent testing such as regression testing specified by
a tester (i.e. human or an agent). In addition to that, the proposed framework monitors the
user usage in order to increase the leverage of the testing process by increasing the chances
to discover most of the defects that might appear in both the server and clients sides.

The framework consists of three levels of autonomous and adaptive agents. The first level of
agents is on the server side. Basically, it is a single agent that monitors the data of the
distributed application and is called the Database Repository Agent (DRA). The second one
- Middleware Controller Agent (MCA) - is located at the middleware and is the kernel of
the proposed framework. Its main goals are to investigate the middleware behaviour, collect
the return feedback from the clients and make an integrated report about the system.
Finally, a group of social agents is distributed over the available clients. Each one is named
Client Checker Agent (CCA) and is responsible for unit testing.

The framework can be extended to execute more testing procedures at the request of the
tester. In some crucial unexpected behaviour of a distributed system, the tester can ask for
further testing and this can be done by sending a supportive mobile agent that could help in
that mission. This agent’s name is Mobile Urgent Agent (MUA).

3.2 Agent fabric for web services

In (Ma et al.,, 2007), MAS concepts are applied for service autonomy architecture. Service
agents have three basic responsibilities. They maintain runtime operations, manage service
lifecycle and control trusty communication. The first one is supported by a set of basic
functions, such as service discovery, monitoring and composition. The second one is an
advanced feature requiring comprehensive service modelling and governance. Agent
system trustworthy is also an important issue for agent collaboration.

On the other hand, an effective communication mechanism is very important for an agent
system, because autonomous systems do not stand alone without interaction with other
parties. This is where fabric comes into place. Fabric in SOA context usually means a
messaging environment or communication infrastructure, which makes services or
applications integrated. In (Ma et al., 2007), they propose a lightweight agent fabric to serve
the communications between autonomous service agents and, furthermore, cross-enterprise
applications. According to the aforementioned autonomous system design requirements,
XMPP (Saint-Andre, 2005) is employed as the underlying communication and message
routing technology to build this kind of lightweight fabric for agents. The existing XMPP
technologies are also leveraged for the trusty communication between agents.

3.3 Agent framework for web services

In (Bai et al., 2006), to address the challenges of collaborative and dynamic service-oriented
testing, they present a multi-agent framework (called MAST) for testing services with agent-
based technology. It is based on (Tsai et al., 2003) to facilitate web service (WS) testing in a
coordinated and distributed environment. Test agents are classified into different roles
which communicate through XML-based agent test protocols.

The key features of MAST are:

146 Tools in Artificial Intelligence

e Testing is decomposed into different tasks including WS specification-based test
generation, centralized test planning, distributed test execution, test monitoring, and
test result synthesis and analysis. Different agent types are defined to accomplish
various tasks.

o Test agents are organized into groups. Each group is responsible for the execution of a
test plan and is composed of a group of test runners and monitors, which are
coordinated by a test coordinator.

e The mechanism is defined to dynamically generate, organize, coordinate, and monitor
test agents so that testing can be adaptive to reconfiguration and re-composition of
services.

e A rule-based strategy is introduced to facilitate interactively define, update, and query
rules for test planning and agent coordination.

Through the monitoring and coordinating mechanism, the agents can re-adjust the test plan

and their behaviour at run-time to be adaptive to the changing environment. The major

testing process is decomposed into three parallel and iterative phases:

1. Test script generation to define the test cases and test scenarios;

2. Test scheduling to create and allocate the test plan to agent groups;

3. Testrun to exercise the test scripts, monitor execution status, and collect results.

Service specification provides basic information of the services under test such as service

interface and service flow. Rule management provides the knowledge for test scheduling.

Test analysis analyzes the test data such as failure rate to evaluate the quality of services and

test effectiveness. MAST supports the generic testing process and classifies the agents into

seven types explained as follows:

Test Master accepts test cases from Test Generator, generates test plans and distributes them

to various test groups. A set of test agents that implement a test plan are organized into a

test group, which is coordinated by a Test Coordinator. Test Runners execute the test scripts,

collect test results and forwards the results to Test Analyzer for quality and reliability
analysis. The status of the test agents are monitored by the Test Monitor.

3.4 Agent coordination model for web services

In (Xu et al., 2006), the MAST framework (see 3.2) is utilised to propose a coordination
architecture based on the reactive tuple space technique to facilitate dynamic task
assignment, agent creation and destruction, agent communication, agent distribution and
mobility, and the synchronization and distribution of collaborative test actions. Tuple space
defines a shared memory mechanism among agents by which data are structured organized,
described by tuples and retrieved by pattern matching. Adding reactivity to the tuple space
means the space can have its own state and react to specific agent actions. It is a hybrid
approach which combines control-driven and data-driven coordination models.

In this research, two tuple spaces are defined in MAST to manage the coordination channels
and to facilitate data sharing and asynchronous coordination among test agents. Through
the task tuple space, test tasks are dynamically allocated to different types of test agents
according to the process defined in the scheduling. Through the result tuple space, the
execution results are communicated from agents to agents. A subscription mechanism is
introduced to associate programmable reactions to the events occurred and state changes on
the tuple space.

Agent Systems in Software Engineering 147

3.5 An agent-based framework for testing web applications

In (Kung, 2004), an agent based framework for Web applications testing is presented. The
framework is based on the BDI formalism (Rao & Georgeff, 1995) and the Unified Modelling
Language (UML). The BDI architecture associates beliefs, desires and intentions with agents.
Beliefs are the agents’ observation about the environment and other agents. Desires are
goals to be accomplished. Intentions are action plans to achieve goals. Using this
framework, Web testing models and other testing objects like knowledge of the component
under test (CUT) and test results are modelled as beliefs, test criteria as goals, and test
activities as action plans.

The framework defines a number of abstract classes for modelling agent-oriented systems.
Application specific agent types are derived from these classes to inherit model-defined
features and relationships, and implement inherited abstract features. In this way, the
framework enforces the BDI model but also accommodate for application specific
behaviours. The abstract classes include: Belief, Goal, Plan, Agent, Agent Communication Act,
and Blackboard (Kavi et al., 2003; Kung et al., 2003).

The framework also introduces a number of new diagrams: Agent Goal Diagram (AGD)
depicts the relationships between the goals and the environment and defines the roles of
agents. Use Case Goal Diagram (UCGD) combines the UML Use Case Diagram (UCD) and
the AGD to show which use cases affect which goals and vice versa. This provides a high
level guidance to Agent Sequence Diagram (ASD) construction. Agent Domain Model
(ADM) represents the domain knowledge that is internal to an agent, including the
definitions of the agent’s Beliefs, Goals and Plans and their intrinsic relationships. Agent
Sequence Diagram (ASD) depicts interactions among the beliefs, goals, plans and other
objects of an agent and is a refinement of an agent. These diagrams model the behaviour of a
test agent. Other diagrams introduced are the Agent Design Diagram (ADD), to document
the design of an agent, and the Agent Activity Diagram (AAD) and Agent State-chart
Diagram (ASCD), to model the internal activity and information flows and the internal state
behaviours of agents.

3.5.1 Web application test agents

There are various types of test agents for testing the various types of Web documents. A
Web application test agent is composed of the various types of a test agent. Since each type
of Web document has several categories of testing methods or techniques, there are
specialized agents corresponding to different categories of testing methods.

All relevant test objects are modelled as the agent’s beliefs including the Web component
under test (CUT), the test models representing the test objects for the CUT, the requirements
or functional specification of the CUT, the test cases, and test coverage result. Goals include
the test requirements or test criteria, for example, percentage of requirements coverage for
black-box testing, statement coverage for white-box testing. Goals have utilities which can
change due to changes of beliefs. The agent always tries to fulfil the goal with the highest
utility.

The action plans of an agent are generated dynamically according to the test goal selected
and the current belief of the agent. An action plan is a sequence of actions to be performed
by the agent to accomplish the goal. For example, if the current statement coverage is 70%,
then what are the sequences of actions that can be executed to accomplish 90% statement
coverage? Since each action is associated with a cost, a rational agent should select the
sequence of actions that requires the minimal cost.

148 Tools in Artificial Intelligence

Finally, the actions of a test agent are implemented by command objects, each of which
implements an action and has at least the following: 1) the activity to be performed 2) the costs
to perform the activity 3) a precondition to be satisfied and 4) a post-condition or effect resulting
from the performance of the action.

3.6 A formal agent-based framework for testing web applications

In (Miao et al., 2007), a formal framework for testing Web applications is presented. The goal
is to show how the framework assists the design of agent-based Web application testing
systems. In this framework, the whole test work of the Web application can be divided into
the some small test tasks or subtasks. In this work, the organization-based methodology
Gaia (Zambonelli et al., 2003) for multi-agent system analysis and design is employed and
extended. Gaia is a methodology for agent-oriented analysis and design. Gaia is founded on
the view of a multi-agent system as a computational organization consisting of various
interacting roles. For the realisation Object-Z (Smith, 2000), which is a formal specification
language for modular design of complex systems, was used.

The executive part of the framework is a multi-agent system (MAS) which implements all
the Web test tasks. During the analysis stage, an organization is viewed as a collection of
roles. Each test task corresponds to one role. At the run time, the agent takes the role to
achieve the test task or interact and cooperate with other agents to finish the test tasks. The
agent can not only join or leave agent society at will, but also take or release roles at run
time dynamically. The framework can be easily extended by adding new roles to provide
much more functionalities for testing Web applications to further enhance the intensity of
automation. At the same time, agents and roles are loosely coupled; role classes and agent
classes can be designed at the same time by different teams. The internal design of the multi-
agent system (MAS) is independent of the Web applications.

If a new test task arrives, and there is no corresponding role in MAS to meet it, a new role
can be constructed to satisfy it. Besides, if a test task couldn’t be tested enough, the
corresponding role can be improved or the corresponding class of role can be re-factored. If
the role does not meet the requirement, it can be deleted or replaced by a new one.

The whole framework contains four layers. At the first layer, the Test Tasks Organization
defines a set of conceptual test tasks of Web applications and the relationships between test
tasks. At the second layer, the Role Organization consists of a set of role classes. At the third
layer, the Role Instance Space consists of role instances. Each role instance is an instance of
an associated role class which was defined in role organization. At the fourth layer, the
Agent Organization one consists of various agents. Agents are free to join or leave the agent
organization, and they can take one or more than one role instances. An agent can not only
take roles at run time, but also release them if they are not needed any more. The
relationships between agents are based on the relationships between roles that are taken.

4. Multi-agent systems approaches in software engineering

In this section, the research work relevant to utilising agent systems as an approach to
confront with SE tasks will be highlighted. This work targets web-based applications and
distributed database applications.

4.1 An agent-based data-flow testing approach for web applications
In (Qi et al., 2006), an application of the framework introduced in (Kung, 2004) (see 3.5) is
presented. In this research, a particular testing approach (Qi et al., 2005) is selected and it is

Agent Systems in Software Engineering 149

shown how the framework assists the design of agent-based web application (WA) testing
systems.

The testing task can be decomposed into many small subtasks and each subtask can be
completed by an autonomous agent. In particular, agent-based data-flow testing is
performed at the method level, object level, and object cluster level. Each level of testing is
managed by a specific type of test agent. In the process of the recommended data-flow
testing, an agent-based WA testing system (WAT) will automatically generate and
coordinate test agents to decompose the task of testing an entire WA into a set of subtasks
that can be accomplished by test agents.

A high level test agent can create low level test agents and ask them to complete the
corresponding low level testing. Based on objects shared by low level test agents, a high
level test agent constructs its test models and performs the comparatively high level testing
that cannot be accomplished by low level test agents. Consequently, a high level testing task
is completed by the cooperation of a set of low level test agents and a high level test agent.
The testing process of the proposed approach is a hybrid of a top-down process, in which a
testing task is decomposed into subtasks, and a bottom-up process, in which test agents
build test models and perform data-flow testing at corresponding abstraction levels to
complete the subtasks.

Similar to the data-flow testing of non-WA, data-flow testing of WA requires adequate test
models and proper test criteria. A Control-flow Graph (CFG) annotated with data-flow
information is a generally accepted approach to model non-WA. However, a CFG has to be
extended to properly handle new features of WA.

In this design, the WAT consists of two types of test agents, a blackboard, and a test case
pool. The blackboard serves as the message exchanging centre in WAT and the test case
pool that stores all the test cases. The test agent (Rao & Georgeff, 1995) based on the BDI
model contains beliefs (observations about the environment and other agents), desires (goals
to be accomplished), and intentions (action plans to achieve goals).

4.2 An agent approach to quality assurance and testing web software

In (Zhu, 2004), the application of Lehman’s theory (Lehman & Ramil, 2001) of software
evolution to web-based applications is studied. It is claimed that web applications are by
nature evolutionary and, hence, satisfy Lehman’s laws of evolution. The essence of web
applications implies that supporting their sustainable long term evolution should play the
central role in developing quality assurance and testing techniques and tools. Therefore, two
basic requirements of such a software environment can be identified. First, the environment
should facilitate flexible integrations of tools for developing, maintaining and testing
various kinds of software in a variety of formats over a long period of evolution. Second, it
should enable effective communications between human beings and the environment so
that the knowledge about the system and its evolution process can be recorded, retrieved
and effectively used for future modification of the system.

The solution proposed in (Zhu, 2004) to meet these requirements is a cooperative multi-
agent software growth environment (Zhu et al., 2000; Huo et al., 2003). In this environment,
various tools are implemented as cooperative agents interacting with each other and with
human users at a high level of abstraction using ontology.

The software environment consists of the two types of agents. Service agents provide
various supports to the development of software systems in an evolutionary strategy. They
fulfil the functional requirements of development and quality assurance and testing,

150 Tools in Artificial Intelligence

verification and validation functionalities. Management agents manage service agents and
are responsible for the registration of agents’ capabilities, task scheduling, and monitoring
and recording agents’ states and the system’s behaviours. Each service agent is specialized
to perform a specific functional task and deal with one representation format. They
cooperate with each other to fulfil more complicated tasks.

The agent society is dynamically changing; new agents can be added into the system and
old agents can be replaced by a newer version. This makes task scheduling and assignment
more important and more difficult as well. Therefore, management agents are implemented
as brokers to negotiate with testing service agents to assign and schedule testing activities to
testing service agents. Each broker manages a registry of agents and keeps a record of their
capabilities and performances. Each service agent registers its capability to a broker when
joining the system. Tests tasks are also submitted to the brokers.

These agents co-exist with the application software system throughout the application
system’s whole lifecycle to support the modifications of the system. They monitor the
evolution process and record the modifications of the system and the rationales behind the
modifications. They extract, collect, store and process the information about the application
system and its performance, and present such knowledge to human beings or other software
tools when requested. They interact with the users and developers cooperatively.

The environment grows with the application system as new tools are integrated into the
environment to support the development and maintenance of new components and as the
knowledge about the system is accumulated over the time. Such a software environment is
called a growth environment. It significantly differs from software development
environments and run-time support environments such as middleware, where evolution is
not adequately supported.

In order to enable agents to cooperate effectively with each other and with human users,
they communicate with each other through a flexible and collaboration protocol and codify
the contents of messages in an ontology which represents knowledge about the application
domain and software engineering (Zhu & Huo, 2004). The interaction protocol is developed
on the basis of speech-act.

Agent Functionality
GWP: Get Web Page |Retrieve web pages from a web site
WPI : Web Page Analyse the source code of a web page, and extract the metadata,
Information hyperlinks and structural information from the code
WSS: Web Site Analyse the hyperlink structure of a web site, and generate a node-
Structure link-graph describing the structure
TCG: Test Case Generate test cases to test a web site according to certain testing
Generator criteria
ECE: Test Case Execute the test cases, and generate execution results

xecutor
TO: Test Oracle Verify whether the testing results match a given specification
TA: Testing Perform as user interface and guide human testers in the process of
Assistant testing
WSM: Web Site Monitor the changes of web sites, and generate new testing tasks
Monitor accordingly

Table 1. Agents for testing web applications.

Agent Systems in Software Engineering 151

4.2.1 Developing a software testing ontology

In (Zhu & Huo, 2004), the design and utilisation of a software testing ontology is proposed.
This attempt has the target to enrich the approach presented in (Zhu, 2004). It represents the
knowledge of software engineering and codifies the knowledge for computer processing as
the contents of an agent communication language. The ontology is represented in UML at a
high level of abstraction so that it can be validated by human experts. It is also codified in
XML for computer processing to achieve the required flexibility and extendibility. The
concepts of the ontology and the relations between them are defined while their properties
are also analysed. Speech-act theory is incorporated in the system and combined with the
ontology to define communication protocols and to facilitate collaborations between agents.
In order to specify this ontology, a testing concept taxonomy is introduced. Taxonomy is a
way to specify and organize domain concepts. Concepts are divided related to software
testing into two groups: the basic concepts and compound concepts. There are six types of
basic concepts related to software testing, which include testers, context, activities, methods,
artefacts, and environment. Compound concepts are those defined on the bases of basic
concepts, for example, testing tasks and agent's capability. Relationships between basic
concepts as well as compound concepts are also introduced. Basic relations between basic
concepts form a very important part of the knowledge of software testing. Therefore, they
are stored in a knowledge-base as basic facts.

Ontology of software testing

Relations

Basic SW testing Compound

relat|'ons Concepts relations

1
Basic Compound
Concepts Concepts
I I
Tester Context Method
| Environment | | Artefact | Activity

Fig. 1. Ontology of software testing

More_
powerful

Capability

4.3 An agent approach for the maintenance and testing of database applications

In (Gardikiotis et al., 2007a), an approach for the software engineering of distributed
database applications (DA) is presented. The approach is founded on the employment of
software agents and adopts the architecture of an intelligent, flexible and extensible agent
system that complies with the nature of multi-tier DAs. Among these agents, there are
specialized agents that are capable of performing the software maintenance and testing
tasks for the DAs’ source code by supporting techniques and metrics tailored for this
application type. There exist also general-purpose agents that provide significant information
that can be used by other DAs’” software engineering tasks (Gardikiotis et al., 2007b).

152 Tools in Artificial Intelligence

The rationale behind utilizing agent technology has to do with the interoperability of the
software resources belonging to potentially disparate application components and disparate
domains. Towards this direction, agents offer a unified platform of interaction through
agent communication, exhibiting the following characteristics:

o Extensibility and scalability. The presented architecture can easily be extended to
support other software engineering tasks. In fact, the presented system is derived from
an extended version of previous work described in (Gardikiotis et al., 2007a), which
focused solely on software maintenance.

e No performance degradation. The communication overhead caused by agent
interaction is minimal in comparison with the process time of each individual software
engineering task itself (such as the graph construction, the test case generation etc.).

o Intelligent and pro-active behaviour. The system functions in an adaptive manner by
improving its mode of operation according to application complexity and coupling.

e Declarative ontology. This approach manages to encompass a customizable but formal
knowledge representation to the overall agent system.

Distributed application nature. The distributed nature of the agent system fits well with the

distributed nature of multi-tier applications.

4.3.1 Architecture

The architecture of the presented system is shown in Figure 2. The agents that are general in
the DAs’ software engineering processes are grey-coloured, whereas the maintenance
agents’ names are written in italics and the testing agents” names are underlined. Following
a top-down approach, the role of each agent involved in the system is described.

Data Level

Tier I.i.n

Fig. 2. Architecture

At the data level of the system, the Schema Analyzer (SA) agent stores a representation of
the database schema in order to identify inter-dependencies between the database objects.
The Database Listener (DBL) agent monitors the underlying databases (DB;...DB,) for any

Agent Systems in Software Engineering 153

potential changes, requests from the Schema Analyzer the full set of affected database
objects and can initiate the process of identifying the impact of each change into the
application code by requesting this analysis from the Maintenance Assessor (MA) agent.
The Execution Plan Retriever (EPR) agent retrieves from the database/s the execution plan
for a specific database statement, which is given by a request from the data Tier Coordinator
(TC). The TC is common for all levels, namely the data, the tier and the system level and acts
as a broker, i.e. any communication between agents of different levels is transmitted
through this agent. Moreover, this agent keeps track of the actual execution traces of the
system that will be necessary in case of a dynamic analysis approach.

Apart from the TC, the data and the tier level share also the following agents: the
Application Parser (AP), the Graph Builder (GB), the Test Cases Generator (TCG), the Test
Data Generator (TDG), the Test Adequacy Measurer (TAM) and the Clustering Detector
(CD). The AP parses and analyses the source code for all units included in the specific tier
while the GB creates an abstract graph representation of the tier code. This representation
has the form of different types of graphs that facilitate program comprehension together
with the application of testing, maintenance and clustering techniques. It can also be used
for the impact analysis performed by the Maintenance Assessor (MA) agent.

The graphs derived from the GB are used by the CD and the TCG. The former agent
investigates the partitioning of the graph based on metrics provided by the TCG and the
MA agents. The latter agent generates test cases for the provided graphs according to some
adequacy criteria defined and referred to by the TAM. The produced set of test cases is
given as input to the TDG which generates the corresponding set of test data.

The system level of the infrastructure includes the Maintenance Assessor (MA), the
Refactorer (RF) and the Testing Assistant (TA) agents. The MA assesses the DA’s
maintainability with reference to the schema of the underlying database and estimates the
impact of a potential change in the database schema into the application source code. It has
to retrieve the units/statements that are related to the altered database objects in order to
offer an indication of the workload with respect to the source code changes that might be
needed to retain its operability. The RF provides specific semantic-preserving
transformations that aim to increase the DA’s maintainability.

Lastly, the TA triggers and controls the overall testing process. The trigger event can be
either a human request or a request from the MA, which informs the TA about the effects of
the maintenance process on the DAs’ source code.

In this system, agents of similar functionalities may have different capabilities and they may
deal with heterogeneous information formats. They can also be implemented using different
algorithms and they can be executed on different platforms. Agents can enter the system
and other agents can abandon the system dynamically. Therefore, agents register their
capabilities to a specialized agent that the system offers, namely the matchmaker agent
(MM). This agent offers a directory-like service (Lazarou & Clark, 1998) very common to the
agent literature. It accepts and stores registrations and de-registrations from other agents in
an internal knowledge base (KB). Task requests are also submitted to this agent in order to
find other agents that provide a set of desired capabilities. After accepting such a request,
the MM has the job to look up in the KB, to retrieve the agent(s) that best match the criteria
and to reply to the agent that sent the request with the id(s) of the retrieved agent(s). From
this point onwards, agents can employ direct communication.

With respect to ontological issues, in this work the focus is on classifying and representing
software engineering concepts. A categorization widely acceptable in the software

154 Tools in Artificial Intelligence

engineering community is used. This illustration (Figure 3) is based on (IEEE, 2004) and
(SWEBOK, 2004). In addition some topics (e.g. testing levels), which are highly relevant to
the tasks of the agents, are further analyzed.

Person
SW Tool

Maintainer

Pre-delivery

Stage

Post-delivery
EVENTIVE
Proactive erfecive

estinig

Technical
/
¥

General

S
Eftort
Schedule

Cuality

Measurement
Analysabiliy

- Chamgrability
Sty
[eivies] e

Terminalogy

Technique

—| Fundamentals

Key [ssues

Relevant Activities

Program under Test
.
Tests Pertformed

Target

Integration

SYsienm

Levels

Empirical ot
Specification-based {Boundary valuc |

- Forma
Application Specific ——
pplication Specific ~TFimiee S|

- - I Fault-hased
lechniques §
! Usipe-based
W
Codebased Conirol Flo

wse Lieneration

Test Activities

E Other Saftware Engineering Tasks

Fig. 3. Software Engineering (SE) Taxonomy

eTitication

4.3.2 The agents

The agents can be categorized in three groups according to their intending tasks: software
maintenance agents, software testing agents and general software engineering purpose
agents.

Software Maintenance Agents

Maintenance Assessor (MA): provides an assessment of the DAs’ maintainability against
schema changes. It is a system-level agent that triggers and guides the maintenance process

Agent Systems in Software Engineering 155

receiving a request from the data-level TC that was initially sent by the DBL. A graphical
user interface is additionally provided for human user requests. To retrieve the information
required for the assessment the MA communicates with the TCs. Upon the completion of its
assessment task, the MA may request from the RF a set of refactorings in order to achieve a
specified level of maintainability. Furthermore, it can request from the TA to trigger the
testing process in order to ensure the DAs’ source code validity.

Refactorer (RF): provides a set of refactorings to increase the maintainability of the DA.
Refactoring can be defined as a technique for restructuring an existing body of code, altering
its internal structure without changing its external behaviour (Fowler, 1999), i.e. practically
each refactoring can be viewed as a semantics preserving transformation.

Software Testing Agents

Test Case Generator (TCG): generates a set of test cases that usually refers to an abstract
representation of the application source code depending on the supported technique type.
The effectiveness of the generation process can be assessed by measuring the coverage of
specific test adequacy criteria.

Test Data Generator (TDG): given a set of test cases the TDG automatically produces test
data for them using a supported test data generation algorithm.

Test Adequacy Measurer (TAM): based on the specific testing objective the TAM proposes
and measures the coverage of a set of test adequacy criteria.

Execution Plan Retriever (EPR): given a database statement the EPR retrieves from the
DBMS the corresponding execution plan. This plan is necessary for the TCG to produce test
cases for DAs.

Testing Assistant (TA): the TA is a system-level agent that guides the testing process. To
trigger testing it either receives a request from the data-level TC or from the system-level
MA agents. This request contains a description of the changes in the database schema or the
DA’s source code respectively. Furthermore, the agent provides a user interface to accept
requests from a human tester. The TA decides on the level of testing and the test adequacy
criteria based on the available information about coupling and complexity metrics as well as
the sizes and the number of DA’s clusters.

General Software Engineering Agents

Database Listener (DBL): captures the modifications made in the database schema and
triggers the impact assessment.

Application Parser (AP): parses and statically analyses the DA’s unit source code. The
information gained from the analysis constitutes the basis for the performance of software
engineering activities such as testing and maintenance.

Graph Builder (GB): provides a set of graph representations of the DA’s source code, which
is independent from the implementation language.

Tier Coordinator (TC): the TC agent serves as a local matchmaker agent (MM), i.e. it offers a
directory-like service. It is aware of each tier-based agent capabilities (after receiving a
corresponding register message) and uses this knowledge upon a request that is submitted
by tier independent agents or other TCs located on different tiers/levels.

Schema Analyzer (SA): the SA agent resides in the data-tier and keeps a representation of
the database schema in order to effectively detect dependencies between the database
objects.

Clustering Detector (CD): detects the possibility of application clustering that will facilitate
the software testing activities. Clustering refers to collections of source code units that are
more or less relevant to activity’s target.

156 Tools in Artificial Intelligence

5. Agent-oriented software engineering

It has been already mentioned that the focus of this chapter is not about applying software
engineering models to assist the creation of multi-agent systems. However, in the last years,
together with the increasing acceptance of agent-based computing as a novel software
engineering paradigm, there has been a great deal of research related to the identification
and definition of suitable models and techniques to support the development of complex
software systems in terms of MAS (Gervais et al., 2004). As a result, in order to augment the
completeness of the survey, a brief depiction of this research area follows.

This research, which can be roughly grouped under the term “agent-oriented software

engineering”, proposes a variety of new metaphors, formal modelling approaches,

development methodologies and modelling techniques, specifically suited to the agent-
oriented paradigm. The current trends in this area are outlined as follows (Zambonelli &

Omicini, 2004):

e Agent modelling. Novel formal and practical approaches to component modelling are
required, to deal with an agent as an autonomous, pro-active, and situated entity. A
variety of agent architectures are being investigated, each of which is suitable to model
different types of agents or specific aspects of agents: purely reactive agents, logic
agents (Van der Hoek & Wooldridge, 2003), agents based on belief, desire and
intentions (Rao et al., 1995). Overall, this research has so far notably clarified the very
concept of agency and its different facets.

e MAS architectures. As it is necessary to develop new ways of modelling the
components of a MAS, in the same way it is necessary to develop new ways of
modelling a MAS as a whole. Detaching from traditional functional-oriented
perspectives, a variety of approaches are being investigated to model MAS. In
particular, approaches inspired by societal, organisational, and biological metaphors,
are the subject of the majority of researches and are already showing the specific
suitability of the different metaphors in different application areas.

¢ MAS methodologies. Traditional methodologies of software development, driving
engineers from analysis to design and development, must be tuned to match the
abstractions of agent-oriented computing. To this end, a variety of novel methodologies
to discipline and support the development process of a MAS have been defined in the
past few years (Kolp et al,, 2002; Wood et al., 2001), clarifying the various sets of
abstractions that must come into play during MAS development and the duties and
responsibilities of software engineers.

e Notation techniques. The development of specific notation techniques is needed to
express the outcome of the various phases of a MAS development process; traditional
object- and component-oriented notation techniques cannot easily apply. In this context,
the AUML proposal (Bauer et al., 2001), extending standard UML toward agent-
oriented systems, is the subject of a great deal of research and it is rapidly becoming a
de facto standard.

e MAS infrastructures. To support the development and execution of MAS, novel tools
and novel software infrastructures are needed. In this context, various tools are being
proposed to transform standard MAS specifications (i.e., AUML specifications) into
actual agent code (Bergenti & Poggi, 2002), and a variety of middleware infrastructures
have been deployed to provide proper services supporting the execution of MAS.

Agent Systems in Software Engineering 157

With respect to MAS methodologies, research work involves the definition of a common

framework for MAS specification, which includes the identification of a minimum set of

concepts and methods that can be agreed in the different approaches (Bernon et al., 2006).

The tool for defining this framework is meta-modelling. Achieving concrete results in this

area would be very useful for several reasons:

1. This partly solves the lack of standardization in this area.

2. This could encourage the development of more flexible and versatile design tools.

3. This is one of the essential steps for reaching a concrete maturity in the study of the
whole agent design process.

The definition of MAS meta-models has led to the identification (and formalization) of a

unified meta-model. Nevertheless, the research is still in its early stages, and several

challenges need to be faced before agent-oriented software engineering can deliver its

promises, becoming a widely accepted and a practically usable paradigm for the

development of complex software systems.

6. Conclusion

In this chapter, the application of multi-agent systems to tackle the software engineering
task was outlined. The concentration was on the employment of agent technology in order
to deal with distributed software systems and mainly distributed database applications and
web applications.

The rationale behind utilizing agent technology has to do with the multi-tier architecture
and the associated inherent complication of distributed applications and the required
interoperability of software resources belonging to potentially disparate application
components and disparate domains. To meet these requirements, agents offer a unified
platform of interaction through agent communication.

The current research status can be classified according to two principal tracks. The first one
has as a goal to provide an agent infrastructure to support software testing. This is realised
by suggesting multi-agent frameworks that can be used as a model to build agent systems
for testing service-oriented web applications. The second one has a more applied nature.
This research track aims at presenting an agent system for tackling the issues of software
maintenance and testing of distributed applications.

Analysing the aforementioned research attempts some general comments can be stated. A
first and important comment is that all approaches have a quite narrow scope. On the one
hand, the application domain is related to web services, web applications and database
applications. The only exception is the work of (Yamany et al., 2006) but even in this case
only 3-tier applications are considered. These domains have a surely specific nature even
though they provide a solid basis for introducing the existing attempts.

Moreover, this restriction is made clearer by the fact that the software engineering process is
not covered in its complete form. Almost all attempts target software testing with the
exception of (Gardikiotis et al., 2007a) where software maintenance is also treated in depth.
The above work is also the only one where the existing platform has proven its extensibility
by including generic software engineering agents.

Focusing on infrastructural approaches, the work of both (Ma et al., 2007) and (Xu et al,,
2006) has a very specific objective which is to support agent collaboration. Besides this
commonality, the research of (Xu et al., 2006) is more tailored to software testing
encompassing the notion of test tasks while the one of (Ma et al., 2007) recommends an

158 Tools in Artificial Intelligence

agent design for web service autonomy. However, in both cases there is no actual system to
verify the expected benefits of the two mechanisms.

With respect to agent frameworks (Yamany et al., 2006; Bai et al., 2006; Kung, 2004; Miao et
al., 2007), the common aspiration is to model software testing. The testing process is
decomposed into phases during test planning while these plans can be executed
asynchronously. Additionally, different testing techniques can be chosen by different
agents, the agent society is dynamic (agents can enter or exit the system during execution
time) while the whole procedure is being coordinated by specialized agents.

The proposals of (Kung, 2004; Miao et al., 2007) offer an additional benefit that they are
based on a sound formal ground employing the BDI metaphor and the Gaia methodology
respectively. The work of (Kung, 2004) extends UML to put forward novel agent-oriented
diagrammatic techniques that are anticipated to assist agent modelling. The research of
(Miao et al.,, 2007) exhibits advanced flexibility since agents can change testing roles
dynamically. Finally, in all cases besides (Kung, 2004) no particular approach has been
bundled to validate the strength of the model’s functionality while the issues of test
planning optimization and agent society evolution need further exploration.

Proceeding with multi-agent systems approaches (Qi et al., 2006; Zhu, 2004; Gardikiotis et
al.,, 2007a) they do not share many things in common. In all three approaches, agents can be
designed for different tasks, deal with different representation formats and deployed on
different platforms. In both (Qi et al., 2006; Zhu, 2004) the application domain is the one of
web applications where test tasks are decomposed into subtasks and test agents that
undertake these subtasks work together to complete the testing task. In (Qi et al., 2006) the
objective is to show an implementation of (Kung, 2004) by adjusting a data-flow testing
method to properly handle web applications.

The approaches of (Zhu, 2004; Gardikiotis et al., 2007a) suggest enriched architectures since
they have an evolutionary and adaptive nature where existing techniques can be adapted to
new application environments while new techniques can be also plugged in. Furthermore,
ontological aspects are taken into consideration. Nevertheless, ontological treatment is
substantially different. In (Zhu, 2004) a specialized taxonomical scheme is devised by the
author to support software testing. The key offering is that besides basic concepts,
compound concepts and concept relationships can be expressed. On the other hand, in
(Gardikiotis et al., 2007a) the ontological representation is grounded on IEEE standards
making it undoubtedly acceptable in almost any application environment. And although
currently no compound concepts or concept relationships are defined, the selected
representation leaves room to encompass such features in the future. In addition, a
drawback of the ontological scheme proposed in (Zhu, 2004) is that it is represented in two
different notations, UML and XML. This raises an issue of how to definitely ensure the
consistency between them.

Concluding, the level of agent sophistication is also dissimilar. In (Zhu, 2004) agent
functionalities are relatively straightforward since the focus is in other aspects. On the
contrary, there are several agents that employ advanced intelligent techniques; for example
the ones responsible to endorse the tasks of clustering and refactoring.

6.1 Future work

There are different future directions with respect to applying agent systems technology in
software engineering. Starting with the current research status that introduces agent
infrastructural frameworks, the following can be stated:

Agent Systems in Software Engineering 159

e Investigating the application of agent technology to model software engineering tasks
other than software testing is obviously a desired future path.

e Applying the framework in a variety of distributed systems is absolutely necessary to
optimise the model’s functionality.

e Since this work has a somewhat theoretical nature, it is important that tools are
developed to verify and validate the models through the use of a set of concrete test
agents.

o Integrating third-party technology, methods or tools to the framework is expected to
constantly increase its functionalities.

e Designing of more specific role organizations (that have to be consistent with
corresponding agent organizations) and more formal definition of the mechanism of
test planning is also advisable. This can include rule-based test planning, partially order
plan generation and plan partitioning.

Continuing with current research relevant to agent multi-agent systems approaches, some of

the remarks to be stated share some similarity to the above ones. More specifically:

o Completing the picture of the software engineering process would be a nice step
forward.

o Expanding the work to handle a diversity of distributed software systems is also
needed.

e The current approaches have reached a prototype level. Thoroughly testing, evaluating
and deploying the agent systems, is in demand so that these approaches reach the level
of a full-fledged ready to use system.

e Implementing an even richer variety of test agents. Especially, it would be really
significant to employ deeper intelligent techniques (coming from the Machine Learning
literature for example) in order to enhance the agent capabilities.

e Establishing a common ontological representation. This representation has the goal to
be on the one hand readable and declarative from the human point of view and on the
other hand flexible and able to be captured from the machine part. An agent-oriented
modelling language such as AUML could prove necessary to catch the agents’
autonomous and social behaviours.

A more detailed comment about web systems is that extending the current work to handle

dynamically generated Web pages and to incorporate automatic test case generation

techniques such as navigation testing and object state testing would refine the agent
approach.

7. References

Bai, X;; Dai, G; Xu, D. & Tsai, W.T. (2006). “A Multi-Agent Based Framework for
Collaborative Testing on Web Services”, Proceedings of the 2nd International
Workshop on Collaborative Computing, Integration, and Assurance, WCCIA 2006,
Page(s): 205-210.

Bauer, B.; Muller, J. P. & Odell, J. (2001). “Agent UML: A formalism for specifying multi-
agent software systems,” Int. J. Soft. Eng. Knowl. Eng. vol. 11, no. 3, pp. 207 - 230.

Bergenti, F. & Poggi, A. (2002). ““Agent-oriented software construction with UML,” in The
Handbook of Software Engineering and Knowledge Engineering - volume 2 -
Emerging Technologies, World Scientific: Singapore, pp. 757 - 769.

160 Tools in Artificial Intelligence

Bernon, C.; Cossentino, M. & Pavon, J. (2005). Agent-oriented software engineering. The
Knowledge Engineering Review, Vol. 20, no. 2, pp. 99-116, June 2005

Buhler, P. & Vidal, J. M. (2003). "Semantic Web Services as Agent Behaviours," in Agent-
cities: Challenges in Open Agent Environments, LNCS/LNAI, B. Burg, J. Dale, et
al., Eds. Berlin: Springer-Verlag.

Di Lucca, G.A. & Fasolino, A.R. (2006). Testing Web-based applications: The state of the art
and future trends. Information and Software Technology. 48, 12 (Dec. 2006), 1172-

1186.

Erl, T. (2005). Service-oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR, NY, US.

Fowler, M. (1999). Refactoring: Improving the Design of Existing Code. Addison-Wesley,
0201485672, 1999.

Gardikiotis, S. K.; Lazarou, V. S. & Malevris, N. (2007a). “An Agent-based Approach for the
Maintenance of Database Applications”, Proc. 5th Int. Conference on Software
Engineering Research and Applications, IEEE Computer Society, pp.558-565, Busan,
Korea, August 2007.

Gardikiotis, S. K.; Lazarou, V. S. & Malevris, N. (2007b). “Employing Agents towards
Database Applications Testing”, Proc. 21st International Conference on Tools with
Artificial Intelligence (ICTAI'07), IEEE Computer Society, pp. 157-166, Patras,
Greece, October 2007.

Gervais, M.,; Gomez,]. & Weiss, G. (2004). “A survey on agent-oriented software
engineering researches,” in: Methodologies and Software Engineering for Agent
Systems, Kluwer: New York (NY).

Huo, Q.; Zhu, H. & Greenwood, S. (2003). A Multi-Agent Software Environment for Testing
Web-based Applications, Proc. of COMPSAC'03, Dallas, 2003, 210-215.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology, 610.12-1990

IEEE (2004). IEEE Standard for Software Maintenance, IEEE, 2004 {IEEE1219-2004}.

IEEE (1996). IEEE/EIA 12207.0-1996/ /1SO/IEC12207:1995, Industry Implementation of Int.
Std.ISO/IEC 12207:95, Standard for Information Technology - Software Life Cycle
Processes, IEEE, 1996 {IEEE12207.0-96}.

ISO (2006). ISO/IEC Standard for Software Engineering - Software Life Cycle Processes -
Maintenance, ISO/IEC, 2006 {ISO/TEC 14764}.

Jennings, N. R. (2001). ““An agent-based approach for building complex software systems,”
Commun. ACM, vol. 44, no. 4, pp. 35 - 41.

Kavi, K.; Kung, D.; Bhambhani, H.; Pancholi, G. Kanikarla, M. & Shah, R. (2003). “Extending
UML to Modelling and Design of Multi-Agent Systems,” In Proc. of ICSE 2003
Workshop on Software Engineering for Large Multi-Agent Systems (SELMAS),
Portland, Oregon, May 3-4, 2003.

Kolp, M.; Giorgini, P. & Mylopoulos, J. (2002). ““A goal-based organizational perspective on
multi-agent architectures,” in Intelligent Agents VIII: Agent Theories,
Architectures, and Languages, vol. 2333 of LNAI, Springer-Verlag, pp. 128 - 140.

Kung, D.; Bhambhani, H.; Nwokoro, S.; Okasha, W.; Kambalakatta, R. & Sankuratri, P.
(2003). “Lessons learned from software engineering multi-agent systems,” Proc. of
IEEE COMPSAC'03, Dallas, Texas, November 3-6, 2003.

Agent Systems in Software Engineering 161

Kung, D. (2004). “An agent-based framework for testing Web applications”, Proceedings of
the 28th Annual International Computer Software and Applications Conference,
COMPSAC 2004, vol.2, Page(s): 174-177.

Lazarou, V. S. & Clark, K. L. (1998). “Agents for Hypermedia Information Discovery”,
Agents” World 98, Co-operative Information Agents, Springer-Verlag Lecture Notes in
Artificial Intelligence (1435), 1998.

Lehman, M. M. & Ramil, J. F. (2001). Rules and Tools for Software Evolution Planning and
Management. Annals of Software Engineering, Special Issue on Software
Management, 11(1), 15-44.

Ma, Y.F.; Li, HX. & Sun, P. (2007). A Lightweight Agent Fabric for Service Autonomy. Proc.
of International Workshop on Service-Oriented Computing: Agents, Semantics, and
Engineering, 2007, LNCS 4504, pp. 63-77, Springer-Verlag

Maamar, Z.; Kouadri-Most efaoui, S. & Yahyaoui, H. (2005). “Towards an Agent-based and
Context-oriented Approach for Web Services Composition,” IEEE Transactions on
Knowledge and Data Engineering, Vol. 17, No. 5, pp. 686-697.

Miao, H.; Chen, S. & Qian, Z. (2007). A Formal Open Framework Based on Agent for Testing
Web Applications, International Conference on Computational Intelligence and
Security, 2007, pp. 281-285, 0-7695-3072-9

Nguyen, H.Q. (2000). Testing Applications on the Web: Test Planning for Internet-Based
Systems, John Wiley & Sons, Inc.

Qi, Y, Kung, D. & Wong, E. (2005). “An Agent-Based Testing Approach for Web
Applications”, Proceedings of Computer Software and Applications Conference,
COMPSAC 2005, Volume 2, Page(s): 45-50.

Qi, Y.; Kung, D. & Wong, E. (2006). “An agent-based data-flow testing approach for Web
applications.” Information and Software Technology. 48, 12 (Dec. 2006), 1159-1171.

Rao, A.S. & Georgeff, M. (1995). BDI agents: from theory to practice, in: Proceedings of the
First International Conference on Multi-Agent System (ICMAS'95), San Francisco,
CA, USA, pp. 312-319.

Richards, D.; van Splunter, S.; Brazier, E. & Sabou, M. (2003). “Composing web services
using an agent factory,” In Prc. of the 1st Workshop Web Services arid Agent Based
Engineering, Sydney, Australia.

Russel, S. & Norvig, P. (2003). Artificial Intelligence: A Modern Approach, Prentice
Hall/Pearson Education International: Englewood Cliffs (NJ), (2nd Edn), 2003.

Saint-Andre, P. (2005). Streaming XML with Jabber/XMPP, IEEE Internet Computing,
Volume 9, Issue 5, Page(s):82 - 89.

Smith, G. (2000). The Object-Z Specification Language. Advances in Formal Methods.
Kluwer Academic Publishers.

Sommerville, I. (2004). Software Engineering, 7th edition, Addison-Wesley, 2004.

SWEBOK (2004). Guide to the Software Engineering Body of Knowledge (February 6, 2004).
Retrieved on 2008-02-21.

Sycara, K.; Paolucci, M.; Soundry, J. & Srinivasan, N. (2001). “Dynamic discovery and
coordination of agent-based semantic web services,” IEEE Computing, 8(3):66-73.

Tsai, W.T.; Paul, R.; Yu, L.; Saimi, A. & Cao, Z. (2003). “Scenario-Based Web Service Testing
with Distributed Agents,” IEICE Transaction on Information and System, Vol. E86-
D, No. 10, pp. 2130-2144.

162 Tools in Artificial Intelligence

Van der Hoek, W. & Wooldridge, M. (2003). “Towards a logic of rational agency,” Logic J.
IGPL, vol. 11, no. 2, pp. 135 - 160.

Wood, M,; DeLoach, S. A.; & Sparkman, C. (2001). “Multi-agent system engineering”’, Int. J.
Software Eng. Knowl. Eng., vol. 11, no. 3, pp. 231 - 258.

Xu, D.; Bai, X.; & Dai, G. (2006). "A Tuple-Space-Based Coordination Architecture for Test
Agents in the MAST Framework," Second IEEE International Symposium on
Service- Oriented System Engineering (SOSE'06), pp. 57-66, 2006

El Yamany, H.F., Capretz, M.A.M. & Capretz, L.F. (2006) A Multi-Agent Framework for
Testing Distributed Systems, IEEE COMPSAC 3rd International Workshop on
Quality Assurance and Testing Web-Based Applications (QATWBA’2006), Chicago,
IL, USA, September, pages 151-156.

Zambonelli, F.; Jennings, N.; Omicini, A.; & Wooldridge, M. (2001). “Agent-oriented
software engineering for internet applications,” in Coordination of Internet Agents:
Models, Technologies, and Applications, Springer-Verlag: Berlin (D), pp. 326 - 346.

Zambonelli, F.; Jennings, N.; & Wooldridge, M. (2003). ““Developing multi-agent systems:
The Gaia methodology,” ACM Trans. Soft. Eng. Meth., vol. 12, no. 3, pp.417 - 470.

Zambonelli, F. & Omicini, A. (2004). Challenges and Research Directions in Agent-Oriented
Software Engineering, Journal of Autonomous Agents and Multi-agent Systems 9(3),
pp. 253-284.

Zhu, H., Greenwood, S., Huo, Q. & Zhang, Y. (2000). Towards agent-oriented quality
management of information systems, Workshop Notes of 2nd International
Workshop on Agent-Oriented Information Systems at AAAI'2000, Austin, USA,
July 30, 2000, 57-64.

Zhu, H. & Huo, Q. (2004). Developing A Software Testing Ontology in UML for A Software
Growth Environment of Web-Based Applications, Software Evolution with UML
and XML, Hongji Yang (eds.), Idea Group Inc, 2004.

Zhu, H. (2004). “Cooperative agent approach to quality assurance and testing Web
software”, Proceedings of COMPSAC 2004 vol.2, Page(s): 110-113.

10

A Joint Probability Data Association Filter
Algorithm for Multiple Robot Tracking Problems

Aliakbar Gorji Daronkolaei, Vahid Nazari, Mohammad
Bagher Menhaj, and Saeed Shiry

Amirkabir University of Technology, Tehran,

Iran

1. Introduction

Estimating the position of a mobile robot in a real environment is taken into account as one
of the most challenging topics in the recent literature (Fox et al., 2000). This problem can be
usually explored in two ways. Firstly, a mobile robot should be able to have knowledge
about its current position. The Dead-reckoning of a mobile robot may be used to update the
position of the robot assuming the initial position is known. However, the encoders of a
robot cannot provide precise measurements and, therefore, the position obtained by this
way is not reliable. To achieve more accurate approximation of a robot’s position,
measurements obtained by sensors set on a robot are used to correct the information
provided by the encoders. If the mapping of a physical environment is known, the above-
mentioned procedure can be easily accomplished by using some well-known approaches
such as Kalman filtering (Kalman & Bucy, 1961) to localize the exact position of a mobile
robot (Siegwart & Nourbakhsh, 2004). However, when there is not any knowledge about the
map, mapping and localization should be conducted simultaneously. The aforementioned
topic is known as Simultaneous Localization and Mapping (SLAM) in the literature
(Howard, 2005).

In many applications, one may intend to localize other robots” position via a reference robot.
Robot soccer problems or people tracking scenarios can be fallen in the pre-mentioned
category. Although this problem appears similar to the common localization algorithms, the
traditional approaches can not be used because the reference robot does not access to the
odometry data of each mobile robot used in localization algorithms to predict the future
position of the robot. This issue may be completely perceivable in the people tracking
scenario because there is not any information about the movement of people. In this case,
some models should be proposed to represent the movement of each object. By defining a
suitable motion model for each target and using measurements provided by a reference
robot about the current position of the moving object, a linear/nonlinear state space model
is constructed representing the movement of each object.

The above-discussed topic can be fallen in the category of target tracking problems where
the final aim is defined as tracking the position of a mobile object by a reference sensor.
Because of inaccurate data obtained by sensors and uncertain motion models which may not
provide reliable prediction of an object’'s movement, filtering algorithms are used to extract

164 Tools in Artificial Intelligence

the position of a mobile target. Kalman filtering has been the first method applied to the
field of target tracking. However, the Kalman method and, even, its generalized form
known as extended Kalman filter (EKF) (Anderson & Moore, 1979) do not provide reliable
results for nonlinear state space models. This problem is very common in tracking
applications where the sensor algebraic equations are usually nonlinear towards the
position of a target. To remedy the above problems, nonlinear filtering using the particle
filter algorithm has been proposed (Gordon et al., 1993), (Doucet et al., 2001). Particle
filtering has been extensively applied to many real themes such as aircraft tracking (Ristic et
al., 2004), target detection/tracking (Ng et al., 2004), navigation (Gustafsson et al., 2002),
training artificial neural networks (Freitas 1999), control (Andrieu et al., 2004), etc. Besides
the ease of use, particle filter algorithms lead to much more accurate results than kalman
based approaches. Recently, the combination of particle and Kalman filtering has been also
applied to many tracking applications, specially, when some parameters of a motion model
may be also estimated beside the position of a target (Sarkka et al., 2005).

Multiple robot tracking is another attractive issue in the field of mobile robotics. This area
can be imagined as a generalized type of the common tracking problem. In other words, a
reference robot should localize other robots/agents position based on information obtained
by sensors. To do so, measurements should be associated to the appropriate target.
Moreover, some measurements may have been received from unwanted targets usually
known as clutters. The combination of the data association concept and common filtering
approaches has been used in the literature as the joint probability data association filter
(JPDAF) algorithm (Vermaak et al., 2005). This algorithm has been greatly used in many
applications such as multiple target tracking (Li et al., 2007), (Fortman et al., 1983), people
tracking (Schulz et al., 2003), and security planning (Oh et al., 2004). However, in the field of
multiple robot tracking, no comprehensive work has been done and many problems are yet
open. For example, unlike the traditional multiple target tracking scenarios in which sensors
may be assumed to be fixed or conduct an independent movement, a reference robot can
make an organized movement to track other robots position much more precisely. In other
words, the motion of a reference robot must be planned so that the robot can track other
robots much better. Although this case has been discussed in the literature as observer
trajectory planning (OTP) (Singh et al, 2007), proposed approaches are usually
implemented in an offline mode. This problem may not be so desirable in multiple robot
tracking scenarios where a reference robot should localize other robots simultaneously.

In this paper, some improvements are made on the traditional JPDAF algorithm for multiple
robot tracking applications. To provide a better representation of a robot’s movement,
different motion models proposed in the literature are used to evaluate the efficiency of
tracking. Moreover, a new fuzzy controller is proposed to find an optimal trajectory for the
movement of the reference robot. It will be shown that this fuzzy controller minimizes the
sum of distances between the reference robot and other mobile objects.

To maintain all of above-mentioned topics, this paper is organized as follows. Section 1
deals with the general theory of the JPDAF algorithm. The particle filter algorithm and the
concept of data association will be covered in this section. Section 3 discusses the JPDAF
algorithm for multiple robot tracking. In this section of the paper, different motion models
describing the movement of a mobile robot are represented. Section 4 is devoted to present
fuzzy logic controller for optimal observer trajectory planning. This section proposes a fuzzy
controller which can join with the JPDAF algorithm to enhance the quality of tracking.

A Joint Probability Data Association Filter Algorithm for Multiple Robot Tracking Problems 165

Simulation results confirming the superiority of our proposed algorithm are provided in
section 6. Finally, section 7 concludes the paper.

2. The JPDAF algorithm for multiple target tracking

In this section, the JPDAF algorithm considered as the most widely and successful strategy
for multi-target tracking under data association uncertainty is presented. The Monte Carlo
version of the JPDAF algorithm uses the common particle filter approach to estimate the
posterior density function of states given measurements p(x, |y;,). Now, consider the

problem of tracking N objects. x¥ denotes the state of these objects at time t where k=1,2,..N

is the target number. Furthermore, the movement of each target can be described in a
general nonlinear state space model as follows:

Xi4] = f(xt)+ \7] (1-1)

Y= g(xt)"’ Wy (1-2)

where v, and w, are white noises with the covariance matrixes Q and R, respectively. Also,

in the above equation, f and g are the general nonlinear functions representing the
dynamical behavior of the target and the sensor model. The aim of the JPDAF algorithm is

to update the marginal filtering distribution for each target p(xfC lyi:) » k=1,2,..,N, instead of

computing the joint filtering distribution p(X, |y;;), X, = x},...x" . To compute the above

distribution function, some remarks should be first noted as

1. That how to assign each target state to a measurement is crucial. Indeed, at each time
step the sensor provides a set of measurements. The source of these measurements can
be the targets or the disturbances also known as clutters. Therefore, a special procedure
is needed to assign each target to its associated measurement. This procedure is
designated as Data Association considered as a key stage of the JPDAF algorithm which
is described in next sections.

2. Because the JPDAF algorithm updates the estimated states sequentially, a recursive
solution should be applied to update the states at each sample time. Traditionally,
Kalman filtering has been a strong tool for recursively estimating the states of the
targets in the multi-target tracking scenario. Recently, particle filters joint with the data
association strategy have provided better estimations, specially, when the sensor model
is nonlinear.

With regard to the above points, the following sections describe how particle filters

paralleled with the data association concept can deal with the multi-target tracking problem.

2.1 The particle filter for online state estimation
Consider the problem of online state estimation as computing the posterior probability

density function p(x¥ |y,,). To provide a recursive formulation for computing the above

density function, the following stages are presented:
1. Prediction stage: the prediction step is proceeded independently for each target as

166 Tools in Artificial Intelligence

POt Iy = [PO XD PO | yiaxt @
k

X

2. Update stage: this step can be also described as follows:

P [y) o p(y, [X)p(y,,0) ®)
The particle filter algorithm estimates the probability distribution density function

p(xic |¥1,-1) by sampling from a specific distribution function as follows:

N . .
PO Vi) = D W(x, — X)) 4)
i=1

Here i=1,2,...,N is the sample number, w,is the normalized importance weight and 5() is
the delta dirac function. In the above equation, the state x| is sampled from the proposal

density function gk x5y By substituting the above equation in (2) and the fact that

states are drawn from the proposal function q, the recursive equation for the prediction step
can be written as follows:

ko ki

R ¢ R p v
G =0
q(xt |Xt7]>y|:t)

®)

where xf fl is the i sample of x| . Now, by using (3) the update stage can be expressed as a

recursive adjustment of importance weights as follows:

wi=alp(y, |x}) (6)

By repeating the above procedure at each time step, the sequential importance sampling
(SIS) algorithm for online state estimation is presented as below:

1. For i=1: N initialize the states x{,, prediction weights ¢ and importance weights .
2. At each time step t proceed the following stages:
a. Sample states from the proposal density function as follows:

X; ~ q(xt | xi—laylzt) (7)

b. Update prediction weights by (5).
c. Update importance weights by (6).
d. Normalize importance weights as follows:
i
~ W
W= ®)

3. Sett=t+1 and go to 2.
Table. 1. The SIS Algorithm

A Joint Probability Data Association Filter Algorithm for Multiple Robot Tracking Problems 167

For the sake of simplicity, the index k has been eliminated in Table 1. The main failure of the
SIS algorithm is the degeneracy problem. That is, after a few iterations one of the
normalized importance ratios tends to 1, while the remaining ratios tend to zero. This
problem causes the variance of the importance weights to increase stochastically over time
(Del Moral et al, 2006). To avoid the degeneracy of the SIS algorithm, a selection
(resampling) stage may be used to eliminate samples with low importance weights and
multiply samples with high importance weights. There are many approaches to implement
the resampling stage (Del Moral et al., 2006). Among them, the residual resampling provides
a straightforward strategy to solve the degeneracy problem in the SIS algorithm. By
combining the concept of residual resampling with the SIS algorithm presented before, the
SIR algorithm is described in Table 2.

1. For i=1: N initialize the states x{,, prediction weights ¢{ and importance weights .
At each time step t do the following stages:
a. Do the SIS algorithm to sample states x;and compute normalized importance
weights i, .
b. Check the resampling criterion:
i. IN o > thresh , follow the SIS algorithm Else:

ii. Implement the residual resampling stage to multiply/suppress x,with

high/low importance weights.
. . . ~i 1
iii. Setthe new normalized importance weights as Wy = v

3. Sett=t+1and go to 2.

Table. 2. The SIR Algorithm
In the above algorithm, N4 is a criterion checking the degeneracy problem which can be

written as:

1
Ner = ©)

D)
i=1

In (Freitas 1999), a comprehensive discussion has been made on how one can implement the
residual resampling stage.

Besides the SIR algorithm, some other approaches have been proposed in the literature to
enhance the quality of the SIR algorithm such as Markov Chain Monte Carlo particle filters,
Hybrid SIR and auxiliary particle filters (Freitas 1999). Although these methods are more
accurate than the common SIR algorithm, some other problems such as the computational
cost are the most significant reasons that, in many real time applications such as online
tracking, the traditional SIR algorithm is applied to recursive state estimation.

2.2 Data association
In the last section, the SIR algorithm was presented for online state estimation. However, the
major problem of the proposed algorithm is how to compute the likelihood

168 Tools in Artificial Intelligence

function p(y, |xf). To do so, an association should be made between measurements and

targets. Generally, two types of association may be defined as follows:
Definition 1: we will denote a target to measurement association (7 —>M) by

A ={F,m,,my} where 7 ={i{,...7x} and 7 is defined as:

1y

(10)

P

~ _]0 If the k™ targetis not detected
j f the k" target has generated the ;™ measurement

where j=1,2,..,m and m is the number of measurements at each time step and k=1,2,.., K

which K is the number of targets.

Definition 2: in a similar fashion, the measurement to target association (M — T') is defined

as A={r,m.,mp} where r={n,..,r,,} and r; is defined as follows:

(11)

5 {0 If the jth measurement is not associated
=

k if the jth measurement is associated to the k" target
In both above equations, my is the number of measurements due to the targets and m, is

the number of clutters. It is very easy to show that both definitions are equivalent but the
dimension of the target to measurement association is less than the measurement to target
association dimension. Therefore, in this paper, the target to measurement association is
used. Now, the likelihood function for each target can be written as

m
POy Ix) =B+ B pyi1x) (12)
i=1
In the above equation, 8’ is defined as the probability that the i measurement is assigned

to the & target. Therefore, ' can be written as the following equation:

B =p(k =ilyie) (13)
Before describing how to compute the above equation, the following definition is
represented:
Definition 3: we define the set 1 as all possible assignments which can be made between
measurements and targets. For example, consider a 3-target tracking problem. Assume that
the following associations are recognized between targets and measurements:

n={12},n ={3}, 3 ={0} . Now, the set A can be shown in Table 3.

Target 1 Target 2 Target 3
0 0 0
0 3 0
1 0 0
1 3 0
2 0 0
2 3 0

Table. 3. All possible associations between the targets and measurements for example 1

A Joint Probability Data Association Filter Algorithm for Multiple Robot Tracking Problems 169

In Table 3, 0 means that the target has not been detected. By using the above definition, (11)
can be rewritten as

PG =ilyi)= . pCk |y (14)
Z‘EKT’;;(=Jj

The right side of the above equation is written as follows:

Py y1y) = Pyl y”‘;’(';’gl;(y“'l’ﬂt) =p(¥, | Y114 P(A) (15)

In the above equation, we have used the fact that the association vector 2, is not dependent

on the history of measurements. Each of density functions in the right hand side of the
above equation can be computed as follows:

1. p(%)

The above density function can be written as
p(A) = p(F,me,mp) = p(F; | me,mp) p(me) p(my) (16)

The computation of each density function in the right hand side of the above equation is
straightforward and can be found in (Freitas 1999).

2. p(¥, V1ot A)

Because targets are assumed to be independent, the above density function can be written as
follows:

~ _ j .
PO Y1o154) = Pinax) njeFPrt 7 1¥1-1) (16)

where V.

nax 18 the maximum volume in the line of sight of sensors, T" is the set of all valid

measurement to target associations and p"’J (ytj |¥14-1) is the predictive likelihood for the

(/)" target. Now, consider ;/ = k . The predictive likelihood function for the K™ target can

be written as follows:
PO 1) = [PO X0 PRE | yip)ax (17)

Both density functions in the right hand side of the above equation are estimated using the
samples drawn from the proposal density function. However, the main problem is how to
determine the association between measurements y, and targets. To do so, the soft gating

method is proposed in Table 4.

170 Tools in Artificial Intelligence

1. Consider x;"k ,i=1,2,.,N, as the samples drawn from the proposal density function.

2. Forj=1:m do the following steps for the ;" measurement:
a. For k=1:K do the following steps:

i. Compute ,u;‘» as follows:
kN ik ik
wy=>ar g(xp (18)
i=l

Where g is the sensor model and 5:‘ is the normalized weight as presented
in the SIR algorithm.
ii. Compute 6? by the following equation:
N

ok =R+ Z;&;‘" (e - foxity - it f)
m

iii. Compute the distance to the ;' target as follows:
1 o
dj ==l =)' @) of =) (20)
iv. If d_]Z <&, assign the j” measurement to the k" target.

b. End of the loop for k.
3. End of the loop for j.

Table. 4. Soft gating for data association

It is easy to show that the predictive likelihood function presented in (16) can be
approximated as follows:

PP Iy = Nt ob) (1)

where N (/,tk,ak) is a normal distribution with mean ,uk and the covariance matrix o . By
computing the predictive likelihood function, the likelihood density function can be easily
estimated. In the next subsection, the JPDAF algorithm is presented for multi-target
tracking.

2.3 The JPDAF algorithm

The mathematical foundations of the JPDAF algorithm were discussed in the last sections.
Now, we are ready to propose the full JPDAF algorithm for the problem of multiple target
tracking. To do so, each target is characterized by a dynamical model introduced by (1). The
JPDAF algorithm is, therefore, presented in Table 5.

A Joint Probability Data Association Filter Algorithm for Multiple Robot Tracking Problems 171

1. Initialization: initialize states for each target as x"o’k where i=1,2,..,.N and k=1,2,...K,
the predictive importance weights aé’k importance weights wé’k .
2. At each time step t proceed through the following stages:
a. For k=1:K conduct the following procedures for each target:
i. For i=1:N do the following steps:
ii. Sample the new states from the proposal density function as follows:

ik ik
X~ g (x| X0y 1) (22)
iii. Update the predictive importance weights as
A _ O ok
ot =ik L7) (x; ' ! (23)

ik |y ls
q(xi | Xp]a)’l:t)
Then, normalize the predictive importance weights.
iv. Use the sampled states and new observations y, to constitute the association|

vector for each target as RF={jlo<j< m,y ; — k} where (— k) refers to the

association between the k" target and the ;" measurement. Use the soft

gating procedure described in the last subsection to compute each
association.

v. Constitute all possible associations for the targets and make the set I as
described in Definition 3.

vi. Use (13) and compute ﬂl for each measurement where 1=1,2,..,m and m is the
number of measurements.
vii. By using (10) compute the likelihood ratio for each target as p(y, | xi’k).

viii. Compute importance weights and normalize them as follows:
ik

ik ik ik ~ik W
wt = o ply, | x), Wt = —— (24)

>
i=l1

ix. Implement the resampling stage. To do so, do the similar procedure
described in the SIR algorithm. Afterwards, for each target the resampled
states can be presented as follows:

N. . 1 .
R e e (25)

b. End of the loop for k.
3. Sett=t+1 and go to step 2.

Table. 5. The JPDAF algorithm for multiple target tracking

The above algorithm can be used to deal with the multi-target tracking scenario. In the next
section, we show how the JPDAF algorithm can be used for multiple robot tracking. In
addition, some well-known motion models are presented to track the motion of a mobile
robot.

172 Tools in Artificial Intelligence

3. The JPDAF algorithm for multiple robot tracking

In the last section, the JPDAF algorithm was completely discussed. Now, we want to use the
JPDAF algorithm for the problem of multiple robot tracking. To do so, consider a simple 2-
wheel differential mobile robot, Fig. 1, whose dynamical model is represented as follows:

! » X7
Fig. 1. A 2-wheel differential mobile robot
As, + As As, — As,
Xip] = X4 +rTICOS(9t +r2—bl)
As,. +As; . As,. —As
Vi =W +’Tlsm(9t +r2—bl)
‘9t+1 = Ht + % (26)

where [x,,y,] is the position of the robot, &, is the angle of the robot's head, As, and As, are

the distances travelled by each wheel, and b refers to the distance between two wheels of the
robot. The above equation describes a simple model presenting the motion of a differential
mobile robot. For a single mobile robot localization problem, the most straightforward way
is to use this model and the data collected from the sensors set on the left and right wheels
measuring As,and As; at each time step. But, the above method does not lead to the

suitable results because the data gathered from the sensors are dotted with the additive
noise and, therefore, the estimated trajectory does not match the actual trajectory. To
remedy this problem, measurements obtained from the sensors are used to modify the
estimated states. Therefore, Kalman and particle filters have been greatly applied to the
problem of mobile robot localization (Siegwart & Nourbakhsh, 2004). Now, consider the
case in which the position of other robots should be identified by a reference robot. In this
situation, the dynamical model discussed previously is not applicable because the reference
robot does not have any access to the internal sensors of other robots such as the sensors

A Joint Probability Data Association Filter Algorithm for Multiple Robot Tracking Problems 173

measuring the movement of each wheel. Therefore, a motion model should be first defined
for the movement of each mobile robot. The simplest model is a near constant velocity
model presented as follows:

X,,; = AX, + Bu,

. . (27)
X; =[xt,xpyt,yt]
where the system matrixes are defined as
72
1 7, 0 0 TV 0
01 0 O
A= ,B= T 02 (28)
00 1 T, 0 T
0 0 0 1 2
0 T

where T, refers to the sample time. In the above equations, u,is a white noise with zero

mean and an arbitrary covariance matrix. Because the model is supposed to be a near
constant velocity model, the covariance of the additive noise should not be so large. Indeed,
this model is suitable for the movement of targets with a constant velocity which is common
in many applications such as aircraft path tracking and people tracking.

The movement of a mobile robot can be described by the above model in many conditions.
However, in some special cases the robots' movement can not be characterized by a simple
near constant velocity model. For example, in a robot soccer problem, the robots may
conduct a manoeuvring movement to reach a special target such as a ball. In these cases, the
robot changes its orientation by varying input forces imposed to the right and left wheels.
Therefore, the motion trajectory of the robot is so complex that an elementary constant
velocity model may not result in satisfactory responses. To overcome the mentioned
problem, the variable velocity model is proposed. The key idea behind this model is using
the robot's acceleration as another state variable which should be estimated as well as the
velocity and position of the robot. Therefore, the new state vector is defined as

X, =[x, %,,a;,y,,¥,a] | where a;,a} are the robot's acceleration along with the x and y axis,

respectively. Now, the near constant acceleration model can be written similar to what
mentioned in (27), except for the system matrixes which are defined as follows (Ikoma et
all., 2001):

1 07, 0O a 0 b 0
01 0 T, 0 a 0 p
00 1 0 a 0 b, 0
A= ,B= (30)
00 0 1 0 a 0 b
00 0 0 exp(-Ty) 0 by 0
00 0 O 0 exp(-Ty) 0 b

where the constants of the above equation are defined as

174 Tools in Artificial Intelligence

1 1
by =—(1=exp(-cT;)) ay =bs, by =—(T; ~ a2)

2 (31)
ay=by, by = l[%— al]

c

In the above equation, ¢ is a constant value. The above model can be used to track the
motion trajectory of a manoeuvring object, such as the movement of a mobile robot.
Moreover, using the results of the proposed models can enhance the performance of
tracking. This idea can be presented as follows:

X, = aX? +(1-a)X) (32)

where X{ and X] are the estimation of the near constant acceleration and near constant

velocity model, respectively, and « is a number between 0 and 1. To adjust &, an adaptive
method is used considering the number of measurements assigned to targets when each
model is used separately. That is, more the number of measurements is assigned to targets
by each model, the larger value is chosen for o .

Besides the above approaches, some other methods have been proposed to deal with
tracking of manoeuvring objects such as Interactive Multiple Mode (IMM) filters (Pitre et al.,
2005). However, these methods are applied to track the movement of objects with sudden
manoeuvring movement which is common in aircrafts. In the mobile robots scenario, the
robot's motion is not so erratic that the above method is necessary. Therefore, the near
constant velocity model, near constant acceleration model or a combination of the proposed
models can be considered as the most suitable structures which can be used to represent the
dynamical model of a mobile robot. Afterwards, the JPDAF algorithm can be easily applied
to the multi-robot tracking problem.

4. A fuzzy controller for optimal observer trajectory planning

In this section, a novel fuzzy logic controller (FLC) is proposed to maintain a better tracking

quality for the multi-robot tracking problem. Indeed, the major motivation of using a

moving platform for the reference robot is some weaknesses in the traditional multiple

target tracking scenarios in which sensors were assumed to be fixed or conduct an
independent movement from mobile targets. The most important weaknesses found in
recent approaches are:

e Generally, the variance of the additive noise of sensors increases when the distance
between each sensor and mobile targets increases. Consequently, the quality of tracking
will decrease if the position of the sensor or reference robot is fixed.

e If the position of the reference robot is assumed to be fixed, targets may exit the
reference robot’s field of view and, therefore, the reference robot will lose other robots’
position.

¢ In some applications, the reference robot may be required to track a special target. This
problem is common in some topics such as the robot rescue or security planning, when
the reference robot should follow the movement of an individual. The traditional
approaches are not flexible enough to be applied for the path/trajectory following
problem.

A Joint Probability Data Association Filter Algorithm for Multiple Robot Tracking Problems 175

e Switching between trajectory tracking and path following is either impossible or very
hard and time consuming when traditional approaches are used, when the reference
robot is fixed or its movement is independent from other robots” movement.

To remedy aforementioned flaws, a novel strategy is proposed to provide a trajectory for the

reference robot dependent on other targets’ movement. To obtain an optimal solution, the

following cost function is defined for the trajectory planning problem:

where; is the distance between the i ™ target and reference robot and ¢,1s the angle between

the i target and reference robot in the local coordination of the reference robot (Fig. 2).

}r

Fig. 2. Position of targets in the reference robot’s coordination

The major reason for defining the above cost function is that, by this way, the reference
robot maintains its minimal distance to all targets and, thus, the performance of the target
tracking is improved. In other words, when the reference robot is placed in a position whose
sum of distances to other robots is minimal, the effect of the additive noise dependent on the
distance between targets and the reference robot is also minimized. Therefore, the trajectory
planning problem is defined as a method causing the reference robot to move along a
suitable path minimizing the pre-mentioned cost function.

In order to execute the aforementioned trajectory planning problem, a robust fuzzy
controller is used. Fig. 3 shows the block diagram of the proposed fuzzy controller. In
design of fuzzy logic controllers, we use the Mamdani type of the fuzzy control containing
fuzzification and defuzzification stages and, also, a rule base. The task of the fuzzy
controller is to have the reference robot follow the above-discussed optimal trajectory
smoothly and, of course, precisely. In this paper, we use an FLC based on kinematical model
of the robot.

176 Tools in Artificial Intelligence

D
R s i Fuzzy
o = Inferenzs :
' i
! i)) @
@ 5 T =l b5
WA ! I
”:I :I tjll‘ ::> Fnle Base ! defuzzification
I
Fuzzification S I
Cost Fanction JPDAF Alzorithem Reference -
€ et |
D —
o) | Fuzzy
@ Y) :
i i
. A AT
R : ﬁ =1 il (jlll B
- = !
: I Foile Base ! defuzzification
Fuzzification A I
Linear velocity Fuzzy Controller

Fig. 3. A block diagram of represented fuzzy controller

After testing various number of membership functions for input variables R @, the best
fuzzy system for the angular velocity control is designed with seven triangular membership
functions. Although there is no restriction on the general form of membership functions, we
choose the piecewise linear description (Fig. 4 & Fig. 5).

Hir)

v Close Mear Far -

Y

-l -0 - il @ w |] 17 T @

=4 0 il
Angular_Brror (deg) Dis tan ca{m)

Fig. 4. Membership functions of input fuzzy sets of fuzzy controllers
o)

3
=

S
=

Y

B 12 Te 20) 28
Angular_Velocry - (deg/sec) Linsar_Vebcily (deglvec)

Fig. 5. Membership functions of output fuzzy sets of fuzzy controllers

A Joint Probability Data Association Filter Algorithm for Multiple Robot Tracking Problems 177

The second step in designing an FLC is the fuzzy inference mechanism. The knowledge base
of the angular and linear velocity of fuzzy controllers consists of the rules described in Table

6 & Table 7.

0 g = ° 5 § 0 ®
Q7 ®6 Q5 V4 n®d5 neb6 ne7 Zero
Q6 @5 Q4 Z no4d ned nwbd Close
Q5 w4 Q3 Z n®3 nod n5 Near
Q4 ®3 Q2 Z no2 ned3 nod Far

Q3 w2 Q1 Z nol ne2 nw3 | very_Far

Table. 6. The fuzzy rule base for the angular velocity fuzzy controller

50 g = o 5 § 50 ®
V1 V2 V3 V4 V3 V2 Vi Zero
V2 V3 V4 V5 V4 V3 V2 Close
V3 V4 V5 Vo6 V5 V4 V3 Near
V4 V5 Vé V7 V6 V5 V4 Far

V5 V6 V7 V8 V7 V6 V5 | very_Far

Table. 7. The fuzzy rule base for the linear velocity fuzzy controller

In this application, an algebraic product is used for all of the t-norm operators, max is used
for all of the s-norm, as well as individual-rule based inference with union combination and

mamdani’s product implication . Product inference engine is defined as

Uy (¥)= n}éx sgg(m (X)[;Iﬂ,i,i (x)m, (y)] (34)

There are many alternatives to perform the defuzzification stage. The strategy adopted here
is the Center Average defuzzification method. This method is simple and very quick and

can be implemented by (Wang 1997)

M
2w,
3 (35)

Y =—u
2

where 3" is the center of th /" fuzzy set and w is its heigh.

178 Tools in Artificial Intelligence

The above procedures provide a strong tool for designing a suitable controller for the
reference robot leading to a better tracking performance. The next section shows how this
approach enhances the accuaracy of tracking.

5. Simulation results

To evaluate the efficiency of the JPDAF algorithm, a 3- robot tracking scenario is designed.
Fig. 6 shows the initial position of the reference and target robots. To prepare the scenario
and implement the simulations, parameters are first determined for the mobile robots’
structure and simulation environment by Table 8. Now, the following experiments are
conducted to evaluate the performance of the JPDAF algorithm in various situations.

Parameters Description
v The robot’s left wheel speed
Vr The robot’s right wheel speed

The distance between the robot’'s wheels

g Number of sensors placed on each robot
Rinax Maximum range of simulation environment
O The covariance matrix of the sensors’ noise
tg Sample time for simulation
max Maximum running time for the simulation

Table. 8. Simulation parameters

Fig. 6. The generated trajectory for mobile robots in a simulated environment

A Joint Probability Data Association Filter Algorithm for Multiple Robot Tracking Problems 179

5.1 Local tracking for manoeuvring movement and the fixed reference robot
To design a suitable scenario, the speed of each robot’s wheel is determined by Table 3. The
initial position of the reference robot is set in [0, 0, 0]. Moreover, other robots’ position is

assumed to be [2,2, 7], [1, 3,% 111, 9,%], respectively. To run the simulation, sample time

t, and maximum running time are also set in 1s and 200s, respectively. To consider the

uncertainty in measurements provided by sensors, a Gaussian noise with zero mean and the

covariance matrix] is added to measurements obtained by sensors. After

2

[0 5x107
simulating the above-mentioned 3-robot scenario with aforementioned parameters, the
generated trajectories can be observed in Fig. 7.

Trajectory for robot 1
— — Trajectory for robat 2
12 Trajectary for rabat 3 b
Reference Robot

2 3
X(m)
Fig. 7. Generated trajectories for multi-robot tracking scenario

Now, we are ready to implement the JPDAF algorithm discussed before. First, a JPDAF
algorithm with 500 particles is used to track the each target’s movement. To compare the
efficiency of each motion model described in section 3, simulations are done for different
motion models. Fig. 8 shows the tracking results for various models and targets. To provide
a better view to the accuracy of each approach, Table 9 and Table 10 present the tracking
error for each model where the following criterion is used to compute the error:

max

Z(Zt _Et)z
€; :tﬂ—’zt :{xva’t} (35)

tmax
From Tables, it is obvious that the combined model has resulted in a better performance
than other motion models. Indeed, near constant velocity and acceleration models do not

provide similar results during the simulation and, therefore, the combined model mixing
results obtained from each model has led to much better performance.

180 Tools in Artificial Intelligence

Estimated Trajectory Using Constant Velocity Model
* Actual Trajectory
— — Estimated Trajectory Using Variable Velocity Model
- Estimated Trajectory Using Combined Variable and Constant Velacity Model

=

2
X(m)

@)

% Actual Trajectory y/.a/
~— — Estimated Trajectory Using Variable Velocity Model /(@
-~~~ Estimated Trajectory Using Combined Variable and Constant Velocity Model }j

Estimated Trajectory Using Constant Velacity Model

Estimated Trajectory Using Constant Velocity Model
% Actual Trajectory
Estimated Trajectory Using Variable Velocity Modsl
- Estimated Trajectory Using Combined Variable and Constant Velocity Model

Y(m)

X(m)
©
Fig. 8. Tracking results using the JPDAF algorithm with 500 particles for all robots

A Joint Probability Data Association Filter Algorithm for Multiple Robot Tracking Problems 181

Robot Number Const. Velocity Const. Acceleration Combined Model
1 0.002329 0.006355 0.002549
2 0.003494 0.003602 0.001691
3 0.005642 0.005585 0.002716

Table. 9. Tracking errors of estimating x; for various motion models

Robot Number Const. Velocity Const. Acceleration Combined Model
1 0.005834 0.006066 0.003755
2 0.016383 0.009528 0.007546
3 0.011708 0.012067 0.006446

Table. 10. Tracking errors of estimating y, for various motion models

5.2 Local tracking using a mobile reference robot

Now, we apply the control strategy presented in section 4 for finding an optimal trajectory
for the reference robot. To implement the simulation, the reference robot is placed at [0, 0]. A
fuzzy controller with two outputs is designed to find the linear and angular velocity of the
reference robot. Simulations are conducted with parameters similar to ones defined in the
last section. Moreover, to consider the effect of the distance between sensors and targets, the
covariance of the additive noise is varied by changing the distance. Fig. 9 explains how we
have modelled the uncertainty in measurements received by sensors.

After running the simulation for 400s, the fuzzy controller finds a trajectory for the mobile
robot. Fig. 10 shows the obtained trajectory after applying the JPDAF algorithm with 500
particles for finding the position of each mobile target.

0B T T T T

055+ —_————

nsf y |
045} /s 1

0.4F / -

035r -

Variance

025} y 1
02 - / -

0 5 10 15 20 25
Distance(m)

Fig. 9. A model used to describe the behaviour of additive noises by changing the distance

182 Tools in Artificial Intelligence

E T T T
— Obtained trajectory
------- Mass center trajectory
5 - .
o
4+ _
—
Eqf -
p
oL i
1F Initial position of the reference robot E
D 1 1 1 1
25 =20 -15 -10 -5 0 5

X(m)

Fig. 10. The obtained trajectory for the reference robot using the fuzzy controller

The above figure justifies this fact that the reference robot has been directed to the
geometrical placement of the targets’ mass centre. Additionally, the simulation is run for
situations in which the reference robot is fixed and, also, mobile with an arbitrary trajectory,
without applying the control scheme. Fig. 11 shows tracking results using each of the above-
mentioned strategies. Also, tables 11 & 12 present the estimated tracking error for all cases.
Simulation results show the better tracking performance after applying the control strategy.
In other words, because the controller directs the reference robot to a path in which the sum
of the distance to other robots is minimal, the tracking algorithm is able to find other robots’
position much better than the case in which the reference robot is fixed. In addition, when
the reference robot is moving without any special plan, or, at least, its movement is
completely independent from other robots’” movement, the tracking performance appears
much worse. The above-mentioned evidence shows that the effect of the additive noise’s
variance is so much that the reference robot has completely lost the trajectory of the target
shown in Fig. 11 (c). In this case, using the control strategy has caused the reference robot to
be placed in a position equally far from other robots and, therefore, the effect of the additive
noise weakens. The most important advantage of our proposed approach compared with
other methods suggested in the literature for observer trajectory planning (Singh et al., 2007)
is that the fuzzy controller can be used in an online mode while recent approaches are more
applicable in offline themes. The aforementioned benefit causes our approach to be easily
applied to many real topics such as robot rescue, simultaneous localization and mapping
(SLAM), etc.

A Joint Probability Data Association Filter Algorithm for Multiple Robot Tracking Problems 183

Actual

— — With Controller
—+— Fixed Sensor
------- Mobile Sensor

Y(m)

X(m)
(a)
5 T T T T T T
of 4
—_
E
=
5F 4
Actual
— — With Controller
—+— Fixed Sensor
------- Mobile Sensor
10 L 1 L L
-30 -25 -20 -15 -10 5 0 5
X(m)
(b)
15 T T T T T T
Actual
- — —ﬁvlthdcstjntruller -
—+— Fixed Sensor A T
+
"""" Mobile Sensor o
13 B
= 12 B
E
> " B
10+ B
9+ il
g L | | | 1 1 L L |

08 1 12 14 16 18 2 22 24 2B
X(m)
()
Fig. 11. Tracking results for various situations of the reference robot (fixed, mobile with and
without a controller)

184

Tools in Artificial Intelligence

Robot Number Fixed Ref. Robot Mobile Ref. Robot Ref. Robot With
Controller
1 0.024857 0.077568 0.005146
2 0.883803 0.821963 0.005236
3 0.009525 0.025623 0.009882

Table. 11. Tracking errors of estimating x, for various situations of the reference robot

Robot Number Fixed Ref. Robot Mobile Ref. Robot Ref. Robot With
Controller
1 0.010591 0.02129 0.004189
2 62.54229 57.06329 0.013196
3 0.023677 0.034152 0.018124

Table. 12. Tracking errors of estimating y, for various situations of the reference robot

6. Conclusion

This paper dealt with the problem of multi-robot tracking taken into account as one of the
most important topics in robotics. The JPDAF algorithm was presented for tracking multiple
moving objects in a real environment. Then, extending the aforementioned algorithm to
robotics application was discussed. To enhance the quality of tracking, different motion
models were introduced along with a simple near constant velocity model. Proposing a new
approach for observer trajectory planning was the key part of this paper where it was
shown that because of some problems such as increasing the variance of the additive noise
by increasing the distance between targets and the reference robot, the tracking performance
may be corrupted. Therefore, a fuzzy controller was proposed to find an optimal trajectory
for the reference robot so that the effect of the additive noise is minimized. Simulation
results presented in the paper confirmed the efficiency of the proposed fuzzy control
approach in enhancing the quality of tracking.

7. References

Fox, D; Thrun. S; Dellaert. F & Bugard, W (2000). Particle Filters For Mobile Robot Localization,
Sequential Monte Carlo in Practice, Springer, Verlag.

Kalman, R. E. & Bucy R. S. (1961). New Results in Linear Filtering and Prediction, Trans.
American Society of Mechanical Engineers, Series D, Journal of Basic Engineering,
Vol. 83D, pp. 95-108.

Siegwart. R. & Nourbakhsh. I. R. (2004). Introduction to Autonomous Mobile Robots, MIT Press.

Howard. A. (2005). Multi-robot Simultaneous Localization and Mapping Using Particle Filters,
Robotics: Science and Systems I, pp. 201-208.

Anderson. B. D. O. & Moore. B. J. (1979). Optimal Filtering, Englewood Cliffs: Prentice-Hall.

A Joint Probability Data Association Filter Algorithm for Multiple Robot Tracking Problems 185

Gordon. N. J. ; Salmon. D. J. & Smith. A. F. M. (1993). A Novel Approach For Nonlineat/non-
Gaussian Bayesian State Estimation, IEE Proceedings on Radar and Signal Processing,
140, 107-113.

Doucet. A; Freitas. N. de. & Gordon. N. J. (2001). Sequential Monte Carlo Methods in Practice,
Springer- Verlag.

Ristic. B; Arulampalam. S. & Gordon. N. J. (2004). Beyond the Kalman Filter, Artech House.

Ng. W; Li. J; Godsill. S. & Vermaak. J. (2004). A Hybrid Approach For Online Joint Detection
And Tracking For Multiple Targets, In the Proceedings of IEEE Aerospace
Conference.

Gustafsson. F; Gunnarsson. F; Bergman. N; Forssell. U; Jansson. J; Karlsson. R. & Nordlund.
P. J. (2002). Particle Filters For Positioning, Navigation, and Tracking, I1EEE
Transactions on Signal Processing, Vol. 50, No. 2.

Freitas. N. de. (1999). Bayesian Methods For Training Neural Networks, PhD Thesis, Trinity
College, The University of Cambridge.

Andrieu. C; Doucet. A; Singh. S. S. & Tadic. V. (2004). Particle Methods For Change Detection,
System Identification and Control, Proceedings of IEEE, Vol. 92. No. 3.

Sarkka. S; Vehtari. A. & Lampininen. J. (2005). Rao-Blackwellized Particle Filter for Multiple
Target Tracking, Information Fusion Journal, Vol. 8, Issue. 1, Pages 2-15.

Vermaak. J; Godsill. S. J. & Perez. P. (2005). Monte Carlo Filtering for Multi- Target Tracking
and Data Association, IEEE Transactions on Aerospace and Electronic Systems, Vol.
41, No. 1, pp. 309-332.

Li. J; Ng. W. & Godsill. S. (2007). Online Multiple Target Tracking and Sensor Registration Using
Sequential Monte Carlo Methods, In the Proceedings of IEEE Aerospace Conference.

Fortmann. T. E; Bar-Shalom. Y. & Scheffe. M. (1983). Sonar Tracking of Multiple Targets Using
Joint Probabilistic Data Association, IEEE Journal of Oceanic Engineering, Vol. 8, pp.
173-184.

Schulz. D; Burgard. W; Fox. D. & Cremers. A. B. (2003). People Tracking with a Mobile Robot
Using Sample-based Joint Probabilistic Data Association Filters, International Journal of
Robotics Research (IJRR), 22(2).

Oh. S; Russell. S. & Sastry. S. (2004). Markov Chain Monte Carlo Data Association for Multiple-
Target Tracking, In Proc. of the IEEE International Conference on Decision and
Control (CDC), Paradise Island, Bahamas.

Singh. S. S; Kantas. N; Vo. B. N; Doucetc. A. & Evans. R. J. (2007). Simulation-based Optimal
Sensor Scheduling with Application to Observer Trajectory Planning, Automatica, 43,
817 - 830.

Del Moral. P; Doucet. A & Jasra. A (2006). Sequential Monte Carlo Samplers,]. R. Statistics, Soc.
B, Vol. 68, part 3, pp. 411-436.

Ikoma. N; Ichimura. N; Higuchi. T. & Maeda. H. (2001). Particle Filter Based Method for
Maneuvering Target Tracking, IEEE International Workshop on Intelligent Signal
Processing, Budapest, Hungary, pp.3-8,.

Pitre. R. R; Jilkov. V. P. & Li. X. R. (2005). A comparative study of multiple-model algorithms for
maneuvering target tracking, Proc. 2005 SPIE Conf. Signal Processing, Sensor Fusion,
and Target Recognition XIV, Orlando, FL.

186 Tools in Artificial Intelligence

Wang. X. L. (1997). A Course in Fuzzy systems And Control, Prentice-Hall, Inc, International
Edition.

11

Symbiotic Evolution of Rule Based Classifiers

Ramin Halavati! and Saeed Bagheri Shouraki?
Hranian Academic Centre for Education, Culture, & Research
2Sharif University of Technology

Iran

1. Introduction

Genetic Algorithm is a widely used approach in predictive data mining where data mining
output can be represented by If-Then rules and discovering the best rules is done by a
genetic algorithm. The main motivation for using genetic algorithms in discovery of high-
level prediction rules is that they perform a global search in the problem space and cope
better with attribute interaction in compare with greedy rule induction algorithms often
used in data mining (Freitas, 2001) and therefore, one can see the following papers for a
wide variety of representation techniques and evolution approaches in this field: (Teng et al,
2004), (Hasanzadeh et al, 2004), (Chen & Linkens, 2004), & (Cordon et al, 1998) for evolution
of weighted fuzzy rule base with simple linear genetic representation; (Golez & Dasgupta,
2002) for rule base evolution with binary tree representation; (Mendes et al, 2001) for a co-
evolutionary approach which evolves fuzzy rules in one process and fuzzy membership
functions in another process; (Ishibuchi & Yamamoto, 2004), (de la Iglesia et al, 2003), &
(Lopes et al, 1999) use multi objective optimization approaches for rule base evolution;
(Ishibuchi & Yamamoto, 2002) & (Tsang et al, 2005) for two stage evolution in which one
stage generates candidate rules and the other stage selects a combination of them as a final
rule base; (Riquelme et al, 2003) for hierarchical representation; and some other variations in
(Zhu & Guan, 2004), (Goplan et al, 2006), (Gundo et al, 2004), & (Eggermont et al, 2003).
There are two basic strategies for rule base evolution task and many hybrid methods that
combine the good features of these two methods. These basic approaches are Michigan
approach exemplified by Holland's classifier system (Holland, 1986), and the Pittsburgh
approach exemplified by Smith's LS-1 system (Smith, 1983). In this chapter, we will first
study these two schools with more details in section 2 and show why there is a need for a
third school, then introduce natural process of symbiogenesis in section 3 and symbiotic
evolution as a novel solution for this approach in section 4. Then section 5 will present the
experimental and comparison results, followed by the summary and concluding remarks in
section 6.

2. Michigan and Pittsburgh schools for rule-based classifier evolution

There are two basic strategies for rule base evolution task and many hybrid methods that
combine the good features of these two methods. These basic approaches are Michigan
approach, introduced by John Holland (Holland, 1986), and the Pittsburgh approach,
popularized by Ken De Jong and Steve Smith (Smith, 1983).

188 Tools in Artificial Intelligence

In Pittsburgh approach, a number of if-then rules are coded as a string and handled as an
individual. The performance of each rule-set (i.e., each individual) is used as its fitness
value. Thus the genetic search for finding rule-sets with high fitness values is equivalent to
the search for rule-based systems with high performance. Hence, the optimization of rule-
based systems is directly handled by genetic algorithms that try to maximize the fitness
function. Some good rule-sets in a current population are inherited to the next population
with no modification as elite individuals. The performance of each rule is not explicitly
evaluated in Pittsburgh approach. Thus even if good rules exist in the current population,
they are not always used for generating new rule-sets. Especially when good rules are
included in poor rule-sets, they easily disappear during the generation update. Since a
population consists of a number of rule-sets, long computation time and large memory
storage are required in Pittsburgh approach (Ishibuchi et al, 1999). Interested reader can see
(De Jong et al, 1993), (Janikow, 1993), (Sen et al, 1997), & (Smith 1983) as good examples of
this approach.

On the other hand, in Michigan approach where a single if-then rule is coded as a string and
handled as an individual, the performance of each rule is used as its fitness value. That is,
the performance of rule-sets (the entire population of current rules) is not utilized in the
genetic search for finding rule-based systems with high performance. Thus the optimization
of rule-based systems is indirectly performed by searching for good if-then rules.
Performance of the current rule-set is not explicitly evaluated in the genetic search of the
Michigan approach. Thus a good rule-set can be destroyed by the generation update (i.e. the
performance of the current population can be decreased). Since a population includes only a
single rule-set, computation time and memory storage in Michigan approach are much
smaller than those in Pittsburgh approach where a population consists of a number of rule-
sets. In Michigan approach, good if-then rules in the current population (i.e., in the current
rule-set) are inherited with no modification to the next population. The generation update in
Michigan approach can be viewed as a partial change of the current population where bad
rules are replaced with newly generated rules. Thus once good if-then rules are found, they
are not likely to disappear. (Ishibuchi et al, 1999). To see some good examples, one can check
(Holland, 1986) and (Wilson, 1987).

There are three main viewpoints from which Pittsburgh and Michigan approaches can be
compared: First, Pittsburgh approach seems to be better suited at batch-mode learning
(when all training instances are available before learning is initiate) and for static domains,
and Michigan approach is more flexible to handle incremental-mode learning (training
instances arrive over time) and dynamically changing domains (Corcoran & Sen, 1994).
Second, considering that many classifier systems need to cover a complex state space in a
small group of cooperative rules, one will see that this is in contrast to the nature of
Michigan approach in which the rules are intrinsically competitive and the Pittsburgh
approach is more suited to the provision of cooperation. This is because the lack of
competition between individual classifiers in the Pittsburgh method allows the algorithm to
find novel cooperative solutions that the population-level GA can maintain and proliferate.
Therefore, Pittsburgh approach is usually the method of choice to apply to problems that
require the development of cooperative populations (Barry et al, 2004).

The third item is very similar to the second: As evolving rules of a Michigan process are
rivals and the general fitness value of the population has no effect in evolution, two
problems occur: First, we usually need strategies for detection and prevention of redundant

Symbiotic Evolution of Rule Based Classifiers 189

concept descriptions among population members (Liu & Kwok, 2000); Second, as a side
effect of the first problem, a portion of training examples may be left unclassified and
although the evolution would be at a stable position, there would be no rule for
classification of this portion.

The fact that Pittsburgh is more powerful or easier to use for evolution of rule-sets in
environments with complex concepts, where there is an urge for evolution of cooperative
rules, makes it more attractive for most practical problems. However, the Pittsburgh
approach presents its own limitation as well: In particular, because the evolution operates at
a rule-set level, GA receives only high-level feedback from the fitness function and therefore
cannot evaluate the role of individual rules in the success of a rule-set; hence, it requires a
large additional effort to generate optimal populations. This increased effort in addition to
the increased computational resource required to operate at the population level can present
new challenges when devising efficient implementations for a Pittsburgh classifier evolution
(Barry et al, 2004). This problem is a very important and known general problem of
traditional genetic algorithms, called the linkage problem (Watson & Pollack, 2000).

Linkage problem has two parts: The first problem is called the problem of garbage or hitch-
hiker genes (Forrest & Mitchel, 1993). In traditional GA, each chromosome may have a
combination of good and bad genes which affect the total fitness value of the chromosome
together. The effect of this problem in rule base evolution task is that a rule-set may have
some rules with very good classification accuracy and some rules that have no positive
effect or even have negative effects on the classification task. As evaluation is only done at
rule-set level, selection or removal of all rules inside a rule-set is done together and there is
no distinction between rules that have positive or negative effect on the classification. These
bad rules (genes) inside a chromosome are called garbage genes or hitch-hiker genes
because they gain their chance of survival by sticking to good genes as parastis.

The second part of Linkage problem is related to the recombination operator of genetic
algorithms. During the process of this operator, some parts of the two parent chromosomes
are extracted and merged with each other to create an offspring. Selection of appropriate
parts from either of the parents has a great effect on the performance of the entire process,
but there are many problem in which there is no way to identify the good sub-
chromosomes. Here in rule-set evolution, one of the interesting features of the Pittsburgh
approach is the evolution of cooperative rules inside a rule-set, but using a crossover
operator separates the rules of one rule-set from each other and then blindly combines them
with some from another rule-set, with no guarantee that these parts match each other or be
able to help each other in a common classification task.

Many different recombination operators or alternative evolution strategies are introduced to
cope with linkage problem in GA, such as designing more sophisticated recombination
operators for simple genetic algorithms such as the ones with more number of cut points,
random cut point positioning, uniform crossover, linear combination of genes, etc., see
(Mitchell, 1999) for an extensive list; use of chromosome reordering operators and
repositioning of genes inside the chromosome on the fly such as Inversion operator (Bagley,
1967) and Linkage Learning Genetic Algorithm (Harrik, 1997); and algorithms based on
partially specified chromosomes such as Messy Genetic Algorithms (mGA) (Deb, 1991),
(Goldberg et al, 1989), Cooperative Co-Evolutionary Algorithms (CCEA) (Potter & De Jong,
1994), Symbiotic Evolutionary Adaptation Model (SEAM) (Watson & Pollack, 2000), and
Incremental Commitment Genetic Algorithm (ICGA) (Watson & Pollack, 1999).

190 Tools in Artificial Intelligence

As far as the authors know, except CCEA approach which is partially used in some tasks
and some special purpose recombination operators, none of the other above approaches
have been used in rule base evolution and the major efforts in rule-based classifier evolution
to cope with linkage problem have been in hybridizations of Michigan and Pittsburgh
approaches to add the positive features of both methods together, such as (Ishibuchi et al,
1999) & (Tan et al, 2003). Not commenting on the applicability or generality of these hybrid
approaches, we present a novel pure approach based on Symbiotic evolution instead of
Genetic evolution to solve this problem in the rest of this chapter. It must be emphasized
that we introduce this algorithm as a basic approach comparable to pure Pittsburgh and
therefore, it is not compared with hybrid approaches or extensions of other algorithms as all
such hybridizations or extensions can be studied for this algorithm as well. Section 3 will
represent the natural bases of this approach and section 4 will have all the details.

3. The natural process of symbiogenesis

The natural process of symbiogenesis (Merezhkovsky, 1909) is the creation of new species
from the genetic integration of organisms, called symbionts. Symbiogenesis has enabled
some of the major transitions in evolution (Maynard Smith & Szathmary, 1995), including
the origin of eukaryotes which include all plants and animals. This kind of genetic
integration is quite different from the transfer of genetic information in sexual reproduction.
Sexual recombination occurs between similar organisms (i.e. of the same species) and
involves the exchange of parts of the genome in a mutually exclusive manner; that is, every
gene acquired from one parent is a gene that cannot be acquired from the other parent. In
contrast, symbiotic combination may also occur between genetically unrelated organisms
(i.e. different species) and involve the integration of whole genomes. The resultant
composite may have all the genes from one symbiont and at the same time acquire any
number of genes from the other symbiont (Watson & Pollack, 2000).

Based on this idea, symbiotic combination operator is introduced (Watson & Pollack, 1999)
& (Watson & Pollack, 2000) as an alternative for sexual recombination operator. Symbiotic
combination operator is applied to partially specified chromosomes, i.e., chromosomes
which have some positions with unspecified values. This operator takes two partially
specified chromosomes and makes an offspring with the aggregation of their characteristics
of both of them; see Fig. 1 as an example. Therefore, in contrast to the standard crossover
operator that receives two fully specified chromosomes and creates one/two individuals
that have received each of their genes from either parents, this operator runs over two/more
partially specified representations and creates an offspring with can have even all genes of
both/all parents.

Chromosome A: 1--1---0
Chromosome B: --00-111
A + B: 1-01-110

Fig 1. An example of symbiotic combination. Chromosomes A and B, each, have some
unspecified locations, shown with ‘- mark. Their combination has specified values for all
locations that are specified in at least one of the donors. If there would be a conflict between
the specified values, like the last gene of the above chromosomes, all conflicts are resolved
in favor of one donor, here A.

Symbiotic Evolution of Rule Based Classifiers 191

This can be very beneficent for evolution of rule based classifiers in Pittsburg approach
because each individual (chromosome) is a complete classifier. Therefore, its rules are a
collection and they have proved to work good together. Separating them for a
recombination and combining some parts of them with parts of another classifier may
disrupt the functionality of both classifiers. On the other hand, adding them, assuming that
each of them is a relatively good classifier, just adds up their classification powers.

4. Symbiotic evolutionary algorithm

The basic idea of Symbiotic Evolutionary Algorithm (SEA) is to replace the crossover
operator of Pittsburgh genetic algorithm (PGA) with symbiotic combination operator. To do
so, the evolution starts with rule-sets (individuals) which have just one rule (gene). During
the process, similar to traditional PGA, evaluation and selection is done at rule-set level.
Mutation operator is also quite similar to conventional PGA, but instead of crossover
operator, sometimes two rule-sets combine using symbiotic combination and create an
individual with more rules. If this combination shows a higher accuracy in compare to its
parents, the parents are removed from the population and the offspring remains, otherwise,
the offspring is neglected.

In this section, we first present our rule-set model which is used both in SEA and the PGA
that is used in next section for comparisons. Then will move on the details of the Symbiotic
Evolutionary Algorithm.

4.1 Rule-set model and fitness values

To emphasize on the algorithm, we have a chosen a very simplistic representation for our
fuzzy rules, taken from (Hasanzadeh et al, 2004), but we still insist that SEA is not
dependent to this model or the fuzzy nature of the rules. In this model, each rule is a horn
clause, with If-part consisting of fuzzy membership functions for different features of the
problem data base, and Then-part stating the class to which this rule belongs. A rule-set is
composed of one or more rules, with each rule having a weight value stating its role in final
decision. To classify an input by a rule-set, each of the rules computes the degree of
similarity between the input and its own If-part and based on that, it states a degree of belief
to its Then-part. Then, a weighted sum of the degree of beliefs for each class is computed
and the class which gets the highest value is chosen. Fig. 2 specifies the structure of the rule-
set.

<RULE-SET> > a set of <RULE>s

<RULE> > <WEIGHT> + a set of <CONDITION>s + <RESULT>

<WEIGHT> 2> a real value

<RESULT> > a Class Name

<CONDITION>=> a <FEATURE> [IS / ISNOT] a <MEMBERSHIP FUCNTION>

<FEATURE> - one of the features of dataset.

<MEMBERSHIP FUCNTION> —> one of the possible fuzzy values for the
respective feature.

Fig .2. Formal structure of the rule set (chromosome)

The fitness of each rule-set is defined as the accuracy of the rule-set in classification of all
training data. Accuracy is a measure combining the classification soundness with 99.9

192 Tools in Artificial Intelligence

percent effect and the simplicity of the rules with 0.1 percent effect. The simplicity measure
is used to break the tie between two rule-sets with different complexities and similar
classification rate, in favor of the simpler rule-set. Simplicity of a rule-set is computed as
stated in equation 1.

1+ Number of rules with just one condition

Simplicity = 1)

Total number of conditions in all rules

4.2 The algorithm

The Symbiotic Evolutionary Algorithm starts by generating a population of random rule-
sets, each having just one rule. In each iteration of the algorithm, a set of rule-sets with high
fitness values are selected using a tournament selection algorithm; they will be called the
Selected Set hence forth. After selection, each of these individuals undergoes a mutation and
all mutants are added to the population. The mutation operator is presented in Figure 3.

Function Name: MUTATATION
Summary: Takes a rule set and mutates it.

Input: Rule Set R.
Assume R ={R;,R;,...,R,} and each R; as
[Weight+ (F;,C;,MF;) A(F2,C2,MF3)A...A(Fn,Cy,MF,), Class] where each
F; is feature, O; is a condition(Is/Is Not), and MF; is a
membership function from the domain of Fj.

Function Detail:
1. Randomly choose R; from R; to R,. Set m to the number of rules in
R;.
2. Randomly select one of the next steps and apply it on R;:
a. Increase or decrease Weight.
b. Choose j from 1..m, remove (F;,C;,MF;) from R;,
c. Randomly generate a new (F,C,MF) and concatanate it to R;.
d. Choose j from 1..m, reverse C; so that Is becomes IsNot,
and IsNot becomes Is.
e. Choose j from 1..m, change MF; to a random new membership
function from the domain of Fj.
3. Return.

Fig. 3. Pseudo Code of the Mutation Operator

After mutation, instead of the conventional cross over operator, symbiotic combination
operator is applied over the selected set. The operator takes two members of the selected
rule-sets and merges them, so that the combination includes all rules of both sets. If the child
strictly outperforms both of its parents, the combination will be added to the population;
otherwise, it will be discarded. To control the growth speed of the number of rules in each
rule-set, there is another control mechanism that limits the size of the largest rule-set that
can be added to the population at a time. This parameter, which will be called SizeLimit, is 1
at the beginning and limits the size of rule-sets to just one rule. During the process, SizeLimit
is increased with a selected strategy, and allows emergence of rule-sets with more number
of rules. In all of our implementations, we have set the control strategy to a simple linear
function of iterations count, but one may use a more complicated function, if it looks fit.

Symbiotic Evolution of Rule Based Classifiers 193

Fig. 4 presents the pseudo code of Symbiotic Evolutionary Algorithm.

Algorith Name: Symbiotic Evolutionary Algorithm

Summery: Takes a database of training examples and generates a
rule-set to classify them, using symbiotic combination
operator and Mutation function.

Parameters: SR: Selection Rate
TS: Tournament Size
RC: Random Rule Creation Rate
MP: Maximum Population

Algorithm Detail:
1. INITIALIZATION:
a. Generate a population of random rule-sets, each having
just one rule.

2. PROCESS CONTROL:
a. Update SizeLimit (Initialized to 1).
b. If Best generated rule set is satisfactory, return it
and exit.

3. SELECTION PHASE:
a. Create an empty set called SelectedSet.
b. For SR x PopulationSize times,
i. Randomly pick TS rule-sets from the pool, add the
best one to SelectedSet.

4. MUTATION PHASE:
a. For each memer of SelectedSet such as rs,
i. Create a mutated copy of rs using Mutation
function, call it rs'.
ii. Add rs' to the pool.

5. SYMBIOTIC COMBINATION PHASE:
a. For each two members of the SelectedSet such as rs; and
rsz,
i. Create the symbiotic combination of rs; and rs;
and call it rsj.
ii. If SizeOf(rs3) < SizeLimit and fitness value of
rs; exceeds that of rs; and rs,,
Add rs; to the pool.

6. DIVERSITY MAINTANANCE:
a. Create RC random new rule-sets and add them to the pool.

7. POPULATION CONTROL:
a. While PopulationSize is above MP limit, randomly select
and remove some random rule-sets from the poool.
8. Goto Step 2.

Fig. 4. Pseudo Code of Symbiotic Evolutionary Algorithm

5. Experimental results

5.1 Test conditions
There are too many classification approaches and also many extensions to basic genetic
based classifiers. But as we are introducing SEA as a basic new approach, we have just

194 Tools in Artificial Intelligence

compared it with pure Pittsburgh GA in detail. More comparisons can be done in future
works.

To compare the performance of SEA algorithm with Pittsburgh GA, we used six frequently
used benchmarks: The first one is a 10% selection of KDDCUP99 dataset (MIT Lincoln Labs,
2007) and others are selected from University of California Irvine, Machine Learning
Repository (Blake & Merz, 1998); these datasets are gathered from real experiments, so they
can show efficiency of the algorithm in some real circumstances. Credit Approval (CRX),
Glass Identification (Glass), Iris Plant (Iris), 1984 United States Congressional Voting
Records Database (Vote), and Wine Recognition (Wine) datasets are selected as the most
frequently used datasets so as to compare the results to some other related works. The
extensive information about these datasets is mentioned in Table 1. Although KDDCUP99
data set has many classes of intrusion types, we consider their classes as Normal and Attack
cases, similar to (Esposito et al, 2005), (Toosi & Kahani 2007), and (Mill & Inoue, 2004).
General specifications of benchmarks are expressed in Table 1. The GA algorithm is
implemented as described in (Hasanzadeh et al, 2004) with exactly the same parameters
(expressed in Table 2).

Likewise (Hasanzadeh et al, 2004) & (Hasanzadeh & Bagheri, 2003), Fuzzy C-Mean
clustering (Zimmermann, 1996) was used to define the fuzzy membership function for
continuous attributes, and fuzzy singletons were defined for none-parametric attributes. The
number of fuzzy sets for KDD99 features is 5 and for other problems, 3 fuzzy sets are
created. The exact parameters of SEA algorithm are presented in Table 3.

The tests are done four-fold (Blake & Merz, 1998), i.e. the data was randomly divided into 4
sets and in each trial, one set was taken as test set, and the other 3 were used as training set.
Each test is repeated for 20 times, and the average, minimum and maximum classification
rates for training and tests results are depicted in subsection 5.2 tables. The stopping
criterion of each run is an unchanging best fitness value during 5000 fitness function calls.
Also, the average number of fitness function calls to reach the highest classification accuracy
and the average ratio between time and fitness function calls for each benchmark/algorithm
is reported in subsection 5.3 as a measure of algorithms speed.

Dataset Features Numeric Nominal Classes | Instances
count Features Features
KDD99 41 34 7 2 494021
CRX 15 6 9 2 690
Glass 10 9 1 6 214
Iris 4 4 0 3 150
Vote 16 0 16 2 435
Wine 13 13 0 3 178
Table 1. Datasets Specification
Parameter Value
Maximum Population 200
Mutation Rate 0.7
Elitism Rate 0.2
Tournament Size 4

Table 2. Pittsburgh GA Parameters, as in (Hasanzdeh, 2003)

Symbiotic Evolution of Rule Based Classifiers 195

Parameter Value

Population Size 1000
Selection Rate 6
Tournament Size 8
Random Creation Rate 4

Table 3. SEA Parameters

5.2 Accuracy comparison results

Tables 4 and 5 represent the classification rates of Pittsburgh Genetic Algorithm (PGA) and
SEA training and test data, respectively. As presented there, SEA has found better rule-sets
in compare with PGA in all cases on training sets and 4 of 5 on test sets.

Data PGA SEA Average

Sets Min Max Average Min Max Average ISEA to PGA

mprovement!

CRX 87.433 88.937 88.07 85.199 90.042 88.85 6.54 %
Glass 63.921 72.023 69.42 66.923 74.812 71.43 6.57 %

Iris 98.139 99.082 98.63 97.237 99.91 99.35 52.55 %
Vote 96.528 98.003 97.32 96.474 97.976 97.56 8.96 %
Wine 96.189 99.156 97.68 99.153 99.910 99.44 75.86 %

KDD99 | 87.433 88.937 88.07 85.199 90.042 88.85 6.54 %

Table 4. Average Classification Rate of PGA and SEA, Different Data Sets, on Training Data

Data PGA SEA Average
Sets Min Max Average Min Max Average ISEA to PGA
mprovement
CRX 83.746 87.654 85.27 84.888 86.476 85.58 21 %
Glass 63.377 71.370 68.62 67.878 74.008 70.68 6.56 %
Iris 91.85 99.923 94.95 91.805 99.909 95.57 12.28 %
Vote 91.789 98.661 95.31 92.611 97.972 95.04 -5.76 %
Wine 86.293 99.902 92.9 90.821 97.683 94.59 23.8 %
KDD99 84.263 87.654 94.36 85.156 85.16 99.31 87.77 %

Table 5. Average Classification Rate of PGA and SEA, Different Data Sets, on Test Data

Table 6 presents the best classification results of some other approaches ((Gomez et al, 2002),
(Mendes et al, 2001), (Liu & Kwok, 2000), & (Rouwhorst & Engelbrecht, 2000)) which are
reimplemented and tested by (Hasanzadeh, 2003) with similar settings as ours. As stated
there, in cases that we had sufficient comparison data, SEA is better than other algorithms in
all data sets.

Also Table 7 presents some other results from other papers that have used almost similar
test specifications with that of ours. It must be emphasized that the test condition of these
results does not fully comply that of ours, in some cases not exactly specified and in other
slightly easier or harder. As depicted there, SEA is among the top 2 best results for all
benchmarks.

1(SEA - PGA) / (100 - PGA)

196

Tools in Artificial Intelligence

Algorithm CRX | Glass | Iris Vote | Wine | KDD'99
Fuzzy Classifier with Expression Tree
Representation (Gomez et al, 2002) 9484 | 8542 | 9222
Fuzzy Classifier with Co-Evolution
(Mendes et al, 2001) 84.7 %3
Extended Genetic Rule Induction
(Liu & Kwok, 2000) 7739 | 7243 | 95.3
Evolution of Decision Trees 941
(Rouwhorst & Engelbrecht, 2000) '
SEA 85.58 | 70.68 | 95.57 | 95.04 | 94.59 99.31

Table 6. Classification rate of some other algorithms with exactly similar settings in compare

to SEA, from (Hasanzadeh, 2003).

Algorithm

CRX | Glass | Iris

Vote

Wine

KDD99

Fuzzy Kohonen Network (Lorenz et al, 1997)

91.33

Fuzzy Classifier System (Lorenz et al, 1997)

96.00

ID3 (Dong & Kothari, 2003)

81.16

Naive Bayes (Dong & Kothari, 2003)

77.68

Bayesian Network (Ezawa &
Schuermann,1995)

86.5

C 4.5 (Ezawa & Schuermann,1995)

85.5

Discrimination Analysis
(Ezawa & Schuermann,1995)

83.4

Fuzzy Classifier System
(Ishibuchi & Yamamoto, 2005)

68.22

k-means (Guo et al, 2006)

63.08 | 92.67

68.54

MLP Neural Network (Ueda, 2000)

70.3

Hyper Sphere SVM (Liu et al, 2007)

62.15 | 95.68

MLP Neural Network (Deodhare et al, 2007)

95.8

Rule Extraction based on Grey Lattice
Classification
(Yamaguchi et al, 2005)

86.7

Tree Support Vector Machine (Mill & Iune,
2004)

70.75

Array Support Vector Machine (Milll & Iune,
2004)

91.30

Fuzzy Rule Base with Linear Tree Genetic
Representation (Dasgupta & Gonzalez, 2001)

94.5

94.7

93.9

Average of above approaches

82.84

65.93 | 94.03

94.7

86.23

81.02

Best of above approaches

86.5

70.3 | 96.00

94.7

95.8

91.30

SEA

85.58

70.68 | 95.57

95.04

94.59

99.31

Table 7. Average Classification Rate of some other algorithms with almost similar test

settings in compare to SEA.

Symbiotic Evolution of Rule Based Classifiers 197

5.2 Speed comparison results
Figures 5-10 depict the best fitness values over time for SEA and GA on the six stated

datasets, averaged in all runs. As it is presented in the diagrams, SEA has found a better
solution much faster than GA in all cases. Table 8 summarizes these results, and presents the
average time taken to find the best result by each algorithm on each benchmark. As stated
there, SEA has reached its best result notably faster than GA in all cases.

Also Figure 11 depicts the relation between number of fitness function calls and time for the
two algorithms. Four curves show GA and SEA algorithms for CRX and Iris datasets which
are, respectively, the largest and the smallest UCI ML Repository datasets used in this
paper. The curves are almost linear with a slight trend toward taking more time for each
fitness function call while the algorithms are proceeding. Thus, the progress of elite fitness
can be considered through either time or fitness function calls in diagrams 5 to 10. Number
of fitness function calls can be considered as a rough measure of the speed complexity of the
algorithm as it removes the effects of programming details on algorithm speed.

Dataset SEA PGA IrsrllapArc:\c:eI;I(l;eﬁ t
CRX 357 4650 92.32 %
Glass 164 280 41.42 %

Iris 40 633 93.68 %
Vote 89 1490 94.02 %
Wine 98 1710 94.26 %

KDD9%9 7012 54306 87.08 %

Table 8. Average time taken by SEA and Pittsburgh GA to find the best classifier on
different benchmarks, in seconds.

CRX Data
0.9

0.88 /

L

I
0.84

)

1

1

I

|

1

+

]

1

]

1

0.86
0.82
0.8
0.78
0.76 -
0.74 -=-=-GA
Uite ——SEA

0.7
0 1000 2000 3000 4000

Elite Fitness

Time (s)

Fig. 5. CRX benchmark, average fitness of best rule set found by Pittsburgh GA and SEA
over time.

198

Tools in Artificial Intelligence

0.75

Elite Fitness

Glass Data

100 150 200

Time (s)

250 300

Fig. 6. Glass benchmark, average fitness of best rule set found by GA and SEA over time.

Elite Fitness

Iris Data
—
| ——SEA
! !
0 100 200 300 400 500 600 700
Time (s)

Fig. 7. Iris benchmark, fitness of best rule set found by Pittsburgh GA and SEA over time.

Elite Fitness
(=]
[¥=]
w

Vote Dato

200

T
400 600 200 1000

Time (s)

---GA
—SEA

1200 1400

Fig. 8. Vote benchmark, fitness of best rule set found by Pittsburgh GA and SEA over time.

Symbiotic Evolution of Rule Based Classifiers 199

Wine Data
12
1 (
u 08 .,/’,"
g
T 06
£
T 04
---GA
0.2 1 !
—SEA
0 1
0 200 400 600 800 1000 1200 1400
Time (s)

Fig. 9. Wine benchmark, fitness of best rule set found by Pittsburgh GA and SEA over time.

KDD Data

0.95
09
0.85
0.8
0.75
0.7
0.65
0.6
0.55
05 | |
100000 200000 300000 400000 500000 600000 700000

Elite Fitness

o

Time (s)

Fig. 10. KDD benchmark, fitness of best rule set found by Pittsburgh GA and SEA over time.

600

500

400
—+— CRX + GA
300 1 1 L —m—Iris + GA
—a— CRX + SEA
200 T 1| ——1ris + SEA
100 4/
0 é -

o 5000 10000 15000 20000 25000 30000

Time (s)

Fitness Function Calls

Fig 11. Time versus Fitness Function Calls, GA and SEA algorithms, CRX and Iris datasets.

200 Tools in Artificial Intelligence

6. Summary and concluding remarks

While the suitability of evolutionary approaches for generation of rule based classifier
systems is shown in many different contributions, the structure and elements of this process
are an important issue in design of a system that works efficiently. As stated in section 2,
Michigan algorithm is faster and requires less memory in compare to Pittsburgh algorithm,
but it has two very important problems that makes Pittsburgh the favorite one in many
cases: First, the cooperation of single rules that are all evolved for better classification,
regardless of other rule's behavior, will not necessarily result in a general good classifier;
Second, some parts of the problem space might be neglected.

Pittsburgh evolutionary algorithm also has three problems that must be dealt with during
an efficient implementation: First, how to recombine two rule-sets? While traditional sexual
recombination operators splits the two parents and merges their parts, how should one
know which rules of either rule-set (parents) must be extracted to be recombined to make a
good combination. Second, what to do with the parasite rules? And the third question is
how many rules must a rule-set have to get a small, but accurate classifier?

SEA algorithm uses symbiotic combination operator instead of common sexual
recombination operator of GA, and provides a solution for the three above questions; it
creates an offspring from two parents by combining all of their rules (genes), and adds the
offspring to the gene pool only if it outperforms both its parents. Using this strategy, SEA
avoids grouping separate rules before it makes sure that the group works better than the
isolated ones, so it avoids garbage rules. It doesn't break any generated rule-set; therefore, it
doesn't require a method to identify good working sub sets of two rule-sets. Also, as it
grows the rule-sets only if growing results in better performance, the designer does not need
to make a decision about chromosome sizes in advance.

Experimental results clearly comply with this hypothesis where SEA had 6 to 75 percent
classification error reduction on training data in compare with Pittsburg GA and 2 to 87
percent on test data, except in one case which resulted in 6 percent more classification error.
Moreover, this significant better accuracy was reached by 41 to 92 percent less computation
time, in similar operating conditions.

As SEA is introduced as a basic algorithm to resolve the problems of Pittsburgh algorithm,
we have just compared it in details with Pittsburgh GA, but some accuracy comparisons
with algorithms from other families were also presented in section 6 and 7. Although some
of these comparisons are not very fair as they were taken from different sources with
slightly different test conditions, SEA presented very good comparison results to all of them
as well.

Table 9 presents a features summary of SEA, Michigan, & Pittsburgh algorithms. As it is
noted there, SEA stands between Michigan and Pittsburgh approaches from many
viewpoints, collecting the positive points of both of them. SEA starts with light weight
single rule individuals, as in Michigan, and gradually evolves them towards complete rule-
set individuals, as in Pittsburgh. Due its growing size of individuals, it stands between
Michigan and Pittsburgh in speed and memory complexity measures. Similar to Pittsburgh,
it allows cooperation inside rule-sets but unlike Pittsburgh and similar to Michigan, this
does not result in parasite rules, keeping rule-sets neat and accurate. Inheritance is done
both on rule level and rule-set level as there is no distinction between rule and rule-sets. As
the fitness of a rule-set is defined over all of its rules, a single rule that correctly covers a
small uncovered portion of training samples can increase the credit of a rule-set and
therefore is accepted and added to the rule-set, so, unlike Michigan approach there is no
need to set specific credit to less frequently used training samples. And at last, in contrast to

Symbiotic Evolution of Rule Based Classifiers 201

Pittsburgh that blindly recombines two rule-sets, SEA combines two rule-sets only if this
increases the overall recognition performance.

As next stages of this task, we can recommend an extra function that recognises rules that
have redundant effects after symbiotic combinations. Also more specific representations and
local optimization of rule-sets may result in better classification rates.

Michigan Pittsburgh SEA
. . Starts with single rules
Individual A single rule A rule-set
and reaches rule-sets
Selectlon.and On each rule On each rule-set On each rule-sets
Evaluation
. None, Rules are | Cooperative inside rule- | Cooperative inside rule-
Rules Cooperation . . .
rivals sets, rival among rule-sets| sets, rival among rule-sets
Garbage Rules Not Existing Severely Existing Not Existing
Computation Time Least Most Between others
Memory Size Least Most Between Others
Rule Optimization Direct Indirect Both direct and indirect
Inheritance Good Rules Good Rule-Sets Both good Zlel,:ses and rule-
Reaui
cquires class Yes No No
credit assignments
Requires rule-set Yes Yes / Controlled by a No, controlled by
size specification score function accuracy.
Rule-Set None Yes, but may result in Yes, always results in
recombination lower accuracy higher accuracy.

Table 9. Feature Comparison of Michigan, Pittsburgh and SEA.

7. Acknowledgements

Authors wish to thank Mr. Pooya Esfandiar and Ms. Sima Lotfi for their help during
implementation and testing of this task and Ms. Maryam Hasanzadeh for sharing the details
of her implementation, test, and data sets.

8. References

Bagley,].D. (1967). The Behaviour of Adaptive Systems Which Employ Genetic and Correlation
Algorithms, PhD Dissertation, University of Michigan.

Barry, A., Holmes, J., & Llor, X. (2004). Data Mining using Learning Classifier Systems, In:
Applications of Learning Classifier Systems, Bull, L. (Ed.), 15-67, Springer,
ISBN:3540211098.

Blake C.L., Merz C.J. (1998). UCI Repository of machine learning databases, Irvine, CA:
University of California, Department of Information and Computer Science.
http:/ /www.ics.uci.edu/~mlearn.

Chen, MY, Linkens, D.A., (2004). Rule-base self-generation and simplification for data-driven fuzzy
models, Fuzzy Sets and Systems, Volume 142, Issue 2, 1 March 2004, Pages 243-265.

Chi-Ho Tsang; Sam Kwong; Hanli Wang, (2005). Anomaly intrusion detection using multi-
objective genetic fuzzy system and agent-based evolutionary computation
framework, in Proceedings of Fifth IEEE International Conference on Data Mining,.

202 Tools in Artificial Intelligence

Corcoran, A.L., & Sen, S. (1994). Using real-valued genetic algorithms to evolve rule sets for
classification. In Proceedings of the IEEE Conference on Evolutionary Computation,
pages 120--124, 1994.

Cordon O., del Jesus M.]., Herrera F., (1998). Genetic learning of fuzzy rule-based classification
systems cooperating with fuzzy reasoning methods, International Journal of Intelligent
Systems 13 (10-11) 1025-1053.

Dasgupta, D. & Gonzalez, F., (2001). Evolving Complex Fuzzy Classifier Rules Using a Linear
Tree Genetic Representation, In L. Spector, D. Whitley, D. Goldberg, E. Cantu-Paz, 1.
Parmee, and H. Beyer, editors, Proc. of the Int. Conf. on Genetic and Evolutionary
Computation (GECCO-2001), pages 299-305. Morgan- Kaufmann, San Francisco, CA.

De Jong, KA. , Spears, W., & Gordon, D.F. (1993). Using genetic algorithms for concept
learning. Machine Learning, 13(2-3):155-188.

de la Iglesia B., Philpott M.S., Bagnall A.J.,, Rayward-Smith V.]., (2003), Data Mining Rules
Using Multi-Objective Evolutionary Algorithms, in Proceedings of IEEE Congress on
Evolutionary Computations, Vol. 3, pp 1552-1559.

Deb, K. (1991). Binary and floating point function optimization using messy genetic algorithms
(IIIGAL Report No. 91004). Urbana: University of Illinois at Urbana-Champaign,
Illinois Genetic Algorithms Laboratory.

Deodhare, D., Murty, M. N., and Vidyasagar, M., (2007). A Unified Approach to Encoding and
Classification using Bimodal Projection-based Features, in Proceedings of the International
Conference on Computing: Theory and Applications (ICCTA'07) pp. 348-354.

Dong, M. & Kothari, R., (2003). Feature subset selection using a new definition of classifiability,
Pattern Recognition Letters 24 (2003) 1215-1225.

Eggermont J., Kok J.N., Koster W.A., (2003) Genetic Programming for Data Classification:
Refining the Search Space, in Proceedings of the Fifteenth Belgium/Netherlands
Conference on Artificial Intelligence, pp 123-130.

Esposito M., Mazzariello C., Oliviero F., Romano S. P., Sansone C., (2005). Evaluating Pattern
Recognition Techniques in Intrusion Detection Systems, in Proceedings of the 7th
International Workshop on Pattern Recognition in Information Systems (PRIS 2005)
- 24-25 May 2005, Miami, FL (USA) pp. 144-153.

Ezawa, K. J., & Schuermann, T., (1995). A Bayesian network Based Learning System: Architecture
and Performance Comparison with Other Models, in Proceedings of the European
Conference on Symbolic and Quantitative Approaches to Reasoning and
Uncertainty, pp 197 - 206.

Forrest S., Mitchell M. (1993). Relative Building-block fitness and the Building-block Hypothesis.
In Whitley, D, ed. FOGA 2, Morgan Kaufmann, San Mateo, CA.

Freitas, A., A survey of evolutionary algorithms for data mining and knowledge discovery. In
Advances in Evolutionary Computation. Springer- Verlag, 2001.

Goldberg, D.E.; Korb, B. & Deb, K. (1989) Messy Genetic Algorithms: Motivation, analysis,
and first results. Computer Systems, 3, 5, 493-530.

Gomez,], Dasgupta, D., (2002) Evolving Fuzzy Classifiers for Intrusion Detection, in
Proceedings of the 2002 IEEE Workshop on Information Assurance.

Gomez, J., Gonzalez, F., Dasgupta, D., (2002). Complete Expression Trees for Evolving Fuzzy
Classifier Systems with Genetic Algorithms, in Proceedings of the Evolutionary
Computation Conference GECCO'02, 2002.

Gopalan J., Alhajj R., Barker J., (2006). Discovering Accurate and Interesting Classification Rules
Using Genetic Algorithm, in Proceedings of the 2006 International Conference on
Data Mining, pp. 389-395. June 26-29, 2006.

Symbiotic Evolution of Rule Based Classifiers 203

Gundo K.K. Alatas B., Karci A., (2004). Mining Classification Rules by Using Genetic
Algorithms with Non-random Initial Population and Uniform Operator, Turkish Journal
of Electrical Engineering and Computer Science, Vol.12, No. 1, 2004.

Guo, HX.,, Zhu, K., Gao, SW., & Liu, T., (2006). An Improved Genetic k-means Algorithm for
Optimal Clustering, in Proceedings of Sixth IEEE International Conference on Data
Mining - Workshops (ICDMW'06) pp. 793-797.

Harik, G.R. (1997). Learning Gene Linkage to Efficiently Solve Problems of Bounded Difficulty
Using Genetic Algorithm, PhD Dissertation, University of Illinois at Urbana-
Champaign, Urbana, Illinois.

Hasanzade M., (2003). Fuzzy Intrusion Detection, MS. Dissertation, Computer Engineering
Department, Sharif University of Technology, Tehran, Iran, 2003.

Hasanzade, M., Bagheri, S., Lucas, C., (2004). Discovering Fuzzy Classifiers by Genetic
Algorithms, in Proceedings of 4th international ICSC Symposium on Engineering of
Intelligent Systems (EIS2004), 2004, Island of Madeira, Portugal.

Holland, John H. (1986). Escaping Brittleness: The Possibilities of General-Purpose Learning
Algorithms Applied to Parallel Rule-Based Systems. In R. Michalski, J. Carbonell,
and T. Mitchell (Eds.), Machine Learning: An Artificial Intelligence Approach (Vol.
2). Morgan Kaufmann Publishers, Los Altos, CA.

Ishibuchi H., Nakashima T., and Murata (1999). T., A hybrid fuzzy genetics-based machine
learning algorithm: Hybridization of Michigan approach and Pittsburgh approach, in
proceedings of IEEE, fuzzy IEEE.

Ishibuchi H., Yamamoto T., (2002). Fuzzy rule selection by data mining criteria and genetic
algorithms, in Proceedings of Genetic and Evolutionary Computation Conference
(GECCO 2002), pp. 399-406, New York, July 9-13.

Ishibuchi H., Yamamoto T., (2004). Fuzzy Rule Selection by Multi-Objective Genetic Local Search
Algorithms and Rule Evaluation Measures in Data Mining, Fuzzy Sets and Systems,
Vol. 141, no. 1, pp. 59-88, January 2004.

Ishibuchi, H. &, Yamamoto, T., (2004). Rule Weight Specification in Fuzzy Rule-Based Classification
Systems , IEEE Transactions on Fuzzy Systems, vol. 13, no. 4, August 2005.

Janikow, C.Z. (1993) A knowledge-intensive genetic algorithm for supervised learning.
Machine Learning, 13(2-3):180-228.

LiuJJ., & Kwok J.T. (2000). An Extended Genetic Rule Induction Algorithm, in Proceedings of IEEE
Congress on Evolutionary Computation (CEC-2000). La Jolla, CA, USA. July 2000.

Liu, S., Liu, Y., Wang, B.,, and Feng, X., (2007). An Improved Hyper-sphere Support Vector
Machine, in Proceedings of the Third International Conference on Natural
Computation (ICNC 2007) pp. 497-500.

Lopes C., Pacheco M, Vellasco M, Passos E, (1999). Rule-Evolver: An Evolutionary Approach
For Data Mining, in Proceedings of the 7th International Workshop on Rough Sets,
Fuzzy Sets, Data Mining, and Granular-Soft Computing, RSFDGrC'99, pp 458-462.

Lorenz, A., Blum, M., Ermert, H., & Senge, T., (1997). Comparison of Different Neuro-Fuzzy
Classification Systems for the Detection of Prostate Cancer in Ultrasonic Images, in
Proceedings of the IEEE Ultrasonics Symposium, 1997, Volume: 2, pp 1201-1204.

Maynard Smith, J., Szathmary, E. The Major Transitions in Evolution, WH Freeman: Oxford
UK, 1995.

Merezhkovsky, K. S. (1909), The Theory of Two Plasms as the Basis of Symbiogenesis, a New
Study or the Origins of Organisms. In Proceedings of the Studies of the Imperial
Kazan University, Publishing Office of the Imperial University, (In Russian).

Mendes, R, R,, F., Voznika, F., de B, Freitas, A., A., Nievola, J. C., (2001). Discovering Fuzzy
Classification Rules with Genetic Programming and Co-Evolution, In Principles of Data

204 Tools in Artificial Intelligence

Mining and Knowledge Discovery (Proc. 5th European Conference PKDD 2001) -
Lecture Notes in Artificial Intelligence, Springer-Verlag.

Mill J.,, Inoue A. (2004). Support Vector Classifiers and Network Intrusion Detection, in
Proceedings of IEEE Conference on Fuzzy Systems 2004, Vol 1. pp 407-410.

MIT Lincoln Labs, (2007). KDD CUP 99 DARPA Intrusion Detection Dataset,
http:/ /kdd.ics.uci.edu/databases/kddcup99.

Mitchell, M. (1999). An Introduction to Genetic Algorithms, MIT Press, 0—-262-13316—4,
London, England.

Potter, M.A., De Jong, K.A. (1994). A Cooperative Coevolutionary Approach to Function
Optimization. In: Parallel Problem Solving from Nature (PPSN III), Y. Davidor, H.-P.
Schwefel and R. Manner (Eds.). Berlin: Springer-Verlag, 249-257.

Riquelme J.S., Toro].C., Aguilar-Ruiz M., (2003), Evolutionary Learning of Hierarchical Decision Rules,
in IEEE Transactions on Systems, Man, and Cybernetics, Vol. 33, Issue 2, pp 324-334.

Rouwhorst, S.E., Engelbrecht A.P., (2000). Searching the Forest: Using Decision Tree as Building
Blocks for Evolutionary Search in Classification. In Proceedings of IEEE Congress on
Evolutionary Computation (CEC-2000), 633-638. La Jolla, CA, USA. July 2000.

Sen, S., Knight, L., & Legg, K. (1997). Prototype based supervised concept learning using
genetic algorithms. In D. Dasgupta and Z. Michalewicz, editors, Evolutionary
Algorithms in Engineering Applications, pages 223-239. Springer.

Smith, S. F. (1980). A Learning System Based on Genetic Adaptive Algorithms, PhD Thesis,
University of Pittsburgh.

Smith, S. F. (1983). Flexible Learning of Problem Solving Heuristics Through Adaptive
Search, Proc. 8th IJCAI, August 1983.

Tan K.C,, Yu Q., Heng C.M.,, Lee T.H., (2003). Evolutionary computing for knowledge discovery
in medical diagnosis, Artificial Intelligence in Medicine 27, pp.129-154.

Teng M., Xiong F., Wang R., Wu Z., Using genetic algorithm for weighted fuzzy rule-based
system, in Proceedings of Fifth World Congress on Intelligent Control and
Automation, 2004.

Toosi A.N., Kahani M. (2007). A New Approach to Intrusion Detection Based on an Evolutionary
Soft Computing Model Using Neuro-Fuzzy Classifiers, Computer Communications,
Vol 30, 2201-2212.

Ueda, N., (2000). Optimal Linear Combination of Neural Networks for Improving Classification
Performance, 1EEE Transactions on Pattern Analysis and Machine Learning, vol. 22,
no. 2, February 2000.

Watson, R.A. & Pollack, J.B. (1999), Incremental Commitment in Genetic Algorithms,
Proceedings of GECCO'99., Morgan Kaufmann, 710-717.

Watson, R.A., Pollack, J.B. (2000). Symbiotic Combination as an Alternative to Sexual
Recombination in Genetic Algorithms, in Proceedings of Parallel Problem Solving
from Nature (PPSN VI).

Wilson, S. (1987). Classifier systems and the Animat problem. Machine Learning, 2:199-228.

Yamaguchi, D., Li, G.D., Mizutani, K., and Akabane, T., (2005). Decision Rule Extraction and
Reduction Based on Grey Lattice Classification, in Proceedings of the Fourth
International Conference on Machine Learning and Applications, 2005, 15-17 Dec.
2005.

Zimmermann, H.,], (1995). Fuzzy Set Theory and Its Application, Kluwer Academic
Publishers.

Zhu F., Guan S.U., (2004). Ordered Incremental Training with Genetic Algorithms, International
Journal of Intelligent Systems, Volume 19, Issue 12 , pp 1239-1256.

12

A Multiagent Method to Design Open
Embedded Complex Systems

Jamont Jean-Paul and Occello Michel
University of Grenoble, LCIS/INPG-UPMF Lab
France

1. Introduction

Open physical complex systems involve multiple interconnected software and hardwar
entities which enable logical/physical interactions between them and their shared
environment. They rise to many hierarchical level which exhibit common behaviours. These
entities have their own goals but participate to the accomplishment of the global system.
There are different classes of open physical complex systems like control systems processing
systems, communication systems and interactive systems. Because these systems take over
new wireless technologies, they are more and more distributed, decentralized and often not
completely described.

Through the use of multiagent system to model Open physical complex systems (OCPS) two
types of requirements emerge: requirements in methods and in specific system
architectures. Concerning the specific methods, our contribution is the DIAMOND method
(Decentralized Iterative Approach for Multiagent Open Networks Design (Jamont &
Occello, 2007)). Concerning the requirements in architecture, our contribution is the MWAC
model (Multi-Wireless-Agent Communication) based on our previous work on wireless
sensor networks (Jamont & Occello , 2006).

In this chapter, we focus on specificities of the methodological requirements. We try to
answer to some questions asked by this type of applications in lifecycle terms, about the
design step and the formalism.

A method consists in concepts, in an approach and in tools. So, in a first section, we focus on
the main concept of our works: the multiagent paradigm. In a second part, we present the
approach of the DIAMOND method. The third part describes the different steps and
activities of our method. Before concluding, we propose a discussion of the method in
comparison to other multiagent methods.

2. Multiagent systems

An agent is a software entity evolving in an environment that it can perceive and in which it
acts. It is endowed with autonomous behaviours and has objectives. Autonomy is the main
concept in the agent issue: it is the ability of agents to control their actions and their internal
states. The autonomy of agents implies no centralized control (Wooldridge, 1999).

A multiagent system is a set of agents situated in a common environment, which interact
and attempt to reach a set of goals. Through these interactions a global behaviour, more

206 Tools in Artificial Intelligence

intelligent than the sum of the local intelligence of multiagent system components, can

emerge.

The emergence paradigm deals with the unprogrammed and irreversible sudden

appearance of phenomena in a system confirming that "the whole is more than the sum of

each part". It is one of the expressions of collective intelligence (Deguet et al., 2006).

The emergence process is a way to obtain dynamic results from cooperation that cannot be

predicted in a deterministic way. There are three types of emerging features (Marcenac,

1996): emergence of structures at the origin of the self-organization process, behaviour and

emergence of properties.

It is difficult to qualify the emergent characteristics of a phenomenon. Some fundamental

elements have been settled by S. Forrest (Forrest, 1991),(Muller; 2004) proposes an

interesting specialization in the multiagent context that has been recently discussed and

completed in (Dessales & Phan, 2005).

It asserts that a phenomenon is emergent if:

o there is a set of agents interacting via an environment, whose state and dynamics
cannot be expressed in terms of the emerging phenomenon to produce in a vocabulary
or a theory D,

e the dynamic of the interacting agents produces a global phenomenon such as, for
example, an execution trace or an invariant,

e the global phenomenon is observable either by the agent (strong sense) or by an
external observer (weak sense) in different terms from the subjacent dynamics i.e.
another vocabulary or another theory D '.

To give a system of agents a particular global functionality, the traditional method consists
in carrying out a functional decomposition of the problem into a set of primitives which will
be embodied by the agents. The alternative suggested by L. Steels (Steels, 1990) aims at
making this functionality emerges from the interactions between the agents. The advantage
of the "emergent functionality”" approach is first of all a reinforcement of the robustness of
the system becoming less sensitive to the changes of the environment.

The adaptation of the whole multiagent system is generally obtained through emergence. It

exist a lot of multiagent methods. We give here some references to these different works and

the result of an analysis of these methods through many criteria.

3. Approach

The lifecycle of traditional methods applied to design hardware/software hybrid systems
(see fig.1) starts with a requirements analysis followed by a portioning step. During this
partitioning step, the designer chooses the system parts which must become either hardware
or software parts %: the requirements analysis which is derived in a hardware one and a
software one. At this stage, the two different parts are designed in parallel. At the end of the
lifecycle, the two parts are integrated into a whole operational system. Through this
integration step (and the following tests) some problems can emerge. These problems can
question the software design, the hardware design or the both. Furthermore, it can be
necessary to modify the whole result of the partitioning!

This type of lifecycle doesn't allow to take into account some late modification of
requirements and is thus not well adapted to OPCS which cannot, by definition, be
completely a priori specified.

A Multiagent Method to Design Open Embedded Complex Systems 207

Hw requirement %
System “ analysis Hw design Hw test
i Hw/Sw :
regrl\"a"lt\alrsnignt partionnement s —— . Integration Test
W requiremen]
analysis Sw design Swtest

Use of a multiagent method and its lifecycle
Fig. 1. Lifecycle of a traditional multiagent method

A few works deal with embedded multiagent systems, but new applications are strongl
concerned by this domain (Pervasive computing (Carabelea et al.,, 2003), Ambiant
computing (Mafia & Rudolf, 2007)) and industrial applications of MAS (Parunak, 2000)).
Even if we are at the beginning of the expansion of embedded multiagent systems, we are
sure that embedded MAS methods will be the continuation of traditional embedded system
design lifecycle (see fig 1). Multiagent approaches focus on software parts and forget the
hardware aspects. Hardware aspects are generally taken into account only during the
deployment step (Cossentino03 et al.), and are limited to the choice of the platform where
the agents must be deployed.

We can thus say that the hardware/software hybrid systems design is very partially
covered by MAS methods. An alternative to this type of lifecycle is the codesign approach.
A codesign method unifies the development of both hardware and software parts by the use
of a unified formalism. The partitioning step is pushed back at the end of the life cycle. We
can thus settle at this point of our study that the choice of a specific lifecycle model which
supports a codesign approach is required.

Because of the complex features of our system, the lifecycle model must enable late
modification of specifications. Furthermore, it is necessary to come back on previous design
steps (refinement) and to explore the solution space of the hardware/software compromise.
The design process must accept genericity (incremental criteria are in favour of the
genericity). Finally, we must identify and keep a trace of all the parameters of the different
retained solutions. The evaluation of different lifecycle models in respect with these
previous criteria leads to adopt a spiral lifecycle (Boehm, 1988).

The lifecycle of traditional method applied to design an hardware/software hybrid system
(see fig.1) begin by a requirement analysis followed by, very early, by a portioning step.
During this partitioning step, the designer chooses the system part which must become
hardware part or software part: the requirement analysis which is declined in a hardware
one and a software one. After this step, these two different parts are designed in parallel. At
the end of lifecycle, these two parts are integrated to become operational system. Through
this integration step (and the following test) some problem can emerge. Theses problems
can call into question the software design, the hardware design or the twice. More deeply, it
can be necessary to modify the result of the partitioning!

The evaluation of the different lifecycle models in respect with these previous criteria carries
out the spiral lifecycle (Boehm, 1988) as the best choice in our context.

The DIAMOND method is built to design physical multiagent systems. Four main stages,
distributed on a spiral cycle (see fig.2), may be distinguished within our physical multiagent
design approach. The definition of requirements defines what the user requirements are and
characterizes the global functionalities. The second stage is a multiagent-oriented analysis
which consists in decomposing a problem in a multiagent solution. The third stage of our

208 Tools in Artificial Intelligence

method starts with a generic design which aims to build the multiagent system, once one
knows what agents have to do without distinguishing hardware/software parts. Finally, the
implementation stage consists in partitioning the system in a hardware part and a software
part to produce the code and the hardware synthesis.

Implementation

/

e p Situation
Analysis phase

Social

phase Individual

phase

Fig. 2. Lifecycle of a traditional multiagent method

4. The DIAMOND method

4.1 Case study

To illustrate the various phases and activities of our method, we will use the robocup case
study. To make the illustration easily understandable, we will adopt a simplified definition
of requirements.

The experimental conditions are inspired by (Huang et al., 2001). Robots evolve on a football
field (see fig. 3). A video recorder system makes possible to know the position of each robot
as well as of the ball. These positions are periodically broadcasted to all robots. If the ball
goes out of the limits of the field, a robot of the non faulty team recovers the ball and plays
(the order is given by the referee). If a robot has no more battery or is dysfunctioning, the
match is stopped (the order is given by the referee for human safety reasons) and the robot
is withdrawn from the field: all robots must be then motionless. At the beginning of a match
the robots must be located in their camp and the referee decides to give the guardian role to
one robot of each team. So, the game is open and the team, which scores the higher number
of goals in 90 minutes, wins.

A Multiagent Method to Design Open Embedded Complex Systems 209

-l Video recorder
=

Workstation

ﬁ

{
i
& { d Robot footba L:
f
Wireless transmitter | | Bgll

f &,

| s,

| ¢

] & |

Fig. 3. Our case study

4.2 Definition of requirements

This preliminary stage begins by analyzing the physical context of the system (identifying
workflow, main tasks, etc...). Then, we study the different actors and their participative user
cases (using UML use case diagrams), the services requirements (using UML sequence
diagram) of these actors. The UML sequence diagram can include physical interaction.

The second step consists in an original step: the study of the running mode and stop mode.
This activity is very significant because it enables to structure the global running of the
system. It is generally wishable that the system works in autonomy. But working with
physical systems requires to identify many others possible behaviours: how must the system
be before to stop it (robot in safety area...)? What must the system states be when it goes
under maintenance? How must the system components be calibrated? What must the state
of all the components be when an emergency stop occurs? Even if the problem is solved
with a decentralized intelligence, this organization of these modes is easily understandable
by the clients and the users. More of that, even if the system is approached with a
decentralized intelligence, the system must respect laws and norms. They are very strong
because the human safety can easily be altered.

This activity puts forward a restricted running of the system. It allows to specify the first
elements necessary for a minimal fault-tolerance. Moreover, it enables to identify
cooperative (or not) situations and to define recognition states in order to analyze, for
example, the self-organizational process of an application. This activity allows to take into
account the safety of the physical integrity of the users possibly plunged in the physical
system.

We have defined 15 different modes regrouped in three families. The stop modes are relate to
the different procedures for stopping the system. Moreover it allows to define the associate
recognition states. The running modes focus on the definition of the recognition states of
normal running, test procedures etc. The failing operations modes focus on the security

210 Tools in Artificial Intelligence

procedures (for example to allow a human maintenance team to work in the system) or to
specify rules for restricted running etc.

Application to our case study. We find the following actors. The referee (logical actor)
manages the match parameters: choose a goalkeeper and a camp for each team, verifies that
robots respect the rules. It authorizes the human to withdraw a robot when all robots are
motionless.

The manager (physical actor) withdraws robots when a problem occurs. The ball (physical actor)
moves under the robot actions. The opposing team (physical/logical actor) shares the field
with the studied one.

The camera system broadcasts the coordinates of each robot and of the ball.

There are two user cases. The configuration expresses that the referee chooses a field and a
goalkeeper for each team. This user case triggers another one: the garmes opens the game (see
fig.4).

C O

configuration game manager

video system oposing team
Fig. 4. Our case study

For our application, the identified modes are:
e Stops modes: Two modes of stops must be characterized: other modes are not exploited.

e Idle: In a idle mode, the robots must be motionless.

e Stops requested on normal mode: when a robot dysfunction occurs, the referee can
decide to freeze the game.

¢ Running modes:

e Normal mode: in this mode all the robots must answer to requests of the referee,
there is no emergency stop.

e Mode of preparation: during the phase of preparation, robots are positioned on the
ground. Robots should neither then move nor use their actuators. This mode ends
when the parameters setting period starts.

e Mode of test: this mode will be used to calibrate the shooting power.

e Failure modes: only the management of the emergency stop is relevant in our
application.

e Mode of stop aiming to ensure the safety: If an emergency stop is activated, robots
do not have any more the right to move or use effectors.

In this application, where the life period is short, importance of the other modes is not
relevant.

4.3 Multiagent oriented analysis

The multiagent stage is handled in a concurrent manner at two different levels. At the
society level, the multiagent system is considered as a whole. At the individual level, the
system's agents are built. This integrated multiagent design procedure encompasses five
main phases discussed in the following.

A Multiagent Method to Design Open Embedded Complex Systems 211

Situation phase. The situation phase defines the overall settings, i.e., the environment, the
agents, their roles and their contexts. This stems from the analysis stage. We first examine
the environment boundaries, identify passive and active components and we proceed to the
agentification of the problem.

We insist here on some elements of reflexion about the characteristics of the environment
(Russel & Norvig, 1995),(Wooldridge, 2000). We must identify here what is relevant to take
into account from the environment, in the resulting application.

It's, first of all, necessary to determine the environment accessibility degree i.e. what can be
perceived from it. We will deduce from these characteristics which are the primitives of
perception needed by agents. Measurements make possible to measure parameters which
enable to recognize the state of the environment. They thus will condition the decisional
aspect of the agent. The environment can be qualified of determinist if it is predictable by an
agent, starting from the environment current state and from the agent actions. The physical
environment is seldom deterministic. Examining allowed actions can influence the agent
effectors definition. The environment is episodic if its next state does not depend on the
actions carried out by the agents. Some parts of a physical environment are generally
episodically. This characteristic has a direct influence on agent goals which aim to monitor
the environment. Real environment is almost always dynamic but the designer is the single
one able to appreciate the level of dynamicity of the part of the environment in which he is
interested. This dynamicity parameter has an impact on the agent architecture. Physical
environments may require reactive or hydride architectures. The environment is discrete if
the number of possible actions and states reached by the environment are finite. This
criterion is left to the designer appreciation according to the application it considers. A real
environment is almost always continuous.

It is then necessary to identify the active and passive entities which will compose the system.
These entities can be in interaction or be presented more simply as the constraints which
modulate these interactions. It is necessary to specify the role of each entity in the system. This
phase allows to identify the main entities that will be used and will become agents.
Application to our case study. The environment is not accessible. Each robot can know its
geographical position, the position of the ball and of the other robots. Dimensions of the
ground are known and the field of each team is communicated at the beginning of each part.
The positions of each robot can be memorized at different dates to estimate displacements,
directions of the robots and their trajectories. The trajectory of the ball obeys to physical
laws. Agents can estimate this trajectory and act on it. Environment is rather not
determinist. Even if agents cooperate and there is no dysfunction, an agent cannot know
actions of other agents. However elements of the environment are not fully predictible like
the trajectory of the ball. The possible actions on the environment are displacements (robots
and ball). Environment is not episodical because we suppose that no intervention of the
human is possible. The future evolutions depend only on the actions carried out by the
robots. Environment is dynamic and continuous although the feasible actions are finite.

The active entities are the robot-players. The ball is a passive entity which obeys to agent
actions (shootings) by a displacement according to the physical laws.

Individual phase. Decomposing the development process of an agent refers to the
distinction made between the agent's external and internal aspects. The external aspect deals
with the definition of the media linking the agent to the external world, i.e., what and how
the agent can perceive, what it can communicate and according to which type of
interactions, and how it can make use of them.

212 Tools in Artificial Intelligence

The agent's internal aspect consists in defining what is proper to the agent, i.e. what it can
do (a list of actions) and what it knows (its representation of the agents, the environment,
interaction and organization elements (Demazeau, 1995).

In most cases, the actions are carried out according to the available data about the agent's
representation of the environment. Such a representation based on expressed needs has to
be specified during specifications of actions. In order to guarantee that the data handled are
real data, it is necessary to define the required perception capabilities. We have defined four
types of actions. Primitive actions are tasks which are not physically decomposable. Composed
actions are temporal ordered lists of primitives. Situated actions need to have a world
representation to execute their tasks.

Application to our case study. The agent world representation consists in a collection of
triplets (id,x,y) and in the field dimension. In our application, robot players are modelled by
agents. Their individual capabilities can be specified using a tree to show the different
action levels (fig. 5).

SITUATED ACTIONS

COMPOSED ACTIONS PARAMETRED ACTIONS PRIMITIVE ACTIONS

order 2
catchBall

shoot(type)

order 1

translate(speed)
~» Goxy) <:
goal_block — rotate(angle)

» Shoot
T EjectBall(strength)

Pass(id friend) Pass — %

L 4

Fig. 5. Actions scheme

We specify the agent context with a context diagram (see fig 6).

After one iteration to take into account the society phase, individual behaviours are
implemented using finite state machine. We can define an agent with the goalkeeper
behaviour. Other agents can alternate two different behaviours (shooter or defender). For
example, the goalkeeper behaviour defines that the agent must always be on a possible

trajectory of shooting.

]
ngle ireset
!

W

Rotation motor

send_msg wireless

emission module

Translation motor |<_Speed

styf
e ‘jgctz_érder
-

receive_ms

§ wireless
reception module

date_h
Ball ejector ate_four

Fig. 6. Context diagram

Society phase. Interactions among agents are achieved via messages passing. Such exchange
modes are formalized by means of interaction protocols. Although these interaction
protocols are common to all the agents, they are rather external to them. Conflict resolution
is efficiently handled by taking into account the relationships between the agents, that is, by
building an explicit organizational structure. Such an organization is naturally modelled
through subordination relations that express the priority of one agent on another.

A Multiagent Method to Design Open Embedded Complex Systems 213

Application to our case study.

Representation of others: The positions of other players can be known by the capture of
information from the video system (WIFI module). Their directions can be estimated if
agents can memorize the previous positions. Friend's intentions can be announced.
Interactions: between the agents they are carried out by exchange of messages. An agent
must be able to communicate with its team to diffuse its intention. It can use a peer-to-peer
communication to solve a conflict or to choose a trajectory with a friend.

Collaborative actions can be instantiated: a player can request the ball when it has an occasion
for shooting. It can ask somebody to change position to attract an opponent elsewhere.
Organization: A TEAM according to the requirement is composed of a goalkeeper and three
other agents which can be SHOOTER or DEFENDER.

Collective behaviour can be implemented by finite state machines.

Integration phase. We need to analyse the possible influences upon the previous levels.
Those influences are integrated within the agents by means of their communication and
perception assessment capabilities (given in each agent's model through guard and trigger
rules). The decomposition masks the notion of agent's control, i.e., how it handles its focus
of attention, its decisions, and how it links its actions. This dual aspect is based on the two
previous one. Through the integration of social influences within the agents, one will
endow the multiagent system with some dynamics. According to the social analysis we
must give to the agent the possibility to interact in order to choose its role.

Application to our case study. We illustrate this phase with two examples.

Influence: If an agent wants to move to a given point, somebody (a friend or not) can be on
its trajectory. Correction: If the agent on the trajectory is a friend, the agent owning the ball
has the priority.

Influence: Two agents request the ball for shooting. Correction: Agents use an election
protocol (they exchange an estimation of their success probabilities).

4.4 The generic design

This stage is based on component decomposition. We can define a component as an
elementary object, which performs a specific function that allows developers to define
reusable segments of code. It is designed in such a way to easily operate with other
components to create an application. So, a component is a reusable program building block,
which is an identifiable part of a larger program. Components can be combined with others
to build more complex functions. This phase offers an efficient process leading to
component decomposition by starting from the informal description of the multiagent
system built during the previous stage.

The Problem Description Phase. This phase consists in identifying and delimiting the
domain of the general problem, as well as identifying some specific aspects that should be
taken into account. Although this phase is informal, it allows designers to clearly separate
the various aspects embedded within the application. We must choose here the architecture
of the different agents.

The agents are built following hybrid architectures, i.e. a composition of some pure types of
architecture. Indeed, the agents will be of a cognitive type in case of a configuration
alteration, it will be necessary for them to communicate and to manipulate their knowledge
in order to have an efficient collaboration. On the other hand, in a normal mode use it will
be necessary for them to be reactive using a stimuli/response paradigm to be most efficient.

214 Tools in Artificial Intelligence

Application to our case study At this level, the designer chooses technical solutions for each
sensors/ effectors. The context diagram (fig. 6) is detailed (see the table 1).

Using a hybrid architecture for the agents enables to combine the strong features of each of
reactive and cognitive capabilities seen before. We use our ASTRO hybrid architecture
(Occello et al., 1998), especially adapted to a real time context.

Information Specification
Reset Active on high logical level (1bit)
Angle Relative angle in [- 180, +180] coded whole signed on 10 bits
Speed Two speeds are possible. Entirety coded on 2 bits. (00: stop / O1:

slow speed / 10: fast speed)

Two levels of possible forces. Level coded on 1 bit (0: pass/1:

Strengh shooting)
Eject_ball Transition to high level
Date_heure Number of milliseconds run out since the powering (32 bits)
Specific protocol bit field (sender loctet, receiver 1byte, data_lenght
Send_msg loctet, data 1-250ctets)
Receive_msg Specific protocol bit field (same than Send_msg)

Table 1. Details of the context diagram

Agent applicative tasks design phase. We must build the external shell of the agent i.e.
elaborating the interface with the external world for each sensors and effectors. It is time,
here, to choose technological solution for them and to complete the context diagram to
specify all information about the signal. The next step is to design the internal shell of the
agent. We begin by the elaborated actions according to the task tree.

It is necessary at this stage to arrange the components to build the application: the
architecture of the agent will be used as a pattern, at a very high level, for the components
decomposition.

The components have an external and an internal description. The internal description can
be an assembly of components, or a formatted description of a decisional algorithm.

4.5 Implementation stage

Partitioning Phase. The main use of codesign techniques appears in the software/hardware
partitioning of the components defined in the third level. Also it is essential to study the
different partitioning criteria.

A first level relates to agent parts for which the partitioning question doesn't exist. Indeed
some elements must be hardware as input/output periphericals such as for example the
sensors and the actuators.

The second level relates to features for which there are several choices of implementation.
We present below, those which can be considered to be relevant for the agents according to
previous works we have made in this field (Occello et al., 1998),(Jamont et al., 2002),(Luo et
al., 2007) and codesigns work like (Adams & Thomas, 1996):

A Multiagent Method to Design Open Embedded Complex Systems 215

o The cost is present at all the stages of a system design life cycle. On very small series, we
must decrease, as much as possible, the price of the software/hardware development
and the hardware material. In the case of great series, we must reduce manufacturing
costs.

o The performance depends on the considered problem. A real-time application for which
the robustness is a function of the occupation processor time is an example of system
where this criterion is very important. A hardware partitioning is often privileged.

e The flexibility plays in favour of the software. Software modifications have generally a
less significant impact on the whole system than a hardware change. However, the
flexibility of the EPLD (Electrical Programmable Logic Device) and other FPGA (Field
Programmable Gate Array) increases quickly. For example, these architectures are
reprogrammable in-situ : it is possible to modify their specifications without extracting
them from the electronic chart.

e From their nature, software systems are fewer faults tolerant than hardware components
like EPLD. Indeed, microcontrollers use memories, stack structures with possible
overflow etc. The internal fault tolerance will be thus a criterion which will play in favour
of a hardware partitioning.

e The ergonomic constraints gather all the system physical characteristics like weight,
volume, power consumption, thermal release etc. Depending on the application, this
criterion can be highly critical (case of the aeronautics embedded applications). One
more time, the designer must appreciate correctly this criterion.

o The algorithmic complexity has a great importance for some applications. The software
part will be more important if tasks are very complex. In fact, it is very difficult to make
hardware synthesis of highly cognitive features.

Co-simulation and co-validation Phases. This activity allows to simulate the collaboration
between software part, hardware part and their interface.
Implementation Phase. At this level, each component is completely specified with common
graphic specification formalism for the hardware part and the software part. For each
component, the designer has already selected if he wishes a hardware or a software
implementation.
This level must ensure the automatic generation of the code for the components for which
implementation software has been selected. The code is made in a portable language like
Java or C++.
We use a Hardware Description Language which provides a formal or symbolic description
of a component or of a hardware circuit and it interconnections. In our method the
hardware components are specified in VHDL (Breuer et al. , 1999). The compilation of the
code and the hardware synthesis of different specifications in VHDL are carried out like
illustrated on figure 7.
Application to our case study. Today, the agents are embedded on autonomous processor
cards. These cards are equipped with communication modules and with measuring
modules to carry out agent tasks relative to the instrumentation. These cards supply a real
time kernel. The KR-51(the kernel's name) allows multi-task software engineering for C515C
microcontroller. We can produce one task for one capability. We can then quite easily
implement the parallelism inherent to agents and satisfy the real-time constraints.

216 Tools in Artificial Intelligence

—— COMPONENT 1 |——— COMPONENT 2 |—+

Hardware I'meleﬁtation Software iinplementation
HARDWARE S YZVTHES[S ‘ SOFTWARE S PN? HESIS
HARDWARE
DESCRIPTION LANGAGE HIGH LEVEL LANGAGE
== Componant description for(;;
entity Seationtole i pore (N
VR : in std_logic_vector(? dowmto 0); U yr meae 32
role : in oub std_logic_vector(l dewnto 0); cage "B10s
end GestionRole; // Trancivien
-- Componawt architecture Af(NVR==0)
architecture arch_GestionBole is futuretate = "EZ";
signal state:std_logic_vectoer(Z dewnte 0); else if (NVE==1)
Lugiclsynthesis Compi!ation
NETLIST CO-SYNTHESIS ASSEMBLER LANGAGE
woves.l # STACK,a?
AND - move, ,
e B e
AND j:S[7%n1t7:vara
Jjsr _1n1tms|:r55m5
Layout[synthesis Asset'nble
MASK BINARY FILE

0000=0e0h: CO 74 0D C7 &4 24 70 14 00 OO
0000a0f0h: ES 8B 04 00 00 &5 CO 74 0D C7
0000=2100h: 04 00 00 00 EB 20 39 1D 93 D4
0000a110h: 01 6A 09 E& 78 16 00 OO 83 C4
0000&120h: 00 00 O5 00 OO0 00 8D BC 24 &0

Fig. 7. Software component synthesis and hardware component synthesis

5. Discussion about the DIAMOND method

5.1 Lifecycle and phases

Most existing multiagent methods usually distinguish only analysis and design phases
(Deloach et al., 2001). Very few methods deal with other phases. We can find for example a
deployment phase in MASSIVE or Vowels. This deployment phase takes in our particular
field a great importance since it includes the hardware/software partitioning. A last and
major difference between DIAMOND and other multiagent approach is, as said previously,
that DIAMOND unifies the development of the hardware part and the software part. In a
traditional system design, the partitioning step stands at the beginning. In fact, a hardware
requirement and a software requirement are created from the system requirements.

The software part of the system is built using a multiagent method and its associated
lifecycle.

To cover the whole lifecycle, different formalisms are required to express different things at
different levels (Herlea et al., 1999), for this reason we adopt a lifecycle using four stages
mixing different expressions using more or less formal paradigms and languages (agents,
components, Finite State Machines, Hardware Definition Languages). The most current
lifecycle used in multiagent methods is the classical cascade lifecycle. Even if some works
attempt to introduce iterative cycles as Cassiopeia (W) or Gaia, the proposal of a spiral
lifecycle is very original.

In the definition of requirements phase, we introduce a study of the modes of running and
stops to structure the global running of the system. In the generic design phase, the design
allows an abstraction of the software design and the hardware design. We use components
to build the agents as few multiagent methods introducing an actual componential

A Multiagent Method to Design Open Embedded Complex Systems 217

dimension (Lind, 2001),(Brazier et al., 2002). These components are used to simplify the
work of the designer through visual programming, to manage the complexity through a
functional decomposition, to increase the genericity through reusability, to simplify the
partitioning because the analogy between soft components and chips enables the hardware
tools and the software tools to share a unified vision.

Table 2 comes from the work of G. Picard (Picard, 2004). It gives an insight of the different
methods and the qualitative results of the comparison between them.

kS - =
> = = N ED
g 9 k] @ Q9
h=] I = g = o
= B 8 () [g
s E g 2 2 g
3 =8 2 508 2 LEll ¢
> -
ADELFE
(Bernon et al., 2002) v il + + ++ t
AAIl
(Kinny et al., 1996) Waterfall ial = = + -
Aalaadin
(Ferber & Gutknecht, 1998) Waterfall i ++ A - _
Cassiopée)
(Drogoul & Collinot, 1998) Tterative el == -- + —
DESIRE
(Brazier et al., 2002) Waterfall + his = . .
Gaia]
(Wooldridge et al., 2000) Tterative el == - ++ -
MaSE
(DeLoach et al., 2001) Waterfall v + — ++ -
MASSIVE
(Lind, 2004) Incremental ++ + T+ + _
MESSAGE :
(Lind, 2001) Iterative ++ + + it .
PASSI
(Chella et al., 2006) Incremental ++ + = - _
Prométheus
(Padgham et al., 2007) Waterfall e + = + _
Tropos
(Castor et al., 2004) Incremental v + — - -
Voyelles
(Ricordel & Demazeau, 2000) Waterfall il i + = -

| DIAMOND Spiral - o

++ : Properties are fully and explicitly supported --: Properties are not explicitly taken into charges
+ : Properties are taken care of in an indirect way - : Properties are not supported
+ : Properties are potentially Supported

Table 2. Comparison synthesis of the multiagent methods

218 Tools in Artificial Intelligence

The criteria used in table 2 are:

¢ Requirements: Is the requirements gathering taken into account?

e Analysis: Is the analysis stage taken into account?

e Design: Is the design stage taken into account?

¢ Implementation: Is the implementation stage taken into account?

e Test: Is the testing process taken into account?

¢ Deployment: Is the deployment stage taken into account?

¢ Maintenance: Is the maintenance stage taken into account?
Deliverables:

Do the deliverables are clearly identified and associated with specific steps?
¢ Quality Management: Is the quality management taken into account?
e Project Management: Are the guidelines of conduct project are clear?

5.2 Models and notations

Multiagent method generally use notations and models from only one origin (Bernon et al.,
2002) like UML (Mase , AAII, MESSAGE, PASSI). Other methods use many notation like
TROPOS (notation i* coming from the knowledge engineering, A-UML (Koning et al., 2001)
for interaction protocols and plan) or DESIRE (graph-based notation for knowledge
modelling and specific hierarchical notation for tasks description). To cover all the phases of
a lifecycle, we think like in (Herlea et al., 1999) that several formalisms are necessary for the
different levels of abstraction.

DIAMOND begins by using UML use cases because they proved reliable for the definition
of requirements. The interpretation of our use case diagrams is slightly different than their
common use (as in (Bernon et al., 2002)) because actors are necessarily outdoor to the system
or its entities. Moreover, an actor can not be in the interaction diagram (this would be
amazing in a traditional use of UML use cases) in the case of physical interactions. These
differences come from the usual software nature of applications.

In the analysis phase, we use context diagrams. These diagrams enable to see easily all the
possible perception and the possible action of the agents. Another advantage is that they
allow to see control flow between the physical part of an agent and its decisional part. In a
word, context diagram allow to specify the external shell of the agents.

In the generic design phase, DIAMOND uses component as operational units as seen
previously. In these components, we use finite state machines or a components set to
describe the internal running. These formalisms enable to generate software code or
hardware specifications in VHDL.

In this section, we compare our method with other multiagent methods (ADELPH, PASSI,
MASE, GAIA, DESIRE, MASSIVE, MAMOSACCO etc.) In a first subsection we talk about
lifecycle and stages. In the second subsection we focus on models and notations.

The methods multi-agents operating adopt mostly notations and models of a single origin
(see table 3).

6. Conclusion

We work currently on the tool associated with the method that we propose. It is created
using the Java language. The part which relates to the creation of agents with components,
manual partitioning and automatic generation of code are operationnal.

A Multiagent Method to Design Open Embedded Complex Systems

219

specifications for the
modes study, glossary

Requierement Analysis Design
UML diagrams (use UML diagrams UML diagrams (class,
ADELFE case, sequence, (sequence, class), A- aquetage, stéréotypes)
collaboration) UML protocols paquetage, yp
UML diagrams . .
AAII (collaboration, class) UML object diagrams
Aalaadin AGR qrganlzatlon A-UML diagrams
diagram
Cassiopée FSM/ dependency
entity relationship
DESIRE diagram, FSM Components
Gaia Array, logic langage
MaSE UML. sequence UML class diagrams
diagram
UML class diagram,
parametred Petri UML class diagrams,
MAMOSACO Arrays network, SADT parametreed Petri
actigram, OSSAD networks
processing model
UML use case s .
MASSIVE . UML activity diagram | UML class diagrams
diagrams
UML diagrams (class
MESSAGE UM.L use case and aCtl.VltY)' A-UML UML class diagrams
diagrams diagrams
(collaboration)
UML diagrams (use .
PASSI case, sequence), UML UML diagrams UML .deployment
. . (sequence, class) diagrams
like packetage diagram
. UML diagrams and A- UML and A-UML
Prométheus . .
UML diagrams diagrams
ix State diagram, A-UML
Tropos i
protocols
UML diagrams
UML diagrams (use (sequence), A-UML
DIAMOND case, sequence), textual protocols, context FSM, components

diagram (SART), entity
relationship diagram
(organisation)

VHDL

Table 3. Notation used by these different methods

Our future work will be to improve the MASC tool (MultiAgent System Codesign)
associated with the DIAMOND method. The agent design with components and the code
generation in Java and C languages are operational. The VDHL specification generation is
partially developed.

220 Tools in Artificial Intelligence

Very few works are addressing the problem of the analysis of self-organized embedded
systems. This work proposes some innovative contributions in term of hybrid
software/hardware multiagent lifecycle. It integrates in particular all the phases of the
development from the analysis to the implementation. It introduces a multi-paradigm
spiral lifecycle. It proposes components used as tools for integration, allowing software or
hardware derivation. They enable a unified approach for all kinds of hybrid
hardware/software multiagent systems.

7. References

Adams, J.; Thomas, D. (1996) The design of mixed hardware/software systems, Proceedings
of the 33st Conference on Design Automation, pp 515-520, ISBN 0-89791-779-0, USA,
June 1996, ACM Press.

Bernon, C.; Gleizes, M.-P.; Peyruqueou, S. & Picard, G. (2003), ADELPH: A methodology for
adaptive multi-agent systems engineering., In: Engineering Societies in the Agents
World 111, page numbers 156-169, Springer Verlag, ISBN 3-540-14009-3, 2002,Spain.

Boehm, B. W. (1988). A spiral model of software development and enhancement. Computer,
21(5):61-72, 1988, IEEE Computer Society.

Brazier, F. M. T.; Jonker, C. M. & Treur, J. (2002). Principles of component-based design of
intelligent agents. Data Knowledge Engineering, Vol. 41, No. 1, April 2002, Elsevier,
page numbers 1-27, ISSN 0169-023X.

Breuer, P. T.; Madrid, N.M.; Bowen, J. P.; France, R. B.; Larrondo-Petrie, M.M. & Kloos, C.
D. (1999) Reasoning about vhdl and vhdl-ams using denotational semantics,
Proceedings of the Design, Automation and Test in Europe, pp 346-352, ISBN 0-7695-
0078-1, Germany, March 1999, IEEE Computer Society, Munich.

Carabelea, C.; Boissier, O. & Ramparany, F. (2003) Benefits and requirements of using multi-
agent systems on smart devices, Proocedings of 9th International Euro-Par Conference,
pp 1091-1098, ISBN 3-540-40788-X, Austria, August 2003, Springer Verlag,
Klagenfurt.

Castor, A.; Pinto, R; Silva, C. T. L. L. & Castro, J. (2004). Towards requirement traceability
in tropos, Proceedings of the Workshop em Engenharia de Requisitos, pp 189-200, ISBN
950-658-147-9, Argentina, Dec. 2004, WER, Tandil.

Chella, A.; Cossentino, M., Sabatucci, L. & Seidita, V. (2006). Agile PASSI: An agile process
for designing agents. Computer Systems: Science & Engineering, Vol. 21, No. 2, March
2006, In press, ISSN 0267-6192.

Antonio Chella, Massimo Cossentino, Luca Sabatucci, Valeria Seidita: Agile PASSI: An agile
process for designing agents. Comput. Syst. Sci. Eng. 21(2): (2006)

Cossentino, M.; Sabatucci, L. & Chella, A. (2003). A possible approach to the development of
robotic multi-agent systems, Proceedings of the IEEE/ACM/WIC Conference on
Intelligent Agent Technology, pp 539-544, ISBN ISBN 0-7695-1931-8, Canada, 2003,
Halifax.

Deguet, J.; Demazeau, Y. & Magnin, L. (2006). Elements about the emergence issue: A
survey of emergence definitions, Complexus, Vol. 3, No. 1-3, 2006, pp. 24-31, ISSN
1424-8492.

A Multiagent Method to Design Open Embedded Complex Systems 221

DeLoach, S. A,; Wood, M. F. & Sparkman, C. H. (2001). Multiagent systems engineering.
International Journal of Software engineering and Knowledge Engineering, Vol. 11, No. 3,
June 2001, page numbers 231-258, ISSN 0218-1940

Dessalles, J.L.; Phan, D. (2005). Emergence in multi-agent systems: cognitive hierarchy,
detection, and complexity reduction, Proceedings of the 11th annual meeting of the
Society of Computational Economics, June 2005, Society of Computational Economics,
University of Washington.

Demazeau, Y. (1995). From interactions to collective behavior in agent-based systems,
Proceedings of European Conference on Cognitive Science, pp. 14-17, ISBN, France, Avril
1995, Saint-Malo

Drogoul, A & Collinot, A. (1998). Applying an agent oriented methodology to the design of
artificial organizations: A case study in robotic soccer. Journal on Agents and Multi-
Agent Systems, Vol. 1, No. 1, 1998, Kluwer Academic Press, page numbers 113-129,
ISSN 1387-2532

Ferber, J. & Gutknecht, O. (1998). A Meta-Model for the analysis and design of organizations
in multi-agent systems, Proceedings of the 1998 International Conference on Multi-
Agent Systems, pp. 128-135, ISBN 0-8186-8500-X, France, July 1998, IEEE Computer
Society, Paris.

Forrest, S. (1991). Emergent computation, The MIT Press, ISBN 978-0262560573, England.

Herlea, D. E,; Jonker, C. M.; Treur,]J. & Wijngaards, N. J. E. (1999) Specification of
Bahavioural Requirements within Compositional Multi-agent System Design,
Proceedings of 9th European Workshop on Modelling Autonomous Agents in a Multi-
Agent World, pp 8-27, ISBN 3-540-66281-2, Spain, June 1999, Springer, Valencia.

Huang, H.-P.; Liang, C.-C & Lin C.-W. (2001) Construction and soccer dynamics analysis for
an integrated multi-agent soccer robot system, Natl. Sci. Counc. ROC(A), Vol. 25,
No. 2, 2001, pp. 84-93.

Jamont, J.-P; Occello, M. (2007), Designing Embedded Collective Systems: The DIAMOND
Multiagent Method, Proceedings of the 19th IEEE International Conference on Tools with
Artificial Intelligence, pp. 91-94, ISBN 0-7605-3015-X, Greece, October 2007, IEEE
Computer Society.

Jamont, J.-P; Occello, M. (2006), A Self-organized Energetic Constraints Based Approach for
Modelling Communication in Wireless Systems, In: Advances in Applied Artificial
Intelligence, page numbers 101-110, Springer Verlag, ISBN 3-540-35453-0, 2006,
France.

Jamont, J.-P.; Occello, M. & Lagreze A. (2002). A multiagent system for the instrumentation
of an underground hydrographic system, Proceedings of IEEE International
Symposium on Virtual and Intelligent Measurement Systems, pp. 20-25, ISBN 0-7803-
7344-8, USA, May 2002, IEEE Measurement and Instrumentation Society, Mt
Alyeska Resort

Kinny, D.; Georgeff, M. & Rao, A. (1996). A methodology and modelling technique for
systems of BDI agents, Agents Breaking Away: Proceedings of the Seventh European
Workshop on Modelling Autonomous Agents in a Multi-AgentWorld, pp. 56-71, ISBN 3-
540-60852-4, The Netherlands, January 1996, Springer-Verlag

Koning, J.-L.; Huget, M.-P.; Wie, J. & Wang, X. (2001). Extended Modeling Languages for
Interaction Protocol Design, Proceedings of the Second International Workshop on

222 Tools in Artificial Intelligence

Agent-Oriented Software Engineering, pp. 68-83, ISBN 3-540-43282-5, Canada, May
2001, Springer, Montreal

Lind, J. (2004). Interative Software Engineering for multiagent systems: The MASSIVE Method,
Springer Verlag, ISBN 3-540-42166-1, Berlin

Luo, J.; Xu, L; Jamont, J.-P.; Zeng, L. & Shi Z. (2007). Flood decision support system on
agent grid: method and implementation. Enterprise Information Systems, Vol. 1, No.
1, (November 2007) , Taylor and Francis, page numbers (1751-1757), ISSN 1751-
1757.

Mafia, A. & Rudolf, C.(2007). Developing Ambient Intelligence, Springer, ISBN 978-2-287-
78543-6, Paris

Marcenac, P. (1996). Emergence of behaviors in natural phenomena agent-simulation.
Complexity International, Vol. 3, 1996, ISSN 1320-0682.

Muller, J.-P. (2003), Emergence of collective behaviour and problem solving, In: Engineering
Societies in the Agents World 1V, page numbers 1-21, Springer, ISBN SBN 3-540-
22231-6, 2003, England.

Occello, M. ; Demazeau, Y. & Baeijs C. (1998). Designing organized agents for cooperation in
a real time context, Proceedings of the first International Workshop of Collective Robotics,
pp. 25-73, ISBN 3-540-64768-6, France, March 1998, Springer-Verlag, Paris

Padgham, L.; Thangarajah, J. & WinikoffParunak, M., (2007). AUML protocols and code
generation in the Prometheus design tool, Proceedings of the 6th International Joint
Conference on Autonomous Agents and Multiagent Systems, pp.270-271, ISBN 978-81-
904262-7-5, Hawaii, May 2007, IFAAMAS.

Parunak, H. V. D. (2000). A practitioners? review of industrial agent applications.
Autonomous Agents and Multi-Agent Systems, Vol. 3, No. 4, (2000) page numbers
389-407, ISSN 1387-2532

Picard, G. (2004). Methodology for developping adaptive multi-agent systems and designing
software with emergent functionality (PHD thesis), Institut de Recherche en
Informatique de Toulouse, France.

Ricordel, P.-M. & Demazeau, Y. (2000). From analysis to deployment: A multi-agent
platform survey, Proceedings of 1st International Workshop on Engineering Societies in
the Agent World, pp. 93-105, ISBN 3-540-41477-0, Germany, 2000, Springer-Verlag,
Berlin

Russel, S. & Norvig P. (2002) Artificial Intelligence : a Modern Approach - 2nd edition. Prantice-
Hall, ISBN 978-0137903955.

Steels, L. (1990). Cooperation between distributed agents through self-organisation,
Proceedings of IEEE Workshop on Intelligent Robots and Systems, pp 8-14, ISBN 0-7803-
8464-4, Japan, Jul. 1990, IEEE Robotics and Automation Society.

Wooldridge, M.; Jennings, N. R. & Kinny, D. (2000). The GAIA methodology for agent
oriented analysis and design. Journal on Agents and Multi-Agent Systems, Kluwer
Academic Publishers, Vol. 3, No. 3, September 2000, page numbers 285-312, ISSN
1387-2532

Wooldridge, M.-]. (1999). Intelligent agents. In: Multiagent systems: A modern approach to

Distributed Artificial Intelligence, G. Weiss (Ed.), page numbers 27-79, MIT Press, ISBN 0-262-
73131-2, 1999, England.

13

Content-based Image Retrieval Using
Constrained Independent Component Analysis:
Facial Image Retrieval Based on

Compound Queries

Tae-Seong Kim! and Bilal Ahmed?
IDepartment of Biomedical Engineering
2Department of Computer Engineering
College of Electronics and Information
Kyung Hee University

Republic of Korea

1. Introduction

Visual information plays a crucial role in various domains, from medical diagnosis,
journalism, crime-prevention to surveillance. Whereas domain specific images carry specific
semantics, the problem of interpreting visual information becomes more complex when we
talk of natural images. The maxim, 'A picture is worth a thousand words' explains this
inherent problem very concisely. Indexing large databases of images for efficient retrieval is
crucial for various domains such as journalism, biomedicine, forensics etc. Manual indexing
of images in such large databases can be highly subjective and time consuming. In contrast,
content-based image retrieval (CBIR) focuses on the development of efficient retrieval
mechanisms based on image features or meta-data used for image annotation.

Conventional approaches to CBIR represent images in the form of image-based features.
These features vary from global image descriptors such as color or intensity histogram to
local ones such as shape and texture. These features along with their combinations have
been used previously for CBIR. For example, in (Deng et al., 2001), a region-based color-
descriptor, modelling the color values along with their percentages in the region, is
proposed. Similarly in (Hadjidemetriou et al., 2004), multi-resolution histograms have been
employed for the retrieval of textured images. In (Jeong et al., 2004), the extraction of color
histograms through Gaussian mixture vector quantization has been proposed. In (Belongie
et al.,, 2002) and (Petrakis et al., 2002) respectively, shape descriptors and shape matching
algorithms have been proposed for image retrieval.

The use of low-level image features such as color histograms, shape, and texture attributes
introduces a semantic gap (Chen et al., 2004). This semantic gap arises due to the inability of
such low-level features to describe the objects and their inter-relations within the image. The
use of such low-level features places the responsibility of achieving semantically coherent
results on the user-interface. Various techniques of relevance feedback (Rui et al., 1998) have

224 Tools in Artificial Intelligence

been introduced in this context. Whereas user feedback might be able to lower this gap, the
overall procedure becomes subjective and requires a higher degree of user interaction.
Segmentation-based techniques for image retrieval have also been used for obtaining better
shape, texture, and color descriptions of the image contents (Datta et al., 2005). The
motivation behind this particular approach is that objects within an image can be segmented
and used for querying the database to retrieve more semantically similar images. Various
segmentation techniques, such as the Normalized Cuts (Shi & Malik, 2000), Mean Shift
Procedures, and Expectation Maximization (Carson et al., 2002) algorithms have been used
in image retrieval. Machine-learning approaches augmented with segmentation techniques
have also been used. In (Wang et al., 2001), segmentation results augmented with fuzzy
logic are used to obtain soft similarity measures. The problem of obtaining a semantically
coherent segmentation of an image still remains an open research problem and higher
dependency on segmentation-results is not desirable for achieving a semantically accurate
retrieval performance.

From an image-retrieval point of view, facial images have attracted a lot of attention.
Various machine learning and feature extraction techniques have been employed for the
efficient retrieval of facial images. Earlier retrieval systems, such as the Photobook (Pentland
et al., 1994), use Principal Component Analysis (PCA) for the retrieval of facial images. In
(Liu, 2004), feature extraction through Independent Component Analysis (ICA) in a reduced
PCA space is used for characterizing query images. The overall system comprises of
classifying the input query image based on the nearest-neighbor rule using various
similarity measures. A recent work on facial image retrieval by (Basak et al., 2006) has
focused on representing facial images as a collection of local independent components. For
this purpose, the query images are decomposed into a number of overlapping and non-
overlapping windows to compute the independent components.

The use of multiple images as a compound query has not been explored in much detail.
Conventional CBIR systems do not provide a mechanism through which a user can specify
his search criterion through multiple examples. This is analogous to multi-word queries in
search-engines: the specification of a compound query helps the system in retrieving the
desired results with better accuracy. Similarly, when a user cannot find a single image
which can specify his search criterion, he should be able to use multiple images to formulate
his query. Multiple queries have been used in (Tahagogi et al., 1994): the approach taken is
to find a combined result of the query by using the retrieved images corresponding to each
query image independently. Similarly, (Basak et al., 2006) uses multiple facial images to
retrieve images similar to the independent query-images as well as to their combinations.

In this work, we have devised a system which can cater for both single and multiple
exemplar image retrieval. It does not decompose the query images or the database images to
windows as in (Basak et al., 2006) or uses PCA for dimension reduction (Liu, 2004): thus the
chances of any information loss are minimal. There is also no need to store additional
feature information or the need for any offline learning as in (Basak et al., 2006). Our
approach is centered on the idea of constrained ICA (cICA) (Lu & Rajapakse, 2005) which
has the ability to extract specific independent components conforming to certain prior
information (known as reference signals or images). Query images are provided to the
constrained ICA algorithm as references, and the output of the constrained ICA algorithm
specifies the contribution of each database image to the extracted component. Based on the
magnitude of this contribution factor, the database images are ranked for retrieval.

Content-based Image Retrieval Using Constrained Independent Component Analysis:
Facial Image Retrieval Based on Compound Queries 225

The rest of the chapter gives details about the constrained ICA-based image retrieval system
using multiple query images. Section 2 explains the constrained ICA framework and Section
3 describes the whole system in detail. Experimental results are given in Section 4. Finally,
we conclude in Section 5.

2. Constrained ICA

Conventional ICA techniques perform blind-source separation (BSS) assuming a linear
mixing model of the independent sources. If the observed values at a pixel location from a

. T - T
set of images are represented as X = (X;,...,X,,)" and the original sources as s = (s,...,5,,)" .

ICA assumes that each X is a linear mixture of the original independent sources. Therefore,

X = As @

where A is the mixing matrix of nxm . Conventional ICA algorithms aim at finding a
demixing matrix W to recover all the ICs of the observed image such that s = Wx. In
general, existing ICA algorithms find as many ICs as the number of observations (i.e.,
n=m). The user must manually identify which ICs represent which sources. The primary
reason for this manual intervention is the inability of the ICA algorithms to calculate the
energies or signs of the ICs. This may also lead to problems where the number of sources is
less than the number of observations. Deflation-based ICA techniques (Cichoki et al., 1997);
(Hyvérinen & Oja, 1996) have also been developed, but they also suffer from the arbitrary
ordering of the extracted independent components.

Constrained ICA (Lu & Rajapakse, 2005) has been developed to find only those independent
components which are of interest to the current task at hand. This is achieved by providing
some prior knowledge about these ICs to the constrained ICA algorithm. This prior
information may not be exact, but it could be the specification of statistical properties of the
desired component or just a crude approximation (e.g., template). Therefore, if we have
some a priori information about the desired sources, we can incorporate this information into
constrained ICA. The constrained ICA algorithm uses this a priori information about the

desired IC, encoded into a set of reference images, r = (1,...,#)" to obtain a set of output IC

images, Y = (Y5 ;s)T which contains statistically independent extracted sources. The
closeness constraint can be written as,

gw)=¢(y;,n)-5<0)

where w is the weight vector to be learned, & some closeness measure, and & an
appropriate closeness threshold parameter. The measure of closeness can take any form,
such as the mean squared-error (MSE), correlation, or any other suitable measure. The
number of reference signals determines the number of independent components to be
extracted from the complete set of observations. The final mathematical model for
constrained ICA can be represented as,

maximize El: J(;) ©)

i=1

subject to g(W) <0, 2(W)=0

226 Tools in Artificial Intelligence

where,

J() = PLEAG(7)} - E{GW)IT “)

is the one-point contrast function for ICA introduced in (Hyvérinen et al.,, 2001). p is a
positive constant, G(-) a non-quadratic function, and v a zero mean and unit variance

Gaussian random variable. #(W) constrains the output component to have unit variance.

Equation (4) is a constrained optimization problem and can be solved by the augmented
Lagrangian functions.

3. Constrained ICA-based facial image retrieval

Viewing it from another perspective, the constrained ICA framework can be used for
specifying the type of information we would like to extract from huge amounts of data. The
reference image(s) can be formulated as the query image(s) specified by the user and as the
accuracy of the extracted information depends upon the accuracy of the provided
references. In our case, the image(s) provided by the user would serve this purpose, and
point the constrained ICA algorithm in the appropriate direction. The overall system
architecture is depicted in Fig. 1.

To be projected on the

Database extracted ICs

I
mages Ranked Images

Extracted ICs

Query
Images clCA —| »{Ranking
1,e.0m 1,

1,000,m

Fig. 1. Overview of the constrained ICA-based CBIR system.

Since constrained ICA extracts components y;from the given set of observations

corresponding to the provided reference image(s), we can ascertain the contribution of each
observation by reconstructing it from the extracted component. The reconstruction
procedure involves the estimation of the mixing matrix A and the reconstruction of the

entire set of observations. Consider that we have n observations X = (xl,...,xn)T and m

extracted sources s =(s;,...,S,,)" where m<<n. The mixing matrix pertaining to the

extracted sources with respect to the entire set of observations can be estimated using,
A=xs" (5)

+ . . .
where s” is the pseudoinverse of the extracted sources. Furthermore the reconstruction of
X can be done using,

Content-based Image Retrieval Using Constrained Independent Component Analysis:
Facial Image Retrieval Based on Compound Queries 227

Xp = As ©6)

where X is the set of reconstructed observations.

Once all images have been reconstructed with the extracted IC images, we need to estimate
how well each image has been reconstructed from the extracted sources. This involves the
comparison of each reconstructed image with its original image. Simple measures of
similarity such as correlation or mutual-information can be used. In our case we have used
correlation to determine the similarity between the original and the reconstructed images.

4. Experimental results

We have conducted extensive experiments on a publicly available facial-image database, the
ORL face database (Samaria & Harter, 1994). The ORL database contains ten facial images of
40 individuals with varying pose, expressions, and spectacles. The images were scaled to
64 x 64 with no pre-processing or feature extraction.

For the purpose of evaluating our retrieval system, we have divided the queries into two
categories: homogeneous and heterogeneous queries. Homogeneous queries contain the
images of the same person with different pose, expression, or occlusion. Heterogeneous
queries are composed of images of different subjects. The main motivation behind this
formulation is to bring out the essence of fusing information from different independent
images and evaluating the semantic coherence of the retrieved images.

4.1 Homogeneous queries

In order to retrieve the facial images of a single person from the database under varying
pose and occlusion conditions (i.e., wearing spectacles), a single example might not be
enough. The same is also true if the database has different expressions and scale. Fig. 2 (eft)
shows the results of using a single query. The database contains ten images of each
individual: with a single query image, our system has been able to retrieve eight images in
the top ten retrieved images. The images, which have been left out of the top ten: the image
at (3td row, 1st column) and image at (3,2) in Fig. 2 (left), have the same individual but with
his head tilted to the right side. The query image given in Fig. 2 (left) was unable to describe
the features present in these left-out images.

SEESE

— @"ﬁ‘r =

_

& HEes ;e 9‘-

Fig. 2. Constrained ICA-based CBIR applied to the ORL database. (Left) A result with a
single query: here the system acts as a face recognition system. (Right) A result using two
images of the same individual with different pose.

228 Tools in Artificial Intelligence

In Fig. 2 (right), we have used two query images: one depicts the individual with a left tilt
whereas the other depicts the same pose but in the opposite direction. All the ten relevant
images have been retrieved from the database and have the highest ranking, as can be seen
from the results. This particular case shows the fact that the constrained ICA-based retrieval
technique is able to fuse features from two independent images and retrieve images in
which the subject has a straight pose.

4.2 Heterogeneous queries

Fig. 3 shows the results obtained for two heterogeneous queries. In the first query depicted
in Fig. 3 (left), two images of two different individuals have been used. One of them is
wearing spectacles whereas the other has none. In the retrieved images, we see that the
initial nine images correspond to the two individuals, where images of the second subject
wearing spectacles are also given a higher rank. Similarly, after the two top rows, the system
has retrieved images of individuals with and without spectacles and bearing some facial
similarity to the individuals depicted in the query images.

Fig. 3. Results for heterogeneous queries.

In the second case shown in Fig. 3 (right), again images of two different individuals are used.
This time, the top query image has an individual who has a beard and spectacles. Whereas
the other individual is clean shaven and has no spectacles. The images retrieved by the
system not only contain the individuals present in the query but also their various
combinations: persons having both beard and spectacles (the same as the individual in the
top query images), persons having only beard, persons wearing only spectacles with no
beard, and persons having none of these (corresponding to the individual depicted in the
lower query image).

4.3 Image retrieval of covered faces

In the case of image retrieval, query images have a profound effect on the output of the
system. It could be the case that the images available at the time of query formulation
contain only partial information about the target image(s). As an example, consider the case
of querying the database when the available face images are covered with some objects such
as sunglasses or muffler. Fig. 4 (left) depicts a case of such a query in which the lower-half of
the subject’s face is covered with muffler. As the results show, the retrieved images are those
in which all the subjects have their face covered in the same manner.

This situation can be alleviated by fusing information from another face image. The
constrained-ICA based image retrieval framework allows for such information fusion

Content-based Image Retrieval Using Constrained Independent Component Analysis:
Facial Image Retrieval Based on Compound Queries 229

through the use of multiple-query images. Fig. 4 (right) shows the results for such a query:
where along with the covered face, we now provide the system with another face image
without occlusion. Based on this partial information, the system is able to retrieve the
desired face image at (3'd row, 4th column). The system also retrieves the same subject,
wearing sunglasses at (4,3).

‘28388 -98E8°932
ARAaR g 09

R LS2Rg8 2 g4
-£84328 ¥ lage
‘288868 'Beae

Fig. 4. Constrained ICA-based CBIR applied to the Aleix Face database (Martinez &
Benavente, 1998). Two results are shown with a partially covered query image (left) and
augmented query images with a normal face (right).

=D DD

a
£
A
i

4.4 Performance analysis

We conducted one hundred simulations of the system with random query formulations for
the homogeneous query case. A hard similarity evaluation was used: only the retrieved
images pertaining to the same individual as depicted in the query were considered relevant
as opposed to (Basak et al., 2006) where it was assumed that user feedback is available.
Simple measures of precision (Baeza-Yates & Ribeiro-Neto, 1999) and recall (Baeza-Yates &
Ribeiro-Neto, 1999) have been used to evaluate the efficiency of the system:

precision = NI%VR (7)
recall = N%RD 8)

where Np; is the number of relevant images in the retrieved images, N the total number
of retrieved images, and N, the total number of relevant images in the database. In the
case of Fig. 2 (a), Precision = 10/25 and Recall = 10/10. Note that, when N, equals Npp

the two measures become equal. This is the break-even point of the system and indicates its
overall accuracy.

The evaluation measures for queries consisting of one, two, and three images are shown in
Fig. 5. In the figure, T1, T2, and T3 represent the break-even points of the system for the
queries formulated from one, two, and three images respectively. In the case of single-image
queries, the system has achieved an accuracy of 76%. Whereas, in the case of compound
queries composed of two and three images, this accuracy increases to 80% and 90%
respectively. In contrast to the conventional systems, the constrained ICA-based retrieval

230 Tools in Artificial Intelligence

system achieves this higher level of performance without any feature-extraction and offline-
learning.

Precision { Recall

Precision

——P1
—&—Ri
——F2
o1k -¥-R2

-3 -R3

0 1 1
5 10 15 20 25
Number of Retrieved Images

Fig. 5. Performance evaluation on homogeneous queries. The graph shows the precision (P)
and recall (R) values for queries formulated with 1, 2, and 3 images.

5. Conclusion

In this work, we have proposed a new technique of facial image retrieval based on
constrained ICA. Our technique requires no offline learning, pre-processing, and feature
extraction. The system has been designed so that none of the user-provided information is
lost, and in turn more semantically accurate images can be retrieved. As our future work,
we would like to test the system in other domains such as the retrieval of chest x-rays and
CT images.

6. Acknowledgement

This research was supported by the MKE (Ministry of Knowledge Economy), Korea, under
the ITRC (Information Technology Research Center) support program supervised by the
IITA (Institute of Information Technology Advancement) (II'T A-2008-(C1090-0801-0002)).

7. References

Baeza-Yates, R. A. & Ribeiro-Neto, B. A. (1999). Modern Information Retrieval. ISBN:
020139829X, Addison-Wesley.

Basak, J.; Bhattacharya, K. & Chaudhury, S. (2006). Multiple Exemplar-Based Facial Image
Retrieval Using Independent Component Analysis. IEEE Transactions on Image
Processing, 15, 12, (December 2006) 3773-3783, ISSN: 1057-7149.

Content-based Image Retrieval Using Constrained Independent Component Analysis:
Facial Image Retrieval Based on Compound Queries 231

Belongie, S.; Malik, J. & Puzicha, J. (2002). Shape matching and object recognition using
shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 4,
(April 2002) 509-522, ISSN: 0162-8828.

Carson, C.; Belongie, S., Greenspan, H. & Malik, J. (2002). Blobworld: Image segmentation
using expectation-maximization and its applications to image querying. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24, 8, (August 2002) 1026-
1038, ISSN: 0162-8828.

Chen, Y,; Li, J. & Wang, J. Z. (2004). Machine Learning and Statistical Modeling Approaches to
Image Retrieval. ISBN: 1402080344, Kluwer Academic Publishers.

Cichoki, A.; Thawonmas, R. & Amari, S. (1997). Sequential blind signal extraction in order
specified by stochastic properties. Electronics Letters, 33, 1, (Janunary 1997) 64-65,
ISSN: 0013-5194.

Datta, R.; Li, J. & Wang, J. Z. (2005). Content-Based image retrieval - approaches and trends
of the new age. Proceedings of the 7th ACM SIGMM International Workshop on
Multimedia Information Retrieval. Singapore, November 2005.

Deng, Y.; Manjunath, B. S., Kenney, C., Moore, M. S. & Shin, H. (2001). An efficient color
representation for image retrieval. IEEE Transactions on Image Processing, 10, 1,
(January 2001) 140-147, ISSN: 1057-7149.

Hadjidemetriou, E.; Grossberg, M. D. & Nayar, S. K. (2004). Multiresolution histograms and
their use for recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26, 7, (July 2004) 831-847, ISSN: 0162-8828.

Hyvirinen, A.; Karhunen,]J. & Oja, E. (2001). Independent Component Analysis. ISBN:
047140540X, Wiley-Interscience.

Hyvérinen, A. & Oja, E. (1996). Simple neuron models for independent component analysis.
International Journal of Neural Systems, 7, 6, (February 1996) 671-687, ISSN: 0129-
0657.

Jeong, S.; Won, C.S. & Gray, R. M. (2004). Image retrieval using color histograms generated
by Gaussian mixture vector quantization. Computer Vision and Image Understanding,
9,1-3, (April 2004) 44-66, ISSN: 1077-3142.

Liu, C. (2004). Enhanced independent component analysis and its application to content
based face image retrieval. IEEE Transactions on Systems, Man, and Cybernetics-Part
B: Cybernetics, 34, 2, (April 2004) 1117-1127, ISSN: 1083-4419.

Lu, W. & Rajapakse, J. C. (2005). Approach and applications of constrained ICA. IEEE
Transactions on Neural Networks, 16, 1, (January 2005) 203-212, ISSN: 1045-9227.

Martinez, A. M. & Benavente, R. (1998). The AR Face Database. CVC Technical Report #24,
June 1998.

Pentland, A.; Picard, R. W. & Sclaroff, S. (1994). Photobook: tools for content-based
manipulation of image databases. In Proc. SPIE Storage and Retrieval for Image and
Video Databases 11, San Jose, CA, USA, February 1994.

Petrakis, E. G. M.; Diplaros, A. & Milios, E. (2002). Matching and retrieval of distorted and
occluded shapes using dynamic programming. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24, 11, (November 2002) 1501 - 1516, ISSN: 0162-
8828.

Rui, Y.; Huang, T. S., Ortega, M. & Mehrotra, S. (1998). Relevance feedback: A power tool for
interactive content-based image retrieval. IEEE Transactions on Circuits and Systems
for Video Technology, 8, 5, (September 1998) 644-655, ISSN: 1051-8215.

232 Tools in Artificial Intelligence

Samaria, F. & Harter, A. (1994). Parameterization of a stochastic model for human face
identification. Proceedings of 2nd IEEE Workshop on Applications of Computer Vision,
Sarasota FL, December 1994.

Shi, J. & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22, 8, (August 2000) 888-905, ISSN: 0162-
8828.

Tahaghoghi, S. M. M.; Thom, J. A. & Williams, H. E. (2001). Are two pictures better than
one?. Proc. of the 12th Australasian Database Conference, pp. 138-144, Gold Coast,
Queensland, Australia, January 2001.

Wang, J. Z; Li,]. & Wiederhold, G. (2001). SIMPLIcity: Semantics-sensitive integrated
matching for picture libraries. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 23, 9, (September 2001) 947-963, ISSN: 0162-8828.

14

Text Classification Aided by Clustering:
a Literature Review

Antonia Kyriakopoulou
Athens University of Economics and Business
Greece

1. Introduction

Supervised and unsupervised learning have been the focus of critical research in the areas of
machine learning and artificial intelligence. In the literature, these two streams flow
independently of each other, despite their close conceptual and practical connections. In this
work we exclusively deal with the text classification aided by clustering scenario. This
chapter provides a review and interpretation of the role of clustering in different fields of
text classification with an eye towards identifying the important areas of research. Drawing
upon the literature review and analysis, we discuss several important research issues
surrounding text classification tasks and the role of clustering in support of these tasks. We
define the problem, postulate a number of baseline methods, examine the techniques used,
and classify them into meaningful categories.

A standard research issue for text classification is the creation of compact representations of
the feature space and the discovery of the complex relationships that exist between features,
documents and classes. There are several approaches that try to quantify the notion of
information for the basic components of a text classification problem. Given the variables of
interest, sources of information about these variables can be compressed while preserving
their information. Clustering is one of the approaches used in this context. In this vein, an
important area of research where clustering is used to aid text classification is the area of
dimensionality reduction. Clustering is used as a feature compression and/or extraction
method: features are clustered into groups based on selected clustering criteria. Feature
clustering methods create new, reduced-size event spaces by joining similar features into
groups. They define a similarity measure between features, and collapse similar features
into single events that no longer distinguish among their constituent features. Typically, the
parameters of the cluster become the weighted average of the parameters of its constituent
features. Two types of clustering have been studied: i) one-way clustering, i.e. feature
clustering based on the distributions of features in the documents or classes, and ii) co-
clustering, i.e. clustering both features and documents.

A second research area of text classification where clustering has a lot to offer, is the area of
semi-supervised learning. Training data contain both labelled and unlabelled examples.
Obtaining a fully labelled training set is a difficult task; labelling is usually done using
human expertise, which is expensive, time consuming, and error prone. Obtaining
unlabelled data is much easier since it involves collecting data that are known to belong to

234 Tools in Artificial Intelligence

one of the classes without having to label them. Clustering is used as a method to extract
information from the unlabelled data in order to boost the classification task. In particularly
clustering is used: i) to create a training set from the unlabelled data, ii) to augment the
training set with new documents from the unlabelled data, iii) to augment the dataset with
new features, and iv) to co-train a classifier.

Finally, clustering in large-scale classification problems is another major research area in
text classification. A considerable amount of work is done on using clustering to reduce the
training time of a classifier when dealing with large data sets. In particular, while SVM
classifiers (see (Burges, 1998) for a tutorial) have proved to be a great success in many areas,
their training time is at least O(N2) for training data of size N, which makes them non
favourable for large data sets. The same problem applies to other classifiers as well. In this
vein, clustering is used as a down-sampling pre-process to classification, in order to reduce
the size of the training set resulting in a reduced dimensionality and a smaller, less complex
classification problem, easier and quicker to solve. However, it should be noted that
dimensionality reduction is not accomplished directly using clustering as a feature
reduction technique as discussed earlier, but rather in an indirect way through the removal
of training examples that are most probably not useful to the classification task and the
selection of the most representative redundant training set. In most of the cases this involves
the collaboration of both clustering and classification techniques.

The chapter is organized as follows: the next section presents a review of the literature on
text classification aided by clustering. It provides a comprehensive summary of the
alternative views and applications of clustering discussed above and their implications for
text classification. A broader perspective on clustering and text classification research is then
provided by discussing important research themes that emerge from the review of the
literature and by classifying them into meaningful concept groups. We conclude by pointing
out open issues and limitations of the techniques presented.

2. The literature review

2.1 Clustering as a feature compression and/or extraction method
Clustering as a feature compression and/or extraction method includes: i) one-way
clustering, and ii) co-clustering.

2.1.1 One-way clustering (clustering features)

In text classification using one-way clustering, a clustering algorithm is applied prior to a
classifier to reduce feature dimensionality by grouping together “similar” features into a
much smaller number of feature clusters, i.e. clusters are used as features for the
classification task replacing the original feature space. A crucial stage in this procedure is
how to determine the similarity of features. Three main clustering methods have been
applied in the literature: information bottleneck, distributional clustering, and divisive
clustering.

An important feature clustering method that formulates a principle for the extraction and
efficient representation of relevant information is the information bottleneck (IB) method
(Tishby et al., 1999). The objective of the IB method is to extract the information from one
variable X that is relevant for the prediction of another variable Y. In other words, the
method finds an efficient compressed representation of the variable X, denoted X', such that

Text Classification Aided by Clustering: a Literature Review 235

the predictions of Y from X through X’ is as close as possible to the direct prediction of Y
from X. The compactness of the representation is determined by the mutual information
I(X;X’) while the quality of the clusters is measured by the fraction of information they
capture about Y, that is I(X";Y)/I(X;Y). Obviously there is a trade-off between compressing
the representation and preserving meaningful information. The desirable is to keep a fixed
amount of meaningful information about the relevant variable, Y, while minimizing the
number of bits from the original variable X (maximizing the compression). In an alternative
agglomerative implementation of the IB method, (Slonim & Tishby, 1999) attain maximum
mutual information per cluster between feature data and given categories. This
implementation can be considered as a bottom-up hard implementation of the original top-
down soft hierarchical IB method. They demonstrate the algorithm on a subset of
20Newsgroups corpus, achieving compression by 3 orders of magnitude while maintaining
about 90% of the original mutual information. The IB clustering method with its variations
is used in the context of text classification by many authors. In this vein the classifier is
applied in a reduced space where features represent clusters.

More specifically, in (Slonim & Tishby, 2001) the IB clustering method is used together with
the Naive Bayes (NB) classifier. First, the feature clusters that preserve the information
about the classes as much as possible are found using the agglomerative IB method. Then
these clusters are used to represent the documents in a new, low dimensional feature space
and the NB classifier is applied on this reduced space. Results from 20Newsgroups corpus
show that when the size of the data sets is large, using feature clusters does not improve
significantly the classification performance. However, when a small sample training set is
used the method yields a significant improvement in classification accuracy, from 5% to
18%, compared to using the original feature space. (Verbeerk, 2000a, 2000b) applies the
minimum description length (MDL) (Rissanen, 1989) principle to the agglomerative
algorithm of (Slonim and Tishby, 2001) in order to define the number of clusters to be used
for the classification task.

(Bekkerman et al., 2001, 2003) compare two classification schemes based on two
representations: the simple, typical bag-of-words (BOW) representation (Salton & McGill,
1983) together with mutual information feature selection, and a representation that is based
on feature clusters computed via the IB method. The comparison is performed over 20NG,
Reuters-21578 and WebKB with SVMs used for the classification task. The results of the
experiments are contradictory revealing a sensitivity of the algorithm to the datasets.
(Mubaid & Umair, 2006) use the IB clustering method with a least squares (Felici &
Truemper, 2002) classifier. The method has been tested with the WebKB, 20NG and Reuters-
21578 datasets and is compared against SVM. The experimental results show that the
performance of the method is equally good and in some cases outperforms SVM, especially
when there is limited training data.

(Baker & McCallum, 1998) apply distributional clustering as a feature clustering method for
text classification. Distributional clustering (Pereira et al, 1993) is a special case of the
general IB clustering algorithm as it is shown in (Slonim and Tishby, 2001). The similarity
between two features, f; and f; , is measured as the similarity between the class variable C
distribution they induce: P(C|f;) and P(C|f;). In the case of text classification, the similarity
of two features is the similarity between their joint distributions with the category variable.
For clustering this means that features with similar distributions over the classes (should)
belong to the same cluster. Intuitively, if two different features have similar distributions

236 Tools in Artificial Intelligence

over the classes, they will play a similar role in the classification process, and thus might as
well be clustered together. Using a Naive Bayes classifier for the classification task, they
compare their method with feature selection methods such as Latent Semantic Indexing,
class-based clustering, mutual information, and Markov-blanket-based feature selection
(Koller & Sahami, 1996). Their results show that distributional clustering outperforms the
other methods by drastically reducing the number of features, achieving compression by 3
orders of magnitude, while loosing only 2% classification accuracy. An interesting outcome
concerns the application of a feature selection method prior to the feature clustering
method. It actually improves the feature clustering method, suggesting that there is place
for combinations of the two methods.

(Dhillon et al, 2003a) propose an information-theoretic feature clustering algorithm, termed
as divisive clustering, and apply it to text classification. The method derives a global
objective function that explicitly captures the optimality of feature clusters in terms of a
generalized Jensen-Shannon divergence (Lin, 1991) between multiple probability
distributions. Then a fast, divisive algorithm that monotonically decreases this objective
function value is applied. The algorithm has many good qualities. Is optimises over all
clusters simultaneously and it is much faster than the agglomerative strategies proposed by
(Baker & McCallum, 1998) and (Slonim & Tishby, 2001) obtaining better feature clusters.
Experiments using the Naive Bayes and SVM classifiers on the 20 Newsgroups and Dmoz
data sets show that divisive clustering improves classification accuracy especially at lower
number of features. When the training data is sparse, divisive clustering achieves higher
classification accuracy than the maximum accuracy achieved by feature selection strategies
such as information gain and mutual information.

(Lavelli et al., 2004) carry out experiments on feature classification tasks (i.e. grouping
together features according to their meaning into prespecified classes) and feature clustering
tasks in order to compare the two representations. Also, (Lewis, 1992) studies the properties
of clustered feature representations on a text classification task. See (Jain et al., 1988) for a
comprehensive survey on one-way clustering.

2.1.2 Co-clustering (clustering features and documents)

Using co-clustering in text classification, a two-stage procedure is usually followed: feature
clustering and then document clustering. In this way a reduction for both dimensions is
attained.

The double-clustering (DC) algorithm (Slonim & Tishby, 2000) is a co-clustering two-stage
procedure based on the IB method. Intuitively, in the first stage of DC, feature clustering
generates coarser pseudo features, which reduce noise and sparseness that might be
exhibited in the original feature space. Then, in the second stage, documents are clustered as
distributions over the “distilled” pseudo features, and therefore generate more accurate
document clusters. An extension of the DC algorithm, the so called Iterative Double
Clustering (IDC) (Yaniv & Souroujon, 2001) applies the DC algorithm in an iterative
manner. Whenever the first DC iteration succeeds in extracting a meaningful structure of the
data, a number of the next consecutive iterations can continually improve the clustering
quality. This is achieved due to the generation of progressively less noisy data
representations. Experiments conducted on text classification tasks indicate that IDC
outperforms DC and competes even SVM when the training set is small. The works of
(Slonim & Tishby, 2000), (Slonim et al., 2001), (Yaniv & Souroujon, 2001) use heuristic

Text Classification Aided by Clustering: a Literature Review 237

procedures to cluster documents and features independently using an agglomerative
algorithm.

(Dhillon et al, 2002, 2003b) on the other hand, propose an information-theoretic co-
clustering algorithm that intertwines both row (feature) and column (document) clustering.
The algorithm starts with a random partition of rows, X, and columns, Y, and computes an
approximation ¢(X,Y) to the original distribution P(X,Y) and a corresponding compressed
distribution by co-clustering rows and columns intertwined, i.e. the row-clustering
incorporates column-clustering information and vice versa. The algorithm iterates until it
almost accurately reconstructs the original distribution, discovers the natural row and
column partitions and recovers the ideal compressed distribution. Experiments conducted
demonstrate the efficiency of the algorithm especially in the presence of sparsity.

(Dai et al., 2007) extend the co-clustering algorithm of (Dhillon et al.,, 2002, 2003b) and
present a co-clustering classification algorithm (CoCC) that focuses on classifying
documents across different text domains. There is a labelled data set D; from one domain,
called in-domain, and an unlabelled data set D, from a related but different domain, called
out-of-domain, that is to be classified. The two datasets are drawn from different
distributions, since they are from different domains. The algorithm is based on two
assumptions. First, the set C of class labels in D; prescribes the labels to be predicted in D.,.
Second, even though the two domains have different distributions, they are similar in the
sense that similar words describe similar categories, thus, the probability of a class label
given a word is very close in the two domains. The algorithm applies co-clustering between
all features and out-of-domain documents (new tasks) in D,. Feature clustering is
constrained by the labels of in-domain (old) documents Di. The feature clustering part in
both domains serves as a bridge. For the classification task, each out-of-domain cluster is
mapped to a corresponding class label based on the correlation with the document
categories in D;.

The idea of clustering features and documents to improve text classification is also pursued
in (Takamura & Matsumoto, 2002; Takamura, 2003). They empirically show that the
assumption that documents in the same category are generated from an independent
identical distribution is inaccurate, and propose a new method called two-dimensional
clustering to alleviate this problem. According to this method, training examples are first
clustered so that the i.i.d. assumption is more likely to be true and features are also clustered
in order to deal with the data-sparseness problem caused by the high dimensionality of the
feature space. Two classifiers (NB and SVM) are trained on the training examples of each
cluster and the testing examples are classified and assigned the label of the class of the
cluster (all training examples in each cluster are supposed to have the same class label). The
comparison of the method with distributional clustering (Baker & McCallum, 1998) and
feature clustering on Reuters-21578 and 20NG shows promising results.

Table 1 summarizes the methods presented in this section.

2.2 Clustering in semi-supervised classification

Clustering in semi-supervised classification is used as a method to extract information from
the unlabelled data in order to boost the classification task. In particularly clustering is used:
i) to create a training set from the unlabelled data, ii) to augment the training set with new
documents from the unlabelled data, iii) to augment the dataset with new features, and iv)
to co-train a classifier.

238 Tools in Artificial Intelligence

Goal Authors Clustering method
(Baker & McCallum, 1998) Distributional clustering
One-way clustering; (Slonim & Tishby, 2001) 1B
cluster feature space and (Verbeerk, 2000a, 2000b) Agglomerative IB
replace it with a feature | (Bekkerman et al., 2001, 2003) Agglomerative IB
cluster representation (Mubaid & Umair, 2006) B
(Dhillon et al, 2003a) Divisive clustering
(Yaniv & Souroujon, 2001) Iterative double clustering

Information-theoretic co-

(Dhillon et al, 2002, 2003b) .
clustering

Co-clustering: cluster both
features and documents (Dai et al., 2007) Co-clustering classification

(Takamura & Matsumoto,
2002);(Takamura, 2003)

Two-dimensional clustering

Table 1. Clustering as a feature compression and/ or extraction method

2.2.1 Create a training set from the unlabelled data

(Fung and Mangasarian, 2001) propose a model for classifying two-class unlabelled data,
called clustered concave semi-supervised SVM (CVSPVM). First, a k-median clustering
algorithm finds k cluster centres for the unlabelled examples such that the sum of distances
between each example and the closest cluster centre is minimized. Then, examples within a
certain distance from these k cluster centres are treated as representative examples of the
clusters, and hence of the overall dataset, and are given to an expert or oracle to label.
Finally, a linear SVM is trained using this small sample of labelled data. The model is
effectively compared to other methods.

(Li et al., 2004) follow a similar approach where a k-means clustering algorithm is used to
cluster the unlabelled data into a certain number of subsets and to assign corresponding
cluster labels. Then, an SVM classifier is trained on this labelled set.

2.2.2 Augment the training set with new documents from the unlabelled data

The clustering based text classification (CBC) approach (Zeng et al., 2003) improves
classification performance by using unlabelled data, U, to augment the training, labelled
data, L. According to this method a clustering algorithm is first applied to L. For each class,
the centroids of the labelled data are computed and used as the initial centroids for k-means.
The k value for k-means is set to the number of classes in the classification task. Accordingly,
the label of each centroid is equal to the label of the corresponding examples of each class.
Then, k-means runs for both L and U and k clusters are created. The most confident
examples from each cluster (i.e. the ones nearest to the cluster’s centroid) are added to L.
This is considered to be a soft-constrained version of k-means because the constraints are not
based on exact examples but on their centroid, thus reducing the bias in L. Finally, the
augmented L and the rest of U are used to train and test a Transductive SVM (TSVM)
classifier. Their experimental results demonstrate that CBC outperforms existing algorithms,
such as TSVMs and co-training, especially when the size of the labelled dataset is very small.

Text Classification Aided by Clustering: a Literature Review 239

(Chapelle et al., 2002) propose a framework to incorporate unlabelled data in a kernel
classifier based on the “cluster assumption”, i.e. nearby points are likely to have the same
class label, and two points are likely to have the same class label if they belong to the same
cluster. Using spectral methods (Spielman & Teng, 1996; Ng et al., 2002) they show how to
design kernels such that the induced distance is small for points in the same cluster and
large for points in different clusters. This representation with the points naturally clustered,
is then used to train a discriminative learning algorithm. The testing set, if available during
training, can be considered as unlabelled data; therefore spectral clustering is applied to
training, unlabelled and testing data. Otherwise, an approximation of each testing example
as a linear combination of the training and unlabelled data is computed. The experiments
show encouraging results. The algorithm is applicable to a purely supervised learning task.
(Zhou et al., 2003) also base their method on the “cluster assumption” and apply spectral
clustering to represent the labelled and unlabelled data. The keynote of the method is to let
every labelled point in the representation iteratively spread its label information to its
neighbours until a global stable state is achieved. Then, the label of each unlabelled point is
set to be the class of which it has received most information during the iteration process. The
algorithm demonstrates effective use of unlabelled data in experiments including digital
recognition and text categorization.

2.2.3 Augment the dataset with new features

Unlike direct methods like CBC, which label the unlabelled data, the technique of (Raskutti
et al., 2000a), augments the feature space with new features derived from clustering the
labelled and unlabelled data. A non-hierarchical single-pass clustering algorithm is used to
cluster labelled and unlabelled examples. In order to derive only the useful information
from the clusters, the clusters are sorted by their sizes, and the largest N clusters are chosen
as representatives of the major concepts. Each cluster contributes the following features to
the feature space of the labelled and the testing examples: i) a binary feature indicating if
this is the closest of the N clusters, ii) similarity of the example to the cluster’s centroid, iii)
similarity of the example to the cluster’s unlabelled centroid, i.e. the average of the
unlabelled examples that belong to the cluster, and iv) for each class in the labelled set,
similarity of the example to the cluster’s class I-centroid defined as the average of the
examples in class | that belong to this cluster. The clusters are thought of as higher level
“concepts” in the feature space, and the features derived from the clusters indicate the
similarity of each document to these concepts. The unlabelled data are used to improve the
representation of these concepts. They evaluate the method using SVM classifiers on well-
known corpora, and find significant improvements in the classification performance.

In (Kyriakopoulou & Kalamboukis, 2007) the training and testing sets are augmented with
new features derived from clustering without using unlabelled data. Consider a k-class
categorization problem, (k>=2), with a labelled I-training sample {(x1, y1),...,(x;, y)} of feature
vectors x € R and corresponding labels y; € {1, ..., k}, and an unlabelled m-testing sample
{(x1%,...,xn"} of feature vectors. The approach consists of three steps: clustering, expansion
and classification step. In the clustering step, the number of clusters is chosen to be equal to
k, i.e. the predefined number of classes. A divisive clustering algorithm with repeated
bisections is selected to cluster both training and testing sets. In the expansion step, each
cluster contributes one meta-feature to the feature space of the training and testing sets:
given the total n features that are used in the representation of the I+m feature vectors, and

240 Tools in Artificial Intelligence

the k clusters derived from the clustering step, create meta-features x,+1,...,Xu+r. A document
x in the cluster C; is characterized by the meta-feature x,.;. Finally, in the classification step,
linear SVM/transductive SVM classifiers are trained on the expanded training set and
classify the expanded testing set. Evaluation of this approach using several widely used
corpora indicates that it is extremely useful improving the classifier's performance
especially when the number of the training examples is very small. The algorithm has also
been successfully used in a spam-filtering setting (Kyriakopoulou & Kalamboukis, 2006).
Also, it can be directly applied to a purely semi-supervised task using unlabelled data as an
additional source of information.

In (Takamura, 2003) given the co-occurrences of features and documents of the training set,
the features are first hard clustered. Let H be the reduced matrix resulting from clustering.
The relation between a feature vector d and its reduced vector s is Hd=s. Next, the two
vectors are concatenated into a vector d’. Then, the testing set is classified with SVM using d’
as input. Takamura explains how the expansion of the feature space is equivalent to using a
special kernel in the original feature space, where the form of the mapping to a higher
dimensional space depends on the given data. Experiments conducted on Reuters-21578 and
20NG show that the method is effective especially when the training set is small.

2.2.4 Co-training

In general, a co-training algorithm produces an initial weak classifier from a few labelled
examples and later uses unlabelled data to improve its performance. The idea was first
introduced in (Blum & Mitchell, 1998). The key defining features of this problem class are
that (i) the features can be factored into two (or more) components, i.e. there are two distinct
views of an example x, which are redundantly sufficient to correctly classify the example,
and (ii) the two components are independent and identically distributed, so that the features
in one view of the example x do not always co-occur with the features in the second view. A
different approach to co-training is given in (Goldman & Zhou, 2000). See (Abney, 2002;
Seeger, 2000) for a comprehensive survey on co-training.

The use of “concepts” derived by clustering as in (Raskutti et al., 2000a) provides an
alternate description of the data, similar to the redundant views used in co-training. In this
vein, (Raskutti et al., 2002b) present a co-training strategy to make use of unlabelled data.
Two predictors are trained in parallel, and each predictor labels the unlabelled data to train
the other predictor in the next round. The process repeats for a number of iterations. The
predictors are SVMs, one trained using the original word presence features view, and the
other trained with solely the new cluster features that are derived by clustering both
labelled and unlabelled data. The new features include membership information as well as
similarity to clusters’ centroids for the more populous clusters as described in their previous
work (Raskutti et al., 2000a). This new feature space creates an alternative redundant view
of the data as imposed by the co-training framework of (Blum & Mitchell, 1999). They
evaluate the method using SVM classifiers on Reuters-21578, 20Newsgroups, and WebKB
corpora. Their results are encouraging and confirm previous findings.

A different co-training approach is based on co-training between clustering and
classification (Kyriakopoulou, 2007). Unlike the procedure in (Blum & Mitchell, 1999) it does
not require a priori the existence of two distinct properties of the underlying data
distribution in order to work. Also, it doesn’'t use two different supervised learning
algorithms that complement each other as in (Goldman & Zhou, 2000). Instead, there is one

Text Classification Aided by Clustering: a Literature Review 241

original feature space, which is used interchangeably by an unsupervised and a supervised
learning algorithm, and each algorithm augments it by propagating its results in the form of
corresponding meta-features. Specifically, following the procedure in (Kyriakopoulou &
Kalamboukis, 2007), at every round of co-training a “hard” clustering algorithm groups the
examples of the training and testing sets into k clusters. The examples that belong to the
same cluster are augmented with a meta-feature that denotes membership information to
this cluster. Then a separate SVM classifier for each class of the classification task is build
from the augmented feature space. Each SVM classifier returns a prediction for each
example, which is interpreted as the likelihood that the example belongs to a certain class.
The predictions of the underlying classifiers for each example are compared and each
example is assigned the label of the class with the highest prediction. The labels information
is translated into meta-features that are used to augment the feature space and the algorithm
iterates. According to experimental findings the combination of clustering with classification
in a co-training setting, and the addition of corresponding meta-features, are successfully
used as an additional source of information about margins. The experimental results on
widely used datasets demonstrate the superiority of the approach over SVMs.

Table 2 summarizes the methods presented in this section.

2.3 Clustering in large-scale classification problems

Clustering in large-scale classification problems is used as a down-sampling pre-process to
classification, in order to select the most representative training examples according to: i)
clustering and information from the resulting hyperplane of a SVM initially trained on
cluster representatives, ii) clustering and prior class label information, iii) a combination of
cases i and ii, iv) solely clustering results, and v) problem decomposition.

2.3.1 Select most representative training data according to clustering and information
from the resulting hyperplane of a SVM initially trained on cluster representatives
In this case, first, the training examples are clustered. Then, cluster representatives (clusters’
centroids) are used to train an initial SVM classifier. Next, follows a process that selects the
clusters that contain the most representative training examples according to a combination
of the clustering and classification results. Usually, this process is called declustering and
corresponds to an expansion of the training set according to clustering (i.e. the examples of a
cluster are no longer represented by the cluster’s centroid; instead all the examples are
considered). Lastly, a SVM is trained on the new training set. The following algorithms
differ in the selection of the cluster representatives, and the way the clustering and
classification results are combined in order to select the clusters that contain the best
candidates from the training examples. In concluding, they exploit the distributional
properties of the training data, i.e. the natural clustering of the training data, and the overall
layout of these clusters relative to the decision boundary of SVMs.
o The clustering-based SVM (CB-SVM) method (Yu et al., 2003) uses the hierarchical
clustering technique named BIRCH (Zhang et al., 1996) to cluster the training examples.
The key idea of CB-SVM is to use a hierarchical clustering algorithm to get a finer
description of the training data closer to a SVM decision boundary and a coarser
description away from it. Let T, and T, be the hierarchical trees built from the positive
and the negative training examples respectively. Then, a SVM is trained from the
centroids of the root nodes (i.e. clusters) of T, and T,. According to the solution of the

242

Tools in Artificial Intelligence

SVM, the clusters whose centroids are support vectors for the SVM and the clusters that
are very close to the support vectors (satisfying a certain distance constraint) are
declustered into the finer level using the tree structure. These clusters may introduce
new support vectors for the SVM, and are thus accumulated into the training set. A new
SVM is constructed from the augmented training set, and the declustering process is
repeated until nothing is accumulated, i.e. this selective declustering procedure reaches
leafs” level. Experiments show that CB-SVM is scalable for very large data sets while
also generating high classification accuracy.

Clustering/
Goal Authors Classification |Basic method
method
Create a (Fung & k-means/linear | Unlabelled data selected by k-means
training set | Mangasarian, 2001) |SVM are labelled by an oracle or expert.
from the
. k-means/linear | Unlabelled data selected by k-means
unlabelled y
data (Lietal, 2004) SVM are labelled by cluster labels.
Augment Training and unlabelled data are
the training clustered. Unlabelled data nearest to
set with (Zengetal, 2003) | k-means/TSVM clusters’ centroids are added to the
new training set.
documents (Chapelle et al.,) . .
from the 2002) Spectral Creation of diagonal matrix that
unlabelled analysis contains clustering information.
data (Zhou et al., 2003)
Ei(g;lrchical Training and unlabelled data are
(Raskutti et al., sinele-pass clustered. Each cluster contributes
2000a) &P new features to the feature space of
clustering . .
Augment algorithm/SVM the training and testing examples.
the dataset The feat ¢ the traini t
with new (Takamura, 2003) | hard clustering ¢ features of the training set are
features clustered.
(Kyriakopoulou & | divisive Training and testing data are
Kalamboukis, 2006; | clustering clustered. Each cluster contributes a
Kyriakopoulou & |algorithm new feature to the feature space of
Kalamboukis, 2007) | /SVM the training and testing examples
non-
. hierarchical . .
(Raskutti et al., sinele-pass Clustering creates a redundant view
2000b) §eP in a co-training framework
Co-trainin clustering
& algorithm/SVM
(Kyriakopoulou, leISIV.e Clustering is used as unsupervised
2007) clustering classifier in a co-training framework
algorithm/SVM '

Table 2. Clustering in semi-supervised classification

Text Classification Aided by Clustering: a Literature Review 243

e (Awad et al., 2004) also apply a hierarchical clustering algorithm, called dynamically
growing self-organizing tree (DGSOT) (Luo et al.), as a reduction method of the training
set for SVM classification. The authors propose two alternatives to train a SVM for two
classes based on the combination of DGSOT and SVM. The first approach generates two
hierarchical trees, one for each class, up to a certain level, i.e. they are not fully grown.
Then, a SVM is trained on the clusters’ references of the trees top nodes (clusters). After
computing the margin, the nodes that contain a support vector are declustered by
adding their children nodes to the training set. The process of training and declustering
is repeated until a stopping criterion holds. In the second approach, one more step is
added to the previous procedure before declustering. Specifically, the distance between
nodes in the training set is measured. Since the distance between nodes lying in the
decision boundary area is the least, the nodes having distance more than the average
are excluded. Unlike the approach of (Yu et al., 2003), that first builds the hierarchical
tree and then starts to train the SVM, in this approach clustering goes in parallel with
training the SVM. During the tree construction and declustering process, DGSOT re-
distributes data among newly added children of a node and re-evaluates clustering
results. The growth of the tree is controlled, because non-support vector nodes will be
stopped from growing, and only support vector nodes will be allowed to grow.
Experiments on several datasets against other relevant techniques give contradictory
results. The second approach outperforms the rest but needs more time. Also, the
algorithm is sensitive on the initial small training set, giving high error rates at the
beginning of the training process, which is not fully recovered till the end.

e ClusterSVM (Boley & Cao, 2004) partitions the training data into pair-wise disjoint
clusters using adaptive clustering. Then, a SVM is trained using the centroids of these
clusters. Based on this initial SVM, it can be judged whether a cluster contains either
only support vectors or only non-support vectors. The clusters that contain both
support vectors and non-support vectors based on the decision boundary of the initial
SVM are repeatedly divided into sub-clusters that approximately contain either only
non-support vectors or only support vectors. Clusters having only non-support vectors
are replaced by their representatives. Experiments on artificial and real world datasets
prove the efficiency of clusterSVM over popular algorithms such as SMO.

e A similar approach named support cluster machines (SCMs) (Yuan et al., 2006) uses k-
means to partition the negative training examples into disjoint clusters, and then trains
an initial SVM using the positive examples and the representatives of the negative
clusters. With the global picture of the initial SVM, it can approximately identify the
support vectors and non-support vectors. A shrinking technique is then used to remove
the examples, which are most probably not support vectors. This procedure of
clustering and shrinking is performed iteratively until some stopping criteria are
satisfied.

o The kernel based incremental clustering algorithm (KBIC) method uses a scalable
kernel based clustering algorithm for the selective sampling based training of non-
linear SVMs (Asharaf et al., 2007). This is a two-phase algorithm. In the first phase,
KBIC is used to generate a high level description of the data (clusters) in an appropriate
kernel induced feature space. The cluster prototypes obtained are used to train a SVM
and the corresponding support vectors are identified. In the second phase, a
declustering process that expands all the clusters near the boundary creates the training
set for the subsequent training of a SVM.

244 Tools in Artificial Intelligence

2.3.2 Select most representative training data according to clustering and prior class

label information

In this case, the selection of the representative training examples is determined by the

composition of the clusters according to the available class label information.

¢ (Almedia et al., 2000) group the training data in k clusters using k-means. Clusters
formed only by examples that belong to the same class label are disregard and only
cluster centres are used. On the other hand, clusters with examples belonging to more
than one class labels are unchanged and all training examples are considered. Clusters
with mixed composition are likely to happen near the separation margins and they may
hold some support vectors. Consequently, the number of training examples for the
SVM training is smaller and the training time can be decreased without compromising
the generalization capability of the SVM.

o (Fang et al., 2002) apply a clustering approach based on principal component analysis
named principle direction divisive partitioning (PDDP) to cluster the training examples.
The goal is to minimize noise effects in the training procedure by using those examples
that are part of pure clusters, i.e. the ones that are dominated by one of the categories.
The training examples that are clustered in pure nodes are used to seed a Naive Bayes
classifier. The authors evaluate the performance of the methods against several
interesting variants and show improvements on classification performance.

e (Awad et al, 2004) apply the DGSOT hierarchical clustering algorithm to generate a
hierarchical clustering tree from the training examples, and determine the most
qualified nodes to decluster based on the heterogeneity of nodes. Heterogeneous nodes
are those nodes that have data points assigned to them from different classes, thus, they
are more likely to lie in the marginal area between two classes. Then, a SVM is trained
on the training examples of the declustered nodes. Experiments on several datasets
against other relevant techniques did not give satisfactory results.

e (Cervantes et al., 2006) apply SVM classification based on fuzzy partitioning clustering.
The original training set is fuzzy clustered into k clusters with respect to a given
criterion. The clusters obtained have elements of mixed category or uniform category.
SVM is trained on the centroids of the clusters with mixed category elements, because
these elements have bigger likelihood to be support vectors. Getting the clusters closer
to the decision hyperplane and eliminating the clusters far away reduces the original
data set. Then a de-clustering is applied to the reduced clusters and subsets from the
original data set are obtained. Finally, SVM is used again and finishes classification. The
experimental results show that the number of support vectors obtained using the SVM
classification based on the fuzzy partitioning is similar to the normal SVM approach while
training time is significantly smaller. However, the number of the clusters k is user-defined
in order to avoid computational cost for determining the optimal number of clusters.

o (Lietal, 2007) propose the support cluster machine algorithin (SCM) to effectively deal
with large-scale classification problems. It is a classification model built for clustering.
Based on the learning framework of SVMs it defines clustering as a dual optimisation
problem with a decision function formulised following the same steps as in SVMs. The
goal is to maximize the margin between the positive and the negative clusters of a class,
i.e. between clusters obtained only from the positive examples of a class and clusters
obtained only from the negative examples accordingly. The examples are clustered
using the threshold order-dependent (TOD) clustering algorithm (Friedman & Kandel,
1999). After clustering (or training phase), the training support clusters obtained can be
directly used in the decision function to measure the similarity between a cluster and a
testing example. The experimental results confirm that the SCM is very effective for

Text Classification Aided by Clustering: a Literature Review 245

large-scale classification problems due to significantly reduced computational costs for
both training and testing and comparable classification accuracies.

2.3.3 Select most representative training data according to clustering, information

from the resulting hyperplane of a SVM initially trained on cluster representatives,

and prior class label information

This case combines the two previous cases.

e Minimum enclosing ball clustering (MEB) (Cervantes et al., 2008) employs the concept
of core-sets (Badoiu et al., 2002)(Kumar et al., 2003) over the training examples, L. The
obtained clusters are of the following type: (i) clusters with only positive training
examples, Q*, (ii) clusters with only negative training examples, £, and (iii) clusters
with both positive and negative examples (or mix-labelled), Q,,. MEB is used as a data
selection method. To this end, only the centres of the Q* and Q- clusters and all the
examples of the mix-labelled Q,, clusters are selected to form a reduced training set, L,,
used to train a SVM classifier with the sequential minimal optimisation (SMO)
algorithm (Platt, 1998). Then, a de-clustering process augments L, by including the
examples in the clusters whose centres are support vectors of the classifier's solution.
Taking the recovered data as new training data set, SVM classification with SMO algorithm
is used again to get the final decision hyperplane. The experimental results show that the
accuracy obtained by the approach is very close to the classic SVM method, while the
training time is significantly shorter, enabling it to successfully handle huge data sets.

2.3.4 Select most representative training data according to solely clustering results
Various assumptions about the clustering results and the information they carry are
adopted in order to build the redundant training set.

e (Sunetal., 2004) use k-means to cluster the input space. Because the data that decisively
affect SVM classifiers are those at boundary of each class, it is assumed that the data
residing on the boundaries of the clusters are critical data that together with the
centroid of each cluster are used to train a SVM.

e (Wang et al., 2005) also combine the k-means clustering technique with SVM to build
classifiers. K-means runs on the original training data and all cluster centres are
regarded as the compressed data for building classifiers. Accordingly, SVM classifiers
are built on the compressed data. The experiments show that it is possible for the
algorithm to build classifiers with many fewer support vectors and higher response
speed than SVM classifiers. Moreover, testing accuracy of the resulting classifiers can be
guaranteed to some extent. This method also employs a parameter tuning method to
achieve the required generalization performance at acceptable response time.

2.3.5 Problem decomposition

There are several decomposition methods that try to modify the SVM algorithm so that it

can be applied to large datasets.

o The clustering support vector machines model (CSVMs model) (He at al.,, 2006) is
different from the previous algorithms in this section in that all the training examples
are kept during the training process. Using the theory of granularity computing the
CSVMs model is able to divide a complex problem into a series of smaller and
computationally simpler problems. To accomplish this a k-means clustering algorithm
is used to cluster the training set into sub-clusters upon which SVMs are subsequently
trained in parallel.

246

Tools in Artificial Intelligence

Table 3 summarizes the results from this section.

Goal Authors S;;tsgng Training sample selected or removed
The clusters whose centroids are support
vectors for the SVM and the clusters that are
Select most (Yuetal, 2003) BIRCH very close to the support vectors are
rep‘re‘sentatlve declustered
;111:1_1;%1 di? dynamically i) Clusters containing support vectors are
N & (Awad etal., 2004) |growing self- declustered
clustering and 3 i) Di 1 d
information from organ}zmg tree |ii) Distant ¢ 1'15ters are remove
the resulting (Boley & Cao, 2004) adaptlYe Clusters having onl.y non—suppm.rt vectors
hyperplane of a clustering are replaced by their representatives
SVM initially (Yuan etal, 2006) |k-means Clusters having only non-support vectors
trained on cluster are removed
representatives (1) %(ernel based Clusters near the boundaries are
(Asharaf et al., 2007) |incremental
clustering declustered
Clusters formed by examples that belong to
the same class label are disregard and only
(Almedia et al., 2000) |k-means cluster centres are used. All training
examples from clusters of mixed
composition are considered.
Select most principle
representative (Fang et al., 2002) direction divisive Clusters formed by examplgs that belong to
training data partitioning the same class label are considered.
according to (Cervantes et al fuzzy
lusteri d Y A
;:ilzrezll:si all;lbel 2006) SfS;le.oiﬂlng Clusters of mixed class label composition
information (2) dynamicilly are declustered and all training examples
(Awad et al., 2004) |growing self- are considered.
organizing tree
. Support clusters obtained in the training
(Li et al, 2007) 210 (Ii‘iil}tlr::ferlng phase are directly used in the decision
& function
Select " The centroids of clusters with only positive
elect most . or only negative training examples, all the
representative minimum . .
. (Cervantes et al., . examples of clusters with mixed
training data enclosing ball o
according to (1) 2008) clusterin composition, all the examples of the clusters
and (2) 8 8 whose centroids are support vectors are
used.
Select m(t)stt. The centroids and the training data residing
::p're‘senda tlve (Sun et al., 2004) k-means at the boundaries of the clusters are
aining data lected.
according to selecte
solell)tr clustering (Wang et al., 2005) |k-means The centroids of the clusters are selected.
results
Problem clustering All training examples are used. The training
decomposition (He at al., 2006) support vector |set is clustered into subclusters upon which

machines model

SVMs are subsequently trained in parallel.

Table 3. Clustering in large-scale classification problems

Text Classification Aided by Clustering: a Literature Review 247

3. Conclusions and future directions

We presented several clustering methods for dimensionality reduction to improve text
classification. Experiments show that one-way clustering is more effective than feature
selection, especially at lower number of features. Also, when dimensionality is reduced by
as much as two orders of magnitude the resulting classification accuracy is similar to a full-
feature classifier. In some cases of small training sets and noisy features, feature clustering
can actually increase classification accuracy. In the case of IB, various heuristics can be
applied in order to obtain finer clusters, greedy agglomerative hard clustering (Slonim &
Tishby, 1999), or a sequential K-means like algorithm (Slonim et al., 2002). Co-clustering
methods are superior to one-way clustering methods as shown through corresponding
experiments (Takamura, 2003). Benefits of using one-way clustering and co-clustering as a
feature compression and/or extraction method include: useful semantic feature clusters,
higher classification accuracy (via noise reduction), and smaller classification models. The
second two reasons are shared with feature selection, and thus clustering can be seen as an
alternative or a complement to feature selection, although it does not actually remove any
features. Clustering is better at reducing the number of redundant features, whereas feature
selection is better at removing detrimental, noisy features. The reduced dimensionality
allows the use of more complex algorithms, and reduces computational burden. However, it
is necessary to experimentally evaluate the trade-off between soft and hard clustering.
While soft clustering increases the classification model size, it is not clear how it affects
classification accuracy. Other directions for exploration include feature weighting and
combination of feature selection and clustering strategies.

There are four cases of semi-supervised classification using clustering considered in the
area. In the first case, in the absence of a labelled set, clustering is used to create one by
selecting unlabelled data from a pool of available unlabelled data. In the second case, it is
used to augment an existing labelled set with new documents from the unlabelled data. In
the third case, the dataset is augmented with new features derived from clustering labelled
and unlabelled data. In the last case, clustering is used under a co-training framework. The
algorithms presented demonstrate effective use of unlabelled data and significant
improvements in classification performance especially when the size of the labelled set is
small. In most experiments, the unlabelled data come from the same information source as
the training and testing sets. Since the feature distribution of the unlabelled data is crucial to
the success of the method, an area of future research is the effect of the source and nature of
information in the unlabelled dataset and clustering.

Lastly, clustering reduces the training time of the SVM i) by modifying the SVM algorithm
so that it can be applied to large data sets, and ii) by finding and using for training only the
most qualified training examples of a large data set and disqualifying unimportant ones. A
clustering algorithm and a classifier cooperate and act interchangeably and complementary.
In the first case, many algorithms have been proposed (sequential minimal optimisation,
projected conjugate gradient, neural networks amongst others) in order to simplify the
training process of SVM, usually by breaking down the problem into smaller sub-problems
easier to solve. In the second case, the training set is clustered in order to select the most
representative examples to train a classifier instead of using the whole training set. The
clustering results are used differently by the various approaches, i.e. the selection of the
representative training examples follows different methods. Some of the proposed
algorithms manage to decrease the number of training examples without compromising the

248 Tools in Artificial Intelligence

generalization capability of the SVM. However, there were other approaches that gave
contradictory results revealing the difficulty of the problem under examination.

Some methods are applied only on linear problems. Even though some of them can also be
used to train non-linear SVMs, the iterative nature of their cluster generation/exploration
strategy makes them very expensive to be used in large-scale datasets. There is a need for
methods that perform a small number of data scans in order to work. Incremental clustering
can also come in useful. Constructing effective indexing structures for non-linear kernels is
an interesting direction of future work since it has high practical value especially for pattern
recognition of large data sets. Developing an effective indexing structure for high
dimensional problems is an interesting direction of future work.

Another important topic for exploration is the choice of the number of word and/or
document clusters to be used for the classification task. This and various other parameters
are usually defined using various heuristics or are tuned manually. An investigation of
automatic approaches to tune the parameters is also desirable.

This review reveals that the area under research is vivid and that clustering is applied in
many sub-domains of the problem of text classification. The clustering field can, and indeed
must play an important role in enabling effective classification. It is important to invent new
designs that are able to support new forms of collaboration but it is essential that this should
be done only on the basis of a better understanding of what needs to be accomplished. In
this paper, an attempt has been made to achieve such an understanding by abstracting
patterns of current applications of clustering to aid classification. We believe that text
classification aided by clustering is worthy area of focus for information retrieval, machine
learning and artificial intelligence research; both for its direct application and for the insight
it gives into other similar problems. Research should focus on model selection and theoretic
analysis.

4. References

Abney, S., (2002). Bootstraping. Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 360-367.

Almeida, M. B., Braga, A. P., Braga, J. P., (2000). SVM-KM: speeding SVMs learning with a
pnori cluster Selection and k-means. IEEE 6th Brazilian Symposium on Neural
Networks, SBRN 2WO.

Asharaf, S.,, Murty, M. N., Shevade, S. K., (2007). Cluster based training for scaling non-
linear Support Vector Machines. Proceedings of the International Conference on
Computing: Theory and Applications (ICCTA'07).

Awad, M., Khan, L., Bastani, F, Yen, L. L., (2004). An effective support vector machine SVMs
performance using hierarchical clustering, in Proceedings of the 16th IEEE
International Conference on Tools with Artificial Intelligence (ICTAI'04), pp. 663-667.

Badoiu, M., Har-Peled, S., Indyk. P., (2002). Approximate clustering via core-sets, in
Proceedings of the 34th Symposium on Theory of Computing.

Baker L. D., McCallum A. K,, (1998). Distributional clustering of words for text classification,
Proceedings of SIGIR'98, 21st ACM International Conference on Research and
Development in Information Retrieval, pages 96-103, Melbourne, AU. ACM Press,
New York, US.

Bekkerman R., El-Yaniv R., Tishby N., Winter Y., (2001). On Feature Distributional
Clustering for Text Categorization. Proceedings of SIGIR'01, 24th ACM International

Text Classification Aided by Clustering: a Literature Review 249

Conference on Research and Development in Information Retrieval, pages 146-153, New
Orleans, US, ACM Press, New York, US.

Bekkerman R., El-Yaniv R., Tishby, N., Winter Y., (2003). Distributional Word Clusters vs.
Words for Text Categorization, Journal of Machine Learning Research, 3, 1183-1208.

Blum, A., Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. COLT:
Proceedings of the Workshop on Computational Learning Theory.

Boley, D., Cao, D., (2004). Training support vector machine using adaptive clustering. In
Proceeding of 2004 SIAM International Conference on Data Mining.

Burges, C.]J. C,, (1998). A Tutorial on Support Vector Machines for Pattern Recognition. Data
Mining and Knowledge Discovery 2:121 - 167.

Cervantes, J., Li, X., Yu, W., (2006). Support vector machine classification based on fuzzy
clustering for large data sets, in MICAI 2006 Advances in Artificial Intelligence, Lecture
Notes in Computer Science (LNCS), vol. 4293, Springer, Berlin, pp. 572-582.

Cervantes, J., Li, X., Yu, W., Li, K., (2008). Support vector machine classification for large
data sets via minimum enclosing ball clustering. Neurocomputing, Vol. 71, Issue 4-6,
pp- 611-619.

Chapelle, O., Weston, J., Scholkopf, B., (2002). Cluster kernels for semi-supervised learning.
In NIPS, volume 15.

Dai, W., Xue G.R,, Yang, Q., Yu, Y., (2007). Co-clustering based classificaiton for out-of-
domain documents. In Proceedngs of KDD 2007.

Dhillon I, Mallela S., Kumar R., (2002). Enhanced word clustering for hierarchical text
classification, in Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, Edmonton, Alberta, Canada, pp. 191-200.

Dhillon I, Mallela S, Kumar R., (2003a). A Divisive Information-Theoretic Feature
Clustering Algorithm for Text Classification, Journal of Machine Learning Research 3,
1265-1287.

Dhillon I., Mallela S., Modha, S., (2003b). Information theoretic co-clustering. In Proceedings
of the ACM SIGKDD Conference.

Fang, Y., C, Parthasarathy, S. Schwartz, F., (2002). Using Clustering to Boost Text
Classification. In Proceedings of the IEEE ICDM Workshop on Text Mining.

Felici, G., Truemper, K., (2002). A minsat approach for learning in logic domains. Informs.].
Computing, Vol. 14, No. 1.

Friedman, M., Kandel, A. (1999). Introduction to pattern recognition, Chapter Distance
Functions, 70-73. London, UK: Imperial College Press.

Fung, G. and Mangasarian, O.L., (2001). Semi-supervised support vector machines for
unlabeled data classification. Optim. Methods Software. v15 il. 29-44.

Goldman, S., Zhou, Y. (2000). Enhancing supervised learning with unlabeled data. Proc. 17th
International Conf. on Machine Learning, pp. 327-334, Morgan Kaufmann, San
Francisco, CA.

He, J., Zhong, W., Harrison, R., Tai, P. C, Pan, Y., (2006). Clustering support vector
machines and its application to local protein tertiary structure prediction. ICCS
2006, part II,LNCS 3992, pp. 710-717.

Jain, A. K., Dubes, R.C., (1988). Algorithms for Clustering Data. PrenticeHall, Englewood
Clis, New Jersey.

Koller, D., Sahami, M., (1996). Toward optimal feature selection. In proceedings of te 13th
International Conference on Machine Learning (ICML-96).

250 Tools in Artificial Intelligence

Kumar, P., Mitchell,].S.B., Yildirim, A., (2003). Approximate minimum enclosing balls in
high dimensions using core-sets, ACM]. Exp. Algorithmics, 8.

Kyriakopoulou, A., (2007). Using Clustering and Co-training to Boost Classification
Performance. In proceedings of the 19th IEEE International Conference on Tools with
Artificial Intelligence, volume 2, pp. 325-330.

Kyriakopoulou, A., Kalamboukis, T., (2006) Text classification using clustering. In
Proceedings of the ECML-PKDD Discovery Challenge Workshop.

Kyriakopoulou, A., Kalamboukis, T., (2007). Using clustering to enhance text classification.
In Proceedings of the 30th annual international ACM SIGIR conference on Research and
development in information retrieval, pp. 805 - 806

Lavelli, A., Sebastiani, F., Zanoli, R., (2004). Distributional term representations: an
experimental comparison. CIKM 2004: 615-624.

Lewis, D. D., (1992). An Evaluation of Phrasal and Clustered Representations on a Text
Categorization Task. Proceedings of the 15th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval.

Li, B., Chi, M., Fan, J., Xue, X., (2007). Support Cluster Machine. In Proceedings of the 24th
International Conference on Machine Learning, Corvallis, OR.

Li, M., Cheng, Y., Zhao, H., (2004). Unlabeled data classification via support vector machine
and k-means clustering. In Proceedings of the International Conference on Computer
Graphics, Imaging and Visualization, CGIV'04, pp. 183-186.

Lin, J., (1991). Divergence measures based on shannon entropy. IEEE Transactions on
Information Theory, 37 (14):145-51.

Luo, F., Khan, L., Bastani, F., Yen, I.L., Zhou, J., A Dynamical Growing Self-Organizing Tree
(DGSQOT) for Hierarchical Clustering Gene Expression Profiles, The Bioinformatics
Journal, Oxford University Press, UK.

Mubaid, H.A., Umair, S.A., (2006). A new text categorization technique using distributional
clustering and learning logic. IEEE Transactions on Knowledge and Data Engineering,
Vol. 18, No. 9.

Ng, A. Y., Jordan, M. 1., Weiss, Y, (2002). On spectral clustering: Analysis and an algorithm.
In T. Dietterich, S. Becker and Z. Ghahramani (Eds.), Advances in Neural Information
Processing Systems (NIPS), 14.

Pereira F., Tishby N., Lee L., (1993). Distributional clustering of English words, Proceedings of
the 31st Annual Meeting of the Association for Computational Linguistics, p. 183-190.

Platt, J., (1998). Fast training of support vector machine using sequential minimal
optimization. In Advances in Kernel Methods: Support Vector Machine, MIT Press,
Cambridge, MA.

Raskutti, B., Ferra, H., Kowalczyk, A., (2002a). Using Unlabelled Data for Text Classification
through Addition of Cluster Parameters. Proceedings of the Nineteenth International
Conference on Machine Learning, Pages: 514 - 521.

Raskutti, B., Ferra, H., Kowalczyk, A., (2002b). Combining clustering and co-training to
enhance text classification using unlabelled data, Proceedings of the eighth ACM
SIGKDD international conference on Knowledge discovery and data mining.

Rissanen, J, (1989) Stochastic Complexity in Statistical Enquiry. World Scientific.

Salton, G. and McGill, M. J. (1983). Introduction to Modern Information Retrieval. McGraw-
Hill, New York, NY.

Text Classification Aided by Clustering: a Literature Review 251

Seeger, M. (2000). Input-dependent regularization of conditional density models.
Technical Report. http:/ /www .kyb.tuebingen.mpg.de/bs/people/seeger/

Slonim, N., Tishby, N., (1999). Agglomerative Information Bottleneck. Advances in Neural
Information Processing Systems, p. 617-623.

Slonim, N., Tishby, N., (2000). Document Clustering using Word Clusters via the
Information Bottleneck Method. Inn Proceedings of the ACM SIGIR.

Slonim, N., Tishby, N., (2001). The power of word clustering for text classification. In
Proceedings of the European Colloquium on IR Research, ECIR.

Slonim, N., Friedman, N., Tishby, N., (2001). Agglomerative Multivariate Information
Bottleneck. Neural Information Processing Systems (NIPS 01).

Slonim, N., Friedman, N., Tishby, N., (2002). Unsupervised document classification using
sequential information maximization. In Proc. of SIGIR, pages 129-136.

Spielman, D. Teng, S. (1996). Spectral partitioning works: planar graphs and finite element
meshes. In 37th Annual Symposium on Foundations of Computer Science. Burlington,
VT, pp. 96-105. Los Alamitos, CA: IEEE Comput. Soc. Press.

Sun, S., Tseng, C. L., Chen, Y. H., Chuang, S. C.,, Fu, H. C. (2004). Cluster-based support
vector machines in text-independent speaker identification. In Proceedings of the
International Joint Conference on Neural Network.

Takamura, H., (2003). Clustering approaches to text categorization, Doctor’s thesis, NAIST-IS-
DT0061014.

Takamura, H., Matsumoto, Y., (2002). Two-dimensional Clustering for Text Categorization.
In Proceedings of Sixth Conference on Natural Language Learning (CoNLL-2002), Taipei,
Taiwan, pages 29-35, August-September.

Tishby, N. Z., Pereira, F., Bialek, W., (1999). The Information Bottleneck Method. In
Proceedings of the 37th Allerton Conference on Communication, Control and Computing.

Verbeek, J., (2000a). An information theoretic approach to finding word groups for text
classification. Master 's thesis, Institute for Logic, Language and Computation (ILLC-
MoL-2000-03), Amsterdam, The Netherlands.

Verbeek, J. (2000b). Supervised Feature Extraction for Text Categorization. Benelearn: Annual
Machine Learning Conference of Belgium and the Netherlands.

Wang, J., Wu, X., Zhang, C. (2005). Support vector machines based on K-means clustering
for real-time business intelligence systems. Int.]. Business Intelligence and Data
Mining, Vol. 1, No. 1, pp.54-64.

Yaniv R. E., Souroujon O., (2001). Iterative Double Clustering for Unsupervised and Semi-
supervised Learning. In proceedings of the 12th European Conference on Machine
Learning, ECML.

Yu, H,, Yang, J., Han, J., (2003). Classifying large data sets using SVMs with hierarchical
clusters, in Proceedings of the 9th ACM SIGKDD 2003, Washington, DC, USA.

Yuan, J,, Li, J., & Zhang, B. (2006). Learning concepts from large scale imbalanced data sets
using support cluster machines. Proceedings of the ACM International Conference on
Multimedia, (pp. 441-450).

Zhang, T., Ramakrishnan, R., Livny, M. (1996). BIRCH: An efficient data clustering method
for very large databases. Proc. of the 1996 ACM SIGMOD Int’l Conf. on Management
of Data, pp. 103-114.

252 Tools in Artificial Intelligence

Zeng, H.,]., Wang, X., H., Chen, Z,, Lu, H,, Ma, W,, Y., (2003). CBC: Clustering Based Text
Classification Requiring Minimal Labeled Data. In Proceedings of the 3 IEEE
International Conference on Data Mining (ICDM'03).

Zhou, D., Bousquet, O, Lal, T. N., Weston, J., Scholkopf, B.. (2003). Learning with local and
global consistency. In 18th Annual Conf. on Neural Information Processing Systems.

15

A Review of Past and Future Trends in
Perceptual Anchoring.

Silvia Coradeschi and Amy Loutfi
Orebro University
Sweden

1. Introduction

Anchoring is the problem of how to create, and to maintain in time the connection between
the symbol- and the signal-level representations of the same physical object. In particular
robotic systems with symbolic components need to solve the anchoring problem in order to
connect the information present in symbolic form with the sensor data that the robot obtains
from the physical world. Previously, solutions to the anchoring problem have been
implemented on a system by system basis and could therefore only be applied to restricted
domains. However, in recent years, the study of anchoring problem per se has gained an
increased interest and an attempt to frame the anchoring problem and provide a theoretical
groundwork to dealing with anchoring particularly on artificial systems have been
explored. The first definition of anchoring was in (Coradeschi & Saffiotti, 2000) and a
community working on anchoring has been established in a number of workshops and a
special journal issue (Coradeschi & Saffiotti, 2001;2003;2004). In this chapter, we present the
latest developments in anchoring and outline the future trends. In addition, a specific
framework is outlined and used as an example to illustrate the main challenges to be
addressed in perceptual anchoring.

The anchoring problem is concerned with the grounding of symbols that refer to specific
object entities such as “a cup” or even more specifically “cup-22”. Anchoring is not
concerned with the process of grounding general properties such as “blue” or general
concepts such as “difficult”. This is the symbol grounding problem (Harnad, 1990) and
anchoring is rather a subset of symbol grounding that is limited to physical objects.
Anchoring must take the flow of continuously changing sensor input into account to allow
for object persistence in time and space. Even though some properties of an object may
change while others remain static, the symbol-percept correspondence should remain intact
and should hold the current and updated information. This dynamic maintenance of
information differentiates anchoring from pattern recognition which for the most part does
not take into account this dynamic aspect or the presence of symbols. One way to consider
persistence is to have an internal structure which reifies the correspondence between
symbols and sensor data. Thus, many of the contributions in anchoring focus on this
internal representation and its formalism.

254 Tools in Artificial Intelligence

2. Perceptual anchoring in robotics

Fig. 1. Examples of anchoring in robotics. (Left) A Robocup domain where similar objects
create ambiguities. (Right) Human robot interaction in a home environment where symbolic
references to objects are commonly used (photograph by courtesy of Federico Pecora).

Traditionally, anchoring can be seen as a process which creates a shared representation to
link several subsystems of an agent, such as the planner to the motion control. In bottom-up
approaches, the sensor data determines the initiation of an anchoring process, whereas top-
down approaches may initiate an anchoring process upon request. In robotic systems, a
number of key challenges are relevant for both bottom-up and top-down anchoring
processes. First, uncertainty and ambiguity arise when dealing with real sensors. For these
reasons, anchoring may need to consider a number of sub-processes or functionalities which
can handle uncertainties and also recover if incorrect decisions are taken. In addition,
symbolic descriptions eventually used to link to the perceptual data can be vague and
cannot be assessed in terms of a specific quantified sensor value. For instance the concept “a
large ball” where the concept large can refer to a range of values whose boundaries are not
well defined (Coradeschi et al, 2001). Ambiguous cases can also occur where perceptually
similar objects are equally valid candidates in the result of a request. In these cases, further
actions may be necessary to resolve the ambiguity (Karlsson et al., 2008). Further, to
facilitate human robot interaction, symbols are rarely used in isolation but rather as part of a
semantic network where ontological and common sense knowledge plays an important role.
As a result, symbolic descriptions may be subject to interpretation and need to handle or
cope with variances. For example in Fig. 1, an agent can receive a command to “find a ball”,
or “find the closest ball” using both definite and indefinite types of references. Further, in
scenarios where multiple agents are present, it is important to coordinate and achieve
consensus among agents so that a common anchoring is possible.

3. An example of an anchoring framework

Here we present an instantiation of an anchoring framework and its core functionalities that

illustrate how an anchoring modality works in a real robotic system. Other frameworks

have been explored and a discussion of these contributions is given at the end of this

section.

The anchoring framework here is based upon (Coradeschi & Saffiotti, 2000) and contains the

following main ingredients:

e A symbol system including: a set X = {x1, X2, ...} of individual symbols (variables and
constants); a set P = {py, p2, ...} of predicate symbols; and an inference mechanism
whose details are not relevant here.

A Review of Past and Future Trends in Perceptual Anchoring. 255

e A perceptual system including: a set IT = {1, m, ...} of percepts; a set ®= {@1, ¢y, ...} of
attributes; and perceptual routines. A percept is a structured collection of
measurements assumed to originate from the same physical object; an attribute ¢; is a
measurable property of percepts, with values in the domain D;.

o A predicate grounding relation g = P x @ x D, that embodies the correspondence between
unary predicates and values of measurable attributes.

The perceptual system generates percepts and associates each percept with the observed

values of a set of measurable attributes and the symbol-percept correspondence is reified in

an internal data structure, called an anchor. Since new percepts are generated continuously
within the perceptual system, this correspondence is indexed by time.

At every moment ¢, a(t) contains: a symbol, meant to denote an object; a percept, generated

by observing that object; and a signature, a collection of property values meant to provide

the (best) estimate of the values of the observable properties of the object.

To handle anchors, we require functionalities able to create, maintain and remove anchors.

3.1 Creation of anchors

The creation of anchors can occur in both a top-down and bottom-up fashion. Bottom-up
acquisition is driven by an event originating from a sensing resource (e.g. the recognition of
a segmented region in an image) when perceptual information which cannot be associated
to any existing anchor is perceived. Top-down acquisition occurs when a symbol needs to be
anchored to a percept, such a call may originate from an external user or a top-level module
(e.g. planner).

Acquire

This functionality initiates a new anchor whenever a percept is received which currently
does not match any existing anchor. It takes a percept 1, and return an anchor a, defined at
t and undefined elsewhere. To make this problem tractable, a priori information is given
with regards to which percepts to consider. In bottom-up acquisition, a randomly generated
symbol is attributed to the anchor. Furthermore, information about the object and its
properties are included into the world model used by the planner, in this way the object can
be reasoned about and acted upon.

Find

Takes a symbol x and a symbolic description and returns an anchor a defined at ¢ (and
possibly undefined elsewhere). It checks if existing anchors that have already been created
by the Acquire satisfy the symbolic description, and in that case, it selects one. Otherwise, it
performs a similar check with existing percepts (in case, the description does not satisfy the
constraint of percepts considered by the Acquire). If a matching percept is found an anchor
is created. Matching of an anchor or percept can be either partial or complete. It is partial if
all the observed properties in the percept or anchor match the description, but there are
some properties in the description that have not been observed.

3.2 Maintenance of anchors

At each perceptual cycle, when new perceptual information is received, it is important to
determine if the new perceptual information should be associated to existing anchors. The
following functionality addresses the problem of tracking objects over time.

Track

The track functionality takes an anchor a, defined for t-k and extends its definition to ¢. The
track assures that the percept pointed to by the anchor is the most recent and adequate

256 Tools in Artificial Intelligence

perceptual representation of the object. We consider that the signatures can be updated as
well as replaced but by preserving the anchor structure we affirm the persistence of the
object so that it can be used even when the object is out of view. This facilitates the
maintenance of information while the robot is moving as well as maintaining a longer term
and stable representation of the world on a symbolic level without catering to perceptual
glitches.

Symbolic System

cup-22
FIND
b
TRACK Anchoring Module
reh-1 \Anch-1 loup-22
50 Visucl & g pfVisual &
\[‘;‘;sg‘ﬂpﬁon‘*\ %o;oir ?&éoqur

feom

Peroegl/ucl Syste

«N

Fig. 2. Graphical illustration of the anchoring functionalities where bottom-up and top-
down information is possible and different sensing modalities are used (Louti et. al, 2005).

3.3 Deletion of anchors

By having an anchor structure maintained over time, it is possible to preserve the perceptual
information even if the object is not currently perceived (caused by the object being out of
view and/or by the inaccuracy in the measurement of perceptual data). The challenge is to
determine if the association of new percepts is justified or whether certain anchors should be
removed. Mechanisms for destroying invalid anchors need to be in place. This is a difficult
problem, because conceptually it is not clear when it is appropriate to remove anchors from
the system. Anchors could be removed if they are not relevant for the current task, because
the object to which it refers has been physically removed from the environment or the
reliability of the perceptual information has expired. Anchors may also need to be removed
if they have been associated to invalid perceptual data such as sensory glitches. We
currently adopt simple solutions in which objects that are not perceived when expected
decrease in a “life” value of the respective anchor. When the anchor has no remaining life,
the anchor is removed. The decreasing life of anchors is shown in Fig. 4. A more adequate
strategy to handle the maintenance of anchors may also be to include a “long term” memory
where anchors may be stored for future use.

3.4 Integration of the functionalities
The event-based functionalities are restricted to the Find and Acquire while the Track
functionality is regularly called. Fig. 4 shows an overview and an example of the framework

A Review of Past and Future Trends in Perceptual Anchoring. 257

and its functionalities. In the example in the figure, anchors are created bottom-up from the
visual percepts. Later, additional features of that object are required, for example, the
olfactory property. These features are stored in the anchor. When a top-down request is sent
to the anchor module to find a cup with matching properties denoted by the symbol “cup-
22”, the Find functionality anchors the symbol to the perceptual data.

As seen in the figure, properties can be collected at different time points using different
modalities. Even when certain perceptual properties are updated, such as the smell
property, which may change over time, other perceptual properties are maintained.
Conversely, if the visual percepts of an anchor are replaced, the smell property previously
obtained is not lost. In this way, the anchor is used to compensate for any dynamically
changing features of an object. Furthermore, the perceptual description of anchors can be
accessed by the planner to reason about perceptual knowledge. In certain cases, this may
result in specific calls to perceptual actions in order to disambiguate between similar objects.

3.5 Case study

Here we outline a brief example of how the anchoring module operates within a simple
corridor monitoring scenario. In each corridor there may be several objects, in this case
garbage cans. The robot automatically toggles between the task of patrolling the corridor,
inspecting objects and waiting for commands from the user. Patrolling the corridor involves
moving from corridor to corridor in a discovery for new objects and recognition of previous
objects. When an inspect is invoked, the robot visits each object collecting the odour
property. The inspect is usually autonomously invoked when new objects are detected.

The robot is equipped with several heterogeneous sensing modalities such as a camera,
sonar, tactile sensors, and an electronic nose. In this example, the modalities of interest are
the vision, and e-nose. The vision component is trained to detect any visual signal matching
garbage cans. For each found object we extract a number of properties such as color, size
and relative position using different heuristics. The collection of the properties belonging to
an object is called a percept.

The electronic nose component is able to classify odours providing a symbolic categorical
description (Loutfi et al., 2005). The robot is also able to localize itself within the corridor
using odometry and has a number of high level processes such as a planner which reasons
about actions and a plan executor which can monitor motion control.

Before we begin to outline the corridor example, let us first examine the structure of an
anchor. Fig. 3 shows two anchor structures that have been created bottom-up from a
segmented image. The anchoring module updates anchors such that at every moment ¢, a(t),
contains:

Name - For top-down anchors a name is a symbol denoting the object in the planner (e.g.,
Silvia's Cup). For anchors that have been created bottom-up the name is initially arbitrary.
Symbolic description In general a symbolic description is given in a top-down fashion,
however for bottom-up anchors the symbolic description may also be derived directly from
the perceptual information of the object. For example, the odour classification module may
populate the symbolic description with the linguistic odour name when classifying an odour
associated to a particular object.

Perceptual description The perceptual description is a vector which consists of the
important properties of the object such as position (relative and global), colour, shape, and
when available the odour signature.

In the figure the two anchors, Gar-36 and Gar-34, are visually similar however Gar-36
currently has an olfactory property. In the current implementation an anchor is “baptised”

258 Tools in Artificial Intelligence

with the name of the percept which initially invoked the bottom-up process. As will be
shown in the next example, the percept may be updated but the anchor persists using the
tracking functionality.

(ANCHOR
:NAME GAR-34

:ID ANCHOR-6

:SYMBOLIC-DESCRIPTION ((SHAPE = GARBAGE
CAN) (COLOUR=GREEN))
:PERCEPTUAL-DESCRIPTION (<TR GAR-35 30 [KN
29 GREEN #1#GARBAGE L<1958,347>~0
BL<1958,347>~0 :IN-ROOM CORR-2 :NEC 0.21000004
‘LIFE 0.8]>

(ANCHOR

:NAME GAR-36

:ID ANCHOR-8

:SYMBOLIC-DESCRIPTION ((SHAPE = GARBAGE)
(COLOUR=GREEN)(SMELL=ETHANOL))
:PERCEPTUAL-DESCRIPTION (<TR GAR-36 30 [KN
29 GREEN #1=GARBAGE L<1979,-173>~0 BL<1979,-
173>~0 :IN-ROOM CORR-2 :NEC 0.21000004 :LIFE
0.8]>)

Fig. 3. (Left) Segmented image from the vision module observing two green garbage cans at
the center of the screen. (Right) The anchors created in a bottom-up manner for each object.
Gar-34 refers to the garbage can on the left of the image and Gar-36 refers to the garbage can
on the right.

In Fig. 4 The local space of the robot together with the visual image from the camera as well
as the creation, deletion and updating of anchors is depicted during a run through the
corridor. The figure contains four snapshots described as follows:

1
Gar-1 Gar-1 ?«}ck}»

Gar-2 Gar-2 frack—» ‘

S o

Gar-3

3
ow shows
the activity at the anchoring level. Grey bars indicate anchors with olfactory properties. The
bottom row shows the corresponding local perceptual space given the changing
representation of visual percepts (Loutfi et. al, 2005).

A Review of Past and Future Trends in Perceptual Anchoring. 259

Scene 1 - The robot begins patrolling the corridor, two visual percepts are detected and two
anchors denoted by Gar-1 and Gar-2, are created. An inspect is performed and both anchors
obtain olfactory properties, shown in the Figure by the grey colouring. Since the anchors are
created in a bottom-up fashion their labels are arbitrary.

Scene 2 - As the robot continues its patrol, another object is inserted into the environment at
a later time. Note however, that the previous two anchors are still maintained by the track
functionality. Although the local space shows only the current percepts, the anchoring
module updates the link between the anchor Gar-1 and the percept Gar-27. A new anchor is
also created for the third object denoted by Gar-3 with visual percept Gar-24.

Scene 3 - The robot approaches the object in order to acquire its odour property and the result is
stored in the corresponding anchor. Some time later, the object is removed from the environment.
The life of the anchor slowly decreases when an expected percept is no longer detected.

Scene 4 - The anchor is removed from the system and unless it is perceived again, its
properties cannot be accessed by the find functionalities described above.

This simple scenario shows how the anchoring module is used to create an internal structure
which can then maintain the perceptual coherence of objects, considering each object has
both spatial and olfactory properties. Even when visual properties of anchors are being
updated, the stored smell property remains until a new odour character is acquired by the
next inspect action. The previous odour character is then stored in the odour repository.

3.6 Other approaches to anchoring

The example above illustrates the main theoretical ingredients necessary for an anchoring
module. In the literature, the study of anchoring per se has led to different approaches to
address the problem of maintenance and creation of the symbol-percept correspondence
referring to objects. Chella et. al, (2003) present a framework where conceptual spaces
(Gérdenfors, 2000) are used to combine in a unary formalism all features referring to a
specific object, and consequently the combination of the features referring to the object is a
single point inside the conceptual space. Similarly, Bonarini et al (2001) have also presented
an anchoring framework where concept layer is used to combine features while also using
previously established domain knowledge, from a “world modeller”. Modayil & Kuipers
(2007) examines unsupervised learning approaches to bootstrap an ontology of objects to
sensor input from a robot. Four multiple learning stages are combined in which an object is
first individualized, then tracked and described (using shape models) and finally
categorized. A collection of works have also extended the anchoring framework beyond the
traditional notion of physical objects and contends with: embodied interactions between the
robot and objects in the its environment (Chinellato et al, 2007), human movement (Fritsch
et al, 2003), actions sequences represented in situation calculus to dynamic properties of
objects using conceptual spaces (Chella et al. 2007), perceptually indistinguishable objects
(Santore & Shapiro, 2004).

4. Cooperative anchoring

In the previous sections, anchoring has only been considered in the context of single robotic
systems. In the case of multiple robotic systems with different and heterogeneous devices
cooperating, the anchoring problem undertakes a new complexity. In a distributed system,
individual agents may need to anchor objects from perceptual data coming either from
sensors embedded directly on the robot or information coming from other devices. Further,
agents each with its own anchoring module may need to reach a consensus in order to
successfully perform a task.

260 Tools in Artificial Intelligence

Sensor fusion plays an important role for multi-agent or “cooperative” anchoring. A
cooperative anchoring approach based on the presented framework has been explored in
(LeBlanc & Saffiotti, 2008) which considers primarily the problem of fusing pieces of
information coming from a distributed system. In this work, both complex devices such as
mobile robots and simple devices contain pieces of information which may need to be fused
together in order to create a global notion of an anchor. Each agent maps items of
information into its own anchor space (inspired by Gardenfors’ conceptual spaces) where an
anchor space is a multi-dimensional domain such as colour, position, weight etc. The
individual anchor spaces are mapped into a shared anchor space and from within the
shared space information is compared and combined as needed. This is done using the
fuzzy intersection of n-dimensional fuzzy sets of the individual anchor spaces. Fig. 5 shows
a concrete example where a block is seen from two cameras and an RFID is acquired by an
RFID reader. The information is fused in a shared anchoring space using fuzzy sets.

Shared Anchoring Space

i@#ﬁ

1l
Tm /
et ¢ ﬁ

Fig 5. Different elements in a scenario where a mobile robot and a camera mounted in a
ceiling detect a parcel and perform cooperative anchoring (courtesy of K. Leblanc, Leblanc
& Saffiotti, 2008).

Another proposed solution for dealing with multi-robot anchoring also extends single —robot
systems presented in the previous section. Bonarini et al, (2007) extend their framework to a
multi-agent case by combining the information from different agents in a global representation
at the conceptual level using a fusion model based on clustering techniques.

Decentralized approaches have also been considered in (Guirnaldo et al, 2004) where each
agent has its own anchoring module and broadcasts its anchors to other agents. In this
approach, agents have defined roles of leaders and followers and in case of conflict the
leader’s anchor is accepted, thus it is not clear how fusion would occur if two equally
ranked agents conflict. The challenge of achieving an agreement among agents about the
objects that are perceived is an open problem. The challenge of reaching an agreement has
been studied in the multi-agent community in (Goldman et al, 2007; Kararzyniak &
Pieczynska, 2006). Such work can form the basis for a system where agreement or consensus
can be achieved between multiple agents using decentralized anchoring.

A Review of Past and Future Trends in Perceptual Anchoring. 261

5. Anchoring for human robot interaction

Another emerging trend is to study the anchoring process that occurs together with human
operators and users. Anchoring is specially suited to HRI application since the symbolic
level has clear benefit while communicating with non-experts. Communicate about objects
is often central in HRI and such communication requires a coordinated symbol-percept link
between human and robot.

? (FIND-ANCHOR "ANCH

'((SHAPE = GARBAGE) (COLOR = GREEN)))
- FOUND 2 CANDIDATES: PLEASE CHOOSE
- 1. GREEN GARBAGE LEFT BEHIND OF
RED BALL

- 2. GREEN GARBAGE RIGHT BEHIND OF
RED BALL

21

- REFORMULATING:

- (FIND-ANCHOR ‘ANCH ’((SHAPE =
GARBAGE) (COLOR = GREEN) (LEFT-OF =
BALL-2) (BEHIND-OF = BALL-2)))

- FOUND: ((ANCHOR ANCH-1 ANCH ...))

Fig 6. Spatial Relations used to resolve ambiguous situations.

A dialogue system for human-robot collaborations is a particular instance of the anchoring
problem, when dialogue about physical objects is concerned. An example of such a dialogue
system is explored in (Kruijff & Brenner, 2007), there information about the object state as
well as a history of the object state is used to describe changes in a scene. An important
feature of this approach is that it considers descriptions that contain spatial relations among
the objects. Spatial relations are crucial when human describe and recognize objects. While
communication among devices can be based on coordinates this is not meaningful when the
communication is with humans. Further works on using spatial relations and computation
of spatial relations between anchors for human robot interaction was explored in (Melchert
et. al, 2007). In this work, the spatial relations were used to provide meaningful object
descriptions but also could facilitate human participation in the anchoring by using human
interaction in the disambiguation process between visually similar anchors. In Fig. 6, an
example is shown where a request to find a green garbage can is sent to the anchoring
system. The anchoring system cannot disambiguate between the two identical garbage cans
and ask the user if he means garbage can on the left and behind the red ball or the one on
the right. The user selects the first option and a new request containing the additional
information is sent to the anchoring module that succeeds in finding the object. The
returned descriptions for the spatial relations of objects present all possible relations of
objects. For cases of HRI it would be more beneficial to generate object descriptions with
salient and relevant information for the human users (Jordan & Walker, 2005) .

Other works which examine human participation in the anchoring process include (Yu &
Ballard, 2004). Here a learning approach is used where spoken names of objects are
grounded to image data representing the object. Similarly (Roy, 2005) explores a theoretical
framework for involving human participation in the grounding of language to both
perception and action using a manipulator robot.

262 Tools in Artificial Intelligence

6. Anchoring in symbiotic robotic system

Symbiotic robotic systems are an emerging trend in robotics that combine many of the
ingredients in the previous two sections, namely many devices operating in parallel and
human users interacting with the system (Coradeschi & Saffiotti, 2006). The advantage of
the symbiotic robotic systems is that many of the current challenges in robots can be
circumvented, for instance localization can be helped by cameras on the ceiling and an id of
an object can be provided by en RFID tag. However, a symbiotic system require a solution of
the two anchoring problems just mentioned, that is, cooperative anchoring and anchoring in
cooperation with humans with the additional difficulty that the solutions should be
compatible and guarantee a coherent anchoring process. Consider as an example the
following scenario:
“Johanna, an elderly woman living alone in her apartment, has a medical condition
which affects her blood pressure. Suddenly, while cooking, Johanna feels faint and
must sit down. She signals to Emil, her domestic robot, and asks where she last left
her blood pressure medicine. Emil communicates with other devices in the home
and a camera in the bedroom detects a small bottle on the bedside table. To
recognize whether this is the correct medicine, the vacuum cleaner robot already
present in the bedroom, is sent to the bedside table. The bottle is successfully
recognized as Orvaten (used to treat Johanna’s hypotension) using the RFID reader
on the vacuum cleaner robot. Emil tells Johanna that the medicine is on the bedside
table and Johanna then asks Emil to fetch the medicine for her.”
In this scenario, the information from the camera and the RFID reader needs to be combined
to recognize the correct medicine and an anchor needs to be established that connects “the
blood pressure medicine of Johanna” with the sensor data corresponding to the object and
coming from the different devices. The position of the object is also stored and can be then
used by Emil to get the medicine. An important challenge in symbiotic systems is the
establishment of a shared ontology where concepts referring to objects are coherent between
agents, robots, pervasive devices and most importantly the human users. Such ontology
forms the basis of the communication among the participant in the anchoring process and
provides additional information that can be used in the anchoring process such as function
of objects, how different part of objects are related and classes and subclasses of objects. For
example, Orvaten is used to treat hypotension, is inside a bottle with an etiquette, and is a
subclass of medication. Generate object descriptions that are both meaningful to a specific
agent and salient to a task is also essential in systems where different actors are present. In
the scenario, the most useful description to Johanna is that the medicine is on the bedside
table; while Emil who fetches the medicine may need the actual color and shape of the bottle.
The study of anchoring within the symbiotic system has been examined in a few cases. In
Mastrogiovanni et al. (2007) a symbolic data fusion system for an ambient intelligent
environment is presented consisting of several cognitive agents with different capabilities.
Lopes et al. (2002) describe a way to utilize the KRR component for knowledge acquisition and
information disambiguation. Similarly, in (Melchert et al. 2007) we have also examined how
KRR system such as LOOM can be integrated into an anchoring framework in the context of
the symbiotic system for improved cooperation between devices and human users.

7. Conclusions

For artificial intelligence to be used as tools for robotic systems, it is important to be able to
capitalize on the work in symbolic Al systems. To accomplish this goal, it is necessary to

A Review of Past and Future Trends in Perceptual Anchoring. 263

connect the symbolic information to the sensory percepts from the robotic system. This
chapter has discussed this important aspect especially concerning the symbol-percept
correspondence referring to physical objects. This problem has been defined as the
anchoring problem and a number of examples of anchoring in practice have been given.
Furthermore, three emerging trends for anchoring has been highlighted: cooperative
anchoring, anchoring for HRI and anchoring in symbiotic robotic system where greater
symbolic processing is used and thus creating additional challenges for anchoring.

8. References

A. Bonarini, M. Matteucci, and M. Restelli. Anchoring: do we need new solutions to an old
problem or do we have old solutions for a new problem? In Proc. AAAI Fall
Symposium on Anchoring Symbols to Sensor Data in Single and Multiple Robot Systems,
2001.

A. Bonarini, M. Matteucci, and M. Restelli. Problems and solutions for anchoring in multi-
robot applications. Journal of Intelligent and Fuzzy Systems, 18:245-254, 2007.

A. Chella, M. Frixione, and S. Gaglio. Anchoring symbols on conceptual spaces: the case of
dynamic scenarios. Robotics and Autonomous Systems, 43(2):175-188(14), 2003.

A. Chella, H. Dindo, and I. Infantino. Imitation learning and anchoring through conceptual
spaces. Applied Artificial Intelligence, 21(4&5):343-359, 2007.

E. Chinellato, A. Morales, E. Cervera, and A. Del Pobil. Symbol grounding through robotic
manipulation in cognitive systems. Robotics and Autonomous Systems, 55(12):851-
859, 2007.

S. Coradeschi, D. Driankov, L. Karlsson, and A. Saffiotti. Fuzzy anchoring. In Proc of the
IEEE Intl Conf on Fuzzy Systems, pages 111-114, Melbourne, AU, 2001.

S. Coradeschi and A. Saffiotti. Anchoring symbols to sensor data: preliminary report. In
Proc. of the 17th American Association for Artificial Intelligence Conf. (AAAI), pages
129-135, 2000.

S. Coradeschi and A. Saffiotti, editors. Anchoring Symbols to Sensor Data in Single and
Multiple Robot Systems: Papers from the AAAI Fall Symposium. AAAI Press,
Menlo Park, California, 2001.

S. Coradeschi and A. Saffiotti. An introduction to the anchoring problem. Robotics and
Autonomous Systems, 43(2-3):85-96, 2003.

S. Coradeschi and A. Saffiotti, editors. Robotics and Autonomous Systems, special issue on
Perceptual Anchoring. Elsevier Science, 2003.

S. Coradeschi and A. Saffiotti, editors. Anchoring symbols to sensor data. Papers from the
AAAI Workshop Technical Report WS-04-03. AAAI Press, Menlo Park, California,
2004.

S. Coradeschi and A. Saffiotti. Symbiotic robotic systems: Humans, robots, and smart
environments. IEEE Intelligent Systems, 21(3):82-84, 2006.

G. Cortellessa, A. Loutfi, and F. Pecora. An on-going evaluation of domestic robots. In Proc.
of the HRI-08 Workshop on Robotic Helpers, pages 87-91, Amsterdam, NL, 2008.

J. Fritsch, M. Kleinehagenbrock, S. Lang, F. Loemker, G. A. Fink, and G. Sagerer. Multi-
modal anchoring for human-robot-interaction. Robotics and Autonomous Systems,
43(2):133-147(15): 2003.

P. Gardenfors. Conceptual Spaces: The Geometry of Thought. MIT Press, Cambridge,MA, 2000.

264 Tools in Artificial Intelligence

C. Goldman, M. Allen, and S. Zilberstein. Learning to communicate in a decentralized
environment. Autonomous Agents and Multi-Agent Systems, 15(1):47-90, 2007.

S. Guirnaldo, K.Watanabe, and K. Izumi. Enhancing the awareness of decentralized
cooperative mobile robots through active perceptual anchoring. International Journal
of Control, Automation and Systems, 2:450-462, 2004.

S. Harnad. The symbol grounding problem. Physica D, 42:335-346, 1990.

P. Jordan and M. Walker. Learning content selection rules for generating object descriptions
in dialogue. Journal Artif. Intell. Res. (JAIR), 24:157-194, 2005.

L. Karlsson, A. Bouguerra, M. Broxvall, S. Coradeschi, and A. Saffiotti. To secure an anchor -
a recovery planning approach to ambiguity in perceptual anchoring. AI
Communications, 21(1):1-14, 2008.

R. Katarzyniak and A. Pieczynska. The outline of the strategy for solving knowledge
inconsistencies in a process of agents’ opinions integration. In 6th International
Conference Computational Science, Volume 3993 of Lecture Notes in Computer
Science, pages 891-894, 2006.

G. Kruijff and M. Brenner. Modelling spatio-temporal comprehension in situated human-
robot dialogue as reasoning about intentions and plans. In Symposium on Intentions
in Intelligent Systems, AAAI Spring Symposium Series, 2007.

K. LeBlanc and A. Saffiotti. Cooperative anchoring in heterogeneous multi-robot systems. In
Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), Pasadena, CA, 2008.

L.S. Lopes. Carl: from situated activity to language level interaction and learning. In Proc.
Intl. Conf. on Intelligent Robots and Systems, pages 890-896, Lausanne, 2002.

A. Loutfi, M. Broxvall, S. Coradeschi, and L. Karlsson. Object recognition: A new application
for smelling robots. Robotics and Autonomous Systems, 52:272-289, 2005.

A. Loutfi, S. Coradeschi and A. Saffiotti. Maintaining Coherent Perceptual Information
Using Anchoring. In Proc. of the Nineteenth International Joint Conference on Artificial
Intelligence. 2005.

F. Mastrogiovanni, A. Sgorbissa, and R. Zaccaria. A distributed architecture for symbolic
data fusion. In Proceedings of 20th International Joint Conference on Artificial
Intelligence, Hyderabad, India, 2007.

J. Melchert, S. Coradeschi, and A. Loutfi. Knowledge representation and reasoning for
Perceptual anchoring. In 19th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI), Patras, Greece, 2007.

J. Melchert, S. Coradeschi, and A. Loutfi. Spatial relations for perceptual anchoring. In
Proceedings of AISB’07, AISB Annual Convention, Newcastle upon Tyne, UK, 2007.

J. Modayil and B. Kuipers. Autonomous development of a grounded object ontology by a
learning robot. National Conference on Artificial Intelligence (AAAI-07), 2007.

D. Roy. Semiotic Schemas: A Framework for Grounding Language in the Action and
Perception. Artificial Intelligence, 167(1-2): 170-205, 2005.

J. Santore and S. Shapiro. Identifying an object that is perceptually indistinguishable from
one previously perceived. In Proceedings of the Nineteenth National Conference on
Artificial Intelligence, pages 968-969. 2004.

C. Yu and D. Ballard. On the integration of grounding language and learning objects. In
Proceedings of the Nineteenth National Conference on Artificial Intelligence, pages 488-
494, 2004.

16

A Cognitive Vision Approach to
Image Segmentation

Vincent Martin and Monique Thonnat
INRIA Sophia Antipolis Méditerranée, project-team PULSAR
France

1. Introduction

Image segmentation consists in grouping pixels sharing some common characteristics. In
vision systems, the segmentation layer typically precedes the semantic analysis of an image.
Thus, to be useful for higher-level tasks, segmentation must be adapted to the goal, i.e. able
to effectively segment objects of interest. Our objective is to propose a cognitive vision
approach to the image and video segmentation problem. More precisely, we aim at
introducing learning and adaptability capacities into the segmentation task. Traditionally,
explicit knowledge is used to set up this task in vision systems. This knowledge is mainly
composed of image processing programs (e.g., specialized segmentation algorithms and
post-processing’s) and of program usage knowledge to control segmentation (e.g., algorithm
selection and algorithm parameter settings).

In real world applications, when the context changes, so does the appearance of the images.
It can be due to local changes (e.g., shadows, reflections) and/or global illumination changes
(e.g., due to meteorological conditions). The consequences on segmentation results can be
dramatic. This context adaptation issue emphasizes the need of automatic adaptation
capabilities. Our first objective is to learn the contextual variations of images in order to
discriminate between different segmentation actions. The identification of the contexts will
lead to different segmentation actions as algorithm selection.

When designing a segmentation algorithm, internal parameters (e.g., thresholds or minimal
sizes of regions) are set with default values by the algorithm authors. In practice, it is often
up to an image processing expert to supervise the tuning of these free parameters to get
meaningful results. As seen in Figure 1, it is not clear how to choose the best parameter set
regarding the segmented images: the first one is quite good but several parts of the insect
are missing; the second one is also good, since the insect is well outlined, but too many
meaningless regions are also present. However, complex interactions between free
parameters make the behaviour of the algorithm fairly impossible to predict. Moreover, this
awkward task is tedious and time-consuming. Thus, the algorithm parameter tuning is a
real challenge. To solve this issue, our objective is threefold: first, we want to automate this
task in order to alleviate users’ effort and prevent subjective results. Second, the fitness
function used to assess segmentation quality should be generic (i.e. not application
dependent). Third, no a priori knowledge of segmentation algorithm behaviours is required,
only ground truth data should be provided by users.

266 Tools in Artificial Intelligence

Fig. 1. Illustration of the problem of algorithm parameter tuning. An image is segmented
with the same algorithm (based on colour homogeneity) tuned with two different parameter
sets.

The very first problem of segmentation is that a unique general method still does not exist:
depending on the application, algorithm performances vary. This is illustrated in Figure 2
where two different algorithms are applied on the same image. The first one seems to be
visually more efficient to separate the ladybird from the leaf. The second one produces too
many regions not very meaningful. Basically, two popular approaches exist to set up the
image segmentation task in a vision system. A first approach is to develop a new
segmentation algorithm dedicated to the application task. A second approach is to
empirically choose an existing algorithm, for instance by a trial-and-error procedure. The
first approach leads to develop an ad hoc algorithm, from scratch, and for each new
application. The second approach does not guarantee adapted results and robustness. So, a
need exists for developing a new approach to the algorithm selection issue. When facing
different algorithms, this approach should be able to automatically choose the one best
suited with a segmentation goal and the image content.

/
%@éﬁa
[

Fig. 2. An example of the segmentation of an image with two different algorithms. The first
algorithm forms regions according to a multi-scale colour criterion while the second uses a
local colour homogeneity criterion.

Once all the algorithms have been optimized, a third issue is to select the best one. However,
when images of the application domain are highly variable, it remains quite impossible to
achieve a good segmentation with only one tuned algorithm. Our objective is to make use of
the extracted knowledge of context variations and parameter tuning to associate a
segmentation action to each identified context.

Finally, in many computer vision systems at the detection layer, the goal is to separate the
object(s) of interest from the image background. When objects of interest and/or image
background are complex (e.g. composed of several subparts), a low-level algorithm cannot
achieve a semantic segmentation, even if optimized. For this reason, a fourth issue is to
refine the image segmentation to provide a semantically meaningful segmentation to higher
vision modules.

A Cognitive Vision Approach to Image Segmentation 267

Our final objective in this chapter is to show the potential of our approach through a
segmentation task in a real-world application. The segmentation task we focus on is image
segmentation in a biological application related to early pest detection and counting. This
implies to robustly segment the objects of interest (mature white flies) from the complex
background (rose leaves). Our goal is to demonstrate that the cognitive vision system
coupled with our adaptive segmentation approach achieves a better detection rate of white
flies than tuned with an ad hoc segmentation.

This chapter is structured as follows. Section 2 introduces the reader to image segmentation
in the context of computer vision systems. We propose an overview on topics closely related
to our problem. Section 3 details each step of our learning approach. Section 4 shows how
the learnt segmentation knowledge is used to perform adaptive image segmentation. The
next section is dedicated to the validation of the approach for a real world application: the
segmentation step of a cognitive vision system dedicated to the recognition of biological
organisms in static images. Concluding remarks and suggestions for future work are
discussed in section 6.

2. Related work

In this section, we present some previous work related to image segmentation, segmentation
performance evaluation, algorithm parameter optimization and algorithm selection.

2.1 Image segmentation
Several surveys of segmentation techniques have been published. Three of them (Pal & Pal,
1993; Skarbek & Koschan, 1994; Lucchese & Mitra, 2001) review about 300 publications
giving a fair overview of the state-of-the-art in segmentation at the image-based processing
level. Pal and Pal (Pal & Pal, 1993) mainly evaluate algorithms for grey-valued images and
introduce three of the first attempts to exploit colour information. Skarbek and Koschan
(Skarbek & Koschan, 1994) concentrate their survey on colour image segmentation. They
classify the algorithms according to the underlying concepts of the homogeneity predicate
and identify four categories: pixel-based, area-based, edge-based and physics-based
approaches. Lucchese and Mitra (Lucchese & Mitra, 2001) also review exclusively colour
segmentation approaches and use a similar categorization: feature space based, image
domain based and physics based techniques. We can summarize these studies by making
some important remarks, closely akin to the conclusions of (Skarbek & Koschan, 1994) in
their survey:

1. General purpose algorithms are not robust and usually not algorithmically efficient.

2. All techniques are dependent on parameters, constants and thresholds which are
usually fixed on the basis of few experiments. Tuning and adapting parameters is rarely
performed.

3. Asarule, authors ignore comparing their novel ideas with existing ones.

As arule, authors do not estimate the algorithmic complexity of their methods.

5. It seems that separating processes for region segmentation and for object recognition is
the reason of failure of general purpose segmentation algorithms.

6. Several different colour spaces are employed for image segmentation. Nevertheless, no
general advantage of one of the colour spaces with regard to the other colour spaces has
been found yet.

=

268 Tools in Artificial Intelligence

2.2 Segmentation performance evaluation

Considering the increasing number of segmentation algorithms, the problem of performance
segmentation evaluation becomes a primordial task. Two reasons motivate this statement:
researchers must be able to compare their algorithm to other ones, and end-users must be
able to choose an algorithm depending on the problem to solve. Usually, segmentation
results are visually assessed by the algorithm’s designer, which only allows subjective and
qualitative conclusions on the algorithm performance. A generic method for the
segmentation evaluation task does not exist, but many approaches have been proposed and
can be classified into two principal classes: unsupervised methods and supervised methods
(see Figure 3). The first class gathers the methods which do not require any a priori
knowledge of segmentation results to evaluate. Their principle consists in estimating
empirical criteria based on image statistics. The second class groups together evaluation
methods based on a priori knowledge as a reference segmented image, usually named a
ground truth (GT). A good survey of all these methods can be found in (Zhang, 1996) and in
(Rosenberger et al., 2005).

Segmentation

Assessment Value P R e T S :
u i A priori Knowledge !

—— o e e
Empirical Supervised 3 OR
Methods Methods |
Manual ;
A A Segmentation
OR OR|
Region-based Edge-based
Segmentation Segmentation

S

Segmentation
Algorithm

A

Input
Image

Fig. 3. Segmentation evaluation diagram starting from an input image and returning a
segmentation assessment value

2.2.1 Unsupervised methods

The major advantage of unsupervised methods is that they do not require the intervention
of an expert, just the definition of a metric of quality/discrepancy measure by the user is
needed. Thus, these methods are totally automatic. However, defining a metric that could
match all the segmentation objectives defined by the user is not a tricky task. Hence, quality
measures are at best heuristic, since no specific knowledge of object(s) to segment is
available. This tends to consider unsupervised performance evaluation method not very
pertinent. Among the variety of proposed discrepancy measures, we can cite the well-
known Rosenfield, Borsotti, Rosenberg or Charbrier criteria. A recent survey of these
unsupervised methods can be found in (Zhang, 2008).

A Cognitive Vision Approach to Image Segmentation 269

2.2.2 Supervised methods

Reference segmentations are achieved generally by hand or by generating synthetic images.
In the last case, the ground truth data are objective and precise, in the contrary of subjective
and imprecise hand-made expert drawing. These methods try to determine how far the
actually segmented image is from the reference image in a quantitative manner, e.g. based
on the number of misclassified pixels versus the reference segmentation. There are also a
variety of discrepancy methods for the supervised evaluation of image segmentation. Some
interesting ones can be found in (Yasnoff et al., 1977), (Everingham et al., 2002), and
(Mezaris et al., 2003). The use of a ground truth is double-edged: it makes this class of
methods potentially the most general and the less biased but this also supposes that ground
truths are easily available. From this study, it also clearly appears that multi-objective
methods yield better results than stand-alone methods (edge-based or region-based).
However, the manner to combine measures remains an issue.

If we take a look at the number of publications around the segmentation evaluation
problem, we can see that at present, this number is about one thousand concerning the
segmentation algorithms, one hundred concerning the evaluation methods, and does not
raise ten concerning the comparison of evaluation methods. If more efforts have been
recently put on segmentation evaluation, it is still difficult to define wide-ranging
performance metrics and statistics. Several explanations justify this limitation: (1) no
common mathematical model or general strategy for evaluation is available especially for
analytic methods; (2) no single evaluation can cover all aspects of segmentation algorithms;
(3) appropriate ground truths are hard to determine objectively. Then, to overcome such
limitations, potential research directions may explore methods combining multiple metrics
in an effective manner (e.g., using learning) and methods considering the final goal of the
segmentation.

Research is currently underway in terms of using these metrics as a mean to optimize
parameters within a segmentation algorithm or to select the best adapted algorithm. This
involves using an optimization procedure which is also a challenge in the context of image
segmentation. The next section discusses this issue.

2.3 Algorithm parameter optimization

In this section, we relate some work dealing with segmentation algorithm parameter
optimization. All the following approaches rely on three independent components: a
segmentation algorithm with its free-parameters to tune, a segmentation quality assessment
function and a global optimization algorithm as seen in Figure 4.

Researchers have experienced many segmentation optimization approaches during the last
decade. Almost all of the free derivative optimization techniques have been tested.
Interesting frameworks can be found in (Bahnu et al., 1995; Peng & Bahnu, 1998; Mao et al.,
2000; Cinque et al., 2002; Gelasca et al., 2003; Pignalberi et al., 2003; Abdul-Karim et al.,
2005). In the worst case, results of optimized segmentations are equivalent to the ones
obtained with default parameters. In most of the cases, segmentation quality is improved
and time spent to tune algorithms is drastically reduced. The authors present their
frameworks as generic by nature and then widely applicable. This affirmation is well-
founded in an analytical point of view since the three main components are considered
separately. Nonetheless, each described framework has been set up for a particular
segmentation task where the fitness function has been specifically elaborated for the

270 Tools in Artificial Intelligence

application using implicit domain knowledge. Thereby, it has not been proved how the
fitness function can affect the performance of the optimization. Moreover, if authors have
often assessed their optimization methods against default segmentations, they did not make
any quantitative evaluation regarding to other optimization techniques. A comparative
study of optimization algorithms has to be done.

Ground Truth*
i yes
Image —» Segmentation > Segmenta.tlon
Evaluation
‘ no
Global
Optimization
Updated Segmentation Algorithm
Parameters A

Algorithm Parameter
* in supervised evaluation Space

Fig. 4. The segmentation parameter optimization framework

2.4 Algorithm selection

In this section, we focus on the algorithm selection problem. Here, the goal is not to find the
best parameter setting but rather to find the most suitable algorithm among several ones for
a given segmentation task. Due to the still increasing number of algorithms, this problem
has taken a big interest during the last decade. Basically, researchers tackle the problem with
two different philosophies: model representation approach versus expert system approach.
In (Xia et al., 2005), the authors make the assumption that the choice of a segmentation
algorithm can be predicted from a global feature vector. In other words, this means that a
relationship between algorithm behaviours and global variations of image characteristic can
be established (by means of learning techniques). The principal drawback is that the training
process is imitated by the user assessment reliability. The task of visual algorithm ranking is
time-consuming and then hardly conceivable in the case of large image and algorithm sets.
As depicted by the authors, objective performance evaluation criteria (i.e. automatic) should
be investigated to free users from the tedious training stage. In (Zhang & Luo, 2000), the
authors propose a framework for automatic algorithm selection based on knowledge driven
hypothesis-and-test optimization model. An expert system is designed to use evaluation,
heuristic, and high-level knowledge (as a priori restrictions about domain dependent object
features) to segment an image with the best adapted segmentation algorithm.

Globally, the two approaches rely on strong hypothesis concerning their field of
applications: variations between images must be easy to model, algorithm behaviours
within the images must be well-established, and high-level knowledge of objects to segment
must be provided as a key-element of the performance evaluation. Actually, the lack of
theory on segmentation rules out these approaches to be universally applicable. Indeed,
application domains with image variations difficult to model disable the model
representation approach, and the expensive knowledge acquisition task needed to build

A Cognitive Vision Approach to Image Segmentation 271

expert systems limits their applicability. We can add that the model representation approach
appears to be more realistic in a computing point of view as compared to expert systems.

2.5 Conclusion

We have reviewed the segmentation task in the field of computer vision systems. If
researchers agree that segmentation is one of the fundamental problems in computer vision,
the efforts devoted to cope with this issue since the last four decades have still not led to a
unified solution. Most of the vision systems are application dependent and their
segmentation step is based on heuristic rules for, as example, the tuning of algorithm
parameters. It is, however, well-established that such a priori knowledge is determined by
domain experts from the context in which the segmentation takes place. Hence, the
generalization to other domain of application is strongly limited. Nonetheless, it appears
that the recent cognitive vision approach (ECVISION, 2005) has identified some avenues of
researches to cope with these limitations, as integration of machine learning techniques into
the knowledge acquisition task.

3. Supervised learning for image segmentation

In this section, we present our cognitive vision approach to image segmentation. We have
defined in section 1 the expectations of the segmentation task in computer vision systems
(context adaptation, algorithm selection and tuning). We have seen in section 2 that these
challenging issues have been tackled by many different approaches. Our goal is to propose a
methodology that takes the best of each approach.

In the context of cognitive vision, we propose a framework with a reusability property to
ease the set up of the segmentation task in vision systems. More precisely, our framework
does not require image segmentation skills: the complexity of this tricky task is hidden by
means of automatic algorithm parameter tuning and segmentation assessment. Moreover,
the acquisition of the segmentation knowledge is made convenient by user-friendly
interactivity. The second property of cognitive vision we are aiming at is the property of
genericity. In our framework, the different components are not application dependent.
Consequently, this framework can be used with different segmentation algorithms and for
different real-world applications. The third cognitive property of our framework is its
adaptation faculty to image content and to application needs. To this end, we use learning
techniques for context adaptation, algorithm selection and parameter tuning.

3.1 Overview

Our framework consists of two stages: a learning stage and an adaptive segmentation stage.

The framework relies on training data composed of manual segmentations of the training

images with semantic region annotations. The learning stage extracts the segmentation

knowledge from the training data by means of:

¢ adata mining module to extract and learn contextual variations,

e an optimization procedure for automatic segmentation parameter tuning,

e alearning module for context adaptation (i.e. to associate a segmentation action to each
identified context),

¢ alearning module for semantic segmentation; the goal is to train region classifiers with
respect to the annotated manual segmentations of the training images.

272 Tools in Artificial Intelligence

The learning stage is sketched in Figure 5. The module for adaptive image segmentation
relies on the learnt segmentation knowledge. It will be described in section 4. The following
sections details each step of the learning stage.

Segmentation
Knowledge Base

—
__ ™

ﬂ Learnt Clusters

Training

Image Set Lof Training Images |

—

— Learnin:]
Segmentation 2 >» Learnt Algo
Algorithms Module Parameters

L Parameters)

—

i \v

Ground Truth
Data

Trained Region

_Classifiers |

Fig. 5. The learning module for adaptive image segmentation.

3.2 Data mining for learning image contextual variations

Our strategy for algorithm selection is to tackle the problem a priori of the segmentation. In
this case, the goal is not to directly select the algorithm depending on its relative
performance evaluation but depending on the image to segment. Usually, variations
between images lead to a variability in the segmentation. As a consequence, similar images
should be segmented with the same algorithm and different images should be segmented
with different algorithms or different parameter settings. These variations can be induced by
changes in background appearance, changes in illumination source, or changes in imagery
device configuration. The goal is to identify the different situations leading to different
segmentation configurations. To this end, we define the context of an image as the
quantitative representation of its local and global characteristics. Practically, the context is
described by a d-dimensional feature vector v(I) extracted from the whole image (e.g., a
colour histograms). In our experiments, we have used a Density-Based Spatial clustering
algorithm called DBScan proposed by Ester et al. (Ester et al., 1996) to identify the image
clusters. This algorithm is well-adapted for clustering noisy data of arbitrary shape in high-
dimensional space as histograms. Starting from one point, the algorithm searches for similar
points in its neighbourhood based on a density criterion to manage noisy data. Non
clustered points are considered as ‘noise” points. The runtime of the algorithm is of the order
O(n log n) with n the dimension of the input space. DBScan requires only one critical input
parameter, the Eps-neighbourhood, and supports the user in determining an appropriate
value for it. A low value will raises to many small clusters and may also classify a lot of
points as noisy points, a high value prevents from noisy point detection but produces few
clusters. A good value would be the density of the least dense cluster. But it is very hard to
get this information on advance. Normally one does not know the distribution of the points
in the space. If no cluster is found, all points are marked as noise. In our approach, we set
this parameter so as to have at the most 15% of the training images classified as ‘noise’ data.
We denote « a cluster of training images belonging to the same context 0. The set of the n
clusters is noted K ={,,...,x, } and the corresponding context set @=1{¢,,...,6, }- Once the

e
clustering is done, the internal data structures (here R-trees) and the DBScan parameters
(Eps-neighbourhood, cluster IDs, etc.) are learnt.

A Cognitive Vision Approach to Image Segmentation 273

3.3 Learning for segmentation parameter tuning

In this section, we detail our parameter optimization framework. The goal is to optimize the

parameterisation of segmentation algorithms according to ground truth segmentations of

the training images. For this task, the user must provide:

1. Manual segmentations of the training images with closed outlined regions.

2. Segmentation algorithms with their free parameters, i.e. the sensitive parameters to be
tuned, as well as their range values. This kind of knowledge is often given by the
algorithm’s author.

3.3.1 Formalization of the optimization problem

Let I be an image of the training image set I, Gy be its ground truth (e.g. a manual
segmentation), A be a segmentation algorithm and pA vector of its free parameters. The
segmentation of I with algorithm A is defined as A(I, pA). We define the segmentation
quality E,A with the assessment function p as follows:

E} = plalt.p*)G,) M
The value E;' is an assessment value of the matching between the segmentation and the

ground truth. This can be goodness or a discrepancy measure.
The purpose of our optimization procedure is to determine a set of parameter values p/

which minimizes/maximizes:

b :argmin/}naxp(A(l,pA))GI) @)
.
The final assessment value £/and the optimal parameter set 5/ make a pair sample noted

(1‘7 AE!) This pair forms the segmentation knowledge for the image I and the algorithm A.

The set of all collected pairs constitutes the segmentation knowledge S set such that:

s=U(p/.E}') ©
1e3
One key-point of this optimization procedure is the definition of the assessment function p.
The quality of the final result varies according to this fitness function. The choice of a
segmentation performance evaluation metric is hence fundamental. It is discussed in the
next section.

3.3.2 Definition of the segmentation performance evaluation metric

As stated in section 2.2, it is not obvious to select a performance evaluation metric because
no single metric can cover all aspects of segmentation algorithms. We propose to use a
boundary-based metric and to evaluate the segmentation in terms of both localization
accuracy and the shape accuracy of the extracted regions. The biggest advantage of
boundary-based metrics against region-based metrics is their lower computational cost. It is
always faster to count and compare some boundary pixels than a lot of region pixels. This
metric is broadly usable since it mainly relies on generic concepts (false and missed
boundary pixel rates).

The region boundary set for the ground truth and for the segmentation result are noted B¢

and B/ respectively. Two types of errors are considered: missing boundary rate ¢# and

m

274 Tools in Artificial Intelligence

false boundary rate el The former, ¢?, specifies the percentage of the points on p¢ that are
mistakenly classified as non-boundary points; while the latter, ef , indicates the percentage

of the points in B B that are actually false alarms. Therefore,

1 and o [T @
s s

B
m

where

T ={el(re BY)l B)

5
And 7, x| (ve 57)alve 57) ©
and |.| is the cardinal operator.
We define the segmentation quality £, with the assessment function as follows:
E} =p(B,”,B,G)=%(ejj+e§) ©)

with E; e[O,l].
The value E/' =0 indicates perfect boundary pixel matching between the segmentation

result and the ground truth when using algorithm A. The value E;' =1 indicates that all
pixels are misclassified. However, it is easy to show that this metric comes up against
unsuited response to under-segmented results, as illustrated in Figure 6. Segmentation in
panel (a) shows two regions with a quite good ground truth overlap, only three pixels are
misclassified. In the panel (b), the segmentation shows only one region and

the quality score is logically less than in (a). In the last panel (c), two regions are present but
the centre region badly overlaps the corresponding ground truth centre region. In
opposition with visual assessment, the segmentation quality is worst than in Figure 6(c).

D Pixel D Ground truth boundary pixel
D Detected boundary pixel

@) (b) (©)
3 3
(R g2 0 A
48 47 48 36 48 56
E;' =0.063 E!'=0.125 E/ =0304

Fig. 6. Limitation of the segmentation evaluation metric when weighting terms (y” and wf.)

are not used.

A Cognitive Vision Approach to Image Segmentation 275

The metric is improved by introducing two weighting terms ? and wh which quantify the

average distance between misclassified points to the ground truth boundary such that:

Zdzst() @)

xely

with fcf the closest pixel to x belonging to p IA ,and

1 . G
w; = |szfz;;dlst(x,x,G))

with fcf the closest pixel to x belonging to B IG ; dist(x,, xz) is the Euclidean distance

between two pixels x1(u,0) and x2(u,v) in a 4-neighbourhood such that:

. 2 2
dist (x,,,) = | (x.(0)~x, ()" +(x, ()~ x,(1) ©)
Since ? and wy have no fixed upper bounds, the normalization factor is useless and the

segmentation quality measure becomes:

E} = wh xe? + wy xe;
0
= BLG z dist(x, £) + % Z dist(x, fc,G) a0
1 x€l 1 xel,

The search of %' (resp. £9) is made easier by the use of a distance map (Maurer &
Raghavan, 2003) computed from B/ (resp. B[). This operation is exemplified in Figure 7.

By taking back the example in Figure 6 with the new definition of the evaluation metric, the
values of £/ for the cases (a), (b), and (c) are respectively 0.168, 0.75, and 0.679, yielding a

45
40
35
30
25
20
15
10

5

(c) distance map of (b), the grey-

good correlation with a visual assessment.

(a) region-based (b) region boundary
segmentation composed of 2 representation of the level value of a p1xe1 represents
& comp P L the Euclidean distance to the
regions segmentation in (a)

nearest boundary pixel

Fig. 7. An example of a distance map from a binary contour segmentation.

276 Tools in Artificial Intelligence

Once our performance evaluation metric is defined, the goal is now to minimize the
segmentation error E;' in order to learn optimal segmentation parameters. This is the role of

our closed-loop global optimization procedure.

3.3.3 Choice of the optimization algorithm

Of primary importance in this optimization procedure is finding an optimal segmentation

parameter setting p# for each / € 3. We also aim at providing a good evaluation study of

the tested optimization techniques in terms of performance versus computational cost and
parameter setting. In the family of free derivative techniques, we propose the following
criteria to assess the optimization algorithms:

1. Since the segmentation of an image is the most expensive process in the optimization
loop, the number of maximum segmentation algorithm calls might be set as a
parameter. Indeed, even if the ultimate goal of an optimization procedure is to find a
global optimum, the computational cost should remain realistic.

2. The optimization algorithm must be able to converge whatever the evaluation profile,
i.e. robust enough to find (quasi-)global optimum of various non-smooth functions.

3. The final quality of the optimization procedure should no be too dependent of the
tuning of the optimization algorithm parameters, whatever the segmentation algorithm.

We have seen in our survey (see section 2.3) that several optimization techniques have been

applied to tackle the segmentation optimization problem. Although all of them are suitable

with our problem, no comparative study exists to help us in our choice. Thus, we have
decided to focus on two techniques which are worth being compared. The first one is the

Simplex algorithm (Nelder & Mead, 1965) and the second is a standard genetic algorithm

(Goldberg, 1989) using non-overlapping populations and optional elitism. In one hand,

simplex is easy to use, fast to converge, but requires to define a initializing strategy (starting

point(s) and starting step) and do not guarantee to find a global optimum. In an other hand,
genetic algorithms are robust but are slower to converge and their parameters must be set
carefully.

After all pair samples (j; IA , E ;‘) have been extracted for all segmentation algorithms to test,

the next step is to select and tune the one(s) which will be learnt for each identified context.

The following section discusses our learning strategy for context adaptation.

3.4 Learning for context adaptation

The previous parameter optimization step allows us to objectively compare the
segmentation algorithms with regards to their best performance scores. A straightforward
strategy for the selection of an algorithm is thus to take the first best. Nevertheless, the
problem becomes more difficult when the training images are heterogeneous, due for
instance to global or local variations in the background. In this case, one segmentation
algorithm could be the best adapted for the segmentation of a training image subset and
another one for another subset. We propose to tackle this problem by associating one
algorithm per subset. More precisely, we propose to rank the segmentation algorithms for
each previously identified context. The context adaptation strategy can be formalized as
follows:

f:Rd—>S (11)
() (4, p")

A Cognitive Vision Approach to Image Segmentation 277

However, it is impossible to continuously predict the algorithm behaviour according to
image variations and therefore the function cannot be seen as a regression model. Our
approach is to tackle this modelling problem by applying an unsupervised clustering of the
training images to identify the different contexts, i.e. clusters of images having similar
feature vectors. Then, for each cluster (i.e. images of the same context), segmentation
algorithms are ranked and the best one is learnt. The best algorithm is the one performing
the best average performance on the cluster. For each algorithm, a mean parameter set is
computed as follows:

1 n 4
A=|TZP, (12)

S|

NAREH

where 34 is the subset of training images for which the algorithm A has obtained the best
evaluation results among the other algorithms. Finally, for each training image of the cluster
and each algorithm A tuned with 3“, the segmentation quality is computed again. The

algorithm having the best average performance on the training image set is finally selected.
We obtain a discrete function F taking a context identifier 0 as input and returning an
algorithm A with a mean parameter setting 5 such as:

F:0-5§

O (4,p") 13

This selection strategy comes to select the robustest algorithm based on objective
comparisons, i.e. the algorithm which can deliver the best results for the cluster with a
globally relevant parameter set. However, this straightforward ranking approach has two
major drawbacks. First, by selecting only one algorithm and averaging its parameters, it
reduces the previously extracted segmentation knowledge amount to one mean case.
Second, even if the selected algorithm over performs the others in most of the cases, the
parameter averaging can have disastrous effects on the algorithm performance.

The principal purpose of this strategy is to overcome the drawbacks of a pure global ranking
strategy by dividing the solution space and by restricting the ranking process onto each
subspace. The main advantage on ranking algorithms inside a subspace is that evaluation
profiles are likely more correlated.

In this section, we have shown that the algorithm selection problem cannot be separated
from the parameter tuning problem. This statement means that a solution to the algorithm
selection issue is composed of both an algorithm and a parameter setting. We have
described our twofold strategy for learning the algorithm selection based on image-content
analysis and algorithm ranking. Starting from a training image set and segmentation
algorithms, our approach first identifies different situations based on image-content
analysis, then select the best algorithm with a mean parameter set for each identified context
based on optimized parameter values. At the end of the learning process, contexts are learnt
with their associated pairs (A,f)”‘)

3.5 Learning for semantic image segmentation
In this section, we propose an approach for semantic image segmentation based on high-
level knowledge acquisition and learning. Even if the segmentation is optimized, low-level

278 Tools in Artificial Intelligence

segmentation algorithms cannot reach a semantic partitioning of the image. Thus, compared
to the ground truth, some regions remain over-segmented, as illustrated in Figure 8. If we
can assign the right label to each region, neighbouring regions with similar labels are
merged and, as a consequence, the residual over-segmentation becomes invisible. This
means to be able to map region features onto a symbolic concept, i.e. a class label. We use
the example-based modelling approach as an implicit representation of the low-level
knowledge. This approach has been applied successfully in many applications such as
detection and segmentation of objects from specific classes e.g., (Schnitman et al., 2006;
Borenstein & Malik, 2006). Starting from representative patch-based samples of objects (e.g.,
fragments), modelling techniques (e.g., mixture of Gaussian, neural networks, naive Bayes
classifiers) are implemented to obtain codebooks or class-specific detectors for the
segmentation of images. Our strategy follows this implicit knowledge representation and
associates it with machine learning techniques to train region classifiers. The following sub-
sections describe this stage in details.

M@%?@&@?
N
Y

S| <
aN! ® SR
(c) segmentation with (d) segmentation with
default parameters optimized parameters

(a) original image (b) ground truth

Fig. 8. An example of a parameter optimization loop. The final result (d) is not perfect since
some regions are over-segmented with respect to the ground truth (b).

3.5.1 Class knowledge acquisition by region annotations

In our case, region annotations represent the high-level information. This approach assumes
that the user is able to gather, in a first step, a representative set of manually segmented
training images, i.e. a set that illustrates the variability of object characteristics which may be
found. Then, the user must define a domain class dictionary composed of k classes as
Y= {y“._,, ¥ k}. This dictionary must be designed according to the problem objectives. For

instance, y; = background class, y» = object class #1, and so on. Once Y is defined, the user is
invited, in a supervised stage, to label the regions of the manually segmented images with
respect to Y. From a practical point of view, an annotation is done with the help of a
graphical user interface we have developed. This tool allows interacting with a region-based
segmentation of an image by clicking into a region and by selecting the desired class label y
(see Figure 9).

At the end of the annotation task, we obtain a list of labelled ground truth regions which
belong to classes defined by the user. Since the segmentation result is not exactly the same
than the manual segmentation, the next step is to map, for each training image, the labels of
ground truth regions onto the regions of the region map R/ resulting from the segmentation

of the image I with the selected algorithm A tuned with the parameter set ;*, as described

in section 3.4. The mapping is done by majority overlap such as for each region r ¢ R/,

A Cognitive Vision Approach to Image Segmentation 279

" SegTool (Beta)

Eile Actions Learning View

[Segmentation | Ground Truth

o[

Segment it ! ‘ | Region Annotations Mapping

Fig. 9. Region annotations with the developed graphical tool.

v |li= argmaxHr,ifM >T
w(r)= |r| (14)

V,.else
with |r| the number of pixels of the region r, T a threshold, and
H(r)= {hl (P B (7)o (r)} the label histogram of the region r such that for a pixel # and

alabel yi, 4, () :card{u er|y(uw)=y, },i el,....k-
If the ratio of the most represented class in the region does not reach the threshold T (here
fixed at 0.8), the region label is set to y ¢y . This prevents from labelling badly segmented

region as sketched in Figure 10.

Labelled Ground Truth Segmentation Result
(2 regions) (5 regions)

Superposed Segmented Regions and .
Pixel Labels from Ground Truth Mapping Result

[JPixel not Labelled
[l Pixel of Class #1
Il Pixel of Class #2

Fig. 10. Example of the mapping between a labelled ground truth regions and segmented
regions.

280 Tools in Artificial Intelligence

We also denote the set of all region annotations

RA, =UJU)y = y,} (15)

1€3 rerf!

and the set of all annotated regions R ysuch as:

R =l U{ry() =y} (16)

1€3 rerf!
for each region, a feature vector x(r) is extracted and makes with the label a pair sample
noted (x(r), y(r)). The set of all collected pair samples from J constitute the training data set

such as:

T =JU{(x).y() | () = 3, 17)

1€3 reRy!

T 5 represents the knowledge of the semantic segmentation task and is composed, at this
time, of raw information. In the following section, we address the problem of knowledge
modelling by statistical analysis.

3.5.2 Segmentation knowledge modelling

The first step towards learning statistical models from an image partition is to extract a
feature vector from each region. But which low-level features are the most representative for
a specific region labelling problem? In more general terms, which features are useful to
build a good model predictor? This fundamental question, referring to the feature selection
problem, is a key issue for most of the class-based segmentation approaches.

Feature Extraction

When defining a set of features for classification problems, two approaches can be
considered: a first approach aims at building relevant feature sets, while a second approach
more focus on the usefulness of each feature. In the first case, the choice of relevant features
mostly relies on knowledge of the domain. In the second case, the goal is clearly to select
features useful for building a good predictor, even if some relevant features may be
excluded. We propose a trade-off approach: starting from heuristically selected features we
aim at training robust region classifiers. To this end, we combine generic features, such as
colour and texture and apply a feature selection algorithm.

In our approach, colour histograms represent the colour information of each segmented
region. Two parameters must be set: the colour space (cs) as RGB, HSV, or XYZ, on which
the histograming is applied, and the quantization parameter ¢ which defines the number of
bins. In our approach, we do not state a priori the relevance of one colour space against
others as well as the best quantization level. We rather consider these variables as
parameters of the feature selection problem.

Texture feature extraction techniques have received considerable attention during the past
decades and numerous approaches and comparative studies have been presented (Reed &
du Buf, 1993). The most commonly used are the grey-level co-ocurence matrices introduced
by Haralick (Haralick, 1979), the Law’s texture energy (Laws, 1980), and the Gabor multi-
channel filtering (Jain & Farrokhnia, 1991). For the characterization of texture, we use
oriented Gaussian derivatives (OGD) to generate rotation invariant feature vectors. OGD are

A Cognitive Vision Approach to Image Segmentation 281

equivalent to the Gabor features but are computationally simpler. The basic idea is to
compute the energy of a region as a steerable function. This energy is computed for different
power channel, which are the result of convolving the region pixels with OGD filters of a
specific order. As colour histograms, texture feature vectors depend on the parameter 4.

The final feature vector representing a region is a concatenation of the feature vectors
extracted from each cue. The feature extraction process is applied on each region of the
annotated regions set Ry so as to build the training data set T5.

Following our cognitive approach of the segmentation problem, we need to avoid manually
selected and tuned algorithms. At the feature selection level, this means to be able to
automatically select and tune the feature extraction algorithm.

Feature Selection

The feature selection is used to reduce the number of features, remove irrelevant,
redundant, or noisy data, and it brings the immediate effects of speeding up and improving
the prediction performance of learning models. Since feature selection is a fertile field of
research, we refer the reader to surveys (Guyon & Elisseeff, 2003; Kohavi & John, 1997;
Blum & Langley, 1997) as good starting literatures. The optimality of a feature subset is
measured by an evaluation criterion. Feature selection algorithms designed with different
evaluation criteria broadly fall into two categories: the filters and the wrappers. Filters select
subsets of features as a pre-processing step, independently of the chosen predictor. Well-
known methods dedicated to this purpose are basic linear transforms of the input features
like Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (LDA).
Techniques based on iterative search are also widespread as sequential forward/backward
algorithms (e.g. SFFS, SBS, ReliefF). Wrappers utilize the learning machine of interest (e.g.,
SVM, neural networks) as a black box to score subsets of features according to their
predictive power. Consequently, wrappers are remarkably universal and simple. An
interesting comparative study of such feature selection algorithms can be found in (Molina
et al., 2002).

The feature selection approach we propose is derived from wrappers. Our goal is to find the
best feature extractor configuration which minimizes the joint classification errors of the
class predictors applied on the training data set T5. Unlike classical approaches, we act on
the feature extractor parameters to generate different feature vectors, instead of reducing the
feature vector itself. This approach is sketched in Figure 11. The two free parameters of our
selected feature extractors are the colour space encoder for colour feature extractor, and the
quantization level for both colour and texture feature extractors. The goal is to find the best
combination able to induce the minimum region classification errors. The quality estimation
is conducted via a cross-validation procedure which gives, for each region classifier, the
classification Mean Square Error (MSE). A global MSE is then computed by averaging the
MSE of each region classifiers.

Region Classifiers Training

Trainin Reaion Feat Trainine Dat Predict o Yes Qptimal
; Sg egion Feature raining Data ||| Predictor | | Cross-Validationf Feature
mage Set Extraction Set Building Training Extractor

t

Updated Feature Extractor Parameters

Fig. 11. Feature selection schema based on tuning of the feature extractor parameters.

282 Tools in Artificial Intelligence

We use an iterative search strategy to cover the value spaces of the two parameters g and cs.
This technique guarantees to find a global optimal solution but is computationally
expensive: first, it requires to run M x N x O region classifier training procedures, with M
the number of quantization levels (typically equals to 256), N the number of color spaces,
and O the number of classifiers to train; second, when the value of g increases, so does the
size of the feature vector. So, to avoid an unreasonable computational time, the choice of the
training algorithm must take into account this computational constraint.

Training Algorithm for Class Modelling

After extracting a feature vector for each region of the training data set, the next step is to
model the knowledge in order to produce region classifiers (one classifier per class). For a
feature vector x(r) and a class y;,

¢(r=p(¥(r)=y1x1) (18)
with ¢,(r) €[0,1] is the estimated probability associated with the hypothesis: “feature vector

x(r) extracted from region r is a representative sample of the class y;”. The set of these
trained region classifiers is noted ¢ = ‘{01 yeer Cy }

A variety of techniques have been successfully employed to tackle the problem of
knowledge modelling such as naives Bayes networks, decision trees or support vector
machine (SVM). We propose to use SVM (Burges, 1998) as a template-based approach. SVM
are known to be efficient discriminative strategies for large scale classification problems
such as in image categorization (Chen & Wang, 2004) or object categorization (Huang &
LeCun, 2006). SVM yields also state-of-the-art performance at very low computational cost.
SVM training consists of finding an hyper-surface in the space of possible inputs (i.e. feature
vectors labelled by +1 or -1). This hyper-surface will attempt to split the positive samples
from the negative samples. This split will be chosen to have the largest distance from the
hyper-surface to the nearest of the positive and negative samples.

We adopt a one-vs-rest multi-class scheme with probability information (Wu et al., 2004) to
train one region evaluator per class. We use SVM with radial basis function as region
classifiers. There are two parameters while using RBF kernels: C (penalty parameter of the
error term) and vy (kernel parameter). It is not known beforehand which C and are the best
for one problem; consequently some kind of model selection (parameter search) must be
done. To fit the C and y parameters, we adopt a grid-search method using 5-fold cross-
validation on training data. Basically, pairs of (C, y) are tried and the one with the best cross-
validation accuracy is picked. This straightforward model selection efficiently prevents
over-fitting problems. The model selection is wrapped in the feature selection schema with
which it shares the cross-validation step. The training stage ends up when all combinations
of ((9,¢s),(C, y)) have been tested. The one giving the lowest global classification error is
picked and the region classifiers are trained a last time with this configuration.

3.6 Conclusion

In this section, we have presented our learning approach for adaptive image segmentation.
We have detailed each step of the learning module for context adaptation, algorithm
parameter tuning, and semantic image segmentation. The algorithm parameterisation issue
is tackled with a generic optimization procedure based on three independent components.
We have designed our performance evaluation metric to be broadly applicable and with a
low computational cost. It allows assessing a large variety of segmentation algorithms and

A Cognitive Vision Approach to Image Segmentation 283

only relies on manual segmentations. However, further experiments need to be done to
assess the performance and the accuracy of the two optimization algorithms (the Simplex
algorithm and a Genetic Algorithm). The final step of the learning module is to train region
classifiers to refine the segmentation according to semantic region labelling. In this task, the
user must annotate the regions of the manually segmented images with class labels. Our
approach is based on the discriminative power of the SVM Classifiers to ground low-level
region features into symbolic classes. We have also proposed an unsupervised method for
the learning of SVM and region feature extractor parameters. The goal is to optimize the
performance of the classifiers without the help of the user.

4. Adaptive image segmentation

The originality of our approach is to combine bottom-up segmentation and a top-down
process of region labelling in a complementary manner: in a first step, segmentation is
optimized by dynamic algorithm selection and parameter tuning. Then, the bottom-up
segmentation is refined thanks to region labelling to achieve the expected semantic
segmentation. A new image (i.e. not belonging to the training set) segmentation is achieved
by the adaptive image segmentation module in four steps (see Figure 12) using the
segmentation knowledge base (learnt clusters of training images, learnt parameters, and
trained region classifiers):

1. Context Prediction: a global feature vector is extracted from the image. The feature
vector is classified among the previously identified clusters. The classification is
obtained by assessing the distance of the feature vector to the cluster centres.

2. Algorithm selection: from the identified context, the corresponding segmentation
algorithm with learnt parameters is selected.

3. Bottom-up segmentation: the image is segmented using the selected algorithm. This
algorithm is tuned with the learnt parameters specific to the identified context.

4. Semantic segmentation: for each region of the segmented image, features are extracted
and given as input to the region classifiers. The most probable label is assigned to the
region. The final labelled partition representing the semantic segmentation of the image
is returned to the user.

New Image

Y

Learnt Clusters Context Prediction
of Training Images

Algorithm Selection

Y

Learnt Bottom-up segmentation
Parameters

Y

Trained Region Semantic Segmentation
Classifiers

Segmented Image

Fig. 12. Adaptive segmentation of an input image based on algorithm selection, parameter
tuning, and region labelling.

284 Tools in Artificial Intelligence

For a new incoming image I not belonging to the training set, a feature vector is first
extracted then classified into a cluster. The classification is based on the minimization of the
distance between the feature vector and the cluster set {Ki} as follows:

Ied ov(Dek |i:argm[li1}dist(v(1),1c‘) (19)

The pair (A, p“) associated with the detected context 0, is returned.

Once the algorithm is selected and tuned, the image is segmented. For each region, a feature
vector is extracted using the optimized (g,cs) parameter set and given as input to each

trained region classifiers ¢,. Classes are scored according to the classifier responses {cl_ (r)}

and finally, the returned label y() is such as:
Y(r)=argmaxc,(r) (20)

When all regions are labelled, neighbouring regions with the same label are merged to form
a semantic partitioning of the image. This final segmentation is returned to the user.

5. Experiment for adaptive image segmentation

We present below the experimentations we have conducted to assess our framework. The
first application we focus on is the segmentation of biological objects in their natural
environment. More precisely, the goal is to segment white flies on rose leaves (see Figure
13). The images are acquired from a flatbed scanner. White flies are very small objects
(2mm), their wings are semi-translucents, and they can be seen from different points of
view. Rose leaves are highly textured with many veins and present various appearances.

5.1 Segmentation algorithms

In this section, we briefly describe the segmentation algorithms we used for our experiment.
Our set is composed of algorithms reflecting different segmentation strategies as developed
in section 2.1 namely region growing, split-and-merge, watershed, or thresholding
techniques. The Table 1 summarizes these algorithms and gives important information
concerning their free parameter with their ranges and default values provided by the
algorithms” authors.

5.2 Parameter optimization assessment

Before assessing the optimization procedure, we illustrate the optimization problem with
some examples of evaluation profiles. We present 1D and 2D profiles for the different
segmentation algorithms (except the CWAGM which has a parameter space in R3) for the
four training images of the Figure 13. The best segmentation quality correspond to an
assessment value g/ =(. Concerning the CSC algorithm (see Figure 14), the shapes of the

curves are similar for the four images and present a global minimum which falls in the same
part of the parameter space. The global optima for the SRM algorithm (see Figure 15) are
found in a very narrow band of the parameter space. Many local optima characterize the
curves of the EGBIS algorithm (see Figure 16). The thresholding algorithm behaviour is
more straightforward regarding to the obtained curves (see Figure 17). Globally, two

A Cognitive Vision Approach to Image Segmentation 285

performance levels are revealed where good performances are achieved for a large range of
the parameter values. However, the global optimum is more difficult to see since the
difference between the good performance level (in blue) and its level is very thin. From
these observations, we can conclude that the evaluation profiles are not always convex hulls
and their granularity can depend on the image. Since the Simplex algorithm does not
guarantee to obtain a global optimum, we divide each parameter space into three sub-spaces
and run an optimization on each sub-space. This means that 3N optimization loops are run
for a segmentation algorithm with N free-parameters. Table 2 present the optimization
results of the five segmentation algorithms in terms of segmentation performance. Globally,
all the algorithms reach a good level except the EGBIS algorithm, as shown in Figure 18.
This result is due to the fact that this algorithm is sensitive to small gradient variations. As
expected, the EGBIS has a big standard deviation (due to the presence of many local optima)
whereas the thresholding one is low (due to its straightforward behaviour). We have also
compared the performances of the optimization algorithms (the Simplex and the GA) with a
systematic search method (third part of Table 2). By systematic, we mean an iterative search
throughout the whole parameter space with a fixed sampling rate. The sampling rate
depends on the dimensionality of the parameter space. The global performances of the three
methods are similar with a very little advantage to the Simplex.

. Default
Algorithm Free Parameter Range Value
CSC (Priese et al, 2002) t: region merging threshold 5.0-255.0 20.0

Color Structure Code

SRM (Nock & Nielsen, 2004)
Statistical Region Merging

Q: coarse-to-fine scale control 1.0-255.0 320

EGBIS (Felzenszwalb & 0.0-1.0
Huttenlocher, 2004) o: smooth control on input image .O 0_' 0.50
Efficient Graph-Based Image k: colour space threshold 20(’)0 0 500.0
Segmentation :

. . Tiow: low threshold 0.0-1.0 -
Hysteresis thresholding Thgn: high threshold 0.0-1.0)
CWAGM (Alvarado Moya, 2004y " Fegion merging threshold - 0.0-200.0

. n: min. region number 1.0-100.0
Color Watershed-Adjacency Graph . min. probability for watershed 0.0-1.0 10.0
Merge p: . probability for watershe .0-1. 045

threshold

Table. 1. Components of the segmentation algorithm bank, their names, and parameters to
tune with range and author’s default values.

To decide between the three different methods, we have compared them by considering
their computational cost as described in Table 3. The systematic search is obviously the most
costly method. The Simplex is the fastest method to converge apart from the CWAGM
algorithm. According to the previous performance score tables, the simplex is definitively
the best algorithm to optimize low dimensional parameter spaces in a few numbers of
iterations. For segmentation algorithms with more than two free-parameters, the Genetic
Algorithm should be preferred, requiring less iteration for the same level of performance.
Note that we have limited the number of iterations — mainly for computational cost

286 Tools in Artificial Intelligence

reasons — for the systematic search method to 2550 for the EGBIS algorithm and to 1250 for
the CWAGM algorithm, respectively. These two algorithms are relatively slow compared to
the others and the parameter space to explore is really huge, particularly for the CWAGM.

0
0) b Q
©
g Q Do
5
() gt001 (f) gt009 (g) gt026 (h) gt077

Fig. 13. Four representative training images and associated ground truth segmentations
used in figure 14 to figure 17.

Evaluation Profiles of the CSC Algorithm Evaluation Profiles for the SRM Algorithm

T

] o T £ £ [T TR 535 w0 w0 m m?.(;
Fig. 14. Evaluation profiles of the CSC Fig. 15. Evaluation profiles of the SRM
algorithm applied on the four training algorithm applied on the four training
images presented in Figure 13. images presented in Figure 13.

img00! imgd77

imga0s img026.

w0 |

o

Fig. 16. Different evaluation profiles of the EGBIS algorithm applied on the four training
images presented in Figure 13. t and o are the two free parameters.

A Cognitive Vision Approach to Image Segmentation

287

imgnol

Tiow 0o

Fig. 17. Different evaluation profiles of the Hysteresis thresholding algorithm ap

Thugh Thou

Thign Tiou

img009

~. — 05

o0 Thscn

img026

Tiow 00

plied on the

four training images presented in Figure 13. Tiow and Thigh are the two free parameters.

Algorithm

CsC
SRM
THRESH
EGBIS
CWAGM

E}

=(using Simplex / GA / Iterative search

min

max

mean

std

0.00 / 0.00 / 0.00
0.00 / 0.00 / 0.00
0.00 / 0.00 / 0.00
0.06 / 0.12 / 0.13
0.00 / 0.00 / 0.00

0.50 / 0.46 / 0.46
0.52/ 0.48 / 0.48
035/ 0.35 / 0.35
0.73/0.71 / 0.71
0.44 / 0.44 / 0.46

0.14 / 0.13 / 0.13
0.13/0.12/0.12
0.11/0.11 / 0.11
0.37/ 0.37 / 0.39
0.12/0.12 / 0.19

0.11/0.10 / 0.10
0.11/0.10 / 0.10
0.09 / 0.09 / 0.09
0.14 /0.14 / 0.14
0.09 / 0.09 / 0.08

Table 2. Statistics on the optimization performances for the training image set using the
Simplex algorithm, the genetic algorithm and the systematic search.

Algorithm Mean number of iterations
Systematic search Genetic algorithm Simplex algorithm
CsC 1000 733 83
SRM 1000 734 82
THRESH 10000 840 404
EGBIS 2550 840 497
CWAGM 1250 840 1821

Table 3. Computational cost of each optimization method.

The number of iterations is also dependent of the parameterisation of the optimization
algorithm. For the Simplex algorithm, it mainly depends on the maxCalls parameter which
specifies the maximum allowed number of calls of the fitness function in an optimization
loop. Figure 18 (left) shows the influence of this parameter on the convergence accuracy. We
start the test on the img001 with maxCalls set to 3 (minimum allowed by the algorithm) and
increase it up to 80. For a one-dimensional parameter space, this means that the total
number of iterations will be between 9 (3 x 3) and 240 (3 x 80), for a two dimensional space
between 27 (32 x 3) and 720 (32 x 80), and so on. The study of the graph brings us to several
conclusions. The dimensionality of the parameter space to explore has to be taken into
account for the setting of maxCalls but excessive values are useless. The study also reveals
that the parameter space is not explored in the same way, depending on the segmentation
algorithm. Indeed, some algorithms have parameter subspaces which induce flat evaluation
profiles, as for instance the thresholding algorithm. In these sub-spaces, the Simplex

288 Tools in Artificial Intelligence

converges in a few numbers of iterations. The same study is done for the GA and the results
are graphically reported in Figure 18 (right). We decide to assess the GA sensitivity to the
initial population size. The number of initial points is here independent of the segmentation
algorithm and varies between 20 and 840. The same conclusions can be drawn. We just can
add that the EGBIS algorithm brings some problem to the GA which falls in many local
optima (peaks of the EGBIS curve in Figure 18 (right)).

Algorithm Performances at the Simplex Convergence Points for img001
T T

Algorithm Performances at the Convergence Points of the Genetic algorithm for img001
T T

Masizmu sz ofthe initial population fr the genetc algorithen

Fig. 18. Convergence accuracy of the Simplex algorithm by varying the maxCalls parameter
and convergence accuracy of the GA by varying the initial population size.

5.3 Algorithm selection

We applied the DBScan (Ester et al., 1996) algorithm to cluster the 20 training images as
described in section 3.2. We obtain two clusters of 10 images (see Figure 19 for two
examples). Visually, the first cluster corresponds to the back side images of the scanned rose
leaves and the second cluster to the front side images. For each cluster, mean parameter sets
of the five segmentation algorithms are computed w.r.t. their performance scores. The
segmentation performances of the tuned algorithms are evaluated on each training image
sub set. The tuned algorithm which gets the best mean performance score for each cluster is
elected. Before the last ranking step, the best algorithm for the first cluster was the
Hysteresis thresholding algorithm and the best for the second cluster was the CSC
algorithm. After the last ranking step, the CSC algorithm was found as the best one for the
two clusters but with different parameter sets. This means that even if the thresholding
algorithm performs better in individual cases, the CSC algorithm is more robust than the
thresholding algorithm when tuned with a mean parameter set.

Fig. 19. Examples of images for the two identified clusters. Left = cluster 1 (front side of the
leaves), right = cluster 2 (back side of the leaves).

A Cognitive Vision Approach to Image Segmentation 289

5.4 Semantic segmentation performance assessment

For each identified image cluster, region labels of annotated manual segmentations are
mapped into regions of the segmented image following the method described in section
3.5.1. Then, for each region class, a region classifier is trained with region features as input.
We used our wrapper scheme detailed in section 3.5.2 to optimize the classifier
performances. Three colour spaces are used in this experiment: RGB, HSV, and XYZ. The
optimization of the SVM parameters increases the classifier performances of 5-10%. The best
cross-validation rates are reached with q (quantization level) values superior to 50. We have
also tested texture features but their performances are 10% inferior in mean than with the
colour features as shown in Figure 20. Finally, the classifiers are trained a last time with the
configurations giving the best cross-validation rates. The final set up of the different
algorithms is then as follows (see Table 4):

Context Seg. Algorithm Class Feature extractor param. SVM param.
(param.) Colour space q C 14
Context 1 CsC rose leaf HSV 112 4 1
(light green leaves) (41.9) white fly HSV 112 1 4
Context 2 CsC rose leaf XYZ 21 64 4
(dark green leaves) (48.7) white fly XYZ 21 256 0.25

Table 4. Set up of the segmentation, the feature extractors, and the classifiers.

5.5 Final segmentation quality assessment

In this section, we present the segmentation results on the test set. We compare six different

methods, comprising (parts of) our approach and a pure top-down segmentation.

e method 1: ad hoc segmentation, with the Hysteresis thresholding algorithm tuned with
T[ow =(0.45 and Thigh = 1.0,

e method 2: algorithm selection and tuning based on the learnt parameters from the
whole training set (CSC is the best algorithm),

¢ method 3: method 2 + semantic segmentation (region labelling),

e method 4: algorithm selection and tuning based on image content analysis (one
algorithm with learnt parameters per context),

¢ method 5: method 4 + semantic segmentation,

¢ method 6: over-segmentation + semantic segmentation.

The over-segmentation used in method 6 is performed with the CWAGM algorithm

manually tuned with a very low region merging threshold (see Figure 20).

Performance scores of the test set are summarized in Table 5. Methods 3 and 5 give the best

results. This outcome is predictable since the segmentation algorithm used for the method 5

is the same (CSC) and the parameter setting for the context 1 is close to the one for the

context 2. The white fly region classifier for the context 2 has been trained on few samples

since there are not many white flies on the front side of rose leaves. Consequently, the

classification errors for the white fly class are higher for the method 5 context 2 than for the

method 3. In a biological point of view, insects prefer to live hided on the back side of the

leaves, where they are better camouflaged (low contrast, not visible, etc.). Method 6 does not

perform better results even if its initial over-segmentation is more precise (i.e. less missed

boundary pixels) than with the CSC algorithm in methods 2 to 5.

290 Tools in Artificial Intelligence

Fig. 20 Example of an initial over-segmented image used in method 6.

5.6 Evaluation on a public image database

In this section, we present evaluation results of the parameter optimization step on a public
image database. The goal of the Berkeley Segmentation Dataset and Benchmark (BSDB)
image database (Fowlkes & Martin, 2007) is to provide an empirical basis for research on
image segmentation and boundary detection. To this end, the authors have collected 6000
hand-labelled segmentations of 300 Corel dataset colour images from 30 human subjects.
The images depict natural scenes with at least one foreground object (e.g., an animal, a
plant, a person, etc.). The ground truth are not labelled and the possible semantic classes are
too numerous. Consequently, we do not assess the semantic segmentation part of our
framework on this image database.

Method Performance scores of segmentation of the test images

min max mean std
1 0.00 0.35 0.09 0.08
2 0.00 0.78 0.21 0.16
3 0.00 0.65 0.12 0.14
4 0.06 0.83 0.23 0.17
5 0.06 0.62 0.12 0.14
6 0.00 0.67 0.15 0.14

Table 5. Statistics on the segmentation performances for the test set using different
segmentation strategies.

The evaluation metric proposed in this image database for the benchmarking cannot be used
with region-based segmentation algorithms since it relies on soft boundary maps of edge-
based segmentation results (e.g. maps of gradient magnitude). We thus prefer our
segmentation performance metric. For each image, several human segmentations exist (from
three to eight) with different levels of refinements. We have decided to select the finest ones.
Then, for each segmentation algorithm of our algorithm bank and for each image, algorithm
parameters are optimized thanks to the selected manual segmentation. As previously done
in section 5.2, we have compared the optimized segmentation achieved with the three
optimization algorithm based on: the Simplex algorithm, the Genetic Algorithm, and a
systematic search (see Table 6). Globally the three optimization algorithms perform in mean
comparable results. This confirms the reliability of our parameter tuning approach for this
image database.

A Cognitive Vision Approach to Image Segmentation

291

Algorithm E; =0 using Simplex / GA / Iterative search
min max mean std
CSC 029/037/025 050/046/ 046 0.14/013/0.13 0.11/0.10/0.10
SRM 025/023/023 052/048/048 0.13/012/0.12 0.11/0.10/0.10
THRESH 019/019/038 035/035/035 0.11/0.11/011 0.09/0.09/ 0.09
EGBIS 021/020/034 073/071/071 037/037/039 014/0.14/0.14
CWAGM 022/022/050 044/044/046 012/012/019 0.09/0.09/0.08

Table 6. Statistics on the optimization performances for the training image set using the
Simplex algorithm, the genetic algorithm and the systematic search.

7. Conclusion and future work

In this chapter, we address the problem of image segmentation with a cognitive vision
approach. More precisely, we study three major issues of the segmentation task in vision
systems: context adaptation, selection of an algorithm and tuning of its free parameters,
according to the image content and to the application needs. Most of the time, this tedious
and time-consuming task is achieved by an expert in image processing using a manual trial-
and-error process. Recently, some attempts at automating the extraction of optimal
parameters of segmentation have been made but they are still too application-dependent.
The re-usability of such methods is still an open problem. We have chosen to handle this
issue with a cognitive vision approach. Cognitive vision is a recent research field which
proposes to enrich computer vision systems with cognitive capabilities, e.g., to reason from a
priori knowledge, to learn from perceptual information, or to adapt its strategy to different
problems.

We propose a supervised learning-based methodology for off-line configuration and on-line
adaptation of the segmentation task in vision systems. The off-line configuration stage
requires minimal knowledge to learn the optimal selection and tuning of segmentation
algorithms. In an on-line stage, the learnt segmentation knowledge is used to perform an
adaptive segmentation of images. This cognitive vision approach to image segmentation is
thus a contribution for the research in cognitive vision. Indeed, it enables robustness,
adaptation, and re-usability faculties to be fulfilled.

Finally, by addressing the problem of adaptive image segmentation, we have also addressed
underlying problems, such as feature extraction and selection, and segmentation evaluation
and mapping between low-level and high-level knowledge. Each of these well-known
challenging problems is not easily tractable and still demands to be intensively considered.
We have designed our approach (and our software) to be modular and upgradeable so as to
take advantage of new progresses in these topics.

The brittleness of our approach to unknown situations is currently its major drawback. This
concerns the context analysis level as well as the segmentation level. The concerned
algorithms are the DBScan algorithm for image-content clustering and the SVMs for the
semantic segmentation. Currently, neither the clustering algorithm nor the SVMs are able to
adapt dynamically to new training data: the learning process must be run again on the
whole training data set. The use of incremental machine learning techniques should be
useful to fulfil the property of continuous learning. The main idea of incremental learning

292 Tools in Artificial Intelligence

for unforeseen situations is to dynamically adapt the clustering/classification method w.r.t.
to the classification error of new input data. In our problem, unexpected situations can be
identified thanks to the estimates of the context probability and the estimates of the SVM
classification probabilities. The use of an adaptive classification algorithm using robust
incremental clustering as proposed in (Prehn & Sommer, 2006) will then allow a dynamic
update of the cluster and create new ones if necessary.

8. References

Abdul-Karim, M.-A,; Roysam, B.; Dowell-Mesfin, N. M.; Jeromin, A, Yuksel, M. &
Kalyanaraman, S. (2005). Automatic selection of parameters for vessel/neurite
segmentation algorithms, Transactions on Image Processings, Vol. 14(9), pp. 1338-
1350

Alvarado Moya, J. P. (2004). Segmentation of color images for interactive 3d object retrieval,
Ph.D. thesis, Technical University of Aachen

Bahnu, B.; Lee, S. & Das, S. (1995). Adaptive image segmentation using genetic and hybrid
search methods, Trans. on Aerospace and Electronic Systems, Vol. 31(4), pp. 1268-1291

Blum, A. L. & Langley, P. (1997). Selection of relevant features and examples in machine
learning, Artif. Intell., Vol. 97(1-2), pp. 245-271

Borenstein, E. & Malik,]. (2006). Shape guided object segmentation, in: Proc. of the Int. Conf.
on Computer Vision and Pattern Recognition, Vol. 1, pp. 969-976

Burges, C.]J. C. (1998). A tutorial on support vector machines for pattern recognition, Data
Mining and Knowledge Discovery, Vol. 2(2), pp. 121-167

Chen, Y. & Wang,]J. Z. (2004). Image categorization by learning and reasoning with regions,
Journal of Machine Learning Research, Vol. 5, pp. 913-939

Cinque, L.; Corzani, F.; Levialdi, S.; Cucchiara, R. & Pignalberi, G. (2002). Improvement in
range segmentation parameters tuning, in: Proc. of the Int. Conf. on Pattern
Recognition, Vol. 1, pp. 10176

ECVISION (2005). A research roadmap of cognitive vision, Technical report, Project IST-2001-
35454

Ester, M.; Kriegel, H.-P.; Sander, J. & Xu, X. (1996). A density-based algorithm for
discovering clusters in large spatial databases with noise, in: Proc. of the Int. Conf. on
Knowledge Discovery and Data Mining, Portland, pp. 226-231

Everingham, M.; Muller, H. & Thomas, B. (2002). Evaluating image segmentation algorithms
using the pareto front, in: Proc. of the Eur. Conf. Computer Vision, Vol. 2353(4), pp.
34-38

Felzenszwalb, P. F. & Huttenlocher, D. P. (2004). Efficient graph-based image segmentation,
Int. Journal on Computer Vision, Vol. 59(2), pp. 167-181

Fowlkes, C. & Martin, D. (2007). The berkeley segmentation dataset and benchmark,
http:/ /www.eecs.berkeley.edu/Research/Projects/ CS/vision/ grouping/segbenc
h/

Gelasca, E.; Salvador, E. & Ebrahimi, T. (2003). Intuitive strategy for parameter setting in
video segmentation, in: Visual Communications and Image Processing, Vol. 5150, pp.
998-1008

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley Longman Publishing Co., Boston, MA, USA

A Cognitive Vision Approach to Image Segmentation 293

Guyon, L. & Elisseeff, A. (2003). An introduction to variable and feature selection,]. Mach.
Learn. Res., Vol. 3, pp. 1157-1182

Haralick, R. (1979). Statistical and structural approaches to texture, in: Proc. of the IEEE, Vol.
67

Huang, F. J. & LeCun, Y. (2006). Large-scale learning with svm and convolutional nets for
generic object categorization, in: Proc. of the Int. Conf. on Computer Vision and Pattern
Recognition, pp. 284-291

Jain, A. K. & Farrokhnia, F. (1991). Unsupervised texture segmentation using gabor filters,
Pattern Recognition, Vol. 24(12), pp. 1167-1186

Kohavi, R. & John, G. H. (1997). Wrappers for feature subset selection, Artificial Intelligence,
Vol. 97(1-2), pp. 273-324

Laws, K. (1980). Textured image segmentation, Ph.D. thesis, Univ. Southern California

Lucchese, L. & Mitra, S. (2001). Color image segmentation : A state-of-the-art survey, Vol. 67,
Indian National Science Academy, New Dehli, pp. 207-221

Mao, S. & Kanungo, T. (2000). Automatic training of page segmentation algorithms : An
optimizatin approach, in: Proc. of the Int. Conf. on Pattern Recognition, Barcelona,
Spain, pp. 531-534

Maurer, C. R.J.; Qi, R. & Raghavan, V. (2003). A linear time algorithm for computing exact
euclidean distance transforms of binary images in arbitrary dimensions, Trans. on
Pattern Anlasys and Machine Intelligence., Vol. 25(2), pp. 265-270

Mezaris, V.; Kompatsiaris, I. & Strintzis, M. (2003). Still image objective segmentation
evaluation using ground truth, in:Proc. of the Workshop on Information and Knowledge
Management for Integrated Media Communication, Prague, Czech Republic, pp. 9-14

Molina, L. C; Belanche, L. & Nebot, A. (2002). Feature selection algorithms : A survey and
experimental evaluation, in: Proc. of the Int. Conf. on Data Mining, Japan, pp. 306-313

Nelder, J. & Mead, R. (1965). A simplex method for function minimization, Computer Journal,
Vol. 15, pp. 1162-1173

Nock, R. & Nielsen, F. (2004). Statistical region merging, Pattern Analysis and Machine
Intelligence, Vol. 26(11), pp. 1452-1458

Pal, N. R. & Pal, S. K. (1993). A review on image segmentation techniques, Pattern
Recognition, Vol. 26(9), pp. 1277-1294

Peng, J. & Bahnu, B. (1998). Delayed reinforcement learning for adaptive image
segmentation and feature extraction, Systems, Man, and Cybernetics, Vol. 28(3), pp.
482-488

Pignalberi, G.; Cucchiara, R.; Cinque, L. & Levialdi, S. (2003). Tuning range image
segmentation by genetic algorithm, EURASIP Journal on Applied Signal Processing,
Vol. (8), pp. 780-790

Prehn, H. & Sommer, G. (2006). An adaptive classification algorithm using robust
incremental clustering, in: Proc. of the Int. Conf. on Pattern Recognition, pp. 896-899

Priese, V.; Rehrmann, L. & Sturm, P. (2002). Color structure code. URL http:/ /www.uni-
koblenz.de/

Reed, T. R. & du Buf, J. M. H. (1993), A review of recent texture segmentation and feature
extraction techniques, CVGIP: Image Underst., Vol. 57(3), pp. 359-372

Rosenberger, C.; Chabrier, S.; Laurent, H. & Emile, B. (2005). Unsupervised and Supervised
Segmentation evaluation, in book: Advances in Image and Video Segmentation, Yu-Jin
Zhang editor, Tsinghua University, Beijing, China, chapter XVIII

294 Tools in Artificial Intelligence

Schnitman, Y., Caspi, Y.; Cohen-Or, D. & Lischinski, D. (2006). Inducing semantic
segmentation from an example, in: ACCV, Vol. 3852, Springer-Verlag, pp. 393-384

Skarbek, W. & Koschan, A. (1994). Colour image sementation - a survey, Technical report,
Technical University of Berlin

Wu, T.; Lin, C. & Weng, R. (2004). Probability estimates for multi-class classification by
pairwise coupling, The Journal of Machine Learning Research, Vol. 5, pp. 975-1005

Xia, Y.; Feng, D.; Rongchun, Z. & Petrou, M. (2005). Learning-based algorithm selection for
image segmentation, Pattern Recognition Letters, Vol. 26(8), pp. 1059-1068

Yasnoff, W.; Mui, J. & Bacus, J. (1977). Error measures for scene segmentation, Pattern
Recognition, Vol. 9, pp. 217-231

Zhang, Y. (1996). A survey on evaluation methods for image segmentation, Pattern
Recognition, Vol. 29(8), pp. 1335-1346

Zhang, Y. & Luo, H. (2000). Optimal selection of segmentation algorithms based on
performance evaluation, Optical Engineering, Vol. 39, pp. 1450-1456

Zhang, H.; Fritts,]. E. & Goldman, S. A. (2008). Image segmentation evaluation: A survey of
unsupervised methods, Computer Vision and Image Understanding, Vol. 110(2), pp.
260-280

17

An Introduction to the Problem of Mapping in
Dynamic Environments

Nikos C. Mitsou and Costas S. Tzafestas

National Technical University of Athens, School of Electrical and

Computer Engineering, Division of Signals Control and Robotics, Zografou Athens,
Greece

1. Introduction

Robotic mapping comprises one of the most important problems in the field of robotics.
During the past two decades, a large number of algorithms have been proposed in order to
solve the problem of constructing valid models of the robot environment. As a result, highly
accurate maps of large-scale indoor and outdoor environments have been constructed thus
far. There are still, though, much to be done in order to achieve fully autonomous mobile
robots capable of mapping any kind of environment (structured or unstructured, static or
dynamic).

In this chapter, we discuss the problem of mapping dynamic environments, an issue that
remains open and is extremely active nowadays. Dynamic environments are real world
environments where moving objects (e.g. humans, robots, chairs and doors) change their
positions over time. Widespread mapping algorithms developed in the past are based on the
assumption that the environment remains static during the robot exploration phase. Thus,
these algorithms provide imprecise results when applied in non-stationary environments.
The need to map these environments has led in the development of new algorithms that are
designed to exploit the dynamics of the environments towards efficient mapping. These
algorithms have given so far promising results.

Through this chapter, we examine the problem of dynamic environments through the
mapping point of view. Two issues that are strongly connected to mapping are
(a) localization, the process of estimating the position and the orientation of the robot and
(b) navigation, the generation of valid paths for the robot. They are both of great
importance and remain open fields of research especially when applied on dynamic
environments. However, in this chapter we concentrate on the mapping problem and refer
to the other two problems only when necessary. Our effort is towards providing the ideas
behind the algorithms discussed in this chapter and avoid the mathematical details and
formulas. We urge the interested readers to consult the referenced papers in order to gain a
better insight on the techniques discussed in this chapter.

The outline of the chapter is as follows: In Section 2, we present the mapping problem for
static environments, so as to make the reader familiar with the concepts of the mapping
problem. Next, in Section 3 we move to the problem of mapping in dynamic environments.
More specifically, we discuss the main difficulties of the problem and present a number of

296 Tools in Artificial Intelligence

methodologies that are common cases for dealing with it. In Section 4, a number of solutions
are presented. We explain how artificial intelligence ideas are applied in some state of the
art dynamic environment mapping algorithms. We discuss some recently published
algorithms that apply statistical methodologies to identify the static and different aspects of
the dynamic areas of the environment. Finally, in Section 6, we discuss the open issues and
challenges of mapping in dynamic environments.

2. The problem of mapping in static environments

Robotic mapping is the problem of creating a valid model of the robot’s environment. The
robot explores the unknown environment, collects a number of sensor measurements and
creates a spatial representation of its world. This representation might contain three
different types of areas:
a. the static areas, which are the areas that remained occupied during the robot exploration
process (e.g. walls, heavy furniture),
b. the unoccupied areas, which are the areas that do not contain any object (e.g. passages)
and
c. the unexplored areas, which are the areas that we obtain no information about their
occupancy.
There exist a number of different sensor types that are used during the mapping procedure
and can be divided into two categories: the sensors that are used to identify the internal
state of the robot and those that provide information about the robot’s environment. In the
first category, common examples are encoders, accelerometers, gyroscopes and GPS
receivers (for outdoor navigation only) that provide information about the robot’s motion
and position. Ultrasonic sensors, laser range finders, bumpers, acoustic sensors and cameras
are some examples of the second category which are used to detect and identify objects that
lay in their field of view.
The main difficulty in mapping lies in the fact that none of the above sensors can be
precisely accurate. Also, the reliability of the sensors might depend on external parameters
that change over time (e.g. motor encoders accuracy depends on the slippery of the ground
which is different on grass and on marble and the ultrasonic measurements will be different
when the detected objects are made of glass and of wood). Thus, there will always be errors
in the sensor measurements. Unfortunately, small uncertainties in some measurements can
yield in huge errors in the estimation of the robot position which will lead in inaccurate
maps.
In order to deal with these uncertainties, most algorithms use probabilities to describe both
the robot position and the robot’s environment. A number of different probabilistic
approaches for the preservation of the uncertainties on the robot position and a number of
world-modelling techniques can be found in the literature (more on localization and
mapping can be found in (Thrun, 2002)). Some common mapping techniques are the
occupancy grid (examples in (Gutmann & Konolige, 1999), (Birk & Carpin, 2006)), the
geometric maps (examples in (Latecki & Lakaemper, 2006), (Zhang & Ghosh, 2000)) and the
landmark representation (examples in (Larionova et al., 2006), (Suau, 2005)). They all have
given successful results under specific assumptions on static environments.
Next, we describe in detail the occupancy grid technique, since it is the most common and
widely used technique for modelling the robot environment. Moreover, the occupancy grid
technique is the most important among the few proposed techniques that can be applied in

An Introduction to the Problem of Mapping in Dynamic Environments 297

both static and dynamic environments (there also exist a few works where the static areas of
the dynamic environment are modelled using landmarks like in (Wang et al., 2007),
(Andrade-Cetto & Sanfeliu, 2002) or using line segments like in (Angelov et al., 2004)).

2.1 The occupancy grid technique for modelling static environments

The occupancy grid algorithm (Moravec & Elfes, 1985) (Moravec, 1988), introduced in 1985,
is the first robotic mapping technique. The basic idea of the occupancy grid is to split the
environment into a finite number of cells. This way, the difficult problem of estimating the
model of the environment is decomposed into a number of easier problems, those of
estimating the occupancy state of every cell. So, instead of searching in the space of all
possible maps (a difficult task as there exist an arbitrary number of different maps), we
search in the space of the occupancy probability for the estimation of the state of every cell
(a fairly easier task).

An example of an occupancy grid is depicted in Fig. 1 below, where the color denotes the
probability of occupancy (black cells are occupied, white cells are free whereas in case of the
grey areas we do not possess any knowledge about their occupancy).

- . .
: P -.F """‘ 'I '-"-_ -
I & -1 -

- el [re— L

Fig. 1. Example of an occupancy grid map

In mathematical point of view, the occupancy grid algorithm can be formulated as finding
the map m of the environment that maximizes the probability:

p(mfu, .z, 1)

where u refers to the control motion commands of the robot and z comprises the sensor
measurements received during the interval [1, t].

By following the assumption that the occupancy of a cell is independent of the occupancy of
its neighboring cells, the previous probability can be transformed into the product of the
probabilities of the occupancy of every cell:

p(m|um,zm) = Hp(m| |u1:xﬂz|:/) (2)

where m; is the i-th cell of the grid.

298 Tools in Artificial Intelligence

The assumption of the independency of the values of neighboring cells, though wrong, can
be used in order to simplify the required calculations (in (Thrun, 2003), however, the
authors overcome this assumption by using forward sensor models).

In order to update the occupancy probability of a cell, we can use the log-likelihood sensor
model as in (Arbuckle et al, 2002):

R . = log p(z, |s;= occ) ®)

p(z, |s,=emp)

where p(Z ; |S ;= State) denotes the probability of the observation z; given that the state of

the cell i equals to state. So, the update of the occupancy value R; of the i-th cell of the grid
can be calculated as in the following formula:

R, => R, @)

In practice, it has been shown that by using the occupancy grid modeling of the
environment, high quality maps of static environments can be generated.

3. The problem of mapping in dynamic environments

In the previous section, we presented a short introduction to the problem of mapping in
static environments. However, as already stated, real world environments are dynamic
rather than static. For example, people might be walking, robots might be moving, doors
might be opened or closed and chairs might be repositioned. Tackling the mapping problem
in dynamic environments is a more difficult and challenging task. We do not only have to
determine the position of the robot and the map of the environment, but also to identify
possible dynamic objects in the environment. Additionally, we should take advantage of
this knowledge in order to enhance our perception of the environment and create a better
model of the world.

Applying traditional algorithms from the static environments domain like the occupancy
grid technique presented above will not create a precise representation of the environment.
The reason is that most mapping algorithms continuously update their grids in order to
adapt to the current state of the environment, so the dynamic areas will most probably be
misclassified either as occupied or as free areas. The place where a chair existed, for
example, might be identified as a static area even though the chair had its position changed
during the mapping phase and it might be repositioned in a currently unoccupied place in
the future. Even worse, there might be cases where the last observed part of an object might
be assumed as static while the rest of the object might be assumed as free. A failure example
for the occupancy grid technique is shown in Fig.2 below where two doors are partially
identified. Their state changed while the robot was partially observing them, so some cells
of the grid adapted to the new state while the others remained in the previous state of the
door.

So far, we have seen that dynamic areas can lead in the creation of spurious objects in the
under construction model of the environment. The existence of dynamic areas will also
cause problems in the localization procedure, since matching these areas with the current
sensor measurements during a scan match phase will give indeterminable results. The
localisation procedure will most probably fail if, for example, the robot tries to match a
range scan with the area of a door observed earlier to be closed while now is open.

An Introduction to the Problem of Mapping in Dynamic Environments 299

Fig. 2. Failure on mapping two doors. The doors (pointed in circles) are partially drawn.

These problems occur due to the fact that the occupancy grid algorithm does not have the

ability to remember the past states of the environment. Every cell stores only one occupancy

value which converges to the current observed state of the cell. If this state changes, the

occupancy value will adapt to the new state, “forgetting” any past value. Moreover, the false

assumption that the cells evolve independently to each other should not be used in this case

as the assumption of the independency on the evolution of the cells” occupancies can lead to

the problem of a partially modelled object discussed earlier (c.f. Fig. 2.).

In order to deal with these problems, several approaches have been proposed which are

based on the occupancy grid structure and either make use of this structure as is or extend it

and make use of the modified occupancy grid structure. By using these techniques, one can

store more information about the robot’s environment (including information about the past

as well), which can then be processed in order to extract additional knowledge about the

dynamics of the environment.

There exist three basic categories of approaches:

i. Occupancy grids with different timescales, which uses a number of occupancy grids where
each grid is updated at a different rate.

ii. Temporal occupancy grid mapping, which extends the occupancy grid to efficiently
preserve the history of the evolution across the time axis.

iii. The static-dynamic grids mapping approach which uses two grids to differentiate the
static from the dynamic areas of the map.

Below we present each category in detail.

3.1 Occupancy grids with different timescales

In this approach, we use more than one occupancy grids (Arbuckle et al, 2002) (Biber &
Duckett, 2005). Every occupancy grid has a particular timescale, which indicates how often
it is refreshed (e.g. every 20 seconds). We can store all the grids generated so far in a list or
just preserve the grids that are updated in the current step of the algorithm. By examining
the occupancy values of the cells at the different occupancy grids (meaning at different
timescales) we can conclude on the nature of the cell. For example, we can identify that a cell
is static if it is occupied in all timescales or that it is free if it is not occupied at all the
timescales. We can also conclude that a cell was occupied by a moving object if it was
occupied only at one occupancy grid while on the others it remained unoccupied.

300 Tools in Artificial Intelligence

One approach that makes use of this technique is the so-called temporal occupancy grid
(TOG) (Arbuckle et al, 2002). It was introduced as a way to classify cells based on their time
properties of occupancy. The TOG is an extension to the common occupancy grid through
the time dimension. It can be modeled as a matrix with two spatial dimensions, one time
dimension and a number of additional dimensions equal to the number of different
timescales being considered. So, instead of preserving only one probability value for every
cell of the grid, a number of different values are preserved, where each value represents the
occupancy of the cell at a specific time period and at a specific timescale. The update of the
occupancy value at time t and at timescale At is performed using the following formula:

Ri,t,At = ZRi,t' (5)

t—At<t'<t

By examining the occupancy value of a cell at the different timescales we can identify the
nature of the cell. If it is occupied at every occupancy grid, then it refers to a static object. If it
is not occupied in any of the occupancy grids, then it refers to a free area of the environment.
If it is found to be occupied at some of the occupancy grids, then it was occupied by a
moving object. It can be modeled as a occupancy grids under specific timescales, we can also
extract the path of that moving object.

The main problem of this approach lies in the fact that the optimal number of different
timescales, an important parameter of the algorithm, cannot be computed in a formal way
but must be intuitively selected by the user.

3.2 Extended temporal occupancy grid

With the structure explained earlier, we do not make efficient use of the available memory,
as we preserve more occupancy values than needed. For a particular occupied cell, we store
the occupied probability for that cell as many times as the number of the occupancy grids in
the TOG structure. In order to make a more efficient use of the occupancy values, an
extended temporal occupancy grid (eTOG) has been proposed in (Mitsou & Tzafestas, 2007).
Although they share the same name, the two structures are different in their nature. Instead
of preserving more than one occupancy grids as in TOG, in eTOG we use only one grid.
Every cell of the grid, however, contains an index structure, the so-called time index
(Elmasri et al., 1990) that keeps track of the occupancy probability of the specific cell. In this
way the complete history of the occupancy probability of every cell is stored in this
structure. By using a grid of n x n time indexes to form a forest of time indexes, we can
preserve the complete history of the changes of the environment.

Time index is a special case of B+ tree index (a widely used index structure in the database
domain) (Ooi & Tan, 2002) that is used for storage and retrieval of values that are valid
during specific time periods. The time index was specifically designed for indexing of
temporal data. The time dimension is represented using the concept of time intervals. A
time interval [t; t;] is a set of consecutive (equidistant or not) time points, where t; is the first
point and t; is the last point of the interval. A single time point t can be represented as [t, t],
i.e. both start and end points are the same. An example of a time index structure appears in
Fig.3.

The time index differentiates from the B+ tree index in the fact that due to the monotonic
nature of time, deletions never occur while updates occur in an append mode. So, new
entries will always be inserted in the rightmost node of the tree and the complexity of the

An Introduction to the Problem of Mapping in Dynamic Environments 301

insertion will always be O(1). When the rightmost node is full, a new node is created and the
changes propagate upwards, just as in a B+ tree index structure (an extensive comparison of
available time indexes can be found in (Salzberg & Tsotras, 1999)).

1 08 04 0 05 1 06

Fig. 3. A time index structure storing probabilities of occupancy

We have to keep in mind that instead of time indexes, we could use simple linked lists if we
are not interested in efficiently traversing the occupancy history and we want to avoid the
rebalancing cost of the tree.

When a new sensor measurement arrives, the affected cells are extracted and for every cell,

the new occupancy value is calculated and inserted into the underlying time index of the

cell. The insertion of a new value v (assuming that the current time point is t.) follows
specific rules:

o If the time interval is the rightmost node finishes at time point tj and t-t}> thres then a
new node is added to the tree, that stores a time interval with starting and ending
points at t. and with value v.

e Else if the value v equals to the value stored on the rightmost node then update the end
point of the time interval to t..

e Else if the value v is not equal to the value stored on the rightmost node then a new
node is added to the tree which points to a time interval with starting and ending points
at tc and with value v.

In this way, we can preserve the complete history of the evolution of the occupancy of the

cells of the environment. In order to identify the nature of a cell, we traverse the lead nodes

of the underlying time index. If the stored probabilities are all equal to the occupied or to the
free state, then the cell belongs to a static object or to a free area respectively. On the other
hand, if the probabilities are mixed then the cell has been occupied at some time periods by

a dynamic object.

The main drawback of this approach is the fact that although in static environment, the

memory needed is almost equal to the memory needed by the common occupancy grid, in

dynamic environments, the required memory might be extremely large. Indeed, the
memory increases with the size of the dynamic effects.

3.3 The static-dynamic grids approach

The most common approach in mapping dynamic environments is the preservation of (at
least) two occupancy grids (Tanaka & Kondo, 2006), (Wolf & Sukhatme, 2004), (Wang et al,
2003). In the first grid, only the static areas of the environment are stored while in the second
grid, the dynamic objects are preserved. In the first grid, the occupancy probability of a cell

302 Tools in Artificial Intelligence

represents the probability of a static entity being present at that cell. In the same manner, a
cell in the second grid has an occupancy probability that indicates the probability of a
moving object’s existence in that cell.

Such a structure is employed in (Wolf & Sukhatme, 2004). In order to specify which areas
are static and which dynamic, the authors use a simple differentiation technique. The static
parts of the environment never change their position so they can be used as a reference to
determine which sensor readings are generated by static and dynamic objects. Two
recursive formulas based on the Bayes rule for updating the probabilities of the cells of the
two grids are presented. Also, two fuzzified inverse sensor models are introduced. The first
models the probability of a cell being static given the current observation and the previous
probability of occupancy and the second the probability of a cell being dynamic given the
current observation and the previous probability of occupancy. No historical information is
preserved about the occupancy of the dynamic map. This means that only the current
position of the dynamic objects can be available. In (Wolf & Sukhatme, 2005), a third grid
was also maintained, that contained the positions of landmarks and was used during the
localization process.

4. Algorithmic implementation of mapping techniques for dynamic
environments

In order to develop successful maps for dynamic environments, we should first understand
the notion of a dynamic environment map and how it differentiates from the traditional
map produced in stationary environments. We categorize the objects in the robot
environment into the following three groups:
e Static objects, these are the objects that do not change their position over time (e.g. walls,
beds or locked doors)
e Low dynamic objects, these are the objects that appear in a specific number of places (e.g.
chairs or doors).
e High dynamic objects, these are the objects that move arbitrarily in the environment and
can be found in many different positions (e.g. humans).
Ideally, to successfully map a dynamic environment, we should create different maps for
every category of the objects presented above (or one map with three different layers).
Firstly, we must create a map of the static objects of the robot environment. This map could
be an occupancy grid map of the environment where every cell that is detected to remain
occupied during the robot exploration phase is marked as static. There should also be a
second map for storing the low dynamic objects of the environment. This map should
contain the current state of these objects and also their other possible configurations as they
are detected during the sensor acquisition phase (e.g. the chair is positioned in area A and
can be found in the areas B and C). Finally, a third map can be created that will show the
current state of all the high-dynamic objects of the environment. In this map, we could also
mark the path of the moving objects as observed and identified by the robot. The
combination of these three maps will create the current state of the environment and will
also contain all the knowledge extracted by the sensor measurements.
During the last few years, three lines of research have emerged towards mapping in
dynamic environments:
e algorithms that aim in the preservation of an up-to-date map of the environment using
aging techniques

An Introduction to the Problem of Mapping in Dynamic Environments 303

e algorithms that focus on the creation of the possible different configurations of the
environment

e algorithms that map populated environments

The algorithms proposed so far are partial solutions to the problem as they deal with the

problem of mapping focusing only on some of the aspects described above. In the following

subsections we are going to discuss the most common approaches for every line of research.

4.1 Mapping using aging techniques

In this category, several approaches have been proposed that utilize aging techniques in
order to create valid maps of the current state of the environment. Previous sensor
measurements are slowly forgotten in order to preserve at any time point a valid map of the
current state of the robot’s environment. The goal of these algorithms is to create a number
of up-to-date models of the world, rather than to differentiate between static and dynamic
areas. These methods are adaptive, by means that they adapt the map of the environment so
as always to reflect the current understanding of the robot about the environment.

The main difficulty of this category lies in the fact that the under construction map model
must be able to adapt to changes of the environment. When a door closes, for example, the
map should change the state of the particular cells that refer to the closed door configuration
in a fairly short period of time. However, these algorithms should also be able to detect
possible sensor errors or the existence of a high dynamic object in the environment (e.g. a
human that passes by the door). This means that a false sensor measurement or a
measurement of a human passing by a door should not change the state of the
corresponding cells. The algorithm must be able to identify the error and ignore the
measurement. So, in other words, the generated map must contain the static and the low-
dynamic areas of the world but ignore the high dynamic objects.

In (Zimmer, 1995), a system that can dynamically learn and update the topology of a map is
presented. The system preserves a model that is able to adapt to changes of the
environment. In (Yamauchi and Beer, 1996), an adaptive place network is used to model the
robot’s environment. The network is able to change the confidence for every link and links
with low confidence can be removed from the map. In (Andrade-Cetto & Senafeliu, 2002),
landmarks are used to model the map of the environment whose positions are preserved
with the use of Kalman Filters. Landmarks can disappear from the map if they are removed
from the environment.

The most representative approach in this category of mapping algorithms can be found in
(Biber & Duckett, 2005). The basic representation of a map m1; at time point ¢; is considered
to consist of a set S(#;) of n measurements. The new map S(t+1) at time point #;:1 is calculated
by an update rule that depends on the update rate u of the map: Remove u*n randomly
chosen measurements from S(tis;) and replace them with u*n randomly chosen
measurements received during the time interval [t;, ti+1].

The environment is split into sub-maps and a number of different timescale Occupancy grid
maps for every sub-map are used. Short-term maps, meaning maps that are updated
frequently, react quickly to changes and only a few sensor measurements are required to
forget an old estimation. On the other hand, long-term maps, meaning maps that have a low
update ratio, are updated less frequently and do not react to temporary changes. They only
adapt to consistent changes of the environment. These map models have increased accuracy

304 Tools in Artificial Intelligence

towards the static parts of the environment as sensor errors are in a way ignored since a
large number of samples are required to update an already learned feature of the world.
This algorithm belongs to the same category with the TOG algorithm described earlier. It
uses multiple grids of different timescales (although the number of Occupancy grids
preserved by TOG is greater) with different however update schema from the TOG update
schema. Also, it encounters the same problem with the TOG algorithm, which is the
selection of the number of the different timescales that are needed to successfully map the
robot’s environment. Unfortunately, there is no clear answer to that problem. The more
maps we preserve, the better we model the environment as we obtain more models of it
(short-term and long-term maps). However, with the increasing number of maps, more
memory is needed to store those maps.

4.2 Detecting possible environment configurations

In this section, we will present three algorithms that are used to identify all possible
configurations of the environment. These approaches are motivated by the fact that many
dynamic objects appear only in a limited number of different positions. Consider for
example, the doors in an office environment, which are usually either open or closed. The
knowledge of the possible positions of a low dynamic object can be used to enhance the
localization process. If the robot identifies a door to be closed then it will expect that this
door will not be found also open. A formalistic framework for localization and environment
configuration selection can be found in (Stachniss & Burgard, 2005).

The three algorithms presented bellow follow the common occupancy grid assumption, that
the occupancy of a cell evolves independently of the occupancy of its neighbouring cells but
try to overcome this assumption by post processing the sensor measurements and searching
for associations among cells. The first algorithm, ROMA uses an Expectation Maximization
technique (Dempster et al., 1977) to identify different occurrences of the same objects in the
robot environment. The second algorithm, (Stachniss & Burgard, 2005) uses a fuzzy
clustering algorithm to identify common areas in a number of different occupancy grid
maps. The third algorithm, (Mitsou and Tzafestas, 2007) uses an extended Temporal
Occupancy grid and exploits the temporal behaviour of the cells to create group of cells that
behave in the same manner. An extended survey on clustering can be found in (Jain et al.,
1999).

The first two algorithms use the shape similarity to detect low dynamic objects while the
third one makes use of the temporal similarity. The last two algorithms use clustering to
extract knowledge from the environment. The former one uses the collected occupancy
grids as instances of the clustering algorithm while the last one uses the occupancy
evolutions of the cells for the same reason.

Apart from these three algorithms, other algorithms also exist that deal with the same
problem. For example, in (Schulz & Burgard, 2001), a probabilistic algorithm is presented to
identify the state of dynamic objects in the environment. In (Avots et al, 2002), the authors
use particle filters and conditional binary Bayes filters to estimate the state of doors in the
environment. In both these works, the environment is assumed to be predefined. Also, in
(Anguelov et al, 2004), an Expectation Maximization algorithm is used to detect and model
doors. Additionally to the laser range device used in the previous algorithms, images from a
camera mounted on the robot are used. Every object in the world has a specific shape and
color. The advantage of this algorithm is that an object can be identified to be a door even if
it did not move during the experiment (assuming that all doors bare the same color).

An Introduction to the Problem of Mapping in Dynamic Environments 305

4.2.1 The ROMA algorithm
The Robot Object Mapping Algorithm (ROMA), also found as Dynamic Occupancy Grid
Mapping Algorithm (DOGMA), (Biswas et al., 2002) aims at the identification of moving
objects and the extraction of their models, at learning in other words, the models of the low
dynamic objects of the environment. To learn these models, we assume that the robot maps
the environment at different points in time, between which the configuration of the
environment may have changed. Each map is represented as a static occupancy grid map.
By using a simple map differencing technique, we can detect the dynamic areas of the
environment. The result is a list of “snapshots” of low dynamic objects, each represented by
a local occupancy grid map. Two such snapshots of the same low dynamic object (e.g. a
chair) might be completely different from each other. The object might be translated and
rotated in a different way in the two snapshots. In order to group the snapshots that
correspond to the same object, a modified Expectation Maximization (EM) algorithm is
applied.
The algorithm uses the following two steps:
a. Step 0: The robot observes the dynamic environment and generates snapshots of the

low dynamic objects.
b. Step 1: The EM algorithm is applied:

a) E step: Create correspondences between the different snapshots based on the

estimated models of the objects.

b) M step: Create the models of the objects based on the correspondences.
The analysis of these steps follows below.
Step 0. Create initial snapshots
The robot explores the environment (which is assumed to remain static or to change slowly)
and acquires sensor values. Based on these measurements, the areas of the environment that
contain dynamic objects are identified with the use of a simple differencing technique. The
areas that are occupied in some maps and free in other indicate low dynamic objects. From
these areas, snapshots of these objects are extracted.
Step 1. Apply the EM algorithm
The EM algorithm is applied in order to associate snapshots on different occupancy maps
with specific objects.
In the E step of the EM algorithm, correspondences between different snapshots at different
points in time are established. Based on the models found on the M step, we associate
snapshots at different time points and we estimate the best rotational and translational
parameters so that the snapshot will match with the estimated model of the moving object.
In the M step, these probabilistic correspondences are used to regenerate new estimates for
the object models. We combine the snapshots that correspond to the same object and we
create the most probable model of the object.
By iterating between the E and the M step, we will finally converge to the correct models of
the low dynamic objects and their correspondences in the occupancy grid maps. However,
as we do not know in advance the number of moving objects in the robot environment, we
have to run EM in a number of times with different number of possible moving objects,
starting from the lower bound of the number of objects (the maximum number of objects
identified in a single map). The number of objects that maximizes the probability of the
detected snapshots given the models of the moving objects while minimizes a penalty factor

306 Tools in Artificial Intelligence

(large numbers of objects are assumed to be less possible) is selected as the best choice. An
advantage of the ROMA is the fact that it can identify objects that can take any arbitrary
position in the environment (assuming that they move slowly). It does not require the
objects to be positioned in specific areas, since it is based on the shape similarity of the
moving objects. However, the fact that it identifies an object’s occurrences based on its shape
can lead to incomplete results. Objects that are partially observed (if for example placed next
to walls or to other objects) might not be successfully correlated to their other occurrences in
the environment.

The Hierarchical Object Mapping algorithm

An extension of the ROMA algorithm was presented in (Anguelov et al., 2002). The basic
purpose of this work were to extract not only the model of the moving objects but also
possible object templates. This approach is able to generalize across different object
templates, as long as they model objects of the same type. It uses again an extension of the
EM algorithm. It has been shown that this approach performs better than ROMA.

4.2.2 Stachniss & Burgard approach

In this approach (Stachniss & Burgard, 2005), the information about changes in the
environment during robot exploration was used to estimate possible spatial configurations
(examples in Fig. 4). A number of snapshots of the environment at different time intervals
were collected and clustering was used to create groups of common snapshots.

- r' _.: !:. -\.Jl'

i_]
_'!"'--- e ____F["“"--.

— Ly

Fig. 4. Different configurations of an environment with three doors.

With this approach, low dynamic objects that lay in the robot environment can be identified.

This algorithm assumes that the environment remains static during every time interval of

exploration.

The algorithm uses the following two steps:

a. Step 0: The robot observes the dynamic environment at different time intervals and
creates a number of sub-areas.

b. Step 1: For each sub-area, we apply a clustering technique to create similar
configurations into groups.

The analysis of these steps follows below.

Step 0. Data Acquisition - Sub-areas creation

The robot explores the environment (which is assumed to remain static or to change slowly)

and acquires sensor values. Based on these measurements, the areas of the environment that

contain dynamic objects are identified. The environment is then segmented into local areas,

called sub-maps, so that each sub-map contains a small number of dynamic areas.

An Introduction to the Problem of Mapping in Dynamic Environments 307

Step 1. Clustering occupancy grids

For every sub-map created in the previous step, the occupancy grids are generated from the
sensor values collected earlier. Each occupancy grid captures the state of the sub-map at a
given time period. By clustering the occupancy grids for every sub-map separately, we can
create groups of similar occupancy grids. Each such group denotes a different configuration
of the sub-map.

It is a necessity to create sub-maps of the environment. If we did not, we would have to
store a number of maps that would be exponential in the number of dynamic objects. This
means that we would need a huge number of occupancy maps of the whole environment to
successfully cluster them into groups. Instead, by splitting the environment into sub-areas,
we need a smaller number of smaller occupancy grid maps.

In order to cluster the occupancy grids, we transform the grids into a vector of probability
values from 0 to 1 with the additional value of &. The & value represents an unobserved cell.
When comparing two such vectors a and b, the following similarity measure has been
shown to give good results:

(a,-b).a #EAD #&
d(a.by=Y, 10.a, =Enb =¢ ©6)

e,otherwise

where e is a number close to zero.

Then, a fuzzy k-means algorithm is used (Duda et al, 2001). In order to estimate the correct
number of clusters (not known in advance), we iterate over the number of clusters and
compute in each step a model using the fuzzy k-means algorithm. In each iteration, we
create a new cluster initialized using the input vector which has the lowest likelihood under
the current model. We then evaluate every model with the Bayesian Information Criterion
(BIC) (Schwarz, 1978). The model with the biggest BIC is selected as the best representation
of the environment.

4.2.3 Extended temporal occupancy grid algorithm

The key idea of this approach is to use an extended Temporal Occupancy Grid to preserve

the occupancy history of the environment. The values stored in the grid are processed to

extract information about the possible configurations of the environment.

With this approach, low dynamic objects can be detected without any prior knowledge of

the object shape or motion. This algorithm does not assume that the environment remains

static during the robot exploration. On the contrary, in order to correctly detect the dynamic

objects, it demands that these objects move fairly enough in order to be distinguished from

the static or the high dynamic objects.

The algorithm uses three steps:

a. Step 0: The robot explores the dynamic environment and fills the extended Temporal
Occupancy grid with occupancy values.

b. Step 1: Find possible object configurations by grouping neighbouring cells that follow
the same pattern of occupancy evolution

c. Step 2: Identify which configurations found in the previous step belong to the same
object.

The analysis of these steps follows.

308 Tools in Artificial Intelligence

Step 0. Data Acquisition

The robot explores the environment and acquires sensor values. These values are stored in
the eTOG. The environment is assumed to be active during the exploration, meaning that
low dynamic objects must change their positions thus different configurations of the
environment are observed. One single pass of the environment is sufficient to identify all the
low dynamic objects that were observed to move.

Step 1. Find possible configurations

In order to identify different configurations of the environment, we safely assume that a low
dynamic object covers more than one cell in the environment (a door, for example, might
cover three or more cells). Such an object falls into different configurations/ states (in the
previous example, the states could be open and closed). In order to detect these
configurations, we search through the history of all cells to find neighbouring cells that
change with the same motif. These cells correspond to one of the possible configurations of
the object. For example, in the case of a door, all cells of the closed door configuration would
have the same values, regardless of the door’s state (occupied if the door is closed, free if it is
opened). To find cells that change with the same motif, we treat the values in the leaf nodes
of the cells as Time Series (collections of observations made sequentially in time) that
describe the cells occupancy. A single time series describes the evolution of the occupancy of
the corresponding cell over time. Similar time series indicate similar cell occupancies. Thus,
in order to find a single configuration of a moving object, we aim in finding neighbouring
cells with similar time series. To do so, a clustering algorithm is applied.

To cluster time series, we need to define an appropriate distance function. There exist
various similarity measures in the data mining community. A simple yet effective function
is the Minkowski distance:

Dy (T}, T,) =7

Z| tl,i - [2,1‘ |p
i=1

Any other distance measure can be applicable.

At first, an agglomerative hierarchical clustering algorithm (Jain et al., 1999) is applied. In
hierarchical clustering the data is not partitioned into a particular cluster in a single step.
Instead, a series of partitions takes place. In each partition, two clusters are combined
according to their distance to create a new cluster. The number of clusters is not given as an
input. The algorithm keeps merging clusters until a given threshold (in the distance of two
just merged clusters) is reached. The choice of an appropriate threshold is intuitive and
depends on the data to be clustered.

The agglomerative clustering will generate a clustering where every cluster contains similar
time series. Most probably each cluster will contain only one moving object. However, in the
extreme case that two dynamic objects have similar change rate, the cluster will contain time
series of more than one dynamic object. To avoid this case, we post process the generated
clusters in order to create sub-clusters of both similar and neighbouring time series. To do
so, we apply a second clustering algorithm, a DBSCAN algorithm (Ester et al., 1996) in order
to group neighbouring time series. DBSCAN is a density based clustering that creates
groups of data objects. Each of the objects in a group has at least one other object with
distance less than a given threshold. DBSCAN does not require the number of clusters as an
input to the algorithm and can create groups of arbitrary shapes. So, the DBSCAN algorithm

An Introduction to the Problem of Mapping in Dynamic Environments 309

gets as input the cell coordinates of the time series of every agglomerative cluster extracted
by the first clustering and groups them into dense clusters. Eventually, after the two
clustering algorithms, the low-dynamic object configurations will have been found.

Step 2. Associate Configurations

In this step, we search for correlations among the configurations found in the previous step,
for patterns that represent different configurations of the same object. The simpler case is the
case of two-state objects, i.e. objects that can appear in two different positions. In such
objects, their configurations are complementary; when the one is occupied the other one is
free. Thus, in order for two different patterns to belong to the same object, their combined
Time Series must contain the occupied value at any time.

Following the same rationale, we can search for objects with three, four, five etc different
configurations. The difference is that we have to combine and evaluate more than two Time
Series. In order for the algorithm to correctly associate the different patterns, the moving
objects must change their positions with different time rates. If, for example, two doors
follow the same motion pattern, the algorithm will be confused in the pattern association
step. We have to keep in mind that the quality of the associations drops with the increase of
the number of the states of the objects.

Experimental results can be found in Fig.5.

Fig. 5. The environment (yellow line indicates the robot path) and the experimental results
of the eTOG algorithm. Associations between different configurations are indicated with a
line that connects them.

4.3 Mapping in populated environments

Populated environments are highly dynamic environments where a lot of people move
within them, e.g. crowded museums, metro stations at rush hour, supermarkets. The main
difficulty in mapping those environments is the fact that many sensor measurements
correspond to dynamic objects rather than static areas of the environment. So, the extraction
of the model of the environment might contain spurious objects that reduce the quality of
the generated maps.

There exist two categories of methods for dealing with populated environments both aiming
at discovering the high dynamic objects and omitting them during the mapping phase. Their
difference lies in the fact that the algorithms in the first category apply filters in order to
track the moving objects while those in the second category apply statistical methods to
identify the measurements that correspond to dynamic objects. There exist a variety of

310 Tools in Artificial Intelligence

tracking techniques in the literature. In this section, we present a short introduction on
techniques that have been applied successfully in the problem of mapping populated
environments.

Regarding the tracking category, a number of filtering techniques have been used. When a
single object is being tracked, its state can be estimated using algorithms such as the Kalman
Filter, Extended Kalman Filter and Particles Filter (Bellotto & Hu, 2007).

Multiple objects tracking can be seen as the same problem with higher complexity. With
multiple objects there is the additional difficulty of distinguishing one target from the other
(data association). The complexity of solving the data association problem grows
exponentially with the number of targets. Moreover, the number of different objects in the
environment is also unknown and has to be derived from the observations. Once the
number of objects is known, the data association allows the evolution of the filter associated
to each object.

A common approach consists of using one Kalman Filter per target and solves data
association independently for each track. This method is simple but as it examines each
moving object separately it can lead to multiple associations of the single measurement with
different moving objects. To deal with this problem, several approaches have been
proposed, including Joint Probabilistic Data Association Filters (JPDAFs) (H&hnel et al.,
2003a), Multi Hypothesis Tracking (MHT) (Mucientes & Burgard, 2006) and Particle
Filtering. Also, combinations of these methods have been proposed such as the SJPDAFs
that combine particle filters with JPDAF. Further information can be found in (H&hnel et al.,
2003a), (Héhnel, 2004).

A framework for the solution of the detection and tracking of moving objects (DTMO)
problem is presented in (Wang & Thorpe, 2002). The authors use the static-dynamic grids
approach (c.f. Section 3.3) in order to detect the moving objects in the robot’s environment.
In order to track the objects, they apply a matching technique between the current state of
the environment and the previous one stored in the grid. When the best match between the
two states is found, information about the moving object can be extracted. In their next work
(Wang et al., 2003), they present a Bayesian formulation of the Simultaneous Localization
and Mapping problem (SLAM) with the DTMO problem. In order to track moving objects, a
motion based detector is used. Then a Multiple Hypothesis Tracking method is applied to
find the associations between current and previously found dynamic objects. When the
associations are found, we can conclude on the motion of this moving object and predict its
future position.

Regarding the second category of solutions, filtering techniques are used in (Fox et al., 98) to
detect humans in the vicinity of the robot (on a known environment). A distance filter is
applied to filter out all measurements that are found to be shorter than expected. Also, an
entropy filter is implemented to measure the uncertainty of the measurements. Those
measurements that are found to increase the uncertainty of the system are ignored.

In (H&dhnel et al., 2003c), an EM algorithm was used to learn which measurements
correspond to static objects. In the expectation step, an estimation is made on which
measurements might correspond to static parts of the environment while in the
maximization step, the position of the robot is calculated with respect to the considered
static areas of the estimation step. By iterating between the two steps we can generate high
quality maps with significantly less dynamic objects that if we used a common algorithm for
static environments. This technique can be also applied in dynamic environments with the
same results.

An Introduction to the Problem of Mapping in Dynamic Environments 311

5. Conclusions and outlook

In this chapter, we have presented, in short, the major algorithms in the field of mapping
dynamic environments. We categorize the objects in the robot environments into three
categories (static, low dynamic and high dynamic objects) and for each category, we present
a number of solutions proposed so far in the literature. Special attention is paid on the
occupancy grid structure and its variations that have been applied on dynamic
environments giving promising results. Of course, it was not possible to cover all the
available techniques or examine relative to mapping issues, such as localization and
navigation.

Summarizing, we can state that there exist a number of promising algorithms for mapping
in dynamic environments. These algorithms are able to create valid maps of the static areas
of the world and detect and model (low or high) dynamic objects in the robot environment.
Nevertheless, a large number of challenging issues still remains to be solved. First of all,
many algorithms that are presented in this work are not real-time. They make use of iterative
techniques (e.g. EM, clustering) with execution times that depend on the size of the data.
The necessity for real-time algorithms is obvious. A robot must be able to identify its
environment rapidly in order to react on time. This need is more urgent while navigating
outdoors. Outdoor mapping is an issue that remains open. Streets, parks and garages are
some examples of places where a mobile robot can be of extreme usefulness. However, these
environments pose new challenging issues. Their rate of change, complexity and size make
many existing algorithms inapplicable and impose the need for new algorithms suitable for
the special characteristics of such environments (some examples can be found in (Nuchter et
al., 2007) and (Yoon et al., 2007)).

In order to deal with these problems, an interesting direction that has to be investigated is
the combination of computer vision with laser data. So far, only a few algorithms have
applied techniques borrowed from the computer vision field e.g. (Anguelov et al., 2004),
(Yoon et al., 2007). Vision, however, can provide a wealth of information about the state of
the environment (such as humans walking by the robot or chairs in the middle of a room)
and it can be really helpful in the task of object identification. The combination of vision and
laser data can provide important information about the robot environment.

Another way to gain more information about the objects that surround the robot is to
acquire 3D laser range data of them e.g. (Hahnel et al., 2003b), (Ryde & Hu, 2006), (Harati &
Siegwart, 2007). Humans possess a complete prior knowledge of the model of the objects in
the environment and can easily distinguish two different objects even when they are
partially observed in contrast to modern robots. To bridge the gap between human
perception and robot perception of the environment, we can utilize 3D laser data that
provide more information including information about the objects’ shapes.

To conclude, the problem of mapping in dynamic environments is a really challenging and
extremely active research field in robotics. In the future, we will be able to design robots that
will be capable of moving among humans in their own environments without interrupting
human activities. In order to do that, a milestone that has to be reached is a complete
solution to the problem of mapping dynamic environment.

6. Acknowledgments

This work was supported by the European Commission and the Hellenic General Secretariat
for Research and Technology, under Measure 3.3 of the Operational Programme

312 Tools in Artificial Intelligence

“Information Society” in the 3rd Community Support Framework (Project name:
DIANOEMA, ID:35).

7. References

Andrade-Cetto, J. & Sanfeliu, A., (2002), Concurrent Map Building and Localization on
Indoor Dynamic Environments, International Journal on Pattern Recognition and
Artificial Intelligence, Vol 16, pages 361-374

Anguelov, D.; Biswas, R.; Koller, D. Limketkai, B. & Sebastian Thrun (2002), Learning
Hierarchical Object Maps Of Non-Stationary Environments With Mobile Robots,
Eighteenth Conference on Uncertainty in Artificial Intelligence (pp. 10-17)

Anguelov, D; Koller, D.; Parker, E. & Thrun, S. (2004), Detecting and modeling doors with
mobile robots, In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA)

Arbuckle, D.; Howard, A. & Mataric. M. J. (2002). Temporal occupancy grids: a method for
classifying spatio-temporal properties of the environment, IEEE/RS] International
Conference on Intelligent Robots and Systems, pages 409-414, Lausanne,
Switzerland

Avots, D.; Lim, E.; Thibaux, R. & Thrun. 5.(2002) A probabilistic technique for simultaneous
localization and door state estimation with mobile robots in dynamic
environments, Proceedings of the Conference on Intelligent Robots and Systems
(IROS), Lausanne, Switzerland

Bellotto, N. & Hu, H. (2007), People Tracking with a Mobile Robot: a Comparison of Kalman
and Particle Filters, 13th IASTED International Conference on Robotics and
Applications (RA 2007), Germany

Biber, P. and Duckett, T. (2005) Dynamic maps for long-term operation of mobile service
robots, In Robotics Science and Systems

Birk, A., Carpin, S., (2006) Merging Occupancy Grid Maps From Multiple Robots, PIEEE(94),
No. 7, pp. 1384-1397

Biswas, R.; Limketkai, B.; Sanner, S. & Thrun, S. (2002) Towards Object Mapping in Dynamic
Environments With Mobile Robots, Conference on Intelligent Robots and Systems
(IROS), Lausanne, Switzerland

Dempster, A.P,; Laird, N.M. & Rubin. D.B., (1977), Maximum likelihood from incomplete
data via the EM algorithm, Journal of the Royal Statistical Society, Series B, pages
1-38

Duda, R.; Hart, P,; & Stork, D., (2001), Pattern Classification. Wiley-Interscience

Elmasri, R; Wuu, G. T. & Kim. Y. J. (1990). The time index: An access structure for temporal
data, 16th VLDB, pages 1-12

Ester, M.; Kriegel, H.-P.; Sander, J. & X. Xu, (1996), A density-based algorithm for
discovering clusters in large spatial databases with noise. In Second International
Conference on Knowledge Discovery and Data Mining, pages 226~ 231, Portland,
Oregon

Fox, D.; Burgard, W.; Thrun, S. & Cremers, A.B, (1998), Position estimation for mobile robots
in dynamic environments, Proceedings of the AAAI Fifteenth National Conference
on Artificial Intelligence

An Introduction to the Problem of Mapping in Dynamic Environments 313

Gutmann, J. & Konolige, K., (1999), Incremental mapping of large cyclic environments, the
IEEE International Symposium on Computational Intelligence in Robotics and
Automation (CIRA), pages 318-325, Monterey, California

Héhnel, D. (2004), Mapping with Mobile Robots. PhD thesis, Fakultit fiir Angewandte
Wissenschaften, Universitit Freiburg

Héhnel, D.; Schulz, D. & Burgard, W., (2003a) Mobile robot mapping in populate
environments, Advanced Robotics, Volume 17, pages 579-597(19)

Héhnel, D.; Thrun, S. & Burgard, W. (2003b), An Extension of the {ICP} Algorithm for
Modeling Nonrigid Objects with Mobile Robots, Sixteenth International Joint
Conference on Artificial Intelligence (IJCAI), Mexico

Héhnel, D., Triebel, R, Burgard, W. & Thrun, S., (2003c), Map Building with Mobile Robots
in Dynamic Environments, In Proceedings of the International Conference on
Robotics and Automation (ICRA), pages 1557-1563

Harati, A. and Siegwart, R. (2007), Orthogonal 3D-SLAM for Indoor Environments Using
Right Angle Corners, The 3rd European Conference on Mobile Robotics (ECMR)
2007, Freiburg, Germany

Jain, A. K;; Murty, M. N. & P. J. Flynn, (1999), Data clustering: a review, ACM Computer
Surveys, pages 264-323

Larionova, S.; Marques, L. & de Almeida, T. , (2006) Detection of Natural Landmarks for
Mapping by a Demining Robot, IEEE International Conference on Intelligent
Robots and Systems (IROS), pages 4959-4964

Latecki, L. J. & Lakaemper, R. (2006), Polygonal Approximation of Laser Range Data Based
on Perceptual Grouping and EM, IEEE International Conference on Robotics and
Automation (ICRA), Orlando, Florida

Mitsou, N. & Tzafestas, C. (2007), Temporal Occupancy Grid for mobile robot dynamic
environment mapping, in the 15th IEEE Mediterranean Conference on Control and
Automation, MED'07, Athens, Greece

Moravec, H. P. (1988). Sensor Fusion in Certainty Grids for Mobile Robots, Al Magazine,
Vol. 9, No. 2, pp. 61-74

Moravec, H. P. & Elfes, A. E. (1985), High Resolution Maps from Wide angle Sonar,
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA’85), pp. 116-121, St. Louis, Missouri

Mucientes M. & Burgard W., (2006), Multiple Hypothesis Tracking of Clusters of People,
2006 IEEE/RS] International Conference on Intelligent Robots and Systems, Beijing,
China

Nuchter, A.; Lingemann, K.; Hertzberg J. & Surmann, H., (2007), 6D SLAM —3D mapping
outdoor environments, Journal of Field Robotics

Ooi, B. C. & Tan. K. L. (2002). B-trees: Bearing fruits of all kinds, Thirteenth Australasian
Database Conference (ADC2002), Melbourne, Australia

Ryde, J. & Hu, H. (2006), Mutual localisation and 3D mapping of cooperative mobile robots,
The 9th International Conference on Intelligent Autonomous Systems (IAS-9),
Tokyo, Japan, pages 217-224

Salzberg, B. & Tsotras, V. (1999), Comparison of access methods for time-evolving data,
ACM Computing Surveys (CSUR)

Schulz, D. & Burgard, W., (2001), Probabilistic state estimation of dynamic objects with a
moving mobile robot, Robotics and Autonomous Systems, pages 107-115

314 Tools in Artificial Intelligence

Schwarz, G., (1978), Estimating the dimension of a model, The Annals of Statistics 6(2)

Stachniss, C. & Burgard, W. (2005). Mobile robot mapping and localization in non-static
environments, Proceedings of the National Conference on Artificial Intelligence,
Pittsburgh, USA

Suau, P., (2005), Robust Artificial Landmark Recognition Using Polar Histograms, Intelligent
Robotics (IROBOT 2005) Chapter 7 - pages 455-461

Tanaka, K. & Kondo, E., (2006) Towards Real-Time Global Localization in Dynamic
Unstructured Environments, Special Issue on Advanced Technology of Vibration
and Sound pp.905-911

Thrun, S. (2002), Robotic Mapping: A Survey, Exploring Artificial Intelligence in the New
Millenium, Morgan Kaufmann

Thrun, S. (2003), Learning Occupancy Grid Maps with Forward Sensor Models, Journal of
Autonomous Robots, vol. 15, pages 111-127

Wang, C.-C. & Thorpe. C, (2002), Simultaneous Localization and Mapping with Detection
and Tracking of Moving Objects. In IEEE International Conference on Robotics and
Automation (ICRA'02)

Wang, C.-C.; Thorpe. C, & Thrun. S, (2003), Online Simultaneous Localization and Mapping
with Detection and Tracking of Moving Objects: Theory and Results from a Ground
Vehicle in Crowded Urban Areas. In IEEE International Conference on Robotics
and Automation (ICRA'03)

Wang, H.; Hou, Z & Tan, M., (2007), Mapping Dynamic Environment Using Gaussian
Mixture Model, 6th IEEE International Conference on Cognitive Informatics
(ICC1'07)

Wolf, D. & Sukhatme, G. (2004), Online simultaneous localization and mapping in dynamic
environments, IEEE International Conference on Robotics and Automation, pages
1301-1306

Wolf, D. & Sukhatme, G. (2005), Mobile Robot Simultaneous Localization and Mapping in
Dynamic Environments, Journal of Autonomous Robotics, Volume 19, pages = 53-
65

Yamauchi, B. & Beer, R. (1996), Spatial learning for navigation in dynamic environments.
IEEE Transactions on Systems, Man and Cybernetics, Special Issue of Learning
Autonomous Robots, pages 496- 505

Yoon, S.; Sung-Kee, P.; Choi, H. D.; Kim, S. & Kwak, Y. K. (2007), ViSion-Based Outdoor
Simultaneous Localization and Map Building Using Compressed Extended Kalman
Filter, European Control Conference (ECC07), Kos, Greece

Zhang, L. & Ghosh, B.K., (2000), Line segment based map building and localization using
2D laserrangefinder, IEEE International Conference on Robotics and Automation,
ICRA '00, pages 2538-2543

Zimmer, U. (1995), Adaptive Approaches to Basic Mobile Robot Tasks. PhD thesis,
University of Kaiserslautern

18

Inductive Conformal Prediction:
Theory and Application to Neural Networks

Harris Papadopoulos
Frederick University
Cyprus

1. Introduction

Traditional machine learning algorithms for pattern recognition just output simple
predictions, without any associated confidence values. Confidence values are an indication of
how likely each prediction is of being correct. In the ideal case, a confidence of 99% or
higher for all examples in a set, means that the percentage of erroneous predictions in that
set will not exceed 1%.

Knowing the likelihood of each prediction enables us to assess the extent to which we can
rely on it. For this reason, predictions that are associated with some kind of confidence
values are highly desirable in many risk-sensitive applications, such as those used for
medical diagnosis or financial analysis. In fact, such information can benefit any application
that requires human-computer interaction, as confidence values can be used to determine
the way in which each prediction will be treated. For instance, a filtering mechanism can be
employed so that only predictions which satisfy a certain level of confidence will be taken
into account, while the rest can be discarded or passed on to a human for judgement.

There are two main areas in mainstream machine learning that can be used in order to
obtain some kind of confidence values; the Bayesian framework and the theory of Probably
Approximately Correct learning (PAC theory). Quite often the Bayesian framework is used
for producing algorithms that complement individual predictions with probabilistic
measures of their quality. On the other hand, PAC theory can be used for producing upper
bounds on the probability of error for a given algorithm with respect to some confidence
level 1 - 6. Both of these approaches however, have their drawbacks.

In order to apply the Bayesian framework one is required to have some prior knowledge
about the distribution that generates the data. When the correct prior is known, Bayesian
methods provide optimal decisions. For real world data sets though, as the required
knowledge is not available, one has to assume the existence of an arbitrarily chosen prior. In
this case, if the assumed prior is incorrect, the resulting confidence levels may also be
“incorrect”; for example the predictive regions output for the 95% confidence level may
contain the true label in much less than 95% of the cases. This signifies a major failure, as we
would expect confidence levels to bound the percentage of expected errors. An experimental
demonstration of how misleading Bayesian methods can become when their assumptions
are violated can be found in (Melluish et al., 2001).

316 Tools in Artificial Intelligence

PAC theory on the contrary, only assumes that the data are generated by some completely
unknown i.i.d. distribution. There are some PAC methods that are capable of establishing
non-trivial bounds that might be interesting in practice. In order for them to do so though,
the data set should be particularly clean. If this is not the case, which is not for the majority
of data sets, the bounds obtained from these methods are very loose and as such they are
not very useful in practice. A demonstration of the crudeness of PAC bounds can be found
in (Nouretdinov et al.,, 2001a), where there is an example of Littlestone and Warmuth's
bound (found in (Cristianini & Shawe-Taylor, 2000), Theorems 4.25 and 6.8) applied to the
USPS data set. In addition, PAC theory has two other drawbacks: (a) the majority of relevant
results either involve large explicit constants or do not specify the relevant constants at all;
(b) the bounds obtained by PAC theory are for the overall error and not for individual test
examples.

A new approach to obtaining confidence values was suggested in (Saunders et al., 1999) and
(Vovk et al., 1999), where what we call in this chapter “Conformal Prediction” (CP) was
proposed. Conformal Predictors are built on top of traditional algorithms, called underlying
algorithms, but unlike the latter they complement each of their predictions with a measure
of confidence; they also produce