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Swarm Intelligence is a research field that studies the emergent collective intelligence 
of self-organized and decentralized simple agents. It is based on the social behavior 
that can be observed in nature, such as in flocks of birds, fish schools and bee hives, 
where a group of individuals with limited capabilities are able to emerge with 
intelligent solutions for complex problems. Since long ago, researchers in Computer 
Science have already realized the importance of emergent behaviors for complex 
problem solving. This book gathers together some recent advances on Swarm 
Intelligence, comprising new swarm-based optimization methods, hybrid algorithms 
and innovative applications. The contents of this book allows the reader to get 
acquainted with both theoretical and technical aspects and applications of Swarm 
Intelligence. 
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Swarm-Based Metaheuristic Algorithms and
No-Free-Lunch Theorems

Xin-She Yang
National Physical Laboratory

United Kingdom

1. Introduction

Metaheuristic algorithms, especially those based on swarm intelligence (SI), form an
important part of contemporary global optimization algorithms (Kennedy and Ebarhart, 1995;
Yang, 2008; Auger and Teytaud, 2010; Auger and Doerr, 2010; Blum and Roli, 2003; Neumann
and Witt 2010; Parpinelli and Lopes, 2011). Good examples are particle swarm optimization
(PSO) (Kennedy and Eberhart, 1995) and firefly algorithm (FA) (Yang, 2009). They work
remarkably efficiently and have many advantages over traditional, deterministic methods
and algorithms, and thus they have been applied in almost all area of science, engineering
and industry (Floudas and Pardolos, 2009; Yang 2010a, Yang, 2010b; Yu et al., 2005).

The main characteristics of swarm intelligence is that multiple self-interested agents somehow
work together without any central control. These agents as a population can exchange
information, by chemical messenger (pheromone by ants), by dance (waggle dance by
bees), or by broadcasting ability (such as the global best in PSO and FA). Therefore,
all swarm-based algorithms are population-based. However, not all population-based
algorithms are swarm-based. For example, genetic algorithms (Holland, 1975; Goldberg, 2002)
are population-based, but they are not inspired by swarm intelligence (Bonabeau et al., 1999).

The mobile agents interact locally and under the right conditions they somehow form
emergent, self-organized behaviour, leading to global convergence. The agents typically
explore the search space locally, aided by randomization which increases the diversity of the
solutions on a global scale, and thus there is a fine balance between local intensive exploitation
and global exploration (Blue and Roli, 2003). Any swarm-based algorithms have to balance
these two components; otherwise, efficiency may be limited. In addition, these swarming
agents can work in parallel, and thus such algorithms are particularly suitable for parallel
implementation, which leads to even better reduction in computing time.

Despite such a huge success in applications, mathematical analysis of algorithms remains
limited and many open problems are still un-resolved. There are three challenging areas for
algorithm analysis: complexity, convergence and no-free-lunch theory. Complexity analysis
of traditional algorithms such as quick sort and matrix inverse are well-established, as these
algorithms are deterministic. In contrast, complexity analysis of metaheuristics remains a
challenging task, partly due to the stochastic nature of these algorithms. However, good
results do exist, concerning randomization search techniques (Auger and Teytaud, 2010).

Convergence analysis is another challenging area. One of the main difficulties concerning the
convergence analysis of metaheuristic algorithms is that no generic framework exists, though
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substantial studies have been carried out using dynamic systems and Markov processes.
However, convergence analysis still remains one of the active research areas with many
encouraging results (Clerc and Kennedy, 2002; Trelea, 2003; Ólafsson, 2006; Gutjahr, 2002).

In optimization, there is a so-called ‘no-free-lunch (NFL) theorem’ proposed by Wolpert and
Mcready (1997), which states that any algorithm will on average perform equally well as a
random search algorithm over all possible functions. In other words, two algorithms A and
B will on average have equal performance;‘ that is, if algorithm A performs better than B for
some problems, then algorithm B will outperform A for other problems. This means that there
is no universally superior algorithm for all types of problems. However, this does not mean
that some algorithms are not better than other algorithms for some specific types of problems.
In fact, we do not need to measure performance on average for all functions. More often,
we need to measure how an algorithm performs for a given class of problems. Furthermore,
the assumptions of the NLF theorem are not valid for all cases. In fact, there are quite a
few no-free-lunch (NFL) theorems (Wolpert and Mcready, 1997; Igel and Toussaint, 2003).
While in well-posed cases of optimization where its functional space forms finite domains,
NFL theorems do hold; however, free lunches are possible in continuous domains(Auger and
Teytaud, 2010; Wolpert and Mcready 2005; Villalobos-Arias et al., 2005).

In this chapter, we intend to provide a state-of-the-art review of the recent studies of
no-free-lunch theory and also free lunch scenarios. This enables us to view the NLF and free
lunch in a unified framework, or at least, in a convenient way. We will also briefly highlights
some of the convergence studies. Based on these studies, we will summarize and propose a
series of recommendations for further research.

2. Swarm-based algorithms

There are more than a dozen of swarm-based algorithms using the so-called swarm
intelligence. For a detailed introduction, please refer to Yang (2010b), and for a recent
comprehensive review, please refer to Parpinelli and Lopes (2011). In this section, we will
focus on the main chararcteristics and the ways that each algorithm generate new solutions,
and we will not discuss each algorithm in details. Interested readers can follow the references
listed at the end of this chapter and also refer to other chapters of this book.

2.1 Ant algorithms

Ant algorithms, especially the ant colony optimization (Dorigo and Stütle, 2004), mimic the
foraging behaviour of social ants. Primarily, it uses pheromone as a chemical messenger and
the pheromone concentration as the indicator of quality solutions to a problem of interest. As
the solution is often linked with the pheromone concentration, the search algorithms often
produce routes and paths marked by the higher pheromone concentrations, and therefore,
ants-based algorithms are particular suitable for discrete optimization problems.

The movement of an ant is controlled by pheromone which will evaporate over time. Without
such time-dependent evaporation, the algorithms will lead to premature convergence to the
(often wrong) solutions. With proper pheromone evaporation, they usually behave very well.

There are two important issues here: the probability of choosing a route, and the evaporation
rate of pheromone. There are a few ways of solving these problems, although it is still an area
of active research. Here we introduce the current best method.

2 Theory and New Applications of Swarm Intelligence
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For a network routing problem, the probability of ants at a particular node i to choose the
route from node i to node j is given by

pij =
φα

ijd
β
ij

∑n
i,j=1 φα

ijd
β
ij

, (1)

where α > 0 and β > 0 are the influence parameters, and their typical values are α ≈ β ≈ 2.
φij is the pheromone concentration on the route between i and j, and dij the desirability of the
same route. Some a priori knowledge about the route such as the distance sij is often used so
that dij ∝ 1/sij, which implies that shorter routes will be selected due to their shorter traveling
time, and thus the pheromone concentrations on these routes are higher. This is because the
traveling time is shorter, and thus the less amount of the pheromone has been evaporated
during this period.

This probability formula reflects the fact that ants would normally follow the paths with
higher pheromone concentrations. In the simpler case when α = β = 1, the probability of
choosing a path by ants is proportional to the pheromone concentration on the path. The
denominator normalizes the probability so that it is in the range between 0 and 1.

The pheromone concentration can change with time due to the evaporation of pheromone.
Furthermore, the advantage of pheromone evaporation is that the system could avoid being
trapped in local optima. If there is no evaporation, then the path randomly chosen by the first
ants will become the preferred path as the attraction of other ants by their pheromone. For
a constant rate γ of pheromone decay or evaporation, the pheromone concentration usually
varies with time exponentially

φ(t) = φ0e−γt, (2)

where φ0 is the initial concentration of pheromone and t is time. If γt � 1, then we
have φ(t) ≈ (1 − γt)φ0. For the unitary time increment Δt = 1, the evaporation can be
approximated by φt+1 ← (1− γ)φt. Therefore, we have the simplified pheromone update
formula:

φt+1
ij = (1− γ)φt

ij + δφt
ij, (3)

where γ ∈ [0, 1] is the rate of pheromone evaporation. The increment δφt
ij is the amount of

pheromone deposited at time t along route i to j when an ant travels a distance L. Usually
δφt

ij ∝ 1/L. If there are no ants on a route, then the pheromone deposit is zero.

There are other variations to this basic procedure. A possible acceleration scheme is to use
some bounds of the pheromone concentration and only the ants with the current global best
solution(s) are allowed to deposit pheromone. In addition, certain ranking of solution fitness
can also be used.

2.2 Bee algorithms

Bees-inspired algorithms are more diverse, and some use pheromone and most do not. Almost
all bee algorithms are inspired by the foraging behaviour of honey bees in nature. Interesting
characteristics such as waggle dance, polarization and nectar maximization are often used
to simulate the allocation of the foraging bee along flower patches and thus different search
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regions in the search space. For a more comprehensive review, please refer to Parpinelli and
Lopes (2011).

Honeybees live in a colony and they forage and store honey in their constructed colony.
Honeybees can communicate by pheromone and ‘waggle dance’. For example, an alarming
bee may release a chemical message (pheromone) to stimulate attack response in other bees.
Furthermore, when bees find a good food source and bring some nectar back to the hive, they
will communicate the location of the food source by performing the so-called waggle dances
as a signal system. Such signaling dances vary from species to species, however, they will try
to recruit more bees by using directional dancing with varying strength so as to communicate
the direction and distance of the found food resource. For multiple food sources such as
flower patches, studies show that a bee colony seems to be able to allocate forager bees among
different flower patches so as to maximize their total nectar intake.

In the honeybee-based algorithm, forager bees are allocated to different food sources (or
flower patches) so as to maximize the total nectar intake. The colony has to ‘optimize’ the
overall efficiency of nectar collection, the allocation of the bees is thus depending on many
factors such as the nectar richness and the proximity to the hive (Nakrani and Trovey, 2004;
Yang, 2005; Karaboga, 2005; Pham et al., 2006)

Let wi(j) be the strength of the waggle dance of bee i at time step t = j, the probability of an
observer bee following the dancing bee to forage can be determined in many ways depending
on the actual variant of algorithms. A simple way is given by

pi =
wj

i

∑
n f

i=1 wj
i

, (4)

where n f is the number of bees in foraging process. t is the pseudo time or foraging
expedition. The number of observer bees is N − n f when N is the total number of bees.
Alternatively, we can define an exploration probability of a Gaussian type pe = 1 − pi =
exp[−w2

i /2σ2], where σ is the volatility of the bee colony, and it controls the exploration and
diversity of the foraging sites. If there is no dancing (no food found), then wi → 0, and pe = 1.
So all the bee explore randomly.

The virtual bee algorithm (VBA), developed by Xin-She Yang in 2005, is an optimization
algorithm specially formulated for solving both discrete and continuous problems (Yang,
2005). On the other hand, the artificial bee colony (ABC) optimization algorithm was first
developed by D. Karaboga in 2005. In the ABC algorithm, the bees in a colony are divided
into three groups: employed bees (forager bees), onlooker bees (observer bees) and scouts.
For each food source, there is only one employed bee. That is to say, the number of employed
bees is equal to the number of food sources. The employed bee of an discarded food site is
forced to become a scout for searching new food sources randomly. Employed bees share
information with the onlooker bees in a hive so that onlooker bees can choose a food source
to forage. Unlike the honey bee algorithm which has two groups of the bees (forager bees and
observer bees), bees in ABC are more specialized (Karaboga, 2005; Afshar et al., 2007).

Similar to the ants-based algorithms, bee algorithms are also very flexible in dealing with
discrete optimization problems. Combinatorial optimizations such as routing and optimal
paths have been successfully solved by ant and bee algorithms. Though bee algorithms can
be applied to continuous problems as well as discrete problems, however, they should not be
the first choice for continuous problems.

4 Theory and New Applications of Swarm Intelligence
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2.3 Particle swarm optimization

Particle swarm optimization (PSO) was developed by Kennedy and Eberhart in 1995, based on
the swarm behaviour such as fish and bird schooling in nature. Since then, PSO has generated
much wider interests, and forms an exciting, ever-expanding research subject, called swarm
intelligence. PSO has been applied to almost every area in optimization, computational
intelligence, and design/scheduling applications.

The movement of a swarming particle consists of two major components: a social component
and a cognitive component. Each particle is attracted toward the position of the current global
best g∗ and its own best location x∗i in history, while at the same time it has a tendency to move
randomly.

Let xi and vi be the position vector and velocity for particle i, respectively. The new velocity
and location updating formulas are determined by

vt+1
i = vt

i + αε1[g∗ − xt
i ] + βε2[x∗i − xt

i ]. (5)

xt+1
i = xt

i + vt+1
i , (6)

where ε1 and ε2 are two random vectors, and each entry taking the values between 0 and
1. The parameters α and β are the learning parameters or acceleration constants, which can
typically be taken as, say, α ≈ β ≈ 2.

There are at least two dozen PSO variants which extend the standard PSO algorithm, and the
most noticeable improvement is probably to use inertia function θ(t) so that vt

i is replaced by
θ(t)vt

i where θ ∈ [0, 1]. This is equivalent to introducing a virtual mass to stabilize the motion
of the particles, and thus the algorithm is expected to converge more quickly.

2.4 Firefly algorithm

Firefly Algorithm (FA) was developed by Xin-She Yang at Cambridge University (Yang,2008;
Yang 2009), which was based on the flashing patterns and behaviour of fireflies. In essence,
each firefly will be attracted to brighter ones, while at the same time, it explores and searches
for prey randomly. In addition, the brightness of a firefly is determined by the landscape of
the objective function.

The movement of a firefly i attracted to another more attractive (brighter) firefly j is
determined by

xt+1
i = xt

i + β0e−γr2
ij (xt

j − xt
i ) + αt εt

i , (7)

where the second term is due to the attraction. The third term is randomization with αt being
the randomization parameter, and εt

i is a vector of random numbers drawn from a Gaussian
distribution or uniform distribution. Here β0 ∈ [0, 1] is the attractiveness at r = 0, and rij =

||xt
i − xt

j || is the Cartesian distance. For other problems such as scheduling, any measure that
can effectively characterize the quantities of interest in the optimization problem can be used
as the ‘distance’ r. For most implementations, we can take β0 = 1, α = O(1) and γ = O(1).

Ideally, the randomization parameter αt should be monotonically reduced gradually during
iterations. A simple scheme is to use

αt = α0δt, δ ∈ (0, 1), (8)

5Swarm-Based Metaheuristic Algorithms and No-Free-Lunch Theorems
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where α0 is the initial randomness, while δ is a randomness reduction factor similar to
that used in a cooling schedule in simulated annealing. It is worth pointing out that (7)
is essentially a random walk biased towards the brighter fireflies. If β0 = 0, it becomes a
simple random walk. Furthermore, the randomization term can easily be extended to other
distributions such as Lévy flights.

2.5 Bat algorithm

Bat algorithm is a relatively new metaheuristic, developed by Xin-She Yang in 2010 (Yang,
2010c). It was inspired by the echolocation behaviour of microbats. Microbats use a type of
sonar, called, echolocation, to detect prey, avoid obstacles, and locate their roosting crevices
in the dark. These bats emit a very loud sound pulse and listen for the echo that bounces
back from the surrounding objects. Their pulses vary in properties and can be correlated with
their hunting strategies, depending on the species. Most bats use short, frequency-modulated
signals to sweep through about an octave, while others more often use constant-frequency
signals for echolocation. Their signal bandwidth varies depends on the species, and often
increased by using more harmonics.

Inside the bat algorithm, it uses three idealized rules:

1. All bats use echolocation to sense distance, and they also ‘know’ the difference between
food/prey and background barriers in some magical way;

2. Bats fly randomly with velocity vi at position xi with a fixed frequency fmin, varying
wavelength λ and loudness A0 to search for prey. They can automatically adjust the
wavelength (or frequency) of their emitted pulses and adjust the rate of pulse emission
r ∈ [0, 1], depending on the proximity of their target;

3. Although the loudness can vary in many ways, we assume that the loudness varies from a
large (positive) A0 to a minimum constant value Amin.

BA has been extended to multiobjective bat algorithm (MOBA) by Yang (2011), and
preliminary results suggested that it is very efficient.

2.6 Cuckoo search

Cuckoo search (CS) is one of the latest nature-inspired metaheuristic algorithms, developed in
2009 by Xin-She Yang and Suash Deb (Yang and Deb, 2009; Yang and Deb, 2010). CS is based
on the brood parasitism of some cuckoo species. In addition, this algorithm is enhanced by
the so-called Lévy flights, rather than by simple isotropic random walks. This algorithm was
inspired by the aggressive reproduction strategy of some cuckoo species such as the ani and
Guira cuckoos. These cuckoos lay their eggs in communal nests, though they may remove
others’ eggs to increase the hatching probability of their own eggs. Quite a number of species
engage the obligate brood parasitism by laying their eggs in the nests of other host birds (often
other species).

In the standard cuckoo search, the following three idealized rules are used:

• Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest;
• The best nests with high-quality eggs will be carried over to the next generations;
• The number of available host nests is fixed, and the egg laid by a cuckoo is discovered by

the host bird with a probability pa ∈ [0, 1]. In this case, the host bird can either get rid of
the egg, or simply abandon the nest and build a completely new nest.

6 Theory and New Applications of Swarm Intelligence
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As a further approximation, this last assumption can be approximated by a fraction pa of the
n host nests are replaced by new nests (with new random solutions). Recent studies suggest
that cuckoo search can outperform particle swarm optimization and other algorithms (Yang
and Deb, 2010). These are still topics of active research.

There are other metaheuristic algorithms which have not been introduced here, and interested
readers can refer to more advanced literature (Yang, 2010b; Parpinelli and Lopes, 2011).

3. Intensification and diversification

Metaheuristics can be considered as an efficient way to produce acceptable solutions by trial
and error to a complex problem in a reasonably practical time. The complexity of the problem
of interest makes it impossible to search every possible solution or combination, the aim is
to find good feasible solution in an acceptable timescale. There is no guarantee that the best
solutions can be found, and we even do not know whether an algorithm will work and why
if it does work. The idea is to have an efficient but practical algorithm that will work most
the time and is able to produce good quality solutions. Among the found quality solutions,
it is expected some of them are nearly optimal, though there is often no guarantee for such
optimality.

The main components of any metaheuristic algorithms are: intensification and diversification,
or exploitation and exploration (Blum and Roli, 2003; Yang, 2008; Yang, 2010b). Diversification
means to generate diverse solutions so as to explore the search space on the global scale, while
intensification means to focus on the search in a local region by exploiting the information that
a current good solution is found in this region. This is in combination with the selection of
the best solutions. Randomization techniques can be a very simple method using uniform
distributions and/or Gaussian distributions, or more complex methods as those used in
Monte Carlo simulations. They can also be more elaborate, from Brownian random walks
to Lévy flights.

In general, intensification speeds up the convergence of an algorithm, however, it may lead to
a local optimum, not necessarily the global optimality. On the other hand, diversification often
slows down the convergence but increases the probability of finding the global optimum.
Therefore, there is a fine balance beteween these seemingly competing components for any
algorithm.

In ant and bee algorithms, intensification is usually achieved by pheromone and exchange
of information so that all agents swarm together or follow similar routes. Diversification
is achieved by randomization and probabilistic choices of routes. In PSO, intensification
is controlled mainly by the use of the global best and individual best solutions, while
diversification is plainly done using two random numbers or learning parameters.

For the standard FA, the global best is not used, though its use may increase the convergence
rates for some problems such as unimodal problems or problems with some dominant
modes. Intensification is subtly done by the attraction among fireflies and thus brightness
is the information exchanged among adjacent fireflies. Diversification is carried out by the
randomization term, either by random walks or by Lévy flights, in combination with a
randomness-reduction technique similar to a cooling schedule in simulated annealing.

Intensification and diversification in the bat algorithm is controlled by a switch parameter.
Intensification as well as diversification is also enhanced by the variations of loudness and

7Swarm-Based Metaheuristic Algorithms and No-Free-Lunch Theorems
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pulse rates. In this sense, the mechanism is relatively simple, but very efficient in balancing
the two key components.

In the cuckoo search, things become more subtle. Diversification is carried out in two
ways: randomization via Lévy flights and feeding new solutions into randomly chosen
nests. Intensification is achieved by a combination of elitism and the generation of
solutions according to similarity (thus the usage of local information). In addition, a switch
parameter (a fraction of abandoned nests) is used to control the balance of diversification and
intensification.

As seen earlier, an important component in swarm intelligence and modern metaheuristics
is randomization, which enables an algorithm to have the ability to jump out of any local
optimum so as to search globally. Randomization can also be used for local search around
the current best if steps are limited to a local region. When the steps are large, randomization
can explore the search space on a global scale. Fine-tuning the randomness and balance of
local search and global search is crucially important in controlling the performance of any
metaheuristic algorithm.

4. No-free-lunch theorems

The seminal paper by Wolpert and Mcready in 1997 essentially proposed a framework
for performance comparison of optimization algorithms, using a combination of Bayesian
statistics and Markov random field theories. Let us sketch Wolpert and Macready’s original
idea. Assuming that the search space is finite (though quite large), thus the space of possible
objective values is also finite. This means that objective function is simply a mapping
f : X �→ Y , with F = YX as the space of all possible problems under permutation.

As an algorithm tends to produce a series of points or solutions in the search space, it is further
assumed that these points are distinct. That is, for k iterations, k distinct visited points forms
a time-ordered set

Ωk =
{(

Ωx
k (1), Ωy

k (1)
)

, ...,
(

Ωx
k (k), Ωy

k (k)
)}

. (9)

There are many ways to define a performance measure, though a good measure still remains
debatable (Shilane et al., 2008). Such a measure can depend on the number of iteration k, the
algorithm a and the actual cost function f , which can be denoted by P(Ωy

k‖ f , k, a). Here we
follow the notation style in seminal paper by Wolpert and Mcready (1997). For any pair of
algorithms a and b, the NFL theorem states

∑
f

P(Ωy
k | f , k, a) = ∑

f
P(Ωy

k | f , k, b). (10)

In other words, any algorithm is as good (bad) as a random search, when the performance is
averaged over all possible functions.

Along many relevant assumptions in proving the NFL theorems, two fundamental
assumptions are: finite states of the search space (and thus the objective values), and the
non-revisiting time-ordered sets.

The first assumption is a good approximation to many problems, especially in finite-digit
approximations. However, there is mathematical difference in countable finite, and countable
infinite. Therefore, the results for finite states/domains may not directly applicable to

8 Theory and New Applications of Swarm Intelligence
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infinite domains. Furthermore, as continuous problem are uncountable, NFL results for finite
domains will usually not hold for continuous domains (Auger and Teytaud, 2010).

The second assumption on non-revisiting iterative sequence is an over-simplification, as
almost all metaheuristic algorithms are revisiting in practice, some points visited before will
possibly be re-visited again in the future. The only possible exception is the Tabu algorithm
with a very long Tabu list (Glover and Laguna, 1997). Therefore, results for non-revisiting
time-ordered iterations may not be true for the cases of revisiting cases, because the revisiting
iterations break an important assumption of ‘closed under permutation’ (c.u.p) required for
proving the NFL theorems (Marshall and Hinton, 2010).

Furthermore, optimization problems do not necessarily concern the whole set of all possible
functions/problems, and it is often sufficient to consider a subset of problems. It is worth
pointing out active studies have carried out in constructing algorithms that can work best
on specific subsets of optimization problems, in fact, NFL theorems do not hold in this case
(Christensen and Oppacher, 2001).

These theorems are vigorous and thus have important theoretical values. However, their
practical implications are a different issue. In fact, it may not be so important in practice
anyway, we will discuss this in a later section.

5. Free lunch or no free lunch

The validity of NFL theorems largely depends on the validity of their fundamental
assumptions. However, whether these assumptions are valid in practice is another question.
Often, these assumptions are too stringent, and thus free lunches are possible.

5.1 Continuous free lunches

One of the assumptions is the non-revisiting nature of the k distinct points which form a
time-ordered set. For revisiting points as they do occur in practice in real-world optimization
algorithms, the ‘closed under permutation’ does not hold, which renders NFL theorems
invalid (Schumacher et al., 2001; Marshall and Hinton, 2010). This means free lunches do
exist in practical applications.

Another basic assumption is the finiteness of the domains. For continuous domains, Auger
and Teytaud in 2010 have proven that the NFL theorem does not hold, and therefore they
concluded that ‘continuous free lunches exist’. Indeed, some algorithms are better than others.
For example, for a 2D sphere function, they demonstrated that an efficient algorithm only
needs 4 iterations/steps to reach the global minimum.

5.2 Coevolutionary and multiobjective free lunches

The basic NFL theorems concern a single agent, marching iteratively in the search space in
distinct steps. However, Wolpert and Mcready proved in 2005 that NFL theorems do not hold
under coevolution. For example, a set of players (or agents) in self-play problems can work
together so as to produce a champion. This can be visualized as an evolutionary process of
training a chess champion. In this case, free lunch does exist (Wolpert and Mcready, 2005). It
is worth pointing out that for a single player, it tries to pursue the best next move, while for
two players, the fitness function depend on the moves of both players. Therefore, the basic
assumptions for NFL theorems are no longer valid.

9Swarm-Based Metaheuristic Algorithms and No-Free-Lunch Theorems
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For multiobjective optimization problems, things have become even more complicated. An
important step in theoretical analysis is that some multiobjective optimizers are better than
others as pointed out by Corne and Knowles (2003). One of the major reasons is that
the archiver and generator in the multiobjective algorithms can lead to multiobjective free
lunches.

Whether NFL holds or not, it has nothing to say about the complexity of the problems. In fact,
no free lunch theorem has not been proved to be true for problems with NP-hard complexity
(Whitley and Watson, 2005).

6. NFL theorems and meaning for algorithm developers

No-free-lunch theorems may be of theoretical importance, and they can also have important
implications for algorithm development in practice, though not everyone agrees the real
importance of these implications. In general, there are three kinds of opinions concerning
the implications. The first group may simply ignore these theorems, as they argue that
the assumptions are too stringent, and the performance measures based on average overall
functions are irrelevant in practice (Whitley and Watson, 2005). Therefore, no practical
importance can be inferred, and research just carries on.

The second kind is that NFL theorems can be true, and they can accept that the fact there is no
universally efficient algorithm. But in practice some algorithms do performance better than
others for a specific problem or a subset of problems. Research effort should focus on finding
the right algorithms for the right type of problem. Problem-specific knowledge is always
helpful to find the right algorithm(s).

The third kind of opinion is that NFL theorems are not true for other types of problems
such as continuous problems and NP-hard problems. Theoretical work concerns more
elaborate studies on extending NFL theorems to other cases or on finding free lunches
(Auger and Teytaud, 2010). On the other hand, algorithm development continues to design
better algorithms which can work for a wider range of problems, not necessarily all types
of problems. As we have seen from the above analysis, free lunches do exist, and better
algorithms can be designed for a specific subset of problems (Yang,2009; Yang and Deb, 2010).

Thus, free lunch or no free lunch is not just a simple question, it has important and yet
practical importance. There is certain truth in all the above arguments, and their impacts
on optimization community are somehow mixed. Obviously, in reality, the algorithms with
problem-specific knowledge typically work better than random search, and we also realized
that there is no universally generic tool that works best for all the problems. Therefore, we
have to seek balance between speciality and generality, between algorithm simplicity and
problem complexity, and between problem-specific knowledge and capability of handling
black-box optimization problems.

7. Convergence analysis of metaheuristics

For convergence analysis, there is no mathematical framework in general to provide
insights into the working mechanism, the complexity, stability and convergence of any
given algorithm (He and Yu, 2001; Thikomirov, 2007). Despite the increasing popularity
of metaheuristics, mathematical analysis remains fragmental, and many open problems
concerning convergence analysis need urgent attention. In addition, many algorithms, though
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efficient, have not been proved their convergence, for example, harmony search usually
converges well (Geem, 2009), but its convergence still needs mathematical analysis.

7.1 PSO

The first convergence analysis of PSO was carried out by Clerc and Kennedy in 2002 using the
theory of dynamical systems. Mathematically, if we ignore the random factors, we can view
the system formed by (5) and (6) as a dynamical system. If we focus on a single particle i and
imagine that there is only one particle in this system, then the global best g∗ is the same as its
current best x∗i . In this case, we have

vt+1
i = vt

i + γ(g∗ − xt
i ), γ = α + β, (11)

and
xt+1

i = xt
i + vt+1

i . (12)

Considering the 1D dynamical system for particle swarm optimization, we can replace g∗ by a
parameter constant p so that we can see if or not the particle of interest will converge towards
p. By setting ut = p − x(t + 1) and using the notations for dynamical systems, we have a
simple dynamical system

vt+1 = vt + γut, ut+1 = −vt + (1− γ)ut, (13)

or

Yt+1 = AYt, A =

(
1 γ
−1 1− γ

)
, Yt =

(
vt
ut

)
. (14)

The general solution of this dynamical system can be written as Yt = Y0 exp[At]. The system
behaviour can be characterized by the eigenvalues λ of A

λ1,2 = 1− γ

2
±

√
γ2 − 4γ

2
. (15)

It can be seen clearly that γ = 4 leads to a bifurcation. Following a straightforward analysis
of this dynamical system, we can have three cases. For 0 < γ < 4, cyclic and/or quasi-cyclic
trajectories exist. In this case, when randomness is gradually reduced, some convergence can
be observed. For γ > 4, non-cyclic behaviour can be expected and the distance from Yt to the
center (0, 0) is monotonically increasing with t. In a special case γ = 4, some convergence
behaviour can be observed. For detailed analysis, please refer to Clerc and Kennedy (2003).
Since p is linked with the global best, as the iterations continue, it can be expected that all
particles will aggregate towards the the global best.

7.2 Firefly algorithm

We now can carry out the convergence analysis for the firefly algorithm in a framework similar
to Clerc and Kennedy’s dynamical analysis. For simplicity, we start from the equation for
firefly motion without the randomness term

xt+1
i = xt

i + β0e−γr2
ij (xt

j − xt
i ). (16)
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If we focus on a single agent, we can replace xt
j by the global best g found so far, and we have

xt+1
i = xt

i + β0e−γr2
i (g− xt

i ), (17)

where the distance ri can be given by the �2-norm r2
i = ||g − xt

i ||22. In an even simpler 1-D
case, we can set yt = g− xt

i , and we have

yt+1 = yt − β0e−γy2
t yt. (18)

We can see that γ is a scaling parameter which only affects the scales/size of the firefly
movement. In fact, we can let ut =

√
γyt and we have

ut+1 = ut[1− β0e−u2
t ]. (19)

These equations can be analyzed easily using the same methodology for studying the
well-known logistic map

ut = λut(1− ut). (20)

Mathematical analysis and numerical simulations of (19) can reveal its regions of chaos.
Briefly, the convergence can be achieved for β0 < 2. There is a transition from periodic to
chaos at β0 ≈ 4. This may be surprising, as the aim of designing a metaheuristic algorithm
is to try to find the optimal solution efficiently and accurately. However, chaotic behaviour
is not necessarily a nuisance, in fact, we can use it to the advantage of the firefly algorithm.
Simple chaotic characteristics from (20) can often be used as an efficient mixing technique for
generating diverse solutions. Statistically, the logistic mapping (20) for λ = 4 for the initial
states in (0,1) corresponds a beta distribution

B(u, p, q) =
Γ(p + q)
Γ(p)Γ(q)

up−1(1− u)q−1, (21)

when p = q = 1/2. Here Γ(z) is the Gamma function

Γ(z) =
∫ ∞

0
tz−1e−tdt. (22)

In the case when z = n is an integer, we have Γ(n) = (n − 1)!. In addition, Γ(1/2) =
√

π.
From the algorithm implementation point of view, we can use higher attractiveness β0 during
the early stage of iterations so that the fireflies can explore, even chaotically, the search
space more effectively. As the search continues and convergence approaches, we can reduce
the attractiveness β0 gradually, which may increase the overall efficiency of the algorithm.
Obviously, more studies are highly needed to confirm this.

7.3 Markov chains

Most theoretical studies use Markov chains/process as a framework for convergence analysis.
A Markov chain is said be to regular if some positive power k of the transition matrix P
has only positive elements. A chain is ergodic or irreducible if it is aperiodic and positive
recurrent, which means that it is possible to reach every state from any state.
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For a time-homogeneous chain as k → ∞, we have the stationary probability distribution π,
satisfying

π = πP, (23)

thus the first eigenvalue is always 1. This will lead to the asymptotic convergence to the global
optimality θ∗:

lim
k→∞

θk → θ∗, (24)

with probability one (Gamerman, 1997; Gutjahr, 2002).

Now if look at the PSO and FA closely using the framework of Markov chain Monte Carlo,
each particle in PSO or each firefly in FA essentially forms a Markov chain, though this Markov
chain is biased towards to the current best, as the transition probability often leads to the
acceptance of the move towards the current global best. Other population-based algorithms
can also be viewed in this framework. In essence, all metaheuristic algorithms with piecewise,
interacting paths can be analyzed in the general framework of Markov chain Monte Carlo.
The main challenge is to realize this and to use the appropriate Markov chain theory to study
metaheuristic algorithms. More fruitful studies will surely emerge in the future.

7.4 Other results

Limited results on convergence analysis exist, concerning finite domains, ant colony
optimization (Gutjahr,2010; Sebastiani and Torrisi,2005), cross-entropy optimization,
best-so-far convergence (Margolin, 2005), nested partition method, Tabu search, and largely
combinatorial optimization. However, more challenging tasks for infinite states/domains and
continuous problems. Many open problems need satisfactory answers.

On the other hand, it is worth pointing out that an algorithm can converge, but it may not be
efficient, as its convergence rate could be typically low. One of the main tasks in research is to
find efficient algorithms for a given type of problem.

8. Open problems

Active research on NFL theorems and algorithm convergence analysis has led to many
important results. Despite this, many crucial problems remain unanswered. These open
questions span a diverse range of areas. Here we highlight a few but relevant open problems.

Framework: Convergence analysis has been fruitful, however, it is still highly needed to
develop a unified framework for algorithmic analysis and convergence.

Exploration and exploitation: Two important components of metaheuristics are exploration and
exploitation or diversification and intensification. What is the optimal balance between these
two components?

Performance measure: To compare two algorithms, we have to define a measure for gauging
their performance (Spall et al., 2006). At present, there is no agreed performance measure, but
what are the best performance measures ? Statistically?

Free lunches: No-free-lunch theorems have not been proved for continuous domains for
multiobjective optimization. For single-objective optimization, free lunches are possible; is
this true for multiobjective optimization? In addition, no free lunch theorem has not been
proved to be true for problems with NP-hard complexity (Whitley and Watson, 2005). If free
lunches exist, what are their implications in practice and how to find the best algorithm(s)?

13Swarm-Based Metaheuristic Algorithms and No-Free-Lunch Theorems
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Automatic parameter tuning: For almost all algorithms, algorithm-dependent parameters
require fine-tuning so that the algorithm of interest can achieve maximum performance. At
the moment, parameter-tuning is mainly done by inefficient, expensive parametric studies. In
fact, automatic self-tuning of parameters is another optimization problem, and optimal tuning
of these parameters is another important open problem.

Knowledge: Problem-specific knowledge always helps to find an appropriate solution? How
to quantify such knowledge?

Intelligent algorithms: A major aim for algorithm development is to design better, intelligent
algorithms for solving tough NP-hard optimization problems. What do mean by ‘intelligent’?
What are the practical ways to design truly intelligent, self-evolving algorithms?

9. Concluding remarks

SI-based algorithms are expanding and becoming increasingly popular in many disciplines
and applications. One of the reasons is that these algorithms are flexible and efficient in
solving a wide range of highly nonlinear, complex problems, yet their implementation is
relatively straightforward without much problem-specific knowledge. In addition, swarming
agents typically work in parallel, and thus parallel implementation is a natural advantage.

At present, swarm intelligence and relevant algorithms are inspired by some specific
features of the successful biological systems such as social insects and birds. Though they
are highly successful, however, these algorithms still have room for improvement. In
addition to the above open problems, a truly ‘intelligent’ algorithm is yet to be developed.
By learning more and more from nature and by carrying out ever-increasingly detailed,
systematical studies, some truly ‘smart’ self-evolving algorithms will be developed in the
future so that such smart algorithms can automatically fine-tune their behaviour to find
the most efficient way of solving complex problems. As an even bolder prediction, maybe,
some hyper-level algorithm-constructing metaheuristics can be developed to automatically
construct algorithms in an intelligent manner in the not-too-far future.
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1. Introduction

Fish School Search (FSS) is a computational intelligence technique invented by Bastos-Filho
and Lima-Neto in 2007 and first presented in Bastos-Filho et al. (2008). FSS was conceived
to solve search problems and it is based on the social behavior of schools of fish. In the
FSS algorithm, the search space is bounded and each possible position in the search space
represents a possible solution for the problem. During the algorithm execution, each fish
has its positions and weights adjusted according to four FSS operators, namely, feeding,
individual movement, collective-instinctive movement and collective-volitive movement. FSS
is inherently parallel since the fitness can be evaluated for each fish individually. Hence, it is
quite suitable for parallel implementations.

In the recent years, the use of Graphic Processing Units (GPUs) have been proposed for
various general purpose computing applications. Thus, GPU-based platforms afford great
advantages on applications requiring intensive parallel computing. The GPU parallel floating
point processing capacity allows one to obtain high speedups. These advantages together
with FSS architecture suggest that GPU based FSS may produce marked reduction in
execution time, which is very likely because the fitness evaluation and the update processes
of the fish can be parallelized in different threads. Nevertheless, there are some aspects
that should be considered to adapt an application to be executed in these platforms, such
as memory allocation and communication between blocks.

Some computational intelligence algorithms already have been adapted to be executed in
GPU-based platforms. Some variations of the Particle Swarm Optimization (PSO) algorithm
suitable for GPU were proposed by Zhou & Tan (2009). In that article the authors compared
the performance of such implementations to a PSO running in a CPU. Some tests regarding the
scalability of the algorithms as a function of the number of dimensions were also presented.
Bastos-Filho et al. (2010) presented an analysis of the performance of PSO algorithms when
the random number are generated in the GPU and in the CPU. They showed that the XORshift
Random Number Generator for GPUs, described by Marsaglia (2003), presents enough quality
to be used in the PSO algorithm. They also compared different GPU-based versions of the PSO
(synchronous and asynchronous) to the CPU-based algorithm.
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Zhu & Curry (2009) adapted an Ant Colony Optimization algorithm to optimize benchmark
functions in GPUs. A variation for local search, called SIMT-ACO-PS (Single Instruction
Multiple Threads - ACO - Pattern Search), was also parallelized. They presented some
interesting analysis on the parallelization process regarding the generation of ants in order
to minimize the communication overhead between CPU-GPU. The proposals achieved
remarkable speedups.

To the best of our knowledge, there is no FSS implementations for GPUs. So, in this paper we
present the first parallel approach for the FSS algorithm suitable for GPUs. We discuss some
important issues regarding the implementation in order to improve the time performance.
We also consider some other relevant aspects, such as when and where it is necessary to set
synchronization barriers. The analysis of these aspects is crucial to provide high performance
FSS approaches for GPUs. In order to demonstrate this, we carried out simulations using a
parallel processing platform developed by NVIDIA, called CUDA.

This paper is organized as follows: in the next Section we present an overview of the FSS
algorithm. In Section 3, we introduce some basic aspects of the NVIDIA CUDA Architecture
and GPU Computing. Our contribution and the results are presented in Sections 4 and 5,
respectively. In the last Section, we present our conclusions, where we also suggest future
works.

2. Fish School Search

Fish School Search (FSS) is a stochastic, bio-inspired, population-based global optimization
technique. As mentioned by Bastos-Filho et al. (2008), FSS was inspired in the gregarious
behavior presented by some fish species, specifically to generate mutual protection and
synergy to perform collective tasks, both to improve the survivability of the entire group.

The search process in FSS is carried out by a population of limited-memory individuals - the
fish. Each fish in the school represents a point in the fitness function domain, like the particles
in the Particle Swarm Optimization (PSO) Kennedy & Eberhart (1995) or the individuals in the
Genetic Algorithms (GA) Holland (1992). The search guidance in FSS is driven by the success
of the members of the population.

The main feature of the FSS is that all fish contain an innate memory of their success - their
weights. The original version of the FSS algorithm has four operators, which can be grouped
in two classes: feeding and swimming. The Feeding operator is related to the quality of a
solution and the three swimming operators drive the fish movements.

2.1 Individual movement operator

The individual movement operator is applied to each fish in the school in the beginning
of each iteration. Each fish chooses a new position in its neighbourhood and then, this
new position is evaluated using the fitness function. The candidate position �ni of fish i is
determined by the Equation (1) proposed by Bastos-Filho et al. (2009).

�ni(t) = �xi(t) + rand[−1, 1].stepind, (1)

where �xi is the current position of the fish in dimension i, rand[-1,1] is a random number
generated by an uniform distribution in the interval [-1,1]. The stepind is a percentage of
the search space amplitude and is bounded by two parameters (stepind_min and stepind_max).
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The stepind decreases linearly during the iterations in order to increase the exploitation ability
along the iterations. After the calculation of the candidate position, the movement only occurs
if the new position presents a better fitness than the previous one.

2.2 Feeding operator

Each fish can grow or diminish in weight, depending on its success or failure in the search for
food. Fish weight is updated once in every FSS cycle by the feeding operator, according to
equation (2).

Wi(t + 1) = Wi(t) +
Δ fi

max(Δ f )
, (2)

where Wi(t) is the weight of the fish i, f [�xi(t)] is the value for the fitness function (i.e. the
amount of food) in �xi(t), Δ fi is the difference between the fitness value of the new position
f [�xi(t+ 1)] and the fitness value of the current position for each fish f [�xi(t)], and the max(Δ f )
is the maximum value of these differences in the iteration. A weight scale (Wscale) is defined
in order to limit the weight of fish and it will be assigned the value for half the total number
of iterations in the simulations. The initial weight for each fish is equal to Wscale

2 .

2.3 Collective-instinctive movement operator

After all fish have moved individually, their positions are updated according to the influence
of the fish that had successful individual movements. This movement is based on the fitness
evaluation of the fish that achieved better results, as shown in equation (3).

�xi(t + 1) = �xi(t) +

N

∑
i=1

Δ�xindi
{ f [�xi(t + 1)]− f [�xi(t)]}

N

∑
i=1

{ f [�xi(t + 1)]− f [�xi(t)]}
, (3)

where Δ�xindi
is the displacement of the fish i due to the individual movement in the FSS cycle.

One must observe that Δ�xindi
= 0 for fish that did not execute the individual movement.

2.4 Collective-volitive movement operator

The collective-volitive movement occurs after the other two movements. If the fish school
search has been successful, the radius of the school should contract; if not, it should
dilate. Thus, this operator increases the capacity to auto-regulate the exploration-exploitation
granularity. The fish school dilation or contraction is applied to every fish position with
regards to the fish school barycenter, which can be evaluated by using the equation (4):

�B(t) =
∑N

i=1 �xi(t)Wi(t)

∑N
i=1 �xi(t)

. (4)

We use equation (5) to perform the fish school expansion (in this case we use sign +) or
contraction (in this case we use sign −).

�xi(t + 1) = �xi(t)± stepvolr1
�xi(t)− �B(t)

d(�xi(t),�B(t))
, (5)
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where r1 is a number randomly generated in the interval [0, 1] by an uniform probability
density function. d(�xi(t),�B(t)) evaluates the euclidean distance between the particle i and the
barycenter. stepvol is called volitive step and controls the step size of the fish. stepvol is defined
as a percentage of the search space range and is bounded by two parameters (stepvol_min and
stepvol_max). stepvol decreases linearly from stepvol_max to stepvol_min along the iterations of
the algorithm. It helps the algorithm to initialize with an exploration behavior and change
dynamically to an exploitation behavior.

3. GPU computing and CUDA architecture

In recent years, Graphic Processing Units (GPU) have appeared as a possibility to
drastically speed up general-purpose computing applications. Because of its parallel
computing mechanism and fast float-point operation, GPUs were applied successfully in
many applications. Some examples of GPU applications are physics simulations, financial
engineering, and video and audio processing. Despite all successful applications, some
algorithms can not be effectively implemented for GPU platforms. In general, numerical
problems that present parallel behavior can obtain profits from this technology as can be seen
in NVIDIA (2010a).

Even after some efforts to develop Applications Programming Interface (API) in order to
facilitate the developer activities, GPU programming is still a hard task. To overcome
this, NVIDIA introduced a general purpose parallel computing platform, named Computer
Unified Device Architecture (CUDA). CUDA presents a new parallel programming model to
automatically distribute and manage the threads in the GPUs.

CUDA allows a direct communication of programs, written in C programming language,
with the GPU instructions by using minimal extensions. It has three main abstractions: a
hierarchy of groups of threads, shared memories and barriers for synchronization NVIDIA
(2010b). These abstractions allow one to divide the problem into coarse sub-problems, which
can be solved independently in parallel. Each sub-problem can be further divided in minimal
procedures that can be solved cooperatively in parallel by all threads within a block. Thus,
each block of threads can be scheduled on any of the available processing cores, regardless of
the execution order.

Some issues must be considered when modeling the Fish School Search algorithm for the
CUDA platform. In general, the algorithm correctness must be guaranteed, once race
conditions on a parallel implementation may imply in outdated results. Furthermore, since
we want to execute the algorithm as fast as possible, it is worth to discuss where it is necessary
to set synchronization barriers and in which memory we shall store the algorithm information.

The main bottleneck in the CUDA architecture lies in the data transferring between the
host (CPU) and the device (GPU). Any transfer of this type may reduce the time execution
performance. Thus, this operation should be avoided whenever possible. One alternative is
to move some operations from the host to the device. Even when it seems to be unnecessary
(not so parallel), the generation of data in the GPU is faster than the time needed to transfer
huge volumes of data.

CUDA platforms present a well defined memory hierarchy, which includes distinct types of
memory in the GPU platform. Furthermore, the time to access these distinct types of memory
vary. Each thread has a private local memory and each block of threads has a shared memory
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accessible by all threads inside the block. Moreover, all threads can access the same global
memory. All these memory spaces follow a memory hierarchy: the fastest one is the local
memory and the slowest is the global memory; accordingly the smallest one is the local
memory and the largest is the global memory. Then, if there is data that must be accessed
by all threads, the shared memory might be the best choice. However, the shared memory
can only be accessed by the threads inside its block and its size is not very large. On the FSS
versions, most of the variables are global when used on kernel functions. Shared memory
was also used to perform the barycenter calculations. Local memory were used to assign
the thread, block and grid dimension indexes on the device and also to compute the specific
benchmark function.

Another important aspect is the necessity to set synchronization barriers. A barrier forces
a thread to wait until all other threads of the same block reach the barrier. It helps to
guarantee the correctness of the algorithm running on the GPU, but it can reduce the
time performance. Furthermore, threads within a block can cooperate among themselves
by sharing data through some shared memory and must synchronize their execution to
coordinate the memory accesses (see Fig. 1). Although the GPUs are famous because of their

Fig. 1. Illustration of a Grid of Thread Blocks

parallel high precision operations, there are GPUs with only single precision capacity. Since
many computational problems need double precision computation, this limitation may lead
to bad results. Therefore, it turns out that these GPUs are inappropriate to solve some types
of problems.

The CUDA capacity to execute a high number of threads in parallel is due to the hierarchical
organization of these threads as a grid of blocks. A thread block is set of processes which
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cooperate in order to share data efficiently using a fast shared memory. Besides, a thread
block must synchronize themselves to coordinate the accesses to the memory.

The maximum number of threads running in parallel in a block is defined by its number
of processing units and its architecture. Therefore, each GPU has its own limitation. As
a consequence, an application that needs to overpass this limitation have to be executed
sequentially with more blocks, otherwise it might obtain wrong or, at least, outdated results.

The NVIDIA CUDA platform classify the NVIDIA GPUs using what they call Compute
Capability as depicted in NVIDIA (2010b). The cards with double-precision floating-point
numbers have Compute Capability 1.3 or 2.x. The cards with 2.x Capability can run up to
1,024 threads in a block and has 48 KB of shared memory space. The other ones only can
execute 512 threads and have 16 KB of shared memory space.

Fig. 2. CUDA C program structure

3.1 Data structures, kernel functions and GPU-operations

In order to process the algorithm in parallel, one must inform the CUDA platform the number
of parallel copies of the Kernel functions to be performed. These copies are also known as
parallel blocks and are divided into a number of execution threads.

The structures defined by grids can be split into blocks in two dimensions. The blocks are
divided in threads that can be structured from 1 to 3 dimensions. As a consequence, the
kernel functions can be easily instantiated (see Fig. 2). In case of a kernel function be invoked
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by the CPU, it will run in separated threads within the corresponding block. For each thread
that executes a kernel function there is a thread identifier that allows one to access the threads
within the kernel through two built-in variables threadIdx and blockIdx. The size of data to be
processed or the number processors available in the system are used to define the number of
thread blocks in a grid. The GPU architecture and its number of processors will define the
maximum number of threads in a block. On the current GPUs, a thread block may contain
up to 1024 threads. For this chapter, the simulations were made with GPUs that supports up
to 512 threads. Table 1 presents the used configuration for grids, blocks and thread for each
kernel function. Another important concept in CUDA architecture is related to Warp, which
refers to 32 threads grouped to get executed in lockstep, i.e. each thread in a warp executes
the same instruction on different data Sanders & Kandrot (2010). In this chapter, as already
mentioned, the data processing is performed directly in the memories.

Type of Kernel Functions
Configurations

Blocks Threads Grids

Setting positions, movement operators 2 512 (512, 2)

Fitness and weights evaluations, feeding operator 1 36 (36, 1)

Table 1. Grids, Blocks and Threads per blocks structures and dimension sizes

CUDA defines different types of functions. A Host function can only be called and executed
by the CPU. kernel functions are called only by the CPU and executed by the device (GPU).
For these functions, the qualifier __global__ must be used to allow one to access the functions
outside the device. The qualifier __device__ declares which kernel function can be executed in
the device and which ones can only be invoked from the device NVIDIA (2010b).

The FSS pseudocode shown in algorithm 1 depicts which functions can be parallelized in
GPUs.

4. Synchronous and asynchronous GPU-based Fish School Search

4.1 The synchronous FSS

The synchronous FSS must be implemented carefully with barriers to prevent any race
condition that could generate wrong results. These barriers, indicated by __syncthreads()
function in CUDA, guarantee the correctness but it comes with a caveat. Since the fish need
to wait for all others, all these barriers harm the performance.

In the Synchronous version the synchronization barriers were inserted after the following
functions (see algorithm 1): fitness evaluations, update new position, calculate fish weights,
calculate barycenter and update steps values.

4.2 The asynchronous FSS

In general, an iteration of the asynchronous approach is faster than the synchronous one due
to the absence of some synchronization barriers. However, the results will be probably worse,
since the information acquired is not necessarily the current best.

Here, we propose two different approaches for Asynchronous FSS. The first one, called
Asynchronous - Version A, presents some points in the code with synchronization barriers. In
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Algorithm 0.1: Pseudocode of the Synchronous FSS

begin
Declaration and allocation of memory variables for the Kernel operations;
w ←− number_o f _simulations;
for i ←− 1 to Numbero f iterations do

Start timer event;
/* calling Kernel functions */
Initialization_Positions;
Initialization_Fish_Weights;
Fitness_evaluation;
Synchronization_Barrier;
while number_of_iterations_not_achieved do

/* Individual operator */
Calculate_New_Individual_Movement;
Calculate_Fitness_for_New_Position;
Update_New_Position;
Synchronization_Barrier;
Calculate_Fitness_Diference;
/* Feeding operator */
Calculate_Fish_Weights;
Synchronization_Barrier;
Calculate_Weights_Difference;
/* Collective Instinctive operator */
Calculate_Instinctive_Movement;
Update_New_Position;
Synchronization_Barrier;
/* Collective Volitive operator */
Calculate_Barycentre;
Synchronization_Barrier;
Calculate_Volitive_Movement;
Fitness_Evaluation;
Synchronization_Barrier;
/* Updating steps */
Update_Individual_Step;
Update_Volitive_Step;
Synchronization_Barrier;

end
/* Copy Kernel values to Host */
Copy_Kernel_Fitness_Value_To_Host;
Stop timer event;
Compute_Running_Time;

end
Free_memory_variables;

end
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this case, were have maintained the synchronization barriers only in the functions used to
update the positions and evaluate the barycenter. The pseudocode of the Asynchronous FSS -
Version A is shown in algorithm 2. In the second approach, called Asynchronous - Version B, all
the synchronization barriers were removed from the code in order to have a full asynchronous
version. The pseudocode of the Asynchronous FSS - Version B is shown in algorithm 3.

Algorithm 0.2: Pseudocode of the Asynchronous FSS - Version A

begin
Declaration and allocation of memory variables for the Kernel operations;
w ←− number_o f _simulations;
for i ←− 1 to Numbero f iterations do

Start timer event;
/* calling Kernel functions */
Initialization_Positions;
Initialization_Fish_Weights;
Fitness_evaluation;
while number_of_iterations_not_achieved do

/* Individual operator */
Calculate_New_Individual_Movement;
Calculate_Fitness_for_New_Position;
Update_New_Position;
Synchronization_Barrier;
Calculate_Fitness_Diference;
/* Feeding operator */
Calculate_Fish_Weights;
Calculate_Weights_Difference;
/* Collective Instinctive operator */
Calculate_Instinctive_Movement;
Update_New_Position;
Synchronization_Barrier;
/* Collective Volitive operator */
Calculate_Barycentre;
Synchronization_Barrier;
Calculate_Volitive_Movement;
Fitness_Evaluation;
/* Updating steps */
Update_Individual_Step;
Update_Volitive_Step;

end
/* Copy Kernel values to Host */
Copy_Kernel_Fitness_Value_To_Host;
Stop timer event;
Compute_Running_Time;

end
Free_memory_variables;

end
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Algorithm 0.3: Pseudocode of the Asynchronous FSS - Version B

begin
Declaration and allocation of memory variables for the Kernel operations;
w ←− number_o f _simulations;
for i ←− 1 to Numbero f iterations do

Start timer event;
/* calling Kernel functions */
Initialization_Positions;
Initialization_Fish_Weights;
Fitness_evaluation;
while number_of_iterations_not_achieved do

/* Individual operator */
Calculate_New_Individual_Movement;
Calculate_Fitness_for_New_Position;
Update_New_Position;
Calculate_Fitness_Diference;
/* Feeding operator */
Calculate_Fish_Weights;
Calculate_Weights_Difference;
/* Collective Instinctive operator */
Calculate_Instinctive_Movement;
Update_New_Position;
/* Collective Volitive operator */
Calculate_Barycentre;
Calculate_Volitive_Movement;
Fitness_Evaluation;
/* Updating steps */
Update_Individual_Step;
Update_Volitive_Step;

end
/* Copy Kernel values to Host */
Copy_Kernel_Fitness_Value_To_Host;
Stop timer event;
Compute_Running_Time;

end
Free_memory_variables;

end

5. Simulation setup and results

The FSS versions detailed in the previous section were implemented on the CUDA Platform.
In this section we present the simulations executed in order to evaluate the fitness
performance of these different approaches. We also focused on the analysis of the execution
time.
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In order to calculate the execution time for each simulation we have used the CUDA event
API, which handles the time of creation and destruction events and also records the time of
the events with the timestamp format NVIDIA (2010b).

We used a 1296 MHz GeForce GTX 280 with 240 Processing Cores to run the GPU-based FSS
algorithms. All simulations were performed using 30 fish and we run 50 trial to evaluate the
average fitness. All schools were randomly initialized in an area far from the optimal solution
in every dimension. This allows a fair convergence analysis between the algorithms. All the
random numbers needed by the FSS algorithm running on GPU were generated by a normal
distribution using the proposal depicted in Bastos-Filho et al. (2010).

In all these experiments we have used a combination of individual and volitive steps at
both initial and final limits with a percentage of the function search space Bastos-Filho et al.
(2009). Table 2 presents the used parameters for the steps (individual and volitive). Three

Operator
Step value

Initial Final

Individual 10%(2 ∗ max (searchspace)) 1%(2 ∗ max(searchspace))

Volitive 10%(Stepind,initial) 10%(Stepind, f inal)

Table 2. Initial and Final values for Individual and Volitive steps.

benchmark functions were used to employ the simulations and are described in equations (6)
to (8). All the functions are used for minimization problems. The Rosenbrock function is a
simple uni-modal problems. The Rastrigin and the Griewank functions are highly complex
multimodal functions that contains many local optima.

The first one is Rosenbrock function. It has a global minimum located in a banana-shaped
valley. The region where the minimum point is located is very easy to reach, but the
convergence to the global minimum is hard to achieve. The function is defined as follows:

FRosenbrock(�x) =
n

∑
i=1

x2

[
100(xi+1 − x2

i )
2 + (1 − xi)

2

]
. (6)

The second function is the generalized Rastrigin, a multi-modal function that induces the
search to a deep local minima arranged as sinusoidal bumps:

FRastrigin(�x) = 10n +
n

∑
i=1

[
x2

i − 10cos(2πxi)

]
. (7)

Equation (8) shows the Griewank function, which is a multimodal function:

FGriewank(�x) = 1 +
n

∑
i=1

x2
i

4000
−

n

∏
i=1

cos

(
xi√

i

)
. (8)

All simulations were carried out in 30 dimensions. Table 3 presents the search space
boundaries, the initialization range in the search space and the optima values. Figures 3, 4
and 5 present the fitness convergence along 10,000 iterations for the Rosenbrock, Rastrigin and
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Function
Parameters

Search Space Initialization Optima

Rosenbrock −30 ≤ �xi ≤ 30 15 ≤ �xi ≤ 30 1.0D

Rastrigin −5.12 ≤ �xi ≤ 5.12 2.56 ≤ �xi ≤ 5.12 0.0D

Griewank −600 ≤ �xi ≤ 600 300 ≤ �xi ≤ 600 0.0D

Table 3. Function used: search space, initialization range and optima.

Griewank, respectively. Tables 4, 5 and 6 present the average value of the fitness and standard
deviation at the 10,000 iteration for the Rosenbrock, Rastrigin and Griewank, respectively.

Analyzing the convergence of the fitness values, the results for the parallel FSS versions on
the GPU demonstrate that there are no reduction on the quality performance over the original
version running on the CPU. Furthermore, there is a slight improvement in the quality of
the values found for the Rastrigin function (see Fig. 4), specially for the asynchronous FSS
version B. It might occurs because the outdated data generated by the race condition can
avoid premature convergence to local minima in multimodal problems.

Fig. 3. Rosenbrock’s fitness convergence as a function of the number of iterations.

Algorithm Version
Fitness

Average Std Dev

CPU 28.91 0.02

GPU Synchronous 28.91 0.01

GPU Asynchronous A 28.91 0.01

GPU Asynchronous B 28.90 0.02

Table 4. The Average Value and Standard Deviation of the Fitness value at the 10,000
iteration for Rosenbrock function.

Tables 7, 8 and 9 present the average value and the standard deviation of the execution
time and the speedup for the Rosenbrock, Rastrigin and Griewank functions, respectively.
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Fig. 4. Rastrigin’s fitness convergence as a function of the number of iterations.

Algorithm Version
Fitness

Average Std Dev

CPU 2.88e-07 5.30e-08

GPU Synchronous 1.81e-07 4.66e-08

GPU Asynchronous A 2.00e-07 2.16e-08

GPU Asynchronous B 1.57e-07 1.63e-08

Table 5. The Average Value and Standard Deviation of the Fitness value at the 10,000
iteration for Rastrigin function.

Fig. 5. Griewank’s fitness convergence as a function of the number of iterations.

According to these results, all FSS implementations based on the GPU achieved a time
performance around 6 times better than the CPU version.
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Algorithm Version
Fitness

Average Std Dev

CPU 1.67 0.74

GPU Synchronous 3.27e-05 3.05e-05

GPU Asynchronous A 2.91e-05 1.87e-05

GPU Asynchronous B 3.08e-05 1.54e-05

Table 6. The Average Value and Standard Deviation of the Fitness value at the 10,000
iteration for Griewank function.

Algorithm Version
Time (ms)

Average Std Dev Speedup

CPU 6691.08 1020.97 –

GPU Synchronous 2046.14 61.53 3.27

GPU Asynchronous A 1569.36 9.29 4.26

GPU Asynchronous B 1566.81 7.13 4.27

Table 7. The Average Value and Standard Deviation of the Execution Time and Speedup
Analysis for Rosenbrock function.

Algorithm Version
Time (ms)

Average Std Dev Speedup

CPU 9603.55 656.48 –

GPU Synchronous 2003.58 2.75 4.79

GPU Asynchronous A 1567.08 2.11 6.13

GPU Asynchronous B 1568.53 4.40 6.13

Table 8. The Average Value and Standard Deviation of the Execution Time and Speedup
Analysis for Rastrigin function.

Algorithm Version
Time (ms)

Average Std Dev Speedup

CPU 10528.43 301.97 –

GPU Synchronous 1796.07 2.77 5.86

GPU Asynchronous A 1792.43 2.88 5.87

GPU Asynchronous B 1569.36 9.30 6.71

Table 9. The Average Value and Standard Deviation of the Execution Time and Speedup
Analysis for Griewank function.
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6. Conclusion

In this chapter, we presented a parallelized version of the Fish School Search (FSS) algorithm
for graphics hardware acceleration platforms. We observed a significant reduction of the
computing execution time when compared to the original FSS version running on CPU. This
swarm intelligence technique proved to be very well adapted to solving some optimization
problems in a parallel manner. The computation time was significantly reduced and better
optimization results were obtained more quickly with GPU parallel computing. Since FSS can
be easily parallelized, we demonstrated that by implementing FSS in GPU one can benefit
from the distributed float point processing capacity. We obtained a speedup around 6 for a
cheap GPU-card. We expect to have a higher performance in more sophisticated GPU-based
architectures. Since the Asynchronous version achieved the same fitness performance with
a lower processing time, we recommend this option. As future work, one can investigate
the performance in more complex problems and assess the scalability in more advanced
platforms.
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1. Introduction  
With the industrial and scientific developments, many new optimization problems are 
needed to be solved. Several of them are complex, multi-modal, high dimensional, non-
differential problems. Therefore, some new optimization techniques have been designed, 
such as genetic algorithm, simulated annealing algorithm, Tabu search, etc. However, due to 
the large linkage and correlation among different variables, these algorithms are easily 
trapped to a local optimum and failed to obtain the reasonable solution. 

Swarm intelligence (SI) is a recent research topic which mimics the animal social behaviors. 
Up to now, many new swarm intelligent algorithms have been proposed, such as group 
search optimizer[1], artificial physics optimization[2], firefly algorithm[3] and ant colony 
optimizer (ACO)[4]. All of them are inspired by different animal group systems. Generally, 
they are decentralized, self-organized systems, and a population of individuals are used to 
interacting locally. Each individual maintains several simple rules, and emergence of 
"intelligent" global behaviour are used to mimic the optimization tasks. The most famous 
one is particle swarm optimization.  

Particle swarm optimization (PSO) [5-8] is a population-based, self-adaptive search 
optimization method motivated by the observation of simplified animal social behaviors 
such as fish schooling, bird flocking, etc. It is becoming very popular due to its simplicity of 
implementation and ability to quickly converge to a reasonably good solution. In a PSO 
system, multiple candidate solutions coexist and collaborate simultaneously. Each solution 
called a "particle", flies in the problem search space looking for the optimal position to land. 
A particle, as time passes through its quest, adjusts its position according to its own 
"experience" as well as the experience of neighboring particles. Tracking and memorizing 
the best position encountered build particle's experience. For that reason, PSO possesses a 
memory (i.e. every particle remembers the best position it reached during the past). PSO 
system combines local search method (through self experience) with global search methods 
(through neighboring experience), attempting to balance exploration and exploitation. 
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Human society is a complex group which is more effective than other animal groups. 
Therefore, if one algorithm mimics the human society, the effectiveness maybe more robust 
than other swarm intelligent algorithms which are inspired by other animal groups. With 
this manner, social emotional optimization algorithm (SEOA) was proposed by Zhihua Cui 
et al. in 2010[9-13] 

In SEOA methodology, each individual represents one person, while all points in the 
problem space constructs the status society. In this virtual world, all individuals aim to seek 
the higher social status. Therefore, they will communicate through cooperation and 
competition to increase personal status, while the one with highest score will win and 
output as the final solution. In the experiments, social emotional optimization algorithm 
(SEOA) has a remarkable superior performance in terms of accuracy and convergence speed 
[9-13]. 

In this chapter, we proposed a novel improved social emotional optimization algorithm 
with random emotional selection strategy to evaluate the performance of this algorithm on 5 
benchmark functions in comparison with standard SEOA and other swarm intelligent 
algorithms. 

The rest of this paper is organized as follows: The standard version of social emotional 
optimization algorithm is presented in section 2, while the modification is listed in section 3. 
Simulation resutls are listed in section 4. 

2. Standard social emotional optimization algorithm 
In this paper, we only consider the following unconstrained problem: 

 min f ( x )


 x D D[L,U] R   

In human society, all people do their work hardly to increase their social status. To obtain 
this object, people will try their bests to find the path so that more social wealthes can be 
rewarded. Inspired by this phenomenon, Cui et al. proposed a new population-based 
swarm methodology, social emotional optimization algorithm, in which each individual 
simulates a virtual person whose decision is guided by his emotion. In social emotional 
optimization algorithm methodology, each individual represents a virtual person, in each 
generation, he will select his behavior according to the corresponding emotion index. After 
the behavior is done, a status value is feedback from the society to confirm whether this 
behavior is right or not. If this choice is right, the emotion index of himself will increase, and 
vice versa. 

In the first step, all individuals's emotion indexes are set to 1, with this value, they will 
choice the following behaviour: 

   j j 1x 1 x 0 Manner( ) ( )
 

    (1) 

where jx 1( )


represents the social position of j's individual in the initialization period, the 

corresponding fitness value is denoted as the society status. Symbo means the operation, 
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in this paper, we only take it as addition operation +. Since the emotion index of j is 1, the 
movement phase 1Manner is defined by: 

  
L

1 1 1 w j
w 1

Manner k rand x 0 x 0( ( ) ( ))
 


       (2) 

where 1k is a parameter used to control the emotion changing size, 1rand is one random 
number sampled with uniform distribution from interval (0,1). The worst L individuals are 
selected to provide a reminder for individual j to avoid the wrong behaviour. In the 
initialization period, there is a little emotion affection, therefore, in this period, there is a 
little good experiences can be referred, so, 1Manner simulates the affection by the wrong 
experiences. 

In t generation, if individual j does not obtain one better society status value than previous 
value, the j's emotion index is decreased as follows:  

 j jBI t 1 BI t( ) ( )      (3)  

where∆ is a predefined value, and set to 0.05, this value is coming from experimental tests. If 
individual j is rewarded a new status value which is the best one among all previous 
iterations, the emotion index is reset to 1.0: 

   jBI t 1 1 0( ) .    (4) 

Remark: According to Eq.(3), jBI t 1( ) is no less than 0.0, in other words, if jBI t 1 1 0( ) .  , 

then jBI t 1 0 0( ) .  . 

In order to simulate the behavior of human, three kinds of manners are designed, and the 
next behavior is changed according to the following three cases: 

If j 1BI t 1 TH( )   

  j j 2x t 1 x t Manner( ) ( )
 

     (5) 

If 1 j 2TH BI t 1 TH( )    

  j j 3x t 1 x t Manner( ) ( )
 

     (6) 

 Otherwise 

  j j 4x t 1 x t Manner( ) ( )
 

     (7)  

Parameters 1TH and 2TH are two thresholds aiming to restrict the different behavior 
manner. For Case1, because the emotion index is too small, individual j prefers to simulate 
others successful experiences. Therefore, the symbol 2Manner is updated with:  
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2 3 3 j,best j

2 2 best j

Manner k rand X t x t

k rand Status t x t

( ( ) ( ))

( ( ) ( ))

 

 

   

   
  (8) 

where bestStatus t( )


represents the best society status position obtained from all people 
previously. In other words, it is: 

 best wStatus t arg min f x h 1 h t( ) { ( ( )| )}
 

     (9) 

With the similar method, 2Manner is defined: 

 

3 3 3 j,best j

2 2 best j
L

1 1 w j
w 1

Manner k rand X t x t

k rand Status t x t

k rand x 0 x 0

( ( ) ( ))

( ( ) ( ))

( ( ) ( ))

 

 

 



   

   

   

  (10)  

where j,bestX t( )


denotes the best status value obtained by individual j previously, and is 

defined by 

 j,best jX t arg min f x h 1 h t( ) { ( ( )| )}
 

     (11) 

For 4Manner , we have   

 
4 3 3 j,best j

L

1 1 w j
w 1

Manner k rand X t x t

k rand x 0 x 0

( ( ) ( ))

( ( ) ( ))

 

 



   

   
  (12) 

2Manner , 3Manner and 4Manner refer to three different emotional cases. In the first case, one 
individual's movement is protective, aiming to preserve his achievements (good 
experiences) in 2Manner due to the still mind. With the increased emotion, more rewards are 
expected, so in 3Manner , a temporized manner in which the dangerous avoidance is 
considered by individual to increase the society status. Furthermore, when the emotional is 
larger than one threshold, it simulates the individual is in surged mind, in this manner, he 
lost the some good capabilities, and will not listen to the views of others, 4Manner  is 
designed to simulate this phenomenon.  

To enhance the global capability, a mutation strategy, similarly with evolutionary 
computation, is introduced to enhance the ability escaping from the local optima, more 
details of this mutation operator is the same as Cai XJ[14], please refer to corresponding 
reference. The detail of social emotion optimization are listed as follows: 
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Step 1. Initializing all individuals respectively, the initial position of individuals randomly 
in problem space. 

Step 2. Computing the fitness value of each individual according to the objective 
function. 

Step 3. For individual j, determining the value j,bestX 0( )


. 

Step 4. For all population, determining the value bestStatus 0( )


. 
Step 5. Determining the emotional index according to Eq.(5)-(7) in which three emotion 

cases are determined for each individual. 
Step 6. Determining the decision with Eq. (8)-(12), respectively. 
Step 7. Making mutation operation. 
Step 8. If the criteria is satisfied, output the best solution; otherwise, goto step 3. 

3. Random emotional selection strategy 

To mimic the individual decision mechanism, emotion index jBI t( ) is employed to simulate 
the personal decision mechanism. However, because of the determined emotional selection 
strategy, some stochastic aspects are omitted. To provide a more precisely simulation, we 
replace the determined emotional selection strategy in the standard SEOA with three 
different random manners to mimic the human emotional changes.  

3.1 Gauss distribution 

Gauss distribution is a general distribution, and in WIKIPEDIA is defined as "normalis a 
continuous probability distribution that is often used as a first approximation to describe 
real-valued random variables that tend to cluster around a single mean value. The graph of 
the associated probability density function is "bell"-shaped, and is known as the Gaussian 
function or bell curve" [15] (see Fig.1): 

2

221
2

( x )

f (x) e





 
 

where parameter  is called the mean, 2 is the variance. The standard normal Gauss 
distribution is one special case with 0  and 2 1  . 

3.2 Cauchy distribution 

Cauchy distribution is also called Lorentz distribution, Lorentz(ian) function, or Breit–
Wigner distribution. The probability density function of Cauchy distribution is 

0 2 2
0

1=f (x,x , )
(x x )


 

   
 

where 0x is the location parameter, specifying the location of the peak of the distribution, 
and  is the scale parameter which specifies the half-width at half-maximum. The special 
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case when 0x 0 and 1   is called the standard Cauchy distribution with the probability 
density function 

2
1=

1
f (x)

( x )   
 

 
Fig. 1. Illustration of Probability Density Function for Gauss Distribution 

 
Fig. 2. Illustration of Probability Density Function for Cauchy Distribution  

3.3 Levy distribution 

In the past few years, there are more and more evidence from a variety of experimental, 
theoretical and field studies that many animals employ a movement strategy approximated 
by Levy flight when they are searching for resources. For example, wandering Albatross 
were observed to adopt Levy flight to adapted stochastically to their prey field[16]. Levy 
flight patterns have also been found in a laboratory-scale study of starved fruit flies. In a 
recent study by Sims[17], marine predators adopted Levy flights to pursuit Levy-like fractal 
distributions of prey density. In [18], the authors concluded that ``Levy flights may be a 
universal strategy applicable across spatial scales ranging from less than a meter, ..., to 
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several kilometers, and adopted by swimming, walking, and airborne organisms". Shaped 
by natural selection, the Levy flights searching strategies of all living animals should be 
regarded as optimal strategies to some degree[19]. Therefore, it would be interesting to 
incorporate Levy flight into the SEOA algorithm to improve the performance. 

Indeed, several studies have already incorporated Levy flight into heuristic search 
algorithms. In [20], the authors proposed a novel evolutionary programming with mutations 
based on the Levy probability distribution. In order to improve a swarm intelligence 
algorithm, Particle Swarm Optimizer, in [21], a novel velocity threshold automation strategy 
was proposed by incorporated with Levy probability distribution. In a different study of 
PSO algorithm[22], the particle movement characterized by a Gaussian probability 
distribution was replaced by particle motion with a Levy flight. A mutation operator based 
on the Levy probability distribution was also introduced to the Extremal Optimization (EO) 
algorithm[23]. 

Levy flights comprise sequences of straight-line movements with random orientations. Levy 
flights are considered to be 'scale-free' since the straight-line movements have no 
characteristic scale. The distribution of the straight-line movement lengths, L has a power-
law tail: 

 P L L( )   

where 1 3   . 

The sum of the a set iL{ }  converge to the Levy distribution, which has the following 
probability density: 

 q

0

1D L e cos qL dq, ( ) ( )





  
   

where  and  are two parameters that control the sharpness of the graph and the scale unit 
of the distribution, respectively. The two satisfy 1 2    and 0  . For 1 , the 
distribution becomes Cauchy distribution and for 2 , the distribution becomes Gaussian 
distribution. Without losing generality, we set the scaling factor 1  .  

Since, the analytic form of the Levy distribution is unknown for general  , in order to 
generate Levy random number, we adopted a fast algorithm presented in [24]. Firstly, Two 
independent random variables x and y from Gaussian distribution are used to perform a 
nonlinear transformation 

 1
xv

y| |
  

Then the random variable z : 

 
1

z w   
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now in the Levy distribution is generated using the following nonlinear transformation 

-v
C( )w K 1 e 1 v{| ( ) | }      

where the values of parameters K( )  and C( ) are given in[24]. 

In each iteration, different random number jBI t( ) is generated for different individual with 

Gauss distribution, Cauchy distribution and Levy fligh, then choices the different rules for 
different conditions according to Eq.(5)-(7). 

4. Simulation 
To testify the performance of proposed variant SEOA with random emotional selection 
strategy, five typical unconstraint numerical benchmark functions are chosen, and 
compared with standard particle swarm optimization (SPSO), modified particle swarm 
optimization with time-varying accelerator coefficients (TVAC)[25] and the standard 
version of SEOA (more details about the test suits can be found in [26]). To provide a more 
clearly insight, SEOA combined with Gauss distribution, Cauchy distribution and Levy 
distribution are denoted with SEOA-GD, SEOA-CD and SEOA-LD, respectively. 

Sphere Model: 

 2
1 1

n
jj

f (x) x  

where 100 0j|x | . , and  

 1 1 0 0 0 0 0*f (x ) f ( , ,..., ) .   

Rosenbrock Function: 

 1 2 2 2
2 11 100 1n

j j jj
f (x) [ (x x ) (x ) ]

     

where| 30 0j|x | . , and  

 2 1 0 0 0 0 0*f (x ) f ( , ,..., ) .   

Schwefel 2.26: 

 3 1
n

i ii
f (x) x sin( |x |) ,   

where jx 500 0| | . , and 

3 3f x f 420 9687 420 9687 418.98n( *) ( . ,..., . )    

Rastrigin: 
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n

2
4 i i

i 1
f x x 10cos 2 x 10( ) [ ( ) ]


     

where jx 5 12| | . , and 

4 4f x f 0 0 0 0 0 0( *) ( . ,..., . ) .   

Penalized Function2: 

n 1
2 2 2 2

5 1 j j 1 n
j 1

n
2

n j
j 1

f x 0 1 sin 3 x x 1 1 sin 3 x x 1

1 sin 3 x u x 5 100 4

( ) . { ( ) ( ) [ ( )] ( )

[ ( )]} ( , , , )








        

   




 

where 50 0j|x | . , and  

0

m
i i

i i
m

i i

k(x a) ,x a,
u(x ,a,k ,m) , a x a,

k( x a) ,x a.

  


   


   

  

11 1
4i iy (x )    

 5 5f x f 1 1 0.0( *) ( ,..., )   

The inertia weight w is decreased linearly from 0.9 to 0.4 for SPSO and TVAC, accelerator 
coefficients 1c  and 2c  are both set to 2.0 for SPSO, as well as in TVAC, 1c decreases from 2.5 
to 0.5, while 2c increases from 0.5 to 2.5. Total individuals are 100, and the velocity threshold 

maxv  is set to the upper bound of the domain. The dimensionality is 30, 50, 100, 150, 200, 250 
and 300. In each experiment, the simulation run 30 times, while each time the largest 
iteration is 50 times dimension, e.g. the largest iteration is 1500 for dimension 30. For SEOA, 
all parameters are used the same as Cui et al[9]. 

1. Comparison with SEOA-GD, SEOA-CD and SEOC-LD 

From the Tab.1, we can find the SEOA-GD is the best algorithm for all 5 benchmarks 
especially for high-dimension cases. This phenomenon implies that SEOA-GD is the best 
choice between three different random variants. 

2. Comparison with SPSO, TVAC and SEOA 

In Tab.2, SEOA-GD is superior to other three algorithm in all benchmarks especially for 
multi-modal functions. 

Based on the above analysis, we can draw the following conclusion: 



 
Theory and New Applications of Swarm Intelligence 42

SEOA-GD is the most stable and effective among three random variants, and is superior to 
other optimization algorithms significantly, e.g. SPSO, TVAC and SEOA. It is especially suit 
for high-dimensional cases. 

 
Dimension Algorithm Mean Value Standard Deviation 

30 
SEOA-GD 6.4355e-034 2.6069e-033 
SEOA-LD 2.4887e-019 1.3127e-018 
SEOA-CD 3.8304e-034 8.9763e-034 

50 
SEOA-GD 7.1686e-031 3.8036e-030 
SEOA-LD 2.5210e-016 7.5977e-016 
SEOA-CD 3.1894e-032 1.2666e-031 

100 
SEOA-GD 1.0111e-032 2.3768e-032 
SEOA-LD 3.8490e-013 1.1092e-012 
SEOA-CD 2.4269e-030 1.3091e-029 

150 
SEOA-GD 6.8757e-032 2.8083e-031 
SEOA-LD 5.7554e-012 3.1401e-011 
SEOA-CD 1.9043e-032 5.0848e-032 

200 
SEOA-GD 3.1075e-032 5.3236e-032 
SEOA-LD 1.1350e-009 4.4368e-009 
SEOA-CD 2.7272e-031 8.6026e-031 

250 
SEOA-GD 7.1304e-031 2.7851e-030 
SEOA-LD 9.0872e-010 1.9692e-009 
SEOA-CD 1.0602e-029 5.4445e-029 

300 
SEOA-GD 1.2563e-029 6.7502e-029 
SEOA-LD 3.3374e-009 6.4169e-009 
SEOA-CD 1.2338e-027 6.7241e-027 

(a) Sphere Model 

 
 

Dimension Algorithm Mean Value Standard Deviation 

30 
SEOA-GD 1.9254e+001 3.1878e+001 
SEOA-LD 5.7495e+001 5.5242e+001 
SEOA-CD 1.7432e+001 3.6001e+001 

50 
SEOA-GD 1.2247e+001 2.4146e+001 
SEOA-LD 1.0847e+002 7.3577e+001 
SEOA-CD 3.1019e+001 4.6183e+001 

100 
SEOA-GD 3.3119e+001 5.7253e+001 
SEOA-LD 2.6886e+002 1.1566e+002 
SEOA-CD 3.4328e+001 5.7243e+001 

150 
SEOA-GD 3.2798e+001 5.0613e+001 
SEOA-LD 3.7234e+002 9.1565e+001 
SEOA-CD 5.6862e+001 8.7306e+001 
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200 
SEOA-GD 7.4345e+001 6.7799e+001 
SEOA-LD 3.6658e+002 8.1035e+001 
SEOA-CD 9.5224e+001 1.2905e+002 

250 
SEOA-GD 7.9152e+001 1.7714e+002 
SEOA-LD 4.1573e+002 1.0684e+002 
SEOA-CD 7.0330e+001 9.5850e+001 

300 
SEOA-GD 7.8918e+001 1.0940e+002 
SEOA-LD 7.2125e+002 1.6142e+002 
SEOA-CD 9.2294e+001 1.7148e+002 

(b) Rosenbrock 

 

Dimension Algorithm Mean Value Standard Deviation 

30 
SEOA-GD -1.0935e+004 3.1474e+002 
SEOA-LD -1.0485e+004 3.7499e+002 
SEOA-CD -1.0846e+004 3.4926e+002 

50 
SEOA-GD -1.8013e+004 4.3216e+002 
SEOA-LD -1.7623e+004 5.6499e+002 
SEOA-CD -1.7997e+004 4.5048e+002 

100 
SEOA-GD -3.6064e+004 5.8230e+002 
SEOA-LD -3.3434e+004 1.3006e+003 
SEOA-CD -5.4032e+004 5.6218e+002 

150 
SEOA-GD -5.3692e+004 6.5254e+002 
SEOA-LD -4.5623e+004 2.5695e+003 
SEOA-CD -5.4032e+004 5.6218e+002 

200 
SEOA-GD -7.1830e+004 7.4485e+002 
SEOA-LD -6.2516e+004 2.4362e+003 
SEOA-CD -7.1926e+001 8.0021e+002 

250 
SEOA-GD -9.0088e+004 1.0428e+003 
SEOA-LD -7.3541e+004 4.0967e+003 
SEOA-CD -8.9629e+004 8.8930e+002 

300 
SEOA-GD -1.0853e+005 2.0551e+003 
SEOA-LD -8.5244e+004 3.7267e+003 
SEOA-CD -1.0788e+005 1.1546e+003 

(c) Schwefel 2.26 

 
Dimension Algorithm Mean Value Standard Deviation 

30 
SEOA-GD 5.6381e-001 7.6996e-001 
SEOA-LD 1.1343e+001 5.1179e+000 
SEOA-CD 6.9647e-001 1.0170e+000 

50 
SEOA-GD 1.0945e+000 1.1787e+000 
SEOA-LD 3.5087e+001 1.3085e+001 
SEOA-CD 9.9496e-001 9.0513e-001 
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100 
SEOA-GD 1.9927e+000 1.3044e+000 
SEOA-LD 6.7273e+001 1.9863e+001 
SEOA-CD 1.8904e+000 1.3156e+000 

150 
SEOA-GD 2.9849e+000 1.6317e+000 
SEOA-LD 1.6024e+002 3.0511e+001 
SEOA-CD 2.1557e+000 1.2823e+000 

200 
SEOA-GD 3.2502e+000 2.1216e+000 
SEOA-LD 2.1515e+002 4.3832e+001 
SEOA-CD 3.7145e+000 1.7709e+000 

250 
SEOA-GD 5.2733e+000 2.1884e+000 
SEOA-LD 2.4853e+002 4.8847e+001 
SEOA-CD 5.0743e+000 1.4861e+000 

300 
SEOA-GD 5.6049e+000 2.4578e+000 
SEOA-LD 4.4945e+002 8.3985e+001 
SEOA-CD 5.7376e+000 2.2881e+000 

(d) Rastrigin 

 
Dimension Algorithm Mean Value Standard Deviation 

30 
SEOA-GD 6.7596e-020 3.7024e-019 
SEOA-LD 3.6502e-028 1.1039e-027 
SEOA-CD 3.5767e-032 5.3917e-032 

50 
SEOA-GD 2.8538e-022 1.5631e-021 
SEOA-LD 1.1715e-027 3.6895e-027 
SEOA-CD 4.3395e-026 2.3769e-025 

100 
SEOA-GD 3.7192e-030 1.7204e-029 
SEOA-LD 1.0191e-017 5.1895e-017 
SEOA-CD 6.6188e-021 3.6152e-020 

150 
SEOA-GD 2.0858e-030 5.0533e-030 
SEOA-LD 5.8928e-025 2.3415e-024 
SEOA-CD 3.0817e-019 1.6879e-018 

200 
SEOA-GD 2.9720e-026 1.5923e-025 
SEOA-LD 4.4726e-020 1.9939e-019 
SEOA-CD 1.4251e-030 2.9692e-030 

250 
SEOA-GD 6.7744e-024 3.7100e-023 
SEOA-LD 7.7143e-025 1.0616e-024 
SEOA-CD 3.0722e-023 1.6827e-022 

300 
SEOA-GD 2.7092e-030 4.7730e-030 
SEOA-LD 4.4726e-020 1.9939e-019 
SEOA-CD 1.6320e-026 7.5692e-026 

(e) Penalized 2 

Table 1. Comparison results between SEOA-GD, SEOA-CD and SEOA-LD 
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Dimension Algorithm Mean Value Standard Deviation 

30 

SPSO 1.1470e-009 1.9467e-009 
TVAC 4.1626e-030 1.2140e-029 
SEOA 2.9026e-010 2.4315e-010 

SEOA-GD 6.4355e-034 2.6069e-033 

50 

SPSO 1.6997e-007 2.2555e-007 
TVAC 1.0330e-012 3.7216e-012 
SEOA 3.1551e-010 2.0241e-010 

SEOA-GD 7.1686e-031 3.8036e-030 

100 

SPSO 3.0806e-004 3.6143e-004 
TVAC 1.4014e-004 3.0563e-004 
SEOA 1.4301e-009 7.0576e-010 

SEOA-GD 1.0111e-032 2.3768e-032 

150 

SPSO 1.4216e-002 8.3837e-003 
TVAC 3.9445e-001 1.7831e+000 
SEOA 3.3950e-000 1.4518e-009 

SEOA-GD 6.8757e-032 2.8083e-031 

200 

SPSO 1.5234e-001 1.1698e-001 
TVAC 2.1585e-001 4.1999e-001 
SEOA 7.2473e-009 3.1493e-009 

SEOA-GD 3.1075e-032 5.3236e-032 

250 

SPSO 1.0056e+000 1.0318e+000 
TVAC 8.1591e-001 3.8409e+000 
SEOA 1.4723e-008 5.4435e-009 

SEOA-GD 7.1304e-031 2.7851e-030 

300 

SPSO 1.0370e+ 001 2.2117e+001 
TVAC 3.1681e+000 1.2412e+001 
SEOA 2.0420e-008 6.4868e-009 

SEOA-GD 1.2563e-029 6.7502e-029 
(a) Sphere Model 

 

Dimension Algorithm Mean Value Standard Deviation 

30 

SPSO 5.6170e+001 4.3585e+001 
TVAC 3.3589e+001 4.1940e+001 
SEOA 4.7660e+001 2.8463e+001 

SEOA-GD 1.9254e+001 3.1878e+001 

50 

SPSO 1.1034e+002 3.7489e+001 
TVAC 7.8126e+001 3.2497e+001 
SEOA 8.7322e+001 7.4671e+001 

SEOA-GD 1.2247e+001 2.4146e+001 

100 

SPSO 4.1064e+002 1.0585e+002 
TVAC 2.8517e+002 9.8129e+001 
SEOA 1.3473e+002 5.4088e+001 

SEOA-GD 3.3119e+001 5.7253e+001 
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150 

SPSO 8.9132e+002 1.6561e+002 
TVAC 1.6561e+002 6.4228e+001 
SEOA 2.2609e+002 9.6817e+001 

SEOA-GD 3.2798e+001 5.0613e+001 

200 

SPSO 2.9071e+003 5.4259e+002 
TVAC 8.0076e+002 2.0605e+002 
SEOA 2.9250e+002 9.2157e+001 

SEOA-GD 7.4345e+001 6.7799e+001 

250 

SPSO 7.4767e+003 3.2586e+003 
TVAC 1.3062e+003 3.7554e+002 
SEOA 3.4268e+002 9.0459e+001 

SEOA-GD 7.9152e+001 1.7714e+002 

300 

SPSO 2.3308e+004 1.9727e+004 
TVAC 1.4921e+003 3.4572e+002 
SEOA 3.8998e+002 5.1099e+001 

SEOA-GD 7.8918e+001 1.0940e+002 
(b) Rosenbrock 

 

Dimension Algorithm Mean Value Standard Deviation 

30 

SPSO -6.2762e+003 1.1354e+003 
TVAC -6.7672e+003 5.7051e+002 
SEOA -1.0716e+004 4.0081e+002 

SEOA-GD -1.0935e+004 3.1474e+002 

50 

SPSO -1.0091e+004 1.3208e+003 
TVAC -9.7578e+003 9.6392e+002 
SEOA -1.7065e+004 6.9162e+002 

SEOA-GD -1.8013e+004 4.3216e+002 

100 

SPSO -1.8148e+004 2.2012e+003 
TVAC -1.7944e+004 1.5061e+003 
SEOA -3.2066e+004 8.9215e+002 

SEOA-GD -3.6064e+004 5.8230e+002 

150 

SPSO -2.5037e+004 4.7553e+003 
TVAC -2.7863e+004 1.6351e+003 
SEOA -4.5814e+004 1.3892e+003 

SEOA-GD -5.3692e+004 6.5254e+002 

200 

SPSO -3.3757e+004 3.4616e+003 
TVAC -4.0171e+004 4.3596e+003 
SEOA -5.9469e+004 1.6065e+003 

SEOA-GD -7.1830e+004 7.4485e+002 

250 

SPSO -3.9984e+004 4.7100e+003 
TVAC -4.7338e+004 3.7545e+003 
SEOA -7.3460e+004 1.5177e+003 

SEOA-GD -9.0088e+004 1.0428e+003 
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300 

SPSO -4.6205e+004 6.0073e+003 
TVAC -5.6873e+004 3.5130e+003 
SEOA -8.6998e+004 2.1240e+003 

SEOA-GD -1.0853e+005 2.0551e+003 
(c) Schwefel 2.26 

 

Dimension Algorithm Mean Value Standard Deviation 

30 

SPSO 1.7961e+001 4.2277e+000 
TVAC 1.5472e+001 4.2024e+000 
SEOA 1.8453e+001 5.6818e+000 

SEOA-GD 5.6381e-001 7.6996e-001 

50 

SPSO 3.9959e+001 7.9259e+000 
TVAC 3.8007e+001 7.0472e+000 
SEOA 3.8381e+001 9.6150e+000 

SEOA-GD 1.0945e+000 1.1787e+000 

100 

SPSO 9.3680e+001 9.9635e+000 
TVAC 8.4479e+001 9.4569e+000 
SEOA 8.0958e+001 1.1226e+001 

SEOA-GD 1.9927e+000 1.3044e+000 

150 

SPSO 1.5354e+002 1.2171e+001 
TVAC 1.3693e+002 2.0096e+001 
SEOA 1.3112e+002 1.5819e+001 

SEOA-GD 2.9849e+000 1.6317e+000 
1.631749589612318e+000 

200 

SPSO 2.2828e+002 1.1196e+001 
TVAC 1.9920e+002 2.8291e+001 
SEOA 1.6894e+002 1.8414e+001 

SEOA-GD 3.2502e+000 2.1216e+000 

250 

SPSO 2.8965e+002 2.8708e+001 
TVAC 2.4617e+002 2.4220e+001 
SEOA 2.3165e+002 2.6751e+001 

SEOA-GD 5.2733e+000 2.1884e+000 

300 

SPSO 3.5450e+002 1.9825e+001 
TVAC 2.7094e+002 3.7640e+001 
SEOA 2.8284e+002 2.6353e+001 

SEOA-GD 5.6049e+000 2.4578e+000 
(d) Rastrigin 

 

Dimension Algorithm Mean Value Standard Deviation 

30 

SPSO 5.4944e-004 2.4568e-003 
TVAC 9.3610e-027 4.1753e-026 
SEOA 9.7047e-012 5.7057e-012 

SEOA-GD 6.7596e-020 3.7024e-019 
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50 

SPSO 6.4280e-003 1.0769e-002 
TVAC 4.9271e-002 2.0249e-001 
SEOA 2.5386e-011 4.0780e-011 

SEOA-GD 2.8538e-022 1.5631e-021 

100 

SPSO 3.8087e+001 1.8223e+001 
TVAC 3.7776e-001 6.1358e-001 
SEOA 2.6187e-010 5.3124e-010 

SEOA-GD 3.7192e-030 1.7204e-029 

150 

SPSO 1.6545e+002 5.5689e+001 
TVAC 1.2655e+000 1.4557e+000 
SEOA 1.8553e-009 2.9614e-009 

SEOA-GD 2.0858e-030 5.0533e-030 

200 

SPSO 1.8030e+003 2.8233e+003 
TVAC 3.7344e+000 2.6830e+000 
SEOA 2.9760e-006 1.2540e-005 

SEOA-GD 2.9720e-026 1.5923e-025 

250 

SPSO 6.7455e+003 9.5734e+003 
TVAC 2.8991e+000 1.3026e+000 
SEOA 1.8303e-007 1.5719e-007 

SEOA-GD 6.7744e-024 3.7100e-023 

300 

SPSO 3.2779e+004 4.4432e+004 
TVAC 3.7344e+000 2.6830e+000 
SEOA 2.9760e-006 1.2540e-005 

SEOA-GD 2.7092e-030 4.7730e-030 
(e) Penalized 2 

Table 2. Comparison results between SEOA-GD and SPSO, TVAC, SEOA 

5. Conclusion 
In standard version of social emotional optimization algorithm, all individuals' decision are 
influenced by one constant emotion selection strategy. However, this strategy may provide 
a wrong search selection due to some randomness omitted. Therefore, to further improve 
the performance, three different random emotional selection strategies are added. 
Simulation results show SEOA with Gauss distribution is more effective. Future research 
topics includes the application of SEOA to the other problems. 
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1. Introduction

Particle swarm optimization inspired with the social behavior in flocks of birds and schools
of fish is an adaptive, stochastic and population-based optimization technique which was
created by Kennedy and Eberhart in 1995 (9; 12). As one of the representatives of
swarm intelligence (20), it has the distinctive characteristics: information exchange, intrinsic
memory, and directional search in contrast to genetic algorithms (GAs) (14) and genetic
programming (GP) (16). Due to ease of understanding and implementation, good expression
and expandability, higher searching ability and solution accuracy, the technique has been
successfully applied to different fields of science, technology, engineering, and applications
for dealing with various large-scale, high-grade nonlinear, and multimodal optimization
problems (22; 23).

Although the mechanism of a plain particle swarm optimizer (the PSO) (13) is simple to
implement with only a few parameters, in general, it can provide better computational results
in contrast to other methods such as machine learning, neural network learning, genetic
algorithms, tabu search, and simulated annealing (1). Nevertheless, like other optimization
methods, an essential issue is how to make the PSO efficiently in dealing with different kinds
of optimization problems. And it is well-known that the systematic selection of the parameter
values in the PSO is one of fundamental manners to the end, and the most important especially
for establishing a policy which determines the PSO with high search performance.

However, in fact how to properly determine the values of parameters in the PSO is a quite
attractive but hard subject especially for a detailed analysis of higher order (7). The cause is
because the search behavior of the PSO has very high indeterminacy. Usually, these parameter
values related to internal stochastic factors need to be adjusted for keeping search efficiency
(5).

As new development and expansion of the technique of meta-optimization1, the above issue
already can be settled by the method of evolutionary particle swarm optimization (EPSO)
(27), which provides a good framework to systematically estimate appropriate values of

1 Meta-optimization, in general, is defined as the process of using an optimization algorithm to
automatically search the best optimizer from all computable optimizers.
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parameters in a particle swarm optimizer corresponding to a given optimization problem
without any prior knowledge. Based on the use of meta-optimization, it could be expected to
not only efficiently obtain an optimal PSO, but also to quantitatively analyze the know-how
on designing it. According to the utility and reality of the method of the EPSO, further
deepening meta-optimization research, i.e. dynamic estimation approach, is an indispensable
and necessary step for efficiently dealing with any complex optimization problems.

To investigate the potential characteristics and effect of the EPSO, here we propose and study
to use two different criteria: a temporally cumulative fitness function of the best particle and
a temporally cumulative fitness function of the entire particle swarm respectively to evaluate
the search performance of the PSO in an estimation process. The goal of the attempt is to
supply the demand for diversification satisfying some different specification to the optimizer.

Needless to say, the search behavior and performance of the PSO closely relies on the
determined values of parameters in the optimizer itself. For revealing the inherent
characteristics of the obtained PSOs, we also propose an indicator to measure the difference in
convergence of the PSOs estimated by respectively implementing each criterion. Due to verify
the effectiveness of the proposed method and different characters of the obtained results,
computer experiments on a suite of multidimensional benchmark problems are carried out.

The rest of the paper is organized as follows. Section 2 introduces the related work on this
study. Section 3 describes basic mechanisms of the PSO and EPSO, two different criteria, and
an indicator in detail. Section 4 shows the obtained results of computer experiments applied
to a suite of multidimensional benchmark problems, and analyzes the respective character
of the estimated PSOs with using each criterion. Finally Section 5 gives the conclusion and
discussion.

2. Related work

Until now, many researchers have paid much attention to the issue, i.e. effectually obtaining
the PSO with high search performance, and proposed a number of advanced algorithms
to deal with it. These endeavors can be basically divided into two approaches: manual
estimation and mechanical estimation shown in Figure 1.

Fig. 1. Family of estimating PSO methods
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Manual estimation is to try many values of parameters to find a proper set of parameter values
in the PSO for dealing with various optimization problems reasonably well (2; 4; 10). Since
its procedure belongs to a trial-and-error search, the computational cost is enormous, and the
estimating accuracy is not enough.

In contrast to the above situation, mechanical estimation is to directly utilize evolutionary
computation for achieving the task. A composite PSO (cPSO) (21) was proposed to estimate
the parameter values of the PSO during optimization. In the cPSO, the differential evolution
(DE) algorithm (24) is used to generate a difference vector of two randomly picked boundary
vectors for parameter selection. In spite of the effect to the estimation, the internal stochastic
factors in the DE have an enormous impact on the estimating process. Therefore, the
recreation to obtain some similar results is difficult. This is the major shortcoming of the
cPSO for certification.

In order to overcome the above mentioned weakness of instability in an estimation process,
Meissner et al. proposed a method of optimized particle swarm optimization (OPSO) as
an extension of the cPSO, which uses the PSO to deal with meta-optimization of the PSO
heuristics (18). Zhang et al. independently proposed a method of evolutionary particle swarm
optimization (EPSO) which uses a real-coded genetic algorithm with elitism strategy (RGA/E)
to accomplish the same task (27). These methods are positive attempts of evolutionary
computation applied for the design of the PSO itself, and give a marked tendency to deal
with meta-optimization of analogous stochastic optimizers heuristics.

By comparing the mechanisms of both the OPSO and EPSO, we see that there are two big
differences in achievement of estimating the PSO. The first one is on the judgment (selection)
way used in evaluating the search performance of the PSO. The former uses an instantaneous
fitness function and the PSO to estimation, and the latter uses a temporally cumulative fitness
function and the RGA/E to estimation. The second one is on the estimating manner used in
dealing with meta-optimization of the PSO heuristics.

Owing to the temporally cumulative fitness being the sum of an instantaneous fitness,
fundamentally, the variation of the obtained parameter values, which comes from the
stochastic influence in a dynamic evaluation process, can be vastly alleviated. According
to this occasion, the use of the adopted criterion could be expected to give rigorous
determination of the parameter values in the PSO, which will guide a particle swarm to
efficiently find good solutions.

To investigate the potential characteristics of the EPSO, a temporally cumulative fitness
function of the best particle and a temporally cumulative fitness function of the entire particle
swarm are used for evaluating the search performance of the PSO to parameter selection. The
former was reported in our previous work (27; 29). The latter is a proposal representing active
behavior of entire particles inspired by majority decision in social choice for the improvement
of the convergence and search efficiency of the entire swarm search (28).

The aim of applying the different criteria in estimating the PSO is to pursue the intrinsic
difference and the inherent characters on designing the PSO with high search performance.
For quantitative analysis to the obtained results, we also propose an indicator for judging the
situation of convergence of the PSO, i.e. the different characteristics between the fitness value
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of the best particle and the average of fitness values of the entire swarm over time-step in
search.

3. Basic mechanisms

For the sake of the following description, let the search space be N-dimensional, S ∈ �N , the
number of particles in a swarm be P, the position of the ith particle be �xi = (xi

1, xi
2, · · · , xi

N)T ,
and its velocity be �vi = (vi

1, vi
2, · · · , vi

N)T , repectively.

3.1 The PSO

In the beginning of the PSO search, the particle’s position and velocity are generated
randomly, then they are updated by

⎧⎨
⎩
�x i

k+1 = �x i
k+�v i

k+1

�v i
k+1 = c0�v

i
k+ c1�r1⊗(�p i

k−�x i
k)+ c2�r2⊗(�qk−�x i

k)

where c0 is an inertia coefficient, c1 and c2 are coefficients for individual confidence and swarm
confidence, respectively. �r1 and�r2 ∈ �N are two random vectors in which each element is
uniformly distributed over the interval [0, 1], and the symbol⊗ is an element-wise operator for
vector multiplication. �p i

k(= arg max
j=1,··· ,k

{g(�x i
j )}, where g(·) is the fitness value of the ith particle

at k time-step) is the local best position of the ith particle up to now, and �qk(= arg max
i=1,2,···

{g(�p i
k)}) is the global best position among the whole particle swarm. In the original PSO,

c0 = 1.0 and c1 = c2 = 2.0 are used (12).

To prevent particles spread out to infinity in the PSO search, a boundary value, vmax, is
introduced into the above update rule to limit the biggest velocity of each particle by

⎧⎨
⎩

v ij
k+1 = vmax, i f v ij

k+1 > vmax

v ij
k+1 = −vmax, i f v ij

k+1 < −vmax

where vij
k+1 is the jth element of the ith particle’s velocity �v i

k+1.

For attaining global convergence of the PSO, the studies of theoretical analysis were minutely
investigated (3; 5; 6). Clerc proposed a canonical particle swarm optimizer (CPSO) and
analyzed its dynamical behavior. According to Clerc’s constriction method, the parameter
values in the equivalent PSO are set to be c�0 = 0.7298 and c�1 = c�2 = 1.4960. Since the value
of the inertia coefficient c�0 is less than 1.0, the CPSO has better convergence compared to the
original PSO. Consequently, it is usually applied for solving many practice problems as the
best parameter values to search (17).

Although the set of the parameter values, (c�0, c�1, c�2), is determined by a rigid analysis in
a low-dimensional case, it is hard to declare that these parameter values are whether the
surely best ones or not for efficiently dealing with different kinds of optimization problems,
especially in a high-dimensional case. To distinguish the truth of this fact, correctly obtaining
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the information on the parameter values of the equivalent PSO by evolutionary computation
is expected to make clear.

3.2 The EPSO

In order to certainly deal with meta-optimization of the PSO heuristics, the EPSO is composed
of two loops: an outer loop and an inner loop. Figure 2 illustrates a flowchart of the EPSO
run. The outer loop is a real-coded genetic algorithm with elitism strategy (RGA/E) (26).
The inner loop is the PSO. This is an approach of dynamic estimation. They exchange
the necessary information each other during the whole estimating process. Especially, as
information transmission between the loops in each generation, the RGA/E provides each
parameter set of parameter values,�c j = (c j

0, c j
1, c j

2) (the j-th individual in a population, j ∈ J,
where J is the number of individuals), to the PSO, and the PSO returns the values of the
fitness function, F(c j

0, c j
1, c j

2), corresponding to the given parameter set to the RGA/E. By the
evolutionary computation, the RGA/E simulates the survival of the fittest among individuals
over generations for finding the best parameter values in the PSO.

Fig. 2. A flowchart of the EPSO

As genetic operations in the RGA/E, roulette wheel selection, BLX-α crossover, random
mutation, non-redundant strategy, and elitism strategy are used for efficiently finding an
optimal individual (i.e. an optimal PSO) from the population of parameter values of the PSO.
On being detailed, further refer to (33).
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3.3 Two different criteria

To reveal the potential characteristics of the EPSO in estimation, two criteria are applied for
evaluating the search performance of the PSO. The first criterion is a temporally cumulative
fitness function of the best particle, which is defined as

F1(c
j
0, c j

1, c j
2)=

K

∑
k=1

g(�qk)
∣∣

c j
0 ,c j

1 ,c j
2

(1)

where K is the maximum number of iterations in the PSO run. The second criterion is a
temporally cumulative fitness function of the entire particle swarm, which is defined as

F2(c
j
0, c j

1, c j
2)=

K

∑
k=1

ḡk
∣∣

c j
0 ,c j

1 ,c j
2

(2)

where ḡk = ∑P
i=1 g(�xi

k)/P is the average of fitness values over the entire particle swarm at
time-step k.

As an example, Figure 3 illustrates the relative evaluation between two pairs of the criteria,
{g(�qk), ḡk} and {F1, F2}, during the evolutionary computation. It is clearly observed that the
properties of the instantaneous fitness functions, g(�qk) and ḡk, are quite different. Namely,
while the change of g(�qk) is monotonous increment, the change of ḡk is non-monotonous
increment with violent stochastic vibration. In contrast to this, the criteria, F1 and F2, are all
monotonous increment with a minute vibration.

Fig. 3. Comparison of two pairs of the used fitness functions

Because both F1 and F2 are the sum of instantaneous fitness functions, g(�qk) and ḡk, over
time-step, in theory, their variance is inversely proportional to the interval of summation.
Thus, they could lead to vastly inhibit noise which comes from dynamic evaluation to the
estimation. This property indicates that which of both F1 and F2 is well suitable for evaluating
the search performance of the PSO, regardless of the difference in objects of evaluation
themselves.
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3.4 A convergence indicator

Looking from another viewpoint, the above difference in evaluational form can be considered
as the disparty between the values of the temporally cumulative fitness function of the best
particle and the average of fitness values over the entire particle swarm.

According to the concept of different characteristics, we propose to set the following
convergence time-step, kmax, as a convergence indicator for measurement.

∀k ≥ kmax, g(�qk)− ḡk ≤ τ, (3)

where τ is a positive tolerance coefficient.

It is clear that the shorter the convergence time-step is, the faster the convergence of particles
is. Since most particles quickly converge on an optimal solution or a near-optimal solution, the
convergence indicator, kmax, shows the conversion of difference of the different characteristics
from increasing to decreasing, which representing a change of process, and indirectly records
the index of diversity of the swarm over time-step in search.

4. Computer experiments

To facilitate comparison and analysis of the potential characteristics of the EPSO, the following
suite of multidimensional benchmark problems (25) is used in the next experiments.

Sphere function:

fSp(�x) =
N

∑
d=1

x2
d

Griewank function:

fGr(�x) =
1

4000

N

∑
d=1

x2
d −

N

∏
d=1

cos
( xd√

d

)
+ 1

Rastrigin function:

fRa(�x) =
N

∑
d=1

(
x2

d − 10 cos(2π xd) + 10
)

Rosenbrock function:

fRo(�x) =
N−1

∑
d=1

100
(

xd+1 − x2
d
)2

+
(
1− xd

)2

The following fitness function in the search space, S ∈ (−5.12, 5.12)N , is defined by

gω(�x) =
1

fω(�x) + 1
(4)
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where the subscript, ω, stands for one of the followings: Sp (Sphere), Gr (Griewank), Ra
(Rastrigin), and Ro (Rosenbrock). Since the value of each function, fω(�x), at the optimal solution
is zero, the largest fitness value, gω(�x), is 1 for all given benchmark problems.

Figure 4 illustrates the distribution of each fitness function in two-dimensional space. It is
clearly shown that the properties of each problem, i.e. the Sphere problem is an unimodal
with axes-symmetry, the Rosenbrock problem is an unimodal with axes-asymmetry, and the
Griewank and Rastrigin problems are multimodal with different distribution density and
axes-symmetry.

Fig. 4. Fitness functions corresponding to the given benchmark problems in two-dimensional
space. (a) The Sphere problem, (b) The Griewank problem, (c) The Rastrigin problem, (d) The
Rosenbrock problem.

4.1 Experimental condition

Table 1 gives the major parameters used in the EPSO run for parameter selection in the next
experiments. As initial condition of the EPSO, positions of particles are set in random, and the
corresponding velocities are set to zero.

Note that the constant, vmax, is used to arbitrarily limit the maximum velocity of each particle
in search. Both non-redundant search and roulette wheel selection in genetic operations have
not parameter to set. The smaller number of individuals, particles and iterations is chosen in
order to acquire the balance between estimating accuracy and computing speed. As for the
estimating accuracy, it can be guaranteed by repetitively taking average of the results.

On regarding the parameter setting for the genetic operations in the RGA/E, concretely,
some experimental results reveal that bigger probability works better in generating superior
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Parameters Value
the number of individuals, J 10
the number of generations, G 20
the number of elite individuals, sn 2
probability of BLX-2.0 crossover, pc 0.5
probability of mutation, pm 0.5
the number of particles, P 10
the number of iterations, K 400
the maximum velocity, vmax 5.12

Table 1. Major parameters in the EPSO run

individuals (33). This is the reason why the probability of crossover and mutation is set to 0.5
for efficient parameter selection.

4.2 Experimental results (1)

Computer experiments on estimating the PSO are carried out for each five-dimensional
benchmark problem. It is to be noted that the appropriate values of parameters in the PSO are
estimated under the condition, i.e. each parameter value is non-negative.

Based on the distribution of the resulting parameter values, ĉ0, ĉ1, and ĉ2, within the
top-twenty optimizers taken from the all obtained PSOs, they are divided into four groups,
namely, a-type: ĉ0 = 0, ĉ1 = 0, ĉ2 > 0; b-type: ĉ0 = 0, ĉ1 > 0, ĉ2 > 0; c-type: ĉ0 > 0,
ĉ1 = 0, ĉ2 > 0; and d-type: ĉ0 > 0, ĉ1 > 0, ĉ2 > 0. Doing this way is to adequately
improve the accuracy of parameter selection, because each type of the obtained PSOs has
stronger probability which solves the given benchmark problems regardless of the frequencies
corresponding to them within the top-twenty optimizers.

Table 2 gives the resulting values of parameters in each type of the obtained PSOs, criterion
values and frequencies. According to the statistical results, the following features and
judgments are obtained.

1. The estimated PSOs are non-unique, and the parameter values in each optimizer are quite
different from that in the original PSO or equivalent PSO.

2. The values of inertia coefficient, ĉ0, and the coefficient for individual confidence, ĉ1, could
be zero, but the value of coefficient for swarm confidence, ĉ2, is always non-zero, which
plays an essential role in finding a solution to any given problem.

3. For the PSO in d-type cases, an overlapping phenomenon in each parameter value appears
with the corresponding standard deviation (SD) in many cases. The variation of the
respective SD indicates the adaptable range to each parameter value and the difficulty
to obtain appropriate parameter value for handling the given problem.

4. For Rastrigin problem, both of ĉ1 and ĉ2 drastically exceed 1 in the criterion F1 case.
This suggests that the search behavior of the PSO is required to be more randomization
extensively for enhancing the search performance to find an optimal solution or
near-optimal solutions in search space. For the Griewank and Rosenbrock problems, ĉ1
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Cumulative Parameter
Problem Dim. fitness PSO ĉ0 ĉ1 ĉ2

Freq.

395.3±0.7 a-type 0 0 2.4961±0.2468 20%
– b-type – – – –

F1 394.6±0.8 c-type 0.1975±0.0187 0 2.4665±0.3573 45%
394.1±0.5 d-type 0.6770±0.2326 1.1293±0.0939 0.9375±0.6567 35%

Sphere 5 392.5±0.8 a-type 0 0 2.2990±0.1614 15%
393.0±1.4 b-type 0 0.2397±0.1007 2.2867±0.1602 15%

F2 – c-type – – – –
392.2±0.5 d-type 0.4656±0.1514 0.9807±0.6100 1.3073±0.5850 70%

– a-type – – – –
– b-type – – – –

F1 396.8±0.0 c-type 0.1707±0.0000 0 0.6224±0.0000 5%
396.6±0.6 d-type 0.5101±0.2669 2.0868±0.4260 1.0258±0.6117 95%

Griewank 5 – a-type – – – –
394.7±0.0 b-type 0 3.3247±0.0000 0.6994±0.0000 5%

F2 – c-type – – – –
394.8±0.8 d-type 0.4821±0.1911 1.2448±0.5229 1.6101±0.6596 95%

– a-type – – – –
– b-type – – – –

F1 396.0±0.0 c-type 1.0578±0.0000 0 82.171±0.0000 5%
395.7±0.5 d-type 1.3459±0.5439 10.286±3.5227 24.929±21.857 95%

Rastrigin 5 230.0±20.9 a-type 0 0 3.8991±0.0681 100%
– b-type – – – –

F2 – c-type – – – –
– d-type – – – –
– a-type – – – –
– b-type – – – –

F1 298.4±3.7 c-type 0.6804±0.0000 0 2.1825±0.0000 10%
317.1±18.8 d-type 0.9022±0.0689 1.3097±0.5619 0.7614±0.1689 90%

Rosenbrock 5 – a-type – – – –
295.5±9.0 b-type 0 4.0370±0.5740 1.9494±0.1237 20%

F2 312.4±26.7 c-type 0.8033±0.0000 0 0.5165±0.0000 20%
310.5±36.3 d-type 0.7042±0.0492 0.7120±0.3631 1.5028±0.6779 60%

Table 2. Estimated appropriate values of parameters in the PSO, cumulative fitness values,
and frequencies in the top-twenty optimizers. The PSO in a-type: ĉ0 = 0, ĉ1 = 0, ĉ2 > 0; The
PSO in b-type: ĉ0 = 0, ĉ1 > 0, ĉ2 > 0; The PSO in c-type: ĉ0 > 0, ĉ1 = 0, ĉ2 > 0; in d-type:
ĉ0 > 0, ĉ1 > 0, ĉ2 > 0. The symbol “-” signifies no result corresponding to contain type of the
PSO.

drastically exceeds 1 under the condition of ĉ0 = 0. This suggests that there is a choice to
adapt the spacial condition in using the criterion F2 case for improving search performance
of the PSO.
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5. The average of the fitness values, F1, is larger than that of F2 except for the Rosenbrock
problem. And the frequencies corresponding to the PSO in d-type are higher than other
types for a majority given problems.

It is understood that the estimated PSOs related to each given benchmark problem are
obtained by implementing the EPSO without any prior knowledge. The signification of the
existence of the four types of the obtained PSOs reflects the possibility of problem-solving.

4.3 Performance analysis

For inspecting the results of the EPSO using two different criteria, we measure the search
ability of each estimated PSO by the average of parameter values in Table 2, and show the
obtained fitness values with 20 trials in Figure 5.

It is observed from Figure 5 that the search ability of the PSO estimated by using the criterion
F1 is superior to that by using the criterion F2 except for the Sphere and Griewank problems.
Therefore, the obtained results declare that the criterion F1 is suitable for generating the PSO
with higher adaptability in search compared with the criterion F2. The cause is obvious, i.e.
all of particles rapidly move in close to the global best position, �qk, found by themselves up
to now. About the fact, it can be confirmed by the following experiments. However, such
improvement of the search performance of the entire particle swarm, in general, restricts
active behavior of each particle, and will lose more chances for finding an optimal solution
or near-optimal solutions.

For investigating the different characteristics, we measure the convergence time-step for each
estimated PSO in d-type with the highest search ability in Figure 6. According to the different
characteristics, for instance, the disparity between two criteria, i.e. g(�qk) − ḡk, maximum
tolerance, τmax, and the convergence time-step, kmax, is shown in Figure 6.

In comparison with the difference between two criteria in the optimization, Table 3 gives the
convergence time-step, kmax, of the original PSO, and the estimated PSO under the condition
of the maximum tolerance, τmax(= max

k=1···K
(

g(�qk)− ḡk
)
), corresponding to each given problem.

Convergence time-step, kmax
Problem Original PSO EPSO (F1) EPSO (F2)

Sphere 236.1±95.63 8.100±2.268 7.200±2.375
Griewank 249.4±108.0 4.350±2.814 4.150±2.224
Rastrigin 363.4±92.40 224.2±152.3 99.15±52.83

Rosenbrock 397.4±2.370 34.15±7.862 25.72±8.672

Table 3. The convergence time-step for the original PSO and the estimated PSO.

Based on the results on the search performance (SP) and the convergence time-step (CT) in
Table 3, the dominant relationship on their different characteristics is indicated as follows.

SP: EPSO(F1) 	 EPSO(F2) 	 Original PSO

CT: EPSO(F2) 	 EPSO(F1) 	 Original PSO
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Fig. 5. The search ability of each estimated PSO

Fig. 6. The disparity in criterion, g(�qk)− ḡk.

In comparison with both SP and CT, it is considered that the criterion F1 well manages the
trade-off between exploitation and exploration than that the criterion F2 does. And the search
performance of the original PSO is the lowest. These results indicate that these parameters,
c0 = 1.0 and c1 = c2 = 2.0, cannot manage the trade-off between exploration and exploitation
in its heuristics well, so the original PSO is unreasonable for efficiently solving different
optimization problems to conclude.

Table 4 gives the results of implementing the EPSO, the original PSO, the original CPSO,
OPSO, and RGA/E. We can see that the search performance of the PSOs optimized by the
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EPSO using the criterion F1 is superior to that by the original PSO, the original CPSO, OPSO,
and RGA/E for the given benchmark problems except the Sphere problem.

Problem Dim. Original PSO Original CPSO EPSO(F1) EPSO(F2) OPSO RGA/E
Sphere 5 0.9997±0.0004 1.0000±0.0000 1.0000±0.0000 0.9830±0.0399 1.0000±0.000 0.9990±0.0005

Griewank 5 0.9522±0.0507 0.8688±0.0916 0.9829±0.0129 0.9826±0.0311 0.9448±0.0439 0.9452±0.0784
Rastrigin 5 0.1828±0.1154 0.6092±0.2701 1.0000±0.0000 0.6231±0.3588 0.2652±0.1185 0.9616±0.0239

Rosenbrock 5 0.4231±0.2208 0.6206±0.2583 0.7764±0.2723 0.5809±0.2240 0.3926±0.1976 0.3898±0.2273

Table 4. The obtained results of the EPSO, the original PSO, the original CPSO, OPSO, and
RGA/E (the mean and the standard deviation of fitness values in each optimizer). The
values in bold signify the best results for each problem.

Specially, the fact of what the search performance by the estimated PSO is superior to that by
the original CPSO demonstrates the effectiveness of the proposed criteria, which emphasizes
the importance of executing the EPSO to parameter selection.

4.4 Experimental results (2)

For further identifying the effectiveness of the EPSO, the following experiments are carried
out for each benchmark problem in ten- and twenty-dimensional cases.

According to the better search performance corresponding to each type of the PSO in Section
4.3, Table 5 shows the obtained results of the PSO in d-type, their criterion values and
frequencies. To demonstrate the search performance of these PSO in Table 5, Table 6 gives
the obtained results for the EPSO using two different criteria, the original PSO, the original
CPSO, OPSO, and RGA/E. Similar to the results of five-dimensional case in Table 4, it is
confirmed that the search performance of the PSO optimized by the EPSO using the criterion
F1 is superior to that by the criterion F2, and is also superior to that by the original PSO, the
original CPSO, OPSO, and RGA/E for the given benchmark problems except for the Rastrigin
problem.

Comparison with the values of parameters of the estimated PSO in different dimensional cases
for the Rastrigin problem, we observe that the values of the estimated PSO, ĉ0, are less than
1.0 in ten- and twenty-dimensional cases. Just as which the inertia coefficient is less than
1.0, so that the PSO cannot explore over a wide search space due to the origins of premature
convergence and stagnation.

However, why the ideal results in five-dimensional case cannot be reappeared for dealing
with same problem in ten- and twenty-dimensional cases, the causes may be associated with
the experimental condition such as the number of generations G = 20, and iterations K = 400
of the EPSO run. Since they are too little, appropriate values of parameters in the PSO cannot
be found without enough possibility in a bigger search space.

To testify the truth of the supposition, we tried to use the PSO in d-type by the criterion F1
in Table 2 as a proxy for solving the ten- and twenty-dimensional Rastrigin problems. Under
such circumstances, the resulting search performance of the EPSO with the criterion F1 are
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Cumulative Parameter
Problem Dim. fitness PSO ĉ0 ĉ1 ĉ2

Freq.

F1 380.8±1.9 d-type 0.8022±0.0224 1.6485±0.4327 0.7468±0.1453 100%
Sphere 10 F2 375.9±2.6 d-type 0.7654±0.0468 1.3853±0.5210 0.8777±0.0439 95%

F1 389.9±1.4 d-type 0.7620±0.0016 1.5490±0.7157 0.7587±0.2100 95%
Griewank 10 F2 386.4±1.4 d-type 0.7318±0.1111 1.3844±0.3688 1.2278±0.3945 100%

F1 59.79±14.8 d-type 0.5534±0.1462 2.1410±0.5915 2.0062±1.0027 25%
Rastrigin 10 F2 32.61±5.8 d-type 0.3596±0.1740 3.3035±1.6040 1.2856±1.4118 55%

F1 155.1±45.2 d-type 0.7050±0.2830 1.6254±0.8717 1.9030±0.5038 90%
Rosenbrock 10 F2 122.0±59.9 d-type 1.0159±0.0279 1.6045±0.4152 0.4983±0.1048 100%

F1 326.4±7.1 d-type 0.9091±0.0425 2.2427±0.1360 0.4249±0.0675 100%
Sphere 20 F2 320.1±9.6 d-type 0.8860±0.0000 1.9482±0.1912 0.6693±0.1157 100%

F1 374.8±2.1 d-type 0.9717±0.0093 1.7877±0.2686 0.6989±0.1442 100%
Griewank 20 F2 370.3±3.0 d-type 0.9738±0.0000 1.6542±0.3106 0.7064±0.0330 70%

F1 10.33±1.0 d-type 0.9776±0.0198 1.3934±0.2050 0.2179±0.0561 70%
Rastrigin 20 F2 8.48±1.4 d-type 0.8920±0.0000 1.7465±0.4156 0.4155±0.2469 100%

F1 10.49±1.7 d-type 0.9237±0.0000 1.9173±0.2636 0.8158±0.1274 100%
Rosenbrock 20 F2 10.93±2.3 d-type 0.8680±0.1128 0.9377±0.6782 1.0402±0.2969 100%

Table 5. Estimated appropriate values of parameters in the PSO, criterion values and
frequencies in the top-twenty optimizers. The PSO in d-type: ĉ0 > 0, ĉ1 > 0, ĉ2 > 0.

below. {
0.7048± 0.4536 in ten− dimensional case
0.1160± 0.3024 in twenty− dimensional case

We can see that the average of fitness values in each case is not only better than the old one in
Table 6, but also is better than that of the RGA/E. Therefore, it is demonstrated that the above
supposition is correct and the generality of the estimated result of the EPSO.

Problem Dim. Original PSO Original CPSO EPSO (F1) EPSO (F2) OPSO RGA/E
10 0.8481±0.0995 0.9518±0.2153 0.9985±0.0048 0.9599±0.1465 0.9980±0.0077 0.9957±0.0028

Sphere 20 0.0912±0.0662 0.2529±0.3654 0.9791±0.0512 0.9328±0.2132 0.6939±0.3131 0.9207±0.0290
10 0.7290±0.1506 0.7025±0.1475 0.9547±0.0621 0.9282±0.1138 0.8236±0.1835 0.9136±0.1415

Griewank 20 0.6752±0.1333 0.6593±0.1653 0.9174±0.1657 0.9028±0.1565 0.8073±0.1742 0.8816±0.1471
10 0.0600±0.0346 0.0336±0.0156 0.6319±0.0370 0.0936±0.0783 0.0321±0.0255 0.6693±0.2061

Rastrigin 20 0.0084±0.0019 0.0065±0.0010 0.0162±0.0075 0.0148±0.0046 0.0147±0.0033 0.0844±0.0292
10 0.0928±0.0423 0.0899±0.0763 0.1467±0.1694 0.1388±0.0811 0.0825±0.0719 0.1243±0.0650

Rosenbrock 20 0.0012±0.0019 0.0070±0.0103 0.0293±0.0217 0.0193±0.0186 0.0084±0.0108 0.0108±0.0082

Table 6. The obtained results of the EPSO, the original PSO, the original CPSO, and RGA/E
(the mean and the standard deviation of fitness values in each method). The values in bold
signify the best results for each problem.
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5. Conclusion and discussion

We presented the method of evolutionary particle swarm optimization which provides a good
framework to effectually estimate appropriate values of parameters in the PSO corresponding
to a given optimization problem. Two different criteria, i.e. a temporally cumulative fitness
function of the best particle and a temporally cumulative fitness function of the whole particle
swarm, are adopted to use for evaluating the search performance of the PSO without any prior
knowledge.

According to the synthetic results of both the search performance and convergence time-step,
it is confirmed that the criterion F1 has higher adaptability in search than that by the criterion
F2. On the other hand, these experimental results also clearly indicated that the PSO with
higher adaptability is available when we have a passionate concern for the behavior of the
best particle in evaluation, and the PSO with faster convergence is available when we have a
passionate concern for the behavior of the entire swarm in evaluation.

As well as we observed, specially the results of the PSO estimated by the criterion F2 having
higher convergence easily tend to be trapped in local minima. This phenomenon suggests
that estimating the PSO alone is not enough, and that a valid effective method for alleviating
premature convergence and stagnation is of necessity. We also tested how to obtain the PSO
with high search performance in a high-dimensional case by using the knowledge obtained in
low-dimensional case, and showed the effectiveness of the use of this way.

It is left for further study to investigate the relation between search ability and faster
convergence. By obtaining the Pareto front of 2-objective optimization (8; 23), the know-how
on designing the PSO can be generally interpreted not only at model selection level but also
at multi-objective level.

Nevertheless, it is necessary to argue a method reduced name EPSO (19) as a supplementary
explanation. The method was created by Miranda et al. in 2002 for improving the search
performance of th PSO. Although the concepts of evolutionary computation such as selection
and mutation are used to the PSO search process and the effect of adaptation could be
obtained, its mechanism is similar to the cPSO (21) and is completely different from the EPSO
described in Section 3.2.

Generally, the following three manners can be used for improving the search performance of
the PSO. (1) Optimizing the PSO, i.e. rationally managing the trade-off between exploitation
and exploration by adopting appropriate values of parameters in the PSO; (2) Enforcing the
intelligence of the PSO search, i.e. practicing intellectual action in optimization; (3) Unifying
the mentioned (1) and (2) manners for acquiring more efficiency to search. Needless to say, the
third manner in particular is successful among them. This is because the search capability of
the PSO can be easily improved by the combination of capacity and intellectuality. In recent
years, a number of studies and investigations regarding the third manner are focused, and
being accepted flourishingly (11; 15; 30–32).

Accordingly, it is also left for further study to still handle the above hard problems with
powerful hybrid techniques such as blending a local search and the PSO search for further
increasing search ability, and introducing the mechanism of diversive curiosity into the PSO
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for raising the search performance of a single particle swarm or even multiple particle swarms
with hybrid and intelligent search (34) to exploration.
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1. Introduction

The optima solutions for many real-world problems may vary over the time. Therefore,
optimization algorithms to solve this type of problem should present the capability to deal
with dynamic environments, in which the optima solutions can change during the algorithm
execution. Many swarm intelligence algorithms have been proposed in the last years, and in
general, they are inspired in groups of animals, such as flocks of birds, schools of fish, hives of
bees, colonies of ants, etc. Although a lot of swarm-based algorithms were already proposed,
just some of them were designed to tackle dynamic problems.

One of the most used swarm intelligence algorithms is the Particle Swarm Optimization
(PSO). Despite the fast convergence capability, the standard version of the PSO can not tackle
dynamic optimization problems. It occurs mainly because the entire swarm often increases
the exploitation around a good region of the search space, consequently reducing the overall
diversity of the population. Some variations of the PSO, such as Charged PSO proposed
by Blackwell & Bentley (2002) and Heterogeneous PSO proposed by Leonard et al. (2011), have
been proposed in order to increase the capacity to escape from regions within the search space
where the global optimum is not located anymore.

The topology of the PSO defines the communication schema among the particles and it plays
an important hole in the performance of the algorithm. The topology can influence in the
trade-off between the convergence velocity and the quality of the solutions. In general,
PSO topologies that benefit diversity, e.g. local and Von Neumann, are used to handle
dynamic optimization problems. Carvalho and Bastos-Filho (Carvalho & Bastos-Filho, 2009a)
presented a dynamic topology based on clan behaviors, which improves the PSO performance
in various benchmark functions. This approach was named Clan PSO.

On the other hand, another swarm intelligence algorithm proposed in 2008, called the Fish
School Search algorithm (FSS) (Bastos Filho, de Lima Neto, Lins, Nascimento & Lima, 2009),
presents a very interesting feature that can be very useful for dynamic environments. FSS
has an operator, called collective-volitive, which is capable to self-regulate automatically the
exploration-exploitation trade-off during the algorithm execution.
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Since the PSO algorithm converges faster than the FSS, but can not self-adapt the granularity
of the search, Cavalcanti-Júnior et al. (Cavalcanti-Júnior et al., 2011) have incorporated the
FSS volitive operator into the PSO in order to allow diversity generation after an stagnation
process. The algorithm was named Volitive PSO. On dynamic optimization benchmark
functions, this algorithm obtained better results than some PSO approaches created to tackle
dynamic optimization problems, such as the Charged PSO (Blackwell & Bentley, 2002).

We believe that one can profit better results in multimodal search spaces if we deploy a
collaborative multi-swarm approach in the Volitive PSO. Thus, we propose in this chapter
to run independently the volitive operator in each one of the clans of the Clan PSO algorithm.

The chapter is organized as follows: Sections 2, 3, 4 and 5 present the background on PSO,
Clan PSO, FSS and Volitive PSO, respectively. In Section 6 we put forward our contribution,
the Volitive Clan PSO. In Section 7 we present the simulation setup. In Sections 8 we analyze
the dynamics of our proposal and compare it to previous approaches. In Section 9.1 and 9.2
we present, respectively, some simulation results regarding the dependence on the parameters
and compare our proposal to previous approaches in terms of performance. In Section 10 we
give our conclusions.

2. PSO (Particle Swarm Optimization)

PSO is a population-based optimization algorithm inspired by the behavior of flocks of birds.
The standard approach is composed by a swarm of particles, where each one has a position
within the search space �xi and each position represents a possible solution for the problem.
The particles fly through the search space of the problem searching for the best solution,
according to the current velocity �vi, the best position found by the particle itself (�Pbesti

) and
the best position found by the neighborhood of the particle i during the search so far (�Nbesti

).
One of the most used approach was proposed by Shi and Eberhart (Shi & Eberhart, 1998). This
approach is also called Inertia PSO. According to their approach, the velocity of a particle i is
evaluated at each iteration of the algorithm by using the following equation:

�vi(t + 1) = w�vi(t) + r1c1[�Pbesti
(t)− �xi(t)] + r2c2[�Nbesti

(t)− �xi(t)], (1)

where r1 and r2 are numbers randomly generated in the interval [0, 1] by an uniform
probability density function. The inertia weight (w) controls the influence of the previous
velocity and balances the exploration-exploitation behavior along the process. c1 and c2 are
called cognitive and social acceleration constants, respectively, and weight the influence of the
memory of the particle and the information acquired from the neighborhood.

The position of each particle is updated based on the updated velocity of the particle,
according to the following equation:

�xi(t + 1) = �xi(t) + �vi(t + 1). (2)

The communication topology defines the neighborhood of the particles and, as a consequence,
the flow of information through the particles. There are two basic topologies: global (Figure
1(a)) and local (Figure 1(b)). In the former, each particle shares and acquires information
directly from all other particles, i.e. all particles use the same social memory, often referred
as �Gbest. In the local topology, each particle only share information with two neighbors and
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the social memory is not the same within the whole swarm. This approach, often called�Lbest,
helps to avoid a premature attraction of all particles to a single spot point in the search space,
but presents a slower convergence.

Many other topologies were already proposed to overcome this trade-off. One promising
topology, called Clan PSO, has a dynamic structure and outperforms the standard topologies
in multimodal search spaces.

(a) Global best topology. (b) Local best topology.

Fig. 1. Two basic topologies used in PSO.

3. Clan PSO

Clans are groups of individuals united by a kinship and each clan has at least one
guide. Inspired by these leadership characteristics, Carvalho and Bastos-Filho (Carvalho &
Bastos-Filho, 2009a) proposed a topology called Clan PSO. As a part of the topology, each clan
is composed by particles which are connected to the other particles of the same clan in order
to share information quickly, as shown in the example depicted in Figure 2. The algorithm
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Fig. 2. Topology used within the clans for the Clan PSO with 4 clans with 5 particles.

has two phases executed in every iteration, the delegation of the leaders and the conference of
the leaders. In previous works, Carvalho and Bastos-Filho (Carvalho & Bastos-Filho, 2009a)
recommended to use just some few clans in order to avoid extra overhead within the iteration.
More details about them are given in the following subsections.
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3.1 Delegation of the leaders

At each iteration, each clan singly performs an independent PSO and the particle that obtained
the best position within the clan is delegated as a leader of the clan in the iteration. Figure 3
illustrates an example with the leader delegated in each clan.
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Fig. 3. Leaders delegated in the clans (A, B, C, D).

3.2 Conference of the leaders

After the Delegation, the leaders of each clan are selected and a new virtual swarm is
composed by them. A PSO with the leaders can be ran using global (Figure 4(a)) or local
(Figure 4(b)) topology. The former induces a faster convergence, while the latter allows more
exploitation.
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(a) Global conference.
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(b) Local conference.

Fig. 4. Leaders conference illustrations.

We will use the following nomenclature along the paper: <number of clans> x <particles per
clan>. This means that if the swarm configuration is 4x5 particles, then the whole swarm
contains 4 clans and each clan has 5 particles.

4. FSS (Fish School Search)

The Fish School Search (FSS) is an optimization algorithm based on the gregarious behavior
of schools. It was firstly proposed by Bastos-Filho et al. (Bastos Filho, de Lima Neto, Lins,
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Nascimento & Lima, 2009). In the FSS, each fish represents a solution for the problem and
the success of a fish during the search process is indicated by its weight. The FSS has four
operators, which are executed for each fish of the school at each iteration: (i) individual
movement; (ii) feeding; (iii) collective-instinctive movement; and (iv) collective-volitive
movement. Since we will use only the feeding and collective-volitive movement operators
in our proposal, we detail them in the following subsections.

4.1 Feeding operator

The feeding operator determines the variation of the fish weight at each iteration. A fish can
increase or decrease its weight depending, respectively, on the success or failure during the
search process. The weight of the fish is evaluated according to the equation (3):

Wi(t + 1) = Wi(t) +
Δ fi

max(|Δ f |) , (3)

where Wi(t) is the weight of the fish i, Δ fi is the variation of the fitness function between
the new position and the current position of the fish, max(|Δ f |) is the absolute value of the
highest fitness variation among all fish in the current iteration. There is a parameter wscale that
limits the maximum weight of the fish. The weight of each fish can vary between 1 and wscale
and has an initial value equal to wscale

2 .

4.2 Collective-volitive movement operator

This operator controls the granularity of the search executed by the fish school. When
the whole school is achieving better results, the operator approximates the fish aiming to
accelerate the convergence toward a good region. On the contrary, the operator spreads the
fish away from the barycenter of the school and the school has more chances to escape from
a local optimum. The fish school expansion or contraction is applied as a small drift to every
fish position regarding the school barycenter, which can be evaluated by using the equation
(4):

�B(t) =
∑N

i=1 �xi(t)Wi(t)

∑N
i=1 �xi(t)

. (4)

We use equation (5) to perform the fish school expansion (in this case we use sign +) or
contraction (in this case we use sign −).

�xi(t + 1) = �xi(t)± stepvolr1
�xi(t)− �B(t)

d(�xi(t),�B(t))
, (5)

where r1 is a number randomly generated in the interval [0, 1] by an uniform probability
density function. d(�xi(t),�B(t)) evaluates the euclidean distance between the particle i and the
barycenter. stepvol is called volitive step and controls the step size of the fish and is defined as
a percentage of the search space range. The stepvol is bounded by two parameters (stepvol_min
and stepvol_max) and decreases linearly from stepvol_max to stepvol_min along the iterations of
the algorithm. It helps the algorithm to initialize with an exploration behavior and change
dynamically to an exploitation behavior.
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5. Volitive PSO

Volitive PSO is a hybridization of the FSS and the PSO algorithms and it was proposed
by (Cavalcanti-Júnior et al., 2011). The algorithm uses two FSS operators in the Inertia
PSO, the feeding and the collective-volitive movement. Each particle becomes a weighted
particle, where the weights are used to define the collective-volitive movement, resulting in
an expansion or contraction of the school. As a results, the Volitive PSO presents good features
of the PSO and the FSS to tackle dynamic problems. These features are, respectively, fast
convergence and the capacity to self-regulate the granularity of the search by using the volitive
operator. Figure 5 illustrates the features aggregated in the Volitive PSO.

Fig. 5. Illustration of the features presented by the Volitive PSO.

In the Volitive PSO, the stepvol decreases according to the equation (6).

stepvol(t + 1) = stepvol(t)
100− decayvol

100
, (6)

where decayvol is the volitive step decay percentage which must be in the interval [0, 100].

The stepvol is reinitialized to stepvol_max when a change in the environment is detected in
order to allow the algorithm to increase the diversity within the population. The detection of
a change is performed by using a sentry particle as presented in (Carlisle & Dozier, 2002).
In this case, the fitness is evaluated in the end of each iteration and in the beginning of
the next iteration. Thus, immediately after an environment change, the algorithm has more
capacity to escape from an old optima due to the larger steps of the volitive movement. As
stepvol is decreased along the iterations, the algorithm gradually changes from exploration to
exploitation mode.

6. Our proposal: Volitive clan PSO

We propose here to include the volitive operator into the Clan PSO. In our approach, each
clan runs a Volitive PSO separately and the weights of the individuals of each clan are treated
independently. As a consequence, each clan can perform independent volitive movements,
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shrinking or expanding its radius depending on its success or failure. The multi-swarm
proposal with the volitive movement is the main difference to the approach proposed by
Cavalcanti-Júnior et al. (2011). The pseudocode of our proposal is depicted in algorithm 1. We
observed that the Volitive Clan PSO returned better results for dynamic environments when
we run PSOs with local topology either within the clans and in the conference of the leaders.

Algorithm 1: Pseudocode of the Volitive Clan PSO.

1 Initialize parameters and particles;
2 while the stop condition is not reached do
3 Update the sentry particle;
4 if the sentry particle detected a change then
5 reinitialize stepvol ;

6 foreach clan of the swarm do
7 foreach particle of the clan do
8 Update the velocity and the position of the particle using local topology

using equations (1) and (2), respectively;

9 Execute the feeding operator in the clan using equation (3);
10 Execute the collective-volitive movement operator in the clan using equation

(5);
11 foreach particle of the clan do
12 Evaluate the fitness of the particle;
13 Evaluate �Pbest and �Nbest;

14 Delegate the leader of the clan;

15 Perform the conference of the Leaders using local topology;
16 Update the sentry particle;

7. Simulation setup

All experiments were developed in JAVA and executed in a computer with a 2.40GHz Core 2
Quad processor and 8GB RAM memory running Linux operational system.

7.1 Benchmark function

We used the DF1 benchmark function proposed by Morrison & De Jong (1999) in our
simulations. DF1 is composed by a set of random peaks with different heights and slopes. The
number of peaks, their heights, slopes, and positions within the search space are adjustable.
As those three components can change during the execution, then they are called dynamic
components. The function for a N-dimensional space is defined according to the equation (7).

f (�x) = maxi=1,2,...,P[Hi − Si

√
∑ (�x− �xi)2], (7)

where P is the number of peaks (peak i is centered in the position �xi ), Hi is the peak height
and Si is the peak slope. The values for xid, Hi and Si are bounded.

The dynamic components of the environment are updated using discrete steps. The DF1 uses
a logistics function to control the generation of different step sizes. The parameter used to
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calculate the steps is adjusted according to the equation (8).

ei = rei−1(1− ei−1), (8)

where r is a constant in the interval [1,4]. As r increases, more simultaneous results for e are
achieved. As r gets closer to 4, the behavior becomes chaotic.

In the simulations presented in the Sections 9.1 and 9.2, we use 10 dimensions, 10 or 50 peaks
and search space bounds [−50, 50]d for all dimensions. All peaks have a constant slope along
the execution that is determined in the beginning of each simulation randomly in the interval
[1, 7]. All peaks move around the bounded search space independently and their height vary
in the interval [10, 50], both for each 100 iterations. For Section 8 we use a search space with 2
dimensions.

We simulate an environment with high severity changes. For all dynamic components the
scale parameter was set to 0.5. This parameters is a value between 0 and 1, which multiplies
the result of the logistics function for each environment change. Thus, the scale parameter
control the severity of the change of each dynamic component. The coefficient r of the logistic
function is equal to 2.1 for all dynamic components.

All environments are generated using the same seed for the random number. Thus, the
initial environment conditions are the same for all simulations. However, the dynamics of
the environment over the algorithm execution are different for each simulation. For the box
plot graphs, we evaluate the performance of the algorithms over 30 independent simulations
with 10,000 iterations each one.

7.2 Performance metric

To measure the performance of an optimization algorithm in a dynamic environment a good
metric should reflect the performance of the algorithm across the entire range of environment
dynamics. Accordingly, we use in all experiments the mean fitness, which was introduced by
Morrison (Morrison, 2003). The mean fitness is the average over all previous fitness values, as
defined below:

Fmean(T) =
∑T

t=1 Fbest(t)
T

, (9)

where T is the total number of iterations and Fbest is the fitness of the best particle after
iteration t. The advantage of the mean fitness is that it represents the entire algorithm
performance history.

7.3 Algorithms setup

The cognitive acceleration coefficient (c1) of the PSO is set initially to 2.5 and decreases
linearly to 0.5 along 100 iterations (that corresponds to the frequency of the environment
change). On the other hand, the social acceleration coefficient (c2) is initially equal to 0.5
and increases linearly to 2.5 over the same change interval. For every 100 iterations, c1 and
c2 are reinitialized. Thus, the algorithms has more capacity to generate diversity after an
environment change and consequently is more capable to explore the search space looking for
new optima. Gradually, the algorithm increases the exploitation until another environment
change occurs, then it return to the first step of this process. We used the inertia weight (w)
equal to 0.729844 and a total number of 54 particles for all algorithms.

76 Theory and New Applications of Swarm Intelligence



Volitive Clan PSO - An Approach for Dynamic Optimization Combining Particle Swarm Optimization and Fish School Search 9

On the Charged PSO, c1 and c2 are constant and equal to 1.49618. 50% of the particles are
charged with charge value 16, both according to the specification presented in (Blackwell
& Bentley, 2002). The parameters p and pcore are set to 1 and 30, respectively, according to
Blackwell Leonard et al. (2011).

For the parameters in Clan PSO, Volitive PSO and Volitive Clan PSO, we use the same
configuration used in the PSO. For the algorithms which use the volitive operator, we use
wscale = 5000 and stepvol_min = 0.01%, according to Bastos-Filho, Lima-Neto, Sousa & Pontes
(2009).

8. Analysis of the dynamics of the algorithms

The following requirements are necessary to reach good performance in dynamic
optimization: i) generation of diversity to explore the search space after an environment
change, and ii) quick convergence to a new optimum. These capabilities can lead the
algorithm to track optima solutions. In this section we analyze the dynamic behavior of our
proposal and compare it to some other previous PSO approaches.

Figures 6, 7 and 8 present the positions of the particles for the PSO using Local topology with
54 particles (PSO-L), Clan PSO with 3 clans and 18 particles per clan (ClanPSO-L 3x18) and
Volitive Clan PSO with 3 clans and 18 particles per clan (Volitive Clan PSO-L 3x18), respectively,
for the two dimensional dynamic DF1 function (Morrison & De Jong, 1999). In the clan-based
approaches, we used Local topology in the conference of leaders. In this analysis, we used
the Global topology within the clans for the Clan PSO and the Local topology within the clans
for the Volitive Clan PSO. All algorithms are deployed to maximize the DF1 function, where
each red region represents a peak which changes its height and position after 100 iterations.
The value for the peak height can be inferred by the legend situated on the right side of each
graph. All figures show the positions of the particles: (a) just before an environment change,
(b) just after an environment change and (c) 10, (d) 30, (e) 50 and (f) 100 iterations after the
environment change.

From Figure 6, it is possible to observe that the PSO-L swarm is located in an outdated
optimum position in the first iterations after the change in the environment. Because PSO-L
does not have any mechanism to generate diversity after the swarm convergence, the swarm
slows down to find another optimum, and just can find it because of the inertia term and
reinitialization of c1 and c2. Figure 6(d) shows that most of the particles is located at
an optimum which is not the global one after 30 iterations. One can observe that some
particles escaped to other optima after 50 and 100 iterations, as shown in Figure 6(e) and
6(f). Nevertheless, the swarm could not generate diversity enough to explore farther regions
of the search space in order to find other optima which could be the global one.

The ClanPSO-L presents a slightly worse behavior when compared to the PSO-L. Figure 7(a)
shows that the swarm converged to a single spot and, after the environment change (Figure
7(b)), the whole swarm tends to move towards the optimum which is closest to this spot
(Figures 7(c), 7(d)). Even after more iterations after the environment change, the swarm was
not capable to generate diversity and, as a consequence, was not able to find an optimum far
from the initial spot, as shown in Figures 7(e) and 7(f). This behavior occurs because every
clan uses global topology, which strong attracts the whole sub-swarm to a single spot.
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Unlike the PSO-L and the ClanPSO-L, the Volitive Clan PSO has a mechanism to generate
diversity after an environment change. Comparing Figures 8(a) and 8(b), we can observe that
the swarm spreads away from the barycenter after the change. It occurs because immediately
after the change, the particles assess their positions and check that they are in a worse position
than the last iteration because of the change in the environment. Because of this, the swarm
tends to decrease its weight according to the feeding operator and it consequently triggers
the collective-volitive operator to expand the swarm radius by repelling particles from the
barycenter (Figure 8(b)). In Figures 8(c) and 8(d) one can observe that the swarm is still
performing exploration, but the particles also begin to approximate themselves in order to
converge to another optimum. Finally, in Figure 8(f) the swarm splits in three sub-swarms
and each one is located in a different optimum. We believe that each sub-swarm is a clan since
we are using the 3x18 configuration. Summarizing, Figure 8 shows that the Volitive Clan PSO
is capable to generate diversity in order to escape from outdated optima.

9. Simulation results

9.1 Parametric analysis

In this section we analyse the impact of some parameters on the performance of the Volitive
Clan PSO. We tested the following values for decayvol : 0%, 5% and 10%, combined with
stepvol_max values equals to 30%, 40%, 50%, 60%, 70% and 80% of the search space range.
We observed that the best results for the Volitive Clan PSO were achieved with Local topology
within the clans and in the conference of the leaders. Therefore, we used these configurations
in all experiments presented in this section.

Figure 9 provides the performance for different values of decayvol and stepvol_max for the
configuration 3x18. The bests results were achieved for decayvol = 5%, as shown in Figure
9(b). One can observe that it is necessary to balance the decayvol value. If decayvol = 0%, then
the algorithm is not allowed to exploit. On the other hand, if decayvol is higher, then stepvol
decays too fast and causes a premature convergence of the swarm.

According to results showed in Figure 9, we selected decayvol = 5% and stepvol_max = 60% to
compare different configurations of clans. We assessed the following clans configurations:
1x54, 3x18, 6x9 and 9x6. Figure 10 shows the results. One can observe that the best
performance was achieved for 3x18 particles. Therefore, we used this configuration to
compare the performance to other algorithms (experiments presented in the Section 9.2).

9.2 Performance comparison

We compare all algorithms in two situations: without reinitializing particles and reinitializing
50% of particles for every environment change. The second situation is a common approach to
generate diversity in algorithms when dealing with dynamic problems (Leonard et al., 2011).
In both situations we performed simulations with 10 and 50 peaks for the DF1 benchmark
function.

Figure 11 shows the box plots for the performance of the algorithms in terms of Mean Fitness
for 10 dimensions and 10 peaks. Comparing the Figures 11(a) and 11(b) we can observe
that the algorithms that uses the volitive operator achieved better results in both situations.
Besides, the results observed for the Volitive PSO and the Volitive Clan PSO did not change
significantly when the reinitialization procedure is used (see Tables 0(a) and 0(b)). In fact, the
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(a) 1 iteration before the change (b) 1 iterations after the change

(c) 10 iterations after the change (d) 30 iterations after the change

(e) 50 iterations after the change (f) 100 iterations after the change

Fig. 6. Positions of the particles for the PSO-L in a dynamic environment.
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(a) 1 iteration before the change (b) 1 iterations after the change

(c) 10 iterations after the change (d) 30 iterations after the change

(e) 50 iterations after the change (f) 100 iterations after the change

Fig. 7. Positions of the particles for the Clan PSO-L 3x18 in a dynamic environment.
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(a) 1 iteration before the change (b) 1 iterations after the change

(c) 10 iterations after the change (d) 30 iterations after the change

(e) 50 iterations after the change (f) 100 iterations after the change

Fig. 8. Positions of the particles for the Volitive Clan PSO-L 3x18 in a dynamic environment.
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(a) decayvol = 0% (b) decayvol = 5% (c) decayvol = 10%

Fig. 9. Box plot of Volitive Clan PSO 3x18 in the last iteration in high severity environment.

Fig. 10. Performance comparison between different number of clans and particles per clan
with decayvol = 5% and stepvol_max = 60%.

reinitialization process slightly mitigated the overall performance. It probably occurs because
the mutation causes information loss. Furthermore, it indicates that the volitive operator can
generate enough diversity for the presented case. The Volitive Clan PSO achieved slightly
better results when compared to the Volitive PSO. The PSO-G improves its performance
significantly when using the reinitialization, but the results were worse than the Volitive PSO
and the Volitive Clan PSO.

Figure 12 and Tables 1(a) and 1(b) present the results for the experiments with 10 dimensions
and 50 peaks. The results are similar to the ones with 10 dimensions and 10 peaks. Again,
the PSO-G improves its performance with the reinitialization and achieved results similar to
the Volitive PSO and the Volitive Clan PSO. Nevertheless, the PSO-G was dependent on the
reinitialization to generate diversity, in this case all reinitialized particles loose their memories
(i.e. the �Pbesti

). On the other hand, the Volitive PSO and the Volitive Clan PSO are not dependent
on the reinitialization. Thus, in these algorithms the information acquired previously is not
totally lost.

The Table 3 shows the processing time in seconds running 10.000 iterations. The Charged PSO
reached the smallest processing time. Nevertheless, the processing time among all algorithms
are not so different.
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(a) Without reinitialize particles after an
environment change

(b) Reinitializing 50% of particles after an
environment change

Fig. 11. Mean Fitness comparison between five algorithms in environment with 10
dimensions and 10 peaks.

(a) High severity.

Algorithm Mean Standard deviation

PSO-L -7.886 1.589
PSO-G -57.240 12.699
ChargedPSO-L -4.175 2.856
ClanPSO-L -5.740 5.437
VolitivePSO-L 29.496 1.453
VolitiveClanPSO-L 30.430 1.732

(b) High severity with initialization of 50% of
particles.

Algorithm Mean Standard deviation

PSO-L 6.001 2.022
PSO-G 24.924 1.484
ChargedPSO-L 5.573 1.672
ClanPSO-L -0.813 1.816
VolitivePSO-L 28.953 2.009
VolitiveClanPSO-L 29.762 1.854

Table 1. Mean fitness in the last iteration with 10 dimensions and 10 peaks - mean and
standard deviation after 10,000 iterations.
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(a) Without reinitialize particles after an
environment change

(b) Reinitializing 50% of particles after an
environment change

Fig. 12. Mean Fitness comparison between five algorithms in environment with 10
dimensions and 50 peaks.

(a) High severity.

Algorithm Mean Standard deviation

PSO-L 6.082 1.693
PSO-G -31.905 11.588
ChargedPSO-L 9.658 1.375
ClanPSO-L 8.098 3.210
VolitivePSO-L 31.769 1.682
VolitiveClanPSO-L 32.545 2.119

(b) High severity with initialization of 50% of
particles.

Algorithm Mean Standard deviation

PSO-L 16.587 1.532
PSO-G 29.947 1.3557
ChargedPSO-L 17.261 1.416
ClanPSO-L 10.865 1.601
VolitivePSO-L 29.807 2.163
VolitiveClanPSO-L 32.372 1.958

Table 2. Mean fitness in the last iteration with 10 dimensions and 50 peaks - mean and
standard deviation after 10,000 iterations.
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Algorithm Mean Standard deviation

PSO-L 11.323 s 0.934
PSO-G 8.545 s 0.253
ChargedPSO-L 7.570 s 0.673
ClanPSO-L 9.433 s 0.387
VolitivePSO-L 11.613 s 0.218
VolitiveClanPSO-L 10.022 s 0.244

Table 3. Processing time of the algorithms in 10 dimensions and 10 peaks - mean and
standard deviation after 10,000 iterations.

10. Conclusions

In this chapter we presented a new PSO-based approach capable to handle dynamic problems.
We achieved this by incorporating the volitive operator in the Clan PSO. Our approach
is capable to generate diversity without use particles reinitialization. Thus, it does not
totally loose information about the environment whenever a change occurs. Actually, the
reinitialization of the particles was detrimental for our approach.

We believe that the fast convergence of the PSO and the ability of the volitive operator to
self-regulate the granularity of the search were responsibly for the success in dealing with
dynamic problems. The volitive operator contributes either for diversity and convergence by
expanding or shrinking the swarm, then this is another feature that improved the performance
of either PSO and Clan PSO. For all experiments, the Volitive Clan PSO outperforms PSO, Clan
PSO, Charged PSO and slighly outperforms the Volitive PSO.
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1. Introduction  
Many engineering applications suffer from the ignorance of mechanical parameters. It is 
particularly true when soil model is necessary to assess soil behaviour [Meieret al., 2008]. 
Nevertheless, it is not always efficient to directly assess the values of all the parameters in 
the case of soil mechanics. Considering structural mechanics, [Li et al., 2007] also worked 
to propose an optimal design of a truss pylon respecting the stress constraints of the 
elements but it is not an easy task to solve considering the number and loading of the 
structure. Inverse analysis is an efficient solution to reach these aims. This technique 
becomes more and more popular thanks to the increase of the computing capabilities. 
Computing costs have decreased and allow to handle complex optimization problems 
through meta heuristic methods for example to identify the solution of the problem like 
the mechanical parameters of a behaviour model of a soil [Fontan et al., 2011, Levasseur et 
al., 2008], to define the best section of the beams composing a truss structure or to 
optimize wood-plastic composite mechanical properties designed for decking and taking 
into account the environmental impact during the life cycle of the product [Ndiaye et al., 
2009]. The literature about inverse analysis is very rich and it covers many application 
fields like management or mechanical science as attesting the table number 1 in [Fontan et 
al., 2011] which presents several civil engineering applications (this table is not presented 
there). Most of the authors mentioned in this paper used the concept of inverse analysis to 
identify parameters either in structural mechanics [Li et al., 2007, Fontan 2011] or soil 
mechanics [Meier et al., 2008, Levasseur et al., 2008]. They were just using different 
mechanical models (analytical or numerical) or different algorithms to solve their problem 
(PSO, descent gradient, ant colony, genetic algorithm, etc.). Inverse analysis is based on 
the simple concept of solving an equation to find the n values Xn respecting equation 1, 
with M: the mechanical model corresponding to the real behaviour of the analysis and Ym: 
the m measurement carried out on site.  
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 Ym = M(Xn) (1) 

Solving this problem is mechanically difficult due to (a) the accuracy of the measurements 
Xn which contain observational error, (b) the number of measurement data - it is necessary 
to respect the following relation m > n to identify a single value otherwise, a front of 
solutions will be identified -, (c) the accuracy of the mechanical model M. We consider that 
the accuracy of the model is well known. The nature of the model can be either analytical or 
numerical using the finite element method (FEM) as it will be explained in the following 
sections. One of the main problems during the development of inverse analysis is the 
limitation of use regarding the algorithm in charge of solving these equations. Classical 
algorithms like Descent Gradient, Cholesky, Lower Upper method are efficient for perfect 
data, which is not the case in engineering. Usual algorithms have often a limited efficiency 
because of local minima and observational errors on field data. This justifies the use of meta-
heuristic algorithms that are capable of overcoming the presence of local minimum and to 
converge towards the solution of the problem. In this chapter, we will present two different 
applications based on the inverse analysis using the PSO algorithm. The first application is 
the identification of structural parameters like stiffnesses of a continuous beam laying on 
three elastic supports through the resolution of an objective function. The second work is 
about a resolution of contradictory multi-objective functions. The next section will present 
the principles of the inverse analysis and the PSO. The following section is about the one 
objective function work, including a discussion about the various sources of errors that can 
strongly impact the accuracy of the parameter identification. The last part is about the work 
focused on a multi-objective resolution.  

2. Principle of inverse analysis and particle swarm optimization 
The principle of the direct inverse analysis is to find the most appropriate values Xn to find 
the data Ym through a mechanical model M. This method is not always efficient due to the 
presence of noise on data that can strongly impact the result. Then, an indirect inverse 
analysis is more appropriate. In this case, the objective is to minimize the error between the 
real data Ymreal and predicted data Ympredicted obtained through a mechanical model, cf. 
defined equation 2. Thus, the new objective is to minimize the objective function Fobjective, cf. 
equation 3, finding the appropriate parameters to identify Xn with Ypredicted. In the case of 
multi-objective functions, several functions Fiobjective are minimized simultaneously in order 
to reach an optimal compromise.  

This approach is an indirect inverse analysis where the impact of the metrology, which 
defines Ymreal data, is strongly impacting the accuracy of the identification of parameters. So 
as to solve this difficult NP–complete Problem, meta-heuristic algorithms are very efficient 
[Kennedy, 1995]. The PSO is a powerful algorithm quickly converging to the solution of the 
problem [Kaveh 2009] where local minima are then not such an important problem unlike 
when using a descent gradient algorithm. This advantage is also an inconvenient because of 
the lack of capabilities to correctly explore the n dimensions of research space containing the 
parameters to identify. Another advantage is the small number of parameters to choose 
beforehand so as to run the algorithm, which means that the knowledge of the user is not 
another source of error during the identification process. Besides, several comparison tests 
were carried out between different meta-heuristics and the PSO algorithm was considered 
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as being one of the most efficient in terms of accuracy and time cost computing [Fan 2006, 
Hammouche 2010]. 

 Ympredicted=(M (Xn))m (2) 

min Fobjective( Xn )   min
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(3) 

2.1 Particle swarm optimization (PSO) 

Particle swarm optimization (PSO) is a swarm intelligence technique developed by Kennedy 
and Eberhart (1995). This technique, inspired by flocks of birds and shoals of fish, has 
proved to be very efficient in hard optimization problems. The swarm is composed of 
particles, a number of simple entities, randomly placed in the search space of the objective 
function. Each particle can interact with members of the swarm that are its social 
neighbourhood. It can evaluate the fitness at its current location in the search space, it 
knows its best position ever visited and the best position of its social neighbourhood. It 
determines its movement through the search space by combining these information, and 
moving along with the corresponding instantaneous velocity. A particle position is better 
than another one if its objective function is better; (better means smaller than if it is a 
minimization problem and greater than if it is a maximization problem). 

The social neighbourhood of a given particle influences its trajectory in the search space. The 
two most commonly used neighbourhood topologies are the fully connected topology named 
gbest topology and the ring topology named lbest topology [Kennedy and Mendes, 2002]. In the 
fully connected topology the trajectory of each particle is influenced by the best position 
found by any particle of the swarm as well as their own past experience. Usually the ring 
topology neighbourhood comprises exactly two neighbours, every particle is connected to 
its two immediate neighbours, one on each side with toroidal wrapping. With a fully 
connected topology the swarm converges quickly on the problem solution but is vulnerable 
to the attraction of local optima, while, with ring topology, it better explores the search space 
and is less vulnerable to the attraction of local optima. Various neighbourhood topologies 
have been investigated in [Kennedy, 1999; Kennedy and Mendes, 2002; Mendes et al., 2004] 
(fig.1). The main conclusion was that the difference in performance depends on the topology 
implemented for a given objective function, with nothing suggesting that any topology was 
generally better than any other [Poli et al., 2007]. 

If the objective function is n dimensional, the position and velocity of any particle can be 
represented as a vector with n components. Starting with the velocity vector, vp =  (vp,1 , . . .  , 
vp,n ), each component, vp,i, is given by equation (4). For the position vector xp = (xp,1, ... , xp,n), 
each component xp,i is given by equation (5). 

 
vp ,i (t 1)   vp ,i (t) c1r1( pp ,i (t) xp,i(t)) c2r2 (g p ,i (t) xp ,i(t))  (4) 
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xp ,i (t 1)  xp ,i (t) vp ,i (t 1)

 (5) 
where xp,i(t) is the ith component of the position of the particle i and vp,i(t) the ith component 
of its velocity; pp,i is the ith component of the best position ever visited by the ith particle; gp,I 

is the ith component of the best position ever visited by the neighbourhood of the particle; 
is called inertia weight, it is used to control the impact of the previous history of velocity 
on the current one; r1 and r2 are uniformly distributed random numbers between 0 and 1; c1 
and c2 are positive acceleration constants. The formula (4) is used for each dimension of the 
objective function, for each particle and synchronously at time step for all the particles of the 
swarm. 

 
Fig. 1. Illustration of neighbourhood topologies from [Mendes et al., 2004]:  
Fully connected (All), Ring, Four clusters, Pyramid and Square. 

2.2 Discrete binary Particle Swarm Optimization (DPSO) 

Kennedy and Eberhart (1997) have introduced a discrete binary version of PSO (DPSO) that 
operates on binary variables (bit, symbol or string) rather than real numbers. The difference 
between the PSO and DPSO definitions is in the velocity updating rules where the position 
updating rule xp,i(t+1) (7) is based on a logistic function (6). The introduction of DPSO 
extends the use of PSO to optimization of discrete binary functions as well as functions of 
continuous and discrete binary variables at the same time.  

 
S(vp,i(t 1))  1

1 evp ,i (t1)
 

(6)
 

 

xp,i (t 1)  1   if    S(vp,i(t 1))

      0   otherwise  
(7)
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Where  is an uniformly distributed random number between 0 and 1 

Michaud et al. (2009), to be able to handle the optimization of functions including more than 
two discrete variables, have generalised the discrete binary version of PSO to a discrete n-
ary version of PSO (8). 

 

xp,i (t 1)  nk    if  k1  S(vp ,i(t 1))

    nl    if   l1  S(vp ,i(t 1))  l    with  1 l  k 1

    n1    if  1  S(vp ,i(t 1))
 

(8)

 
where 1, … k-1 are strictly ordered uniformly distributed random numbers between 0  
and 1 

3. Application to structural problems 
This section presents the results of the work carried out on a continuous beam laying on 
three elastic supports. A numerical code were developed using real data (synthetic data in 
the case of numerical analysis), a FE model of the structure as the mechanical model, and the 
PSO. The flowchart of the code is presented figure 2. As it was explained above, the code 
combined (a) a mechanical model of the structure (numerical or analytical), (b) a field data 
generator and (c) a particle swarm optimisation algorithm (PSO) to iteratively minimize the 
distance between field data and predicted data. This work had been realized on both a 
numerical case and at real scale case. The influence of the metrology had been studied by 
changing either the number of measurement data to identify the three stiffnesses, or the 
level of noise of sensors, or the localization of the sensors on the beam. The developed code 
using the PSO succeeds to estimate the stiffnesses with accuracy according the different 
sources of errors taking into account during the experiences. More synthetic experiences 
were carried out to identify the different sources of errors by using this code that can impact 
the accuracy of the identification process as:  

 error from the accuracy of location sensors,  
 error from the sensors placements,  
 error from the optimization algorithm used during the identification process, 
 the sensitivity of the unknown parameters to the field data. 

Both numerical and real experiences were carried out to validate the methodology and to 
highlight the influence of the input data (here displacements data) on the quality of 
identification. A general numerical frame was developed, combining different tools and 
methods (inverse analysis, FEM, PSO). The efficiency in terms of CPU time of the PSO to 
converge towards the solution of the problem allows the integration of a FE model of the 
structure without any problem. A second part of this work focussed on the different sources 
of error that may alter the accuracy of the parameters identification process. It is shown on 
two structures, a continuous beam bearing on three elastic supports, cf. fig. 3, and a half 
frame structure, cf. fig. 4, that four points strongly impact the parameter identification. 
Several experiences were carried out, considering different metrology set, i.e. by modifying 
either the number of sensors, or their accuracy or their location on the structure. Several 
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recommendations are mentioned to help engineers to prepare as best as possible their 
metrology set in order to do an identification of parameters using the inverse analyse 
concept with the PSO. 

 
Fig. 2. Flowchart of code based on the concept of the inverse analysis. 

3.1 Framework and objectives of both synthetic and real experiences 

Concerning numerical experience, the following work relies on either numerical model 
using the finite element (FE) software Castem©, or analytical model. This means that “field 
data” are also fully synthetic. In order to reproduce what happens on field data with real 
sensors, introducing some noise disturbs the original “true” values that are first generated, 
using a controlled random process. The result is then synthetic “noised” data at each 
location where a sensor can be located. It is from these “noised” data that the inversion 
process is carried out. The main advantage of the synthetic simulation is that, the “true” 
values being also known, it is always possible to quantify the quality of the estimation (i.e. 
distance between “true” and estimated values), making possible detailed analysis of errors 
sources. Using exact data uexact obtained from the mechanical model and a random 
coefficient β generates the synthetic field data, uinsitu, cf. Equation10. This coefficient models 
the magnitude of the error of measurement, which depends on the accuracy of the sensors. 
It is assumed to be normally distributed with a zero mean, and a given standard error ε (the 
various values of ε are: 0% or 1% or 3% or 5%), cf. Equation9 that simulates sensors of 
different quality. Those errors should cover all the sources of errors and uncertainties 
concerning the measurement process either due to the device, or to the other causes 
(environmental conditions, electronic noise, etc.). The errors arising on different sensors are 
assumed to be uncorrelated. As soon as ε exist, it is impossible for Fobj to converge towards 
zero [Fontan et al., 2011]. 
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 uinsitu = uexact * (1+ β) (9) 

 β = (0, ε) (10) 

The real experience was carried out on a quite similar structure with the numerical model of 
the beam bearing a three elastic support. The main difference is due to the integration of 
several components so as to model the effect of the soil structure interaction. These 
structures are described section 3.1.1. 

3.1.1 Presentation of the studied structures 

The first numerical example is that of a continuous beam bearing on three elastic supports, 
cf. fig. 3 and named STR1. It models a wooden beam bearing on three elastic supports, with 
two equal spans Li = 1.35 m which has also been the support of a “physical experience” in 
the same research program, not detailed here [Hasançebi et al., 2009 and Li et al., 2009]. The 
section is a square 7.50 x 7.50 cm². The beam is assumed to be homogenous and the Young’s 
modulus is equal to 10 GPa. A 50 daN/m load is uniformly distributed all along the beam. 
The parameters that must be identified from the measurements are the stiffnesses of the 
three elastic bearings (modelled as Winkler springs), whose true values (known in this 
synthetic model) are respectively: k1 = 28726 daN/m, k2 = 9575 daN/m, k3 = 2209 daN/m. 
The true values of the support stiffnesses result in a large settlement on the third bearing 
(bearing 1 is the stiffer and bearing 3 is the softer). Ten measurements of displacement were 
extracted to generate the synthetic field data. The abscissas of those ten displacements are 
given Table 1. Four metrology sets, called CMi are given at Table 1. Those metrology sets are 
created to stress either the number of sensors, or their localisation on the beam for a same 
number. This first example will be used in order to study the influence of the number, 
accuracy or localisation of the sensors on the accuracy of the parameters identification. 

The second numerical structure is a half frame, cf. fig. 4., named STR2. The column is 
embedded at its foot whereas the beam is articulated. The beam is 4.00m long and the 
column is 5.00 m high (H). The section of the beam is an IPE270, (inertia Ibeam= 5790 cm4) and 
the column is a HEA340 (inertia Icolumn= 27700 cm4). The beam and the column are made of 
standard steel (Young modulus E = 210 GPa). A distributed load q = 500 daN/m, is 
vertically applied on the beam whereas a horizontal concentrated load (Flat = equals 1000 
daN) which is applied on the column at its two thirds. The parameters to identify are the 
flexural stiffnesses of the beam EIbeam and of the column EIcolumn. The metrology set is made 
of six displacements sensors. Three sensors are evenly distributed on the beam and the 
others on the column, cf. fig. 4. The analytical relationships giving the displacements for 
each sensor have been explicated as functions of E, Ibeam, Icolumn, q, Flat, L and H using the 
beam theory. 

Concerning the real experience, cf. fig. 5, a continuous wooden beam of 3.00 m long is 
bearing on three different supports (Pinus pinaster, square section 7.50x7.50 cm2, Young’s 
modulus equals 10 GPa). This structure is named STR3. The distance between supports is 
1.35 m. Each support is made of a transverse beam, or Secondary Beam, SB. Varying the 
span of the SB comes to vary the support stiffness. Each SB lies on a wooden plate, which 
relies on its four sides on a fully rigid concrete support. This physical model reproduces the 
main patterns of a bridge deck (the continuous beam) bearing on foundations (the beams 
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SB) lying on a deformable soil mass (here modelled by the wooden plate). This three-
component system has some complexity, typical of the soil–structure interaction: 

q
x

y

L2L1

k1 k2 k3
E1 E2E 

 
Fig. 3. Continuous beams bearing on three elastics supports with a distributed load, ki and Ei 
are the unknown parameters. 

 
 Abscissa (m) of the used sensors function to the metrology set 

Metrology 
set 

x1 = 
0.00 

x2 = 
0.45 

x3 = 
0.65 

x4 = 
0.90 

x5 = 
1.30 

x6 = 
1.35 

x7 = 
1.40 

x8 = 
1.80 

x9 = 
2.25 

x10 = 
2.70 

CM1 o o o o o o o o o o 
CM2  o   o      
CM3 o    o     o 
CM4  o o o       

 Abscissa of a sensor positioned at the abscissa of an elastic support 
o Used sensor for a metrology set 

Table 1. Positions of sensors used during the identification process function to the  
metrology set. 

 

L

H

q

Flat

xF = 2/3H

E,Ibeam

E,Icolumn

Displacement sensor

H/3

H/2

2H/3

L/3
L/2 2L/3

 
Fig. 4. Half truss structure with its loads; EIbeam and EIcolumn are the unknown parameters. 
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Fig. 5. Experimental device reproducing the soil–structure interaction for a two-span 
continuous beam. 

a. the supports of the SB can move, because of the loading and the flexibility of the plate 
support, 

b. because the supports of the primary beam are not rigid, the value of the external load 
transferred to each of these three supports depends on their stiffness (i.e. of their 
displacement. 

3.1.2 Presentation of the objectives to reach by experience 

Two kinds of numerical structures and one real structure have been studied to reach several 
objectives and to highlight several points: firstly, the feasibility of the identification process 
using the PSO as an efficient tool and, secondly to clearly identify the sources of errors 
which occur during an identification process.  

The real experiment, applied on STR3, focused on the identification of mechanical 
parameters and studied the impact of the localisation of used sensors. Indeed, the goal of the 
numerical experiments was to study the influence of: 

- the noise induced by the meta-heuristic algorithm applied on STR1, 
- the noise measurement applied on STR1, 
- the impact of the interaction of the parameters to identify applied on STR2. 

For each numerical experiment, the identification process is repeated 20 times. Those 
simulations are using 20 sets of noise data as it is explained in the following section. The 
average of the identified parameters (20 values per parameter per experiment), their 
standard deviation and their coefficient of variation (CV) are calculated. The ending 
conditions of the identification process are either (a) the maximum number of iterations is 
fixed at 35, it has been shown in [Fontan et al., 2011] that increasing the number of iterations 
is not efficient in terms of gain about the Fobjec in this case, or (b) the threshold of the Fobjec is 
fixed at 10-5. As soon as the Fobjec value is below this threshold, the identification process 
automatically stops. 
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3.2 Results of the identification process: real experience 

The real experimental tests use three different support sets so that the length of the SB are 
the following according the three configurations studied:  

- configuration 1 : lSB1 = 0.50m, lSB2 = 0.50m and lSB3 = 0.50m, 
- configuration 2 : lSB1 = 0.30m, lSB2 = 0.90m and lSB3 = 1.30m, 
- configuration 3 : lSB1 = 0.20m, lSB2 = 0.50m and lSB3 = 1.30m, 

A 3D finite element model, 3DFEM, presents the global experience fig. 6. This 3DFEM helps 
to estimate the equivalent stiffnesses of the elastic support of the main beam considering the 
association of the stiffnesses of the SB and the plate as a Winkler spring of which stiffness by 
support is unknown. The fig. 7 gives the displacements measured during the experimental 
tests for each support set (illustrated by the points), whereas the displacements obtained 
with 3DFEM for each support set is illustrated by the continuous curve. The good 
correlation between measurements and simulations confirms the good quality of the 3DFEM 
model and justifies both a priory estimation of the equivalent stiffness by support and the 
limits of the space research using for the PSO.  

 
Fig. 6. FE model of the physical model with the main beam bearing on SB and the  
wood plate. 

Then, it was possible to constrain the research domain for the equivalent stiffnesses ki 

between 0 and 2 MN/m. The physical model is used with the distributed load and for the 
three configuration of support sets defined above. The vertical displacements are measured 
on all sensors. Thus the IdP software is used, where the PSO is combined to a 2DFEM 
mechanical model presented fig. 8. So as to analyse the influence of the number and location 
of sensors, the efficiency of the identification process is compared by considering three 
possible sensor sets: 

- Set A: three sensors (n°1, n°5 and n°9, cf. Table 2), located on the three supports, 
- Set B: ten sensors (n°1 to n°10, cf. Table 2) regularly spaced all along the beam, 
- Set C: three sensors (n°3, n°5 and n°7, cf. Table 2), concentrated in the left span. 

The value of the objective function at convergence (well above 10-12) is due to the 
measurement noise. The stiffnesses presented in Tables 3–5 are identified by the software for 
the three respective sensor sets (A, B and C). For each support set, each Table compares, for 
the three supports sets, identified values with ‘‘reference values’’ obtained with the 3DFEM 
(Av. means average and s.d. means standard deviation). The identification process (PSO 
combined with the mechanical model) was repeated ten times for each case (support set x 
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sensor set), keeping the same input data (measurements). Since the PSO has some random 
dimension, the values obtained as a final solution differ from one simulation to another. 

The tables provide the average value and the standard deviation calculated from these 10 
simulations. Let us consider first the results obtained for sensor set B (using data from all 10 
sensors for inversion). All simulations converge towards similar values, leading to a small 
standard deviation. In addition, the identified values are close to the ‘‘reference values’’, 
which confirms the ability of the process to correctly identify the unknown parameters. The 
small difference between reference and identified values is not a problem when one reminds 
that the former cannot be considered as the ‘‘true’’ solution (it is only a good indicator of the 
range of the true solution). These results confirm the efficiency of the identification process. 
When comparing the results of Table 4 with those of Table 5, it can be seen that the sensor 
sets A and B lead to almost the same results. This shows that using three well-located 
sensors can be sufficient. It is not the case for Set C, which shows some limits for identifying 
the stiffnesses on external supports 1 and 3. This confirms, on a practical application, that 
the location of sensors has a high influence on the quality of the identification. 

 
 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 

Abscissa (m) 0.015 0.15 0.60 0.91 1.05 1.58 1.94 2.40 2.90 3.00 

Table 2. Abscissa of the sensors used during the real experience. 

 
Fig. 7. Experimental displacements measured and obtained by 3D-FEM for the different 
support sets. 

 
Fig. 8. Localisation of the sensors used in both numerical and physical models. 
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Identified stiffness’ 3D FEM 

k1 (MN/m) k2 (MN/m) k3 (MN/m) k1 
(MN/m) 

k2 
(MN/m) 

k3 
(MN/m) Av. s.d. Av. s.d. Av. s.d. 

Support 
set 1 2.586 0.08 0.372 0.02 0.792 0.02 0.652 0.405 0.600 

Support 
set 2 1.874 0.09 0.346 0.01 0.162 0.01 1.521 0.366 0.214 

Support 
set 3 1.799 0.08 0.429 0.04 0.073 0.01 1.455 0.419 0.092 

Table 3. Identified equivalent stiffnesses using sensors from set C. 
 

 
Identified stiffness’ 3D FEM 

k1 (MN/m) k2 (MN/m) k3 (MN/m) k1 
(MN/m) 

k2 
(MN/m) 

k3 
(MN/m) Av. s.d. Av. s.d. Av. s.d. 

Support 
set 1 0.726 0.05 0.401 0.02 0.681 0.02 0.652 0.405 0.600 

Support 
set 2 1.549 0.06 0.371 0.01 0.251 0.03 1.521 0.366 0.214 

Support 
set 3 1.372 0.06 0.449 0.03 0.089 0.00 1.455 0.419 0.092 

Table 4. Identified equivalent stiffnesses using sensors from set A. 
 

 
Identified stiffness’ 3D FEM 

k1 (MN/m) k2 (MN/m) k3 (MN/m) k1 
(MN/m) 

k2 
(MN/m) 

k3 
(MN/m) Av. s.d. Av. s.d. Av. s.d. 

Support 
set 1 0.689 0.00 0.398 0.00 0.721 0.00 0.652 0.405 0.600 

Support 
set 2 1.602 0.00 0.381 0.00 0.198 0.00 1.521 0.366 0.214 

Support 
set 3 1.333 0.04 0.433 0.02 0.089 0.02 1.455 0.419 0.092 

Table 5. Identified equivalent stiffnesses using sensors from set B. 

3.3 Sources of errors impacting the accuracy of the identification process:  
Synthetic experience 

Concerning synthetic experience, the following works relies on either numerical using the 
finite element (FE) software Castem©, or analytical model. 

3.3.1 Error from the meta-heuristic algorithm 

Twenty identification processes were carried out without any noise applied on field data 
(i.e. considering perfect measurements). These tests were applied on structure 1 or STR1 
using the CM1 metrology set, cf. Table 1. This case corresponds to a perfect case with a high 
number of sensors, evenly distributed and no measurement error. The convergence curve of 
the best particle of the swarm is presented Figure 9 for one simulation. The three elastic 
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stiffnesses were correctly identified but the identified parameters show slight variations for 
each of the 20 simulations. The results are presented in Table 6. 

Results of the identification 
Reference Average Standard Dev. C.V. 

k1 (daN/m) 28726.2 28725.67 31.92 1.11E-03 
k2 (daN/m) 9575.2 9574.64 2.68 2.80E-04 
k3 (daN/m) 2209.7 2209.67 5.41 2.45E-03 

Table 6. Statistical analysis of the identified parameters using exact field data, structure 1, 
metrology set CM1. 

 
Fig. 9. Convergence curve of Fobjec during an IdP process using exact field data. 

The average value of each unknown parameter is very close to the reference but the 
standard deviation in not zero, which means that all solutions are not identical, even in this 
perfect case. Some scatter due to the meta-heuristic algorithm affects the identification 
process. However this scatter remains small. In real cases, it will be overshadowed by other 
error sources that will be studied now. 

3.3.2 Sensors with measurement noise 

In this section, the three elastic stiffnesses are identified on structure 1, STR1, using the 
metrology set CM1. The objective is to show how noisy data impact the accuracy of the 
predicted parameters. Several values of ε(1%, 3% and 5%) were used to noise the field data. 
20 identification processes with a different noise for each identification were carried out. The 
results are given in Table 7. The average, standard deviation and coefficient of variation C.V. 
illustrate the impact of noise on the accuracy of the processes. The larger the ε coefficient is, 
the wider the scatter appears to be coherent. It can be also noticed that a random noise from 
a normal distribution with a zero mean, and a varying standard error ε = 5% does not 
impact so much the prediction of the identified parameters: the error on the average of 20 
simulations is about 1% and the C.V. is between 1 and 7% for this metrology set made of 10 
sensors evenly distributed. The loss of accuracy is linear with the standard deviation of the 
random error, cf. table 7 and figure10. The accuracy of the predicted parameters is linearly 
correlated with the accuracy of the sensors.  
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 Results of the identification 

 Noise ε Reference Average 
Error on 
average 

(%)
Standard Dev. C.V. 

k1 (daN/m) 1% 28726.2 28769.23 0.15 379.97 1.32E-02 
k2 (daN/m) 1% 9575.2 9604.43 0.31 78.43 8.17E-03 
k3 (daN/m) 1% 2209.7 2206.21 -0.16 26.6 1.21E-02 

k1 (daN/m) 3% 28726.2 28960.58 0.82 972.11 3.36E-02 
k2 (daN/m) 3% 9575.2 9599.53 0.25 174.73 1.82E-02 
k3 (daN/m) 3% 2209.7 2204.8 -0.22 87.36 3.96E-02 

k1 (daN/m) 5% 28726.2 28593.17 -0.46 1421.14 4.97E-02 
k2 (daN/m) 5% 9575.2 9618.48 0.45 366.62 3.81E-02 
k3 (daN/m) 5% 2209.7 2226.67 0.77 143.67 6.45E-02 

Table 7. Statistical analysis of the identified parameters using noised field data, structure 1, 
metrology set CM1. 

3.3.3 Dependence between unknown parameters 

The studied structure is here the structure 2, STR2, i.e. the half truss structure presented at 
section 3.1.1. Let us assume that one must identify the Young Modulus E, the inertia of the 
column Icolumn and the inertia of the beam, Ibeam. Four different levels of noise on field data 
(ε = 0% (perfect data), then ε = 1%, 3% and 5%) are considered and simulations are 
repeated 20 times. The results are presented in Figures 11and 12and Table 8.The first result 
is that one obtains a front of solutions, since it is not possible to uncouple the weight of E 
from that of inertia: for the same product EIi, there exists an infinite number of acceptable 
pairs {E, Ii = (EIi)/E = k/E} satisfying the same criteria. In order to estimate the sensitivity of 
the identified parameters to the field data, the sensibility of the displacement to stiffnesses 
was calculated. EIcolumn or EIbeam are varied in the [-50%; +50%] range and the displacement 
is calculated on 3 points of the beam, and on three points of the column, cf. fig. 4. Only 
displacements perpendicular to the main axis of the element are calculated. 
 

Exact field data Noisy field data with ε = 1% 

 
Average
(MN.m²)

Standard 
Dev. 

(MN.m²) 
C.V.   

Average
(MNm²)

Standard 
Dev. 

(MN.m²) 
C.V. 

EIbeam 12.16 0.01 5.87E-04 EIbeam 12.18 0.1 7.85E-03 
EIcolumn 58.15 0.1 1.76E-03 EIcolumn 59.34 4.81 8.11E-02 

Noisy field data with ε = 3% Noisy field data with ε = 5% 

 
Average
(MN.m²)

Standard 
Dev. 

(MN.m²) 
C.V.   

Average
(MN.m²)

Standard 
Dev. 

(MN.m²) 
C.V. 

EIbeam 12.25 0.21 1.75E-02 EIbeam 12.11 0.29 2.38E-02 
EIcolumn 61.96 8.4 1.36E-01 EIcolumn 57.53 8.27 1.44E-01 

Table 8. Statistical analysis of the identified parameters using noised field data, structure 3. 
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The results confirm that only some field data are sensitive to the stiffness variations. The 
stiffness variation of the column inertia (reversely beam) has only a negligible influence on 
beam (reversely column) displacements. Thus, during the identification process, the 
magnitude of the errors on sensors localized on the beam will not impact the column 
because a lack of sensibility, and reversely. A more detailed analysis Table 9 shows that 
sensitivity of column displacement to column parameters is slightly larger than the same for 
the beam. The sensitivity has been calculated as the ratio between the variation of the 
displacements at the studied point with the variation of the stiffness. Those results show 
that the displacements of the column are more sensitive to a variation of the stiffness of the 
column that for the beam and explain why the scatter of the identified stiffnesses 
EIcolumnfig.12 is more important that the scatter of the identified stiffnesses EIbeam. Indeed,  

 
Fig. 10. Illustration of the noise on field data and the dispersion of identified parameters  
ki, Structure 1, CM1. 

 
Fig. 11. Ibeam and Icolumn identified for varying magnitude of noise on field data, applied on 
the half truss structure 
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when field data on the column are noised, the inertia of the column to identified have to be 
badly identified from the reference value regards the magnitude of the noise. That result 
focuses how chosen of both the nature and the localisation of the field data regards the 
parameters to identified is important on the accuracy of the identification process. 

 
Fig. 12. Inertia and Young Modulus identified, structure 2, noised with ε = 3%. 
 

ucolumn1 ucolumn2 ucolumn3 ubeam1 ubeam2 ubeam3 
Variation of the stiffness EIcolumn -2,09 -2,09 -2,09 -0,04 -0,03 -0,02 
Variation of the stiffness EIbeam 0,21 0,24 0,31 -1,80 -1,87 -1,90 

Table 9. Sensitivity of the displacement on several points of the structure to the variation of 
the stiffnesses. 

4. Application to eco conception 
Taking into account environmental impact criteria in the preliminary eco-design of semi-
products or of full functional units is becoming more and more an issue for industry. It 
implies going through a life cycle analysis (LCA) that is now the international standard to 
evaluate such impacts. It is in fact the only way to compare the environmental impact of 
different products that fulfil the same function; and this, from the production of raw 
materials to the final destination. The fact that it is necessary to know the life cycle of a 
product makes it difficult to use the LCA during the preliminary eco-design stage. One way 
to tackle the problem would be to focus on one of the stages of the life cycle of the product 
and to consider it as independent from the other stages.  

The design process will be different if we are trying to: i) improve the environmental 
characteristics of a product while disturbing as little as possible its production process, ii) 
optimize the environmental impact of a product defined by end-use performances without 
restricting oneself to a particular process. The first case, frequent with manufacturers, being 
guided by the manufacturing process, can make it impossible to meet both the technical and 
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the environmental requirements in a given manufacturing scheme. The second approach, 
which is more prospective and open, is guided by the end-use properties that are required, 
and therefore can be tackled either in seeking an environmental optimum in a search space 
that is constrained by functional specifications or through a multi-objective optimization. 

The second approach is closer to conventional preliminary design. However, as multi-
objective optimization does not provide a single solution, but a set of possible solutions 
satisfying the design criteria among which the designer will be able to choose according to 
additional constraints, both approaches will be considered as preliminary (eco) design. 

The example that is presented here concerns the preliminary design of an outdoor decking 
taking into account its environmental profile (first approach). The initial choice was of a 
wood-plastic composite, this choice allowing the use of industrial by-products in a 
constrained search space. The optimum of the required properties will be obtained by multi-
objective optimization. 

4.1 A multi-objective optimization problem 

Design by multi-objective optimization implies simultaneous optimization of various 
contradictory objectives like it is illustrated below. 

If we take a simple example consisting in minimizing simultaneously the two following 
functions: f1(x) = x1  and  f2(x) = x2/ax1, the improvement of the first objective, f1(x), comes 
with a degradation of the second objective f2(x)). This contradiction expresses the fact that 
there does not exist an optimal solution regarding the two objectives, there are only optimal 
compromises.  

With this example we see that for a minimal f1 and thus x1 the lowest possible, we need the 
lowest possible x2 to minimize f2. In addition, the absolute minimum f2 is obtained with x1 
the highest possible and x2 the lowest possible. It is the taking into account of this 
contradiction between minimization of f1 and minimization of f2 that introduces the notion 
of compromise whether one favours f1 or f2. We see that from a purely algebraic point of 
view x1 cannot be null (division by zero). This observation introduces the fact that there is 
often a certain amount of constraints that must be met by the objective functions and/or 
their variables. These are also called parameters, optimization variables or design variables. 
The constraints that are specifications of the problem limit the search spaces of the 
parameters and/or the determining, for example, bottom or top values. A general multi-
objective optimization problem includes a set of k objective functions of n decision variables 
(parameters) constrained by a set of m constraint functions. It can be defined as below: 

Optimize 

f  f1(

x), f2( x),, fk ( x)   

subject to gi(
x)  0 for i  1,,mand 

hj (
x)  0 for j  p 1,, p

 

where 
x  (x1,x2 ,,xn )n

 is the vector of decision variables,  

fi :n  for i  1,,k  are the objective functions and  

gi ,hj :n  for i  1,,m and j  1,, p  are the constraint functions of the problem 
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A compromise will be said optimal if every improvement of an objective induces 
degradation of another objective. A compromise whose objectives can be improved is not 
optimal. It is said to be dominated by at least another compromise, which is the one 
obtained after improvement of its objective functions. The optimal compromises are located 
on a front, named Pareto front (fig.13). The Pareto Dominance can be defined as below: 
u  (u1,,un )  is said to dominate 

v  (v1,,vn )  (denoted ) if and only if 
i 1,,k ,ui  vi and j  1,,k ,uj  v j 
A solution is Pareto optimal if and only if it is not dominated by any other solution [Van 
Veldhuizen et al., 2000; Reyes-Sierra et al., 2006 ; Zitzler et al., 2000]. A Pareto optimal 

solution, a vector of decision variables 
x  (x1, x2 ,, xn )n

, can be defined as below 
[Castéra et al., 2010]: 

 
x n   

x n :q  1,, k , fq ( 
x )  fq (x)  fq ( 

x )  fq (x)  (11) 
The presence of a Pareto front, thus a set of optimal non-equivalent solutions, allows the 
choice of an optimal solution with regard to economical of functional criteria, which are 
external to the solved problem of multi-objective optimization.  

f2 

f1 





 
Fig. 13. The Pareto front is constituted by the plain dots, the objective functions f1 and f2 at 
point β can still be improved to reach point α; therefore point β is dominated by at least  
point α. 

We will illustrate the multi-objective particle swarm optimization for the design of a wood-
plastic composite decking with three objectives [Michaud et al, 2009]. In this example, the 
optimization focuses on the creep, swelling, and exhaustion of abiotic resources functions. 
The design variables are mainly characteristics of raw materials such as timber particle sizes 
and chemical or thermal timber changes.  

5. The wood-plastic composite preliminary eco-design problem 
The wood-plastic composites (WPC) initially developed in North America for recycling 
materials – plastics and papers – they also enable a significant reduction of the plastic 
coming from the petrochemical industry. There is thus in their development both a definite 
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economic advantage and a potential environmental interest. Nevertheless when decking is 
used outdoor, these products exhibit a certain amount of weakness points and 
contradictions: in order to allow a homogeneous extrusion and to prevent the material from 
becoming too fragile, a minimal quantity of thermoplastic (about 30 percent in the case of a 
PEHD/wood composite) is necessary. In addition, chemical additives are included in the 
formula in order to improve compatibility between the two components; one being polar 
and the other apolar. 

The WPC preliminary eco-design requires first that the designer solves a multi-objective 
optimization problem. Usually one of the three strategies below is used: 

- optimization of one objective with constraints from the others, which leads to a single 
solution;  

- optimization of a weighted function including the different objectives, which leads to a 
single solution; 

- Pareto optimization, which leads to a set of optimal compromises between the 
objectives that is well distributed in the space of solutions.  

The population based search approaches- genetic algorithm (GA), ant colony (AC), particle 
swarm optimization (PSO), etc…- are well adapted to the Pareto optimization with more or 
less efficiency. The PSO technique, like other evolutionary techniques, finds optima in 
complex optimization problems. Like GA, the system is initialized with a population and 
searches for optima by updating generations. However, unlike GA, PSO has no evolution 
operators such as crossover and mutation. PSO while traversing the search space is focused 
on the optimum, whereas GA explores the search space and then takes more time to find the 
optimum. In the WPC preliminary eco-design the main objective is to find the relevant 
optima to be able to choice an optimum with regard to economical of functional criteria; 
knowing that completely different composite formulations lead to equivalent composites in 
reference to the objective functions. Multi-objective PSO technique is specially and fully 
suitable for this problem. 

5.1 The wood-plastic composite preliminary eco-design modelling 

The modelling of WPC for decking application preliminary eco-design has required a 
multidisciplinary team (physicists and computer scientists). The modelling process 
consisted in: generating knowledge by some experiments, collecting knowledge generated 
and those from the literature and building up the influence graphs of relationships between 
the problem variables (fig.14). The three objectives considered in the preliminary eco-design 
of wood-plastic composite (creep, swelling and exhaustion of fossil resources functions) 
have been identified as critical weak points of the product [Michaud et al., 2009]. From an 
environmental point of view, exhaustion of fossil resources is, with the greenhouse effect, 
the weak point of this material. We will recall their definition in order to highlight the 
algorithmic nature of these functions. 

The creep function (def) 

The creep function, def(tref ), is an empirical non linear power function that has been fitted to 
bending experimental results. The magnitude of creep deformation is related to the elastic 
compliance 1/E. The kinetics of creep deformation is related to the viscosity of the 
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composite, . The fiber size distribution parameter kGRAN used in equation (13) is a discrete 
variable that can take three different values between 0.3 (random) and 1 (unidirectional)  

 
Fig. 14. The influence graph of relationships between the decision variables and the 
objectives. 

with an intermediate value calculated at 0.69 (partially oriented) – see Michaud et al, op.cit., 
whereas the other variables used in the equations (12), (13) and (14) are continuous. In fact 
the def function (equation 12), in its developed formula has an algorithm form due to the 
conditions on the discrete kGRAN. 

 
def (tref ) 

A  0
MOR   tref

Ne
0

MOR








E  
(12)

 
Where A and N are fitted parameters of the creep function model, σ0 is applied stress, σMOR is 
modulus of rupture of the composite material, tref is the time to reach a limit state deflection, 
E is the modulus of elasticity and ν is the apparent viscosity of the composite at room 
temperature. E and ν are calculated through a simple mixture law, as shown in equations 
(13) and (14). These equations reveal the main optimization variables, i.e. material 
properties, volume fractions and fibre orientation. 

 E  m (bioEbio  (1bio  add )Em ) addEadd  (kGRAN ).(1 m  add )E f  (13) 

   m (biobio  (1bio )m ) addadd  (1 m  add ) f  (14) 
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see table 10 for the meaning of other variables. 

 
xj Description Main relations 
x1 = λf Fiber ratio in composite formulation 0 x1  1 and x1= x1 (x4 +x5 +x6) 
x2 = λadd Additives ratio in composite formulation 0 x2  1 

x3 = λm Matrix ratio in composite formulation 0 x3  1, x3= 1-x1 -x2 and  
  x3= x3 (x7 +x8 +x9) 

x4 =αf Fiber ratio in Fiber component 0 x4  1 and x4 + x5 + x6 = 1 
x5 = αfrec Recycled Fiber ratio in Fiber component 0 x5  1  

x6 = αreinf 
Other reinforcement ratio in Fiber 
component 0 x6  1  

x7 = αm Thermoplastic ratio in matrix component 0 x7  1 and x7 + x8 + x9 = 1 
x8 = αbio Biopolymer ratio in matrix component 0 x8  1 
x9 = αtrec Recycled thermoplastic ratio in matrix  0 x9  1 
x10 = gran Fiber size distribution factor  discrete variable x10= {1, 2, 3} 
x11 = kt Fiber treatment factor discrete variable x11= {0, 1, 2, 3} 
x12 Viscoelastic properties of constituents  E, n 

Table 10. Variables X = {x1, x2, …, x12} related to the composite formulation. 

Water swelling function (SW) 

The swelling function due to water absorption, SW, is defined by equation (15). It expresses 
the fact that the swelling of the composite is the sum of the swelling deformations of all 
hygroscopic components present in the composite and accessible to water, e.g. wood, 
biopolymers…. The part representing the swelling of the fibres vanishes when the fibres are 
not accessible to water (below a given percolation threshold . In addition the swelling 
capacity of wood fibres can be changed by thermal or chemical wood modification, which is 
expressed in equation (15) by the discrete variable kt that can take three different values 
(low, medium or high effect). The SW function is also an algorithm: there are conditions on 
the discrete variables (kt, m and ω) and on the threshold variable λ0. 

 

SW  (1 frec
(1 k fr ))kt (1 em. f

1

) f SWf biomSWm   if   f biom  0

     bio m SWm   otherwise  
(15) 

where 

0 is the percolation threshold; kfr is the user defined coefficient for influence of recycled 
fiber onto swelling; kt is the user defined coefficient for influence of treatment onto swelling; 
m, , SWf and SWm are swelling function parameters. 

See table 10 for the meaning of other variables. 

Exhaustion of fossil resources function (efr) 

The exhaustion of fossil resources function, efr, is defined as an addition of two factors 
(equation 16): one for fibres used and one for the non-renewable part of the polymer if the 
polymer is a blend. 
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 efr  a1. f  a2.(1bio )(1  f )  (16) 
where the coefficient a1 represents the impact of fiber processing and treatment on the 
exhaustion of fossil resources, and the coefficient a2 reflects the impact of non renewable 
thermoplastic and additives production and processing. Other factors have an impact on efr, 
such as consumption of non-renewable energy during composite assembly, production of 
additives... For simplification they have not been considered. Normally a2 is expected to be 
higher than a1. The balance between the two coefficients influences the environmental 
optimization. 

See table 10 for the meaning of other variables. 

5.2 Application of the MOPSO algorithm 

In the design of wood-plastic composite (WPC), the creep and swelling functions are 
conflicting: the swelling of the composite growth when the creep decreases with the rate of 
fibers (wood). The MOPSO deals with such conflicting objectives; even if the representation 
of each objective is an algorithm and thus with a high number of functions. In our WPC 
preliminary design we have three objective functions with two of them represented each by 
an algorithm utilizing several variables.  

Dealing with continuous and discrete variables 

The equations (5) and (8) are used as position updating rule of respectively real and discrete 
variables. The equation (4) is used as velocity updating rule for all variables. During the 
optimization process, the real variables converge to their optima according to the objective 
functions, whereas each discrete variable randomly traverses its space of definition and 
consequently its best solution is identified. Due to the discrete variables, the solution space 
of the multi-objective optimization problem is discontinuous (fig. 15) 

efr 

def (mm) 

SW (%) 

 
Fig. 15. Solution space of the multi-objective (def, SW and efr) optimization problem 
determined from a MOPSO of 1000 generations of 30 particles. 
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Multi-objective optimization 

In this work we have applied the MOPSO method described in [Alvarez-Benitez et al., 2005]. 
In this method only the fully connected topology is used to calculate the position of each 
particle for each objective function and then the Pareto dominance test is applied to each 
particle regarding the particle's positions stored in the extended memory. If the position of a 
particle dominates some particle's positions in the extended memory, the position of the 
particle is stored in the extend memory and the ones dominated are discarded from the 
extended memory. We used, as end condition of the optimization process, a given maximum 
number of iterations. Of course the swarm is randomly initialized and the number of its 
particles is given. The Pareto front is constituted by the particle's positions in the extended 
memory at the end of the optimization process. 

The efficiency of the optimization is hardly influenced by the constant parameters ω, c1 and 
c2 in the equation (4). Such parameters have to be experimentally adapted to each 
optimization problem. For our problem the parameters ω, c1 and c2 have been respectively 
settled to 0.63, 1.45 and 1.45 (fig. 16). 

efr 

def (mm) 

SW (%) 

 
Fig. 16. The Pareto front of the multi-objective (def, SW and efr) optimization problem 
determined from a MOPSO of 1000 generations of 30 particles. 

6. Results and discussion 
Stability of the Pareto front  

The Pareto front is stable regarding the swarm size and the number of generations of 
particles (number of iterations used as end-condition of the optimization process) [Ndiaye 
et al. 2009]. For a given swarm size, the number of particles in the Pareto front increases 
with the increasing number of generation of particles according to an affine law, but the 
shape of the front remains the same (fig. 17a); and for a given number of generation of 
particles, the number of particles in the Pareto front increases with the increase of the 
swarm size (fig. 17b).The size of the Pareto front can be rather large and therefore the 
swarm size and the number of iterations should be fitted in order to obtain a reasonable 
front size. 
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Fig. 17. Stability of the Pareto front: a) constant number of particles,  
b) constant number of iterations [Ndiaye et al., 2009]. 

Analysis of MOPSO solutions on composite formulations 

Two solutions very close in the Pareto front can refer to two completely or slightly different 
composite formulations. Table 11 illustrates two kinds of differences: 

 The values of decision variables of the solutions (a) and (b) are completely different: 
the solution (a) contains a low rate of plastic (36%) without biopolymer, randomly 
oriented short fibers with 9% of recycled ones and a high treatment level; the solution 
(b) contains a high plastic content (59%) with 39% of biopolymer thermoplastic, 
randomly oriented short fibers with 2% of recycled ones and a high treatment level. 
These two solutions are rather equivalent regarding the objective functions values: for 
(a) 1mm/3%/4.67 for creep/swelling/efr and 1.9mm/3%/4.10  for (b).  

 The values of decision variables of the solutions (c) and (d) are slightly different: the 
solution (c) contains a slightly high rate of plastic (46%) with 44% of biopolymer, 
unidirectionally oriented short fibers without recycled ones and a high treatment level; 
the solution (d) contains a high plastic content (57%) with 48% of biopolymer 
thermoplastic, unidirectionally oriented short fibers without recycled ones and a high 
treatment level. These two solutions are rather equivalent regarding the objective 
functions values: for (a) 1mm/3%/3.68 for creep/swelling/efr  and 1.4mm/3%/3.67  
for (d).  

These results show a significant gap for raw materials content and underline the power of 
such optimization process offering new possibilities of preliminary design.  

 

Solution 
λm

(%) 
αbio

(%) GRAN 
αfrec 
(%) kt 

Creep 
(mm) 

Swelling 
(%) efr  

a 33 0 2 9 2 1.0 3 4.67  
b 59 39 2 2 2 1.9 3 4.10  
c 46 44 3 0 2 1.0 3 3.68  
d 57 48 3 0 2 1.4 3 3.67  

Table 11. Examples of solutions in the Pareto front. 
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A large number of solutions 

The number of MOPSO solutions on composite formulations depends on the ratios between 
the components and their desired precision. The number of solutions grows in function with 
the precision of ratios between the components using a logarithm-like law. It starts at 1500 
solutions for a precision of 2 (the lowest possible precision) to more than 5000 for a precision 
greater than 5 (fig.18). The matrix ratio in composite formulation generates a peak of 
solutions around 75% for any precision of ratio. This large number of solutions makes them 
difficult to handle. One solution is to take into account, in the system process, the user of the 
system so he could fix the precision of ratios, and for each ratio, its desired range; the latter 
being included in the domain of validity of the variable representative of the ratio. For 
example if you want to formulate a wood-plastic composite with a matrix ratio lying 
between 30% and 40% without biopolymer, it is sufficient to restrict the range of the variable 
representative of the matrix ratio (m) between 0.3 and 0.4 and the one representative of the 
biopolymer ratio in matrix component (bio) between 0.0 and 0.0. In this case the number of 
solutions in the Pareto front fall down to 20. 
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Fig. 18. The influence of the precision of ratios in composite formulation on the number of 
solutions in the Pareto front. 

7. Conclusion 
This chapter described two examples of the civil engineering field in which PSO has been 
used. The first case is a structural problem when the second is a material problem. In both 
cases, the advantage of PSO have been highlighted: 

- The PSO algorithm is blind to the real physics, and can be easily adapted to a wide 
variety of engineering problem. The main issue is the definition of a relevant objective 
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function, which describes the goal to reach (mimic the physical field measurement at 
best in the first case, minimize a multi-objective function in the second one). 

- The PSO can be used either for mono-objective or for multi-objective problems. The 
quick convergence of the PSO to the solution of the problem and its capabilities to be 
blind to local minimum shows that this algorithm is particularly appropriate for solving 
such kind hard optimisation problems. 

- Thanks to its simplicity of use, the PSO can be combined with more sophisticated 
computations (like for instance finite element computations, which are used, as a “slave 
code”, in the direct model). 

- Moe practically, significant results have been obtained in the engineering field: 
- the first case has shown the impact of the relations between parameters to identify on 

the accuracy of the identification using the PSO. These examples focused on the several 
points to take into account (a) metrology set (i.e. number and locations), and (b) either 
the sensitivity of the field data on the parameters to identify or the independence 
between parameters to identify.  

- the second case has shown the easiness of handling the multi-objective particle swarm 
optimization (MOPSO) method and its interest in preliminary eco-design. The method 
provides a set of "interesting" solutions among which the designer will be able to refine 
the design process, introducing for instance processes, availability of raw materials and 
economic viability. There is no restriction on the number of objectives, provided their 
expressions and interactions can be clearly defined. We have used a MOPSO algorithm 
based on an extended memory technique to calculate a stable Pareto front for three 
objective functions: creep, swelling and exhaustion of fossil resources in the context of 
the environmental optimization of the wood-plastic composite. The creep and swelling 
functions are in fact algorithms using in the same time continuous and discrete 
variables. A flexible and multiplatform (Unix, Windows and Mac osx) computer 
program has been developed. 
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1. Introduction  
The radial basis function (RBF) network is a type of neural network that uses a radial basis 
function as its activation function (Ou, Oyang & Chen, 2005). Because of the better 
approximation capabilities, simpler network structure and faster learning speed, the RBF 
networks have attracted considerable attention in many science and engineering field. Horng 
(2010) used the RBF for multiple classifications of supraspinatus ultrasonic images. Korurek & 
Dogan (2010) used the RBF networks for ECG beat classifications. Wu, Warwick, Jonathan, 
Burgess, Pan & Aziz (2010) applied the RBF networks for prediction of Parkinson’s disease 
tremor onset. Feng & Chou (2011) use the RBF network for prediction of the financial time 
series data. In spite of the fact that the RBF network can effectively be applied, however, the 
number of neurons in the hidden layer of RBF network always affects the network complexity 
and the generalizing capabilities of the network. If the number of neurons of the hidden layer 
is insufficient, the learning of RBF network fails to correct convergence, however, the neuron 
number is too high, the resulting over-learning situation may occur. Furthermore, the position 
of center of the each neuron of hidden layer and the spread parameter of its activation function 
also affect the network performance considerably. The determination of three parameters that 
are the number of neuron, the center position of each neuron and its spread parameter of 
activation function in the hidden layer is very important.  

Several algorithms had been proposed to train the parameters of the RBF network for 
classification. The gradient descent (GD) algorithm (Karayiannis, 1999) is the most popular 
method for training the RBF network. It is a derivative based optimization algorithm that is 
used to search for the local minimum of a function. The algorithm takes steps proportional to 
negative of the gradient of function at the current situation. Many global optimization 
methods had been proposed to evolve the RBF networks. The genetic algorithm is a popular 
method for finding approximate solutions to optimization and search problems. Three genetic 
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operations that are selection, crossover and mutation, of the main aspects of GA evolve the 
optimal solution form an initial population. Barreto, Barbosa & Ebecken (2002) used the real-
code genetic algorithm to decide the centers of hidden neurons, spread and bias parameters by 
minimizing the mean square error of the desired outputs and actual outputs. The particle 
swarm optimization is a swarm intelligence technique, first introduced by Kennedy & 
Eberhart (2007), inspired by the social behavior of bird flocks or fish schools. The computation 
of the PSO algorithm is dependent on the particle’s local best solution (up to the point of 
evaluation) and the swarm’s global best solution. Every particle has a fitness value, which is 
evaluated by the fitness function for optimization, and a velocity which directs the trajectory of 
the particle. Feng, (2006) designed the parameters of centers, the spread of each radial basis 
function and the connection weights as the particle, and then applied the PSO algorithm to 
search for the optimal solution for constructing the RBF network for classification. Kurban & 
Besdok, (2009) proposed an algorithm by using artificial bee colony algorithm to estimate the 
weights, spread, bias and center parameters based on the algorithm. This chapter concluded 
the ABC algorithm is superior to the GA, PSO and GD algorithms.  

The firefly algorithm is a new swarm-based approach for optimization, in which the search 
algorithm is inspired by social behavior of fireflies and the phenomenon of bioluminescent 
communication. There are two important issues in the firefly algorithm that are the variation 
of light intensity and formulation of attractiveness. Yang (2008) that simplifies the 
attractiveness of a firefly is determined by its brightness which in turn is associated with the 
encoded objective function. The attractiveness is proportional to their brightness. 
Furthermore, every member ix of the firefly swarm is characterized by its bright Ii which can 
be directly expressed as an inverse of a cost function for a minimization problem. Lukasik & 
Zak (2009) applied the firefly algorithm for continuous constrained optimization. Yang 
(2010) compared the firefly algorithm with the other meta-heuristic algorithms such as 
genetic and particle swarm optimization algorithms in the multimodal optimization. These 
works had the same conclusions that the algorithm applied the proposed firefly algorithm is 
superior to the two existing meta-heuristic algorithms.  

In this chapter, a firefly algorithm of the training of the RBF network is introduced and the 
performance of the proposed firefly algorithm is compared with the conventional 
algorithms such as conventional GD, GA, PSO and ABC algorithms on classification 
problems from the UCI repository. Furthermore, the receiver operating characteristic 
analysis is used to evaluate the diagnosis performance of medical datasets. Some 
conclusions are made in the final section.  

2. Radial basis function network 
The neural network are non-linear statistical data modeling tools and can be used to model 
complex relationships between inputs and outputs or to find patterns in a dataset. The 
radial basis function network is a popular type of network that is very useful for pattern 
classification (Bishop, 1995). A radial basis function (RBF) network can be considered a 
special three-layered network shown in Fig 1.  

The input nodes pass the input values x to the internal nodes that construct the hidden layer. 
Each unit of hidden layer implements a specific activation function called radial basis 
function. The nonlinear responses of hidden nodes are weighted in order to calculate the  
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Fig. 1. The structure of radial basis function network 

final outputs of network in the output layer. The input layer of this network has m units for 
m dimensional input vectors. The input units are fully connected to I hidden layer units, 
which are in turn fully connected to the J output layer units, where J  is the number of 
output layer. Each neuron of the hidden layer has a parameter mean vector called center. 
Figure 1 shows the detailed structure of an RBF network. Each input data x with m 
dimensions, x= 1 2( mx ,x ,.....,x ) , are located in the input layer, which broadcast to hidden 
layer. The hidden layer has I neurons and each neuron compute the distance between the 
centers and the inputs. Each activation function of the neuron in hidden layer is chosen to be 
Gaussians and is characterized by their mean vectors ic and its spread parameter i  
(i=1,2,…,I). That is, the activation function (x) of the ith hidden unit for an input vector x is 
given by: 

 2x-i i i(x) exp[ c ]     (1) 

The i  affects the smoothness of the mapping, thus, the output value of the neuron j of 
output layer jy  for training sample x, are given by o(x) in (2). 

 
1 2

1

i J

I

j hj i i j
h

o(x ) (o ,o ,....,o )

o w (x ) 




 
 (2) 

The weights, ijw  (i=1,2,…,I., j=1,2,…,J), is the i-th node of output of hidden layer that 
transmitted to j-th node of the output layer, and j is the bias parameter of the j-th node of 
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output layer determined by the RBF network training procedure. In practice, the training 
procedure of RBF is to find the adequate parameters ijw , i , i and ic  such that the error 
metrics such as the mean square error (MSE) is minimum. 

 2

1

1(w, , ,c)
N

k k
k

MSE d(x ) o(x )
N

 


   (3) 

where id(x ) and io(x )  is denoted to the desired output vector and actual output vector for 
training sample ix . In (3), the N is the number of the training samples.  

3. Training algorithms: GD, GA, PSO, ABC and FA 
This section gives brief descriptions of training algorithms of RBF network that include the 
gradient descent algorithm (GD), the genetic algorithm (GA), the particle swarm 
optimization (PSO) algorithm and the artificial colony bee (ABC) algorithm.  

3.1 Gradient Descent (GD) algorithm 

GD is the derivative based optimization algorithm (Karayiannis, 1999)that is used to search 
for the local minimum of a function. The algorithm takes steps proportional to negative of 
the gradient of function at the current situation with given the parameters i  and assumed 
all i  are equal to 0. In general, the output of a RBF network can be written in the following 
form.  
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 (4) 

and  

 W HO    (5) 

where the weight matrix is represented as W and the   matrix is the H matrix, respectively. 
The GD algorithm can be implemented to minimize the MSE term defined as the equation 
(3) based on the following equations.  

 ij ij
ij

MSE
w w

w
 

 


 (6) 

 i i
i

MSE
c c

c
 

 


 (7) 

where the   is the parameter of learning rate.  
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3.2 Genetic Algorithm (GA) 

Genetic algorithm (Goldberg, 1989) inspired by the evolutionary biology is a popular 
method for finding approximate solutions to optimization and search problems. In the 
genetic algorithm, a population of strings called chromosomes which encode candidate 
solutions to an optimization problem, evolves toward better solutions. The evolution 
usually starts from a population of randomly generated individuals and happens in 
generations. In each generation, the fitness of every individual in the population is 
evaluated, multiple individuals are stochastically selected from the current population 
based on their fitness, and modified by recombined and possibly randomly mutated to form 
a new population. The new population is then used in the next iteration of the algorithm. 
Commonly, the algorithm terminates when either a maximum number of generations has 
been produced, or a satisfactory fitness level has been reached for the population. If the 
algorithm has terminated due to a maximum number of generations, a satisfactory solution 
may or may not have been reached. The three genetic operations that are selection, 
crossover and mutation, of the main aspects of GA evolve the optimal solution form an 
initial population. Barreto, Barbosa & Ebecken (2002) used the real-code genetic algorithm to 
decide the centers of hidden neurons, spread and bias parameters by minimizing the MSE of 
the desired outputs and actual outputs.  

3.3 Particle Swarm Optimization (PSO) algorithm  

The particle swarm optimization (PSO) first introduced by Kennedy & Eberhart (1995), is a 
swarm optimization method that optimizes a problem by iteratively trying to improve 
candidate solutions called particles. The improvement of candidate particles with D 
dimension in the PSO algorithm is dependent on the particle’s local best solution, 

1 2
t t t t
l l l lDP ( p ,p ,....,p ) (up to the point of evaluation) and the swarm’s global best solution 

1 2
t t t t
g g g gDp ( p ,p ,....,p ) at the iteration t. Every particle has a fitness value, which is evaluated 

by the fitness function for optimization, and a velocity which directs the trajectory of the 
particle. The D-dimensional position for particle i can be at the iteration t represented as 

1 2
t t t t
i i i iDx (x ,x ,.....,x ) . Like to the position, the velocity of particle i can be described as 

1 2
t t t t
i i i iDv ( v ,v ,.....,v ) . The movements of particles i at the 1t  iteration are followed as the 

Eq. [8] and [9].  

  1
1 1 2 2

t t t t t t
id id id id gd idv v c r (P x ) c r ( p x )       1 2d , ,..,D    (8) 

   1t t t
id id idx x v              1 2d , ,..,D     (9) 

where 1c indicates the cognition learning factor; 2c indicates the social learning factor, and 
1r  and 2r  are random numbers between (0, 1). Feng (2006) designed the parameters of 

centers, the spread of each radial basis function and the connection weights as the particle, 
and then applied the PSO algorithm to search for the optimal solution for constructing the 
RBF network for classification.  
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3.4 Artificial Bee Colony (ABC) algorithm  

The artificial bee colony (ABC) algorithm was proposed by the Kurban and Besdok, (2009) 
applied it to train the RBF network. In the ABC algorithm, the colony of artificial bees 
contains three groups of bees: employed bees, onlookers and scouts. The employed bees 
bring loads of nectar from the food resource to the hive and may share the information 
about food source in the dancing area. These bees carry information about food sources and 
share them with a certain probability by dancing in a dancing area in the hive. The onlooker 
bees wait in the dances area for making a decision on the selection of a food source 
depending on the probability delivered by employed bees. The computation of probability 
is based on the amounts of the food source. The other kind of bee is scout bee that carries 
out random searches for new food sources. The employed bee of an abandoned food source 
becomes a scout and as soon as it finds a new food source it becomes employed again. In 
other words, the each search cycle of the ABC algorithm contains three steps. First, the 
employed bees are sent into their food sources and the amounts of nectar are evaluated. 
After sharing this information about the nectar, onlooker bees select the food source regions 
and evaluating the amount of nectar in the food sources. The scout bees and then chosen 
and sent out to find the new food sources.  

In the ABC algorithm, the position of a food source iz  represents a possible solution to the 
optimization problems and the amount of nectar in a food source corresponds to the fitness 

ifit( z ) of the corresponding solution iz . In the training RBF network, a solution iz  is made 
up of the parameters of weights, spread, bias and vector centers of RBF network. The 
number of employed or onlooker bees is generally equal to the number of solutions in the 
population of solutions. Initially, the ABC algorithm randomly produced a distributed 
initial population P of SN solutions, where SN denoted the number of employed bees or 
onlooker bees. Each solution iz  (i=1,2,…,SN) is a D-dimensional vector. Here D is the 
number of optimization parameters. In each execution cycle, C (C=1, 2,…, MCN), the 
population of the solutions is subjected to the search processes of the employed, the 
onlooker and scout bees. An employed bee modifies the possible solution depending on the 
amount of nectar (fitness vale) of the new source (new solution) by using the Eq. (10).  

 1 1ij ij ij kjz z rand( , )( z z )     (10) 

Where 1 2k { , ,.....,SN} but k i and 1 2j { , ,....,D} are randomly selected indexes. rand(a, b)  
is a random number between [a, b].  

If there is more nectar in new solution is than that in the precious one, the bee remembers the 
new position and forgets the old one, otherwise it retains the location of the previous one. 
When all employed bees have finished this search process, they deliver the nectar information 
and the position of the food sources to the onlooker bees, each of whom chooses a food source 
according to a probability proportional to the amount of nectar in that food source. The 
probability ip of selecting a food source iz  is determined using the following Eq. (11). 

 

1

i
i SN

i
i

fit( z )
p

fit( z )





 (11) 
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In practical terms, any food source iz ,(i=1,2,…,SN) sequentially generates a random number 
between [0, 1] and if this number is less than ip , an onlooker bee are sent to food source iz  
and produces a new solution based on the equation (9). If the fitness of the new solution is 
more than the old one, the onlooker memorizes the new solution and shares this 
information with other onlooker bees. Otherwise, the new solution will be discarded. The 
process is repeated until all onlookers have been distributed to the food sources and 
produces the corresponding new solution.  

If the position of food source can not be improved through the predetermined number of 
“limit’ of bees, then the food resource iz  is abandoned and then the employed bee becomes 
a scout. Assume that the abandoned source is iz  and 1 2j { , ,....,D} , then the scout 
discovers a new food source to be replaced with iz . This operation can be defined as in (12).  

 0 1j jj
ij maxmin minz z rand( , )( z z )    (12) 

where the j
minz and j

maxz are the upper bound and upper bound of the j-th component of all 
solutions. If the new solution is better than the abandoned one, the scout will become an 
employed bee. The selection of employed bees, onlooker bees and scouts is repeated until 
the termination criteria have been satisfied.  

3.5 Firefly Algorithm 

Firefly algorithm (FA) was developed by Xin-She Yang at Cambridge University in 2008. In 
the firefly algorithm, there are three idealized rules: (1) all fireflies are unisex so that one 
firefly will be attracted to other fireflies regardless of their sex; (2) Attractiveness is 
proportional to their brightness, thus for any two flashing fireflies, the less brighter one will 
move towards the brighter one. If there is no brighter one than a particular firefly, it will 
move randomly. As firefly attractiveness one should select any monotonically decreasing 
function of the distance i , j j ir d(x ,x ) to the chosen j-th firefly, e.g. the exponential function.  

 i , j i jr x x   (13) 

 0
i , jre     (14) 

where the 0 is the attractiveness at 0i , jr   and  is the light absorption coefficient at the 
source.  

The movement of a firefly i is attracted to another more attractive firefly j is determined by 

 1i ,k i ,k j ,k i ,kx ( )x x u      (15) 

 11
2i ,ku (rand )   (16) 

The particular firefly ix  with maximum fitness will move randomly according to the 
following equation. 
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max max maxi ,k i ,k i ,kx x u  , for k=1,2,…,c  

 12
2

maxi ,ku (rand )   (17) 

when 1rand , 2rand are random vector whose each element obtained from the uniform 
distribution range from 0 to 1; (3). The brightness of a firefly is affected or determined by the 
landscape of the fitness function. For maximization problem, the brightness I of a firefly at a 
particular location x can be chosen as I(x) that is proportional to the value of the fitness 
function. 

4. Training RBF network using firefly algorithm  

The individuals of the fireflies include the parameters of weights (w), spread parameters 
( ), center vector (c) and the bias parameters (  ). The mean vector ic  of the i-th neuron of 
hidden layers is defined by 1 2i i i imc (c ,c ,......,c ) , therefore, the parametric vector it of each 
of fireflies with IJ I mI J   parameters is expressed as: 

i i i i
11 12 1 2 11 12 1m 1 2 1 2  ,...., , c , c  c , c ci i i i i i i i i i i i

i IJ I I I Im m Jt ( w , w ,...,w , , ,..., ,.....,c ,..., , , , ,... ,...., )        

In fact, each of fireflies can represent a specific RBF network for classification. In our 
proposed FF-based training algorithm, the optimum vectors it of firefly of specific trained 
RBF network can maximize the fitness function defined in the Eq. (18).  

 
2

1

1 1(
1 11

i N

k k
k

f t )
MSE

d(x ) o(x )
N 

 


 
 (18) 

where id(x ) and io(x )  are denoted to the desired output vector and actual output vector for 
training sample ix of RBF network designed by parametric vector it . The N is the number of 
the training samples. Figure 2 shows the pseudo codes of this proposed algorithm and the 
steps of the proposed algorithm are detailed described as follows.  

Step 1. (Generate the initial solutions and given parameters) 

In this step, the initial population of m solutions are generating with dimension 
IJ I mI J   , denoted by the matrix D.  

1 2 nD [t ,t ,....,t ]  

 i i i i
11 12 1 2 11 12 1m 1 2 1 2  ,.., , c , c c , c ci i i i i i i i i i i i

i IJ I I I Im m Jt ( w , w ,..,w , , ,.., ,..,c ,..., , , ,., ,., )        (19) 

where the values of weights (w) and centers (c) are assigned between -1 and 1, and the 
values of the spread and bias parameters  and   range from 0 to 1. Furthermore, the step 
will assign the parameters of firefly algorithm, that are  , 0 , the maximum cycle number 
(MCL) and  . Let number of cycle l to be 0.  
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Step 2. Firefly movement 

In step 2, each solution it computes its fitness value if (t ) as the corresponding the 
brightness of firefly. For each solution it , this step randomly selects another one solution jt  
with the more bright and then moves toward to jt by using the following equations.  

 2

1

IJ I mI J

i , j i j i ,k j.k
k

r t t (t t )
  


     (20) 

 0
i , jre     (21) 

 1i ,k i ,k j ,k j ,kt ( )t t u     , k=1,2,…, IJ I mI J    (22) 

where 0 1j ,ku ~ U( , ) is a randomly number ranged form 0 to 1 and the i ,kt  is the k-th element 
of the solution it .  

Step 3. (Select the current best solution) 

The step 3 selects the best one from the all solutions and defines as max
ix , that is,  

 

i

max
i

i
max
i i

x

i argmax f (t );

x argmax f (t );




 (23) 

Step 4. (Check the termination criterion) 

If the cycle number l is equal to the MCL then the algorithm is finished and output the best 
solution max

ix . Otherwise, l increases by one and randomly walks the best solution max
ix  then 

go to Step 2. The best solution max
ix will randomly walk its position based the following 

equation.  

 max max maxi ,k i ,k i ,kt t u  , 1 2k , ,...,IJ I mI J      (24) 

where 0 1maxi ,ku ~ U( , ) is a randomly number ranged from 0 to 1. 

5. Experimental results and discussion 

The platform used to develop the five training algorithm included the gradient descent 
(GD), genetic algorithm (GA), particle swarm optimization (PSO), artificial bee colony 
algorithm (ABC) and the firefly algorithm (FF) is a person computer with following features: 
Intel Pentium IV 3.0 GHZ CPU, 2GB RAM, a Windows XP operating system and the Visual 
C++ 6.0 development environment. In experiments, learning parameter of GD is selected as 

0 01.  . The used parameters of GA, PSO, ABC and FF algorithms are given at Tables 1, 2, 
3 and 4, respectively. In order to obtain the classification results without partiality, the 
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following data set are used: Iris, Wine, Glass, Heart SPECTF and Breast cancer (WBDC) 
listed in Table 5, taken from the UCI machine repository (Asuncion, 2007). 

In order to avoid the feature values in greater numeric ranges from dominating those in 
smaller numeric range, the scaling of feature is used, that is the range of each feature value 
can be linearly scaled to range [-1, 1]. Furthermore, the 4-fold method is employed in 
experiments, thus, the dataset is split into 4 parts, with each part of the data sharing the 
same proportion of each class of data. Three data parts is applied in the training process, 
while the remaining one is used in the testing process. The program is run 4 times to enable 
each slice of data to take a turn as the testing data. The percentage of correct classification of 
this experiment is computed by summing the individual accuracy rate for each run of 
testing, and then dividing the total by 4. 

 
Firefly Algorithm 
Input: 

1 2  mf (x), x [t ,t ,....,t ] , it is the i-th firefly (solution) in the solution space with x the 
fitness function if (t ) , 1 2i i , , i , i ,IJ I mI Jt [t t ,....,t ]   , any of fireflies is a IJ+I+mI+J-

dimensional vector, and the given parameters m,  , 0 , iteration number l and  . 
Output: 
The best solution max

ix with the largest fitness value. 
for i=1 to m do 
    it  generate_InitialSolutions(); 
  iter=0;  
Repeat 

         

i

max
i

i
max
i i

t

i argmax f (t );

t argmax f (t );




 

for i=1 to m do 
            for j=1 to m do  
              if j if (x ) f (x ) then  

          { i , jr  distance( i jx ,x ); 0
i , jre    ; 

                  i  generate_random_vector();       
                   for k=1 to IJ+I+mI+J do  
                        1i ,k i ,k j ,k i ,kt ( )t t u     ; } 

       max
i  generate_random_vector(); 

        for k=1 to IJ+I+mI+J  do  
        { max max maxi ,k i ,k i ,kt t t  ;}                  

        iter++;  
   Until (iter< l)    

Fig. 2. The pseudo-code of the firefly algorithm for the training the RBF network 
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Parameter Parameter value 
Number of iteration 1000 
Number of individuals 50 
Selection type Roulette 
Mutation type Uniform 
Mutation ratio 0.05 
Crossover type Single point 
Crossover ratio 0.8 

Table 1. The used parameters of GA 
 

Parameter Value 
Number of particles 50 
Velocities randomly [0.0, 1.0] 
Number of iterations 1000 
Cognitive coefficient C1 2.1 
Cognitive coefficient C2 2.0 

Table 2. The used parameters of PSO 
 

Parameter Value 
Number of the initial solutions 50 
Limit 100 
MCN 1000 

Table 3. The used parameters of ABC 

 
Parameter Value 
Attractiveness 0  1.0 
Light absorption coefficient   1.0 
Number of fireflies 50 
Iteration number 1000 
  0.1 

Table 4. The used parameters of Firefly algorithm 

 
Dataset Class Number Attributes number Number of patterns 
Iris 3 4 150 
Wine 3 13 178 
Glass 2 9 214 
Heart SPECTF 2 22 267 
Breast WDBC 2 30 569 

Table 5. The used datasets in this study 

Qasem & Shamsuddin (2011) uses three indices to evaluate the performance of trained RBF 
network using the different algorithms. The three performance indices are:  
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The percent of correct classification (PCC) is used as the measure for evaluating the trained 
RBF network.  

 correct classification samples 100
total samples

PCC    (25) 

The mean square error (MSE) on the data set is used to act as the performance index shown 
in (3) where ko(x ) and kd(x ) are the actual output and the desired output and N is the 
number of data paris in all dataset.  

 2

1

1 N

k k
k

MSE d(x ) o(x )
N 

   (26) 

The complexity index shows in (27) that is the sum of squared weights which is based on the 
concept of regularization and represents the smoothness of the RBF network.  

  2

1 1

1
2

JI

ij
i j

Complexity w
 

   (27) 

5.1 Classification evaluation 

One of the most important issues of designing the RBF network is the number of neurons in 
the hidden layer. Thus, we implement the RBF networks which have 1 neuron to 8 neurons 
for comparison, and each dataset is running 10 times based on 4-flod cross-validation. The 
average percentage and the corresponding standard derivation defined as the Eq. (25) of the 
designed RBF network by different algorithms are listed in Tables 6-10. 

 

 The number of neuron of hidden layer 
2 3 4 5 6 7 8 

GD 75.33  6.09 81.33  5.89 84.67  4.98 88.00  5.12 89.33  4.34 90.00  4.21 89.33  3.13 
GA 84.66  6.78 89.33  6.88 90.00  5.42 90.67  4.65 92.00  4.52 94.00  3.45 91.67  2.87 
PSO 86.67  4.23 92.21  4.01 93.67  3.32 94.00  2.89 94.67  2.34 95.45  2.55 97.33  1.78 
ABC 87.33  4.31 92.00  3.97 94.67  3.14 93.33  2.69 94.67  2.65 94.21  2.47 96.14  2.67 

FF 87.33  2.13 93.33  2.23 94.00  2.98 94.00  1.45 94.67  1.23 96.14  1.43 97.33  1.02 

Table 6. The average PCC and standard deviation results of the Iris dataset using different 
algorithm. 

 

 The number of neuron of hidden layer (sec) 
2 3 4 5 6 7 8 

GD 70.79  6.53 74.16  5.43 76.97  6.32 79.21  4.32 84.83  3.89 88.96  3.91 90.76  3.23 
GA 89.53  5.23 88.65  3.42 92.13  3.56 90.45  2.21 93.82  2.34 95.35  1.98 94.98  1.64 
PSO 90.52  4.32 91.57  3.29 92.13  2.89 93.82  2.45 94.38  2.43 94.70  1.98 95.35  2.31 
ABC 94.76  4.06 95.45  3.61 96.57  3.41 95.10  2.54 95.47  3.14 96.70  2.15 97.82  2.51 

FF 94.76  3.21 96.01  2.87 97.45  2.67 98.07  2.23 97.82  2.45 97.94  1.86 98.07  1.22 

Table 7. Statistical average PCC results of the Wine dataset using different algorithms 
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 The number of neuron of hidden layer 
2 3 4 5 6 7 8 

GD 64.49  6.58 65.89  7.14 68.69  7.25 74.30  5.21 78.51  4.52 86.92  3.25 93.39  2.58 
GA 69.62  5.54 75.23  4.25 85.05  3.25 86.92  3.98 89.25  4.15 90.65  3.24 92.25  2.68 
PSO 89.16  5.28 94.29  4.68 92.25  3.78 95.79  4.12 95.79  3.81 97.19  2.45 98.48  2.17 
ABC 92.25  5.14 92.25  4.21 92.25  4.87 94.39  4.51 95.79  3.53 95.79  2.26 98.48  2.97 
FF 92.25  6.12 92.25  3.91 94.39  3.24 94.39  4.18 94.39  3.10 95.79  2.19 97.19  1.97 

Table 8. Statistical average PCC results of the Glass dataset using different algorithms. 

 

 The number of neuron of hidden layer 
2 3 4 5 6 7 8 

GD 61.42  5.25 63.29  5.65 68.91  4.25 77.91  3.95 78.65  5.24 84.26  3.24 88.37  3.25 
GA 60.67  4.26 71.53  4.64 79.40  4.06 89.14  4.58 88.39  3.25 89.14  2.85 92.13  2.14 
PSO 71.53  4.52 72.23  3.79 85.39  3.14 86.52  3.95 88.39  2.52 88.76  4.19 92.88  2.53 
ABC 74.16  3.25 76.40  3.21 85.39  3.51 88.39  3.28 89.14  3.84 92.13  2.91 95.18  3.29 
FF 74.16  3.69 79.40  4.15 85.39  4.09 88.39  2.85 89.51  3.12 95.18  2.17 95.18  1.56 

Table 9. Statistical average PCC results of the Heart SPECT dataset using different 
algorithms. 

 

 The number of neuron of hidden layer 
2 3 4 5 6 7 8 

GD 75.92  8.45 80.49  6.78 85.59  5.62 87.52  5.67 88.05  6.17 89.98  4.78 91.21  3.56 
GA 84.44  6.87 85.59  5.97 93.50  4.21 94.20  4.54 93.85  3.91 96.49  3.21 98.36  3.67 
PSO 93.32  5.34 93.59  4.98 94.38  3.76 95.08  4.19 96.49  3.27 97.19  2.98 98.36  2.65 
ABC 93.84  6.10 94.37  4.12 95.78  3.84 96.49  3.61 95.85  4.14 96.49  3.19 98.49  3.14 
FF 93.32  4.78 93.59  4.98 95.78  3.23 96.13  3.43 97.19  2.87 98.49  2.57 99.72  1.87 

Table 10. Statistical average results of the WDBC dataset using different algorithms. 

These tables reveal that GD is the worst because the gradient descent algorithm is a 
traditional derivative method which traps at local minima. Furthermore, unlike the other 
four algorithms, as the number of neurons increases, the correct classification rates of the 
network designed by GD algorithm increase accordingly. In other words, the usage of bio-
inspired algorithms is more robust than traditional GD algorithms. The Table 6 and 7 are 
the classification results of the Iris and Wine datasets, which are three-class classification 
problems. In Table 6, we find the fact that the results of the deigned RBF networks using 
the PSO, ABC and FF are not significantly difference but are superior to the results using 
GA. In Table 7, the results of ABC and FF algorithms are better than the results of the  
GA and PSO algorithms. These results may reveal that the GA and PSO algorithms need 
more number of initials or more execution iterations for searching the optimal parameters 
of the radial basis function network. Tables 8-10 are the classification results of the  
Glass, Heart SPECTF and WDBC datasets, which are two-class classification problems. 
We also find that the results designed by the PSO, ABC and FF algorithms are better than 
the result of GA algorithm. The better results of each of the three tables are the usages  
of PSO, ABC and FF, but, the differences between them are not indistinct from these 
tables. 
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5.2 The analysis of complexity and mean square error 

Generally speaking, the complexity of trained RBF network with a large number of hidden 
nodes is larger but its corresponding mean square error is smaller. In experiments, The Figs. 
3-7 recorded the mean square error and complexity of each trained RBF network based the 
Eq. (23) and (24). These figures clearly appear the phenomenon that the GD is the worst 
because of the largest mean square error with the same complexity among all algorithms.  

 
Fig. 3. The mean square error versus complexity of the classification of the Iris dataset. 

 
Fig. 4. The mean square error versus complexity of the Wine classification. 
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Figure 3 shows the relationship between the complexity and mean square error in training 
the RBF networks of Iris dataset. These figures appear that the results of PSO, ABC and FF 
are superior to the GD. The Fig. 4 show the results of ABC and FF algorithm are superior to 
the results of GD and PSO in the training the RBF networks for Wine dataset. The Fig. 5 
show the best is the result designed by PSO algorithm. The Fig. 7 demonstrates the best are 
the usages of the FF, however, the results of GD, PSO, ABC and FF do not clearly 
differentiate form the results of Fig. 6.  

 
Fig. 5. The mean square error versus complexity of the Glass classification. 

 
Fig. 6. The mean square error v.s. complexity of the Heart SPECT classification. 
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Fig. 7. The mean square error v.s. complexity of the WDBC classification. 

5.3 Receiver operating characteristic analysis 

The receiver operating characteristics analysis is a graphical curve is a tool for two-class 
classification problems that gives the evaluation of the predictive accuracy of a logistic 
model. The curve displays the relationship of the true positive rate (sensitivity) and the false 
positive rate (1-specificity) within a range of cutoffs. The sensitivity is a measure of accuracy 
for predicting events that is equal to the true positive/total actual positive; nevertheless, the 
specificity is a measure of accuracy for predicting nonevents that is equal to the true 
negative/total actual negative of a classifier. The area under curve (AUC) is an important 
index for evaluating the performance of classification. In general, the high AUC represents 
to good performance in the classification problems. The classifications of the two Heart 
SPECTF and Breast WDBC datasets listed Table 5 are two-class problems of the medical 
diagnosis that are suitable for this analysis. The SPECT dataset generated from describes 
diagnosing of cardiac single proton emission computed tomography images. The database 
of 267 SPECT image sets (patients) with 22 binary attributes was processed to extract 
features that summarize the original SPECT images and each of the patients is classified into 
two categories: normal (negative) and abnormal (positive). The Wisconsin Diagnostic Breast 
Cancer (WDBC) dataset was collected from Dr. William H. Wolberg of Wisconsin 
University. The dataset includes 567 data samples with 30 continuous attributes that are 
divided into 357 benign (negative) and 210 malignant (positive). In order to take one step 
ahead for analyzing the capability of classifications by using the five algorithms, the average 
of sensitivity and the average specificity of the receiver operating characteristic (ROC) 
analysis by using the SPECTF and WDBC datasets under the eight hidden nodes of trained 
RBF network are listed in the Table 11; and further, the corresponding AUC of ROC analysis 
with varied the bias parameters also listed in this table. In this table we find that the usage 
of ABC algorithm can have better capability in the classification of the SPECT dataset, 
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however, the FF algorithm is best in the classification of WDBC dataset. The average 
computation times of classifying the Heart SPECT dataset in 4-fold cross validation by using 
the GD, GA, PSO, ABC and FF are 0.21, 429.67, 103.76, 123.67 and 98.21 seconds, however, 
the average computation times of classifying the Breast dataset in 4-fold cross validation by 
using the GD, GA, PSO, ABC and FF are 0.24, 513.23, 161.84, 189.59 and 134.91 seconds 
 

Algorithms Heart SPECTF Database Breast (WDBC) Database 
Sensitivity Specificity AUC Sensitivity Specificity AUC 

GD 0.8868 0.8727 0.789 0.9151 0.8868 0.854 
GA 0.9198 0.9273 0.896 0.9811 0.9860 0.944 
PSO 0.9292 0.9010 0.902 0.9858 0.9832 0.961 
ABC 0.9528 0.9454 0.941 0.9953 0.9832 0.975 
FF 0.9321 0.9367 0.932 1.0000 0.9944 0.984 

Table 11. Area under curve (AUC) of ROC analysis of RBF network with eight hidden 
nodes. (The best results are highlighted in bold) 

6. Conclusions 
In this chapter, the firefly algorithm has been applied to train the radial basis function 
network for data classification and disease diagnosis. The training procedure involves 
selecting the optimal values of parameters that are the weights between layer and the output 
layer, the spread parameters, the center vectors of the radial functions of hidden nodes; and 
the bias parameters of the neurons of the output layer. The other four algorithms that are 
gradient descent (GD), genetic algorithm (GA), particle swarm optimization (PSO) and 
artificial bee colony algorithms are also implemented for comparisons. In experiments, the 
well-known classification problems such as the iris, Wine, Glass, heart SPECT and WDBC 
datasets, obtained from UCI repository had been used to evaluate the capability of 
classification among the five algorithms. Furthermore, the complexity and trained error also 
be discussed form experiments conducted in this chapter. The experimental results show 
that the usage of the firefly algorithm can obtain the satisfactory results over the GD and GA 
algorithm, but it is not apparent superiority to the PSO and ABC methods form exploring 
the experimental results of the classifications of UCI datasets. In order to go a step further 
for talking over the capability of classification among the five algorithms, the receiver 
operating characteristic (ROC) analysis are applied for this objective in classification of the 
heart SPECT and WDBC datasets. The experimental results also appear that the use of firefly 
algorithm has satisfactory in the high sensitivity, high specificity and bigger AUC in the 
corresponding ROC curves in WDBC dataset, however, the differences between ABC, PSO 
and firefly algorithms are not significant. The experimental results of this chapter reveal that 
the swarm intelligence algorithms, such as the particle swarm optimization, the artificial bee 
colony algorithm and the firefly algorithm are the good choices to search for the parameters 
of radial basis function neural network for classifications and disease diagnosis.  
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1. Introduction 
Feature selection is the process of choosing a subset of features from the original larger set 
that are related to a certain outcome, such as disease type, dose, income, and time to event. 
The use of feature selection procedures is almost compulsory and complex in biology and 
medicine because the generation of massive datasets is nowadays common for many state-
of-the-art technologies such as transcriptomics, proteomics, metabolomics, and genomics 
where a single, conventional, and relatively cheap experiment may yield the measurement 
of several thousands of features per sample (Hieter and Boguski, 1997; Sauer et al., 2005). In 
such cases, feature selection is used to reduce complexity and large computational costs, as 
well as to improve pattern recognition accuracy, data interpretability and hypothesis 
generation (Shen et al., 2008; Vapnik, 1998; Guyon et al., 2002). 

Filter, embed, and wrapper methods have been proposed for feature selection (Neumann et 
al., 2005; Guyon and Elisseeff, 2003; Saeys et al., 2007). Filter methods, also known as 
univariate methods, apply a rule to every feature ignoring any other feature. The filter 
consists of a classical statistical test such a t-test, a ranking procedure such a signal-to-noise 
ratio, or an empirical permutation test as the evaluation procedure (Saeys et al., 2007; Golub 
et al., 1999). The search engine is composed of a model selection procedure such as forward 
and backward elimination strategies or a procedure that choose top features by a threshold. 
Embed methods couple the evaluation rule to the search, for example, by using the loadings 
vector associated to a component in Principal Component Analysis (Carzaniga et al., 2007), 
or by using the weight vector from Support Vector Machines (Guyon and Elisseeff, 2003; 
Guyon et al., 2002). Wrapper methods utilize independently a search engine and an 
evaluation procedure to choose good feature combinations. The search engine is guided 
depending on the evaluation of feature combinations. Because of the independency in the 
implementation of the search engine and the evaluation procedures, wrapper methods are 
highly attractive as a general tool for many types of datasets. 

Although in large datasets the number of features related to an outcome could be high, there 
are some reasons why one would like to design a predictive model containing a small 
feature subset. The models that contain many variables tend to over-fit the data (Occam’s 
razor) and to be more complex, difficult to interpret, expensive, and hard to implement in 
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practice. For example, in a clinical test, assessing a large number of indicators is complex, 
tedious, and more expensive than testing only a handful of indicators. We have previously 
shown that models containing around 10-20 features can be found in functional genomics 
data (Trevino and Falciani, 2006; Martinez et al., 2010). 

Particle Swarm Optimization (PSO) is a recent and very successful wrap-based search 
engine (Eberhart et al., 2001). However, standard implementations for feature selection fail 
or their performance is severely affected in selecting small feature subsets from large 
datasets (see section 3.1 for some grounds). For these reasons, some authors have adapted 
the standard binary PSO (sbPSO) presented by (Eberhart et al., 2001) implementing ad-hoc 
algorithms to overcome the dataset size problem (Wang et al., 2007; Chuang et al., 2008; Xu 
et al., 2007; Takahashi Monteiro and Yukio, 2007; Bello et al., 2007; Alba et al., 2007). 
Nevertheless, these implementations are mainly focused on maximizing the evaluation 
accuracy and little or no consideration is done to minimize the number of features selected 
(for an exception see (Alba et al., 2007)). 

In this paper, we propose a wrapper feature selection method based on PSO named Under-
Updated Particle Swarm Optimization (uuPSO) designed to efficiently select small feature 
subsets from large-scale functional genomics data. For illustrative purposes, we used a 10-
fold-cross-validation error estimation coupled within a nearest centroid classifier as the 
evaluation procedure in five large datasets. We focused on selecting small feature subsets at 
maximum accuracy from functional genomics data that hopefully will help in designing 
cheap and easy to implement clinical assays. We show that our algorithm is capable of 
selecting the most relevant genes. We also demonstrate that uuPSO is able to find alternative 
models that could not be found with univariate or ranking methods such as SVM-RFE. 

The remainder of the paper is organized as follows. Section 2 describes PSO methodology 
and the standard feature selection algorithm. Section 3 describes the rationale of the 
implemented procedures in uuPSO to improve the selection of small feature subsets. Section 
3 also includes the datasets used and the experiments performed to show their effects. 
Section 4 describes and interprets the results of each experiment. Section 5 provides a 
general discussion and practical advices for the selection of parameter values. Finally, 
section 6 includes a summary and concluding remarks. 

2. Background 
2.1 Particle Swarm Optimization 

Recalling, PSO is an optimization technique inspired in social behavior observed in nature 
(Eberhart et al., 2001). PSO algorithm starts by creating a swarm of particles placed 
randomly in the solution landscape. The swarm explores the solution landscape guided by 
particle leaders. Particle leaders are those particles better placed in the solution landscape. 
This is achieved using a goodness function whose input is the particle position. The 
leadership can be global attracting all particles, or local pulling only neighboring particles. If 
the new goodness function evaluation results in higher values than those of the leaders, 
leadership is changed. Thus, particles will update their position depending on their own 
experience following global and local bests but attempting being better on their way. The 
process of updating all particle positions and velocities is called epoch in the PSO paradigm. 
The position of a particle is updated as 
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 xid(t) = xid(t - 1) + vid(t) (1) 

where i is the i-particle of the swarm, d is the space dimension, t is the epoch, v is the 
velocity, and xid is the position of the i-particle in the dimension d. All xid(0) are set 
randomly. The velocity of a particle i for dimension d is defined as 

 vid (t) = w * vid (t - 1) + r1 * c1 * ( pld - xid (t - 1)) + r2 * c2 * ( pgd - xid (t - 1)) (2) 

where pgd is the position of the best particle in the dimension d, pld is the position of the local 
best particle in the dimension d, w is used as an inertial value, r1 and r2  are positive random 
numbers, and c1 and c2 are local and global weights respectively (commonly summing 4). 
The local best is commonly designated as the best of the c neighbors in the swarm array. 
When a particle i has changed its position xi, the evaluation function will determine whether 
it is the new global or local best depending on the goodness compared to the swarm best 
goodness or the goodness of the c neighbor particles respectively. Note that for the global 
best particle only the inertial term will be actually used because pld and pgd will be both i 
cancelling both terms. To avoid this, an elitism scheme is usually used, which consists on 
ignoring the global best particle from the update procedure. 

2.2 Binary PSO for feature selection 

The common implementation for feature selection using PSO, known as standard binary 
PSO (sbPSO), simply sets the maximum dimension as the total number of features, then 
employs the value of vid to decide whether the feature d for particle i is selected. This is 
achieved by the use of a sigmoid function s (Eberhart et al., 2001): 

if rid < s(vid (t)) then xid (t) = 1; else xid (t) = 0 

 s(vid) = 1/ (1 + exp(-vid)) (3) 

where rid is a random number drawn from a uniform distribution between 0 and 1. In this 
way, the goodness function would use only the selected features for the evaluation (those 
whose xid(t) = 1). In practice, vid is limited between the range [-vmax; vmax] where vmax is usually 
4. This establishes practical limits for the sigmoid function and helps to change direction 
faster. Also, the inertial w is gradually changed during the course of the procedure, e.g. from 
0.9 in early epochs to 0.4 in late epochs. 

2.3 Others implementations for feature selection using PSO 

Some authors have proposed modifications to sbPSO algorithm in order to improve 
performance in terms of search and evaluation capabilities (Chuang et al., 2008; Xu et al., 
2007; Wang et al., 2007; Takahashi Monteiro and Yukio, 2007; Bello et al., 2007). However, 
these implementations are mainly focused in maximizing the evaluation accuracy. Little or 
no consideration is done to minimize the number of features selected (Alba et al., 2007). 
Therefore, in most of these methods a large number of features were selected (Chuang et al., 
2008; Xu et al., 2007). Others implementations are more difficult to review in the context of 
small feature subset selection because datasets used contained only around a hundred 
features (Takahashi Monteiro and Yukio, 2007; Wang et al., 2007). One of the adaptations 
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that attempted to control the number of selected features was introduced by (Xu et al., 2007) 
defining a parameter f to bias the random decision for activating features as follows: 

if rid + f < s(vid (t)) then xid (t) = 1; else xid (t) = 0 

In this way, high values of f would tend to turn off most of the variables. The experiments 
from (Xu et al., 2007) using f = 0.45 resulted in models containing from 60 to 120 features 
which still seems too high for our purposes. However, this adaptation provides the concept 
of activating a smaller number of features by changing the selection decision. 

A great effort to select small feature subsets was introduced by (Wang et al., 2007) in which 
only a subset of xid was updated. They used a unique velocity per particle vi which roughly 
means how many xid bits should be changed. If vi is less than or equal to xg (the number of 
different variables of xid from the best global particle), vi bits are randomly changed different 
from those of xg. If vi is greater than xg, xg is copied to xi (the complete particle) and vi - xg bits 
are also swapped to explore neighboring space. If vi is close to zero this would mean that the 
particle is approaching to a stable and optimal solution whereas high values of vi would 
indicate poor fitting and large navigation distances. Although the authors tested datasets 
containing less than a hundred features, this work is a milestone because it introduces the 
concept of updating only a subset of dimensions rather than all dimensions. Other 
adaptation of PSO replaces the concept of PSO velocity by a complex crossover operator 
resembling genetic algorithms rather than to PSO (Alba et al., 2007). 

3. Methods 
In this section, we describe the adaptations to sbPSO in order to select small feature subsets 
from massive datasets such as gene expression data. The parameters introduced in these 
adaptations are intended to show the effects of our adaptations rather than to burden the 
exquisite simplicity of the PSO algorithm. Finally, the datasets used for the experiments are 
mentioned and the values of parameters employed are listed. 

3.1 Initialization 

sbPSO has been successful in a variety of feature selection problems (Eberhart et al., 2001). 
However, the performance in accuracy, feature selection, and computation time of sbPSO is 
inadequate when data consists of thousands of variables, which is common for functional 
genomics data. In the sbPSO, the random initialization of vid and xid would select 50% of the 
features just by chance. This issue affects drastically the performance and goodness in some 
aspects. First, the performance of multivariate methods (classification or regression) that 
would be inevitably part of the goodness function depends on the number of features and 
matrix operations such as inversions. This would consume unnecessary CPU time. Second, 
the error estimation consists of the evaluation of these multivariate methods several times, 
such as the cross-validation methods worsening the CPU time consumption. Third, given 
that particles velocities depend on the global and local best, which will contain a large 
number of features selected, several epochs would be needed to decrease the number of 
selected features from thousands to a handful by the standard PSO selection. Fourth, the 
overall goodness could be decreased by the overload of selected features that might not be 
related to the predictor. This could confuse multivariate methods generating random effects. 
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For these reasons, our first proposal is to control the number of active features in the 
initialization procedure. To achieve this, we used a predefined constant b, which specifies 
the number of random features that will be initialized to 1 (xib = 1). This procedure is 
independent of the initialization of vid, which is random in all dimensions as usual.  

3.2 Updates 

If initialization as stated in previous section is used alone, it would not have long-term 
effects because vid is initialized as random, so updates in further epochs will reset initial xid 
values. Thus, we included an adaptation to limit the total number of vid updates, which is 
controlled by a user-specified parameter u. In order to choose which features will be 
updated, we thought that particles should maintain the essence of the PSO algorithm, that 
particles should follow the global and local best expecting to be better on their way. So, to 
manage this, a candidate list of updates is formed for each particle i. This list is populated 
from the union of the active features (xid) for particle i, the active features from global best g, 
and those from local best l. In addition, the candidate list also considers e random updates, 
which is presented in the next paragraph as “innovation”. Finally, only u random features 
are updated from the candidate list generated. In this way, particles can even fly in direction 
of the global best and local best, although slower than in sbPSO, still leaving some room for 
innovation to fulfill the expectation of being even better. In social terms, as in the original 
PSO paradigm, this could be interpreted as if a particle cannot make an effort to imitate all 
the features of the best particle (global and local) at the same time, sometimes it will imitate 
certain features and in other occasions it will imitate another. This constrained imitation 
seems, by common sense, a reasonable social behavior. 

3.3 Innovation 

In sbPSO, innovation is the combined result of updating all dimensions and the random 
decision of activating a feature. However, considering only the first two adaptations 
described so far, we would update only u dimensions chosen from the particle itself, the 
local best and global best. Consequently, the universe of updatable xid would be limited to 
the initial random activation. If some features were not initially activated within the swarm 
population, those features would never be explored. For instance, for a swarm population of 
50 and an initial activation of 5 features, there will be at most 250 updatable features for the 
entire swarm. This number seems scarce compared to the functional genomics datasets we 
are focusing on, which may contain thousands of features. In addition, global best would be 
stuck since it has no way to update other features. Hence, the swarm could converge quickly 
to a poor local optimum. For these reasons, we introduced a mechanism to control how 
many random features will be included in the candidate list of updates per particle, 
managed by a parameter e. In the PSO social terms, this would mean that imitation of the 
best particles is combined with a sense of uniqueness, hopefully surpassing those best 
particles. To show the effects of innovation, we ran some experiments varying e. 

3.4 Number of selected features 

The adaptations shown above do not ensure that the number of selected features will be 
small. Although the constrained number of updates would limit over-activation, activation 
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might change freely during the course of the epochs. Therefore, we introduced another 
adaptation to keep the number of selected features within a range. We set n as the minimum 
number of active features and m as the maximum. After updating, if the number of active 
features a is larger than m, then a-m randomly chosen features are turned off. On the 
contrary, if a is less than n, n-a randomly chosen features are turned on, which would 
provide other mechanism for innovation. 

3.5 Under-updated Particle Swarm Optimization algorithm 

Considering the adaptations described in previous paragraphs, the uuPSO pseudo-code 
algorithm to maximize the Goodness function is shown in Algorithm 1. The algorithm can 
be easily thought as a generalization of sbPSO. If the total number of features is k, setting b = 
k / 2, u = k, n = 1, and m = k should behave as sbPSO. 

 
Algorithm 1. Under-Updated Particle Swarm Optimization Algorithm. 
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3.6 Datasets 

In this paper we focused on the selection of small subsets of features from large-scale 
datasets. In this context, we mainly used two datasets generated using microarray data from 
breast cancer and leukemia that had been previously reported and studied in a similar 
fashion (Trevino and Falciani, 2006). For comparison with other PSO algorithms, we also 
used other three datasets in order to show overall effects and the generality of our 
adaptations (see Table 1). 
 

Dataset Molecular Data Features Classes Samples per class 
Breast Cancer mRNA Rosetta 2,920 2 44 No metastases, 34 metastases 

     
Leukemia 

Yeoh 
mRNA 

Affymetrix 2,435 5 27 E2A-PBX, 79 TEL, 64 Hyp+50,  
20 MLL, 43 T 

     
Leukemia 

Golub 
mRNA 

Affymetrix 7,219 2 47 AML, 25 ALL 

     

Colon Cancer 
mRNA 

Affymetrix 2,000 2 40 Tumor, 22 Normal 

     
Ovarian 
Cancer Proteomics 15,154 2 162 Tumor, 91Normal 

Table 1. Datasets considered for this study. 

The breast cancer (BC) dataset was originally developed and published by van't Veer et al.  
(2002) obtained from the gene expression taken from 44 patients with no metastases 
developed within the first five years, and 34 patients positive for metastases within the first 
five years. Data were normalized as described in the original publication. Genes with a p-
value larger than 0.001 were filtered out (confidence level that a gene's mean ratio is 
significantly different from 1). Finally, the data used consisted of a matrix of 2,920 features 
(genes) * 78 samples and a binary vector indicating the state of metastases. It is worth 
mentioning that some of the best multivariate-selected classifiers published for this dataset 
lie at around 80% accuracy whereas the univariate-selected classifiers lie at around 65% 
((Trevino and Falciani, 2006), supplementary material). Thus, this dataset is considered a 
difficult dataset. 

The leukemia-golub dataset (Golub et al., 1999) contains 72 bone marrow samples that 
correspond to two types of leukemia: 47 Acute Myeloid Leukemia (AML) and 25 Acute 
Lymphoblastic Leukemia (ALL). It was obtained from an Affymetrix high-density 
oligonucleotide microarray that includes 7129 genes. 

The colon cancer dataset was obtained from the expression levels of 2000 genes using 
Affymetrix oligonucleotide microarrays (Alon et al., 1999). The genes correspond to 40 
tumor and 22 normal colon tissue samples. Data were quantile-normalized before 
processing (Bolstad et al., 2003). 

The leukemia-yeoh (LY) dataset was developed by (Yeoh et al., 2002) using Affymetrix 
microarrays, and describes the gene expression profile of 327 acute lymphoblastic leukemia 
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patients representing 7 different disease sub-classes. In this paper, we have selected the five 
largest classes: E2A-PBX, Hyp+50, MLL, T, and TEL. These sub-classes include respectively 
27, 64, 20, 43, and 79 samples. Data have been filtered to eliminate the most invariant genes. 
The standard deviation and difference between maximum and minimum expression values 
were calculated for each gene. The genes were ranked by these values and selected if they 
were within the top 15%. Finally, the dataset used consisted of 2,435 features (genes) * 233 
samples and a string label indicating the sample sub-class. Although this dataset 
compromise 5 classes, it is considered an easy dataset because there are several features 
correlated to classes (Yeoh et al., 2002) and both univariate and multivariate searches have 
found models around 98% accuracy ((Trevino and Falciani, 2006), supplementary material). 

The ovarian cancer dataset consists of proteomic spectral data from serum (Petricoin et al., 
2002).This dataset comprises on 15,154 mass/charge (M/Z) identities obtained from 91 
normal individuals and 162 ovarian cancers. Data were quantile normalized before 
processing. A summary of the datasets used is listed by cancer type or author in Table 1. 

3.7 Experiments  

As explained in previous paragraphs, we tested the algorithm varying the controlling 
parameters. For each combination of parameters, we ran the uuPSO algorithm 100 times and 
the goodness and active features of the global best was monitored during 1000 epochs. No 
other termination criteria were active. The median of the 100 runs for each epoch is 
reported. If not stated, the values of the parameters used were b = 10, n = 10, m = 10, u = 10, e 
= 10, elitism = true. The standard PSO parameters used were vmax = 4, w = 0.9-0.0005*epoch 
(corresponding to an initial w = 0.9 and final w = 0.4), and c1 = c2 = 2. The swarm size was 20. 
The goodness function was 1-cve. cve is a 10-fold cross-validation error estimation 
procedure. Error in each fold was estimated by the percentage of miss-classified test samples 
using a nearest centroid method in Euclidean space. A centroid is defined as the mean of a 
given set of samples of the same class. Thus, after estimating all centroids for corresponding 
training classes in each gene, the nearest centroid for a predicting sample is the centroid 
whose Euclidean distance is minimal, as follows: 

 2min ( ( ) )k i kiclass x c   (4) 

where xi is the value of the i gene and centroid cki is the mean for gene i in class k. We have 
used, mainly, a nearest centroid classifier for its simplicity and high speed. However, we 
also made comparisons with more powerful classifiers like SVM. 

All runs were performed in a Dell PowerEdge SC1435 with two dual AMD opteron 
processors and 8Gb of memory based on CentOS Linux Distribution 
(http://www.centos.org/). No more than one run per core processor was performed at the 
same time. Scripts were written in Java. We used official Sun Java(TM) SE Runtime 
Environment (build 1.6.0-10-b33) and the official virtual machine Java HotSpot (TM) 64-Bit 
Server VM (build 11.0-b15, mixed mode) for all runs. 

For the support vector machines-recursive feature elimination, we used the R 
implementation in the package e1071 (Chang and Lin, 2001). For the support vector 
machines-forward selection, we added genes one by one following the order given by the p-
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value from an f-test. This forward-selection strategy is similar to that in PAM (Tibshirani et 
al., 2002) and the Prophet tool in GEPAS (Montaner et al., 2006). 
 

Dataset All
Acc 

PSO
Algorithm

Best Model
Size    Acc 

Accuracy
Mean      SD 

Features 
Mean     SD 

Time 
(hr) 

Breast-Cancer 0.667 uuPSO 13 0.923 0.842 0.026 13 2 0.74 
sbPSO 1470 0.756 0.686 0.009 1463 26.1 113.67 
XuPSO 7 0.872 0.827 0.016 ‡20 17.6 5.14 
Wang 1386 0.782 0.758 0.015 1447 25.9 89.11 

          
Leukemia-

Yeoh 0.983 uuPSO 14 1 0.981 0.016 14 1.3 0.61 

sbPSO 1143 1 1 0 1210 23.8 *515.88 
XuPSO 35 1 0.999 0.002 170 77.3 5.8 
Wang 1154 1 0.997 0.002 1210 25.3 *403.76 

          
Colon 0.871 uuPSO 12 0.984 0.949 0.013 12 2.2 1.03 

sbPSO 957 0.887 0.884 0.007 996 10.3 61.55 
XuPSO 5 0.952 0.937 0.006 65 33.2 3.74 
Wang 946 0.887 0.879 0.008 1000 22.4 56.07 

          
Ovarian 0.846 uuPSO 10 1 0.999 0.003 13 2.2 6.34 

sbPSO 7591 0.877 0.874 0.001 7594 71.2 *2293.44 
XuPSO 6 1 0.997 0.005 40 33.2 42.17 
Wang 7424 0.881 0.88 0.002 7540 72.7 *1424.68 

          
Leukemia-

Golub 0.806 uuPSO 14 0.944 0.879 0.023 14 1.6 1.54 

sbPSO 3515 0.875 0.859 0.007 3550 47.9 *407.72 
XuPSO 100 0.875 0.844 0.012 184 146.9 12.43 
Wang 3529 0.903 ‡0.874 0.015 3555 44.1 195.05 

Table 2. Comparison of PSO algorithms: the accuracy (Acc) and number of feature (size) of 
the best model found among 100 runs is shown in best-model columns. accuracy is the 
number of correctly predicted samples divided by the total. The mean and standard 
deviation (SD) of the accuracy and number of features were estimated from the resulted 
models (100 in most runs). Compared to uuPSO, all model accuracies and number of 
features were significant using a Wilcoxon rank sum test at p < 0.0005 except those marked 
with ‡ where p > 0.05. time was estimated for the 100 runs. A star (*) marks times estimated 
from partial results where at least 20 runs have finished. This estimated time should not be 
largely affected since run-time standard deviation is low. For example, for the ovarian 
dataset the standard deviation per run was 0.138 and 0.696 hours for sbPSO and Wang PSO 
respectively. The accuracy using all features is shown in column “All Acc” for comparison. 
Xu PSO was ran at f = 0.1, 0.3, 0.5, 0.7, and 0.9. The best result is shown. In four datasets f = 
0.5 was the best in terms of accuracy and number of features except for the leukemia Golub 
dataset where f = 0.7 was better. Best results are shown in bold. 
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4. Results 
4.1 Comparison with other PSO methods 

We first compared our algorithm with the sbPSO. For the uuPSO runs, we used an overall 
controlling proxy parameter, size =10, then b = size, u = size, e = 1, n = 0.5*size, and m = 
1.5*size. The results summarized in Table 2 are encouraging. Our algorithm increased 
remarkably the classification accuracy in all datasets, decreased the selected features from 
thousands to a handful, and decreased the computation time from days to about an hour. 
Best model accuracy improved from around 7.3% in Leukemia-Golub to 18.1% in BC. 
Moreover, remarkable differences are observed in model size and computation time where 
our algorithm gets better results by around two orders of magnitude. Overall, these results 
clearly show that our algorithm is able to obtain better predictive models from functional 
genomics data with thousands of features in a fraction of time. 

 
 uuPSO Tabu Search IBPSO 

Dataset # Genes Selected Genes Selected 
Type Classes Genes Fitness # % Fitness # % 

9_Tumors 11 5726 100.00 149 2.6 81.63 2941 51 
         

11_Tumors 26 12533 100.00 535 4.27 97.35 3206 26 
         

14_Tumors 9 15009 100.00 634 4.22 74.76 8539 57 
         

Brain_Tumor1 5 5920 100.00 14 0.24 95.89 2913 49 
         

Brain_Tumor2 4 10367 100.00 161 1.55 92.65 5086 49 
         

Leukemia1 3 5327 95.83 5 0.09 100.00 2577 48 
         

Leukemia2 3 11225 94.44 5 0.04 100.00 5609 50 
         

Lung_Cancer 5 12600 100.00 14 0.11 99.52 6958 55 
         

SRBCT 4 2308 95.18 5 0.22 100.00 1084 47 
         

Prostate_Cancer 2 10509 93.14 4 0.04 95.45 5320 51 
         

DLBCL 2 5469 94.81 3 0.05 100.00 2671 49 
         

Average 97.58 1.22 94.30 17 

Table 3. Comparison between uuPSO and tabu search ibPSO: the fitness and number of 
feature (#) of the best model found among 100 runs is for the uuPSO algorithm while the 
results from tabu search ibPSO were extracted from (chuang et al., 2009). (%) shows the 
percentage of genes selected from the total (# genes). 
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The Xu PSO implementation (Xu et al., 2007) also tries to decrease the number of selected 
features by using a different strategy. There, the number of selected features is affected by 
biasing the binary activation decision using a parameter f (see section 2.3). For comparison, 
we ran the Xu algorithm (XA) for several values of f. We also compared the Wang algorithm 
(WA) that introduced the concept of updating a subset of features by an unusual 
implementation of a unique particle velocity whereas uuPSO use a candidate list of features. 
For the uuPSO runs, we used size = 5 or 10, then b = size, u = size, e = 1, n = 0.5*size, and m = 
1.5*size. Results are shown in Table 2. This table shows that our implementation performed 
better than WA and XA in accuracy, number of selected features, and computation time. The 
WA algorithm is not able to decrease the number of active features presumably due to the 
initialization procedure. In XA, the maximum accuracy found at f = 0.5 may compete, but 
goodness is not sustained probably due to abrupt changes in the number of selected 
features. Contrary, uuPSO goodness is stable in terms of number of features along the run 
(lower SD). In addition, uuPSO is far quicker. Also, in order to find competitive models, we 
would have to perform several XA runs changing the f parameter.  

We previously published (Martinez et al., 2010) that we obtained models with better 
classifications and fewer selected features than IBPSO (Chuang et al., 2008) which is another 
implementation of PSO. In these works, the algorithms were tested using 11 different 
datasets with distinct characteristics. The same authors of IBPSO presented an optimized 
algorithm based on tabu search and support vector machines (Chuang et al., 2009), tested 
with the same datasets and obtained better results than their previous version. In Table 3, 
we show the results running the same models found in (Martinez et al., 2010) with support 
vector machines and one-versus-all mode. In average (and in 6 of 11 datasets), we got higher 
classification accuracies than the Tabu-Search IBPSO algorithm, reinforcing the idea that is 
possible to choose models with few variables without sacrificing prediction power. 

In summary, our algorithm is superior to four different PSO implementations in accuracy, 
number of features and time, supporting our objective of obtaining models with fewer 
genes. 

4.2 Biological interpretation of features in models 

In order to summarize the 100 models generated from the BC dataset, we selected the top 10 
most frequent genes as a representative model (see Figure 1). The gene MMP14, a 
metalloprotease, has been recently related in breast cancer progression in the transition from 
preinvasive to invasive growth (Ma et al., 2009).This agrees with the expression of MMP14 in 
the BC dataset where higher values are observed in metastatic tumors. SLC27A2, a cholesterol 
homeostasis mediator, has been implicated in pancreatic neoplasm (Hansel et al., 2004). FMO1 
is a monooxygenase involved in the NADPH-dependent oxidative metabolism of many drugs 
such as tamoxifen (Katchamart and Williams, 2001), which is used as breast cancer treatment 
in postmenopausal treatments. The expression levels of LAMB3 have been found to be 
increased in malignant tumors and correlated with the depth of invasion (Kita et al., 2009). 
However, in the BC dataset, LAMB3 seems to be less expressed in metastatic tumors. ORM1 is 
increased in the plasma of cancer patients (Budai et al., 2009). This concurs in the BC dataset 
where the expression of ORM1 appears to be increased in metastatic tumors. These results 
suggest that our algorithm is detecting genes related to BC physiology. 
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Fig. 1. Representative genes selected by our algorithm from 100 runs for the BC dataset. (A) 
A heatmap representation of the most frequent genes. Darker (red) or lighter (green) colors 
represent higher or lower expression respectively. Ord represents the order of genes given 
by frequency in 100 models (shown in parenthesis). (B) Class centroid for each gene. 
Negative values represent under-expression relative to a common reference. 

4.3 Analysis of the adaptations of the uuPSO algorithm 

Previous paragraphs have shown that our algorithm is capable of generating better and 
more compact models in a fraction of the time used by other methods. The next few 
paragraphs provides further details of the uuPSO algorithm to show the main effects of 
proposed adaptations. For illustrative purposes, we used only Breast Cancer and Leukemia-
Yeoh datasets. 

4.3.1 Overall size tests 

The inspiration for our proposal is driven by the idea of decreasing the number of active 
features. Therefore, we compared the overall behavior attempting to control this number 
from 5 to 400. For this, we set size={5,10,20,100,400} as a proxy and the parameters of our 
adaptations were kept proportional to size: b=size, u=size, e=0.2*size, n=size-(size/2), 
m=size+(size/2). Results are shown in Figure 2. In the BC dataset (Figure 2 A-B), overall 
accuracy seems more similar in late epochs than in early epochs. During the first 250 epochs, 
the best run achieved 84% of average accuracy using size=25 while the worst reached 79% 
using size=5. However, at the end of the run (epoch=1000), the former remained in 84% 
while the last increased to 83%. That is, it was more difficult to find 25 features than only 5. 
The average number of active features for the best particle slightly increased during the first 
50 epochs then decreased slowly. Nevertheless, this number was very close to the initial 
value of size and was not limited by the limits imposed by n and m. For the LY dataset, 
overall accuracy was very similar (Figure 2 C-D). The number of active features also tended 
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to increase from the initial value of size. The smallest average accuracy was 95% for size=5 
but tending for model sizes around 8, which was limited by the m parameter used. This 
suggests that the decrease in accuracy is due to the low number of features used. This is 
sensible because the number of classes for LY dataset is 5, so, the use of 8 features is a 
compromise between high accuracy at low number of features. Overall, these results show 
that our implementation is able to control the number of active features and support our 
proposal that a high number of features for accurate classification of functional genomics 
data is not necessary. 
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Fig. 2. Size tests for the BC (A-B) and LY (C-D) datasets. (A-C) Accuracy evolution. (B-D) 
Dynamics of the number of active features. Every point represents the median of the best 
particle in 100 runs. 
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4.3.2 Initialization 

The runs presented above, which changed all parameters coordinately, show the overall 
behavior for different settings. However, the effects of each adaptation are not well 
appreciated. Therefore, we tested each adaptation separately. To challenge the initialization 
adaptation, we varied b from 5 to 400 setting b={5,10,25,50,100,400} while other parameters 
were kept fixed (u=10, e=1, n=2, m=600). Results are shown in Figure 3. For the BC dataset 
(Figure 3 A-B), accuracy was clearly smaller for b=400 within the first 50 epochs. On the 
other hand, for the LY dataset the accuracy was higher for larger values of b (Figure 3 C-D). 
For both BC and LY datasets, the final number of active features decreased when b 
decreased. Such decrease would be beneficial for our purposes since potential biomarker  
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Fig. 3. Initialization tests for the BC (A-B) and LY (C-D) datasets. (A-C) Accuracy evolution. 
(B-D) Dynamics of the number of active features. Points as in Figure 2. 
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models would become more compact. Nevertheless, when initialization was smaller than 
update (b =5) for the BC dataset, the number of active features increases. This increase was 
also observed in LY for b <= 20. For the BC dataset a trend for around 10 active features is 
clearly observed even for b =400. In this case, it took 600 epochs to decrease the number of 
active features from 400 to less than 20 and to reach the same level of accuracy than in the 
other runs. The decrease in the number of features and the poor accuracy for runs with high 
b suggest that the number of active features is excessive. This may happen when the 
classifier is overloaded with noisy features. On the other hand, for the LY dataset, the 
number of active features does not decrease systematically such as that in the BC dataset. 
Presumably due to high accuracies in LY that are already close to 1 (the maximum possible 
value); thus no major evolutive pressure is present. Overall, runs tend to adjust the number 
of active features depending on the starting point and the accuracy pressure. 
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Fig. 4. Update tests for the BC (A-B) and LY (C-D) datasets. (A-C) Accuracy evolution. (B-D) 
Dynamics of the number of active features. Points as in Figure 2. 
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4.3.3 Updates 

In the initialization test there was a tendency for sizes around 10 for the BC dataset, which 
is similar to the number of updates in those runs. This may suggest that number of active 
features is somehow related to updates. For this reason and to analyze the overall effect of 
the number of updates, we next tested the number of updates from 1 to 10 
(u=1,4,10,50,400) holding all other parameters fixed (b=10, e=1, n=5, m=500). Results 
shown in Figure 4 propose that in general, the overall goodness increased when 
increasing the number of updates for low values of u in the BC and LY datasets. However 
for u =400, a decrement in fitness was observed in the BC dataset. This is consistent with 
our idea that updating a large number of dimensions is not beneficial. For the number of 
active features, a similar but undesirable behavior was observed in early epochs, 
increasing the number of updates was accompanied by an increase in the number of 
active features. Nevertheless, in the BC dataset, the number of active features decreased 
for u =1,4. Under these configurations, every particle must select 1 or 4 features 
respectively from at least 11 to at most 31 features composed by extreme scenarios from 
the set of global best, local best, its own, and random features. So, in u =1,4, deactivation 
was more productive than activation in the update process. This may be related to the fact 
that the BC is a two-classes dataset whereas LY is a five-classes one where more genes 
would be beneficial. Therefore, the observed results suggest that the number of updates is 
indirectly related to the number of active features through accuracy pressure. However, a 
specific number of updates may increase or decrease the number of initially active 
features depending on the value of the parameter and particularities of the dataset such as 
the number of classes. 

4.3.4 Innovation 

Differences between datasets were also observed when testing the number of innovations 
from 1 to 10 (e={1,2,4,6,8,10}; b=10, u=10, n=5, m=15). Results shown in Figure 5 for the BC 
and LY datasets respectively indicate that accuracies did not change drastically. However, 
the number of active features was sensitive to the number of innovation. For the BC dataset, 
the number of active features increased along with the innovation parameter. When e =10, 
every particle has to choose 10 updates from around 20 to 40 possible features in which 10 
are new random features. Consequently, the probability of choosing new features increases, 
which explains the increase in active features in early epochs when the swarm is 
heterogeneous. For the LY dataset, the number of active features was marginally sensitive to 
innovation and opposite to the BC dataset. This can be explained because the LY dataset 
contains several features related to classes (represented by high accuracies in runs at all sizes 
within the first 50 epochs). In this case, new random features are not essential for the swarm 
because prediction is highly accurate using those already contained within the swarm. 
Indeed, results suggest that a large number of new random features are not beneficial and 
that new features are not a major driving force in the LY dataset.  

In summary, there is tendency to increase the number of active features when the swarm is 
heterogeneous which may or may not be advantageous depending on the dataset. 
Innovation is a mechanism to increase heterogeneity. 
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Fig. 5. Innovation tests for the BC (A-B) and LY (C-D) datasets. (A-C) Accuracy evolution. 
(B-D) Dynamics of the number of active features. Points as in Figure 2. 

4.3.5 Constrained number of features 

The last adaption was designed in order to force the number of active features to lie within a 
range. In this context, we would not expect major accuracy differences in changing the 
values of n and m. To confirm this, we conducted runs varying n =5,6,7,8,9 coordinately with 
m =15,14,13,12,11 respectively (using e=1, b=10, and u=10) (only ran for the BC dataset for 
illustrative purposes). No differences were apparent in accuracy (data not shown), but small 
changes were observed in the number of active features that corresponded to the limits 
imposed. Interestingly, a peak in the distribution of the number of active features of the final 
best particle was observed at the value of n in all runs as shown in Table 4. For example, for 
n=9 and m=11, around 60%, 30% and 10% of the best particles were generated with 9, 10, 
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and 11 active features respectively. This tendency toward lower values indicates that the 
optimal number of active features needed could be lower than 9. Considering these 
observations, there is a tendency for the number of active features closer to 6. A consequence 
of this result is that the shape of this distribution may suggest an estimation of the optimal 
value of the number of active features. 
 

n m 5 6 7 8 9 10 11 12 13 14 15 
10 10      100      
9 11     62 28 10     
8 12    41 13 18 20 8    
7 13   24 13 18 15 13 15 2   
6 14  15 7 16 18 8 17 13 5 1  
5 15 7 8 9 18 16 20 8 5 4 4 1 

Table 4. Distribution of the number of active features, from 5 to 15, in runs at different 
values of n and m for the BC dataset. The highest frequency is shown in bold. 
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Fig. 6. Elitism tests for the LY dataset. (A) Accuracy evolution. (B) Dynamics of the number 
of active features. Points as in Figure 2. 

4.3.6 Elitism 

In the experiments described in previous paragraphs we used an elitism scheme in which 
the best particle is not updated. In general, it is accepted that elitism is a good practice 
(Eberhart et al., 2001). However, the effects of elitism are not so obvious in our 
implementation. Therefore we tested also the consequences of using elitism versus not 
using such scheme. Other parameters were set to b=10, u=10, e=1, n=5, m=15. 
Representative results are shown in Figure 6. As expected, the use of elitism had benefits 
in accuracy. On the contrary, elitism has also adverse effects by increasing the number of 
active features. 
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4.4 Simulation studies 

The experiments explained in detail in 2 datasets and overall in 5 to 11 diverse datasets, 
clearly show that the PSO adaptations proposed here are superior to other PSO 
algorithms for functional genomics datasets and improved efficacy on the search of small 
feature subsets from large datasets. Moreover, they also exhibit better control of the 
number of active features than other implementations. Although our results suggest that 
uuPSO may be used for any other dataset, how do we know that the algorithm is actually 
finding good features? In this context, the biological interpretation plays a major role. 
However, in order to test the general applicability of our proposed algorithm, we 
challenged the search capabilities of uuPSO testing whether few features can be found 
from a large dataset mainly filled of noisy features. In such tests, simulated datasets in 
which data is generated by a model then injecting features carrying desired properties are 
commonly the choice. In this context, we generated a simulated dataset containing 2426 
features for 78 samples (34 metastases, 44 non-metastases). Each feature was generated by 
a normal distribution with μ = 0 and σ = 1. This will be referred as a “noise filled” dataset. 
Then we added 5 features with μ = 2 and σ = 1 for metastasis sample and 5 features with μ 
= -2 and σ = 1 for the non-metastasis samples (features 2427 to 2436). We ran uuPSO at 
least 1,000 times before and after adding these 10 features. Results show that uuPSO is 
able to find the 10 added features, which is represented by better accuracies, as shown in 
Table 5. 
 

Simulated 
Dataset 

Accuracy
Mean  SD Top 10 Selected Features (frequency %) 

Noise Filled 0.80 0.02 1878(42), 2198(11), 408(9), 1280(7), 227(7), 243(7), 1799(7),  
176(7), 1461(6), 2269(6) 

    
Noise Filled 

+ 10 
predictive 

0.99 0.02 2435(15), 2430(14), 2428(14), 2433(13), 2434(12), 2431(10), 
2429(10), 2436(10), 2427(9), 2432(8) 

Table 5. Comparison of the simulated dataset with and without 10 predictive features. 

Although this result is encouraging, simulated datasets are bound to the model used, which 
may generate simpler datasets that could not capture the complexity of observed datasets. 
Therefore, to include the original functional genomics data complexity we used the BC dataset 
to generate a class-unrelated dataset. We generated a dataset as negative control by removing 
those features that are somehow related to samples class. For this, it is sensible to think that 
good candidates are precisely those selected using our feature selection procedure. 
Consequently we ran our algorithm 100,000 times (b = 10, u = 10, e = 10, n = 5, m = 15) resulting 
in the same number of feature subsets. Then, we counted the number of times each feature was 
selected within the 100,000 resulted models as shown in Figure 7A. The most frequent features 
were then removed to generate a negative dataset (see Figure 7B). To choose a cut-off value for 
feature removal, we estimated the expected number of times a feature would be selected by 
random chance in the total number of genes selected within the 100,000 runs. This was 
estimated by a binomial distribution (p=1/2920, tries=1,426,097 which is the total number of 
features in the 100,000 models generated). The expected frequency was 524 at p-value < 0.05. 
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We consider that this value is very conservative since we used raw p-values uncorrected for 
multiple tests. The number of features whose frequency surpasses this value was 494. 
Consequently the negative datasets carried 2,426 features. The number of 100,000 was chosen 
in order to be confident that the rank of top genes would not change among different runs. 
Indeed ranks between two runs of 10,000 and 90,000 have no major differences (see Figure 7A 
inset). If our algorithm cannot find related features in this negative dataset, a decrease in the 
final accuracy would be expected. As projected, the mean accuracy in 1000 runs for the 
negative dataset was 72% (labeled with BOTTOM in Figure 7B) while the same indicator in the 
original dataset was 82% (labeled with FULL in Figure 8B). Then, we inserted only the original 
top 10 features to the negative dataset (representing 0.4% of the 2,436 total features) and 
counted how many times the same top 10 features were found in the best models for 1000 
runs. We also performed this procedure for top 20, 50, 100, 200, 300, 400 and 494 originally 
removed features. Results are shown in Figure 8A. We found that the high accuracy is easily 
restored after the first insertion (labeled TOP10 in Figure 8B). However, results show that the 
next 10 features were needed to fully restore the original observed accuracy distribution 
(labeled TOP20 in Figure 8B). We found all 10 and 20 top inserted features and more than 90% 
among the top 100 injected features. These results indicate that most frequent features (and 
presumably those more related to classes) are easily found even in highly noisy scenarios 
(99.6% of noisy features). Nevertheless, search efficiency was decreased to 60% when 494 top 
features were added. Within this, top 50 features were always found. Therefore, the search 
capability was uncertain only for those features ranked in the order of hundreds, presumably, 
because of random effects. 
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Fig. 7. (A) Top genes found in 100,000 runs for the BC dataset. Inset: Comparison of feature 
selection frequency for 10,000 and 90,000 runs. (B) Generation of the negative dataset and 
positive added features. Features were sorted by the number of times they were found in the 
best particle for 100,000 runs. Top 494 were removed to generate the negative dataset. Top 
features were then injected progressively to the negative dataset: first 10, then 20, 50, 100, 
200, 300, 400 and 494 (from leftmost dashed line to rightmost dashed line). 
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We then asked about the amount of information that uuPSO is able to find in the original 
dataset. That is, the improvement attributed to the uuPSO. For this, we generated random 
models of equal sizes than those observed in the models generated for the negative dataset. 
These models would represent the amount of information (given by accuracy) found by 
random chance. Similarly, we generated series of 20 random models recording only the best 
in each series. These would represent the best models that drive the search at the beginning 
of the swarm optimization procedure. Results show that the baseline for the amount of 
information is about 54% given by random models in the negative dataset (labeled with 
Random in Figure 9B). The accuracy distribution from the best of the random series 
indicates that uuPSO starts with 66% accuracy (labeled with Best Random in Figure 8B), 
which is then improved to 72% during the uuPSO process (labeled with BOTTOM in Figure 
8B). Overall, these results show that the average improvement by uuPSO in the BC dataset is 
16% (from 66% to 82%) when good predictors are present. 
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Fig. 8. (A) Search efficiency in the top added features. (B) Fitness distribution for uuPSO 
search capability tests. 

4.5 Comparison with other feature selection methods and classifiers 

In order to show that the uuPSO methodology is able to find alternative models and that is 
not dependent to the nearest centroid classifier (NC) used here, we also used a state-of-the-
art support vector machine (SVM) classifier with a linear kernel ((Chang and Lin, 2001), java 
implementation). The results shown in Table 6 clearly demonstrate that uuPSO also finds 
good predictive models using a SVM classifier. 

Although the differences are marginal relative to the NC classifier, the accuracy of SVM 
models was superior in all databases. Moreover, the models found using SVM were 



 
Theory and New Applications of Swarm Intelligence 

 

154 

generally smaller. These differences are consistent with the perception that SVM is a 
powerful classifier. However, we note a huge difference in processing time, which should 
correspond to the complex training procedure of SVM, to the java implementation used, or 
to our coupling implementation of this library. In the Ovarian dataset, uuPSO using SVM 
found models with 100% accuracy in early epochs explaining the small difference in 
processing time for this dataset. 
 

Database Classifier Best-model
Size      Acc 

Accuracy
Mean    SD 

Features
Mean       SD 

Time 
(hr) 

Breast Cancer NC 13 0.923 0.842 0.03 13 2 0.7 
 SVM 12 0.974 0.904 0.03 13 1 *862.0 
         

Leukemia-Yeoh NC 14 1 0.981 0.02 14 1 0.6 
 SVM 11 1 0.996 0.01 14 2 *954.3 
         

Colon NC 12 0.984 0.949 0.01 12 2 1 
 SVM 8 1 0.987 0.02 13 2 *585.7 
         

Ovarian NC 10 1 0.999 0 13 2 6.3 
 SVM 10 1 1 0 15 2 6.9 
         

Leukemia-Golub NC 14 0.944 0.879 0.02 14 2 1.5 
 SVM 15 0.958 0.927 0.02 12 2 *5722.7 

Table 6. Comparison of uuPSO algorithm using the nearest centroid (NC) and support 
vector machine (SVM) classifiers. The goodness (Accuracy) and number of features from the 
best model found among 100 runs is shown. Goodnesses and features mean and standard 
deviation (SD) were estimated along 1000 epochs and 100 runs. Time was estimated for 100 
runs. A star (*) marks times estimated from partial results. 

To show the utility of uuPSO as a competitive feature selection alternative, we compared 
uuPSO with a state-of-the-art backward elimination strategy such as SVM-Recursive Feature 
Elimination (Guyon et al., 2002) and a Forward-Selection strategy (Tibshirani et al., 2002; 
Montaner et al., 2006). The former (SVM-RFE) considers all features and remove the worst 
feature in each cycle whereas the last (SVM-FS) considers the best feature and includes the 
next ranked feature in each cycle (based in univariate ranking such as t-test or f-test). The 
results of the comparison summarized in Table 7 suggest that models generated by 
uuPSO are competitive. However, there are some differences in the comparison of SVM-
RFE and SVM-FS with uuPSO. SVM-RFE and SVM-FS procedures "see" all data to create a 
rank of the importance of the features related to the problem irrespective of the 10-fold-
CV used to estimate the error in the feature selection step. A consequence is that the 
estimated error is more optimistic than the estimation of others cross-validation strategies. 
In our experiments using uuPSO, the SVM classifier never is aware of all data. In each of 
the 10 cycles of the 10-fold-CV, the SVM classifier sees only the training set and makes 
prediction of the test set. To observe a possible effect of this issue, we made a simple 
experiment in SVM-RFE changing the estimation of the rank using all data by an average 
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rank generated by SVM-RFE from each of the 10 folds used in the cross-validation. The 
results, shown in Table 7 column SVM-RFE-CV, demonstrate that uuPSO is sometimes 
better generating smaller models.  
 

Database 
uuPSO NC
Acc     Size 

uuPSO SVM
Acc     Size 

SVM RFE
Acc     Size 

SVM FS
Acc     Size 

SVM RFE-CV 
Acc     Size 

Breast Cancer 0.92 13 0.97 12 1 13 0.83 9 1 50 
           

Leukemia-Yeoh 1 14 1 11 1 8 1 51 1 11 
           

Colon 0.98 12 1 8 1 9 0.89 4 1 27 
           

Ovarian 1 10 1 10 1 3 1 34 1 21 
           

Leukemia-
Golub 

0.94 14 0.96 15 1 12 0.86 9 1 13 

           

Table 7. Comparison of uuPSO algorithm using the nearest centroid (NC) and support 
vector machine (SVM) classifiers versus support vector machine recursive feature 
elimination algorithm (SVM-RFE) and support vector machine forward selection algorithm 
(SVM-FS). 

A more important difference of uuPSO compared to SVM-RFE and SVM-FS is the potential 
to generate several versions of good classifiers using a different set of features. In SVM-RFE 
and SVM-FS strategies, the pre-computed rank is fixed in the feature selection procedure. 
Therefore, alternative models are almost identical. Contrary, given the random nature of 
PSO, uuPSO is able to generate unrelated models with the same or similar predictive power 
(see Table 8 for the features selected in the top two models). For genomics data, this is useful 
in research and clinical scenarios to investigate the biological mechanism of the genes 
involved and to select models based on biological knowledge, already installed 
infrastructure, commercial availability, or patent protected issues. Indeed, as seen in Table 8,  

 
Dataset Method Accuracy Selected Features

Breast Cancer uuPSO NC 0.923 78,116,329,672,745,760,835,925,2023,2064,2721,2847, 
2871 

  0.923 222,272,286,856,965,1204,1396,1480,1509,1610,2145, 
2172,2422,2910 

 uuPSO 
SVM 0.974 303,393,542,1286,1291,1370,2047,2172,2176,2721,2873, 

2919 

  0.974 18,78,832,1254,1515,1644,1965,2092,2185,2187,2367, 
2462 

 SVM RFE 1 2873,272,1002,706,268,2137,521,705,879,1695,1845, 
1387,979 

  1 2873,272,1002,706,268,2137,521,705,879,1695,1845, 
1387,979,1793 
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Dataset Method Accuracy Selected Features
 

Leukemia 
Yeoh uuPSO NC 1 695,698,781,913,950,1069,1094,1275,1432,1609,1665, 

1702,1913,2155
 0.996 496,754,928,942,1175,1188,1281,1287,1519,1589,2287 

 uuPSO 
SVM 1 51,523,934,995,1029,1153,1370,1441,1590,1969,2333 

 1 15,151,422,429,708,968,1193,1220,1313,1340,1699, 
2007

 SVM RFE 1 708,2231,399,1139,1193,1588,781,1420
 1 708,2231,399,1139,1193,1588,781,1420,2118 
 

Leukemia 
Golub uuPSO NC 0.944 36,206,321,1830,2238,2685,3020,3239,3411,3621,4717,4

915,6451,6643

 0.917 259,514,518,1291,2125,2396,2403,2912,3367,3934,4735,
6352,6553

 uuPSO 
SVM 0.958 66,529,2610,2621,2644,3316,4377,4558,5147,5348,5751,

5897,6050,6541,6577

 0.944 20,811,1332,1882,1887,2293,2860,2890,4319,6024, 
6761

 SVM RFE 1 997,1868,306,951,6876,6024,2520,6345,3559,5492,1650,
1805

 1 997,1868,306,951,6876,6024,2520,6345,3559,5492,1650,
1805,3036

 

Colon uuPSO NC 0.984 182,234,549,566,613,738,788,880,1060,1210,1493, 
1549

 0.968 137,508,739,924,1110,1597,1698

 uuPSO 
SVM 1 163,380,496,764,787,1065,1324,1796 

 1 19,399,440,450,611,689,1146,1679,1843,1960 

 SVM RFE 1 1924,1482,1649,1843,1668,788,1935,1597,1221,124, 
1895,1976,1671

 1 1924,1482,1649,1843,1668,788,1935,1597,1221,124, 
1895,1976,1671,1094,1325

 

Ovarian uuPSO NC 1 2192,2236,3258,5036,7552,8062,13207,13612,13871, 
15058

 1 747,2238,2633,3174,3224,3370,3561,5226,10968, 
12915

 uuPSO 
SVM 1 2235,2493,4098,4642,5808,6494,7235,12560,14006, 

14086

 1 1039,1682,2169,2235,2834,3703,8285,8556,11785, 
14707,15053

 SVM RFE 1 2239,2240,1681
 1 2239,2240,1681,2527
 

Table 8. Feature content of the best two models selected by three methods. 
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models generated by uuPSO using SVM are not similar to those generated by SVM-RFE. 
This suggests that uuPSO is able to explore other possibilities that cannot be explored with 
SVM-RFE. Therefore, uuPSO can also be used in conjunction to other methods for feature 
selection. In addition, uuPSO may use any classifier that can generate competitive models 
with different gene content. All this indicates that uuPSO is a valuable tool for the 
computational biology community. 

5. Discussion 
We have proposed and studied some the uuPSO algorithm for feature selection that 
successfully select small feature subsets from large-scale datasets. The selection of few 
highly predictive features is important in diagnosis for biological and clinical fields 
where an experiment has to be done for each feature. Thus, a reduced number of features 
would be simpler, cheaper, and easier to understand and interpret. Other fields would 
also prefer small models than large ones to avoid overwhelming and perhaps overfitting. 
We have shown in several datasets containing thousands of features than our algorithm is 
superior in terms of accuracy, lower number of selected features, and processing time 
compared to others PSO algorithms. We have also shown that designed models  
are meaningful biologically. In addition, uuPSO can be seen as a generalization of PSO 
where sbPSO is a special case (for k = total number of features, b = k / 2; u = k; e = 0; n = 1; 
m = k). 

Our novel combination of subset initialization, subset update, and number of features, 
namely under-updated PSO, was critical in the successful selection of small feature subsets. 
We found that the number of updates is very close to the total active number of features. 
Therefore, we believe that the update-all process is the main reason why sbPSO fails for 
large datasets. Presumably, because a high number of features introduce such high levels of 
noise that classification is confused resulting in poor prediction.. 

Our constrained updates adaption is somehow similar to that proposed by (Wang et al., 
2007) in which the strategy was to update a subset of dimensions. However, in our 
approach, the choice of the specific subset to update is different and is based on dissimilar 
rationale. Wang used a unique velocity related to the number of bits allowed to change 
and does not consider the effect of the local best particle. In addition, Wang et al. 
initializes all features as in the usual PSO activating the half of the features by random 
chance. This may explain the poor performance of the Wang et al. procedure for datasets 
with thousands of features. Our vision to update a subset of particles is completely 
different. Here, contrary to Wang et al., we envisioned the number and the selection of 
updates as a constrained imitation in which not all features can be imitated at the same 
time. In this framework, our results indicate that the goodness increase when increasing 
the number of updates, until a certain limit. So, there are an optimal number of variables 
to update. In addition, the initialization plays an important role. Although uuPSO may 
recover from a high number of initial active features, a mild initialization may be more 
useful. We have shown that the proposed adaptations are successful and relevant in the 
context of small feature subset selection. Also our PSO implementation seems to be better 
than others. 
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One problem in our implementation is that it is necessary to start with a guess of the 
optimal number of features. However, which is the optimal number of features? So far we 
attempted to select small feature subsets of size k. Ideally, we would like that k lies between 
5 and 15. Based in the results shown here, this goal is achievable. However this is far from 
being general and could correspond to dataset dependency. Thus, to analyze a dataset for 
the first time, we would suggest to use a conservative base number such as 5, 10 or 20 
depending on the resulted goodness and the number of classes. 

From the computational size, the superb performance in processing time may allow us to 
run systematic selections for several datasets and perhaps design a web service open to the 
scientific community. We will work in this direction shortly. Our algorithm should run 
faster and proportionally to the total number of features than the plain sbPSO. This is 
relevant since the future of microarray data analysis points out to the implementation of 
meta-analysis, where the number of samples are increased, thus more processing will be 
needed. 

From the experiments performed with simulated datasets, our results clearly show that our 
algorithm is capable of finding the most differentially expressed genes. Table 5 supports our 
claim since the top 10 selected features after adding the predictive variables were precisely 
the variables with the best predictive power (features 2427 to 2436) and also with almost 
perfect classification accuracy. The search capability tests suggest that uuPSO is powerful to 
find important features even in the presence of 99.6% of noisy features. We showed that top 
50 features are easily discovered among 1000 runs and that the search capability began to 
decrease for more than the top 100 genes. However, for our purpose of obtaining models 
composed from a few number of genes, we think that the search capability is good enough 
without losing information. 

For illustrative purposes, we used 10-fold-cross-validation procedure considering all 
available data. However, it is recommended to use a blind subset to test models after the 
feature selection process. For the LY dataset, if the data is split in 66% for training and 33% 
for blind test, the accuracy of the representative model is 100% when evaluated in the blind 
set. This is equal to the accuracy obtained using all data. If the same procedure is performed 
in the BC dataset, the accuracy of the representative model is 66%. This discrepancy can be 
attributed to differences in the number of samples and the clinical definitions of classes. The 
BC dataset contains only 78 samples whereas the LY dataset contains 233. In addition, the 
classes in LY dataset were based on chromosomal rearrangements (Yeoh et al., 2002) 
whereas in the BC dataset were based on a progression end-point indicator which is 
biologically more complex. For example, the no metastasis class was determined by the fact 
that no metastases were present during the following 5 years. However, it is unknown 
whether some of these samples would develop metastases in the following years. Therefore, 
the particular molecular state of samples in the no metastasis class can be more 
heterogeneous than the classes in the LY dataset. Despite these concerns, the most frequent 
genes are conserved in both training schemes and the genes found shown in Figure 1 seem 
to be related to BC. For biomarker design purposes, we recommend to use large enough 
datasets that are representative of the biological phenomena and that can be used for proper 
train-test schemes. 
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We tested two classifiers (nearest centroid and SVM) to guide the search of features with 
successful results. This suggest that the use of uuPSO can be extended to other applications 
such as regression, time to event (survival analysis), or other custom associations between 
features and outcomes by using a suitable goodness function. We used the classification 
accuracy to make selection pressure for smaller models. However, the goodness function 
can also be used to explicitly select fewer features (Alba et al., 2007). For example, using 
goodness = accuracy * w1 + size * w2. Setting w2 to negative values would tend to select 
particles having smaller models. However, a problem arises when more accurate models are 
replaced by worse ones that are smaller. Nevertheless, incipient results suggest that 
improvements are only marginal and may depend on others factors such as number of 
epochs (data not shown). 

Another advantage from our method is that it can provide models with distinct variables 
but with the same level of accuracy. This can be useful for biologists or medical doctors, 
because if they have more options of possible genes to study with techniques like PCR, they 
can select the genes according to other criteria like molecular function, pathways, etc. 

6. Conclusions 
We proposed an adapted sbPSO algorithm, named uuPSO, for feature selection that allow 
the selection of small feature subsets from large-scale datasets. All these adaptations have a 
significant impact in searching small and accurate multivariate feature subsets. Results 
showed that good subsets were composed of around 5-20 features. These subsets performed 
well in classification tasks previously shown to be difficult. The proposed algorithm was 
successful in selecting small feature subsets from five large functional genomics datasets. 
Biology and simulation results confirm that our algorithm is able to find features related to 
sample classes. We also showed that the algorithm is able to find important features even in 
the presence of 99.6% of noisy features. Comparisons with other methods show that uuPSO 
is able to find competitive models that could not be found with SVM-RFE or SVM-FS. 
Therefore, uuPSO can be used in addition to these or other feature selection methods. We 
also tested uuPSO coupled with two classifiers (SVM and nearest centroid) and show that 
both can find competitive models with different selected features but same accuracy. 
Consequently, uuPSO could be a framework and a valuable tool in computational biology 
for biomarker design. 
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1. Introduction 
The discipline of Symbolic Regression (SR) has matured significantly in the last few years. 
There is at least one commercial package on the market for several years 
(http://www.rmltech.com/). There is now at least one well documented commercial 
symbolic regression package available for Mathematica (www.evolved-analytics.com). 
There is at least one very well done open source symbolic regression package available for 
free down load (http://ccsl.mae.cornell.edu/eureqa). 

In addition to our own ARC system [6], currently used internally for massive financial data 
nonlinear regressions, there are a number of other mature symbolic regression packages 
currently used in industry including [8] and [9]. Plus there is an interesting work in progress 
by McConaghy [10]. 

Nonlinear symbolic regression (SR) has not been widely applied to financial problems 
because of SR’s difficulties optimizing imbedded constants. Optimizing imbedded constants 
is often a critical requirement in many financial applications. However, recent integrations 
of swarm intelligence (SI) with symbolic regression support a level of maturity and 
sophistication making nonlinear regression and nonlinear CART available for real world 
financial applications. 

In this chapter we investigate the integration of two popular swarm intelligence algorithms 
(Bees, and Particle Swarm), and one popular evolutionary computation algorithm 
(Differential Evolution) with standard genetic programming symbolic regression to help 
optimize imbedded constants in a real world financial application: the prediction of forward 
12 month earnings per share. We make the observations: that standard genetic 
programming does not optimize imbedded constants well; that swarm intelligence 
algorithms are adept at optimizing constants; and that allowing imbedded constants in SR 
greatly increases the size of the search space.  

In the body of the chapter it is shown that the differences between the three popular 
constant managing algorithms is minimal for optimizing imbedded constants; yet without 
any swarm intelligence standard GP symbolic regression fails to optimize imbedded 
constants effectively. 

We proceed with a general introduction to symbolic regression and the size of the search space. 

Symbolic Regression is an approach to general nonlinear regression which is the subject of 
many scholarly articles in the Genetic Programming community. A broad generalization of 
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general nonlinear regression is embodied as the class of Generalized Linear Models (GLMs) as 
described in [11]. A GLM is a linear combination of I basis functions Bi; i = 1,2, … I, a 
dependent variable y, and an independent data point with M features x = <x1, x2, x3, …xm>: 
such that 

1 y = γ(x) = c0 +  
1

x
I

i i
i

c B

 + err 

As a broad generalization, GLMs can represent any possible nonlinear formula. However 
the format of the GLM makes it amenable to existing linear regression theory and tools since 
the GLM model is linear on each of the basis functions Bi. 

For a given vector of dependent variables, Y, and a vector of independent data points, X, 
symbolic regression will search for a set of basis functions and coefficients which minimize 
err. In [12] the basis functions selected by symbolic regression will be formulas as in the 
following examples: 

2 B1 = x3 
3 B2 = x1+x4 
4 B3 = sqrt(x2)/tan(x5/4.56) 
5 B4 = tanh(cos(x2*.2)*cube(x5+abs(x1))) 

If we are minimizing the least squared error, LSE, once a suitable set of basis functions {B} 
have been selected, we can discover the proper set of coefficients {C} deterministically using 
standard univariate or multivariate regression. The value of the GLM model is that one can 
use standard regression techniques and theory. Viewing the problem in this fashion, we 
gain an important insight. Symbolic regression does not add anything to the standard 
techniques of regression. The value added by symbolic regression lies in its abilities as a 
search technique: how quickly and how accurately can SR find an optimal set of basis 
functions {B}. 

The immense size of the search space provides ample need for improved search techniques In 
standard Koza-style tree-based Genetic Programming [12] the genome and the individual are 
the same Lisp s-expression which is usually illustrated as a tree. Of course the tree-view of an 
s-expression is a visual aid, since a Lisp s-expression is normally a list which is a special Lisp 
data structure. Without altering or restricting standard tree-based GP in any way, we can view 
the individuals not as trees but instead as s-expressions such as this depth 2 binary tree s-exp: 
(/ (+ x2 3.45) (* x0 x2)), or this depth 2 irregular tree s-exp: (/ (+ x2 3.45) 2.0). 

In standard GP, applied to symbolic regression, the non-terminal nodes are all operators 
(implemented as Lisp function calls), and the terminal nodes are always either real number 
constants or features. The maximum depth of a GP individual is limited by the available 
computational resources; but, it is standard practice to limit the maximum depth of a GP 
individual to some manageable limit at the start of a symbolic regression run. 

Given any selected maximum depth k, it is an easy process to construct a maximal binary 
tree s-expression Uk, which can be produced by the GP system without violating the 
selected maximum depth limit. As long as we are reminded that each f represents a function 
node while each t represents a terminal node, the construction algorithm is simple and 
recursive as follows. 
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U0: t 
U1: (f t t) 
U2: (f (f t t) (f t t)) 
U3: (f (f (f t t) (f t t)) (f (f t t) (f t t))) 
Uk: (f Uk-1 Uk-1) 

Any basis function produced by the standard GP system will be represented by at least one 
element of Uk. In fact, Uk is isomorphic to the set of all possible basis functions generated by 
the standard GP system. 

Given this formalism of the search space, it is easy to compute the size of the search space, 
and it is easy to see that the search space is huge even for rather simple basis functions. 
For our use in this chapter the function set will be the following functions: F = {+ - * / abs 
sqrt square cube cos sin tan tanh log exp max min ℵ} (where ℵ(a,b) =  ℵ(a) = a). The 
terminal set is the features x0 thru xm and the real constant c, which we shall consider to 
be 264 in size. Where |F| = 17, M=20, and k=0 , the search space is S0 = M+264 = 20+264 = 
1.84x1019. Where k=1, the search space is S1 = |F|*S0*S0 = 5.78x1039. Where k=2, the search 
space grows to S2 = |F|*S1*S1 = 5.68x1080. For k=3, the search space grows to S3 = 
|F|*S2*S2 = 5.5x10162. Finally if we allow three basis functions B=3 for financial 
applications, then the final size of the search space is S3*S3*S3 = 5.5x10486. 

Clearly even for three simple basis functions, with only 20 features and very limited 
depth, the size of the search space is already very large; and, the presence of real constants 
accounts for a significant portion of that size. For instance, without real constants, S0 = 20, 
S3 = 1.054x1019, and with B=3 the final size of the search space is 1.054x1057. It is our 
contention that since real constants account for such a significant portion of the search 
space, symbolic regression would benefit from special constant evolutionary operations. 
Since standard GP does not offer such operations, we investigate the enhancement of 
symbolic regression with swarm intelligence algorithms specifically designed to evolve 
real constants. 

As we apply our enhanced symbolic regression to an important real world investment 
finance application, the prediction of forward 12 month earnings per share, we discover a 
number of accuracy, believability, and regulatory issues which must be addressed. Solutions 
for those issues are provided and we proceed to apply an enhanced symbolic regression 
algorithm to the problem of estimating forward corporate earnings per share. 

This chapter begins with a discussion of Symbolic Regression theory in Section (2) and with 
important theoretical issues in Section (3). Methodology is discussed in Section (4), then 
Sections (5) through (10) discuss the algorithms for Standard GP Symbolic Regression and 
the enhancements for merging swarm intelligence with standard GP symbolic regression. In 
Section (11) we compare the performance of standard GP symbolic regression with 
enhanced symbolic regression on a set of illustrative sample test problems. Sections (12) thru 
(15) give a background in investing and discuss the essential requirements for applying 
symbolic regression to predicting forward 12 month earnings in a real world financial 
setting. Finally, Sections (17) thru (19) compare the performance of enhanced symbolic 
regression with the swarm algorithm being Differential Evolution, the bees Algorithm, or 
Particle Swarm. 
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2. Symbolic regression theory 
In standard Koza-style symbolic regression [12], a Lisp s-expression is manipulated via the 
evolutionary techniques of mutation and crossover to produce a new s-expression which 
can be tested, as a basis function candidate in a GLM. Basis function candidates that produce 
better fitting GLMs are promoted. 

Mutation inserts a random s-expression in a random location in the starting s-expression. 
For example, mutating s-expression (4) we obtain s-expression (4.1) wherein the sub 
expression “tan” has been randomly replaced with the sub expression “cube”. Similarly, 
mutating s-expression (5) we obtain s-expression (5.1) wherein the sub expression 
“cos(x2*.2)” has been randomly replaced with the sub expression “abs(x2+ x5)”. 

4 B3 = sqrt(x2)/tan(x5/4.56) 
4.1 B5 = cos(x2)/cube(x5/4.56) 
5 B4 = tanh(cos(x2*.2)*cube(x5+abs(x1))) 
5.1 B6 = tanh(abs(x2+ x5)*cube(x5+abs(x1))) 

Crossover combines portions of a mother s-expression and a father s-expression to produce a 
child s-expression. Crossover inserts a randomly selected sub expression from the father into 
a randomly selected location in the mother. For example, crossing s-expression (5) with s-
expression (4) we obtain child s-expression (5.2) wherein the sub expression “cos(x2*.2)” has 
been randomly replaced with the sub expression “tan(x5/4.56)”. Similarly, again crossing s-
expression (5) with s-expression (4) we obtain another child s-expression (5.3) wherein the 
sub expression “x5+abs(x1)” has been randomly replaced with the sub expression “sqrt(x2)”. 

4 B3 = sqrt(x2)/tan(x5/4.56) 
5 B4 = tanh(cos(x2*.2)*cube(x5+abs(x1))) 
5.2 B7 = tanh(tan(x5/4.56)*cube(x5+abs(x1))) 
5.3 B8 = tanh(cos(x2*.2)*cube(sqrt(x2))) 

These mutation and crossover operations are the main tools of standard GP, which functions 
as described in Algorithm 2, randomly creating a population of candidate basis functions, 
mutating and crossing over those basis functions repeatedly while consistently promoting 
the most fit basis functions. The winners being the collection of basis functions which 
receive the most favorable least square error in a GLM with standard regression techniques. 

3. Theoretical issue 
A theoretical issue with standard GP symbolic regression is the poor optimization of 
embedded constants under the mutation and crossover operators. Notice that in basis 
functions (4) and (5) there are real constants embedded inside the formulas. These 
embedded constants, 4.56 and .2, are quite important. That is to say that basis function (4) 
behaves quite differently than basis function (4.2) while basis function (5) behaves quite 
differently than basis function (5.4).   

4 B3 = sqrt(x2)/tan(x5/4.56) 
4.2 B9 = sqrt(x2)/tan(x5) 
5 B4 = tanh(cos(x2*.2)*cube(x5+abs(x1))) 
5.4 B10 = tanh(cos(x2)*cube(x5+abs(x1))) 
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The behavior can be quite startling. For instance, if we generate a set of random independent 
variables for <x1, x2, x3, …xm> and we set the dependent variable, y = sqrt(x2)/tan(x5/4.56), 
then a regression on y = sqrt(x2)/tan(x5) returns a very bad LSE. In fact the bad regression fit 
continues until one regresses on y = sqrt(x2)/tan(x5/4.5). It is only until one regresses on y = 
sqrt(x2)/tan(x5/4.55) that we get a reasonable LSE with an R-Square of .56. Regressing on  
y = sqrt(x2)/tan(x5/4.555) achieves a better LSE with an R-Square of .74. Of course 
regressing on y = sqrt(x2)/tan(x5/4.56) returns a perfect LSE with an R-Square of 1.0.  

Clearly, in many cases of embedded constants, there is a very small neighborhood, around 
the correct embedded constant, within which an acceptable LSE can be achieved.  

In standard Koza-style symbolic regression [12], the mutation and crossover operators are 
quite cumbersome in optimizing constants. As standard GP offers no constant manipulation 
operators per se, the mutation and crossover operators must work doubly hard to optimize 
constants. For instance, the only way to optimize the embedded constant in s-expression (5) 
would be to have a series of mutations or crossovers which resulted in an s-expression with 
multiple iterative additions and subtractions as follows [12]. 

4 B3 = sqrt(x2)/tan(x5/4.56) 
4.2 B3 = sqrt(x2)/tan(x5/(1.0+3.2)) 
4.3 B3 = sqrt(x2)/tan(x5/((1.0+3.2)+.3)) 
4.4 B3 = sqrt(x2)/tan(x5/(((1.0+3.2)+.3)+.07)) 
4.4 B3 = sqrt(x2)/tan(x5/((((1.0+3.2)+.3)+.07)-.01)) 

Characteristically, the repeated mutation and crossover operations which finally realize an 
optimized embedded constant also greatly bloat the resulting basis function with byzantine 
operator sequences [18]. On the other hand swarm intelligence techniques are quite good at 
optimizing vectors of real numbers. So the challenge is how to collect the embedded 
constants found in a GP s-expression into a vector so they can be easily optimized by swarm 
intelligence techniques. 

Recent advances in symbolic regression technology including Abstract Expression 
Grammars (AEGs) [3], [4], [5], [6], and [13] can be used to control bloat, specify complex 
search constraints, and expose the embedded constants in a basis function so they are 
available for manipulation by various swarm intelligence techniques suitable for the 
manipulation of real numeric values. This presents an opportunity to combine standard 
genetic programming techniques together with swarm intelligence techniques into a 
seamless, unified algorithm for pursuing symbolic regression. 

The focus of this chapter will be an investigation of swarm intelligence techniques, used in 
connection with AEGs, which can improve the speed and accuracy of symbolic regression 
search, especially in cases where embedded numeric constants are an issue hindering 
performance. 

4. Methodology 
Our methodology is influenced by the practical issues in applying symbolic regression to a 
real world investment finance problem. First there is the issue that current standard GP 
symbolic regression cannot solve selected simple test problems required for the successful 
application of SR to predicting forward corporate earnings per share. This includes the 
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methodological challenge of enhancing standard GP with swarm intelligence and modifying 
the necessary encodings to accommodate both GP and swarm intelligence algorithms. 
Second there is the issue of adapting symbolic regression to run in a real world financial 
application with massive amounts of data. Third there is the issue of modifying symbolic 
regression, as practiced in academia, to conform to the very difficult U.S. Securities 
Exchange Commission regulatory environment. 

Sections (5) thru (10) discuss the methodological challenge of enhancing standard GP 
symbolic regression so that it can be effective when applied to the real world problem of 
predicting forward 12 month corporate earnings per share. In Section (11), the behavior of 
GP symbolic regression with and without the enhancement of swarm intelligence is 
compared on a few sample test problems. 

For the sample test problems, we will use only statistical best practices out-of-sample testing 
methodology. A matrix of independent variables will be filled with random numbers. Then 
the model will be applied to produce the dependent variable. These steps will create the 
training data. A symbolic regression will be run on the training data to produce a champion 
estimator. Next a matrix of independent variables will be filled with random numbers. Then 
the model will be applied to produce the dependent variable. These steps will create the 
testing data. The estimator will be regressed against the testing data producing the final LSE 
and R-Square scores for comparison. 

Sections (17) thru (19) compare the behavior of GP symbolic regression with and without 
swarm intelligence on a real world problem namely the forward estimation of corporate 
earnings on a database of stocks from 1990 thru 2009. 

For the forward estimation of corporate earnings, this paper uses an historical database of 
approximately 1200 to 1500 stocks with daily price and volume data, weekly analyst 
estimates, and quarterly financial data from Jan 1986 to the present. The data has been 
assembled from reports published at the time, so the database is highly representative of 
what information was realistically available at the point when trading decisions were 
actually made.  

From all of this historical data, twenty years (1990 thru 2009) have been used to support the 
results shown in this research. This two decade period includes a historically significant bull 
market decade followed by an equally historically significant bear market decade. 

Multiple vendor sources have been used in assembling the data so that single vendor bias 
can be eliminated. The construction of this point in time database has focused on collecting 
weekly consolidated data tables, collected every Friday from Jan 3, 1986 to the present, 
representing detailed point in time input to this study and cover approximately 1200 to 1500 
stocks on a weekly basis. Each stock record contains daily price and volume data, weekly 
analyst estimates and rankings, plus quarterly financial data as reported. The primary focus 
is on gross and net revenues. 

The efficacy of several different swarm intelligence techniques are examined by running a 
full experimental protocol for each technique. Standard genetic programming, without swarm 
intelligence techniques, will be the base line for this study. We are interested in determining if 
the addition of swarm intelligence techniques improves symbolic regression performance – 
and if so, which swarm techniques perform best. 
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Our historical database contains 1040 weeks of data between January 1990 and December 
2009. In a full training and testing protocol there is a separate symbolic regression run for 
each of these 1040 weeks. Each SR run consists of predicting the ftmEPS for each of the 1200 
to 1500 stocks available in that week. A sliding training/testing window will be constructed 
to follow a strict statistical out-of-sample testing protocol. 

For each of the 1040 weeks, the training examples will be extracted from records in the 
historical trailing five years behind the selected record BUT not including any data from the 
selected week or ahead in time. The training dependent variable will be extracted from the 
historical data record exactly 52 weeks forward in time from the selected record BUT not 
including any data from the selected week or ahead in time. Thus, as a practical observation, the 
training will not include any records in the first 52 weeks prior to the selected record – 
because that would require a training dependent variable which was not available at the time. 

For each of the 1040 weeks, the testing samples will be extracted from records in the 
historical trailing five years behind the selected record including all data from the selected week 
BUT not ahead in time. The testing dependent variable will be extracted from the historical 
data record exactly 52 weeks forward in time from the selected record.  

Each experimental protocol will produce 1040 symbolic regression runs over an average 
of 275,000 records for each training run and between 1200 and 1500 records for each 
testing run. Three hours will be allocated for training. Of course 1040 X 2 (training and 
testing) separate R-Square statistics will be produced for each experimental protocol. We 
will examine the R-Square statistics for evidence favoring the addition of swarm 
intelligence over the base line and for evidence favoring one swarm intelligence technique 
over another.  

Finally we will need to adapt our methodology to conform to the rigorous United States 
Securities and Exchange Commission oversight and regulations on investment managers. 
The SEC mandates that every investment firm have a compliance officer. For any automated 
forward earnings prediction algorithm, which would be used as the basis for later stock 
recommendations to external clients or internal portfolio managers, the computer software code 
used in each prediction, the historical data used in each prediction, and each historical 
prediction itself, must be filed with the compliance officer in such form and manner so as to 
allow a surprise SEC compliance audit to reproduce each individual forward prediction 
exactly as it was at the original time of publication to external clients or internal portfolio 
managers. 

Of course this means that we must provide a copy of all code, all data, and each forward 
prediction for each stock in each of the 1040 weeks, to our compliance officer. Once 
management accepts our symbolic regression system, we will also have to provide a copy of 
all forward predictions on an ongoing basis to the compliance officer. 

Furthermore there is an additional challenge in meeting these SEC compliance details. The 
normal manner of operating GP, SI, and symbolic regression systems in academia will not 
be acceptable in a real world compliance environment. Normally, in academia, we recognize 
that symbolic regression is a heuristic search process and so we perform multiple SR runs, 
each starting with a different random number seed. We then report based on a statistical 
analysis of results across multiple runs. This approach produces different results each time 
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the SR system is run. In a real world compliance environment such practice would subject 
us to serious monetary fines and also to jail time. 

The SEC compliance requirements are far from arbitrary. Once management accepts such an 
SR system, the weekly automated predictions will influence the flow of millions and even 
billions of dollars into one stock or another and the historical back testing results will be 
used to sell prospective external clients and internal portfolio managers on using the 
system’s predictions going forward.  

First the authorities want to make sure that as time goes forward, in the event that the 
predictions begin to perform poorly, we will not simply rerun the original predictions again and 
again, with a different random number seed, until we obtain better historical performance 
and then substitute the new better performing historical performance results in our sales 
material.  

Second the authorities want to make sure that, in the event our firm should own many shares of 
the subsequently poorly performing stock of “ABC” Corp, that we do not simply rerun the 
current week’s predictions again and again, with a different random number seed, until we 
obtain a higher ranking for “ABC” stock thus improperly influencing our external clients 
and internal portfolio managers to drive the price of “ABC” stock higher. 

In order to meet SEC compliance regulations we have altered our symbolic regression 
system, used in this chapter across all experiments, to use a pseudo random number 
generator with a pre-specified starting seed. Multiple runs always produce exactly the same 
results.  

5. GP and swarm in symbolic regression 
In standard Koza-style tree-based Genetic Programming [12] the genome and the individual 
are the same Lisp s-expression which is usually illustrated as a tree. Of course the tree-view 
of an s-expression is only a visual aid, since a Lisp s-expression is normally a list which is a 
special Lisp data structure. Without altering or restricting standard tree-based GP in any 
way, we can view the individuals not as trees but instead as s-expressions. 

6 depth 0 binary tree s-exp: 3.45 
7 depth 1 binary tree s-exp: (+ x2 3.45) 
8 depth 2 binary tree s-exp: (/ (+ x2 3.45) (* x0 x2)) 
9 depth 2 irregular tree s-exp: (/ (+ x2 3.45) 2.0) 

Up until this point we have not altered or restricted standard GP in any way; but, now we 
are about to make a slight alteration so that the standard GP s-expression can be made 
swarm friendly. Let us use the following s-expression. 

10 (* (/ (- x0 3.45) (+ x0 x2)) (/ (- x5 1.31) (* x0 2.1))) 

In this individual (10), the real constants are embedded within the s-expression and are 
inconvenient for swarm algorithms. So we are going to add an annotation to the individual 
(10). We are going to add enumerated constant nodes, and we are going to add a constant 
chromosome vector creating a new individual (11). The individual (11) will now have three 
components: an abstract s-expression (11), the original s-expression (11.1), and a constant 
chromosome (11.2) as follows. 
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11 (* (/ (- x0 c[0]) (+ x0 x2)) (/ (- x5 c[1]) (* x0 c[2]))) 
11.1 s-exp: (* (/ (- x0 3.45) (+ x0 x2)) (/ (- x5 1.31) (* x0 2.1))) 
11.2 c: <3.45  1.31  2.1> 

Individual (11) evaluates to the exact same value as (10). Each real number constant in (10) 
has been replaced with an indexed vector reference of the type c[i], where c is a vector of 
real numbers containing the same real numbers originally found in (10). While this process 
adds some annotation overhead to (10), it does expose all of the real number constants in a 
vector which is swarm intelligence friendly. 

At this point let us take a brief pause. Examine the original s-expression (10) also (11.1) and 
compare it to the new annotated abstract version (11). Walk through the evaluation process 
for each version. Satisfy yourself that the concrete s-expression (11.1) and the abstract 
annotated (11) both evaluate to exactly the same interim and final values. 

We have made no restrictive or destructive changes in the original individual (10). Slightly 
altered to handle the new constant vector references and the new chromosome annotations, 
any standard GP system will behave as it did before. Prove it to yourself this way. Take the 
annotated individual (11), and replace each indirect reference with the proper value from 
the constant vector. This converts the abstract annotated (11) back into the concrete s-
expression (11.1). Let your standard GP system operate on (11.1) any way it wishes to 
produce a new individual (11^.1). Now convert (11^.1) back into an abstract annotated 
version with the same process we used to annotate (10). 

Furthermore, if we have a compiled a machine register optimized version, γ(x), of (10), we 
do not even have to perform expensive recompilation in order to change a value in the 
constant chromosome. We need only alter the values in the constant chromosome and re-
evaluate the already compiled and optimized γ(x).  

Armed with these newly annotated individuals, let’s take a fresh look at how we might 
improve the standard process of genetic programming during a symbolic regression run. 
Consider the following survivor population in a standard GP island.   

12.1 (* (/ (- x0 3.45) (+ x0 x2)) (/ (- x5 1.31) (* x0 2.1))) 
12.2 (cos (/ (- x4 2.3) (min x0 x2))) 
12.3 (* (/ (- x0 5.15) (+ x0 x2)) (/ (- x5 -2.21) (* x0 9.32))) 
12.4 (sin (/ (- x4 2.3) (min x0 x2))) 
12.5 (sin (/ (- x4 2.3) (avg x0 x2))) 
12.6 (* (/ (- x0 3.23) (+ x0 x2)) (/ (- x5 -6.31) (* x0 7.12))) 
12.7 (* (/ (- x0 2.13) (+ x0 x2)) (/ (- x5 3.01) (* x0 2.12))) 

First of all, the GP mutation and crossover operators do not have any special knowledge of 
real numbers. They have a difficult time isolating and optimizing numeric constants. But the 
situation gets worse.  

As generation after generation of training has passed, the surviving individuals in the island 
population have become specialized in common and predictable ways. Individuals (12.2), 
(12.4), and (12.5) are all close mutations of each other. Evolution has found a form that is 
pretty good and is trying to search for a more optimal version. GP is fairly good at exploring 
the search space around these individuals.  
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However, (12.1), (12.3), (12.6), and (12.7) are all identical forms with the exception of the 
values of their embedded numeric constants. As time passes, the survivor population will 
become increasingly dominated by variants of (12.1) and in time its progeny may crowd out 
all other survivors. GP has a difficult time exploring the search space around (12.1) largely 
because the form is already optimized – it is the constant values which need additional 
optimization. 

In swarm friendly AEG enhanced symbolic regression system, the individuals (12.1), (12.3), 
(12.6), and (12.7) are all viewed as constant homeomorphs and they are stored in the 
survivor pool as one individual with another annotation: a swarm constant pool as follows.  

13.1 (* (/ (- x0 c[0]) (+ x0 x2)) (/ (- x5 c[1]) (* x0 c[2]))) 
 13.1.1 (* (/ (- x0 3.45) (+ x0 x2)) (/ (- x5 1.31) (* x0 2.1))) 
 13.1.2 c: <3.45  1.31  2.1> 
 13.1.3 Swarm Constant Pool 
 13.1.3[0] <3.45  1.31  2.1> 
 13.1.3[1] <5.15  -2.21  9.32> 
 13.1.3[2] <3.23  -6.31  7.12> 
 13.1.3[3] <2.13  3.01  2.12> 
13.2 (cos (/ (- x4 2.3) (min x0 x2))) {annotations omitted} 
13.3 (sin (/ (- x4 2.3) (min x0 x2))) {annotations omitted} 
13.4 (sin (/ (- x4 2.3) (avg x0 x2))) {annotations omitted} 

The AEG enhanced SR system has combined the individuals (12.1), (12.3), (12.6), and (12.7) 
into a single constant homeomorphic canonical version (13.1) with all of the constants stored 
in a swarm constant pool inside the individual. Now the GP island population does not 
become dominated inappropriately. Plus, we are free to apply swarm intelligence 
algorithms to the constants inside (13.1) without otherwise hindering the GP algorithms in 
any way.  

The remainder of this chapter is devoted to comparing the effects of several hybrid 
algorithms on symbolic regression accuracy in predicting forward twelve month corporate 
earnings. The chosen algorithms are Standard Koza-style GP, GP with Particle Swarm, GP 
with Differential Evolution, and GP with the Bees algorithm. 

6. AEG conversion algorithm 
The Abstract Expression Grammar constant conversion algorithm is a straight forward 
search and replace type algorithm in which a standard Koza-style s-expression is converted 
into an annotated AEG individual as shown in Algorithm (1). 

Algorithm 1: AEG Conversion 

1 Input: in // Koza-style s-expression 
2 Output: out // AEG annotated individual 
3 Parameters: k, r, n, N 

Summary: AEG Conversion removes all of the constants from an input s-expression and places them 
in a vector where swarm intelligence algorithms can easily optimize them. The output is a constant 
vector and the original s-expression modified to refer indirectly into the constant vector instead of 
referencing the constants directly. 
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4   set out = <aexp,sexp,c,pool>  // empty AEG individual 
5   set out.aexp = in 
6   set out.sexp = in 
7   set out.c = <..empty vector of reals..> 
8   set out.pool = <..empty vector of vectors..> 
9   set N  = length of out.aexp 
10 for n from 0 until N do 
11   if  out.aexp[n] is a real number constant then 
12      set r = out.aexp[n] 
13      set k = length of out.c 
14      set out.c[k] = r 
15      set out.aexp[n] = “c[k]” // replace r with c indexed reference 
16   end if 
17 set out.pool[0] = out.c 
18 return out 

7. GP algorithm 
Symbolic Regression with standard GP [8], [9], [10], and [12] evolves the GLM’s basis 
functions as Lisp s-expressions. Evolution is achieved via the population operators of 
mutation, and crossover. We use a simple elitist GP algorithm which is outlined in 
Algorithm (2). The inputs are a vector of N training points, X, a vector of N dependent 
variables, Y, and the number of generations to train, G. Each point in X is a member of RM = 
<x1,x2,…,xm>. The fitness score is the root mean squared error divided by the standard 
deviation of Y, NLSE.  

Algorithm 2: Standard GP 

1   Input: X // N vector of independent M-featured training points 
2   Input: Y // N vector of dependent variables 
3   Input: G // Number of generations to train 
4   Output: champ // Champion s-expression individual 
5   Parameters: K, P 

Summary: Standard GP searches for a champion s-expression by randomly growing and scoring a 
large number of candidate s-expressions, then iteratively creating and scoring new candidate s-
expressions via mutation and crossover. After each iteration, the population of candidate s-
expressions is truncated to those with the best score. After the final iteration, the champion is the s-
expression with the best score. 

6   function: mutateSExp(me) 

Summary: mutateSExp randomly alters an input s-expression by replacing a randomly selected sub 
expression with a new randomly grown sub expression. 

7     me = copy(me) 
8     set L = number of nodes in me // me is a list of Lisp Pairs 
9     set s = generate random s-expression 
10   set n = random integer between 0 and L 
11   set me[n] = s  // Replaces nth node with s 
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12   return me 
13 end fun 
14 function: crossoverSExp(mom,dad) 

Summary: crossoverSExp randomly alters a mom input s-expression by replacing a randomly 
selected sub expression in mom with a randomly selected sub expression from dad. 

15   dad = copy(dad) 
16   mom = copy(mom) 
17   set Ld = number of nodes in dad // dad is a list of Pairs 
18   set Lm = number of nodes in mom // mom is a list of Pairs 
19   set n = random integer between 0 and Lm 
20   set m = random integer between 0 and Ld 
21   set mom[n] = dad[m]  // Replaces nth node with mth node 
22   return mom 
23 end fun 
24 main logic 
25 for k from 0 until K do // Initialize population 
26   set w = generate random s-expression 
27   set population.last = score(w) 
28 end for k 
29 sort population by fitness score 
30 truncate population to P most fit individuals 
31 set champ = population.first 
32 for g from 0 until G do // Main evolution loop 
33   for p from 0 until P do // Main evolution loop 
34     set w = mutateSExp(population[p]) 
35     set population.last = score(w) 
36     set dad = population[p] 
37     set i = random integer between p and P 
38     set mom = population[i] 
39     set w = crossoverSExp(dad,mom) 
40     set population.last = score(w) 
41   end for p 
42   sort population by fitness score 
43   truncate population to P most fit individuals 
44   set champ = population.first 
45  end for g 
46 return champ 

Adding Abstract Expression Grammars to standard GP Symbolic Regression [3], [4], [5], and 
[6] evolves the GLM’s basis functions as AEG individuals. Our simple modified elitist GP 
Algorithm (3) is outlined below. The inputs are a vector of N training points, X, a vector of 
N dependent variables, Y, and the number of generations to train, G. Each point in X is a 
member of RM = <x1,x2,…,xm>. The fitness score is the root mean squared error divided by 
the standard deviation of Y, NLSE.  
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Algorithm 3: AEG GP with Swarm 

1   Input: X // N vector of independent M-featured training points 
2   Input: Y // N vector of dependent variables 
3   Input: G // Number of generations to train 
4   Output: champ // Champion AEG individual 
5   Parameters: K, P, S 

Summary: AEG GP with swarm searches for a champion s-expression as in standard GP (see 
Algorithm 2). However, before inserting s-expression candidates into the survivor population they are 
converted into AEGs and then merged with any similar AEGs (s-expressions with matching constant 
positions), then iteratively creating and scoring new candidate s-expressions via mutation, crossover, 
and swarm. After each iteration, the population of candidate AEG s-expressions is truncated to those 
with the best score. After the final iteration, the champion is the AEG s-expression with the best score. 

6   function: swarm(X,Y,aeg) // aeg = <aexp,sexp,c,pool> 
7     …see Algorithm 5, 6, or 7… 
8     return aeg 
9   end fun 
10 function: convertToAEG(sexp) 
11   …see Algorithm 1… 
12   return aeg 
13 function: convertToSExp(aeg) // aeg = <aexp,sexp,c,pool> 
14   …see Algorithm 4… 
12   return sexp 
15 function: insertInPop(aeg) // aeg = <aexp,sexp,c,pool> 

Summary: insertInPop accepts an input AEG s-expression then searches the population of AEG 
candidate s-expressions for a constant homeomorphic AEG s-expression (an AEG with matching 
form and constant locations … although the value of the constants may be different). If a constant 
homeomorphic AEG is found, the input AEG is merged with the existing canonical version already in 
the population; otherwise, the input AEG is inserted in the population in order of its score.  

16   I = length of population 
17   for i from 0 until I do // Search population 
18     set w = population[i] 
19     if (w.aexp = aeg.aexp) then  
20       set w.pool = append(w.pool,aeg.pool) 
21       sort w.pool by fitness score 
22       truncate w.pool to S most fit constant vectors 
23       set w.c = w.pool.first 
24       set w.sexp = convertToSExp(w) 
25       return population 
26     end if 
27   end for i 
28   set population.last = aeg 
29   return population 
30 function: mutateSExp(me) // me = <aexp,sexp,c,pool> 

Summary: mutateSExp randomly alters an input s-expression by replacing a randomly selected sub 
expression with a new randomly grown sub expression. 
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31   me = copy(me.sexp) 
32   set L = number of nodes in me // me is a list of Lisp Pairs 
33   set s = generate random s-expression 
34   set n = random integer between 0 and L 
35   set me[n] = s  // Replaces nth node with s 
36   set me = convertToAEG(me) 
37   return me 
38 end fun 
39 function: crossoverSExp(dad,mom) 

Summary: crossoverSExp randomly alters a mom input s-expression by replacing a randomly 
selected sub expression in mom with a randomly selected sub expression from dad. 

40   dad = copy(dad.sexp) 
41   mom = copy(mom.sexp) 
42   set Ld = number of nodes in dad // dad is a list of Pairs 
43   set Lm = number of nodes in mom // mom is a list of Pairs 
44   set n = random integer between 0 and Ld 
45   set m = random integer between 0 and Lm 
46   set dad[n] = mom[m]  // Replaces nth node with mth node 
47   set dad = convertToAEG(dad) 
48   return dad 
49 end fun 
50 main logic 
51 for k from 0 until K do // Initialize population 
52   set w = generate random s-expression 
53   w = score(convertToAEG(w)) 
54   set population = insertInPop(w) 
55 end for k 
56 sort population by fitness score 
57 truncate population to P most fit individuals 
58 set champ = population.first 
59 for g from 0 until G do // Main evolution loop 
60   for p from 0 until P do // Main evolution loop 
61     set w = swarm(population[p]) 
62     set w = mutateSExp(population[p]) 
63     set population = insertInPop(score(w)) 
64     set dad = population[p] 
65     set i = random integer between p and P 
66    set mom = population[i] 
67     set w = crossoverSExp(dad,mom) 
68     set population = insertInPop(score(w)) 
69   end for p 
70   sort population by fitness score 
71   truncate population to P most fit individuals 
72   set champ = population.first 
73  end for g 
74 return champ 
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Conversion from an AEG individual back to a standard s-expression is accomplished as 
outlined in Algorithm (4).  

Algorithm 4: AEG To S-Expression Conversion 

1   Input: in // AEG annotated individual <aexp,sexp,c,pool> 
2   Output: out // Koza-style s-expression 
3   Parameters: k, r, n, N 

Summary: AEG To S-Expression Conversion accepts an AEG annotated individual and returns a 
Koza-style s-expression with all of the indirect constant references replaced with the direct constant 
values taken from the AEG constant vector. 

4   set out = copy(in.aexp) 
9   set N  = length of out.aexp 
10 for n from 0 until N do 
11   if  out[n] is a constant reference “c[k]” then 
12      set r = in.aexp.c[k] 
14      set out[n] = r  // replace constant reference with constant 
16   end if 
18 return out 

8. AEG differential evolution 
Abstract Expression Grammar GP can be used with differential evolution [7] which evolves 
the GLM’s basis functions as AEG individuals. The DE algorithm encodes each individual as 
a constant vector. Each AEG <aexp,sexp,c,pool> stores the population of DE individuals in 
its constant pool and the current most fit champion as its constant vector c.  In Algorithm (3) 
swarm evolution is seamlessly merged with standard GP and our AEG differential 
evolution algorithm is outlined In Algorithm (5). 

The Differential Evolution algorithm is a straightforward attempt to keep a sorted list of the 
best constant vectors seen so far. Pairs of these constant vectors are selected at random along 
with the best constant vector seen so far. The algorithm then averages the differences 
between these constant vectors, in several obvious ways, to move closer to a global 
optimum.  

Algorithm 5: AEG Differential Evolution 

1   Input: X // N vector of independent M-featured training points 
2   Input: Y // N vector of dependent variables 
3   Input: in // AEG annotated individual <aexp,sexp,c,pool> 
4   Output: in AEG annotated individual <aexp,sexp,c,pool> 
5   Parameters: S 

Summary: AEG Differential Evolution optimizes a pool of vectors by selecting the best scoring 
vector along with a randomly selected pair of constant vectors, then the distances between these 
vectors are averaged in various ways to produce a new candidate vector to be scored. After scoring, 
the population of vectors is truncated to those with the best scores.  

6   function: randomNudge(c) // constant vector = <c0,c2,…,cj> 
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Summary: randomNudge accepts an input constant vector then produces a new constant vector by 
adding or subtracting small random increments from each constant in the input vector.  

7   var (defaultSkew .90) (defaultRange .20) 
8   c = copy(c) 
9   I = length of c 
10 for i from 0 until I do 
11   set r = random number from 0 to defaultRange 
12   set r = defaultSkew + r 
13   set c[i] = r*c[i] 
14 end for i 
15 end fun 
16 function: search(a,b,c) 

Summary: search accepts a, b, and c constant vectors in an input vector pool in. A new output 
constant vector w is created by randomly averaging the distances between the three vectors. The new 
vector w is used to score the AEG whose constant pool is being optimized. After scoring, the in pool 
is truncate to the constant vectors with the best scores. The score of the AEG is set to the score of the 
best constant vector in its pool. 

17  var (F .50) 
18  w = copy(a) 
19  I = length of a 
20  for i from 0 until I do 
21    set r = random number from 0 to 1.0 
22    set r = F + r 
23    set w[i] = a[i] + (r*(b[i]-c[i])) 
24  end for i 
25  set in.pool.last = w 
26  set in.c = w 
27  score(in) 
28  sort in.pool by fitness score 
29  truncate in.pool to S most fit constant vectors 
30  set in.c = in.pool.first 
31  set in.sexp = convertToSExp(in) 
32  return in 
33 end fun 
34 main logic 
35 set I length of in.pool 
36 if (I=0) then return in end if  
37 set best = in.pool[0] 
38 set j1 = random integer from 0 until I 
39 set j2 = random integer from j1 until I 
40 set b1 = in.pool[j1] 
41 if (j1=0) then set b1 = randomNudge(best) 
42 set b2 = in.pool[j2] 
43 if (j2= j1) then set b2 = randomNudge(b2) 
44 set r = random number from 0 until 1.0 
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45 // Modest momentum 
46 if (r<.50) then search(best,best,b1)  
47 // Aggressive momentum 
48 else if (r<.80) then search(best,best,b2) 
49 // Modest Mediation 
50 else if (r<.85) then search(b1,best,b1) 
51 // Aggressive mediation 
52 else if (r<.90) then search(b2,best,b2) 
53 // Wandering up 
54 else if (r<.95) then search(b2,b1,b2) 
55 // Wandering down 
56 else set in.pool = search(b1,b2,b1) 
57 return in 

9. AEG Bees algorithm 
Abstract Expression Grammar GP can be used with Bees algorithm [14] and [15] which 
evolves the GLM’s basis functions as AEG individuals. Each AEG <aexp,sexp,c,pool> stores 
the population of Bees individuals in its constant pool and the current most fit champion as 
its constant vector c.  In Algorithm (3) swarm evolution is seamlessly merged with standard 
GP and our AEG bees algorithm is outlined in Algorithm (6) below.  

Our Bees algorithm has been modified to fit within the larger framework of an evolving GP 
environment. Therefore, the evolutionary loop is in the GP algorithm and has been removed 
from the Bees algorithm. Instead the Bees algorithm is repeatedly called from the main GP 
loop during evolution. Furthermore, we must execute the Bees algorithm on all AEG 
individuals with a non-empty constant pool; therefore, care must be taken such that any one 
AEG individual does not monopolize the search process. 

The Bees algorithm gets its inspiration from the cooperative behavior of bees foraging for 
food. There is the concept of a visited food site (which in our case is one of the constant 
vectors in the constant pool) and a bee which searches these food sites and assigns them a 
fitness value (in our case a bee is the AEG individual wrapped around and evaluating the 
constant vector). Since we have only one bee (the AEG individual), when multiple bees are 
required, we will have our single AEG individual search multiple times.  

In the original Bees algorithm, there are S food sites selected for search (in our case the 
AEG’s constant pool). Of the S selected sites, the E fittest sites are “elite” sites and the 
remaining (S-E) sites are “non-elite” sites. In the original Bees algorithm there are B bees. 
Since we have only one bee (the AEG individual), we will have our AEG individual search B 
times. Of the total B bees available, BEP bees are recruited to search the neighborhood 
around each elite food site, and BSP bees are recruited to search the neighborhood around 
each non-elite food site. The remaining BRP bees search at random anywhere they please. 
This all assumes that B = BEP+BSP+BRP.  

In the original Bees algorithm, for each elite food site there are BEP neighborhood searches 
performed, for each non-elite food site there are BSP neighborhood searches performed, and 
there are BRP random searches performed in each iteration of the main evolutionary loop. 
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Thus the total number of searches devoted to all elite food sites can be expressed as (E*BEP), 
while the total number of searches devoted to all non-elite food sites can be expressed as ((S-
E)*BSP), and the total number of random searches can be expressed by the fraction BRP. 
From these counts of total searches performed, we can derive the probability that an elite 
site will be searched, that a non-elite site will be searched, and that a random search will be 
performed. These computed percentages will be the parameters of our modified Bees 
algorithm: BEp, BSp, and BRp. 

Algorithm 6: AEG Bees Algorithm 

1   Input: X // N vector of independent M-featured training points 
2   Input: Y // N vector of dependent variables 
3   Input: in // AEG annotated individual <aexp,sexp,c,pool> 
4   Output: in AEG annotated individual <aexp,sexp,c,pool> 
5   Parameters: BEp, BSp, BRp, E, S 

Summary: AEG Bees Algorithm optimizes a pool of vectors by incrementally selecting each vector 
from the pool of constant vectors, then either producing a new candidate vector in a random 
neighborhood around the selected vector or producing a new random vector. The new vector is scored. 
After scoring, the population of vectors is truncated to those with the best scores.  

6   function: neighborSearch(c) // constant vector = <c0,c2,…,cj> 

Summary: neighborSearch accepts an input constant vector then produces a new constant vector by 
adding or subtracting small random increments from each constant in the input vector. The new 
vector is scored and inserted into the constant pool. 

7   w = copy(c) 
8   d = copy(c) 
9   I = length of c 
10 J = length of in.Pool 
11 // compute local neighborhood radius vector 
12 for j from 1 until J do 
13    for i from 0 until I do 
14     set d[i] += (abs(in.Pool[j-1][i]-in.Pool[j][i])/(J-1)) 
15   end for i 
16  end for j 
17  // Search the local neighborhood 
18 for i from 0 until I do 
19   set r = random number from 0 to (2*d[i]) 
20   set r = r – d[i] 
21   set w[i] = w[i]+r; 
22 end for i 
23  set in.pool.last = w 
24  set in.c = w 
25  score(in) 
26  sort in.pool by fitness score 
27  truncate in.pool to S most fit constant vectors 
28  set in.c = in.pool.first 
29  set in.sexp = convertToSExp(in) 
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30 end fun 
31 function: randomSearch() 

Summary: randomSearch produces a new constant vector by randomly setting a value to each 
constant in the new vector. The new vector is scored and inserted into the constant pool. 

32  w = random constant vector 
33  set in.pool.last = w 
34  set in.c = w 
35  score(in) 
36  sort in.pool by fitness score 
37  truncate in.pool to S most fit constant vectors 
38  set in.c = in.pool.first 
39  set in.sexp = convertToSExp(in) 
40  return in 
41 end fun 
42 main logic 
43 vars (Ie starts at 0) (If starts at E) 
44 set I length of in.pool 
45 if (I=0) then return in end if 
46 set ce = if (Ie<E) then in.pool[Ie] else in.pool.first end if 
47 set Ie = Ie + 1 
48 if (Ie>=E) then set Ie = 0 end if 
49 set cf = if (If<I) then in.pool[If] else in.pool.first end if 
50 set If = If + 1 
51 if (If>=I) then set If = E end if 
52 set choice = random integer between 0 and 1.0 
53 if (choice<BEp) then neighborSearch(ce) end if  
54 if (choice<BSp) then neighborSearch(cf) end if  
55 if (choice<BRp) then randomSearch() end if  
56 return in 

10. AEG particle swarm 
Abstract Expression Grammar GP can be used with particle swarm [2] which evolves the 
GLM’s basis functions as AEG individuals. In Algorithm (3) swarm evolution is seamlessly 
merged with standard GP and our AEG particle swarm algorithm is outlined in Algorithm 
(7) below. 

Our Particle Swarm (PSO) algorithm has also been modified to fit within the larger 
framework of an evolving GP environment. Therefore, the evolutionary loop is in the GP 
algorithm and has been removed from the PSO algorithm. Instead the PSO algorithm is 
repeatedly called from the main GP loop during evolution. Furthermore, we must execute 
the PSO algorithm on all AEG individuals with a non-empty constant pool; therefore, care 
must be taken such that any one AEG individual does not monopolize the search process. 

The PSO algorithm gets its inspiration from the clustering behavior of birds or insects as 
they fly in formation. There is the concept of an individual swarm member called a particle, 
the current position of each particle, the best position ever visited by each particle, a velocity 
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for each particle, and the best position every visited by any particle (the global best). In our 
case, each particle will be one of the constant vectors in our AEG individual’s constant pool. 
A fitness value will be assigned to each constant by wrapping the AEG individual around 
the constant vector and scoring.  

Each AEG <aexp,sexp,c,pool> stores the population of PSO individuals in its constant pool 
and the current most fit champion as its constant vector c.  However, implementing the PSO 
algorithm requires adding a few new items to our AEG individual. Let aeg be an AEG 
individual in our system. The best position ever visited by any particle will be designated as 
aeg.best (global best). The best position ever visited by each particle, i, will be designated as  
aeg.pool[i]→best (local best). The velocity of each particle, i, will be designated as  
aeg.pool[i]→v. The score of a constant vector, c, will be designated as fitness(c). And, of 
course, each particle, i, is nothing more than one of the constant vectors in the AEG 
individual’s constant pool aeg.pool[i]. 

Algorithm 7: AEG Particle Swarm 

1   Input: X // N vector of independent M-featured training points 
2   Input: Y // N vector of dependent variables 
3   Input: in // AEG annotated individual <aexp,sexp,c,pool> 
4   Output: in AEG annotated individual <aexp,sexp,c,pool> 
5   Parameters: WL, WG, WV, S 

Summary: AEG Particle Swarm optimizes a pool of vectors by randomly selecting a pair of constant 
vectors from the pool of constant vectors. A new vector is produced when the pair of vectors, together 
with the global best vector, are randomly nudged closer together based upon their previous 
approaching velocities. The new vector is scored. After scoring, the population of vectors is truncated 
to those with the best scores.  

6   main logic 
7   vars (Ic starts at 0) 
8   set J = length of in.pool 
9   if (J<=0) then return in end if 
10 i = Ic 
11 c = copy(in.pool[i]) 
12 v = copy(in.pool[i]→v) 
13 if (v = null) then  
14  set v = random velocity vector  
15  set in.pool[i]→v = v  
16 end if  
17 lbest = in.pool[i]→best 
18 if (lbest = null) then  
19  set lbest = c  
20  set in.pool[i]→best = lbest 
21 end if  
22 gbest = in.best 
23 if (gbest = null) then  
24  set gbest = c  
25  set in.best = gbest  
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26 end if  
27 // Compute the velocity weight parameters 
28 maxg = maximum generations in the main GP search 
29 g = current generation count in the main GP search 
30 WL = .25 + ((maxg – g)/maxg) // local weight 
31 WG = .75 + ((maxg – g)/maxg) // global weight 
32 WV = .50 + ((maxg – g)/maxg) // velocity weight 
33 I = length of c 
34 set r1 = random number from 0 to 1.0 
35 set r2 = random number from 0 to 1.0 
36 // Update the particle’s velocity & position 
37 for i from 0 until I do 
38   set lnudge = (WL*r1*(lbest[i]-c[i])) 
39   set gnudge = (WG*r2*(gbest[i]-c[i])) 
40   set v[i] = (WV*v[i])+lnudge+gnudge 
41   set c[i] = c[i]+v[i] 
42 end for i 
43 // Score the new particle position 
44 set in.c = c 
45 score(in) 
46 // Update the best particle positions 
47 if (fitness(c)>fitness(lbest)) then lbest = c end if 
48 if (fitness(c)>fitness(gbest)) then gbest = c end if 
49 in.best = gbest 
50 set in.pool.last = c 
51 set in.pool.last→best = lbest 
52 set in.pool.last→v = v 
53 // Enforce elitist constant pool 
54 sort in.pool by fitness score 
55 truncate in.pool to S most fit constant vectors 
56 set in.c = in.pool.first 
57 set in.sexp = convertToSExp(in) 
58 // Enforce iterative search of constant pool 
59 set Ic = Ic + 1 
60 if (Ic>=S) then set Ic = 0 end if 
61 return in 

11. Sample test problems 
Several sample test problems have been collected upon which we can compare the 
performance of standard GP symbolic regression and hybrid AEG symbolic regression. Each 
of these test problems contains an embedded real constant which greatly affects the 
behavior of the formula during regression. If our theory is correct, these test problems 
should receive better results with AEG symbolic regression than with standard GP symbolic 
regression. The test problems are as follows. 

14.1 y = -2.3 + (0.13*sin(4.1*x2)) 
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14.2 y = 3.0 + (2.13*log(1.3+x4)) 
14.3 y = 2.0 - (2.1*cos(9.8/x0)) 

Two symbolic regressions are performed for each test problem: standard GP symbolic 
regression, and AEG symbolic regression (using the Bees Algorithm 6). Clearly the AEG 
symbolic regressions perform much better than standard GP symbolic regression. Table 1 
shows the results. 
 

Formula NLSE GP RSQ GP NLSE AEG RSQ AEG 
14.1 .47 .77 0.0 1.0 
14.2 .18 .96 0.0 1.0 
14.3 .36 .81 0.0 1.0 

Note: NLSE is the least squared error divided by the standard deviation of Y, and RSQ is the R-Square statistic 
from the regression. An NLSE of 0.0 is perfect while an RSQ of 1.0 is perfect. 

Table 1. Sample Test Problem Regressions 

Clearly the AEG symbolic regression runs are discovering and optimizing the embedded 
constants correctly; however, the standard GP symbolic regression runs are unable to 
optimize the constants and get confused. It is simply too difficult for standard GP to 
optimize these difficult embedded constants using only mutation and crossover. Furthermore, 
the standard GP runs produce estimators which are far from the correct form. The following 
are the top five estimators, produced by the standard GP symbolic regression, for test 
problem (14.1). 

14.1.1 y = 4.6+(-2.45*(sqrt(log(x0)))); 
14.1.2 y = -11919+(-0.86*((-13824+log(x0)))); 
14.1.3 y = -1891+(-0.8624*((-2197+log(x0)))); 
14.1.4 y = -2073+(-0.8624*((-2401+log(x0)))); 
14.1.5 y = -1749+(-0.8624*((-2025+log(x0)))); 

The results are so absolute that statistical analysis is unnecessary. Standard GP symbolic 
regression cannot solve these problems, while AEG symbolic regression always solves these 
problems exactly. Furthermore, it is clear that the standard GP run is trying to optimize 
constants but it has gotten stuck in a local minimum with the wrong formula and its 
population of champions is dominated by the attempt to optimize constants rather than 
trying to find a better fitting formula.  

Incidentally, it made no difference when the Bees Algorithm was replaced with the 
Differential Evolution Algorithm or with the Particle Swarm Algorithm. The results of an 
AEG symbolic regression on the sample test problems was a perfect score no matter which 
swarm algorithm was chosen.   

Furthermore, on the issue of scientific reproducibility, we have included detailed algorithms 
in this chapter. No matter what random seed is used, standard GP SR will not optimize 
sample problems 14.1, 14.2, and 14.3 in any practical time. This is because the population 
operators available to standard GP SR do not manage imbedded constants. Plus no matter 
what random seed is used, SR with any one of the three popular swarm algorithms will 
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optimize the sample problems 14.1, 14.2, and 14.3 very quickly. These results are easily 
scientifically reproduced. 

Now that we have tested AEG symbolic regression on several sample test problems, 
achieving much better performance than standard GP symbolic regression, it is time to 
compare AEG with standard GP symbolic regression on a real world investing problem: 
estimating forward 12 month earnings per share for a database of companies between 1990 
and 2009. We begin with some background on investing. In addition, we will also compare 
the results of the three different swarm intelligence algorithms. 

12. Investing strategies 
Value investing [1] has produced several of the wealthiest investors in the world including 
Warren Buffet. Nevertheless, value investing has a host of competing strategies including 
momentum [16] and hedging [17]. 

One of the most difficult challenges in devising a securities investing strategy is the a priori 
identification of pending regime changes. For instance, momentum investing strategies were 
very profitable in the 1990's and not so profitable in the 2000's while value investing 
strategies were not so profitable in the 1990's but turned profitable in the 2000's. Long Short 
hedging strategies were profitable in the 1990's and early 2000's but collapsed dramatically 
in the late 2007 thru 2008 period. Knowing when to switch from Momentum to Value, Value 
to Hedging, and Hedging back to Value was critical for making consistent above average 
profits during the twenty year period from 1990 thru 2009. 

The challenge becomes even more difficult when one adds the numerous technical and 
fundamental buy/sell triggers to currently popular active management investing strategies. 
Bollinger Bands, MACD, Earning Surprises, etc. all have complex and dramatic effects on 
the implementation of securities investing strategies, and all are vulnerable to regime 
changes. The question arises, "Is there a simple securities investing strategy which is less 
vulnerable to regime changes than other strategies?". 

An idealized value investing hypothesis is put forward: "Given perfect foresight, buying stocks 
with the best future earning yield (Next12MoEPS/CurrentPrice) and holding for 12 months will 
produce above average securities investing returns".  

Using our database of the 1500 Valueline stocks from 1986 thru 2009, we studied three ideal 
concentrated portfolios: five, twenty five, and fifty stock portfolios. Each of these idealized 
concentrated portfolios are sampled each month for the twenty years from 1990 thru 2009. 
Fixed holding periods of one month, one quarter, and one year were examined. The per 
annum compound return for each decade and each holding period are shown in Table 2 
along with the compounded returns, including dividends, of the Standard & Poor's 500 for 
each decade. 

The data supports the conclusion that the ideal hypothesis yields highly above average 
investing profits for all portfolio sizes and all holding periods across both decades. 
Furthermore the ideal hypothesis appears less vulnerable to regime changes than many 
other popular active securities investment strategies given that the 1990s decade was a 
raging bull environment while the 2000s decade was a terrible bear environment.  
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Holding period Decade 5 stocks 25 Stocks 50 Stocks 
month 1990s 76% 69% 63% 
month 2000s 120% 69% 53% 
quarter 1990s 58% 73% 64% 
quarter 2000s 69% 74% 53% 

year 1990s 48% 46% 41% 
year 2000s 103% 61% 45% 

SP500 1990s 18% 18% 18% 
SP500 2000s (2%) (2%) (2%) 

Note: Per annum compound returns for each decade.  

Table 2. Returns for idealize future earnings yield 

13. Buying current earnings yield 
Of course the ideal hypothesis is impossible to implement because it requires perfect 
foresight which is, in the absence of time travel, unobtainable. Nevertheless the ideal 
hypothesis represents the theoretical upper limit on the profits realizable from a strategy of 
buying future revenue cheaply; yet, the theoretical profits are so rich that one cannot help 
but ask the question, "Are there revenue prediction models which will allow one to capture some 
portion of the profits from the ideal hypothesis?". 

The easiest revenue prediction model involves simply using the current year's trailing 12 
month revenue as a proxy for future revenue. 

The data supports the conclusion that even using this current revenue proxy model buying 
the top five, twenty five, and fifty stocks with the highest (current12MoEPS/currentPrice) 
produces above average securities investing profits, as least for the 1500 Valueline stocks, as 
shown in Table 3. 
 

Holding period Decade 5 stocks 25 Stocks 50 Stocks 
month 1990s 29.0% 16.5% 16.6% 
month 2000s 8.2% 11.4% 15.4% 
quarter 1990s 41.7% 14.9% 14.9% 
quarter 2000s 22.7% 13.5% 15.6% 

year 1990s 36.4% 17.6% 15.6% 
year 2000s 42.1% 19.7% 17.4% 

SP500 1990s 18% 18% 18% 
SP500 2000s (2%) (2%) (2%) 

Note: Per annum compound returns for each decade.  

Table 3. Returns for current revenue prediction 

Clearly using this current revenue prediction model buying the top five, twenty five, and 
fifty stocks with the highest (current12MoEPS/currentPrice), produces above average 
securities investing profits, in most cases, especially with one year holding periods.  

Like buying stocks with the best future earning yield (Next12MoEPS/CurrentPrice), buying 
current earnings yield (current12MoEPS/currentPrice) is an ideal method. By ideal we mean 
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that all information is known and exact. There is no predictive aspect, no guess work. We 
already know what current earnings are for any stock.  

Nevertheless, buying a stock with low PE but whose future 12 month earnings will plummet 
bringing on bankruptcy is an obviously poor choice. So why is low PE investing so 
successful given that future 12 month earnings can vary significantly? Placing current 
earnings yield investing in this context puts a new spin on this standard value investing 
measure. In this context we are saying that current earnings yield (also known as low PE 
investing) works precisely to the extent that current earnings are a reasonable predictor of future 
earnings! In situations where current earnings are NOT a good predictor of future earnings, 
then current earnings yield investing looses it efficacy. 

This agrees with our common sense understanding. For instance, given two stocks with the 
same high current earnings yield, where one will go bankrupt next year and the other will 
double its earnings next year; we would prefer the stock whose earnings will double. 
Implying that, in the ideal, current earnings are just a data point. We want to buy future 
earnings cheap! 

Precisely because the per annum returns from this current revenue prediction model are far 
less than the returns achieved with perfect prescience, we must now look for more accurate 
methods of net revenue prediction. 

14. Future revenue prediction inputs 
One very simplistic revenue prediction input model involves simply adding last year's 
revenue delta to current revenue as a prediction of future revenue, as follows: 

15  2010EPS = (2009EPS-2008EPS)+2009EPS 
...to generalize, we have: 
15.1  forwardRevenue = (revenue-pastRevenue)+revenue 

Another simple revenue prediction input is the broker estimates. Each week there appears a 
broker consensus estimate for the next 12Mo EPS for each of the stocks in our database. This 
broker revenue prediction can be used as a model for future revenue. 

If we combine a number of these simple future revenue prediction inputs together we can 
construct a set of consensus inputs for prediction of future revenue. Constructing this 
consensus revenue inputs requires the following components. 

16 margin = (currentEPS/currentSPS) 
17 brokerEPS = broker consensus estimate 
18 forwardEPS = (currentEPS-pastEPS)+currentEPS 
19 projectEPS = (4*(currentEPS-pastQtrEPS))+currentEPS 
20 forwardSPS = (currentSPS-pastSPS)+currentSPS 
21 projectSPS = (4*(currentSPS-pastQtrSPS))+currentSPS 
22 forwardSEPS = forwardSPS*margin 
23 projectSEPS = projectSPS*margin 

The five bolded elements above (brokerEPS, forwardEPS, projectEPS, forwardSEPS, and 
projectSEPS) are the consensus inputs to all of our future revenue prediction efforts in the 
remainder of this chapter. 
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15. Future revenue: GP-only 
Each week we can construct a GP-only symbolic regression estimate (using Algorithm 2) for 
next 12Mo EPS for each of the stocks in our database, using the following five inputs as 
dependent variables: brokerEPS, forwardEPS, projectEPS, forwardSEPS, and projectSEPS. 
Each week we train a symbolic regression model on approximately 375,000 training 
examples (250 weeks of backward historical data times approximately 1,500 stocks), and 
each week we use the newly trained symbolic regression model to predict the earnings per 
share of each stock in our database for the new week. This is a text book case of in-sample-
training with out-of-sample-testing using a sliding forward 250 week training window. 

The per annum returns using this symbolic regression revenue prediction model buying the 
top five, twenty five, and fifty stocks with the highest (regression12MoEPS/currentPrice) 
produces above average securities investing profits as shown in Table 4. 

 
Holding period Decade 5 stocks 25 Stocks 50 Stocks 

month 1990s 33.2% 17.9% 18.2% 
month 2000s 9.7% 13.2% 17.6% 
quarter 1990s 43.9% 16.8% 15.1% 
quarter 2000s 25.6% 15.3% 18.5% 

year 1990s 39.2% 18.8% 17.8% 
year 2000s 45.6% 21.2% 18.9% 

SP500 1990s 18% 18% 18% 
SP500 2000s (2%) (2%) (2%) 

Note: Per annum compound returns for each decade.  

Table 4. Returns for GP-only 

Clearly using the GP-only symbolic regression revenue prediction model buying the top 
five, twenty five, and fifty stocks with the highest (regression12MoEPS/currentPrice) 
produces above average securities investing profits, in most cases. In fact, compared with all 
simple prediction methods shown so far, for reasonably diversified fifty stock portfolios, the annual 
hold returns are the best we have seen so far.  

Nevertheless, despite the satisfying accuracy and high returns, there are issues with the GP 
symbolic regression model. The main issue with the GP regression approach is a 
fundamental issue of believability. Every mathematical model, however highly correlated 
with market behavior over a period, must withstand the test of believability.  

Because the standard GP process is difficult to constrain, many of the basis functions reach 
sizes and complexities beyond reasonable. For instance, in March of 1998 the GP regression 
creates an earnings model containing the term: tanh(forwardEPS/brokerEPS). This strains 
the credulity of any fund portfolio manager and is very difficult to explain using standard 
financial concepts. It clearly works statistically in that training period; but, it is not 
believable.  

Worse still, in order to achieve its high accuracy, the GP regression process drives the 
coefficients on some of the basis functions to negative values. This also creates a financial 
model which does not make common sense, and is therefore unbelievable. When the 
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champion estimator, produced by symbolic regression is ridiculous, it undermines the 
acceptance of the whole symbolic regression process vis a vis investing, and no fund 
manager will risk assets based upon the SR models.  

For instance, for the month of April 2001 the GP regression method creates an earnings 
model with a highly weighted basis function where the coefficient for forwardEPS is 
negative. …  

24 eps = …+(-1.293*forwardEPS2)+…  

Since forwardEPS is the result of adding last year’s earnings growth to this year’s earnings 
to get an estimate for next year, a negative coefficient has the SR model telling us that 
companies with big earnings growth last year are bad! AND the larger last year’s earnings 
growth the worse the model penalizes the company.  

A statistician will immediately suspect over fitting in this SR champion model. Professional 
investors are less kind in their incredulity. Unfortunately standard GP symbolic regression 
produces many champions with these believability problems. 

Many of the champion estimator models produced by standard GP symbolic regression 
simply do not pass the common sense test. Investing large amounts of risk assets based on 
these GP models is very problematic because of the GP model’s fundamental lack of believability. 
Even in the unlikely event that management were to sign off, regulatory and compliance 
sign off would be impossible.   

16. Basis function constraints using AEG 
Abstract Expression Grammars (AEGs) can be used to constrain the basis functions searched 
in a symbolic regression so that the believability issues with standard GP are resolved [6] 
and [13]. In our case it is reasonable and believable to constrain the basis functions to either 
sigmoid or Classification and Regression Tree (CART) sigmoid. 

Using our five future revenue predictions as inputs to a nonlinear sigmoid regression, we 
can construct a more believable prediction model. Our first attempt will be to stay with an 
almost linear regression, but where the model coefficients are forced into the sigmoid 
domain. The model coefficients cannot go negative and they cannot rise above 1.0. This 
creates a more believable regression model in which the coefficients act more like 
significance weights attached to each of the five input EPS predictions as follows. 

25 eps = c1*brokerEPS+ c2*forwardEPS+ c3*projectEPS 
                 + c4*forwardSEPS+ c5*projectSEPS 
                 where  0 ≤ ci ≤ 1.0 for 1≤ i ≤ 5  

In this sigmoid linear regression model each coefficient represents the significance given to 
one of the five input predictions. Therefore if c1=.2 while c2=.4, the model is saying that the 
higher the brokerEPS estimate and the higher the forwardEPS estimate the better; BUT, the 
model gives twice as much weight to forwardEPS estimates as it does to brokerEPS 
estimates. This is a far more intuitively believable model.  

Also it is possible to construct a more sophisticated sigmoid Classification and Regression 
Tree (CART) model by using the sigmoid model (24) as a template for four leaf nodes of a 
simple classification tree as follows. 
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25.1 µ1 = c1*brokerEPS+ c2*forwardEPS+ c3*projectEPS 
                 + c4*forwardSEPS+ c5*projectSEPS 
                 where  0 ≤ ci ≤ 1.0 for 1≤ i ≤ 5  
25.2 µ2 = c6*brokerEPS+ c7*forwardEPS+ c8*projectEPS 
                 + c9*forwardSEPS+ c10*projectSEPS 
                 where  0 ≤ ci ≤ 1.0 for 6≤ i ≤ 10  
25.3 µ3 = c11*brokerEPS+ c12*forwardEPS+ c13*projectEPS 
                 + c14*forwardSEPS+ c15*projectSEPS 
                 where  0 ≤ ci ≤ 1.0 for 11≤ i ≤ 15  
25.4 µ4 = c16*brokerEPS+ c17*forwardEPS+ c18*projectEPS 
                 + c19*forwardSEPS+ c20*projectSEPS 
                 where  0 ≤ ci ≤ 1.0 for 16≤ i ≤ 20  

We can then place these sigmoid leaf nodes into a simple CART formula as follows. 

25.5 eps = (v1<v2)?((v3<v4)?µ1:µ2):(v5<v6)?µ3:µ4) 
where  V = {brokerEPS,forwardEPS,projectEPS,              
forwardSEPS,projectSEPS}   
                 where  vi ɛ V for 1≤ i ≤ 4   

In this sigmoid CART nonlinear regression model each of the four leaf nodes is a sigmoid 
nonlinear model of the type shown in (24). Each of the decision variables, vi, is one of the 
five possible inputs.  

By constraining the basis functions searched to be either sigmoid or CART sigmoid, we 
automatically eliminate the issues associated with GP-only future revenue prediction, and 
we achieve future earnings models which pass the test all important test of believability.  

Unfortunately, having imposed these important basis function constraints, we encounter an 
additional issue. GP-only symbolic regression is very poor at evolving real number 
constants. These constraints place a heavy emphasis on the evolution of real number 
constants within the basis function and its sigmoid coefficients. Therefore we must add, to 
our hybrid AEG algorithm, evolutionary techniques which are better able to evolve real 
number constants. The remainder of this chapter will compare the efficacy of three hybrid 
evolutionary algorithms on the task of future revenue prediction.  

17. GP with particle swarm 
Testing the algorithm in (6.1) and limiting our basis functions to either sigmoid or CART 
sigmoid as in Section 13, each week we can construct a symbolic regression estimate for next 
12Mo EPS for each of the stocks in our database, using the following five inputs as 
dependent variables: brokerEPS, forwardEPS, projectEPS, forwardSEPS, and projectSEPS.  

Each week we train a symbolic regression model on approximately 375,000 training 
examples (250 weeks of backward historical data times approximately 1,500 stocks), and 
each week we use the newly trained symbolic regression model to predict the earnings per 
share of each stock in our database for the new week.  

The per annum returns using this symbolic regression revenue prediction model buying the 
top five, twenty five, and fifty stocks with the highest (regression12MoEPS/currentPrice) 
produces above average securities investing profits as shown in Table 5. 
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Holding period Decade 5 stocks 25 Stocks 50 Stocks 
month 1990s 21.2% 26.1% 22.2% 
month 2000s 7.6% 13.9% 17.8% 
quarter 1990s 12.9% 29.2% 25.1% 
quarter 2000s 9.2% 14.7% 19.2% 

year 1990s 37.7% 26.3% 21.3% 
year 2000s 5.6% 22.5% 22.6% 

SP500 1990s 18% 18% 18% 
SP500 2000s (2%) (2%) (2%) 

Note: Per annum compound returns for each decade.  

Table 5. Returns for GP with Particle Swarm 

Clearly using the GP with particle swarm symbolic regression revenue prediction model 
buying the top five, twenty five, and fifty stocks with the highest 
(regression12MoEPS/currentPrice) produces above average securities investing profits, in 
most cases. In fact, compared with GP-only prediction methods, adding particle swarm has increased 
accuracy significantly – while adding believability.  

18. GP with differential evolution 
Testing the algorithm in (6) and limiting our basis functions to either sigmoid or CART 
sigmoid as in Section 13, each week we can construct a symbolic regression estimate for next 
12Mo EPS for each of the stocks in our database, using the following five inputs as 
dependent variables: brokerEPS, forwardEPS, projectEPS, forwardSEPS, and projectSEPS.  

Each week we train a symbolic regression model on approximately 375,000 training 
examples (250 weeks of backward historical data times approximately 1,500 stocks), and 
each week we use the newly trained symbolic regression model to predict the earnings per 
share of each stock in our database for the new week.  

The per annum returns using this symbolic regression revenue prediction model buying the 
top five, twenty five, and fifty stocks with the highest (regression12MoEPS/currentPrice) 
produces above average securities investing profits as shown in Table 6. 

 
Holding period Decade 5 stocks 25 Stocks 50 Stocks 

month 1990s 20.6% 26.8% 22.6% 
month 2000s 7.4% 14.8% 18.6% 
quarter 1990s 13.6% 29.0% 24.3% 
quarter 2000s 9.6% 14.2% 18.8% 

year 1990s 37.9% 27.4% 23.8% 
year 2000s 5.3% 21.3% 21.5% 

SP500 1990s 18% 18% 18% 
SP500 2000s (2%) (2%) (2%) 

Note: Per annum compound returns for each decade.  

Table 6. Returns for GP with Differential Evolution 
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Clearly using the GP with differential evolution symbolic regression revenue prediction 
model buying the top five , twenty five, and fifty stocks with the highest 
(regression12MoEPS/currentPrice) produces above average securities investing profits, in 
most cases. However the GP with differential evolution algorithm does not yield a significant 
improvement over GP with particle swarm.  

19. GP with Bees algorithm 
Testing the algorithm in (7) and limiting our basis functions to either sigmoid or CART 
sigmoid as in Section 13, each week we can construct a symbolic regression estimate for next 
12Mo EPS for each of the stocks in our database, using the following five inputs as 
dependent variables: brokerEPS, forwardEPS, projectEPS, forwardSEPS, and projectSEPS.  

Each week we train a symbolic regression model on approximately 375,000 training 
examples (250 weeks of backward historical data times approximately 1,500 stocks), and 
each week we use the newly trained symbolic regression model to predict the earnings per 
share of each stock in our database for the new week.  

The per annum returns using this symbolic regression revenue prediction model buying the 
top five , twenty five, and fifty stocks with the highest (regression12MoEPS/currentPrice) 
produces above average securities investing profits as shown in Table 7. 
 

Holding period Decade 5 stocks 25 Stocks 50 Stocks 
month 1990s 107.6% 66.7% 43.7% 
month 2000s 9.8% 16.9% 19.3% 
quarter 1990s 51.3% 37.9% 31.5% 
quarter 2000s 10.5% 18.3% 19.4% 
year 1990s 26.8% 30.0% 22.2% 
year 2000s 15.4% 28.9% 24.0% 
SP500 1990s 18% 18% 18% 
SP500 2000s (2%) (2%) (2%) 

Note: Per annum compound returns for each decade.  

Table 7. Returns for GP with Bees Algorithm 

Clearly using the GP with Bees Algorithm symbolic regression revenue prediction model 
buying the top five, twenty five, and fifty stocks with the highest 
(regression12MoEPS/currentPrice) produces above average securities investing profits, in 
most cases. In fact, compared with all other prediction methods (referring to fifty stock portfolios, 
which have less statistical variance than smaller portfolios) adding the Bees algorithm has 
increased accuracy significantly over GP-only and is a slight improvement over GP with particle 
swarm and GP with differential evolution. However, the Bees slight performance improvement 
over DE and PSO is not statistically significant under rigorous statistical analysis. 

20. Summary 
Having no population operators of its own which specialize in constant optimization, it is 
our contention that standard GP symbolic regression can benefit greatly when enhanced 
with swarm intelligence algorithms specializing in constant optimization. A method of 
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integrating standard GP with swarm intelligence, Abstract Expression Grammars is 
introduced. 

The importance of constants in symbolic regression is studied. It is shown that the size of the 
search space, for even simple financial applications, is very large and that a significant 
portion of that size is due to the presence of constants. 

Several sample test problems, with embedded constants, are presented with standard GP 
symbolic regression unable to solve any of the problems while AEG enhanced SR is always 
able to solve each of the problems exactly. It made no difference which swarm algorithm 
was used – DE, Bees, or PSO. It was the presence of AEG integrated swarm intelligence 
which made the test problems tractable. 

Theoretical, methodological, and regulatory issues applying standard GP symbolic 
regression to an important investment finance application are discussed. Symbolic 
regression is enhanced, using AEG, to be applicable to the prediction of forward 12 month 
earnings per share. A number of bloat and believability issues applying SR to predicting 
forward 12 month earnings are addressed and solved with AEG.   

AEG enhanced symbolic regression is used to predict forward 12 month earnings per share 
on approximately 1500 stocks from 1990 to 2009. Three distinct swarm intelligence 
algorithms are compared: DE, Bees, and PSO. All three swarm algorithms perform well, 
providing earnings predictions in a format easily acceptable by portfolio managers and 
regulatory compliance officers. 

Incidentally, comparing t-statistics, f-statistics, variance, information ratio and p-values 
shows it made no difference when the Bees Algorithm was replaced with the Differential 
Evolution Algorithm or with the Particle Swarm Algorithm. The results of an AEG symbolic 
regression on predicting future 12Mo eps was statistically similar for all swarm algorithms 
compared. It was the integration with any of the three swarm algorithms which made 
symbolic regression effective for forward earning prediction.  

Enhancing standard GP with Abstract Expression Grammar hybrid algorithms solves a 
number of regression accuracy, believability, and regulatory issues when using symbolic 
regression in financial applications. Based upon our experiments in this chapter, standard 
GP symbolic regression has serious issues when applied to financial applications; while, 
swarm enhanced SR shows real promise in the financial domain. 

Furthermore using AEG to add swarm intelligence algorithms to SR significantly enhanced 
accuracy in future 12 month revenue prediction and produced above average securities 
investing profits in the historical period 1990 to 2009. Significantly this superior 
performance was undeterred by the bearish market environment of the 200 decade.  

Directions for future research include investigating whether or not there are other swarm 
algorithms which would show real statistical significantly improved results over DE, Bees, 
and PSO? Is AEG the optimal GP SI integration approach to symbolic regression, or is there 
another integration approach which is superior? 
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