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Preface

Face recognition has been studied for many years in the context of biometrics. The human
face belongs to the most common biometrics, since humans recognize faces throughout their
whole lives; at the same time face recognition is not intrusive. Face recognition systems show
many advantages, among others easy implementation, easy cooperation with other biometric
systems, availability of face databases.

Nowadays, automatic methods of face recognition in ideal conditions (for two-dimensional
face images) are generally considered to be solved. This is confirmed by many recognition
results and reports from tests running on standard large face databases. Nevertheless, the
design of a face recognition system is still a complex task which requires thorough choice
and proposal of preprocessing, feature extraction and classification methods. Many tasks are
still to be solved, e.g. face recognition in an unconstrained and uncontrolled environment
(varying pose, illumination and expression, a cluttered background, occlusion), recognition
of non-frontal facial images, the role of the face in multimodal biometric systems, real-time
operation, one sample problem, 3D recognition, face recognition in video; that is why many
researchers study face biometric extensively.

This book aims to bring together selected recent advances, applications and original results in
the area of biometric face recognition. They can be useful for researchers, engineers, graduate
and postgraduate students, experts in this area and hopefully also for people interested
generally in computer science, security, machine learning and artificial intelligence.

Various methods, approaches and algorithms for recognition of human faces are used by
authors of the chapters of this book, e.g. PCA, LDA, artificial neural networks, wavelets,
curvelets, kernel methods, Gabor filters, active appearance models, 2D and 3D representations,
optical correlation, hidden Markov models and others. Also a broad range of problems is
covered: feature extraction and dimensionality reduction (chapters 1-4), 2D face recognition
from the point of view of full system proposal (chapters 5-10), illumination and pose
problems (chapters 11-13), eye movement (chapter 14), 3D face recognition (chapters 15-19)
and hardware issues (chapters 19-20).

Chapter 1 reviews the most relevant feature extraction techniques (both holistic and local
feature) used in 2D face recognition and also introduces a new feature extraction technique.
Chapter 2 presents the n-dimensional extension of PCA, which solves numerical difficulties
and provides near optimal linear classification property. Chapter 3 is devoted to curvelets;
authors concentrate on fast digital curvelet transform. In chapter 4, a dimensionality reduction
method based on random projection is proposed and compressive classification algorithms
that are robust to random projection dimensionality reduction are reviewed.



Vi

In chapter 5, the author presents a modular system for face recognition including a method
that can suppress unwanted features and make useful decisions on similarity irrespective
of the complex nature of the underlying data. Chapter 6 presents discussion of appearance-
based methods vs. local description methods and the proposal of a novel face recognition
system based on the use of interest point detectors and local descriptors. Chapter 7 focuses
on wavelet-based face recognition schemes and presents their performance using a number
of benchmark databases of face images and videos. Chapter 8 presents a complex view on the
proposal of a biometric face recognition system including methodology, settings of parameters
and the influence of input image quality on face recognition accuracy. In chapter 9, authors
propose a face recognition system built as a cascade connection of an artificial neural network
and pseudo 2D hidden Markov models. In chapter 10, an experimental evaluation of the
performance of VG-RAM weightless neural networks for face recognition using well-known
face databases is presented.

Chapter 11 addresses the problem of illumination in face recognition including mathematical
illumination modeling, influence of illumination on recognition results and the current
state-of-art of illumination processing and its future trends. Chapter 12 brings the proposal
of a novel face representation based on phase responses of the Gabor filter bank which is
characterized by its robustness to illumination changes. Chapter 13 presents illumination and
pose-invariant face alignment based on an active appearance model.

Chapter 14 reviews current literature about eye movements in face recognition and provides
answers to several questions relevant to this topic.

Chapter 15 gives an overview of surface representations for 3D face recognition; also surface
representations promising in terms of future research that have not yet been reported in
current face recognition literature are discussed. Chapter 16 presents framework for 3D face
and expression recognition taking into account the fact that the deformation of the face surface
is always related to different expressions. Chapter 17 addresses security leakages and privacy
protection issues in biometric systems and presents latest results of template protection
techniques in 3D face recognition systems. Chapter 18 presents a 3D face recognition system
based on pseudo 2D hidden Markov models using an expression-invariant representation of
faces. Chapter 19 covers some of the latest developments in optical correlation techniques for
face recognition using the concept of spectral fusion; also a new concept of correlation filter
called segmented composite filter is employed that is suitable for 3D face recognition.

Chapter 20 presents an implementation of the Neocognitron neural network using a high-
performance computing architecture based on a graphics processing unit.

The editor owes special thanks to authors of all included chapters for their valuable work.
April 2010

Milo$ Oravec

Slovak University of Technology

Faculty of Electrical Engineering and Information Technology
Department of Applied Informatics and Information Technology
Ilkovicova 3, 812 19 Bratislava, Slovak Republic

e-mail: milos.oravec@stuba.sk
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1. Introduction

Over the past two decades several attempts have been made to address the problem of face
recognition and a voluminous literature has been produced. Current face recognition
systems are able to perform very well in controlled environments e.g. frontal face
recognition, where face images are acquired under frontal pose with strict constraints as
defined in related face recognition standards. However, in unconstrained situations where a
face may be captured in outdoor environments, under arbitrary illumination and large pose
variations these systems fail to work. With the current focus of research to deal with these
problems, much attention has been devoted in the facial feature extraction stage. Facial
feature extraction is the most important step in face recognition. Several studies have been
made to answer the questions like what features to use, how to describe them and several
feature extraction techniques have been proposed. While many comprehensive literature
reviews exist for face recognition a complete reference for different feature extraction
techniques and their advantages/disadvantages with regards to a typical face recognition
task in unconstrained scenarios is much needed.

In this chapter we present a comprehensive review of the most relevant feature extraction
techniques used in 2D face recognition and introduce a new feature extraction technique
termed as Face-GLOH-signature to be used in face recognition for the first time (Sarfraz and
Hellwich, 2008), which has a number of advantages over the commonly used feature
descriptions in the context of unconstrained face recognition.

The goal of feature extraction is to find a specific representation of the data that can
highlight relevant information. This representation can be found by maximizing a criterion
or can be a pre-defined representation. Usually, a face image is represented by a high
dimensional vector containing pixel values (holistic representation) or a set of vectors where
each vector summarizes the underlying content of a local region by using a high level
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transformation (local representation). In this chapter we made distinction in the holistic and
local feature extraction and differentiate them qualitatively as opposed to quantitatively. It
is argued that a global feature representation based on local feature analysis should be
preferred over a bag-of-feature approach. The problems in current feature extraction
techniques and their reliance on a strict alignment is discussed. Finally we introduce to use
face-GLOH signatures that are invariant with respect to scale, translation and rotation and
therefore do not require properly aligned images. The resulting dimensionality of the vector
is also low as compared to other commonly used local features such as Gabor, Local Binary
Pattern Histogram ‘LBI”’ etc. and therefore learning based methods can also benefit from: it.
A performance comparison of face-GLOH-Signature with different feature extraction
techniques in a typical face recognition task is presented using FERET database. To
highlight the usefulness of the proposed features in unconstrained scenarios, we study and
compare the performance both under a typical template matching scheme and learning
based methods (using different classifiers) with respect to the factors like, large number of
subjects, large pose variations and misalignments due to detection errors. The results
demonstrate the effectiveness and weakness of proposed and existing feature extraction
techniques.

2. Holistic Vs Local Features-What Features to Use?

Holistic representation is the most typical to be used in face recognition. It is based on
lexicographic ordering of raw pixel values to yield one vector per image. An image can now
be seen as a point in a high dimensional feature space. The dimensionality corresponds
directly to the size of the image in terms of pixels. Therefore, an image of size 100x100 pixels
can be seen as a point in a 10,000 dimensional feature space. This large dimensionality of the
problem prohibits the use of any learning to be carried out in such a high dimensional
feature space. This is called the curse of dimensionality in the pattern recognition literature
(Duda et al, 2001). A common way of dealing with it is to employ a dimensionality
reduction technique such as Principal Component Analysis ‘PCA” to pose the problem into a
low-dimensional feature space such that the major modes of variation of the data are still
preserved.

Local feature extraction refers to describing only a local region/part of the image by using
some transformation rule or specific measurements such that the final result describes the
underlying image content in a manner that should yield a unique solution whenever the
same content is encountered. In doing so, however it is also required to have some degree of
invariance with respect to commonly encountered variations such as translation, scale and
rotations. A number of authors (Pentland et al, 1994; Cardinaux et al, 2006; Zou et al, 2007)
do not differentiate the holistic and local approaches according to the very nature they are
obtained, but rather use the terms in lieu of global (having one feature vector per image) and
a bag-of-feature (having several feature vectors per image) respectively. Here we want to
put the both terms into their right context, and hence a holistic representation can be
obtained for several local regions of the image and similarly a local representation can still
be obtained by concatenating several locally processed regions of the image into one global
vector, see figure 1 for an illustration. An example of the first usage is local-PCA or
modular- PCA (Gottumukkal and Asari, 2004; Tan and Chen, 2005), where an image is
divided into several parts or regions, and each region is then described by a vector
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One global vector per image
obtained by concatenating pixels
(holistic) or processed local
regions/ patches (local).

A “bag-of-features”
approach, where N vectors
are obtained for N local
patches/regions. Each
feature vector may be
obtained by holistic or local
feature extraction.

Fig. 1. Global and bag-of-feature representation for a facial image

comprising underlying raw-pixel values, PCA is then employed to reduce the
dimensionality. Note that it is called local since it uses several local patches of the same
image but it is still holistic in nature. An example of the second is what usually found in the
literature, e.g. Gabor filtering, Discrete Cosine Transform ‘DCT’, Local Binary Pattern ‘LBP’
etc where each pixel or local region of the image is described by a vector and concatenated
into a global description (Zou et al, 2007), note that they still give rise to one vector per
image but they are called local in the literature because they summarize the local content of
the image at a location in a way that is invariant with respect to some intrinsic image
properties e.g. scale, translation and/ or rotation.

Keeping in view the above discussion it is common in face recognition to either follow a
global feature extraction or a bag-of-features approach. The choice, of what is optimal,
depends on the final application in mind and hence is not trivial. However, there are a
number of advantages and disadvantages with both the approaches. For instance, a global
description is generally preferred for face recognition since it preserves the configural (i.e.,
the interrelations between facial parts) information of the face, which is very important for
preserving the identity of the individual as have been evidenced both from psychological
(Marta et al, 2006), neurobiological (Schwaninger et al, 2006; Hayward et al, 2008) and
computer vision ( Belhumeur et al, 1997; Chen et al, 2001) communities. On the other hand,
a bag-of-features approach has been taken by a number of authors (Brunelli and Poggio,
1993; Martinez, 2002; Kanade and Yamada, 2003) and shown improved recognition results
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in the presence of occlusion etc., nonetheless, in doing so, these approaches are bound to
preserve the configural information of the facial parts either implicitly or explicitly by
comparing only the corresponding parts in two images and hence puts a hard demand on
the requirement of proper and precise alignment of facial images.

Note that while occlusion may be the one strong reason to consider a bag-of-features
approach, the tendency of preserving the spatial arrangement of different facial parts
(configural information) is largely compromised. As evidenced from the many studies from
interdisciplinary fields that this spatial arrangement is in fact quite crucial in order to
preserve the identity of an individual, we therefore, advocate the use of a global
representation for a face image in this dissertation, as has also been used by many others.
One may, however, note that a global representation does not necessarily mean a holistic
representation, as described before. In fact, for the automatic unconstrained face recognition,
where there may be much variation in terms of scale, lighting, misalignments etc, the choice
of using local feature extraction becomes imperative since holistic representation cannot
generalize in these scenarios and is known to be highly affected by these in-class variations.

3. Holistic Feature Extraction

Holistic feature extraction is the most widely used feature description technique in
appearance based face recognition methods. Despite its poor generalization abilities in
unconstrained scenarios, it is being used for the main reason that any local extraction
technique is a form of information reduction in that it typically finds a transformation that
describes a large data by few numbers. Since from a strict general object recognition stand
point, face is one class of objects, and thus discriminating within this class puts very high
demands in finding subtle details of an image that discriminates among different faces.
Therefore each pixel of an image is considered valuable information and holistic processing
develops. However, a holistic-based global representation as been used classically (Turk and
Pentland, 1991) cannot perform well and therefore more recently many researchers used a
bag-of-features approach, where each block or image patch is described by holistic
representation and the deformation of each patch is modeled for each face class (Kanade
and Yamada, 2003; Lucey and Chen, 2006; Ashraf et al, 2008).

3.1 Eigenface- A global representation

Given a face image matrix F of size Y x X, a vector representation is constructed by
concatenating all the columns of F to form a column vector f of dimensionality YX. Given a
set of training vectors {f;}"* for all persons, a new set of mean subtracted vectors is formed

using:
g=f-f, i=L2..N, 1

The mean subtracted training set is represented as a matrix G =[g,,&,,...g,,]- The

covariance matrix is then calculated using, > = GG" . Due to the size of Y, calculation of the
eigenvectors of » can be computationally infeasible. However, if the number of training
vectors (Np) is less than their dimensionality (YX), there will be only N,-1 meaningful
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eigenvectors. (Turk and Pentland, 91) exploit this fact to determine the eigenvectors using
an alternative method summarized as follows. Let us denote the eigenvectors of matrix GTG
as v, with corresponding eigenvalues A ;:

G'Gv, = AV, )

Pre-multiplying both sides by G gives us: GGGV, = A GV,, Letting &, =GV and substituting

for ¥ from equation 1:

Y =Ag, 3)

J I

Hence the eigenvectors of Y. can be found by pre-multiplying the eigenvectors of G'G by G.
To achieve dimensionality reduction, let us construct matrix £ =[é,€,,...,€, ], containing D

eigenvectors of X with largest corresponding eigenvalues. Here, D<N,, a feature vector X

of dimensionality D is then derived from a face vector f using:

¥=E'(f-1) 4)

Therefore, a face vector f is decomposed into D eigenvectors, known as eigenfaces.
Similarly, employing the above mentioned Eigen analysis to each local patch of the image
results into a bag-of-features approach. Pentland et al. extended the eigenface technique to a
layered representation by combining eigenfaces and other eigenmodules, such as eigeneyes,
eigennoses, and eigenmouths(Pentland et al, 1994). Recognition is then performed by
finding a projection of the test image patch to each of the learned local Eigen subspaces for
every individual.

4. Local Feature Extraction

(Gottumukkal and Asari, 2004) argued that some of the local facial features did not vary
with pose, direction of lighting and facial expression and, therefore, suggested dividing the
face region into smaller sub images. The goal of local feature extraction thus becomes to
represent these local regions effectively and comprehensively. Here we review the most
commonly used local feature extraction techniques in face recognition namely the Gabor
wavelet transform based features , discrete cosine transform DCT-based features and more
recently proposed Local binary pattern LBP features.

4.1 2D Gabor wavelets

The 2D Gabor elementary function was first introduced by Granlund (Granlund, 1978).
Gabor wavelets demonstrate two desirable characteristic: spatial locality and orientation
selectivity. The structure and functions of Gabor kernels are similar to the two-dimensional
receptive fields of the mammalian cortical simple cells (Hubel and Wiesel, 1978). (Olshausen
and Field, 1996; Rao and Ballard, 1995; Schiele and Crowley, 2000) indicates that the Gabor
wavelet representation of face images should be robust to variations due to illumination and
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facial expression changes. Two-dimensional Gabor wavelets were first introduced into
biometric research by Daugman (Daugman, 1993) for human iris recognition. Lades et al.
(Lades et al, 1993) first apply Gabor wavelets for face recognition using the Dynamic Link
Architecture framework.

A Gabor wavelet kernel can be thought of a product of a complex sinusoid plane wave with
a Gaussian envelop. A Gabor wavelet generally used in face recognition is defined as (Liu,
2004):

L
V(@) =e 27 [ me 7] ©)
' o

where z = (x, y) is the point with the horizontal coordinate x and the vertical coordinate y in
the image plane. The parameters u and v define the orientation and frequency of the Gabor

kernel, ” denotes the norm operator, and O is related to the standard derivation of the

Gaussian window in the kernel and determines the ratio of the Gaussian window width to
the wavelength. The wave vector k,, is defined as &, , = ke .

Following the parameters suggested in (Lades et al, 1993) and used widely in prior works

(Liu, 2004) (Liu and Wechsler, 2002) &, = k}% and ¢, = % Kmax is the maximum frequency,

and fv is the spatial frequency between kernels in the frequency domain. v e {0,...,4} and
u€{0,...,7} in order to have a Gabor kernel tuned to 5 scales and 8 orientations. Gabor

max

wavelets are chosen relative too =27 , £k :% and f = V2 . The parameters ensures that

frequencies are spaced in octave steps from 0 to 7, typically each Gabor wavelet has a
frequency bandwidth of one octave that is sufficient to have less overlap and cover the
whole spectrum.

The Gabor wavelet representation of an image is the convolution of the image with a family
of Gabor kernels as defined by equation (6). The convolution of image / and a Gabor kernel
v, (z)is defined as follows:

uv

G, 2)=1(2)*y, (2) (6)

7

where z=(x,y) denotes the image position, the symbol ‘*’ denotes the convolution

operator, and G, (z) is the convolution result corresponding to the Gabor kernel at scale v
and orientation u . The Gabor wavelet coefficient is a complex with a real and imaginary

part, which can be rewritten as G, (z) = Auvv(z).e"g‘"’(:) , where A, is the magnitude response

u,v

and @, , is the phase of Gabor kernel at each image position. It iS known that the magnitude

varies slowly with the spatial position, while the phases rotate in some rate with positions,
as can be seen from the example in figure 2. Due to this rotation, the phases taken from
image points only a few pixels apart have very different values, although representing
almost the same local feature (Wiskott et al, 1997). This can cause severe problems for face
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Fig. 2. Visualization of (a) Gabor magnitude (b) Gabor phase response, for a face image with
40 Gabor wavelets (5 scales and 8 orientations).

matching, and it is just the reason that all most all of the previous works make use of only
the magnitude part for face recognition. Note that, convolving an image with a bank of
Gabor kernel tuned to 5 scales and 8 orientations results in 40 magnitude and phase
response maps of the same size as image. Therefore, considering only the magnitude
response for the purpose of feature description, each pixel can be now described by a 40
dimensional feature vector (by concatenating all the response values at each scale and
orientation) describing the response of Gabor filtering at that location.

Note that Gabor feature extraction results in a highly localized and over complete response
at each image location. In order to describe a whole face image by Gabor feature description
the earlier methods take into account the response only at certain image locations, e.g. by
placing a coarse rectangular grid over the image and taking the response only at the nodes
of the grid (Lades et al, 1993) or just considering the points at important facial landmarks as
n (Wiskott et al, 1997). The recognition is then performed by directly comparing the
corresponding points in two images. This is done for the main reason of putting an upper
limit on the dimensionality of the problem. However, in doing so they implicitly assume a
perfect alignment between all the facial images, and moreover the selected points that needs
to be compared have to be detected with pixel accuracy.

One way of relaxing the constraint of detecting landmarks with pixel accuracy is to describe
the image by a global feature vector either by concatenating all the pixel responses into one
long vector or employ a feature selection mechanism to only include significant points (Wu
and Yoshida, 2002) (Liu et al, 2004). One global vector per image results in a very high and
prohibitive dimensional problem, since e.g. a 100x100 image would result in a
40x100x100=400000 dimensional feature vector. Some authors used Kernel PCA to reduce
this dimensionality termed as Gabor-KPCA (Liu, 2004), and others (Wu and Yoshida, 2002;
Liu et al, 2004; Wang et al, 2002) employ a feature selection mechanism for selecting only the
important points by using some automated methods such as Adaboost etc. Nonetheless, a
global description in this case still results in a very high dimensional feature vector, e.g. in
(Wang et al, 2002) authors selected only 32 points in an image of size 64x64, which results in
32x40=1280 dimensional vector, due to this high dimensionality the recognition is usually
performed by computing directly a distance measure or similarity metric between two
images. The other way can be of taking a bag-of-feature approach where each selected point
is considered an independent feature, but in this case the configural information of the face
is effectively lost and as such it cannot be applied directly in situations where a large pose
variations and other appearance variations are expected.
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The Gabor based feature description of faces although have shown superior results in terms
of recognition, however we note that this is only the case when frontal or near frontal facial
images are considered. Due to the problems associated with the large dimensionality, and
thus the requirement of feature selection, it cannot be applied directly in scenarios where
large pose variations are present.

4.2 2D Discrete Cosine Transform

Another popular feature extraction technique has been to decompose the image on block by
block basis and describe each block by 2D Discrete Cosine Transform ‘DCT” coefficients. An
image block f(p,q), where p,q ={0,1.,N—1} (typically N=8), is decomposed terms of
orthogonal 2D DCT basis functions. The result is a NxN matrix C(v,u) containing 2D DCT
coefficients:

N-1N-1

Cru)=aWa@)). Y f(p.q)B(p.q.v.u) @)

=0 x=0

wherev,u =0,1,2,...N -1, a(v)= \/%,for v=0, and a(v)= \/% for v=1,2,...,N-1 and

®)

The coefficients are ordered according to a zig-zag pattern, reflecting the amount of
information stored (Gonzales and Woods, 1993). For a block located at image position (x,y),
the baseline 2D DCT feature vector is composed of:

x=[c" L T 9

Where ¢ denotes the n-th 2D DCT coefficient and M is the number of retained

coefficients3. To ensure adequate representation of the image, each block overlaps its
horizontally and vertically neighbouring blocks by 50% (Eickeler et al, 2000). M is typically
set to 15 therefore each block yields a 15 dimensional feature vector. Thus for an image
which has Y rows and X columns, there are N, = (24 —1)x (24 —1) blocks.

DCT based features have mainly been used in Hidden Markov Models HMM based
methods in frontal scenarios. More recently (Cardinaux et al, 2006) proposed an extension of
conventional DCT based features by replacing the first 3 coefficients with their
corresponding horizontal and vertical deltas termed as DCTmod2, resulting into an 18-
dimensional feature vector for each block. The authors claimed that this way the feature
vectors are less affected by illumination change. They then use a bag-of-feature approach to
derive person specific face models by using Gaussian mixture models.

4.2 Local Binary Pattern Histogram LBPH and its variants
Local binary pattern (LBP) was originally designed for texture classification (Ojala et al,
2002), and was introduced in face recognition in (Ahonen et al, 2004). As mentioned in
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(Ahonen et al, 2004) the operator labels the pixels of an image by thresholding some
neighbourhood of each pixel with the centre value and considering the result as a binary
number. Then the histogram of the labels can be used as a texture descriptor. See figure 3 for

an illustration of the basic LBP,; operator. The face area is divided into several small
windows. Several LBP operators are compared and LBF; the operator in 18x21 pixel

windows is recommended because it is a good trade-off between recognition performance
and feature vector length. The subscript represents using the operator in a (P, R)
neighbourhood. Superscript U2 represent using only uniform patterns and labelling all
remaining patterns with a single label, see (Ahonen et al, 2004) for details. The y* statistic

and the weighted y’ statistic were adopted to compare local binary pattern histograms.

- ’-\
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Fig. 3. (a) the basic LBP operator. (b) The circular (8,2) neighbourhood. The pixel values are
bilinearly interpolated whenever the sampling point is not in the centre of a pixel (Ahonen
et al, 2004)

Recently (Zhang et al, 2005) proposed local Gabor binary pattern histogram sequence
(LGBPHS) by combining Gabor filters and the local binary operator. (Baochang et al, 2007)
further used LBP to encode Gabor filter phase response into an image histogram termed as
Histogram of Gabor Phase Patterns (HGPP).

5. Face-GLOH-Signatures —introduced feature representation

The mostly used local feature extraction and representation schemes presented in previous
section have mainly been employed in a frontal face recognition task. Their ability to
perform equally well when a significant pose variation is present among images of the same
person cannot be guaranteed, especially when no alignment is assumed among facial
images. This is because when these feature representations are used as a global description
the necessity of having a precise alignment becomes unavoidable. While representations like
2D-DCT or LBP are much more susceptible to noise, e.g. due to illumination change as
noted in (Zou et al, 2007) or pose variations, Gabor based features are considered to be more
invariant with respect to these variations. However, as discussed earlier the global Gabor
representation results in a prohibitively high dimensional problem and as such cannot be
directly used in statistical based methods to model these in-class variations due to pose for
instance. Moreover the effect of misalignments on Gabor features has been studied
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(Shiguang et al, 2004), where strong performance degradation is observed for different face
recognition systems.

As to the question, what description to use, there are some guidelines one can benefit from.
For example, as discussed in section 3.1 the configural relationship of the face has to be
preserved. Therefore a global representation as opposed to a bag-of-features approach
should be preferred. Further in order to account for the in-class variations the local regions
of the image should be processed in a scale, rotation and translation invariant manner.
Another important consideration should be with respect to the size of the local region used.
Some recent studies (Martinez, 2002; Ullman et al, 2002; Zhang et al, 2005) show that large
areas should be preferred in order to preserve the identity in face identification scenarios.
Keeping in view the preceding discussion we use features proposed in (Mikolajczyk and
Schmid, 2005), used in other object recognition tasks, and introduce to employ these for the
task of face recognition for the first time (Sarfraz, 2008; Sarfraz and Hellwich, 2008) Our
approach is to extract whole appearance of the face in a manner which is robust against
misalignments. For this the feature description is specifically adapted for the purpose of face
recognition. It models the local parts of the face and combines them into a global description
We use a representation based on gradient location-orientation histogram (GLOH)
(Mikolajczyk and Schmid, 2005), which is more sophisticated and is specifically designed to
reduce in-class variance by providing some degree of invariance to the aforementioned
transformations.

GLOH features are an extension to the descriptors used in the scale invariant feature
transform (SIFT) (Lowe, 2004), and have been reported to outperform other types of
descriptors in object recognition tasks (Mikolajczyk and Schmid, 2005). Like SIFT the GLOH
descriptor is a 3D histogram of gradient location and orientation, where location is
quantized into a log-polar location grid and the gradient angle is quantized into eight
orientations. Each orientation plane represents the gradient magnitude corresponding to a
given orientation. To obtain illumination invariance, the descriptor is normalized by the
square root of the sum of squared components.

Originally (Mikolajczyk and Schmid, 2005) used the log-polar location grid with three bins
in radial direction (the radius set to 6, 11, and 15) and 8 in angular direction, which results in
17 location bins. The gradient orientations are quantized in 16 bins. This gives a 272 bin
histogram. The size of this descriptor is reduced with PCA. While here the extraction
procedure has been specifically adapted to the task of face recognition and is described in
the remainder of this section.

The extraction process begins with the computation of scale adaptive spatial gradients for a
given image I(x,y). These gradients are given by:

ny = %‘w(x,y,t)\/;V;yL(x,y;t) (10)

where L(x,y; t) denotes the linear Gaussian scale space of I(x,y) (Lindeberg, 1998) and w(x,y,t)
is a weighting, as given in equation 11.
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The gradient magnitudes obtained for an example face image (Figure 5 e) are shown in
Figure 5 b. The gradient image is then partitioned on a grid in polar coordinates, as
illustrated in Figure 5 c. As opposed to the original descriptor the partitions include a
central region and seven radial sectors. The radius of the central region is chosen to make
the areas of all partitions equal. Each partition is then processed to yield a histogram of
gradient magnitude over gradient orientations. The histogram for each partition has 16 bins
corresponding to orientations between 0 and 21, and all histograms are concatenated to give
the final 128 dimensional feature vector, that we term as face-GLOH-signature, see Figure 5
d. No PCA is performed in order to reduce the dimensionality.

The dimensionality of the feature vector depends on the number of partitions used. A
higher number of partitions results in a longer vector and vice versa. The choice has to be
made with respect to some experimental evidence and the effect on the recognition
performance. We have assessed the recognition performance on a validation set by using
ORL face database. By varying the partitions sizes from 3 (1 central region and 2 sectors), 5,
8, 12 and 17, we found that increasing number of partitions results in degrading
performance especially with respect to misalignments while using coarse partitions also
affects recognition performance with more pose variations. Based on the results, 8 partitions
seem to be the optimal choice and a good trade off between achieving better recognition
performance and minimizing the effect of misalignment. The efficacy of the descriptor is
demonstrated in the presence of pose variations and misalignments, in the next section. It
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should be noted that, in practice, the quality of the descriptor improves when care is taken
to minimize aliasing artefacts. The recommended measures include the use of smooth
partition boundaries as well as a soft assignment of gradient vectors to orientation
histogram bins.

6. Performance Analysis

In order to assess the performance of introduced face-GLOH-signature with that of various
feature representations, we perform experiments in two settings. In the first setting, the
problem is posed as a typical multi-view recognition scenario, where we assume that few
number of example images of each subject are available for training. Note that, global
feature representations based on Gabor, LBP and DCT cannot be directly evaluated in this
setting because of the associated very high dimensional feature space. These representations
are, therefore, evaluated in a typical template matching fashion in the second experimental
setting, where we assess the performance of each representation across a number of pose
mismatches by using a simple similarity metric. Experiments are performed on two of the
well-known face databases i.e. FERET (Philips et al, 2000) and ORL face database
(http:/ /www.cam-orl.co.uk).

6.1 Multi-view Face recognition

In order to perform multi-view face recognition (recognizing faces under different poses) it
is generally assumed to have examples of each person in different poses available for
training. The problem is solved form a typical machine learning point of view where each
person defines one class. A classifier is then trained that seek to separate each class by a
decision boundary. Multi-view face recognition can be seen as a direct extension of frontal
face recognition in which the algorithms require gallery images of every subject at every
pose (Beymer, 1996). In this context, to handle the problem of one training example, recent
research direction has been to use specialized synthesis techniques to generate a given face
at all other views and then perform conventional multi-view recognition (Lee and Kim,
2006; Gross et al, 2004). Here we focus on studying the effects on classification performance
when a proper alignment is not assumed and there exist large pose differences. With these
goals in mind, the generalization ability of different conventional classifiers is evaluated
with respect to the small sample size problem. Small sample size problem stems from the
fact that face recognition typically involves thousands of persons in the database to be
recognized. Since multi-view recognition treats each person as a separate class and tends to
solve the problem as a multi-class problem, it typically has thousands of classes. From a
machine learning point of view any classifier trying to learn thousands of classes requires a
good amount of training data available for each class in order to generalize well. Practically,
we have only a small number of examples per subject available for training and therefore
more and more emphasis is given on choosing a classifier that has good generalization
ability in such sparse domain.

The other major issue that affects the classification is the representation of the data. The
most commonly used feature representations in face recognition have been introduced in
previous sections. Among these the Eigenface by using PCA is the most common to be used
in multi-view face recognition. The reason for that is the associated high dimensionality of
other feature descriptions such as Gabor, LBPH etc. that prohibits the use of any learning to
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Fig. 7. Cropped faces of a FERET subject depicting all the 9 pose variations.

be done. This is the well known curse of dimensionality issue in pattern recognition (Duda
et al, 2001) literature and this is just the reason that methods using such over complete
representations normally resort to performing a simple similarity search by computing
distances of a probe image to each of the gallery image in a typical template matching
manner. While by using PCA on image pixels an upper bound on the dimensionality can be
achieved.

In line with the above discussion, we therefore demonstrate the effectiveness of the
proposed face-GLOH signatures with that of using conventional PCA based features in
multi-view face recognition scenarios with respect to the following factors.

When facial images are not artificially aligned

When there are large pose differences

Large number of subjects

Number of examples available in each class (subject) for training.

In order to show the effectiveness of face-GLOH signature feature representation against
misalignments, we use ORL face database. ORL face database has 400 images of 40 subjects
(10 images per subject) depicting moderate variations among images of same person due to
expression and some limited pose. Each image in ORL has the dimension of 192x112 pixels.
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All the images are depicted in approximately the same scale and thus have a strong
correspondence among facial regions across images of the same subject. We therefore
generate a scaled and shifted ORL dataset by introducing an arbitrary scale change between
0.7 and 1.2 of the original scale as well as an arbitrary shift of 3 pixels in random direction in
each example image of each subject. This has been done to ensure having no artificial
alignment between corresponding facial parts. This new misaligned dataset is denoted
scaled-shifted SS-ORL (see Figure 6). The experiments are performed on both the original
ORL denoted O-ORL and SS-ORL using PCA based features and face-GLOH signatures.
ORL face database is mainly used to study the effects on classification performance due to
misalignments since variations due to pose are rather restricted (not more than 20°). To
study the effects of large pose variations and a large number of subjects, we therefore repeat
our experiments on FERET database pose subset. The FERET pose subset contains 200
subjects, where each subject has nine images corresponding to different pose angles

(varying from 0° frontal to left/right profile £60° ) with an average pose difference of 15°.
All the images are cropped from the database by using standard normalization methods i.e.
by manually locating eyes position and warping the image onto a plane where these points
are in a fixed location. The FERET images are therefore aligned with respect to these points.
This is done in order to only study the effects on classifier performance due to large pose
deviations. All the images are then resized to 92x112 pixels in order to have the same size as
that of ORL faces. An example of the processed images of a FERET subject depicting all the 9
pose variations is shown in Figure 7.

We evaluate eight different conventional classifiers. These include nearest mean classifier
‘NMC/, linear discriminant classifier 'LDC’, quadratic ‘QDC’, fisher discriminant, parzen
classifier, k-nearest neighbour "KNN’, Decision tree and support vector machine ‘SVM’, see
(Webb, 2002) for a review of these classifiers.

6.1.1 Experiments on ORL database

We extract one global feature vector per face image by using lexicographic ordering of all
the pixel grey values. Thus, for each 92 x 112 ORL image, one obtains a 10384 dimensional
feature vector per face. We then reduce this dimensionality by using unsupervised PCA.
Where the covariance matrix is trained using 450 images of 50 subjects from FERET set. The
number of projection Eigen-vectors are found by analysing the relative cumulative ordered
eigenvalues (sum of normalized variance) of the covariance matrix. We choose first 50
largest Eigen vectors that explain around 80% of the variance as shown in figure 4-3. By
projecting the images on these, we therefore obtain a 50-dimentional feature vector for each
image. We call this representation the PCA-set.

The second representation of all the images is found by using face-GLOH-signature
extraction, as detailed in section 5.

In all of our experiments we assume equal priors for training, SVM experiments on O-ORL
use a polynomial kernel of degree 2, to reduce the computational effort, since using RBF
kernel with optimized parameters C and kernel width o did not improve performance. For
SS-ORL a RBF kernel is used with parameter C=500 and o = 10, these values were
determined using 5-fold cross validation and varying sigma between 0.1 and 50 and C
between 1 and 1000. All the experiments are carried out for classifiers on each of two
representations for both O-ORL and SS-ORL.
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We use a 10-fold cross validation procedure to produces 10 sets of the same size as original
dataset each with a different 10% of objects being used for testing. All classifiers are
evaluated on each set and the classification errors are averaged. The results from this
experiment on both O- ORL and SS-ORL for both feature representations are reported in
table 1.

O-ORL Representation sets SS-ORL Representation sets
Classifiers

PCA face-GLO H PCA face-GLOH
NMC 0.137 0.152 0.375 0.305
LDC 0.065 0.020 0.257 0.125
Fisher 0.267 0.045 0.587 0.115
Parzen 0.037 0.030 0.292 0.162
3-NN 0.097 0.062 0.357 0.255
Decision Tree | 0.577 0.787 0.915 0.822
QDC 0.64 0.925 0.760 0.986
SVM 0.047 0.037 0.242 0.105

Table 1. Classification errors in 10-fold cross validation tests on ORL

Table 1 shows how classification performance degrades, when the faces are not aligned i.e.
arbitrarily scaled and shifted, on PCA based feature representation. The robustness of the
face-GLOH-signature representation against misalignments can be seen by comparing the
results on O-ORL and SS-ORL, where it still gives comparable performance in terms of
classification accuracy. Best results are achieved by using LDC or SVM in both cases.

6.1.2 Experiments on FERET database

As stated earlier, FERET database pose subset is used to assess the performance with
regards to large pose variations and large number of subjects. 50 out of 200 FERET subjects
are used for training the covariance matrix for PCA. The remaining 1350 images of 150
subjects are used to evaluate classifier performance with respect to large pose differences. In
order to assess the small sample size problem (i.e. number of raining examples available per
subject), experiments on FERET are performed with respect to varying training/ test sizes by
using 2, 4, 6, and 8 examples per subject and testing on the remaining. Similarly, tests at each
size are repeated 5 times, with different training/test partitioning, and the errors are
averaged. Figure 8 shows the averaged classification errors for all the classifiers on FERET
set for both the feature representations with respect to varying training and test sizes. As
shown in figure 8, increasing number of subjects and pose differences has an adverse affect
on the performance of all the classifiers on PCA-representation set while face-GLOH-
Signature representation provides relatively better performance.

6.2 Template matching Setting

As stated earlier, due to the associated high dimensionality of the extracted features of
GABOR, LBP, DCT etc, we assess the performance of these feature descriptions with that of
face-GLOH signature across a number of pose mismatches in a typical template matching
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Fig. 8. Classifiers evaluation On FERET by varying training/test sizes (a) Using PCA-set (b)
Using face-GLOH-signature set

setting. Frontal images of 200 FERET subjects are used as gallery while images for the
remaining eight poses of each subject are used as test probes. Each probe is matched with
each of the gallery images by using the cosine similarity metric. Probe is assigned the
identity of the gallery subject for which it has the maximum similarity.

6.2.1 Test Results

We obtain each of the three feature descriptions as described in section 4. Gabor features are
obtained by considering real part of the bank of Gabor filter kernel response tuned to 8
orientations and 5 scales, at each pixel location. This resulted in 40x92x112=412160
dimensional feature vector for each image. Due to memory constraints we used PCA to
reduce the dimensionality to 16000-dimensional vector. For the LBPH feature

representation, we use LBPF.,; operator in 18x21 window as described in (Ahonen et al,
2004) which resulted in a 2124 dimensional feature vector. The recognition scores in each

pose are averaged. Table 2 depicts the performance comparison of different feature
representations with that of Face-GLOH-Signature across a number of pose mismatches.

Feature Average Recognition across each FERET Probe Pose
Description +15° 1+95° +45° +60°
Eigenface 70.1% 56.2% 31.1% 13.4%
Gabor 91.4% 81.2% 68.5% 32.1%
LBPH 87.3 % 71.4% 56% 18.3%
Face-GLOH- 100% 94.5% 81.1% 53.8%
Signature

Table 2. Comparison of face identification performance across pose of different feature
representations
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7. Conclusion

A comprehensive account of almost all the feature extraction methods used in current face
recognition systems is presented. Specifically we have made distinction in the holistic and
local feature extraction and differentiate them qualitatively as opposed to quantitatively. It
is argued that a global feature representation should be preferred over a bag-of-feature
approach. The problems in current feature extraction techniques and their reliance on a
strict alignment is discussed. Finally we have introduced to use face-GLOH signatures that
are invariant with respect to scale, translation and rotation and therefore do not require
properly aligned images. The resulting dimensionality of the vector is also low as compared
to other commonly used local features such as Gabor, LBP etc. and therefore learning based
methods can also benefit from it.

In a typical multi-view face recognition task, where it is assumed to have several examples
of a subject available for training, we have shown in an extensive experimental setting the
advantages and weaknesses of commonly used feature descriptions. Our results show that
under more realistic assumptions, most of the classifiers failed on conventional features.
While using the introduced face-GLOH-signature representation is relatively less affected
by large in-class variations. This has been demonstrated by providing a fair performance
comparison of several classifiers under more practical conditions such as misalignments,
large number of subjects and large pose variations. An important conclusion is to be drawn
from the results on FERET is that conventional multi-view face recognition cannot cope well
with regards to large pose variations. Even using a large number of training examples in
different poses for a subject do not suffice for a satisfactory recognition. In order to solve the
problem where only one training example per subject is available, many recent methods
propose to use image synthesis to generate a given subject at all other views and then
perform a conventional multi-view recognition (Beymer and Poggio, 1995; Gross et al, 2004).
Besides the fact that such synthesis techniques cause severe artefacts and thus cannot
preserve the identity of an individual, a conventional classification cannot yield good
recognition results, as has been shown in an extensive experimental setting. More
sophisticated methods are therefore needed in order to address pose invariant face
recognition. Large pose differences cause significant appearance variations that in general
are larger than the appearance variation due to identity. One possible way of addressing this
is to learn these variations across each pose, more specifically by fixing the pose and
establishing a correspondence on how a person’s appearance changes under this pose one
could reduce the in-class appearance variation significantly. In our very recent work
(Sarfraz and Hellwich, 2009), we demonstrate the usefulness of face-GLOH signature in this
direction.
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1. Introduction

Principal component analysis (PCA), which is also known as Karhunen-Loeve (KL)
transform, is a classical statistic technique that has been applied to many fields, such as
knowledge representation, pattern recognition and image compression. The objective of
PCA is to reduce the dimensionality of dataset and identify new meaningful underlying
variables. The key idea is to project the objects to an orthogonal subspace for their compact
representations. It usually involves a mathematical procedure that transforms a number of
correlated variables into a smaller number of uncorrelated variables, which are called
principal components. The first principal component accounts for as much of the variability
in the dataset as possible, and each succeeding component accounts for as much of the
remaining variability as possible. In pattern recognition, PCA technique was first applied to
the representation of human face images by Sirovich and Kirby in [1,2]. This then led to the
well-known Eigenfaces method for face recognition proposed by Turk and Penland in [3].
Since then, there has been an extensive literature that addresses both the theoretical aspect
of the Eigenfaces method and its application aspect [4-6]. In image compression, PCA
technique has also been widely applied to the remote hyperspectral imagery for
classification and compression [7,8]. Nevertheless, it can be noted that in the classical 1D-
PCA scheme the 2D data sample (e.g. image) must be initially converted to a 1D vector
form. The resulting sample vector will lead to a high dimensional vector space. It is
consequently difficult to evaluate the covariance matrix accurately when the sample vector
is very long and the number of training samples is small. Furthermore, it can also be noted
that the projection of a sample on each principal orthogonal vector is a scale. Obviously, this
will cause the sample data to be over-compressed. In order to solve this kind of
dimensionality problem, Yang et al. [9,10] proposed the 2D-PCA approach. The basic idea is
to directly use a set of matrices to construct the corresponding covariance matrix instead of a
set of vectors. Compared with the covariance matrix of 1D-PCA, one can note that the size of
the covariance matrix using 2D-PCA is much smaller. This improves the computational
efficiency. Furthermore, it can be noted that the projection of a sample on each principal
orthogonal vector is a vector. Thus, the problem of over-compression is alleviated in the 2D-
PCA scheme. In addition, Wang et al. [11] proposed that the 2D-PCA was equivalent to a
special case of the block-based PCA, and emphasized that this kind of block-based methods
had been used for face recognition in a number of systems.
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For the multidimensional array cases, the higher order SVD (HO-SVD) has been applied to
face recognition in [12,13]. They both employed a higher order tensor form associated with
people, view, illumination, and expression dimensions and applied the HO-SVD to it for
face recognition. We formulated them into the N-Dimensional PCA scheme in [14].
However, the presented ND-PCA scheme still adopted the classical single directional
decomposition. Besides, due to the size of tensor, HO-SVD implementation usually leads to
a huge matrix along some dimension of tensor, which is always beyond the capacity of an
ordinary PC. In [12,13], they all employed small sized intensity images or feature vectors
and a limited number of viewpoints, facial expressions and illumination changes in their
“tensorface”, so as to avoid this numerical challenge in HO-SVD computation.

Motivated by the above-mentioned works, in this chapter, we will reformulate our ND-PCA
scheme presented in [14] by introducing the multidirectional decomposition technique for a
near optimal solution of the low rank approximation, and overcome the above-mentioned
numerical problems. However, we also noted the latest progress - Generalized PCA
(GPCA), proposed in [15]. Unlike the classical PCA techniques (i.e. SVD-based PCA
approaches), it utilizes the polynomial factorization techniques to subspace clustering
instead of the usual Singular Value Decomposition approach. The deficiency is that the
polynomial factorization usually yields an overabundance of monomials, which are used to
span a high-dimensional subspace in GPAC scheme. Thus, the dimensionality problem is
still a challenge in the implementation of GPCA. We will focus on the classical PCA
techniques in this chapter.

The remainder of this chapter is organized as follows: In Section 2, the classical 1D-PCA and
2D-PCA are briefly revisited. The ND-PCA scheme is then formulated by using the
multidirectional decomposition technique in Section 3, and the error estimation is also
given. To evaluate the ND-PCA, it is performed on the FRGC 3D scan facial database [16]
for multi-model face recognition in Section 4. Finally, some conclusions are given in
Section 5.

2.1D- AND 2D-PCA, AN OVERVIEW
1D-PCA

Let a sample X € R". This sample is usually expressed in a vector form in the case of 1D-
PCA. Traditionally, principal component analysis is performed on a square symmetric
matrix of the cross product sums, such as the Covariance and Correlation matrices (i.e. cross
products from a standardized dataset), i.e.

Cov=E{(X - X)X -X)T
{ | o
Cor=(X - Xy)(Y -Yy)T

where, X is the mean of the training set, while X),Y,, are standard forms. Indeed, the

analysis of the Correlation and Covariance are different, since covariance is performed
within the dataset, while correlation is used between different datasets. A correlation object
has to be used if the variances of the individual samples differ much, or if the units of
measurement of the individual samples differ. However, correlation can be considered as a
special case of covariance. Thus, we will only pay attention to the covariance in the rest of
this chapter.
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After the construction of the covariance matrix, Eigen Value Analysis is applied to Cov of

Eq.(1), ie. Cov=USUT . Herein, the first k eigenvectors in the orthogonal matrix U
corresponding to the first k largest eigenvalues span an orthogonal subspace, where the
major energy of the sample is concentrated. A new sample of the same object is projected in
this subspace for its compact form (or PCA representation) as follows,

a=Uj (X-X), @)
where, U, is a matrix consisting of the first k eigenvectors of U, the projection a is a k-

dimensional vector, which calls the k principal components of the sample X. The estimate of
a novel representation of X can be described as,

X=Ua+X. €)
It is clearly seen that the size of the covariance matrix of Eq.(1) is very large when the
sample vectors are very long. Due to the large size of the covariance matrix and the
relatively small number of training samples, it is difficult to estimate the covariance matrix
of Eq.(1) accurately. Furthermore, a sample is projected on a principal vector as follows,

o = ul-T(X—A_’), a;eau; cUpi=1.k.
It can be noted that the projection ¢; is a scale. Thus, this usually causes over-compression,

i.,e. we will have to use many principal components to approximate the original sample X
for a desired quality. We call these above-mentioned numerical problems as “curse of
dimensionality”.

2D-PCA
In order to avoid the above mentioned problem, Yang et al. in [10] firstly presented a 2D-
PCA scheme for 2D array cases in order to improve the performance of the PCA-style

classifiers, that is, SVD is applied to the covariance matrix of, G = Z (X, -0, -X), to
1

get G=VAVT , where X;eR™™ denotes a sample, X denotes the mean of a set of

samples, and V is the matrix of the eigenvectors and A is the matrix of the eigenvalues. The
low-rank approximation of sample X is described as,

X=vl+Xx
Y=(X-XW,
where V; contains the first k principal eigenvectors of G. It has been noted that 2D-PCA

“)

only considers between column (or row) correlations [11].

In order to improve the accuracy of the low rank approximation, Ding et al. in [17]
presented a 2D-SVD scheme for 2D cases. The key idea is to employ the 2-directional
decomposition to the 2D-SVD scheme, that is, two covariance matrices of,

F= z_(Xl- -XN)X, -X) =UAUT
G=> X~ X)X, -X)=ragr

are considered together. Let U contain the first k principal eigenvectors of F and ¥ contain

the first s principal eigenvectors of G. The low-rank approximation of X can be expressed as,
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{5{ —uMvT+ X .

M =U[ (X - XV,
Compared to the scheme Eq.(5), the scheme Eq.(4) of 2D-PCA only employs the classical
single directional decomposition. It is proved that the scheme Eq.(5) of 2D-SVD can obtain a
near-optimal solution compared to 2D-PCA in [17]. While, in the dyadic SVD algorithm [18],
the sample set is viewed as a 3 order tensor and the HO-SVD technique is applied to each
dimension of this tensor except the dimension of sample number, so as to generate the
principal eigenvector matrices U, and ¥ as in the 2D-SVD.

3. N-DIMENSIONAL PCA

For clarity, we first introduce Higher Order SVD [19] briefly, and then formulate the N-
dimensional PCA scheme.

3.1 Higher Order SVD

A higher order tensor is usually defined as 4 e RIv-xIy , where N is the order of A, and 1 <
in < Iy, 1< n < N. In accordance with the terminology of tensors, the column vectors of a 2-
order tensor (matrix) are referred to as 1-mode vectors and row vectors as 2-mode vectors.
The n-mode vectors of an N-order tensor A are defined as the I,-dimensional vectors
obtained from A by varying the index i, and keeping the other indices fixed. In addition, a
tensor can be expressed in a matrix form, which is called matrix unfolding (refer to [19] for
details).

Furthermore, the n-mode product, %, of a tensor 4 R'*In->*Iv by a matrix U e R7I»
along the n-th dimension is defined as,

Ax U), . .= a. - U
(4%, )ll,.“,ln_],jn,ln+|,.4.,lN z i Sty seensiy % oy

In practice, n-mode multiplication is implemented first by matrix unfolding the tensor A
along the given n-mode to generate its n-mode matrix form 4, and then performing the

matrix multiplication as follows,

By = U -
After that, the resulting matrix B() is folded back to the tensor form, i.e.
Ax, U =fold, (Uunfold,(4)) . In terms of n-mode multiplication, Higher Order SVD of a

tensor A can be expressed as,
A=S><1U(1)><2...><NU(N), (6)
where, U™ is a unitary matrix of size I, x I,, which contains n-mode singular vectors.

Instead of being pseudo-diagonal (nonzero elements only occur when the indices
ij =...=iy ), the tensor S (called the core tensor) is all-orthogonal, that is, two subtensors

S; —a and S; _, are orthogonal for all possible values of n, a and b subject to a # b. In

addition, the Frobenius-norms Sl(n) =||Si =i "F are n-mode singular values of A and are in
n
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decreasing order, sf") 2...2s§") >0 , which correspond to n-mode singular vectors

n

u™ U™ i=1,..,1

. respectively. The numerical procedure of HO-SVD can be simply

described as,
unfold, (4) =UuMs™y™T , —1 N,

where, ") = diag(sl("),...,sgn)) and ¥ is another orthogonal matrix of SVD.

3.2 Formulating N-dimensional PCA
For the multidimensional array case, we first employ a difference tensor instead of the
covariance tensor as follows,

D:((X1 —X),...( Xy —)?)), @)

where X; e R 1*Iv and p e RI-M*-*Ix je N-order tensors (X, - X),n=1,..,M are
stacked along the ith dimension in the tensor D. Then, applying HO-SVD of Eq.(6) to D will
generate n-mode singular vectors contained in U™, n=1,..,N . According to the n-mode
singular values, one can determine the desired principal orthogonal vectors for each mode
of the tensor D respectively. Introducing the multidirectional decomposition to Eq.(7) will
yield the desired N-dimensional PCA scheme as follows,

- | N =

X =75 Ul sy UM + X ®
v nT nT’
Y =(X-X)x U,§1> Xy Xy U,ﬁjv)

where U,i’ ) denotes the matrix of i-mode k; principal vectors, i =1,...N. The main challenge

is that unfolding the tensor D in HO-SVD usually generates an overly large matrix.

First, we consider the case of unfolding D along the ith dimension, which generates a matrix

of size MI; x(I;4q-...- Iy Iy -...-I;_1) . We prefer a unitary matrix UD of size I, x 1, to one of

the sizes MI; x MI; . This can be achieved by reshaping the unfolded matrix as follows.

Let 4; be a I;x({i-...-dy -1y -...- 1) matrix and j = 1,...M. The unfolded matrix is
4

expressed as A=| .. | . Reshaping A into a I;xM([;y-..-{y-1;-...-1;.1) matrix
Ay

A= (4., 4y ), we can obtain an unitary matrix U of size I, x I; by SVD.

Then, consider the generic case. Since the sizes of dimensions 1;,...,/y may be very large,

this still leads to an overly large matrix along some dimension of sample X. Without loss of
generality, we assume that the sizes of dimensions of sample X are independent of each
other.

Now, this numerical problem can be rephrased as follows, for a large sized matrix, how to
carry out SVD decomposition. It is straightforward to apply matrix partitioning approach to
the large matrix. As a start point, we first provide the following lemma.
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Lemma:
For any matrix M € R , if each column M; of M, M =(M,,...,M,,), maintain its own
singular value o;, i.e. MMT =U.diag(c?,0,..,00UL , while the singular values of M are
min(m,n) min(m,n)

. . T 2 2

Sseees Smin(m,n) - 1€ M =VaAiag(sy,....Smingmn))U" , then Z o = s
i=1 i=1
Proof:
Let n > m. Because,
m

m
T T 2. T . 2 2 T
MM" = E M M; = 2 u;o7 u; =(u1,...,um)dzag(0'1 ,...,O'm)(u],...,um) ,
i=1 i=1

where u; is the first column of each U;, while the SVD of MM r ,
m
MMT =vdiag(s?,....s2.0,...00 T = Zv[sl-zv,-T ,
i=1
where v; is the ith column of V. We have,

m m
r(MMT )= Zo-,-Z = Zslz , End of proof.
i

i

This lemma implies that each column of M corresponds to its own singular value. Moreover,
let M; be a submatrix instead of column vector, M; € R . We have,
MiM,»T =U,»diag(slzi,...sfi,...,O)Ul»T .

It can be noted that there are more than one non-zero singular values s;; >...2s,; 20. If we
let rank(M;MI)=1 , the approximation of M,M] can be written as
M,-MiT ~ Uidiag(slzi,o,‘..,O)U,-T . In terms of the lemma, we can also approximate it as
MM! =M M = ulio]ziug , where M|; is a column of M; corresponding to the biggest
singular value oy; of column vector. On this basis, M; is regarded as the principal column
vector of the submatrix M;.

We can rearrange the matrix M € R by sorting these singular values {c;} and partition it

!

into t block submatrices, M =(M,,...,M,), where M; e R i=1,....t,m = Zm,- . Indeed, the
i

principal eigenvectors are derived only from some particular submatrices rather than the

others as the following analysis. (For computational convenience, we assume m > 1 below.)

In the context of PCA, the matrix of the first k principal eigenvectors is preferred to a whole

orthogonal matrix. Thus, we partition M into 2 block submatrices M =(M,,M,) in terms of
the sorted singular values {o;}, so that M; contains the columns corresponding to the first k
biggest singular values while M, contains the others. Note that M is different from the

original M because of a column permutation (denoted as Permute). Applying SVD to each
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M, respectively yields,

~

M:(U“UZ)(AI AzJ(VIT VT]' ©

Thus, matrix M can be approximated as follows,

S A\
M=~M =(U1,U2)( OJ[ ! V[]' (10)
In order to obtain the approximation of M, the inverse permutation of Permute needs to be

VT
carried out on the row-wise orthogonal matrix of [ ! T] given in Eq.(10). The resulting
v

matrix is the approximation of the original matrix M. The desired principal eigenvectors are
therefore included in the matrix of U, .

Now, we can re-write our ND-PCA scheme as,
X = Y %, U,ill)...x[. U,ﬁr")...xN U,g‘;V) +X
Y =(X-X)x UM ox, UM ) (11)
U,” is from Eq.(10)
For comparison, the similarity metric can adopt the Frobenius-norms between the
reconstructions of two samples X and X' as follows,
e=|x-%| =Jr-v,. (12)

Furthermore, we can provide the following proposition,

Proposition:

X of Eq.(11) is a near optimal approximation to sample X in a least-square sense.

Proof.

According to the property 10 of HO-SVD in [19], we assume that the n-mode rank of
(X -X) be equal to R (1<n<N) and (X —X) be defined by discarding the smallest n-

()

mode singular values &\"),,...,c\" for given I' . Then, the approximation X is a near

optimal approximation of sample X. The error is bounded by Frobenius-norm as follows,
~ 12 R Ry
"X —X" <Y oM Y o (13)
G St iv=ly+l
This means that the tensor (X — X) is in general not the best possible approximation under

the given n-mode rank constraints. But under the error upper-bound of Eq.(13), X is a near
optimal approximation of sample X.

Unfolding (X — X) along ith dimension yields a large matrix which can be partitioned into
two submatrices as shown in Eq.(9), i.e.

M=(M.M,)= (U,,Uz)[Al AZ][V‘T Vf]'
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.
Let M’:(U,,Uz)[A‘ OJ(VI

M'eR”™ as follows,

T} as shown in Eq.(10). Consider the difference of M and

2

- - 0 yr
-, "),
2

VT
where U, e R"",V, € R"™™ A, € R"™,i=1,2 . It can be noted that the 2-norm of ( ! TJ is1,

6

0
and that of [ A ] is max{o:o€A,} . Since
2

IIIX"I
(UI’UZ):UI([nxn’lnxn)[ UITUJ'

T

1
we can note that the 2-norm of both the orthogonal matrix U, and [ w Uy j are 1, and
1 2

that of (1,,,.1,,,) is 2 because of identity matrix 7,

nxn? nxn

. Therefore, we have,

|07 - 32 <2max’{o:oen,, (14)
in a 2-norm sense.

Substituting Eq.(14) into Eq.(13) yields the error upper-bound of X as follows,
"X - )~(||2F < Z(max2 {a(" o e A§'>}+ ...+ max’ {G(N’ oM e A‘ZN)}) . (15)

This implies that the approximation X of Eq.(11) is a near optimal approximation of sample
X under this error upper bound. End of proof.

Remark: So far, we formulated the ND-PCA scheme, which can deal with overly large
matrix. The basic idea is to partition the large matrix and discard non-principal submatrices.
In general, the dimensionality of eigen-subspace is determined by the ratio of sum of
singular values in the subspace to the one of the whole space for solving the dimensionality
reduction problems [20]. But, for an overly large matrix, we cannot get all the singular
values of the whole matrix here, because of discarding the non-principal submatrices. An
alternative is to iteratively determine the dimensionality of eigen-subspace by using
reconstruction error threshold.

4. EXPERIMENTS AND ANALYSIS

The proposed ND-PCA approach was performed on a 3D range database of human faces
used for the Face Recognition Grand Challenge [16]. In order to establish an analogy with a
3D volume dataset or multidimensional solid array, each 3D range dataset was first mapped
to a 3D array and the intensities of the corresponding pixels in the still face image were
regarded as the voxel values of the 3D array. For the sake of memory size, the reconstructed
volume dataset was then re-sampled to the size of 180x180%90. Figure 1 shows an example
of the still face image, corresponding range data and the reconstructed 3D model.
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Experiment 1. This experiment is to test the rank of the singular values. In our gallery, eight
samples of each person are available for training. Their mean-offset tensors are aligned
together along the second index (x axis) to construct a difference tensor D € R*™****  We
applied HO-SVD of Eq.(6) to D to get the 1-mode and 3-mode singular values of D, which
are depicted in Fig.2. One can note that the numbers of 1-mode and 3-mode singular values
are different, and they are equal to the dimensionalities of indices 1 and 3 of D respectively
(i.e. 180 for 1-mode and 90 for 3-mode). This is a particular property of higher order tensors,
namely the N-order tensor A can have N different n-mode ranks but all of them are less than
the rank of A, rank,(A) < rank(A) . Furthermore, the corresponding n-mode singular vectors

constitutes orthonormal basis which can span independent n-mode orthogonal subspaces
respectively. Therefore, we can project a sample to an arbitrary n-mode orthogonal subspace
accordingly. In addition, one can also note that the magnitude of the singular values
declines very quickly. This indicates that the energy of a sample is only concentrated on a
small number of singular vectors as expected.

a. 77,,7 b. C. ‘ T
Fig. 1. The original 2D still face image (a), range data (b) and reconstructed 3D model (c) of a
face sample.
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Experiment 2. This experiment is to test the quality of the reconstructed sample. Within our
3D volume dataset, we have 1-mode, 2-mode and 3-mode singular vectors, which could
span three independent orthogonal subspaces respectively. The sample could be
approximated by using the projections from one orthogonal subspace, two ones or three
ones. Our objective is to test which combination leads to the best reconstruction quality. We
designed a series of tests for this purpose. The reconstructed sample using the scheme of
Eq.(11) was performed on 1-mode, 3-mode and 1-mode+2-mode+3-mode principal
subspaces respectively with a varying number of principal components k. (Note that 1-mode
or 3-mode based ND-PCA adopted the single directional decomposition, while 1-mode+2-
mode+3-mode based ND-PCA adopted the multidirectional decomposition.) The residual
errors of reconstruction are plotted in Fig.3. Since the sizes of dimensions of U and UY
are different, the ranges of the corresponding number of principal components k are also
different. However, k must be less than the size of dimension of the corresponding
orthogonal matrix U or U® . As a result of the differing dimensionalities, the residual
error of reconstruction in 3-mode principal subspace converges to zero faster than in 1-mode
or 1-mode+2-mode+3-mode principal subspaces. Indeed, if the curve of 3-mode (solid
curve) is quantified to the same length of row coordinate as the curve of 1-mode (dashed
line) in Fig.3, there is no substantial difference compared to the 1-mode test. This indicates
that the reconstructed results are not affected by the difference between the different n-
mode principal subspaces. Furthermore, in the test of 1-mode+2-mode+3-mode principal
subspaces, the number of principal components k was set to 180 for both U" and U®

while it was set to 90 for U® . Comparing the curve of 1-mode+2-mode+3-mode (dot line)
with that of 1-mode (dashed line) and 3-mode (solid line), one can note that the
approximation of 1-mode+2-mode+3-mode principal subspace converges to the final
optimal solution more rapidly.

Remark: In [9,10], the over-compressed problem was addressed repeatedly. [10] gave a
comparison of the reconstruction results between the 1D-PCA case and the 2D-PCA case,
which is reproduced in Fig.4 for the sake of completeness. It can be noted that the small
number of principal components of the 2D-PCA can perform well compared with the large
number of principal components of the 1D-PCA. Moreover, consider the cases of single
directional decomposition, i.e. 2D-PCA and 1-mode based ND-PCA scheme, and
multidirectional decomposition, i.e. 2D-SVD and 1-mode+2-mode+3-mode based ND-PCA.
We respectively compared the reconstructed results of the single directional decomposition
and the multidirectional decomposition with a varying number of principal components k
(i.e. the reconstruction of the volume dataset by using the ND-PCA of Eq.(11) while the
reconstruction of the corresponding 2D image respectively by using 2D-PCA of Eq.(4) and
2D-SVD of Eq.(5)). The training set is the same as in the first experiment. The residual errors
of reconstruction are normalized to the range of [0,1], and are plotted in Fig.5. One can note
that the multidirectional decomposition performs better than the single directional
decomposition in the case of a small number of principal components (i.e. comparing Fig.5a
with Fig.5b). But then comparing the 2D-PCA with ND-PCA scheme shown in Fig.5a (or 2D-
SVD with ND-PCA scheme shown in Fig.5b), one can also note that 2D-PCA (or 2D-SVD)
performs a little better than ND-PCA scheme when only a small number of principal
components are used. In our opinion, there is no visible difference in the reconstruction
quality between 2D-PCA (or 2D-SVD) and ND-PCA scheme with a small number of
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singular values. This is because the reconstructed 3D volume dataset is a sparse 3D array
(i.e. all voxel values are set to zero except the voxels on the face surface), it is therefore more
sensitive to computational errors compared to a 2D still image. If the 3D volume datasets
were solid, e.g. CT or MRI volume datasets, this difference between the two curves of Fig.5a
or Fig.5b would not noticeably appear.

Fig. 4. Comparison of the reconstructed images using 2D-PCA (upper) and 1D-PCA (lower)
from [10].
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Fig. 5. Comparison of the reconstruction by using single directional decomposition (a), i.e.
2D-PCA and 1-mode based ND-PCA scheme, and multidirectional composition (b), i.e. 2D-
SVD and ND-PCA, in terms of the normalized residual errors.

Experiment 3. In this experiment, we compared the 1-mode based ND-PCA scheme with the
1-mode+2-mode+3-mode based ND-PCA scheme on the performance of the face verification
using the Receiver Operating Characteristic (ROC) curves [21]. Our objective is to reveal the
recognition performance between these two ND-PCA schemes respectively by using the
single directional decomposition and the multidirectional decomposition. The whole test set
includes 270 samples (i.e. range datasets and corresponding still images), in which there are
6 to 8 samples for one person. All these samples are from the FRGC database and are re-
sampled. Two ND-PCA schemes were carried out directly on the reconstructed volume
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datasets. Their corresponding ROC curves are shown respectively in Fig.6. It can be noted
that the overlapping area of the genuine and impostor distributions (i.e. false probability) in
Fig.(6a) is smaller than that in Fig.(6b). Furthermore, their corresponding ROC curves
relating to the False Acceptance Rate (FAR) and the False Rejection Rate (FRR) are depicted
by changing the threshold as shown in Fig.(6c). At some threshold, the false probability of
recognition corresponds to some rectangular area under the ROC curve. The smaller the
area under the ROC curve, the higher is the rising of the accuracy of the recognition. For
quantitative comparison, we could employ the Equal Error Rate (EER), which is defined as
the error rate at the point on ROC curve where the FAR is equal to the FRR. The EER is often
used for comparisons because it is simpler to obtain and compare a single value
characterizing the system performance. In Fig.(6c), the EER of Fig.(6a) is 0.152 while the EER
of Fig.(6b) is 0.224. Obviously, the ND-PCA scheme with multidirectional decomposition
can improve the accuracy of face recognition. Of course, since the EERs only give
comparable information between the different systems that are useful for a single
application requirement, the full ROC curve is still necessary for other potentially different
application requirements.
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Fig. 6. Comparison of the recognition performance. a) are the genuine and impostor
distribution curves of ND-PCA with multidirectional decomposition; b) are the genuine and
impostor distribution curves of ND-PCA with single directional decomposition; c) are the
ROC curves relating to the False acceptance rate and False rejection rate.
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5. CONCLUSION

In this chapter, we formulated the ND-PCA approach, that is, to extend the PCA technique
to the multidimensional array cases through the use of tensors and Higher Order Singular
Value Decomposition technique. The novelties of this chapter include, 1) introducing the
multidirectional decomposition into ND-PCA scheme and overcoming the numerical
difficulty of overly large matrix SVD decomposition; 2) providing the proof of the ND-PCA
scheme as a near optimal linear classification approach. We performed the ND-PCA scheme
on 3D volume datasets to test the singular value distribution, and the error estimation. The
results indicated that the proposed ND-PCA scheme performed as well as we desired.
Moreover, we also performed the ND-PCA scheme on the face verification for the
comparison of single directional decomposition and multidirectional decomposition. The
experimental results indicated that the ND-PCA scheme with multidirectional
decomposition could effectively improve the accuracy of face recognition.
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1. Introduction

Designing a completely automatic and efficient face recognition system is a grand challenge
for biometrics, computer vision and pattern recognition researchers. Generally, such a
recognition system is able to perform three subtasks: face detection, feature extraction and
classification. We'll put our focus on feature extraction, the crucial step prior to
classification. The key issue here is to construct a representative feature set that can enhance
system-performance both in terms of accuracy and speed.

At the core of machine recognition of human faces is the extraction of proper features. Direct
use of pixel values as features is not possible due to huge dimensionality of the faces.
Traditionally, Principal Component Analysis (PCA) is employed to obtain a lower
dimensional representation of the data in the standard eigenface based methods [Turk and
Pentland 1991]. Though this approach is useful, it suffers from high computational load and
fails to well-reflect the correlation of facial features. The modern trend is to perform
multiresolution analysis of images. This way, several problems like, deformation of images
due to in-plane rotation, illumination variation and expression changes can be handled with
less difficulty.

Multiresolution ideas have been widely used in the field of face recognition. The most
popular multiresolution analysis tool is the Wavelet Transform. In wavelet analysis an
image is usually decomposed at different scales and orientations using a wavelet basis
vector. Thereafter, the component corresponding to maximum variance is subjected to
“further operation’. Often this ‘further operation” includes some dimension reduction before
feeding the coefficients to classifiers like Support Vector Machine (SVM), Neural Network
(NN) and Nearest Neighbor. This way, a compact representation of the facial images can be
achieved and the effect of variable facial appearances on the classification systems can also
be reduced. The wide-spread popularity of wavelets has stirred researchers’ interest in
multiresolution and harmonic analysis. Following the success of wavelets, a series of
multiresolution, multidimensional tools, namely contourlet, curvelet, ridgelet have been
developed in the past few years. In this chapter, we'll concentrate on Digital Curvelet
Transform. First, the theory of curvelet transform will be discussed in brief. Then we'll talk
about the potential of curvelets as a feature descriptor, looking particularly into the problem
of image-based face recognition. Some experimental results from recent scientific works will
be provided for ready reference.
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2. Curvelet Transform

Before getting started with curvelet transform, the reader is suggested to go through the
theory of multiresolution analysis, especially wavelet transform. Once the basic idea of
wavelets and multiresolution analysis is understood, curvelets will be easier to comprehend.

2.1 Theory and Implementation

Motivated by the need of image analysis, Candes and Donoho developed curvelet transform
in 2000 [Candes and Donoho 2000]. Curvelet transform has a highly redundant dictionary
which can provide sparse representation of signals that have edges along regular curve.
Initial construction of curvelet was redesigned later and was re-introduced as Fast Digital
Curvelet Transform (FDCT) [Candes et al. 2006]. This second generation curvelet transform
is meant to be simpler to understand and use. It is also faster and less redundant compared
to its first generation version. Curvelet transform is defined in both continuous and digital
domain and for higher dimensions. Since image-based feature extraction requires only 2D
FDCT, we'll restrict our discussion to the same.

Fig. 1. Curvelets in Fourier frequency (left) and spatial domain (right) [Candes et al. 2006].

In order to implement curvelet transform, first 2D Fast Fourier Transform (FFT) of the image
is taken. Then the 2D Fourier frequency plane is divided into wedges (like the shaded region
in fig. 1). The parabolic shape of wedges is the result of partitioning the Fourier plane into
radial (concentric circles) and angular divisions. The concentric circles are responsible for
the decomposition of an image into multiple scales (used for bandpassing the image at
different scale) and the angular divisions partition the bandpassed image into different
angles or orientations. Thus if we want to deal with a particular wedge we’ll need to define

its scale j and angle /. Now let’s have a look at the spatial domain (fig. 1 right). Each of the

wedges here corresponds to a particular curvelet (shown as ellipses) at a given scale and
angle. This indicates that the inverse FFT of a particular wedge if taken, will determine the
curvelet coefficients for that scale and angle. This is the main idea behind the
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implementation of curvelet transform. Figure 1 (right) represents curvelets in spatial
Cartesian grid associated with a given scale and angle.

@)
Fig. 2. (a) a real wedge in frequency domain, (b) corresponding curvelet in spatial domain
[Candes et al. 2006], (c) curvelets aligned along a curve at a particular scale, (d) curvelets at a

finer scale [Starck et al. 2002].

There are two different digital implementations of FDCT: Curvelets via USFFT (Unequally
Spaced Fast Fourier Transform) and Curvelets via Wrapping. Both the variants are linear
and take as input a Cartesian array to provide an output of discrete coefficients. Two
implementations only differ in the choice of spatial grid to translate curvelets at each scale
and angle. FDCT wrapping is the fastest curvelet transform currently available [Candes et
al. 2006].

Though curvelets are shown to form the shape of an ellipse in fig. 1, looking at fig. 2 (b-d),
we can understand that actually it looks more like elongated needles. This follows from the
parabolic scaling law (length =~ width?) that curvelets obey. The values of curvelet
coefficients are determined by how they are aligned in the real image. The more accurately a
curvelet is aligned with a given curve in an image, the higher is its coefficient value. A very
clear explanation is provided in figure 3. The curvelet named ‘¢’ in the figure is almost
perfectly aligned with the curved edge and therefore has a high coefficient value. Curvelets
‘a” and ‘b’ will have coefficients close to zero as they are quite far from alignment. It is well-
known that a signal localized in frequency domain is spread out in the spatial domain or
vice-versa. A notable point regarding curvelets is that, they are better localized in both
frequency and spatial domain compared to other transforms. This is because the wedge
boundary is smoothly tapered to avoid abrupt discontinuity.

2.2 Comparison with wavelets

Fourier series requires a large number of terms to reconstruct a discontinuity within good
accuracy. This is the well-known Gibbs phenomenon. Wavelets have the ability to solve this
problem of Fourier series, as they are localized and multiscale. However, though wavelets
do work well in one-dimension, they fail to represent higher dimensional singularities
(especially curved singularities, wavelets can handle point singularities quite well)
effectively due to limited orientation selectivity and isotropic scaling. Standard orthogonal
wavelet transform has wavelets with primarily vertical, horizontal and diagonal
orientations independent of scale.

Curvelet transform has drawn much attention lately because it can efficiently handle several
important problems, where traditional multiscale transforms like wavelet fait to act. Firstly,
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Curvelets can provide a sparse representation of the objects that exhibit ‘curve punctuated
smoothness’ [Candes, 2003], i.e. objects those are smooth except along a general curve with
bounded curvature. Curvelets can model such curved discontinuities so well that the
representation becomes as sparse as if the object were not singular. From figure 4, we can
have an idea about the sparsity and efficiency of curvelet representation of curved
singularities compared to wavelets. At any scale j, curvelets provide a sparse

representation  O(2’ /z)of the images compared to wavelets’ O(2/). If an image

function f is approximated by largest m coefficients as f, , then the approximation errors
are given by:
Fourier transform
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Fig. 3. Alignment of curvelets along curved edges [R]

The main idea here is that the edge discontinuity is better approximated by curvelets than
wavelets. Curvelets can provide solutions for the limitations (curved singularity
representation, limited orientation and absence of anisotropic element) the wavelet
transform suffers from. It can be considered as a higher dimensional generalization of
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wavelets which have the unique mathematical property to represent curved singularities
effectively in a non-adaptive manner.

i

Fig. 4. Representation of curved sigularities using wavelets (left) and curvelets (right)
[Starck, 2003].

2.3 Applications

Curvelet transform is gaining popularity in different research areas, like signal processing,
image analysis, seismic imaging since the development of FDCT in 2006. It has been
successfully applied in image denoising [Starck et al. 2002], image compression, image
fusion [Choi et al., 2004], contrast enhancement [Starck et al., 2003], image deconvolution
[Starck et al., 2003], high quality image restoration [Starck et al., 2003], astronomical image
representation [Starck et al., 2002] etc. Examples of two applications, contrast enhancement
and denoising are presented in figures 5 and 6. Readers are suggested to go through the
referred works for further information on various applications of the curvelet transform.
Recently, curvelets have also been employed to address several pattern recognition
problems, such as face recognition [Mandal et al., 2007; Zhang et al., 2007] (discussed in
detail in section 3), optical character recognition [Majumdar, 2007], finger-vein pattern
recognition [Zhang et al., 2006] and palmprint recognition [Dong et al. 2005].

Fig. 5. Contrast enhancement by curvelets [Starck et al., 2003].
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Fig. 6. Image denoising by curvelet [Siarck et al. 2002].

3. Curvelet Based Feature Extraction for Faces

In the previous section, we have presented a theoritical overview of curvelet transform and
explained why it can be expected to work better than the traditional wavelet transform.
Facial images are generally 8 bit i.e. they have 256 graylevels. In such images two very close
regions that have differing pixel values will give rise to edges; and these edges are typically
curved for faces. As curvelets are good at approximating curved singularities, they are fit
for extracting crucial edge-based features from facial images more efficiently than that
compared to wavelet transform. We will now describe different face recognition
methodologies that employ curvelet transform for feature extraction.

Typically, a face recognition system is divided into two stages: a training stage and a
classification stage. In the training stage, a set of known faces (labeled data) are used to
create a representative feature-set or template. In the classification stage, a unknown facial
image is matched against the previously seen faces by comparing the features. Curvelet
based feature extraction takes the raw or the preprocessed facial images as input. The
images are then decomposed into curvelet subbands in different scales and orientations.
Figure 7 shows the decomposition of a face image of size 112X92 (taken from ORL
database) by curvelets at scale 2 (coarse and fine) and angle 8. This produces one
approximate (75X 61) and eight detailed coefficients (four of those are of size 66 X123 and
rest are of size 149X 54). These curvelet decomposed images are called ‘Curveletfaces’. The
approximate curveletface contains the low-frequency components and the rest captures the
high-frequency details along different orientations. It is sufficient to decompose faces using
curvelet transform at scale 3 and angle 8 or 16. Increasing scales and/or orientations does
not necessarily lead to significant improvement in recognition accuracy. If required, images
can be reduced in size before subjecting them to feature extraction.

3.1 Curvelets and SVM

The first works on curvelet-based face recognition are [Zhang et al., 2007; Mandal et al.
2007]. A simple application of curvelet transform in facial feature extraction can be found in
[Zhang et al., 2007]. The authors have used SVM classifier directly on the curvelet
decomposed faces. The curvelet based results have been compared with that of wavelets.
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Mandal et al. have performed ‘bit quantization” before extracting curvelet features. The
original 8 bit images are quantized to their 4 bit and 2 bit versions, as shown in figure 8. This
is based on the belief that on bit quantizing an image, only bolder curves will remain in the
lower bit representations, and curvelet transform will be able to make the most out of this
curved edge information. During training, all the original 8 bit gallery images and their two
bit-quantized versions are decomposed into curvelet subbands. Selected curvelet coefficients
are then separately fed to three different Support Vector Machine (SVM) classifiers. Final
decision is achieved by fusing results of all SVMs. The selection of the curvelet coefficients is
done on the basis of their variance. The recognition results for these two methods are shown
below.

Average Recognition Curvelet + SVM Wavelet + SVM
Accuracy 90.44 % 82.57%
Table 1. Face recognition results for ORL database [Zhang et al., 2007]

Fig. 7. Curvelet decomposition of a facial image - 1st image in the first row is the original
image, 2nd image in the first row is the approximate coefficients and others are detailed
coefficients at eight angles (all the images are resized to same dimension for the purpose of
illustration only) [Mandal et al., 2009].

Fig. 8. Bit quantization: left most is the original 8 bit image (from ORL database), next two
are 4 bit and 2 bit representations respectively [Mandal et al., 2007].
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No. of Bits Accuracy of Accuracy after Rejection Incorrect
in Image | each Classifier majority Voting Rate Classification rate
8 96.9
4 95.6 98.8 1.2 0
2 93.7

Table 2. Recognition result for bit-quantized, curvelet decomposed images for ORL database
[Mandal et al., 2007].

3.1 Curvelets and dimensionality reduction

However, even an image of size 64 X 64 when decomposed using curvelet transform at scale
3 (coarse, fine, finest) and angle 8 will produce the coarse subband of size 21X 21 and 24
detailed coefficients of slightly larger size. Working with such large number of features is
extremely expensive. Hence it is important to find a representative feature set. Only
important curvelet subbands are selected depending on the amount of total variance they
account for. Then dimensionality reduction methods like PCA, LDA and a combined PCA-
LDA framework have been applied on those selected subbands to get an even lower
dimensional representation [Mandal et al., 2009]. This not only reduces computational load,
but also increases recognition accuracy.

The theory of PCA/LDA and will not be discussed here. Readers are requested to consult
any standard book and the classical papers of Cootes et al. and Belhumeur et al. to
understand the application of PCA and LDA in face recognition. PCA has been successfully
applied on wavelet domain for face recognition by Feng et al. PCA has been employed on
curvelet decomposed gallery images to form a representational basis. In the classification
phase, the query images are subjected to similar treatment and transformed to the same
representational basis. However, researchers argue that PCA, though is able to provide an
efficient lower dimensional representation of the data, suffers from higher dimensional load
and poor discriminative power. This issue can be resolved by the application of LDA that
can maximize the within-class dissimilarity, simultaneously increasing the between-class
similarity. This efficient dimensionality reduction tool is also applied on curvelet coefficients
to achieve even higher accuracy and lower computational load. Often, the size of the
training set is less than the dimensionality of the images. In such cases LDA fails to work,
since the within-class scatter matrix become singular. Computational difficulty also arises
while working with high-dimensional image vectors. In such high-dimensional and singular
cases PCA is performed prior to LDA. Curvelet subimages are projected onto PCA-space
and then LDA is performed on this PCA-transformed space. Curvelet features thus
extracted are also robust against noise. These curvelet-based methods are compared to
several existing techniques in terms of recognition accuracy in table 3. Though LDA is
expected to work better than PCA that is not reflected in figures 9 and 10. This is because
ORL is a small database and PCA can outperform LDA in such cases. In a recent work
[Mohammed et al., 2009] Kernal PCA has been used for dimensionality reduction of curvelet
features and even higher accuracy is achieved.



Curvelet Based Feature Extraction

43

98

Recognition Accuracy (%)

—— Cunvellet+PCA

—i— Curvelet«LDA

—i— Curvelet+PCA+LDA

10 20 30

40 50 60 70 B8O 0 100
Principal Componenets

Fig. 9. Curvelet -based recognition accuracy for ORL database [Mandal et al., 2009]

98

96 4

g0

N
=

88 1

Recognition Accuracy (%)

86 1

84

Ry, e

—— Cunvelet+PCA

~8- Cuvelet+LDA

—&— Crurvelet+PCA+LDA

\\\:
Ty

o

0.05

0.1 0.15 0.
Noise Level

2

Fig. 10. Performance of curvelet-based methods against noise [Mandal et al, 2009]



44 Face Recognition

Method fcecCSiZ;[ig’z )
Standard eigenface [Turk et al., 1991] 92.2
Waveletface [Feng et al.] 925
Curveletface 94.5
Waveletface + PCA [Feng et al., 2000] 94.5
Waveletface + LDA [Chien and Wu, 2002] 94.7
Waveletface + weighted modular PCA 95.0

[Zhao et al., 2008]

Waveletface + LDA + NFL [Chien and Wu, 2002] 95.2
Curveletface + LDA 95.6
Waveletface + kAM [Zhang et al. 2004] 96.6
Curveletface + PCA 96.6
Curveletface + PCA + LDA 97.7

Table 3. Comparative study [Mandal et al., 2009]

4. Conclusion

In this chapter, newly developed curvelet transform has been presented as a new tool for
feature extraction from facial images. Various algorithms are discussed along with relevant
experimental results as reported in some recent works on face recognition. Looking at the
results presented in tables 1, 2 and 3, we can infer that curvelet is not only a successful
feature descriptor, but is superior to many existing wavelet-based techniques. Results for
only one standard database (ORL) are listed here; nevertheless, work has been done on
other standard databases like, FERET, YALE, Essex Grimace, Georgia-Tech and Japanese
facial expression datasets. From the results presented in all these datasets prove the
superiority of curvelets over wavelets for the application of face recognition. Curvelet
features thus extracted from faces are also found to be robust against noise, significant
amount of illumination variation, facial details variation and extreme expression changes.
The works on face recognition using curvelet transform that exist in literature are not yet
complete and do not fully understand the capability of curvelet transform for face
recognition; hence, there is much scope of improvement in terms of both recognition
accuracy and curvelet-based methodology.
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COMPRESSIVE CLASSIFICATION
FOR FACE RECOGNITION

Angshul Majumdar and Rabab K. Ward

1. INTRODUCTION

Face images (with column/row concatenation) form very high dimensional vectors, e.g. a
standard webcam takes images of size 320x240 pixels, which leads to a vector of length
76,800. The computational complexity of most classifiers is dependent on the dimensionality
of the input features, therefore if all the pixel values of the face image are used as features
for classification the time required to finish the task will be excessively large. This prohibits
direct usage of pixel values as features for face recognition.

To overcome this problem, different dimensionality reduction techniques has been proposed
over the last two decades - starting from Principal Component Analysis and Fisher Linear
Discriminant. Such dimensionality reduction techniques have a basic problem - they are
data-dependent adaptive techniques, i.e. the projection function from the higher to lower
dimension cannot be computed unless all the training samples are available. Thus the
system cannot be updated efficiently when new data needs to be added.

Data dependency is the major computational bottleneck of such adaptive dimensionality
reduction methods. Consider a situation where a bank intends to authenticate a person at
the ATM, based on face recognition. So, when a new client is added to its customer base, a
training image of the person is acquired. When that person goes to an ATM, another image
is acquired by a camera at the ATM and the new image is compared against the old one for
identification. Suppose that at a certain time the bank has 200 customers, and is employing a
data-dependent dimensionality reduction method. At that point of time it has computed the
projection function from higher to lower dimension for the current set of images. Assume
that at a later time, the bank has 10 more clients, then with the data-dependent
dimensionality reduction technique, the projection function for all the 210 samples must be
recomputed from scratch; in general there is no way the previous projection function can be
updated with results of the 10 new samples only. This is a major computational bottleneck
for the practical application of current face recognition research.

For an organization such as a bank, where new customers are added regularly, it means that
the projection function from higher to lower dimension will have to be updated regularly.
The cost of computing the projection function is intensive and is dependent on the number
of samples. As the number of samples keeps on increasing, the computational cost keeps on
increasing as well (as every time new customers are added to the training dataset, the
projection function has to be recalculated from scratch). This becomes a major issue for any
practical face recognition system.
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One way to work around this problem is to skip the dimensionality reduction step. But as
mentioned earlier this increases the classification time. With the ATM scenario there is
another problem as well. This is from the perspective of communication cost. There are two
possible scenarios in terms of transmission of information - 1) the ATM sends the image to
some central station where dimensionality reduction and classification are carried out or 2)
the dimensionality reduction is carried out at the ATM so that the dimensionality reduced
feature vector is sent instead. The latter reduces the volume of data to be sent over the
internet but requires that the dimensionality reduction function is available at the ATM.
With the first scenario, the communication cost arises from sending the whole image over
the communication channel. In the second scenario, the dimensionality reduction function is
available at the ATM. As this function is data-dependent it needs to be updated every time
new samples are added. Periodically updating the function increases the communication
cost as well.

In this work we propose a dimensionality reduction method that is independent of the data.
Practically this implies that the dimensionality reduction function is computed once and for
all and is available at all the ATMs. There is no need to update it, and the ATM can send the
dimensionality reduced features of the image. Thus both the computational cost of
calculating the projection function and the communication cost of updating it are reduced
simultaneously.

Our dimensionality reduction is based on Random Projection (RP). Dimensionality
reduction by random projection is not a well researched topic. Of the known classifiers only
the K Nearest Neighbor (KNN) is robust to such dimensionality reduction [1]. By robust, it
is meant that the classification accuracy does not vary much when the RP dimensionality
reduced samples are used in classification instead of the original samples (without
dimensionality reduction). Although the KNN is robust, its recognition accuracy is not high.
This shortcoming has motivated researchers in recent times to look for more sophisticated
classification algorithms that will be robust to RP dimensionality reduction [2, 3].

In this chapter we will review the different compressive classification algorithms that are
robust to RP dimensionality reduction. However, it should be remembered that these
classifiers can also be used with standard dimensionality reduction techniques like Principal
Component Analysis.

In signal processing literature random projection of data are called ‘Compressive Samples’.
Therefore the classifiers which can classify such RP dimensionality reduced data are called
‘Compressive Classifiers’. In this chapter we will theoretically prove the robustness of
compressive classifiers to RP dimensionality reduction. The theoretical proofs will be
validated by thorough experimentation. Rest of the chapter will be segregated into several
sections. In section 2, the different compressive classification algorithms will be discussed.
The theoretical proofs regarding their robustness will be provided in section 3. The
experimental evaluation will be carried out in section 4. Finally in section 5, conclusions of
this work will be discussed.

2. CLASSIFICATION ALGORITHMS

The classification problem is that of finding the identity of an unknown test sample given a
set of training samples and their class labels. Compressive Classification addresses the case
where compressive samples (random projections) of the original signals are available
instead of the signal itself.
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If the original high dimensional signal is ‘x’, then its dimensionality is reduced by
y = Ax

where A is a random projection matrix formed by normalizing the columns of an i.i.d.
Gaussian matrix and y is the dimensionality reduced compressive sample. The compressive
classifier has access to the compressive samples and must decide the class based on them.
Compressive Classifiers have two challenges to meet:

The classification accuracy of CC on the original signals should be at par with classification
accuracy from traditional classifiers (SVM or ANN or KNN).

The classification accuracy from CC should not degrade much when compressed samples
are used instead of the original signals.

Recently some classifiers have been proposed which can be employed as compressive
classifiers. We discuss those classification algorithms in this section.

2.1 The Sparse Classifier

The Sparse Classifier (SC) is proposed in [2]. It is based on the assumption that the training
samples of a particular class approximately form a linear basis for a new test sample
belonging to the same class. If vy is the test sample belonging to the kth class then,

s
Vigest = Qi aVin T O pVip Toee ¥ O, Vi, 6 = zak,ivk,i e @)
i=l
where v 's are the training samples of the kth class and e is the approximation error
(assumed to be Normally distributed).
Equation (1) expresses the assumption in terms of the training samples of a single class.
Alternatively, it can be expressed in terms of all the training samples such that

Vitest = Q1 oo O Viey +oet Oy Vi Fot ey Ve, +E

m Ty 7¢ (2)
=D oV D A Vi et DO Ve HE
i=1 i=k i=1
where C is the total number of classes.
In matrix vector notation, equation (2) can be expressed as
vk,test = Va +é& (3)

where V =[v [..[vey [V, [ dve, Jand a =[ay ..oy .0, ac, 1"

The linearity assumption in [2] coupled with the formulation (3) implies that the coefficients
vector a should be non-zero only when they correspond to the correct class of the test
sample.

Based on this assumption the following sparse optimization problem was proposed in [2]

min ||« ||, subjectto [[v —Val,<n, nisrelated to & 4)



50 Face Recognition

As it has already been mentioned, (4) is an NP hard problem. Consequently in [2] a convex
relaxation to the NP hard problem was made and the following problem was solved instead

min ||« || subjectto [[v —Val,<n )

The formulation of the sparse optimization problem as in (5) is not ideal for this scenario as
it does not impose sparsity on the entire class as the assumption implies. The proponents of
Sparse Classifier [2] “hope’ that the 11-norm minimization will find the correct solution even
though it is not imposed in the optimization problem explicitly. We will speak more about
group sparse classification later.

The sparse classification (SC) algorithm proposed in [2] is the following;:

Sparse Classifier Algorithm

1. Solve the optimization problem expressed in (5).

2. For each class (i) repeat the following two steps:

3. Reconstruct a sample for each class by a linear combination of the training samples

nl
vre‘con (l) = z ai,jvi,j
j=1

belonging to that class using.

4. Find the error between the reconstructed sample and the given test sample by
error(vtest ’l) =|| Vk,test - Vrecon(i) ||2 .

5. Once the error for every class is obtained, choose the class having the minimum error as
the class of the given test sample.

The main workhorse behind the SC algorithm is the optimization problem (5). The rest of
the steps are straightforward. We give a very simple algorithm to solve this optimization
problem.

IRLS algorithm for 11 minimization

~ . 2
Initialization - set §(0) = 0 and find the initial %(0) =min [ y - Ax ;3 by conjugate
gradient method.
At iteration t - continue the following steps till convergence (i.e. either § is less than 10-¢
or the number of iterations has reached maximum limit)

1. Find the current weight matricex as W, (t) = diag(2 | x(t —=1) + o(t) |_l/2)
2. Form a new matrix, L = AW,, .

3.Solve u(t)=min || y—Lu H% by conjugate gradient method.

4. Find x by rescaling u, x(¢) = W, u(t) .

5. Reduce & by a factor of 10 if | | y-Ax| | q has reduced.

This algorithm is called the Iterated Reweighted Least Squares (IRLS) algorithm [4] and falls
under the general category of FOCUSS algorithms [5].
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2.2 Fast Sparse Classifiers

The above sparse classification (SC) algorithm yields good classification results, but it is
slow. This is because of the convex optimization (I1 minimization). It is possible to create
faster versions of the SC by replacing the optimization step (step 1 of the above algorithm)
by a fast greedy (suboptimal) alternative that approximates the original 10 minimization
problem (4). Such greedy algorithms serve as a fast alternative to convex-optimization for
sparse signal estimation problems. In this work, we apply these algorithms in a new
perspective (classification).

We will discuss a basic greedy algorithm that can be employed to speed-up the SC [2]. The
greedy algorithm is called the Orthogonal Matching Pursuit (OMP) [6]. We repeat the OMP
algorithms here for the sake of completeness. This algorithm approximates the NP hard

problem, min || x ||, subjectto || y— Ax|,<7.

OMP Algorithm

Inputs: measurement vector y (mX1), measurement matrix A (mXn) and error tolerance
n.

Output: estimated sparse signal x.

Initialize: residual ro=y, the index set A¢=0, the matrix of chosen atoms ®y={, and the
iteration counter t = 1.

1. At the iteration = t, find 4, = argmax [<7,_, ¢, >|

j=l..n

2. Augment the index set A, =A U/’i[ and the matrix of chosen atoms
®, =[®, 4, ]
3. Get the new signal estimate min || x,—®,y ”;

X

4. Calculate the new approximation and the residual a, = ) X, and 1, =)y —aqa,.

Increment t and return to step 1 if | 7, > e.

The problem is to estimate the sparse signal. Initially the residual is initialized to the
measurement vector. The index set and the matrix of chosen atoms (columns from the
measurement matrix) are empty. The first step of each iteration is to select a non-zero index
of the sparse signal. In OMP, the current residual is correlated with the measurement matrix
and the index of the highest correlation is selected. In the second step of the iteration, the
selected index is added to the set of current index and the set of selected atoms (columns
from the measurement matrix) is also updated from the current index set. In the third step
the estimates of the signal at the given indices are obtained via least squares. In step 4, the
residual is updated. Once all the steps are performed for the iteration, a check is done to see
if the norm of the residual falls below the error estimate. If it does, the algorithm terminates
otherwise it repeats steps 2 to 4.
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The Fast Sparse Classification algorithm differs from the Sparse Classification algorithm
only in step 1. Instead of solving the [1 minimization problem, FSC uses OMP for a greedy
approximation of the original [0 minimization problem.

2.3 Group Sparse Classifier

As mentioned in subsection 2.1, the optimization algorithm formulated in [2] does not
exactly address the desired aim. A sparse optimization problem was formulated in the hope
of selecting training samples of a particular (correct) class. It has been shown in [7] that I1
minimization cannot select a sparse group of correlated samples (in the limiting case it selects
only a single sample from all the correlated samples). In classification problems, the training
samples from each class are highly correlated, therefore I1 minimization is not an ideal choice
for ensuring selection of all the training samples from a group. To overcome this problem of
[2] the Group Sparse Classifier was proposed in [3]. It has the same basic assumption as [2]
but the optimization criterion is formulated so that it promotes selection of the entire class of
training samples.

The basic assumption of expressing the test sample as a linear combination of training

samples is formulated in (3) as v, ., = Va+¢
where V' =[v, |...|v1’n] [l Ve |...|vk’,,k [..vey |...|vc,nc]and

T
a= [0{171 s Oy 5 O [5eees O ) ’---“0,1:---’0‘0,;1(;]

o a, o

The above formulation demand that a should be ‘group sparse’ - meaning that the solution
of the inverse problem (3) should have non-zero coefficients corresponding to a particular
group of training samples and zero elsewhere (i.e. &; # 0 for only one of the ai’s, i=1,...,C).
This requires the solution of

min ||« ||,, suchthat|v,, —Vea|,<¢ (6)
o :

test

. . . _ T
The mixed norm |J+|, is defined for & _[a1,17"‘7a1,n1 20 15 Oy ) ,...ak’l,...,ak’nk] as

a a, ay

k
lellpo= Y 1(l  |l,>0), where I(]| ¢, [l,>0) =1if || & [[,> 0.
=1

Solving the I, minimization problem is NP hard. We proposed a convex relaxation in [3], so
that the optimization takes the form

min ||« ||,, suchthat|v,,6 —Val,<e& @)
e :

test

where || ||, =l & |, + e, |l +-+ ey |l -

Solving the I,; minimization problem is the core behind the GSC. Once the optimization
problem (7) is solved, the classification algorithm is straight forward.



COMPRESSIVE CLASSIFICATION FOR FACE RECOGNITION 53

Group Sparse Classification Algorithm
1. Solve the optimization problem expressed in (13).
2. Find those i’s for which | |ai]| |2 > 0.
3. For those classes (i) satisfying the condition in step 2, repeat the following two steps:
a. Reconstruct a sample for each class by a linear combination of the training samples

recon(l) Z lj 1]

in that class via the equation
b. Find the error between the reconstructed sample and the given test sample by

error(vtest’l) _H VkJest

Vrecon(i) ||2 .

4. Once the error for every class is obtained, choose the class having the minimum error as
the class of the given test sample.

As said earlier the work horse behind the GSC is the optimization problem (7). We propose
a solution to this problem via an IRLS method.

IRLS algorithm for 12,1 minimization

Initialization - set 8(0) = 0 and find the initial x(0)=min || y— Ax ||§ by conjugate
gradient method.

At iteration t - continue the following steps till convergence (i.e. either & is less than 10-¢
or the number of iterations has reached maximum limit)

1. Find the weights for each group (i) w; = (|| xl-(k_l) ||§ +5@) "2,

2. Form a diagonal weight matrix W,, having weights w; corresponding to each coefficient
of the group x;.

3. Form a new matrix, L = AW,, .

4.Solve 4(t)=min || y— Lu |3 .

5. Find x by rescaling u, x(¢) = W, u(t) .

6. Reduce 6 by a factor of 10 if | | y-Ax| | q has reduced.

This algorithm is similar to the one in section 2.1 used for solving the sparse optimization
problem except that the weight matrix is different.

2.4 Fast Group Sparse Classification

The Group Sparse Classifier [3] gives better results than the Sparse Classifier [2] but is
slower. In a very recent work [8] we proposed alternate greedy algorithms for group sparse
classification and were able to increase the operating speed by two orders of magnitude.
These classifiers were named Fast Group Sparse Classifiers (FGSC).

FSC is built upon greedy approximation algorithms of the NP hard sparse optimization
problem (10). Such greedy algorithms form a well studied topic in signal processing.
Therefore it was straightforward to apply known greedy algorithms (such as OMP) to the
sparse classification problem. Group sparsity promoting optimization however is not a
vastly researched topic like sparse optimization. As previous work in group sparsity solely
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rely on convex optimization. We had to develop a number of greedy algorithms as (fast and
accurate) alternatives to convex group sparse optimization [8].
All greedy group sparse algorithms approximate the problem

min || x||,, subjectto || y— Ax|,<7.They work in a very intuitive way - first they try

to identify the group which has non-zero coefficients. Once the group is identified, the
coefficients for the group indices are estimated by some simple means. There are several
ways to approximate the NP hard problem. It is not possible to discuss all of them in this
chapter. We discuss the Group Orthogonal Matching Pursuit (GOMP) algorithm. The
interested reader can peruse [8] for other methods to solve this problem.

GOMP Algorithm

Inputs: the measurement vector y (mX1), the measurement matrix A (mXn), the group
labels and the error tolerance ).
Output: the estimated sparse signal x.

Initialize: the residual?, = ), the index set Ao =@, the matrix of chosen atoms
(Do = , and the iteration counter t = 1.

1. At iteration t, compute A( j) =‘< h1s®,; >|,V] =1l..n

2. Group selection - select the class with the maximum average correlation

1<
T, = arg max(—z/l( J)), denote it by class(z,) .

i=1...C i j=l

3. Augment the index set At = At_l Uclass(t t)and the matrix of the chosen atoms
(Dt = [q)t—l Aclass(r,)]'

4. Get the new signal estimate using min || x,—®,y ||§ .
X

5. Calculate the new approximation and the residual @, = ® X,and 7, =y —a, .

Increment t and return to step 1 if || 7, > €.

The classification method for the GSC and the FGSC are the same. Only the convex
optimization of step of the former is replaced by a greedy algorithm in the latter.

2.5 Nearest Subspace Classifier

The Nearest Subspace Classifier (NSC) [9] makes a novel classification assumption -
samples from each class lie on a hyper-plane specific to that class. According to this
assumption, the training samples of a particular class span a subspace. Thus the problem of
classification is to find the correct hyperplane for the test sample. According to this
assumption, any new test sample belonging to that class can thus be represented as a linear
combination of the test samples, i.e.
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Ty
Visest = Z“k,i Vi TE )
i

where v, ..., is the test sample (i.e. the vector of features) assumed to belong to the kth class,
Vi ;18 the ith training sample of the ki class, and & is the approximation error for the kth

class.
Owing to the error term in equation (8), the relation holds for all the classes k=1...C. In such
a situation, it is reasonable to assume that for the correct class the test sample has the

minimum error & .
To find the class that has the minimum error in equation (8), the coefficients ¢ ; k=1...C

must be estimated first. This can be performed by rewriting (8) in matrix-vector notation

Viesest = Vil + & )

T
where V, =[v; [V, |...| Vi, Jand o, =[0(k’1,ak,2...0!k)nk]

The solution to (9) can be obtained by minimizing

~ . 2
ak = arg min || vk,test - Vka ||2 (10)
a

The previous work on NSC [9] directly solves (10). However, the matrix Vi may be under-
determined, i.e. the number the number of samples may be greater than the dimensionality
of the inputs. In such a case, instead of solving (10), Tikhonov regularization is employed so
that the following is minimized

& =argmin [|v; ., Ve |; +4 ] el (11)
The analytical solution of (11) is ‘
OA{k = (VkTVk + /1])71 VkTVk,test (12)
Plugging this expression in (9), and solving for the error term, we get
& =V (Y + AV =1, (13)

Based on equations (9-13) the Nearest Subspace Classifier algorithm has the following steps.

NSC Algorithm
Training
1. For each class ‘k’, by computing the orthoprojector (the term in brackets in equation

(13)).

Testing
2. Calculate the error for each class ‘k” by computing the matrix vector product between
the orthoprojector and vy ses.

3. Classify the test sample as the class having the minimum error (|| &, ||).
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3. CLASSIFICATION ROBUSTNESS TO DATA ACQUIRED BY CS

The idea of using random projection for dimensionality reduction of face images was
proposed in [1, 2]. It was experimentally shown that the Nearest Neighbor (NN) and the
Sparse Classifier (SC) are robust to such dimensionality reduction. However the theoretical
understanding behind the robustness to such dimensionality reduction was lacking there in.
In this section, we will prove why all classifiers discussed in the previous section can be
categorized as Compressive Classifiers. The two conditions that guarantee the robustness of
CC under random projection are the following;:

Restricted Isometric Property (RIP) [10] - The 12-norm of a sparse vector is approximately
preserved under a random lower dimensional projection, i.e. when a sparse vector x is
projected by a random projection matrix A, then (1-9)|| x|,<|| 4x ||, (1+J)|| x||,. The
constant § is a RIP constant whose value depends on the type of the matrix A and the
number of rows and columns of A and the nature of x. An approximate form (without
upper and lower bounds) of RIP states || Ax ||, ~|| x||, .

Generalized Restricted Isometric Property (GRIP) [11] - For a matrix A which satisfies RIP

for inputs i, the inner product of two vectors (< W,V >=||wl|, || v]|, cos@) is

approximately maintained under the random projection A, i.e. for two vectors x1 and x2
(which satisfies RIP with matrix A), the following inequality is satisfied:

A=) 15, [l -1 %, I, cos[(1+~/38,)01 < (Ax;, Ax, ) < 1+ 8) || x, [, - || x, I, cos[(1-~/38,)8]

The constants & and dm depend on the dimensionality and the type of matrix A and also on
the nature of the vectors. Even though the expression seems overwhelming, it can be simply
stated as: the angle between two sparse vectors (0) is approximately preserved under

random projections. An approximate form of GRIP is <Alx1 R Ax2> ~ <x1 R x2> .

RIP and the GRIP were originally proven for sparse vectors, but natural images are in
general dense. We will show why these two properties are satisfied by natural images as
well. Images are sparse in several orthogonal transform domains like DCT and wavelets. If I
is the image and x is the transform domain representation, then

I=®"x synthesis equation

x=0/ analysis equation

where @ is the sparsifying transform and x is sparse.
Now if the sparse vector x is randomly projected by a Gaussian matrix A following RIP,
then

| Ax |y~ x

=|| AD! ||,~|| Pl ||, (by anaslysis equation)
|| AD! ||, ~| ||, (- D is orthogonal)
=|| B [,~I| I [l,, B=A®

Since ® is an orthogonal matrix, the matrix A® (=B) is also Gaussian, being formed by a
linear combination of i.i.d. Gaussian columns. Thus it is seen how the RIP condition holds
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for dense natural images. This fact is the main cornerstone of all compressed sensing
imaging applications. In a similar manner it can be also shown that the GRIP is satisfied by
natural images as well.

3.1 The Nearest Neighbor Classifier

The Nearest Neighbor (NN) is a compressive classifier. It was used for classification under
RP dimensionality reduction in [1]. The criterion for NN classification depends on the
magnitude of the distance between the test sample and each training sample. There are two
popular distance measures -

Euclidean distance (|| v,

Vi lhi=1..Candj=1..n)

est
Cosine distance (<vtest ’vi,f>’i =1..Candj=1..n,)

It is easy to show that both these distance measures are approximately preserved under
random dimensionality reduction, assuming that the random dimensionality reduction
matrix A follows RIP with the samples v. Then following the RIP approximation, the
Euclidean distance between samples is approximately preserved, i.e.

| AV, — AVi,_j =l AV — Vi,_/) L=l (Vi — Vi,_j) Il,

The fact that the Cosine distance is approximately preserved follows directly from the GRIP
assumption

<Avtest ’Avi,j> ~ <vtest ’vi,j> .

3.2 The Sparse and the Group Sparse Classifier

In this subsection it will be shown why the Sparse Classifier and the Group Sparse Classifier
can act as compressive classifiers. At the core of SC and GSC classifiers are the 11
minimization and the 12,1 minimization optimization problems respectively

SC-min ||« ||, subjectto ||v, .., —Val,<n
’ 14
GSC-min |, subject to [[v,,.,, ~Va|,<7 -

In compressive classification, all the samples are projected from a higher to a lower
dimension by a random matrix A. Therefore the optimization is the following;:

SC-min || B}, subject to || Av, .., — AVB[,<7

15
GSC-min]| B, subject o || Av, ., — AV Bl <7 )

The objective function does not change before and after projection, but the constraints do.
We will show that the constraints of (14) and (15) are approximately the same; therefore the
optimization problems are the same as well. The constraint in (15) can be represented as:

| AV jese = AV Bl <7

=N AV gt =V B <77
~| (vk,test -Vp) ||2S n, following RIP
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Since the constraints are approximately preserved and the objective function remains the
same, the solution to the two optimization problems (14) and (15) will be approximately the
same, ie. fra.

In the classification algorithm for SC and GSC (this is also true for both the FSC, FGSC and
NSC), the deciding factor behind the class of the test sample is the class-wise error

7
error (Vi »i) =l Vi rosr — zai,jviJ Il,,i=1...C
j=1

We show why the class-wise error is approximately preserved after random projection.

n;
error(AVtesHi) :H Avk,test - AZO.’ Vi ||2

i i
J=1

nl
= AV oo = D i)
Jj=1

n;
A Ve = D, v1.) |l due to RIP
Jj=1

As the class-wise error is approximately preserved under random projections, the
recognition results too will be approximately the same.

Fast Sparse and Fast Group Sparse Classifiers
In the FSC and the FGSC classifiers, the NP hard optimization problem (14) is solved
greedily.

SC-min [ e, subject to ||V, 0~V [,<7

GSC-min || & |l subjectto ||y .., —Va|,<7

The problem (14) pertains to the case of original data. When the samples are randomly
projected, the problem has the following form:

SC-min|| B, subjectto || Av ., —AV B ,<1
GSC-min || S}, subjectto || Avy o — AV, <7

We need to show that the results of greedy approximation to the above problems
yields S~ & .

There are two main computational steps in the OMP/GOMP algorithms - i) the selection
step, i.e the criterion for choosing the indices, and ii) the least squares signal estimation step.
In order to prove the robustness of the OMP/GOMP algorithm to random projection, it is
sufficient to show that the results from the aforesaid steps are approximately preserved.

In OMP/GOMP, the selection is based on the correlation between the measurement matrix

(16)

® and the observations y, i.e. ol y.Ifwehave ®,  andy, , , then the correlation can be

written as inner products between the columns of ® and the vector y i.e. <¢l, y>,i =l.n.

After random projection, both columns of ® and the measurement y are randomly sub-
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sampled by a random projection matrix A. The correlation can be calculated as
<A¢i,Ay>,i =1...n, which by GRIP can be approximated as <¢i,y>,i =1...n .n Since the

correlations are approximately preserved before and after the random projection, the
OMP/GOMP selection is also robust under such random sub-sampling.

The signal estimation step is also robust to random projection. The least squares estimation
is performed as:

min || y —®x |, (17)

The problem is to estimate the signal x, from measurements y given the matrix ®.
Both y and ® are randomly sub-sampled by a random projection matrix A which satisfies
RIP. Therefore, the least squares problem in the sub-sampled case takes the form

min || Ay — ADx ||,
=min || A(y - Dx) |,
~min || y — ®x||,, since RIP holds

Thus the signal estimate x, obtained by solving the original least squares problem (22) and
the randomly sub-sampled problem are approximately the same.

The main criterion of the FSC and the FGSC classification algorithms is the class-wise error.
It has already been shown that the class-wise error is approximately preserved after random
projection. Therefore the classification results before and after projection will remain
approximately the same.

3.3 Nearest Subspace Classifier

The classification criterion for the NSC is the norm of the class-wise error expressed as

& L=l (V; (VkTVk + /u)_leT =DV ost |

We need to show that the class-wise error is approximately preserved after a random
dimensionality reduction. When both the training and the test samples are randomly
projected by a matrix A, the class-wise error takes the form

1AV AV (AV )+ 2D (AV)T =1 AV e |

= AV (AV) (AV) + A1) (AV) AV o = AV e |

A AV, (V" Ve + 2DV, e — AV eyt || since GRIP holds
=N AV Ve + ANV = Vo) o

SNAUA Y IV Vkrvk,w ~ Visest 12> since RIP holds

Since the norm of the class-wise error is approximately preserved under random
dimensionality reduction, the classification results will also remain approximately the same.
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4. EXPERIMENTAL RESULTS

As mentioned in section 2, compressive classifiers should meet two challenges. First and
foremost it should have classification accuracy comparable to traditional classifiers.
Experiments for general purpose classification are carried out on some benchmark databases
from the University of California Irvine Machine Learning (UCI ML) repository [12] to
compare the new classifiers (SC, FSC, GSC, FGSC and NSC) with the well known NN. We
chose those databases that do not have missing values in feature vectors or unlabeled
training data. The results are tabulated in Table 1. The results show that the classification
accuracy from the new classifiers are better than NN.

Dataset SC FSC GSC FGSC NSC NN- NN-
Euclid Cosine
Page Block 94.78 | 94.64 | 95.66 | 95.66 95.01 | 93.34 93.27
Abalone 2717 | 2729 | 2717 | 2698 27.05 | 26.67 25.99
Segmentation 96.31 | 96.10 | 94.09 | 94.09 94.85 | 96.31 95.58
Yeast 57.75 | 57.54 | 58.94 | 58.36 59.57 | 57.71 57.54
German Credit 69.30 | 70.00 | 74.50 | 74.50 72.6 74.50 74.50
Tic-Tac-Toe 78.89 | 7828 | 8441 | 84.41 81.00 | 83.28 82.98
Vehicle 6558 | 6649 | 73.86 | 71.98 7484 | 73.86 71.98

Australian Cr. 8594 | 8594 | 86.66 | 86.66 86.66 | 86.66 86.66
Balance Scale 9333 [9333 | 95.08 | 95.08 95.08 | 93.33 93.33

Ionosphere 86.94 | 86.94 |90.32 |90.32 90.32 | 90.32 90.32
Liver 66.68 | 65.79 | 7021 | 70.21 7021 | 69.04 69.04
Ecoli 8153 | 81.53 | 82.88 | 82.88 82.88 | 80.98 81.54
Glass 6843 | 69.62 | 7019 | 71.02 69.62 | 68.43 69.62
Wine 85.62 | 85.62 | 85.62 | 85.95 8258 | 82.21 82.21
Iris 96.00 | 96.00 | 96.00 | 96.00 96.00 | 96.00 96.00
Lymphography | 85.81 | 85.81 | 86.42 | 86.42 86.42 | 85.32 85.81
Hayes Roth 4023 | 4312 | 41.01 | 4312 4312 | 33.33 33.33
Satellite 80.30 | 80.30 | 82.37 | 82.37 80.30 | 77.00 77.08
Haberman 4052 | 40.85 | 43.28 | 43.28 46.07 | 57.40 56.20

Table 1. Recognition Accuracy (%age)

The second challenge the Compressive Classifiers should meet is that their classification
accuracy should approximately be the same, when sparsifiable data is randomly sub-
sampled by RIP matrices. In section 3 we have already proved the robustness of these
classifiers. The experimental verification of this claim is shown in table 2. It has already been
mentioned (section 3) that images follow RIP with random matrices having i.i.d Gaussian
columns normalized to unity.

The face recognition experiments were carried out on the Yale B face database. The images
are stored as 192X168 pixel grayscale images. We followed the same methodology as in [2].
Only the frontal faces were chosen for recognition. Half of the images (for each individual)
were selected for training and the other half for testing. The experiments were repeated 5
times with 5 sets of random splits. The average results of 5 sets of experiments are shown in
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table 2. The first column of the following table indicates the number of lower dimensional
projections (1/32,1/24,1/16 and 1/8 of original dimension).

Dimensionality | SC FSC GSC FGSC NSC NN- NN-
Euclid Cosine
30 82.73 | 82.08 | 8557 | 83.18 87.68 | 70.39 70.16
56 92,60 | 9234 | 9260 | 91.83 91.83 | 75.45 75.09
120 95.29 | 95.04 | 95.68 | 95.06 93.74 | 78.62 78.37
504 98.09 | 9757 | 98.09 | 97.21 9442 | 79.13 78.51
Full 98.09 | 98.09 | 98.09 | 98.09 95.05 | 82.08 82.08

Table 2. Recognition Results (%) on Yale B (RP)

Table 2 shows that the new compressive classifiers are way better than the NN classifiers in
terms of recognition accuracy. The Group Sparse Classifier gives by far the best results. All
the classifiers are relatively robust to random sub-sampling. The results are at par with the
ones obtained from the previous study on Sparse Classification [2].

The compressive classifiers have the special advantage of being robust to dimensionality
reduction via random projection. However, they can be used for any other dimensionality
reduction as well. In Table 3, the results of compressive classification on PCA
dimensionality reduced data is shown for the Yale B database.

Dimensionality | SC FSC GSC FGSC NSC NN- NN-
Euclid Cosine
30 83.10 | 82.87 | 86.61 | 84.10 88.92 | 72.50 71.79
56 9283 | 9255 | 9340 | 9257 92.74 | 78.82 77.40
120 95.92 | 95.60 | 96.15 | 95.81 9498 | 84.67 82.35
504 98.09 | 9733 | 98.09 | 98.09 95.66 | 88.95 86.08
Full 98.09 | 98.09 | 98.09 | 98.09 96.28 | 89.50 88.00

Table 3. Recognition Results (%) on Yale B (PCA)

Experimental results corroborate our claim regarding the efficacy of compressive classifiers.
Results for Table 1 indicate that they can be used for general purpose classification. Table 2
successfully verifies the main claim of this chapter, i.e. the compressive classifiers are robust
to dimensionality reduction via random projection. In Table 3, we show that the
compressive classifiers are also applicable to data whose dimensionality has been reduced
by standard techniques like PCA.

5. CONCLUSION

This chapter reviews an alternate face recognition method than those provided by
traditional machine learning tools. Conventional machine learning solutions to
dimensionality reduction and classification require all the data to be present beforehand, i.e.
whenever new data is added, the system cannot be updated in online fashion, rather all the
calculations need to be re-done from scratch. This creates a computational bottleneck for
large scale implementation of face recognition systems.
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The face recognition community has started to appreciate this problem in the recent past
and there have been some studies that modified the existing dimensionality reduction
methods for online training [13, 14]. The classifier employed along with such online
dimensionality reduction methods has been the traditional Nearest Neighbour.

This work addresses the aforesaid problem from a completely different perspective. It is
based on recent theoretical breakthroughs in signal processing [15, 16]. It advocates
applying random projection for dimensionality reduction. Such dimensionality reduction
necessitates new classification algorithms. This chapter assimilates some recent studies in
classification within the unifying framework of compressive classification. The Sparse
Classifier [2] is the first of these. The latter ones like the Group Sparse Classifier [3], Fast
Group Sparse Classifier [8] and Nearest Subspace Classifier [9] were proposed by us. The
Fast Sparse Classifier has been proposed for the first time in this chapter.

For each of the classifiers, their classification algorithms have been written concisely in the
corresponding sub-sections. Solutions to different optimization problems required by the
classifiers are presented in a fashion that can be implemented by non-experts. Moreover the
theoretical understanding behind the different classifiers is also provided in this chapter.
These theoretical proofs are thoroughly validated by experimental results.

It should be remembered that the classifiers discussed in this chapter can be used with other
dimensionality reduction techniques as well such as - Principal Component Analysis,
Linear Discriminant Analysis and the likes. In principle the compressive classifiers can be
employed in any classification task as better substitutes for the Nearest Neighbour classifier.
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1. Introduction

Face recognition is a special topic in visual information processing that has grown to be of
tremendous interest to pattern recognition researchers for the past couple of decades (Delac
& Grgic, 2007; Hallinan et al., 1999; Li & Jain, 2005; Wechsler, 2006; Zhao & Chellappa, 2005).
However, the methods in general faces the problem of poor recognition rates under the con-
ditions of: (1) large changes in natural variability, and (2) limitations in training data such as
single gallery per person problem. Such conditions are undesirable for face recognition as the
inter-class and intra-class variability between faces become high, and the room for discrimi-
nation between the features become less.

Major methods that are employed to reduce this problem can be classified into three groups:
(1) methods whose so-called gallery set consists of multiple training images per person (e.g.
Etemad & Chellappa (1997); Jenkins & Burton (2008)) (2) image preprocessing techniques that
aim at feature restoration (e.g. Ahlberg & Dornaika (2004)), and (3) use of geometrical trans-
forms to form face models (e.g. Ahlberg & Dornaika (2004)). Even though they show high
performance under specific conditions they lack robust performance and in many cases have
proved to be computationally expensive. Being distinct from these computational schemes,
the human visual system, which is the best available natural model for face recognition, uses
modular approach for classification of faces (Moeller et al., 2008).

This chapter presents a method (James, 2008; James & Dimitrijev, 2008) that implements the
concept of local binary decisions to form a modular unit and a modular system for face recog-
nition. This method is applied to formulate a simple algorithm and its robustness verified
against various natural variabilities occurring in face images. Being distinct from a traditional
approach of space reduction at feature level or automatic learning, we propose a method that
can suppress unwanted features and make useful decisions on similarity irrespective of the
complex nature of underlying data. The proposed method in the process do not require di-
mensionality reduction or use of complex feature extraction or classifier training to achieve
robust recognition performance.

2. Proposed method

Understanding vision in humans at the level of forming a theoretical framework suitable for
computational theory, has opened up various disagreements about the goals of cortical pro-
cessing. The works of David Marr and James Gibson are perhaps the only two major attempts
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to provide deeper insight. In majority of Marr’s work (Marr, 1982), he assumed and believed
vision in humans to be nothing more that a natural information processing mechanism, that
can be modelled in a computer. The various levels for such a task would be: (1) computa-
tional model, (2) a specific algorithm for that model, and (3) a physical implementation. It is
logical in this method to treat each of these level as independent components and is a way to
mimic the biological vision in robots. Marr attempted to set out a computational theory for
vision in a complete holistic approach. He applied the principle of modularity to argue visual
processing stages, with every module having a function. Philosophically, this is one of the
most elegant approach proposed in the last century that can suit both the paradigms of soft-
ware and hardware implementations. Gibson on the other hand had an “ecological” approach
to studying vision. His view was that vision should be understood as a tool that enables an-
imals to achieve the basic tasks required for life: avoid obstacles, identify food or predators,
approach a goal and so on. Although his explanations on brain perception were unclear and
seemed very similar to what Marr explained as algorithmic level, there has been a continued
interest in the rule-based modeling which advocates knowledge as a prime requirement for
visual processing and perception.

Both these approaches have a significant impact in the way in which we understand the visual
systems today. We use this understanding by applying the principles of modularity and hier-
archy to focus on three major concepts: (1) spatial intensity changes in images, (2) similarity
measures for comparison, and (3) decision making using thresholds. We use the following
steps as essential for forming a baseline framework for the method presented in this chapter:

Step 1 Feature selection of the image data: In this step the faces are detected and localized.
Spatial change detection is applied as a way to normalize the intensity features without
reducing the image dimensionality.

Step 2 Local similarity calculation and Local binary decisions: The distance or similarity be-
tween the localized pixels from image to another image is determined. This results in a
pixel-to-pixel similarity matrix having same size as that of the original image. Inspired
from the binary nature of the neuron output we make local decisions at pixel level by
using a threshold 6 on the similarity matrix.

Step 3 Global similarity and decision: Aggregating all the local decisions, a global similarity
score is obtained for the comparisons between a test image with differentimages. Based
on the global similarity scores, they are ranked and the one with the highest similarity
score selected as the best match.

These steps are summarised graphically in Fig. 1.

2.1 Feature Selection

The visual features mapped by the colour models used in the camera device are influenced
by variations in illumination, spatial motions and spatial noise. Although noise and motion
errors can be corrected at the camera itself, illumination correction or normalization is seldom
done. The human eye on the other hand has inherent mechanical and functional mechanisms
to form illumination invariant face images under a wide range of lighting conditions. Feature
localization in humans is handled by feedback mechanisms linked to human eye and brain.
However, in the case of automatic face image recognition, a perfect spatial localization of fea-
tures is not possible using existing methods. Face detection methods are used to detect the
face images and localize the feature with some degree of accuracy. Even after features are
localised by any automatic detection methods, it is practically impossible to attain a perfect
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Spatial change feature calculation

(d) (€) )

Feature normalization

Fig. 1. An illustration of various steps in the baseline algorithm. The images labeled (a),(b),
and (c) show the raw images, where (a) and (c) form the gallery images and (b) is a test image,
all taken from the AR database (Martinez & Benavente, 1998). The images labeled (d), (e), and
(f) show the output of a feature selection process, which corresponds to the raw images (a),
(b), and (c), respectively. The normalized feature vectors are shown as the images labeled (g),
(h), and (i), and are calculated from (d), (e), and (f), respectively. This is followed by com-
parisons of test image with gallery images. The normalized similarity measure when applied
for comparing (h) with (g) and (h) with (i) results in images labeled (j) and (k), respectively.
Finally, the local binary decisions when applied on (j) and (k) result in binary vectors labeled
(I) and (m), respectively. Clearly, in this example, (b) is a best match to (a) due to more white
areas (more similarity decisions) in (1) than in (m).
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alignment due to random occlusions and natural variations that depend on environment. As
a result, we need to integrate an error correction mechanism to reduce the impact of localiza-
tion error by applying image perturbations. The perturbations can be applied with respect to
an expected spatial coordinate such as eye coordinates. Ideally, any pixel shift from these ex-
pected coordinates results in rotation, scale or shift error. So to undo such errors, by the idea
of reverse engineering, pixel shifts are applied to the expected coordinate to detect the face
images. In this way any arbitrary N number of pixel shifts on an image results in N number
of perturbed images, one of which will be localised the best.

After the raw features are localized, they are processed further to extract features through
the detection of spatial change as an essential visual cue for recognition. Spatial change in
images can be detected using spatial filtering and normalization mechanisms such as local
range filtering, local standard deviation filtering, gradient filtering or gabor filtering.

The relative change of spatial intensity of a pixel in a raw image with respect to the corre-
sponding pixels in its neighbourhood can be used to form features useful for recognition. In
the baseline algorithm we can detect such features by calculating the local standard devia-
tion on the image pixels encompassed by a window w of pixels of size m x n pixels. This
type of spatial operation is known as a kernel based local spatial filtering. The local standard
deviation filter is given by the following equation:

a b .
o(i,j) = \j 1 Yo Y [H(i4zj+t)—1(i,))] 1)

wherea = (m—1)/2and b = (n — 1) /2. The local mean I(i, j) used in (1) is calculated by the
following equation:
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In Fig. 1, the images labeled (a), (b), and (c) show the raw images, whereas the images labeled
(d), (e), and (f) show the corresponding spatial change features [using Eq. (1)] respectively.
The normalized spatial change features £ are calculated using the following equation:

. o(i,j
x(i,j) = 741 ©
o
where the spatial change features ¢ are normalized using the global mean ¢. The global mean
is calculated by the following equation:
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In Fig. 1, the images labeled (g), (h), and (i) show the normalized spatial change features
which is obtained by applying global-mean normalization on spatial change features images
labeled (d), (e), and (f), respectively.

An extension to this class of filters is the V1-like features generated from Gabor filters that
detect different types of spatial variations in the images. The advantage of Gabor filters for
feature extraction in face recognition was evident through the works of (Zhang et al., 2005).
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These suggest that like the Gradient filters Gabor filters can be used for preprocessing the
images. Formally, Gabor filters are defined as:

I ko 112 ik, 1Pl ]2 /202 2
ll)]/l,U(Z) — z; 6( ”kﬂ,VH lz[|*/2¢ )[elkﬂ,vz _e 7 /2] (5)

where y defines the orientation, v defines the scale of the Gabor filters, k;, v = k;'ff,x ei%, Ads
the spacing between the filters in frequency domain and || . || denotes the norm operator. The
phase information from these filters is not considered, and only its magnitude explored. For
the experiments, we set the value of parameters as follows: A = V2,0 =2 and kyax = 71/2.
Further by considering five scales v € {0,...4} and eight orientations y € {0,...,7} which
on convolution result in 40 filters. Again, these class of filters work on the primary principle
of local feature normalization through spatial change detection and provide a way to reduce
natural variability present in intensity raw image. Following these filtering operations, the
images are normalized using local mean filtering to readjust the signal strength locally.

2.2 Local similarity calculation and binary decisions

What is similarity? This question has eluded researchers from various fields for over a cen-
tury. Although the idea of similarity seem simple, yet it is very different from the idea of
difference. The difficulty lie in the idea of expressing similarity as a quantitative measure, for
example, unlike a difference measure such as Euclidean distance there is no physical basis to
similarity that can be explained. Although, perception favours similarity, the use of an exact
mathematical equation dose not properly justify meaning of similarity.

Type Equation
Min-max ratio min[xg, x;|/max[xg, x|
Difference |xg —x0)| /v
Exponential difference e Pg=al/y
where 1 is max[xg, x¢] or
[xg + x¢]/2 or min|xg, x4]

Table 1. Normalized similarity measures

The absolute difference between pixels is a well known distance measure used for the com-
parison of features and can be used to find the similarity. Further, element wise normalization
of this similarity measure is done by taking the minimum of each feature within test image
x¢ and gallery image x, under comparison. This feature by feature comparison results in a
normalized similarity measure 4, which is given by:

o Iwgli) — (i )]
8(i,7) . — L
min(xg (i, ), xt(i, j))
Similarity measures based on this idea of measurement are shown in Table 1. However, they
suffer from the inter-feature similarities being detected as true similarities from patterns in-
volving natural variability. We find a way to get around this problem by reducing the inter-
feature similarity and maintain only relevant differences through a combination of steps in-
volving local similarity calculation and pixel-level binary decision. Inspired from the idea of
ability of neurons to compare and make a binary decision at local level, we apply local simi-
larity measures followed by a local binary decision (see Table 1). In the comparison of images
this translates into pixel to pixel local similarity calculation followed by an application of a

(6)
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Fig. 2. The illustration shows the images of a person in the AR database (Martinez & Be-
navente, 1998; 2000) and its organization for the single training sample per person problem
depicted in this article. The session 1 image having a neutral facial expression is selected as the
gallery image. The remaining 25 images from session 1 and session 2 are used as test images.

binary decision using a threshold. The inherent ability of neurons to exhibit a logic high or
logic low state based on the ionic changes occurring due to the presumably threshold limited
variations in input connections inspires this idea of local decision. The resulting output for the
local similarity measure S, (i, j) that is defined as to represent S;(i, j) = 0 as least similar and
S;(i,j) = 1 as most similar, when applied on a threshold 6 to form the binary decision B(i, j)
takes the form B(i,j) = 1if S;(i,j) <= 6 and B(i,j) = 0if S;(i,j) > 6. The values generated
by B represents the local decision space of the image comparison.

2.3 Global similarity and decision

Local decisions on similarity give the similarity match at pixel level, this however is only use-
ful if it can be used at a higher level of decision level abstraction. A reduction of the decision
space is necessary to obtain a global value of the image comparison between a test and the
gallery image. The simplest possible way to achieve this is by aggregating the local decisions
to form a global score which we refer to as global similarity score Sg. The comparison of a
test image with any arbitrary M number of gallery images results in M global similarity score
S¢. Including the N perturbations done on the test image, this number increases to M x N.
These generated similarity scores are then ranked and the top rank is selected to represent the
best match. This idea of ranking top rank is no different from threshold logic based decisions
at global level (wherein threshold can be thought of being applied between the top rank and
second most top rank). Overall, this process represents the global decision making process
through a simple approach of global similarity calculation and selection.

3. Experimental Analysis

Unless specified otherwise, all the experiments presented in this section are conducted using
the AR face database (See Fig. 2) with the following numerical values: 0.25 for 6, 160 x 120
pixels for the image size, and 7 x 5 pixels for the kernel window size of the standard deviation
filter.

3.1 Effect of Spatial Intensity Change Used as Features

An analysis using spatial change features and raw features suggest that inter-pixel spatial
change within an image is the essential photometric or geometric visual cue that contributes to
the recognition of the objects in it. This can be observed from the results presented in Table 2.
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The performance analysis using various features with and without mean normalization is
shown in Table 2. The importance of spatial change as features for face recognition is analysed
by comparing its performance with raw and edge features. For this comparison the standard
nearest neighbour (NN) classifier (Cover, 1968; Cover & Hart, 1967; Gates, 1972; Hart, 1968)
and the proposed classifier are used.

A raw face image in itself contains all the identity information required for face recognition.
However, occurrence of external occlusions, expressions, and illumination in face images can
result in loss of such identity information. Further, raw image intensities are highly sensi-
tive to variations in illumination, which make recognition on raw images a difficult task. The
comparison shown in Table 2 between spatial change features and raw image features clearly
shows that spatial change features outperform the raw features significantly. This superior
performance of spatial change features over raw features can be attributed to the facts that
spatial change features (1) show lower local variability in the face images under various con-
ditions such as expression, illumination, and occlusion, and (2) preserve the identity informa-
tion of a face.

Most edge detection techniques are inaccurate approximations of image gradients. Spatial
change detection techniques are different from standard edge detection techniques. Majority
of the edge detection techniques result in the removal of medium to small texture variations
and are distinct from spatial change detection techniques that preserve most of the texture
details. Such variations however contain useful information for identification and show in-
creased recognition performance. These observations are shown in Table 2. They further
confirm the usefulness of spatial change features in face recognition and show the relative
difference of spatial change features as opposed to the edge features.

Figure 3 is a graphical illustration of the overall impact of using spatial change features. The
plot shows a normalized histogram of similarity scores S resulting from inter-class and intra-
class comparisons. The 100 gallery images from the AR database described in the Section
3 form the 100 classes and are compared against 2500 test images in the AR database. The
inter-class plots are obtained by comparing each of these test images with the gallery images
belonging to a different class, whereas intra-class plots are obtained by the comparison of each
test image against a gallery image belonging to its own class. Further, a comparison is done
between spatial change features (Fig. 3a) and raw image features (Fig. 3b). The overlapping
region of the two distributions indicates the maximum overall probability of error when using
the proposed classifier. This region also shows the maximum overall false acceptance and false
rejection that can occur in the system. A smaller area of overlap implies better recognition
performance. Clearly, it can be seen that the use of feature vectors in Fig. 3a as opposed
to the raw-image features in Fig. 3b results in a smaller region of overlap and hence better
recognition performance.

An analysis is done to study the effect of using a spatial change filter window w of various
sizes [w is described in Section (2.1)]. It can be observed from Fig. 4 that with an increase
in resolution of the spatial change features (or the raw image) the recognition performance
shows increased stability against variation in spatial change filter window size. Further, it can
also be seen that higher resolution images show better recognition accuracies.

3.2 Normalization

The baseline algorithm contains two different types of normalization. They are: (1) global
mean normalization of the feature vectors and (2) similarity measure normalization employed
in the classifier. The relative importance of using these normalization methods is presented
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Recognition accuracy (%)?

Index Feature Type NN Classifier ~ proposed Classifier

a

With global mean normalization

Raw features

rl Raw 46.0 63.8
Spatial change features

sl Local Standard Deviation 67.6 84.9

s2 Local Range 68.6 84.4
Edge

el Sobel edges 69.0 80.3

e2 Prewitt edges 69.2 80.4

Without global mean normalization

Raw features

r2 Raw 38.5 50.8
Spatial change features

sl Local Standard Deviation 59.3 84.7

s2 Local Range 63.0 83.4
Edge

el Sobel edges 50.4 80.8

e2 Prewitt edges 494 80.8

@ Global mean normalization is achieved using Eq. (3) and Eq. (4). While for raw features
normalization is done by replacing o(i, j) with I(i, j) in Eq. (3) and Eq. (4).
b proposed baseline algorithm with global mean normalization.
Table 2. Effect of global mean normalization and feature type

in Table 3. It is observed that normalization of the distance measures results in higher recog-
nition accuracies. It can also be observed that global mean normalization shows improved
recognition accuracy only when similarity measure normalization is used, which also shows
that global mean normalization in isolation does not improve the recognition performance. In
the following sections the effect of these two normalization is further studied and alternative
methods are attempted. This is done to provide a better technical insight into the normal-
ization methods. This also helps in understanding the unique features that contribute to the
overall recognition performance.

3.3 Effect of Mean Normalization and Study of Alternative Normalization

From the experimental results obtained in Table 3, it is found that the normalization of spatial
change features by a global mean is not robust against the recognition performance. Clearly,
the feature normalization performed by Eq. (3) does not improve the performance consider-
ably, which leads us to investigate alternative local mean normalization techniques. Equation
(4) is now replaced by the following equation to calculate the local mean of spatial change
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Fig. 3. Graphical illustrations showing the overall influence of using spatial change features.
The graphs show a normalized frequency distribution of similarity scores S, when using (a)
spatial intensity change features (b) raw image features.

features:
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where the moving window of pixels is of size k x [ pixels, al = (k—1)/2and b1 = (I —1)/2.
Local mean normalization is applied on spatial change features by using Eq. (7) followed by
Eq. (3).
An investigation on the performance of using local mean normalization with local mean win-
dows of different sizes is done. Figure 5 shows the effect of variation in local mean window
on the recognition performance when using spatial change features and raw features. Further,
the same graph shows a comparison of its performance with global mean normalization. It
is observed that recognition performance increases when features are normalized using the
local mean normalization described by Eq. (7) and Eq. (3). The improvement in recognition
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Fig. 4. A graphical illustration showing the recognition performance of the proposed algo-
rithm under the variation of spatial change features filter window size at various image reso-
lutions.

accuracy while using local mean normalization compared to global mean normalization is rel-
atively large in the case of the raw features while having very little impact on spatial change
features. Further, in comparison with the raw features, the spatial change features is stable
for a broader range of local mean normalization filter window size. The algorithm using spa-
tial change features provides robust performance within the local mean normalization filter
window range of 80 x 60 pixels to 40 x 30 pixels as shown in Fig. 4.

Table 4 shows the effect of using local mean normalization on spatial change features. Clearly,
in comparison with Table 3, the local mean normalization on spatial change features shows
an increase in recognition performance when using the proposed classifier. However, the
recognition performance shows no improvement when using an NN classifier. Further, Fig.
5 shows that local mean normalization improves the overall recognition performance and
provides a wider stable range of threshold than when using global mean normalization [see
Fig. 6 and Fig. 7]. It can be observed that in comparison with global mean normalization
on similarity measure, the local mean normalization on similarity measure shows increased
stability in recognition accuracy with respect to a varying threshold. All these effects make
local mean normalization the preferred choice for use in a feature normalization process.

3.3.1 Effect of Similarity Measure Normalization and Study of Alternative Normalization

Normalization of the similarity measures also helps in increasing the recognition accuracy
of the proposed algorithm and enables a stable threshold. This is evident from: (1) Table 3
and Table 4, showing the superiority of similarity measure normalization over mean normal-
ization techniques and (2) Fig. 6 and Fig. 7 showing the relative importance of similarity
measure normalization in stabilizing the threshold range and increasing the recognition per-
formance. Further, the improvement of recognition performance provided by normalizing the
similarity measure can be observed from Table 5. It can be observed that all of the normalized
similarity measures outperform the corresponding direct similarity measures in the recogni-
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Normalization® Recognition accuracy (%)
Condition Features Similarity measure | NN Classifier ~proposed Classifier”
(a) Yes Yes 67.6 84.9
(b) Yes No 67.6 76.0
(c) No Yes 59.3 84.7
(d) No No 59.3 78.4

@ Feature extraction filter window used in Eq. (2) has a size of 7 x 5 pixels for a raw image I
with a size of 160 x 120 pixels. Normalized similarity measure described using Eq. (6) is used
for these simulations.

P The results are shown for the best accuracies by optimizing the threshold 8. The optimized
values of the threshold for the condition indexes (a), (b), (c) and (d) are 0.5, 0.25, 0.35 and 0.85
respectively.

Table 3. Effect of Global Mean Normalization of Features and Similarity Measure Normaliza-

tion

Normalization? Recognition accuracy (%)
Condition Features Similarity measure | NN Classifier ~proposed Classifier”
(a) Yes Yes 62.0 86.2
(b) Yes No 62.0 81.9
(c) No Yes 59.3 84.7
(d) No No 59.3 78.4

@ Feature extraction filter window used in Eq. (2) has a size of 7 x 5 pixels for a raw image I
with a size of 160 x 120 pixels. The size of local mean normalization window w1 used in Eq.
(7) is set to 80 x 60 pixels. Normalized similarity measure described using Eq. (6) is used for
these simulations.

P The results are shown for the best accuracies by optimizing the threshold . The optimized
values of the threshold for the normalization conditions (a),(b),(c) and (d) are 0.5, 0.25, 0.35
and 0.85 respectively.

Table 4. Effect of Local Mean Normalization and Distance Normalization

tion accuracy. Fig. 8 shows the influence of variable threshold on the normalized and direct
similarity measures. Clearly, for every threshold the normalized similarity measures show
better recognition performance than those without similarity measure normalization. These
results suggest that normalization of similarity measures is an important factor that helps in
improving the recognition performance of the proposed algorithm.

3.3.2 Effect of Local Binary Decisions and Threshold

Binary decisions are made by transforming the normalized similarity measure to a binary
decision vector by using a predefined global threshold. A threshold 6 is used to set similar
features to a value of one, whereas dissimilar features are set to a value of zero. The proposed
classifier applies the binary decisions to individual pixels, which means that it can utilize the
maximum available spatial change features in the image.

The importance of local binary decisions in the proposed classifier is shown in Fig. 9. The
comparison of recognition performance with thresholding and without thresholding shows
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Fig. 5. Graphical illustration showing improved performance of local mean normalization
compared to global mean normalization. The graph show the following conditions: (a) local
mean normalization applied to raw features, (b) local mean normalization applied to spatial
change features, (c) global mean normalization applied to raw features, and (d) global mean
normalization applied to spatial change features. The image size is 160 x 120 pixels; w is of
size 7 x 5 pixels; the local mean filter window size is varied from 10 x 7 pixels to 160 x 120
pixels; for each local mean filter window size the best recognition accuracy is selected by
optimizing the threshold. Normalized similarity measure given by Eq. (6) is used for these
simulations.

a very large change from 86.2% to 13.8% respectively. This shows the relative importance of
local binary decisions, confirming it as the essential component of the algorithm. The local
binary decisions result in the removal of noisy information associated with the natural vari-
ability. Although, it can be argued that such thresholding results in loss of information, but
we find that for natural recognition problems it is the relative number of pixel information
in intra-class and inter-class features that would effect the overall performance, and not the
individual loss of information due threshold. For example, occlusions and facial expressions
remove identity information from the face and can also add information that may seem to
be relevant (false similarity) to a non-binary classifier such as the NN classifier. Without the
binary decisions, the noisy information gets accumulated when forming a global similarity
score (note that similarity scores are formed by adding the values of the elements in the sim-
ilarity measure vector). Since the global similarity score has significant contribution of such
noisy information (or false similarity), the result is a reduced recognition performance. As
opposed to this, every feature is used for making local decisions in the case of the proposed
classifier. In this case, the global similarity score does not accumulate the effect of less similar
features, resulting in a better recognition performance.

Figure 10 shows the performance of the proposed algorithm with a change in threshold when
using various normalized similarity measures. We can observe that the recognition accuracy
is stable over a broad range of threshold values irrespective of the normalized similarity mea-
sures employed. The stability of the threshold and increased recognition performance can be
attributed to the use of normalized similarity measures [see Fig. 8]. Further, the stability of
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Fig. 6. Graphical illustration showing the effect of local mean normalization and similarity
measure normalization on the performance of the proposed algorithm. The graph show the
following conditions: (a) local mean normalization applied to spatial change features and
with normalization similarity measure for comparison, (b) local mean normalization applied
to spatial change features and with similarity measure without normalization for comparison,
(c) spatial change features without normalization and with normalized similarity measure
comparison, and (d) spatial change features without normalization and with similarity mea-
sure without normalization for comparison. Normalization of features is performed using
global mean normalization of spatial change features using Eq. (4) and Eq. (3). This feature
normalization is tried in combination with normalized similarity measure and the perfor-
mances are compared.

the threshold enables the use of any of the possible similarity measures to form the proposed
classifier. A stable threshold in turn implies that the recognition performance of the algo-
rithm is least sensitive to threshold variation. Further, this allows for the use of a single global
threshold across different databases containing images of various types of natural variability.

3.3.3 Effect of Resolution

The recognition performance with respect to variation in resolution can be studied by (1) vary-
ing the raw image resolution and (2) increasing the decision block size. In the first case, reduc-
ing the image resolution from a higher resolution will result in a smaller number of normal-
ized spatial change features. The reduction of a higher resolution image to a lower resolution
image can be achieved by averaging a block of pixels to form a single pixel. This averaging
results in a loss of features and hence it is natural to expect that recognition performance will
drop with lower resolution images which tends to have fewer features. We can observe from
Fig. 11 that with lower resolution images the recognition performance drops considerably
(this situation is labeled as average before).

In the second case, the resolution of spatial change features are kept to a maximum of
160 x 120 pixels, followed by the calculation of 6. The reduction in resolution is achieved
by averaging on a block of elements in J. Block by block reduction across the entire ¢ results
in a lower resolution of é. This situation is labeled as average after in Fig. 11. We can observe
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Fig. 7. Graphical illustration showing the effect of global mean normalization and similarity
measure normalization on the performance of the proposed algorithm. The graph show the
following conditions: (a) global mean normalization applied to spatial change features and
with normalization similarity measure for comparison, (b) global mean normalization ap-
plied to spatial change features and with similarity measure without normalization for com-
parison, (c) spatial change features without normalization and with normalized similarity
measure comparison, and (d) spatial change features without normalization and with simi-
larity measure without normalization for comparison.Normalization of features is performed
using global mean normalization of spatial change features using Eq. (4) and Eq. (3). This
feature normalization is tried in combination with normalized similarity measure and the
performances are compared.

from Fig. 11 that in the case of average after, the reduction in resolution results in a slight re-
duction of the recognition performance, which however, again shows that a larger number of
features helps to increase the recognition performance. Further to this, Figure 11 also shows
the importance of having a larger number of features irrespective of the decision block size.
A larger number of features and a smaller decision block size results in increased recognition
performance. Further, as observed from Fig. 4, an increased resolution of features extends the
stable range of spatial change filter window size.

3.3.4 Effect of Color

Color images are formed of three channels, namely, red, green, and blue. Table 6 shows that
the use of color images also helps to improve the recognition performance. Similarity scores
for a comparison between a color test image and a color gallery image can be obtained by
one-to-one comparison of red, green, and blue channels of one image to the other. To ob-
tain an overall similarity score, an additive combination of the independent similarity scores
observed across the red, green, and blue channels are taken. Table 6 lists some of the combi-
nations that are used in our analysis. Table 6 further illustrates that the use of independent
channels alone are not sufficient for robust performance. It can be also observed that utilizing
the additive combination of similarity scores obtained from the channels of color images pro-
vides a higher recognition accuracy than when using gray images. This can be seen from the
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Fig. 8. Graphical illustration showing a comparison of normalized similarity measure with a
direct similarity measure. The image size is 160 x 120 pixels; the size of w is 7 x 5 pixels; the
size of local mean filter window w1 is set to 80 x 60 pixels.

recognition performance of the proposed algorithm when using the combination of the color
channels (see c8 listed in Table 6). Although several other combinations can also be tried,
analysis is limited to the extend to form a simple model for color, which is achieved through
c8 listed in Table 6.

3.3.5 Effect of Localization

Automatic face detection and alignment is a difficult problem when natural variability in im-
ages is high. In any method that is based on pixel-by-pixel comparisons, it is essential that the
features of the compared images are well aligned. Irrespective of the face detection method
employed, natural variability can cause pixel-level misalignments. To compensate for the lo-
calization errors that occur after an automatic or manual alignment, we apply either test or
gallery image shifts with respect to a set of registration points in the feature vectors. For
example, the localization of face images can be achieved by detecting the location of eye co-
ordinates. An error in localization means the eye coordinates are shifted. A scale error means
that the eye coordinates are shifted towards each other or away from each other. A rotation
error causes shifts of the two eye coordinates in opposite vertical directions. We pertubate
the reference eye coordinates by applying such shifts and re-localize the face images using the
shifted eye coordinates.

Using the above mentioned idea, two techniques that can be employed to reduce localization
errors in the proposed algorithm are (a) application of modifications such as shift, rotation,
and scaling on the test image, followed by comparison with gallery, and (b) perturbation of
the eye-coordinates of the gallery images to form several sets of synthetic gallery images.
In both cases, each comparison of a test image with a gallery image, results in a similarity
score Sg for the baseline algorithm. The final similarity score Sy for the test image with a
compared gallery image is found by selecting the maximum S}. Table 7 shows the recognition
performance using both techniques using color and gray scale images. For these simulations
the values of number of perturbations is set to 15, composed of 5 horizontal, 5 vertical and 5
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Index Similarity measure? Recognition accuracy (%)P
Normalized
nl Minlxex 85.9
max(xg,x;]
ng  frexl 86.1
max(xg,x;)
) 86.2
XX
ng el 86.1
met‘m(xg,‘xt)
—IXg Ty
n5 e xgx;) 86.0
—lxg—x
n6 emmlxgx;) 86.1
—lxg—x
n7 e meangxy) 86.1
Direct
d1 |xg — x¢| 81.9
d2 el 81.6

2 Feature extraction filter window used in Eq. (2) has a size of
7 x 5 pixels for a raw image I with a size of 160 x 120 pixels.
The size of local mean normalization window w1 used in Eq.
(7) is set to 80 x 60 pixels.

b gis optimised for highest accuracies on each similarity measure
under consideration.
Table 5. Direct and Normalized Similarity Measures

diagonal perturbations. This performance difference is due to the fact that modification of test
images is performed after cropping and results in loss of useful spatial information during
comparison. This is different from the perturbation of the gallery images that preserves all the
information from the original image.

4. Experimental Details

The algorithm is applied to AR (Martinez & Benavente, 1998), ORL(Samaria, 1994), YALE
(Belhumeur et al., 1997), CALTECH (Lab, 1999), and FERET (Phillips et al., 2000) standard
face image databases. At any specific time, illumination, occlusions, face expressions, and
time gap between the gallery and test images form variabilities that make the face recognition
difficult. A difficult and practically important face-recognition task is created by limiting the
gallery to a single image per person. Unless otherwise specified, the results presented in this
chapter are obtained by this kind of open-set testing.

For each image in the AR, YALE, and CALTECH databases, the eye coordinates of the face im-
ages are registered manually. For FERET database, the eye coordinates provided in the FERET
distribution DVD is used for face alignment. The face alignment is done by rotating, shifting,
and scaling the faces so that for all the faces the distance between the eyes remains constant
and in fixed spatial coordinates. All the images were aligned and cropped to image size of
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Fig. 9. Graphical illustration showing the effect of local binary decisions. “Without threshold-
ing" is the situation when no threshold is used, which means that no local binary decisions
being made. “Zero thresholding" is the situation when the threshold value is set to zero.

160x120.! However, as ORL images are approximately localized images, manual alignment
are not done on it and are resized to 40 x 32 pixels.

Since the eye coordinates of the faces in AR, Yale, and Caltech databases are detected manually
they show shift errors after processing. The eye coordinates of the faces in the gray FERET
database are provided within the FERET distribution DVD, and when used, show rotation and
scaling errors. Perturbation to eye coordinates are done to compensate for these localization
errors. These modifications are in the range of 1 to 6 pixels.

Unless otherwise specified, the following global settings are used for the set of proposed pa-
rameters. To calculate spatial intensity change, the local standard deviation filter [see Eq. (1)]
is used with optimal window size of 7 x 5 and 3 x 3 pixels when image size is 160 x 120 and
40 x 30 pixels respectively. The min-max similarity ratio shown in Table 1 is used. Finally,
the value of the global threshold 6 is set to 0.7 which is selected empirically. The number of
perturbation used for compensating localization errors in every case is set to a value of 15.

5. Results and Discussion

The overall recognition accuracy for the 2500 gray scale test images and the gallery size of
100 in the AR database is 91%. This very high accuracy level is possible due to the consistent
performance over the large number of variable conditions that are individually listed in Table
8. Similar accuracy levels are obtained for YALE, ORL and CALTECH databases as shown in
Table 9. As expected, increased variations correspond to decreased recognition accuracies in
all databases. The demonstrated robustness of the algorithm is consistent with the fact that the
baseline algorithm does not require any prior knowledge of the specific condition that causes
the dominant variations. To substantiate the claim of robustness, it is important to report the
performance for a large gallery set. In practice, an increased gallery size decreases the overall

! This is done using the Unix script provided for face normalization in the CSU Face Identification Eval-
uation System, Version 5.0 (Beveridge et al. (2003)).
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Fig. 10. Graphical illustration showing the stability of the threshold against various normal-
ized similarity measures. The image size is 160 x 120 pixels, the size of the standard deviation
filter is 7 x 5 pixels, and the value of the global threshold 6 is varied from 0.1 to 0.9.
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Fig. 11. Graphical illustration showing the recognition performance of the proposed algo-
rithm with variation in resolution of the normalized similarity measure 6 under comparison.
Averaging is performed to reduce the resolution of §. Average before shows the case when
raw images at various resolutions are used, whereas average after shows the case when spatial
change features at various resolutions are formed from a 160 x 120 pixels raw image.
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Color Recognition accuracy (%)
Index? combination AR (b)-(z) AR (b)-(m) AR (n)-(z)
cl Gray 86.16 94.75 78.23
2 Red 68.86 76.29 62.00
c3 Green 86.00 95.00 77.69
c4 Blue 87.64 96.33 79.61
c5 Red+Green 81.55 90.16 73.61
c6 Blue+Green 88.96 97.00 81.54
c7 Red+Blue 85.84 95.00 77.38
c8 max(cb,c6,c7) 89.60 97.00 82.76

»

Similarity score calculated from (cl) gray images, (c2) red channel
alone, (c3) green channel alone, (c4) blue channel alone, (c5) combina-
tion of scores from red and green channels, (c6) combination of scores
from blue and green channels, (c7) combination of scores from red and
blue channels, and (c8) the maximum of scores obtained as a result of
operations c5 to c7

Table 6. Effect of color on single training samples per person scheme

Recognition Accuracy (%)
Color image Perturbation
No Yes
Testimage Gallery image
Yes 89.6 94.0 94.8
No 86.2 91.0 92.0

Table 7. Effect of Localization Error Compensation

recognition accuracy of any face recognition system. The results of testing with the FERET
database, also shown in Table 9, demonstrate that the robustness is maintained under this
condition.

Using the AR database, the effects of block size used to make the local binary decisions is
analyzed and the results are shown in Fig. 12. The maximum recognition accuracy is achieved
when the local binary decisions are made at the level of individual pixels (block size of one
pixel) with a steep drop in the recognition accuracy as the block size is increased. This directly
implies that larger image resolutions could further improve the recognition accuracy.

The impact of different implementations of the similarity measure is also analyzed. Using the
implementations listed in Table 1, the change observed in the recognition accuracy is within
1%. Furthermore, the global threshold 6 for making the local decisions is not a sensitive pa-
rameter. It is found that the recognition accuracy remains within 1% across various databases
for a range of threshold values from 0.6 to 0.8. This confirms the general applicability of lo-
calised decisions on similarity as a concept.

The impact of the spatial change as features in the baseline algorithm are studied by using raw
images as the feature vectors instead of spatial change feature vectors. The recognition accu-
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Recognition accuracy on AR database (%)

Localization error compensation

Test conditions Yes? No

Session 1 images

Expression 99 98
Tllumination 97 94
Eye occlusion 100 100
Eye occlusion, [llumination 95 80
Mouth occlusion 97 93
Mouth occlusion, Illumination 93 86
Neutral 99 96
Expression 86 80
Illumination 85 80
Eye occlusion 90 83
Eye occlusion, [llumination 77 62
Mouth occlusion 89 74
Mouth occlusion, Illumination 78 60
Overall accuracy 91 84

# Proposed algorithm depicted here uses test image perturbations of 45 pixels.

b Results not available from the literature.
Table 8. Recognition performance of the proposed algorithm (Single training sample per per-
son problem) on gray scale images

100

80

60 1

Recognition accuracy (%)

40

1 200 400 600 800

Decision block size (pixels)
Fig. 12. The dependence of the overall recognition accuracy on the block size used to make
the local binary decisions. The resolution of the images is 160x 120 pixels. The window size of
the standard-deviation filter is 7 x5 pixels and the size of the normalization window is 80x 60
pixels.
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Top rank recognition accuracy (%)

Condition index® Database ? Localization error compensation

No Yes
(a) CALTECH 89 95
(a) YALE 93 95
(b) ORL 72 84
(c) FERET:Fb 85 96
(d) FERET:Fc 71 90
(e) FERET:Dup I 50 68
(f) FERET:Dup Il 40 65

@ (a) Expression and illumination with a small gallery; (b) Small pose vari-
ation on small gallery (c) Expression on large gallery (Fb); (d) Illumina-
tion on large gallery (Fc); (e) Large gallery with mean time gap of 251
days (Dup I); (f) Large gallery with mean time gap of 627 days (Dup II).

b Single training image per person is used to form the gallery set. The
sizes of the gallery sets are 28 in CALTECH, 15 in YALE, 40 in ORL and
1196 in FERET databases; the sizes of the test sets are 150 in the YALE
database, 406 in the CALTECH database, 360 in the ORL database, 1194
in set Fb, 194 in set Fc, 722 in Dup I, and 234 in Dup II of the FERET
database.

Table 9. Summary of the results on different databases

racy for the AR database dropped from 91% to 63%. Furthermore, investigation on different
filters for calculating the spatial intensity changes shows that the variation of the recognition
accuracy with the standard local spatial filters: standard deviation, range and gradient, is
within 1%. Based on this and the clear performance difference between the use of raw im-
ages and the spatial intensity changes as the feature vectors, it is concluded that the spatial
intensity change is the visual cue for face recognition.

Increased number of filters to form feature vectors can further improve the recognition accu-
racy. As an example, using 40 Gabor filters, the recognition performance on color images in
AR database reaches around 97% from a baseline value of 91% on gray images in AR database.

6. Conclusions

In this chapter, the local binary decisions is identified an important concept that is required for
recognition of faces under difficult conditions. In addition, spatial intensity changes is identi-
fied as the visual cue for face recognition. A baseline algorithm, formed by implementing the
local binary decisions based classifier and the spatial intensity changes based feature extractor,
shows a robust performance under difficult testing conditions. To increase the recognition per-
formance, a baseline system is formed by including perturbation scheme for localization error
compensation. Using this baseline system the effect of localization errors is analysed. Further,
the analysis shows that the application of the principles of local binary decisions and modu-
larity results in a highly accurate face recognition system. The presented algorithm does not
use any known configurational information from the face images, which makes it applicable
to any visual pattern classification and recognition problem. Furthermore, classifiers based on
the local binary decisions on similarity can be used in other pattern recognition applications.



86 Face Recognition

7. References

Ahlberg, J. & Dornaika, F. (2004). Handbook of Face Recognition, Springer Berlin / Heidelberg.

Belhumeur, P. N., Hespanha, J. P. & Kriegman, D. J. (1997). Eigenfaces vs. Fisherfaces: Recog-
nition using class specific linear projection, IEEE Trans. Pattern Anal. Machine Intell.
19(7): 711-720. Special Issue on Face Recognition.

Beveridge, R., Bolme, D., Teixeira, M. & Draper, B. (2003). The csu face identification evalu-
ation system users guide:version 5.0. Available from http://www.cs.colostate.edu/
evalfacerec/algorithms5.html.

Cover, T. M. (1968). Estimation by the nearest-neighbor rule, IEEE Transactions on Information
Theory 14(1): 50-55.

Cover, T. M. & Hart, P. E. (1967). Nearest neighbor pattern classification, IEEE Transactions on
Information Theory 13(1): 21-27.

Delac, K. & Grgic, M. (2007). Face Recognition, I-Tech Education and Publishing, Vienna, Aus-
tria.

Etemad, K. & Chellappa, R. (1997). Discriminant analysis for recognition of human face im-
ages, J. Opt. Soc. Am. A 14: 1724-1733.

Gates, G. W. (1972). The reduced nearest neighbor rule, IEEE Transactions on Information Theory
18(5): 431-433.

Hallinan, P. W., Gordon, G., Yuille, A. L., Giblin, P. & Mumford, D. (1999). Two- and Three-
Dimensional Patterns of the Face, AK Peters,Ltd.

Hart, P. E. (1968). The condensed nearest neighbor rule, IEEE Transactions on Information Theory
14(5): 515-516.

James, A. P. (2008). A memory based face recognition method, PhD thesis, Griffith University.

James, A. P. & Dimitrijev, S. (2008). Face recognition using local binary decisions, IEEE Signal
Processing Letters 15: 821-824.

Jenkins, R. & Burton, A. M. (2008). 100% accuracy in automatic face recognition, Science
319: 435.

Lab, C. V. (1999). Caltech face database. Available from http://www.vision.caltech.edu/html-
files/archive.html.

Li, S. Z. & Jain, A. K. (2005). Handbook of Face Recognition, Springer Berlin / Heidelberg.

Marr, D. (1982). Vision, New York: W.H. Freeman and Company.

Martinez, A. M. & Benavente, R. (1998). The ar face database, CVC Technical Report 24.

Martinez, A. M. & Benavente, R. (2000). Ar face database. Available from
http:/ /rvl.www.ecn.purdue.edu/RVL/database.htm.

Moeller, S., Freiwald, W. A. & Tsao, D. Y. (2008). Patches with links: A unified system for
processing faces in the macaque temporal lobe, Science 320: 1355-1359.

Phillips, P. J., Moon, H., Rauss, P. J. & Rizvi, S. (2000). The feret evaluation methodology for
face recognition algorithms, IEEE Trans. Pattern Anal. Machine Intell. 22: 1090-1104.

Samaria, F. S. (1994). Face Recognition Using Hidden Markov Models, University of Cambridge.

Wechsler, H. (2006). Reliable Face Recognition Methods, Springer Berlin / Heidelberg.

Zhang, W., Shan, S., Gao, W., Chen, X. & Zhang, H. (2005). Local gabor binary pattern his-
togram sequence (Igbphs):a novel non-statistical model for face representation and
recognition, Proceedings of the Tenth IEEE International Conference on Computer Vision
(ICCVS05).

Zhao, W. & Chellappa, R. (2005). Face Processing : Advanced Modeling and Methods, ACADEMIC
PRESS.



Interest-Point based Face Recognition System

Cesar Fernandez and Maria Asuncion Vicente
Miguel Hernandez University
Spain

1. Introduction

Among all applications of face recognition systems, surveillance is one of the most
challenging ones. In such an application, the goal is to detect known criminals in crowded
environments, like airports or train stations. Some attempts have been made, like those of
Tokio (Engadget, 2006) or Mainz (Deutsche Welle, 2006), with limited success.

The first task to be carried out in an automatic surveillance system involves the detection of
all the faces in the images taken by the video cameras. Current face detection algorithms are
highly reliable and thus, they will not be the focus of our work. Some of the best performing
examples are the Viola-Jones algorithm (Viola & Jones, 2004) or the Schneiderman-Kanade
algorithm (Schneiderman & Kanade, 2000).

The second task to be carried out involves the comparison of all detected faces among the
database of known criminals. The ideal behaviour of an automatic system performing this
task would be to get a 100% correct identification rate, but this behaviour is far from the
capabilities of current face recognition algorithms. Assuming that there will be false
identifications, supervised surveillance systems seem to be the most realistic option: the
automatic system issues an alarm whenever it detects a possible match with a criminal, and
a human decides whether it is a false alarm or not. Figure 1 shows an example.

However, even in a supervised scenario the requirements for the face recognition algorithm
are extremely high: the false alarm rate must be low enough as to allow the human operator
to cope with it; and the percentage of undetected criminals must be kept to a minimum in
order to ensure security. Fulfilling both requirements at the same time is the main challenge,
as a reduction in false alarm rate usually implies an increase of the percentage of undetected
criminals.

We propose a novel face recognition system based in the use of interest point detectors and
local descriptors. In order to check the performances of our system, and particularly its
performances in a surveillance application, we present experimental results in terms of
Receiver Operating Characteristic curves or ROC curves. From the experimental results, it
becomes clear that our system outperforms classical appearance based approaches.
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Fig. 1. Example of a supervised surveillance system.

2. Previous approaches

Classical face recognition systems are based on global appearance-based methods: PCA or
Principal Component Analysis has been used by (Kirby & Sirovich, 1990) and (Turk &
Pentland, 1991); ICA, or Independent Component Analysis has been used by (Bartlett et al.,
2002), (Draper et al., 2003) and (Liu, 2004). Finally, LDA or Linear Discriminant Analysis has
been used by (Belhumeur et al., 2002).

As an alternative to appearance-based methods, local description methods are currently an
area of active research in the face recognition field. From Lowe’s work on object recognition
using SIFT (Scale Invariant Feature Transform) descriptors (Lowe, 2004), multiple authors
have applied such descriptors in other fields, like robot navigation (Se et al., 2001), scene
classification (Pham et al., 2007), and also face recognition.

Some of the main contributions using SIFT descriptors for face recognition will be briefly
described: Lowe (Lowe, 2000) presents a similar scheme to that of object recognition, but
does not address the problem of face authentication. Sivic (Sivic et al., 2005) combines PCA
and SIFT: PCA is used to locate eyes, nose and mouth; while SIFT descriptors are used to
describe fixed-sized areas around such points. Finally, Bicego (Bicego et al., 2006) measures
the distance between two faces as the distance of the best matching pair of descriptors, in
some cases using previous knowledge about the location of eyes and mouth.
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The goal of our work is to propose a new distance measure in order to exploit the potential
of SIFT descriptors in the face recognition field.

3. Interest point detection

Interest point detectors try to select the most descriptive areas of a given image. Ideally,
given multiple images of the same object or person, under different lighting, scale,
orientation, view angle, etc., a perfect algorithm would find exactly the same interest points
across all images.

In the field of face recognition, although invariance to orientation and view angle are
necessary, images that are useful for face recognition always present the user from the
similar angles (usually, facing the camera) and orientations (standing up). Possible view
angles and orientations are expected to be within a 30 degree range, approximately. Interest
point detectors that allow much higher ranges of variation are not necessary and more
simple, faster detectors would be preferred instead.

In that sense, affine invariant detectors, like those detailed in (Alvarez & Morales, 1997),
(Baumberg, 2000) or (Mikolajczyk & Schmid, 2004) are not considered for our work. We
have made experiments with two more simple detectors: Harris-Laplace (Mikolajezyk &
Schmid, 2004) and Difference of Gaussian (Lowe, 2004).

The Harris-Laplace detector is a scale-invariant version of the well-known Harris corner
detector (Harris & Stephens, 1988) and looks for corners or junctions in the images. On the
other side, the Difference of Gaussian detector (DoG) is an approximation to the Laplacian
of Gaussian operator, and looks for blob-like areas in images. Both detectors have been
widely used in the object recognition field and they are highly reliable. In figure 2 we show
the interest points found by each of these detectors over the same image (the diameter of the
circle is represents the scale of the detected interest area).

DoG detector Harris-Laplace detector

Fig. 2. Output of Harris-Laplace and DoG interest point detectors.

It becomes clear that each detector looks for specific image areas, and that, depending on the
particular application, one of them should be preferred. In the case of face recognition, both
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sets of interest points seem to be relevant for describing faces, so our option has been to
keep all interest points found by both detectors. The goal is to obtain as much information as
possible from each image.

4. Interest point description

Once interest points are detected, their surrounding area must be encoded or described by a
distinctive feature. Ideally, features should be invariant to lighting, scale, orientation, view
angle, etc. At the same time, those features should be unique, in the sense that a different
area of the object (or face), a different object, or a different person would be distinguishable.

In (Mikolajczyk & Schmid, 2005) a detailed comparison of local descriptors is carried out.
The conclusion is that SIFT (Lowe, 2004) and other SIFT-like descriptors, like PCA-SIFT (Ke
& Sukthankar, 2004) or GLOH (Mikolajczyk & Schmid, 2005) give the best results
throughout all tests. We will briefly describe some of these descriptors.

Basically, in SIFT descriptors, the neighbourhood of the interest point, scaled accordingly to
the detector information, is described as a set of orientation histograms computed from the
gradient image. SIFT descriptors are invariant to scale, rotation, lighting and viewpoint
change (in a narrow range). The most common implementation uses 16 histograms of 8 bins
(8 orientations), which gives a 128 dimensional descriptor.

PCA-SIFT descriptor is also based on the gradient image, the main difference with SIFT
being the further compression using PCA. The uncompressed dimension of the descriptor is
3042 (39x39), which is reduced to 36 after applying PCA. The authors claim improved
accuracy and faster matching, but these performance improvements are not consistent
throughout all tests, as it is shown in (Mikolajczyk & Schmid, 2005).

GLOH stands for Gradient Location-Orientation Histogram. It is also a SIFT-based
descriptor, with modified location grids (both polar and Cartesian location grids are
considered) and a further PCA compression of the information, which keeps the 128 largest
eigenvectors (the dimension of the uncompressed descriptor is 272). GLOH outperforms
SIFT in certain situations, with structured scenes and high viewpoint changes. However,
such situations are not common in a face recognition scenario.

Recently, the SURF or Speeded Up Robust Features descriptor (Bay et al., 2006) has
appeared as an alternative to SIFT. Its main advantage is its fastest computation, while
keeping a high descriptive power. It is partially inspired by SIFT, but instead of using the
gradient image, it computes first order Haar wavelet responses. Additionally, the use of
integral images is the key factor for fast computation. So far, we have not performed tests
with the SURF descriptor, so we cannot affirm its validity for face recognition applications.

Finally, LESH or Local Energy based Shape Histogram descriptor (Sarfraz & Hellwich,
2008), has been specifically designed for face recognition applications. Its goal is to encode
the underlying shape present in the image. Basically, the descriptor is a concatenation of
histograms obtained by accumulating local energy along several filter orientations.
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However, it is focused in pose estimation, so it addresses a different problem to that of our
work.

In conclusion, we decided to describe each face image with SIFT descriptors computed at all
the interest points found by the Harris-Laplace and the DoG detectors.

5. Similarity between two face images

Once we have represented all face images as a set of interest points and their corresponding
descriptions, the next step to be carried out is the definition of a similarity measure between
two face images, in order to be able to decide whether such images correspond to the same
person or not.

The simplest approach is to obtain the best possible correspondence between the interest
points of both images (according to the values of their SIFT descriptors) and to compute
Euclidean distances between each pair of corresponding points. However, according to
Lowe’s work (Lowe, 2004), SIFT descriptors must be used in a slightly different way: in
order to decide whether two points in two different images correspond or not, the absolute
value of the Euclidean distance is not reliable; what should be used instead is the ratio
between the best match and the second best match. Briefly, for each point of the first image,
the best and second best matching points of the second image must be found: if the first
match is much better than the second one (as measured by the ratio between SIFT
differences) the points are likely to correspond. Eq. 1 shows how to apply such condition,
where points B and C in image; are the best and second best matches, respectively, for point
A in image;.

‘SIFT-A -SIFT;,

image; image,

< Threshold A,image corresponds to B,image, 1)
‘SIFT-A -SIFT};

mage, image,

We have used such approach in order to compute the number of corresponding points
between two images, such a number being our first measure of similarity between the
images. In our notation, the number of matching points between images A and B, according
to the descriptor values is MDag.

Even though we compute similarity according to Lowe’s recommendations, the number of
correct matches is not completely reliable as a measure of similarity. We have added two
extra measures in order to increase the robustness of our system.

The first extra measure is obtained by computing the number of corresponding points that
are coherent in terms of scale and orientation: every detected point output by the Harris-
Laplace of DoG detectors has an associated scale and orientation. Scale and orientation may
be different between images, even if they belong to the same person, but such difference
must be coherent across all matching points. Our second measure of similarity is the
number of matching points coherent in terms of scale and orientation (a simple Hough
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transform is used to obtain the maximum number of points fulfilling this condition). We will
refer to this extra measure as MSOag.

The second extra measure is obtained by imposing an additional restriction: the coherence in
terms of relative location of corresponding points. Theoretically, the relative location of all
matching points must be similar between two images, even if there are scale, rotation and
viewpoint changes between them. We will consider a general affine transformation between
images for the sake of simplicity (since faces are not planar, high viewpoint changes cannot
be represented by affine transformations). The number of points coherent in the parameters
of the transformation will be our third measure of similarity. We will use MRLag to refer to
this measure.

Obviously, whenever an additional restriction is imposed, the robustness of the measure is
increased, so the second extra measure is the most robust one, followed by the first extra
measure and by the original one. In order to compare whether a certain image A is more
similar to image B or to image C (i.e., we are trying to classify image A as belonging to
subject B or subject C), the decision tree of Fig. 3 should be used:

MRLag- MRLac

>0 =0 <0
v
e MSOupp- MSOuc
>0 =0 <0
A\ 4
e MDap- MDac
>() <0

Fig. 3. Decision tree for the classification of image A as belonging to subjects B or C.

Even though a decision tree representation is valid for a classification problem, it cannot be
used in an authentication application, where a threshold must be fixed. In order to cope also
with such applications, we propose a simple distance measure M (see eq. 2) that combines
MRL, MSO and MD, giving MRL a weight one order of magnitude above MSO and two
orders of magnitude above MD.

Mag = MDag + 10MSOap +100MRLag (2)

In our experiments, such simple distance measure has shown to give the same results as the
decision tree of Fig. 3.
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6. Experimental results

6.1 Databases and baseline used for the evaluation

We have selected two different databases for the evaluation of our face recognition
algorithm. The first one is the well-known AT&T database (Samaria, 1994)(AT&T, 2002); and
the second one the LFW or Labelled Faces in the Wild database (Huang et al.,
2007)(University of Massachusetts, 2007).

The AT&T database contains 40 subjects, each of one described by 10 frontal face images. All
images were taken under controlled conditions of lighting, distance to the camera, etc. The
main differences between shots are facial expression, and slight orientation and viewpoint
changes.

The LFW database contains 5749 subjects, described by a number of images that ranges from
1 to 530. All images have been obtained from the World Wide Web, manually labelled and
cropped using the Viola-Jones face detector. Variability between images of the same subject
is much higher than that of the AT&T database, thus making LFW more challenging for a
face recognition application. For our tests, we have selected a subset containing the 158
subjects described by at least 10 images, and we have kept only the first 10 images of each
subject.

As the baseline for our evaluation, we have selected the classic PCA approach to face
recognition. We have decided to use PCA because other similar approaches like ICA or LDA
have not proved to perform better. In particular in one of our previous papers (Vicente et al.,
2007) we showed the equivalence of PCA and ICA under restrictions such as the use of
rotational invariant classifiers.

6.2 Results

As the goal of our paper is to evaluate our face recognition method for surveillance
applications, we have decided to use ROC curves for showing our experimental results. The
main idea is to express the relationship between false alarm rates and percentage of
undetected criminals. As both databases (AT&T and the LFW subset we are using) share the
same structure of 10 images per subject, in both cases we used 4 subjects for training and the
remaining 6 subjects for testing. Every test image was compared to all training images of all
subjects, the global distance to a subject being computed as the minimum across the 4
training images of such subject (we performed some tests using the mean distance for all
training images of the subject, but the results were worse).

First, we performed some experiments in order to adjust our algorithm for the best overall
results. The main parameter to tune was the threshold for accepting or rejecting matches
between interest points of two different images (see Eq. 1). We carried out tests with both
databases (AT&T and LFW) and with thresholds ranging from 0.60 (the most restrictive) to
1.00 (the less restrictive, all matches are accepted).

Figure 4 shows the results obtained with the AT&T database. The left plot shows the full
ROC curve, where the different experiments are almost indistinguishable. All of them show
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close to ideal behaviours, as it was expected for such database, were all images were taken
under controlled conditions. In order to show the differences between the experiments, the
right plot shows a scaled detail of the upper left area of the ROC curve. However, all values
of the threshold seem to perform similarly and no conclusions can be drawn.

Figure 5 shows the results obtained for the LFW database. In this case, we performed two
different experiments. For the first one (left plot), we used the first four images of each
subject as training images, keeping the original image order of the database. The results
show clearly that the LFW database is much more challenging for a face recognition
algorithm, with ROC curves far from the ideal ones. The main reason is the high variability
between images of the same subject. For the second experiment (right plot) we decided to
rearrange the database, so that the best four images of each subject were selected as training
data. Such rearrangement makes the experiment more realistic, since in a real surveillance
application training images (taken under controlled conditions) usually have higher quality
than test images (taken under uncontrolled conditions, in real time). Anyway, the results are
similar in both experiments.
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Fig. 4. AT&T database: experiments with different thresholds
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Concerning the threshold values, both plots of figure 5 show similar behaviours: the results
improve as the threshold is reduced, up to a certain point where differences are small (in the
range from 0.8 to 0.6). A threshold value of 0.6 seems to perform slightly better than the
other settings, so we kept this value for further experiments.

Once the threshold was fixed, we performed several comparisons between our algorithm
and the PCA baseline, working with the same databases. Figure 6 shows the results
obtained for the AT&T database (left plot) and the LFW database (right plot). Our method
clearly outperforms PCA throughout the ROC curve for both databases.

The left plot of figure 7 shows the comparison between PCA and our method for the
rearranged version of LFW database (the 4 best images are used for training). There is a
slight increase in the performances of both PCA and SIFT, but our method is still clearly
superior. Finally, the right plot of figure 7 shows a further experiment: we sorted the 6 test
images of LFW for each subject, so that the first 3 images were the best, easier to classify and
the last 3 images were the worst, more difficult to classify, according to our opinion. The
goal was to check to what extent the performances of both methods were affected by the
(subjective) quality of the images: although there are not big differences, it seems that our
method is more robust than the PCA approach.

Concerning the feasibility of the proposed approach for a surveillance application, our
experimental results show the importance of image quality. The ROC curves obtained for
the AT&T database (figure 6, left plot) are close to ideal: at a false alarm rate of 1%, it is
expected that 94% of the criminals would be correctly identified (88% at a 0.5% false alarm
rate). Such performances would allow us to implement the system in a real scenario.
However, the ROC curves obtained for the LFW database, even if the best images are
selected for training, are far from ideal: at a false alarm rate of 1%, it is expected that only
35% of the criminals would be correctly identified (32% at a false alarm rate of 0.5%). Such a
system would be of little help as a surveillance tool.

As image quality is a key factor for the feasibility of the system, our recommendation is to
study properly the location of the video cameras. In our opinion, if video cameras are
located in relatively controlled places like walkthrough detectors, the image quality may be
enough as for a successful implementation of a supervised surveillance system.

7. Conclusion

Automatic or supervised surveillance applications impose strict requirements in face
recognition algorithms, in terms of false alarm rate and percentage of undetected criminals.
We present a novel method, based on interest point detectors (namely, Harris-Laplace and
DoG) and SIFT descriptors.

Our measure of similarity between images is based on computing the number of
corresponding points that, apart from having similar values for their SIFT descriptors, fulfil
scale, orientation and relative location coherence. Images with a higher number of
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corresponding points are likely to belong to the same subject. Such a simple similarity
measure has proven to perform consistently in our tests.
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Fig. 7. LFW database reordered and sorted: comparison with PCA baseline

The results in terms of ROC curves show that our approach clearly outperforms the PCA
baseline in all conditions. We have performed tests with two different databases: AT&T (not
very demanding for a face recognition algorithm) and LFW (extremely demanding); and in
both cases our algorithm gave much higher recognition rates than PCA.

Concerning the feasibility of a supervised surveillance system based on our face recognition
algorithm, the experimental results show that the quality of the images should be
comparable to that of the AT&T database. For lower quality images like those of the LFW
database, high recognition rates cannot be expected.
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Future work to be carried out includes the comparison of our proposal against other
approaches like AAM (active appearance models) and the use of a different interest point
descriptor (namely, the SURF descriptor). Another important topic for future research is an
evaluation of the possible placements for surveillance cameras; such a research could give
us realistic information about the feasibility of a supervised surveillance system.
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Abstract. The growth in direct threats to people’s safety in recent years and the rapid
increase in fraud and identity theft has increased the awareness of security requirements in
society and added urgency to the task of developing biometric-based person identification
as a reliable alternative to conventional authentication methods. In this Chapter we describe
various approaches to face recognition with focus on wavelet-based schemes and present
their performance using a number of benchmark databases of face images and videos. These
schemes include single-stream (i.e. those using single-subband representations of face) as
well as multi-stream schemes (i.e. those based on fusing a number of wavelet subband
representations of face). We shall also discuss the various factors and quality measures that
influence the performance of face recognition schemes including extreme variation in
lighting conditions and facial expressions together with measures to reduce the adverse
impact of such variations. These discussions will lead to the introduction of new innovative
adaptive face recognition schemes. We shall present arguments in support of the suitability
of such schemes for implementation on mobile phones and PDA’s.

1. Introduction

The early part of the 21st century has ushered the shaping of a new global communication
infrastructure that is increasingly dominated by new generations of mobile phones/devices
including 3G and beyond devices resulting in the emergence of pervasive computing
environment with less reliance on presence in specific locations or at specific times. The
characteristics of such a ubiquitous environment create new security threats and the various
mobile devices/nodes are expected to provide additional layers of security for online
transactions and real-time surveillance. Cryptography can provide confidentiality protection
mechanisms for online and mobile transactions, but authenticating/identifying the
principal(s) in such virtual transactions is of utmost importance to fight crime and fraud and
to establish trust between parties taking part in such transactions. Traditional authentication
mechanisms are based on “something you know” (e.g. a password/PIN) or “something you
own/hold” (e.g. a token/smartcard). Such authentication schemes have shown to be prone
to serious threats that could have detrimental effects on global economic activities. In recent
years, biometric-based authentication has provided a new approach of access control that is
aimed at establishing “who you are”, and research in the field of biometrics has grown
rapidly. The scope of active research into biometrics has gone beyond the traditional list of
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single traits of fingerprint, retina, iris, voice, and face into newly proposed traits such as
handwritten signature, gait, hand geometry, and scent. Moreover, the need for improved
performance has lead to active research into multimodal biometrics based on fusing a
number of biometrics traits at different levels of fusion including feature level, score level,
and decision level. Over the past two decades significant progress has been made in
developing robust biometrics that helped realising large-scale automated identification
systems.

Advances in mobile communication systems and the availability of cheap cameras and other
sensors on mobile devices (3G smart phones) further motivate the need to develop reliable,
and unobtrusive biometrics that are suitable for implementation on mobile and constrained
devices. Non-intrusive biometrics, such as face and voice are more naturally acceptable as
the person’s public identity. Unfortunately the performance of known face and voice
biometric schemes are lower than those of the Iris or the fingerprint schemes. The processing
and analysis of face image suffer from the curse of dimension problem, and various
dimension reduction schemes have been proposed including PCA (principal Component
analysis). In recent years a number of wavelet-based face verification schemes have been
proposed as an efficient alternative to traditional dimension reduction procedures.

The Wavelet Transform is a technique for analyzing finite-energy signals at multi-
resolutions. It provides an alternative tool for short time analysis of quasi-stationary signals,
such as speech and image signals, in contrast to the traditional short-time Fourier transform.
A wavelet-transformed image analyses the signal into a set of subbands at different
resolutions each represented by a different frequency band. Each wavelet subband
encapsulates a representation of the transformed images object(s), which differ from the
others in scale and/or frequency content. Each wavelet subband of transformed face images
can be used as a face biometric template for a face recognition scheme, and the fusion of a
multiple of such schemes associated with different wavelet subbands will be termed as
multi-stream face recognition scheme.

2. Face Recognition - A brief review

Automatic face based human Identification is a particularly tough challenge in comparison
to identification based on other biometric features such as iris, fingerprints, or palm prints.
Yet, due to its unobtrusive nature, together with voice, the face is naturally the most suitable
method of identification for security related applications, ([1], [2], [3]). Recent growth in
identity theft and the rise of international terrorism on one hand and the availability of high-
resolution digital video-cameras at a relatively low cost is a major driving force in the surge
of interest for efficient and accurate enrolment, verification schemes of face-based
authentication. Moreover, there are now new opportunities, as well as tough challenges, for
mass deployments of biometric-based authentications in a range of civilian and military
applications. In the rest of this section we shall briefly review the main approaches to face
recognition with focus on 2D schemes directly related to this chapter’s aim.

2.1 Dimension reduction approach

An important part of a face recognition process is the feature extraction of a given facial
image. Two current approaches to feature extraction are the geometry feature-based
methods and the more common template-based methods. In the latter, sets of face images
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are statistically analysed to obtain a set of feature vectors that best describe face image. A
typical face images is represented by a high dimensional array (e.g. 12000=120x100 pixels),
the processing/analysis of which is a computationally demanding task, referred to in the
literature as the “curse of dimensionality”, well beyond most commercially available mobile
devices. It is therefore essential to apply dimension reduction procedures that reduce
redundant data without losing significant features. A common feature of dimension
reducing procedures is a linear transformation of the face image into a “significantly” lower
dimensional subspace from which a feature vector is extracted. The first and by far the most
commonly used dimension reduction method is the Principal Component Analysis (PCA),
also known as Karhunen-Love (KL) transform, [4]. In [5], M. Turk and Pentland used the
PCA technique to develop the first successful and well known Eigenface scheme for face
recognition. PCA requires the use of a sufficiently large training set of multiple face images
of the enrolled persons, and attempts to model their significant variation from their average
image, by taking a number of unit eigenvectors corresponding to the “most significant”
eigenvalues (i.e. of largest absolute values). Essentially, the selected eigenvectors are used as
the basis for a linear transformation that maps the original training set of face images
around their mean in order to align with the directions the first few principal components
which maximizes the variance as much of the as possible. The values in the remaining
dimensions (corresponding to the non-significant eigenvalues), tend to be highly correlated
and dropped with minimal loss of information.

Despite its success in reducing false acceptances, the PCA/Eigenface scheme is known to
retain within-class variations due to many factors including illumination and pose.
Moghaddam et al. [6] have demonstrated that the largest three eigen coefficients of each
class overlap each other. While this shows that PCA has poor discriminatory power, it has
been demonstrated that leaving out the first 3 eigenfaces (corresponding to the 3 largest
eigenvalues) could reduce the effect of variations in illumination [6]. But this may also lead
to loss of information that is useful for accurate identification.

An alternative approach to PCA based linear projection is Fisher’s Linear Discriminant
(FLD), or the Linear Discriminant Analysis (LDA) which is used to maximize the ratio of the
determinant of the between class scatter to that of within-class scatter [7], [8]. The downside
of these approaches is that a number of training samples from different conditions are
required in order to identify faces in uncontrolled environments.

Other schemes that deal with the curse of dimension include Independent Component
Analysis (ICA), or a combination of ICA and LDA/FLD, (see [1], [7], and [9]). Lack of
within-class (variations in appearance of the same individual due to expression and/or
lighting) information is known to hinder the performance of both PCA and ICA based face
recognition schemes. Cappelli et al., [9], proposed a multi-space generalization of KL-
transformation (MKL) for face recognition, in which a PCA-subspace is created for each
enrolled classes. The downside of this approach is that a large number of images are
required to create a subspace for each class.

All the statistical approaches above require a large number of training images to create a
subspace, which in turn requires extra storage space (for the subspace and enrolled
template/features), [10]. Current mobile devices (3G smart phones) and smartcards, which
are widely used in commercial and military applications, have limited computing resources
and it is difficult to implement complex algorithms, especially for face verification. Bicego et
al. presented a face verification scheme based on Hidden Markov Models (HMM). Statistical
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features such as the mean and variance are obtained by overlapping sub images (of a given
original face image). These features are used to compose the HMM sequence and results
show that the HMM-based face verification scheme, proposed by Bicego et al., outperforms
other published results, [11].

2.2 Frequency transforms based approaches

Frequency transforms provide valuable tools for signal processing and analysis. Frequency
information content conveys richer knowledge about features in signals/images that should
be exploited to complement the spatial information. Fourier and wavelet transforms are two
examples that have been used with significant success in image processing and analysis
tasks including face recognition. To some extent, such transforms reduce dimension with no
or little loss of information.

The work of John Daugman, ([12], [13]) and others on generalisation of Gabor functions has
led to a general compact image representation in terms of Gabor wavelets. The Gabor
wavelets, whose kernels are similar to the 2D receptive field profiles of the mammalian
cortical simple cells, exhibit strong characteristics of spatial locality and orientation
selectivity, and are optimally localized in the space and frequency domains. The Gabor
wavelet model was eventually exploited to develop new approaches to face recognition.
Taking into account the link between the Gabor wavelet kernels and the receptive field
profiles of the mammalian cortical simple cells, it is not unreasonable to argue that Gabor
wavelet based face recognition schemes mimics the way humans recognise each others.
Lades et al. [14] demonstrated the use of Gabor wavelets for face recognition using the
Dynamic Link Architecture (DLA) framework. The DLA starts by computing the Gabor jets,
and then it performs a flexible template comparison between the resulting image
decompositions using graph-matching. L Wiskott et al, [15], have expanded on the DLA,
and developed the Elastic Bunch Graph Matching (EBGM) face recognition system, whereby
individual faces were represented by a graph, each node labelled with a set of complex
Gabor wavelet coefficients, called a jet. The magnitudes of the coefficients label the nodes for
matching and recognition, the phase of the complex Gabor wavelet coefficients is used for
location of the nodes. The nodes refer to specific facial landmarks, called fiducial points. A
data structure, called the bunch graph, to represent faces by combining jets of a small set of
individual faces. Originally many steps (e.g. selecting the Fiducial points) were carried out
manually, but gradually these would have been replaced with a automated procedures.

Z. Zhang et al, [16], compared the performance of a Geometry-based and a Gabor wavlet-
based facial expression recognition using a two-layer perceptron. The first uses the
geometric positions of a set of fiducial points on a face, while the second type is a set of
multi-scale and multi-orientation Gabor wavelet coefficients extracted from the face image
at the fiducial points. For the comparison they used a database of 213 images of female facial
expressions and their results show that the Gabor wavelet -based scheme outperforms the
geometric based system.

C. Lui and H. Wechsler, [17], developed and tested an Independent Gabor Features (IGF)
method for face recognition. The IGF first derives a Gabor feature vector from a set of
downsampled Gabor wavelet representations of face images, then reduces the
dimensionality of the vector by means of Principal Component Analysis (PCA), and finally
defines the independent Gabor features based on the Independent Component Analysis
(ICA). The independence property of these Gabor features facilitates the application of the
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Probabilistic Reasoning Model (PRM) method for classification. The Gabor transformed face
images exhibit strong characteristics of spatial locality, scale and orientation selectivity,
while ICA further reduce redundancy and represent independent features explicitly.

The development of the discrete wavelet transforms (DWT), especially after the work of L
Daubechies (see e.g. [18]), and their multi-resolution properties have naturally led to
increased interest in their use for image analysis as an efficient alternative to the use of
Fourier transforms. DWT’s have been successfully used in a variety of face recognition
schemes (e.g. [10], [19], [20], [21], [22]). However, in many cases, only the approximation
components (i.e. the low frequency subbands) at different scales are used either as a feature
vector representation of the faces perhaps after some normalisation procedures or to be fed
into traditional face recognition schemes such as the PCA as replacement of the original
images in the spatial domain.

J. H. Lai et al, [23], developed a holistic face representation, called spectroface, that is based
on an elaborate combination of the (DWT) wavelet transform and the Fourier transform. To
make the spectroface invariant to translation, scale and on-the-plane rotation, the LL
wavelet subband of the face image is subjected to two rounds of transformations. The LL
wavelet subband is less sensitive to the facial expression variations while the first FFT
coefficients are invariant to the spatial translation. The second round of FFT is applied after
the centralised FFT in the first round is represented by polar coordinates. Based on the
spectroface representation, their proposed face recognition system is tested on the Yale and
Olivetti face databases. They report recognition accuracy of over 94% for rankl matching,
and over 98% for rank 3 matching.

Another wavelet-based approach for face recognition has been investigated in terms of dual-
tree complex wavelets (DT-CW) techniques developed by N. G. Kingsbury, (see e.g. [24]). Y.
Peng et al, [25], propose face recognition algorithm that is based on the use of an anisotropic
dual-tree complex wavelet packets (ADT-CWP) for face representation. The ADT-CWP
differs from the traditional DT-CW in that the decomposition structure is determined first
by an average face, which is then applied to extracting feature of each face image. The
performance of their scheme is compared with the traditional Gabor-based methods using a
number of different benchmark databases. The AD-CWP method seems to outperform the
Gabor-based schemes and it is computationally more efficient.

The rest of the chapter is devoted to DWT-based face recognition tasks. We shall first give a
short description of the DWT as a signal processing and analysis tool. We then describe the
most common approaches to wavelet-based multi-stream face recognition.

3. Wavelet Transforms

The Wavelet Transform is a technique for analyzing finite-energy signals at multi-
resolutions. It provides an alternative tool for short time analysis of quasi-stationary signals,
such as speech and image signals, in contrast to the traditional short-time Fourier transform.
The one dimensional Continuous Wavelet Transform CWT of f(x) with respect to the

wavelet H(x) is defined as follows:

v, Gk =0 = [ FOow, ()dx
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ie. wavelet transform coefficients are defined as inner products of the function being
transformed with each of the base functions ¥j,k. The base functions are all obtained from a
single wavelet function ¥(x), called the mother wavelet, through an iterative process of
scaling and shifting, i.e.

i
v () =222t =k).

A wavelet function is a wave function that has a finite support and rapidly diminishes
outside a small interval, i.e. its energy is concentrated in time. The computation of the DWT
coefficients of a signal k does not require the use of the wavelet function, but by applying
two Finite Impulse Response (FIR) filters, a high-pass filter h, and a low-pass filter g. This is
known as the Mallat’s Algorithm. The output will be in two parts, the first of which is the
detail coefficients (from the high-pass filter), and the second part is the approximation
coefficients (from the low-pass filter). For more details see [26].

The Discrete Wavelet Transform (DWT) is a special case of the WT that provides a compact
representation of a signal in time and frequency that can be computed very efficiently. The
DWT is used to decompose a signal into frequency subbands at different scales. The signal
can be perfectly reconstructed from these subband coefficients. Just as in the case of
continuous wavelets, the DWT can be shown to be equivalent to filtering the input image
with a bank of bandpass filters whose impulse responses are approximated by different
scales of the same mother wavelet. It allows the decomposition of a signal by successive
highpass and lowpass filtering of the time domain signal respectively, after sub-sampling by
2. Consequently, a wavelet-transformed image is decomposed into a set of subbands with
different resolutions each represented by a different frequency band. There are a number of
different ways of doing that (i.e. applying a 2D-wavelet transform to an image). The most
commonly used decomposition scheme is the pyramid scheme. At a resolution depth of k,
the pyramidal scheme decomposes an image I into 3k +1 subbands, {LLy, LHyx, HLy, HHy,
LHi.1, HLiy,..., LHy, HL1}, with LLy, being the lowest-pass subband, (see figure 3.1(a)).
There are ample of wavelet filters that have been designed and used in the literature for
various signal and image processing/analysis. However, for any wavelet filter, the LL
subband is a smoothed version of original image and the best approximation to the original
image with lower-dimensional space. It also contains highest-energy content within the four

subbands. The subbands LHj1, HL1, and HHj1, contain finest scale wavelet coefficients, and

the coefficients LLx get coarser as k increases. In fact, the histogram of the LLj-subband
coefficients approximates the histogram of the original image in the spatial domain, while
the wavelet coefficients in every other subband has a Laplace (also known as generalised
Gaussian) distribution with = 0 mean, see Figure 3.1(b). This property remains valid at all
decomposition depth. Moreover, the furthest away a non-LL coefficient is from the mean in
that subband, the more probable the corresponding position(s) in the original image have a
significant feature, [27]. In fact the statistical properties of DWT non-LL subbands can be
exploited for many image processing applications, including image/video compression,
watermarking, content-based video indexing, and feature extraction.
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Fig. 3.1. (a) The Multi-resolution Pyramid (b) An image, its WT to level 2 and subbands
histograms.

4. DWT - based Face recognition

The LL subband of a wavelet transformed image corresponds to the low frequency
components in both vertical and horizontal directions of the original image. Therefore, it is
the low frequency subband of the original image. The subband LH corresponds to the low-
frequency component in the horizontal direction and high-frequency components in vertical
direction. Therefore it holds the vertical edge details. Similar interpretation is made on the
subbands HL and HH. These remarks together with our knowledge of structure of facial
features provide a strong motivation and justification for investigating wavelet-based
approaches to face recognition. In fact the variety of wavelet decomposition schemes and
filter banks provide a very rich and a complex source of information that could be exploited
to deal with the tough challenges and difficulties associated with face recognition in the
presence of expression and extreme variations in lighting conditions.

With appropriate pixel value scaling the low LL subband, displayed as an image, looks like
a smoothing of the original image in the spatial domain (see Figure 3.1(b)). For efficiency
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purposes and for reason of normalising image sizes, non-DWT based face recognition
schemes such as PCA pre-process face images first by resizing/downsampling the images.
In such cases, matching accuracy may suffer as a result of loss of information. The LL
subbands of the face image, does provide a natural alternative to these pre-processing
procedures and this has been the motivation for the earlier work on wavelet-based face
recognition schemes that have mostly combined with LDA and PCA schemes (e.g. [10], [28],
[29], [30], [31]). Below, we shall describe face recognition schemes, developed by our team,
that are based on the PCA in a single wavelet subband and summarise the results of
performance tests by such schemes for some benchmark face databases. We will also
demonstrate that the use of the LL-subband itself as the face feature vector results in
comparable or even higher accuracy rate. These investigations together with the success of
biometric systems that are based on fusing multiple biometrics (otherwise known as multi-
modal biometrics) have motivated our work on multi-stream face recognition. This will be
discussed in section 5.

4.1 PCA in the Wavelet Domain
Given the training set I" of images, applying a wavelet transform on all images results in a

set Wi(I') of multi-resolution decomposed images. Let Li(I') be the set of all level-k low
subbands corresponding to the set Wi(['). Apply PCA on the set Li(I') whose elements are
the training vectors in the wavelet domain (i.e. LLk subbands). Note that each wavelet

coefficient in the LLk subband is a function of 2kx2k pixels in the original image
representing a scaled total energy in the block. Figure 3.2, below, shows the first 4 eigenfaces
obtained from a dataset of images in the spatial domain as well as in the low subbands at
levels 1 and 2 using the Haar wavelet filter. There are no apparent differences between the
eigenfaces in the spatial domain and those in the wavelet domain.

" | T

Fig. 3.2. Eigenfaces in (a) spatial domain, (b) LL1, and (c) LL2

Diagraml, below, illustrates the enrolment and matching steps which will cover face
recognition in the wavelet domain with and without the application of PCA. The diagram
applies equally to any wavelet subband including the high frequency ones.

There are many different wavelet filters to use in the transformation stage, and the choice of
the filter would have some influence on the accuracy rate of the PCA in the wavelet domain.
The experiments are designed to test the effect of the choice of using PCA or not, the choice
of wavelet filter, and the depth of decomposition. The performance of the various possible
schemes have been tested for a number of benchmark databases including ORL (also known
as AT&T see http://www.uk.research.att.com/facedatabase.html), and the controlled
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section of the BANCA, [32]. These datasets of face images do not involve significant
variation in illumination. The problem of image quality is investigated in section 6. Next we
present a small, but representative, sample of the experimental results for few wavelet
filters.

Enrolment stage PCA

\ set of

Eigenfaces

k training face multi-stage set of
images DWT feature victors
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Diagram 3.1 Verification scheme.

The ORL Experiments.

¢  Enrolment/Training module There are 40 subjects in ORL. In the first instance, we
split the subjects into two equal groups: Groupl and Group2. For each group we
trained the system with 4 different sets of five images for each subject. These sets
were, respectively, frames 1-5, frames 6-10, even indexed frames and odd indexed
frames. In total, we conducted 8 different training sessions for these groups.

e The Testing Module. In each of the training sessions that consisted of 20 subjects, the
remaining 100 images of the trained subjects as well as 100 impostor images (5
images per subject, selected in the same way as in the training scheme) were used to
test the many-to-one identification schemes.

Chart 3.1, below, contains the test results of experiments that were designed to test the
verification accuracy when the Haar wavelet filter is used to different level of
decompositions. It shows the average accuracy rates for the various identification schemes
measured using different number of eigenfaces (20, 30, 40 and 50) for the schemes that
involve the use of PCA. The results indicate that regardless of the number of eigenvalues
chosen, PCA in the LL subbands outperform the PCA in the spatial domain, and LL3 is the
best performing subband in this case. Moreover, the wavelet LL3 scheme without the PCA
achieves the best performance. Another interesting observation, not explicit in this chart, is
that the accuracy rates for the various training schemes vary widely around the stated
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averages, indicating that accuracy can be improved further by making a careful choice of the
training images for the enrolled subjects.

90%
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Chart 3.1. Identification accuracy for Spatial PCA, Wavelet PCA, and Wavelet-only features

The superior performance of the wavelet-only scheme compared to the other schemes, has
desirable implication beyond the computational efficiency. While most conventional face
recognition schemes require model/subspace training, wavelet-based recognition schemes
can be developed without the need for training, i.e. adding/removing classes do not require
rebuilding the model from scratch.

Jen-Tzung Chien etal ([10]) who used all the 40 subjects of ORL to test the performance of a
number of recognition schemes including some of the wavelet-based ones investigated here.
In those experiments, there were no impostors, i.e. untrained subjects. Thus we conducted
experiments where all the 40 subjects were used for training. We trained the system 4 times
each with a set of 5 different frames and in each case the remaining 200 images (5 frames for
each subject) in the database were used for testing.. On average, all schemes have more or
less achieved similar accuracy rate of approximately 89%. Similar experiments with 35
trained subjects, the rest being impostors, have been conducted but in all cases the results
were similar to those shown above.

Chart 3.2 contains the results of verifications rather identifications. The experiments were
carried out to test the performance of wavelet-based verification schemes, again with and
without PCA. Here, two filters were used, the Haar as well as the Daubechies 4 wavelets,
and in the case of Daubechies 4 we used two versions whereby the coefficients are scaled for
normalisation in the so called Scaled D3/d4. The results confirmed again the superiority of
PCA in the wavelet domain over PCA in the spatial, and the best performance was obtained
when no PCA was applied. The choice of filter does not seem to make much difference at
level 3, but Haar outperforms both versions of Daubechies 4.

The superiority of the PCA in the wavelet domain over the PCA in the spatial domain can
be explained in terms of the poor within class variation of PCA and the properties of the
linear transform defined by the low-pass wavelet filter. The low-pass filter defines a
contraction mapping of the linear space of the spatial domain into the space where LL
subbands resides (i.e. for any two images the distance between the LL-subbands of two
images is less than that between the original images). This can easily be proven for the Haar
filter. This will help reduce the within class variation.
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Verification Results for ORL (Ave. of 10 Experiments)
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Chart 3.2.Verification accuracy for Spatial PCA, Wavelet PCA, and Wavelet-only features

The trend in, and the conclusions from these experiments are confirmed by other published
data. For example, C.G.Feng et al, [33] have tested and compared the performance of PCA in
the spatial domain and in wavelet subbands at different levels for the Yale database. Table
3.2, below, reports the recognition accuracy for the Daubechies 4 filter and confirms our
conclusions. Note that the inter-class separation experiment in [33] can be seen to
demonstrate that the contraction mapping nature of the low-pass filter transformation does
not have adverse impact on the inter-class separation.

Proposed
PCA on PCA on WT PC‘;\]ATOH PCA on WT Method
Method original subband 1 subband 3 (PCAonWT
. subband 2
image Image Imace Image subband 4
& image)
Accuracy 78.78% 75.75% 83.03% 81.18% 85.45%

Table 3.2 ¥. Performance comparison using Yale database

5. Multi-stream face Recognition

A wavelet transformed image is decomposed into a set of frequency subbands with different
resolutions. Each frequency subband gives rise to a different feature vector representation of
the face and has the potential to be used for recognition. The performances of such schemes
vary significantly depending on many factors including the chosen wavelet filter, the depth
of decomposition, the similarity measure, the sort of processing that the corresponding
coefficients are subjected to, and the properties of subband as described at the end of section
3. The fact that identification schemes that are based on the fusion of different biometric
modalities have shown to significantly outperform the best performing single modality
scheme, raises the possibility of fusing different signal representing the same modality.
Moreover, different subbands of wavelet-transformed face images, each representing the

¥ Reproduced from [CGFeng].
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face in different way, makes them perfect candidates for fusion without costly procedures.
Diagram 2, below, depicts the stages of the wavelet based multi-stream face recognition for
3 subbands at level 1, but this could be adopted for any set of subbands at any level of
decomposition.

Enroliment Process
Class 1 Class 2

Training
Images

CWWT on
cropped
faces images

Facial features L—.—:.. ! ! i. . . .

Identification Process i SHL, S,

b so = (St W)+ (SHG X wHL) + (S, Xt

21 21
t 4
DT _
—_— Sz =min (Sz4, 822, 823, ---0 Sz

Face image of unknown subject

Diagram 2. Multi-stream Wavelet face recognition scheme

In this section we shall investigate the viability of fusing these streams as a way of
improving the accuracy of wavelet-based face recognition. We shall establish that the fusion
of multiple streams of wavelet-based face schemes does indeed help significantly improve
single stream face recognition. We have mainly experimented with the score fusion of
wavelet subbands at one decomposition depth. Limited experiments with other level of
fusion did not achieve encouraging results.

The experiments reported here are based on the performance of the multi-stream face
wavelet recognition for databases that involve face images/videos captured under varying
recording conditions and by cameras of different qualities. These databases are the Yale
database, and the BANCA audio-visual database. More extensive experiments have been
conducted on the PDAtabase audio-visual database of videos recorded on a PDA within the
SecurePhone EU-funded project (www.secure-phone.info).

5.1 The Yale database experiments

Identification experiments reported in table 5.1., below, are based on the “leave one out”
protocol. The table contain the performance of 3 single wavelet-based down to level 3 (the
LL3, LH3 and HH3 subbands schemes), the fusion of the three subband streams for a
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selection of fixed weight combinations and for comparison we include results from some of
the best performing face recognition schemes reported in Yang, [34], and Belhuemer et al,
[35]. These results demonstrate that among the single subband streams, the LH3 is the best
performing one. The multi-stream fusion of the three subbands for all but one weight
configuration outperform the best single stream scheme, illustrating the conclusion that the
multi-stream approach yields improved performance. Comparing the results with those
from the state of the art schemes reported in [14] and [26] shows that the multi-steam fusion
of the two single streams LH3 and HL3 subbands outperform all but 3 of the SOTA
schemes. One can predict with confidence that the multi-stream fusing of several subbands
at different level of decomposition would result in significantly improved performance.

Features/ Weights Error
Method LL3 | HL3 LH3 Rate (%)
1 0 0 23.03
Single-stream 0 1 0 14.55
0 0 1 12.73
0 0.4 0.6 9.70
0 0.3 0.7 9.09
0 0.2 0.8 9.70
. 0.1 0.3 0.6 1091
Multistream | o1 | g5 | g5 1091
0.2 0.2 0.6 12.73
0.2 0.3 05 1212
0.2 0.4 0.4 13.33
Eigenface( EF30) 28.48
Fisherface (FF14) 8.48
% ICA 28.48
Yang SVM 18.18
K.Eigenface (EF¢0) 24.24
k.Fisherface (FF14) 6.06
Eigenface (EF30) 19.40
Eigenface
Belhumeur (EF30, w/o 15t 3 EF) 108
et al.l4 Correlation 20.00
(Full Face) Linear Subspace 15.60
Fisherface 0.60

Table 5.1. Fusion Experiments - Yale database

5.2 BANCA database experiments

Experiments reported here are only a small, but representative, sample conducted on the
BANCA database and is limited to the use of the G evaluation protocol, [32]. The
experiments are conducted on the English section of the database which include recording
for 52 subjects. Each subject participated in 12 sessions, each consisting of two short clips
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uttering a true-client text while in the second clip he/she acts as an impostor uttering a text
belonging to another subject. The 12 sessions are divided into 3 groups:

e the controlled group - sessions 1-4 (high quality camera, controlled environment
and a uniform background)

e the degraded group - sessions 5-8 (in an office using a low quality web camera in
uncontrolled environment).

e the adverse group - sessions 9-12 (high quality camera, uncontrolled environment)

For the G evaluation protocol, the true client recordings from session 1, 5, and 9 were used
for enrolment and from each clip 7 random frames were selected to generate the client
templates. True-client recordings from sessions 2, 3, 4, 6, 7, 8, 10, 11, and 12 (9 videos) were
used for testing the identification accuracy. From each test video, we selected 3 frames and
the minimum score for these frames in each stream was taken as the score of the tested
video in the respective stream. In total, 468 tests were conducted. Identification accuracies of
single streams (first 3 rows) and multi-stream approaches for the G protocol are shown in
Table 5.2. Across all ranks the LH-subband scheme significantly outperformed all other
single streams. The multi-stream fusion of the 3 streams outperformed the best single stream
(i.e. the LH subband) by a noticeable percentage. The best performing multi-stream schemes
are mainly the ones that give >0.5 weight to the LH subband and lower weight to the LL-
subband. Again these experiments confirm the success of the multi-stream approach.

Weights Identification Accuracy for Rank n for G test configuration
LL| HL| LH| 1 2 3 4 5 6 7 8 9 10
1.00| 0.00| 0.00| 5855 | 67.95 | 72.65 | 77.14 | 8034 | 8269 | 8462 | 8547 | 8654 | 87.61

0.00| 1.00| 0.00| 56.84 | 6560 | 7222 | 7628 | 7949 | 8226 | 84.83 | 85.68 | 87.18 | 87.82
0.00| 0.00| 1.00| 69.23 | 80.77 | 85.68 | 89.10 | 91.45 | 9252 | 9338 | 9444 | 95.09 | 95.94

020| 020 0.60| 76.28 | 8547 | 8889 | 90.81 | 92.74 | 9338 | 9444 | 9573 | 96.37 | 96.79
020| 030| 050| 76.07 | 8312 | 8846 | 9145 | 93.38 | 9380 | 95.09 | 9530 | 95.73 | 96.15
025| 035| 040| 7415 | 81.62 | 8761 | 8974 | 91.24 | 9231 | 9295 | 9466 | 9530 | 95.30
010 030| 0.60| 76.71 | 85.90 | 89.32 | 92.09 | 93.16 | 93.80 | 94.87 | 9551 | 96.37 | 96.79
010| 020 0.70| 75.00 | 85.68 | 88.89 | 92.74 | 94.02 | 9423 | 9444 | 95.09 | 96.15 | 96.58

Table 5.2 Rank based results for single and multi-stream identification using test protocol G

6. Quality-based Adaptive face Recognition

The performance of most face recognition schemes including those mentioned earlier
deteriorates when tested in uncontrolled conditions when compared to their performance
under normal recording conditions. These effects are often the result of external factors such
as extreme variations in illumination, expression, and occlusion. To deal with varying
recording conditions, most existing schemes adopt normalization procedures that are
applied irrespective of the recording conditions at the time of recording. Such strategies are
known to improve accuracy in adverse conditions at the expense of deteriorated
performance in somewhat normal recording conditions that generate well/reasonably lit
images, and thereby yielding little or no improved overall accuracy. This section focuses on
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the development of adaptive approaches to deal with such variations, whereby the
application of normalisation procedures will be based on certain criteria on image quality
that are detected automatically at the time of recording. We shall describe some quantitative
quality measures that have been incorporated in adaptive face recognition systems in the
presence of extreme variation in illumination. We shall present experimental results in
support of using these measures to control the application of light normalisation procedures
as well as dynamic fusion of multi-stream wavelet face recognition whereby the fusion
weighting become dependent on quality measures.

6.1. QUALITY ASESSMENT MEASURES

Quality measures play an important role in improving the performance of biometric
systems. There has been increasing interest by researchers in using quality information to
make more robust and reliable recognition systems (e.g. [36], [37], [38], [39], [40]). Quality
measures can be classified as modality-dependent and modality-independent. Modality
dependent measures (such as pose or expression) can be used for face biometric only, while
modality-independent measures such as (contrast and sharpness) can be used for any
modality because they do not need any knowledge about the specific biometric. For multi-
modal and multi-streams biometrics, there is a need to combine the various trait/stream
quality measures to build adaptive weighting associated with the matching scores produced
by their individual matchers, ([41], [42]). Quality measures can also be classified in terms of
the availability of reference information: full reference, reduced reference, and no reference
quality assessment approaches, ([43]).

Face image quality measures must reflect some or all aspects variation from a “norm” in
terms of lighting, expression, pose, contrast, eyes location, mouth location, ears location,
blur and so forth, ([44], [45]). New quality measures based on wavelets have been developed
for different biometrics, [46]. Here, we will focus on image quality measures as a result of
variation in lighting conditions and its use for improving performance of face recognition
and dynamic fusion of multi-streams.

UNIVERSAL IMAGE QUALITY INDEX

Ilumination image quality measures must either reflect luminance distortion of any image
in comparison to a known reference image, or regional variation within the image itself. The
universal image quality index (Q) proposed by Wand and Bovik,[47] incorporates a
number of image quality components from which one can extract the necessary ingredients
an illumination image quality measure that fits the above requirements. For two

signals/ vectors X={ [i=12.....N} and Y={;;|i=12..V}, Q(X)Y) is defined as:

40'xy)??
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It models any distortion as a combination of three components: loss of correlation,
luminance distortion, and contrast distortion. In fact, Q is the product of three quality
measures reflecting these three components:
oy 2% 2 O_xo_y
O(X,Y) = .. o ) (2)
2

c.0o 2 2 2
Y@ o+ o xtoy

The luminance quality index is defined as the distortion component:
2%y
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In practice, the LQI of an image with respect to another reference image is calculated for
each window of size 8x8 pixels in the two images, and the average of the calculated values
defines the LQI of the entire image. The LQI is also referred to as the Global LQI as opposed
to regional LQIL when the image is divided into regions and the LQI is calculated for each
region separately, [48].
The distribution of LQI values for the images in the different subsets of the Extended Yale B
database reveal an interesting, though not surprising, pattern. There is a clear separation
between the images in sets 1 and 2, where all images have LQI values > 0.84, and those in
sets 4 and 5 where all LQI vales < 0.78. Images in set 3 of the database have LQI values in
the range 0.5 to 0.95.
The use of LQI with a fixed reference image that has a perceptually good illumination
quality investigated as a pre-processing procedure prior to single-stream and multi-streams
wavelet-based face recognition schemes, for adaptive face recognition schemes with
improved performance over the non-adaptive schemes.
In the case of multi-streams schemes, a regional version of LQI index is used to adapt the
fusion weights, [48]. A. Aboud et al, [37], have further developed this approach and
designed adaptive illumination normalization without a reference image. We shall now
discuss these approaches in more details and present experimental evidences on their
success.
In order to test the performance of the developed adaptive schemes, the relevant
experiments were conducted on the Extended Yale database, [49], which incorporates
extreme variations in illumination recording condition. The cropped frontal face images of
the extended Yale B database provide a perfect testing platform and framework for
illumination based image quality analysis and for testing the viability of adaptive face
recognition scheme. The database includes 38 subjects each having 64 images, in frontal
pose, captured under different illumination conditions. In total number there are 2414
images. The images in the database are divided into five subsets according to the direction
of the light-source from the camera axis as shown in Table 6.1.
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Subsets Angles Image Numbers
1 6<12 263
2 20<6<25 456
3 35<6<50 455
4 60<6<77 526
5 85<6<130 714

Table 6.1 Different illumination sets in the extended Yale B database

Samples of images for the same subject taken from different subsets of the Extended Yale B
database are shown in Figure 6.1. LQI values are respectively 1, 0.9838, 0.8090, 0.4306, and
0.2213.

(c) Subset 3

(d) Subset 4 (e) Subset 5
Fig. 6.1. Sample images from different subsets in the Extended Yale B.

6.2. LQl-based Adaptive illumination normalization for face recognition.

Histogram Equalisation (HE) has been used as a mean to improve face recognition when the
sample image suffers from poor illumination. In extreme cases when the presented sample
is poorly illuminated HE improves the chance of recognition, but there are side effects and
there are evidences that HE does reduce image quality and recognition accuracy in the cases
of well lit images. An analysis of the effect of HE on the recognition accuracy of the various
single-subband wavelet face recognition schemes for the different subsets of images in the
Extended Yale B database has confirmed these conclusions, ([36], [50]). For the three level 2
wavelet subbands (LL2, LH2, and HL2), applying HE yields a reasonable-to-significant
improvement in accuracy for sets 4 and 5; while the accuracy dropped as a result of HE
application for sets 1, 2 and 3. What is also interesting, in this regard, is that as a result of the
application of HE the values of LQI improved significantly for images in sets 4 and 5 but to
a much lesser extent in set 3, while the LQI values in sets 1 and 2 has deteriorated greatly.
The LQI of all images in sets 4 and 5 after HE became > 0.78.

These observation and the remarks, at the end of the section 6.1 provide the perfect
threshold adopted by Sellahewa et al, [36], for the first Image quality based adaptive
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illumination normalisation procedure and the adaptive face recognition. The use of the
threshold of 0.8 for LQI below which HE is applied, has led to improved face recognition in
the different single subband streams as well as in the multi-stream cases. The improvement
was across all subsets but to varying degrees and more significantly in sets 4 and 5, (for
more details see [36]). The identification error rates for some multi-stream wavelet schemes
will be presented and discussed in the last subsection. AHE refers to this LQI-based
adaptive use of HE.

6.3 No-Reference Quality Index

The choice of reference image for image quality assessment is a factor that may affect the
adaptive normalisation procedures and it may not be a simple task. Defining image quality
measures without a reference image is a desirable task and more so for illumination
assessment in relation to face images. The frontal pose of a human face is more or less
symmetric; hence it is easy to design a symmetric version of the LQI without the need for a
reference image. A without a reference luminance quality measure, can be defined in a two
steps process, where in the first step the LQI for the left half of a face image is measured
with reference to its right half and the second step uses a form of histogram partitioning that
aims to measure some aspects of distortion from normal face histogram.

Step 1. The symmetric adaptive local quality index (SALQI). For a face image (I), SALQI is
defined as follows:

1. Divide I into left and right half sub-images, IL. and IR respectively, and let Igr be the
horizontal flipping of Ir.

2. Starting from the top left corner, use equation (3), above, to compute LQI of the 8x8

windows in Irr with respect to the corresponding windows in I, as indicated
below

Left Most
Elock

3. After calculating the quality map {m; =LQIi: i=1,....,N}, a pooling strategy as
indicated in equations (4) and (5) to calculate the final quality-score of the image (I)
as a weighted average of the mj’s:

N
A

0= 4
zi]\il wi
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2 2
where, w;= g(x;,y;),and g(x,y) = o-x + o-y +C ®)

Here, x;=11i andyi =1FRr;i, where IFrjis the mirrored block of 11, of a row. The Cis a

constant representing a baseline minimal weight. The value range of SALQI is [0, 1] and its
equals 1 if and only if the image is perfectly symmetrically illuminated.

Step 2. The Middle Half index (MH). The SALQI provides an indication of how
symmetrical the light is distributed, but it does not distinguish between a well-lit face
images from an evenly dark image. SALQI produces high quality scores for such images. To
overcome this problem we use histogram partitioning: A good quality image normally has a

dynamic range covering the full grey scale and its histogram covers well the middle part.
The MH index is thus defined as:

Middle
H=—" (6)
Bright + Dark
Where, Middle = No. of pixels in the middle range between a Lower bound LB
and an Upper bound UB,
Bright = No. of pixels in the bright region of the histogram greater than

UB,

Dark = No. of pixels in the dark region of the histogram less than LB,
Examining a number of so-called normal images, the LB and UB are set at 63 and 243,
respectively. The MH value ranges from 0 to Max = (M/2), where M is the size of the image.
The larger MH is, the better the quality is. Its maximum value depends on the image
dataset.

6.4 The Symmetric Adaptive Histogram Equalisation (SAHE)

This is another adaptive scheme that uses both the SALQI and MH values to control the use
of HE. Chart 6.1 displays the distribution of image LQI, SALQI and MH indices in the
various subsets of the extended Yale B data base before and after the application of HE,
AHE, SALQI version of AHE, and the full SAHE. For subset 1 and subset 2, we see that the
application of HE results in deterioration in quality, and both AHE and MH maintain the
same original quality. This confirms that for well lit images that exhibit similar illumination
characteristics to those in subsets 1 and 2 (i.e. SALQI > 0.65) no normalisation is needed. The
other 3 subsets benefit, to varying degrees, from pre-processing. But they benefit more from
the full version of SAHE which includes the use of MH.
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Charts 6.1. Distribution of for extended Yale B database before and after various
normalisation.

A. Aboud et al in [37] have tested the performance of an SAHE-adaptive wavelet-based face
recognition scheme in comparison with the corresponding versions with no normalization,
and with the LQI-based adaptive which only used a single threshold (approx. 0.8). In the
corresponding experiments, two different wavelets are used: Daubechie-1 (i.e Haar), and
Daubechie-2 (also known as Daub 4), at three decomposition levels. Again the testing was
based on the Extended Yale B database. The dataset are divided into two groups: training
set and testing set. The training set has (38) images, one image per subject which is chosen to
be (POOA+000E+00). The testing set consists of all the remaining (2394) images, i.e. 63 images
per subject. Different values of SALQI and MH quality indices have been used as thresholds
for SAHE approach. Recognition results, displayed in Figure 6.2, show that the LH2
subband gives the best results under varying illumination and the error rate for the SAHE
with SALQI <0.6,is about 0.30% less than what was achieved by the LQI-based AHE
application. However, SAHE resulted in slightly increased error rates for subset 3 images
while reduced the errors of subset 4 and subset 5. The results for LL2 features are
significantly better, although these error rates are much higher than the errors with LH2.
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1. Calculate the quality scores for the image (I) using ( SALQI ) and (MH)
2. If (SALQI < Thershold1) and (MH < Threshold 2) Then
IF (MH < Thershold3) Then {Apply normalization algorithm on the whole image (I)}
Else if (MH >= Thershold3) Then
a. Apply HE on the left region of image (I) and compute SALQI
b. Apply HE on the right region of image (I) and compute SALQI
c.  Apply HE on left and right regions of the image (I) and compute SALQI
Select the case that has higher SALQI value
End if
3. Else if (SALQI >= Thersholdl ) and ( MH >= Thershold2 ) Then
{Do not apply histogram normalization algorithm on image (I)}
4. End if

Fig. 6.4 Symmetrical Adaptive Histogram Equalization Algorithm

No No
pre-process  [8.89 [18.20 [83.30 |95.82 |97.20 |70.71 pre-process |8.00 [0.00 |30.55 |71.10 [95.24 |50.97
HE, ZN 3.11 [25.88 [70.99 [90.11 |85.57 |64.52 HE, ZN 756 [044 (1758 [26.62 [14.15 [14.31
AHE, LQI < AHE, LQI <

0.80 2.67 [22.81 [69.01 [90.11 |84.03 |63.05 0.80

SAHE, SALQI SAHE,
< SALQI <

0.70 2.67 |7.89 [38.02 [73.76 [76.47 |48.36 0.70 711 |0 12.97 |18.63 |11.48 |10.73
SAHE, SALQI SAHE,
< SALQI <

0.80 2.67 |20.83 |40 73.76 |76.47 |51.22 0.80 711 |0 12.53 |18.44 |12.32 |10.86
SAHE, SALQI SAHE,
< SALQI <

0.90 2.67 |7.89 [38.24 |75.1 |[76.05 |48.57 0.90 711 |0 12,75 |18.63 |11.34 |10.65

(a) Wavelet Haar, suband: LL2 (b) Wavelet Haar, suband: LH2
Setl | Set2 | Set3 | Set4 | Sets | All Setl | Set2 | Set3 | Setd | Set5 | All

No No
pre-process | 8.44 | 14.25 | 80.66 | 95.63 | 97.20 | 69.36 | |pre-process |14.67 | 0 | 35.60 | 66.35 | 89.64 | 49.83
HE, ZN 1.78 1 20.83 | 67.47 | 90.30 | 85.71 | 62.84 HE, ZN 1333 0 | 24.84 |28.33]1835| 17.80
AHE, LQI < AHE, LQI <

0.80 0.89 | 17.54 | 64.84 | 90.87 | 84.45 | 61.36 0.80 1333 0 |[21.76 |22.24]16.11 | 15.19
SAHE, SAHE,
SALQI < SALQI <

0.60 0.89 | 4.61 | 30.99 | 72.05| 77.03 | 46 0.60 1333 | 0 ] 20.22 | 21.48|15.83 | 14.65
SAHE, SAHE,
SALQI < SALQI <

0.70 0.89 | 4.61 | 31.21 | 71.86 | 76.89 | 45.96 0.70 1333 0 | 20.22 | 2148|1583 | 14.65
SAHE, SAHE,
SALQI < SALQI <

0.80 0.89 | 15.79 | 33.19 | 72.05 | 77.03 | 48.57 0.80 1333 0 [ 20.66 |21.48]16.39 | 14.90

(c) Wavelet Daub 4, suband: LL2 (d) Wavelet Daub4, suband: LH2

Table 6.2 Identification error rates of wavelet-based face recognition system
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6.5 Regional LQI and Adaptive fusion of multi stream face recognition

The previous parts of this section demonstrated the suitability of using the AHE and SAHE
as a mean of controlling the application of illumination normalisation procedure (HE) and
the benefits that this yields for single and multi-stream face recognition schemes. However,
in real-life scenarios, variations in illumination between enrolled and test images could be
confined to a region, rather than the whole, of the face image due to the changes in the
direction of the light source or pose. Therefore, it is sensible to measure the illumination
quality on a region-by-region basis. Sellahewa et al, [48], has experimented with a rather
simple regional modification of the LQI, whereby we split the image into 2x2 regions of
equal size, and tested the performance of the Regional AHE based adaptive multi-stream
face recognition. Figure 6.5 and Figure 6.6 present that Identification error rate for the RLQI-
based fusion of (LL2, LH2) and (LH2, HL2), respectively, using 10 different weighting
configurations.

LL2+ LH2 Identification Error Rates (%)

WLL WLH Set 1 Set 2 Set 3 Set 4 Set 5 Total
1.0 0.0 356 | 1754 | 3824 | 7357 | 7591 | 50.13
0.9 0.1 222 | 768 | 3011 | 65.78 | 70.73 | 43.27
0.8 0.2 222 | 329 | 2264 | 57.03 | 6331 | 36.83
0.7 0.3 1.33 044 | 1846 | 462 | 51.26 | 29.38
0.6 04 222 | 000 | 1516 | 36.12 | 38.94 | 22.81
0.5 0,5 3.56 0.00 | 1473 | 2795 | 2717 | 17.51
0.4 0.6 4.89 000 | 1341 | 1996 | 1891 | 13.13
0.3 0.7 5.78 0.00 | 1297 | 1787 | 1457 | 1136
0.2 0.8 8.80 0.00 | 14.07 | 1559 | 11.62 | 104
0.1 0.9 889 | 000 | 1385 | 135 | 1036 | 96
0.0 1.0 | 1067 | 000 | 1495 | 1445 | 1036 | 10.19

Fig. 6.5 Non-Adaptive Fusion (LL, LH)

LH2 + HL2 Identification Error Rates (%)

WLH WHL Set 1 Set 2 Set 3 Set 4 Set 5 Total
1.0 00 | 1067 | 000 | 1495 | 1445 | 1036 | 10.19
0.9 0.1 8.44 000 | 1473 | 1255 | 952 | 9.26
0.8 0.2 7.56 000 | 1275 | 12.74 | 9.38 8.8
0.7 0.3 5.78 0.00 | 11.65 | 11.41 9.8 8.25
0.6 04 533 0.00 9.23 10.65 | 11.76 8.16
0.5 0,5 4.44 0.00 747 | 1065 | 1317 | 8.16
0.4 0.6 3.11 0.00 747 | 1198 | 1849 | 9.93
0.3 0.7 222 0.00 813 | 1578 | 24.37 | 12.58
0.2 0.8 5.33 0.00 923 | 1996 | 3697 | 17.8
0.1 0.9 711 | 0.00 | 1275 | 29.09 | 51.68 | 25.08
0.0 1.0 933 | 088 | 1516 | 39.35 | 61.62 | 31.19

Fig. 6.6 Non-Adaptive Fusion (LH, HL)
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The use of RLQI has obviously resulted in further improvement in accuracy of multi-stream
recognition schemes. With best overall error rate of 9.6 for the (LL2, LH2) fused scheme
achieved when LL2” was given a small weight of 0.1, while best error rate for the (LH2,
HL2) fused scheme is 8.16 achieved when have nearly equal weights. What is more
interesting is that the best performance over the different sets is achieved with different
weighting configurations in both cases. This shows that the wavelet-based multi-stream
recognition scheme, developed previously, has no objective means of selecting fusion
parameters and that it performed differently for face images captured with different lighting
conditions has led to developing of a new adaptive approach to face recognition. This
suggests a dynamic scheme of weighting that depends on image quality. Figure 6.7, below,
presents the results obtained for using quality-based adaptive fusion of two or 3 subbands.
In this case if the LQI of the image is>0.9 then the score for LL2 will be given a 0.7 weighting
otherwise it is given a 0 weighting. The LH2 and HL2 subbands get equal proportion from
the left over.

Identification Error rate %
Feature Subband Subset Subset Subset Subset Subset
All
1 2 3 4 5

50.1
LL2 3.56 17.54 38.24 73.57 75.91 13 |

subband LH2 10.67 0.00 14.95 14.45 10.36 9'
HIL2 9.33 0.88 15.16 39.35 61.62 311

9

+

Adaptive LLIEEi;;I-%L 2.22 0.00 14.73 14.45 10.36 9.34
Furion > 7.47 0.22 1.78 10.65 13.17 7.95

Fig. 6.7 Adaptive Fusion

It is clear that, this dynamic choice of weighting of the scores has led to further
improvement over the non-adaptive static selection of weighting.

7. CONCLUSIONS AND FUTURE WORK

In this chapter we have reviewed face recognition schemes, and in particular we advocated
the use of wavelet-based face recognition. The fact that a wavelet-transform of face image
into a number of different subbands representing the face at different frequency range and
different scales, has been exploited to develope several single-stream face recognition
schemes one for each wavelet subband. The performances of several of these were tested
over a number of benchmark databases, which revealed different error rates, but achieving
comparable/better results compared to PCA based schemes. This approach has the
advantage of being very efficient and being scalable.

We have also shown that one mimicked the success of fusion approach to multi-modal
biometric-based recognition by using multi-stream face recognition that is based on fusing a
number of single streams. Even the fusion of a small (<4) number of single streams has led
to significant improvement in performance.
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Finally, we have demonstrated with a significant degree of success that the challenge of face
recognition in the presence of extreme variation illumination can be dealt with using
adaptive quality -based face recognition. The main advantages of using quality measures
are the avoidance of excessive unnecessary enhancement procedures that may cause
undesired artefacts, reduced computational complexity which is essential for real time
applications, and improved performance.

The work on quality- based adaptive fusion and adaptive wavelet multi-stream wavelet face
recognition will be expanded in the future to deal with other quality issues as well as
efficiency challenges.
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1. Introduction

In this chapter, we consider biometric recognition based on human face. Biometrics became
frequently used in automated systems for identification of people (Jain et al., 2004) and huge
interest is devoted to the area of biometrics at present (Jain et al., 2008; Shoniregun &
Crosier, 2008; Ross et al, 2006).

Along with well-known methods such as fingerprint or DNA recognition, face image
already opened new possibilities. Face recognition has been put into real life by many
companies. It is already implemented in image organizing software (e.g. Google’s Picasa:
http:/ /www.deondesigns.ca/blog/ picasa-3-5-adds-face-recognition/), web applications
(e.g. web photo albums http://picasa.google.com/intl/en_us/features-nametags.html) and
even in commercial compact cameras (e.g. Panasonic Lumix). Passports contain face
biometric data since 2006 (EU - Passport Specification, 2006).

In the area of face recognition, a class represents all images of the same subject (person). The
goal is to implement an automated machine supported system that recognizes well the
identity of a person in the images that were not used in a training phase (an initialization
and training by representative sample of images precede an evaluation phase). Various
applications are possible, e.g. automated person identification, recognition of race, gender,
emotion, age etc. The area of face recognition is well described at present, e.g. starting by
conventional approaches (PCA, LDA) (Turk & Pentland1991; Marcialis & Roli, 2002;
Martinez & Kak, 2001), and continuing at present by kernel methods (Wang, et al., 2008;
Hotta, 2008; Wang et al., 2004; Yang, 2002; Yang et al., 2005). Advances in face recognition
are summarized also in books (Li & Jain, 2005; Delac et al., 2008) and book chapters (Oravec
et al., 2008).

Our aim is to present complex view to biometric face recognition including methodology,
settings of parameters of selected methods (both conventional and kernel methods), detailed
recognition results, comparison and discussion of obtained results using large face database.
The rest of this chapter is organized as follows: In section 2, we present theoretical
background of methods used for face recognition purposes - PCA (Principal Component
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Analysis), LDA (Linear Discriminant Analysis) and SVM (Support Vector Machines).
Section 3 provides information about FERET database (FERET Database, 2001), since large
image set from this database including total 665 images is used in our experiments. The face
images are first preprocessed (normalization with respect to size, position and rotation and
also contrast optimization and face masking). In Section 4, face recognition methods that are
used in the rest of the chapter are discussed. We also propose methods utilizing PCA and
LDA for extracting the features that are further classified with SVM and compare them to
usual approaches with conventional classifiers. Section 5 presents results of recognition
systems in ideal conditions. We show that proposed methods result in excellent recognition
rate and robustness. Also behavior of presented methods is analyzed in detail and best
settings for these methods are proposed. Section 6 is devoted to the influence of input image
quality to face recognition accuracy. For this purpose, we use best parameter settings we
obtained running 600 tests in ideal conditions. Gaussian noise, salt & pepper noise and
speckle noise with various intensities are included. This enables to get insight into face
recognition system robustness. Also equivalence of different types of noise from the
recognition point of view is discussed.

2. Face Recognition Methods and Algorithms

We use different methods in our single-stage and two-stage face recognition systems: PCA
(Principal Component Analysis), LDA (Linear Discriminant Analysis) and SVM (Support
Vector Machines). The role of PCA and LDA falls into feature extraction. We use different
classifiers that are in the form of both simple metrics and more complex SVMs.

2.1 Principal Component Analysis PCA

This standard statistical method can be used for feature extraction. Principal component
analysis PCA (Turk & Pentland, 1991; Marcialis & Roli, 2002; Martinez & Kak, 2001; Haykin,
1994; Bishop, 1995) reduces the dimension of input data by a linear projection that
maximizes the scatter of all projected samples. Let {x;,xX,,..,xy} be a set of N sample

images of dimensionality n belonging to one of ¢ classes {X;,X,,..., X, }. Its covariance (total
scatter) matrix is

Sr zé("k —uxi —p) @
PCA transforms input images to new feature vectors
Y =W'x, k=12,.,N, )
where W e R is a transform matrix with orthonormal columns and z e R” is the mean

image of all sample images. This yields also in dimensionality reduction (m < n ). The scatter

of the transformed feature vectors {y 1/Y2,0 YN } is W'S;W . In PCA, the projection Wopt

maximizes the determinant of the total scatter matrix of the projected samples
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W, :argmvex(det(WTSTW))z [wl,wz,...,wm], ©)
where [wl,wz,...,w N] is the set of n-dimensional eigenvectors (called eigenfaces when
applying PCA to face images) of S; corresponding to the m largest eigenvalues
[41,2,.., 2, ]. Thus, PCA maximizes the total scatter - this is the disadvantage of this
method.

2.2 Fisher’s Linear Discriminant FLD, Linear Discriminant Analysis LDA

Fisher’s Linear Discriminant (FLD) (Marcialis & Roli, 2002; Martinez & Kak, 2001; Bishop,
1995; Belhumeur et al., 1997; Oravec & Pavlovi¢ova, 2004; Duda & Hart, 1973) shapes the
scatter with the aim to make it more suitable for classification. A computation of the
transform matrix results in maximization of the ratio of the between-class scatter and
within-class scatter.

Between-class scatter matrix S and within-class scatter matrix S;,, are defined by

C

Sy = éNi(:ui — ) = ) 4)
S, = EC: (Xk —Hi )(xk —/‘i)T ©)
i=lxpeX;

respectively, where N; is the number of samples in class X; and y; is the mean image of
class X;. The transform matrix W,,, maximizes the ratio of the determinant of the between-
class scatter matrix of the projected samples to the determinant of the within class scatter
matrix of the projected samples:

det(W”s, W)
W _ . =arg max B =|W1,Wy,..., W, 6
opt g W dethsww [ 1 2 n] ()
where [w,,w,,..,w, ] is the set of generalized eigenvectors of S, and S, corresponding

to the m largest generalized eigenvalues {/11 s A geees Ay } :
Sgw; =4 Syw; i=12,...,m (7)

There are at most ¢—1 nonzero generalized eigenvalues, i.e. the upper bound of m is ¢—1
(Belhumeur et al., 1997; Duda & Hart, 1973).

In (Marcialis & Roli, 2002), the eigenvectors of S,y S; are the columns of W,,; and the
authors show that this choice maximizes the ratio det(Sy)/det(S,, ).

In face recognition, the number of sample images N is typically much smaller than the
number of pixels n in each image (so called small sample size problem). This is why

S,y € R™" can be singular. The rank of S, is at most N —c. In (Belhumeur et al., 1997),
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authors solve the problem of singular S, by proposal of alternative criterion to that of (6).
At first, sample images are projected into lower dimensional space using PCA. This results
in nonsingular S, . PCA reduces the dimension of the feature space to N—c, and then
standard FLD (6) is applied to reduce the dimension to c¢-1. This method is called
Fisherfaces. Then W,,,, can be computed as follows:

Wupt = WFTLD le;CA (8)
where
Wpey =arg mvex(det(WTSTW)) )
det(W W/, S, Wy, W)

Wy, = arg max
fLp = ATE Mg det{ W W, Sy Wi, W)

(10)

Optimization for Wpe, is performed over N x(N —c) matrices and optimization for Wy,
is performed over (N-c)xm matrices. The smallest c—1 principal components are
discarded in PCA computation.

It is often said that algorithms based of LDA outperform those based on PCA. LDA is
insensitive to significant variation in lighting direction (Marcialis & Roli, 2002; Belhumeur et
al.,, 1997), and facial expression (Belhumeur et al., 1997). However in (Martinez & Kak, 2001),
authors show that when the training data set is small, PCA achieves better results compared
to LDA and that PCA is less sensitive to different training data sets.

2.3 Support Vector Machines SVM
Support vector machines SVM belong to kernel methods (Muller et al., 2001; Hofmann et al.,
2008) and play a major role in present machine learning algorithms.

Kernel algorithms map data [xl,xz,...,xN]eER” from an original space x into a higher

dimensional feature space F using a nonlinear mapping @ (Muller et al., 2001)
¢:R" > F,x — ¢(x) (11)

An original learning algorithm from original space is used in the feature space. High-
dimensional space increases complexity of a problem; fortunately, it can be solved.
Computation of a scalar product between two feature space vectors can be done using
kernel function k

#(x)-gly)=k(x,y) (12)

Thus, using kernel functions, the feature space does not need to be computed explicitly, only
inner products in the kernel feature space are taken into account. Gaussian radial basis
function, polynomial, sigmoidal, and inverse multiquadrics function are used in arole of
kernel functions. Every linear algorithm that uses scalar products only can implicitly be
executed in high-dimensional feature space by using kernels. Nonlinear versions of linear
algorithms can be constructed in this way (Muller et al., 2001).
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The basic principle of data separation by SVM is demonstrated on a simplified example in
Fig. 1.

SVM accomplishes the task of finding the optimal separating hyperplane by maximizing the
margin between the hyperplane and the support vectors. Dashed lines in Fig. 1 containing
support vectors are parallel with the separating hyperplane and they run through the
samples that are nearest to the separating hyperplane.

The separating hyperplane is defined as

wix+b=0 (13)

where w is vector of weight coefficients and b is bias. The task of finding optimal

separating hyperplane is accomplished by minimizing

wiw+C 24 (14)
1
according to

yi(wai + b)z 1-¢ (15)

where &; is a slack variable that defines tolerance band around support vector and thus

creates so called soft margin. The C variable controls the influence of this tolerance band.

Fig. 1. Separation of data using SVM

Large amount of available papers, e.g. (Wang, et al., 2008; Hotta, 2008; Wang et al., 2004;
Yang, 2002; Yang et al., 2005) indicates intensive use of SVMs and other kernel methods
(kernel principal component analysis, kernel linear discriminant analysis, kernel radial basis
function networks) also in face recognition area.

2.4 Metrics
Mahalinobis (also called Mahalanobis) Cosine (MahCosine) (Beveridge et al., 2003) is
defined as the cosine of the angle between the image vectors that were projected into the
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PCA feature space and were further normalized by the variance estimates. Let vectors w;

and w; be image vectors in the unscaled PCA space (eigenvectors) and vectors s and t
their projections in the Mahalinobis space. Using the fact that variance o7 of the PCA

projections of input vectors to vector w; equals to eigenvalue 4; (4 =o}, where o; is the
standard deviation), the relationships between the vectors are then defined as:

w w;
§;=—21L  p = I (16)

The Mahalinobis Cosine is

s|[t| cos|& -t
SMnhCnsine(wi ’wj): COS(Hst): L(St) = L

el el (17)

DMalzCosin e (Wi ’ W]' ) = 7SMa11Cosin e (W,- ’ W]- )

(this is the covariance between the images in Mahalinobis space).

LDASoft (Beveridge et al., 2003) is LDA specific distance metric. It is similar to the Euclidean
measure computed in Mahalinobis space with each axis weighted by generalized eigenvalue
A (also used to compute LDA basis vectors) raised to the power 0.2 (Zhao et al., 1999):

Dipaso (Wirwj)=zﬂ?'2(wii _wji)2 (18)

i

3. Image database

For our tests, we used images selected from FERET image database (Phillips et al., 1998;
Phillips et al., 2000). We worked with grayscale images from Gray FERET (FERET Database,
2001). FERET face images database is de facto standard database in face recognition
research. It is a complex and large database which contains more than 14126 images of 1199
subjects of dimensions 256 x 384 pixels. Images differ in head position, lighting conditions,
beard, glasses, hairstyle, expression and age of subjects. Fig. 2 shows some example images
from FERET database.

We selected image set containing total 665 images from 82 subjects. It consists of all
available subjects from whole FERET database that have more than 4 frontal images
containing also corresponding eyes coordinates (i.e. we chose largest possible set fulfilling
these conditions from FERET database). The used image sets are visualized in Fig. 3.
Recognition rates are significantly influenced by size of a training set. We used 3 different
sets of images for training - i.e. two, three and four images per subject in the training set.
Two, three or four images for training were withdrawn from FERET database according to
their file name, while all remaining images from the set were used for testing purposes.
Prior to feature extraction, all images were preprocessed. Preprocessing eliminates
undesirable recognition based on non-biometric data (e.g. “T-shirts recognition” or “haircut
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recognition”). Preprocessing includes following basic steps of converting original FERET
image to a normalized image:
¢  Geometric normalization - aligning image according to available coordinates of eyes.
e Masking - cropping the image using an elliptical mask and image borders. In our
experiments we tried two different maskings:
o “face” - such that only the face from forehead to chin and cheek to cheek
is visible
o “BlGface” - leaving more of face surrounding compared to “face” - more
potentially useful information is kept.
e Histogram equalization - equalizes the histogram of the unmasked part of the image.

HRAL2902%
9028292028

Fig. 2. Example of images from FERET database

Gray FERET

frontal view

with eye
coordinates

Big FERET

4 img./subj.
2 img./subj.

164 images

14051 images

Fig. 3. Visualization of subset of images from FERET database used in our experiments

After preprocessing, the image size was 65x75 pixels. Fig. 4 shows an example of the
original image, the image after “face” preprocessing and the image after “BlGface”
preprocessing. All images from Fig. 2 preprocessed by “BlGface” preprocessing are shown
in Fig. 5.
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i‘i e

Fig. 4. Example of original image, image after “face” preprocessing and image after

“BlGface” preprocessing

Fig. 5. Images from Fig. 2 preprocessed by “BlGface” preprocessing

4. Examined Methods for Face Recognition

We examined five different setups of face recognition experiments. They contain both
single-stage and two-stage recognition systems as shown in Fig. 6:
¢ In single-stage face recognition (Fig. 6a), SVM is used for classification directly (i.e.

there is no feature extraction performed).

e For two-stage face recognition setups including both feature extraction and
classification (Fig. 6b - Fig. 6e), we used PCA with MahCosine metrics, LDA with
LDASoft metrics and our proposed methods utilizing both PCA and LDA for feature
extraction followed by SVM for classification. We propose also optimal parameter

setups for the best performance of these methods.

Feature extraction

Classification

1-stapge face
recognition SVM =>
2.stage face PCA MahCos =>
-
= LDA ldaSoft ——»
= rca svm =)
= LA VI =Y

Fig. 6. Methods and classifiers used in our experiments

9
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Last two setups (Fig. 6d) and e)) are our proposed combinations of efficient feature
extraction combined with strong classifier. Fist three setups (Fig. 6a)-c)) are the conventional
methods, presented for comparison with proposed approaches.

All five setups are significantly influenced by different settings of parameters of the
examined methods (i.e. PCA, LDA or SVM). This is the reason we present serious analysis
and proposal of parameter settings in following chapters.

We used CSU Face Identification Evaluation System (csuFaceldEval) (Beveridge et. al., 2003)
and libsvm - A Library for Support Vector Machines (LIBSVM, web) that implement
mentioned algorithms.

5. Face Recognition Experiments and Results in Ideal Conditions

5.1 Single-Stage Recognition

SVM was directly used for recognizing faces without previous feature extraction from the
images (see Fig. 6a)). Input images were of size 65x75 pixels.

In our tests we used SVM with the RBF (radial basis function) kernel

k(xi,xi):exp(—y

"i"‘in)’ r>0 19)

where x;,x; are data points (face images) from original space.

It is important to find optimal parameters y (gamma) and C, because different parameter
setups are suitable for solving different problems. C >0 is the penalty parameter of the error
term used in a determination of a separating hyperplane with the maximal margin in higher
dimensional space by SVM. We used methodology from (Hsu et al., 2008), i.e. parameters
search where the best v-fold cross-validation rate performed on training data suggests also
the best parameter setup. v-fold cross-validation divides the training set into v subsets of
equal size, and sequentially one subset is tested using the classifier that was trained on the
remaining v-1 subsets. Fig. 7 shows example of the graph we used for parameter search -
the dependence of cross validation rate on the parameters C and gamma. The best found
parameters setups for all training sets and the results are shown in Table 1.

More images per subject in the training set result in better cross-validation rate and also
better recognition rate. Difference between face recognition rate using “face” and “BIGface”
preprocessing is noticeable only with 2 images per subject, where the result with “BlGface”
preprocessing is approx. 5,6% worse than with “face” preprocessing.

It is important to point out that it is not possible to find “universal” values of parameters C
and gamma that would lead to the best recognition rates independent of used training set
and preprocessing type.
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Fig. 7. Example of the output graph - dependence of cross validation rate on the parameters
C and gamma for training set with 3 images per subject

training set C 4 cross-valid. | rec. rate
face, 2img/ pers. 0,03125 0,0078125 51,22% 80,04 %
face, 3img/ pers. 128 3,05176E-05 78,86 % 93,79%
face, 4img/ pers. 128 3,05176E-05 86,59% 96,74%
BlGface, 2img/pers. | 0,03125 0,0078125 64,63 % 74,45 %
BlGface, 3img/ pers. 8 0,00012207 83,33% 93,56 %
BlGface, 4img/ pers. 128 3,05176E-05 89,63 % 96,74 %

Table 1. Recognition rate and optimal SVM parameter setups for used training sets

5.2 Two-Stage Recognition Systems

PCA and LDA algorithms are used to reduce the dimension and extract the features from
face images. Using the training set, they produce a transform matrix. For face recognition
purposes, we do not need the whole transform matrix and therefore we truncate first or last
vectors from the transform matrix. The results of recognition are significantly influenced by
parameters “Dropped from front” and “CutOff”.

Dropped from front (DPF) - denotes number of eigenvectors cut from the beginning of
transform matrix (first vectors - vectors belonging to the largest eigenvalues). These
vectors will not be used by image projection to PCA (or LDA) feature space. Reason to
truncate these vectors is based on the assumption that these vectors do not correspond
to useful information such as lighting variations (Beveridge et. al., 2003). Our tests were
performed for “Dropped from front” values 0, 1, 2, 3, and 4.

CutOff (CO) - represents how many vectors remain in the transform matrix. Reason to
truncate last basis vectors (vectors corresponding to the smallest eigenvalues) is to
lower the computation requirements and to eliminate unnecessary information that
correlates with noise - and as such is meaningless for recognizing faces (Beveridge et.
al., 2003). Our tests were performed for CutOff parameter set to 20%, 40%, 60%, 80%
and 100%.
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preprocessing: face Legend: .:Abuvegﬁ% of images recagnized
number of subjects 82 = Above 38% of images recognized
image resolution: 65x75px = Above 30% of images recognized
| 2 img./person in training set | | 3 img./person in training set | | 4 img./person in training setl
PCA-Mahcosine
Dropped from front Dropped from front Dropped from front
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
20,00%| 74.5| 73,8 73,7 754 750 82,8\ 83,11 81,9] 81.9] 811
= | 40,00%| 80.4| 80,2) 800] 788 74,0 82,1] 81,6| 81,1 80,2| 804
3 60,00%| 77 B| 774|776 76Ol 758 JI1 7B 7B B V52
80,00%| 75,0| 74,3 738| 737 743 723|728 718 726 718 84 .6( 84,00 840 84.0] 84.0
100,00%| 67,9| 67,7| 675 67,5 675 £3,3| 68,0| 67,8| 67,1] 66,8 786| 78,6| 78 B| V80| V7.2
max. 80,4 min: 67,5 max 83,1 min: 66,8 max 911 min: 77,2
PCA-SVM
20,00%| 82,4| B2,0] B24| 820/ 804
| 40,00%| 82,0) 824| 816 81,6 816
3 60,00%| 87,2| B6,6| B6,2) B4.6| 850

80,00%
100,00%

80,00%

100,00%

M

91,2

min:

824

max 93,2 min; 804 max 97,6
LDA-LdaSoft
20,00%| 84,8| B3,8| B4,4| B3 4| B3
= | 40,00%| 84.,8) B38| B44| 83.4| B35
3 60,00%| B6,1| 63,7| 56,9| 59,3| 56,5
80,00%| 47.5| 50,3| 51,3] 51,5] 511 82,3| 80,9 80,0| B0 9| 77,3
100,00%)| 34,7| 35,8| 329 33.5] 41,7 47,3 62,1 64,0] 62,3 64,7 G8.5] 72,1 709 79,5 76,6
max. 84,8 min: 32,9 max 93.6 min: 57,3 max 96,7 min: 97,3
LDA-SVM
20,00%| 85,0| B6,0| B4,2| B4 6| 824
i | 40,00%| 85.0) B6,0] B4.2) B4 6| 824
8 60,00%| 87,0 B7 4 86,8| 864

max. 97,1 min: 93,6 max 98,2 min; 95,0

Table 2. Results of experiments for methods PCA+MahCosine, PCA+SVM, LDA+LDASoft,
LDA+SVM with “face” preprocessing (total 300 tests)

Methods utilizing PCA or LDA (Fig. 6b - Fig. 6e) were tested using three training sets with 2,
3 and 4 images per subject. For each method, we tested 25 different parameters DPF and CO
setups on three different training sets, what gives total 75 tests per each method and per
each type of preprocessing (600 tests in total). Results of these tests are shown in Table 2 and
Table 3. The maximal recognition rates are summarized in Fig. 8 and Fig. 9.
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preprocessing: BlGface Legend: = Above 96% of images recognized
number of subjects 82 = Ahove B3% of images recognized
image resolution: 65x75px = Ahaove 80% of images recognized
= selected for noise tests
| 2 img./person in training set | | 3 img./person in training set | | 4 img./person in training set |

Dropped from front

PCA-Mahcosine

Dropped from front Dropped from front

20,00%

Cutoff

836

0 1 2 3 4 0 1 2 3 4 0 1 2 3
20,00%| va.8| 79.0{ 800 782 778 82,1 B28| B3,1| 83.5| 828
= | 40,00%| 83 8| 83 4] 84,2] 84 4] 83,2 83,8 B4.0[ 84 ,0] B4 2| B4 5
S 60,00%| 82,2 80.6| B04| BOG| 796 81,6 816| 814 81,1] 811
80,00%| 7a8| 78.,2| 77.8| 76.8| 764 64| 7a4| 752| 752|748
100,00%| 74 1| 733 727 71.7] 71,3 59,9 69.5] 692| 69,2| B85 81,0/ 8B0.7| B8O 4| 79.5] 78,3
max: 84.4 min: 713  max 84,5 min: 68,5 max 92,9 min:  78.3
PCA-SVM

20,00%
40,00%
60,00%

Cutoff

80,00%
100,00%

ngl=s

94.2

min:

896

max 98,3
LDA-LdaSoft
20,00%| 87,0] B6,2( B58| 85,8| B5 4
i« | 40,00%| 57.0| 86,2 55,6 828 BS4
3 60,00%| 66,5| 63,5 62,1| 59,5 58,7
80,00%| 45,9] 43,5 41,8] 42.7| 41,3 80,4| B0 8| 80,7 ,
100,00%| 30,7| 28,1| 32.3| 298| 345 52,3| 520| 530| 556| 554
max 87.0 min: 291 max 95,9 min: 52,0 max 98,5 min: 60,8
LDA-SVM

max. 98.1 min: 93,8 max 98,5 min:  95.8

Table 3. Results of experiments for methods PCA+MahCosine, PCA+SVM, LDA+LDASoft,
LDA+SVM with “BlGface” preprocessing (total 300 tests)

5.3 Evaluation of Simulation Results

Based on presented experiments, we can formulate several conclusions:

1. More images in the training stage cause better performance of all methods.

2. LDA+LDASoft performs better than PCA+MahCosine, but PCA+SVM is slightly
better than LDA+SVM.

3. The best performing setups of parameters CO and DPF differ using different
preprocessing and number of images per subject in training set. Generally
PCA+MahCosine and LDA+LDASoft perform better for truncating 0-4 first vectors
and leaving 20%-60% of the vectors in transform matrix.
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4. The recognition rate is most significantly affected by setting of the CO parameter - for
PCA+MahCosine and LDA+LDASoft it is better to truncate vectors from the end of
the transform matrix leaving only 20% - 60% of the vectors. Methods PCA+SVM and
LDA+SVM perform better when leaving more (60% - 100%) vectors of the transform
matrix.

5. Results of LDA+LDASoft are more influenced by setting the CO parameter compared
to PCA+MahCosine - especially with only 2 images per subject in the training set,
where the worst recognition rate is around 30% (see Table 2 and Table 3).

6. Using SVM for classification (methods PCA+SVM and LDA+SVM) makes the
recognition rates more stable and less influenced by setting the CO and DPF
parameters (see Table 2 and Table 3) and these methods perform better compared to
simple PCA+MahCosine and LDA+LDASoft - see Fig. 8 and Fig. 9.
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Number of images in training set

Fig. 8. Graph of maximum recognition rates for methods PCA+MahCosine, PCA+SVM,
LDA+LDASoft, LDA+SVM, SVM (left to right) with “face” preprocessing

6. Face Recognition Experiments and Results in Noisy Conditions

In this part of the chapter, we concentrate on the influence of input image quality to face
recognition accuracy. Noise and distortions in face images can seriously affect the
performance of face recognition systems. Analog or digital capturing the image, image
transmission, image copying or scanning can suffer from noise. This is why we study
behaviour of discussed methods in the presence of noise.

We include Gaussian noise, salt & pepper noise and speckle noise. Huge effort in removing
these types of noise from static or dynamic images in the area of face recognition is
documented in the literature, e.g. (Uglov et al., 2008; Reda, & Aoued, 2004; Wheeler et al.,
2007). We use these types of noise with various intensities (various parameters).
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6.1 Types of Noises

Each image capturing generates digital or analog noise of diverse intensity. The noise is also
generated while transmitting and copying analog images. Noise generation is a natural
property for image scanning systems. Diverse types of noises exist. Herein we use three
different types: Gaussian (Truax, 1999), salt & pepper (Chan et al., 2005), and speckle
(Anderson & Trahey, 2006) noises.

100,00% -
W PCAHWahCosine

| PCAHSVM
oo
W LA+
WS

95,00%

90,00%

85,00% 1

Recognition rate

80,00%

75,00%

70,00% -

2irnc.fsubj. Jirng.fsubj. dirng fsubj.
Number of imagesin training set

Fig. 9. Graph of maximum recognition rates for methods PCA+MahCosine, PCA+SVM,
LDA+LDASoft, LDA+SVM, SVM (left to right) with “BIGface” preprocessing

Gaussian Noise

Gaussian noise is the most common noise occurring in everyday life. The Gaussian noise can
be detected in free radio waves or in television receivers. Gaussian noise is produced in
analog images that are stored for a long time.

We studied face recognition with different Gaussian noise intensity. Gaussian noise was
generated with Gaussian normal distribution function which can be written as:

(-p)?

. 202 (20)

1

plx)=—=—=
2zo

where 11 is the mean value of the required distribution and o2 is a variance (Truax, 1999;
Chiodo, 2006).

Noise parameters settings for our simulations were determined empirically. The mean of
Gaussian distribution was set to 0 and we changed the variance. Examples of images
corrupted by Gaussian noise can be seen in Fig. 10. The label g0.01 means that the Gaussian
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noise of variance 0.01 was applied on the image. The same notation is used also in presented
graphs.

Originl g 0.01 . . g 0.09
Fig. 10. Examples of images corrupted by Gaussian noise

Salt & Pepper Noise

Salt & pepper noise is perceived as a random occurrence of black and white pixels in a
digital image. It can be caused by incorrect data transmission or by a damage of already
received data. In CCD and CMOS sensors or LCD displays, the salt & pepper noise can be
caused by permanently turned-on or turned-off pixels. Remaining pixels are unchanged.
Usually, the intensity (frequency of the occurrence) of this noise is quantified as a
percentage of incorrect pixels (Fisher et al., 2003). The median filtering (as a specific case of
order-statistic filtering) is used as an effective method for elimination of salt & pepper noise
from digital images (Chan et al., 2005).

Noise parameter settings for our simulations vary from 4% of noise intensity (0.04) up to the
30% of damaged pixels. The label sp0.04 means, that the salt & pepper noise of intensity 4%
was applied on the image. Examples of images corrupted by salt & pepper noise are shown
in Fig. 11.

Original sp 0.04 sp 0.3
Fig. 11. Examples of images corrupted by 4% and 30% salt & pepper noise

Speckle Noise

This granular noise occurs in ultrasound, radar and X-ray images and images obtained from
the magnetic resonance (Chaillan et al., 2007). The multiplicative signal dependent noise is
generated by constructive and destructive interference of detected signals. The wave
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interference is a reason of multiplicative noise occurrence in the scanned image. The speckle
noise is image dependent. Therefore it is very hard (if possible) to find a mathematical
model that describes the removal of this noise, especially if we expect the randomness of the
input data (Fisher et al., 2003).

Original s 0.03
Fig. 12. Examples of images corrupted by speckle noise

The values which determined intensity of noise in our tests were set empirically. The noise
was applied according to the following equation

S=I+n*I (21)

where [ is the original human face image and # is the uniform distribution of the noise with
zero mean value and variance . For our simulations, variance varied from 0.03 to 0.7. The

label s0.03 means that the speckle noise of variance 0.03 was applied on the image. Presence
of speckle noise in the face image is illustrated in Fig. 12.

For simulation of methods in presence of noise, we use the best parameter settings we
obtained running 600 tests in Section 5, i.e. when the methods worked in ideal conditions.

In order to mimic real-world conditions, we use images not distorted by noise for training
purposes whilst noisy images are used for testing. Such scenario simulates real-world face
recognition conditions.

We concentrate on “BlGface” preprocessed images only, since this preprocessing gives
better results compared to “face” preprocessing (this can be seen when comparing Tables 2
and 3). Parameters for settings of the algorithms (CO and DPF) were empirically obtained
from Table 3. We selected and used only those parameters for which the recognition
experiments were most successful (they are marked by red in Table 3). This was necessary in
order to reduce the number of experiments. Using all possible settings from simulations in
ideal conditions and combining them with three types of noises with all selected parameters
would lead to total 13500 results. Selecting best parameters only lead us to total 540 results.
Obtained results are shown in Fig. 13 - 21 along with brief comments.



Face Recognition in Ideal and Noisy Conditions Using Support Vector Machines, PCA and LDA 141

6.2 Simulation Results for Face Images Corrupted by Gaussian Noise

Simulation results for face images corrupted by Gaussian noise are summarized in Fig. 13 -
15. PCA-MahCosine method is most influenced by increasing the intensity of Gaussian
noise. Results for training sets with 2 and 3 img./subj. look alike - recognition rates decrease
with higher noise. The effect of the noise for training set containing 4 img./subj. is not so
noticeable. Worst results are achieved by PCA-MahCosine method. For training set with 4
img./subj., the results of other 3 methods are almost equal and the recognition rates are
surprisingly high even for higher noise intensities and they do not decrease. For 3
img./subj., the best results come from LDA-SVM method, followed by LDA-LDASoft (from
intensity of noise >0.01). For training set containing 2 img./subj. only, both SVM methods
result in best recognition rates and LDA-SVM is slightly better than PCA-SVM. It is also
interesting to notice that there are some cases, when consecutive increase of noise levels
resulted in better recognition rates.

100,00%
95,00%
90,00%
85,00%
80,00%
75,00%
70,00%
65,00%
60,00%
55,00%
50,00%
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B PCA-Mahcosine M PCA-SVM @ LDA-LdaSoft M LDA-SVM

Fig. 13. Recognition rates of examined methods, Gaussian noise, training set 2 img. / subj.
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75,00%
70,00%
65,00%
60,00%
55,00%
50,00%

B PCA-Mahcosine M PCA-SVM @ LDA-LdaSoft M LDA-SVM

Fig. 14. Recognition rates of examined methods, Gaussian noise, training set 3 img./subj.
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B PCA-Mahcosine M PCA-SVM @ LDA-LdaSoft M LDA-SVM

Fig. 15. Recognition rates of examined methods, Gaussian noise, training set 4 img./subj.

6.3 Simulation Results for Face Images Corrupted by Salt & Pepper Noise

Fig. 16 - 19 show results for face images corrupted by salt & pepper noise. Increasing the
noise level does not have significant effect till intensity 0.2. Decrease of the recognition rate
while increasing the noise intensity is most noticeable for results with 2 img./subj. in the
training set. PCA-MahCosine is again the worst method. Best recognition rates are achieved
by the methods that use SVM and they both achieved almost equal results. For 3 img./subj.,
LDA-SVM was slightly better than PCA-SVM. One can again notice, that in some cases
consecutive increase of noise levels resulted in better recognition rates.

100,00%
95,00%
90,00%
85,00%
80,00%
75,00%
70,00%
65,00%
60,00%
55,00%
50,00%

B PCA-Mahcosine B PCA-SVM @ LDA-LdaSoft B LDA-SVM

Fig. 16. Recognition rates of examined methods, salt &pepper noise, training set 2 img. / subyj.
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Fig. 17. Recognition rates of examined methods, salt &pepper noise, training set 3 img. /subyj.
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Fig. 18. Recognition rates of examined methods, salt &pepper noise, training set 4 img./subyj.

6.4 Simulation Results for Face Images Corrupted by Speckle Noise

Fig. 19 - 21 contains simulation results for face images corrupted by speckle noise. PCA-
MahCosine method achieves worst results. Best results can be achieved by LDA-SVM,; this is
more noticeable for higher noise intensities. For 4 img./subj., the PCA+SVM, LDA+LDASoft
and LDA+SVM methods have almost equal recognition rates. For 3img./subj., the
LDA+LDASoft method is better than PCA+SVM, for 2 img./subj., the PCA+SVM is better
than LDA+LDASoft. For speckle noise, there are not cases when higher noise levels result in
better recognition rates. There was an exception for speckle noise of intensity 0.03 for
training set 3 img./subj., because recognition by PCA-MahCosine method gives better rate
for corrupted images (84.73%) than recognition using the original images (84.5%).
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Fig. 19. Recognition rates of examined methods, speckle noise, training set 2 img. /subj.

100,00%
95,00%
90,00%
85,00%
80,00%
75,00%
70,00%
65,00%
60,00%
55,00%
50,00%

I

B PCA-Mahcosine

A @O
Q'Q 0'0 Q’Q

YYD
A k
§ S ) )

$ N

Ry

B PCA-SYM @ LDA-LdaSoft M LDA-SVM

Fig. 20. Recognition rates of examined methods, speckle noise, training set 3 img./subj.
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Fig. 21. Recognition rates of examined methods, speckle noise, training set 4 img./subj.
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6.5 Equivalence of Different Types of Noise from the Recognition Point of View

After presenting recognition results for different types of noise an interesting question
arises: What is the relationship among different noise types? The concrete values of noise
parameters do not give the answer - a comparison cannot be based on non-related
parameters.

LDA-SVM:  g0.08 sp 0.3 50.6

Fig. 22. Example of the subject, for who all the studied methods (here shown PCA-
MahCosine and LDA-SVM) result in recognition accuracy about 85 % (see Table 4 for exact
noise type and intensity)

One possible solution can be based exactly on results of machine face recognition. This
approach is illustrated in Fig. 22 and in corresponding Table 4. Fig. 22 shows images of the
subject corrupted by different types of noises. The noise parameters are chosen in such
manner that all studied methods (PCA-MahCosine, PCA-SVM, LDA-LDASoft, LDA-SVM)
result in recognition accuracy near 85 %. Table 4 specifies each noise type and its
corresponding parameter. PCA-MahCosine and LDA-SVM methods are included in Fig. 22,
since PCA-SVM and LDA-LDASoft methods are visually similar to LDA-SVM. Fig. 22 thus
shows equivalence of different types of noise from the face recognition point of view of
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PCA-MahCosine and LDA-SVM methods. But this is equivalency of noise types from
machine point of view. It should be even more interesting to compare recognition ability of

machine learning methods and humans.

method | Gaussian | Recognition | Salt&pepper Recognition Speckle | Recognition
noise rate in % noise rate in % noise rate in %
PCA- g0.015 85,16% sp0.15 84,87 % s0.2 83,38%
Mahcosine*
PCA-SVM g0.08 85,76 % sp0.3 86,05% s0.6 85,46%
LDA- £0.09 84,27% sp0.3 86,05% s0.7 85,16%
LdaSoft
LDA-SVM* g0.08 85,16% sp0.3 85,16% s0.6 85,16%

Table 4. Types and intensity of noise resulting in recognition rate about 85 % (for training set
4img./subj.).
*included in Fig. 22

7. Conclusion

We examined different scenarios of face recognition experiments. They contain both single-
stage and two-stage recognition systems. Single-stage face recognition uses SVM for
classification directly. Two-stage recognition systems include PCA with MahCosine metric,
LDA with LDASoft metric and also methods utilizing both PCA and LDA for feature
extraction followed by SVM for classification. All methods are significantly influenced by
different settings of parameters that are related to the algorithm used (i.e. PCA, LDA or
SVM). This is the reason we presented serious analysis and proposal of parameter settings
for the best performance of discussed methods.

For methods working in ideal conditions, the conclusions are as follows: When comparing
non-SVM based methods, higher maximum recognition rate is generally achieved by
method LDA+LDASoft compared to PCA+MahCosine; on the other hand LDA+LDASoft is
more sensitive to method settings. Using SVM in classification stage (PCA+SVM and
LDA+SVM) produced better maximum recognition rate than standard PCA and LDA
methods.

Experiments with single-stage SVM show that this method is very efficient for face
recognition even without previous feature extraction. With 4 images per subject in training
set, we reached 96.7% recognition rate.

The experiments were made with complex image set selected from FERET database
containing 665 images. Such number of face images entitles us to speak about general
behavior of presented methods. Altogether more than 600 tests were made and maximum
recognition rates near 100% were achieved.

It is important to mention that the experiments were made with “closed” image set, so we
did not have to deal with issues like detecting people who are not in the training set. On the
other hand, we worked with real-world face images; our database contains images of the
same subjects that often differ in face expressions (smiling, bored, ...), with different
hairstyles, with or without beard, or wearing glasses and that were taken in different session
after longer time period (i.e. we did not work with identity card-like images).
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We also presented recognition results for noisy images and graphically compared them to
results for non-distorted images. In this way, the insight on face recognition system
robustness is obtained.

Independently on noise type or its parameter, the PCA-MahCosine method gives the lowest
success in face recognition compared to all tested methods. Using other methods, the results
were significantly better. Methods that use SVM classifier achieve globally better results for
each training set. On the other hand, SVM-based methods need a lot of time to search for
optimal parameters, while PCA-MahCosine method is the fastest.

By our work, we continue in our effort to offer complex view to biometric face recognition.
In (Oravec et al., 2008) besides detection of faces and facial features, we presented feature
extraction methods from face images (linear and nonlinear methods, second-order and
higher-order methods, neural networks and kernel methods) and relevant types of
classifiers. Face recognition in ideal conditions using FERET database is contained partly in
(Oravec et al., 2009) and in this chapter.

Our work on presented methods now further continues in evaluating their sensitivity and
behavior in non-ideal conditions. First our contribution to this area which includes presence
of noise is covered in this chapter. Our future work will comprise partially occluded faces
and also faces extracted from static images and/or video streams transmitted with errors or
loss of data, where some parts of face image are missing (block or blocks of pixels) or an
error-concealment mechanism is applied prior to recognition (Pavlovi¢ova et al., 2006; Polec
et al., 2009; Marchevsky & Mochnéag, 2008).

Our future work will also be focused on a psychological experiment trying to find
relationship for mentioned types of distortions from the point of view of recognition ability
of humans and machines (as an extension of the aspect of noise for machine recognition that
is outlined in section 6.5).
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1. Personal Identification

For thousands of years, humans have instinctively used some physical characteristics (such
as face, voice, posture, etc.) to recognize each other. About half the 800, A. Bertillon, chief of
criminal identification section of the Paris police, plans to use some measures of the human
body (height, length of arms, feet, fingers, etc.) to identify those responsible crimes. Towards
the end of the nineteenth century, this original idea was further developed through the
discovery (due studies F. Galton and E. Henry) the distinctiveness of fingerprints: they
uniquely identify a person. Today, in full digital era, huge numbers of people use individual
recognition techniques based on the identification of human characteristics, not only in
justice but in civil and military applications. In fact, the only way to conclusively identify an
individual is to recognize the personal characteristics. These are defined biometric features
and, the technology behind this identification is called Biometric. The term Biometric, from
the greek bios (life) and meters (measure), in computer sense, means the automatic
identification or verification of the identity of a person based on physical characteristics
and/or behavioral (CNIPA, 2004).
Biometric feature is described as a physiological or behavioral characteristic that can be
measured and subsequently identified to confirm the identity of a person. We can then
divide the biometrics in:

e physical biometric: it is that based on data derived from measurements made on a

person's physical characteristics such as iris, fingerprint, facial features, hand or other;
e  Dbehavioral biometric: it is that based on aspects linked to behavioral characteristics
such as, for example, the issue of voice, dynamic signing, or the type of gait.

As each biometric process starts with a preliminary phase called "enrollment" in which,
generally, the person must provide the biometric system, through a sensor, its characteristic
physical and behavioral, which is then converted into a mathematical model (template), two
operating modes of biometrics are:
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®  1:1 (one-to-one) for which the generated data by the biometric sensor are compared
with a single template, creating, so, a verification process (Verification);

" 1: N (one-to-many) for which data are compared with a set of templates contained in a
file, realizing, so, a process of identification (identification).
It is essential to emphasize that in biometric field two are terms usually used:
- Physical access: procedure for establishing ownership of the person entering a room,
building area or area;
- Logical access: procedure for establishing ownership of the subject to make use of a
computer resource.
For example, an employee of a firm could enter the office (physical access) via a biometric
check between his physical characteristic (such as a fingerprint) and that deposited on a
smart-card (process 1:1). To gain access to his computer (logical access) the same employee's
fingerprint could be compared with that of authorized users, stored in archive (1: N) (Bossi,
2002; Maio, 2004).

1.1 Biometric Process

Biometric systems are characterized by a process of using that, in principle, it can be traced
to the comparison operation of a physical characteristic or behavioral acquired by a person,
with one or more of the same samples previously recorded. Both the recording that the
comparison is made according to the following sequence of steps (CNIPA, 2004):

v' Stage of Registration (Enrollment): in the process of enrollment, the user provides the
biometric system a physical or behavioral feature by a capture device (such as a
fingerprint scanner or a video camera). The sample is processed to extract the distinctive
informations, which form the so-called template that can be defined as a mathematical
representation of biometric data. The template consists essentially of a sequence of
numbers from which it is generally impractical his reconstruction and it is, theoretically,
comparable to a user’s “physical password”.

At the end of the enrollment process, the template is registered. The registration is the
most difficult step because of the importance of the choices to be made. First is necessary
to identify as to save the template: because of the sensitivity of data and the possible
impact on privacy, the information should be encrypted. Second is indispensable
determined where to store and where to save the model, for example on a chip card in a
database, a local workstation or directly on the capture device.

The different possibilities lead to restrictions: if a system that must handle a large
number of users is used, the latter two types are not applicable to matters concerning the
physical size and required computing power. By using a database, is important to
consider that the data could be stolen and used in a manner not acceptable. Saving in a
chip can be a good solution; however, is necessary to sign digitally the saved template
and to apply security techniques which take into account the fault-based attacks (Bossi,
2002);

v Verification step: During the verification process, the acquisition of the sample and
extraction of the template are made as before. The latter is compared with that already
acquired to obtain both an authentication and recognition.

v' Authentication phase: if the objective is the subject's authentication , the biometric system
attempts to provide an answer to the question "The person is who he claimed to be?",



Pseudo 2D Hidden Markov Model and Neural Network Coefficients in Face Recognition 153

making a comparison 1 to 1 between the template of the subject and the reference
template stored in the archive (or on a smart card). Authentication requires that the
identity is provided, for example, typing a username or a pin and the output of the
comparison algorithm is a score, which is positive if it occurs above a certain threshold,
and negative if below this threshold. The threshold for comparison is an adjustable
parameter of the system (CNIPA, 2004).

v Recognition/identification phase: in this case, the system determines the user's identity, or
attempts to provide an answer to the question "Who is the user?", making a lot of
confrontations with the biometric data models registered in its archives. When the search
algorithm produces as output a score higher than the so-called "threshold", is reported a
match (called "matching" or "hit") (CNIPA, 2004). Authentication is generally a
cooperative process (ouvert), while identification may also be a poster or even hidden
from users (covert). While in the cooperative process the subject voluntarily manifest his
own identity, usually to go to a place (physical access) or use a service (logical access); in
the case of hidden biometrics, the physical and/or behavioral characteristics are
matched, without the person knows, with those stored in an archive.

v Performance Mesurement: in this performance of a biometric system are evaluated
according to three parameters: size, speed and accuracy (Bossi, 2002). The size of the
model have relevance to extract device storage used, consider, for example to smart-card
having a memory limited. The speed with which gives a positive or negative response is
discriminating about the possible use in identification rather than verification. Accuracy
is a rather critical parameter to determine because of the approach probabilistic
biometric systems adopted in the choice. The types of errors that can make a biometric
system are essentially two: False acceptances, an unauthorized user is authenticated by
the system because its footprint is quite similar to a model previously filed; False
discards, an authorized user is rejected by the system because its footprint is not
sufficiently similar to the model with which it was compared.

1.2 Biometric Tecniques

Currently the efforts of the scientific community and industrial research are oriented to the
study of those variables that permit reliable identification of individuals. Biometric
identification techniques are indeed aimed at identifying a person based on its unique
physiological or behavioral characteristics, difficult to alter or simulate. The most common
evaluate the follow features:

e  Fingerprints;

o Iris

e  Retina vasculature

e  Dynamics of attaching the signature

e Face

e Hand geometry

e Vocal timbre

e  Multiple biometrics
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1.3 Face Recognition

The recognition of facial features is perhaps one of biometric technologies more fascinating
and that users consider psychologically less repulsive. System for face recognition is based
on the physical characteristics of the face and is then the closest, in theory, to the human
concept of “personal recognition”. The enrollment usually takes a few seconds that are
required to frame more static images of the face. Some systems can classify the user from
multiple angles obtaining a three dimensional model of the face. This last, according to the
different acquisition modes, varying in size from 100 to 3,500 byte (CNIPA, 2004). The user’s
acceptance of the feature based biometric recognition is generally high, since the natural and
not invasive nature of the acquisition method. The sensor’s prices may also be in the range
of the hundreds euro’s for logical access and personal computer systems, but they can
remarkably increase for more sophisticated systems. Moreover the face recognition
biometric technique has the advantage to be low invasiveness (no physical contact) and to
provide the possibility of acquiring a distance a subject to recognize. Usually the first step of
any fully automatic system that analyzes the information contained in faces, e.g. identity
verfication, is the Face Detection. Face detection is concerned with finding whether or not
there are any faces in a given image (usually in gray scale) and, if present, return the image
location and content of each face.

1.3.1 Face Recognition Phases

In general, facial recognition can be decomposed into four phases (Medugno et al., 2007):

=  Pre-processing: This means ensuring that the image which is applied to the recognition
process meets certain required standards: for such that the face is located in the center
of the image and provided part of the same; that the background satisfies certain
constraints, and so on. Usually this phase is done by sampling equipment designed to
image through mechanisms that tend to prevent the user from providing distorted
images: an example may be the sensors necessary to capture the image when the
subject is an acceptable distance.

= Phase segmentation or localization: is the exact location of the face or certain parts of it.
This phase arises from the need to characterize, through some characteristic features,
the face of a subject.

= Feature Extraction Phase: maybe it is the core of the whole face recognition process. A
feature it's a characteristic useful for distinguish a face from another. It can be
extracted from the image through different kind of processes. Usually, higher is
amount of extracted features, the higher is the capacity of discrimination between
similar faces. Some interesting features are, for example, the eyes or hairs color, the
nose or the mouth shape. Those features are usually referred as locals because they
refer to a particular and restricted area of the image.

= Recognition Phase: once the image is associated with an array of values, the recognition
problem reduces itself to a widely studied problem in the past literature: the main part
of those is then mainly related to the features extraction. The recognition problem can
be divided into three phases: deciding over which features the recognition will be
done; automatic extracting the chosen parameters from the face digitalized image;
classifying the faces over the acquired parameters base.
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2 State of art of Two - Dimensional Face Recognition

The efforts of researchers over the past 30 years have resulted in many sophisticated and
mature 2D face recognition algorithms. In this section it is represented a brief description
recurring methods existing in literature for face recognition.

The Principal Component Analysis (PCA) is one of the most successful techniques that have
been used in image recognition and compression. PCA is a statistical method under the
broad title of factor analysis. The purpose of PCA is to reduce the large dimensionality of the
data space (observed variables) to the smaller intrinsic dimensionality of feature space
(independent variables), which are needed to describe the data economically. The PCA
techniques consist of: eigenfaces in which the face images are projected onto a features space
that best encodes the variation among known faces images, that is use a nearest neighbor
classifier (Turk & Pentland, 1991), (Craw & Cameron, 1996); feature-line based methods,
which replace the point-to-point distance with the distance between a point and the feature
line linking two stored sample points (Li & Lu, 1999); Fisherfaces (Swets & Weng, 1996;
Belhumeur et al., 1997; Zhao et al., 1998), which use Linearr/Fisher Discriminant Analysis
(FLD/LDA) (Liu & Wechsler, 2000); Bayesian methods, which use a probabilistic, distance
metric (Moghaddam & Pentland, 1997); and SVM methods, which use a support vector
machine as the classifier (Phillips, 1998). Utilizing higher-order statistics, Independent
Component Analysis (ICA) is argued to have more representative power than PCA, and
hence may provide better recognition performance than PCA (Bartlett et al., 1998). Being
able to offer potentially greater generalization through learning, neural networks/learning
methods have also been applied to face recognition. One example is the Probabilistic
Decision-Based Neural Network (PDBNN) method (Lin et al., 1997) and the other is the
evolution pursuit (EP) method (Etemad & Chellappa, 1997).

The category of feature based (structural) matching methods, using the width of the head,
the distances between the eyes and from the eyes to the mouth, etc. (Kelly, 1970), or the
distances and angles between eye corners, mouth extrema, nostrils, and chin top (Kanade,
1973). More recently, a mixture-distance based approach using manually extracted distances
was reported (Manjunath et al., 1992; Cox et al., 1996). Without finding the exact locations of
facial features, Hidden Markov Model (HMM) based methods use strips of pixels that cover
the forehead, eye, nose, mouth, and chin (Samaria & Young, 1994), (Samaria, 1994; Nefian &
Hayes III, 1998). (Nefian & Hayes III, 1998) reported better performance than (Samaria, 1994)
by using the KL projection coefficients instead of the strips of raw pixels. One of the most
successful systems in this category is the graph matching system (Wiskott et al., 1997),
(Okada et al., 1998) which is based on the Dynamic Link Architecture (DLA). Using an
unsupervised learning method based on a Self Organizing Map (SOM), a system based on a
convolutional neural network (CNN) has been developed (Lawrence et al., 1997).

Moreover, in the hybrid method category, we will briefly review the modular eigenface
method (Pentland et al., 1994), an hybrid representation based on PCA and Local Feature
Analysis (LFA) (Penev & Atick, 1996), a flexible appearance model based method (Lanitis et
al., 1995), and a recent development (Huang et al., 2003) along this direction. In (Samaria,
1994), the use of hybrid features by combining eigenfaces and other eigenmodules is
explored: eigeneyes, eigenmouth, and eigen-nose. Though experiments show slight
improvements over holistic eigenfaces or eigenmodules based on structural matching, we
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believe that these types of methods are important and deserve further investigation. Perhaps
many relevant problems need to be solved before fruitful results can be expected, e.g., how
to optimally arbitrate the use of holistic and local features.

Many types of systems have been successfully applied to the task of face recognition, but
they all have some advantages and disadvantages. Appropriate schemes should be chosen
starting from the specific requirements of a given task. Most of the systems reviewed here
focus on the subtask of recognition, but others also include automatic face detection and
feature extraction, making them fully automatic systems (Moghaddam & Pentland, 1997;
Wiskott et al., 1997; Lin et al., 1997).

3. Artificial Neural Network

An artificial neural network is a system that tries to reproduce the operation of biological
neural networks or, in other words, is an emulation of the biological neural system. This
approach give the chance of performing tasks that a linear program is not able to do
exploiting its capability of learning with no needs of writing new code lines. These
advantages have a cost. They need a good training to operate correctly and their computing
time can be high for large Neural Networks. According to what has been said, an Artificial
Neural Network is an adaptive nonlinear system that learns to perform a function from
data. Adaptive means that the system parameters are changed during operation, normally
called the training phase. After the training phase the Artificial Neural Network parameters
are fixed and the system is deployed to solve the problem at hand (the testing phase). The
Artificial Neural Network is built with a systematic step-by-step procedure to optimize a
performance criterion or to follow some implicit internal constraint, which is commonly
referred to as the learning rule. The input/output training data are fundamental in neural
network technology, because they convey the necessary information to "discover" the
optimal operating point. The nonlinear nature of the neural network processing elements
(PEs) provides the system with lots of flexibility to achieve practically any desired
input/output maps. In the case of supervised Neural Networks, in order to train an ANN,
an input is presented to the neural network and a corresponding result is set at the output.
The error is the difference between the desired response and the actual system output. The
error information is fed back to the system so that it can adjust its parameters in a systematic
way, following the adopted learning rule.

The process is repeated until the performance is acceptable. It comes clear that the
performances of the trained Neural Network would be heavily influenced by the dataset
that was used for the training phase. If it does not cover a significant portion of the
operating conditions or if they are ambiguous, then neural network technology is probably
not the right solution. On the other hand, if there is plenty of data and the problem is poorly
understood to derive an approximate model, then neural network technology is a good
choice. This operating procedure should be contrasted with the traditional engineering
design, made of exhaustive subsystem specifications and intercommunication protocols. In
artificial neural networks, the designer chooses the network topology, the performance
function, the learning rule, and the criterion to stop the training phase, while the system
automatically adjusts the parameters.

Thus it is difficult to bring a priori information into the design and, when the system does
not work properly, it is also hard to refine the solution in a following step. At the same time,
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ANN-based solutions are extremely efficient in terms of development time and resources,
and in many difficult problems artificial neural networks provide performance that is
difficult to match with other technologies. At present, artificial neural networks are
emerging as the technology of choice for many applications, such as pattern recognition,
prediction, system identification, and control.

When creating a functional model of the biological neuron, there are three basic components
of importance. First, the synapses of the neuron are modelled as weights. Operating in this
way, the strength of the connection between an input and a neuron is noted by the value of
the weight. Inhibitory connection will have negative weight values, while positive values
designate excitatory connections. The next two components model the actual activity within
the neuron cell. An adder sums up all the inputs modified by their respective weights. This
activity is referred to as linear combination. Finally, an activation function controls the
amplitude of the output of the neuron. An acceptable range of output is usually between 0
and 1, or -1 and 1.

Mathematically, this process is described in the Fig. 1:

Fixed input xp =+ 1

Xp O— Wi = b (bias)

Activation
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Output
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Input Synaptic Threshold
signals Weights

Fig. 1. Artificial Neural Network Process

From this model the interval activity of the neuron can be represented as:
»

U = /:lekij @

The output of the neuron, yk, would therefore be the outcome of some activation function
on the value of vk.

The activation function is functions that compel the output of a neuron in a neural network
inside certain values (usually 0 and 1, or -1 and 1). In general, there are three types of
activation functions, denoted by ®(). First, there is the Threshold Function which takes on a
value of 0 if the summed input is lower than a certain threshold value (v), and the value 1 if
the summed input is greater than or equal to the threshold value.
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Secondly, there is the Piecewise-Linear function. This function too admits values of 0 or 1
as input, but can also take on values belonging to that interval, depending on the
amplification factor in a certain region of linear operation.
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Thirdly, there is the sigmoid function. This function can range between 0 and 1, but it is
also sometimes useful to use the -1 to 1 range. An example of the sigmoid function is the
hyperbolic tangent function.

p(v)= tanh(gj = %EE:Z; 4)

The pattern of connections between the units and the propagation of data are clustered into
two main class:

e Feed-forward neural networks, where the data flow from input to output units is
strictly feedforward. The data processing can extend over multiple layers of units,
but no feedback connections are present, that is, connections extending from
outputs of units to inputs of units in the same layer or previous layers.

e  Recurrent neural networks that do contain feedback connections. Contrary to feed-
forward networks, the dynamical properties of the network are important. In some
cases, the activation values of the units undergo a relaxation process such that the
neural network will evolve to a stable state in which these activations do not
change anymore. In other applications, the change of the activation values of the
output neurons are significant, such that the dynamical behaviour constitutes the
output of the neural network.

4. Hidden Markov Models

The Hidden Markov Models are stochastic models which provide a high level of flexibility
for modelling the structure of an observation sequence. They allow for recovering the
(hidden) structure of a sequence of observations by pairing each observation with a (hidden)
state. Hidden Markov Models (HMMs) represent a most famous statistical pattern
recognition technique and can be considered as the state-of-the-art in speech recognition.
This is due to their excellent time warping capabilities, their effective self organizing
learning capabilities and their ability to perform recognition and segmentation in one single
step. They are used not only for speech and handwriting recognition but they are involved
in modelling and processing images too. This is the case of their use in the face recognition
field.
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4.1 One - Dimensional Hidden Markov Models
The HMM are characterised by two interrelated processes (Samaria & Young, 1994):

1.

2.

An unobservable Markov chain with a finite number of states, a state transition
probability matrix and an initial state probability distribution.
A set of probability density functions for each state.

The elements that characterised a HMMs are:

>

N = | S| which represent the number of states of the model. Where S is the set of
the states and can be shown as S = {s3,s5,...,5,), where s; is one of the states that can
be employed by the model. To describe the system, T observation sequences are
used, where T is the number of observations. The state of the model at time ¢ is
givenby q;in S, 1<t<T;

M = | V]| is the number of different observation symbols. If V is the set of all
possible observation symbols (also called the codebook of the model), then V =
{v1,02,....,0Mm%

A = {ay} is the state transition probability matrix, where a;; is the probability that the
state i became the state j:

a;i=p(q=s; | qr1=15i) (5)

where 1 <i;j< N, with constraint 0 < a;; < 1, and Zw:ﬂf] =1, 1<i<N

j=1
B={bj(k)} the observation symbol probability matrix, bj(k) is the probability to have
the observation k when the state is j:

bik) =p (Or=vi | q:=S) (6)
where1 < j < N; 1 <k £M; and O;is the observation symbol at time ¢.
IF= {7, . 7} is the initial state distribution:
m=p (g=5) @)

where I<j<N.
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Using a shorthand notation, a HMM is defined by the following expression:
A= (A,B,n). ®)

The training of the model, given a set of sequences {Oj}, is usually performed by means of
the standard Baum-Welch re-estimation, which determines the parameters (A, B, n) that
maximize the probability P({Os} | 4).

4.2 Pseudo Two-Dimensional Hidden Markov Models
Pseudo Two-Dimensional Hidden Markov Models (P2D-HMMs) are an extension of the
one-dimensional HMMs, applied to two-dimensional data. Fig. 3 shows a general schema of
P2D-HMMs, which are also known as planar HMMs, that are stochastic automata with a
two-dimensional arrangement of the states. A planar HMM can be seen as a vertical One-
dimensional HMM that links together an indefinite number of super-states.

Superstate 1

Superstate 2

Superstate 3

Superstate 4 Superstate 5

Fig. 3. General schema of a Pseudo Two-Dimensional Hidden Markov Model

Considering that a facial image can be subdivided into stripes, thus allowing the
implementation of P2D-HMMs for modelling this kind of elaboration. Each stripe is aligned
to one of the super-states of the P2D-HMMs, resulting in a horizontal warping of the
pattern. Furthermore, the stripes can be vertically disposed, within the super-state, in a
manner that the pattern related to the stripe result to be aligned to the vertical HMM states.
In a similar wayj, it is possible to model any kind of data that can be considered represented
by means horizontal stripes. The recognition process achieved by means of P2D-HMMs is
pretty similar to the recognition process made with one-dimensional HMM as it was
showed by Samaria (Samaria, 1994). The P2D-HMMs can be trained using the standard
Baum-Welch algorithm and the recognition step can be carried out with the standard Viterbi
algorithm.

The super-states is the model of the sequence of rows in the image and the linear 1D-HMMs,
which are inside the super-states, are used to model each row (Nefian, 1998). The states
sequence in each rows is independent from the states sequences of neighbouring rows.



Pseudo 2D Hidden Markov Model and Neural Network Coefficients in Face Recognition 161

Figure 3 shows the particular structure of the P2D-HMM that we use: the schema is 3-6-6-6-
3, where the 1st and the 5t super-states are constituted by a left to right 1D-HMM with 3
states, while the 2nd, the 3rd and the 4th super-states are constituted by a left to right 1D-
HMM with 6 states.
The formal representation of a Pseudo Two-Dimensional Hidden Markov Models can be
given by the expression A ={4,4,B,11} where,
> A= {/1“),/1‘2’,.,.,/1‘”)} is the set of N possible super-states in the model.
> A is a 1IDHMM super-state, whose parameters are 4 = {s‘,V,AI ,ﬂ(l)}
In different words,
= 5= {sl‘ ,52‘,,,,,5N‘} is the set of Ni possible states of super-state Ai.
" V={VI ViV, } is the output alphabet (common to all super-states). In
other words, for any ¢, there exist [ such that o, = vi.
= A= {“mi }kz:1...Nf is the set of transition probabilities within super-state Ai.

= B= {bk’(l)}kzl__N,H__L is the set of output probabilities of super-state Ai.
" z= {;zl",;zz",..., 7y }g is the set of initial state probabilities of super-state Ai.
. A = {a” } ., s the set of transition probabilities through the states of the

P2DHMM.
. 1‘1:{;;1 A ,‘,_,;;N} is the set of initial super-state probabilities of the
P2DHMM.
Similarly to the one-dimensional model, the Pseudo two-dimensional Hidden Markov

Models will associate a state sequence Q to an observation sequence O = {ow } oy The

state sequence Q will consist of two levels. Q is primarily a super-state sequence
Q:{ L ,Qy s Qy } indicating the super-state corresponding to the sequence of lines of

observation O= {O1 ,0, ,..,0y } Each state line Q, is composed itself of states
Ty (Qy = {qu B R }), each of them indicating the state of the corresponding IDHMM at a
position (x; y).
A formal expression of the parameters of a P2DHMM can be given as follows:

»  Super-state transition probability: 4, = P[qy =V1q,, :ﬂ"J.
Initial super-state probability: 7, = P[Q] =X A].
State transition probability of super-state 4 :a'y = P[q'W =si1q,,, =5 J

>
>
>  State output probability of super-state 1 :b';(1)= Pl".w =v,1q,, =5 J
>

Initial state probability: 7/ = Pl‘m =s!| ,1’].

4.3 Hidden Markov Models applied to Face Recognition

The HMM can be applied to image processing. In consideration of the fact that the image
can be seen as a two dimension matrix of data, according to Samaria, space sequences must
be considered (Samaria, 1992). The idea is again to exploit the vertical sequential structure of
a human face. A sequence of overlapping horizontal stripes are built on the image and the
sequence of these stripes is labeled by means of a IDHMM. Considering frontal face images,
the facial region can be considered as the sum of 5 regions: forehead, eyes, nose, mouth and
chin (Nefian & Monson, 1998).
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1  Forchaed

2 Eyes

3 Nose -,in o0 .-;iu efs'. -;.'m
4 Mouth

5 Chin

Fig. 4. The significant facial regions

Each of these facial regions (facial band) will correspond to a state in a left to right 1D
continuous HMM. The Left-to-right HMM used for face recognition is shown in the
previous figure. To recognize the face k the following HMM has been trained:

MEk) =(A(k), B(k), p(k)) )

The HMM should be trained for each person that we want to recognize subsequently. The
HMM training, that equals to an enrolment operation for every subject of the database,
requires a grey scale image of the face of each person. Each image of width X and height Y is
divided into overlapping blocks of height L and width W. The amount of overlap between
bounding blocks is M.

T

Fig. 5. Extraction of overlapping blocks from the face

The number of blocks extracted from each face image and the number of observation vectors
T are the same and are given by:

T= (r-1 +
(L-M)

! ©)
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The system recognition rate is significantly affected by the parameters M and L that, for this
reason, should be chosen accurately. Increasing the overlap area M can significantly increase
the recognition rate because it allows the features to be captured in a manner that is
independent of their position along the vertical axis. The choice of parameter L is more
delicate. An insufficient amount of information about the observation vector could arise
from a small value of the parameter L while, on the contrary, large values of L are
dangerous as the probability of cutting across the features increase. However, as the system
recognition rate is more sensitive to the variations in M than in L, M < (L -1) is used.

5. The System Proposed

The system for face recognition proposed, showed in the figure below, is an hybrid system
as showed built as a cascade connection of two different systems: an Artificial Neural
Network, existing in literature (Bevilacqua et al., 2006), and different representation of P2D-
HMMs.

[ st weedoad Sl ~lojx]

fis todfcs Vieskza [neersa Formato 2

Dl=ldl SR #f flijal-| %

The Propsed Hybrid System

0 10300 £ipoZ? -69979.179538

(Back ’J’r':,/;:;znlinln ]_’[ Pseudo ZDH'MM']

27-3.bmp

Fig. 6. The proposed hybrid system.

The system’s input is an image of a person that must be recognised and the output is its

identification with the corresponding rate of recognition. The experiments will be

performed on a database obtained by the combination of the Olivetti Research Laboratory

database (Samaria & Harter, 1994), and other profiles photos of persons disguised with dark

glasses or bandage. These images are ”.bmp” files in grey scales of 92x112 pixels.

The hybrid schema was built executing the following steps:

1. Training and saving of Artificial Neural Network;

2. Transformation of photos in HTK format;

3. Training of different P2D-HMM structures, and identification of the Validation Set
subjects, for control a proper training of system;

5.1 Training and Saving of Artificial Neural Network

The considered faces are sequenced in observation windows, according to the Samaria
model already described in the previous section, where the number of blocks extracted from
each face image equals the number of observation vectors T, and is obtained from Eq. 9.
Table 1 collects the values of the parameters for the observation windows after the
manipulation operated by this system.

X = width photo = 92 pixels T = number of blocks for photos = 103

Y = height photo = 112 pixels XxY = photo dimension =10304 pixels

L = height block = 10 pixels XxL = block dimension = 920 pixels

M = blocks overlapping = 9 pixels XxM = overlapping dimension = 828 pixels

Table 1. Characteristic parameters of photos and blocks.
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The Artificial Neural Network utilized in this system uses the EBP (Error Back Propagation)
algorithm and its task is to extract the main features from the image and then store them in a
sequence of 50 bits, reducing the complexity of the problem and compressing the bitmap
images in order to represent them with a number of coefficients smaller than pixels. The
image is a facial feature of a face image; from this area we consider 103 segments of 920
pixels that represent the observable states of the model (Bevilacqua et al, 2006).

Now all of these sections are divided into features of 230 pixels, that are the input of the
Artificial Neural Network. The ANN is composed of three layers where the first layer is
formed by 230 neurons, one neuron per each pixel, the hidden layer is composed by 50 units
and the last layer by 230 neurons. After the training, the ANN is able to work as a pure
linear function, the input of the first layer must be the same of the output of the last layer.
The “compressed image” is described by 50 bits that are the outputs of an hidden layer
consisting of an Heaviside function processing elements. For any window of 230 pixels we
have an array of 50 elements, this means that a section of 920 pixels is compressed in a 4
sub-windows of 50 binary values array each. The matrix weights, referred to the connections
between the inputs and the hidden layer, codifies the image bitmap, while the matrix
weights associated to the connections between the hidden layer and the outputs, decodes
the sequence of bits. Each of the 103 blocks of 920 pixels (4x230) gives 103 observation
vectors with 200 coefficients (4x50) and the compression rate equals to

(103x920) _, ¢ )
(103x200)

By observing the schema of Fig. 7 it is possible to note that the "Training Set” used for ANN
is composed by 300 photos: 10 face images for each of the first 30 samples of the database.
The training function is iterated 200 times for each photo and, at the end of the training
phase, the neuron weights are saved in a “.bin” file. Finally the ANN is tested with other
images, of the same size of the training images, representing the same subject used for the
training, but, of course, different from those belonging to the training set features.

Observation Windows -

92 x 10 = 920 pixels ={ ) .-’
=
4 Observation Windows .
230 pixels T Py ®
e ! 5 = i\ y E
2 13 -
- ———— 4 5
T — ;3 R . H ;
103 Observation < P S :
Windows e — s =@ .—p H
o = ~
S . =
=) § ) .-'
|

Layer (50 Neurons)

L oo

ANN Training Set

Fig. 7. Schema of the ANN training phase
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5.2 Transformation of Photos in HTK Format

After compressing the image containing the face into an observation vector of 103 elements
of 200 binary (1/0) values, it will be computed by the Pseudo 2D Hidden Markov Models.
The operations of building and manipulating the Hidden Markov models has been
computed by the Hidden Markov Model ToolKit (HTK) (Young and Young, 1994). The HTK
supports HMMSs using both continuous density mixture Gaussians and discrete
distributions and can be used to build complex HMM systems.

Finally, is necessary to transform the ANN output “.bin” file into another binary file in HTK
format. The HTK like binary file has got an header, that should accomplish the HTK syntax,
and 20600 coefficients (103x200), according the “Little Endian” data storage, which is
commonly used by Motorola processors, IBM and Sun. Little Endian format provides the
least significant byte is stored in the first memory location while the most significant byte is
the last memory location.

5.3 Training of Different P2D-HMM Structures and Identification of the Validation Set
subjects

Every subject populating the database was used to train the Pseudo 2D Hidden Markov
Model and a Markov Model was associated to each of them. The different Hidden Markov
Model structures were then trained. The table below reports the training results of one
Ergodic HMM with 5 state and four Pseudo 2D Hidden Markov Model structures, that
differs one by the others for the number of states in a super-state. The Table helps the
comparison between the different performance and the choice of the structure that gives the
best recognition rate. In table 2 are represented different Hidden Markov Model structures.

HMM
5Ergodic

Pseudo T .
2D HMM — —
3-3-3-3-3 —g—=| L ]

el

Pseudo t}
2D HMM f
3-6-6-6-3 -

Pseudo : ,?
2D HMM z X
6-6-6-6-6 . g
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Table 2. Different Hidden Markov Models structures.

After the P2D-HMM training process was completed, it was possible to proceed with the
recognition phase, according the schema shown in Fig. 8.

Pseudo 2D Hidden Markov Models

Povalo 2D HM M
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Fig. 8. Schema of recognition phase.
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file S1-10.lab

The Viterbi algorithm is applied to each of the P2D-HMMs, built after the training phase,
using the same HTK file (26-5.bmp in Fig.9). Each of the P2D-HMMs returns a logarithmic
probability value. The highest probability value identifies the P2D-HMM and so the
corresponding recognised sample as showed in Figure 9.

mamagineuscita. bmp

Pseudo 2D H.M M.
T i -

/ .-- B @
Pseudo 2D H.M M
——

slbamd

LI

Pseudo 2D HI M.

L

sogetto ]

> log P1

del soggetto 2

> log P2

del sogzetto 51

> log P51

Fig. 9. Example of identification by logarithmic probability.

max (logPl, logP2, ..., logP51)
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At the end of the process the final outcome of the identification is the recognised person and
the logarithmic probability value of his similarity to the template.

6. Experimental Result

As said in the preceding paragraphs, different Hidden Markov Model structure was tested
on a database obtained as a combination of the Olivetti Research Laboratory database
together with other photos of persons camouflaged wearing dark glasses, scarf or bandage,
in order to check system reliability. The results are shown in the Table 3, here below.

Hidden Markov The exact identification
Models Log_ 1i°errors
>

Pseudo 2D 3-3-3-3-3 99.80 % (1 error on 510 photo)

Pseudo 2D 3-6-6-6-3 100 %
Pseudo 2D 6-6-6-6-6 99.80 % (1 error on 510 photo)
Pseudo 2D 6-6-6-6-6-6 99.80 % (1 error on 510 photo)
5-Ergodic 98.82 % (6 error on 510 photo)

Table 3. Rates of recognition obtained from the different implemented P2D-HMMs

The recognition rate was satisfying for all the HMM tested structures, but the system using
the HMM structure 3-6-6-6-3 gave a percentage of identification of 100%, that is to say that
any of the 510 photo tested were properly recognized.

Subsequently was made an experimental comparison of the results obtained with the hybrid
system ANN-P2DHMM (using an HMM with structure 3-6-6-6-3) with the most important
face recognition algorithms proposed in the literature when applied to the ORL images.

Methods Recognition Rate Reference
Eigenface 90.5% Samaria, 1994
Pseudo 2D HMM 94.5% Samaria, 1994
feature: gray values
Convolutional 96.2% Lawrence et al., 1997
Neural Network
Pseudo 2D HMM 99.5% Eickeler, 1998
feature: DCT Coefficients
Ergodic HMM + DCT 99.5% Kohir & Desai, 1998
Pseudo 2D HMM + 100% This work.
Neural Network Coefficients

Table 4. Comparative results on ORL database.
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Table 4 resumes the results obtained and highlights that the hybrid system that combines
Artificial Neural Networks and Pseudo 2D Hidden Markov Model produced the best
Recognition Rate.

This result encourages the prosecution of the research to obtain a fundamental surplus to
enhance the P2D-HMMs potentiality, allowing an efficient and sure personal identification
process.
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1. Introduction

Computerized human face recognition has many practical applications, such as access control,
security monitoring, and surveillance systems, and has been one of the most challenging and
active research areas in computer vision for many decades (Zhao et al., 2003). Even though
current machine recognition systems have reached a certain level of maturity, the recognition
of faces with different facial expressions, occlusions, and changes in illumination and/or pose
is still a hard problem.

A general statement of the problem of machine recognition of faces can be formulated as fol-
lows: given an image of a scene, (i) identify or (ii) verify one or more persons in the scene
using a database of faces. In identification problems, given a face as input, the system reports
back the identity of an individual based on a database of known individuals; whereas in veri-
fication problems, the system confirms or rejects the claimed identity of the input face. In both
cases, the solution typically involves segmentation of faces from scenes (face detection), fea-
ture extraction from the face regions, recognition, or verification. In this chapter, we examine
the recognition of frontal face images required in the context of identification problems.

Many approaches have been proposed to tackle the problem of face recognition. One can
roughly divide these into (i) holistic approaches, (ii) feature-based approaches, and (iii) hybrid
approaches (Zhao et al., 2003). Holistic approaches use the whole face region as the raw input
to a recognition system (a classifier). In feature-based approaches, local features, such as the
eyes, nose, and mouth, are first extracted and their locations and local statistics (geometric
and/or appearance based) are fed into a classifier. Hybrid approaches use both local features
and the whole face region to recognize a face.

Among holistic approaches, eigenfaces (Turk & Pentland, 1991) and fisher-faces (Belhumeur
et al., 1997; Etemad & Chellappa, 1997) have proved to be effective in experiments with large
databases. Feature-based approaches (Gao & Leung, 2002; Lee & Seung, 1999; Li et al., 2001)
have also been quite successful and, compared to holistic approaches, are less sensitive to
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facial expressions, variations in illumination and occlusion. Some of the hybrid approaches
include the modular eigenface approach (Martinez, 2002), the Flexible Appearance Model ap-
proach (Lanitis et al., 1995), an approach that combines component-based recognition with 3D
morphable models (Huang et al., 2003), and an approach that encodes geometric and struc-
tural information extracted from the face image in attributed relational graphs (ARG) and
matches Face-ARG'’s for recognition (Park et al., 2005). Experiments with hybrid approaches
showed slight improvements over feature-based approaches.

Recently, Wright et al. (2009) proposed a new approach to face recognition named Sparse
Representation-based Classification (SRC). SRC is based on the compressive sampling the-
ory (Candes & Wakin, 2008) and can use the whole face, a combination of features, or both
features and the whole face for recognition. In SRC, the recognition problem is casted as
one of classifying among multiple linear regression models. Wright et al. (2009) argue that
compressive sampling offers the key to address this problem and, based on a sparse represen-
tation computed by ¢!-minimization, they propose a general classification algorithm for face
recognition that provides new insights into what kind of transformation one should perform
on face images to extract data to use as the input of the classifier of the recognition system.
They showed that, if sparsity in the recognition problem is properly harnessed, the choice of
transformation is no longer critical. What they found that is critical is whether the size of the
data vector extracted is sufficiently large and whether the sparse representation is properly
selected. They discovered that unconventional image transformations such as downsampling
and random projections perform just as well as conventional ones such as eigenfaces, as long
as the dimension of the data vector extracted surpasses certain threshold, predicted by the
theory of sparse representation (Wright et al., 2009).

Virtual Generalizing Random Access Memory Weightless Neural Networks VG-RAM
WNN (Aleksander, 1998) is an effective machine learning technique that offers simple im-
plementation and fast training and test. In this chapter, we evaluated the performance of
VG-RAM WNN on face recognition using the well known AR Face Database (Martinez &
Benavente, 1998) and Extended Yale Face Database B (Georghiades et al., 2001; Lee et al.,
2005). We examined two VG-RAM WNN architectures, one holistic and the other feature-
based, each implemented with different numbers of neurons and synapses per neuron. Using
the AR Face Database, we compared the best VG-RAM WNN performance with that of: (i) a
holistic approach based on principal component analysis (PCA) (Turk & Pentland, 1991); (ii)
feature-based approaches based on non-negative matrix factorization (NMF) (Lee & Seung,
1999), local non-negative matrix factorization (LNMF) (Li et al., 2001), and line edge maps
(LEM) (Gao & Leung, 2002); and (iii) hybrid approaches based on weighted eigenspace repre-
sentation (WER) (Martinez, 2002) and attributed relational graph (ARG) matching (Park et al.,
2005). In addition, using both the AR Face Database and the Extended Yale Face Database B,
we compared the best VG-RAM WNN performing architecture (feature-based) with that of
SRC. We selected these approaches for comparison because they are representative of some
of the best techniques for face recognition present in the literature. Our results showed that,
even training with a single face image per person, VG-RAM WNN outperformed PCA, NME,
LNMF, LEM, WER, and ARG approaches under all face conditions tested. Also, training and
testing in the same conditions as those employed by Wright et al. (2009) (downsampled face
images), VG-RAM WNN outperformed SRC. These results show that VG-RAM WNN is a
powerful technique for tackling this and other important problems in the pattern recognition
realm.
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This chapter is organized as follows. Section 2 introduces VG-RAM WNN and Section 3 de-
scribes how we have used them for face recognition. Section 4 presents our experimental
methodology and experimental results. Our conclusions follows in Section 5.

2. VG-RAM WNN

RAM-based neural networks, also known as n-tuple classifiers or weightless neural networks,
do not store knowledge in their connections but in Random Access Memories (RAM) inside
the network’s nodes, or neurons. These neurons operate with binary input values and use
RAM as lookup tables: the synapses of each neuron collect a vector of bits from the network’s
inputs that is used as the RAM address, and the value stored at this address is the neuron’s
output. Training can be made in one shot and basically consists of storing the desired output
in the address associated with the input vector of the neuron (Aleksander, 1966) (see Figure 1).

Output = Y

Neuron

: Value X Y W Z
aawress| 00| 0110 |11

Input=01
Fig. 1. Weightless neural network.

In spite of their remarkable simplicity, RAM-based neural networks are very effective as pat-
tern recognition tools, offering fast training and test, in addition to easy implementation (Alek-
sander, 1998). However, if the network input is too large, the memory size becomes pro-
hibitive, since it must be equal to 2", where 7 is the input size. Virtual Generalizing RAM
(VG-RAM) Weightless Neural Networks (WNN) are RAM-based neural networks that only
require memory capacity to store the data related to the training set (Ludermir et al., 1999). In
the neurons of these networks, the memory stores the input-output pairs shown during train-
ing, instead of only the output. In the test phase, the memory of VG-RAM WNN neurons is
searched associatively by comparing the input presented to the network with all inputs in the
input-output pairs learned. The output of each VG-RAM WNN neuron is taken from the pair
whose input is nearest to the input presented—the distance function employed by VG-RAM
WNN neurons is the hamming distance. If there is more than one pair at the same minimum
distance from the input presented, the neuron’s output is chosen randomly among these pairs.

Figure 2 shows the lookup table of a VG-RAM WNN neuron with three synapses (X1, X
and X3). This lookup table contains three entries (input-output pairs), which were stored
during the training phase (entry #1, entry #2 and entry #3). During the test phase, when an
input vector (input) is presented to the network, the VG-RAM WNN test algorithm calculates
the distance between this input vector and each input of the input-output pairs stored in the
lookup table. In the example of Figure 2, the hamming distance from the input to entry #1 is
two, because both X; and X3 bits do not match the input vector. The distance to entry #2 is
one, because Xj is the only non-matching bit. The distance to entry #3 is three, as the reader
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lookup table | X; | X; | X; Y
entry #1 1 1 0 class 1
entry #2 0 0 1 class 2
entry #3 0 1 0 class 3

1 1 i !
input 1 0 1 class 2

Fig. 2. VG-RAM WNN neuron lookup table.

may easily verify. Hence, for this input vector, the algorithm evaluates the neuron’s output,
Y, as class 2, since it is the output value stored in entry #2.

3. Face Recognition with VG-RAM WNN

We examined the recognition part of the face identification problem only. That is, in the ex-
periments described in this chapter, the segmentation of faces from images (face detection)
is performed semi-automatically. Also, thanks to the properties of the VG-RAM WNN archi-
tectures employed, explicit feature extraction (e.g., line edge extraction; eye, nose, or mouth
segmentation; etc.) is not required, even though in one of the two VG-RAM WNN architec-
tures studied some neurons specializes in specific regions of the faces and, because of that, we
say it is feature-based. The other VG-RAM WNN architecture studied is holistic.

3.1 Holistic Architecture

The holistic architecture has a single bidimensional array of m x n VG-RAM WNN neurons,
N, where each neuron, i has a set of synapses W = {wy, ... Wi }, which are randomly
connected to the network’s bidimensional input, ®, of u x v inputs, @i ; (see Figure 3 and
Figure 4). The random synaptic interconnection pattern of each neuron n; ;, Q0; ;(W), is created
when the network is built and does not change afterwards.

i,j

VG-RAM WNN synapses can only get a single bit from the input. Thus, in order to allow our
VG-RAM WNN to deal with images, in which a pixel may assume a range of different values,
we use minchinton cells (Mitchell et al., 1998). In the proposed VG-RAM WNN architectures,
each neuron’s synapse, w;, forms a minchinton cell with the next, w;. 4 (w|W| forms a minch-
inton cell with wq). The type of the minchinton cell we have used returns 1 if the synapse w;
of the cell is connected to an input element, @i ;, whose value is larger than the value of the
element ¢; s to which the synapse w;1 is connected, i.e., ¢r; > @y s; otherwise, it returns zero
(see the synapses wy and w; of the neuron n, ,, of Figure 4).

The input face images, I, of ¢ x 1 pixels (Figure 4) must be transformed in order to fit into
the network’s input, ®. In the case of the AR Face Database, the images are rotated, scaled
and cropped (Figure 5); the rotation, scaling and cropping are performed semi-automatically,
i.e., the position of the eyes are marked manually and, based on this marking, the face in the
image is computationally adjusted to fit into ®. Before being copied to ®, the transformed
image is filtered by a Gaussian filter to smooth out artifacts produced by the transformations
(Figure 5(c)). In the case of the Extended Yale Face Database B, only scaling and filtering are
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(©
Fig. 3. The synaptic interconnection pattern of the holistic architecture. (a) Left, input ®: in
white, the elements @y ; of the input @ that are connected to neuron #;; of N via Q1 (W).
Right, neuron array N: in white, the neuron 11 of N. (b) Left: in white, the elements ¢y ; of
@ connected to nu x via Q'zl% (W). Right: in white, the neuron Ly of N. (c) Left: in white,
the elements of ® connected to 1y, via Qp,n (W). Right: in white, the neuron 7y, ;.

[y T [ an | o (A ]

o 17

neurons N ‘ - ‘
minchinton D & . &
cells ]
synapses W ‘ w; | w, | ‘ Wy, ‘
inputs @ ‘ P11 | P12 | P13 ‘ ‘ Pri | ‘ Prs | - ‘ Puv
rotate, scale and crop ﬁ
image ‘ i | i1 | ir; ‘ i1y ‘ Irs | ‘ Loy ‘ ‘ Iz, ‘

Fig. 4. Schematic diagram of the holistic and feature-based VG-RAM WNN architectures.
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(@ (b)

(©
Fig. 5. Face image and its preprocessing. (a) Original image; (b) rotated, scaled and cropped
image; and (c) filtered image.

necessary, since this database includes versions of the images already properly cropped (Lee
et al., 2005).

During training, the face image I, of a person p is transformed and filtered, and its pixels are
copied to the VG-RAM WNN’s input ® and all n; j neurons’ outputs are set to the value of the
labell, € L = {Iy,..., 11|}, associated with the face of the person p (|L| is equal to the number
of known persons). All neurons are then trained to output this label with this input image.
This procedure is repeated for all images I of the person p and, likewise, for all persons in the
training data set. During testing, each face image I is also transformed, filtered, and copied to
the VG-RAM WNN’s input ®. After that, all neurons’ outputs are computed and the number
of neurons outputting each label is counted by a function f(Iy, ) foralll, € L = {I;,...,1 L }.
The network’s output is the label with the largest count.

3.2 Feature-Based Architecture

As the holistic architecture, the feature-based architecture has a single bidimensional ar-
ray of m x n VG-RAM WNN neurons, N, where each neuron, i has a set of synapses,
W = {wy,..., Wy }, which are connected to the network’s bidimensional input, ®, of u x v
inputs. The synaptic interconnection pattern of each neuron i, Qi,j,U(W), is, however, dif-
ferent (Figure 6). In the feature-based architecture, (; ; ,(W) follows a bidimensional Normal
2

distribution with variance ¢“ centered at ¢y, ,,, where . = % and y; = L7; i.e., the coordi-

nates k and [ of the elements of @ to which n; ; connects via W follow the probability density

functions:
1 (k=pp)?

Wiy 02 (k) = ﬁe_ 2 1
1 Cew)?
wl‘mﬂ(l) = oo e 2

where 0 is a parameter of the architecture. This synaptic interconnection pattern mimics that
observed in many classes of biological neurons (Kandel et al., 2000), and is also created when
the network is built and does not change afterwards.

A comparison between Figure 3 and Figure 6 illustrates the difference between the intercon-
nection patterns of the holistic and feature-based architectures. In the feature-based architec-
ture (Figure 6), each neuron ; ; monitors a region of the input ® and, therefore, specializes in
the face features that are mapped to that region. On the other hand, each neuron n;; of the
holistic architecture monitors the whole face (Figure 3).
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(@) (b)
(0

Fig. 6. The synaptic interconnection pattern of the feature-based architecture. (a) Left, input ®:
in white, the elements @y ; of the input @ that are connected to neuron 1 1 of N via Qg 1 - (W).
Right, neuron array N: in white, the neuron 111 of N. (b) Left: in white, the elements ¢y ; of
@ connected to nu n via Q%,%J(W). Right: in white, the neuron M n of N. (c) Left: in white,
the elements of ® connected to 1, via Qp 5,0 (W). Right: in white, the neuron 1, .

As in the holistic architecture, in the feature-based architecture each neuron’s synapse, wy,
forms a minchinton cell with the next, w;;1, and, before training or testing, the input face
images, I, are transformed and only then copied to the VG-RAM WNN input ®. Training and
testing are performed the same way as in the holistic architecture.

4. Experimental Evaluation

We used the AR Face Database (Martinez & Benavente, 1998) and the Extended Yale Face
Database B (Georghiades et al., 2001; Lee et al., 2005) to evaluate the performance of VG-
RAM WNN on face recognition. The AR Face Database contains over 4,000 color images
corresponding to 135 people’s faces (76 men and 59 women). Images feature frontal view
faces with different facial expressions, illumination conditions, and occlusions (sun glasses
and scarf). Its 768x576 pixels pictures were taken under strictly controlled conditions, but
no restrictions on wear (clothes, glasses, etc.), make-up, hair style, etc. were imposed to par-
ticipants. Each person participated in two sessions, separated by two weeks (14 days) time.
On each of those sessions, thirteen images of each person were taken: four with variations
of expression (neutral expression, smile, anger and scream—first session Figure 7(a) and sec-
ond session Figure 7(e)), three with different illumination conditions (left light on, right light
on, all side lights on—Figure 7(b) and Figure 7(f)), three wearing large sun glasses in differ-
ent illumination conditions (Figure 7(c) and Figure 7(g)), and three wearing scarf in different
illumination conditions (Figure 7(d) and Figure 7(h)).



178 Face Recognition

®) (h)
Fig. 7. Rotated, scaled and croped images of one person of the AR Face Database.

The Extended Yale Face Database B consists of 2,414 frontal-face images of 38 individu-
als (Georghiades et al., 2001). The manually cropped and 192 x 168 sized face images were
captured under 64 different laboratory-controlled lighting conditions (Lee et al., 2005). Fig-
ure 7 shows the 64 face images of one person of the Extended Yale Face Database B.

We used these face databases to perform two sets of experiments. In the first set, we used
the AR Face Database to compare the performance of VG-RAM WNN with that of: (i) a
holistic method based on principal component analysis (PCA) (Turk & Pentland, 1991); (ii)
feature-based methods based on non-negative matrix factorization (NMF) (Lee & Seung,
1999), local non-negative matrix factorization (LNMF) (Li et al., 2001), and line edge maps
(LEM) (Gao & Leung, 2002); and (iii) hybrid methods based on weighted eigenspace repre-
sentation (WER) (Martinez, 2002) and attributed relational graph (ARG) matching (Park et al.,
2005). In the second set of experiments, we compared the performance of VG-RAM WNN
with that of Sparse Representation-based Classification (SRC) (Wright et al., 2009) using both
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Fig. 8. Images of one person of the Extended Yale Face Database B.

the AR Face Database and the Extended Yale Face Database B. In the following sections we
present these experiments.

4.1 VG-RAM WNN versus PCA, NMF, LNMF, LEM, WER, and ARG

In order to allow the comparison of VG-RAM WNN with that of PCA, NMF, LNMF, LEM,
WER, and ARG, we used an experimental setup equivalent to that of Park et al. (2005). Park
et al. (2005) proposed the ARG approach and compared it with PCA, NMF, LNMF, LEM, and
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WER. By using an equivalent experimental setup, we can compare VG-RAM WNN with his
approach and the others mentioned.

As Park et al. (2005), we used only the following subset of image types of the AR Face
Database: neutral expression, smile, anger, scream, left light on, right light on, all side lights
on, wearing sun glasses (with a single illumination condition), and wearing scarf (with a sin-
gle illumination condition). These can be divided into four groups: (i) normal (neutral expres-
sion); (ii) under expression variation (smile, anger, scream); (iii) under illumination changes
(left light on, right light on, all side lights on); and (iv) with occlusion (wearing sun glasses,
wearing scarf). We took these types of 768 x 576 sized face image of all persons in the AR Face
Database and rotated, scaled, cropped and filtered them to obtain 128 x 200 face images that
we used as the input ® of our VG-RAM WNN. Figure 9 shows a set of transformed images of
one subject of the AR Face Database (rotated, scaled and cropped to 128 x 200 sized images).

Fig. 9. The AR face database: (a) normal (neutral expression); (b) under expression variation
(smile, anger, scream); (c) under illumination changes (left light on, right light on, all side
lights on); and (d) with occlusion (wearing sun glasses, wearing scarf).

We randomly selected 50 people from the database to tune the parameters of the VG-RAM
WNN architectures (25 men and 25 women). We used one normal face image of each person
to train (50 images), and the smile, anger, wearing sun glasses, and wearing scarf to eval-
uate the architectures (200 images) while varying their parameters. Below, we describe the
experiments we performed to tune the parameters of the architectures.

4.1.1 Holistic Architecture Parameter Tunning

The holistic architecture has three parameters: (i) the number of neurons, m X n; (ii) the num-
ber of synapses per neuron, |W|; and (iii) the size of the network input, u x v. We tested
networks with: m X n equal to 2x2, 4x4, 16x16, 32x32 and 64 x 64; number of synapses per
neuron equal to 32, 64, 128 and 256; and u X v equal to 128x200 (we did not vary u x v to
reduce the parameter search space). Figure 10(a) presents the results of the experiments we
carried out to tune the parameters of the holistic architecture.

As Figure 10(a) shows, the performance, i.e., the percentage of correctly recognized faces
(recognition rate) of the holistic architecture grows with the number of neurons and synapses
per neuron; however, as these numbers increase, the gains in performance decrease forming
a plateau towards the maximum performance. The simplest configuration in the plateau has
around 16 x16 neurons and 64 synapses.
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Fig. 10. Performance tunning: (a) holistic architecture and (b) feature-based architecture.

4.1.2 Feature-Based Architecture Parameter Tunning

The feature-based architecture has four parameters: (i) the number of neurons; (ii) the number
of synapses per neuron; (iii) the size of the network input; and (iv) o (see Section 3.2). We
tested networks with: m X n equal to 2x2, 4x4, 1616, 32x32 and 64 x 64; number of synapses
per neuron equal to 32, 64, 128 and 256; u x v equal to 128 x200; and ¢ equal to 10 (we did not
vary u x v and o to reduce the parameter search space).

Figure 10(b) presents the results of the experiments we conducted to tune the parameters of
the feature-based architecture. As Figure 10(b) shows, the performance of the feature-based ar-
chitecture also grows with the number of neurons and synapses per neuron, and again reaches
a plateau at about 32 x32 neurons and 128 synapses. However, it is important to note that, in
this case, the plateau is very close to a recognition rate of 100%—the best performing configu-
ration achieved a recognition rate of 99.5%.

4.1.3 Performance Comparison

We compared the performances of the holistic and feature-based VG-RAM WNN architectures
with that of PCA, NME, LNME, LEM, WER, and ARG approaches. For that, we took the
best VG-RAM WNN architectures configurations (holistic: 16x16 neurons and 64 synapses
per neuron; feature-based: 32x32 neurons and 128 synapses per neuron), trained them with
the normal face image of all people in the database (135 images), and tested them with the
remaining face image categories of Figure 9 of all people in the database (135 images of each
face image category). Table 1 summarizes this comparison, showing one technique on each

line, grouped by type, and the corresponding performance for each face image category on
each column.

As the results in Table 1 show, the VG-RAM WNN holistic (VWH) architecture outperformed
all holistic and feature-based techniques examined (except the VG-RAM WNN feature-based
architecture - VWEF) in all face image categories. It also performed better than the hybrid
techniques, except for the categories with occlusion and single side illumination. That was
expected, since occlusions and single side illumination compromise eventual similarities be-
tween the input patterns learned by the VWH neurons and those collected by its synapses
from a partially occluded or illuminated face. Nevertheless, it is important to note the overall
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Table 1. Comparison of the performance on the AR Face Database of the holistic (VWH) and
feature-based (VWF) VG-RAM WNN architectures with that of: (i) PCA: principal compo-
nent analysis (Turk & Pentland, 1991) (results obtained from (Park et al., 2005)); NMF: non-
negative matrix factorization (Lee & Seung, 1999) (results from (Park et al., 2005)); LNMEF:
local non-negative matrix factorization (Li et al., 2001) (results from (Park et al., 2005)); LEM:
line edge maps (Gao & Leung, 2002) (results from (Gao & Leung, 2002) with only 112 people
of the AR Face Database); WER: weighted eigenspace representation (Martinez, 2002) (results
from (Martinez, 2002) with only 50 people of the AR Face Database); and ARG: attributed
relational graph matching (Park et al., 2005) (results from (Park et al., 2005)).

Category
Type | Technique Smile | Anger | Scream | Glasses | Scarf l]; ge}ﬁtt i?ﬁt Alﬂg,il tcsl ¢
HOL® PCA 94.1% | 79.3% 44.4% 32.9% 2.2% 7.4% 7.4% 2.2%
VWH 98.5% | 97.8% 91.1% 66.7% 25.2% | 97.8% | 95.6% 95.6%
NMF 68.1% | 504% | 18.5% 3.7% 0.7% | N/A? | N/A N/A
FBAD LNMF 94.8% | 76.3% 44.4% 18.5% 9.6% N/A N/A N/A
LEM 78.6% | 92.9% 31.3% N/A N/A | 929% | 91.1% 74.1%
VWF 99.3% | 99.3% 93.3% 85.2% 98.5% | 99.3% | 98.5% 99.3%
HYBe WER 84.0% | 94.0% 32.0% 80.0% 82.0% | N/A N/A N/A
ARG 97.8% | 96.3% | 66.7% 80.7% | 852% | 985% [ 96.3% | 91.1%

7HOL.: holistic techniques. YFBA: feature-based techniques. “HYB: hybrid techniques. AN/A:
not available.

performance achieved by VWH, which is better than that of several other relevant techniques
from literature.

As Table 1 also shows, the VG-RAM WNN feature-based (VWF) architecture performed better
than all other techniques examined in all categories and, in many cases, by a large margin.

4.2 VG-RAM WNN versus SRC

The central point of the SRC approach is that there are a lot of redundancy of information
in face images, i.e., for the purpose of face recognition, the dimensionality of face images
is typically too large because they are frequently oversampled. One can appreciate this by
reasoning about the fact that images can be compacted; i.e., images sampled (or either over-
sampled) with 8 megapixels—which would result in a file with 8 megapixels x 3 bytes, one
byte for each color, that is, 3 X 8 megabytes—can typically be compacted into a file of about
one megabyte.

In the work of Wright et al. (2009), they studied several methods to reduce the dimensionality
of the information extracted from face images for being used as input of the face recognition
systems’ classifiers. Therefore, in order to allow the comparison of VG-RAM WNN with that
of SRC, we used an experimental setup equivalent to that of Wright et al. (2009).

We compared the best VG-RAM WNN performing architecture (feature-based) with that of
SRC. For the experiments with the AR Face Database, as Wright et al. (2009) did, we rotated,
scaled, and cropped the 768 x 576 sized face images to 120 x 165 sized images and, after that,
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downsampled the images at a ratio of 1/6. The downsampled images have size 20 x 27, or
540 dimensions, which was the same used by Wright et al. (2009). After downsampling the
images, we rescaled them back to 120 x 165 to use as the input ® of the VG-RAM WNN
(about the same size we used in the previous experiments, 128 x 200). Note that this does
not add any information to the images; we did that in order to not change the parameters we
have found in the tuning of the VG-RAM WNN feature-based architecture. After rescaling
the images, we filtered them with a Gaussian filter to smooth out artifacts produced by the
transformations. Again, it is important to note that this does not add any information to the
images; it is required only for the proper work of our VG-RAM WNN. Figure 11(a) shows
a transformed face image (rotated, scaled, and cropped), the downsampled version of this
image, and the filtered version of this same image.

(b)
Fig. 11. Face image subsampling. (a) AR Face Database. (b) Extended Yale Face Database B.

For the experiments with the Extended Yale Face Database B, also used by Wright et al. (2009),
only scaling and filtering were necessary, since this database includes versions of the images
already properly cropped. The image sizes in the Extended Yale Face Database B are different
from those in the AR Face Database; we downsampled the 168 x 192 sized face images to
21 x 24 and, as we did with the AR Face Database, we rescaled these images back to 168 x 192
and filtered them. Figure 11(b) shows an original face image, the downsampled version of
this image, and the filtered version of this same image.

In the case of the AR Face Database, following the same procedure of Wright et al. (2009), we
randomly selected 50 men and 50 women. For each person, fourteen images with variations
of expression and different illumination conditions were selected; the seven images from the
first session were used for training and the other seven from the second session for testing. In
the case of the Extended Yale Face Database B, for each person, we randomly selected half of
the face images for training (i.e., about 32 images for each of the 38 people) and the other half
for testing.

Table 2 summarizes the comparison of the performance of the VG-RAM WNN feature-based
architecture with that of SRC, following the same format of the Table 1. The kind of face
recognition system of Wright et al. (2009) is a holistic type.

As the results in Table 2 show, VG-RAM WNN feature-based (VWF) architecture outper-
formed SRC for both databases and, in the case of the AR Face Database, by a large margin.
The VWF superior performance, shown in both the Table 1 and Table 2, is the result of two
factors. First, each VWF (or VWH) synapse collects the result of a comparison between two
pixels, executed by its corresponding minchinton cell. Our best VWF has 128 synapses per
neuron and 32 %32 neurons. Therefore, during test, 131072 (128 x 32 x 32) such comparisons are
executed on an input face image and the results are checked against equivalent results learned
from training images. This amount of pixel comparisons allows not only high discrimination
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Table 2. Comparison of the performance on the AR Face Database and the Extended Yale Face
Database B of the VG-RAM WNN feature-based (VWF) architecture with that of the Sparse
Representation-based Classification (SRC). Results for SRC were obtained from Wright et al.
(2009).

Type Technique Database

yp q AR Face Database [ Extended Yale Face Database B
HOL? | SRC (Random) 94.70% 98.1%
FBA? VWF 98.86% 99.34%

7HOL: holistic techniques. VFBA: feature-based techniques.

capability but also generalization. Second, thanks to the characteristics of the VWF architec-
ture, i.e., its synaptic interconnection pattern, each VWF neuron monitors a specific region of
the face only, which reduces the overall impact of occlusions and varying illumination condi-
tions on recognition performance.

5. Conclusions and Future Work

In this work, we presented an experimental evaluation of the performance of Virtual Gener-
alizing Random Access Memory Weightless Neural Networks (VG-RAM WNN Aleksander
(1998)) on face recognition. We presented two VG-RAM WNN face recognition architectures,
one holistic and the other feature-based, and examined its performance with two well known
face database: the AR Face Database and the Extended Yale Face Database B. The AR Face
Database is challenging for face recognition systems because it has images with different facial
expressions, occlusions, and varying illumination conditions. The best performing architec-
ture (feature-based) showed robustness in all image conditions and better performance than
many other techniques from literature, even when trained with a single sample per person.

In future works, we will examine the performance of VG-RAM WNN with other databases
and use it to tackle other problems associated with face recognition systems, such as face
detection, face alignment, face recognition in video, etc.
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lllumination Processing in Face Recognition
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Shanghai Institute of Applied Physics, Chinese Academy of Sciences
China

1. Introduction

Driven by the demanding of public security, face recognition has emerged as a viable
solution and achieved comparable accuracies to fingerprint system under controlled
lightning environment. In recent years, with wide installing of camera in open area, the
automatic face recognition in watch-list application is facing a serious problem. Under the
open environment, lightning changes is unpredictable, and the performance of face
recognition degrades seriously.

Ilumination processing is a necessary step for face recognition to be useful in the
uncontrolled environment. NIST has started a test called FRGC to boost the research in
improving the performance under changing illumination. In this chapter, we will focus on
the research effort made in this direction and the influence on face recognition caused by
illumination.

First of all, we will discuss the quest on the image formation mechanism under various
illumination situations, and the corresponding mathematical modelling. The Lambertian
lighting model, bilinear illuminating model and some recent model are reviewed. Secondly,
under different state of face, like various head pose and different facial expression, how
illumination influences the recognition result, where the different pose and illuminating will
be examined carefully. Thirdly, the current methods researcher employ to counter the change
of illumination to maintain good performance on face recognition are assessed briefly. The
processing technique in video and how it will improve face recognition on video, where
Wang's (Wang & Li, 2009) work will be discussed to give an example on the related
advancement in the fourth part. And finally, the current state-of-art of illumination
processing and its future trends will be discussed.

2. The formation of camera imaging and its difference from the human visual
system

With the camera invented in 1814 by Joseph N, recording of human face began its new era.
Since we do not need to hire a painter to draw our figures, as the nobles did in the middle
age. And the machine recorded our image as it is, if the camera is in good condition.

Currently, the imaging system is mostly to be digital format. The central part is CCD
(charge-coupled device) or CMOS (complimentary metal-oxide semiconductor). The
CCD/CMOS operates just like the human eyes. Both CCD and CMOS image sensors operate
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in the same manner -- they have to convert light into electrons. One simplified way to think
about the sensor used in a digital camera is to think of it as having a 2-D array of thousands
or millions of tiny solar cells, each of which transforms the light from one small portion of the
image into electrons. The next step is to read the value (accumulated charge) of each cell in
the image. In a CCD device, the charge is actually transported across the chip and read at one
corner of the array. An analog-to-digital converter turns each pixel's value into a digital
value. And the value is mapping to the pixel value in the memory, thus forming the given
object image. Although they shared lots of similarity as human eyes, however, the
impression is different. One of the advantage of human visual system is the human eye could
view color constantly regardless of the luminance value in the surrounding. People with
normal visual capabilities could recall the leave of tree is always green either in the morning,
at the noon, or in the dust of sunset. Color constancy is subjective constancy, it remains
relatively constant under normal variation situation. This phenomena was explained by N.
Daw (Conway & Livingstone, 2006) using the Double-opponent cells, later E. land developed
retinex theory to explain it (Am. Sci., 1963). However, for the CCD/CMOS, the formed color
of the leave of the tree is related to the surrounding luminance value greatly. Thus, the
difference between them is the reason that there should be some difference in the face
recognition between human and machine. Machine could not take it for granted the
appearance has some ignorance of its surrounding luminance value.

Human gets the perception of objects from the radiance reflected by the objects. Usually, the
reflection from most objects is scattered reflection. Unlike reflected by smooth surface, the
ray is deflected in random directions by irregularities in the propagation medium.

light raiy's shining
on a surface

Fig. 1. Diagram of diffuse reflection (taken from the wikipedia.org)
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If it is captured by eyes of human being, then perception could be fulfilled. Illumination
independent image representation is an important research topic for face recognition. The
face images were recorded under tightly controlled condition, where different pose, various
distance, and different facial expression were presented. The edge maps, Gabor-filtered
images, and the derivative of gray image were tried, but none of them could achieve the
goal to be illumination independent, and none of these works provided a good enough
framework to overcome the influence of various lighting condition.

3. Models for illumination

To overcome the problem, some mathematical models describing the reflectance of object in
computer graphics were utilized to recover the facial image under various lighting condition.
Image of a human face is the projection of its three-dimensional head on a plane, the
important factors influencing the image representation is the irradiance. In computer
graphics, Lambertian surface (Angel, 2003) is used to model the object surface’s irradiance.
The surface is called Lambertian surface if light falling on it is scattered such that the
apparent brightness of the surface to an observer is the same regardless of the observer's
angle of view. It could be modeled mathematically as in the following equation (1), where
I(x,y) is the image irradiance, p is the surface reflectance of the object, n(x,y) is the surface
normal vector of object surface, and s is the incidence ray.

I(xy) = p(xy)nx,y)T s @

The Lambertian surface luminance could be called to be isotropic technically. Recently,
Shashua and Riklin-Raviv (Shashua & Riklin-Raviv, 2001) proposed a method to extract the
object’s surface reflectance as an illumination invariant description. The method is called
quotient image, which is extracted from several sample image of the object. The quotient
image is defined as shown in equation 2, using the quotient image, it could recover image
under some different lighting condition. It is reported outperformed the PCA. However, it
works in very limited situation.
_ L, pyxy)nTs _ py(xy)
O =5 s bt @

Basri and Jacobs (Basri & Jacobs, 2003) illustrated that the illumination cone of a convex
Lambertian surface could be represented by a nine-dimensional linear subspaces. In some
limited environment, it could achieve some good performance. Further, Gross et al. (Gross et
al.,, 2002) proposed a similar method called Eigen light-fields. This method claimed to only
have one gallery and one probe image to estimate the light-field of the subject head, there is
none further requirement on the subject pose and illumination value. And the authors
declared that the performance of the proposed method on the CMU PIE database (Sim et al.,
2002) is much better than that of other related algorithm.
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The assumption of Lambertian model requires perfect situation, E. Nicodemus (Nicodemus,
1965) put forward a theory called BRDF (bidirectional reflectance distribution function) later.
The BRDF is a four-dimensional function that defines how light is reflected at an opaque
surface. The function takes an incoming light direction w;, and outgoing direction w,, both
defined with respect to the surface normal n, and returns the ratio of reflected radiance
exiting along w, to the irradiance incident on the surface from direction w;, Note that each
direction w is itself parameterized by azimuth angle ¢ and zenith angle 0, therefore the
BRDF as a whole is 4-dimensional. BRDF is used in the field of modelling the reflectance on
an opaque surface. These parameters could be illustrated in Fig. 2.

&

Fig. 2. Diagram showing BRDF, w; points toward the light source. w, points toward the
viewer (camera). n is the surface normal

BRDF model is extensively used in the rendering artificial illuminating effects in computer
graphics. To counter the effect of illumination variation, we could artificial render the
different lighting situation by using this model. Comparing with Lambertain model, BRDF is
of 4 dimensions, the complexity of related computation process is very large. Also, inverting
the rendering situation is an ill posed problem, the equation must try some assumptions in
serial to solve this problem. Thus, the efforts to employ BRDF model to attack the
illumination is not successful currently.

The above models are general approaches to illumination invariant presentation; they have
no requirement on the content of the image. However, recently years, there is lots of work
towards to make human face image independent of illuminance, and it will be discussed
thoroughly in the next section.

4. Current Approaches of lllumination Processing in Face Recognition

Many papers have been published to study on illumination processing in face recognition in
the recent years. By now, these approaches can be divided into two categories: passive
approaches and active approaches (Zou et al., 2007, a).
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4.1 Passive Approaches

The idea of passive approaches: attempt to overcome illumination variation problem from
images or video sequences in which face appearance has been altered due to environmental
illumination change. Furthermore, this category can be subdivided into three classes at least,
described as follows.

4.1.1 Photometric Normalization

INlumination variation can be removed: the input face images can be normalized to some
state where comparisons are more reliable.

Mauricio and Roberto (Villegas & Paredes, 2005) divided photometric normalization
algorithms into two types: global normalization methods and local normalization methods.
The former type includes gamma intensity correction, histogram equalization, histogram
matching and normal distribution. The latter includes local histogram equalization, local
histogram matching and local normal distribution. Each method was tested on the same face
databases: the Yale B (Georghiades et al., 2000) and the extended Yale B (Georghiades et al.,
2001) face database. The results showed that local normal distribution achieves the most
consistent result. Short. et al. (Short et al., 2004) compared five classic photometric
normalization methods: a method based on principal component analysis, multiscale retinex
(Rahman et al., 1997), homomorphic filtering, a method using isotropic smoothing to
estimate the luminance function and one using anisotropic smoothing (Gross & Brajovic,
2003). The methods were tested extensively across the Yale B, XM2VTS (Messer et al., 1999)
and BANCA (Kittler et al., 2000) face databases using numerous protocols. The results
showed that the anisotropic method yields the best performance across all three databases.
Some of photometric normalization algorithms are illuminated in detail as follows.

4.1.1.1 Histogram Equalization

Histogram equalization (HE) is a classic method. It is commonly used to make an image with
a uniform histogram, which is considered to produce an optimal global contrast in the image.
However, HE may make an image under uneven illumination turn to be more uneven.

SM. Pizer and EP. Amburn (Pizer & Amburn, 1987) proposed adaptive histogram
equalization (AHE). It computes the histogram of a local image region centered at a given
pixel to determine the mapped value for that pixel; this can achieve a local contrast
enhancement. However, the enhancement often leads to noise amplification in “flat” regions,
and “ring” artifacts at strong edges. In addition, this technique is computationally intensive.
Xudong Xie and Kin-Man Lam (Xie & Lam, 2005) proposed another local histogram
equalization method, which is called block-based histogram equalization (BHE). The face
image can be divided into several small blocks according to the positions of eyebrows, eyes,
nose and mouth. Each block is processed by HE. In order to avoid the discontinuity between
adjacent blocks, they are overlapped by half with each other. BHE is simple so that the
computation required of BHE is much lower than that of AHE. The noise produced by BHE
is also very little.

4.1.1.2 Gamma Intensity Correction
Shan et al. (Shan et al., 2003) proposed Gamma Intensity Correction (GIC) for illumination
normalisation. The gamma transform of an image is a pixel transform by:
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G(xy) = IxYY ®)

where G(x,y) is the output image; I(x,y) is the input image; y is the Gamma coefficient.
With the value y varying, the output image is darker or brighter. In GIC, the image G(x,y)
is transformed as to best match a canonically illuminated image I¢(x,y). To find the best
optimal v, the value should be subject to:

i . 2
y = arg min,- ley[l(x, PV —1c(x, y)] )

4.1.1.3 LogAbout
To solve illumination problem, Liu et al. (Liu et al., 2001) proposed the LogAbout method
which is an improved logarithmic transformations as the following equation:

gly) = a+ D ©)
where g(x,y) is the output image; f(x,y) is the input image; a, b and c are parameters
which control the location and shape of the logarithmic distribution.

Logarithmic transformations enhance low gray levels and compress the high ones. They are
useful for non-uniform illumination distribution and shadowed images. However, they are
not effective for high bright images.

4.1.1.4 Sub-Image Homomorphic Filtering

In Sub-Image Homomorphic filtering method (Delac et al., 2006), the original image is split
vertically in two halves, generating two sub-images from the original one (see the upper part
of Fig. 3). Afterwards, a Homomorphic Filtering is applied in each sub-image and the
resultant sub-images are combined to form the whole image. The filtering is subject to the
illumination reflectance model as follows:

I(x,y) =R(xy) - Lx,y) (6)

where I(x,y) is the intensity of the image; R(x,y) is the reflectance function, which is the
intrinsic property of the face; L(x,y) is the luminance function.

Based on the assumption that the illumination varies slowly across different locations of the
image and the local reflectance changes quickly across different locations, a high-pass
filtering can be performed on the logarithm of the image I(x,y) to reduce the luminance
part, which is the low frequency component of the image, and amplify the reflectance part,
which corresponds to the high frequency component.
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Similarly, the original image can also be divided horizontally (see the lower part of Fig. 3),
and the same procedure is applied. But the high pass filter can be different. At last, the two
resultant images are grouped together in order to obtain the output image.

Hom.
Filt. =
o
Il+ -
Hom.
Filt.

=

Fig. 3. Sub-image Homomorphic filtering

4.1.2 lllumination Variation Modeling

Some papers attempt to model the variation caused by changes in illumination, so as to
generate a template that encompasses all possible environmental changes. The modeling of
faces under varying illumination can be based on a statistical model or a physical model. For
statistical model, no assumption concerning the surface property is needed. Statistical
analysis techniques, such as PCA and LDA, are applied to the training set which contains
faces under different illuminations to achieve a subspace which covers the variation of
possible illumination. For physical model, the model of the process of image formation is
based on the assumption of certain object surface reflectance properties, such as Lambertian
reflectance (Basri & Jacobs, 2003). Here we also introduce some classic algorithms on both
aspects.

4.1.2.1 lllumination Cone

Belhumeur and Kriegman (Belhumeur & Kriegman, 1998) proposed a property of images
called the illumination cone. This cone (a convex polyhedral cone in IRn and with a
dimension equal to the number of surface normals) can be used to generate and recognize
images with novel illumination conditions.

This illumination cone can be constructed from as few as three images of the surface, each
under illumination from an unknown point source. The original concept of the illumination
cone is based on two major assumptions: a) the surface of objects has Lambertian reflectance
functions; b) the object's surface is convex in shape.



194 Face Recognition

Every object has its own illumination cone, the entirety of which is a set of images of the
object under all possible lighting conditions, and each point on the cone is an image with a
unique configuration of illumination conditions. The set of n-pixel images of any object seen
under all possible lighting conditions is a convex cone in IRn.

Georghiades et al. (Georghiades et al., 1998; Georghiades et al., 2001) have used the
illumination cone to further show that, using a small number of training images, the shape
and albedo of an object can be reconstructed and that this reconstruction can serve as a model
for recognition or generation of novel images in various illuminations. The illumination cone
models the complete set of images of an object with Lambertian reflectance under an
arbitrary combination of point light sources at infinity. So for a fixed pose, an image can be
generated at any position on the cone which is a superposition of the training data (see Fig.
4).

N dimensional image space

Single light source images lie on cone boundary
Xn

Fig. 4. An example of the generation of novel data from an illumination curve

4.1.2.2 3D Linear Subspace

Belhumeur et al. (Belhumeur et al, 1997) presented 3D linear subspace method for
illumination invariant face recognition, which is a variant of the photometric alignment
method. In this linear subspace method, three or more images of the same face under
different lighting are used to construct a 3D basis for the linear subspace. The recognition
proceeds by comparing the distance between the test image and each linear subspace of the
faces belonging to each identity.

Batur and Hayes (Batur & Hayes, 2001) proposed a segmented linear subspace model to
generalize the 3D linear subspace model so that it is robust to shadows. Each image in the
training set is segmented into regions that have similar surface normals by K-Mean
clustering, then for each region a linear subspace is estimated. Any estimation only relies on
a specific region, so it is not influenced by the regions in shadow.

Due to the complexity of illumination cone, Batur and Hayes (Batur & Hayes, 2004) proposed
a segmented linear subspace model to approximate the cone. The segmentation is based on
the fact that the success of low dimensional linear subspace approximations of the
illumination cone increases if the directions of the surface normals get close to each other.
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The face image pixels are clustered according to the angles between their normals and apply
the linear subspace approximation to each of these clusters separately. They also presented a
way of finding the segmentation by running a simple K-means algorithm on a few training
images, without ever requiring to obtain a 3D model for the face.

4.1.2.3 Spherical Harmonics

Ravi Ramamoorthi and Pat Hanrahan (Ramamoorthi & Hanrahan, 2001) presented spherical
harmonics method. Basri and Jacobs (Basri & Jacobs, 2003) showed that, a low-dimensional
linear subspace can approximate the set of images of a convex Lambertian object obtained
under a wide variety of lighting conditions which can be represented by Spherical
Harmonics.

Zhang and Samaras (Zhang & Samaras, 2004) combined the strengths of Morphable models
to capture the variability of 3D face shape and a spherical harmonic representation for the
illumination. The 3D face is reconstructed from one training sample under arbitrary
illumination conditions. With the spherical harmonics illumination representation, the
illumination coefficients and texture information can be estimated. Furthermore, in another
paper (Zhang & Samaras, 2006), 3D shape information is neglected.

4.1.3 lllumination Invariant Features

Many papers attempt to find some face feature which is insensitive to the change in
illumination. With the feature, the varying illumination on face cannot influence the
recognition result. In other words, we can eliminate the illumination factor from the face
image. The best way is to separate the illumination information from the identity information
clearly. Here some algorithms are listed as follows.

4.1.3.1 Edge-based Image

Gao and Leung (Gao & Leung, 2002) proposed the line edge map to represent the face image.
The edge pixels are grouped into line segments, and a revised Hausdorff Distance is
designed to measure the similarity between two line segments. In the HMM-based face
recognition algorithms, 2D discrete cosine transform (DCT) is often used for generating
feature vectors. For eliminating the varying illumination influence, Suzuki and Shibata
(Suzuki & Shibata, 2006) presented a directional edge-based feature called averaged
principal-edge distribution (APED) to replace the DCT feature. APED feature is generated
from the spatial distributions of the four directional edges (horizontal, +45°, vertical, and
—450).

4.1.3.2 Gradient-based Image

Given two images I and ] of some plannar Lambertian object taken under the same
viewpoint, their gradient-based image VI and V] must be parallel at every pixel where they
are difined. Probabilistically, the distribution of pixel values under varying illumination may
be random, but the distribution of image gradients is not.

Chen et al. (Chen et al., Chen) showed that the probability distribution of the image gradient
is a function of the surface geometry and reflectance, which are the intrinsic properties of the
face. The direction of image gradient is revealed to be insensitive to illumination change. S.
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Samsung (Samsung, 2005) presented integral normalized gradient image for face recognition.
The gradient is normalized with a smoothed version of input image and then the result is
integrated into a new greyscale image. To avoid unwanted smoothing effects on step edge
region, anisotropic diffusion method is applied.

4.1.3.3 Wavelet-based Image

Gomez-Moreno et al. (Gomez-Moreno et al., 2001) presented an efficient way to extract the
illumination from the images by exploring only the low frequencies into them jointly with
the use of the illumination model from the homomorphic filter. The low frequencies where
the illumination information exists can be gained by the discrete wavelet transform. In
another point of view, Du and Ward (Du & Ward, 2005) performed illumination
normalization in the wavelet domain. Histogram equalization is applied to low-low
sub-band image of the wavelet decomposition, and simple amplification is performed for
each element in the other 3 sub-band images to accentuate high frequency components.
Uneven illumination is removed in the reconstructed image obtained by employing inverse
wavelet transform on the modified 4 sub-band images.

Gudur and Asari (Gudur & Asari, 2006) proposed a Gabor wavelet based Modular PCA
approach for illumination robust face recognition. In this algorithm, the face image is divided
into smaller sub-images called modules and a series of Gabor wavelets at different scales and
orientations. They are applied on these localized modules for feature extraction. A modified
PCA approach is then applied for dimensionality reduction.

4.1.3.4 Quotient Image

Due to the varying illumination on facial appearance, the appearances can be classified into
four components: diffuse reflection, specular reflection, attached shadow and cast shadow.
Shashua et al. (Shashua & Riklin-Raviv, 2001) proposed quotient image (QI), which is the
ratio of albedo between a face image and linear combination of basis images for each pixel.
This ratio of albedo is illumination invariant. However, the QI assumes that a facial
appearance includes only diffuse reflection. Wang et al. (Wang et al., 2004) proposed self
quotient image (SQI) by using only single image. The SQI was obtained by using the
Gaussian function as a smoothing kernel function. The SQI however is neither synthesized at
the boundary between a diffuse reflection region and a shadow region, nor at the boundary
between a diffuse reflection region and a specular reflection region. Determining the
reflectance type of an appearance from a single image is an ill-posed problem.

Chen et al. (Chen et al., 2005) proposed total variation based quotient image (TVQI), in which
light estimated by solving an optimal problem so-called total variation function. But TVQI
requires complex calculation. Zhang et al. (Zhang et al., 2007) presented morphological
quotient image (MQI) based on mathematical morphological theory. It uses close operation,
which is a kind of morphological approach, for light estimation.

4.1.3.5 Local Binary Pattern

Local Binary Pattern (LBP) (Ojala et al., 2002) is a local feature which characterizes the
intensity relationship between a pixel and its neighbors. The face image can be divided into
some small facets from which LBP features can be extracted. These features are concatenated
into a single feature histogram efficiently representing the face image. LBP is unaffected by
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any monotonic grayscale transformation in that the pixel intensity order is not changed after
such a transformation. For example, Li et al. (Li et al., 2007) used LBP features to compensate
for the monotonic transform, which can generate an illumination invariant face
representation.

4.1.3.6 3D Morphable Model

The 3D Morphable model is based on a vector space representation of faces. In this vector
space, any convex combination of shape and texture vectors of a set of examples describes a
realistic human face. The shape and texture parameters of the model can be separated from
the illumination information.

Blanz and Vetter (Blanz & Vetter, 2003) proposed a method based on fitting a 3D Morphable
model, which can handle illumination and viewpoint variations, but they rely on manually
defined landmark points to fit the 3D model to 2D intensity images.

Weyrauch et al. (Weyrauch et al., 2004) used a 3D Morphable model to generate 3D face
models from three input images of each person. The 3D models are rendered under varying
illumination conditions to build a large set of synthetic images. These images are then used to
train a component-based face recognition system.

4.2 Active Approaches

The idea of active approaches: apply active sensing techniques to capture images or video
sequences of face modalities which are invariant to environmental illumination.

Here we introduce two main classes as follows.

4.2.1 3D Information

3D face information can be acquired by active sensing devices like 3D laser scanners or stereo
vision systems. It constitutes a solid basis for face recognition, which is invariant to
illumination change. Illumination is extrinsic to 3D face intrinsic property. Humans are
capable to recognize some person in the uncontrolled environment (including the varying
illumination), precisely because they learn to deal with these variations in the real 3D world.
3D information can be represented in different ways, such as range image, curvature
features, surface mesh, point set, and etc. The range image representation is the most
attractive. Hesher et al. (Hesher et al., 2003) proposed range image to represent 3D face
information. Range images have the advantage of capturing shape variation irrespective of
illumination variability. Because the value on each point represents the depth value which
does not depend on illumination.

Many surveys (Kittler et al.,, 2005, Bowyer et al., 2006; Abate et al., 2007) on 3D face
recognition have been published. However, the challenges of 3D face recognition still exist
(Kakadiaris et al., 2007): (1) 3D capture creates larger data files per subject which implies
significant storage requirements and slower processing. The conversion of raw 3D data to
efficient meta-data must thus be addressed. (2) A field-deployable system must be able to
function fully automatically. It is therefore not acceptable to assume user intervention for
locating key landmarks in a 3D facial scan. (3) Actual 3D capture devices have a number of
drawbacks when applied to face recognition, such as artifacts, small depth of field, long
acquisition time, multiple types of output, high price, and etc.
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4.2.2 Infrared Spectra Information

Infrared (IR) image represents a viable alternative to visible imaging in the search for a
robust and practical face recognition system.

According to astronomy division scheme, the infrared portion of the electromagnetic
spectrum can be divided into three regions: near-infrared (Near-IR), mid-infrared (Mid-IR)
and far-infrared (Far-IR), named for their relation to the visible spectrum. Mid-IR and Far-IR
belong to Thermal-IR (see Fig. 5). These divisions are not precise. There is another more
detailed division (James, 2009).
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Fig. 5. Infrared as Part of the Electromagnetic Spectrum

Thermal-IR directly relates to the thermal radiation from object, which depends on the
temperature of the object and emissivity of the material. For Near-IR, the image intensifiers
are sensitive.

4.2.2.1 Thermal-IR

Thermal IR imagery has been suggested as an alternative source of information for detection
and recognition of faces. Thermal-IR cameras can sense temperature variations in the face at
a distance, and produce thermograms in the form of 2D images. The light in the thermal IR
range is emitted rather than reflected. Thermal emissions from skin are an intrinsic property,
independent of illumination. Therefore, the face images captured using Thermal-IR sensors
will be nearly invariant to changes in ambient illumination (Kong et al., 2005).

Socolinsky and Selinger (Socolinsky & Selinger, 2004, a) presented a comparative study of
face recognition performance with visible and thermal infrared imagery, emphasizing the
influence of time-lapse between enrollment and probe images. They showed that the
performance difference between visible and thermal face recognition in a time-lapse scenario
is small. In addition, they affirmed that the fusion of visible and thermal face recognition can
perform better than that using either alone. Gyaourova et al. (Gyaourova et al., 2004)
proposed a method to fuse the both modalities of face recognition. Thermal face recognition
is not perfect enough. For example, it is opaque to glass which can lead to facial occlusion
caused by eyeglasses. Their fusion rule is based on the fact that the visible-based recognition
is less sensitive to the presence or absence of eyeglasses. Socolinsky and Selinger (Socolinsky
& Selinger, 2004, b) presented visible and thermal face recognition results in an operational
scenario including both indoor and outdoor settings. For indoor settings under controlled
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illumination, visible face recognition performs better than that of thermal modality.
However, Outdoor recognition performance is worse for both modalities, with a sharper
degradation for visible imagery regardless of algorithm. But they showed that fused of both
modalities performance outdoors is nearing the levels of indoor visible face recognition,
making it an attractive option for human identification in unconstrained environments.

4.2.2.2 Near-IR

Near-IR has advantages over both visible light and Thermal-IR (Zou et al., 2005). Firstly,
since it can be reflected by objects, it can serve as active illumination source, in contrast to
Thermal-IR. Secondly, it is invisible, making active Near-IR illumination friendly to client.
Thirdly, unlike Thermal-IR, Near-IR can easily penetrate glasses.

However, even though we use the Near-IR camera to capture face image, the environmental
illumination and Near-IR illumination all exist in the face image. Hizem et al. (Hizem et al.,
2006) proposed to maximize the ratio between the active Near-IR and the environmental
illumination is to apply synchronized flashing imaging. But in outdoor settings, the Near-IR
energy in environmental illumination is strong. Zou et al. (Zou et al., 2005) employed a light
emitting diode (LED) to project Near-IR illumination, and then capture two images when the
LED on and off respectively. The difference between the two images can be independent of
the environment illumination. But when the face is moving, the effect is not good. To solve
this problem, Zou et al. (Zou et al.,, 2007, b) proposed an approach based on motion
compensation to remove the motion effect in the difference face images.

Li et al. (Li et al., 2007) presented a novel solution for illumination invariant face recognition
based on active Near-IR for indoor, cooperative-user applications. They showed that the
Near-IR face images encode intrinsic information of the face, which is subject to a monotonic
transform in the gray tone. Then LBP (Ojala et al., 2002) features can be used to compensate
for the monotonic transform so as to derive an illumination invariant face representation.
Above active Near-IR face recognition algorithms need that both the enrollment and probe
samples are captured under Near-IR conditions. However, it is difficult to realize in some
actual applications, such as passport and driver license photos. In addition, due to the
distance limitation of Near-IR, many face images can only be captured only under visible
lights. Chen et al. (Chen et al., 2009) proposed a novel approach, in which the enrollment
samples are visual light images and probe samples are Near-IR images. Based on learning the
mappings between images of the both modalities, they synthesis visual light images from
Near-IR images effectively.

5. lllumination Processing in Video-based Face Recognition

Video-based face recognition is being increasingly discussed and occasionally deployed,
largely as a means for combating terrorism. Unlike face recognition in still, it has its own
unique features, such as temporal continuity and dependence between two neighboring
frames (Zhou et al., 2003). In addition, it requires high real time in contrast to face recognition
in still. Their differences are compared in Table 1.
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Face Recognition in Video Face Recognition in Still
Low resolution faces High resolution faces
Varying illumination Even illumination

Varying pose Frontal pose
Varying expression Neutral expression
Video sequences Still image
Continuous motion Single motion

Table 1. The comparison between face recognition in video and in still

Most existing video-based face recognition systems (Gorodnichy, 2005) are realized in the
following scheme: the face is first detected and then tracked over time. Only when a frame
satisfying certain criteria (frontal pose, neutral expression and even illumination on face) is
acquired, recognition is performed using the technique of face recognition in still. However,
maybe the uneven illumination on face always exists, which lead that we cannot find a
suitable time to recognize the face.

Using the same algorithms, the recognition result of video-based face recognition is not
satisfying like face recognition in still. For example, the video-based face recognition
systems were set up in several airports around the United States, including Logan Airport in
Boston, Massachusetts; T. F. Green Airport in Providence, Rhode Island; San Francisco
International Airport and Fresno Airport in California; and Palm Beach International
Airport in Florida. However, the systems have never correctly identified a single face in its
database of suspects, let alone resulted in any arrests (Boston Globe, 2002). Some
illumination processing algorithms mentioned in Section 3 can be applied for video-based
face recognition, but we encounter three main problems at least: (1) Video-based face
recognition systems require higher real-time performance. Many illumination processing
algorithms can achieve a very high recognition rate, but some of them take much more
computational time. 3D face modeling is a classic one. Building a 3D face model is a very
difficult and complicated task in the literature even though structure from motion has been
studied for several decades. (2) In video sequences, the direction of illumination on face is
not single. Due to the face moving or the environmental illumination changing, the
illumination on face is in dynamic change. Unlike illumination processing for face
recognition in still, the algorithms need more flexible. If the light source direction cannot
change suddenly, the illumination condition on face only depend on the face motion. The
motion and illumination are correlative. (3) In contrast to general high resolution still
image, video sequences often have low resolution (less than 80 pixels between two eyes).
For illumination processing, it would be more difficulty. According to the three problems,
we introduced some effective algorithms for video-based face recognition.

5.1 Real-time lllumination Processing

Unlike the still image, the video sequences are displayed at a very high frequency (about 10 -
30 frames/second). So it's important to improve the real-time performance of illumination
processing for video-based face recognition.



lllumination Processing in Face Recognition 201

Chen and Wolf (Chen & Wolf, 2005) proposed a real-time pre-processing system to
compensate illumination for face processing by using scene lighting modeling. Their system
can be divided into two parts: global illumination compensation and local illumination
compensation (see Fig. 6). For global illumination compensation, firstly, the input video
image is divided into four areas so as to save the processing power and memory. And then
the image histogram is modified to a pre-defined luminance level by a non-linear function.
After that, the skin-tone detection is performed to determine the region of interest (ROI) and
the lighting update information for the following local illumination compensation. The
detection is a watershed between global illumination compensation and local illumination
compensation. For local illumination compensation, firstly, the local lighting is estimated
within the ROI determined from the previous stage. After obtaining the lighting information,
a 3D face model is applied to adjust the luminance of the face candidate. The lighting
information is not changed if there is no update request sent from the previous steps.

Before Global Illumination Compensation

After Global lllumination Compensation

(a) Global illumination (b) Local illumination
Fig. 6. Global and local illumination compensation

Arandjelovi¢ and Cipolla (Arandjelovi¢ & Cipolla, 2009) presented a novel and general face
recognition framework for efficient matching of individual face video sequences. The
framework is based on simple image processing filters that compete with unprocessed
greyscale input to yield a single matching score between individuals. It is shown how the
discrepancy between illumination conditions between novel input and the training data set
can be estimated and used to weigh the contribution of two competing representations. They
found that not all the probe video sequences should be processed by the complex algorithms,
such as a high-pass (HP) filter and SQI (Wang et al., 2004). If the illumination difference
between training and test samples is small, the recognition rate would decrease with HP or
SQI in contrast to non-normalization processing. In other words, if the illumination
difference is large, normalization processing is the dominant factor and recognition
performance is improved. If this notation is adopted, a dramatic performance improvement
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would be offered to a wide range of filters and different baseline matching algorithms,
without sacrificing their online efficiency. Based on that, the goal is to implicitly learn how
similar the probe and training samples illumination conditions are, to appropriately
emphasize either the raw input guided face comparisons or of its filtered output.

5.2 lllumination change relating to face motion and light source

Due to the motion of faces or light sources, the illumination conditions on faces can vary over
time. The single and changeless illumination processing algorithms can be unmeaning. The
best way is to design an illumination compensation or normalization for the specific
illumination situation. There is an implicit problem in this work: how to estimate the
illumination direction. If the accuracy of the illumination estimation is low, the same to the
poor face detection, the latter work would be useless. Here we will introduce several
illumination estimation schemes as follows.

Huang et al. (Huang et al., 2008) presented a new method to estimate the illumination
direction on face from one single image. The basic idea is to compare the reconstruction
residuals between the input image and a small set of reference images under different
illumination directions. In other words, the illumination orientation is regard as label
information for training and recognition. The illumination estimation is to find the nearest
illumination condition in the training samples for the probe. The way to estimate
illumination of an input image adopted by the authors is to compute residuals for all the
possible combinations of illumination conditions and the location of the minimal residual is
the expectation of illumination.

Wang and Li (Wang & Li, 2008) proposed an illumination estimation approach based on
plane-fit, in which environmental illumination is classified according to the illumination
direction. Illumination classification can help to compensate uneven illumination with
pertinence. Here the face illumination space is expressed well by nine face illumination
images, as this number of images results in the lowest error rate for face recognition (Lee et
al., 2005). For more accurate classification, illumination direction map, which abides by
Lambert’s illumination model, is generated. BHE (Xie & Lam, 2005) can weaken the light
contrast in the face image, whereas HE can enhance the contrast. The difference between the
face image processed by HE and the same one processed by BHE, which can reflect the light
variance efficiently, generates the illumination direction map (see Fig. 7).

In order to make the direction clearer in the map, the Laplace filter and Gaussian low pass
filter are also applied. In order to estimate the illumination orientation, a partial least square
plane-fit is carried out on the current pixel of the illumination direction map. In actual, I(x,y)
is the fitted value. Suppose f(x,y) is the observed value at (x,y). Then the least square
between I(x,y) (I(x,y) = ax + by + ¢) and f(x,y) is shown in Eq. (7).

S= Zx,y[f(xr y) — (ax + by + C)]Z )

note: X, y, f(x,y) are known, so S is the function of a, b and c.
The illumination orientation can be defined as the value as follows:

ay Toox gy A ExyfGy)x
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where B denotes the illumination orientation on the illumination direction map.
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Fig. 7. Generation of illumination direction map

For the same person, the value of B is greatly different with illumination orientation
variations; for different persons, the value of B is similar with the same illumination
orientation. B can be calculated to make the lighting category determined.

Supposing that the light source direction is fixed, the surface of a moving face cannot change
suddenly over a short time period. So the illumination varying on face can be regarded as a
continuous motion. The face motion and illumination are correlative.

Basri and Jacobs (Basri & Jacobs, 2003) analytically derived a 9D spherical harmonics based
on linear representation of the images produced by a Lambertian object with attached
shadows. Their work can be extended from the still image to video sequences, where the
video sequences can be only regarded as some separate frames, but it is inefficient. Xu and
Roy-Chowdhury (Xu & Roy-Chowdhury, 2005; Xu & Roy-Chowdhury, 2007) presented a
theory to characterize the interaction of face motion and illumination in generating video
sequences of a 3D face. The authors showed that the set of all Lambertian reflectance
functions of a moving face, illuminated by arbitrarily distant light sources, lies “close” to a
bilinear subspace consisting of 9 illumination variables and 6 motion variables. The bilinear
subspace formulation can be used to simultaneously estimate the motion, illumination and
structure from a video sequence. The problem, how to deal with both motion and
illumination, can be divided into two stages: [ the face motion is considered, and the change
in its position from one time instance to the other is calculated. The change of position can be
referenced as the coordinate change of the object. [] the effect of the incident illumination ray,
which is projected onto face, and reflected conform to the Lambert’s cosine law. For the
second stage, incorporating the effect of the motion, Basri and Jacob’s work is used.
However, the idea, supposing that the illumination condition is related to the face motion,
has a certain limitation. If the environment illumination varies suddenly (such as a flash) or
illumination source occultation, the relation between motion and illumination is not credible.
All approaches conforming to the supposition would not work.
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5.3 lllumination Processing for Low Resolution faces

As anovel input, it is difficult to capture a high resolution face in an arbitrary position of the
video. But we can obtain a single high quality video of a person of interest, for the purpose of
database enrolment. This problem is of interest in many applications, such as law
enforcement. For low resolution faces, it is harder to adopt illumination processing,
especially pixel-by-pixel algorithms.

However, it clearly motivates the use of super-resolution techniques in the preprocessing
stages of recognition. Super-resolution concerns the problem of reconstructing
high-resolution data from a single or multiple low resolution observations. Formally, the
process of making a single observation can be written as the following generative model:

x =l [t(®) + n] 9)

where % is the high-resolution image; t(-) is an appearance transformation (e.g. due to
illumination change, in the case of face images); n is additive noise; | is the downsampling
operator.
Arandjelovi¢c and Cipolla (Arandjelovi¢ & Cipolla, 2006) proposed the Generic
Shape-Illumination (gSIM) algorithm. The authors showed how a photometric model of
image formation can be combined with a statistical model of generic face appearance
variation, learnt offline, to generalize in the presence of extreme illumination changes. gSIM
performs face recognition by extracting and matching sequences of faces from unconstrained
head motion videos and is robust to changes in illumination, head pose and user motion
pattern. For the form of gSIM, a learnt prior is applied. The prior takes on the form of an
estimate of the distribution of non-discriminative, generic, appearance changes caused by
varying illumination. It means that unnecessary smoothing of person-specific, discriminative
information is avoided. In the work, they make a very weak assumption on the process of
image formation: the intensity of each pixel is a linear function of the albedo a(j) of the
corresponding 3D point:

X() = a(@) - s() (10

where s is a function of illumination parameters , which is not modeled explicitly.
Lambertian reflectance model is a special case.

Given two images X; and X,, which are both the same person under the same pose, are of
different illuminations.

AlogX(j) = logs,(j) —logs:(j) = ds(j) (11)

So the difference between these logarithm-transformed images is not relative to the face
albedo. Under the very general assumption that the mean energy of light incident on the
camera is proportional to the face albedo at the corresponding point, dgs is approximately
generic i.e. not dependent on the person’s identity.

However, this is not the case when dealing with real images, as spatial discretization
differently affects the appearance of a face at different scales. In another paper (Arandjelovié¢
& Cipolla, 2007) of the authors, they proposed not to explicitly compute super-resolution
face images from low resolution input; rather, they formulated the image formation model
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in such a way that the effects of illumination and spatial discretization are approximately
mutually separable. Thus, they showed how the two can be learnt in two stages: (1) a
generic illumination model is estimated from a small training corpus of different individuals
in varying illumination. (2) a low-resolution artifact model is estimated on a person-specific
basis, from an appearance manifold corresponding to a single sequence compounded with
synthetically generated samples.

6. Recent State-of-art Methods of lllumination Processing in Face Recognition

How to compensate or normalize the uneven illumination on faces is still a puzzle and hot
topic for face recognition researchers. There are about 50 IEEE papers on illumination
processing for face recognition within past 12 months. Here we illuminated some excellent
papers published on the important conferences (e.g. CVPR and BTAS) or journals (such as
IEEE Transactions on Pattern Analysis and Machine Intelligence) since 2008. Many papers,
which have been introduced in the former sections, are not restated.
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Fig. 8. Illumination Normalization Framework for Large-scale Features

Xie et al. (Xie et al., 2008) proposed a novel illumination normalization approach shown in
Fig. 8. In the framework, illumination normalization whereas small-scale features (high
frequency component) are only smoothed. Their framework can be divided into 3 stages: (1)
Adopt an appropriate algorithm to decompose the face image into 2 parts: large-scale
features and small-scale features. Methods in this category include logarithmic total
variation (LTV) model (Chen et al.,, 2006), SQI (Wang et al., 2004) and wavelet transform
(Gomez-Moreno et al., 2001) based method. However, some of the methods discard the
large-scale features of face images. In this framework, the authors

use LTV. (2) Eliminate the illumination information from the large-scale features by some
algorithms, such as HE, BHE (Xie & Lam, 2005) and QI (Shashua & Riklin-Raviv, 2001) etc.
In addition, these methods also distort the small-scale features simultaneously during the
normalization process. (3) a normalized face image is generated by combination of the
normalized large-scale feature image and smoothed small-scale feature image.
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Holappa et al. (Holappa et al., 2008) presented an illumination processing chain and
optimization method for setting its parameters so that the processing chain explicitly tailors
for the specific feature extractor. This is done by stochastic optimization of the processing
parameters using a simple probability value derived from intra- and inter-class differences of
the extracted features as the cost function. Moreover, due to the general 3D structure of faces,
illumination changes tend to cause different effects at different parts of the face image (e.g.,
strong shadows on either side of the nose, etc.). This is taken into account in the processing
chain by making the parameters spatially variant. The processing chain and optimization
method can be general, not for any specific face descriptor. To illuminate the chain and
optimization method, the authors take LBP (Ojala et al., 2002) for example. LBP descriptor is
relatively robust to different illumination conditions but severe changes in lighting still pose
a problem. To order to solve this problem, they strive for a processing method that explicitly
reduces such intra-class variations that the LBP description is sensitive to. Unlike other
slowly processed interactive methods, the authors use only logarithmic transformation of
pixel values and convolution of the input image region with small sized filter kernels, which
makes the method very fast. The complete preprocessing and feature extraction chain is
presented in Fig. 9. For the optimization method, the scheme adopted by the authors is to
maximize the probability that the features calculated from an image region, that the filter to
be optimized is applied to, are closer to each other in the intra class case than in the extra
class case.

Face recognition in uncontrolled illumination experiences significant degradation in
performance due to changes in illumination directions and skin colors. The conventional
color CCD cameras are not able to distinguish changes of surface color from color shifts
caused by varying illumination. However, multispectral imaging in the visible and near
infrared spectra can help reduce color variations in the face due to changes in illumination
source types and directions. Chang et al. (Chang et al., 2008) introduced the use of
multispectral imaging and thermal infrared imaging as alternative means to conventional
broadband monochrome or color imaging sensors in order to enhance the performance of
face recognition in uncontrolled illumination conditions. Multispectral imaging collects
reflectance information at each pixel over contiguous narrow wavelength intervals over a
wide spectral range, often in the visible and Near-IR spectra. In multispectral imaging,
narrowband images provide spectral signatures unique to facial skin tissue that may not be
detected using broadband CCD cameras. Thermal-IR imagery is less sensitive to the
variations in face appearance caused by illumination changes. Because the Thermal-IR
sensors only measure the heat energy radiation, which is independent of ambient lighting.
Fusion techniques have been exploited to improve face recognition performance.
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Fig. 9. Illumination Normalization Framework for Large-scale Features
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The fusion of Thermal-IR and visible sensors is a popular solution to illumination-invariant
face recognition (Kong et al., 2005). However, face recognition based on multispectral image
fusion is relatively unexplored. The image based fusion rule can be divided into two kinds:
pixel-based and feature-based fusion. The former is easy to implement but more sensitive to
registration errors than the latter. Feature based fusion methods are computationally more
complex but robust to registration errors.

-
H
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Fig. 10. (a) Example de-illumination training data for the Small Faces. Each column
represents a source training set for a particular illumination model. In this case: illumination
from the right; illumination from the top; illumination from the left; illumination from the
bottom. The far right column is the uniformly illuminated target training data from which
the derivatives are generated. (b) Example re-illumination training data for the Small Faces.
The far left column is the uniformly illuminated source training data. Each remaining column
represents the quotient image source training set for a particular illumination model. In this
case: illumination from the right; illumination from the top; illumination from the left;
illumination from the bottom.

Moore et al. (Moore et al., 2008) proposed a machine learning approach for estimating
intrinsic faces and hence de-illuminating and re-illuminating faces directly in the image
domain. For estimation of an intrinsic component, the local linear constraints on images are
estimated in terms of derivatives using multi-scale patches of the observed images,
comprising from a three-level Laplacian Pyramid. The problem of decomposing an observed
face image into its intrinsic components (i.e. reflectance and albedo) is formulated as a
nonlinear regression problem. For de-illuminating faces (see Fig. 10(a)), with the non-linear
regression, the derivatives of the face image are estimated from a given class as it would
appear with a uniform illumination. The uniformly illuminated image can then be
reconstructed from these derivatives. So the de-illumination step can be regarded as an
estimation problem. For re-illuminating faces (see Fig. 10(b)), it is just like an adverse stage of
de-illuminating faces. The goal has changed from calculating the de-illuminated face to
calculating new illuminations and the input images are de-illuminated faces. Besides these
differences, the illumination estimation involves the same basic steps of estimating
derivative values and integrating them to form re-illuminated images.
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Most public face databases lack images with a component of rear (more than 90 degrees from
frontal) illumination, either for training or testing. Wagner et al. (Wagner et al., 2009) made
an experiment (see Fig. 11) which showed that training faces with the rear illumination can
help to improve the face recognition. The experiment is that the girl should be identified
among 20 subjects, by computing the sparse representation (Wright et al., 2009) of her input
face with respect to the entire training set. The absolute sum of the coefficients associated
with each subject is plotted on the right. The figure also show the faces reconstructed with
each subject’s training images weighted by the associated sparse coefficients. The red line
corresponds to her true identity, subject 12. For the upper row of the figure, the input face is
well-aligned (the white box) but only 24 frontal illuminations are used in the training for
recognition. For the lower row of the figure, informative representation is obtained by using
both well-aligned input face and sufficient (all 38) illuminations in the training. A conclusion
can be drawn that illuminations from behind the face are also needed to sufficiently
interpolate the illumination of a typical indoor (or outdoor) environment in the training. If
not have, the representation will not necessarily be sparse or informative.
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Fig. 11. Recognition Performance with and without rear illumination on faces for training

In order to solve the problem, the authors designed a training acquisition system that can
illuminate the face from all directions above horizontal. The illumination system consists of
four projectors that display various bright patterns onto the three white walls in the corner of
a dark room. The light reflects off of the walls and illuminates the user’s head indirectly.
After taking the frontal illuminations, the chair is rotated by 180 degrees and then pictures
are taken from the opposite direction. Having two cameras speeds the process since only the
chair needs to be moved in between frontal and rear illuminations. The experiment results
are satisfying. However, it is impossible to obtain

samples of all target persons using the training acquisition system, such as law enforcement
for terrorists.

Wang et al. (Wang et al., 2008) proposed a new method to modify the appearance of a face
image by manipulating the illumination condition, even though the face geometry and
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albedo information is unknown. Besides, the known information is only a single face image
under arbitrary illumination condition, which makes face relighting more difficult.

©)
Fig. 12. (a) Examples of Yale B face database. (b) SHBMM method. (c) MRF-based method

According to the illumination condition on face, the authors divided their methods into two
parts: face relighting under slightly uneven illumination and face relighting under extreme
illumination. For the former one, they integrate spherical harmonics (Zhang & Samaras, 2004;
Zhang & Samaras, 2006) into the morphable model (Blanz & Vetter, 2003; Weyrauch et al.,
2004) framework by proposing a 3D spherical harmonic basis morphable model (SHBMM),
which modulates the texture component with the spherical harmonic bases. So any face
under arbitrary unknown lighting and pose can be simply represented by three
low-dimensional vectors, i.e., shape parameters, spherical harmonic basis parameters, and
illumination coefficients, which are called the SHBMM parameters. As shown in Fig. 12 (b),
SHBMM can perform well for face image under slightly uneven illumination. However, the
performance decreases significantly in extreme illumination. The approximation error can be
large, thus making it difficult to recover albedo information. This is because the
representation power of SHBMM model is inherently limited by the coupling of texture and
illumination bases. In order to solve this problem, the authors presented the other
sub-method - a subregion-based framework, which uses a Markov random field (MRF) to
model the statistical distribution and spatial coherence of face texture. So it can be called
MREF-based framework. Due to MRF, an energy minimization framework was proposed to
jointly recover the lighting, the geometry (including the surface normal), and the albedo of
the target face (see Fig. 12 (c)).
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Gradient-based image has been proved to insensitive to illumination. Based on that, Zhang et
al. (Zhang et al., 2009) proposed an illumination insensitive feature called Gradientfaces for
face recognition. Gradientfaces is derived from the image gradient domain such that it can
discover underlying inherent structure of face images since the gradient domain explicitly
considers the relationships between neighboring pixel points. Therefore, Gradientfaces has
more discriminating power than the illumination insensitive measure extracted from the
pixel domain.

Given an arbitrary image I(x,y) under variable illumination conditions, the ratio of
I(xy)
9y
Gradientfaces (G) of image I can be defined as

y-gradient of I(x,y) ( ) to I(x,y) (@) is an illumination insensitive measure. Then

G = arctan (M) G € [0,2m). (12)

x—gradient

where Iy_gradient and ly_gragient are the gradient of image I in the x, y direction,
spectively.
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1. Introduction

Among the numerous biometric systems presented in the literature, face recognition
systems have received a great deal of attention in recent years. The main driving force in the
development of these systems can be found in the enormous potential face recognition
technology has in various application domains ranging from access control, human-machine
interaction and entertainment to homeland security and surveillance (Struc et al., 2008a).
While contemporary face recognition techniques have made quite a leap in terms of
performance over the last two decades, they still struggle with their performance when
deployed in unconstrained and uncontrolled environments (Gross et al., 2004; Phillips et al.,
2007). In such environments the external conditions present during the image acquisition
stage heavily influence the appearance of a face in the acquired image and consequently
affect the performance of the recognition system. It is said that face recognition techniques
suffer from the so-called PIE problem, which refers to the problem of handling Pose,
INlumination and Expression variations that are typically encountered in real-life operating
conditions. In fact, it was emphasized by numerous researchers that the appearance of the
same face can vary significantly from image to image due to changes of the PIE factors and
that the variability in the images induced by the these factors can easily surpass the
variability induced by the subjects” identity (Gross et al., 2004; Short et al., 2005). To cope
with image variability induced by the PIE factors, face recognition systems have to utilize
feature extraction techniques capable of extracting stable and discriminative features from
facial images regardless of the conditions governing the acquisition procedure. We will
confine ourselves in this chapter to tackling the problem of illumination changes, as it
represents the PIE factor which, in our opinion, is the hardest to control when deploying a
face recognition system, e.g., in access control applications.

Many feature extraction techniques, among them particularly the appearance based
methods, have difficulties extracting stable features from images captured under varying
illumination conditions and, hence, perform poorly when deployed in unconstrained
environments. Researchers have, therefore, proposed a number of alternatives that should
compensate for the illumination changes and thus ensure stable face recognition
performance.
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Sanderson and Paliwal (Sanderson & Paliwal, 2003), for example, proposed a feature
extraction technique called DCT-mod2. The DCT-mod2 technique first applies the Discrete
Cosine Transform (DCT) to sub-regions (or blocks) of facial images to extract several feature
sets of DCT coefficients, and then compensates for illumination induced appearance
changes by replacing the coefficients most affected by illumination variations with the
corresponding vertical and horizontal delta coefficients. The authors assessed the technique
on images rendered with an artificial illumination model as well as on (real-life) images
captured under varying illumination conditions. Encouraging results were achieved on both
image types.

Another technique was proposed by Gao and Leung in (Gao & Lung, 2002). Here, the
authors argue that the so-called Line Edge Maps (LEM) represent useful face
representations for both image coding and recognition and that, moreover, they also exhibit
insensitiveness to illumination variations. With this technique a given face image is first
processed to extract edge pixels, which are then combined into line segments that constitute
the LEMs. The authors showed that their technique successfully outperformed popular
feature extraction approaches on various databases.

Liu and Wechsler (Liu & Wechsler, 2002) use the Gabor wavelet (or filter) representation of
face images to achieve robustness to illumination changes. Their method - the Gabor Fisher
Classifier (GFC), adopts a filter bank of forty Gabor filters (featuring filters of five scales and
eight orientations) to derive an augmented feature vector of Gabor magnitude features and
then applies a variant of the multi-class linear discriminant analysis called the Enhanced
Fisher discriminant Model (EFM) to the constructed Gabor feature vector to improve the
vector’s compactness.

While all of the presented techniques ensure some level of illumination invariance, Gabor
wavelet based methods received the most attention due to their effectiveness and simplicity.
The feasibility of Gabor wavelet based methods for robust face recognition is not evidenced
solely by the large number of papers following up on the work of Liu and Wechsler (e.g.,
Shen et al., 2007; Struc & Pavesic, 2009b), but also by the results of several independent
evaluations (and competitions) of face recognition technology, where the techniques
utilizing Gabor wavelets regularly resulted in the best performance (Messer et al., 2006; Poh
et al. 2009).

It has to be noted that the Gabor face representation as proposed by Liu and Wechsler does
not represent an illumination invariant face representation, but rather exhibits robustness to
illumination changes due to the properties of the deployed Gabor filter bank. Since Gabor
filters represent band limited filters, the filter bank is usually constructed in such a way that
it excludes the frequency bands most affected by illumination variations. Furthermore, the
Gabor magnitude features that constitute the augmented Gabor feature vector are local in
nature, which again adds to the illumination insensitiveness of the computed Gabor face
representation.

While the existing Gabor based methods are among the most successful techniques for face
recognition, they still exhibit some shortcomings, which, when properly solved, could result
in an improved recognition performance. These shortcomings can be summarized into the
following main points:



From Gabor Magnitude to Gabor Phase Features:
Tackling the Problem of Face Recognition under Severe lllumination Changes 217

e most of the existing techniques rely solely on Gabor magnitude information
while discarding the potentially useful Gabor phase information (e.g., Liu &
Wechsler, 2002; Liu, 2006; Shen et al., 2007; Struc & Pavesic, 2009Db),

e the deployment of a large filter bank (usually comprising 40 filters) results in an
inflation of the data size by a factor equaling the number of filters in the filter
bank triggering the need for down-sampling strategies, which often discard
information that could prove useful for the recognition task and

e Gabor magnitude features ensure only partial insensitiveness to illumination
changes resulting in the necessity for additional (robust) face descriptors.

To tackle the above issues, we propose in this chapter a novel face representation called the
oriented Gabor phase congruency pattern (OGPCP), which, as the name suggests, is derived
from the Gabor phase congruency model presented in (Kovesi, 1999). The proposed face
representation is based on the phase responses of the Gabor filter bank rather than the
magnitude responses and as such offers an alternative to the established Gabor magnitude
based methods. As we will show in this chapter, the feature vector constructed from the
OGPCPs is more compact (i.e., less dimensional) than the traditional Gabor magnitude
representation of face images and also exhibits robustness to illumination changes. Thus, it
represents a novel robust face representation capable of substituting or complementing the
existing Gabor magnitude based recognition techniques.

The rest of the chapter is structured as follows: In Section 2, a brief review of the Gabor filter
based methods is given. In Section 3, the novel face representation, i.e., the oriented Gabor
phase congruency pattern is presented and the augmented Gabor phase congruency feature
vector introduced. In Section 4, the classification rule for the experiments is highlighted,
while the experimental databases are described in Section 5. The feasibility of the proposed
features is assessed in Section 6. The chapter concludes with some final remarks and
directions for future work in Section 7.

2. Review of Gabor filters for face recognition

2.1 Gabor filter construction

Gabor filters (sometimes also called Gabor wavelets or kernels) have proven to be a
powerful tool for facial feature extraction. They represent band-limited filters with an
optimal localization in the spatial and frequency domains. Hence, when used for facial
feature extraction, they extract multi-resolutional, spatially local features of a confined
frequency band. In the spatial domain, the family of 2D Gabor filters can be defined as
follows (Lades et al.,, 1993; Liu & Wechsler, 2002; Liu, 2006; Shen & Bai, 2006; Struc &
Pavesic¢, 2009b):

fo 12 f5 0
Wun(x,y) = ie—(y—zx Py Z)efz’Tfux” )
' Ty
where x' =xcos6, +ysinf,,y’ = —xsin, +ycos,, fi = fmax/2®?, and 6, = vn/8.

Each filter represents a Gaussian kernel function modulated by a complex plane wave
whose centre frequency and orientation are defined by the parameters f, and 6,
respectively. The parameters y and 1 determine the ratio between the centre frequency and
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the size of the Gaussian envelope and, when set to a fixed value, these parameters ensure
that Gabor filters of different scales and a given orientation behave as scaled versions of
each other. It has to be noted at this point that with fixed values of the parameters y and n
the scale of the given Gabor filter is defined uniquely by its centre frequency f,,. Commonly
the values of the parameters y and 7 are set to y = 1 = V2. The last parameter of the Gabor
filters fi4, denotes the maximum frequency of the filters and is commonly set to fi5, =
0.25. When employed for facial feature extraction, researchers typically use Gabor filters
with five scales and eight orientations, i.e, u=0,1,..,p—1 and v=0,1,...,7r — 1, where
p = 5 and r = 8, which results in a filter bank of 40 Gabor filters (Liu, 2006; Shen et al. 2007;
Struc et al., 2008a).

It should be noted that Gabor filters represent complex filters which combine an even
(cosine-type) and odd (sine-type) part (Lades et al., 1993). An example of both filter parts in
3D is shown on the left side of Fig. 1, while the real parts of the entire filter bank (commonly
comprising 40 Gabor filters) are presented in 2D on the right hand side of Fig. 1.
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Fig. 1. Examples of Gabor filters: the real and imaginary part of a Gabor filter in 3D (left), the
real part of the commonly employed Gabor filter bank of 40 Gabor filters in 2D (right)

2.2 Feature extraction with Gabor filters

Let I(x,y) denote a grey-scale face image of size a x b pixels and let ¥, ,(x,y) represent a
Gabor filter defined by its centre frequency f, and orientation 6,. The filtering operation or
better said the feature extraction procedure can then be written as the convolution of the
face image I(x,y) with the Gabor wavelet (filter, kernel) ¥, ,(x,¥), ie. (étruc & Pavesic,
2009b),

Gu,v(xIY) =1(x,y) * 1pu,v(x!y)- (2)

In the above expression, G, ,,(x,y) represents the complex convolution output which can be
decomposed into its real (or even) and imaginary (or odd) parts as follows:

Eu,v(xr y) = Re[Gu,u(Xr Y)] and Ou,v(xr y) = Im[Gu,v(xr Y)] (3)

Based on these results, both the phase (¢,,(x,¥)) as well as the magnitude responses
(Ay v (x,)) of the filter can be computed, i.e.:
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A7) = [E2 ) + 020 (5,9) "
by (x,y) = arCtan(Ou,v (x, y)/Eu,v )

As already stated in the previous section, most of the techniques found in the literature
discard the phase information of the filtering output and retain only the magnitude
information for the Gabor face representation. An example of this information (in image
form) derived from a sample face image is shown in Fig. 2.
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Fig. 2. An example of the Gabor magnitude output: a sample image (left), the magnitude
output of the filtering operation with the entire Gabor filter bank of 40 Gabor filters (right)

2.3 The Gabor (magnitude) face representation

The first step when deriving the Gabor (magnitude) face representation of facial images is
the construction of the Gabor filter bank. As we have pointed out several times in this
chapter, most existing techniques adopt a filter bank comprised of 40 Gabor filters, i.e.,
Gabor filters with 5 scales (u = 0, 1, ..., 4) and 8 orientations (v = 0,1, ..., 7).

Fig. 3. Down-sampling of a magnitude filter response: an example of a magnitude response
(left), an example of the magnitude response with a superimposed sampling grid (middle), a
down-sampled magnitude response (right)

To obtain the Gabor (magnitude) face representation, a given face image is filtered with all
40 filters from the filter. However, even for a small image of 128 X 128 pixels, the
magnitude responses of the filtering outputs comprise a pattern vector with 655360
elements, which is far too much for efficient processing and storage. To overcome this
problem, down-sampling strategies are normally exploited. The down-sampling techniques
reduce the dimensionality of the magnitude responses, unfortunately often at the expense of
potentially useful discriminatory information. A popular down-sampling strategy is to



220 Face Recognition

employ a rectangular sampling grid (as shown in Fig. 3) and retain only the values under
the grid’s nodes. This down-sampling procedure is applied to all magnitude responses,
which are then normalized to zero mean and unit variance and ultimately concatenated into
the final Gabor (magnitude) face representation or, as named by Liu and Wechsler (Liu &
Wechsler, 2002), into the augmented Gabor feature vector.

If we denote the down-sampled magnitude response (in column vector form) of the Gabor
filter of scale u and orientation v as g,,,,, we can define the augmented Gabor (magnitude)
feature vector x as follows:

T
x=(90091.902-.9%7) - ®)

It has to be noted that in the experiments presented in Section 6 of this chapter, we use
images of 128 x 128 pixels and a rectangular down-sampling grid with 16 horizontal and
16 vertical lines, which corresponds to a down-sampling factor of 64. Nevertheless, even
after the down-sampling, the augmented Gabor (magnitude) feature vector still resides in a
very high-dimensional space (Shen et al., 2007) - in our case the dimensionality of the
vectors still equals 10240. To make the processing more efficient, researchers commonly
turn to so-called subspace projection techniques, e.g. (Liu, 2006; Shen et al. 2007; Struc &
Pavesi¢, 2009b). Two of these techniques, namely, the Principal Component Analysis (PCA)
and the Linear Discriminant analysis (LDA), will also be adopted for our experiments. The
description of these techniques is beyond the scope of this chapter, the reader is, however,
referred to (Turk & Pentland, 1991) and (Belhumeur et al. 1997) for more information on
PCA and LDA, respectively.

3. The Gabor (phase) face representation

This section introduces a novel face representation called oriented Gabor phase congruency
pattern (OGPCP) and, consequently, the augmented Gabor phase congruency feature
vector.

3.1 Background

Before we turn our attention to the novel representation of face images, i.e., to the oriented
Gabor phase congruency pattern, let us take a closer look at why the Gabor phase
information is commonly discarded when deriving the Gabor face representation.

Unlike the (Gabor) magnitude, which is known to vary slowly with the spatial position, the
(Gabor) phase can take very different values even if it is sampled at image locations only a
few pixels apart. This fact makes it difficult to extract stable and discriminative features
from the phase responses of Eq. (2) and is the primary reason that most of the existing
methods use only the (Gabor) magnitude to construct the Gabor feature vector (Zhang et al.,
2007; Struc et al., 2008a).

To the best of our knowledge, there are only a few studies in the literature that successfully
derived useful features from Gabor phase responses for the task of face recognition, e.g.,
(Zhang et al., 2007; Bezalel & Efron, 2005; Gundimada & Asari, 2006; Gundimada et al.,
2009). A common characteristic of these methods is the fact that they use features or face
representations derived from the Gabor phase information rather than the “raw” phase
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responses themselves or combine the phase information with other face descriptors to
compensate for the variability of the Gabor phase.

Zhang et al. (Zhang et al., 2007), for example, adopt local histograms of the phase responses
encoded via local binary patterns (LBPs) as face image descriptors and show that over small
image regions the Gabor phase patterns exhibit some kind of regularity (in terms of
histograms) and, hence, contain useful information for the task of face recognition. Other
authors (e.g., Bezalel & Efron, 2005, Gundimada & Asari, 2006; Gundimada et al., 2009)
incorporate the Gabor phase information by adopting the 2D phase congruency model of
Kovesi (Kovesi, 1999) to detect edges in a given face image and deploy the resulting “edge”
image for detection of interest points that are used with other image descriptors, such as
Gabor magnitude features.

The face representation proposed in this chapter is related to the work of (e.g., Bezalel &
Efron, 2005, Gundimada & Asari, 2006; Gundimada et al., 2009) only as far as it uses the
concept of phase congruency for encoding the Gabor phase information. However, unlike
previous work on this subject it proposes a face representation that is only partially based
on Kovesi's 2D phase congruency model and employs the proposed representation for
recognition rather than solely for feature selection. As will be shown in the next section, the
proposed face representation exhibits several desirable properties which overcome most of
the shortcomings of the existing Gabor magnitude based methods.

3.2 The oriented Gabor phase congruency patterns

The original 2D phase congruency model as proposed by Kovesi in (Kovesi, 1999) was
developed with the goal of robust edge and corner detection in digital images. However, as
we will show, it can (though with a few modifications) also be used to encode phase
information of the Gabor filter responses in a way that is useful for the task of face
recognition.

'r R

Fig. 4. Examples of phase congruency images (from left to right): the original image, the PCI
for p =3 and r = 6, the PCI for p =5 and r = 6, the PCI for p = 3 and r = 8, the PCI for
p=5andr =8

Kovesi's original phase congruency model searches for points in an image where the log-
Gabor filter responses over several scales and orientations are maximally in phase (Kovesi,
1999; Struc & Pavesid, 2009a). Thus, a point in an image is of significance only if the phase
responses of the log-Gabor filters over a range of scales (i.e., frequencies) display some kind
of order. In the original approach, phase congruency is first computed for each of the
employed filter orientations, while the results are then combined to form the final phase
congruency image (PCI). Some examples of such images obtained with log-Gabor filters
with p scales and r orientations are shown in Fig. 4. Note that the code used to produce the
presented phase congruency images was provided by P. Kovesi and can be found at his
homepage: http:/ /www.csse.uwa.edu.au/~pk/Research/MatlabFns/index.html
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While the presented approach is suitable for robust (in terms of noise, illumination
variations and image contrast) edge and corner detection, its usefulness for facial feature
extraction is questionable. As it was emphasized by Liu in (Liu, 2006), a desirable
characteristic of any feature extraction procedure is the capability of extracting multi-
orientational features. Rather than combining phase congruency information computed over
several orientations, and using the result for construction of the facial feature vector, we
therefore propose to compute an oriented Gabor phase congruency pattern (OGPCP) for
each of the employed filter orientations and to construct an augmented (Gabor) phase
congruency feature vector based on the results. Note that, differently from the original 2D
phase congruency model proposed in (Kovesi, 1999), we use conventional Gabor filters as
defined by Eq. (1) rather than log-Gabor filters (Struc et al., 2008a).

Taking into account the original definition of the phase congruency, we can derive an
oriented version of the phase congruency, which, when presented in image form, reveals the
oriented Gabor phase congruency patterns (OGPCPs) for the v-th orientation:

X o Ay (6, V) Ady (X, )

OGPCP,(x,y) = —
Y ¥ oAy (e y) +€)

©)

where € denotes a small constant that prevents division by zero and A¢, ,(x,y) stands for
the phase deviation measure of the following form:

A¢u,v(x: y) = cos(qbu_,,(x, y) — d_)v(x' y)) - |Sin(¢u,v(x: y) — d_)v(x' y))' (7)

In the above expression ¢, ,(x,y) denotes the phase angle of the Gabor filter (with a centre
frequency f, and orientation 6,) at the spatial location (x,y), while ¢,(x,y) represents the
mean phase angle at the v-th orientation. Several examples of the OGPCPs for a sample
image are shown in Fig. 5.

V=¥

Fig. 5. Examples of OGPCPs (from left to right): the original image, the OGPCP for 6, = 0°
and p = 2, the OGPCP for 6, = 0° and p = 3, the OGPCP for 6,, = 0° and p = 4, the OGPCP
for8, =0° andp =5

Kovesi showed that the expression given in (6) can be computed directly from the filter
outputs defined by (3); however, for details on computing the OGPCPs the reader should
refer to the original paper (Kovesi, 1999).

It should be noted that the OGPCPs as defined by Eq. (6) represent illumination invariant
(and contrast independent) face representations, since they do not depend on the overall
magnitude of the filter responses. This property makes the OGPCPs a very useful image
representation for face recognition.
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3.3 The augmented Gabor phase congruency feature vector

The OGPCPs presented in the previous section form the foundation for the augmented
Gabor phase congruency feature vector, which is computed from a given face image by the
following procedure:

e for a given face image all r OGPCPs are computed for the chosen number of filter
scales p (an example of all OGPCPs for a sample image with r =8 and p = 2 is
presented in Fig. 6.)

e the OGPCPs are down-sampled by a down-sampling factor p (in a similar manner
as shown in Fig. 3),

e the down-sampled OGPCPs are normalized using the selected normalization
procedure (zero mean and unit variance, histogram equalization, ...), and

e the down-sampled and normalized OGPCPs in column vector form (denoted as
D) are concatenated to form the augmented Gabor phase congruency feature
vector x.

Formally, the augmented Gabor phase congruency feature vector is defined as follows:

x=(pL,pI, DL, .., DT_,) ®)

where T denotes the transform operator and D,, for v = 0,1,2, ..., — 1, stands for the vector
derived from the OGPCP at the v-th orientation.

(for r = 8) that
form the foundation for construction of the augmented Gabor phase congruency feature
vector

Note that in the experiments presented in Section 6 a down-sampling factor of p = 16 was
used for the OGPCPs, as opposed to the Gabor magnitude responses, where a down-
sampling factor of p = 64 was employed. This setup led to similar lengths of the constructed
(Gabor) feature vectors of both methods and thus enabled a fair comparison of their face
recognition performances. Furthermore, as the smaller down-sampling factor was used for
the OGPCPs, less potentially useful information is discarded when oriented Gabor phase
congruency patterns are employed for the face representation rather than the Gabor
magnitude features.
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As with the augmented Gabor magnitude feature vector, the Gabor phase congruency
feature vector also resides in high-dimensional space and, hence, requires additional
processing with, for example, subspace projection techniques to further reduce its
dimensionality. In the experimental section, PCA and LDA are evaluated for this purpose.

4. Classification rule

In general, a face recognition system can operate in one of two modes: in the verification or
identification mode (Struc et al., 2008b).

When operating in the verification mode, the goal of the system is to determine the validity
of the identity claim uttered by the user currently presented to the system. This is achieved
by comparing the so-called “live” feature vector y extracted from the given face image of the
user with the template corresponding to the claimed identity. Based on the outcome of the
comparison, the identity claim is rejected or accepted. The verification procedure can
formally be written as follows: given the “live” feature vector y and a claimed identity
C; associated with a user-template y;, where i € {1, 2,..., N} and N stands for the number of
enrolled users, determine the validity of the identity claim by classifying the pair (y, C;) into
one of two classes w; or w, (Jain et al., 2004):

wy, ifdly,y)=A
w,, otherwise

v.coef ©

where w; stands for the class of genuine identity claims, w, denotes the class of impostor
identity claims, d(-,-) denotes a function measuring the similarity of its arguments. In our
case the similarity function takes the form of the cosine similarity measure, i.e.,

T
¥y
d (}’. yl) = : (10)
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and A represents a predefined decision threshold.
In a face recognition system operating in the identification mode the problem statement is
different from that presented above. In case of the identification task we are not interested
whether the similarity of the “live” feature vector with a specific user template is high
enough; rather, we are looking for the template in the database which best matches the
“live” feature vector. This can be formalized as follows: given a “live” feature vector y and a
database containing N templates yi,¥,,..,¥y of the enrolled users (or identities)
Cy, Cy, ..., Cy, determine the most suitable identity, i.e., (Jain et al., 2004):

ye {Cl- if maxi'd(y,yi) >A =12 ....,N’ (11)
Cyy1, Otherwise

where d(y,y;) again denotes the cosine similarity measure and Cy,, stands for the case,
where no appropriate identity from the database can be assigned to the “live” feature vector
y. The presented expression postulates that, if the similarity of the “live” feature vector and
the template associated with the i-th identity is the highest among the similarities with all
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user templates in the system, then the i-th identity is assigned to the “live” feature vector y.
It should be noted that, in the experiments presented in the experimental section, the user
templates are constructed as the mean vectors of the feature vectors extracted from the
enrollment face images of the users.

5. The databases and experimental configurations

This section presents the experimental databases used to determine the feasibility of the
proposed augmented phase congruency feature vectors for face recognition. It commences
by describing the two face databases, namely, the XM2VTS (Messer et al., 1999) and the
Extended YaleB database (Georghiades et al., 2001; Lee et al., 2005), and proceeds by
presenting the pre-processing procedure applied to the experimental images prior to the
actual experiments.

5.1 The XM2VTS database

The XM2VTS database comprises a total of 2360 facial images that correspond to 295 distinct
subjects (Messer et al., 1999). The images were recorded in controlled conditions (in front of
a homogenous background, with artificial illumination, with frontal pose and a neutral
facial expression, etc.), during four recording sessions and over a period of approximately
five months. At each of the recording session, two recordings were made resulting in eight
facial images per subject that are featured in the database. Since the time elapsed between
two successive sessions was around one month, the variability in the images is mainly
induced by the temporal factor. Thus, images of the same subject differ in terms of hairstyle,
presence or absence of glasses, make-up and moustaches, etc. Some examples of the images
from the XM2VTS database are shown in Fig. 7.

The face verification experiments on the XM2VTS were conducted in accordance with the
first configuration of the experimental protocol associated with the database, known also as
the Lausanne protocol (Messer et al., 1999). Following the protocol, the subjects of the
database were divided into groups of 200 clients and 95 impostors. Images corresponding
to the subjects in these two groups were then partitioned into image sets used for:
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e training and enrolment (3 images for each of the 200 clients) - this image set was
used for training of the feature extraction techniques and for building client
models/templates in the form of mean feature vectors,

e evaluation (3 images for each of the 200 clients and 8 images for each of the
25 evaluation impostors) - this image set was employed to determine the decision
threshold for a given operating point of the face verification system and to
estimate any potential parameters of the feature extraction techniques, and

e testing (2 images for each of the 200 clients and 8 images for each of the 70 test
impostors) - this image set was used to determine the verification performance in
real operating conditions (i.e., with predetermined parameters)

While the first image set featured only images belonging to the client group, the latter two
image sets comprised images belonging to both the client and the impostor groups. The
client images were employed to assess the first kind of error a face verification system can
make, namely, the false rejection error, whereas the impostor images were used to evaluate
the second type of possible verification error, namely, the false acceptance error. The two
errors are quantified by two corresponding error rates: the false rejection and false
acceptance error rates (FRR and FAR), which are defined as the relative frequency with
which a face verification system falsely rejects a client- and falsely accepts an impostor-
identity-claim, respectively. To estimate these error rates each feature vector extracted from
an image of the client group was matched against the corresponding client template, while
each of the feature vectors extracted from an impostor image was matched against all client
templates in database. The described setup resulted in the following verification
experiments: 600 client verification attempts in the evaluation stage, 40000 impostor
verification attempts in the evaluation stage, 400 client verification attempts in the test stage
and 112000 impostor verification attempts in the test stage (Messer et al., 1999; Struc et al.
2008).

It has to be noted that there is a tradeoff between the FAR and FRR. We can select an
operating point (determined by the value of the decision threshold) where the FAR is small
and the FRR is large or vice versa, we can choose an operating point with a small FRR but at
the expense of a large FAR. To effectively compare two face verification systems, an
operating point that ensures a predefined ratio of the two error rates has to be selected on
the evaluation image set or the values of the error rates must be plotted against various
values of the decision threshold, resulting in the so-called performance curves. In this
chapter we choose the latter approach and present our results in terms of two kinds of
performance curves, namely, the Detection Error Tradeoff (DET) curves and the Expected
Performance Curves (EPC), which plot the FAR against the FRR at different values of the
decision threshold on the evaluation and test sets, respectively.

5.2 The Extended YaleB database

The Extended YaleB database was recorded at the Yale University and comprises 2432
frontal face images of 38 distinct subjects (Georghiades et al., 2001; Lee et al., 2005). It
exhibits large variations in illumination, which is also the main source of variability in the
images of the Extended YaleB database employed in our experiments. Some examples of
these images are shown in Fig. 8.
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After removing a number of corrupt images from the database, a total of 2414 frontal face
images with variable lighting were available for our experiments with each subject of the
database being accounted for with a little more than 60 images. These images were then
partitioned into 5 image subsets according to the extremity of illumination in the images, as
proposed by Georghiades et al. in (Georghiades et al., 2001). The reader is referred to the
original publication for more information on the partitioning.

The first image subset (denoted as Sl in the remainder) featured images captured in
relatively good illumination conditions, while the conditions got more extreme for the
image subsets two (S2) to five (S5). It should also be noted that the subsets did not contain
the same number of images. The first subset, for example, contained 263 images, which
corresponds to approximately 7 images per subject. The second subset contained 456
images, the third 455 images, the fourth 526 images and finally the fifth subset contained
714 facial images.

For our experiments we adopted the first subset for the training of the feature extraction
techniques as well as for creating the user models/templates, and employed all remaining
subsets for testing. Such an experimental setup resulted in highly miss-matched conditions
for the recognition technique, since the test subsets featured images captured under varying
illumination conditions, while the training images were acquired in controlled illumination
conditions. Clearly, for a feature extraction technique to be successful, it has to extract stable
features from the images regardless of the conditions present during the image acquisition
stage. Furthermore, the experimental configuration is also in accordance with real life
settings, as the training and enrollment stages are commonly supervised and, hence, the
training and/or enrollment images are usually of good quality. The actual operational
conditions, on the other hand, are typically unknown in advance and often induce severe
illumination variations.

The results of our experiments on the Extended YaleB database are reported in terms of the
rank one recognition rate, which corresponds to the relative frequency with which the test
images from a given subset are recognized correctly.

5.3 Data pre-processing
Prior to the experiments, we subjected all images from both databases to a pre-processing
procedure comprised of the following steps:
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e aconversion of the (colour) face images to 8-bit monochrome (grey-scale) images -
applicable only for the XM2VTS database,

e a geometric normalization procedure, which, based on the manually marked eye
coordinates, rotated and scaled the images in such a way that the centres of the
eyes were aligned and, thus, located at predefined positions,

e a cropping procedure that cropped the facial region of the images to a standard
size of 128 x 128 pixels,

e a photometric normalization procedure that first equalized the histogram of the
cropped facial images and then further normalized the results to zero-mean and
unit-variance.

It should be noted that manual labelling of the facial landmarks is the only way to achieve a
fair comparison of the recognition techniques, as it ensures that the differences in the
observed recognition performances are only a consequence of the employed feature
extraction techniques and not other influencing factors. Some examples of the pre-processed
images (prior to photometric normalization) from the two databases are shown in Fig. 9.

Fig. 9. Examples of pre-processed images from the XM2VTS (left quadruple of images) and
Extended YaleB (right quadruple of images) databases

6. Experiments, results and discussion

6.1 Baseline performance

In the first series of our recognition experiments, we aimed at determining the performance
of some baseline face recognition techniques on the two test databases. To this end, we
implement the popular Principal Component Analysis (PCA) (Turk & Pentland, 1991) and
Linear Discriminant Analysis (LDA) (Belhumeur et al., 1997) techniques, also known as the
Eigenface and Fisherface methods, and assess the techniques for different lengths (i.e.,
different Number Of Features - NOF) of the PCA and LDA feature vectors. The results of
this assessment are presented in Fig. 10 for the XM2VTS database in the form of DET curves
and in Table 1 for the Extended YaleB database (EYB) in the form of rank one recognition
rates (in %). Considering the number of subjects and images in the databases, the maximum
length of the feature vector for the PCA technique equals 599 for the XM2VTS database and
262 for the EYB database, while the maximum length for the LDA technique is 199 for the
XM2VTS database and 37 for the EYB database.
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Fig. 10. DET curves of the baseline experiments on the evaluation image sets of the XM2VTS
database: for the PCA technique (left), for the LDA technique (right)

PCA LDA
NOF 52 S3 S4 S5 NOF S2 S3 54 S5
10 56.6 29.5 11.2 15.6 5 98.3 56.9 9.9 13.6
50 93.4 54.7 16.7 219 10 100 85.3 272 29.7
100 93.6 54.9 16.7 22.0 20 100 97.8 47.0 43.7
150 93.6 55.0 16.7 22.0 30 100 99.3 53.6 47.6
200 93.6 55.0 16.7 22.0 37 100 99.8 56.3 51.0
Table 1. Rank one recognition rates (in %) for different lengths of the PCA and LDA feature
vectors obtained on different subsets of the EYB database

Note that for the PCA technique the performance on the XM2VTS saturates when 200
features are used in the feature vectors. Similar results are also observed for the EYB
database, where the performance on all subsets peaks with 150 dimensional feature vectors.
For the LDA technique the best performance on both databases is achieved with the
maximum number of features, i.e., 199 for the XM2VTS database and 37 for the EYB
database. The presented experimental results provide a baseline face recognition
performance on the two databases for the following comparative studies of the techniques
using the augmented phase congruency feature vectors.

6.2 Baseline performance with the augmented phase congruency feature vector

In our second series of face recognition experiments we evaluate the performance of the
PCA and LDA techniques in conjunction with the augmented phase congruency feature
vectors and assess the relative usefulness of additional normalization techniques applied to
the augmented feature vectors prior to the deployment of the subspace projection
techniques PCA and LDA. We use five filter scales (p = 5) and eight orientations (r = 8) to
construct the oriented phase congruency patterns, which in their down-sampled form
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constitute the augmented phase congruency feature vectors, and apply the following
normalization schemes to these vectors:

e after the down-sampling of the oriented Gabor phase congruency patterns, each
down-sampled OGPCP is normalized to zero mean and unit variance prior to
concatenation into the final augmented feature vector (denoted as ZMUYV) - Fig. 11
(upper left corner),

e after the down-sampling of the oriented Gabor phase congruency patterns, each
down-sampled OGPCP is first subjected to histogram equalization and then to zero
mean and unit variance normalization prior to concatenation into the final
augmented feature vector (denoted as oHQ) - Fig. 11 (upper right corner), and

e after the down-sampling of the oriented Gabor phase congruency patterns, the
down-sampled OGPCPs are concatenated into a bigger image, which is subjected
to the histogram equalization procedure and then to zero mean and unit variance
normalization (denoted as HQ) - Fig. 11 (lower row).
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Fig. 11. Diagrams of the employed normalization procedures: ZMUV (upper left corner),
oHQ (upper right corner), and HQ (lower row)

It should be noted that the number of scales and orientations that were used in our
experiments, i.e., p =5 and r = 8, was chosen based on other Gabor filter based methods
presented in the literature - see, for example, (Liu & Wechsler, 2002; Shen et al., 2007; Struc
& Pavesié, 2009b). For the implementation of the subspace projection techniques the
following feature vector lengths were chosen: 37 for LDA on EYB, 199 for LDA on XM2VTS,
150 for PCA on EYB and 200 for PCA on XM2VTS. These lengths were selected based on
the baseline results from the previous series of experiments. However, since the number of
features in the feature vectors is not the primary concern of this section, it could also be set
differently.
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The results of the experiments are again presented in the form of DET curves for the
XM2VTS database in Fig. 12 and in the form of rank one recognition rates for the EYB
database in Table 2.
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Fig. 12. DET curves of the comparative assessment of the normalization techniques on the
evaluation image sets of the XM2VTS database: for the PCA technique (left), for the LDA
technique (right)

Norm Pea Norm LDA
52 S3 54 S5 S2 S3 54 S5
ZMUV | 100 99.1 83.4 927 | ZMUV | 100 99.8 88.8 93.8

HQ 100 99.1 81.6 89.8 HQ 100 100 86.1 94.8

oHQ 100 99.3 84.6 92.7 oHQ 100 100 87.1 94.8
Table 2. Rank one recognition rates (in %) for different normalization schemes of the
augmented phase congruency vector prior to PCA and/or LDA deployment on different
subsets of the EYB database

From the experimental results we can see that the traditional ZMUV technique resulted in
the worst performance, while both the HQ and oHQ techniques achieved similar
recognition rates on both databases. While the difference in their performance is statistically
not significant, we nevertheless chose the oHQ technique for our following comparative
assessments due to better results on the EYB database. Furthermore, if we compare the
results obtained with the PCA and LDA techniques on the raw pixel data (Table 1) and the
results obtained with the augmented feature vectors, we can see that the performance has
improved significantly.

6.3 Impact of filter scales

In the third series of face recognition experiments, we assess the impact of the number of
filter scales p in the Gabor filter bank on the performance of the PCA and LDA techniques
applied to the augmented phase congruency feature vectors. We fix the angular resolution
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of the filter bank to r = 8 and vary the value of the filter scales from p = 2 to p = 5. In all of
the performed experiments we use the same dimensionality of the PCA and LDA feature
vectors as in the previous section and adopt the oHQ technique for the normalization of the
augmented feature vectors. We once more present the results of the described experiments
in form of the DET curves for the XM2VTS database (Fig. 13) and in form of rank one
recognition rates for the EYB database (Table 3).
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Fig. 13. DET curves generated for different numbers of filter scales employed during
construction of the OGPCPs. The results were obtained on the evaluation image sets of the
XM2VTS database: for the PCA technique (left), for the LDA technique (right)

PCA LDA

P ) S3 S4 S5 P 2 3 S4 S5
5 100 | 993 | 846 | 927 5 100 100 | 871 | 948
4 100 100 | 918 | 948 4 100 100 | 945 | 944
3 100 100 | 934 | 952 3 100 100 | 964 | 9.4
2 100 00 | 930 | 923 2 100 100 | 947 | 96

Table 3. Rank one recognition rates (in %) on the EYB database for different numbers of
filter scales employed during construction of the OGPCPs.

We can notice that on the XM2VTS database the verification performance steadily improves
when the number of filter scales employed for the construction of the augmented phase
congruency feature vector decreases. Thus, the best performance for the PCA (Fig. 13 left) as
well as for the LDA (Fig. 13 right) techniques is observed with two filter scales, i.e., p = 2.
Here, equal error rates of 2.15% and 1.16% are achieved for the PCA and LDA techniques,
respectively.

Similar results are obtained on the EYB database. Here, the performance also increases with
the decrease of used filter scales. However, the performance peaks with p = 3 filter scales.
Since the improvements with the EYB database are not as pronounced as with the XM2VTS
database, we chose to implement the construction procedure of the augmented phase
congruency feature vector with 2 filter scales for the final comparative assessment.
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6.4 Comparative assessment

In our last series of recognition experiments, we compare the performance of the PCA and
LDA techniques on the proposed augmented phase congruency feature (PCF) vector with
that of several established face recognition techniques from the literature. Specifically, we
implement the following techniques for our comparative assessment: the Eigenface
technique (PCA) (Turk & Pentland, 1991), The Fisherface technique (LDA) (Belhumeur et al.,
1997), and the LDA and PCA techniques applied to the Gabor face representation (GF)
proposed in (Liu & Wechsler, 2002).

All experiments on the XM2VTS database presented so far have been performed on the
evaluation image sets, while the test image sets were not used. In this series of experiments
we employ the test image sets for our assessment and implement all recognition techniques
with all parameters (such as decision thresholds, feature vector lengths, number of
employed filter scales, etc.) predefined on the evaluation image sets. Differently from the
experiments presented in the previous sections, we do not present the results in the form of
DET curves, but rather use the EPC curves. The choice of these performance curves is
motivated by the work presented in (Bengio & Marithoz, 2004). Here, the authors argue that
two recognition techniques cannot be compared fairly using DET curves, as in real life
operating conditions a decision threshold has to be set in advance. In these situations the
actual operating point may differ from the operating point the threshold was set on. To
overcome this problem, the authors proposed the EPC curves, which plot the half total error
rate (HTER=0.5(FAR+FRR)) against the parameter @, which controls the relative importance
of the two error rates FAR and FRR in the expression: « FAR + (1 — a)FRR. To produce the
EPC curves, an evaluation image set and a test image set are required. For each a the
decision threshold that minimizes the weighted sum of the FAR and FRR is computed on
the evaluation image set. This threshold is then used on the test images to determine the
value of the HTER used for the EPC curves.
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Fig. 14. Examples of modified face images (from left to right): the original image, the
modified image for 7 = 40, the modified image for T = 80, the modified image for 7 = 120,
the modified image for r = 160

To make the final assessment more challenging, we introduce an artificial illumination
change to the test sets of the XM2VTS database. To this end, we adopt the model previously
employed in (Sanderson & Paliwal, 2003), which simulates different illumination conditions
during the image acquisition stage by modifying the pre-processed face images I(x, y), i.e.,

1,y) = 1(x,y) + mx +71, (12)

where x =0,1,...,a-1; y=0,1,..,b—1; m = -2t/(b— 1) and t denotes the parameter
that controls the “strength” of the introduced artificial illumination change. Sanderson and
Paliwal (Sanderson & Paliwal, 2003) emphasized that this model does not cover all
illumination effects possible in real life settings, but is nevertheless useful for providing
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suggestive results. Some examples of the modified face images (x,y) obtained with the
presented model for different values of the parameter 7 are shown in Fig. 14.

The results of the final assessment are presented in Fig. 15 for the XM2VTS database and in
Table 4 for the EYB database.
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Fig. 15. EPC curves obtained on the test sets of the XM2VTS database for different values of
the parameter 1 (from left to right starting in the upper left row): with the original images,
with the modified images with t = 40, with the modified images with T = 80, with the
modified images with T =120, with the modified images with T = 160

Method S2 S3 54 S5
PCA 93.6 55.0 16.7 22.0
LDA 100 99.8 56.3 51.0

GF+PCA 100 97.8 77.9 85.2
GF+LDA 100 100 83.2 89.1
PCF+PCA 100 100 93.0 92.3
PCF+LDA 100 100 94.5 944

Table 4. Rank one recognition rates (in %) on the EYB for the comparative assessment

The first thing to notice from the presented results is that both the Gabor magnitude as well
as the Gabor phase congruency features result in a significant improvement in the
recognition performance when compared to the raw pixel data and, furthermore, that both
types of features result in a more robust performance in the presence of illumination
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changes. This fact is best exemplified by the recognition rates on subsets S4 and S5, where
the increase in performance from the pixel data to the Gabor-based features is more than
60% (in absolute terms) for the PCA-based techniques and more than 25% (in absolute
terms) for the LDA-based techniques.

In general, the augmented Gabor phase congruency feature vectors resulted in better
performance in difficult illumination conditions than the Gabor magnitude features. While
this improvement was only minimal on the XM2VTS database and its synthetically
degraded versions, the results on the EYB database show improvements (on the image
subset S4) of around 10% in absolute terms.

6.5 Discussion

From the experimental results presented in previous sections, we found that amongst the
tested feature extraction techniques, the LDA technique combined with the Gabor
magnitude and Gabor phase congruency features ensured the best recognition performance
on all experimental databases (i.e., on the XM2VTS, the EYB and on the degraded versions
of the XM2VTS databases). While both feature types significantly improved upon the
techniques baseline performance with “raw” pixel intensity values, there are several
differences in both feature types, which affect their usability in real-life face recognition
systems.

First of all, as stated in a number of studies from the literature (e.g., Liu & Wechsler, 2002;
Shen & Bai, 2006; Shen et al. 2007; Struc & Pavesic, 2009b), the Gabor magnitude based
methods require 40 Gabor filters, i.e., filters with five scales and eight orientations, to
achieve their optimal performance. The same number of filters was also used in our
experiments to obtain the performance presented in previous sections. The Gabor phase
congruency features based methods presented in this chapter, on the other hand, require
only 16 Gabor filters, filters with two scales and eight orientations, for an optimal
performance. This fact makes the Gabor phase congruency methods significantly faster than
the Gabor magnitude based methods.

Second of all, since there is only one output per employed filter orientation for the Gabor
phase congruency based methods and not five, as it is the case with the Gabor magnitude
based techniques, the increase in data is not that extreme for the proposed face
representation.

Last but not least, we have to emphasize that in its optimized form (with two filter scales
and eight orientations) the Gabor phase congruency techniques operate on a much narrower
frequency band than the Gabor magnitude methods. Based on the experimental results
presented in previous sections, we can in fact conclude that most of the discriminatory
Gabor-phase information is contained in the OGPCPs obtained with Gabor filters of high
frequencies (u =0,1). In addition to the high frequency filters, the Gabor magnitude
methods effectively also use the low frequency Gabor filters. This finding suggests that the
Gabor phase congruency and Gabor magnitude features represent feature types with
complementary information and could therefore be combined into a unified feature
extraction technique which uses Gabor magnitude as well as Gabor phase information for
face recognition.
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7. Conclusion and future work

In this chapter we have proposed a novel face representation derived from the Gabor filter
outputs. Unlike popular Gabor filter based methods, which mainly use only Gabor
magnitude features for representing facial images, the proposed feature extraction technique
exploits the Gabor phase information and derives the novel face representation named the
Oriented Gabor Phase Congruency Pattern or OGPCP. This representation forms the
foundation for the construction of the augmented Gabor phase congruency feature vector,
which, similar to the established Gabor magnitude representations, can be combined with
subspace projection techniques to form powerful and efficient feature extraction approaches.
The feasibility of the proposed face representation (or features) was assessed on two
publicly available datasets, namely, on the XM2VTS and on the Extended YaleB dataset. On
both datasets, the proposed features resulted in a promising face recognition performance
and outperformed popular face recognition techniques, such as PCA, LDA, the Gabor-Fisher
classifier and others. The proposed features were shown to ensure robust recognition
performance in the presence of severe illumination changes as well.

The future work with respect to the proposed Gabor phase congruency face representation,
i.e., the OGPCP, will be focused on evaluating different strategies to combine the traditional
Gabor magnitude face representation with the proposed Gabor phase congruency patterns
of facial images.
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1. Introduction

Face recognition systems have matured from the systems working only in highly controlled
indoor environments to the systems capable of identifying individuals in indoor or outdoor
environments under severe conditions though some problems still remain, constraining
their success to a limited degree. Illumination and pose variations are mostly responsible for
dramatic changes on the face appearance. They produce such complex effects on the
appearance of the acquired face that the face image pertains little to the actual identity. So
any improvement in face appearance will enhance the recognition performance. Face
recognition systems are usually required to handle highly varying illumination and pose
conditions and more advanced techniques are needed to eliminate the undesired effects of
variations from any sources. Research on face recognition has focused on solving issues
arising from illumination and pose variations in one or more shots.

Lighting direction changes alter the relative gray scale distribution of face image and those
changes due to lighting are larger than the one due to different personal identities.
Consequently, illumination normalization is required to reach acceptable recognition rates.
Varying illumination is a difficult problem and has received much attention in recent years.
Several recent studies are centered around this issue: symmetric shape from shading (Zhao
& Chellappa, 2000), for the illumination cones method (Georghiades & Belhumeur, 2001 )
theoretically explained the property of face image variations due to light direction changes.
In this algorithm, both self shadow and cast-shadow were considered and its experimental
results outperformed most existing methods. The main drawbacks of the illumination cone
model are the computational cost and the strict requirement of seven input images per
person.

Other directions of the photometric stereo in face recognition include introducing a more
general illumination model, (Ramamoorthi, 2002) proposed a spherical harmonic
representation for face images under various lighting conditions. (Basri & Jacobs, 2001)
represent lighting using a spherical harmonic basis wherein a low-dimensional linear
subspace is shown to be quite effective for recognition. The harmonic images can easily be
computed analytically given surface normals and the albedos. (Zhou et al., 2007) extended a
photometric stereo approach to unknown light sources. (Lee et al., 2005) empirically found
a set of universal illumination directions, images under which can be directly used as a basis
for the 9 dimensional illumination subspaces.
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(Shashua & Riklin-Raviv, 2001) employ a very simple and practical image ratio method to
map the face images into different lighting conditions. This method is suitable for modelling
the variation in facial appearance caused by diffuse reflection and the proposed method is
simply the ratio of albedo between a face image and linear combination of basis images, for
each pixel. (Wang et al. , 2004) developed a reflectance estimation methods by using the idea
of the ratio of the original image and its smooth version. In the same research direction
(Zhang et al., 2007) and (An et al., 2008) proposed new methods to extract an illumination
invariant representation of a face images from a raw facial images. Even though the
proposed photometric normalization based representations increase the recognition
performance, it is not suitable to say that these representations provide complete invariance
against illumination. There are many recent works on illumination invariant face
recognition. An extensive review of illumination invariant face recognition approaches is
given by (Zou et al., 2007) and (Zhao & Chellappa, 2006).

There are several recent image-based studies on illumination invariant face recognition.
Image-based methods are known to be robust to illumination variations. Main drawback of
the image-based methods is that they always assume the face image is already aligned.
Usually it is not an easy assumption to be satisfied especially when the input image is
poorly illuminated. Appearance-based methods require training images of individuals taken
under different illumination conditions. A method proposed by (Sim & Kanade, 2001)
overcomes this restriction by using a statistical shape-from-shading model. Using this
method they generate images for each of the individuals under different lighting conditions
to serve as database images in a recognizer.

Face alignment is a crucial step to extracting good facial features and obtaining high
performance in face recognition, expression analysis and face animation applications.
Several face alignment methods were proposed by Active Shape Models (ASM) (Cootes et
al., 1995) and Active Appearance Models (AAM) (Cootes et al., 2001; Stegmann et al., 2003),
by Cootes et al which are two successful models for object localization. ASM utilizes local
appearance models to find the candidate shape and global model to constrain the searched
shape. AAM combines the constraints on both shape and texture variations in its
characterization of facial appearance. In searching for a solution, it assumes linear
relationships between appearance variation and texture variation and between texture
variation and position variation. In this study, we have used AAM to solve the pose-
invariant face alignment problem.

AAM is known to be very sensitive to illumination, particularly if the lighting conditions
during testing are significantly different from the lighting conditions during training.
Several variations of AAM appear in the literature to improve the original algorithm,
namely Direct Appearance Models (Hou et al., 2001) and view-based AAM (Cootes et al.,
2002). Cootes et al constructed three AAMs which are called as View-based AAMs. These
models are linear model of frontal, profile and half profile views of faces. They also show
how to estimate the pose from the model parameters. The approach in this study differs
from their method in the way that only one AAM is constructed rather than three models.
The motivation here is to reduce the three separate searching procedures to just one fitting
procedure based on one linear statistical model. The model has better generalization
performance in capturing pose variations than the one using three separate linear models. In
order to construct the one linear model, a training dataset comprised of 8 different poses of 3
individuals captured under similar illumination conditions is used. Despite the success of
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these methods, problems still remain to be solved. Moreover, under the presence of partial
occlusion, the PCA-based texture model of AAM causes the reconstruction error to be
globally spread over the image, thus degrading alignment. In this paper, we propose an
approach based on histogram-fitting to overcome the problem explained above. A detailed
explanation of the proposed approach is given in Section 2.

Yet another issue related to face recognition is to recognize different poses of the same
person. Pose-invariant face recognition requires pose alignment where images are captured
either by multiple cameras or by a single camera at different time instances. There are
several works related to pose normalization. (Blanz & Vetter, 2003) use a statistical 3D
morphable model (3DMM) to tackle with pose and illumination variations. Since their
method requires textured 3D scans of heads, it is computationally expensive. The vertices in
a 3DMM shape are much denser than an AAM shape. 3DMM achieved promising results for
illumination invariant face recognition. However, fitting a dense model requires much
higher computational effort, which is not suitable for real-time face recognition systems.

In Section 3, we will study the proposed AAM based approach capable of producing
different poses of unseen person and explain how a non-frontal face is projected to a frontal
face in detail. In this paper, we have focused on the problems induced by varying
illumination and poses in face recognition. Our primary goal is to eliminate the negative
effect of challenging conditions, especially illumination and pose, on the face recognition
system performance through illumination and pose-invariant face alignment based on
Active Appearance Model. The rest of the paper is structured as follows: Section 2
introduces Active Appearance Model (AAM) and Section 3 introduces illumination
normalization inserted into the searching procedure of AAM. Section 4 is for the proposed
pose invariant combined active appearance model. The experimental results and the
conclusion are presented in Section 5 and 6, respectively.

2. Active Appearance Model

Active Appearance Models are generative models capable of synthesizing images of a given
object class. By estimating a compact and specific basis from a training set, model
parameters can be adjusted to fit unseen images and hence perform image interpretation.
The modeled object properties are usually shape and pixel intensities (here denoted texture).
AAM aims to find the optimal model parameters to represent the target image that belongs
to the same object class by using an iterative scheme.

Training objects are defined by marking up each image with points of correspondence.
Relying upon the landmarks, a triangulated mesh is produced for the reference position and
orientation of the object. Before modeling variations, all shape vectors are normalized to a
common reference shape frame by using Procrustes Analysis (Goodall, 1991). After
obtaining the reference shape vector, all of the training images are warped to the reference
shape by using a piecewise affine warping (Glasbey & Mardia, 1998), which is defined
between corresponding triangles to obtain normalized texture vectors.

Using prior knowledge of the optimization space, AAMs can rapidly be fitted to unseen
images with a reasonable initialization given. AAM uses principal component analysis
(PCA) to model the variations of the shapes and textures of the images. Usage of PCA
representation allows AAM to model and represent a certain image with a small set of
parameters.
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AAM works according to the following principle: An image is marked with 7 landmark
points. The content of the marked object is analyzed based on a Principal Component
Analysis (PCA) of both texture and shape. The shape is defined by a triangular mesh and
the vertex locations of the mesh. Mathematically the shape model is represented as follows:

X = ((xl’xZ’xS""’xn)’(yl’y27y3"‘"yn)) eR™ (1)
Shape is reduced to a more compact form through PCA such that,
x=x+®pb,. )

In this form, x is the synthesized shape in the normalized frame, @, is a matrix that contains

B

the t-eigenvectors corresponding to the largest eigenvalues and b, is a t~-dimensional vector
of shape coefficients. By varying the parameters in b, , the synthesized shape can be varied.

In the texture case one needs a consistent method for collecting the texture information
(intensities) between the landmarks, i.e. an image warping function needs to be established.
This can be done in several ways. Here, we used a piece-wise affine warp (Glasbey &
Mardia, 1998) based on the Delaunay triangulation (Shewchuk, 1996).

All training images are warped to the reference shape and are sampled into a vector to
obtain the texture vectors represented as g. Prior to the PCA modeling of the texture, we
need to normalize all texture vectors. So, a photometric normalization of the texture vectors
of the training set is done to avoid the side effects of global linear changes in pixel
intensities. The aim of this normalization is to obtain texture vectors with zero mean and
unit variance. Texture model can now be obtained by applying PCA to the normalized
textures,

§=8+db, 3

where g is the synthesized texture, g is the mean texture and b, is a k-dimension vector of

texture parameters. In the linear model of texture, ®; is a set of orthogonal modes of
variation.

To remove the correlation between shape and texture model parameters, a third PCA is
applied on the combined model parameters, giving a further model,

b=Qc @)

where Q is the eigenvectors and c is a vector of appearance parameters controlling both the
shape and the texture of the model. Note we do not use a mean vector in this model since
the shape, texture and appearance model parameters need to have zero mean. Due to the
linear nature of the model, the shape and texture vectors can be expressed in terms of the
appearance parametersc,

x=x+D® W 'Qc ©)
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§=8+0.Q.c, (6)

where b=[Wibsbs]T and Q=[Qs Qg]”. In this form, W is a diagonal matrix of weights for each
shape parameter, allowing for the difference in units between the shape and the grey
models. Generally W; is the square root of the ratio of the total intensity variation to the total
shape variation. An example image can be synthesized for a given ¢ appearance vector by
generating the shape normalized image from the vector g and warping it using the control
points described by x vector. Appearance parameters vector, ¢, controls both the shape and
the grey-levels of the model. Qs and Q, are the eigenvectors of the shape and texture models
respectively. An image can be represented by a vector p which is written in terms of x, g and
c as p=[x g c]T. It is possible to synthesize a new image by changing the parameter p.

(b)
Fig. 1. Face alignment using standard AAM under good and extreme illumination.
(a) Normal illumination, (b) Extreme illumination.

The underlying problem with the classical AAM is demonstrated in Fig.1. In Fig.1 (a) a
correct AAM search result is shown where the input image contains a frontal face which is
also illuminated frontally. Since the model is constructed from a database containing
frontally illuminated faces, the standard AAM searching procedure cannot converge to a
meaningful solution for an extremely illuminated frontal face given in Fig.1 (b). We propose
an illumination normalization method explained in Section 3 and insert it into the standard
AAM searching procedure applied to the faces captured under different illumination
conditions. The inserted normalization module guides the AAM to converge to a
meaningful solution and also enhances the accuracy of the solution.

3. lllumination Normalization

We discuss here two light normalization methods and analyze their behavior in AAM
searching. The first proposed method is ratio-image face illumination normalization method
(Liu et al., 2005). Ratio-image is defined as the quotient between an image of a given face
whose lighting condition is to be normalized and an image of the reference face. These two
images are blurred using a Gaussian filter, and the reference image is then updated by an
iterative strategy in order to improve the quality of the restored face. Using this illumination
restoration method, a face image with arbitrary illumination can be restored to a face having
frontal illumination.



244 Face Recognition

The second normalization method discussed in this study is based on image histogram
techniques. The global histogram equalization methods used in image processing for
normalization only transfers the holistic image from one gray scale distribution to another.
This processing ignores the face-specific information and cannot normalize these gray level
distribution variations. To deal with this problem, researchers have made several
improvements in recent years. The underlying problem is that well-lit faces do not have a
uniform histogram distribution and this process gives rise to an unnatural face illumination.
As suggested in (Jebara, 1996), it is possible to normalize a poorly illuminated image via
histogram fitting to a similar, well illuminated image.

In this study, a new histogram fitting algorithm is designed for face illumination
normalization taking the structure of the face into account. The algorithm is explained over
poorly illuminated frontal face image where one side of the face is dark and the other side is
bright. The main idea here is to fit the histogram of the input face image to the histogram of
the mean face. The face is first divided into two parts (left/right) and then the histogram of
each window is independently fitted to the histogram of mean face. For these two
histograms, namely the histogram of the left window denoted as Hrerr(i) and the histogram
of the right window denoted as Hricur(i), two mapping functions are computed: f,

and f, . corresponding to the left and right windows, respectively. Here G(i) is the

histogram of the reference image which is also called as mean face in AAM. An artifact
introduced by this mapping is the sudden discontinuity in illumination as we switch from
the left side of the face to the right side. The problem is solved by averaging the effects of the
two mapping functions with a linear weighting that slowly favors one for the other as we
move from the left side to the right side of the face. This is implemented with the mapping
function f, ., defined as bellow:

Srtgp D) = leftmessx f, D)+ (1= lefiness)x .. o (D) %

INlumination normalization result is shown in Fig. 2 obtained by using the histogram fitting
method explained above. As it can be seen from the figure the normalization method can
produce more suitable images to be used in AAM search mechanism. The classical AAM
search fails in all images given in the first row of Fig. 2. We will show in the next section that
AAM search procedure can now converge to the correct shape for the restored image both in
point-to-point error and point-to-curve error senses.

Fig. 3 presents several results obtained for Set 4 (left) and Set 3 (right) faces of different
individuals having extremely dark and bright regions. A significant amount of
improvement in quality can be easily verified from the experimental results. The dark parts
now become somehow noisy whereas there are still some very bright areas.
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Fig. 2. Illumination normalization using histogram fitting: On the top the input images are
given, and on the bottom the normalized images are shown.

Fig. 3. Illumination normalization results for extreme cases: On the top the input images are
given, and on the bottom the normalized images are shown.

4. Pose Normalization

Pose normalization is required before recognition in order to reach acceptable recognition
rates. There are several studies related to pose normalization. (Blanz & Vetter, 2003) use a
statistical 3D morphable model to tackle with pose and illumination variations. Since their
method requires textured 3D scans of heads, it is computationally expensive. Cootes et al
constructed three AAMs which are called as View-based AAMs (Cootes et al., 2002). We
developed AAM based pose normalization method which uses only one AAM. There are
two important contributions to the previous studies. By using the proposed method:

¢ One can synthetically generate appearances for different poses when a single frontal

face image is available.
e One can generate frontal appearance of the face if only non-frontal face image is
available.

Next section explains the proposed pose normalization and generation method in detail.
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4.1 Pose Generation from 2D Images

The same variation in pose imposes similar effect on the face appearance for all individuals.
Fig.4.a demonstrates how face texture and shape are affected by pose. Deformation mostly
occurs on the shape whereas the texture is almost constant. Since the number of landmarks
in AAM is constant, the wireframe triangles are translated or scaled as pose changes.
Therefore, as we change pose, only wireframe triangles undergo affine transformation but
the gray level distribution within these translated and rotated triangles remains the same.
One can easily generate frontal face appearance if AAM is correctly fitted to any given non-
frontal face of the same individual provided that there is no self-occlusion on face. Self-
occlusion usually is not a problem for angles less than +45.

For 2D pose generation, we first compute how each landmark point translates and scales
with respect to the corresponding frontal counterpart landmark point for 8 different poses,
and obtain a ratio vector for each pose. We use the ratio vector to create the same pose
variation over the shape of another individual. In Fig.4.b, two examples are given where the
landmark points of unseen individuals are synthetically generated using the ratio vector
obtained from that different person.

Appearances are also obtained through warping in AAM framework, using synthetically
generated landmarks given in Fig.4.b. These are shown in Fig.5. First column in Fig.5 shows
the frontal faces and the second column shows appearances for various poses. It is
important to note that the generated faces contain no information about the individual used
in building the ratio matrix.

4.2 Training AAM for Pose Normalization

An AAM model trained by using only frontal faces can only fit into frontal faces well and
fail to fit into non-frontal faces. Our purpose here is to enrich the training database by
inserting synthetically generated faces at different poses so that AAM model trained by
frontal faces can now converge to images at any pose.

We manually labeled 73 landmarks on 4920 images. Let us denote the landmark points on it

frontal image as S/ =((x,-rl,yi,l),(xilz,yiyz),...,(xi,,(,yi,K))eRZK wherei=12,...,N . N is 4920

and K=73 in our database. The shape-ratio vector explained in the previous subsection (3.1)
is defined between the p-posed shape and the frontal shape as

 (57,8") = ( y] [ yj o
’ Xo1 You Xox Yox

Shape of any unseen individual at pose p can now be easily obtained from frontal shape
using shape-ratio vector r, as

S o =1,5" 9)

unseen p~unseen®
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Fig. 4. Pose variations and synthetically generated landmarks. a) Texture and shape
triangles variations due to pose variations, b) Synthetically generated landmark points given
in the first and the second rows are generated by using the ratio matrix obtained from the
landmarks in the database.

Fig. 5. Synthetic pose generation from frontal face: a) Frontal face, b) Synthetically
generated non-frontal faces.

Shapes in the database for p =8 different poses can be synthesized from frontal-view
images as,

S =rS",i=12,...,10,and p=1,2,.. 8. (10)

P

AAM shape component is constructed from these aggregated shapes, S”and S’ by

applying principal component analysis as §=S+Q.s where S is the mean shape, O,
contains k eigenvector of the covariance matrix corresponding to the highest k eigenvalues.

Next step is to wrap each face in the training database to mean shape (S ) and apply the
principal component analysis to the texture, this time as 7 =7 + Q¢ where T is called as
mean face. Any shape (S) and texture (T) can be steadily mapped to the AAM subspace as

s=Q/(S-5) and t=0] (T-T).
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AAM is comprised of both shape (Qs) and texture (Q;) subspaces. Any change in face shape
leads to a change in face texture and vice versa. Face appearance (A) is dependent on shape
and textures. This dependency is expressed as A=[As t]T. In order to exploit the dependency
between shape and texture modeled by the diagonal matrix (A), one further PCA is applied
to the shape and texture components collectively and we obtained the combined model
called appearance model as A=Q,A. Any appearance is obtained by a simple multiplication
asa=0"4.

In order to show how rich representation AAM provides us, we used the first 5 coefficients
and select random points in 5-dimensional space. The corresponding faces are plotted in
Fig.6. Even this simple experiment proves that AAM trained as explained above can
generate pose variations not governed by any shape ratio vector (7).

Fig. 6. Randomly synthesized faces from leading 5 AAM parameters.

5. Experimental Results

AAM combines the shape and texture model in one single model. The alignment algorithm
(also called AAM searching) optimizes the model in the context of a test image of a face. The
optimization criterion is the error occurring between a synthesized face texture and the
corresponding texture of the test image.

Due to the illumination problems the error can be high and the classic searching algorithm
fails. In the proposed approach, we normalize the corresponding texture in the test image
just before we compute the error. We tested the proposed method on the Yale-B face dataset
(Georghiades et al., 2001). The total number of images under different lighting conditions for
each individual is 64. The database is portioned into four sets identified as Set 1-4. Set 1
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contains face images whose light direction is less than +20 degrees. Set 2 contains face
images whose light directions are between +20 and +50 degrees. Set 3 contains face images
whose light directions are between +50 and +70 degrees. Set 4 contains face images whose
light directions are greater than 70 degrees. All details about the Yale B dataset are given in
(Georghiades et al., 2001). We manually labeled 4920 images. To establish the models, 73
landmarks were placed on each face image; 14 points for mouth, 12 points for nose, 9 points
for left eye, 9 points for right eye, 8 points for left eyebrow, 8 points for right eyebrow and
11 points for chin. The warped images have approximately 32533 pixels inside the facial
mask. We constructed a shape space to represent 95% of observed variation. Then we
warped all images into the mean shape using triangulation. Using normalized textures, we
constructed a 21-dimensional texture space to represent 95% of the observed variation in
textures and for shapes we constructed a 12-dimensional shape space to represent 95% of
the observed variation in shapes. Finally, we constructed a 15-dimensional appearance
space to represent 95% of the total variation observed in the combined (shape and texture)
coefficients.

Using a ground truth given by a finite set of landmarks for each example, performance can
be easily calculated. A distance measure D(x,,x)is computed in a leave-one-out setting,

and it gives a scalar interpretation of the fit between the two shapes, i.e. the ground truth (
x,, ) and the optimized shape ( x ). Two distance measures defined over landmarks are used

to obtain the convergence performance. The first one is called point-to-point error, defined
as the Euclidean distance between each corresponding landmark:

Dp!.nt. = Z\/(xi _xgt,i )2 +(yi _ygt,i)z (11)

The other distance measure is called point-to-curve error, defined as the Euclidean distance
between a landmark of the fitted shape (x) and the closest point on the border given as the
linear spline, r(t)=(r:(t),r,(t)),t€[0,1], of the landmarks from the ground truth (x):

Dpt,crv. :%in‘ltln\/(xx _rx(t))z +(yi _r}/(t))z (12)

i=1

We calculated these errors on all images in the datasets (from Set 1 to Set 4). We conducted
an experiment to see how close we fit into unseen faces at different poses.

To match a given face image with the model, an optimal vector of parameters are searched
by minimizing the difference between synthetic model image and input image. Fig.7
illustrates the optimization and search procedures for fitting the model to input image. The
first column of the figure is the arbitrarily illuminated unseen image from test dataset and
the remaining images (columns) are the steps of the optimization. The fitting results are
rendered at each iteration for classical AAM (the first row) and the proposed method (the
second row).

The AAM searching is known to be very sensitive to the selection of initial configuration.
We tested the proposed method against the selection of initial configuration. We translate,
rotate and scale initial configurations and see how the proposed method can handle the
poor initialization. We made 10 experiments for each test image with different initializations
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(@) (b) ©) (d)
Fig. 7. Searching results: The first row is the classical AAM searching results and the second
row is the proposed method. (a) Initial configuration (b) Mean face (c) Searching result
obtained in the third iteration (d) Searching result obtained in the sixth iteration.

and took the average error. These experiments include mean-shape configuration, +5
degrees rotation, scaling by 0.85 and 0.95, translation by 10% in x and y directions.

Table.1 summarizes the averages of point-to-point and point-to-curve errors when classical
AAM search is used without any illumination normalization. Point-to-point and point-to-
curve errors obtained by the proposed illumination normalization method are much less
than the errors obtained by the classical AAM (Table.2).

Yale B face database subsets

Subset; Subset, Subsets Subsety
Pt.-pt. 4.9+0.2 11.4+0.5 19.4+0.58 36.6+1.6
Pt.-crv. 2.9+0.1 6.8+0.33 12.9+0.36 33.2+1.4

Table 1. Standard AAM fitting performance.

Yale B face database subsets

Subset; Subset, Subsets Subsety
Pt.-pt. 4.140.12 8.06+0.3 13.03+0.4 21.3+0.5
Pt.-crv. 24+0.08  5.24+0.23 8.76x0.3 14.740.4

Table.2 Proposed AAM fitting performance.

Ratio-image method is not suitable for AAM searching, at least for the first iterations of the
algorithm. Let’s suppose that we start searching in a position far away from the ground
truth location. The model synthesizes a face that best fits the current location. Then the
textures of the synthesized face and corresponding part in the test image are analyzed and
an error coefficient is computed, reflecting the similarity degree of the two textures. We
normalize the corresponding texture in the test image before computing the error. The main
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problem with the ratio-image method is that when it is applied to a region of an image that
is not face-like, the normalization result will include a lot of information of the mean face, in
other words, it will be mean-face-like. Thus the error will be much smaller than the real one,
and it will introduce false alarm in the searching process creating additional local minima.
On the other hand, the histogram based normalization method will never change the
general aspect of an image, only the pixel intensities follow a different distribution. Thus the
chances of introducing false alarms are reduced using this normalization method. The ratio-
image can produce very good results provided that the shape is already aligned. But this is
not the case in AAM searching. We assume that the best fit returned by the searching
algorithm using histogram-based normalization is a good approximation of the real face,
and thus the alignment requirement is satisfied. Fig.8 summarizes the alignment results for
these unseen faces.

We also analyze how the proposed alignment method affects the recognition performance.
We used the following feature spaces in our experiments: PCA and LDA. Randomly
selected 25 images of each person from Set 1 dataset are used in training. All datasets (Set 1
through Set 4) contain faces of all poses. The remaining faces in Set 1 dataset are used as test
data. Recognition rates for two feature spaces (i.e. PCA and LDA) in Set 1-4 are plotted in
Fig.10 for increasing dimensions. The recognition rates obtained when the original images
are used as input to the classifier are denoted as ORG-PCA and ORG-LDA. The recognition
rates obtained when the images restored by RI are used as input and are denoted as RI-PCA
and RI-LDA. Finally, the recognition rates obtained when the images restored by HF are
used as input and are denoted as HF-PCA and HF-LDA. PCA is known to be very sensitive
to misalignment in faces. Our experimental studies also verify this behavior. When the
original images are used, the PCA recognition rates for all sets are poor. LDA is more
successful if dimension is closer to 9. ORG-PCA reaches to 74.36% at most, while ORG-LDA
reaches to 91.26% at most in Set 1. This performance drops to 30.99% for ORG-PCA and to
41.13% for ORG-LDA in Set 4.

One important observation is that AAM alignment with histogram fitting always leads to
better recognition rates in all test sets (Set 1- 4) compared to the case where original faces are
used and ratio-image normalization is used right after the AAM alignment. Another
advantage of the proposed method is that similar recognition performance is obtained at
lower dimensions. Recognition rate for ORG-LDA is just 32.81% while LDA performance for
the proposed approach (called HF-LDA) is 83.38% when the dimension is set to 3. ORG-
LDA catches this rate when the dimension is set to 5.

For the challenging test set, i.e. Set 4, both ORG-LDA and ORG-PCA fail. The recognition
rate is at most 30.99% for ORG-PCA and 41.13% for ORG-LDA. On the other hand, HF-PCA
reaches to 76.20% at most and HF-LDA reaches to 82.68% at most. This is a significant
improvement when compared to the results obtained without applying any preprocessing
(41%). Note that all test sets include faces of 8 different poses selected from Yale B dataset.

6. Conclusion

In this study we developed AAM based on face alignment method which handles
illumination and pose variations. The classical AAM fails to model the appearances of the
same identity under different illuminations and poses. We solved this problem by inserting
histogram fitting into the searching mechanism and inserting synthetically generated poses
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of the same identity into the training set. From the experimental results, we showed that the
proposed face restoration scheme for AAM provides higher accuracy for face alignment in
point-to-point error sense. Recognition results based on PCA and LDA feature spaces

showed that the proposed illumination and pose normalization outperforms the standard
AAM.

Fig. 9. Initialization (the first row) and alignment/restoration results of the proposed
method (the second row) for different pose and illumination variations.
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© (d)
Fig. 10. PCA and LDA recognition rates for Set 1 (a), Set 2 (b), Set 3 (c), and Set 4 (d) when
original face (ORG), Ratio Image (RI) and the proposed restoration (HF) are used.
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Eye Movements in Face Recognition
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University of Hong Kong
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1. Introduction

In human vision, visual acuity falls off rapidly from the center of fixation to the periphery.
Hence, in visual perception, we actively change our gaze directions in order to bring
relevant information into foveal vision, where the highest quality visual information can be
obtained. In recent years, researchers have shown that eye movements during visual
perception are linked to the underlying cognitive processes (e.g., Hayhoe & Ballard, 2005;
Henderson, 2003; Kowler, 1990). This phenomenon has especially been extensively
demonstrated in the research on reading and word recognition (Rayner, 1998; Sereno &
Rayner, 2003). For example, the existence of preferred landing positions (PLP, Rayner, 1979)
in sentence reading and optimal viewing positions (OVP, O'Regan et al., 1984) in isolated
word recognition has been consistently reported. The preferred landing location refers to the
location where eye fixations fall the most often during reading, whereas the optimal viewing
position refer to the location where the initial eye fixation is directed to when the best
recognition performance is achieved. For English words, both the preferred landing location
and the optimal viewing position have shown to be to the left of the center of the words.
These locations have been argued to reflect an interplay among several different variables,
including difference in visual acuity between foveal and peripheral vision, information
profile of the words, influence of perceptual learning, and hemispheric asymmetry
(Brysbaert & Nazir, 2005; Rayner, 1998).

Similar to word recognition, the recognition of faces is an over-learned skill that we have
constantly performed since birth, even earlier than the time we started to read. Nevertheless,
in contrast to research on reading, the understanding of the role of eye movements during
face recognition remains limited. Recent research on face recognition has suggested a
dissociation between face and object recognition. Faces have been argued to be represented
and recognized holistically; the recognition of faces has been shown to involve relatively less
part-based shape representation compared with the recognition of objects (e.g., Farah et al.,
1995; Tanaka & Farah, 1993). Since we process faces holistically, there is a concern whether
we need eye movements at all during face recognition; we may just need a single eye
fixation to recognize a faces, and its location may not influence our performance since faces
are represented and recognized holistically. This statement has recently been shown to be
wrong. Some studies have suggested that performance in face recognition is related to eye
movement behavior. For example, Henderson et al. (2005) examined the influence of
restricting eye fixations during face learning on the performance of the subsequent face
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recognition task, and showed that eye movements generated during face recognition have a
functional role and are not just recapitulation of those produced during learning (see also
Maintyld & Holm, 2006). In my recent study (Hsiao & Cottrell, 2008), we restricted the
number of fixations that participants were allowed to make during face recognition, and
showed that the optimal recognition performance was achieved with two fixations, with the
first fixation just to the left of the center of the nose and the second on the center of the nose.
These studies suggest that eye fixations during face recognition do have functional roles;
they also reflect the underlying cognitive processes involved in face recognition. I will
review these studies in the following section.

In recent years, some researchers have proposed computational models of face recognition
that incorporate eye fixations, in order to more realistically account for the cognitive
processes involved in face recognition. For example, Lacroix et al. (2006) proposed the
Natural Input Memory (NIM) model that uses image patches at eye fixation points as the
internal representation for modeling face recognition memory. Barrington et al. (2008) later
proposed a Bayesian version of the NIM model (the NIMBLE model, NIM with Bayesian
Likelihood Estimation). In section three, I will review these two models and discuss their
cognitive plausibility in addressing human face recognition behavior.

In face perception, a left side bias has been consistently reported, in both perceptual
judgments (e.g. Gilbert & Bakan, 1973) and eye movements (e.g., Everdell et al., 2007). This
phenomenon has been argued to be an indicator of right hemisphere (RH) involvement in
the perception of faces (e.g., Burt & Perrett, 1997; Rossion et al., 2003). A recent study of
mine suggests a link between this left side bias and visual expertise (Hsiao & Cottrell, 2009).
In section four, I will review these studies about the left side bias in face perception, and
discuss their implications for visual expertise processing.

Eye movements during face recognition have also been used to examine the processing
differences between familiar and unfamiliar face recognition. Previous research has
suggested that internal facial features (e.g. eyes and nose), as opposed to external features
(e.g. hair and facial shape), are more important in the recognition of familiar faces compared
with unfamiliar faces (e.g. Ellis & Shepherd, 1992). Nevertheless, Althoff and Cohen (1999)
compared eye movements during familiar and unfamiliar face recognition in a familiarity
judgment task, and showed that there was no difference between familiar and unfamiliar
faces in the number of fixations falling into the internal face region. In a more recent study,
Stacey et al. (2005) showed that participants made more fixations on the internal features
when viewing familiar faces compared with unfamiliar faces only in a face matching task,
but not in a familiarity judgment task or a standard recognition memory task. In section
five, I will review these studies and discuss the processing differences between familiar and
unfamiliar face recognition. Finally, in the conclusion section, I will give a summary of the
chapter and some perspectives for future research directions.

2. Functional Roles of Eye Movements in Face Recognition

Henderson et al. (2005) examined whether eye movements in face recognition have a
functional role or just a recapitulation of those produced during face learning. Participants
performed a standard face recognition memory task while their eye movements were
recorded. During the learning phase, they were presented with face images one at a time
and asked to remember them; after a short break, during the recognition phase, they were
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presented with face images one at a time and asked to judge whether they saw the face
image during the learning phase. They manipulated participants’ eye movements during
the learning phase: in the free-viewing learning condition, participants were allow to move
their eyes naturally; in the restricted-viewing learning condition, participants had to remain
looking at a single central location when they viewed the faces. They examined the influence
of this eye fixation restriction during the learning phase on their performance in the
subsequent face recognition task. Their results showed that this eye fixation restriction
during face learning significantly impaired participants’ recognition performance compared
with the free-viewing learning condition. Also, they showed that the fixation locations
participants made during the recognition phase following the free-viewing and the
restricted-viewing conditions were similar to each other. Their results thus suggest that eye
movements generated during face recognition have a functional role and are not just
recapitulation of those produced during learning.

Mintyld and Holm (2006) conducted a similar face recognition study in which they
restricted participants’” eye movements during either the learning phase or the recognition
phase, or both phases. In the trials in which participants had correct responses, they asked
participants to report whether they indeed remembered seeing the face during the learning
phase (i.e. recollection), or they only knew that the face was presented earlier (i.e.
familiarity). They found that the restriction of eye movements impaired participants” explicit
recollection, but not familiarity-based recognition.

Henderson et al.’s (2005) and Mintyld and Holm’s (2006) studies demonstrate that eye
movements in face recognition have a functional role, since restricting eye movements
during face recognition significantly impair participants’ recognition performance.
However, it remains unclear what the function roles of eye movements in face recognition
are. For example, do we have preferred eye fixations during face recognition? What is the
nature of these preferred fixations? Does the number of eye fixations we make during face
recognition influence our performance? How many fixations do we need to recognize a
face? Do we have better recognition performance with more fixations?

In a recent study (Hsiao & Cottrell, 2008), we aimed to answer these questions regarding the
functional roles of eye movements in face recognition. Instead of restricting eye fixation
locations during either face learning or recognition phases, we restricted the number of eye
fixations participants were allowed to make during the recognition phase. We recruited
Caucasian participants and had them perform a face recognition memory task with
Caucasian face images (i.e. own-race face recognition). During the learning phase, they
viewed 32 face images one at a time, each for three seconds. During the recognition phase,
they viewed the same 32 face images and another set of 32 new face images one at a time,
and asked to judge whether they saw the face during the learning phase (i.e. old/new
judgments). Four different restriction conditions were created for the recognition phase: in
the unrestricted condition, participants viewed the face image for three seconds at most or
until their response if they responded within the three seconds; in the one, two, or three
fixation conditions, they were only allowed to make one, two, or three fixations on the face
image; the face image was covered by an average face image, a pixel-wise average of all face
images in the materials, when their eyes moved away from the last permissible fixation (Fig.
1). We used the average face image as a mask when participants reached their maximum
number of fixations allowed to create a smooth transition between the target face image and
the mask; the average face image did not contain any identity information. During the
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experiment, participants were not aware of the relationship between the number of fixations
they made and the time the average-face mask appeared; even if they were aware of this
manipulation in the middle of the experiment, they were not able to anticipate the number
of permissible fixations in each trial since the condition order was randomized during the
experiment.

A major difference between our study and Henderson et al.’s (2005) and Mintyld and
Holm’'s (2006) studies was that the restriction was on the number of fixations as opposed to
fixation locations; in our experiment, during both phases, they were allowed to move their
eyes naturally. Thus we were able to examine the functional roles of eye fixations during
face recognition and answer questions such as how many fixations we need in order to
recognize a face and where they are located. Another difference between our study and
previous examinations of eye movements in face recognition was that, in order to examine
participants” preferred landing positions in face recognition, instead of having participants
start a trial from the face centre, we started each trial with a central fixation, followed by the
target face image presented either above or below the central fixation (randomly
determined; Fig. 1). Thus, in each trial, participants had to make a saccade from the centre of
the screen onto the target face image. If participants started a trial from the centre of the face
(e.g., Henderson et al., 2005), their first fixation would always be away from the face centre
and it would be impossible to know where the preferred landing position of their first
fixation was when they viewed a face. In addition, in each trial in order to prevent
participants from obtaining face identity information from parafoveal vision before they
made their first fixation, the average-face mask was first presented and then replaced by the
target face image after participants made a saccade from the initial central fixation (Fig. 1).

After the
permissible
Saccada fixations
+ > . 3
Fixation Average Tace Face image Mask (average face)

Fig. 1. Flow chart of a test trial during the recognition phase (Hsiao & Cottrell, 2008).

We used A’, a bias-free nonparametric measure of sensitivity, as the measure of participants’
discrimination sensitivity in the study. Our results showed that participants were able to
recognize a face with a single fixation (the average A’ was 0.63; A’ at the chance level is 0.5).
Participants had better performance when they were allowed to make two fixations; there
was no further performance improvement when they were allowed to make more than two
fixations (Table 1). This result suggests that two fixations suffice in face recognition. These
two fixations were at the centre of the nose, with the first fixation slightly to the left of the
centre (Fig. 2), suggesting that the centre of the nose is the preferred landing location in face
recognition.

In this experiment participants had better performance in the two-fixation condition
compared with the one-fixation condition. This performance difference may be due to a
longer total face viewing time in the two-fixation condition compared with the one-fixation
condition. To address this issue, we conducted another experiment in which the total face
viewing time was fixed to be 610 ms, the sum of the average durations of the first two
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fixations in the previous experiment. In the one-fixation condition, after participants made
the first fixation, the face image moved with their gaze (i.e., the display became gaze
contingent); thus, they would keep looking at the same location as their first fixation on the
face image. In the two-fixation condition, the face image became gaze contingent after they
made a second fixation. Participants were unaware of the gaze contingent design during the
experiment. Our results showed that given the same total face viewing time, participants
still had better performance when they were allowed to make two fixations compared with
a single fixation (Table 2). This result suggests that the second fixation has functional
significance: to obtain more information from a different location, but not just to increase the
total face viewing time.

One fixation Two fixations | Three fixations | Unrestricted
Mean A’ 0.625 0.826 0.812 0.799
Standard Deviation 0.125 0.083 0.140 0.127

Table 1. Mean A’ (a discrimination sensitivity measure) and standard deviations in the four
fixation conditions (Hsiao & Cottrell, 2008).

First fixation Second fixation

Fig. 2. Average eye fixation locations of the first two fixations during the recognition phase.
The radii of the ellipses show standard deviations of the locations. The background shows
the average face (Hsiao & Cottrell, 2008).

One fixation

Two fixations

Mean A’

0.787

0.853

Standard Deviation

0.108

0.074

Table 2. Mean A’ (a discrimination sensitivity measure) and standard deviations in the one-
and two- fixation conditions in the second experiment (Hsiao & Cottrell, 2008).

Previous studies examining the diagnostic features in face recognition using the Bubbles
procedure (e.g., Gosselin & Schyns, 2001, Schyns et al., 2002, Vinette et al., 2004) showed that
the most diagnostic features for face identification are the eyes. Standard approaches to
modeling human eye fixations and visual attention usually use a saliency map that is



260 Face Recognition

calculated according to biologically motivated feature selection or information
maximization (e.g., Itti et al., 1998; Bruce & Tsotsos, 2005; Yamada & Cottrell, 1995). These
models would predict fixations on the eyes when we view face images. Our results (Hsiao &
Cottrell, 2008) showed that this was not the case: the preferred landing position was not
located on the most informative position on a face (i.e., the eyes). This phenomenon suggests
that eye fixation behavior in face recognition is different from that during scene viewing or
visual search tasks. Indeed, recent research on face recognition suggests that the recognition
of faces is holistic and involves relatively less part-based shape representation compared
with the recognition of objects (e.g., Farah et al., 1995). Some argue that this face-specific
effect is in fact expertise-specific (e.g., Gauthier & Tarr, 1997, 2002; Gauthier et al., 1998;
Gauthier et al., 1999). Our result is consistent with this view. It is possible that, due to our
familiarity with the information structure of faces, fixations at each individual feature
fragments only generate redundant processes and increase the processing time; instead, a
more efficient strategy is to get as much information as possible with a single fixation. Given
a perceptual window large enough to cover a whole face and the fact that visual acuity
drops dramatically from the fovea to the periphery, the fixation from which the most
information can be obtained should be at the “center of the information”, where the
information is balanced in all directions. This location may also be the optimal viewing
position for the recognition of faces. This claim is consistent with the observation that face
recognition tends to be more holistic compared with the recognition of objects.

In summary, in this study (Hsiao & Cottrell, 2008), we showed that two fixation suffice in
face recognition. The distributions of these two fixations were around the centre of the nose,
suggesting that this location is the preferred landing position in face recognition. We argue
that this location may be the centre of the information for face recognition; it may also be the
optimal viewing position for face recognition. Further research is required to examine these
hypotheses.

3. Incorporating Eye Fixations in Computational Models of Face Recognition

In computational modelling of cognitive processes, several models have been proposed to
address human behaviour in face recognition. Recently researchers started to incorporate
eye fixations into their computational models of face recognition in order to more accurately
modelling the cognitive processes involved in face recognition. For example, Lacroix et al.
(2006) proposed the Natural Input Memory (NIM) model to account for human behaviour in
face recognition memory. The model uses fixation-based face fragments and transforms
these fragments into a feature-vector representation as the internal representation of
recognition memory. Thus, memories can be stored as points in a vector space, and
recognition processes can be modelled as comparing the currently perceived fragments to
the stored fragments: the larger the distance between the two representations in the vector
space, the harder the memory can be successfully recollected. The NIM model can be
considered as an exemplar model of memory (Raaijmakers & Shiffrin, 2002). However, the
NIM model differs from standard mathematical psychology models in that (1) it uses actual
facial images as input, and (2) it is based on the idea of storing fixation-based face
fragments, rather than whole face exemplars (e.g., Dailey & Cottrell, 1999; O'Toole et al.,
1988). In accounting for human behaviour, Lacroix et al. (2006) showed that the NIM model
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was able to simulate experimentally obtained human similarity ratings and recognition
memory for individual faces.

Barrington et al. (2008) further proposed a Bayesian version of the NIM model, (which was
referred to as NIMBLE, NIM with Bayesian Likelihood Estimation), as a general framework
that is able to handle multi-class problems. The model was able to achieve human-level
performance on standard face recognition tasks and also performed multi-class face and
object identification tasks with high accuracy. The Bayesian combination of individual
fragment likelihoods in the NIMBLE model outperformed the combination method in the
original NIM model in most cases; in addition, if using new kernels for density estimation,
the NIMBLE model was shown to far outperform the NIM model.

In accounting for human behaviour, the model was able to achieve correct face recall and
identification with a very small number of fixations; on average, consistent with our human
data (Hsiao & Cottrell, 2008), a single fixation was enough to recognize a face. Nevertheless,
inconsistent with the human data, the probability of successful recognition increased with
an increasing number of fixations; in contrast, the human performance levelled off after two
fixations (Hsiao & Cottrell, 2008). This inconsistency may be due to the difference in the
choice of eye fixation locations between the model and the human data: the NIMBLE model
implemented a model of visual saliency (Yamada & Cottrell, 1995) as the way to select
fixation points; as the result, the eyes, instead of the centre of the nose shown in the human
data, were usually selected as the first fixation points. Thus, in order examine the cognitive
plausibility of the NIMBLE model in modelling recognition memory alone, in another
examination we directly used human eye fixation locations obtained in Hsiao and Cottrell
(2008) in the NIMBLE model. The results showed that by using human fixation locations,
with a single fixation the NIMBLE model already achieved a similar performance level (with
ROC area between 0.8 and 0.9) to the best performance in the human data (i.e., with two
fixations), and more fixations did not further improve the model’s performance. In other
words, the NIMBLE model achieved maximum performance using just the first human
fixation. This result is consistent with our claim that the first fixation location chosen by
humans (i.e., the preferred landing position, the center of the nose) may be the optimal
viewing position for face recognition (Hsiao & Cottrell, 2008).

A possible explanation for the discrepancy between the human data (Hsiao & Cottrell, 2008)
and the NIMBLE model’s behaviour using the same fixations is that, as shown in Fig. 2, the
first and second fixations in the human data tended to be in very similar locations (around
the centre of the nose). Recall that in the human data, the participants achieved their
maximum performance with these two fixations. This phenomenon suggests that all of the
information required for face recognition may be obtainable by looking at the centre of the
nose, but perhaps the participants were not able to obtain all of the information required
during the duration of a typical fixation. Since we move our eyes about three times per
second (Henderson, 2003) (in our human data, the average first fixation duration was 295 ms
and the second was 315 ms on average), it may be that a second fixation in a nearby location
is required to accumulate more information to achieve the best face recognition
performance. This limitation in human vision may be explained by a task-switching cost
from localizing to exploring for recognition; that is, in the experiment, participants had to
plan a localizing saccade from the centre of the screen to the target face stimulus before the
first fixation, and then switch the task from localizing to exploring for recognition
afterwards (Tatler, 2007). In contrast to human vision, the NIMBLE model does not have this



262 Face Recognition

limitation. In addition, this localizing fixation has been shown to have a central bias (e.g.,
Renninger et al., 2007; Tatler, 2007), regardless of image feature distribution (Tatler, 2007).
Thus, the first fixation in face recognition may be influenced by both this central bias and
the tendency to look at the optimal viewing position due to our expertise.

In summary, the results of the NIMBLE model, which incorporates eye fixations in
modelling cognitive processes involved in face recognition, support our hypothesis that the
preferred landing position in face recognition (the centre of the nose; Hsiao & Cottrell, 2008)
may also be the optimal viewing position for face recognition. The modelling results also
suggest some possible limitations of the human visual system; further research is required
to examine these hypotheses.

4. Left Side Bias in Face Perception and Its Link to Visual Expertise

In face recognition, a left side bias effect has been consistently reported. For example, a
chimeric face made from two left half faces from the viewer’s perspective has been reported
to be judged more similar to the original face than one made from two right half faces
(Gilbert & Bakan, 1973), especially for highly familiar faces (Brady et al.,, 2005). This
phenomenon has been argued to be an indicator of right hemisphere involvement in the
perception of faces (Burt & Perrett, 1997; Rossion et al., 2003).

This left side bias effect has also been shown to be reflected in eye movement behaviour. For
example, in an eye movement study of face recognition, Mertens et al. (1993) reported an
asymmetry in gaze-movement strategies for faces in a visual memory task: the overall time
that the centre of gaze remained in the left side of the stimulus was longer than the right
side; this asymmetry was not observed for vases. Leonards & Scott-Samuel (2005) showed
that participants tended to have their initial saccade direction to the left side for face stimuli,
but not for landscapes, fractals, or inverted faces. They hence attributed the observed initial
saccade direction bias to internal cognition-related factors, i.e., familiarity of the stimuli.
Their results also showed significantly shorter initial saccade latencies to the left half-field
compared with those to the right half-field for participants who had the leftward bias,
suggesting higher effectiveness through automatization. Vinette et al. (2004) used the
Bubbles procedure (Gosselin & Schyns, 2001) to examine the timing of different face features
used during face identification. They showed that the left eye was diagnostic between 47 ms
to 94 ms after the stimulus onset, and both eyes became informative after 94 ms. Joyce (2001)
also showed that during the first 250 ms in face recognition, participants’ eye fixations
tended to be on the left half-face. Consistent with these results, in a recent study (Hsiao &
Cottrell, 2008), we also showed that during face recognition participants” first fixation
tended to be slightly to the left of the centre (Fig. 2). These findings suggest that the left side
of a face (from the viewer’s perspective) may be more informative in face recognition. This
hypothesis is consistent with the diagnostic face images obtained from the Bubbles
procedure (Gosselin & Schyns, 2001, Schyns et al., 2002, Vinette et al., 2004), showing that
the left eye is the most diagnostic point at an early stage of face recognition.

Why is the left side of a face from the viewer’s perspective more diagnostic than the right
side of a face in face recognition? Researchers have shown that low spatial frequency
information is important for face recognition (e.g., Whitman & Konarzewski-Nassau, 1997).
Also, the right hemisphere has been shown to have an advantage over the left hemisphere in
tasks requiring low spatial frequency information processing (Sergent, 1982). Ivry and
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Robertson (1999) proposed the Double Filtering by Frequency (DFF) theory, in which they
argue that information coming into the brain goes through two frequency filtering stages:
the first stage involves selection of a task-relevant frequency range; at the second stage, the
right hemisphere biases information to low frequency ranges, whereas the left hemisphere
biases information to high frequency ranges. Consistent with these findings, the right
hemisphere has been shown to be important for face processing. For example, fMRI studies
have shown that an area inside the fusiform gyrus (fusiform face area, FFA) responds
selectively to faces (although some argue that FFA is an area for expertise in subordinate
level visual processing instead of selective for faces, e.g., Tarr & Gauthier, 2000), with larger
activation in the right hemisphere compared with the left hemisphere (e.g. Kanwisher et al.,
1997). Electrophysiological data show that faces elicit larger Event Related Potential (ERP)
N170 than other types of objects, especially in the right hemisphere (e.g., Rossion et al.,
2003). Neuropsychological data also suggest a link between right hemisphere damage and
deficits in face recognition and perception (e.g., Young et al., 1990; Evans et al., 1995)

Also, because of the partial decussation of the optic nerves, our visual field is vertically split
and the two visual hemifields are initially contralaterally projected to the two hemispheres.
Thus, when we are viewing a face and looking at the centre of the face, the left side of the
face from our perspective has direct access to the right hemisphere. It has been shown that,
when a stimulus is centrally fixated, each of the two hemispheres plays a dominant role in
the processing of the half of the stimulus to which it has direct access (e.g., Lavidor et al.,
2004; Lavidor & Walsh, 2004; Hsiao et al., 2006; although these are based on research on
visual word recognition). Hence it is possible that the representation of the left side of a face
is most often encoded by and processed in the right hemisphere, making it more
informative than the right side of the face, which is usually processed in the left hemisphere.
As the result, we may gradually direct our fixations more to the left, because the internal
representation of the left stimulus-half is more informative and attracts our attention.

In addition to face processing, recent research on visual expertise has suggested that this left
side bias may be related general visual expertise processing. For example, it has been shown
that the increase of holistic processing effect for artificial objects after expertise training was
correlated with right fusiform area activity (Gauthier & Tarr, 2002; Gauthier et al., 1999),
suggesting that the low spatial frequency biased representation developed in the right
hemisphere (Ivry & Robertson, 1998; Sergent, 1982; Hsiao et al., 2008) may be crucial for the
development of visual expertise. In our recent study that examines visual expertise in
Chinese character recognition (Hsiao & Cottrell, 2009), we showed that Chinese readers (i.e.,
experts) had a left side bias in the perception of mirror-symmetric characters, whereas non-
Chinese readers (i.e., novices) did not; this effect was also reflected in participants’ eye
fixation behaviour: the distribution of Chinese readers’ fixations when viewing the
characters was significant to the left of the distribution of non-Chinese readers’ fixations. In
another study (Hsiao et al., in preparation), we trained participants to recognize other-race
faces and a novel type of objects, Greebles (Gauthier & Tarr, 1997), through either
individual-level (i.e. recognize them by individual names) or categorical-level (i.e. recognize
their races/categories) recognition training; participants performed a standard recognition
memory task once before and once after the training, while their eye movements were
recorded. Our results showed that during the recognition phase of the recognition memory
task, after training participants’ second and third fixations significantly shifted leftwards in
both face and Greeble recognition, compared with their pre-training behaviour. These
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findings thus suggest a link between the left side bias effect and visual expertise. In
addition, in our study (Hsiao et al., in preparation), whereas in other-race face recognition
this leftward shift in eye fixations was observed after both individual- and categorical-level
training, in Greeble recognition it was only observed after the individual-level training. This
phenomenon may suggest a more effective learning (i.e. learning to use the more
informative, right hemisphere/low spatial frequency biased representation) in a domain in
which participants already had prior perceptual knowledge (i.e. other-race face recognition)
as opposed to a completely novel domain (i.e. Greeble recognition); it could also be because
faces were automatically and unconsciously recognized at the individual level during the
categorical-level training.

In addition to hemisphere asymmetry in face processing, there may be other factors that also
account for this left side bias in face recognition. For example, Heath et al. (2005) showed
that the left side bias effect in the perception of facial affect was influenced by both laterality
and script reading direction. They showed that right-handed readers of Roman script
demonstrated the greatest mean leftward bias, Arabic script readers demonstrated a mixed
or weak rightward bias, and illiterates showed a slight leftward bias (see also Vaid & Singh,
1989). In Hsiao and Cottrell (2008), in both the learning and recognition phases of the face
recognition task, participants scanned from left to right. This direction was consistent with
their reading direction, since all participants were native English speakers and English is a
script read from left to right. Further research is required to examine whether Arabic script
readers (i.e., for scripts read from right to left) have a different scan path from English
readers in face perception and recognition. This left side bias in face recognition may also be
due to fundamental differences in the amount of information normally portrayed relevant to
face recognition between the two sides of a face, although so far there has not been any
evidence suggesting this may be the case.

5. Eye Movements in Familiar and Unfamiliar Face Recognition

Previous face recognition research has shown that as we get to know a person better, the
more expressive internal features of his/her face become more important in our mental
representation of the face, as opposed to features in the external part such as hair and facial
shape (e.g., Ellis & Shepherd, 1992). For example, Ellis et al. (1979) showed that there was an
advantage of identifying famous people from face internal features compared with external
features; this advantage was also found in a face recognition task with famous faces. In
contrast, no difference was found between internal and external features when identifying
unfamiliar faces. Young et al. (1985) showed that in a face matching task, in which
participants were asked to match a face image that contained only either external or internal
features and another complete face image and decide whether the two face images were
from the same person, participants were significantly faster in matching internal features
when faces were familiar compared with when faces were unfamiliar; in contrast, there was
not difference between familiar and unfamiliar faces in matching external features. This
advantage of familiar faces in matching internal features was held when the pair of face
images did not have the same orientation or expression. In addition, they showed that this
advantage disappeared if the pair of face images being matched was from the same
photograph so that participants could simply match the photographs instead of face
features, suggesting that this advantage of familiar faces was due to structural properties of
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the faces instead of pictorial codes of the face images. Bonner et al. (2003) trained
participants to be familiarized with a set of unfamiliar faces; they showed that in a face
matching task, participants’ performance on matching internal features was improved
gradually during training and eventually became equivalent to their performance on
matching external features; in contrast, their performance on matching external features
remained at a constant level over the training days. These results suggest that we use more
internal facial features in processing familiar faces compared with unfamiliar faces.

Later research showed that these internal features form a “configuration” that is crucial for
the recognition of both familiar and unfamiliar faces (e.g., Farah, 1991; Tanaka & Farah,
1993). More specifically, the processing of this configuration involves “the ability to identify
by getting an overview of an item as a whole in a single glance” (Farah, 1991); in particular,
the spatial organization of features relative to each other (i.e. second order relationships)
have been shown to be important for face recognition and distinguish it from object
recognition (Farah, 1991; Farah et al., 1995). Some have argued that this ability to identify
faces according to the spatial organization of internal features is due to our expertise in
subordinate level discrimination/individualization of faces (e.g. Bukach et al., 2006;
Gauthier & Bukach, 2007). Consistent with this view, the recognition of unfamiliar, other-
race faces has been shown to involve less holistic processing compared with own-race faces
(Tanaka et al., 2004); this phenomenon suggests difficulty in integrating internal features to
form a configuration for holistic processing in the recognition of unfamiliar, other-race faces.
This difference between familiar and unfamiliar face recognition has also been
demonstrated in eye movement behaviour, although the effect seems to be task-dependent.
For example, Althoff and Cohen (1999) presented famous (familiar) and unfamiliar faces to
participants and asked them to make familiarity decisions while their eye movements were
recorded; they found that although most of the fixations fell in the internal face region, there
was no difference between familiar and unfamiliar faces. Stacey et al. (2005) replicated
Althoff and Cohen’s results (1999) in a familiarity judgment task and a standard face
recognition memory task; in contrast, in a face-matching task, in which participants were
presented with two face images simultaneously and asked to judge whether the two face
images were from the same person, they found that participants made more fixations in the
internal face region when matching familiar faces compared with unfamiliar faces. Their
result thus is consistent with earlier behavioural studies showing the importance of internal
facial features in matching familiar faces compared with unfamiliar faces. This effect was
also observed in face recall (identification) tasks: in a recent study, Heizs and Shore (2008)
showed that when a face became more familiar, participants made more fixations to the eye
region compared with other regions such as the nose, mouth, forehead, chin, and cheek
regions in a face recall (identification) task, but not in a face recognition memory task.

In a recent study (Hsiao et al., in preparation), we trained participants to recognize other-
race faces at either the individual level (i.e. identify faces by individual names) or the
categorical level (i.e. identify faces by their races). Participants performed a standard face
recognition memory task before and after this training. Our results showed that
participants’ saccade lengths significantly decreased in the face recognition task after
individual level training, but not after categorical level training; this decrease in saccade
length may have reflected more local, finer-grain perceptual processing after the
participants” learned to individualize other-race faces. This result thus is consistent with the
previous studies showing the importance of internal features in familiar face processing,
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and suggest that this shift from processing external to internal facial features when we get to
know a person better may be due to our experience in individualizing faces in daily life as
opposed to basic-level categorization or mere exposure.

6. Conclusion and Future Perspectives

In this chapter, I have reviewed the current literature on eye movements in face recognition,
in particular trying to answer questions that are frequently raised in the literature, such as
whether eye movements are required in face recognition since faces are processed
holistically; if they are, what their functional roles are in face recognition, and what they can
tell us about the cognitive processes involved in face recognition. We have seen that eye
movements during face recognition have a functional role and are not just a recapitulation
of those produced during the learning phase (Henderson et al., 2005); eye movements are
especially important for explicit face recollection, as opposed to familiarity-based
recognition, since restriction of eye movements during either the learning or the recognition
phase impairs explicit recollection but not familiarity-based recognition (Méntyld and
Holm’s, 2006). These results suggest that eye movements have a functional role and are
required in face recognition.

As for what their functional roles are, we have shown that two fixations suffice in face
recognition, and these two fixations are just around the centre of the nose, with the first
fixation slightly to the left of the centre (Hsiao & Cottrell, 2008). We argue that this location
may be the optimal viewing position for face recognition because of our expertise in face
processing and knowledge about the information structure of faces relevant to face
recognition. This hypothesis has been supported by our computational modelling study
(Barrington et al., 2008), which shows that by using only the first fixation in the human data
(i.e. around the centre of the nose), the model already achieves its best face recognition
performance, as opposed to using the first fixation selected according to computational
programs that calculate visual salience (i.e. usually fixations on the eyes are selected first).
The observation that humans nevertheless require two fixations around this optimal
viewing position suggests a limitation of human vision. It may be that the duration of a
typical fixation (about 300 ms) is not long enough to allow us to obtain all the information
required for face recognition. Also, in addition the tendency to look at the optimal viewing
location, the location of our first fixation may be influenced by the central bias that is usually
observed in localizing fixations (Tatler, 2007), and thus a second fixation in a different
location is usually required to accumulate more information. Our human data are consistent
this hypothesis (Hsiao & Cottrell, 2008): given the same amount of total face viewing time,
participants had better performance when they were allowed to make two fixations
compared with a single fixation. An important direction of future work is to examine
whether the centre of the nose is indeed the optimal viewing position for face recognition,
whether our first fixation is influenced by both the localizing central bias and the tendency
to look at the optimal viewing position, and whether we require two fixations to recognize a
face because of a task-switching cost from localizing to exploring.

Eye movements in face recognition also reflect hemispheric asymmetry in face processing. It
has been shown that we have a preference of looking at the left side of a face from the
viewer’s perspective when we view faces, and this phenomenon has been linked to the right
hemisphere dominance in face processing (e.g., Hsiao & Cottrell, 2008). This phenomenon
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may be because the low-spatial-frequency biased representation developed in the right
hemisphere is more informative in face processing compared with that in the left
hemisphere (i.e. high-spatial-frequency biased; Ivry & Robertson, 1998). Because of the
contralateral projection from our visual hemfields to the two hemispheres, when we learn to
recognize faces, the left side of a face is most often initially projected to and processed in the
right hemisphere, making its internal representation more informative than the right side of
the face. As the result, we tend to direct our eye fixations to the left side of a face since it is
more informative and thus attracts our attention. Consistent with this hypothesis, it has
been shown that this left side bias may be related to visual expertise (e.g., Hsiao & Cottrell,
2009). Possible future work is to investigate other factors that may also influence eye fixation
behaviour in face recognition, such as script reading directions, and to examine whether the
left side bias is a general visual expertise marker or specific to certain expertise domains.

Eye movements in face recognition also help us understand cognitive processes involved in
familiar and unfamiliar face recognition. They reflect that we use more internal facial
features as opposed to external features in matching familiar faces compared with matching
unfamiliar faces (Stacey et al., 2005); internal facial features are also more important when
we identify familiar faces compared with unfamiliar faces (Ellis et al., 1979; Heizs & Chore,
2008). This difference between familiar and unfamiliar face processing has also been
reflected in participants’ saccade lengths in our recent eye movement study of visual
expertise training in face and object recognition (Hsiao et al., in preparation): after expertise
training, participants’ saccade lengths significantly decreased in standard recognition
memory tasks of faces and objects; this decrease in saccade lengths may reflect a finer-
grained perceptual processing on the internal features. In addition, this effect was observed
in face recognition after either categorical or individual level training, but was only
observed in object recognition after individual level training. This result thus suggests that
the shift from processing external to internal features in face recognition when we become
familiar with a face may be related to visual expertise. Further research is required to
examine this potential link between the shift from external to internal feature processing and
the development of visual expertise.

In conclusion, although using eye movements to study cognitive processes involved in face
recognition is a relatively new approach in the face recognition literature, researchers have
obtained several important findings about the dynamics of cognitive processes in face
recognition that would not have been possible without the eye tracking technology. In the
future, eye tracking technology will keep contributing to the research on face recognition
and visual expertise to promote our understanding of how we recognize faces, how the
brain processes faces, how we learn to recognize a face or develop expertise in a visual
domain, and also, more generally, how we direct our eye gaze to obtain useful information
in the environment to perform cognitive tasks.
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