APPLICATION OF MACHINE LEARNING

APPLICATION OF MACHINE LEARNING

Edited by
YAGANG ZHANG

In-Tech
intechweb.org

Published by In-Teh

In-Teh
Olajnica 19/2, 32000 Vukovar, Croatia

Abstracting and non-profit use of the material is permitted with credit to the source. Statements and
opinions expressed in the chapters are these of the individual contributors and not necessarily those of
the editors or publisher. No responsibility is accepted for the accuracy of information contained in the
published articles. Publisher assumes no responsibility liability for any damage or injury to persons or
property arising out of the use of any materials, instructions, methods or ideas contained inside. After
this work has been published by the In-Teh, authors have the right to republish it, in whole or part, in any
publication of which they are an author or editor, and the make other personal use of the work.

© 2010 In-teh

www.intechweb.org

Additional copies can be obtained from:
publication@intechweb.org

First published February 2010
Printed in India

Technical Editor: Sonja Mujacic
Cover designed by Dino Smrekar

Application of Machine Learning,
Edited by Yagang Zhang

p. cm.
ISBN 978-953-307-035-3

Preface

In recent years many successful machine learning applications have been developed, ranging
from data mining programs that learn to detect fraudulent credit card transactions, to
information filtering systems that learn user’s reading preferences, to autonomous vehicles
that learn to drive on public highways. At the same time, machine learning techniques such
as rule induction, neural networks, genetic learning, case-based reasoning, and analytic
learning have been widely applied to real-world problems. Machine Learning employs
learning methods which explore relationships in sample data to learn and infer solutions.
Learning from data is a hard problem. It is the process of constructing a model from data.
In the problem of pattern analysis, learning methods are used to find patterns in data. In the
classification, one seeks to predict the value of a special feature in the data as a function of the
remaining ones. A good model is one that can effectively be used to gain insights and make
predictions within a given domain.

General speaking, the machine learning techniques that we adopt should have certain
properties for it to be efficient, for example, computational efficiency, robustness and
statistical stability. Computational efficiency restricts the class of algorithms to those which
can scale with the size of the input. As the size of the input increases, the computational
resources required by the algorithm and the time it takes to provide an output should scale
in polynomial proportion. In most cases, the data that is presented to the learning algorithm
may contain noise. So the pattern may not be exact, but statistical. A robust algorithm is
able to tolerate some level of noise and not affect its output too much. Statistical stability is a
quality of algorithms that capture true relations of the source and not just some peculiarities
of the training data. Statistically stable algorithms will correctly find patterns in unseen data
from the same source, and we can also measure the accuracy of corresponding predictions.

The goal of this book is to present the latest applications of machine learning, mainly
include: speech recognition, traffic and fault classification, surface quality prediction in laser
machining, network security and bioinformatics, enterprise credit risk evaluation, and so on.

This book will be of interest to industrial engineers and scientists as well as academics who
wish to pursue machine learning. The book is intended for both graduate and postgraduate
students in fields such as computer science, cybernetics, system sciences, engineering,
statistics, and social sciences, and as a reference for software professionals and practitioners.
The wide scope of the book provides them with a good introduction to many application
researches of machine learning, and it is also the source of useful bibliographical information.

Editor:
Yagang Zhang

\

Vi

10.

11.

Contents
Preface \
Machine Learning Methods In The Application Of Speech Emotion Recognition 001
Ling Cen, Minghui Dong, Haizhou Li Zhu Liang Yu and Paul Chan
Automatic Internet Traffic Classification for Early Application Identification 021
Giacomo Verticale
A Greedy Approach for Building Classification Cascades 039
Sherif Abdelazeem
Neural Network Multi Layer Perceptron Modeling For Surface
Quality Prediction in Laser Machining 051
Sivarao, Peter Brevern, N.S.M. El-Tayeb and V.C.Vengkatesh
Using Learning Automata to Enhance Local-Search Based SAT
Solvers with Learning Capability 063
Ole-Christoffer Granmo and Noureddine Bouhmala
Comprehensive and Scalable Appraisals of Contemporary Documents 087
William McFadden, Rob Kooper, Sang-Chul Lee and Peter Bajcsy
Building an application - generation of ‘items tree’ based on transactional data 109
Mihaela Vrani¢, Damir Pintar and Zoran Skocir
Applications of Support Vector Machines in Bioinformatics and Network Security 127
Rehan Akbani and Turgay Korkmaz
Machine learning for functional brain mapping 147
Malin Bjérnsdotter
The Application of Fractal Concept to Content-Based Image Retrieval 171
An-Zen SHIH
Gaussian Processes and its Application to the design of Digital Communication
Receivers 181

Pablo M. Olmos, Juan José Murillo-Fuentes and Fernando Pérez-Cruz

Vil

12. Adaptive Weighted Morphology Detection Algorithm of Plane Object in Docking
Guidance System 207
Guo Yan-Ying, Yang Guo-Qing and Jiang Li-Hui

13. Model-based Reinforcement Learning with Model Error and Its Application 219
Yoshiyuki Tajima and Takehisa Onisawa

14. Objective-based Reinforcement Learning System for
Cooperative Behavior Acquisition 233
Kunikazu Kobayashi, Koji Nakano, Takashi Kuremoto and Masanao Obayashi

15. Heuristic Dynamic Programming Nonlinear Optimal Controller 245
Asma Al-tamimi, Murad Abu-Khalaf and Frank Lewis

16. Multi-Scale Modeling and Analysis of Left Ventricular Remodeling Post
Myocardial Infarction: Integration of Experimental
and Computational Approaches 267
Yufang Jin, Ph.D. and Merry L. Lindsey, Ph.D.

MACHINE LEARNING METHODS
IN THE APPLICATION OF SPEECH
EMOTION RECOGNITION

Ling Cen!, Minghui Dong!, Haizhou Li!
Zhu Liang Yu?and Paul Chan!

nstitute for Infocomm Research

Singapore

2College of Automation Science and Engineering,
South China University of Technology,
Guangzhou, China

1. Introduction

Machine Learning concerns the development of algorithms, which allows machine to learn
via inductive inference based on observation data that represent incomplete information
about statistical phenomenon. Classification, also referred to as pattern recognition, is an
important task in Machine Learning, by which machines “learn” to automatically recognize
complex patterns, to distinguish between exemplars based on their different patterns, and to
make intelligent decisions. A pattern classification task generally consists of three modules,
i.e. data representation (feature extraction) module, feature selection or reduction module,
and classification module. The first module aims to find invariant features that are able to
best describe the differences in classes. The second module of feature selection and feature
reduction is to reduce the dimensionality of the feature vectors for classification. The
classification module finds the actual mapping between patterns and labels based on
features. The objective of this chapter is to investigate the machine learning methods in the
application of automatic recognition of emotional states from human speech.

It is well-known that human speech not only conveys linguistic information but also the
paralinguistic information referring to the implicit messages such as emotional states of the
speaker. Human emotions are the mental and physiological states associated with the
feelings, thoughts, and behaviors of humans. The emotional states conveyed in speech play
an important role in human-human communication as they provide important information
about the speakers or their responses to the outside world. Sometimes, the same sentences
expressed in different emotions have different meanings. It is, thus, clearly important for a
computer to be capable of identifying the emotional state expressed by a human subject in
order for personalized responses to be delivered accordingly.

2 Application of Machine Learning

Speech emotion recognition aims to automatically identify the emotional or physical state of
a human being from his or her voice. With the rapid development of human-computer
interaction technology, it has found increasing applications in security, learning, medicine,
entertainment, etc. Abnormal emotion (e.g. stress and nervousness) detection in audio
surveillance can help detect a lie or identify a suspicious person. Web-based E-learning has
prompted more interactive functions between computers and human users. With the ability
to recognize emotions from users’ speech, computers can interactively adjust the content of
teaching and speed of delivery depending on the users’ response. The same idea can be used
in commercial applications, where machines are able to recognize emotions expressed by
the customers and adjust their responses accordingly. The automatic recognition of
emotions in speech can also be useful in clinical studies, psychosis monitoring and
diagnosis. Entertainment is another possible application for emotion recognition. With the
help of emotion detection, interactive games can be made more natural and interesting.
Motivated by the demand for human-like machines and the increasing applications,
research on speech based emotion recognition has been investigated for over two decades
(Amir, 2001; Clavel et al., 2004; Cowie & Douglas-Cowie, 1996; Cowie et al., 2001; Dellaert et
al., 1996; Lee & Narayanan, 2005; Morrison et al., 2007; Nguyen & Bass, 2005; Nicholson et
al., 1999; Petrushin, 1999; Petrushin, 2000; Scherer, 2000; Ser et al., 2008; Ververidis &
Kotropoulos, 2006; Yu et al., 2001; Zhou et al., 2006).

Speech feature extraction is of critical importance in speech emotion recognition. The basic
acoustic features extracted directly from the original speech signals, e.g. pitch, energy, rate
of speech, are widely used in speech emotion recognition (Ververidis & Kotropoulos, 2006;
Lee & Narayanan, 2005; Dellaert et al.,, 1996; Petrushin, 2000; Amir, 2001). The pitch of
speech is the main acoustic correlate of tone and intonation. It depends on the number of
vibrations per second produced by the vocal cords, and represents the highness or lowness
of a tone as perceived by the ear. Since the pitch is related to the tension of the vocal folds
and subglottal air pressure, it can provide information about the emotions expressed in
speech (Ververidis & Kotropoulos, 2006). In the study on the behavior of the acoustic
features in different emotions (Davitz, 1964; Huttar, 1968; Fonagy, 1978; Moravek, 1979; Van
Bezooijen, 1984; McGilloway et al., 1995, Ververidis & Kotropoulos, 2006), it has been found
that the pitch level in anger and fear is higher while a lower mean pitch level is measured in
disgust and sadness. A downward slope in the pitch contour can be observed in speech
expressed with fear and sadness, while the speech with joy shows a rising slope. The energy
related features are also commonly used in emotion recognition. Higher energy is measured
with anger and fear. Disgust and sadness are associated with a lower intensity level. The
rate of speech also varies with different emotions and aids in the identification of a person’s
emotional state (Ververidis & Kotropoulos, 2006; Lee & Narayanan, 2005). Some features
derived from mathematical transformation of basic acoustic features, e.g. Mel-Frequency
Cepstral Coefficients (MFCC) (Specht, 1988; Reynolds et al., 2000) and Linear Prediction-
based Cepstral Coefficients (LPCC) (Specht, 1988), are also employed in some studies. As
speech is assumed as a short-time stationary signal, acoustic features are generally
calculated on a frame basis, in order to capture long range characteristics of the speech
signal, feature statistics are usually used, such as mean, median, range, standard deviation,
maximum, minimum, and linear regression coefficient (Lee & Narayanan, 2005). Even
though many studies have been carried out to find which acoustic features are suitable for

Machine Learning Methods In The Application Of Speech Emotion Recognition 3

emotion recognition, however, there is still no conclusive evidence to show which set of
features can provide the best recognition accuracy (Zhou, 2006).

Most machine learning and data mining techniques may not work effectively with high-
dimensional feature vectors and limited data. Feature selection or feature reduction is
usually conducted to reduce the dimensionality of the feature space. To work with a small,
well-selected feature set, irrelevant information in the original feature set can be removed.
The complexity of calculation is also reduced with a decreased dimensionality. Lee &
Narayanan (2005) used the forward selection (FS) method for feature selection. FS first
initialized to contain the single best feature with respect to a chosen criterion from the whole
feature set, in which the classification accuracy criterion by nearest neighborhood rule is used
and the accuracy rate is estimated by leave-one-out method. The subsequent features were
then added from the remaining features which maximized the classification accuracy until
the number of features added reached a pre-specified number. Principal Component
Analysis (PCA) was applied to further reduce the dimension of the features selected using
the FS method. An automatic feature selector based on a RF2TREE algorithm and the
traditional C4.5 algorithm was developed by Rong et al. (2007). The ensemble learning
method was applied to enlarge the original data set by building a bagged random forest to
generate many virtual examples. After which, the new data set was used to train a single
decision tree, which selected the most efficient features to represent the speech signals for
emotion recognition. The genetic algorithm was applied to select an optimal feature set for
emotion recognition (Oudeyer, 2003).

After the acoustic features are extracted and processed, they are sent to emotion
classification module. Dellaert et al. (1996) used K-nearest neighbor (k-NN) classifier and
majority voting of subspace specialists for the recognition of sadness, anger, happiness and
fear and the maximum accuracy achieved was 79.5%. Neural network (NN) was employed
to recognize eight emotions, i.e. happiness, teasing, fear, sadness, disgust, anger, surprise
and neutral and an accuracy of 50% was achieved (Nicholson et al. 1999). The linear
discrimination, k-NN classifiers, and SVM were used to distinguish negative and non-
negative emotions and a maximum accuracy of 75% was achieved (Lee & Narayanan, 2005).
Petrushin (1999) developed a real-time emotion recognizer using Neural Networks for call
center applications, and achieved 77% classification accuracy in recognizing agitation and
calm emotions using eight features chosen by a feature selection algorithm. Yu et al. (2001)
used SVMs to detect anger, happiness, sadness, and neutral with an average accuracy of
73%. Scherer (2000) explored the existence of a universal psychobiological mechanism of
emotions in speech by studying the recognition of fear, joy, sadness, anger and disgust in
nine languages, obtaining 66% of overall accuracy. Two hybrid classification schemes,
stacked generalization and the un-weighted vote, were proposed and accuracies of 72.18%
and 70.54% were achieved respectively, when they were used to recognize anger, disgust,
fear, happiness, sadness and surprise (Morrison, 2007). Hybrid classification methods that
combined the Support Vector Machines and the Decision Tree were proposed (Nguyen &
Bass, 2005). The best accuracies for classifying neutral, anger, lombard and loud was 72.4%.
In this chapter, we will discuss the application of machine learning methods in speech
emotion recognition, where feature extraction, feature reduction and classification will be
covered. The comparison results in speech emotion recognition using several popular
classification methods have been given (Cen et al. 2009). In this chapter, we focus on feature
processing, where the related experiment results in the classification of 15 emotional states

4 Application of Machine Learning

for the samples extracted from the LDC database are presented. The remaining part of this
chapter is organized as follows. The acoustic feature extraction process and methods are
detailed in Section 2, where the feature normalization, utterance segmentation and feature
dimensionality reduction are covered. In the following section, the Support Vector Machine
(SVM) for emotion classification is presented. Numerical results and performance
comparison are shown in Section 4. Finally, the concluding remarks are made in Section 5.

2. Acoustic Features

Speech S

:

Pre-process

!

Feature extraction

PLP MFCC LPCC
\ | |
!

Feature fusion

l

Normalization

)

Feature statistics

i

Dimension reduction

l

Features X

Fig. 1. Basic block diagram for feature calculation.

Speech feature extraction aims to find the acoustic correlates of emotions in human speech.
Fig. 1 shows the block diagram for acoustic feature calculation, where S represents a speech
sample (an utterance) and x denotes its acoustic features. Before the raw features are
extracted, the speech signal is first pre-processed by pre-emphasis, framing and windowing
processes. In our work, three short time cepstral features are extracted, which are Linear
Prediction-based Cepstral Coefficients (LPCC), Perceptual Linear Prediction (PLP) Cepstral
Coefficients, and Mel-Frequency Cepstral Coefficients (MFCC). These features are fused to

achieve a feature matrix, x € R™*" for each sentence S, where T is the number of frames in
the utterance, and M is the number of features extracted from each frame. Feature
normalization is carried out on the speaker level and the sentence level. As the features are

Machine Learning Methods In The Application Of Speech Emotion Recognition 5

extracted on a frame basis, the statistics of the features are calculated for every window of a
specified number of frames. These include the mean, median, range, standard deviation,
maximum, and minimum. Finally, PCA is employed to reduce the feature dimensionality.
These will be elaborated in subsections below.

2.1 Signal Pre-processing: Pre-emphasis, Framing, Windowing

In order to emphasize important frequency component in the signal, a pre-emphasis process
is carried out on the speech signal using a Finite Impulse Response (FIR) filter called pre-
emphasis filter, given by

H_(z)=1+a L 1)
pre pre
The coefficient a, can be chosen typically from [-1.0, 0.4] (Picone, 1993). In our
implementation, it is set to be a =_(1_L)=_0.9375 , so that it can be efficiently
16

pre

implemented in fixed point hardware.

The filtered speech signal is then divided into frames. It is based on the assumption that the
signal within a frame is stationary or quasi-stationary. Frame shift is the time difference
between the start points of successive frames, and the frame length is the time duration of
each frame. We extract the signal frames of length 25 msec from the filtered signal at every
interval of 10 msec. A Hamming window is then applied to each signal frame to reduce
signal discontinuity in order to avoid spectral leakage.

2.2 Feature Extraction

Three short time cepstral features, i.e. Linear Prediction-based Cepstral Coefficients (LPCC),
Perceptual Linear Prediction (PLP) Cepstral Coefficients, and Mel-Frequency Cepstral
Coefficients (MFCC), are extracted as acoustic features for speech emotion recognition.

A.LPCC

Linear Prediction (LP) analysis is one of the most important speech analysis technologies. It
is based on the source-filter model, where the vocal tract transfer function is modeled by an
all-pole filter with a transfer function given by

1)

=—)
1- Z az’
i=1

where g, is the filter coefficients. The speech signal, § assumed to be stationary over the

H(z)

analysis frame is approximated as a linear combination of the past p samples, given as

$,=Yas (3)

6 Application of Machine Learning

In (3) g, can be found by minimizing the mean square filter prediction error between g

and 5 . The cepstral coefficents is considered to be more reliable and robust than the LP

filter coefficents. It can be computed directly from the LP filter coefficients using the
recursion given as

~ k-1 1
G =a,+ Z[:] (%j ca,;,, 0<k<p, 4)

where ¢, represents the cepstral coefficients.

B. PLP Cepstral Coefficients

PLP is first proposed by Hermansky (1990), which combines the Discrete Fourier Transform
(DFT) and LP technique. In PLP analysis, the speech signal is processed based on hearing
perceptual properties before LP analysis is carried out, in which the spectrum is analyzed on
a warped frequency scale. The calculation of PLP cepstral coefficients involves 6 steps as
shown in Fig. 2.

Speech Spectral analysis Critical b_and . Equal Ioudne_ss
analysis pre-emphasis
PLP cepstral . Autoregressive Intensity loudness
g Cepstral analysis = . - -
coefficients modelling power Law

Fig. 2. Calculation of PLP cepstral coefficients.

Step 1 Spectral analysis
e The short-time power spectrum is achieved for each speech frame.
Step 2 Critical-band Spectral resolution
e The power spectrum is warped onto a Bark scale and convolved with the
power spectral of the critical band filter, in order to simulate the frequency
resolution of the ear which is approximately constant on the Bark scale.
Step 3 Equal-loudness pre-emphasis
e An equal-loudness curve is used to compensate for the non-equal perception
of loudness at different frequencies.
Step 4 Intensity loudness power law
e Perceived loudness is approximately the cube root of the intensity.
Step 5 Autoregressive modeling
e Inverse Discrete Fourier Transform (IDFT) is carried out to obtain the
autoregressive coefficients and all-pole modeling is then performed.
Step 6 Cepstral analysis
e PLP cepstral coefficients are calculated from the AR coefficients as the process
in LPCC calculation.

Machine Learning Methods In The Application Of Speech Emotion Recognition 7

C. MFCC

The MFCC proposed by Davis and Mermelstein (1980) has become the most popular
features used in speech recognition. The calculation of MFCC involves computing the cosine
transform of the real logarithm of the short-time power spectrum on a Mel warped
frequency scale. The process consists of the following process as shown in Fig. 3.

X[k]

x[n] 4> M"E’)';';'I':er L+ Log DCT MFCC

Fig. 3. Calculation of MFCC.

1) DFT is applied in each speech frame given as

N-1
X[K]= 3 aln]e ™, o<k <N -1.)

n=

2) Mel-scale filter bank

The Fourier spectrum is non-uniformly quantized to conduct Mel filter bank analysis.
The window functions that are first uniformly spaced on the Mel-scale and then
transformed back to the Hertz-scale are multiplied with the Fourier power spectrum
and accumulated to achieve the Mel spectrum filter-bank coefficients. A Mel filter bank
has filters linearly spaced at low frequencies and approximately logarithmically spaced
at high frequencies, which can capture the phonetically important characteristics of the
speech signal while suppressing insignificant spectral variation in the higher frequency
bands (Davis and Mermelstein, 1980).

3) The Mel spectrum filter-bank coefficients is calculated as
N-1
F[m]_log[”gx[k]rﬂm [k]j, 0<m<M. ©)
=0

4) The Discrete Cosine Transform (DCT) of the log filter bank energies is calculated to find
the MFCC given as

c[n] = iF[m]cos(nn(m ~1)/2M), 0<n<M, @)

where c[n] is the nth coefficient.

D. Delta and Acceleration Coefficients

After the three short time cepstral features, LPCC, PLP Cepstral Coefficients, and MFCC, are
extracted, they are fused to form a feature vector for each of the speech frames. In the vector,
besides the LPCC, PLP cepstral coefficients and MFCC, Delta and Acceleration (Delta Delta)
of the raw features are also included, given as

8 Application of Machine Learning

Delta 4 X, :

1
Ax; = E(xm —Xi)’ (8)

Acceleration (Delta Delta) AAx, :

AAx; = %(Axm —4x,,)’ ©

where x, is the ith value in the feature vector.

E. Feature List

In conclusion, the list below shows the full feature set used in speech emotion recognition
presented in this chapter. The feature vector has a dimension of R" , where M = 132 is the
total number of the features calculated for each frame.

1) PLP - 54 features
e 18 PLP cepstral coefficients
e 18 Delta PLP cepstral coefficients
e 18 Delta Delta PLP cepstral coefficients.

2) MFCC - 39 features
e 12 MFCC features
12 delta MFCC features
12 Delta Delta MFCC features
1 (log) frame energy
1 Delta (log) frame energy
1 Delta Delta (log) frame energy

3) LPCC - 39 features
e 13 LPCC features
e 13 delta LPCC features
e 13 Delta Delta LPCC features

2.3 Feature Normalization

As acoustic variation in different speakers and different utterances can be found in
phonologically identical utterances, speaker- and utterance-level normalization are usually
performed to reduce these variations, and hence to increase recognition accuracy.

In our work, the normalization is achieved by subtracting the mean and dividing by the
standard deviation of the features given as

X, = (xi _:“m‘)/aui My) (10)
o

Si

Machine Learning Methods In The Application Of Speech Emotion Recognition 9

where x, is the ith coefficient in the feature vector, y and ¢, are the mean and
standard deviation of X, within an utterance, and iy and o, are the mean and standard
deviation of x; within the utterances spoken by the same speaker. In this way, the variation

across speakers and utterances can be reduced.

2.4 Utterance Segmentation

As we have discussed, the three short time cepstral features are extracted for each speech
frames. The information in the individual frames is not sufficient for capturing the longer
time characteristics of the speech signal. To address the problem, we arrange the frames
within an utterance into several segments as shown in Fig. 4. In this figure, f; represents a
frame and s; denotes a segment. Each segment consists of a fixed number of frames. The sf
represents the segment size, i.e. the number of frames in one segment, and A is the overlap
size, i.e. the number of frames overlapped in two consecutive segments.

|

s1 s2

Fig. 4. Utterance partition with frames and segments.

Here, the trade-off between computational complexity and recognition accuracy is
considered in utterance segmentation. Generally speaking, finer partition and larger overlap
between two consecutive segments potentially result in better classification performance at
the cost of higher computational complexity. The statistics of the 132 features given in the
previous sub-section is calculated for each segment, which is used in emotion classification
instead of the original 132 features in each frame. This includes median, mean, standard
deviation, maximum, minimum, and range (max-min). In total, the number of statistic
parameters in a feature vector for each speech segmentis 132x6=792.

10 Application of Machine Learning

2.5 Feature Dimensionality Reduction

Most machine learning and data mining techniques may not work effectively if the
dimensionality of the data is high. Feature selection or feature reduction is usually carried
out to reduce the dimensionality of the feature vectors. A short feature set can also improve
computational efficiency involved in classification and avoids the problem of overfitting.
Feature reduction aims to map the original high-dimensional data onto a lower-dimensional
space, in which all of the original features are used. In feature selection, however, only a
subset of the original features is chosen.

In our work, Principal Component Analysis (PCA) is employed to reduce the feature
dimensionality. Assume the feature matrix, X T e RV , with zero empirical mean, in

which each row is a feature vector of a data sample, and N s is the number of data

samples. The PCA transformation is given as

Y =X"w=rz, (11)
where V¥’ is the Singular Value Decomposition (SVD) of X' . PCA mathematically
transforms a number of potentially correlated variables into a smaller number of
uncorrelated variables called Principal Components (PC). The first PC (the eigenvector with
the largest eigenvalue) accounts for the greatest variance in the data, the second PC accounts
for the second variance, and each succeeding PCs accounts for the remaining variability in
order. Although PCA requires a higher computational cost compared to the other methods,
for example, the Discrete Cosine Transform, it is an optimal linear transformation for
keeping the subspace with the largest variance.

3. Support Vector Machines (SVMs) for Emotion Classification

SVMs that developed by Vapnik (1995) and his colleagues at AT&T Bell Labs in the mid
90’s, have become of increasing interest in classification (Steinwart and Christmann, 2008). It
has shown to have better generalization performance than traditional techniques in solving
classification problems. In contrast to traditional techniques for pattern recognition that are
based on the minimization of empirical risk learned from training datasets, it aims to
minimize the structural risk to achieve optimum performance.

It is based on the concept of decision planes that separate the objects belonging to different
categories. In the SVMs, the input data are separated as two sets using a separating
hyperplane that maximizes the margin between the two data sets. Assuming the training
data samples are in the form of

{x,¢}, i=1.,N, x,eRY ¢ e{-11} (12)

Where x; is the M-dimension feature vector of the ith sample, N is the number of samples,
and ¢, is the category to which x, belongs. Suppose there is a hyperplane that separates
the feature vectors #(X;) in the positive category from those in the negative one. Here

#(*) is a nonlinear mapping of the input space into a higher dimensional feature space. The

set of points #(X) that lie on the hyperplane is expressed as

Machine Learning Methods In The Application Of Speech Emotion Recognition 11

W¢(X)+b :0, (13)

where wand b are the two parameters. For the training data that are linearly separable, two
hyperplanes are selected to yield maximum margin. Suppose x, satisfies

#(x,)-w+b=l, forc, =1,
#(x,)-w+b<l, forc =-I. (14)

It can be re-written as

¢ (p(x,)-w+b)=120, Vi=1,2,.,N. 15)

Searching a pair of hyperplanes that gives the maximum margin can be achieved by solving
the following optimization problem

Minimize ||w||2
subject ¢, (A(x,)-W+b)>1,Vi=12,..,N.

‘WH represents the Euclidean norm of w. This can be formulated as a quadratic

(16)

In (16),

programming optimization problem and be solved by standard quadratic programming
techniques.

Using the Lagrangian methodology, the dual problem of (16) is given as

N N
Minimize W ()= q, —% D ccaa(x) (x),
i=1 i,j=1
N 17)
subject chai =0, o, 20, Vi=1,2,...,N.
i=1

Here ¢, is the Lagrangian variable.

The simplest case is that ¢(x) is a linear function. If the data cannot be separated in a linear

way, non-linear mappings are performed from the original space to a feature space via
kernels. This aims to construct a linear classifier in the transformed space, which is the so-
called “kernel trick”. It can be seen from (17) that the training points appear as their inner
products in the dual formulation. According to Mercer’s theorem, any symmetric positive
semi-definite function k(xi ,X /_) implicitly defines a mapping into a feature space

¢:X—>¢(X) (18)

such that the function is an inner product in the feature space given as

k(x.x,)=¢(x,)-4(x,) (19)

12 Application of Machine Learning

The function k(xl_,xj) is called kernels. The dual problem in the kernel form is then

given as

S N 1 &
Minimize W ()= a,—-= > cc,a,ak (xl. X,),
i=l1 i,j=l

N (20)

subject chai =0, o, 20, Vi=1,2,...,N.
i=1

By replacing the inner product in (17) with a kernel and solving for ¢ , a maximal margin
separating hyperplane can be obtained in the feature space defined by a kernel. Choosing
suitable non-linear kernels, therefore, classifiers that are non-linear in the original space can
become linear in the feature space. Some common kernel functions are shown below:

1) Polynomial (homogeneous) kernel: k(x,x")=(x- Xl)d ;
2) Polynomial (inhomogeneous) kernel: k (X’ X ') = (X X' l)d ’
1 1 2
3) Radial basis kernel: k(x,x")= exp(—;/"x -X ”)= for y >0,

W12
[x-x{
N)

4) Gaussian radial basis kernel: k (X’ X) =CXp 25

A single SVM itself is a classification method for 2-category data. In speech emotion
recognition, there are usually multiple emotion categories. Two common methods used to
solve the problem are called one-versus-all and one-versus-one (Fradkin and Muchnik,
2006). In the former, one SVM is built for each emotion, which distinguishes this emotion
from the rest. In the latter, one SVM is built to distinguish between every pair of categories.
The final classification decision is made according to the results from all the SVMs with the
majority rule. In the one-versus-all method, the emotion category of an utterance is
determined by the classifier with the highest output based on the winner-takes-all strategy.
In the one-versus-one method, every classifier assigns the utterance to one of the two
emotion categories, then the vote for the assigned category is increased by one vote, and the

emotion class is the one with most votes based on a max-wins voting strategy.

4. Experiments

The speech emotion database used in this study is extracted from the Linguistic Data
Consortium (LDC) Emotional Prosody Speech corpus (catalog number LDC2002528), which
was recorded by the Department of Neurology, University of Pennsylvania Medical School.
It comprises expressions spoken by 3 male and 4 female actors. The speech contents are
neutral phrases like dates and numbers, e.g. “September fourth” or “eight hundred one”,
which are expressed in 14 emotional states (including anxiety, boredom, cold anger, hot
anger, contempt, despair, disgust, elation, happiness, interest, panic, pride, sadness, and
shame) as well as neutral state.

Machine Learning Methods In The Application Of Speech Emotion Recognition 13

The number of utterances is approximately 2300. The histogram distribution of these
samples for the emotions, speakers, and genders are shown in Fig. 5, where Fig. 5-a shows
the number of samples expressed in each of 15 emotional states; 5-b illustrates the number of
samples spoken by each of 7 professional actors (1st, 2nd, and 5thspeakers are male; the others
are female); Fig. 5-c gives the number of samples divided into gender group (1-male; 2-
female).

Emotion Distribution
T

200
@
o
o
& 100 |
1)
g H
z
0
1 2 3 4 5 6 8 9 10 11 12 13 14 15
Emotions Index
- (a) -
Speaker Distribution Gender Distribution
600 1500
8 3
B i a
g400 g 1000
3 &
[=] o
z z
o)
0 1 2 3 4 5 6 7 1 2
Speaker Index Gender Index

(©
Fig. 5. Histogram distribution of the number of utterances for the emotions, speakers, and
genders.

The SVM classification method introduced in Section 3 is used to recognize the emotional
states expressed in the speech samples extracted from the above database. The speech data
are trained in speaker dependent training mode, in which the different characteristics of
speech among the speakers are considered and an individual training process is hence
carried out for each speaker. The database is divided into two parts, i.e. the training dataset
and the testing dataset. Half of the data are employed to train the classifiers and the
remainder are used for testing purpose.

4.1 Comparisons among different segmentation forms

It is reasonable that finer partition and larger overlap size tend to improve recognition
accuracy. Computational complexity, however, should be considered in practical
applications. In this experiment, we test the system with different segmentation forms, i.e.
different segment sizes sf and different overlap sizes A.

The segment size is first changed from 30 to 60 frames with a fixed overlap size of 20 frames.
The numerical results are shown in Table 1, where the recognition accuracy in each emotion
as well as the average accuracy is given. A trend of decreasing average accuracy is observed
as the segment size is increased, which is illustrated in Fig. 6.

Application of Machine Learning

sf | 30 35 40 45 50 55 60
Emotion
Anxiety 87 86 84 84 88 87 81
Boredom 82 78 82 77 74 76 79
Cold Anger | 62 69 65 62 59 63 59
Contempt 72 66 72 60 63 66 58
Despair 68 68 68 53 61 55 60
Disgust 81 78 81 72 78 78 73
Elation 78 71 71 67 67 67 70
Hot Anger 79 79 76 82 79 75 69
Happiness 62 58 56 62 48 47 45
Interest 55 50 53 50 52 43 38
Neutral 92 82 82 71 69 82 72
Panic 70 65 62 61 61 61 58
Pride 28 33 28 26 28 22 24
Sadness 71 68 61 63 63 64 61
Shame 53 53 44 45 43 45 36
Average 69.33 66.93 65.67 62.33 62.20 62.07 58.87

Table 1. Recognition accuracies (%) achieved with different segment sizes (the overlap size is

fixed to be 20)
L I I I I I
SN (e I I I I I
: R U R
3 N S S S S S
3 | | | | |
e : : ¢ ¢ é‘
g | | | | [N
Bt 60F------ [F---——= F---==- o= Aty
3 I I I I I g
50 I I I I I
19) I I I I I
3 | | | | |
4 55 | | | | |
30 35 40 45 50 55 60

Segment size

Fig. 6. Comparison of the average accuracies achieved with different segment sizes (ranging

from 30 to 60) and a fixed overlap size of 20.

Secondly, the segment size is fixed to 40 and different overlap sizes ranging from 5 to 30 are
used in the experiment. The recognition accuracies for all emotions are listed in Table 2. The
trend of average accuracy with the increase of the overlap size is shown in Fig. 7, where we
can see an increase trend when the overlap size becomes larger.

Machine Learning Methods In The Application Of Speech Emotion Recognition 15
A 5 10 15 20 25 30
Emotion
Anxiety 81 84 83 84 84 84
Boredom 73 73 77 82 82 79
Cold Anger | 68 56 62 65 65 67
Contempt 63 64 71 72 74 76
Despair 60 59 63 68 59 69
Disgust 71 71 72 81 74 76
Elation 72 71 75 71 71 76
Hot Anger 75 76 81 76 78 81
Happiness 48 47 60 56 64 63
Interest 45 44 45 53 58 52
Neutral 69 72 77 82 87 82
Panic 61 63 63 62 63 70
Pride 28 24 29 28 32 36
Sadness 57 60 63 61 61 68
Shame 41 41 43 44 52 57
Average 60.80 60.33 64.27 65.67 66.93 69.07
Table 2. Recognition accuracies (%) achieved with different overlap sizes (the segment size is
fixed to be 40)
<= 70 ; ; ; ;
> | | | I =
| | o o
g : e '@ :
R N [I e L U i
5 l o l l
o 62F-——-——-—---- 4ot - - === === - = Fe---- - - == —
S T | | |
~ Do é : : :
60
5 10 15 20 25 30

Overlap size

Fig. 7. Comparison of the average accuracies achieved with different overlap sizes (ranging
from 5 to 30) and a fixed segment size of 40.

4.2 Comparisons among different feature sizes
This experiment aims to find the optimal dimensionality of the feature set. The segment size
for calculating feature statistics is fixed with sf =40 and A4=20. The full feature set for

each segment is a 792-dimensional vector as discussed in Section 2. The PCA is adopted to
reduce feature dimensionality. The recognition accuracies achieved with different
dimensionalities ranging from 300 to 20, as well as the full feature set with 792 features, are

shown in Table 3. The average accuracies are illustrated in Fig. 8.

16 Application of Machine Learning

eature size Full 300 250 200 150 100 50 20
Emotions
Anxiety 84 86 88 86 86 81 71 53
Boredom 82 83 78 77 78 76 60 41
Cold Anger 65 68 64 62 63 64 53 32
Contempt 72 71 71 70 66 56 35 29
Despair 68 64 64 64 57 61 44 33
Disgust 81 80 79 75 79 66 60 48
Elation 71 72 72 76 75 70 49 41
Hot Anger 76 78 78 75 78 76 69 59
Happiness 56 58 56 49 53 40 36 19
Interest 53 55 51 50 53 47 36 26
Neutral 82 82 87 79 82 74 41 23
Panic 62 62 66 62 59 56 49 44
Pride 28 29 30 30 30 28 16 09
Sadness 61 64 64 56 60 51 29 28
Shame 44 44 44 40 45 37 23 16
Average 65.67 6640 66.13 6340 6427 58.87 44.73 33.40

Table 3. Recognition accuracies (%) achieved with different feature sizes

=7 r T T T T)
R : g IA— ,
& | D i |
< e e T FE [P ——
> 60 | 6 | | |
) | o | | |
s | R | | | |
3 | I o o]
A : ' :
5 g : : : :
Soal e —
< | \ \ [!
" | | | |
30 L L L L |
50 100 150 200 250 300

Feature size

Fig. 8. Comparison of the average accuracies achieved with different feature sizes.

It can be seen from the figure that the average accuracy is not reduced even when the
dimensionality of the feature vector is decreased from 792 to 250. The average accuracy is
only decreased by 1.40% when the feature size is reduced to 150. This is only 18.94% of the
size of the original full feature set. The recognition performance, however, is largely reduced
when the feature size is lower than 150. The average accuracy is as low as 33.40% when
there are only 20 parameters in a feature vector. It indicates that the classification
performance is not deteriorated when the dimensionality of the feature vectors is reduced to

Machine Learning Methods In The Application Of Speech Emotion Recognition 17

a suitable value. The calculation complexity is also reduced with a decreased
dimensionality.

5. Conclusion

The automatic recognition of emotional states from human speech has found a broad range
of applications, and as such has drawn considerable attention and interest over the recent
decade. Speech emotion recognition can be formulated as a standard pattern recognition
problem and solved using machine learning technology. Specifically, feature extraction,
processing and dimensionality reduction as well as pattern recognition have been discussed
in this chapter. Three short time cepstral features, Linear Prediction-based Cepstral
Coefficients (LPCC), Perceptual Linear Prediction (PLP) Cepstral Coefficients, and Mel-
Frequency Cepstral Coefficients (MFCC), are used in our work to recognize speech
emotions. Feature statistics are extracted based on speech segmentation for capturing longer
time characteristics of speech signal. In order to reduce computational cost in classification,
Principal Component Analysis (PCA) is employed for reducing feature dimensionality. The
Support Vector Machine (SVM) is adopted as a classifier in emotion recognition system. The
experiment in the classification of 15 emotional states for the samples extracted from the
LDC database has been carried out. The recognition accuracies achieved with different
segmentation forms and different feature set sizes are compared for speaker dependent
training mode.

6. References

Amir, N. (2001), Classifying emotions in speech: A comparison of methods, Eurospeech, 2001.

Cen, L., Ser, W. & Yu., Z.L. (2009), Automatic recognition of emotional states from human
speeches, to be published in the book of Pattern Recognition.

Clavel, C., Vasilescu, I, Devillers, L. & Ehrette, T. (2004), Fiction database for emotion
detection in abnormal situations, Proceedings of International Conference on Spoken
Language Process, pp. 2277-2280, 2004, Korea.

Cowie, R. & Douglas-Cowie, E. (1996), Automatic statistical analysis of the signal and
prosodic signs of emotion in speech, Proceedings of International Conference on Spoken
Language Processing (ICSLP “96), Vol. 3, pp. 1989-1992, 1996.

Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G., Kollias, S., Fellenz, W., et al
(2001), Emotion recognition in human-computer interaction, IEEE Signal Processing
Magazine, Vol. 18, No. 1, (Jan. 2001) pp. 32-80.

Davis, S.B. & Mermelstein, P. (1980), Comparison of parametric representations for
monosyllabic word recognition in continuously spoken sentences, IEEE
Transactions on Acoustics, Speech and Signal Processing, Vol. 28, No. 4, (1980) pp. 357-
365.

Davitz, J.R. (Ed.) (1964), The Communication of Emotional Meaning, McGraw-Hill, New York.

Dellaert, F., Polzin, T. & Waibel, A. (1996), Recognizing emotion in speech, Fourth
International Conference on Spoken Language Processing, Vol. 3, pp. 1970-1973, Oct.
1996.

Fonagy, 1. (1978), A new method of investigating the perception of prosodic features.
Language and Speech, Vol. 21, (1978) pp. 34-49.

18 Application of Machine Learning

Fradkin, D. & Muchnik, I. (2006), Support Vector Machines for Classification, in Abello, J.
and Carmode, G. (Eds), Discrete Methods in Epidemiology, DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, Vol. 70, (2006) pp. 13-20.

Havrdova, Z. & Moravek, M. (1979), Changes of the voice expression during suggestively
influenced states of experiencing, Activitas Nervosa Superior, Vol. 21, (1979) pp. 33-
35.

Hermansky, H. (1990), Perceptual linear predictive (PLP) analysis of speech, The Journal of
the Acoustical Society of America, Vol. 87, No. 4, (1990) pp. 1738-1752.

Huttar, G.L. (1968), Relations between prosodic variables and emotions in normal American
English utterances, Journal of Speech Hearing Res., Vol. 11, (1968) pp. 481-487.

Lee, C. & Narayanan, S. (2005), Toward detecting emotions in spoken dialogs, IEEE
Transactions on Speech and Audio Processing, Vol. 13, No. 2, (March 2005) pp. 293-303.

McGilloway, S., Cowie, R. & Douglas-Cowie, E. (1995), Prosodic signs of emotion in speech:
preliminary results from a new technique for automatic statistical analysis,
Proceedings of Int. Congr. Phonetic Sciences, Vol. 1, pp. 250-253, 1995, Stockholm,
Sweden.

Morrison, D., Wang, R. & Liyanage C. De Silva (2007), Ensemble methods for spoken
emotion recognition in call-centres, Speech Communication, Vol. 49, No. 2, (Feb. 2007)
pp- 98-112.

Nguyen, T. & Bass, I. (2005), Investigation of combining SVM and Decision Tree for emotion
classification, Proceedings of 7th IEEE International Symposium on Multimedia, pp. 540-
544, Dec. 2005.

Nicholson, J., Takahashi, K. & Nakatsu, R. (1999), Emotion recognition in speech using
neural networks, 6th International Conference on Neural Information Processing, Vol. 2,
pp. 495-501, 1999.

Oudeyer, P.Y. (2003), The production and recognition of emotions in speech: features and
algorithms, International Jounal of Human-Computer Studies, Vol. 59, (2003) pp. 157-
183.

Picone, J.W. (1993), Signal modeling techniques in speech recognition, Proceedings of the
IEEE, Vol. 81, No. 9, (1993) pp. 1215-1245.

Petrushin, V.A. (1999), Emotion in speech: recognition and application to call centers,
Proceedings of Artificial Neural Networks in Engineering, (Nov. 1999) pp. 7-10.
Petrushin, V.A. (2000), Emotion recognition in speech signal: experimental study,
development, and application, Proceedings of the 6th International Conference on

Spoken Language Processing, 2000, Beijing, China.

Psutka, J. Muller, L., & Psutka. J.V. (2001), Comparison of MFCC and PLP parameterizations
in the speaker independent continuous speech recognition task, Eurospeech, 2001.

Reynolds, D.A., Quatieri, T.F. & Dunn, R.B. (2000), Speaker verification using adapted Gaussian
mixture model, Digital Signal Processing, Vol. 10, No. 1, (Jan. 2000) pp. 19-41.

Rong J., Chen, Y-P. P., Chowdhury, M. & Li, G. (2007), Acoustic features extraction for
emotion recognition, IEEE/ACIS International Conference on Computer and Information
Science, Vol. 11, No. 13, pp. 419-424, Jul. 2007.

Scherer, K, A. (2000), Cross-cultural investigation of emotion inferences from voice and
speech: Implications for speech technology, Proceedings of ICSLP, pp. 379-382, Oct.
2000, Beijing, China.

Machine Learning Methods In The Application Of Speech Emotion Recognition 19

Ser, W., Cen, L. & Yu. Z.L. (2008), A hybrid PNN-GMM classification scheme for speech
emotion recognition, Proceedings of the 19th International Conference on Pattern
Recognition (ICPR), December, 2008, Florida, USA.

Specht, D. F. (1988), Probabilistic neural networks for classification, mapping or associative
memory, Proceedings of IEEE International Conference on Neural Network, Vol. 1, pp.
525-532, Jun. 1988.

Steinwart, I. & Christmann, A. (2008), Support Vector Machines, Springer-Verlag, New York,
2008, ISBN 978-0-387-77241-7.

Van Bezooijen, R. (1984), Characteristics and recognizability of vocal expressions of emotions,
Foris, Dordrecht, The Netherlands, 1984.

Vapnik, V. (1995), The nature of statistical learning theory, Springer-Verlag, 1995, ISBN 0-387-
98780-0.

Ververidis, D. & Kotropoulos, C. (2006), Emotional speech recognition: resources, features,
and methods, Speech Communication, Vol. 48, No.9, (Sep. 2006) pp. 1163-1181.

Yu, F,, Chang, E.,, Xu, Y.Q. & Shum, H.Y. (2001), Emotion detection from speech to enrich
multimedia content, Proceedings of Second IEEE Pacific-Rim Conference on Multimedia,
October, 2001, Beijing, China.

Zhou, J., Wang, G.Y,, Yang,Y. & Chen, P.J. (2006), Speech emotion recognition based on
rough set and SVM, Proceedings of 5th IEEE International Conference on Cognitive
Informatics, Vol. 1, pp. 53-61, Jul. 2006, Beijing, China.

20

Application of Machine Learning

2

Automatic Internet Traffic Classification
for Early Application Identification

Giacomo Verticale

Dipartimento di Elettronica e Informazione
Politecnico di Milano

Italy

1. Introduction

The classification of Internet packet traffic aims at associating a sequence of packets (a flow)
to the application that generated it. The identification of applications is useful for many pur-
poses, such as the usage analysis of network links, the management of Quality of Service,
and for blocking malicious traffic. The techniques commonly used to recognize the Internet
applications are based on the inspection of the packet payload or on the usage of well-known
transport protocol port numbers. However, the constant growth of new Internet applications
and protocols that use random or non-standard port numbers or applications that use packet
encryption requires much smarter techniques. For this reason several new studies are con-
sidering the use of the statistical features to assist the identification and classification process,
performed through the implementation of machine learning techniques. This operation can
be done offline or online. When performed online, it is often a requirement that it is performed
early, i.e. by looking only at the first packets in a flow.

In the context of real-time and early traffic classification, we need a classifier working with as
few packets as possible so as to introduce a small delay between the beginning of the packet
flow and the availability of the classification result. On the other hand, the classification per-
formance grows as the number of observed packets grows. Therefore, a trade-off between
classification delay and classification performance must be found.

In this work, the features we consider for the classification of traffic flows are the sizes of the
first n packets in the client-server direction, with 7 a given number. With these features, good
results can be obtained by looking at as few as 5 packets in the flow. We also show that the
C4.5 decision tree algorithm generally yields the best results, outperforming Support Vector
Machines and clustering algorithms such as the Simple K-Means algorithm.

As a novel result, we also present a new set of features obtained by considering a packet
flow in the context of the activity of the Internet host that generated them. When classifying
a flow, we take into account some features obtained by collecting statistics on the connection
generation process. This is to exploit the well-known result that different Internet applications
show different degrees of burstiness and time correlation. For example, the email generation
process is compatible to a Poisson process, whereas the request of web pages is not Poisson
but, rather, has a power-law spectrum.

By considering these features, we greatly enhance the classification performance when very
few packets in the flow are observed. In particular, we show that the classification perfor-

22 Application of Machine Learning

mance obtained with only n = 3 packets and the statistics on the connection generation pro-
cess is similar to the performance obtained with #n = 5 packets and no information on the
connection process, therefore achieving a much shorter classification delay.

Section 2 gives a resume of the most significant work in the field and describe the various
facets of the problem. In that section we also introduce the Modified Allan Variance, which
is the mathematical tool that we use to measure the power-law exponent in the connection
generation process. In Section 3 we describe the classification procedure and the traffic traces
used for performance evaluation.

Section 4 discusses the experimental data and shows the evidence of power-law behavior of
the traffic sources. In Section 5 we compare some machine learning algorithms proposed
in the literature in order to select the most appropriate for the traffic classification problem.
Specifically, we compare the C4.5 decision tree, the Support Vector Machines, and the Simple
K-Means clustering algorithm.

In Section 6 we introduce the novel classification algorithms that exploit the per-source fea-
tures and evaluate their performance in Section 7. Some conclusions are left for the final
section.

2. Background Material

2.1 Related Work
Nguyen & Armitage (2008) identify three basic traffic classification approaches based on ma-
chine learning:

o clustering, based on unsupervised learning;
o classification, based on supervised learning;

e hybrid approaches, combining the best of both supervised and unsupervised tech-
niques.

Roughan et al. (2004) propose the Nearest Neighbors (NN), Linear Discriminant Analysis
(LDA) and the Quadratic Discriminant Analysis (QDA) algorithms to identify the QoS class
of different applications. The authors identify a list of possible features calculated over the
entire flow duration. In the reported results, the authors obtain a classification error value in
the range of 2.5% to 12.6%, depending on whether three or seven QoS classes are used.
Moore & Zuev (2005) propose the application of Bayesian techniques to traffic classification.
In particular they used the Naive Bayes technique with Kernel Estimation (NBKE) and the
Fast Correlation-Based Filter (FCBF) methods with a set of 248 full-flow features, including
the flow duration, packet inter-arrival time statistics, payload size statistics, and the Fourier
transform of the packet inter-arrival time process. The reported results show an accuracy of
approximately 98% for web-browsing traffic, 90% for bulk data transfer, 44% for service traffic,
and 55% for P2P traffic.

Auld et al. (2007) extend the previous work by using a Bayesian neural network. The classi-
fication accuracy of this technique reaches 99%, when the training data and the test data are
collected on the same day, and reaches 95% accuracy when the test data are collected eight
months later than the training data.

Nguyen & Armitage (2006a;b) propose a new classification method that considers only the
most recent n packets of the flow. The collected features are packet length statistics and packet
inter-arrival time statistics. The obtained accuracy is about 98%, but the performance is poor if
the classifier misses the beginning of a traffic flow. This work is further extended by proposing

Automatic Internet Traffic Classification for Early Application Identification 23

the training of the classifier by using statistical features calculated over multiple short sub-
flows extracted from the full flow. The approach does not result in significant improvements
to the classifier performance.

Park et al. (2006a;b) use a Genetic Algorithm (GA) to select the best features. The authors
compare three classifiers: the Naive Bayes with Kernel Estimation (NBKE), the C4.5 decision
tree, and Reduced Error Pruning Tree (REPTree). The best classification results are obtained
using the C4.5 classifier and calculating the features on the first 10 packets of the flow.

Crotti et al. (2007) propose a technique, called Protocol Fingerprinting, based on the packet
lengths, inter-arrival times, and packet arrival order. By classifying three applications (HTTP,
SMTP and POP3), the authors obtain a classification accuracy of more than 91%.

Verticale & Giacomazzi (2008) use the C4.5 decision tree algorithm to classify WAN traffic.
The considered features are the lengths of the first 5 packets in both directions, and their inter-
arrival times. The results show an accuracy between 92% and 99%.

We also review some fundamental results on the relation between different Internet applica-
tions and power-law spectra.

Leland et al. (1993) were among the first in studying the power-law spectrum in LAN packet
traffic and concluded that its cause was the nature of the data transfer applications.

Paxson & Floyd (1995) identified power-law spectra at the packet level also in WAN traffic
and also conducted some investigation on the connection level concluding that Telnet and
FTP control connections were well-modeled as Poisson processes, while FTP data connections,
NNTP, and SMTP were not.

Crovella & Bestavros (1997) measured web-browsing traffic by studying the sequence of file
requests performed during each session, where a session is one execution of the web-browsing
application, finding that the reason of power law lies in the long-tailed distributions of the
requested files and of the users’ “think-times”.

Nuzman et al. (2002) analyzed the web-browsing-user activity at the connection level and at
the session level, where a session is a group of connections from a given IP address. The
authors conclude that sessions arrivals are Poisson, while power-law behavior is present at
the connection level.

Verticale (2009) shows that evidence of power-law behavior in the connection generation pro-
cess of web-browing users can be found even when the source activity is low or the observa-
tion window is short.

2.2 The Modified Allan Variance

The MAVAR (Modified Allan Variance) was originally conceived for frequency stability char-
acterization of precision oscillators in the time domain (Allan & Barnes, 1981) and was origi-
nally conceived with the goal of discriminating noise types with power-law spectrum of kind
f~%, recognized very commonly in frequency sources. Recently, Bregni & Jmoda (2008) pro-
posed MAVAR as an analysis tool for Internet traffic. It has been demonstrated to feature su-
perior accuracy in the estimation of the power-law exponent, &, coupled with good robustness
against non stationarity in the data. Bregni & Jmoda (2008) and Bregni et al. (2008) successfully
applied MAVAR to real internet traffic analysis, identifying fractional noise in experimental
results, and to GSM telephone traffic proving its consistency to the Poisson model. We briefly
recall some basic concepts.

24 Application of Machine Learning

Given an infinite sequence {x; } of samples of an input signal x(t), evenly spaced in time with
sampling period 19, MAVAR is defined as:

2
X 1 1
Mode?(t) = ez |)y <xj+2n — 2%y, xj) 1)

j=1

where T = 17 is the observation interval and the operator (-) denotes infinite-time averaging.
In practice, given a finite set of N samples over a measurement interval T = (N — 1)1, the
MAVAR can be computed using the ITU-T standard estimator (Bregni, 2002):
. 2
N-3n+1 [n+j-1
Y (Xidon — 2Xian + X;)
j=1 i=j

Modo; =
oday (7o) 2413 (N —3n+1)

@

withn=1,2,---,|N/3].
We consider the random processes x () with one-sided Power Spectral Density (PSD) modeled

as:

Sx(f)=hf"", ®)
where & and /1 are the model parameters. Such random processes are commonly referred to as
power-law processes. For these processes, the infinite-time average in (1) converges for a < 5.
The MAVAR obeys a simple power law of the observation interval 7 (ideally asymptotically
for n — oo, keeping constant nty = 7, in practice for n > 4):

Modoy (1) ~ Ayt 4)

where y = a — 3 and A, is a constant.

Therefore, if x(t) obeys (3), a log-log plot of the MAVAR ideally looks as a straight line, whose
slope u gives the exponent estimate &« = y + 3 of the power-law component. Bregni & Jmoda
(2008) show these estimates to be accurate, therefore we choose this tool to analyze power
laws in traffic traces.

3. Classification Procedure

Figure 1 shows the general architecture for traffic capture. Packets coming from a LAN to the
Internet and vice versa are all copied to a PC, generally equipped with specialized hardware,
which can either perform real-time classification or simply write to a disk a traffic trace, which
is a copy of all the captured packets. In case the traffic trace is later made public, all the packets
are anonymized by substituting their IP source and destination addresses and stripping the
application payload.

In order to have repeatable experiments, in our research work we have used publicly available
packet traces. The first trace, which we will refer to as Naples, contains traffic related to TCP
port 80 generated and received by clients inside the network of University of Napoli “Federico
II” reaching the outside world (Network Tools and Traffic Traces, 2004). The traces named Auck-
land, Leipzig, and NZIX contain a mixture of all traffic types and are available at the NLANR
PMA: Special Traces Archive (2009) and the WITS: Waikato Internet Traffic Storage (2009). Table 1
contains the main parameters of the used traces.

Figure 2 shows the block diagram of the traffic classification procedure.

Automatic Internet Traffic Classification for Early Application Identification 25

s

Internet

|

Traffic Capture

Fig. 1. Architecture of the Traffic Capture Environment.

Name Length (hh:mm) Date Start Time (hh:mm)
Auckland (a) 24:00 June 11th, 2001 00:00
Auckland (b) 24:00 June 12th, 2001 00:00
Leipzig (a) 4:23 Feb. 21st, 2003 12:14
Leipzig (b) 4:24 Feb. 21st, 2003 16:37
Naples 1:00 June 14th, 2004 11:00
NZIX (a) 24:00 July 6th, 2000 00:00
NZIX (b) 24:00 July 7th, 2000 00:00

Table 1. Parameters of the Analyzed Traffic Traces

Given a packet trace, we use the NetMate Meter (2006) and netAl, Network Traffic based Appli-
cation Identification (2006) tools to group packets in traffic flows and to elaborate the per-flow
metrics. In case TCP is the transport protocol, a flow is defined as the set of packets belonging
to a single TCP connection. In case UDP is used, a flow is defined as the set of packets with
the same IP addresses and UDP port numbers. A UDP flow is considered finished when no
packets have arrived for 600 s. If a packet with the same IP addresses and UDP port numbers
arrives when the flow is considered finished, it is considered the first packet in a new flow
between the same couple of hosts.

For each flow, we measure the lengths of the first n packets in the flow in the client-server
direction. These data are the per-flow metrics that will be used in the following for classifying
the traffic flows. We also collect the timestamp of the first packet in the flow, which we use as
an indicator of the time of the connection request.

For the purpose of training the classifier, we also collect the destination port number for each
flow. This number will be used as the data label for the purpose of validating the proposed
classification technique. Of course, this approach is sub-optimal in the sense that the usage
of well-known ports cannot be fully trusted. A better approach would be performing deep
packet inspection in order to identify application signatures in the packet payload. However,
this is not possible with public traces, which have been anonymized by stripping the payload.
In the rest of the paper we will made the assumption that, in the considered traffic traces,
well-known ports are a truthful indicator of the application that generated the packet flow.

26 Application of Machine Learning

Traffic Reconstruction 0$0161jflt:llgr‘}v
Packet Trace of Traffic Flows pe
Attributes
. .. Classification
Label T
abeling raining of the flow

Fig. 2. Block diagram of classification procedure.

The collected data are then passed to the R software (R Development Core Team, 2008) to
collect the per-source metrics, to train the classifier, and to perform the cross-validation tests.
In particular we used the Weka (Witten & Frank, 2000) and the libsvm (Chang & Lin, 2001) li-
braries. From the timestamps of the first packets in each flow, we obtain the discrete sequence
xf (k), which counts the connection requests from the i-th client, associated to the p-th trans-
port port, in the k-th time interval. Each interval is long 7p = 1 s. Each time a new connection
request arrives, the sequence xf) (k) is updated and we compute the metrics in Table 2.

Metric Definition

Coefficient of Variation the ratio between the standard deviation of

xf(k) and its mean
Skewness the standardized third moment of xf (k)
Kurtosis the standardized fourth moment of xip (k)
Power-law exponent the exponent a« of the power-law compo-

nent in the Power Spectral Density of x; (k)

Table 2. Per-source metrics.

4. The Power-law Exponent

In this section, we present some results on the power-law behavior of the connection request
process by commenting the measurements on the Naples traffic trace, which contains only
web-browsing traffic, and the Auckland(a) traffic trace, which contains a mix a different traffic
types.

Figure 3 shows the three sequences x8(k), x8°(k), and x® (k). The first sequence is obtained
by considering only connections from a single IP address, which we call Client 1. Similarly, the
second sequence is obtained considering connections from Client 2. Finally, the third sequence
is obtained considering all the connections in the trace. The total traffic trace is one-hour long
and the two clients considered are active for all the duration of the measurement. Neither the
aggregated connection arrival process nor the single clients show evident non stationarity.
As discussed in Section 2.2, the slope of Modo? vs 7 in the log-log plot can be used as a
measure of the power-law exponent. In order to avoid border effects and poor confidence

Automatic Internet Traffic Classification for Early Application Identification 27

All clients

o

3 4

N
Q —
(2]
& 3 4
B —
(0]
@ _
5
o B

- T T T T
0 1000 2000 3000
Time, s
Client 1
< o [)
[o] o

w
@ 8
S
g K
c
5 o
8§ <

o

15 20

Connections/s
5 10

0

Fig. 3. Connection requests per second in the Naples traffic trace.

28 Application of Machine Learning

™
o
+ .
o —— All clients
--- Client1
T e, >~ | Client 2
~ T
E <« T,
Nb ? | o
o 2
s}
= _
To]
?
()
2 <

Observation interval (1), s

Fig. 4. MAVAR computed on the sequence of connection requests from two random clients
and from all the clients in the Naples traffic trace.

in the values of Modc?, we calculate & by considering only the range 47y < T < 0.3maxkT,
as suggested in (Bregni & Jmoda, 2008). Figure 4 shows the MAVAR calculated on the three
sequences. In the considered range of 7, the three curves in Figure 4 have a similar slope,
corresponding to the values of a; = 0.28 and ap = 0.35 for clients 1 and 2 respectively, and
« = 0.24 for the aggregated process. These data confirm our expectations that the sum of
sequences showing power-law behavior also shows power-law behavior.

We have considered so far only TCP connection requests to servers listening on port number
80, which is the well-known port for HTTP data traffic. We expect that traffic using differ-
ent application protocols shows a different time-correlation behavior. With reference to the
Auckland traffic trace, we have extracted the per-client connection request sequence xf (k) con-
sidering only requests for servers listening on the TCP ports 25, 80, 110, and 443, which are
the well-known ports for SMTP, HTTP, POP3, and HTTPS. We have also considered requests
for servers listening on either TCP or UDP port 53, which is the well-known port for DNS
requests.

Figure 5 shows the estimate 1, for the various destination ports, obtained by averaging the
value of « measured for the clients with at least 50 connection requests in the observation
window. The figure also shows 95% confidence intervals for the mean. From the observation
of Figure 5, we also notice that the confidence intervals for the estimate of the power-law
exponent of the email application traffic includes « = 0 both for port 25 and 110, therefore
showing no evidence of power-law behavior. Instead, the estimates for web requests, both on
insecure (port 80) and on secure connections (port 443) have overlapping confidence intervals
not including &« = 0. Then we conclude that these processes come from similar populations
and show evidence of power-law behavior. Finally, the confidence interval for DNS requests
does not include « = 0 and does not overlap with web traffic, allowing us to conclude that,

Automatic Internet Traffic Classification for Early Application Identification 29

v]
o
<
e T
o
@ L T
e o
_—— T 1
E o °
- 1 T
4T
o
o |
= 1 o
S
! \ T T I
25 53 80 110 443

Destination Port

Fig. 5. Estimated power-law exponent of the connection requests process for different destina-
tion port numbers in the Auckland traffic trace. Estimations are averaged over all the clients
and 95% confidence intervals are shown.

from the point of view of time-correlation, the DNS request process shows evidence of power-
law behavior and comes from a different population than web traffic.

5. Comparison of Learning Algorithms

In this section, we compare three algorithms proposed for the classification of traffic flows.
In order to choose the classification algorithm to be used in the hybrid schemes discussed
later, we performed a set of experiments by training the classifiers using the Auckland(a),
NZIX(a), and Leipzig(a) traffic traces and testing the performance by classifying the Auck-
land(b), NZIX(b), and Leipzig(b) traffic traces, respectively.

To ease a comparison, we performed our assessment by using the same 5 applications as in
(Williams et al., 2006), i.e. FTP-data, Telnet, SMTP, DNS (both over UDP and over TCP), and
HTTP. In all the experiments, traffic flows are classified by considering only the first 5 packets
in the client server direction. The performance metric we consider is the error rate, calcu-
lated as the ratio between the misclassified instances to the total instances in the data set. We
consider two supervised learning algorithms namely the C4.5 Decision Tree and the Support
Vector Machines (SVM), and an unsupervised technique, namely the Simple K-means.

For the SVM, we considered the polynomial kernel with degrees d =2 and d = 3 and the RBF
kernel. In the polynomial case we normalized attributes in the range [0,1], while in the RBF
case we normalized attributes in the range [—1,1], as suggested in (Abe, 2005).

To choose the cost parameter we performed a 10-fold cross validation on the Auckland(a)
traffic trace and obtained the best results with the following configurations: polynomial kernel
with degree d =2 and cost C = 10%; RBF kernel with exponent v = 4 and cost C = 103.

30 Application of Machine Learning

T
14 -
o * * *
Q.
g 1.2 . * * -
(=1 *x kX ES *
g * :
Z 08| .
p=
0.6 B
\ \ \ \ \ \
0 20 40 60 80 100

Number of Clusters

Fig. 6. Maximum entropy of clusters in the simple k-means clustering.

C4.5 SVM SVM Simple K-means
(Polynomial) (RBF)
Auckland 0.8% 7.8% 4.3% 11%
Leipzig 0.6% 3.6% 4.3% 12%
NZIX 0.5% 1.9% 0.2% 7%

Table 3. Error rate for three traffic traces with the different classification techniques.

For the Simple K-Means, we tried different values for the number of clusters. Since the algo-
rithm could not perfectly separate the labeled instances, we labeled each cluster with the most
common label. To choose the number of clusters, we performed a 10-fold cross validation
on the Auckland(a) traffic trace. For several possible choices for the number of clusters, we
computed the entropy of each cluster. In Figure 6 we plot the entropy of the cluster that has
the maximum entropy versus the number of clusters. The figure does not show a clear depen-
dency of the maximum entropy on the number of clusters, so we decided to use 42 clusters,
because, in the figure, it corresponds to a minimum.

Table 3 reports the measured error rate for the selected classifiers in the three experiments.
Comparing the experiments we do not see a clear winner. With the Auckland and Leipzig
traces, C4.5 performs better, while SVM with RBF kernel yields the best results with the NZIX
trace. In the Leipzig case, however, the SVM with RBF kernel perform worse than the SVM
with polynomial kernel. The Simple K-means technique always shows the highest error rate.
Since the C4.5 classifier seems to give the best results overall, in the following we will consider
this classifier as the basis for the hybrid technique.

6. The Hybrid Classification Technique

As discussed in Section 4, the statistical indexes computed on the connection-generation pro-
cess depend on the application that generated the packet flow. Therefore, we introduce a new
classifier capable of exploiting those indexes. The block diagram of this new classifier, which
we will refer to as the hybrid classifier, is shown in Figure 7.

Automatic Internet Traffic Classification for Early Application Identification 31

Traffic || Reconstruction O?"liiflt:llgf‘}v
Packet Trace of Traffic Flows pe!
Attributes

Classification ol -
using only Source re- o e; ion o
per-Flow quests > & per-Source
Attributes Attributes

Classification

using per-Flow
and per-Source
Attributes

Fig. 7. Block diagram of the hybrid classifier.

As usual, we capture the packets from the communication link and reconstruct the TCP con-
nections. We also collect the per-flow features, which comprise the length of the first n packets
in the flow. In addition, we maintain running statistics on the connection generation process.
For each pair (IP source, destination port number), we calculate the per-source attributes dis-
cussed in Section 3 and listed in Table 2. It is worth noting that all these attributes do not
require to keep in memory the whole list of the connection request arrival times, because they
can be updated with a recurrence formula each time a new connection request arrives. As dis-
cussed in Section 4, when a given IP source has generated only a few requests, the statistical
indexes have a large error, so we do not consider them for the purpose of traffic classification.
Instead, when the IP source has generated many connection requests, the statistical indexes
show better confidence, so we use them for classification. In order to choose whether the in-
dexes are significant or not, we compare the total number of connections that the source has
generated to a given threshold, ¢, which is a system parameter. If the source has generated
fewer than ¢ connections, we perform classification of the traffic flow by using only the flow
attributes (i.e. the sizes of the first packets). Otherwise, if the source has generated more than
¢ connections, we perform classification by using both the flow attributes and the source at-
tributes (i.e. the statistical indexes). The same rule applies to training data. Labeled flows
generated by IP sources that, up to that flow, have generated fewer requests than ¢, are used
to train the classifier using only flow attributes. On the other hand, the labeled flows gener-
ated by IP sources that have generated more than ¢ requests are used to train the classifier
using both the per-flow and the per-source attributes. In both cases, the used classifier is a
C4.5 decision tree.

The number of the packets to consider for classification is a critical parameter. The more pack-
ets are considered, the less the classification error. However, collecting the required number of

32 Application of Machine Learning

packets requires time, during which the flow remains unclassified. It would be better to per-
form classification as soon as possible. In this work, we consider the scenario in which only
the packets from the client to the server are available. In this scenario, we have observed that
the hit ratio does not grow significantly if more than 5 packets are considered. This is consis-
tent to results in (Bernaille et al., 2006). However, we will show that the average time needed
to collect 5 packets is usually in the order of the hundreds of ms, depending on the network
configuration. On the other hand, if classification were performed considering only the first
3 packets per flow, the time required would drop significantly. Classification performance,
however, would be much worse.

In this work, we propose a hybrid classification technique that aims at achieving good classi-
fication performance but requiring as few packets as possible. In order to evaluate the perfor-
mance of the hybrid classifier, we consider the following configurations.

The first two configurations, which we will refer to as non-hybrid perform classification by
using only the packets sizes. For each flow, the first n packets are collected and then their
sizes are fed to the classifier. The time required to collect the required data corresponds to the
time required to collect exactly n packets. If the flow contains fewer packets, then classification
can be performed only when the flow is over. We consider the cases where eithern =3 orn =5
packets.

The third configuration, which we will refer to as basic hybrid classifier splits the incoming flows
in two sets, depending on the IP source activity, as explained above. Then, the first n packets
are collected and classification is performed by using the packet sizes and, possibly, the source
statistical indexes. Since the source indexes are available at the flow beginning, exploitation of
these features introduces no delay. Therefore the basic hybrid classifier is appealing because
it yields a better hit ratio than the non-hybrid classifier using the same number of packets, n.
In this chapter, we consider the case where n = 3.

Finally, we consider the enhanced hybrid classifier. Similarly to the basic configuration, this
classifier splits the incoming flows in two sets depending on the IP source activity. However,
the number of packets collected for each flow depends on the set. For the flows coming from
low activity sources, the classifier waits for n; packets, whereas, for the flows coming from
high activity sources, the classifier waits for 11, packets. Since this second classifier already has
valuable information for performing classification, it needs fewer packets, therefore 17 > ny.
This way, the result of classification is obtained more quickly for those flows coming from high
activity sources and for which other data are available. We consider the case where 1y =5
and ny = 3. Since the decision of which set each flow belongs to depends on the threshold
¢, if the threshold is low, then the classification is quicker, but the hit ratio is lower because
the statistical indexes are less reliable. On the other hand, if the threshold is higher, then
classification is slower, but more precise. At the extrema, if ¢ = 0, the performance converges
to that of the basic hybrid classifier; as ¢ goes to infinity, performance converges to that of the
non-hybrid classifier with n = n;.

7. Numerical Results

In this Section, we evaluate the performance of the proposed traffic classification techniques.

The first set of experiments is a validation using the NZIX traffic traces. The classifier is trained
using the NZIX(a) trace and the tests are performed using the NZIX(b) trace. Figure 8(a) shows
the error rate obtained with the different techniques. The best results are obtained with the
non-hybrid classification considering the first # = 5 packets in the flow, which results in a
percentage of misclassified flows of about 1.8%. The non-hybrid classifier does not use any

Automatic Internet Traffic Classification for Early Application Identification 33

1,000
—— Nonhybrid (7 = 3)
- -~ Nonhybrid (n =5)
800 - h * Basic Hybrid (n = 3)
”””””””””””””””””” 0 Enharced Hybrid (17 = 5; np = 3)
- 600 [~ —
£
& o ©
g 00| © .
200 [~ -
0 ! ! !
0 50 100 150 200
Threshold, € (connection requests)
[Error-rate.]
1,000 T
—— Nonhybrid (n =3)
- - - Nonhybrid (n=5)
800 [~ - * Basic Hybrid (n = 3)
77777777777777777777777777777 O Enharced Hybrid (1y =5; np = 3)
~ 600 .
£
& o ©
o
g 00| |
200 [~ -
0 ! ! !
0 50 100 150 200

Threshold, § (connection requests)
[Feature collection delay.]
Fig. 8. Classification performance. Training with the NZIX(a) traffic trace and tests with the
NZIX(b) traffic trace.

34 Application of Machine Learning

per-source attribute, so the results are independent of the threshold ¢ and Figure 8(a) shows
this result as an horizontal line. On the other hand, the worst results are obtained with the non-
hybrid classifier using the first n = 3 packets in the flow. This classifier results in an error rate
of about 8%. We discuss these results by comparing the achieved classification performance
to the delay between the beginning of the flow and the time to obtain the classifier output.
In Figure 8(b), we show the average time necessary to collect the number of packets required
by the classification algorithm. The non-hybrid algorithm with n = 5, which shows the best
classification performance, gives an answer after, on average, 750 ms. Conversely, the non-
hybrid classification technique with n = 3 only requires half of that time, giving its output
after only 350 ms.

The hybrid techniques try to achieve good classification performance, while requiring fewer
packets. The Basic Hybrid technique only requires n = 3 packets, so it yields the same delay as
the non-hybrid technique with n = 3, the classification error, however, is much lower, ranging
from 5.2% to about 6.3% depending on the threshold ¢. The threshold controls the minimum
number of connection requests necessary to have confidence in the per-source attributes and
use them in classifying the flows coming from that source. Therefore, the Basic Hybrid tech-
nique reduces the classification error by 2% yielding no increase in the classification delay.
The classification performance is influenced by the threshold, but not to a great extent.

The Enhanced Hybrid technique tries to strike a balance between the error rate and the delay.
In Figure 8(a), we plot the classification error rate versus the threshold. When the threshold
is 0, most of the flows are classified considering 1, = 3 packets plus the per-source attributes,
so the classification performance converges to the classification performance of the Basic Hy-
brid technique. Independently of the threshold, some flows cannot take advantage of the
per-source attributes because these attributes cannot be computed, for example because the
source must have been active for at least some time interval in order to compute the power
law exponent «; therefore, the results for the Basic and the Enhanced techniques do not coin-
cide. As the threshold grows, fewer flows take advantage of the per-source attributes and are
classified using the non hybrid scheme with n; = 5 packets. On the other hand, the per-source
attributes are more reliable and the classification performance is better. Figure 8(a) shows that
the error rate drops to as low as 2.5% when ¢ = 200 connection requests.

The drawback is that, as the threshold increases, more and more flows are classified using
more packets and the delay increases. Figure 8(b) shows that, when ¢ = 200, the classification
delay is about 500 ms. This delay is about 150 ms more than the delay obtained with the Basic
scheme, which has a much worse classification performance, and is 250 ms less than the delay
of the non hybrid scheme with n = 5, which only yields slightly better results.

Figure 9 shows a similar experiment with the Auckland data set. The classifier is trained with
the Auckland(a) traffic trace and the tests are performed on the Auckland(b) traffic trace. In
Figure 9(a) we plot the error rate versus the threshold, {. With this data set, the non hybrid
technique with n = 3 packets performs poorly, with an error rate of about 30%. Instead, if n =5
packets are considered, the error rate drops to about 2.5%, which is similar to the error rate
obtained with the NZIX data set. Figure 9(b) shows that the average delay required to collect
n =3 and n = 5 packets is similar, being 200 ms and 235 ms, respectively. In this scenario the
hybrid techniques are less appealing, because the delay difference is limited. However, these
techniques yield some advantage also in this scenario. In Figure 9(a) we observe that, as the
threshold increases, both the Basic and the Enhanced schemes show better classification per-
formance. The Basic Hybrid Classifier settles at an error rate of about 15% when the threshold
is larger or equal to 100 connection requests. Larger values do not seem to give better results.

Automatic Internet Traffic Classification for Early Application Identification

35

—— Non-hybrid (n = 3)
30 Non-hybrid (n = 5)
* Basic Hybrid (n = 3)
O Enhanced Hybrid (n; =5; ny = 3)
S
8 201 *
5]
~
8 * *
=) o
i3]
10 - o
o
0 ! ! !
0 50 100 150 200
Threshold, ¢ (connection requests)
[Error-rate.]
1,000 T
—— Non-hybrid (n = 3)
- - - Non-hybrid (n = 5)
800 * Basic Hybrid (n = 3)
77777777777777777777777777777 o Enhanced Hybrid (11 = 5; ny = 3)
@ 600 |-
&
oy o ©
o)
8 aof ©
200 -
0 ! ! !
0 50 100 150 200

Threshold, ¢ (connection requests)

[Feature collection delay.]

Fig. 9. Classification performance. Training with the Auckland(a) traffic trace and tests with

the Auckland(b) traffic trace.

36 Application of Machine Learning

Therefore the Basic scheme halves the error rate without increasing the delay. The Enhanced
scheme shows even better results: with ¢ = 100, the Enhanced Hybrid Classifier has an error
rate of 9%, which drops to 6% when ¢ = 200. From 9(b) we observe that the Enhanced classi-
fier shows a delay of about 215 ms for ¢ = 100 and only slightly more for & = 200. This delay
is halfway between the delay of the non hybrid classifier with n = 3 and with n = 5.

8. Conclusions

In this work, we report experimental results about the classification of Internet traffic by ex-
amining the packet flow in the client-server direction. We focus on the problem of early appli-
cation identification, which requires to find a balance between the classification accuracy and
the number of packets required by the classifier.

The contribution of this work is twofold. First, we compare the performance of some well-
known supervised and unsupervised classification techniques, namely the C4.5 decision tree,
the Support Vector Machines, and the Simple K-Means. We performed validation tests on
three traffic traces containing a mix of traffic from different applications and concluded that
the C4.5 decision tree algorithm has the best performance overall, even if the SVMs follow
closely. The unsupervised technique always yields the worst performance.

Second, we introduce a new classification scheme based on the observation that the connection
generation process from a given traffic source is influenced by the application generating the
requests. In particular, we show that, in experimental data, the Power Spectral Density of
such processes often shows a power-law behavior. Therefore, we propose to use the measured
power-law exponent of the traffic source as an additional feature in the classification of a traffic
flow. This new feature comes at no additional delay, because its computation is based on the
timestamps of the initial packets of past flows.

By using this feature we were able to significantly reduce the classification error rate in all
the considered scenarios. Further, we also propose an enhanced scheme in which we perform
classification using the first 5 packets in a flow for low-activity sources and the first 3 packets
in flow for high-activity sources. By using this scheme, we obtain a low error rate and, at the
same time, we have low average classification delay.

There are some possible future directions for this research. In this work, we did not consider
the problem of training a classifier on a data set collected on a given link and used on a dif-
ferent link. We expect that the classification error rate increases, but that the per-flow features
still yield an increased accuracy, because the connection request process mainly depends on
the application and is weakly dependent on the specific network context. In order to study the
portability of a classifier it is necessary to use traces captured at different sites but in the same
day and at the same hour. This is because traffic patterns evolve over time. Another possible
future work is the study of the temporal evolution of the connection generation process.

Acknowledgements
This work has been partially funded by the Italian Research Ministry (MIUR) PRIN 2006
project RECIPE.

9. References

Abe, S. (2005). Support Vector Machines for Pattern Classification (Advances in Pattern Recognition),
Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Automatic Internet Traffic Classification for Early Application Identification 37

Allan, D. & Barnes, J. (1981). A modified Allan variance with increased oscillator characteri-
zation ability, Thirty Fifth Annual Frequency Control Symposium. 1981 pp. 470-475.

Auld, T., Moore, A. & Gull, S. (2007). Bayesian neural networks for internet traffic classifica-
tion, Neural Networks, IEEE Transactions on 18(1): 223-239.

Bernaille, L., Teixeira, R. & Salamatian, K. (2006). Early application identification, The 2nd
ADETTI/ISCTE CoNEXT Conference.

Bregni, S. (2002). Time and Frequency Measurement Technigues in Telecommunications, Wiley,
pp. 305-375.

Bregni, S., Cioffi, R. & Decina, M. (2008). An empirical study on time-correlation of GSM
telephone traffic, Wireless Communications, IEEE Transactions on 7(9): 3428-3435.

Bregni, S. & Jmoda, L. (2008). Accurate estimation of the Hurst parameter of long-range de-
pendent traffic using modified Allan and Hadamard variances, Communications, IEEE
Transactions on 56(11): 1900-1906.

Chang, C.-C. & Lin, C.-J. (2001). LIBSVM: a library for support vector machines.

URL: http:/fwww.csie.ntu.edu.tw/ cjlin/libsvm

Crotti, M., Dusi, M., Gringoli, F. & Salgarelli, L. (2007). Traffic classification through simple
statistical fingerprinting, SIGCOMM Comput. Commun. Rev. 37(1): 5-16.

Crovella, M. & Bestavros, A. (1997). Self-similarity in World Wide Web traffic: evidence and
possible causes, Networking, IEEE/ACM Transactions on 5(6): 835-846.

Leland, W. E., Taqq, M. S., Willinger, W. & Wilson, D. V. (1993). On the self-similar nature
of Ethernet traffic, in D. P. Sidhu (ed.), ACM SIGCOMM, San Francisco, California,
pp- 183-193.

Moore, A. W. & Zuev, D. (2005). Internet traffic classification using bayesian analysis tech-
niques, SIGMETRICS "05: Proceedings of the 2005 ACM SIGMETRICS international con-
ference on Measurement and modeling of computer systems, ACM, New York, NY, USA,
pp- 50-60.

netAl, Network Traffic based Application Identification (2006).

URL: http://caia.swin.edu.au/urp/dstc/netai/

NetMate Meter (2006).

URL: http://sourceforge.net/projects/netmate-meter/

Network Tools and Traffic Traces (2004).

URL: http:/fwww.grid.unina.it/Traffic/Traces/ttraces.php

Nguyen, T. & Armitage, G. (2006a). Synthetic sub-flow pairs for timely and stable IP traffic
identification, Proc. Australian Telecommunication Networks and Application Conference.

Nguyen, T. & Armitage, G. (2006b). Training on multiple sub-flows to optimise the use of
machine learning classifiers in real-world IP networks, Local Computer Networks, Pro-
ceedings 2006 31st IEEE Conference on, pp. 369-376.

Nguyen, T. & Armitage, G. (2008). A survey of techniques for internet traffic classification
using machine learning, Communications Surveys & Tutorials, IEEE 10(4): 56-76.

NLANR PMA: Special Traces Archive (2009).

URL: http:/fwww.nlanr.net/

Nuzman, C., Saniee, I., Sweldens, W. & Weiss, A. (2002). A compound model for TCP con-
nection arrivals for LAN and WAN applications, Elsevier Science Computer Networks
40(3): 319-337.

Park, J., Tyan, H.-R. & Kuo, C.-C. (2006a). Internet traffic classification for scalable QOS pro-
vision, Multimedia and Expo, 2006 IEEE International Conference on, pp. 1221-1224.

38 Application of Machine Learning

Park, J., Tyan, H.-R. & Kuo, C.-C.]J. (2006b). GA-based internet traffic classification technique
for QoS provisioning, Intelligent Information Hiding and Multimedia Signal Processing,
International Conference on 0: 251-254.

Paxson, V. & Floyd, S. (1995). Wide area traffic: the failure of Poisson modeling, IEEE/ACM
Trans. Netw. 3: 226-244.

R Development Core Team (2008). R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

URL: http://fwww.R-project.org

Roughan, M., Sen, S., Spatscheck, O. & Duffield, N. (2004). Class-of-service mapping for QoS:
a statistical signature-based approach to IP traffic classification, IMC "04: Proceedings
of the 4th ACM SIGCOMM conference on Internet measurement, ACM, New York, NY,
USA, pp. 135-148.

Verticale, G. (2009). An empirical study of self-similarity in the per-user-connection arrival
process, Telecommunications, 2009. AICT '09. Fifth Advanced International Conference on,
pp- 101-106.

Verticale, G. & Giacomazzi, P. (2008). Performance evaluation of a machine learning algorithm
for early application identification, Computer Science and Information Technology, 2008.
IMCSIT 2008. International Multiconference on, pp. 845-849.

Williams, N., Zander, S. & Armitage, G. (2006). A preliminary performance comparison of five
machine learning algorithms for practical IP traffic flow classification, SIGCOMM
Comput. Commun. Rev. 36(5): 5-16.

WITS: Waikato Internet Traffic Storage (2009).

URL: http:/fwww.wand.net.nz/wits/

Witten, I. H. & Frank, E. (2000). Data mining: practical machine learning tools and techniques with

Java implementations, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

A Greedy Approach for Building
Classification Cascades

Sherif Abdelazeemt
shazeem@aucegypt.edu
Electronics Engineering Dept., The American University in Cairo

Classification cascade is a well-known technique to reduce classification complexity
(recognition time) while attaining high classification accuracy. Cascades are usually built
using ad-hoc procedures. The mission of this chapter is to introduce a principled way of
building cascades using a greedy approach. Given a large pool of classifiers, the proposed
approach sequentially builds a near-optimal cascade. Given a set of N classifiers and one
powerful classifier with satisfactory classification accuracy, the proposed algorithm
automatically generates classification cascades with complexity O(N2) which means it is fast
and scalable to large values of N. Experiments show that the proposed algorithm is efficient
and builds classification cascades that substantially reduce the overall system complexity
while preserving the accuracy.

1. Introduction

Suppose we have a classification task on which we have already found a complex
classification technique that achieves a satisfactory accuracy. Suppose also while such
classification technique is very powerful, its time complexity is unacceptably high. This
scenario happens frequently in real life as many powerful but very time-consuming
techniques have been devised in recent years (e.g. SVM and multi-classifier systems). Our
goal would be to build a system that preserves the accuracy of that complex classifier while
having much better timing performance.

The high complexity of powerful classifiers might give the impression that high accuracy
could not be achieved without sacrificing recognition time. In fact, this is not true. The high
average recognition time of a classifier in most cases is due to improper resource allocation.
Weak classification techniques while not achieving satisfactory accuracy, they do a good job.
They are capable of correctly classifying considerable number of cases. Actually, most of
patterns in many problems are ‘regular’ patterns; that is, they could be classified using a
simple classifications technique. So why should we use a very complicated time-consuming
classification technique for just few extreme cases? This observation led to the development
of cascade systems [Kanyank & Alpaydin, 1997] which is the main concern of this chapter.
In such a system, all the patterns to be classified first go through a first stage; those patterns
that are classified with confidence score higher than a certain threshold leave the system
with the labels given to them by the first stage. The patterns that are classified with

40 Application of Machine Learning

confidence scores lower than the threshold are rejected to the second stage. In the same
manner, the patterns pass through different stages until they reach the powerful last stage
that does not reject any patterns. Figure 1 illustrates this idea.

The idea of classification cascades has been well-known for long time but has not attracted
much attention in spite of its practical importance [kuncheva , 2004]. Recently, and since the
prominent work of Viola and Jones [Viola & Jones, 2001], the idea of cascade has been
attracting considerable attention in the context of object detection which is a rare-event
classification problem. To avoid any confusion, we will call the cascades used in the context
of object detection "detection cascades" while we will call the cascades used in regular
classification problems 'classification cascades" in which we are interested in this chapter.
There are many works in the literature that try to build a cascade using some heuristics and
ad-hoc procedures [Kanyank & Alpaydin, 1997, Pudil et al. 1992, Giusti et al., 1999,
Gorgevik & Cakmakov, 2004, Ferri et al.,, 2004]. Some automatic approaches of building
classification cascades consider the problem as an optimization problem and might be
attacked using various optimization techniques (e.g. particle swarm [Oliveira et al., 2005],
and simulated annealing [Chellapilla et al., 2006a]). The most elegant automatic approach
was that of Chellapilla et al. [Chellapilla et al., 2006b] using Depth-First search. However,
the algorithm is of complexity O(QN), where Q is a variable suggested to be 32 by
[Chellapilla et al., 2006b]. This means that the algorithm is very slow and not scalable to
large values of N.

In this chapter, we present an algorithm to automatically generate classification cascades
given a set of N classifiers and a powerful classifier with satisfactory accuracy. The
algorithm is of complexity O(N2) which means it is fast and scalable to large values of N.

The remaining of this chapter is organized as follows. Section 2 formulates and states our
problem. In section 3, we describe our proposed algorithm. Section 4 presents an
experimental validation of our proposed algorithm. And in section 5 we conclude.

no no
stage 1 T2 stage 2 2
> ’ _’> 12! > final
yes l lyes l stage
decision decision decision

Fig. 1. Typical classification cascade system.

2. Problem statement

We first assume that we have a pool of classifiers of different complexities and accuracies to
be candidate members of the cascade. Note that we cannot use all the classifiers of the pool
in the cascade. This is because not all cascades are efficient. You may find a cascade that is
more complex than the powerful classifier; using a cascade like this is worthless. Also, one
subset of classifiers could be better than other subsets. Furthermore, certain ordering of the
classifiers in a cascade could be more efficient than other orderings. Hence, we are in need
of an algorithm that selects the most efficient ordered subset of classifiers.

A Greedy Approach for Building Classification Cascades 41

Our problem could then be formulated as follows. Given a classifier that is powerful and
complex and given a pool of classifiers of different complexities and accuracies, we need to
select the optimal (or near optimal) ordered subset that if put in a cascade structure gives an
accuracy not less than that of the optimal case with the lowest complexity possible.

Now we are going to present some notations that will help presenting our algorithms
formally. We denote an unordered set by boldface character surrounded by curly braces,
and its elements by the same character but in italics and subscripted by numbers (e.g.
A,, 4, As,... € {A}). An ordered set (or an array) is denoted by just a boldface character, and
is elements by the same character but in italics and subscripted by numbers (e.g.
A =[4, 4, ...]). Note that the subscripts of an ordered or unordered set are arbitrary and
hold no ordering significance. We enumerate the elements of an unordered set {A} as
follows {A}={4;,4,,...} and the elements of the ordered set A as follows A =[4, 4, ...].

C=[A B] means that the ordered set C is a concatenation of the two ordered sets A and B.
{B}={A}-A; that the unordered set B contains all the elements of the unordered set B except
the element A; and if A; & A, then {B}={A}. In this chapter we will represent a cascade by an
ordered set whose elements are the classification stages ordered in the set from left to right.
The function complexity(A) returns the complexity of the cascade represented by array A
which is estimated using a validation set.

3. A greedy algorithm

We start with partitioning the dataset available for training and testing the system into 3
parts: training set, validation set, and test set. The training set is used for training the
available classifier in the pool. The validation set is used by the algorithm that is going to be
described in this section to build the cascade. The test set is used to test the performance of
the overall system.

We first assume that the powerful classifier we use has accuracy more than any classifier in
the pool of classifiers we generated. Then to build a cascade that has accuracy not less than
that of the powerful classifier, we should put the powerful classifier as the final stage; hence,
we will denote it Sr. The algorithm we propose then has now two jobs: To select an ordered
subset of classifiers from the pool to serve as stages of the cascade before Sk and to set the
thresholds of the stages. Our algorithm, hence, has two steps presented below.

3.1 Step 1: Set the Thresholds

In our problem formulation, we stated that we do not want to get accuracy less than that of
Sr. In a classification cascade, the only source of additional errors to that of Sr is that of the
classifiers in the cascade other than Sr. To avoid such source of error, we might adjust the
thresholds of all the candidate classifiers in the pool to have almost zero errors. This makes
any cascade built using the pool have also zero additional errors to that of Sr. While this
procedure will lead to no additional errors to be committed by the cascade, it would make
us use too tough thresholds. Tough thresholds make the classifiers reject most of the
patterns to the next more complex stages, hence, to lose good opportunities of complexity
reduction. Adjusting the errors to give zero errors for different cascade stages is actually
unnecessarily too tough a procedure. We actually can let different classifiers commit some

42 Application of Machine Learning

errors without losing any overall accuracy. This is because there are some very elusive
patterns that get falsely classified by weak classifiers with high confidence scores. If we put
in mind not to commit any errors by any classifier in the pool, such illusive patterns will
lead us to choose very high thresholds. Fortunately, most of these patterns could be ignored
(not accounted as being errors) as they are most likely falsely classified by Sr too; and,
hence, will not lead to any additional errors.

Our procedure for finding thresholds of pool classifiers will then be as follows. Using every
classifier in the pool, classify the patterns of the validations set and order them according to
the confidence scores they are given. Traverse these ordered patterns form the one that has
been classified by the highest confidence score to the lowest. While traversing the patterns,
monitor whether the patterns are correctly or falsely classified. Once you hit a pattern that is
falsely classified, check whether this same pattern is falsely classified by Sr or not. If yes,
then this pattern would not contribute to errors of the overall system and can be safely
ignored, and we can continue traversing the patterns. We stop when we hit a pattern that is
falsely classified by the classifier under consideration but correctly classified by Sr. Then set
the threshold of the classifier under consideration to be the confidence score of the pattern
we stopped at. We do the same for all the classifiers in the pool to form the corresponding
set of thresholds. This procedure is illustrated in Figure 2.

3.2 Step 2: Select from the Pool

Now we have a pool of classifiers (whose thresholds are set) and the final stage Sr. The most
direct and optimal way to build the cascade is to try all the possible combinations of the
classifiers in the pool (different number of stages with different order of stages), then
selecting the one of the lowest complexity. Note that the complexity of the cascade is
calculated using the validation set. While this procedure guarantees selecting the optimal
N |

cascade, it has a complexity of O(Z—
i=1 N - l)!
pool. This makes the procedure not scalable for large values of N. Here we suggest a
sequential greedy approach that selects a near-to-optimal cascade that has a complexity of
O(N?).

We start with the powerful classifier Sr. This is the best single-stage system that achieves our
constraint of having accuracy not less than Sr. Now we search for the best two-stage
classifier. This is done simply by trying all the nodes in the pool as a first stage (the last
stage will be Sr), and then selecting the one that results in least complex cascade. Now we
pick this classifier out of the pool and put it as the first stage in the cascade.

After finding the best two-stage system, we search for the best three-stage system. We
assume that the best three-stage system will have the same first stage as in the best two-
stage system calculated in the previous iteration. Now we try every classifier in the pool
(except the one picked out as a first stage) as a second stage in a three stage system. We pick
the one resulting in the least complex three-stage cascade. If this least complex three-stage
cascade is more complex than the previously selected two-stage cascade, then the selected
two-stage cascade is declared to be the best cascade and the algorithm stops. Suppose that
we found a three-stage system that is better than the two-stage system we previously
selected, we then proceed to find the best four-stage cascade. We assume that the best four-
stage cascade will have the first two stages of the previously selected three-stage cascade as

), where N is the number of classifiers in the

A Greedy Approach for Building Classification Cascades 43

first and second stages. Now we want to select the third stage from the pool (the fourth
stage will be Sp). We select the classifier that results in the least complex cascade as
described above. And the process continues until the pool is empty or until we select a
cascade that is more complex than a previously selected one. Figure 3 shows this procedure
through an example. Algorithm 1 presents it formally.

.99
098
0.976
0.97
0.96
.94
091
0.9
Q.89

Traversing

Stop here v
E—

Selected threshold

—

ol el Bl Bl) o | o) o]) (o

Fig. 2. A hypothetical example illustrating threshold selection process. Each row represents
a different pattern of the validation set. The left entry of each record is labeled '1' if a
classification error is committed while the pattern is correctly classified by the most
powerful classifier Sr. The right entry of each record is the top decision score of the
corresponding pattern. The patterns are ordered according to the decision score. This
process is done for every classifier in the pool to get the corresponding set of thresholds.

44

Application of Machine Learning

Algorithm 1

// we will denote the pool of classifiers by the

/ /unordered set {S,},

// and the final stage by Sr.

// the classifiers of {S,} have arbitrary numbering
// Sc denotes the cascade selected so far

Inputs
A pool of classifiers {S,} and a powerful classifier Sr

Outputs

A cascade S..

Initialize

best_complexity = complexity([S]).
c=[]. //an empty array

wn

F:
®
5

hile (there are classifiers left in {S,})

— g

k = argmin{complexity([S, S, S;])}

iVS;e{Sp}
new__complexity =
complexity([S. S, Sg]).

if(new_complexity > best_complexity)

{

Sc=[S. Se].
Terminate.
}
else
{
S, = [SC Sk SF].
{Sp} = {Sp}- Sk.
best_complexity = new_complexity.
}
}
Sc = [S. Se].

Terminate.

A Greedy Approach for Building Classification Cascades

45

The Pool of
Classifiers

Lo i

L

[R—

s o]

Fig. 3. An example of the process of selecting classifiers from the pool to form the cascade.

46 Application of Machine Learning

4. Experiments

The dataset we used in our experiments is the MNIST [LeCun et al, 1998]. The MNIST has a
total of 70,000 digits which we partitioned into 3 parts: i) a training set, which is composed
of 50,000 digits and used for training the classifiers, ii) a validation set, which is composed of
10,000 digits used for optimizing the cascade system, and iii) a test set, which is used for
final testing of the cascade. We then transformed each digit image of all sets into 200-
element feature vector using gradient feature extraction technique [Liu et al. 2003].

We trained 48 different classifiers with different complexities and accuracies on the training
set. The strongest of those 48 classifiers has been chosen to be Sr and the remaining 47
classifiers now represent the pool of classifiers (N = 47). Three different types of classifiers
are used: one-layer neural network (1-NN or linear classifier), two-layer neural network (2-
NN), and SVM. For each classifier type, we generated a number of classifiers of different
structures. First we ranked all 200 gradient feature elements according to their importance
using ReliefF feature ranking technique [Kononenko, 1994]. Then, for 1-NN network, we
generated a classifier that has as the most important 25 feature elements as input, and then
another one with the most important 50 feature elements, then 75, an so on, till we finally
generated a classifier with all the 200 feature elements. Hence, we have 8 different 1-NN
classifiers. The same was done for SVM; hence, we have additional 8 different classifiers.
This also was done for 2-NN, but for each number of inputs, we generated a classifier with
different number of hidden units: 50, 100 150, and 200. Hence, we have 8 1-NN classifiers, 8
SVMs, and 8x4 2-NN classifier; so, we have a total of 48 classifiers of different structure and
accuracies. We chose the most powerful classifier S to be the SVM classifier with 200
features as it gained the highest accuracy on the validation set. We measured the complexity
of a certain classifier as the number of floating point operations (flops) [Ridder, 2002] it
needs to classify one pattern divided by the number of flops the least complex classifier we
have generated (that is, the 1-NN with 25 inputs) needs to classify one pattern. That is the
complexity of 1-NN of 25 inputs is 1; and it was found that Sr has a complexity 5638.

We applied our greedy algorithm on the generated classifiers. Table 1 shows complexities
and errors of Sr and complexities and errors of the cascade built using our greedy algorithm.
It is obvious that the complexity is reduced considerably while not sacrificing the accuracy.
We would like to note here that not all the 47 classifiers of the pool are selected to be
members of the cascade. As shown in Figure 4, the cascade built using our algorithm has
only 9 stages (including Sr). The advantage of using a large pool of classifiers is then to give
a large room of possible cascades for the algorithm to choose from.

Now to show that our algorithm is near optimal, we compare it with the optimal case which
is the exhaustive search we discussed in section 3.2. The exhaustive search has an
exponential complexity in N (number of classifier in the pool, which is 47 in our case).
Hence, we cannot apply the exhaustive search algorithm on all the 47 classifiers of the pool.
We then selected 5 classifiers randomly and applied both the exhaustive and the greedy
algorithms on them. We repeated this 15 times and calculated the average of the resulting
errors and complexities (see Table 2). Table 2 shows that our algorithm achieves a reduction
in complexity that is near to the optimal case. Furthermore, comparing Table 1 and Table 2
shows that applying the algorithm on whole the 47 classifiers has superior results than the
case of using 5 classifiers. This shows that using more classifiers in the pool gives more
opportunity for reducing the complexity. This fact favors algorithms that are scalable for
large values of N like the one represented in this chapter.

A Greedy Approach for Building Classification Cascades

47

5. Conclusion

Fig. 4. The build cascade using the proposed algorithm.

2-NN with 175
inputs and 50
hidden units

2-NN with 150
inputs and 100
hidden units

2-NN with 125
inputs and 150
hidden units

SVM with 150
inputs

1-NN with 125
inputs

2-NN with 75
inputs and 50
hidden units

2-NN with 100
inputs and 50
hidden units

2-NN with 200
inputs and 100
hidden units

SVM with 200
inputs
(Sr)

48 Application of Machine Learning

In this chapter, we have proposed an algorithm to automatically generate classification
cascades. The algorithm is fast and scalable. Experiments showed that our algorithm is
efficient and builds classification cascades that substantially reduce the overall system

complexity while preserving the accuracy.

Complexity Error # of stages
Sronly 5638 66 1
Casc;%de built using our greedy 239.9 &7 9
algorithm

Table 1. The performance of our algorithm when given all the generated classifiers as
compared to using Sr only in terms of errors and complexity (both are calculated using

the test set)

Avgerage Avgerage Average # of stages
Complexity | Error

SF only 5638 66 1

Casca.de built using our greedy 480.9 66.9 52

algorithm

Cascade built using exhaustive 4407 673 54

search

Table 2. The performance of our algorithm when given pools of randomly selected 5
classifiers (plus Sr) as compared to using Sr only and using the optimal procedure
(exhaustive search) in terms of average errors and average complexity (calculated using
the test set).

6. References

Chellapilla, K., M. Shilman, P. Simard, (2006a) “Combining Multiple Classifiers for Faster
Optical Character Recognition”, DAS, pp. 358-367.

Chellapilla, K.; Shilman, M. , Simard, P., (2006b), “Optimally Combining a Cascade of
Classifiers”, SPIE Document Recognition and Retrieval (DRR).

Ferri, C,; Flach, P. ,and Hernandez-Orallo, J., (2004) “Delegating classifiers,” Proceedings of
21st International Conference on Machine Learning, pp. 37.

Giusti, N.; Masulli, F. and Sperduti, A. (2002), “Theoretical and experimental analysis of a
two-stage system for classification,” IEEE TPAMI, vol. 24, no. 7, pp. 893-904.

Gorgevik, D.& Cakmakov, D. (2004), "An efficient three-stage classifier for handwritten
digit recognition", ICPR'04, pp. 1051-4651.

Kononenko, 1. (1994) “Estimating attributes: analysis and extensions of Relief,” ECML-94,
pp- 171-182.

Kaynak, C. & Alpaydin, E. (1997), “Multistage classification by cascaded classifiers,”
Proceedings of 1997 IEEE international symposium on Intelligent Control, pp. 95-100.

Kuncheva, L., (2004), Combining Pattern Classifiers, Wiley-Interscience.

LeCun, Y.; Bottou, L. Bengio, Y. and Haffner, P. (1998), “Gradient-Based Learning Applied
to Document Recognition”, Proceedings of the IEEE, vol. 86 no. 11, pp. 2278-2324.

A Greedy Approach for Building Classification Cascades 49

Liu, C; Nakashima, K. Sako, Fujisawa, H. H., (2003), “Handwritten digit recognition:
benchmarking of state-of-the-art techniques,” Pattern Recognition, vol. 36, pp. 2271
- 2285.

Oliveira, L.; Britto, A., Sabourin, R. (2005), “Optimizing class-related thresholds with
particle swarm optimization”, IJCNN, vol. 3, pp. 1511-1516.

Pudil, P.; Novovicova,]., Blaha, S., Kittler, J., (1992), “Multistage pattern recognition with
reject option,” 11th JAPR, pp. 92-95.

Rahman, A. & Fairhurst, M,. (1999), “Serial combination of multiple experts: a unified
evaluation,” Pattern Analysis and Applications, vol. 2, no. 4, pp. 292-311.

Ridder, D.; Pekalska, E., Duin, R. (2002), “The economics of classification: error vs.
complexity”, The 16th International Conference on Pattern Recognition, pp. 244-247.

Viola, P. & M. Jones, (2001), “Rapid object detection using a boosted cascade of simple
features”, ICPR, vol 1., pp. 511-518.

50

Application of Machine Learning

Neural Network Multi Layer Perceptron
Modeling For Surface Quality Prediction
in Laser Machining

Sivarao!, Peter Brevern2, N.S.M. El-Tayeb? and V.C.Vengkatesh?2
Universiti Teknikal Malaysia Melaka, 2Multimedia University
Malaysia

1. Abstract

Uncertainty is inevitable in problem solving and decision making. One way to reduce it is
by seeking the advice of an expert in related field. On the other hand, when we use
computers to reduce uncertainty, the computer itself can become an expert in a specific field
through a variety of methods. One such method is machine learning, which involves using a
computer algorithm to capture hidden knowledge from data. The researchers conducted the
prediction of laser machining quality, namely surface roughness with seven significant
parameters to obtain singleton output using machine learning techniques based on Quick
Back Propagation Algorithm. In this research, we investigated a problem solving scenario
for a metal cutting industry which faces some problems in determining the end product
quality of Manganese Molybdenum (Mn-Mo) pressure vessel plates. We considered several
real life machining scenarios with some expert knowledge input and machine technology
features. The input variables are the design parameters which have been selected after a
critical parametric investigation of 14 process parameters available on the machine. The
elimination of non-significant parameters out of 14 total parameters were carried out by
single factor and interaction factor investigation through design of experiment (DOE)
analysis. Total number of 128 experiments was conducted based on 2k factorial design. This
large search space poses a challenge for both human experts and machine learning
algorithms in achieving the objectives of the industry to reduce the cost of manufacturing by
enabling the off hand prediction of laser cut quality and further increase the production rate
and quality.

2. Introduction

Reliability and predictability of quality is most important in the choice of precision
manufacturing, particularly with the ever increasing move towards "unmanned" machining
operations due to the rapid automation of manufacturing industry. The ability to predict,
both accurately and effectively, the surface quality during a machining operation will
ultimately improve the machining of engineering components, thus reducing significantly

52 Application of Machine Learning

the huge machining cost, which can sometimes be as high as 70% of the overall
manufacturing cost due to the rework activities (Ezugwu et al., 1995). Recent research
activities in artificial neural network (ANN) have shown that ANN has powerful pattern
classification and pattern recognition capabilities. ANNs are well suited for problems whose
solutions require knowledge that is difficult to specify but for which there are enough data
or observations. They learn from examples (training data) and capture subtle functional
relationships among the data even if the underlying relationships are unknown or hard to
describe. ANN is universal functional approximator (Kuo, 1998). It has been proven that
properly designed network can approximate any continuous function to any desired
accuracy by many researchers. One has presented wear prediction of polymer-matrix
composites, where the ANN was used to calculate the experimental database for short fiber
reinforced polymide 4.6 composites, the specific wear rate, frictional coefficient and also
some other mechanical properties (Jiang, 2007) . Wilkinson, P. et al. represented an
application of an artificial neural network to classify tool wear states in face milling. The
input features were derived from measurements of acoustic emission during machining and
topography of the machined surfaces. Five input features were applied to the back-
propagating neural network to predict a wear state of light, medium or heavy wear
(Wilkinson et al., 1999). Neural network capability in developing a reliable method to
predict flank wear during a turning process with the input numeric of tool geometry, depth
of cut, cutting speed, federate, workpiece properties, cutting fluid (Lee et al., 1996). The
cutting force model for self-propelled rotary tool (SPRT) cutting force prediction using
artificial neural networks (ANN) has been described in detail. The inputs to the model
consist of cutting velocity, feed rate, depth of cut and tool inclination angle, while the
outputs are composed of thrust force F,, radial force Fy and main cutting force, F, (Hao et al,,
2006). The presentation of how to develop a robust approach for prediction of residual stress
profile in hard turning for different combinations of material properties, cutting tool
geometries and cutting conditions has been carried out (Umbrello et al, 2007). An
optoelectronic sensor system has been used in conjunction with a multilayered neural
network to predict the flank wear of the cutting tool without interrupting the machining
process (Choudhury et al., 1999). Comparison between several architectures of the multi-
layer feed-forward neural network with a back propagation training algorithm for tool
condition monitoring (TCM) of twist drill wear has also been carried out (Abu-Mahfouz,
2003). Modelling of overcut with neural network analysis for electrochemical surface
grinding (ECG) processes. 72 tests were carried out and a back-propagation neural network
was trained using the first replicate of the experimental data set. Then, the trained network
was tested to be well behaved (Ilhan & Akbay, 1994). A trained multi-layer perceptron to
predict spot-weld quality from electrical process data has been presented. This work has
centred on the spot-welding and weld-welding of aluminium alloys. Electrical data was
sampled in real-time during the spot welding process and the data was processed off-line to
extract up to 270 features from each weld. In this case, a multi-layer perceptron, MLP was
used to predict output for unseen inputs (Osman et al., 1994).

3. Artificial Neural Network

In this research, the ANN model design follows a stepwise method, progressively adding
and comparing possible inputs to output to develop the model. A neural network model

Neural Network Multi Layer Perceptron Modeling For
Surface Quality Prediction in Laser Machining 53

was selected for this work over other techniques because of its ability to model non-linear
system, robustness to noisy data, and generic modeling capability. The ANN models in this
research were developed, trained, and tested with the Intelligent Neural System to an
optimized and satisfactory level of correlation and R-square values before selecting the
network for final prediction. Inputs to the neural networks were the numeric of significant
parameters which affects the quality of the machining surface. To make the process more
accurate and consistent, modeling & simulation is the powerful tool besides experimental
exploration of; gas pressure, cutting speed, focal distance (FD), stand of distance (SOD),
laser power, frequency and duty cycle. In this prediction modeling, the observed numerical
of extreme empirical investigations was used. Since the prediction of the cut quality is our
primary aim, the ANN models were initially optimized based on training and testing over
all the observed data sets. This methodology was adopted in large scale to ensure the results
are met to the satisfactory level of the sponsored industry.

The complete experimental data of 128 sets has been used to train the network. The learning
process was stopped after 500 iterations. The number of neurons and layers are calculated
automatically based on the network training error based on QBPA algorithm with 7-13-1
architecture. The first step of the calculation is to normalize all the raw input data to values
between 3 and 40 as shown in the equation (1).

40
X = (d; = dy,) +3 (1)

max min

The diux and duin are the maximum and minimum inputs and d, is i input. Input of i

neuron on hidden layer / ;, calculated by,

M
Iyi = Z M}xy xi (2)
i=1
M is number of neurons in input layer and w,, is numerical weight value of the connection

between the two neurons. x; is ith normalized output from the input layer. The output of the

ith neuron on hidden layer y; is to be calculated by applying an activation function to the
summed input of that neuron. The output of ith neuron on hidden layer then appear as,

1
Yi= f(lyi) = 4o 00 ®)

The s is the slope of the sigmoid function and the values received by the output layer 7, are
outputs of the hidden and input layers.

M N
=) w.x,+) w.y, 4
i=l1 i=l1

54 Application of Machine Learning

M and N are the numbers of neurons in the input and hidden layers. W, and W are

corresponding weights from the input to the output layer and from hidden layer to output
layer. The actual output in the output layer is calculated by applying the same sigmoid
function as applied for hidden layer.

z=fU,) ®)
Error between the desired and actual output in the output layer is given by

5:;‘ = f(l zi)(]:‘ _Z,-) (6)

Where, 1] is the it training input to the neuron and f 'is the derivative of the sigmoid

function. For each neuron on the hidden layer, the error, o i is

L
5yi = f([yi)Zl 521'sz (7)
Where, the L is number of neurons in the output layer.

4. Methodology

Critical consideration has been taken in designing the methodology of the entire research
work. After a detail discussion and investigation with machining experts of the industry
together with statistical consideration, the seven most-significant parameters were
considered as design parameters in developing the model. The critical methodology of the
entire research is shown in figure 1.

5. Laser Machining

Laser beams are used extensively for a variety of material-removal applications because
they provide highly concentrated energy sources that can be easily transmitted and
manipulated. Micro-mechanical structures are becoming more common with the ever
increasing demand for new micro-fabrication tools. As feature sizes become smaller and
smaller, i.e. typically below 100 pm, conventional mechanical approaches to cutting, drilling
and shaping materials may be replaced with photon or particle beam techniques that enable
geometric features as small as laser wavelengths (smaller than a micrometer) to be created
with a high degree of precision and repeatability. In addition, laser fabrication processes are
non-contact, dry, and clean operations that enable ease of automation (Jimin et al., 2007).
The nonlinear behavior of the laser-material interactions plays a significant role in forming
the final surface profile and the resultant geometry of the machined micro-features. The
need to precisely control a large number of parameters, often with random components,
makes the task of improving the process performance very difficult (Basem et al., 2002).

Neural Network Multi Layer Perceptron Modeling For
Surface Quality Prediction in Laser Machining 55

Moreover, modeling all these factors using conventional, analytical and numerical methods
poses a substantial challenge. In practice, the operator has to perform a number of
experiments to set the appropriate process control parameters related to the laser apparatus,
motion control system, and workpiece material. This trial-and-error approach is costly and
time consuming especially for a small batch production or prototyping, and does not ensure
near optimality with a given set of process conditions and manufacturing objectives. Laser
cutting is used in precision industries as it has the ability to cut complex profiles featuring
extra ordinary shapes, corners, slots, and holes with high degree of repeatability and small
region of heat affected zone (HAZ).

. . The raw materials gf Mangawese oo with the guramiae
Iifaterinl selectioz,
#* Hrocirasses weve selected a5 pev the rptal pieeone

T ectizpition o oo i ¢ PATAILtErE The totd of I process povancters Fxs Soem Dveshgated wWikh
single factar ewprvical gualsd to idomify the most sipgfoms
l PorReters i QUi covaribution
1dertificatin of dedparmeters Seven design pvamatars have been idstfed Based on e par

o cForme et d ange fockn empieol iy,

aetually e deibng weldng ov fwat-treding & compared o the
eraire work cpele Hme.

l l Ity gpeler Doty opele (D0 35 the lenpth of Rme e laser Beaow o5

Pr—
£
]
pra—

Froquancy: Froquesy 15 the stat up Aoution to design the recovery gf
the st 0 the edee fuiion

o
= | O
B2
=) = - @ s Fresmure Gos pressute feve vefers fo e Q55isl BO5 pResne oud OF
@ & o ﬁ B = ﬁ weasured o vt wieve the flow out s froes nemmle arifice. The pas
) n":: = ¢ 5‘ o FRULIpm depends om By CLIENE BT pressive @yl Fy siEe of te
Eﬂ o " E % = | o rwmmle e
. f =
13 = g E E S = Fewer: logher the power Has move anevey 15 producad o afaskey rate
T — o O [} corwiadng &7 faster meling nate @xd fower Hw o qf sdenmity fom
LE E ey cut b exdt oot
& Speed: The cuttig speed By wsing RS g jot & geverally 20% &0 0%
f cxpeen assited cLE speed
l l l .l« l l Simnd gf Digence: I e diawe detween the dop work sufoce aud
It of e voEle.

Foval Digenes: Iocation o the bser oo focused o the worignisce.

Bradetmahes chtaied The wmages of levels weve Selocted based on thy egrertsialed
cperatons @ singe Fockor aralpas.

Based on the levels ardfoctors wigch were criticdly aabeed the

Dresign of exprerimert Design of Expaiman wab conducted with fwo veplications.

Thee Il SO IReRIs Weve caried oLt with paradonged DOF v

Eqpaimertal jdb 1o v Has pesLEs
Reak & dieaseion TR pesuiits were prtfured aod cralymed with the mea average qf

Bethy peplicaionys o the vesiits ave eloborated and dscussed

Fig. 1. Research methodology

56 Application of Machine Learning

In laser machining, surface roughness is one of the most important quality evaluation
factors. The surface roughness is generally dependent upon the properties of the work
material being cut, workpiece thickness, focal length, stand of distance, gas pressure, cutting
speed, etc. including the type of cutting gas. Besides the investigation of CO; laser cutting
parameters investigations are also being studied to further understand the relationship
between the gas and the cutting parameters to obtain a good cutting quality.

6. Experimental Setup and Procedure

This scientific investigation is an industry sponsored project in which the kerf width is to be
predicted by ANN model to reduce the manufacturing cost and further increase the quality
of the end product. In this experiment, seven input parameters were controlled, namely;
stand off distance, focal distance, gas pressure, power, cutting speed, frequency and duty
cycle. A nozzle diameter of 0.5 mm was used with focused beam diameter of 0.25 mm.
Material used in this experiment is grade B, Manganese-Molybdenum pressure vessel plate,
with a nominal gauge thickness of 5.0 mm and Tensile Strength of 690 MPa. The plate was
cut to the dimension about 1.2 meter length and 0.7 meter width. A cut length of 20mm
performed over all the 128 profiles on the plate. Total of 128 experiments have been
conducted based on the DOE matrix. All the experimental data sets and the objective
function have been trained to develop a sound predictive model. A schematic view of laser
machining experimental setup is shown in figure 2.

. Lasar baam
o« K
Gas in —
—» " i
\ Workpiece
L—— l:' Laser beam scanning direction
Milling Table

Fig. 2. Schematic of laser machining

7. Experimental Parameters, Machines and Equipments

The workpiece materials, design parameters, laser machine type and its capability together
with the entire equipments / apparatus used in this research activity are listed on coming
pages. The standards used in data collection and interpretation also stated.

Neural Network Multi Layer Perceptron Modeling For
Surface Quality Prediction in Laser Machining 57

Work Material:

DIN 17155 HII standard

5mm Manganese-Molybdenum
Grade: B

Tensile Strength: 550-690 MPa

Controllable parameters:

Variables Level

Low High
Power (Watt) 2500 2800
Cutting §peed 300 1200
(mm/min)
Frequency (Hz) 800 1000
S.0.D (mm) 1 1.5
F.D (mm) 0 1
Pressure (Bar) 0.7 1
Duty Cycle (%) 40 80

Laser machine:

.

Model: Helius Hybrid 2514 CO2 Laser Cutting Machine

Controller: FANUC Series 160 i-L

Maximum capacity: 4 kW

Laser source that use to create laser beam is CO2 gas. The real ingredient is mixture
of N2 (55%), He (40%) & CO2 (5%) with purity 99.995%.

Pressure = Max 3 bar

Surf tester:

.

Mitutoyo Surftest SJ301
Sampling length range (0.8 ~ 8)

Data collection and interpretations:

.

All the experimental materials, procedures, data collections, analysis, etc. are
conducted as per the standard recommendations of ‘Laser Cutting of Metallic
Materials” German Standard, DIN 2310-5.

The DIN EN ISO 9013:2000 is referred as it gives the terminological definitions and
describes criteria for evaluating the quality of cutting surfaces, quality classifications
and dimensional tolerances. It applies in the case of laser beam cuts from material
thickness of between 0.5mm and 40mm.

8. Result and Discussion

A quick back-propagation algorithm was employed for a multi-layered perceptron. This has
several advantages over the standard BP in that it is much faster in terms of rate of learning
and has the ability of adjusting the learning rate and momentum term automatically. Seven

58 Application of Machine Learning

input nodes (corresponding to power, speed, pressure, focal distance, stand of distance,
frequency, duty cycle) and single output node (corresponding to surface roughness) were
used. The best ANN architecture was selected based on the heuristic search and the selected
intuitively based on the best fitness value (6.804306) with test error of 0.1469 as shown in
table 1 which were developed based on the data live training line as shown in figure 3. The
best developed 7-13-1 architecture with single hidden layer is shown in figure 4. The entire
data sets was trained and tested based on the Dither Randomization approach. The Quick
back propagation coefficient was 1.75 with the learning rate of 0.1 for 500 iterations. The
output error method was based on sum-of-square and for the output activation was logistic.
The training was done with the speed of 834, 999 967 itr/sec. In precise, the result shown by
the network can be considered as very much promising with the prediction error below
0.5%. From the network output, it was found of capable to predict the results of the 128 real
experiments to its most accurately possible. The plot of comparative signatures (figure 5) of
the trained and tested data show clearly the strength of the developed model in predicting
the surface roughness for 5mm Mn-Mo plate by laser cutting. The numeric summary of
these results is presented by Table 2, which indicates the network strength by means of
statistical analysis, R-square and their respective correlation values.

D |.C\rch jtecture |# of Weights |Fitness |Train Erraor |'v'a lidation Error |Test Error |AIC

z o |[7-18-1] 163 54705586 0,133435 0.092195 0.15279% -245,25013¢
3 [F11-1] 100 5540169 0.119474 0.091359 0171225 -380.975247
4 [77-1] &4 5. 731579 0,120591 0,050985 0174472 -452,15644
5 |[7-15-1] 136 56149585 0,125033 0.052011 0.178095 304,97 3415
b [7131] 118 6.804306 0.094149 0.094925 0.146966 365.03911
7oo[r14-1] 127 5.789575 0,11389 0,107203 0172724 -331,157862
d [/-12-1] 14 5. /40 1R U 110456 LS 174154 -ded.EE 1,

Table 1. The summarized data, which were used to support the architecture selection

Manuelly selected retworks

a 50 100 150 200 280 0 3|0 400 450 500
Rerations

Fig. 3. Iteration vs. error characterization aritecture

Neural Network Multi Layer Perceptron Modeling For
Surface Quality Prediction in Laser Machining

59

Fig. 4. The 7-13-1 architecture with 7 inputs, 1 hidden layer and singleton output

Aztual ws Cutpur

t t
C 11 =0 30 10 =) =) 70

=i Q0 100 110
Rowe umber
[— "arget — Owutput < Sekctedtarget © Selected output |

Fig. 5. The comparative signatures of the surface roughness

60

Application of Machine Learning

Target |ourput |aE |larE
rMean:|3.505151 | 3.49s8s1 0.041733 0.011796
Skd Dew:|0. 214555 0.Z200711 0.039975 0.010916
Min:|=.25 3.263643 0.00067 |0.000194
FMax:|+.25 4,037391 0.z16329 |0.050901

Correlation: 0.954416
FR-squared: O0.217F7101

Table 2. Summary of the ANN modeling - Model strength numeric

9. Acknowledgement

The authors would like to thank Mr. Khor Wong Ghee, Ir. Vijayan & Ir. Segaran, for their
sincere guide, advice and expert knowledge sharing in winning this laser machining
research project. The authors are also obligated to sincerely thank the top level management
of Kara Power Pte. Ltd., (Malaysia) for sponsoring the entire research project including
work materials and equipments.

10. References

Abu-Mahfouz, I, (2003). Drilling Wear Detection and Classification Using Vibration Signals
and Artificial Neural Network. Journal of Machine Tools and Manufacture, Vol. 43,
707-720.

Basem F. Yousef, George K., Evgueni V. (2002). Neural network modeling and analysis of
the material removal process during laser machining. International Journal of
Advanced Manufacturing Technology, Vol. 22, 41-53.

Choudhury, S.K. et al. (1999). On-line Monitoring of Tool Wear in Turning Using a Neural
Network. Journal of Machine Tools and Manufacture, Vol. 39, 489-504.

Ezugwu, E.O. et al. (1995). Tool-wear Prediction Using Artificial Neural
International Journal of Materials Processing Technology, Vol 49, 255-264.

Hao, W. et al. (2006). Prediction of Cutting Force for Self-Propelled Rotary Tool Using
Artificial Neural Networks. Journal of Material Processing Technology, Vol. 180, 23-29.

IThan, R.E. and Akbay, K.S. (1994). Modeling of Overcut with Neural Network Analysis for
Electrochemical Surface Grinding (ECG) Processes.” International Journal of
Materials Processing Technology, Vol 38, 125-132.

Jiang, Z. et al. (2007). Prediction on Wear Properties of Polymer Composites with Artificial
Neural Networks. Journal of Composites Science and Technology, Vol. 67, 168-176.

Jimin, C. et al. (2007). Parameter Optimization of Non-Vertical Laser Cutting. Journal of
Advance Manufacturing Technology, Vol. 33, 469-473.

Kuo, R. J. (1988). Intelligent tool wear system through artificial neural networks and fuzzy
modeling. Journal of Artificial Intelligence in Engineering, Vol. 5, 229 - 242.

Lee,].H. et al. (1996). Application of Neural Network Flank Wear Prediction. Journal of
Mechanical System and Signal Processing, Vol. 10, 265-276.

Networks.

Neural Network Multi Layer Perceptron Modeling For
Surface Quality Prediction in Laser Machining 61

Osman, K.A. et al. (1994). Monitoring of Resistance Spot-Welding Using Multi- Layer
Perceptrons.” International Journal of Advanced Manufacturing Technology, Vol. 12,
67-73.

Umbrello, D. et al. (2007). An ANN Approach for Predicting Subsurface Residual Stresses
and the Desired Cutting Conditions during Hard Turning. Journal of Materials
Processing Technology, Vol. 189, 143-152.

Wilkinson, P. et al. (1999). Tool-Wear Prediction from Acoustic Emission and Surface
Characteristics via an Artificial Neural Network. Journal of Mechanical System and
Signal Processing, Vol. 13, 955-966.

62

Application of Machine Learning

Using Learning Automata to Enhance
Local-Search Based SAT Solvers
with Learning Capability

Ole-Christoffer Granmo and Noureddine Bouhmala
University of Agder; Vestfold University College
Norway

1. Introduction

The conflict between exploration and exploitation is a well-known problem in machine learn-
ing and other areas of artificial intelligence. Learning Automata (LA) Thathachar & Sastry
(2004); Tsetlin (1973) capture the essence of this conflict, and have thus occupied researchers
for over forty years. Initially, LA were used to model biological systems, however, in the last
decades they have also attracted considerable interest because they can learn the optimal ac-
tion when operating in unknown stochastic environments. Furthermore, they combine rapid
and accurate convergence with low computational complexity.

Recent applications of LA include allocation of polling resources in web monitoring Granmo
et al. (2007), allocation of limited sampling resources in binomial estimation Granmo et al.
(2007), and optimization of throughput in MPLS traffic engineering Oommen et al. (2007). LA
solutions have furthermore found application within combinatorial optimization problems.
In Gale et al. (1990); Oommen & Ma (1988) a so-called Object Migration Automaton is used
for solving the classical equipartitioning problem. An order of magnitude faster convergence
is reported compared to the best known algorithms at that time. A similar approach has also
been discovered for the Graph Partitioning ProblemOommen & Croix (1996). Finally, the list
organization problem has successfully been addressed by LA schemes. These schemes have
been found to converge to the optimal arrangement with probability arbitrary close to unity
Oommen & Hansen (1987).

In this chapter we study a new application domain for LA, namely, the Satisfiability (SAT)
problem. In brief, we demonstrate how the learning capability of LA can be incorporated
into selected classical local-search based solvers for SAT-like problems, with the purpose of
allowing improved performance by means of learning. Furthermore, we provide a detailed
empirical evaluation of the resulting LA based algorithms, and we analyze the effect that the
introduced learning has on the local-search based solvers.

1.1 The Satisfiability (SAT) Problem

The SAT problem was among the first problems shown to be NP complete and involves deter-
mining whether an expression in propositional logic is true in some model Cook (1971). Thus,
solving SAT problems efficiently is crucial for inference in propositional logic. Further, other
NP complete problems, such as constraint satisfaction and graph coloring, can be encoded as

64 Application of Machine Learning

SAT problems. Indeed, a large number of problems that occur in knowledge-representation,
learning, VLSI-design, and other areas of artificial intelligence, are essentially SAT problems.
Itis accordingly the case that SAT solver improvements will have a direct impact in all of these
areas.

Most SAT solvers use a Conjunctive Normal Form (CNF) representation of propositional logic
expressions. In CNF, an expression in propositional logic is represented as a conjunction of
clauses, with each clause being a disjunction of literals, and a literal being a Boolean variable or
its negation. For example, the expression P V Q consists of one single clause, containing the
two literals P and Q. P is simply a Boolean variable and Q denotes the negation of the Boolean
variable Q. Thus, according to propositional logic, the expression P VV Q becomes True if either
P is True or Q is False.

More formally, a SAT problem can be defined as follows. A propositional expression
o = /\;”:1 ; with m clauses and n Boolean variables is given. Each Boolean variable,
x;,i € {1,...,n}, takes one of the two values, True or False. Each clause Cj,j e{1,...,m},in
turn, is a disjunction of Boolean variables and has the form:

Ci= \/xk \% \/fl ,

kel Ie];

where [, T] c{1,..n},IN Tj = @, and ¥; denotes the negation of x;.

The task is to determine whether there exists an assignment of truth values to the variables
under which ® evaluates to True. Such an assignment, if it exists, is called a satisfying assign-
ment for ®, and @ is called satisfiable. Otherwise, ® is said to be unsatisfiable. Note that
since we have two choices for each of the n Boolean variables, the size of the search space S
becomes |S| = 2". That is, the size of the search space grows exponentially with the number
of variables.

1.2 Chapter Contributions

Among the simplest and most effective algorithms for solving SAT problems are local-search
based algorithms that mix greedy hill-climbing (exploitation) with random non-greedy steps
(exploration). This chapter demonstrates how the greedy and random components of such
local-search algorithms can be enhanced with LA-based stochastic learning. We will use both
pure Random Walk as well as the well-known GSAT algorithm Selman et al. (1994), combined
with Random Walk, as demonstration algorithms. The LA enhancements are designed so that
the actions that the LA chose initially mimic the behavior of GSAT/Random Walk. However,
as the LA explicitly interact with the SAT problem at hand, they learn the effect of the ac-
tions that are chosen, which allows the LA to gradually and dynamically shift from random
exploration to goal-directed exploitation.

We finally provide a detailed comparative analysis of the new LA based algorithms” perfor-
mance, showing the effect that the introduced stochastic learning has on the enhanced local-
search based algorithms. The benchmark set used contains randomized and structured prob-
lems from various domains, including SAT-encoded Bounded Model Checking Problems, Lo-
gistics Problems, and Block World Planning Problems.

1.3 Chapter Organization
The chapter is organized as follows. In section 2 we provide a brief overview of selected
algorithms for the SAT problem. Furthermore, we take a closer look at the Random Walk

Using Learning Automata to Enhance Local-Search
Based SAT Solvers with Learning Capability 65

and GSAT with Random Walk algorithms, before we in section 3 explain how these latter
algorithm can be enhanced with learning capability, using the basic concepts of LA. In section
4, we report the results obtained from testing the resulting new approaches on an extensive
test suit of problem instances. Finally, in section 5 we present a summary of our work and
provide ideas for further research.

2. Methods for SAT

The SAT has been extensively studied due to its simplicity and applicability. The simplicity
of the problem coupled with its intractability makes it an ideal platform for exploring new
algorithmic techniques. This has led to the development of several algorithms for solving
SAT problems which usually fall into two main categories: systematic algorithms and local
search algorithms. We hereby undertake the task of describing selected algorithms from these
two categories.

2.1 Systematic Search Algorithms

Systematic search algorithms are guaranteed to return a satisfying truth assignment to a SAT
problem if one exists and prove that it is unsatisfiable otherwise. The most popular and effi-
cient systematic search algorithms for SAT are based on the Davis-Putnam (DP)Davis & Put-
nam (1960) procedure, which enumerates all possible variable assignments. This is achieved
by constructing a binary search tree, which is expanded until one either finds a satisfying truth
assignment or one can conclude that no such assignment exists. In each recursive call of the
algorithm the propositional formula @ is simplified by means of unit propagation. That is, a
Boolean variable x; is selected according to a predefined rule from the n Boolean variables
available. Next, all the clauses that include the literal x; are found, and the literal is deleted
from all of these clauses. Let C = {Cy, Cy, ...Cy} be the set of k(<= m) clauses obtained from
this process. Similarly, let D = {D1,D;,...D,} denotes the set of /(<= m) clauses obtained
after deleting the literal ¥; in the same manner. Moreover, let R = {Ry, Ry, o R(m_k—r) } repre-
sent the set (m-k-r) of clauses that does not include any of these two literals. Then, the original
proportional formula is reduced to:

chimpler =

kK r (m—r—k)
/\/\(Aiij)] N\ R
I=1

i=1j=1

Note that the propositional formula Dsimpier does not contain the Boolean variable x; because
none of C, D or R does (by way of construction). If thus an empty clause is obtained, the
current partial assignment cannot be extended to a satisfying one and backtracking is used to
proceed with the search; if an empty formula is obtained, i.e., all clauses are satisfied, the algo-
rithm returns a satisfying assignment. If neither of these two situations occur, an unassigned
variable is chosen and the algorithm is called recursively after adding a unit clause contain-
ing this variable and its negation. If all branches are explored and no satisfying assignment
has been reached, the formula is found to be unsatisfiable. For efficiency reasons, the search
tree is explored in depth first search manner. Since we are only interested in whether the SAT
problem is satisfiable or not, we stop as soon as the first solution is found. The size of the
search tree depends on the branching rule adopted (how to select the branch variable) thereby
affecting the overall efficiency of DP. This has led to the development of various improved DP
variants which differ in the schemes employed to maximize the efficiency of unit propagation
in their branching rules.

66 Application of Machine Learning

2.2 Stochastic Local Search Algorithms (SLS)

The above indicated class of algorithms can be very effective on specific classes of problems,
however, when problems scales up, their solution effectiveness typically degrades in an ex-
ponential manner. Indeed, due to their combinatorial explosive nature, large and complex
SAT problems are hard to solve using systematic search algorithms. One way to overcome
the combinatorial explosion is to abandon the goal of systematically conducting a complete
search.

2.2.1 Local Search as Iterative Optimization

Local search algorithms are based on what is perhaps the oldest optimization method — trial
and error. Typically, they start with an initial assignment of truth values to variables, ran-
domly or heuristically generated. The SAT problem can then be reformulated as an iterative
optimization problem in which the goal is to minimize the number of unsatisfied clauses (the
objective function). Thus, the optimum is obtained when the value of the objective function
equals zero, which means that all clauses are satisfied. During each iteration, a new value
assignment is selected from the "neighborhood" of the present one, by performing a "move".
Most local search algorithms use a 1-flip neighborhood relation, which means that two truth
value assignments are considered to be neighbors if they differ in the truth value of only one
variable. Performing a move, then, consists of switching the present value assignment with
one of the neighboring value assignments, e.g., if the neighboring one is better (as measured
by the objective function). The search terminates if no better neighboring assignment can be
found. Note that choosing a fruitful neighborhood, and a method for searching it, is usually
guided by intuition — theoretical results that can be used as guidance are sparse.

2.2.2 GSAT, GSAT with Random Walk, and WalkSAT

One of the most popular local search algorithms for solving SAT is GSAT Selman et al. (1992).
Basically, GSAT begins with a random generated assignment of truth values to variables, and
then uses a so-called steepest descent heuristic to find the new variable-value assignment,
i.e., the 1-flip neighbor with the least number of unsatisfied clauses is always selected as the
new truth assignment. After a fixed number of such moves, the search is restarted from a
new random assignment. The search continues until a solution is found or a fixed number
of restarts have been performed. An extension of GSAT, referred to as random-walk Selman
et al. (1994) has been realized with the purpose of escaping from local optima. In a random
walk step, a randomly unsatisfied clause is selected. Then, one of the variables appearing
in that clause is flipped, thus effectively forcing the selected clause to become satisfied. The
main idea is to decide at each search step whether to perform a standard GSAT or a random-
walk strategy with a probability called the walk probability. Another widely used variant of
GSAT is the WalkSAT algorithm originally introduced in McAllester et al. (1997). It first picks
randomly an unsatisfied clause, and then, in a second step, one of the variables with the
lowest break count, appearing in the selected clause, is randomly selected. The break count of
a variable is defined as the number of clauses that would be unsatisfied by flipping the chosen
variable. If there exists a variable with break count equals to zero, this variable is flipped,
otherwise the variable with minimal break count is selected with a certain probability. It turns
out that the choice of unsatisfied clauses, combined with the randomness in the selection of
variables, enable WalkSAT and GSAT with random walk to avoid local minima and to better
explore the search space.

Using Learning Automata to Enhance Local-Search
Based SAT Solvers with Learning Capability 67

2.3 Weight-based Schemes

Recently, new algorithms Gent & T.Walsh (1993); Glover (1989); Hansen & Jaumand (1990);
I.Gent & Walsh (1995) have emerged using history-based variable selection strategies in order
to avoid flipping the same variable repeatedly. Apart from GSAT and its variants, several
clause weighting based SLS algorithms Cha & Iwama (1995)Frank (1997) have been proposed
to solve SAT problems. The key idea is to associate the clauses of the given CNF formula with
weights. Although these clause weighting SLS algorithms differ in the manner clause weights
should be updated (probabilistic or deterministic), they all choose to increase the weights of all
the unsatisfied clauses as soon as a local minimum is encountered. In essence, clause weight-
ing acts as a diversification mechanism rather than a way of escaping local minima. Finally,
many other generic SLS algorithms have been applied to SAT. These includes techniques such
as Simulated Annealing Spears (1993), Evolutionary Algorithms A.E.Eiben & van der Hauw
(1997), and Greedy Randomized Adaptive Search Procedures Johnson & Trick (1996).

3. Solving SAT Problems Using Learning Automata

This section demonstrates how the greedy and random components of local-search algorithms
can be enhanced with LA-based stochastic learning. We will use both pure Random Walk
and GSAT with Random Walk, as demonstration algorithms. We start by defining the basic
building block of our scheme — the Learning SAT Automaton — before we propose how several
such LA can form a game designed to solve SAT problems.

3.1 A Learning SAT Automaton

Generally stated, a learning automaton performs a sequence of actions on an environment. The
environment can be seen as a generic unknown medium that responds to each action with some
sort of reward or penalty, perhaps stochastically. Based on the responses from the environment,
the aim of the learning automaton is to find the action that minimizes the expected number
of penalties received. Figure 1 illustrates the interaction between the learning automaton and
the environment. Because we treat the environment as unknown, we will here only consider
the definition of the learning automaton. A learning automaton can be defined in terms of a

Automaton
o G(9,) Action
¢t+1 by, Be)

101,0,...,0s}

{0, 0,00} o,

{B1,B2.....Pm}

Bt

Environment |<— |

Response

Fig. 1. A learning automaton interacting with an environment

68 Application of Machine Learning

quintuple Narendra & Thathachar (1989):
(@8 F(,),6(,)}

@ = {¢1,¢2,...,¢s} is the set of internal automaton states, « = {aj,ap,...,a,} is the set
of automaton actions, and, é = {B1,B2, ..., Bm} is the set of inputs that can be given to the
automaton. An output function a; = G[¢;] determines the next action performed by the
automaton given the current automaton state. Finally, a transition function ¢;1 = F[¢s, Bt]
determines the new automaton state from:

1. The current automaton state.

2. The response of the environment to the action performed by the automaton.
Based on the above generic framework, the crucial issue is to design automata that can learn
the optimal action when interacting with the environment. Several designs have been pro-
posed in the literature, and the reader is referred to Narendra & Thathachar (1989); Thathachar
& Sastry (2004) for an extensive treatment.
We now target the SAT problem, and our goal is to design a team of Learning Automata
that seeks the solution of SAT problems. To achieve this goal, we build upon the work of
Tsetlin and the linear two-action automaton Narendra & Thathachar (1989); Tsetlin (1973) as
described in the following.
First of all, for each literal in the SAT problem that is to be solved, we construct an automaton
with

e Statess ® ={-N-1,—-N,...,—-1,0,...,N—2,N}.

e Actions: o = {True, False}.

e Inputs: B = {reward, penalty}.
Figure 2 specifies the G and F matrices. The G matrix can be summarized as follows. If the

P e N e T

ST G-) o=) Geo

"""""""""""" TN~

h False 3 True q

------------------------- = Reward
— = Penalty

Fig. 2. The state transitions and action selection of the Learning SAT Automaton

automaton state is positive, then action True will be chosen by the automaton. If on the other
hand the state is negative, then action False will be chosen. Note that since we initially do
not know which action is optimal, we set the initial state of the Learning SAT Automaton
randomly to either "-1” or "0’

The state transition matrix 7 determines how learning proceeds. As seen in the graph repre-
sentation of F found in the figure, providing a reward input to the automaton strengthens the
currently chosen action, essentially by making it less likely that the other action will be chosen
in the future. Correspondingly, a penalty input weakens the currently selected action by mak-
ing it more likely that the other action will be chosen later on. In other words, the automaton
attempts to incorporate past responses when deciding on a sequence of actions.

Using Learning Automata to Enhance Local-Search
Based SAT Solvers with Learning Capability 69

3.2 Learning Automata Random Walk (LARW)

Procedure learning_automata_random_walk()

Begin
/* Initialization */
Fori:=1Ton Do
/* The initial state of each automaton is set to either ’-1" or '1” */
state[i] = random_element({—1,0});
/* And the respective literals are assigned corresponding truth values */
If state[i] == -1 Then x; = False Else x; = True;

/* Main loop */
While Not stop(C) Do
/* Draw unsatisfied clause randomly */
Ci= random_unsatisfied_clause(C);
/* Draw clause literal randomly */
i = random_element([; U I});
/* The corresponding automaton is penalized for choosing the “wrong” action */
Ifie I And state[i] < N — 1 Then
state[i]++;
/* Flip literal when automaton changes its action */
If state[i] == 0 Then
flip(x;);
ElseIf i € I; And state[i] > —N Then
state[i] ——;
/* Flip literal when automaton changes its action */
If state[i] == -1 Then
flip(x;);

/* Draw satisfied clause randomly */

C; = random_satisfied_clause(C);

/* Draw clause literal randomly */

i = random_element(I; U I;);

/* Reward corresponding automaton if it */

/* contributes to the satisfaction of the clause */

Ifie I And state[i] > 0 And state[i] < N — 1 Then
state[i]++;

ElseIfi € I_] And state[i] < 0 And state[i] > —N Then
state[i]——;

EndWhile
End

Fig. 3. Learning Automata Random Walk (LARW) Algorithm

70 Application of Machine Learning

In addition to the definition of the LA, we must define the environment that the LA interacts
with. Simply put, the environment is a SAT problem as defined in Section 1. Each variable of
the SAT problem is assigned a dedicated LA, resulting in a team of LA. The task of each LA is
to determine the truth value of its corresponding variable, with the aim of satisfying all of the
clauses where that variable appears. In other words, if each automaton reaches its own goal,
then the overall SAT problem at hand has also been solved.

3.3 Learning Automata Random Walk (LARW)

With the above perspective in mind, we will now present the details of the LARW that we
propose. Figure 3 contains the complete pseudo-code for solving SAT problems, using a team
of LA. As seen from the figure, the LARW corresponds to an ordinary Random Walk, however,
both satisfied and unsatisfied clauses are used in the search. Furthermore, the assignment
of truth values to variables is indirect, governed by the states of the LA. At the core of the
LARW is a punishment/rewarding scheme that guides the team of LA towards the optimal
assignment. In the spirit of automata based learning, this scheme is incremental, and learning
is performed gradually, in small steps. To elaborate, in each iteration of the algorithm, we
randomly select a single clause. A variable is randomly selected from that clause, and the
corresponding automaton is identified. If the clause is unsatisfied, the automaton is punished.
Correspondingly, if the clause is satisfied, the automaton is rewarded, however, only if the
automaton makes the clause satisfied. As also seen, the algorithm alternates between selecting
satisfied and unsatisfied clauses.

3.4 Learning Automata GSATRW(LA-GSATRW)

Based on the same underlying principles that motivates the LARW, we will now present the
details of the LA-GSATRW that we propose. Figure 4 contains the complete pseudo-code
for solving SAT problems, using a team of LA. As seen from the figure, an ordinary GSATRW
strategy is used to penalize an LA when it “disagrees” with GSATRW, i.e., when GSATRW and
the LA suggest opposite truth values. Additionally, we use an “inverse” GSATRW strategy for
rewarding an LA when it agrees with GSATRW. Note that as a result, the assignment of truth
values to variables is indirect, governed by the states of the LA. Again, at the core of the LA-
GSATRW algorithm is a punishment/rewarding scheme that guides the team of LA towards
the optimal assignment. However, in this algorithm, the guidance is based on GSATRW rather
than pure RW.

3.5 Comments to LARW and LA-GSATRW

Like a two-action Tsetlin Automaton, our proposed LA seeks to minimize the expected num-
ber of penalties it receives. In other words, it seeks finding the truth assignment that mini-
mizes the number of unsatisfied clauses among the clauses where its variable appears.

Note that because multiple variables, and thereby multiple LA, may be involved in each
clause, we are dealing with a game of LA Narendra & Thathachar (1989). That is, multiple
LA interact with the same environment, and the response of the environment depends on the
actions of several LA. In fact, because there may be conflicting goals among the LA involved in
the LARW, the resulting game is competitive. The convergence properties of general compet-
itive games of LA have not yet been successfully analyzed, however, results exists for certain
classes of games, such as the Prisoner’s Dilemma game Narendra & Thathachar (1989).

In our case, the LA involved in the LARW are non-absorbing, i.e., every state can be reached
from every other state with positive probability. This means that the probability of reaching

Using Learning Automata to Enhance Local-Search
Based SAT Solvers with Learning Capability

71

Procedure learning_automata_gsat_random_walk()
Input : A set of clauses C; Walk probability p ;

Output : A satisfying truth assignment of the clauses, if found;

Begin
/* Initialization */
Fori:=1Ton Do
/* The initial state of each automaton is set to either ’-1" or '1” */
state[i] = random_element({—1,0});
/* And the respective literals are assigned corresponding truth values */
If state[i] == -1 Then x; = False Else x; = True;

/* Main loop */
While Not stop(C) Do
If rnd(0,1) < p Then

/* Draw unsatisfied clause randomly */

C; = random_unsatisfied_clause(C);

/* Draw clause literal randomly */

i = random_element(I; U I;);

Else

/* Randomly select one of the literals whose flipping

minimizes the number of unsatisfied clauses */

i = random_element(Best_Literal_Candidates(C));
/* The corresponding automaton is penalized for choosing the “wrong” action */
If i € [; And state[i] < N — 1 Then

state[i]++;

/* Flip literal when automaton changes its action */

If state[i] == 0 Then

flip(x;);
Else If i € [; And state[i] > —N Then

state[i]——;

/* Flip literal when automaton changes its action */

If state[i] == -1 Then

flip(x;);

If rnd(0,1) < p Then
/* Draw satisfied clause randomly */
Cj = random_satisfied_clause(C);
/* Draw clause literal randomly */
i = random_element(I; U I;);

Else
/* Randomly select one of the literals whose flipping

maximizes the number of unsatisfied clauses */

i = random_element(Worst_Literal_Candidates(C));

/* Reward corresponding automaton if it */

/* contributes to the satisfaction of the clause */

If i € [; And state[i] > 0 And state[i] < N — 1 Then
state[i]++;

Else If i € I; And state[i] < 0 And state[i] > —N Then
state[i]——;

EndWhile
End

Fig. 4. Learning Automata GSAT Random Walk Algorithm

72 Application of Machine Learning

the solution of the SAT problem at hand is equal to 1 when running the game infinitely. Also
note that the solution of the SAT problem corresponds to a Nash equilibrium of the game.

In order to maximize speed of learning, we initialize each LA randomly to either the state
-1 or '0’. In this initial configuration, the variables will be flipped relatively quickly because
only a single state transition is necessary for a flip. Accordingly, the joint state space of the
LA is quickly explored in this configuration. Indeed, in this initial configuration both of the
algorithms mimics their respective non-learning counterparts. However, as learning proceeds
and the LA move towards their boundary states, i.e., states -N" and 'N-1’, the flipping of
variables calms down. Accordingly, the search for a solution to the SAT problem at hand
becomes increasingly focused.

4. Empirical Results

We here compare LARW and LA-GSATRW with their non-learning counterparts — the Ran-
dom Walk (RW) and the GSAT with Random Walk (GSATRW) schemes. A main purpose of
this comparison is to study the effect of the introduced stochastic learning. The benchmark
problems we used to achieve this contain both randomized and structured problems from var-
ious domains, including SAT-encoded Bounded Model Checking Problems, Graph Coloring
Problems, Logistics Problems, and Block World Planning Problems.

4.1 LARW Vs RW

As a basis for the empirical comparison of RW and LARW, we selected a benchmark
test suite of 3-colorable graphs that shows so-called phase transition. All the instances
are known to be hard and difficult to solve and are available from the SATLIB website
(http:/ /www.informatik.tu-darmstadt.de/ AI/SATLIB). The benchmark instances we use are
satisfiable and have been used widely in the literature.

Note that due to the stochastic nature of LARW, the number of flips required for solving a SAT
problem varies widely between different runs. Therefore, for each problem, we run LARW
and RW 100 times each, with a cutoff (maximum number of flips) which is sufficient (107) to
guarantee a success rate close to 100%.

4.1.1 Search Trajectory

The manner in which each LA converges to an assignment is crucial for better understanding
LARW'’s behavior. In Figure 5 we show how the best and current assignment progress during
the search using a random 3-SAT problem with 150 variables and 645 clauses, taken from the
SAT benchmark library.

The plot to the left in Figure 5 suggests that problem solving with LARW happens in two
phases. In the first phase, which corresponds to the early part of the search (the first 5% of the
search), LARW behaves as a hill-climbing method. In this phase, which can be described as a
short one, up to 95% of the clauses are satisfied. The currently best score climbs rapidly at first,
and then flattens off as we mount a plateau, marking the start of the second phase. The plateau
spans a region in the search space where flips typically leave the best assignment unchanged.
The long plateaus becomes even more pronounced as the number of flips increases. More
specifically, the plateau appears when trying to satisfy the last few remaining clauses.

To further investigate the behavior of LARW once on the plateau, we looked at the corre-
sponding average state of the LA as the search progresses. The plot to the right in Figure
5 shows the resulting observations. At the start of plateau, search coincides in general with
an increase in the average state. The longer the plateau runs, the higher the average state

Using Learning Automata to Enhance Local-Search
Based SAT Solvers with Learning Capability 73

650 T T T 6

#Clauses Satisfied
Average State

t
Optimal -

560

1 10 100 1000 10000 “o 500 1000 1500 2000 2500 3000
#Flips. #Flips

Fig. 5. (Left) LARW's search space on a 150 variable problem with 645 clauses (uf150-645).
Along the horizontal axis we give the number of flips, and along the vertical axis the number
of satisfied clauses. (Right) Average state of LA. Horizontal axis gives the number of flips, and
the vertical axis shows the average state of automaton.

becomes. An automaton with high average state needs to perform a series of actions before
its current state changes to either —1 or 0, thereby making the flipping of the corresponding
variable possible. The transition between each plateau corresponds to a change to the region
where a small number of flips gradually improves the score of the current solution ending
with an improvement of the best assignment. The search pattern brings out an interesting
difference between LARW and the standard use of SLS. In the latter, one generally stops the
search as soon as no more improvements are found. This can be appropriate when looking
for a near-optimal solution. On the other hand, when searching for a global maximum (i.e.,
a satisfying assignment) stopping when no flip yields an immediate improvement is a poor
strategy.

4.1.2 Run-Length-Distributions (RLDs)

As an indicator of the behavior of the algorithm on a single instance, we choose the median
cost when trying to solve a given instance in 100 trials, and using an extremely high cutoff
parameter setting of Maxsteps = 107 in order to obtain a maximal number of successful tries.
The reason behind choosing the median cost rather than the mean cost is due to the large
variation in the number of flips required to find a solution. To get an idea of the variability of
the search cost, we analyzed the cumulative distribution of the number of search flips needed
by both LARW and RW for solving single instances. Due to non-deterministic decisions in-
volved in the algorithms (i.e., initial assignment, random moves), the number of flips needed
by both algorithms to find a solution is a random variable that varies from run to run. More
formally, let k denotes the total number of runs, and let f'(j) denotes the number of flips for
the j-th successful run (i.e, run during which a solution is found) in a list of all successful runs,
sorted according to increasing number of flips, then the cumulative empirical RLD is defined

by P(f'(j) < f) = \{/IL}()SJ(}\ For practical reasons we restrict our presentation here to the
instances corresponding to small, medium, and large sizes from the underlying test-set.

Figures 6 and 7 show RLDs obtained by applying RW and LARW to individual SAT-encoded
graph coloring problem instances. As can be seen from the leftmost plot in Figure 6, we
observe that on the small size instance, the two algorithms show no cross-over in their corre-

74 Application of Machine Learning

" Random Walk —
LA Random Walk N=2 -------
09 | LARandom Wall
LA Random Wall
LA Random Wall

k N=:
k N=
k N=t
k N=

g -
5
8

Fraction Solved
@
Fraction Solved

,,,,,,,,,,, LA Random Walk N=6 -~~~

0 e L L e S T L L L L
128 256 512 1024 2048 4096 8192 16384 32768 65536 1024 2048 92 16384 32768 65536 131072 262144 5242881.04858e¢
#Flips. #Flips

Fig. 6. (Left) Cumulative distributions for a 90-variable graph coloring problems with 300
clauses (flat90-300). (Right) Cumulative distribution for a 150-variable graph coloring problem
with 545 clauses (flat375-1403). Along the horizontal axis we give the number of flips, and
along the vertical axis the fraction of problems solved for different values of N.

LA Random Walk N=4
LA Random Wal

Fraction Solved

o 2 L L L L L L L L L
0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07
#Flips

Fig. 7. Cumulative distributions for a 375-variable graph coloring problem with 1403 clauses
(flat375-1403). Along the horizontal axis we give the number of flips, and along the vertical
axis the fraction of problems solved for different values of N.

sponding RLDs. This provides evidence for the superiority of LARW compared to RW (i.e,
N = 1) as it gives consistently higher success probabilities, regardless of the number of search
steps.

On the medium sized instance, to the right in Figure 6, we observe a stagnation behavior with
a low asymptotic solution probability corresponding to a value around 0.3. As can be easily
seen, both methods show the existence of an initial phase below which the probability for
finding a solution is 0. Both methods start the search from a randomly chosen assignment
which typically violates many clauses. Consequently, both methods need some time to reach
the first local optimum which possibly could be a feasible solution.

The plot in Figure 7 shows that the performance of RW for the large instance (flat375-1403)
degrades. Indeed, the probability of finding a feasible solution within the required number of
steps is 0. Further, note that the distance between the minimum and the maximum number
of search steps needed for finding a solution using RW is higher compared to that of LARW

Using Learning Automata to Enhance Local-Search
Based SAT Solvers with Learning Capability 75

and increases with the hardness of the instance. The learning automaton mechanism pays off
as the instance gets harder. Finally, observe that the probability of success gets higher as N
increases, to a certain level.

4.1.3 Mean Search Cost

In this section, we focus on the behavior of the two algorithms using 100 instances from a
test-set of small and medium sized problem instances. We chose not to include the plot for
the large instance (flat375-1403) because RW was incapable of solving it during the 100 trials.
For each instance the median search cost (number of local search steps) is measured and we
analyze the distribution of the mean search cost over the instances from each test-set. The
different plots show the cumulative hardness distributions produced by 100 trials on 100 in-
stances from a test-set.

Fraction Solved
&

Fraction Solved

Random Walk

Random Walk j
LA Random Walk N=6 —-——- J LA Random Walk N=3 —-—--

0
0 500000 1e+06 15e+06 2e+06 25+06 3e+06 3.5e+06 4e+06 4.5e+06 5e+06 0 20000 40000 60000 80000 100000 120000
Mean Flips Mean Flips

Fig. 8. (Left) Hardness distribution across test-set flat150-545. (Right) Hardness distribution
across test-set for flat90-300. Along the horizontal axis we give the median number of flips
per solution, and along the vertical axis the fraction of problems solved.

Several observations can be made from the plots in Figure 8, which show the hardness dis-
tributions of the two algorithms for SAT-encoding graph coloring problem instances. There
exists no cross-overs in the plots in either of the figures, which makes LARW the clear win-
ner. Note also RW shows a higher variability in search cost compared to LARW between the
instances of each test-set.

The distributions of the two algorithms confirm the existence of instances which are harder
to solve than others. In particular, as can be seen from the long tails of these distributions,
a substantial part of problem instances are dramatically harder to solve with RW than with
LARW. The harder the instance, the higher the difference between the average search costs of
two algorithms (a factor of approximately up to 50). This can be explained by the fact that
the automaton learning mechanism employed in LARW offers an efficient way to escape from
highly attractive areas in the search space of hard instances leading to a higher probability of
success, as well as reducing the average number of local search steps needed to find a solution.
The empirical hardness distribution of SAT-encoded graph coloring problems to the right in
Figure 8 shows that it was rather easy for both algorithms to find a feasible solution in each
trial across the test set flat90-300, with LARW showing on average a lower search cost within a
given probability compared to RW. The plot reveals the existence of some instances on which
RW suffers from a strong search stagnation behavior.

76 Application of Machine Learning

The plot located to the left in Figure 8 shows a striking poor average performance of RW com-
pared to LARW on the test set flat150-545. Conversely, LARW shows a consistent ability to
find solutions across the instances on this test set. For LARW, we observe a small variability
in search cost indicated by the distance between the minimum and the maximum number of
local search steps needed to find a solution. The differences in performance between these
two algorithms can be characterized by a factor of about 10 in the median. The performance
differences observed between the two algorithms for small size instances are still observable
and very significant for medium size instances. This suggests that LARW in general is consid-
erably more effective for larger instances.

4.2 LA-GSATRW Vs GSATRW

Since LA-GSATRW is more sophisticated and far more effective than LARW, we used larger
and harder problem instances to evaluate LA-GSATRW. In brief, we selected a benchmark
suite from different domains including problem instances from the Bejing SAT competition
held in 1996. Again, due to the random nature of the algorithms, when comparing LA-
GSATRW with GSATRW, we run the algorithms 100 times using a maximum number of flips
of 107 as a stopping criteria (guaranteeing a success rate close to 100%).

4.2.1 Search Space

The manner in which LA converges on assignment is crucial to a better understanding of LA-
GSATRW behaviour. In Figure 9, we show how the best found score and the current score
progress during the search on a SAT-encoded logistics problem.

05 T e

Average State

rrrrrrrrrr

0.955
1

L L L 2 L L L L
00 1000 10000 100000 1e+06 0 20000 40000 60000 80000 100000
#Flips #Flips

Fig. 9. (Left) LA-GSATRW's search space on a 828 variable problem with 6718 clauses (logis-
tics.a). Along the horizontal axis we give the number of flips, and along the vertical axis the
number of satisfied clauses. (Right) Average state of LA. Horizontal axis gives the number of
flips, and the vertical axis shows the average state of automaton.

The leftmost plot suggests that problem solving with LA-GSATRW also happens in two
phases. Again, in the first phase which corresponds to the early part of the search (the first
5% of the search) LA-GSATRW behaves as a hill-climbing method. In this phase, which can
be described as a short one, up to 95% of the clauses are satisfied. The best obtained score
climbs rapidly at first, and then flattens off as we reach a plateau, marking the start of the sec-
ond phase. The plateau spans a region in the search space where flips typically leave the best

Using Learning Automata to Enhance Local-Search
Based SAT Solvers with Learning Capability 77

assignment unchanged. The long plateaus becomes even more pronounced as the number of
flips increases, and occurs more specifically in trying to satisfy the last few remaining clauses.
To further investigate the behaviour of LA-GSATRW once on the plateau, we looked at the
corresponding average state of automaton as the search progresses. The rightmost plot in
Figure 9 shows the reported observations. The start of plateau search coincides in general with
an increase in the average state. The longer plateau, the higher average state. An automaton
with high average state needs to perform a series of actions before its current state changes
to either —1 or 0, thereby making the flipping of the corresponding variable possible. The
transition between each plateau corresponds to a change to the region where a small number
of flips gradually improves the score of the current solution ending with an improvement of
the best assignment.

4.2.2 Run-Length-Distributions (RLD)

In order to observe the variability of the search cost of GSATRW and LA-GSATRW, we ana-
lyzed the cumulative distribution of the number of search flips needed by the algorithms, as
defined in Section 4.1.2.

rrrrrrrrrrrrr J—
v ,,xx
09 T D
2
o
o
08 08 3@‘%
i
o7 o7 gf
»

5 ol g 06
2 2
3 3
5 0% e 05
H 3
g g
£ ooaf £ oa

03 03

02t 02

0.1 1 01 g

LA GSAT wiRandom Walk (N=2) —+— LA GSAT wiRandom Walk (N=2) —+—
. . GSAT wiRandom Walk —-x— . . GSAT wiRandom Walk —x-—-

0 500000 16406 1.5¢406 20+06 2.50+0¢ 0 10406 20406 3e+06 4e+06 5e+06 0e+06 7e+06 B8e+06
#Flips. #Flips

Fig. 10. Cumulative distributions for a 600-variable random problem with 2550 clauses (f600).
(Right) Cumulative distribution for a 1000-variable random problem with 4250 clauses (£1000).
Along the horizontal axis we give the number of flips, and along the vertical axis the the
success rate.

Figures 10 and 11 show RLDs obtained by applying LA-GSATRW and GSATRW to individual
large random problems. As can be seen from the three plots, we observe that both algo-
rithms reach a success rate of 100% for f600 and f1000. However, on the large problem 2000,
GSATRW shows a low asymptotic solution probability corresponding to 0.37 compared to
0.45 for LA-GSATRW. Note also, that there is a substantial part of trials that are dramatically
hard to solve which explains the large variability in the length of the different runs of the
two algorithms. Again, the algorithms show the existence of an initial phase below which the
probability for finding a solution is 0. Both methods start the search from a randomly chosen
assignment which typically violates many clauses. Consequently, both methods need some
time to reach the first local optimum which possibly could be a feasible solution. The two al-
gorithms show no cross-over in their corresponding RLDs even though it is somewhat hard to
see for 600 but it becomes more pronounced for £1000 and f2000. The median search cost for
LA-GSATRW is 3%, 29%, and 17% of that of GSATRW for 600, f1000 and f2000 respectively.
The three plots provides evidence for the superiority of LA-GSATRW compared to GSATRW

78 Application of Machine Learning

Fraction Solved

LA GSAT wiRandom Walk (N=2) —+—
GSAT wiRandom Walk -----

0 L L L L L
0 1et06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 Be+06 9e+06 1e+07
#Flips

Fig. 11. (Left) Cumulative distributions for a 2000-variables random problem with 8500
clauses (f2000). Along the horizontal axis we give the number of flips, and along the verti-
cal axis the success rate.

as it gives consistently higher success probabilities while requiring fewer search steps than
GSATRW.

,,,,,,,,,,,,,,,,,,,,,,,

Fraction Solved
Fraction Solved

LA GSAT w/Random Walk (N=2) —— LA GSAT w/Random Walk (N=2) —+—
SSAT w/Random Walk —-x--- GSAT wiRandom Walk —x---

0 0
0 500000 1e 06 15e 06 Ze 06 25e 06 3e 06 35606 4e+06 4.5e+0¢ 0 suuuuu 1e 06 wss 06 ze 06 25e 06 Je 06 35e+06 4e+06 4.5e+06
#Flips. #Flips

Fig. 12. (Left) Cumulative distributions for a 228-variable logistics problem with 6718 clauses
(logistics.a). (Right) Cumulative distribution for a 843-variable logistics problem with 7301
clauses (logistics.b). Along the horizontal axis we give the number of flips, and along the
vertical axis the success rate.

Figure 12 and 13 contains similar plots for SAT-encoded logistics problems. However, in this
case it is difficult to claim a clear winner among the algorithms. The number of search steps
varies between the different trials and is significantly higher with GSATRW than that of LA-
GSATRW. However, note that the median search cost for LA-GSATRW is 4%, 29%, 34% and
51% of that of GSATRW for Logistics-d,Logistics-b,Logistics-c, and Logistics-a, respectively.
We now turn to single SAT-encoded instances from the Blocks World Planning domain. The
crossing of the two RLDs at different points, as shown in figures 1516, indicates that there is
no complete dominance of one algorithm over the other when applied to the same problem.
Looking at figure 15 and taking the smallest problem (medium) as an example, we notice that
for smaller cutoff points, GSATRW achieves higher solution probabilities, while for larger
cutoff points LA-GSATRW shows increasingly superior performance.

Using Learning Automata to Enhance Local-Search
Based SAT Solvers with Learning Capability 79

Fraction Solved
@
Fraction Solved

LA GSAT w/Random Walk (N=2) —— LA GSAT wiRandom Walk (N=2) —+—
GSAT wiRandom Walk ——-x-—- GSAT w/Random Walk -----

0 L L L L L 0 L L L L
0 500000 1e+06 15e+06 20406 25e+06 3e+06 3.5e+06 4e+06 4.5e+06 5e+06 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8¢+06
#Flips. #Flips

Fig. 13. (Left) Cumulative distributions for a 1141-variable logistics problem with 10719
clauses (logistics.c)). (Right) Cumulative distribution for a 4713-variable logistics problem
with 21991 clauses (logistics.d). Along the horizontal axis we give the number of flips, and
along the vertical axis the the success rate.

Fraction Solved
Fraction Solved

LA GSAT w/Random Walk (N=2) —— LA GSAT w/Random Walk (N=2) —+—
| GSAT wiRandom Walk -—x—) GSAT wiRandom Walk -

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 0 20000 40000 60000 80000 100000 120000 140000
#Flips. #Flips

Fig. 14. (Left) Cumulative distribution for a 116-variable Blocks World problem with 953
clauses (medium). (Right) Cumulative distribution for a 459 -variable Blocks World problem
with 4675 clauses (bw-large.a). Along the horizontal axis we give the number of flips, and
along the vertical axis the fraction of problems solved for different values of N.

It may be noted that GSATRW performs better than LA-GSATRW for the smallest problem
(up to 49% more steps than LA-GSATRW). However this gap is fairly small and is within 5%
for medium sized problems (bw-large.a, huge). On the other hand, for the larger problem
bw-large.b, the situation is reversed. GSATRW requires 16% more steps than LA-GSATRW.

An interesting observation that can be made from the above discussed plots is the ability of
both algorithms to show an improved performance when applied to structured problems,
such as SAT-encoded Blocks world and logistics problems. Taking for instance the large Block
world problem bw-large (1087 variables, 13772 clauses), the median search cost of both meth-
ods is around 95% better compared to that measured for Random-3-SAT problem 1000 (1000
variables, 4250 clauses). Finally, the plots in Figures 17 and 18 explore the behaviour of the
RLDs when for both algorithms when applied to BMC problems. Both algorithms reach a
success rate of 100% with the one exception that,for the medium size problem (bmc-ibm3),
the success rate was around 95%. Returning to Figure 17 then, for the smaller problem (bmc-

80 Application of Machine Learning

ibm-2), GSATRW dominates LA-GSATRW on the major part of the runs (i.e, approx 80%), as
it reaches high solution probabilities while requiring lower search cost. On the other hand, for
the medium sized problem (bmc-ibm-3), the situation is similar, but reversed.

Figure 18 shows the RLD for both algorithms for a larger problem (bmc-ibm-6). As can be seen
from the figure, the RLDs for both algorithms have roughly the same shape. The presence
of heavy tails in both RLDs indicates that both algorithms get stuck in local minima for a
relatively small number of trials. The median search cost for GSATRW is 15% of that of LA-
GSATRW for the bmc-ibm-2. However, LA-GSATRW shows a better performance for the
medium (improvement of about 8% in the median) and larger problems (improvement of
approximately 5%).

Table 1 shows the coefficient of variation (normalised standard deviations) for LA-GSATRW.
As can be seen from the previous plots, there is a large variability between the search cost of
the different runs. In particular, the long tails of the RLDs show that some of the runs requires
much more effort than others. For increasing problem sizes, there is no clear indication that
variability increases, as in the case of SAT-encoded BMC problems.

Fraction Solved
Fraction Solved

LA GSAT wiRandom Walk (N=2) —— LA GSAT wiRandom Walk (N=2) —+—

o))))) GSAT wiRandom Walk ;—x-—- 0)))) GSAT wiRandom Walk —x---
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 0 20000 40000 60000 80000 100000 120000 140000

#Flips #Flips

Fig. 15. (Left) Cumulative distribution for a 116-variable Blocks World problem with 953
clauses (medium). (Right) Cumulative distribution for a 459 -variable Blocks World problem
with 4675 clauses (bw-large.a). Along the horizontal axis we give the number of flips, and
along the vertical axis the fraction of problems solved for different values of N.

4.2.3 Excess deviation from the solution

Quite often, we observed stagnation behaviour with extremely low asymptotic solution prob-
abilities when applied to SAT-encoded quasigroup problems. The two algorithms were exe-
cuted to the allowed maximal number of steps and the percentage excess over the solution was
recorded. Figures 19 and 20 show the excess deviation over the solution sorted in increasing
order. As it can be seen from the plots, both algorithms suffers from severe stagnation indi-
cating incomplete behaviour of the two algorithms when applied to this class of problems.
At the exception of the problem qg3-08 where LA-GSATRW achieved a maximal success rate
of 0.04% compared to 0.03% for GSATRW, we observe a rapid deterioration of their perfor-
mance (success rate equals to 0%) with growing problem size. LA-GSATRW appears to have
an asymptotic convergence which is better than GSATRW to around 3% — 10% in average
excess of the solution.

Using Learning Automata to Enhance Local-Search
Based SAT Solvers with Learning Capability 81

Fraction Solved
@
Fraction Solved

LA GSAT w/Random Walk (N=2) —— LA GSAT wiRandom Walk (N=2) —+—
GSAT wiRandom Walk —-x--- GSAT wiRandom Walk —-x-—-

0 20000 40000 60000 80000 100000 120000 0 500000 16406 1.5e+06 2e+06 250406 3e+06
#Flips. #Flips

Fig. 16. (Left) Cumulative distributions for a 459-variable Blocks World problems with 7054
clauses (huge). (Right) Cumulative distribution for a 1087-variable Blocks world problem with
13772 (bw-large.b). Along the horizontal axis we give the number of flips, and along the
vertical axis the success rate.

Fraction Solved
@
Fraction Solved

LA GSAT w/Random Walk (N=2) —— - LA GSAT wiRandom Walk (N=2) —+—
GSAT wiRandom Walk ——-x-—- GSAT wiRandom Walk -

L L 0 L L L
0 10000 20000 30000 40000 50000 60000 70000 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06
#Flips. #Flips

Fig. 17. (Left) Cumulative distributions for a 3628-variable BMC problem with 14468 clauses
(bmc-ibm2). (Right) Cumulative distribution for a 14930-variable BMC problem with 72106
clauses (bmc-ibm3). Along the horizontal axis we give the number of flips, and along the
vertical axis the success rate.

4.2.4 Wilcoxon Rank-Sum Test

The number of search flips needed by a meta heuristic to find a feasible solution may vary
significantly from run to run on the same problem instance due to random initial solutions
and subsequent randomized decisions. As RLDs are unlikely to be normally distributed, we
turn to the non-parametric Wilcoxon Rank test in order to test the level of statistical confidence
in differences between the median search cost of the two algorithms. The test requires that
the absolute values of the differences between the mean search costs of the two algorithms
are sorted from smallest to largest and these differences are ranked according to absolute
magnitude. The sum of the ranks is then formed for the negative and positive differences
separately. As the size of the trials increase, the rank sum statistic becomes normal. If the
null hypothesis is true, the sum of ranks of the positive differences should be about the same

82 Application of Machine Learning

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fraction Solved

LA GSAT wiRandom Walk (N=2) —+—
GSAT wiRandom Walk -

0 L L L L
100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06
#Flips

Fig. 18. Cumulative distributions for a 8710-variable BMC problems with 8710 clauses (bmc-
ibmé). Along the horizontal axis we give the number of flips, and along the vertical axis the
success rate.

Test-Problem LA-GSATRW

600 11.36
£1000 9.42
£2000 3.90
logistics.a 8.85
logistics.b 7.76
logistics.d 6.14
medium 6.84
bw-large.a 9.12
huge 7.62
bw-large.b 10.49
ibm-bmc2 3.71
ibm-bmc3 3.89
ibm-bmc6 4.30

Table 1. Coefficient of variation.

as the sum of the ranks of the negative differences. Using two-tailed P value, significance
performance difference is granted if the Wilcoxon test is significant for P < 0.05

An initial inspection of Table 2 reveals two results. Firstly, the success rate of LA-GSATRW
was better in 12 problems and the difference in the median search cost was significant in 6
problems. On the other hand, GSASTRW gave better results in 5 problems in terms of success
rate but its performance was significant in only 2 cases.

5. Conclusions and Further Work

In this work, we have introduced a new approach based on combining Learning Automata
with Random Walk and GSAT w/Random Walk. In order to get a comprehensive overview of
the new algorithms’ performance, we used a set of benchmark problems containing different
problems from various domains. In these benchmark problems, both RW and GSATRW suf-
fers from stagnation behaviour which directly affects their performance. This phenomenon
is, however, only observed for LA-GSATRW on the largest problem instances. Finally, the

Using Learning Automata to Enhance Local-Search
Based SAT Solvers with Learning Capability 83

0.0012 T T T T T T T T T 0.0014

0.0012 |
0.001

0001 |
0.0008 -

0.0008 |-
0.0006 -

Fraction Unsatisfied

0.0006 |-

Fraction Unsatisfied

0.0004 |- -
0.0004 -

0.0002 0.0002 -

T LAG T W/Random Walk (N=2) —+— LA GSAT w/Random Walk (N=2) ——
/ GSAT wiRandom Walk —x— . . . GSAT w/Random Walk -

L L L L L L
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
#Experiments #Experiments

Fig. 19. Excess deviation over the solution for LA-GSATRW and GSATRW. (Left) qg3-08 (512
variables, 10469 clauses). qg5-11 (1331 variables, 64054 clauses). Along the horizontal axis we
give the number of trials and along the vertical axis the percentage deviation over the solution.

0.0002 T T T T T T T T T 000115

000018 00011 |

000016 -
0.00105 -
000014 - 1
0001 [|
000012

0.00095 1]

Fraction Unsatisfied
Fraction Unsatisfied

0.0001 -

0.0009

8005 [|

co0s |- | 0.00085 f§.

B LA GSAT w/Random Walk (N=2) 407 LA GSAT w/Random Walk (N=2) 407
GSA TwlRa dom Walk GSA T w/Ran dom Wa\k
4e:05 0.0008
o 10 20 30 40 50 SD 70 80 90 100 0 10 20 30 40 50 SD 70 80 90 100
#Experiments #Experiments

Fig. 20. Excess deviation over the solution for LA-GSATRW and GSATRW. (Left) qg7-09 (729
variables, 22060 clauses). (Right) qg7-13 (2197 variables, 97072 clauses). Along the horizontal
axis we give the number of trials and along the vertical axis the percentage deviation over the
solution.

success rate of LA-GSATRW was better in 12 of the problems, and the difference in the me-
dian search cost was significantly better for 6 of the problems. GSASTRW, on the other hand,
gave better results in 5 of the problems in terms of success rate, while its performance was
significantly better only in 2 problems.

Based on the empirical results, it can be seen that the Learning Automata mechanism em-
ployed in LARW and LA-GSATRW offers an efficient way to escape from highly attractive
areas in the search space, leading to a higher probability of success as well as reducing the
number of local search steps to find a solution.

As further work, it is of interest to study how Learning Automata can be used to enhance
other Stochastic Local Search based algorithms, such as WalkSAT. Furthermore, more recent
classes of Learning Automata, such as the Bayesian Learning Automata family Granmo (2009)
may offer improved performance in LA based SAT solvers.

84 Application of Machine Learning

Problem SR: LA-GSATRW SR: GSATRW Pvalue NULL Hypotheis
f600 53% 47% 0.19 Accept
1000 62% 37% 0.00 Reject
£2000 32% 14% 0.00 Reject
logistic-a 74% 26% 0.00 Reject
logistic-b 54% 46% 0.09 Accept
logistic-c 59% 41% 0.02 Reject
logistic-d 54% 46% 0.29 Accept
bw-medium 36% 64% 0.02 Reject
bw-large-a 49% 51% 0.52 Accept
bw-huge 50% 50% 0.91 Accept
bw-large-b 53% 47% 0.82 Accept
bmc-ibm?2 39% 61% 0.01 Reject
bmc-ibm3 52% 44% 0.18 Accept
bmc-ibm6 51% 49% 0.98 Accept
qg-03-08 20% 33% 0.16 Accept
qg-5-11 59% 38% 0.00 Reject
qg-7-9 33% 59% 0.61 Accept
qg-7-13 59% 33% 0.00 Reject

Table 2. Success rate (SR) and Wilcoxon statistical test.

6. References

A.E.Eiben & van der Hauw, J. (1997). Solving 3-sat with adaptive genetic algorithms, Proceed-
ings of the 4th IEEE Conference on Evolutionary Computation, IEEE Press, pp. 81-86.

Cha, B. & Iwama, K. (1995). Performance Tests of Local Search Algorithms Using New Types
of Random CNF Formula, Proceedings of IJCAI'95, Morgan Kaufmann Publishers,
pp- 304-309.

Cook, S. (1971). The complexity of theorem-proving procedures, Proceedings of the Third ACM
Symposuim on Theory of Computing, pp. 151-158.

Davis, M. & Putnam, H. (1960). A computing procedure for quantification theory, Journal of
the ACM 7: 201-215.

Frank, J. (1997). Learning short-term clause weights for gsat, Proceedings of [CAI'97, Morgan
Kaufmann Publishers, pp. 384-389.

Gale, W., S.Das & Yu, C. (1990). Improvements to an Algorithm for Equipartitioning, IEEE
Transactions on Computers 39: 706-710.

Gent, L. & T.Walsh (1993). Towards an Understanding of Hill-Climbing Procedures for SAT,
Proceedings of AAAI'93, MIT Press, pp. 28-33.

Glover, F. (1989). Tabu search-part 1, ORSA Journal on Computing 1: 190-206.

Granmo, O.-C. (2009). Solving Two-Armed Bernoulli Bandit Problems Using a Bayesian
Learning Automaton, To Appear in International Journal of Intelligent Computing and
Cybernetics (IJICC) .

Granmo, O.-C., Oommen, B. J., Myrer, S. A. & Olsen, M. G. (2007). Learning Automata-
based Solutions to the Nonlinear Fractional Knapsack Problem with Applications to
Optimal Resource Allocation, IEEE Transactions on Systems, Man, and Cybernetics, Part
B 37(1): 166-175.

Using Learning Automata to Enhance Local-Search
Based SAT Solvers with Learning Capability 85

Hansen, P. & Jaumand, B. (1990). Algorithms for the maximum satisfiability problem, Com-
puting 44: 279-303.

I.Gent & Walsh, T. (1995). Unsatisfied variables in local search, Hybrid Problems,Hybrid Solu-
tions, IOS Press, pp. 73-85.

Johnson, D. & Trick, M. (1996). Cliques, Coloring, and Satisfiability, Volume 26 of DIMACS Series
on Discrete Mathematics and Theoritical Computer Science, American Mathematical
Society.

McAllester, D., Selman, B. & Kautz, H. (1997). Evidence for Invariants in Local Search, Pro-
ceedings of AAAI'97, MIT Press, pp. 321-326.

Narendra, K. S. & Thathachar, M. A. L. (1989). Learning Automata: An Introduction, Prentice
Hall.

Oommen, B.]J. & Croix, E. V. S. (1996). Graph partitioning using learning automata, IEEE
Transactions on Computers 45(2): 195-208.

Oommen, B.]. & Hansen, E. R. (1987). List organizing strategies using stochastic move-to-front
and stochastic move-to-rear operations, SIAM Journal on Computing 16: 705-716.

Oommen, B.J. & Ma, D. C. Y. (1988). Deterministic learning automata solutions to the equipar-
titioning pr oblem, IEEE Transactions on Computers 37(1): 2-13.

Oommen, B. J., Misra, S. & Granmo, O.-C. (2007). Routing Bandwidth Guaranteed Paths in
MPLS Traffic Engineering: A Multiple Race Track Learning Approach, IEEE Transac-
tions on Computers 56(7): 959-976.

Selman, B., Kautz, H. A. & Cohen, B. (1994). Noise Strategies for Improving Local Search,
Proceedings of AAAI'94, MIT Press, pp. 337-343.

Selman, B., Levesque, H. & Mitchell, D. (1992). A new method for solving hard satisfiability
problems, Proceedings of AAA’92, MIT Press, pp. 440-446.

Spears, W. (1993). Simulated Annealing for Hard Satisfiability Problems. Technical Report,
Naval Research Laboratory, Washington D.C.

Thathachar, M. A. L. & Sastry, P. S. (2004). Networks of Learning Automata: Techniques for Online
Stochastic Optimization, Kluwer Academic Publishers.

Tsetlin, M. L. (1973). Automaton Theory and Modeling of Biological Systems, Academic Press.

86

Application of Machine Learning

Comprehensive and Scalable
Appraisals of Contemporary
Documents

William McFadden!, Rob Kooper?!, Sang-Chul Lee2

and Peter Bajcsy?

INational Center for Supercomputing Applications,

University of lllinois at Urbana-Champaign, Urbana, Illinois, USA
2Department of Computer and Information Engineering,

Inha University, Incheon, Korea

Abstract

This book chapter describes problems related to contemporary document analyses.
Contemporary documents contain multiple digital objects of different type. These digital
objects have to be extracted from document containers, represented as data structures, and
described by features suitable for comparing digital objects. In many archival and machine
learning applications, documents are compared by using multiple metrics, checked for
integrity and authenticity, and grouped based on similarity. The objective of our book
chapter is to describe methodologies for contemporary document processing, visual
exploration, grouping and integrity verification, as well as to include computational
scalability challenges and solutions.

1. Introduction

The objective of our work is to design a methodology, algorithms and a framework for
document appraisal by (a) enabling exploratory document analyses and
integrity /authenticity verification, (b) supporting automation of some analyses and (c)
evaluating computational and storage requirements for archival purposes. In order to
address the aforementioned criteria, our approach has been to decompose the series of
appraisal criteria into a set of focused analyses, such as (a) find groups of records with
similar content, (b) rank records according to their creation/last modification time and
digital volume, (c) detect inconsistency between ranking and content within a group of
records, and (d) compare sampling strategies for preservation of records.

In this work, we had chosen a specific class of electronic documents that (a) correspond to
information content found in scientific publications about medical topics, (b) have an
incremental nature of their content in time, and (c) contain the types of information
representation that are prevalent in contemporary medical environments. Specifically, we
narrowed our focus to those electronic documents that contain primarily text, raster and

88 Application of Machine Learning

vector graphics as found in typical medical records in office document file formats. Among
the file formats, MS Word can be considered as the most widely used file format for creating
documents, while Adobe Portable Document Format (PDF) and Ghostscript could be
described as the most widely used for exchanging documents. We selected to work with
PDF documents since PDF is an open file format, and the open nature of the file format is
critical for automated electronic document appraisal and long term preservation.

In order to address the appraisal criteria [1], we adopted some of the text comparison
metrics used in [2], image comparison metrics used in [3] and lessons learnt stated in [4].
Then, we designed a new methodology for grouping electronic documents based on their
content similarity (text, image and vector graphics), and prototyped a solution supporting
grouping, ranking and integrity verification of any PDF files and HTML files [5]. First, text
based, vector based and multi-image based comparisons are performed separately. Multiple
images in each document are grouped first and then groups of images across documents are
compared to arrive to an image-based similarity score. The current prototype is based on
color histogram comparison, line count in vector graphics and word frequency comparison.
The image colors and word/ integers/ floating numbers can be analyzed visually to support
exploratory analyses. Subsets of the undesirable text and image primitives could be filtered
out from document comparisons (e.g., omitting conjunctions, or background colors). The
results of text, image and vector based comparisons are fused to create a pair-wise
document similarity score. The matrix of pair-wise document similarity scores are used for
grouping. The other appraisal criteria are approached by ranking documents within a group
of documents based either on time stamps or on file name indicating the version number.
The inconsistency between ranking and content within a group of records is based on
frequency tracking, where the frequency of text, image and vector primitives is monitored
over the time/version dimension of the grouped documents.

Currently, we hypothesized that the correct temporal ranking correlates with the content
(images, vector and text) in such a way that the content is being modified without sharp
discontinuities. Sharp content discontinuities are perceived as significant changes of
document descriptors that would correspond, for instance, to large text/image deletions
followed by large text/image additions or large text/image additions followed by large
text/image deletions. We have experimented with real PDF documents of journal papers to
validate the above hypothesis.

The novelty of our work is in designing a methodology for computer-assisted appraisal, in
developing and prototyping a mathematical framework for automation of appraisals based
on image, vector graphics and text types of information representation, and in designing a
scalable solution using the Map and Reduce parallel programming paradigm for using
computer clusters.

2. Previous work

Related work to the proposed framework: Our work is related to the past work of authors in the
area of digital libraries [2], content-based image retrieval [3] and appraisal studies [4]. For
example, the authors of [6] analyze PDF document by examining the appearance and
geometric position of text and image blocks distributed over an entire document. However,
they did not use the actual image and vector graphics information in their analyses.
Similarly, the focus in [7] is only on the logical structure of PDF documents but not the

Comprehensive and Scalable Appraisals of Contemporary Documents 89

content. The work in [8] and [9] is based on analyses of vector graphics objects only since it
is focused on diagrams represented by a set of statistics, e.g., the number of horizontal lines
and vertical lines. Other authors also focused only on chart images using a model-based
approach [10]. There is currently no method that would provide a comprehensive content-
based PDF comparison and appraisal strategy according to our knowledge. In order to
prototype a solution for comprehensive document comparisons and clustering, the
difficulties lie in dealing with vector graphics objects, fusion of similarities of multiple
digital objects, and in providing a scalable solution with the increasing number of
documents.

Related work on comparing vector graphics objects: Vector graphics objects are described by the
most primitive feature of the graphics object, lines, which are practically useless in
meaningful comparisons. Due to this, it is necessary to compare objects at a slightly more
sophisticated level by comparing groups of lines and their relationship to each other.
However, the manner in which this can be done varies, and many techniques for
comparison of simple geometric shapes exist, making it not trivial to choose which graphic
comparison to use. Veltkamp [11] showed ten distinct methods for the comparison of
polygons and open paths, and it is assumed that more may exist. However, the principle
difficulty in implementing almost all of these methods is that they rely on a direct, side-by-
side computationally expensive comparison between two graphical objects resulting in a
real number comparison value in the range between 0 and 1. In addition, the problem of
formulating a metric measuring approximate similarity between visual objects has also been
known as an open problem [12, 13]. Finally, there is the problem of the sequential
arrangement of the line segments since they could be encoded in the document arbitrarily.
This introduces a plethora of problems because there is no guarantee that a visually similar
object will be encoded in a document such as an Adobe PDF file in anything like the same
way.

Related work on scalability: In the past, the scalability of computations has been approached
by using parallel programming paradigms based on message-passing interface! (MPI) or
open multi-processing? (OpenMP). MPI is designed for the coordination of a program
running as multiple processes in a distributed memory environment by using passing
control messages. MPI could also run in a shared memory system. There are several
developed libraries supporting MPI3. OpenMP is intended for shared memory machines. It
uses a multithreading approach where the master threads forks any number of slave
threads. Several known software solutions have also used the hybrid parallel programming
paradigm combining the strengths of MPI and OpenMP, for example, WRF4 or NECTARS.
The hybrid approach uses MPI across nodes and OpenMP within nodes, which leads to
good utilization of shared memory system resource (memory, latency, and bandwidth).

We have investigated the use of Google’s MapReducet and Yahoo!’s Pig” framework and its
associated Piglatin language. MapReduce is a programming model that allows

1 http:/ /www-unix.mcs.anl.gov/mpi/usingmpi/examples/simplempi/main.htm
2 http:/ /software.intel.com/en-us/ articles/ more-work-sharing-with-openmp

3 http:/ /www-unix.mcs.anl.gov/mpi/ usingmpi/ examples/simplempi/main. htm
4 http:/ /www.wrf-model.org/index.php

5 http:/ /www.cfm.brown.edu/crunch/ ATREE/ software.html

¢ http:/ /labs.google.com/ papers/ mapreduce.html

90 Application of Machine Learning

programmers to focus on the tasks instead of the parallel implementation of the tasks. This
lets programmers write simple Map function and Reduce function, which are then
automatically parallelized without requiring the programmers to code the details of parallel
processes and communications. In the past, the Hadoop users have raised several questions
about optimal set up and execution of Hadoop [14], such as:

What are the optimum machine configurations for running a Hadoop cluster?

Should I use a smaller number of high end/ performance machines or are a larger number of
"commodity" machines?

How does the Hadoop/Parallel Distributed Processing community define "commodity"?

The answers to these questions are of a very high value to the end users and several
researchers have searched for solutions. For example, in [15] the authors report a new task
scheduler to improve Hadoop’s performance for clusters that consist of nodes that are not
homogeneous. Similarly, we search for better understanding how to setup and execute
Hadoop when multiple types of digital objects have to be analyzed in parallel (e.g., text,
images, vector graphics). In addition, in most of the real life applications, the Map and
Reduce operations are preceded by input/output (load and transfer) operations that force
us to balance the computational gains from Hadoop with the cost of opening files and
extracting information.

3. Methodology

This section presents the methodology and theoretical framework for addressing grouping,
ranking and integrity verification problems

3.1 Overview

The designed methodology consists of the following main steps: (1) Extract components and
properties stored in PDF files/containers. (2) Define text, image and vector graphics
primitives, and extract their characteristic features. (3) Group images within each document
into clusters based on a pair-wise similarity of image primitives and a clustering similarity
threshold. (4) Compute a pair-wise similarity of image clusters across two documents based
on their corresponding features. (5) Compute a pair-wise similarity of text & vector graphics
primitives across two documents. (6) Calculate fusion coefficients per document to weight
the contribution of text-based, image-based and vector-based similarities to the final pair-
wise document similarity score. (7) Repeat steps (4-6) for all pairs of documents. (8) Group
documents into clusters based on the pair-wise document similarity score and a selected
similarity threshold. (9) Assign ranks to all documents based on their time stamps and
storage file size. (10) Calculate the second difference of the document characteristic features
over time and file size dimensions. Report those documents for which the second difference
exceeds a given threshold defining allowed discontinuities in content.

7 http:/ /incubator.apache.org/ pig

Comprehensive and Scalable Appraisals of Contemporary Documents 91

Document Document
: Intra-Document
Image
Grouping
A Word Y
Intra-Document Vector Comparison / Vector

Image
Grouping

Graphics - Graphics
f

Image
Similarity

| Image Groups |
__Intér-Document
---=7""" Image Comparison
Spatial Occupation
(Image/Text/Vector)

' Image Groups
-

-

Spatial Occupation
(Image/Text/Vector)
A S

Fusion-
Based
Similarity

Fusion-
Based
Similarity

Fusion-
Based
Similarity

Fusion-

Normalization
\
Based

Similarity

Fusion-
Based
Similarity

Fusion-
Based
Similarity

Document Document Document
Cluster Cluster Cluster

Chronological document ranking "7 Chronological document rankingC Chronological document ranking

~ -

Sampling

3
l Appraised documents ‘

Fig. 1. An overview of the document appraisal framework based on comprehensive
comparisons of document’s internal digital objects.

3.2 Theoretical Framework
Document grouping problem. Given a set of documents, {D,};i=1,2,---, N compute

pair-wise similarity of documents sim(D,, D j) and aggregate them into clusters based on

the similarity values for further ranking within each cluster.

92 Application of Machine Learning

The similarity of documents is understood as the combined similarity of document
components. In our case, it would be the similarity of text, vector and raster (image)

graphics components. The three components are decomposed into multiple images /;, and

AGE

. o ™ VECTOR
their image primitives e,

, vector graphics and their image primitives e, , and text

primitives e;EXT in textual portions 7, =7 of a document D), . The similarity for each

component type is derived either directly using the features of its primitives (the case of
text) or average features of multiple components of the same type and their primitives (the
case of images and vector graphics).

Calculations of Statistical Features. The text feature for the word primitives is the
frequency of occurrence of each unique word. The image feature for the color primitive is
the frequency of occurrence of each unique color (also denoted a one-dimensional color
histogram). The vector graphics feature is the frequency of occurrence of lines forming each
vector graphics. The frequency of occurrence provides a statistical estimate of the
probability distribution of primitives.

Calculation of Document Similarity. Given two PDF documents D, ,D/. , the similarity is

defined as a linear combination of the similarities of the document components. In our case,
the formula contains only the text and raster graphics components.

sim(D;, D;) = Wy - sim(T,,T)) +

Weasrer - SIM({1, }le > {[_,'/ }zL:I)+)
Wygeror - Sim(V,, Vj)

where the Wypyr s Weorer» Wygcror @te the weighting coefficients.

We have derived the weighting coefficients from the spatial coverage ratio of images, vector
graphics and text in two compared documents. The weight assignment could be viewed as
the relevance of each PDF component according to the amount of space it occupies in a
document. The motivation is based on a typical construction of documents where the space
devoted to a textual description or an illustration reflects its importance and hence should
be considered in the similarity calculation. Thus, the weighting coefficients are calculated as

Ryvige (D) + Ry (D))
2 , @)
Wiace (Di> D) + Wyperog (D D)) + Wy (D, D) =1

Wivge (D, D,) =

where

Area D
RIA/MGE (D) = IMAGE()

Areay, 6, (D) + Areayycop (D) + Areay,, (D) , RIMAGE D)+ RVECTOR (D)+ RTEXT (D)=1

Comprehensive and Scalable Appraisals of Contemporary Documents 93

Calculation of Text Similarity. The similarity of text components from two documents

sim(T}, Tj) is computed using the text features and similarity metric defined according to
[2]. The equation is provided below.
sim(T,T;) = Z W11 D7
kLk2 3)
where k1,k2 are those indices of text primitives that occur in both documents (in other

words, there exist €, ,, =€, ;, €, € 7;;6_/.’,(2 € T/). The @ terms are the weights of text

primitives computed according to the equation below.

_ fuloeN/n)
2 (i Qog(N /)y "

where fik is the frequency of occurrence of a word €, in Dl. , N is the number of

Wy,

documents being evaluated, L is the number of all unique text primitives (words) in both

documents, and 7, is the number of documents in the set of all documents being evaluated

that contain the word €, (1, = Lor 2).

Calculation of Raster Graphics (Image) Similarity. In contrary to text that is viewed as one
whole component, there are multiple instances of raster graphics components (images) in
one document. Thus, the similarity of image components in two documents is really a
similarity of two sets of images.

Due to the fact that many documents contain images that are sub-areas or slightly enhanced
versions of other images in the same document, we have observed biases in image-based
document similarity if all possible image pairs from two documents are evaluated
individually and then the average similarity would be computed. The bias is introduced due
to large similarity values of one master image in one document with multiple derived
images in anothe