Derivation of Entropy from Second Law

Consider the following combined system consisting of a
Carnot heat engine and a piston cylinder system

system

\ / Tk /
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Combined ! SW

First Law applied to the combined system
dE. =00, —oW,
oW, =00, —dE.
For a Carnot Engine (reversible cycle)

5Qrev — TR N 5Qrev — §Q . T_R
5O T T

substituting oW, = 5?Q -Tr —dE,
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Let the system undergo a cycle while the Carnot cycle
undergoes one or more cycles. Integrate over entire cycle
(recall system energy is a state property)

oW =521, ~

The net work for one cycle is

10,
1 boundary

The integral must be evaluated at the system boundary

The combined system (cycle) draws heat from a single
reservoir while involving work W

Based on K-P statement the combined system cannot
produce net work output = W, <0

§(5_Qj <0
T boundary

This 1s the Clausius Inequality which 1s valid for all
thermodynamic cycles, reversible or irreversible.
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For a reversible cycle (no irreversibilities in the system)

W) _
iﬁ(’rjlm =0

rev

Since the cycle integral of (6Q/T) 1s 0, the quantity 6Q/T
is a state property, it does not depend on the path (similar
§dE =0).

We call this new property entropy, S,

ds = (%) units : kJ/K
nt

rev

For a process where the system goes from state 1 to 2
2( 00
S2 - Sl - L (7)int
Specific entropy s= S/M

s =F[ M) =R(F),

reyv reyv
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The entropy change between two specified states is the
same whether the process is reversible or irreversible

Irreversible .-~
process -~

nternally
reversible process

S

To calculate S,-S; evaluate [6Q /T for the reversible path

Consider a cycle made up of an irreversible process
followed by a reversible process

Irreversible  .----="-- -
process -~

T

Internally
1 Reversible process

S

Applying Clausius Inequality to the cycle

2-1(2) (),

rev

133



7 (%)b +(S,-S,)<0

Remove inequality sign to get the entropy balance
equation for a closed system

S2_S1 = Jf(%jb + Sgen
—

/ N

Change in entropy Entropy transfer Entropy generated in
of the system to the system by the system due to
heat transfer irreversibilities

> (0 1rreversible process

S.eny=0 reversible process

(<0 impossible process

Note: Moran and Shapiro uses symbol o instead of S,
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For an isolated system (adiabatic closed system)

2
ASisol = J‘)/% + Sgen

Since Sgen =0 2> ASi01=0

This is the Increase in Entropy Principle which simply
stated says that for an isolated system the entropy always
increases or remains the same

Isolated surroundings

system

AS. .. =AS +AS, >0

total ~— system surr
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The increase of entropy principle does not say that the
entropy of a system cannot decrease

ASqun= +3 kJ/kg

Isolated
system

A process that 1s both adiabatic and reversible 1s referred
to as isentropic, and for a closed system

2
AS isentropic = .[1 % + gen = O

entropy 1s constant, S;=S,.

Microscopic Point of View:

Entropy is the measure of molecular disorder or
randomness. As a system becomes more disordered, the
position of the molecules becomes less predictable and
the entropy increases. Entropy is the lowest in a solid
because molecules are held in place and simply vibrate
and highest in a gas where the molecules are free to move
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in any direction. Entropy of a pure crystalline substance
at absolute zero temperature 1s zero since the state of each
molecule is known = Third Law of Thermodynamics

Disorganized energy does not have potential to do useful
work,

- ;v
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Organize the KE of the molecules (on average moving in
one direction) by expanding through a nozzle increases
the ability to do useful work. Some of the IE of the
molecules 1s converted in to KE resulting in a temperature
drop and corresponding drop in entropy.

The paddle-wheel work done on a
gas increases the level of disorder Q — Q
(entropy) of the gas and thus the

U
energy is degraded during this process l T increases

Heat is a form of “disorganized energy” :
and some entropy will flow with it o
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Evaluation of Entropy Change in a Closed System

QW

Apply First Law neglecting KE and PE effects, no shaft
work

In differential form du = 6g — ow = og — Pdv

oq = du + Pdv
oq

For an internally reversible process ds = T SO

Tds = du + Pdv

recall h=u+ Pv — du =d(h—- Pv)=dh—- Pdv—vdP

substitute du into the above equation

Tds = (dh — Pdv —vdP) + Bdv
Tds = dh —vdP

These are the Gibb’s equations (or simply Tds equations)
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For a system undergoing a process from state 1 to state 2

s, —8, =[lds= 12%+ f;dv
s, =8 = ds = 12%_ 12%01})

Note the terms on the RHS are state properties, so the
terms on the LHS, 1.e., entropy, must also be a state

property

Although we derived the Tds equations for a reversible
process since entropy is a state property we can integrate
these equations to get the change in entropy between any
two states for any process

P, 7)dT
S, — 8 = 120V( T) + 12£dv
T T
s e PTMT v
T T

The above integration is not straight forward, so entropy
is tabulated along with u and /% in the steam tables and
plotted on T-s and h-s (Mollier) diagrams.
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Entropy tabulated in steam tables is relative to an
arbitrary reference state

The value of entropy at a given state is determined just
like for the other state properties u and 4

T

Liquid Vapor
P, T->s

P, T->s

Liqud-vapor
S=(1-x)st + XSgq
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oQ

Recall for an internally reversible process dS = -

Therefore, 0Q.. =TdS

rev

Heat added in process from 121is Q. . = [’TdS
'3 0),, = Tig'/.;.
1/
—— 0, -fiTas
= Area under curve

S
For an isentropic process S is constant

20

S

No heat transfer =2 area under the curve is zero
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Entropy Change for an Ideal Gas
For an ideal gas du = ¢, (T)dT',dh = c,(T)dT', Pv = RT

dT
S, —8, = fa;/l+l2;)dv=f% +R| —

zdv

55 (Tyov,) —5,(T,v,) = J2CV(T)dT+R1n(%]
1

and
,dh 2 v

S, —8 =
2 1 lT T I

¢ (T)dT (T)dT dP

Rii—

s,(T,,P,)—s,(T,,P) = IZCP(T)dT—Rln(%]

The value of the specific entropy is set to zero at 0K and 1
atm, e.g., s(0K, 1 atm)=0

The specific entropy at temperature T and 1 atm 1s

S(T,l atm)—5(91{51 atm) _ jg"C'P(T)dT _Rln 1 mj
T atm

s’ =s(T,latm) = joc (T)d—T
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Values of s° are tabulated as a function of T for air in
Table A-22

dT dT dr , ,
SO Ilch(T)7:chp(T)7_jécp(T)7:S2_Sl

P
Therefore, |s, —s, = (S;’ —s’ )_ Rln(—zJ

1

If the specific heats cp and cy are taken as constant

S, =8, =¢Cp jlzd%+Rln(V—2j

Vi

S, —S8, =cC lni +Rlnv—2
2 1 | 4 T Vv
1 1

P.
S, =8, = chlzd%—Rln(?zj
1

S, =8, =Cp ln(%J -R ln(%j
1 1
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