Application of Control Volume Energy Analysis

Most thermodynamic devices consist of a series of
components operating in a cycle, e.g., steam power plant
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Main components of the above cycle are:
1) Boiler (steam generator) — heat exchanger
2) Turbine — generates work
3) Condenser — heat exchanger
4) Pump

Others components include:
nozzles, diffusers, throttling devices
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Nozzles and Diffusers

Devices that increase or decrease the flow velocity by
passing the flow through a variable area duct, 4, # 4,

Diffuser

Applying conservation of mass assuming steady flow:

dM
=0 AV, —p, AV
n L1V — PrAyY,

oAV = p, A,V

For low subsonic flow (p; = p,)

4,

4,

Va _
4




Subsonic Nozzle: A,<A; 2 V,>V,
Subsonic Diffuser: A,>A; 2 V,<V,

Aircraft gas turbine

diffuser nozzle

N
N

Applying the energy equation (assuming steady, no heat
loss, APE=0):

%:?/—%+(hi + V22 +gél_)_(he+ V22 +¢e)=0

hy + V2/I2 =h,+ V) /2

V) =V7?+2(h —h,)

For a rocket nozzle V, >> V

sz = 2(h1 _hz)
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Turbine

A device in which shaft work 1s generated as a result of
gas passing through a set of blades attached to a freely
rotating shaft
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The rotating blades redirect the flow off axis, so you need
a set of fixed blades that straighten out the flow before the
next set of rotating blades
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In this course we are not interested in the details of the
flow through each blade, or row of blades. We are
interested in the overall energy balance
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Applying First Law (steady-state, neglect heat transfer)

0 =g v+ (h +V7?/2)=(h, + V3 /2)

w=(h —h)+V;’ /2 -V} /2) work per unit mass

Often the change 1n KE 1s small compared to change in h
ie., h—h, >>>V?/2-V}/2

w=h —h,
Note:  work output (W > 0) = A, > h,

Power is work output per unit time
W =i =m(h, —h,)
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EXAMPLE

Steam enters a turbine operating at steady-state with a mass flow rate of
4600 kg/h. The turbine develops a power output of 1000 kW. At the
inlet the pressure is 60 bars, the temperature is 400C and the velocity is
10 m/s. At the exit the pressure is 0.1 bar, the quality 1s 0.9 and the
velocity 1s 50 m/s. Calculate the rate of heat transfer between the turbine
and the surroundings, in kW.

steam 1
71 = 4600 kg/hr W
P,= 60 bar T | 3 | ’_>
T1: 400C
V=10 m/s —
2 liquid/vapor
Xo= 0.9
P,=0.1 bar
V,=50 m/s

400C
276C

88



Assume steady-state and APE i1s negligible

0=q—vw+(h +V7/2)=(h, +V /2)

q — W+(h2 _h1)+(V22/2_V12/2)
Need enthalpy at states 1 and 2
State 1:
From saturated water Table A-3 T, (60 bar)=275.6C

since T1>T, at same pressure have superheated vapor

From superheated water vapor Table A-4
h(60bar, 400C)=3177.2 kl/kg

State 2:

From saturated water Table A-3
hA0.1 bar)= 191.8 kJ/kg  he(0.1 bar)=2584.7 kJ/kg
ho= he+ x(hg-hy) = 191.8 + 0.9(2392.8)=2345.4 kl/kg

SO hy- h;=2345.4-3177.2 =-833.8 kl/kg
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0.5\ =V )=0.5(50% -10*) =1200 m°/s’
2 1

2
—1200™ | N ( 1 j:lzooi
s” {kg-m/s” A\N-m kg

Collecting terms:

G=w+(h, =)+, /2-V/2)

O =W +i(hy, —h)+m(V; 2=V /2)

:IOOOkW+4600kg( Lhr j—833.8ﬁ+1.2E
hr \3600s kg kg

O=-613kW

Negative sign implies heat loss from turbine

Note:

1) Difference in magnitude between Ah and Ake
2) Magnitude of heat loss O (61 kW) compared to
magnitude of power output W (1000 kW)
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Compressor/pump

A device in which shaft work input is used to raise the
pressure of a fluid (liquid or vapor)

Impeller

Inlet —=

WO TL T
W

Dnveshaft

(a) (b)
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Again we are not interested in the details of the flow
through each blade or row of blades. We are interested in

the overall energy balance

Flow___,

T
12

N W
o= (]

Applying First Law (steady-state, neglect heat transfer

and APE)

0 =g~ W+ (b +V?/2)=(h, + V3 [2)

W= (b —hy)+ (V] 2-V5 2)

work per unit mass

Often the change in KE 1s small compared to change in h

ie., h—h, >>>V?/2-V}/2

Wo=h, —h,

Note: work input (W< 0) = h, > A,
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Throttling Device

A device that generates a significant pressure drop via a
flow restriction, e.g., partially closed valve.

I

1 2

Applying First Law (steady-state, neglect heat transfer
and APE)

0= g+ (b +V}? /2) = (h, + V7 /2)

ho+V72I2=h,+V} /2

If the state 2 1s taken far downstream from the blockage
the change in velocity is negligible, 1.e., V, =V

Throttling process is characterized by constant enthalpy
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Heat Exchangers

These are devices that transfer energy between fluid
streams at different temperatures cool or heat one of the
fluids. The following is a tube-in-tube heat exchanger

Can have cross-flow or parallel-low type

Applying First law to above cross flow heat exchanger
assuming steady flow, no heat loss to the environment and
AKE and APE is negligible

OZQ—W‘F”’%(}% +%§/2+gé1)+m3(h3 +}//'32/2+gé3)
—tivy (hy + Y2 2+ g2,) i, (hy + V7 2+ 62,)

Steady flow so i, =m1, and i1, =,

0 =i, (hy —hy) + iy (hy — hy)
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Solving we get

i, hy —h

17'13 hl o hz

To get the rate of heat transfer from one stream to the

other perform CV analysis on only the inner-tube (assume
inner-stream is hotter than outer-stream)

2 <= L

Again Applying First Law with same assumptions

O:(_Qi)+m1(h1 _hz)

% :(hl _hz)

m

Since O, >0 — h, > h, , so T;> T, (fluid cools down)
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A CV analysis of the outer-stream would give

0:(+Q0)+m3(h3 —hy)

Qo = (h4 _h3)

m,

Since O, >0 —> h, > h,.so T4> T; (fluid heats up)

Note, the magnitude of the energy transfer rate from the
inner stream (). equals the magnitude of the energy

transfer rate into the outer-stream QO

Qi:Qo
ml(hl _hz):m3(h4 _hs)

m,  h, —h,
ms hl _hz

Note we recover the same relationship obtained using the
global energy balance
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Another common type of heat exchanger is a direct
contact heat exchanger, e.g., open feed water heater.

Hot stream, 7,

Warm stream, 7, Cold stream, 71,

This type of heat exchanger consists of a vessel where a
hot stream and cold stream of the same fluid are mixed
and exit at an intermediate temperature through a single
outlet.

Apply conservation of mass and First Law to the CV and
assuming steady state, negligible KE and PE change to
get:

d cv

dt

% :Q_W+m1(h1)+m2(h2)_m3(h3)

0 = rit,h, + rin,h, — riny s
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Transient Control Volume Analysis

Applies when the CV has only one inlet or one exit

Reservoir: valve
constant T i '
constant P <X> . CV

_____________

Considering the filling of a rigid tank of volume V., with
a gas supplied at a constant pressure and temperature

Applying conservation of mass

dM o

Applying First Law, neglecting heat transfer to
environment, KE and PE

dEqy :dUCV :é_/f/+mi(hi +%2/2+2éi)_/e( ..... )

dt dt

98



Note: constant enthalpy across the valve (throttling
device) = gas specific enthalpy, 4, , into the CV equals
the gas specific enthalpy in the reservoir, /4

dUi = mihi = mihR
dt
Substituting
dU ., 4 aM .,
dt odr

Integrating from the initial state "1" to the final state " {"
U, M,
[dU =h, [dM
U M,
Uf —U,; = (Mf —M)hy

Mu,—Mu, =M, —-M,)h,
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If the tank is initially empty (vacuum) m;= 0

Mfuf =thR

cy T, =cply
c
sz—PTRszR
Cy

Work done getting gas into the CV results in a final tank
gas temperature higher than the reservoir temperature
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