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LECTURE 1

INTRODUCTION AND REVIEW

Preamble

Engineering science is usually subdivided into number of topics such as
1. Solid Mechanics

2. Fluid Mechanics

3. Heat Transfer

4. Properties of materials and soon Although there are close links between them in terms of the physical
principles involved and methods of analysis employed.

The solid mechanics as a subject may be defined as a branch of applied mechanics that deals with
behaviours of solid bodies subjected to various types of loadings. This is usually subdivided into further two
streams i.e Mechanics of rigid bodies or simply Mechanics and Mechanics of deformable solids.

The mechanics of deformable solids which is branch of applied mechanics is known by several names i.e.
strength of materials, mechanics of materials etc.

Mechanics of rigid bodies:

The mechanics of rigid bodies is primarily concerned with the static and dynamic behaviour under external
forces of engineering components and systems which are treated as infinitely strong and undeformable
Primarily we deal here with the forces and motions associated with particles and rigid bodies.

Mechanics of deformable solids :
Mechanics of solids:

The mechanics of deformable solids is more concerned with the internal forces and associated changes in
the geometry of the components involved. Of particular importance are the properties of the materials used,
the strength of which will determine whether the components fail by breaking in service, and the stiffness of
which will determine whether the amount of deformation they suffer is acceptable. Therefore, the subject of
mechanics of materials or strength of materials is central to the whole activity of engineering design. Usually
the objectives in analysis here will be the determination of the stresses, strains, and deflections produced by
loads. Theoretical analyses and experimental results have an equal roles in this field.

Analysis of stress and strain :

Concept of stress : Let us introduce the concept of stress as we know that the main problem of
engineering mechanics of material is the investigation of the internal resistance of the body, i.e. the nature of
forces set up within a body to balance the effect of the externally applied forces.

The externally applied forces are termed as loads. These externally applied forces may be due to any one of
the reason.

(i) due to service conditions

(ii) due to environment in which the component works
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(iii) through contact with other members
(iv) due to fluid pressures
(v) due to gravity or inertia forces.

As we know that in mechanics of deformable solids, externally applied forces acts on a body and body
suffers a deformation. From equilibrium point of view, this action should be opposed or reacted by internal
forces which are set up within the particles of material due to cohesion.

These internal forces give rise to a concept of stress. Therefore, let us define a stress Therefore, let us
define a term stress

Stress:

P(or F)

Pior F)
M

Let us consider a rectangular bar of some cross [ sectional area and subjected to some load or force (in
Newtons )

Let us imagine that the same rectangular bar is assumed to be cut into two halves at section XX. The each
portion of this rectangular bar is in equilibrium under the action of load P and the internal forces acting at the
section XX has been shown

| X
L
< | _,.|i_ o>
P —1-|-t— P
|x

Now stress is defined as the force intensity or force per unit area. Here we use a symbol ¢ to represent the
stress.

o

Where A is the area of the X [] section
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Here we are using an assumption that the total force or total load carried by the rectangular bar is uniformly
distributed over its cross [ section.

But the stress distributions may be for from uniform, with local regions of high stress known as stress
concentrations.

If the force carried by a component is not uniformly distributed over its cross [ sectional area, A, we must
consider a small area, [18A' which carries a small load 8P, of the total force [IP', Then definition of stress is

- 5P
B

o

As a particular stress generally holds true only at a point, therefore it is defined mathematically as

5= lim 2F
EA—0 5,

Units :

The basic units of stress in S.I units i.e. (International system) are N / m? (or Pa)

MPa = 10° Pa
GPa = 10° Pa
KPa = 10° Pa

Some times N / mm? units are also used, because this is an equivalent to MPa. While US customary unit is
pound per square inch psi.

TYPES OF STRESSES :

only two basic stresses exists : (1) normal stress and (2) shear shear stress. Other stresses either are
similar to these basic stresses or are a combination of these e.g. bending stress is a combination tensile,
compressive and shear stresses. Torsional stress, as encountered in twisting of a shaft is a shearing stress.

Let us define the normal stresses and shear stresses in the following sections.

Normal stresses : We have defined stress as force per unit area. If the stresses are normal to the areas
concerned, then these are termed as normal stresses. The normal stresses are generally denoted by a
Greek letter (o)

wWwWw.jntuworld.com



WWW.j ntuwor ld.com

Ares

A

This is also known as uniaxial state of stress, because the stresses acts only in one direction however, such
a state rarely exists, therefore we have biaxial and triaxial state of stresses where either the two mutually
perpendicular normal stresses acts or three mutually perpendicular normal stresses acts as shown in the
figures below :

o2
- . G2
-— o
(n |
A
Lﬁﬂ —_—
1

{Biaxial state of stress) & /

]

o3

(Triaxial state of stress)

Tensile or compressive stresses :

The normal stresses can be either tensile or compressive whether the stresses acts out of the area or into
the area

(Tensile stress)

| "

{Compressive stress)
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Bearing Stress : When one object presses against another, it is referred to a bearing stress ( They are in
fact the compressive stresses ).

Forces

]

OBJECT

el

Soil

Bearing stresses at
the contact surface

Shear stresses :

Let us consider now the situation, where the cross [ sectional area of a block of material is subject to a
distribution of forces which are parallel, rather than normal, to the area concerned. Such forces are
associated with a shearing of the material, and are referred to as shear forces. The resulting force interistes
are known as shear stresses.

Forces acting parallel
to the area concermned

_ —

The resulting force intensities are known as shear stresses, the mean shear stress being equal to

>| T

Where P is the total force and A the area over which it acts.

As we know that the particular stress generally holds good only at a point therefore we can define shear
stress at a point as

. &F
= lim —

T EAmD LYY

The greek symbol 1 ( tau ) ( suggesting tangential ) is used to denote shear stress.
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However, it must be borne in mind that the stress ( resultant stress ) at any point in a body is basically
resolved into two components ¢ and tone acts perpendicular and other parallel to the area concerned, as it
is clearly defined in the following figure.

Shear failure of Rivetts

2.{Butt Joint) 1.{Lap Joint)
. N E—— Lt
<] [ > <P |
— —
{Double shear} {Single shear)
e P N P
o | [1] B p [T >
< [T 11 AL [T
| [ [ ] S

The single shear takes place on the single plane and the shear area is the cross - sectional of the rivett,
whereas the double shear takes place in the case of Butt joints of rivetts and the shear area is the twice of
the X - sectional area of the rivett.

ANALYSIS OF STERSSES

General State of stress at a point :

Stress at a point in a material body has been defined as a force per unit area. But this definition is some
what ambiguous since it depends upon what area we consider at that point. Let us, consider a point (Iq' in
the interior of the body

Let us pass a cutting plane through a pont 'q' perpendicular to the x - axis as shown below
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dF

The corresponding force components can be shown like this

dFx = ox. day
dFy = Txy- dax
dF; = 1x. day

where day is the area surrounding the point 'q' when the cutting plane L "is to x - axis.

In a similar way it can be assummed that the cutting plane is passed through the point 'q' perpendicular to
the y - axis. The corresponding force components are shown below

1dF,

g dF.

dF

The corresponding force components may be written as

dFy = 1yx. day

dFy = oyy. day

dF; = 1y,. day

where day is the area surrounding the point 'q' when the cutting plane L "is to y - axis.

In the last it can be considered that the cutting plane is passed through the point 'q' perpendicular to the z -
axis.
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dF:

The corresponding force components may be written as

dFyx = 1. da;
dFy = Tzy- daz
dF; = 6z,. da;

where da; is the area surrounding the point 'q" when the cutting plane L "is to z - axis.

Thus, from the foregoing discussion it is amply clear that there is nothing like stress at a point 'q’ rather we
have a situation where it is a combination of state of stress at a point g. Thus, it becomes imperative to
understand the term state of stress at a point 'q'. Therefore, it becomes easy to express astate of stress by
the scheme as discussed earlier, where the stresses on the three mutually perpendiclar planes are labelled
in the manner as shown earlier. the state of stress as depicted earlier is called the general or a triaxial state
of stress that can exist at any interior point of a loaded body.

Before defining the general state of stress at a point. Let us make overselves conversant with the notations
for the stresses.

We have already chosen to distinguish between normal and shear stress with the help of
symbols c and t .

Cartesian - co-ordinate system

In the Cartesian co-ordinates system, we make use of the axes, X, Y and Z

Let us consider the small element of the material and show the various normal stresses acting the faces

Oy
ko
Ty — =
- Ox
Gy
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Thus, in the Cartesian co-ordinates system the normal stresses have been represented by oy, oyand o.

Cylindrical - co-ordinate system

In the Cylindrical - co-ordinate system we make use of co-ordinates r, 6 and Z.

Thus, in the Cylindrical co-ordinates system, the normal stresses i.e components acting over a element is
being denoted by o, cyand o;.

Sign convention : The tensile forces are termed as ( +ve ) while the compressive forces are termed as
negative ( -ve ).

First sub [ script : it indicates the direction of the normal to the surface.
Second subscript : it indicates the direction of the stress.

It may be noted that in the case of normal stresses the double script notation may be dispensed with as the
direction of the normal stress and the direction of normal to the surface of the element on which it acts is the
same. Therefore, a single subscript notation as used is sufficient to define the normal stresses.

Shear Stresses : With shear stress components, the single subscript notation is not practical, because such
stresses are in direction parallel to the surfaces on which they act. We therefore have two directions to
specify, that of normal to the surface and the stress itself. To do this, we stress itself. To do this, we attach
two subscripts to the symbol ' t', for shear stresses.

In cartesian and polar co-ordinates, we have the stress components as shown in the figures.
Txy s Tyx s Tyz 5 Tzy 5 Tzx 5 Txz

Tro s Tor s Toz » Tz sTzr » Trz
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-
/-" Trx

x [

Dee Tzx

]

So as shown above, the normal stresses and shear stress components indicated on a small element of
material seperately has been combined and depicted on a single element. Similarly for a cylindrical co-
ordinate system let us shown the normal and shear stresses components separately.

b
"

L et 54

o -
"
e ow

‘I.Nh

£ T
r

Now let us combine the normal and shear stress components as shown below :
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r plane A'6

Now let us define the state of stress at a point formally.
State of stress at a point :

By state of stress at a point, we mean an information which is required at that point such that it remains
under equilibrium. or simply a general state of stress at a point involves all the normal stress components,
together with all the shear stress components as shown in earlier figures.

Therefore, we need nine components, to define the state of stress at a point
Ox Txy Txz
Oy Tyx Tyz
Oz Tzx Tzy

If we apply the conditions of equilibrium which are as follows:
YFx=0;XM4=0
YFy,=0;XMy=0

2F,=0;XM.=0

Then we get
Txy = Tyx
Tyz = Tzy
Tzx = Txy

Then we will need only six components to specify the state of stress at a pointi.e

Ox » GYa Gz, TXV ) TYZ s Tzx
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Now let us define the concept of complementary shear stresses.

Complementary shear stresses:

The existence of shear stresses on any two sides of the element induces complementary shear stresses on
the other two sides of the element to maintain equilibrium.

>
A

A’L

D «<«<< C

m

—————— =

1
1
I
1
|
1
|

¥

on planes AB and CD, the shear stress 1 acts. To maintain the static equilibrium of this element, on planes
AD and BC, t' should act, we shall see that ' which is known as the complementary shear stress would
come out to equal and opposite to thelJt[l. Let us prove this thing for a general case as discussed below:

|'f'|'|. e — E—! E
Tey
Tyl = lj Oy
D —+1+ C
X
¥y Oy
AX 3

The figure shows a small rectangular element with sides of length Ax, Ay parallel to x and y directions. Its

thickness normal to the plane of paper is Az in z [ direction. All nine normal and shear stress components
may act on the element, only those in x and y directions are shown.

Sign convections for shear stresses:
Direct stresses or normal stresses

- tensile +ve

- compressive [ve

Shear stresses:

- tending to turn the element C.W +ve.

- tending to turn the element C.C.W (1 ve.
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The resulting forces applied to the element are in equilibrium in x and y direction. ( Although other normal
and shear stress components are not shown, their presence does not affect the final conclusion ).

Assumption : The weight of the element is neglected.

Since the element is a static piece of solid body, the moments applied to it must also be in equilibrium. Let
0O' be the centre of the element. Let us consider the axis through the point (1O'. the resultant force

associated with normal stresses ox and oy acting on the sides of the element each pass through this axis,
and therefore, have no moment.

Now forces on top and bottom surfaces produce a couple which must be balanced by the forces on left and
right hand faces

Thus,

Tyx AX.AZ. AYy=1y . AX.AZ.Ay

In other word, the complementary shear stresses are equal in magnitude. The same form of relationship can
be obtained for the other two pair of shear stress components to arrive at the relations

Tay =~ Ty

Tox = Tz

Analysis of Stresses:

*q

P o ol il il bl

4

Consider a point [1q" in some sort of structural member like as shown in figure below. Assuming that at point
exist. [1q' a plane state of stress exist. i.e. the state of state stress is to describe by a
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parameters oy, oyand 14y These stresses could be indicate a on the two dimensional diagram as shown
below:

This is a commen way of representing the stresses. It must be realize a that the material is unaware of what
we have called the x and y axes. i.e. the material has to resist the loads irrespective less of how we wish to
name them or whether they are horizontal, vertical or otherwise further more, the material will fail when the
stresses exceed beyond a permissible value. Thus, a fundamental problem in engineering design is to
determine the maximum normal stress or maximum shear stress at any particular point in a body. There is
no reason to believe apriori that o4, 6, and 1,y are the maximum value. Rather the maximum stresses may
associates themselves with some other planes located at [16". Thus, it becomes imperative to determine the
values of o4 andity. In order tto achieve this let us consider the following.

Shear stress:

=
o

L These are parallel

W

" e i e i e e e e o

If the applied load P consists of two equal and opposite parallel forces not in the same line, than there is a
tendency for one part of the body to slide over or shear from the other part across any section LM. If the
cross section at LM measured parallel to the load is A, then the average value of shear stress t = P/A . The
shear stress is tangential to the area over which it acts.
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T= LimE

If the shear stress varies then at a point then t may be defined as 840 Bl

o — e — A -
Complementary shear stress:

Let ABCD be a small rectangular element of sides x, y and z perpendicular to the plane of paper let there be
shear stress acting on planes AB and CD

It is obvious that these stresses will from a couple ( © . xz )y which can only be balanced by tangential forces
on planes AD and BC. These are known as complementary shear stresses. i.e. the existence of shear
stresses on sides AB and CD of the element implies that there must also be complementary shear stresses
on to maintain equilibrium.

Let ' be the complementary shear stress induced on planes

AD and BC. Then for the equilibrium (Tt . xz )y = ' (yz )x

A
]
)

Thus, every shear stress is accompanied by an equal complementary shear stress.

Stresses on oblique plane: Till now we have dealt with either pure normal direct stress or pure shear
stress. In many instances, however both direct and shear stresses acts and the resultant stress across any
section will be neither normal nor tangential to the plane.

A plane stse of stress is a 2 dimensional stae of stress in a sense that the stress components in one
direction are all zero i.e

6z=Tyz=Tx=0
examples of plane state of stress includes plates and shells.

Consider the general case of a bar under direct load F giving rise to a stress oy vertically
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T

Thickness of the
element in z-dir is thin
~ and is taken unity.

unit depth

G'E' T'.I C

The stress acting at a point is represented by the stresses acting on the faces of the element enclosing the
point.

The stresses change with the inclination of the planes passing through that point i.e. the stress on the faces
of the element vary as the angular position of the element changes.

Let the block be of unit depth now considering the equilibrium of forces on the triangle portion ABC
Resolving forces perpendicular to BC, gives

69-BC.1 = oysin6 . AB . 1

but AB/BC = sinf or AB = BCsinf

Substituting this value in the above equation, we get

Ty =0, sin? 28
0e.BC.1 = oysin6 . BCsinb . 1 or 1)

Now resolving the forces parallel to BC
14.BC.1 = 6, cos6 . ABsin6 . 1
again AB = BCcos0

19.BC.1 = 5,c0s6 . BCsin® . 1 orlity = cysinBcoso

AT sinZ2

Ta = ¥

a

k] —

2)
If 6 = 90° the BC will be parallel to AB and 1y = 0, i.e. there will be only direct stress or normal stress.

By examining the equations (1) and (2), the following conclusions may be drawn
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(i) The value of direct stress o, is maximum and is equal to oy, when 6 = 90°.
(ii) The shear stress 1y has a maximum value of 0.5 oy when 6 = 45°

(iii) The stresses oy and o, are not simply the resolution of oy

Material subjected to pure shear:

Consider the element shown to which shear stresses have been applied to the sides AB and DC

Ty
A B
T P
T]‘m E' T}'N
(a1}

D ——— C
Tuy

Complementary shear stresses of equal value but of opposite effect are then set up on the sides AD and BC
in order to prevent the rotation of the element. Since the applied and complementary shear stresses are of
equal value on the x and y planes. Therefore, they are both represented by the symbol txy.

Now consider the equilibrium of portion of PBC

Assuming unit depth and resolving normal to PC or in the direction of o,
6p.PC.1 =[I15y.PB.cosf.1+[1x,.BC.sin6.1
= 1yy.PB.cosO + 14,.BC.sinf
Now writing PB and BC in terms of PC so that it cancels out from the two sides
PB/PC = sin6 BC/PC = cos6

0p.PC.1 = 14y.c0s0siNOPC+ 14y.c0s0.sinOPC
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Gy = 21xySiNOcosO

Gp = Txy-2.8iNOCOSO

Ty = Ty, 5iN2H

(1)

Now resolving forces parallel to PC or in the direction tg.then 1,,PC . 1 =Lty . PBsing — 1x, . BCcos6
—ve sign has been put because this component is in the same direction as that of 1.

again converting the various quantities in terms of PC we have

tyPC . 1 =11, . PB.SIin%0 — 1, . PCcos?0

= [ty (00329 —[sinze) ]

T. = -T,.  CoOs2f
= —T,yC0s20L lorL] ° ad (2)

the negative sign means that the sense of 14 is opposite to that of assumed one. Let us examine the
equations (1) and (2) respectively

From equation (1) i.e,

Cp = Txy SIN20

The equation (1) represents that the maximum value of oy isl ity when 6 = 45°.

Let us take into consideration the equation (2) which states that

Tp =[— Txy COS20

It indicates that the maximum value of 14 is ity when 6 = 0° or 90°. it has a value zero when 6 = 45°.

From equation (1) it may be noticed that the normal component oy, has maximum and minimum values of
+14y (tension) and —ty(compression) on plane at + 45° to the applied shear and on these planes the
tangential component 1, is zero.

Hence the system of pure shear stresses produces and equivalent direct stress system, one set
compressive and one tensile each located at 45° to the original shear directions as depicted in the figure
below:
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F=T
Tuy
—_—=
Txy
#
&
|45°, -
Try g S
£
# T
-—
Txy DR
Ty
o= ay
- 450
0 = - Ty
Txy ———————

Material subjected to two mutually perpendicular direct stresses:

Now consider a rectangular element of unit depth, subjected to a system of two direct stresses both
tensile, ox and oyacting right angles to each other.

Ty R

N
A | Unit depth @\3: Q.7

OB

Fy

for equilibrium of the portion ABC, resolving perpendicular to AC
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oy .AC.1=0ysin0.AB.1+oxcos6.BC.A

converting AB and BC in terms of AC so that AC cancels out from the sides
Go = Gy SiN°0 + 6xCc0s20

Futher, recalling that cos?0 —sin®0 = cos20 or (1 - cos26)/2 = sin®0
Similarly (1 + cos20)/2 = coszq

Hence by these transformations the expression for o,y reduces to

=1/20y (1 — cos26) + 1/20x (1 + c0s20)

On rearranging the various terms we get

g +a a, -a
v = | —L | +| 2—2L |cos28
2z 2

Now resolving parallal to AC

@)

8q.AC.1= —1yy..c0S0.AB. 1+ 14,.BC.Sin6.1
The [ ve sign appears because this component is in the same direction as that of AC.

Again converting the various quantities in terms of AC so that the AC cancels out from the two sides.

Ta-ACT = [1,cos8sind - o sinfoco 58 JAC
To = (0 -0y ) sinfcost

(01 - U;rj' .
= —— " sginlf
5 51N

g, -0
ar Tﬁzgsinzﬁ

(4)

Conclusions :

The following conclusions may be drawn from equation (3) and (4)

0

(i) The maximum direct stress would be equal to ox or oy which ever is the greater, when 6 = 0° or 90

(i) The maximum shear stress in the plane of the applied stresses occurs when 0 = 45°

(o, - o)
Tmax:—xz !

Material subjected to combined direct and shear stresses:

Now consider a complex stress system shown below, acting on an element of material.
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The stresses ox and oy may be compressive or tensile and may be the result of direct forces or as a result of
bending.The shear stresses may be as shown or completely reversed and occur as a result of either shear
force or torsion as shown in the figure below:

CI-"!,'
- '-l:-i._-

A B

F T

Tl:l |'| Ky
- -
y i
¥ an
T:l:-.'

T:l::.'

¥ Sy

As per the double subscript notation the shear stress on the face BC should be notified as tyx , however, we
have already seen that for a pair of shear stresses there is a set of complementary shear stresses
generated such that tyx = 1y

By looking at this state of stress, it may be observed that this state of stress is combination of two different
cases:

(i) Material subjected to pure stae of stress shear. In this case the various formulas deserved are as follows
Gp = Tyx SiN210
To = — Tyx COS 2010

(ii) Material subjected to two mutually perpendicular direct stresses. In this case the various formula's
derived are as follows.

g, =
Ta =—I: 12 1’rjsinZE

To get the required equations for the case under consideration,let us add the respective equations for the
above two cases such that
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g, -0a

. 5 ( xz 1”:I|::|:|52E+ Ty 5N 28
g, -a

Ta =Msin26—trwcn s2f

These are the equilibrium equations for stresses at a point. They do not depend on material proportions and
are equally valid for elastic and inelastic behaviour

This eqgn gives two values of 26 that differ by 180° .Hence the planes on which maximum and minimum
normal stresses occurate 90° apart.

Far o, to be a maximum or minimum ii; =0
Moy
Ty * 0 Ty = 0
T :E 12 1’rj+|: xE 1’r:||::|:|52&'+ Toy SIN2H
% - - 2(0, - 0,)5in282 + 7005262

=0
le.~ (o, - o, )sin2f+ r cos282 =0

ToC05282 = (o, - o, ) sin2f

2T
Thus, tanz@=__*
(':rx - g\,r:'

From the triangle it may be determined

cos2f = 7, _:Y)
Jlog - o2 eadt
2
sin 26 = D
Jlox - o ) e drt,, (o~ o)

Substituting the values of cos276 and sin218 in equation (5) we get
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Og =5+ 12 2 cos26 + 1, sin28
_('jx""j\,r:' (':rx _':r'g.r:I (01_01;:'
Ty = + :
- 2 ,.{( -a,frart,,
w2 Ty
J(a —l:r] +4:F
- Ii':r:-c +g1,r:| 1 (g _':r'g.rjl2
2 24 pyvER
:112
EJ Faar,
ar

[U;-; + U'!Ir:l +1 I:g;-; - I:r'!,r.l:l2 +JI1T.2:-:'5I'
2 2 fo, -0, F rar,
o+ 1 J P ear, o, ot ear,
,J[crx o) +ar,,

1 1
0 =50 1))t 5.\((01 N L

Hence we get the two values of o,, which are designated o, as o, and respectively therefore

1 1
0 = (o, v o)+ E.J{UI - GY:IE “1’21-,;
1

(0, 0,)- %.\{[ax -0, P 4T,

The oy and 7, are termed as the principle stresses of the system.
substituting the values of cos28 and sin2é8 in equation (B) we see that
1

Ty =

Ty =§|:c:rch - o, )sin2f -1, cos2f
1 27 T (0, =T,
:5('53:_'51;:' :-;:.r - = xz z
.J(crx a4t ,'(I:UI a4,
T, =0

This shows that the values oshear stress is zero on the principal planes.

Hence the maximum and minimum values of normal stresses occur on planes of zero shearing stress. The
maximum and minimum normal stresses are called the principal stresses, and the planes on which they act
are called principal plane the solution of equation

2T
tan2é, = .
(Ux _Uy:l

will yield two values of 20 separated by 180° i.e. two values of 0 separated by 90° .Thus the two principal
stresses occur on mutually perpendicular planes termed principal planes.
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Therefore the two [0 dimensional complex stress system can now be reduced to the equivalent system of
principal stresses.

Principle planes Ref
A -ve
Oy
—1 = Ty
Toy +ye

Let us recall that for the case of a material subjected to direct stresses the value of maximum shear stresses

(o -0, Jat &= 48" Thus, for a 2-dimensional state of stress subjected to principle stresses

P —= B —

{my - 05), on substituting the values if o, and 7, we get

_ 1 7
max™ - §JEUI - U'!,I':I + -412:.:.!.|.

Alternatively this expression can also be abtained by differentiating the expression for 7, with respect to 8 ie.

a, - a0
T, :%sm?ﬂ—%cnszﬁ
Vs~ o, -0 )e0s282 4 7, 5in262
g 2% ¥ Coom
=0

ar (o, - o,Jcos28 + 21, sin2f =0

(gy—ng _(01 _':ryrj

tan2d, = =

2Ty 2T,

a,-a
tanzﬂg = —M

21rjanr

Recalling that

2T
tan2fy = — =

I:':r:-: - g'!,r:l

Thus,

[tan28p tan28, =1|

Therefore, it can be concluded that the equation (2) is a negative reciprocal of equation (1) hence the roots
for the double angle of equation (2) are 90° away from the corresponding angle of equation (1).
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This means that the angles that angles that locate the plane of maximum or minimum shearing stresses
form angles of 45° with the planes of principal stresses.

Futher, by making the triangle we get

2T
cos2f = x:
Jloy o P rat,
cin26 = ——_7x %)

Jloy —o

Therefore by substitutingthevaluesof cos28and sin2fwe have

Ty = 1 (o, -0, )sin2f -1 cos28

2
1 {o —aylio, —o,] Ty 2 Ty
2

Jloy -0+ 4y, ) Jloy - o) w47,

- (ox- oy)

21:_:3-

Because of root the difference in sign convention arises from the point of view of locating the planes on
which shear stress act. From physical point of view these sign have no meaning.

The largest stress regard less of sign is always know as maximum shear stress.

Principal plane inclination in terms of associated principal stress:

2T
tan28, = . —
d, -
We know that the equation (7 - o]

yields two values of g i.e. the inclination of the two principal planes on which the principal stresses s4 and
sz act. It is uncertain,however, which stress acts on which plane unless equation.

(o, - o,)
2 2
stresses is obtained.

cos 28 + 1, sin28

is used and observing which one of the two principal

Alternatively we can also find the answer to this problem in the following manner
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|_—unit depth

g or Op
('EH az) c

Consider once again the equilibrium of a triangular block of material of unit depth, Assuming AC to be a
principal plane on which principal stresses o, acts, and the shear stress is zero.

Resolving the forces horizontally we get:

ox.BC .1+ 1y .AB.1=0p.cos6.AC dividing the above equation through by BC we get

d,.+ T Ewr cnsﬂ—c
OWBD P ‘B

or
Ty + Ty tant = o,
Thus

a
tang = £ *
Ty

GRAPHICAL SOLUTION 0 MOHR'S STRESS CIRCLE

The transformation equations for plane stress can be represented in a graphical form known as Mohr's
circle. This grapical representation is very useful in depending the relationships between normal and shear
stresses acting on any inclined plane at a point in a stresses body.

To draw a Mohr's stress circle consider a complex stress system as shown in the figure

h
Jﬂ:r
— T=:ll
A B
- FP Tuy
8 Ox
on
D =—F+—— C
y Oy

The above system represents a complete stress system for any condition of applied load in two dimensions
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The Mohr's stress circle is used to find out graphically the direct stress ¢ and sheer stress(it on any plane
inclined at 6 to the plane on which cyacts.The direction of 6 here is taken in anticlockwise direction from the
BC.

STEPS:

In order to do achieve the desired objective we proceed in the following manner

(i) Label the Block ABCD.

(i) Set up axes for the direct stress (as abscissa) and shear stress (as ordinate)

(iii) Plot the stresses on two adjacent faces e.g. AB and BC, using the following sign convention.
Direct stressesl - tensile positive; compressive, negative

Shear stresses (1 tending to turn block clockwise, positive

[ tending to turn block counter clockwise, negative

[ i.e shearing stresses are +ve when its movement about the centre of the element is clockwise ]

This gives two points on the graph which may than be labeled as AB and BC respectively to denote
stresses on these planes.

(iv) Join AB and BC

(v) The point P where this line cuts the s axis is than the centre of Mohr's stress circle and the line

joining AB and BC is diameter. Therefore the circle can now be drawn.

Now every point on the circle then represents a state of stress on some plane through C.
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Proof:

=]
=
q

Tuy

————————#

|
al
o

 lovtez)/2 _

-\-\-\-\-\_‘_‘——\_L—'—'—F’f#

Consider any point Q on the circumference of the circle, such that PQ makes an angle 26/ with BC, and drop
a perpendicular from Q to meet the s axis at N.Then OQ represents the resultant stress on the plane an
angle 0 to BC. Here we have assumed that ox > oy

Now let us find out the coordinates of point Q. These are ON and QN.
From the figure drawn earlier
ON=O0P + PN
OP =OK + KP
OP =oy + 1/2 ( ox— oy)
=oy/2+oy/2+0ox/2+0y/2
=(ox+toy)/2
PN =Rcos(20-)
hence ON = OP + PN
=(ox+oy)/2+Rcos(20-pJ)
= (Uox + oy ) / 2 + Rcos20 cosP + Rsin20sinf

now make the substitutions for Rcosf and Rsinp.

(o, -0

Rcosf = — T Reing = 1y
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Thus,
ON =1/2 (Uox + oy) + 1/2 (Lox — 6y )c0S26 + 14Sin26/ (1)
Similarly QM = Rsin(26-)
= Rsin26cosp - Rcos26sinp
Thus, substituting the values of R cosp and Rsinp, we get
QM = 1/2 ( ox — 6y)Sin26 — 1x,c0s26 (2)

If we examine the equation (1) and (2), we see that this is the same equation which we have already derived
analytically

Thus the co-ordinates of Q are the normal and shear stresses on the plane inclined at 6 to BC in the original
stress system.

N.B: Since angle BC PQ is 26 on Mohr's circle and not @ it becomes obvious that angles are doubled on
Mohr's circle. This is the only difference, however, as They are measured in the same direction and from the
same plane in both figures.

Further points to be noted are :

(1) The direct stress is maximum when Q is at M and at this point obviously the sheer stress is zero, hence
by definition OM is the length representing the maximum principal stresses o1 and 261 gives the angle of the
plane 64 from BC. Similar OL is the other principal stress and is represented by o,

(2) The maximum shear stress is given by the highest point on the circle and is represented by the radius of
the circle.

This follows that since shear stresses and complimentary sheer stresses have the same value; therefore the
centre of the circle will always lie on the s axis midway between oy and oy . [ since +1x & —1x, are shear
stress & complimentary shear stress so they are same in magnitude but different in sign. ]

(3) From the above point the maximum sheer stress i.e. the Radius of the Mohr's stress circle would be

(o, - ay)
2

While the direct stress on the plane of maximum shear must be mid [1 may between ox and oyi.e

(o, + 0]
2
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i~

=
m

(G + o) q_____d_,_r/ BC

(4) As already defined the principal planes are the planes on which the shear components are zero.
Therefore are conclude that on principal plane the sheer stress is zero.

(5) Since the resultant of two stress at 90° can be found from the parallogram of vectors as shown in the
diagram.Thus, the resultant stress on the plane at q to BC is given by OQ on Mohr's Circle.

(6) The graphical method of solution for a complex stress problems using Mohr's circle is a very powerful
technique, since all the information relating to any plane within the stressed element is contained in the
single construction. It thus, provides a convenient and rapid means of solution. Which is less prone to
arithmetical errors and is highly recommended.

ILLUSRATIVE PROBLEMS:

Let us discuss few representative problems dealing with complex state of stress to be solved either
analytically or graphically.

PROB 1: A circular bar 40 mm diameter carries an axial tensile load of 105 kN. What is the Value of shear
stress on the planes on which the normal stress has a value of 50 MN/m? tensile.

Solution:
Tensile stress oy= F / A= 105 x 10° / mt x (0.02)°
= 83.55 MN/m?
Now the normal stress on an oblige plane is given by the relation

2
Gg1= 0ySiN“0
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50 x 10° = 83.55 MN/m* x 10°sin0
0 = 50°68'
The shear stress on the oblique plane is then given by
19 = 1/2 o,sin20

=1/2 x 83.55 x 10° x sin 101.36

= 40.96 MN/m?
Therefore the required shear stress is 40.96 MN/m?
PROB 2:
For a given loading conditions the state of stress in the wall of a cylinder is expressed as follows:
(a) 85 MN/m? tensile
(b) 25 MN/m? tensile at right angles to (a)

(c) Shear stresses of 60 MN/m? on the planes on which the stresses (a) and (b) act; the sheer couple acting
on planes carrying the 25 MN/m?stress is clockwise in effect.

Calculate the principal stresses and the planes on which they act. What would be the effect on these results
if owing to a change of loading (a) becomes compressive while stresses (b) and (c) remain unchanged

Solution:

The problem may be attempted both analytically as well as graphically. Let us first obtain the analytical
solution

85 MHN

The principle stresses are given by the formula
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ayanda,

1
£ —
2

(B5 +25) + %J{BE + 2817 + (43607
1

Jloy - o)t e a7,

(o + ay)

| = kI —

1l
[ S R

5 +— R05 =55 +G7

]

= a, =122 MM/m*

-12 MM/ ¥ (compre ssive)

]

tan2#é = [ ud ]
a, —a
For finding out the planes on which the principle stresses act us the equation 5 ¥
The solution of this equation will yeild two values 6 i.e they 61 and 6, giving 6= 31971' & 0= 121°71"

(b) In this case only the loading (a) is changed i.e. its direction had been changed. While the other stresses
remains unchanged hence now the block diagram becomes.

25 MM
. me

- 60 MM
mz

85 MN
m?

Again the principal stresses would be given by the equation.
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1 1
|_’,I'1 S"'UE = 5':0:-: +':r'5r:|i§\’|:g:-: - g-ﬁrjz +"'1'12r9.

(-85 +28) + ;_,j(-aﬁ - 287 + (43607

1 7 2
(-B0) * 5@’[—85 - 2687 +(4x60%)
-30 %thmn +14400

-30 +51.4

gy =514 MN/m; oy = -111.4 MN/m?
Again for finding out the angles use the following equation.

27
tan2|9=[ il ]
¢, -0,

1

__2xB0_ 120
-85-26  -110
_.12
11
12
268 = tan| - —
[ 11]
= f#=-2374°

Thus, the two principle stresses acting on the two mutually perpendicular planes i.e principle planes may be
depicted on the element as shown below:

A Ref.plane |
Oy BC ~w
: o |
5 —=  Tuy B & :
n Tay (aF] 1
% 1
L] |
xx - i :
. _
e G T
"\
%
-— C

So this is the direction of one principle plane & the principle stresses acting on this would be 1 when is
acting normal to this plane, now the direction of other principal plane would be 90° + 0 because the principal
planes are the two mutually perpendicular plane, hence rotate the another plane 6 + 90° in the same
direction to get the another plane, now complete the material element if 6 is negative that means we are
measuring the angles in the opposite direction to the reference plane BC .
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ref .pllane

i
+ JR—
Ve e

Therefore the direction of other principal planes would be {-6 + 90} since the angle -6 is always less in
magnitude then 90 hence the quantity (-6 + 90 ) would be positive therefore the Inclination of other plane
with reference plane would be positive therefore if just complete the Block. It would appear as

Ref plane

& |

If we just want to measure the angles from the reference plane, than rotate this block through 180° s0 as to
have the following appearance.
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So whenever one of the angles comes negative to get the positive value,

first Add 90° to the value and again add 90° as in this case 0 = —23°74'

50 01 = —23%74' + 90° = 66°26' .Again adding 90° also gives the direction of other principle planes
i.e 0, = 66°26' + 90° = 156°26'

This is how we can show the angular position of these planes clearly.

GRAPHICAL SOLUTION:

Mohr's Circle solution: The same solution can be obtained using the graphical solution i.e the Mohr's
stress circle,for the first part, the block diagram becomes

4 25 MN
m? g0 MN
m?
A . - B
' 4 B0 MN
'.l'-. mg
] "I'I. r o
5
¥ b m#
%
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Construct the graphical construction as per the steps given earlier.

>

Taking the measurements from the Mohr's stress circle, the various quantities computed are
o1 = 120 MN/m” tensile

o2 = 10 MN/m? compressive

01 = 34° counter clockwise from BC

02 = 34°+ 90 = 124° counter clockwise from BC

Part Second : The required configuration i.e the block diagram for this case is shown along with the stress
circle.
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A 25N
,—*”'rﬂ_ﬂ—hﬁ"‘xﬁ —1 " somm
/z"’f . AB A B
E‘.ﬁ‘ 85 M
Gl cl' ™
T

By taking the measurements, the various quantites computed are given as
o1 = 56.5 MN/m?” tensile

o2 = 106 MN/m? compressive

0+ = 66°15' counter clockwise from BC

02 = 156°15' counter clockwise from BC

Salient points of Mohr's stress circle:

1. complementary shear stresses (on planes 90° apart on the circle) are equal in magnitude
2. The principal planes are orthogonal: points L and M are 180° apart on the circle (900 apart in material)
3. There are no shear stresses on principal planes: point L and M lie on normal stress axis.

4. The planes of maximum shear are 45° from the principal points D and E are 90° , measured round the
circle from points L and M.

5. The maximum shear stresses are equal in magnitude and given by points D and E

6. The normal stresses on the planes of maximum shear stress are equal i.e. points D and E both have
normal stress co-ordinate which is equal to the two principal stresses.
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As we know that the circle represents all possible states of normal and shear stress on any plane through a
stresses point in a material. Further we have seen that the co-ordinates of the point Q' are seen to be the
same as those derived from equilibrium of the element. i.e. the normal and shear stress components on any
plane passing through the point can be found using Mohr's circle. Worthy of note:

1. The sides AB and BC of the element ABCD, which are 90° apart, are represented on the circle by
AB Fand BC P and they are 180° apart.

2. It has been shown that Mohr's circle represents all possible states at a point. Thus, it can be seen at a
point. Thus, it, can be seen that two planes LP and PM, 180° apart on the diagram and therefore 90° apart in
the material, on which shear stress 14 is zero. These planes are termed as principal planes and normal
stresses acting on them are known as principal stresses.

Thus, o1=0L
o2 = oM

3. The maximum shear stress in an element is given by the top and bottom points of the circle i.e by points
J1 and Jz ,Thus the maximum shear stress would be equal to the radius of i.e. Tmax= 1/2(lo1— 62 ),the
corresponding normal stress is obviously the distance OP = 1/2 (Llox+ oy) , Further it can also be seen that
the planes on which the shear stress is maximum are situated 90° from the principal planes ( on circle ), and
45° in the material.

4.The minimum normal stress is just as important as the maximum. The algebraic minimum stress could
have a magnitude greater than that of the maximum principal stress if the state of stress were such that the
centre of the circle is to the left of orgin.

i.e.if o1=20 MN/m? (say)
o2 = —80 MN/m? (say)

Then Tmax" = (61— 62/ 2 ) = 50 MN/m?
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If should be noted that the principal stresses are considered a maximum or minimum mathematically e.g. a
compressive or negative stress is less than a positive stress, irrespective or numerical value.

5. Since the stresses on perpendular faces of any element are given by the co-ordinates of two diametrically
opposite points on the circle, thus, the sum of the two normal stresses for any and all orientations of the
element is constant, i.e. Thus sum is an invariant for any particular state of stress.

Sum of the two normal stress components acting on mutually perpendicular planes at a point in a state of
plane stress is not affected by the orientation of these planes.

T
T
-
0 &
Ty
a
™
] [
wa
. -o—""‘-ffﬁ" .I:""I':I iy
T — ) w—tf— O
L

This can be also understand from the circle Since AB and BC are diametrically opposite thus, what ever may
be their orientation, they will always lie on the diametre or we can say that their sum won't change, it can
also be seen from analytical relations

a_+d o -
RTINS

cos2f+ 1, sin2f
We know 2 2 .

on plane BC; 6=0
On1= Ox

on plane AB; 6 = 270°
Gn2 = Oy

Thus on1 + Gn2= oxt+ oy

6. If o1 = o2, the Mohr's stress circle degenerates into a point and no shearing stresses are developed on xy
plane.

7. If ox* oy= 0, then the center of Mohr's circle coincides with the origin of ¢ — t co-ordinates.
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ANALYSIS OF STRAINS
CONCEPT OF STRAIN

Concept of strain : if a bar is subjected to a direct load, and hence a stress the bar will change in length. If
the bar has an original length L and changes by an amount 3L, the strain produce is defined as follows:

_thangeinlength
orginallength

strainfe) %

Strain is thus, a measure of the deformation of the material and is a nondimensional Quantity i.e. it has no
units. It is simply a ratio of two quantities with the same unit.

=]

stram

I i i

Since in practice, the extensions of materials under load are very very small, it is often convenient to
measure the strain in the form of strain x 10 i.e. micro strain, when the symbol used becomes p €.

Sign convention for strain:

Tensile strains are positive whereas compressive strains are negative. The strain defined earlier was known
as linear strain or normal strain or the longitudinal strain now let us define the shear strain.
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Definition: An element which is subjected to a shear stress experiences a deformation as shown in the
figure below. The tangent of the angle through which two adjacent sides rotate relative to their initial position
is termed shear strain. In many cases the angle is very small and the angle it self is used, ( in radians ),
instead of tangent, so that y = £ AOB - £ A'OB' =[1¢

Shear strain: As we know that the shear stresses acts along the surface. The action of the stresses is to
produce or being about the deformation in the body consider the distortion produced b shear sheer stress on
an element or rectangular block

Aliter

¥ =LA0B -ZA0B
_ = 1]

this block will in fact
—> change shape or strain =—=»|5 h
into the form shown ! !

This shear strain or slide is ¢{land can be defined as the change in right angle. or The angle of
deformation y is then termed as the shear strain. Shear strain is measured in radians & hence is non [
dimensional i.e. it has no unit.So we have two types of strain i.e. normal stress & shear stresses.

Hook's Law :
A material is said to be elastic if it returns to its original, unloaded dimensions when load is removed.
Hook's law therefore states that

Stress (Lo ) a strain( el)

stress
— = constant
strain

Modulus of elasticity : Within the elastic limits of materials i.e. within the limits in which Hook's law applies,
it has been shown that

Stress / strain = constant

This constant is given by the symbol E and is termed as the modulus of elasticity or Young's modulus of

elasticity
E= strain -0
stress e
- P’f%uL
PL
E=_——
Thus Asl
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The value of Young's modulus E is generally assumed to be the same in tension or compression and for
most engineering material has high, numerical value of the order of 200 GPa

Poisson'’s ratio: If a bar is subjected to a longitudinal stress there will be a strain in this direction equal
tolle / E . There will also be a strain in all directions at right angles to o . The final shape being shown by the
dotted lines.

It has been observed that for an elastic materials, the lateral strain is proportional to the longitudinal strain.
The ratio of the lateral strain to longitudinal strain is known as the poison's ratio .

Poison's ratio (Tn ) = — lateral strain / longitudinal strain
For most engineering materials the value of p his between 0.25 and 0.33.

Three (1 dimensional state of strain : Consider an element subjected to three mutually perpendicular
tensile stresses ox , oyand o, as shown in the figure below.

Gy

(&3]

¥

Gz

If oy and o, were not present the strain in the x direction from the basic definition of Young's modulus of
Elasticity E would be equal to

ex= oy E

The effects of oy and o, in x direction are given by the definition of Poisson's ratio [ u ' to be equal as —. 6/
Eand -po/E

The negative sign indicating that if o,and o, are positive i.e. tensile, these they tend to reduce the strain in x
direction thus the total linear strain is x direction is given by

o o T
E Z_I—I_L_Y—I_L_Z
* E E E
o o T
E.!Ir——y—l.L—x—l.L—z
E E E
) Ty )
= E R ME
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Principal strains in terms of stress:

In the absence of shear stresses on the faces of the elements let us say that ox , oy, o, are in fact the
principal stress. The resulting strain in the three directions would be the principal strains.

1
Ey= E[U1 - KOy T I.LUQ]

EfE[Uz THTy T I-L'Fa]

€3 ['33 Ty I-L'jz]

1
i.e. We will have the following relation. E
For Two dimensional strain: system, the stress in the third direction becomes zeroi.e 6, =00roc3; =0

Although we will have a strain in this direction owing to stresses 61& o2 .

1
E1= E[U1 - I-LEE]

€= E[Ug _|.LU1]

1

. . . e3= =[-noy - wos)
Hence the set of equation as described earlier reduces to E

Hence a strain can exist without a stress in that direction

leifo, =0;g,= %[—u.m - I.I.UE]

Alsa

g .E =0 -po,

gy E=oy - pnoy

so the solution of above two equations yields

_E
Ty e
E
5, = Eq HLE
2 |:1‘I-l-2:|[ 2 1]

Hydrostatic stress : The term Hydrostatic stress is used to describe a state of tensile or compressive
stress equal in all directions within or external to a body. Hydrostatic stress causes a change in volume of a
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material, which if expressed per unit of original volume gives a volumetric strain denoted byile,. So let us
determine the expression for the volumetric strain.

Volumetric Strain:

\

Consider a rectangle solid of sides x, y and z under the action of principal stresses o1, 62, 63 respectively.
Then €1, €2, and e3 are the corresponding linear strains, than the dimensions of the rectangle becomes
(x+er.x)(y+tez2.y)(z+es.2)

hence the
Increase in wolume

COriginal valume
_ e )yl + e )1+ ey )z - wyz
HYZ
(e e y(l+r e )1+ e,) -1 2 &, +e; + ey [Negleding the products of & -5]

“Yolumetric strain =

ALITER : Let a cuboid of material having initial sides of Length x, y and z. If under some load system, the
sides changes in length by dx, dy, and dz then the new volume (x+ dx ) (y +dy) (z +dz)

New volume = xyz + yzdx + xzdy + xydz

Original volume = xyz

Change in volume = yzdx +xzdy + xydz

Volumetric strain = ( yzdx +xzdy + xydz ) / xyz = ext+ €yt €,

Neglecting the products of epsilon's since the strains are sufficiently small.
Volumetric strains in terms of principal stresses:

As we know that
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=T %%
SCECPEME
A I
T ETRETRE
e D
=TE MEME

Futher“alumetricstrain =g, + &, + &,

- (my+og +03) 2plog +og +03)

E E
_ oy oy +og)(1-2h)
E
hencethe

Yolumetric strain = oy *+ oy +og)(1 -2

E

Strains on an oblique plane

(a) Linear strain
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Yy ieAasing C.acosh

*

asing

this is 0 because the lines
¥ and y are very close

Consider a rectangular block of material OLMN as shown in the xy plane. The strains along ox and oy
are ex and €y, and yyy is the shearing strain.

Then it is required to find an expression for ey, i.e the linear strain in a direction inclined at 6 to OX, in terms
of ex,ey, yxyand 6.

Let the diagonal OM be of length 'a' then ON = a cos 6 and OL = a sin 6 , and the increase in length of those
under strains arellexacos 0 andeya sin 0 ( i.e. strain x original length ) respectively.

If M moves to M', then the movement of M parallel to x axis is exacos 0 + yyy sin 6Jand the movement
parallel to the y axis is eyasin 6

Thus the movement of M parallel to OM , which since the strains are small is practically coincident with MM'.
and this would be the summation of portions (1) and (2) respectively and is equal to
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= (g, asing) sing + (g, AC058 + v, 4sin8) cosE
=3 [Ey. 5ing.sing + e, COSB.COSE +v,, Sing cnsa]

hencethe strainalong Ohd
_ extensian
otiginallength

EqTE, COS G + Tip SINB.COSE+ £, sint &
- 2 . :
€4 =€, COS @+ €&, 5iN° 8+ 7y, sing cose
Recalling cos® e - sin‘ e = cos2e

or 2coste -1= cos2s
1+ cos2e
coste = [—]

2
cinl e - 1-sin2a
2
hence
_ 1+cos2a R 1-sinZa N .
Eq=E, T Ey T 'rwa SING.COsg
. _
= £y - Sy . £y - By coz2a +1§?IY Sin2e

. _
£, = {Ex . E!.r} + {Ex _ EE"}cnszﬁ + %Tm,r sinza

This expression is identical in form with the equation defining the direct stress on any inclined
plane 6 with ex and ey replacing ox and oy and %z yxy replacing Ty i.e. the shear stress is replaced by half the
shear strain

Shear strain: To determine the shear stain in the direction OM consider the displacement of point P at the
foot of the perpendicular from N to OM and the following expression can be derived

1 1 . 1
—wo= == - SinZe - —v_cosde
Tﬁ (EI E'!Irjl ET

as 2 2 r"r

In the above expression 7z is there so as to keep the consistency with the stress relations.

Futher -ve sign in the expression occurs so as to keep the consistency of sign convention, because OM'
moves clockwise with respect to OM it is considered to be negative strain.

The other relevant expressions are the following :
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Principalplanes :

k¢
tan2e, = il
By ~ Ey

Principalstrains :

Maximumshearstrains :
~ 2 7
Trmax =+ Ex E‘I + Tﬂ
2 2 2

Let us now define the plane strain condition

Plane Strain :

In xy plane three strain components may exist as can be seen from the following figures:

y N y fe. v B
| I )
1 [y .
i ~ '
1 1 [ i
1 i [
i i 0
ol 1 . -E—- X i} ® 0 Ed
(Fig.1) (Fig.2) (Fig.3)

Therefore, a strain at any point in body can be characterized by two axial strains i.e ex in x direction, ey iny
- direction and yxy the shear strain.

In the case of normal strains subscripts have been used to indicate the direction of the strain, and e« , ey are
defined as the relative changes in length in the co-ordinate directions.

With shear strains, the single subscript notation is not practical, because such strains involves
displacements and length which are not in same direction.The symbol and subscript yx, used for the shear
strain referred to the x and y planes. The order of the subscript is unimportant.y,, and yyx refer to the same
physical quantity. However, the sign convention is important.The shear strain yx, is considered to be positive
if it represents a decrease the angle between the sides of an element of material lying parallel the positive x
and y axes. Alternatively we can think of positive shear strains produced by the positive shear stresses and
viceversa.

Plane strain :

An element of material subjected only to the strains as shown in Fig. 1, 2, and 3 respectively is termed as
the plane strain state.

Thus, the plane strain condition is defined only by the componentsliey ,[ley , xy :[lez = 0;lyxz= 0; y.= 0

It should be noted that the plane stress is not the stress system associated with plane strain. The plane
strain condition is associated with three dimensional stress system and plane stress is associated with three
dimensional strain system.
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PRINCIPAL STRAIN

For the strains on an oblique plane we have an oblique we have two equations which are identical in form
with the equation defining the direct stress on any inclined plane 6 .

S, +E, . "5 1 .
= = + cos2f+ — ., sin2f
1T _ 1 . 1
ifya = - i[ex —EY]SmEE—E'ﬁIYCDSEE

Since the equations for stress and strains on oblique planes are identical in form, so it is evident that Mohr's
stress circle construction can be used equally well to represent strain conditions using the horizontal axis for
linear strains and the vertical axis for half the shear strain.

It should be noted, however that the angles given by Mohr's stress circle refer to the directions of the planes
on which the stress act and not the direction of the stresses themselves.

The direction of the stresses and therefore associated strains are therefore normal (i.e. at 900) to the
directions of the planes. Since angles are doubled in Mohr's stress circle construction it follows therefore that
for a true similarity of working a relative rotation of axes of 2 x 90° = 180° must be introduced. This is
achieved by plotting positive sheer strains vertically downwards on the strain circle construction.

The sign convention adopted for the strains is as follows:
Linear Strains : extension - positive
compression - negative
{ Shear of strains are taken positive, when they increase the original right angle of an unstrained element. }

Shear strains : for Mohr's strains circle sheer strain yxy - is +ve referred to x - direction the convention for
the shear strains are bit difficult. The first subscript in the symbol yx, usually denotes the shear strains
associated with direction. e.g. in yx [ represents the shear strain in x - direction and for yy[ | represents the
shear strain in y - direction. If under strain the line associated with first subscript moves counter clockwise
with respect to the other line, the shearing strain is said to be positive, and if it moves clockwise it is said to
be negative.

N.B: The positive shear strain is always to be drown on the top of(ley .If the shear stain yxy is given ]

Moh's strain circle

For the plane strain conditions can we derivate the following relations
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e, - {E* +E‘*‘}+ {E* _E‘*‘}cusze e Ly sin2e (1)
2 2 2™
1 1 . 1
E'ya = —[E(EI -, ) sin2 —E}'IYCDSEE] (2]
Rewritingthe equation(asbelow :
-, v
s, —kEI;E”J- ={EIEEY}EDSEE+%'MSMEE )

E-.qu aringand addingequations(21and(3)

[ FEI +E}.rr2 1 z = — 1 ’

ok ead ISRV s SR

] 1 2
[ smEE—E';,;WE:DSEE]

L r

FERE | WA G e W
S 2 2% T2 1
Mow aswe know that

I f 2z
S5, s [
2 2
S TETE TS
z

’51-.522:-51—% +)2r:.r
. 2 2 4

Therefarethe equation getstransformedto

SRR

If we plot equation (4) we abtain a circle of radius [E1 ;E-"'-' ]With center at {'51 ;Ez .D]

ST

A typical point P on the circle given the normal strain and half the sheer strain 1/2yx, associated with a
particular plane. We note again that an angle subtended at the centre of Mohr's circle by an arc connecting
two points on the circle is twice the physical angle in the material.

Mohr strain circle :

Since the transformation equations for plane strain are similar to those for plane stress, we can employ a
similar form of pictorial representation. This is known as Mohr's strain circle.

The main difference between Mohr's stress circle and stress circle is that a factor of half is attached to the
shear strains.

wWwWw.jntuworld.com



WWW.j ntuwor ld.com

Points X' and Y' represents the strains associated with x and y directions with € and yx, /2 as co-ordiantes

Co-ordinates of X' and Y' points are located as follows :

[ ’:'I:'.'!,I'
W= -
[EII 2

" .t
V= [Ey,+T1’r

In x [J direction, the strains produced, the strains produced by ox,and — tllxy are ex and — yxy /2
where as in the Y - direction, the strains are produced by e, and + y,y are produced by oy and + 1y

These co-ordinated are consistent with our sign notation ( i.e. + ve shear stresses produces produce +ve
shear strain & vice versa )

on the face AB is 1« tve i.e strains are ( €y, +yx, /2 ) where as on the face BC, Ity is negative hence the
strains are ((lex, — yxy /12)
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L]
Oy
» Txy
A B
T t s
D -— C

A typical point P on the circle gives the normal strains and half the shear strain, associated with a particular
plane we must measure the angle from x [ axis (taken as reference) as the required formulas
for €4 ,[1-1/2 yg have been derived with reference to x-axis with angle measuring in the c.c.W direction

Ya

CONSTRUCTION :

In this we would like to locate the points X' & y' instead of AB and BC as we have done in the case of Mohr's
stress circle.

steps

1. Take normal or linear strains on x-axis, whereas half of shear strains are plotted on y-axis.
2. Locate the points x' and y'

3. Join X' and y' and draw the Mohr's strain circle

4. Measure the required parameter from this construction.

wWwWw.jntuworld.com



WWW.j ntuwor ld.com

A
_‘1_'“
2 i
-1
E’f
o / T
+,
— o€
= - =

Note: positive shear strains are associated with planes carrying positive shear stresses and negative strains
with planes carrying negative shear stresses.

ILLUSTRATIVE EXAMPLES :

1. At a certain point, a material is subjected to the following state of strains:
x = 400 x 10°° units

ey =200 x 107 units

Ty = 350 x 10°° radians

Determine the magnitudes of the principal strains, the direction of the principal strains axes and the strain on
an axis inclined at 30° clockwise to the x (1 axis.

Solution:

Draw the Mohr's strain circle by locating the points x' and y'
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A
ﬂx
e
-1 ™
e
2
El
(] + =
: / &
+; y
-H-\""—\-\_\_\___,__:-'-
£

By Measurement the following values may be computed
e1=500 X 10°® units

2= 100 x 10°® units

01 =60°/2 = 30°

02 =90 + 30 = 12°

30 = 200 x 10 units

The angles being measured c.c.w. from the direction of ey.
PROB 2.

A material is subjected to two mutually perpendicular strains ex = 350 x107® units and ey =50 X 10 units
together with an unknown sheer strain yyy if the principal strain in the material is 420 x 10" units Determine
the following.

(a) Magnitude of the shear strain

(b) The other principal strain

(c) The direction of principal strains axes
(d) The magnitude of the principal stresses
If E =200 GN/ m%y = 0.3

Solution :
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The Mohr's strain circle can be drawn as per the procedure described earlier. from the graphical
construction, the following results may bre obtained :

(i) Shear strain v,y = 324 x 10 radians

(i) other principal strain = -20 x 10°®

(iii) direction of principal strain = 47° / 2 = 23° 30"

(iv) direction of other principal strain = 90° +23°30' = 113° 30’

In order to determine the magnitude of principle stresses, the computed values of €1and e from the
graphical construction may be substituted in the following expressions

- (61 +?Eij E=9 M
A R
_l& rys] oo MN
RS E=23

Use of strain Gauges :

Although we can not measure stresses within a structural member, we can measure strains, and from them
the stresses can be computed, Even so, we can only measure strains on the surface. For example, we can
mark points and lines on the surface and measure changes in their spacing angles. In doing this we are of
course only measuring average strains over the region concerned. Also in view of the very small changes in
dimensions, it is difficult to archive accuracy in the measurements

In practice, electrical strain gage provide a more accurate and convenient method of measuring strains.

A typical strain gage is shown below.

paper
of resin

()

The gage shown above can measure normal strain in the local plane of the surface in the direction of line
PQ, which is parallel to the folds of paper. This strain is an average value of for the region covered by the
gage, rather than a value at any particular point.
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The strain gage is not sensitive to normal strain in the direction perpendicular to PQ, nor does it respond to
shear strain. therefore, in order to determine the state of strain at a particular small region of the surface, we
usually need more than one strain gage.

To define a general two dimensional state of strain, we need to have three pieces of information, such
asllex ,lley and yxy referred to any convenient orthogonal co-ordinates x and y in the plane of the surface.
We therefore need to obtain measurements from three strain gages. These three gages must be arranged at
different orientations on the surface to from a strain rossett. Typical examples have been shown, where the
gages are arranged at either 45° or 60° to each other as shown below :

Ble

45¢

450 o

(i) (ii)

{iii)

A group of three gages arranged in a particular fashion is called a strain rosette. Because the rosette is
mounted on the surface of the body, where the material is in plane stress, therefore, the transformation
equations for plane strain to calculate the strains in various directions.

Knowing the orientation of the three gages forming a rosette, together with the in [1 plane normal strains
they record, the state of strain at the region of the surface concerned can be found. Let us consider the
general case shown in the figure below, where three strain gages numbered 1, 2, 3, where three strain
gages numbered 1, 2, 3 are arranged at an angles of 64, 02, 63 measured c.c.w from reference direction,
which we take as x [] axis.

Now, although the conditions at a surface, on which there are no shear or normal stress components. Are
these of plane stress rather than the plane strain, we can still use strain transformation equations to express
the three measured normal strains in terms of strain componentsey , €y, €z and vy, referred to x and y co-
ordiantes as
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B2

4
[_}3 PR F AL >

Reference

':_-LIE-

s, =€, cog th+e, sin f, + Fo SN COSH,
Epp=E, CO&T fy+ =, sint B + Yoy SN By COSH;
g,,=E, 005’ B+ =y sin’ 8, + Yoy SN COSH,
This is a set of three simultaneous linear algebraic equations for the three unknows ey,[Jey , yxy to solve

these equation is a laborious one as far as manually is concerned, but with computer it can be readily
done.Using these later on, the state of strain can be determined at any point.

Let us consider a 45° degree stain rosette consisting of three electrical [ resistance strain gages arranged
as shown in the figure below :
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The gages A, B,C measure the normal strainsllea , €p , € in the direction of lines OA, OB and OC.

Thus

g, = €, cos t+e, sin 8, + Fo SNy COSH,
ford, =0s,,= 5,

0
again
g, =, tos’ fy+re, sin’ §, + Yo SN cost,
forgaged: &, = 45°

ez~ S

g =g, cost 457 + =" sin 45" + Ry sin45" cos45"”

Qe Lo L od gy SIS

Yoy T25 TIE S

since g, ==,

hy 726 -5 + 5| (2)
forthegageC

g, =, t0s’ 8+ =" sin? i, + Yo SNy co5t,

forg, = 90", =,

ot =g, (3

Thus, substituting the relation (3) in the equation (2) we get
Yxy = 2€p—)( €a + €c) and other equation becomes ey = €4 ; €y= ¢

Since the gages A and C are aligned with the x and y axes, they give the strains ex and ey directly

Thus, ex, €y and yxy can easily be determined from the strain gage readings. Knowing these strains, we can
calculate the strains in any other directions by means of Mohr's circle or from the transformation equations.

The 60° Rossett:
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For the 60° strain rosette, using the same procedure we can obtain following relation.

=TS
1
ey=§|:2.eh t25, -5
_ 2
oy _E(Ec _Ehj

STRESS - STRAIN RELATIONS

Stress [ Strain Relations: The Hook's law, states that within the elastic limits the stress is proportional to
the strain since for most materials it is impossible to describe the entire stress [ strain curve with simple
mathematical expression, in any given problem the behavior of the materials is represented by an idealized
stress [ strain curve, which emphasizes those aspects of the behaviors which are most important is that
particular problem.

(i) Linear elastic material:

A linear elastic material is one in which the strain is proportional to stress as shown below:

=

Linearly elastic material

There are also other types of idealized models of material behavior.
(ii) Rigid Materials:

It is the one which donot experience any strain regardless of the applied stress.

7 A

My
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(iii) Perfectly plastic(non-strain hardening):

A perfectly plastic i.e non-strain hardening material is shown below:

vl

My

(iv) Rigid Plastic material(strain hardening):

A rigid plastic material i.e strain hardening is depicted in the figure below:

(T A

o=
(v) Elastic Perfectly Plastic material:

The elastic perfectly plastic material is having the characteristics as shown below:
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My

(vi) Elastic (1 Plastic material:

The elastic plastic material exhibits a stress Vs strain diagram as depicted in the figure below:

a4

IT'I'I|I

Elastic Stress [ strain Relations :

Previously stress [ strain relations were considered for the special case of a uniaxial loading i.e.
only one component of stress i.e. the axial or normal component of stress was coming into picture. In this
section we shall generalize the elastic behavior, so as to arrive at the relations which connect all the six
components of stress with the six components of elastic stress. Futher, we would restrict overselves to
linearly elastic material.

Before writing down the relations let us introduce a term ISOTROPY

ISOTROPIC: If the response of the material is independent of the orientation of the load axis of the sample,
then we say that the material is isotropic or in other words we can say that isotropy of a material in a
characteristics, which gives us the information that the properties are the same in the three orthogonal
directions x y z, on the other hand if the response is dependent on orientation it is known as anisotropic.

Examples of anisotropic materials, whose properties are different in different directions are
(i) Wood

(ii) Fibre reinforced plastic

(iii) Reinforced concrete

HOMOGENIUS: A material is homogenous if it has the same composition through our body. Hence the
elastic properties are the same at every point in the body. However, the properties need not to be the same
in all the direction for the material to be homogenous. Isotropic materials have the same elastic properties in
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all the directions. Therefore, the material must be both homogenous and isotropic in order to have the lateral
strains to be same at every point in a particular component.

Generalized Hook's Law: We know that for stresses not greater than the proportional limit.

c= v or = - |Elateral|

E |Ea:ial|

These equation expresses the relationship between stress and strain (Hook's law) for uniaxial state of stress
only when the stress is not greater than the proportional limit. In order to analyze the deformational effects
produced by all the stresses, we shall consider the effects of one axial stress at a time. Since we
presumably are dealing with strains of the order of one percent or less. These effects can be superimposed
arbitrarily. The figure below shows the general triaxial state of stress.

Let us consider a case when oy alone is acting. It will cause an increase in dimension in X-direction whereas
the dimensions in y and z direction will be decreased.

E‘UJ'c E,~ “WLE, E.~ “WLE
b E ey -] x
s F [n)
£ :_I;E'!Ir:_I'L_I;EZ:_I'L_I
Therefore the resulting strains in three directions are E E
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Similarly let us consider that normal stress oy alone is acting and the resulting strains are
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_Uz —
EZ—F,EY— “WE,E, = TWE,
=T - %z - _ Tz
EZ_E'EF_ I-LEIEI I'LE
Thusthe total strain in any ane direction is
_T, K
Ex_EI_E(Uy+Uz:| (1)

(o +'31,r:| i)

In the following analysis shear stresses were not considered. It can be shown that for an isotropic material's
a shear stress will produce only its corresponding shear strain and will not influence the axial strain. Thus,
we can write Hook's law for the individual shear strains and shear stresses in the following

Ty
oy ® 2 (4)
T
Y= (5)
T = ";3—* (8)

manner.

The Equations (1) through (6) are known as Generalized Hook's law and are the constitutive equations for
the linear elastic isotropic materials. When these equations isotropic materials. When these equations are
used as written, the strains can be completely determined from known values of the stresses. To engineers
the plane stress situation is of much relevance (i.e. o; = 1 = 1y = 0 ), Thus then the above set of equations
reduces to

T, = E e, the,]
(1- 1) §
E
oy = (Ey *HEL)
W |:1_|.L2:| W
Ty = G'Tr:.r

Hook's law is probably the most well known and widely used constitutive equations for an engineering
materials.) However, we can not say that all the engineering materials are linear elastic isotropic ones.
Because now in the present times, the new materials are being developed every day. Many useful materials
exhibit nonlinear response and are not elastic too.
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Plane Stress: In many instances the stress situation is less complicated for example if we pull one long thin
wire of uniform section and examine [ small parallepiped where x [J axis coincides with the axis of the wire

Z

So if we take the xy plane then ox , oy , txy Will be the only stress components acting on the parrallepiped.
This combination of stress components is called the plane stress situation

A plane stress may be defined as a stress condition in which all components associated with a given
direction (i.e the z direction in this example ) are zero

Plane strain: If we focus our attention on a body whose particles all lie in the same plane and which
deforms only in this plane. This deforms only in this plane. This type of deformation is called as the plane
strain, so for such a situation.

€7= Y2x = Yzy = 0 and the non [J zero terms would be e, ey & vy

i.e. if strain components €y, €y and vy and angle 6 are specified, the strain components €4, €,' and yy' with
respect to some other axes can be determined.

ELASTIC CONSTANTS

In considering the elastic behavior of an isotropic materials under, normal, shear and hydrostatic loading, we
introduce a total of four elastic constants namely E, G, K, and y .

It turns out that not all of these are independent to the others. In fact, given any two of them, the other two
can be foundout . Let us define these elastic constants

(i) E =Young's Modulus of Rigidity

= Stress / strain

(ii) G = Shear Modulus or Modulus of rigidity
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Shear stress / Shear strain

(iii) y = Possion's ratio
= — lateral strain / longitudinal strain
(iv) K = Bulk Modulus of elasticity
= Volumetric stress / Volumetric strain
Where
Volumetric strain = sum of linear stress in x, y and z direction.
Volumetric stress = stress which cause the change in volume.

Let us find the relations between them

RELATION AMONG ELASTIC CONSTANTS

Relation between E, G and v :

Let us establish a relation among the elastic constants E,G and v. Consider a cube of material of side (Ja'
subjected to the action of the shear and complementary shear stresses as shown in the figure and
producing the strained shape as shown in the figure below.

Assuming that the strains are small and the angle A C B may be taken as 45°.

Therefore strain on the diagonal OA
= Change in length / original length

Since angle between OA and OB is very small hence OA = OB therefore BC, is the change in the length of
the diagonal OA
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. . BC
Thus, st d [ 04 = —
us, strain on diagona oA
_ ACcos4g”
QA
a
OA=_= _=3a.f2
sin 45"
hence strain = £ 1—
a2 2
_AC
2a
but AC = ay
where v = shear strain
Thus,thestrainnndiagnnalza—Tzl
2a 2
Frorm the definition
T T
5 == = __
?Dr'r e
thus, the strain on di 1=t=_"
us, the strain on diagona 5735

Now this shear stress system is equivalent or can be replaced by a system of direct stresses at 45° as
shown below. One set will be compressive, the other tensile, and both will be equal in value to the applied
shear strain.

Gz=—T

- G1=-|-T

Thus, for the direct state of stress system which applies along the diagonals:

train on diaganal = 2 - 72
strain on diagonal = = - p=
S )
E E
T
:_1+
=)
equating the twoa strains one may get
T T
— =1+
TR,
ar E=2G{1+p)
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We have introduced a total of four elastic constants, i.e E, G, K and y. It turns out that not all of these are
independent of the others. Infact given any two of then, the other two can be found.

Again  E=3K(1-2v)

E
EE—1
T 3(T-27)
ify=05 K=
1=2n i
S %(Ex tE, tE,; :l = SE“ _2'?')
(fore,=e, =g, hydrostatic state of stress)
e, =0ifv=05

irrespective of the stresses i.e, the material is incompressible.

When y = 0.5 Value of k is infinite, rather than a zero value of E and volumetric strain is zero, or in other
words, the material is incompressible.

Relation between E, Kand v :

Consider a cube subjected to three equal stresses o as shown in the figure below

The total strain in one direction or along one edge due to the application of hydrostatic stress or volumetric
stress o is given as
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-5_5_.F
E 'E 'E
o

=21-32
E( )

volurmetre strain =3 linear strain

wolumetre strain =e, + e, + e,

ar thus, £ TE, T,

volumetric strain =3 E[’I -2
By definition

_ Volumetric strass(c)

Bulk Modulus of Elasticity (k) : :
YYolumetric strain

ar
. . o
“YYolumetric strain = m

Eguating the two strains we get

o o

—=3=(1-2
" E( 7
E=3K(1-27)

Relation between E, G and K :

The relationship between E, G and K can be easily determained by eliminating v from the already derived
relations

E=2G(1+v)andE=3K(1-v)

Thus, the following relationship may be obtained

_ HGK

3k + 5]

Relation between E, K and y :

From the already derived relations, E can be eliminated

E=2G(1+7)
E=3k(1-2v)
Thuswe get
Jk(T-2v)= 2601 + )
therefare
_3kK-26)
TG aK)

or
v =0 .5(3K - 2G) (G + 3K)|
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Engineering Brief about the elastic constants :

We have introduced a total of four elastic constants i.e E, G, K and v. It may be seen that not all of these are
independent of the others. Infact given any two of them, the other two can be determined. Futher, it may be
noted that

E = 3K(1-2%)
ar
E
(1-2v]
ify=0%5 K =aw

Also e,= @[ﬁx + T

¥ +'jz:|

= @.36 { for hydrostatic state of stressiec, =0, =5, =0 )

hence if v = 0.5, the value of K becomes infinite, rather than a zero value of E and the volumetric strain is
zero or in otherwords, the material becomes incompressible

Futher, it may be noted that under condition of simple tension and simple shear, all real materials tend to
experience displacements in the directions of the applied forces and Under hydrostatic loading they tend to
increase in volume. In otherwords the value of the elastic constants E, G and K cannot be negative

Therefore, the relations
E=2G(1+v)

E=3K(1-v)
Vields

In actual practice no real material has value of Poisson's ratio negative . Thus, the value of v cannot be
greater than 0.5, if however v > 0.5 thane, = —ve, which is physically unlikely because when the material is
stretched its volume would always increase.

Determination of Poisson's ratio: Poisson's ratio can be determined easily by simultaneous use of two
strain gauges on a test specimen subjected to uniaxial tensile or compressive load. One gage is mounted
parallel to the longitudnal axis of the specimen and other is mounted perpendicular to the longitudnal axis as
shown below:

test
Hﬂﬂ” @ specimen
1/ | —
®
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MECHANICAL PROPERTIES

Mechanical Properties:

In the course of operation or use, all the articles and structures are subjected to the action of external forces,
which create stresses that inevitably cause deformation. To keep these stresses, and, consequently
deformation within permissible limits it is necessary to select suitable materials for the Components of
various designs and to apply the most effective heat treatment. i.e. a Comprehensive knowledge of the chief
character tics of the semi-finished metal products & finished metal articles (such as strength, ductility,
toughness etc) are essential for the purpose.

For this reason the specification of metals, used in the manufacture of various products and structure, are
based on the results of mechanical tests or we say that the mechanical tests conducted on the specially
prepared specimens (test pieces) of standard form and size on special machines to obtained the strength,
ductility and toughness characteristics of the metal.

The conditions under which the mechanical test are conducted are of three types

(1) Static: When the load is increased slowly and gradually and the metal is loaded by tension,
compression, torsion or bending.

(2) Dynamic: when the load increases rapidly as in impact

(3) Repeated or Fatigue: (both static and impact type) . i.e. when the load repeatedly varies in the course of
test either in value or both in value and direction Now let us consider the uniaxial tension test.

[ For application where a force comes on and off the structure a number of times, the material cannot
withstand the ultimate stress of a static tool. In such cases the ultimate strength depends on no. of times the
force is applied as the material works at a particular stress level. Experiments one conducted to compute the
number of cycles requires to break to specimen at a particular stress when fatigue or fluctuating load is
acting. Such tests are known as fatque tests ]

Uniaxial Tension Test: This test is of static type i.e. the load is increased comparatively slowly from zero to
a certain value.

Standard specimen's are used for the tension test.

There are two types of standard specimen's which are generally used for this purpose, which have been
shown below:

Specimen |:

This specimen utilizes a circular X-section.
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[specimen with circular X-section]

Specimen ll:

This specimen utilizes a rectangular X-section.

S -

.J_,..a-ﬂ_

[specimen with rectangular X-section]

lg = gauge length i.e. length of the specimen on which we want to determine the mechanical properties.The
uniaxial tension test is carried out on tensile testing machine and the following steps are performed to
conduct this test.

(i) The ends of the specimen's are secured in the grips of the testing machine.
(ii) There is a unit for applying a load to the specimen with a hydraulic or mechanical drive.

(iii) There must be a some recording device by which you should be able to measure the final output in the
form of Load or stress. So the testing machines are often equipped with the pendulum type lever, pressure
gauge and hydraulic capsule and the stress Vs strain diagram is plotted which has the following shape.

A typical tensile test curve for the mild steel has been shown below
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Nominal stress [ Strain OR Conventional Stress [] Strain diagrams:

Stresses are usually computed on the basis of the original area of the specimen; such stresses are often
referred to as conventional or nominal stresses.

True stress [ Strain Diagram:

Since when a material is subjected to a uniaxial load, some contraction or expansion always takes place.
Thus, dividing the applied force by the corresponding actual area of the specimen at the same instant gives
the so called true stress.

SALIENT POINTS OF THE GRAPH:

(A) So it is evident form the graph that the strain is proportional to strain or elongation is proportional to the
load giving a st.line relationship. This law of proportionality is valid upto a point A.

or we can say that point A is some ultimate point when the linear nature of the graph ceases or there is a
deviation from the linear nature. This point is known as the limit of proportionality or the proportionality
limit.

(B) For a short period beyond the point A, the material may still be elastic in the sense that the deformations
are completely recovered when the load is removed. The limiting point B is termed as Elastic Limit .

(C) and (D) - Beyond the elastic limit plastic deformation occurs and strains are not totally recoverable.
There will be thus permanent deformation or permanent set when load is removed. These two points are
termed as upper and lower yield points respectively. The stress at the yield point is called the yield strength.

A study a stress [ strain diagrams shows that the yield point is so near the proportional limit that for most
purpose the two may be taken as one. However, it is much easier to locate the former. For material which do
not posses a well define yield points, In order to find the yield point or yield strength, an offset method is
applied.

In this method a line is drawn parallel to the straight line portion of initial stress diagram by off setting this by
an amount equal to 0.2% of the strain as shown as below and this happens especially for the low carbon
steel.
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yield strength (or Proof stress)

ri
0.2 % or .002 S

(E) A further increase in the load will cause marked deformation in the whole volume of the metal. The
maximum load which the specimen can with stand without failure is called the load at the ultimate strength.

The highest point [JE' of the diagram corresponds to the ultimate strength of a material.

ou = Stress which the specimen can with stand without failure & is known as Ultimate Strength or Tensile
Strength.

oy is equal to load at E divided by the original cross-sectional area of the bar.

(F) Beyond point E, the bar begins to forms neck. The load falling from the maximum until fracture occurs at
F.

[ Beyond point E, the cross-sectional area of the specimen begins to reduce rapidly over a relatively small
length of bar and the bar is said to form a neck. This necking takes place whilst the load reduces, and
fracture of the bar finally occurs at point F ]

Note: Owing to large reduction in area produced by the necking process the actual stress at fracture is often
greater than the above value. Since the designers are interested in maximum loads which can be carried by
the complete cross section, hence the stress at fracture is seldom of any practical value.

Percentage Elongation: '03 ":

The ductility of a material in tension can be characterized by its elongation and by the reduction in area at
the cross section where fracture occurs.

It is the ratio of the extension in length of the specimen after fracture to its initial gauge length, expressed in
percent.

-
a:(‘l g)xmu
1

li = gauge length of specimen after fracture(or the distance between the gage marks at fracture)
lg= gauge length before fracture(i.e. initial gauge length)
For 50 mm gage length, steel may here a % elongation § of the order of 10% to 40%.

Elastic Action:

wWwWw.jntuworld.com



WWW.j ntuwor ld.com

The elastic is an adjective meaning capable of recovering size and shape after deformation. Elastic range is
the range of stress below the elastic limit.

T T Load
n Load o
Lo ]
= = Unload
Unload
strain — strain —=
(a) (b)
3
x Jo
Load 3 z
2 Gl B
B Ll
w Unload &L ! !
i ! |
I
i G
strain —* Eap E3p

(c) (d)

Many engineering materials behave as indicated in Fig(a) however, some behaves as shown in figures in (b)
and (c) while in elastic range. When a material behaves as in (c), the cllvs elis not single valued since the
strain corresponding to any particular (1 ¢ ' will depend upon loading history.

Fig (d): It illustrates the idea of elastic and plastic strain. If a material is stressed to level (1) and then relased
the strain will return to zero beyond this plastic deformation remains.

If a material is stressed to level (2) and then released, the material will recover the amount (Lez — €2 ),
where e, is the plastic strain remaining after the load is removed. Similarly for level (3) the plastic strain will

beD€3p.

Ductile and Brittle Materials:

Based on this behaviour, the materials may be classified as ductile or brittle materials

Ductile Materials:

It we just examine the earlier tension curve one can notice that the extension of the materials over the
plastic range is considerably in excess of that associated with elastic loading. The Capacity of materials to
allow these large deformations or large extensions without failure is termed as ductility. The materials with
high ductility are termed as ductile materials.

Brittle Materials:

A brittle material is one which exhibits a relatively small extensions or deformations to fracture, so that the
partially plastic region of the tensile test graph is much reduced.

This type of graph is shown by the cast iron or steels with high carbon contents or concrete.
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Conditions Affecting Mechanical Properties:
The Mechanical properties depend on the test conditions

(1) It has been established that lowering the temperature or increasing the rate of deformation considerably
increases the resistance to plastic deformation. Thus, at low temperature (or higher rates of deformation),
metals and alloys, which are ductile at normal room temperature may fail with brittle fracture.

(2) Notches i.e. sharp charges in cross sections have a great effect on the mechanical properties of the
metals. A Notch will cause a non [J uniform distribution of stresses. They will always contribute lowering the
ductility of the materials. A notch reduces the ultimate strength of the high strength materials. Because of the
non [ uniform distribution of the stress or due to stress concentration.

(3) Grain Size : The grain size also affects the mechanical properties.
Hardness:

Hardness is the resistance of a metal to the penetration of another harder body which does not receive a
permanent set.

Hardness Tests consists in measuring the resistance to plastic deformation of layers of metals near the
surface of the specimen i.e. there are Ball indentation Tests.

Ball indentation Tests:

iThis method consists in pressing a hardened steel ball under a constant load P into a specially prepared flat
surface on the test specimen as indicated in the figures below :
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vFP
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\
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After removing the load an indentation remains on the surface of the test specimen. If area of the spherical
surface in the indentation is denoted as F sq. mm. Brinell Hardness number is defined as :

Bhn=P/F
F is expressed in terms of D and d

D = ball diameter

Bhn = 2P

_fmE
d = diametric of indentation and Brinell Hardness number is given by A0 ""Ib d*)

Then is there is also Vicker's Hardness Number in which the ball is of conical shape.

IMPACT STRENGTH

Static tension tests of the unnotched specimen's do not always reveal the susceptibility of metal to brittle
fracture. This important factor is determined in impact tests. In impact tests we use the notched specimen's

P

this specimen is placed on its supports on anvil so that blow of the striker is opposite to the notch the impact
strength is defined as the energy A, required to rupture the specimen,

Impact Strength = A/ f

Where f = It is the cross LI section area of the specimen in cm? at fracture & obviously at notch.
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The impact strength is a complex characteristic which takes into account both toughness and strength of a
material. The main purpose of notched [ bar tests is to study the simultaneous effect of stress concentration
and high velocity load application

Impact test are of the severest type and facilitate brittle friction. Impact strength values can not be as yet be
used for design calculations but these tests as rule provided for in specifications for carbon & alloy
steels.Futher, it may be noted that in impact tests fracture may be either brittle or ductile. In the case of
brittle fracture, fracture occurs by separation and is not accompanied by noticeable plastic deformation as
occurs in the case of ductile fracture.

Compression Test: Machines used for compression testing are basically similar to those used for tensile
testing often the same machine can be used to perform both tests.

Shape of the specimen: The shape of the machine to be used for the different materials are as follows:
(i) For metals and certain plastics: The specimen may be in the from of a cylinder

(i) For building materials: Such as concrete or stone the shape of the specimen may be in the from of a
cube.

Shape of stress stain diagram

(a) Ductile materials: For ductile material such as mild steel, the load Vs compression diagram would be
as follows

compressive load (or stress)
—_—
e
]

i i
— plastic deformation
elastic — compression{or strain)
deformation

(1) The ductile materials such as steel, Aluminum, and copper have stress [ strain diagrams similar to ones
which we have for tensile test, there would be an elastic range which is then followed by a plastic region.

(2) The ductile materials (steel, Aluminum, copper) proportional limits in compression test are very much
close to those in tension.

(3) In tension test, a specimen is being stretched, necking may occur, and ultimately fracture fakes place.
On the other hand when a small specimen of the ductile material is compressed, it begins to bulge on sides
and becomes barrel shaped as shown in the figure above. With increasing load, the specimen is flattened
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out, thus offering increased resistance to further shortening ( which means that the stress [ strains curve
goes upward ) this effect is indicated in the diagram.

Brittle materials ( in compression test )

Brittle materials in compression typically have an initial linear region followed by a region in which the
shortening increases at a higher rate than does the load. Thus, the compression stress [ strain diagram has
a shape that is similar to the shape of the tensile diagram.

However, brittle materials usually reach much higher ultimate stresses in compression than in tension.

For cast iron, the shape may be like this

A
/I// T AL o
-~
‘_,_r"
T COMpression
a
tension
I FLF
= —= i

Brittle materials in compression behave elastically up to certain load, and then fail suddenly by splitting or by
craking in the way as shown in figure. The brittle fracture is performed by separation and is not accompanied
by noticeable plastic deformation.

Hardness Testing:

The tem [Jhardness' is one having a variety of meanings; a hard material is thought of as one
whose surface resists indentation or scratching, and which has the ability to indent or cut other materials.

Hardness test: The hardness test is a comparative test and has been evolved mainly from the need to have
some convenient method of measuring the resistance of materials to scratching, wear or in dentation this is
also used to give a guide to overall strength of a materials, after as an inspection procedure, and has the
advantage of being a non [ destructive test, in that only small indentations are lift permanently on the
surface of the specimen.

Four hardness tests are customarily used in industry namely

(i) Brinell
(ii) Vickers
(iii) Rockwell

(vi) Shore Scleroscopy
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The most widely used are the first two.

In the Brinell test the indenter is a hardened steel ball which is pressed into the surface using a known
standard load. The diameter of resulting indentation is than measured using a microscope & scale.

Units:
The units of Brinell Hardness number in S.I Unit would have been N/mm? or Mpa

To a2void the confusion which would have been caused of her wise Hardness numbers are quotes as kgf /
mm

Brinell Hardness test:

In the Brinell hardness test, a hardened steel ball is pressed into the flat surface of a test piece
using a specified force. The ball is then removed and the diameter of the resulting indentation is measured
using a microscope.

The Brinell Hardness no. ( BHN ) is defined as

BHN=P/A

Where P = Force applied to the ball.

A = curved area of the indentation

A=%HD[D—«I'D2—I:|2]

It may be shown that
D = diameter of the ball,
d = the diameter of the indentation.

In the Brinell Test, the ball diameter and applied load are constant and are selected to suit the composition
of the metal, its hardness, and selected to suit the composition of the metal, its hardness, the thickness etc.
Further, the hardness of the ball should be at least 1.7 times than the test specimen to prevent permanent

set in the ball.

Disadvantage of Brinell Hardness Test: The main disadvantage of the Brinell Hardness test is that the
Brinell hardness number is not independent of the applied load. This can be realized from. Considering the
geometry of indentations for increasing loads. As the ball is pressed into the surface under increasing load
the geometry of the indentation charges.

A=
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Here what we mean is that the geometry of the impression should not change w.r.t. load, however the size it
impression may change.

Vickers Hardness test:

The Vicker's Hardness test follows a procedure exactly a identical with that of Brinell test, but uses a
different indenter. The steel ball is replaced by a diamond, having the from of a square [J based pyramid
with an angle of 136° between opposite faces. This is pressed into the flat surface of the test piece using a
specified force, and the diagonals of the resulting indentation measured is using a microscope. The
Hardness, expressed as a Vicker's pyramid number is defined as the ratio F/A, where F is the force applied
to the diamond and A is the surface area of the indentation.

1|2

A2

P

— (136
szl: ]

I F
= Hy, = ——
Beav, v E

854

B54F

H., =
VOTE

Ly n)

where |is the average lengthaf the diagonal is=
It may be shown that

]
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Wi I

In the Vicker Test the indenters of pyramidal or conical shape are used & this overcomes the disadvantage
which is faced in Brinell test i.e. as the load increases, the geometry of the indentation's does not change

NN .
E

-

The Variation of Hardness number with load is given below.
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Vicker's hardness Hy

Brinell hardness Hg

Hardness number —=

Applied load —=

Advantage: Apart from the convenience the vicker's test has certain advantages over the Brinell test.
(i) Harder material can be tested and indentation can be smaller & therefore less obtrusive or damaging.
Upto a 300 kgf /mm? both tests give the same hardness number but above too the Brinell test is unreliable.

Rockwell Hardness Test :

The Rockwell Hardness test also uses an indenter when is pressed into the flat surface of the test
piece, but differs from the Brinell and Vicker's test in that the measurement of hardness is based on the
depth of penetration, not on the surface area of indentation. The indenter may be a conical diamond of
120° included angle, with a rounded apex. It is brought into contact with the test piece, and a force F is
applied.

Advantages :

Rockwell tests are widely applied in industry due to rapidity and simplicity with which they may be
performed, high accuracy, and due to the small size of the impressions produced on the surface.

Impact testing:
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In an Oimpact test' a notched bar of material, arranged either as a cantilever or as a simply supported beam,
is broken by a single blow in such a way that the total energy required to fracture it may be determined.

The energy required to fracture a material is of importance in cases of [Ishock loading' when a component
or structure may be required to absorb the K.E of a moving object.

Often a structure must be capable of receiving an accidental [Ishock load' without failing completely, and
whether it can do this will be determined not by its strength but by its ability to absorb energy. A combination
of strength and ductility will be required, since large amounts of energy can only be absorbed by large
amounts of plastic deformation. The ability of a material to absorb a large amount of energy before breaking
is often referred as toughness, and the energy absorbed in an impact test is an obvious indication of this
property.

Impact tests are carried out on notched specimens, and the notches must not be regarded simply as a local
reduction in the cross [ sectional area of the specimen, Notches [1 and , in fact, surface irregularities of
many kind [ give rise to high local stresses, and are in practice, a potential source of cracks.

. striker

e
[cantilever type specimen] [simply supporter specimen)]

The specimen may be of circular or square cross [] section arranged either as a cantilever or a simply
supported beam.

Toughness: It is defined as the ability of the material to withstand crack i.e to prevent the transfer or
propagation of cracks across its section hence causing failures. Cracks are propagated due to stress
concentraction.

Creep: Creep is the gradual increase of plastic strain in a material with time at constant load. Particularly at
elevated temperatures some materials are susceptible to this phenomena and even under the constant load,
mentioned strains can increase continually until fractures. This form of facture is particularly relevant to the
turbines blades, nuclear rectors, furnaces rocket motors etc.

The general from of strain versus time graph or creep curve is shown below.
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The general form of € Vs t graph or creep curve is shown below for two typical operation conditions, In each
case the curve can be considered to exhibit four principal features

(a) An initial strain, due to the initial application of load. In most cases this would be an elastic strain.
(b) A primary creep region, during which he creep rate ( slope of the graph ) dimensions.

(c) A secondary creep region, when the creep rate is sensibly constant.

(d) A tertiary creep region, during which the creep rate accelerate to final fracture.

It is obvious that a material which is susceptible to creep effects should only be subjected to stresses which
keep it in secondary (st.line) region throughout its service life. This enables the amount of creep extension to
be estimated and allowed for in design.

Practice Problems:

PROB 1: A standard mild steel tensile test specimen has a diameter of 16 mm and a gauge length of 80 mm
such a specimen was tested to destruction, and the following results obtained.

Load at yield point = 87 kN

Extension at yield point = 173 x 16 m
Ultimate load = 124 kN

Total extension at fracture = 24 mm
Diameter of specimen at fracture = 9.8 mm
Cross - sectional area at fracture = 75.4 mm?
Cross - sectional Area [JA' = 200 mm?

Compute the followings:

(i) Modulus of elasticity of steel
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(ii) The ultimate tensile stream

(iii) The yield stress

(iv) The percentage elongation

(v) The Percentage reduction in Area.
PROB 2:

A light alloy specimen has a diameter of 16mm and a gauge Length of 80 mm. When tested in tension, the
load extension graph proved linear up to a load of 6kN, at which point the extension was 0.034 mm.
Determine the limits of proportionality stress and the modulus of elasticity of material.

Note: For a 16mm diameter specimen, the Cross [ sectional area A = 200 mm?

This is according to tables Determine the limit of proportion try stream & the modulus of elasticity for the
material.

Ans: 30 MN /m?, 70.5 GN /m?

solution:

B kN
200=107°
=30 MN/m?
_ Stress

Strain

. 034
stramn = —
a0

-30=10°
- /Dﬂ
80

=705 GMN/m’

Lirit of proportionaly stress =

Young Madulus E

Members Subjected to Uniaxial Stress
Members in Uni [] axial state of stress
Introduction: [For members subjected to uniaxial state of stress]

For a prismatic bar loaded in tension by an axial force P, the elongation of the bar can be determined as

P | —_—

PL
AE
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Suppose the bar is loaded at one or more intermediate positions, then equation (1) can be readily adapted
to handle this situation, i.e. we can determine the axial force in each part of the bar i.e. parts AB, BC, CD,
and calculate the elongation or shortening of each part separately, finally, these changes in lengths can be

added algebraically to obtain the total charge in length of the entire bar.

¥ FEESEF IS A

Pl
Pl
T

When either the axial force or the cross [ sectional area varies continuosly along the axis of the bar, then
equation (1) is no longer suitable. Instead, the elongation can be found by considering a deferential element

of a bar and then the equation (1) becomes

dé = P, dx
EA,
I
P, dx
f=[=2
'D[E-*"J'*x

i.e. the axial force Pxand area of the cross [] section Ax must be expressed as functions of x. If the
expressions for Pxand Ay are not too complicated, the integral can be evaluated analytically, otherwise

Numerical methods or techniques can be used to evaluate these integrals.
stresses in Non [J Uniform bars

Consider a bar of varying cross section subjected to a tensile force P as shown below.

Let

a = cross sectional area of the bar at a chosen section XX

then
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Stressc=p/a
If E = Young's modulus of bar then the strain at the section XX can be calculated
e=ocl/E
Then the extension of the short element & x. =Je .original length = o / E. §*
_ P
E a

Thusthe estensionforthe entirebaris

LP fx
§=|=-—

AE a

I

or totalextension = EIE_}{
Eqa

Now let us for example take a case when the bar tapers uniformly fromdatx=0toD atx = |

x __—]

L]
r |
[=%

In order to compute the value of diameter of a bar at a chosen location let us determine the value of
dimension k, from similar triangles

wWwWw.jntuworld.com



WWW.j ntuwor ld.com

therefore, the diameter 'y' at the X-section is
or=d + 2k

(0 - djx

d+—

I
Hence the cross [Isection area at section X- X will be

z

Aora = —y

i B

z
=_[¢4D—ﬂ%]
hence the total extension of the bar will be given by expression

P L
E;a

substitutingthevalue of 'a 'to getthe
totalextentionof thebar

:I'IF'I o
AEpT, T
”F+(D—MT]

aftercarryingoutthe int ergrationwe get

_ _4PI[1 1
#E|D d
_ 4Pl
#ED.d
. 4.P.
hencethe totalstrainint he bar =
encetne mRlsramnmine oar EDd

An interesting problem is to determine the shape of a bar which would have a uniform stress in it under the
action of its own weight and a load P.
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|

Area'a

%

let us consider such a bar as shown in the figure below: ke TS

The weight of the bar being supported under section XX is
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b4
= _[pgad}{
0

where pisdensityof the bar.
thusthe stressat®xis

x
P+ _[pgadx
g=—2L
a
x
arga = F'+_[p.g.ad}e;
D

Differentiating the above equation with respect to » we get

ad—a=pga
Ty
da_ gy,
a g

int ergratingthe above equationwe get
Id_a = Iﬂd}{
a a

]

R
a
Inordertodet ermine theconstantaof int egration

letusapplythe boundary conditions
at x=0a=g

log,® = +constant

thus,constant = log, ™
ar

p9.x
o

a g
| 2 1=

log,? = +log®

=

The same results are obtained if the bar is turned upside down and loaded as a column as shown in the
figure below:
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lllustrative Problem 1: Calculate the overall change in length of the tapered rod as shown in figure below. It
carries a tensile load of 10kN at the free end and at the step change in section a compressive load of 2
MN/m evenly distributed around a circle of 30 mm diameter take the value of E = 208 GN / m?.

This problem may be solved using the procedure as discussed earlier in this section
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= 17 mm

10KN

lllustrative Problem 2: A round bar, of length L, tapers uniformly from radius ry at one end to radius r.at the

_PL
2nEr?

other. Show that the extension produced by a tensile axial load P is

If r = 2ry , compare this extension with that of a uniform cylindrical bar having a radius equal to the mean
radius of the tapered bar.

Solution:
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1
R P N e g

consider the above figure let rq be the radius at the smaller end. Then at a X crosssection XX located at a
distance x from the smaller end, the value of radius is equal to
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_ LY
=nt L':rz )

=11+ k)

wherek = [r2 N ]1—
L )y
load

stressatsectionsy = ——
area

FI
a1+ k)
stress

hence strain atthissection =

_ F
Ear?(1+ ki)?

Fdx
Emm?(1+ k)?
Total extension of the bar can be found by integrating the above expression within
the limits fram »x=0 to =L

FPdx
Eam? 1+ ko)

Thus forasmall length dx of the bar at this section the extention is

L
Extension = _[
i

L
F'zj*m“r2
E M

E mm

(1+ ko)™ _1

E.I".!T1 -k -k

= Fl 1_ 1
Emik]| T+kL

] PL
E.mm 1+ kL)
(tz - 1)

since k =

rL
Thus, 1+kL = “z/
1

Therefore, the extension = PL

Fifs

Comparing of extensions

_PL
2nEr?

For the case when r; = 2.rq, the value of computed extension as above becomes equal to

The mean radius of taper bar
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=1/2(r1+r2)

=1/2(r1+2r2)

=3/2.r

Therefore, the extension of uniform bar

= Orginal length . strain

hencethe

4PL

Extensionofuniform _ | grEm®
Extensionof tapered ) FL
2nEr?

o | G0

Thermal stresses, Bars subjected to tension and Compression

Compound bar: In certain application it is necessary to use a combination of elements or bars made from
different materials, each material performing a different function. In over head electric cables or
Transmission Lines for example it is often convenient to carry the current in a set of copper wires
surrounding steel wires. The later being designed to support the weight of the cable over large spans. Such
a combination of materials is generally termed compound bars.

Consider therefore, a compound bar consisting of n members, each having a different length and cross
sectional area and each being of a different material. Let all member have a common extension (X' i.e. the
load is positioned to produce the same extension in each member.
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e = Pl i
‘ T g = =
e
n"member
Length  Ln
First membear » Araa An
Lenath L Modulus En
engih L1 Load  Fn
Area A1
Modulus E1 | |
load F4 - __________J\--__-_-_-___-_-_-1 I Common
extension
y W

Forthe'n' the members

A
stress -E = LS

strain }{%{n
_ Rl
P
ar F o= B, A, _ Bpfg ¥ N0
, L

Where F, is the force in the nth member and A, and L, are its cross - sectional area and length.

Let W be the total load, the total load carried will be the sum of all loads for all the members.
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E, A,
L,

-5 B
W C

Fromequation (1), forceinmemberlisgivenas
E, A x
Ly
from egquation(2)
iy
SEA

n

ThusF =

W =3

F, =

}{:

E1 il

T

Therefore, each member carries a portion of the total load W proportional of EA / L value.

E'I .lﬂ’l'l
L,
F _
! ﬁ
The above expression may be writen as Ln
=E.A

if the length of each individual member in same then, we may write
Thus, the stress in member '1' may be determined as o1 = F1/ Aq

Determination of common extension of compound bars: In order to determine the common extension of
a compound bar it is convenient to consider it as a single bar of an imaginary material with an equivalent or
combined modulus Ec.

Assumption: Here it is necessary to assume that both the extension and original lengths of the individual
members of the compound bar are the same, the strains in all members will than be equal.

Total load on compound bar = F¢ + Fo+ F3 +[1[J0+ F,
where F1, F 2 ,[0.,etc are the loads in members 1,2 etc
But force = stress . area,therefore
c(A1+A2+[I[I+An)=c1Ai+to2Ax+ ... +on An
Where o is the stress in the equivalent single bar

Dividing throughout by the common strain’ e .
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o) _my dy T
— (Al r L HA S A S A —
E': 1+ Ay A = 1t = 2t

o E (A + A, +  +A)=EA +EA + E A
CEA A+ ELA

e TR A A
> EA
E. ==
or B, SA
with an external load WY applied stressin the equivalent bar may be computed as
5tress=ﬂ
=A
o . X Wy
t th lent bar=—=
strain inthe equivalent bar [ TAE,
hence commen extension x = WL
E.ZA

Compound bars subjected to Temp. Change : Ordinary materials expand when heated and contract
when cooled, hence , an increase in temperature produce a positive thermal strain. Thermal strains usually
are reversible in a sense that the member returns to its original shape when the temperature return to its
original value. However, there here are some materials which do not behave in this manner. These metals
differs from ordinary materials in a sence that the strains are related non linearly to temperature and some
times are irreversible .when a material is subjected to a change in temp. is a length will change by an

amount.
51 =a.Lt
orlle=la .Ltorc=E .a.t
i
"] |
A —_— —
R L S
i

o = coefficient of linear expansoin for the material
L = original Length
t = temp. change

Thus an increase in temperature produces an increase in length and a decrease in temperature results in a
decrease in length except in very special cases of materials with zero or negative coefficients of expansion
which need not to be considered here.

If however, the free expansion of the material is prevented by some external force, then a stress is set up in
the material. They stress is equal in magnitude to that which would be produced in the bar by initially
allowing the bar to its free length and then applying sufficient force to return the bar to its original length.

Change in Length=a Lt
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Therefore, strain=a Lt/L
=at
Therefore ,the stress generated in the material by the application of sufficient force to remove this strain
=strain xE
or Stress=E at

Consider now a compound bar constructed from two different materials rigidly joined together, for simplicity.

Let us consider that the materials in this case are steel and brass.

Steel

Brass

If we have both applied stresses and a temp. change, thermal strains may be added to those given by
generalized hook's law equation (e.g.

Ex:%[ax—ﬁay+uzj]+ocﬂt
Ex:%[ﬂy-)‘(ﬂx +crzj]+o:ﬂt

£, = %[az -, + cryj] + ot

While the normal strains a body are affected by changes in temperatures, shear strains are not. Because if
the temp. of any block or element changes, then its size changes not its shape therefore shear strains do
not change.

In general, the coefficients of expansion of the two materials forming the compound bar
will be different so that as the temp. rises each material will attempt to expand by
different amounts. Figure below shows the positions to which the individual materials
will expand if they are completely free to expand (i.e not joined rigidly together as a
compound bar). The extension of any Length L is given by o L t
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Asmsume Oy = O,

|&) Origanal har 3 Steal
P Brass
b: Sieel
b Al o L. t
i L 2t
| oLk
e —
3 |
(b} Expanded position members 3 Steel |B [
free 1o expand inrepently 3 Brass
3 Steel | .
N | |
Bl 3
b rr- o Compression
st
\ | of brass
R [k}
() Expanded position of the Stieel
Compound bar Brass
3 Sieel

In general, changes in lengths due to thermal strains may be calculated form equation & = a Lt, provided
that the members are able to expand or contract freely, a situation that exists in statically determinates
structures. As a consequence no stresses are generated in a statically determinate structure when one or
more members undergo a uniform temperature change. If in a structure (or a compound bar), the free
expansion or contraction is not allowed then the member becomes s statically indeterminate, which is just
being discussed as an example of the compound bar and thermal stresses would be generated.

Thus the difference of free expansion lengths or so called free lengths
=ogl.t—os.L.t
=(ogl—oas).L.t

Since in this case the coefficient of expansion of the brass ag is greater then that for the steel as. the initial
lengths L of the two materials are assumed equal.

If the two materials are now rigidly joined as a compound bar and subjected to the same temp. rise, each
materials will attempt to expand to its free length position but each will be affected by the movement of the
other. The higher coefficient of expansion material (brass) will therefore, seek to pull the steel up to its free
length position and conversely, the lower coefficient of expansion martial (steel) will try to hold the brass
back. In practice a compromised is reached, the compound bar extending to the position shown in fig (c),
resulting in an effective compression of the brass from its free length position and an effective extension of
steel from its free length position.

Therefore, from the diagrams,we may conclude thefollowing

Conclusion 1.

Extension of steel + compression brass = difference in [ free( length

Applying Newton 's law of equal action and reaction the following second Conclusion also holds good.
Conclusion 2.

The tensile force applied to the short member by the long member is equal in magnitude to the compressive
force applied to long member by the short member.
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Thus in this case
Tensile force in steel = compressive force in brass
These conclusions may be written in the form of mathematical equations as given below:

forconclusiont
oL ol
E =

=

= Ec':B B C':s:IL't

forconclugion?
a A = aphy

Using these two equations, the magnitude of the stresses may be determined.

Members Subjected to Axisymmetric Loads

Pressurized thin walled cylinder:

Preamble : Pressure vessels are exceedingly important in industry. Normally two types of pressure vessel
are used in common practice such as cylindrical pressure vessel and spherical pressure vessel.

In the analysis of this walled cylinders subjected to internal pressures it is assumed that the radial plans
remains radial and the wall thickness dose not change due to internal pressure. Although the internal
pressure acting on the wall causes a local compressive stresses (equal to pressure) but its value is neglibly
small as compared to other stresses & hence the sate of stress of an element of a thin walled pressure is
considered a biaxial one.

Further in the analysis of them walled cylinders, the weight of the fluid is considered neglible.

Let us consider a long cylinder of circular cross - section with an internal radius of R 2 and a constant wall
thickness[t' as showing fig.

Q

This cylinder is subjected to a difference of hydrostatic pressure of [1p' between its inner and outer surfaces.
In many cases, [ Ip' between gage pressure within the cylinder, taking outside pressure to be ambient.

By thin walled cylinder we mean that the thickness(t' is very much smaller than the radius R; and we may
quantify this by stating than the ratio t / R; of thickness of radius should be less than 0.1.
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An appropriate co-ordinate system to be used to describe such a system is the cylindrical polaroner, 6 , z
shown, where z axis lies along the axis of the cylinder, r is radial to it and 6Uis the angular co-ordinate about
the axis.

The small piece of the cylinder wall is shown in isolation, and stresses in respective direction have also been
shown.

Type of failure:

Such a component fails in since when subjected to an excessively high internal pressure. While it might fail
by bursting along a path following the circumference of the cylinder. Under normal circumstance it fails by
circumstances it fails by bursting along a path parallel to the axis. This suggests that the hoop stress is
significantly higher than the axial stress.

In order to derive the expressions for various stresses we make following
Applications :

Liquid storage tanks and containers, water pipes, boilers, submarine hulls, and certain air plane components
are common examples of thin walled cylinders and spheres, roof domes.

ANALYSIS : In order to analyse the thin walled cylinders, let us make the following assumptions :
» There are no shear stresses acting in the wall.
* The longitudinal and hoop stresses do not vary through the wall.

» Radial stresses o which acts normal to the curved plane of the isolated element are neglibly small as

H?

<]
compared to other two stresses especially when

The state of tress for an element of a thin walled pressure vessel is considered to be biaxial, although the
internal pressure acting normal to the wall causes a local compressive stress equal to the internal pressure,
Actually a state of tri-axial stress exists on the inside of the vessel. However, for then walled pressure vessel
the third stress is much smaller than the other two stresses and for this reason in can be neglected.

Thin Cylinders Subjected to Internal Pressure:

When a thin 0 walled cylinder is subjected to internal pressure, three mutually perpendicular principal
stresses will be set up in the cylinder materials, namely

» Circumferential or hoop stress

* The radial stress

* Longitudinal stress

now let us define these stresses and determine the expressions for them
Hoop or circumferential stress:

This is the stress which is set up in resisting the bursting effect of the applied pressure and can be most
conveniently treated by considering the equilibrium of the cylinder.
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Projected

area

In the figure we have shown a one half of the cylinder. This cylinder is subjected to an internal pressure p.
ie. p = internal pressure

d = inside diametre

L = Length of the cylinder

t = thickness of the wall

Total force on one half of the cylinder owing to the internal pressure 'p'

= p x Projected Area

The total resisting force owing to hoop stresses o set up in the cylinder walls
=2.0ou.Lt = (2)
Because ol 1.L.t. is the force in the one wall of the half cylinder.
the equations (1) & (2) we get
2.0n.L.t=p.d.L

on=(p.d)/2t

Circumferential or hoop
Stress (on) = (p .d)/ 2t

Longitudinal Stress:
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Consider now again the same figure and the vessel could be considered to have closed ends and contains a
fluid under a gage pressure p.Then the walls of the cylinder will have a longitudinal stress as well as a
ciccumferential stress.

— o -
f—— [— 1
e—— [ p—
- . - > d
— p p—™
[—

— 0, -—

Total force on the end of the cylinder owing to internal pressure
= pressure x area

=p x nld? /4

Area of metal resisting this force = nd.t. (approximately)

because nd is the circumference and this is multiplied by the wall thickness

LIS cting over
this area

Consider a free

besdy digaram of —*
the cyclinder when

cut by a ransverse plane

This is the area whemn is
resisting these force. Obviously
this areais «.d.t

Hence the longitudnal stresses
farce _ [p xmd®i4]
area mdt
=pd or a. =pd
4t 4
or alternatively fromequilibriumcondition s
il
4

setup=

a . (mdt) =n.

Thus|a, _pd

Change in Dimensions :

The change in length of the cylinder may be determined from the longitudinal strain.

Since whenever the cylinder will elongate in axial direction or longitudinal direction, this will also get
decreased in diametre or the lateral strain will also take place. Therefore we will have to also take into
consideration the lateral strain.as we know that the poisson's ratio (v) is
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_ -~ lateral strain
langitudnal strain

where the -ve sign emphasized that the change is negative

Consider an element of cylinder wall which is subjected to two mutually 1" normal stresses G| and o .

Let E = Young's modulus of elasticity

O

O
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Resultant Strainin longitudnal direction =%—uﬂ€“=%(m vyl
recalling
_pd _pd
(T T
. . d
&, (longitudnal strain) = 20 [1-2p
y (long ) 4Et[ ]
or
Changein Length = Langitudalstrain x original Length
=5,.L
. . 1 1 |pd d
Similarly the hoop StramEE:E(UH - ycrLj=E g—t—yi—t
_ pd
Ez_ﬁ[z_y]

Infact =;is the hoop strain if we just go by the definition then
_Changein diarnetre _ &d
Originaldiametre  d

whete d =original diameter.
if we areinterestedto findout the change in diametre then
Changein diametre =<, .Original diametre
i.e 6d ==, .d substituting the value of =3 we get
sa=P1 12-0]

4LE
[2-7]

p.d?
Y
ie Ed—ME[E v]

1.
Volumetric Strain or Change in the Internal Volume:

%
m

=

When the thin cylinder is subjected to the internal pressure as we have already calculated that there is a
change in the cylinder dimensions i.e, longitudinal strain and hoop strains come into picture. As a result of
which there will be change in capacity of the cylinder or there is a change in the volume of the cylinder
hence it becomes imperative to determine the change in volume or the volumetric strain.

The capacity of a cylinder is defined as

V = Area X Length

= nd’/4 x L

Let there be a change in dimensions occurs, when the thin cylinder is subjected to an internal pressure.
(i) The diameter d changesto > d + 8 d

(i) The length L changesto - L +3 L
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Therefore, the change in volume = Final volume — Original volume

T ol
=Z(d+adP (L +8L) - S df L
7+ adf(Lvaly - 2
o 2 o 5
; = [d+&d]F (L+8L) - =d°.L
Yolumetric 51rain=ChE_m_gE'nW|”mE= 4 4
Original volume TEL

{[d+6df (L+60) - d® L) ] (d +6d® +2d 6d) (L +6L) - & L]

E'I,I': =

gL 4L
simplifying and neglecting the products and squares of smallgquantities,ie. &d & 6L
hence
_2d8dL+ald® 6L 6d
d’L Lo

By defintian 6—|1‘ =Longitudnal strain

%= hoop strain, Thus

|"l|.-"ulu metric strain = longitudnal strain +2 x hoop strain|

on substituting the value of longitudnaland hoop strains we get

M s g =Pip-2
= fltE[ v] S fltE[ v]

or Valumetric ==, +25; —%[1 - 2v] +2. fltE [1 —2u]]

SLLITR TR :p_[a 4]
AE AE

. pd pd
Yolumetric Strain = T E[E 4y] ar EV—E[E - 4y]

Therefore to find but the increase in capacity or volume, multiply the volumetric strain by original volume.
Hence

Change in Capacity / Volume or

] d
| lume= L2015 - 4]V
necreasein valume JltE[ y]

Cylindrical Vessel with Hemispherical Ends:

Let us now consider the vessel with hemispherical ends. The wall thickness of the cylindrical and
hemispherical portion is different. While the internal diameter of both the portions is assumed to be equal

Let the cylindrical vassal is subjected to an internal pressure p.
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For the Cylindrical Portion

hoop ar circumferential stress= o, 't'here synifies the cylindrical portion.
_ bd
o
longitudnal stress= o -
_ pd
Ay

- =

The T pd o
E pn=ioad

hoop ar circumferential strain e, =

d
T = =£?[2—y]

For The Hemispherical Ends:

FH T

Because of the symmetry of the sphere the stresses set up owing to internal pressure will be two mutually
perpendicular hoops or circumferential stresses of equal values. Again the radial stresses are neglected in
comparison to the hoop stresses as with this cylinder having thickness to diametre less than1:20.

Consider the equilibrium of the half (1 sphere

Force on half-sphere owing to internal pressure = pressure x projected Area

= p. nd%/4
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Resisting farce = oy . md.t,

d
—=g,.xwdt
R ] H z
= UH(fDrSphere]Fﬂ
4,
o . 1 Ty pd pd
sirnilarly the hoop strain==|o, -v.o,|=—=[1 -v|="—[1-#] or =1—[1-
! P E[ oo =l a1, [-vjeries 4t2E[ ]

Fig (1 shown the (by way of dotted lines) the tendency, for the cylindrical portion and the spherical ends to
expand by a different amount under the action of internal pressure. So owing to difference in stress, the two
portions (i.e. cylindrical and spherical ends) expand by a different amount. This incompatibly of deformations
causes a local bending and sheering stresses in the neighborhood of the joint. Since there must be physical
continuity between the ends and the cylindrical portion, for this reason, properly curved ends must be used
for pressure vessels.

Thus equating the two strains in order that there shall be no distortion of the junction

pd
4tE

pd

[2-v] :ﬁ

B} L_1-v
[1 u] |:|rt1 =

But for general steel works v = 0.3, therefore, the thickness ratios becomes

t2/t,=0.7/1.7 or

i.e. the thickness of the cylinder walls must be approximately 2.4 times that of the hemispheroid ends for no
distortion of the junction to occur.

SUMMARY OF THE RESULTS : Let us summarise the derived results

(A) The stresses set up in the walls of a thin cylinder owing to an internal pressure p are :
(i) Circumferential or loop stress

oH = pd/2t

(i) Longitudinal or axial stress

oL = pd/4t

Where d is the internal diametre and t is the wall thickness of the cylinder.
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then
Longitudinal strainCle,. =1/ E [Oo.0- viIou]

Hoop stain en=1/E [ ou - vloL ]

(B) Change of internal volume of cylinder under pressure

= ﬂ[ﬁ - dv]V
4tE

(C) Fro thin spheres circumferential or loop stress

o —pd

H o 4

Thin rotating ring or cylinder

Consider a thin ring or cylinder as shown in Fig below subjected to a radial internal pressure p caused by the
centrifugal effect of its own mass when rotating. The centrifugal effect on a unit length of the circumference
is

p=mo’r

Fig 19.1: Thin ring rotating with constant angular velocity ®

Here the radial pressure [Ip' is acting per unit length and is caused by the centrifugal effect if its own mass
when rotating.

Thus considering the equilibrium of half the ring shown in the figure,
2F = p x 2r (assuming unit length), as 2r is the projected area
F=pr

Where F is the hoop tension set up owing to rotation.

The cylinder wall is assumed to be so thin that the centrifugal effect can be assumed constant across the
wall thickness.

F = mass x acceleration=m @’ rx r
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This tension is transmitted through the complete circumference and therefore is resisted by the complete
cross [] sectional area.

hoop stress = F/A=m @’ r?IA
Where A is the cross [ sectional area of the ring.
Now with unit length assumed m/A is the mass of the material per unit volume, i.e. the density p .
hoop stress = p o’ r
oH = pU. o .r
Members Subjected to Torsional Loads

Torsion of circular shafts

Definition of Torsion: Consider a shaft rigidly clamped at one end and twisted at the other end by a torque
T = F.d applied in a plane perpendicular to the axis of the bar such a shaft is said to be in torsion.

§ F
R ayan
W,

F

Y A T=Fd

:/d

Effects of Torsion: The effects of a torsional load applied to a bar are

(i) To impart an angular displacement of one end cross [ section with respect to the other end.
(ii) To setup shear stresses on any cross section of the bar perpendicular to its axis.

GENERATION OF SHEAR STRESSES

The physical understanding of the phenomena of setting up of shear stresses in a shaft subjected to a
torsion may be understood from the figure 1-3.
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Fig 1: Here the cylindrical member or a shaft is in static equilibrium where T is the resultant external torque
acting on the member. Let the member be imagined to be cut by some imaginary plane [Jmn'.

Fig 2: When the plane [Imn' cuts remove the portion on R.H.S. and we get a fig 2. Now since the entire
member is in equilibrium, therefore, each portion must be in equilibrium. Thus, the member is in equilibrium
under the action of resultant external torque T and developed resisting Torque T; .
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\

Fig 3: The Figure shows that how the resisting torque T, is developed. The resisting torque T; is produced
by virtue of an infinites mal shear forces acting on the plane perpendicular to the axis of the shaft. Obviously
such shear forces would be developed by virtue of sheer stresses.

Therefore we can say that when a particular member (say shaft in this case) is subjected to a torque, the
result would be that on any element there will be shear stresses acting. While on other faces the
complementary sheer forces come into picture. Thus, we can say that when a member is subjected to
torque, an element of this member will be subjected to a state of pure shear.

Shaft: The shafts are the machine elements which are used to transmit power in machines.

Twisting Moment: The twisting moment for any section along the bar / shaft is defined to be the algebraic
sum of the moments of the applied couples that lie to one side of the section under consideration. The
choice of the side in any case is of course arbitrary.

Shearing Strain: If a generator a [1 b is marked on the surface of the unloaded bar, then after the twisting
moment 'T' has been applied this line moves to ab'. The angle [1y' measured in radians, between the final
and original positions of the generators is defined as the shearing strain at the surface of the bar or shaft.
The same definition will hold at any interior point of the bar.

(===y)

Modulus of Elasticity in shear: The ratio of the shear stress to the shear strain is called the modulus of

T
==
elasticity in shear OR Modulus of Rigidity and in represented by the symbol r
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Angle of Twist: If a shaft of length L is subjected to a constant twisting moment T along its length, than the
angle 6 through which one end of the bar will twist relative to the other is known is the angle of twist.

(&=

o Despite the differences in the forms of loading, we see that there are number of
similarities between bending and torsion, including for example, a linear variation
of stresses and strain with position.

In torsion the members are subjected to moments (couples) in planes normal to
their axes.

o For the purpose of desiging a circular shaft to withstand a given torque, we must
develop an equation giving the relation between twisting moment, maximum
shear stress produced, and a quantity representing the size and shape of the cross-
sectional area of the shaft.

Not all torsion problems, involve rotating machinery, however, for example some types of vehicle
suspension system employ torsional springs. Indeed, even coil springs are really curved members in torsion
as shown in figure.

e Many torque carrying engineering members are cylindrical in shape. Examples
are drive shafts, bolts and screw drivers.

Simple Torsion Theory or Development of Torsion Formula : Here we are basically interested to derive
an equation between the relevant parameters

r

T_r1_G#
J

Relationship in Torsion:
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1 st Term: It refers to applied loading ad a property of section, which in the instance is the polar second
moment of area.

2 nd Term: This refers to stress, and the stress increases as the distance from the axis increases.

3 rd Term: it refers to the deformation and contains the terms modulus of rigidity & combined term (6 /1)
which is equivalent to strain for the purpose of designing a circular shaft to with stand a given torque we
must develop an equation giving the relation between Twisting moments max m shear stain produced and a
quantity representing the size and shape of the cross [ sectional area of the shaft.

Refer to the figure shown above where a uniform circular shaft is subjected to a torque it can be shown that
every section of the shaft is subjected to a state of pure shear, the moment of resistance developed by the
shear stresses being every where equal to the magnitude, and opposite in sense, to the applied torque. For
the purpose of deriving a simple theory to describe the behavior of shafts subjected to torque it is necessary
make the following base assumptions.

Assumption:

(i) The materiel is homogenous i.e of uniform elastic properties exists throughout the material.
(ii) The material is elastic, follows Hook's law, with shear stress proportional to shear strain.
(iii) The stress does not exceed the elastic limit.

(iv) The circular section remains circular

(v) Cross section remain plane.

(vi) Cross section rotate as if rigid i.e. every diameter rotates through the same angle.
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Consider now the solid circular shaft of radius R subjected to a torque T at one end, the other end being
fixed Under the action of this torque a radial line at the free end of the shaft twists through an angle 6 , point
A moves to B, and AB subtends an angle [ y ' at the fixed end. This is then the angle of distortion of the
shaft i.e the shear strain.

Since angle in radius = arc / Radius
arc AB = R0
=L y [since L and y also constitute the arc AB]
Thus,y=RO/L (1)
From the definition of Modulus of rigidity or Modulus of elasticity in shear

_ shear stress(7)
shear strain(y)
where yisthe shear stress set up atradius R

r
Then —=
z !
. . R# _r
Equating the equations (1) and (2) we get T G
%= %[= l]where T'isthe shear stress at any radius r.
r

Stresses: Let us consider a small strip of radius r and thickness dr which is subjected to shear stress(7".
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The force set up on each element
= stress x area
= 1' X 27 r dr (approximately)
This force will produce a moment or torque about the center axis of the shaft.
=1 .2nrdr.r
=2n7.r%dr

R

T= _[Em'r dr

The total torque T on the section, will be the sum of all the contributions. o

Since 7' is a function of r, because it varies with radius so writing down( 7" in terms of r from the equation (1).
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. Gl
e T=

R
wegetT = JEHE.rE’dr
3 L

T=

L

_ 28 [R]°
L 4],

2R #

R
zﬂGEJrgdr
0

-

now sub stituting R = d/2

T p—
s

8/E,

S

2 rlg 2 2

-
sinl::eﬁ = Jd thepolarmaomentofinertia

T 156
r j = T ...... |:2:|
. . . [T _ « Ge
if we combine the equation no (1) and (2) we getj= I- T
r
Where
T = applied external Torque, which is constant over Length L;
J = Polar moment of Inertia
EN
=H‘; for solid shaft
32
4 _ 4
:M for a hollow shaft.
32 [ D = Outside diameter ; d = inside diameter ]

G = Modules of rigidity (or Modulus of elasticity in shear)

0 = It is the angle of twist in radians on a length L.

Tensional Stiffness: The tensional stiffness k is defined as the torque per radius twist
ie,k=T/060=GJ /L

Power Transmitted by a shaft : If T is the applied Torque and o is the angular velocity of the shaft, then
the power transmitted by the shaft is
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2mT _ ZaNT
P=Tuw= ——=—hw
B0 50107
where N=rpm

Distribution of shear stresses in circular Shafts subjected to torsion :

The simple torsion equation is written as

T _71_i5#8
Jor o
or
_ GAr
T

This states that the shearing stress varies directly as the distance [Ir' from the axis of the shaft and the
following is the stress distribution in the plane of cross section and also the complementary shearing

stresses in an axial plane.

A
NI

N

T
[Solid Shaft) {Hollow Shaft)

Hence the maximum strear stress occurs on the outer surface of the shaft where r = R

The value of maximum shearing stress in the solid circular shaft can be determined as

1.1
r

J
TR T
Tmaxl-_% = e = F%

32
where d=diameter of solid shaft
_16T
ar T g S —
maxs ﬂ'd3

From the above relation, following conclusion can be drawn

()T max"oc T
(ii) T max™ oc 1/d 3

Power Transmitted by a shaft:
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In practical application, the diameter of the shaft must sometimes be calculated from the power which it is
required to transmit.

Given the power required to be transmitted, speed in rpm [ON' Torque T, the formula connecting
These quantities can be derived as follows

FP=T.w

= T2 watts

2aNT

i E0x10° (few)

Torsional stiffness: The torsional stiffness k is defined as the torque per radian twist .

k=1
f
ie=g
' L
ar k=E

For a ductile material, the plastic flow begins first in the outer surface. For a material which is weaker in
shear longitudinally than transversely [ for instance a wooden shaft, with the fibres parallel to axis the first
cracks will be produced by the shearing stresses acting in the axial section and they will upper on the
surface of the shaft in the longitudinal direction.

In the case of a material which is weaker in tension than in shear. For instance a, circular shaft of cast iron
or a cylindrical piece of chalk a crack along a helix inclined at 45° to the axis of shaft often occurs.

Explanation: This is because of the fact that the state of pure shear is equivalent to a state of stress tension
in one direction and equal compression in perpendicular direction.

A rectangular element cut from the outer layer of a twisted shaft with sides at 45° to the axis will be
subjected to such stresses, the tensile stresses shown will produce a helical crack mentioned.
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J

ey

TORSION OF HOLLOW SHAFTS:

From the torsion of solid shafts of circular x [] section , it is seen that only the material at the outer surface of
the shaft can be stressed to the limit assigned as an allowable working stresses. All of the material within the
shaft will work at a lower stress and is not being used to full capacity. Thus, in these cases where the weight
reduction is important, it is advantageous to use hollow shafts. In discussing the torsion of hollow shafts the
same assumptions will be made as in the case of a solid shaft. The general torsion equation as we have
applied in the case of torsion of solid shaft will hold good
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T _71_0GH
Jor I
Farthe hallow shaft
4 _ 4
Jd= % where Dy =0utside diameter
d=Inside diameter
Let di=%.Dn
_ 18T
Tmax™ lsoid ~ oy K (n
; | _ TDgi2
max™ lallgu m 4 4
o -
= 05" - 4%)
: 16T.0y
Dt [1 - (difDDj4]
= 167 a1 1.[IEE.£T3 (2]
nDE,3I1—(1 12) I Dy

Hence by examining the equation (1) and (2) it may be seen that the t max™ in the case of hollow shaft is
6.6% larger then in the case of a solid shaft having the same outside diameter.

Reduction in weight:

Considering a solid and hollow shafts of the same length 'I' and density 'p' with di = 1/2 D,

1/2 Do
-

7 e
NUZI =

N = =
Do Do
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Weight of hollow shaft
2 ;i
m,t w0y 12) ll}{p

2

_ Iﬂﬂn ﬂlh{p

[1 -1 4]k p

D

07550 |y
2

Weight of solid shaft = lp

:
Reduction inweight = (1-0.75) Dy

lxp

z
=025 Dy

o

Hence the reduction in weight would be just 25%.

lllustrative Examples :

Problem 1

A stepped solid circular shaft is built in at its ends and subjected to an externally applied torque. To at the
shoulder as shown in the figure. Determine the angle of rotation 6o of the shoulder section where Ty is
applied ?

o

i
b

Ta

Solution: This is a statically indeterminate system because the shaft is built in at both ends. All that we can
find from the statics is that the sum of two reactive torque Ta and Tg at the built (1 in ends of the shafts must
be equal to the applied torque To

Thus Ta+Tg=To - (1)
[from static principles]
Where Ta ,Ts are the reactive torque at the built in ends A and B. wheeras Ty is the applied torque

From consideration of consistent deformation, we see that the angle of twist in each portion of the shaft must
be same.
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i.e ea = e b= e 0
T 6
J I
T_,u,_a
or f, = —
NN E
Tga
EIB - _BF
dgs
T,a _ Tgb T, Jda b
~HEETe v BRI e
using the relation for angle of twist A B B B A
N.B: Assuming modulus of rigidity G to be same for the two portions
So the defines the ratio of T and Ts
So by solving (1) & (2) we get
T
Ty = L
dga
1+
dab
T
To j b
1+ -2
Jpa
Llsing either of these walues in (2) we have the angle of rotation &, at the junction
Tyahb

D b+ lgalc

Non Uniform Torsion: The pure torsion refers to a torsion of a prismatic bar subjected to torques acting
only at the ends. While the non uniform torsion differs from pure torsion in a sense that the bar / shaft need

not to be prismatic and the applied torques may vary along the length.

Here the shaft is made up of two different segments of different diameters and having torques applied at
several cross sections. Each region of the bar between the applied loads between changes in cross section
is in pure torsion, hence the formula's derived earlier may be applied. Then form the internal torque,
maximum shear stress and angle of rotation for each region can be calculated from the relation

=landL =28

T TnT_GE
Jor J oL

The total angle to twist of one end of the bar with respect to the other is obtained by summation using the
formula
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0Tk

ey

i =indexforno of parts
n = total numberof parts

If either the torque or the cross section changes continuously along the axis of the bar, then
the 3. (summation can be replaced by an integral sign (] ). i.e We will have to consider a differential element.

After considering the differential element, we can write x

Substituting the expressions for Txand Jx at a distance x from the end of the bar, and then integrating
between the limits 0 to L, find the value of angle of twist may be determined.

L LT dx
8=[di= [
Ja8=I3n

Closed Coiled helical springs subjected to axial loads:

Definition: A spring may be defined as an elastic member whose primary function is to deflect or distort
under the action of applied load; it recovers its original shape when load is released.

or

Springs are energy absorbing units whose function is to store energy and to restore it slowly or rapidly
depending on the particular application.

Important types of springs are:

There are various types of springs such as
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(i) helical spring: They are made of wire coiled into a helical form, the load being applied along the axis of
the helix. In these type of springs the major stresses is torsional shear stress due to twisting. They are both
used in tension and compression.

(ii) Spiral springs: They are made of flat strip of metal wound in the form of spiral and loaded in torsion.

In this the major stresses are tensile and compression due to bending.

(iv) Leaf springs: They are composed of flat bars of varying lengths clamped together so as to obtain
greater efficiency . Leaf springs may be full elliptic, semi elliptic or cantilever types, In these type of springs
the major stresses which come into picture are tensile & compressive.
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These type of springs are used in the automobile suspension system.

Uses of springs :

(a) To apply forces and to control motions as in brakes and clutches.

(b) To measure forces as in spring balance.

(c) To store energy as in clock springs.

(d) To reduce the effect of shock or impact loading as in carriage springs.

(e) To change the vibrating characteristics of a member as inflexible mounting of motors.

Derivation of the Formula :

In order to derive a necessary formula which governs the behaviour of springs, consider a closed coiled
spring subjected to an axial load W.

Let
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W = axial load

D = mean coil diameter

d = diameter of spring wire

n = number of active coils

C = spring index = D / d For circular wires

| = length of spring wire

G = modulus of rigidity

x = deflection of spring

g = Angle of twist

when the spring is being subjected to an axial load to the wire of the spring gets be twisted like a shaft.

If q is the total angle of twist along the wire and x is the deflection of spring under the action of load W along
the axis of the coil, so that

x=D/2.6

again | = = D n [ consider ,one half turn of a close coiled helical spring ]

i

Assumptions: (1) The Bending & shear effects may be neglected

(2) For the purpose of derivation of formula, the helix angle is considered to be so small that it may
be neglected.

Any one coil of a such a spring will be assumed to lie in a plane which is nearly " to the axis of the spring.
This requires that adjoining coils be close together. With this limitation, a section taken perpendicular to the
axis the spring rod becomes nearly vertical. Hence to maintain equilibrium of a segment of the spring, only a
shearing force V = F and Torque T = F. r are required at any X [] section. In the analysis of springs it is
customary to assume that the shearing stresses caused by the direct shear force is uniformly distributed and
is negligible

so applying the torsion formula.

Using the torsion formula i.e
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T.r_G#
Jor I
4
and substtituting J = H;T = W.E
32 2
2.8
f=—:1=nrD.
K nl

SPRING DEFLECTION

wd/2  G2x/D
m*  wmhn
32
Thus,
_BwD¥n
G.d*

Spring striffness: The stiffness is defined as the load per unit deflection therefore

Wy W
k=—= —
¥ BwDn
G.d*
Therefare
.44

50%n

k=

Shear stress

wdi2 _ Ty

d ds2
32
_ BwD
arT_ . s —
max j‘?d3

WAHL'S FACTOR :

In order to take into account the effect of direct shear and change in coil curvature a stress factor is defined,
which is known as Wahl's factor

o do-1 0815
K = Wahl' s factor and is defined as dc-4 =

Where C = spring index

=D/d

if we take into account the Wahl's factor than the formula for the shear stress becomes
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Strain Energy : The strain energy is defined as the energy which is stored within a material when the work
has been done on the material.

In the case of a spring the strain energy would be due to bending and the strain energy due to bending is
given by the expansion

soafter substitutionwe get
2
U= 327 Eln
Ed

Example: A close coiled helical spring is to carry a load of 5000N with a deflection of 50 mm and a
maximum shearing stress of 400 N/mm? .if the number of active turns or active coils is 8.Estimate the
following:

(i) wire diameter

(ii) mean coil diameter

(iii) weight of the spring.

Assume G = 83,000 N/mm? ; p = 7700 kg/m®
solution :

(i) for wire diametre if W is the axial load, then

wdi2 _ Toam
* d/2
32

400 m* 2
S 4232w
400w 2
500016

D = 0.0314 d*
Futher, deflection is given as

_BwD¥n
T
on substituting the relevant parameters we get
_ B.5000.(0.03144°)° 8
g3,000.4%
d=13.32mm

a0
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Therefore,

D=.0314x (13.317)’mm
=74.15mm

D =74.15 mm
Weight

massorweight = volume. density

area.lengthof the spring.density of spring material

2

i
™ o
g e

On substituting the relevant parameters we get
Weight = 1,958 kg
=2.0kg

Close [ coiled helical spring subjected to axial torque T or axial couple.

In this case the material of the spring is subjected to pure bending which tends to reduce Radius R of the
coils. In this case the bending moment is constant through out the spring and is equal to the applied axial
Torque T. The stresses i.e. maximum bending stress may thus be determined from the bending

max ]
theory. i

Deflection or wind (] up angle:

Under the action of an axial torque the deflection of the spring becomes the [lwind (1 upl] angle of the
spring which is the angle through which one end turns relative to the other. This will be equal to the total
change of slope along the wire, according to area [1 moment theorem
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L
= % buthd=T
5, El
L L
_rrdL :l 4L
5 El Elg
Thus, as'T 'remainsconstant
g=1t
El
Futher
L=maln
??d4
[= —
B4
Therefore, on substitution the value of & obtained is
6= B4T Dn

Ed*

Springs in Series: If two springs of different stiffness are joined endon and carry a common load W, they
are said to be connected in series and the combined stiffness and deflection are given by the following

equation.

b4
WY AT
_—}{1+}{2—_+_
k ko
ar bz
1 1 1
P
k k1 kz W

Springs in parallel: If the two spring are joined in such a way that they have a common deflection (X' ; then
they are said to be connected in parallel.In this care the load carried is shared between the two springs and

total load W = W4 + W>

Futher
WS NG

Members Subjected to Flexural Loads
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Introduction:

In many engineering structures members are required to resist forces that are applied laterally or
transversely to their axes. These type of members are termed as beam.

There are various ways to define the beams such as

Definition I: A beam is a laterally loaded member, whose cross-sectional dimensions are small as
compared to its length.

Definition Il: A beam is nothing simply a bar which is subjected to forces or couples that lie in a plane
containing the longitudnal axis of the bar. The forces are understood to act perpendicular to the longitudnal
axis of the bar.

Definition lll: A bar working under bending is generally termed as a beam.
Materials for Beam:

The beams may be made from several usable engineering materials such commonly among them are as

follows:
e Metal
e Wood
e Concrete
e Plastic

Examples of Beams:

Refer to the figures shown below that illustrates the beam

Fig 1 Fig 2

In the fig.1, an electric pole has been shown which is subject to forces occurring due to wind; hence it is an
example of beam.

In the fig.2, the wings of an aeroplane may be regarded as a beam because here the aerodynamic action is
responsible to provide lateral loading on the member.

Geometric forms of Beams:
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The Area of X-section of the beam may take several forms some of them have been shown below:

i “
7

W Z

[ Rectangular section] [ T- section] [ | - section]
[ Triangular section] [ Circulular [ Channel X - section]
}{ section]

Issues Regarding Beam:

Designer would be interested to know the answers to following issues while dealing with beams in practical
engineering application

+ At what load will it fail

* How much deflection occurs under the application of loads.

Classification of Beams:

Beams are classified on the basis of their geometry and the manner in which they are supported.

Classification I: The classification based on the basis of geometry normally includes features such as the
shape of the X-section and whether the beam is straight or curved.

Classification ll: Beams are classified into several groups, depending primarily on the kind of supports
used. But it must be clearly understood why do we need supports. The supports are required to provide
constrainment to the movement of the beams or simply the supports resists the movements either in
particular direction or in rotational direction or both. As a consequence of this, the reaction comes into
picture whereas to resist rotational movements the moment comes into picture. On the basis of the support,
the beams may be classified as follows:

Cantilever Beam: A beam which is supported on the fixed support is termed as a cantilever beam: Now let
us understand the meaning of a fixed support. Such a support is obtained by building a beam into a brick
wall, casting it into concrete or welding the end of the beam. Such a support provides both the translational
and rotational constrainment to the beam, therefore the reaction as well as the moments appears, as shown
in the figure below
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R

Ry

Simply Supported Beam: The beams are said to be simply supported if their supports creates only the
translational constraints.

Pin Joint

Ry

(a) Actual Representation (k) Diagrammatic Representation

Some times the translational movement may be allowed in one direction with the help of rollers and can be
represented like this
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.
Wy
1l

P

Ry Roller Diagrarmmmitic Representation

) 5

Here a roller can resist a force that
D acts perpendicular to the plane CO.

R

Statically Determinate or Statically Indeterminate Beams:

The beams can also be categorized as statically determinate or else it can be referred as statically
indeterminate. If all the external forces and moments acting on it can be determined from the equilibrium
conditions alone then. It would be referred as a statically determinate beam, whereas in the statically
indeterminate beams one has to consider deformation i.e. deflections to solve the problem.

Types of loads acting on beams:

A beam is normally horizontal where as the external loads acting on the beams is generally in the vertical
directions. In order to study the behaviors of beams under flexural loads. It becomes pertinent that one must
be familiar with the various types of loads acting on the beams as well as their physical manifestations.

A. Concentrated Load: It is a kind of load which is considered to act at a point. By this we mean that the
length of beam over which the force acts is so small in comparison to its total length that one can model the
force as though applied at a point in two dimensional view of beam. Here in this case, force or load may be
made to act on a beam by a hanger or though other means

[ 1 1 |
.. i .
Hanger Wiy Wz
Load

B. Distributed Load: The distributed load is a kind of load which is made to spread over a entire span of
beam or over a particular portion of the beam in some specific manner
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In the above figure, the rate of loading [1q' is a function of x i.e. span of the beam, hence this is a non
uniformly distributed load.

The rate of loading [1q' over the length of the beam may be uniform over the entire span of beam, then we
cell this as a uniformly distributed load (U.D.L). The U.D.L may be represented in either of the way on the

beams

OR

some times the load acting on the beams may be the uniformly varying as in the case of dams or on inclind
wall of a vessel containing liquid, then this may be represented on the beam as below:
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LIniformily
Warying
Loads

The U.D.L can be easily realized by making idealization of the ware house load, where the bags of grains
are placed over a beam.

SSE S S AN
) 7 -

Concentrated Moment:

The beam may be subjected to a concentrated moment essentially at a point. One of the possible
arrangement for applying the moment is being shown in the figure below:

M plilley 1
-

e s

pulley 2 W

Wy —— 1

A el

Ll——= —¥

M= d .,-,-,Q_,-,-,

“ /ﬂ\r

A
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Concept of Shear Force and Bending moment in beams:

When the beam is loaded in some arbitrarily manner, the internal forces and moments are developed and
the terms shear force and bending moments come into pictures which are helpful to analyze the beams
further. Let us define these terms

P Pz P
y
e FFAA7
A A
Ri iap Rz
P = A, 5]
I
F |
A |
¥ i !
by g : : e
|
A | A
|
Ri : Rz
b A
Fig 1

Now let us consider the beam as shown in fig 1(a) which is supporting the loads P+, P2, P3 and is simply
supported at two points creating the reactions R1 and Rz respectively. Now let us assume that the beam is to
divided into or imagined to be cut into two portions at a section AA. Now let us assume that the resultant of
loads and reactions to the left of AA is [JF' vertically upwards, and since the entire beam is to remain in
equilibrium, thus the resultant of forces to the right of AA must also be F, acting downwards. This forces [1F'
is as a shear force. The shearing force at any x-section of a beam represents the tendency for the portion of
the beam to one side of the section to slide or shear laterally relative to the other portion.

Therefore, now we are in a position to define the shear force LF' to as follows:

At any x-section of a beam, the shear force [F' is the algebraic sum of all the lateral components of the
forces acting on either side of the x-section.

Sign Convention for Shear Force:

The usual sign conventions to be followed for the shear forces have been illustrated in figures 2 and 3.
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A

|

' F

|

|

|

|

[

|

|

A [ Y

|

|

|

|

|

|

|

F |

The resultant force which is in upward : The resultant force which is in the downward
direction and is towards the LH.S of the |  direction and is towards the R.H.5 of the
*-geclion is +ve Shear Force I X-seclion is +ve Shear Force,

|

A

Fig 2: Positive Shear Force

F

The resultant force which are in the downward
direction and is on the L.H.5 of the X-section
i5 -ve Shear Force.

The resultant force which are in upward
direction and is on the R.H.5 of the

A
i
I
i
I
i
I
i
|
|
|
|
|
|
I
I
I
I
I
I
I
I
: X-seclion I -ve Shear Force.
A

Fig 3: Negative Shear Force
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Bending Moment:

P1 P2 Pa
|
FEAFT FAFAs
A A
R (&) Rz
P Pz A Pa
|
|
4 | |
/ \
i ! !
1 ; I L
! !
FIIZZN | P77
T I -
A | A
I
|
Ri | Ra
b} A
Fig 4

Let us again consider the beam which is simply supported at the two prints, carrying loads P4, P2 and P3 and
having the reactions R and Rqat the supports Fig 4. Now, let us imagine that the beam is cut into two
potions at the x-section AA. In a similar manner, as done for the case of shear force, if we say that the
resultant moment about the section AA of all the loads and reactions to the left of the x-section at AA is M in
C.W direction, then moment of forces to the right of x-section AA must be [IM' in C.C.W. Then [IM'is called
as the Bending moment and is abbreviated as B.M. Now one can define the bending moment to be simply
as the algebraic sum of the moments about an x-section of all the forces acting on either side of the section

Sign Conventions for the Bending Moment:

For the bending moment, following sign conventions may be adopted as indicated in Fig 5 and Fig 6.
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A

|

|

[

|

M : M

|

|

|

H=

|

|

|

|

|

|
Resultant momenton the LH.Sof |  Resultant moment on the R.H.S postion
the X-section is C.W, thenitis a : of the X-section is C.C.W, then it may be
positive B.M | considered as positive B.M

|

|

A

Fig 5: Positive Bending Moment

3

Resultant moment on the R.H.S of
the X-section is C.W, then itis a
negative B.M

Resultant moment on the L.H.5 of
the X-section is C.C.W, then itis a

A
|
|
|
|
|
|
|
I
I
I
I
I
I
I
I
|
I
|
I
|
I
|

negative B.M :
i)

Fig 6: Negative Bending Moment
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Some times, the terms [(1Sagging' and Hogging are generally used for the positive and negative bending
moments respectively.

Bending Moment and Shear Force Diagrams:

The diagrams which illustrate the variations in B.M and S.F values along the length of the beam for any fixed
loading conditions would be helpful to analyze the beam further.

Thus, a shear force diagram is a graphical plot, which depicts how the internal shear force LF' varies along
the length of beam. If x dentotes the length of the beam, then F is function x i.e. F(x).

Similarly a bending moment diagram is a graphical plot which depicts how the internal bending moment (1M’
varies along the length of the beam. Again M is a function x i.e. M(x).

Basic Relationship Between The Rate of Loading, Shear Force and Bending Moment:

The construction of the shear force diagram and bending moment diagrams is greatly simplified if the
relationship among load, shear force and bending moment is established.

Let us consider a simply supported beam AB carrying a uniformly distributed load w/length. Let us imagine
to cut a short slice of length dx cut out from this loaded beam at distance [1x' from the origin [10".

& =
I Ay ¥ I
J‘F :.-
C——— =
=
adiila) P = Considered to
he detached

Let us detach this portion of the beam and draw its free body diagram.
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The forces acting on the free body diagram of the detached portion of this loaded beam are the following
» The shearing force F and F+ &F at the section x and x + dx respectively.
* The bending moment at the sections x and x + 6x be M and M + dM respectively.

» Force due to external loading, if W' is the mean rate of loading per unit length then the total loading on
this slice of length &x is w. 8x, which is approximately acting through the centre [Ic'. If the loading is
assumed to be uniformly distributed then it would pass exactly through the centre [ic'.

This small element must be in equilibrium under the action of these forces and couples.

Now let us take the moments at the point [Ic'. Such that

wWwWw.jntuworld.com



WWW.j ntuwor ld.com

M+F.%}{+(F +6Fj|.%}{: bl + Gl

G %:

=F = +(F+&F). &
2 2

=}F.62—H+F.62—H+EF.5—;= &hl [ Meglecting the product of

8F and &x being small quantitie 5 |

= F.Gx= &M
=F =M
&y
Under the limits dx—0
o
F=— 1
= ("

Resolvingthe forcesyertically we get
w.ox +(F +8F)=F

= W= —E
G
Under the limits §x—0
=}w=—ﬁnr—i[ﬂj
dx dx " dx
dF _ d*M
—'H—'F (2)

Conclusions: From the above relations,the following important conclusions may be drawn

* From Equation (1), the area of the shear force diagram between any two points, from the basic calculus is
the bending moment diagram

hl= J'F. dx
* The slope of bending moment diagram is the shear force,thus

_ dM

F=""
%

Thus, if F=0; the slope of the bending moment diagram is zero and the bending moment is therefore
constant.’

dM _

¢ The maximum or minimum Bending moment occurs where dx

a.

The slope of the shear force diagram is equal to the magnitude of the intensity of the distributed loading at
any position along the beam. The [ve sign is as a consequence of our particular choice of sign conventions

Procedure for drawing shear force and bending moment diagram:

Preamble:
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The advantage of plotting a variation of shear force F and bending moment M in a beam as a function of [x'
measured from one end of the beam is that it becomes easier to determine the maximum absolute value of
shear force and bending moment.

Further, the determination of value of M as a function of [x' becomes of paramount importance so as to
determine the value of deflection of beam subjected to a given loading.

Construction of shear force and bending moment diagrams:

A shear force diagram can be constructed from the loading diagram of the beam. In order to draw this, first
the reactions must be determined always. Then the vertical components of forces and reactions are
successively summed from the left end of the beam to preserve the mathematical sign conventions adopted.
The shear at a section is simply equal to the sum of all the vertical forces to the left of the section.

When the successive summation process is used, the shear force diagram should end up with the
previously calculated shear (reaction at right end of the beam. No shear force acts through the beam just
beyond the last vertical force or reaction. If the shear force diagram closes in this fashion, then it gives an
important check on mathematical calculations.

The bending moment diagram is obtained by proceeding continuously along the length of beam from the left
hand end and summing up the areas of shear force diagrams giving due regard to sign. The process of
obtaining the moment diagram from the shear force diagram by summation is exactly the same as that for
drawing shear force diagram from load diagram.

It may also be observed that a constant shear force produces a uniform change in the bending moment,
resulting in straight line in the moment diagram. If no shear force exists along a certain portion of a beam,
then it indicates that there is no change in moment takes place. It may also further observe that dm/dx= F
therefore, from the fundamental theorem of calculus the maximum or minimum moment occurs where the
shear is zero. In order to check the validity of the bending moment diagram, the terminal conditions for the
moment must be satisfied. If the end is free or pinned, the computed sum must be equal to zero. If the end is
built in, the moment computed by the summation must be equal to the one calculated initially for the
reaction. These conditions must always be satisfied.

lllustrative problems:

In the following sections some illustrative problems have been discussed so as to illustrate the procedure for
drawing the shear force and bending moment diagrams

1. A cantilever of length carries a concentrated load ['W"' at its free end.
Draw shear force and bending moment.
Solution:

At a section a distance x from free end consider the forces to the left, then F = -W (for all values of x) -ve
sign means the shear force to the left of the x-section are in downward direction and therefore negative

Taking moments about the section gives (obviously to the left of the section)

M = -Wx (-ve sign means that the moment on the left hand side of the portion is in the anticlockwise direction
and is therefore taken as [ Ive according to the sign convention)

so that the maximum bending moment occurs at the fixed end i.e. M = -W |

From equilibrium consideration, the fixing moment applied at the fixed end is WI and the reaction is W. the
shear force and bending moment are shown as,
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W ¥ 1 X

A

Wit —==8.M. Diagram

2. Simply supported beam subjected to a central load (i.e. load acting at the mid-way)

W

r—cﬁz—‘-;ﬂ—f/z—w

.S

By symmetry the reactions at the two supports would be W/2 and W/2. now consider any section X-X from
the left end then, the beam is under the action of following forces.

\i
"
w
I/E -
y
W e
2w 2
X
¥ -
A
- | -

.So the shear force at any X-section would be = W/2 [Which is constant upto x < 1/2]

If we consider another section Y-Y which is beyond I/2 then
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=k F'-Ir_'-lr =
2 for all values greater = 1/2

Hence S.F diagram can be plotted as,

77/}, sosm

If we just take the moments to the left of the cross-section,

.For B.M diagram:

B.M = ﬂ xfor xliesbetweend and 152
M 2
M, = L ieBMatx=0
3153'::5 2 2
_ Wi
4
L [
B.M R
oo [ 2]
Again
=E }{—W}{+ﬂ
2
W W
= - E At —
2 2
W
B T
| 2 2
=0

Which when plotted will give a straight relation i.e.
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It may be observed that at the point of application of load there is an abrupt change in the shear force, at this
point the B.M is maximum.

3. A cantilever beam subjected to U.d.L, draw S.F and B.M diagram.

¥

wi | lendgth

X
| I

I
_* W,

Here the cantilever beam is subjected to a uniformly distributed load whose intensity is given w / length.

Consider any cross-section XX which is at a distance of x from the free end. If we just take the resultant of
all the forces on the left of the X-section, then

S.Fxx = -Wx for all values of [1X', ======---- (1)
SFx=0
S.Fuxatx=1=-WI

So if we just plot the equation No. (1), then it will give a straight line relation. Bending Moment at X-X is
obtained by treating the load to the left of X-X as a concentrated load of the same value acting through the
centre of gravity.

Therefore, the bending moment at any cross-section X-X is

By, = - Wx ;

The above equation is a quadratic in x, when B.M is plotted against x this will produces a parabolic variation.
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The extreme values of this would be at x=0and x = |

W
B.me == T

Hence S.F and B.M diagram can be plotted as follows:

- w | length
o
rww—nw
- L =
x
[
SF [
'
[
B.M |-WiF

72

4. Simply supported beam subjected to a uniformly distributed load [U.D.L].

X W

i «'/Iength
Ia.:.mmm

Wi /2 Wl /2

The total load carried by the span would be

intensity of loading x length

w Xl
By symmetry the reactions at the end supports are each wl/2
If x is the distance of the section considered from the left hand end of the beam.

S.F at any X-section X-X is
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Giving a straight relation, having a slope equal to the rate of loading or intensity of the loading.

S.FE“:D:%' - W
S0 at
o.F | =0hencethe S Fiszeroatthe centre
gtx=—
3
W
S'Fatx=I=_T

The bending moment at the section x is found by treating the distributed load as acting at its centre of
gravity, which at a distance of x/2 from the section

. ¥
3
. .
|
e ooy g e g e ey e
|
Iy
wl
! ¥ W |
X
X
BMy, = ?}{ - W s
sothe
H
=W.2(1-2) o 2)
B.M,, . ,=0
BM,,, ., =0
s
E‘-r'"“'|zmc=|:'ﬂ

So the equation (2) when plotted against x gives rise to a parabolic curve and the shear force and bending
moment can be drawn in the following way will appear as follows:
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5. Couple.

When the beam is subjected to couple, the shear force and Bending moment diagrams may be drawn
exactly in the same fashion as discussed earlier.

%]
h ‘-"n] B
N =
Rl a— e h— wRz EMa=0
I Re*L+M =0
= == F!z=-F-!,|-_
SF Rtz =0
T Ri= hg,.L
T -M
" d

6. Eccentric loads.

When the beam is subjected to an eccentric loads, the eccentric load are to be changed into a couple/ force
as the case may be, In the illustrative example given below, the 20 kN load acting at a distance of 0.2m may
be converted to an equivalent of 20 kN force and a couple of 2 kN.m. similarly a 10 kN force which is acting
at an angle of 30° may be resolved into horizontal and vertical components.The rest of the procedure for
drawing the shear force and Bending moment remains the same.

wWwWw.jntuworld.com



WWW.j ntuwor ld.com

20kN
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*ﬁ |
20N
= Z0kN l
| X i |
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i 20kN

BkM

A By BTEN

6. Loading changes or there is an abrupt change of loading:

When there is an aabrupt change of loading or loads changes, the problem may be tackled in a systematic
way.consider a cantilever beam of 3 meters length. It carries a uniformly distributed load of 2 kN/m and a
concentrated loads of 2kN at the free end and 4kN at 2 meters from fixed end.The shearing force and
bending moment diagrams are required to be drawn and state the maximum values of the shearing force
and bending moment.

Solution

2N v

dkN

3
TR

am

Consider any cross section x-x, at a distance x from the free end
Shear Force at x-x = -2 -2x 0<x<1

S.Fatx=0i.e. atA=-2kN

S.Fatx=1=-2-2=-4kN

SFatC(x=1)=-2-2x-4 Concentrated load
=-2-4-2x1kN

=-8kN

Again consider any cross-section YY, located at a distance x from the free end
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¥
SFatY-Y=-2-2x-4 1<x<3
This equation again gives S.F at point C equal to -8kN
S.Fatx=3m=-2-4-2x3
=-12kN
Hence the shear force diagram can be drawn as below:
2 kM
4kN
1
l‘l
! B
A C ;
K
12k S.F.D
.‘|

For bending moment diagrams (1 Again write down the equations for the respective cross sections, as
consider above

Bending Moment at xx = -2x - 2x.x/2 valid upto AC
BMatx=0=0
B.Matx=1m =-3 kN.m

For the portion CB, the bending moment equation can be written for the x-section at Y-Y .

wWwWw.jntuworld.com



WWW.j ntuwor ld.com

B.MatYY =-2x - 2x.x/2 - 4( x -1)

This equation again gives,

B.MatpointC=-2.1-1-0i.e.atx=1

=-3kN.m

B.M atpointBi.e.at x=3m

=-6-9-8

=-23kN-m

The variation of the bending moment diagrams would obviously be a parabolic curve

Hence the bending moment diagram would be

2 kN
4kM

Ekl:lfm

o,
m

S FD

-23kN.m  B.M.D

7. lllustrative Example :

In this there is an abrupt change of loading beyond a certain point thus, we shall have to be careful at the
jumps and the discontinuities.
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BO00M
S00M
[
<= 8m =N Bm 2
R | Rz

For the given problem, the values of reactions can be determined as
R2 = 3800N and R1 = 5400N

The shear force and bending moment diagrams can be drawn by considering the X-sections at the suitable

locations.
S400M
200N

800N aFD

2™ dagren
polynomial
since there is
a udl in this
portion.

| B.M.D

8. lllustrative Problem :

The simply supported beam shown below carries a vertical load that increases uniformly from zero at the
one end to the maximum value of 6kN/m of length at the other end .Draw the shearing force and bending
moment diagrams.

Solution
Determination of Reactions

For the purpose of determining the reactions R1 and R2, the entire distributed load may be replaced by its
resultant which will act through the centroid of the triangular loading diagram.

So the total resultant load can be found like this-
Average intensity of loading = (0 + 6)/2
=3 kN/m

Total Load =3 x 12
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=36 kN

Ul

12m

Since the centroid of the triangle is at a 2/3 distance from the one end, hence 2/3 x 3 = 8 m from the left end

support.
laakw

LN LN

R 8 4m

=

@

o
==

W
i

Now taking moments or applying conditions of equilibrium

36x8=R2x12
R1=12kN
R2 =24 kN

Note: however, this resultant can not be used for the purpose of drawing the shear force and bending
moment diagrams. We must consider the distributed load and determine the shear and moment at a section
x from the left hand end.

X
| o
B
BkM
" 7in
A Y
oy [
12kM | 24kN
X

Consider any X-section X-X at a distance x, as the intensity of loading at this X-section, is unknown let us
find out the resultant load which is acting on the L.H.S of the X-section X-X, hence

So consider the similar triangles

OAB & OCD

wWwWw.jntuworld.com



WWW.j ntuwor ld.com

| =

= o=
| = —
]

3=

In order to find out the total resultant load on the left hand side of the X-section

Find the average load intensity

i
=* N
4 m

Thereforethe totalloadover
thelengthxwouldbe

X
=_ % kM
3 ¥

z

2
4

kM

Now these loads will act through the centroid of the triangle OAB. i.e. at a distance 2/3 x from the left hand
end. Therefore, the shear force and bending momemt equations may be written as

% D
I
B
k'3 o
Y

O C

*.—&"

4 24kN
12kM 3
- g -
x
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H2
Shaxc  =[12 - | W

validforallvaluesofx ... i

BMye =12% - HTE
3

BM, . =123 - ;"_2 kM-t
validforallvaluesof x ... (2]
SFi.=n =12EkM
12=12
Sz =12
=-Z4 kN

Inordertofind outthe pointwhere 3.F iz zero

[12-£]=u

¥ =092 m (selecting the positive values)

Again
BM,, ., =0
12°
BM,, ., =12x12 - -—
atx=12 12
=0
3
BM, . gg,= 125692 - 5'19;-
= 55 42 kN -m

|_§\ o
.92 m \{

Quadratic

Cubic

B.M

9. lllustrative problem :

In the same way, the shear force and bending moment diagrams may be attempted for the given problem
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{5 F.Diagram

| B.M. Diagram

10. lllustrative problem :

For the uniformly varying loads, the problem may be framed in a variety of ways, observe the shear force
and bending moment diagrams
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11. lllustrative problem :

In the problem given below, the intensity of loading varies from q1 kN/m at one end to the g2 kN/m at the
other end.This problem can be treated by considering a U.d.i of intensity g1 kN/m over the entire span and a
uniformly varying load of 0 to ( gz- q1)kN/m over the entire span and then super impose teh two loadings.

kM
e
g kMim T 1
Break up this load into

" L | u.gLl and Unifosmiby

[ il varying load.

¥y Y Y Y Y Y YY Y Y YYD

et

__\\\\_ 5.F . Diagram

Cuir

: B.M_Diagram
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Point of Contraflexure:

TEM BkN
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¥

1

i+ BM

Consider the loaded beam a shown below along with the shear force and Bending moment diagrams for It
may be observed that this case, the bending moment diagram is completely positive so that the curvature of

the beam varies along its length, but it is always concave upwards or sagging.However if we consider a
again a loaded beam as shown below along with the S.F and B.M diagrams, then

AT KB
Fa Re
+
\ &= F
/\ B.M_Ciagram
Ceflectsd shape of
c the beam

It may be noticed that for the beam loaded as in this case,

The bending moment diagram is partly positive and partly negative.If we plot the deflected shape of the
beam just below the bending moment
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This diagram shows that L.H.S of the beam [Isags' while the R.H.S of the beam [1hogs'
The point C on the beam where the curvature changes from sagging to hogging is a point of contraflexure.
OR

It corresponds to a point where the bending moment changes the sign, hence in order to find the point of
contraflexures obviously the B.M would change its sign when it cuts the X-axis therefore to get the points of
contraflexure equate the bending moment equation equal to zero.The fibre stress is zero at such sections

Note: there can be more than one point of contraflexure.

Simple Bending Theory OR Theory of Flexure for Initially Straight Beams
(The normal stress due to bending are called flexure stresses)
Preamble:

When a beam having an arbitrary cross section is subjected to a transverse loads the beam will bend. In
addition to bending the other effects such as twisting and buckling may occur, and to investigate a problem
that includes all the combined effects of bending, twisting and buckling could become a complicated one.
Thus we are interested to investigate the bending effects alone, in order to do so, we have to put certain
constraints on the geometry of the beam and the manner of loading.

Assumptions:

The constraints put on the geometry would form the assumptions:

1. Beam is initially straight , and has a constant cross-section.

2. Beam is made of homogeneous material and the beam has a longitudinal plane of symmetry.

3. Resultant of the applied loads lies in the plane of symmetry.

4. The geometry of the overall member is such that bending not buckling is the primary cause of failure.
5. Elastic limit is nowhere exceeded and [/E' is same in tension and compression.

6. Plane cross - sections remains plane before and after bending.
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Fig 1(a]

Let us consider a beam initially unstressed as shown in fig 1(a). Now the beam is subjected to a constant
bending moment (i.e. [1Zero Shearing Force') along its length as would be obtained by applying equal
couples at each end. The beam will bend to the radius R as shown in Fig 1(b)

As a result of this bending, the top fibers of the beam will be subjected to tension and the bottom to
compression it is reasonable to suppose, therefore, that some where between the two there are points at
which the stress is zero. The locus of all such points is known as neutral axis . The radius of curvature
R is then measured to this axis. For symmetrical sections the N. A. is the axis of symmetry but what ever the
section N. A. will always pass through the centre of the area or centroid.

The above restrictions have been taken so as to eliminate the possibility of 'twisting' of the beam.
Concept of pure bending:
Loading restrictions:

As we are aware of the fact internal reactions developed on any cross-section of a beam may consists of a
resultant normal force, a resultant shear force and a resultant couple. In order to ensure that the bending
effects alone are investigated, we shall put a constraint on the loading such that the resultant normal and the
resultant shear forces are zero on any cross-section perpendicular to the longitudinal axis of the member,

That means F =0
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ﬂ=F=D

since 4% or M = constant.

Thus, the zero shear force means that the bending moment is constant or the bending is same at every
cross-section of the beam. Such a situation may be visualized or envisaged when the beam or some portion
of the beam, as been loaded only by pure couples at its ends. It must be recalled that the couples are
assumed to be loaded in the plane of symmetry.

-=——Heam

Plane of Symmetry

Fig {1}

Fig {2}

When a member is loaded in such a fashion it is said to be in pure bending. The examples of pure bending
have been indicated in EX 1and EX 2 as shown below :
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BM.D

EX. 1

EFD

BMD

When a beam is subjected to pure bending are loaded by the couples at the ends, certain cross-section gets
deformed and we shall have to make out the conclusion that,

1. Plane sections originally perpendicular to longitudinal axis of the beam remain plane and perpendicular to
the longitudinal axis even after bending , i.e. the cross-section A'E', B'F' ( refer Fig 1(a) ) do not get warped
or curved.

2. In the deformed section, the planes of this cross-section have a common intersection i.e. any time
originally parallel to the longitudinal axis of the beam becomes an arc of circle.
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We know that when a beam is under bending the fibres at the top will be lengthened while at the bottom will
be shortened provided the bending moment M acts at the ends. In between these there are some fibres
which remain unchanged in length that is they are not strained, that is they do not carry any stress. The
plane containing such fibres is called neutral surface.

The line of intersection between the neutral surface and the transverse exploratory section is called the
neutral axisNeutral axis (N A) .

Bending Stresses in Beams or Derivation of Elastic Flexural formula :

In order to compute the value of bending stresses developed in a loaded beam, let us consider the two
cross-sections of a beam HE and GF , originally parallel as shown in fig 1(a).when the beam is to bend it is
assumed that these sections remain parallel i.e. H'E' and G'F' , the final position of the sections, are still
straight lines, they then subtend some angle 6.

Consider now fiber AB in the material, at adistance y from the N.A, when the beam bends this will stretch to
A'B'
Therefore,

changeinlength
orginal length

strain in fibre AB =

:% ButAB = CDandCD = C'D’
refertafigl{a) andfigi(h)
AR -CD
c'o

C.ostrain =

Since CD and C'D’ are on the neutral axis and it is assumed that the Stress on the neutral axis zero.
Therefore, there won't be any strain on the neutral axis

(R+yH-RE _RB+yH-RE _ v

FH FH R
StrE.SS =E whereE="Young'sMadulusof elasticity
strain

Therefare equating the two strains as
obtained fromthe tworelationsi.e,

Howew ar

E
%nri—_ .............. 01
y R

ml =
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Consider any arbitrary a cross-section of beam, as shown above now the strain on a fibre at a distance [y’
from the N.A, is given by the expression

o=gy

if the shaded stripis of area'dA
thentheforce onthe stripis

F=g8A=Cy o
=

Maoment about the neutral axiswould be=F.y ZE 2B

The toatl morment for the whole
cross-section is therefore equal to

— E 2 _E 2z
M = 54 = A8

2
Now the term Z ¥ oA is the property of the material and is called as a second moment of area of the cross-
section and is denoted by a symbol I.

Therefore
E
M=
- 2
comhbining equation 1 and 2 we get
a_M_E
v T R

This equation is known as the Bending Theory Equation.The above proof has involved the assumption
of pure bending without any shear force being present. Therefore this termed as the pure bending equation.
This equation gives distribution of stresses which are normal to cross-section i.e. in x-direction.

Section Modulus:

From simple bending theory equation, the maximum stress obtained in any cross-section is given as

iJ = Y m

max

il
T

wWwWw.jntuworld.com



WWW.j ntuwor ld.com

For any given allowable stress the maximum moment which can be accepted by a particular shape of cross-
section is therefore

For ready comparison of the strength of various beam cross-section this relationship is some times written in
the form

M=Zag . where £= |

max

m
Yman Is termed as section modulus

The higher value of Z for a particular cross-section, the higher the bending moment which it can withstand
for a given maximum stress.

Theorems to determine second moment of area: There are two theorems which are helpful to determine
the value of second moment of area, which is required to be used while solving the simple bending theory
equation.

Second Moment of Area :

Taking an analogy from the mass moment of inertia, the second moment of area is defined as the
summation of areas times the distance squared from a fixed axis. (This property arised while we were
driving bending theory equation). This is also known as the moment of inertia. An alternative name given to
this is second moment of area, because the first moment being the sum of areas times their distance from a

2
given axis and the second moment being the square of the distance or I ¥ dA .

Consider any cross-section having small element of area d A then by the definition

z
Ix(Mass Moment of Inertia about x-axis) = I ¥ A and Iy(Mass Moment of Inertia about y-axis) =
I
[ 2 da

Now the moment of inertia about an axis through (10" and perpendicular to the plane of figure is called the
polar moment of inertia. (The polar moment of inertia is also the area moment of inertia).

i.e,
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J = polar moment of inertia

= [rtaa
= ]+ ?)aa
= [itaa+] 2 da

le +1y
ord=1l, +l+ . (1

The relation (1) is known as the_perpendicular axis theorem and may be stated as follows:

The sum of the Moment of Inertia about any two axes in the plane is equal to the moment of inertia about an
axis perpendicular to the plane, the three axes being concurrent, i.e, the three axes exist together.

CIRCULAR SECTION :

For a circular x-section, the polar moment of inertia may be computed in the following manner

Consider any circular strip of thickness 8r located at a radius 'r'.

Than the area of the circular strip would be dA = 2xr. 6r
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J=[rtda
Taking the limits of intergration from 0 to diZ
d

3
J= _[rEE:'TrEr
o

d
415 4
[ md
J=2al—| = —
Id' In 32
however by perpendicular axistheorem
J=lu+ly
But for the circular cross-section the lwand lyare both

equal being maoment of inertia about a diameter

1
lgia = EJ

??d4
lga = —

B4

forahollow circular sectionof diameterDand d,
thevaluesof Jandlare definedas

H(D4 - d“)
B 32
:'?(D“ - d“)
Thus ot}

Parallel Axis Theorem:

The moment of inertia about any axis is equal to the moment of inertia about a parallel axis through the
centroid plus the area times the square of the distance between the axes.

If 1ZZ' is any axis in the plane of cross-section and [1XX' is a parallel axis through the centroid G, of the
cross-section, then
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l, = _Hg,r +h:|2 dA by definition (morment of inertia about an axis Z7)
= [ +2yh +n7)aa

= [y2da +h? [aa +2n ] yoa

Since [ydA= 0
= [yt +n? [da
= [y2da +nia
, = |, +AR* | =l (since cross-section axes also pass through G)

YWhere & =Total area of the section
Rectangular Section:

For a rectangular x-section of the beam, the second moment of area may be computed as below :

B

N

dy

Consider the rectangular beam cross-section as shown above and an element of area dA , thickness dy ,
breadth B located at a distance yfrom the neutral axis, which by symmetry passes through the centre of
section. The second moment of area | as defined earlier would be

o= JyidA

Thus, for the rectangular section the second moment of area about the neutral axis i.e., an axis through the
centre is given by
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r_un|"=5,w

1l

m
[r—
—
o r-all'j

_BlR (L2
3|8 g
_Blp* D?
= _|— 4 —
Il B

.- BDY

MN.A 12

Similarly, the second moment of area of the rectangular section about an axis through the lower edge of the
section would be found using the same procedure but with integral limits of 0 to D .

1]
| =B Iﬂl :E
Therefore 3 o 3

These standards formulas prove very convenient in the determination of Ina for build up sections which can
be conveniently divided into rectangles. For instance if we just want to find out the Moment of Inertia of an | -
section, then we can use the above relation.

'Y

MA

L
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M. A u:-f datted rectangle u:ufshaded partion
L= E:D3 hd3
CONA T
| _ 3 b d&
M. A 12 =

Use of Flexure Formula:
lllustrative Problems:

An | - section girder, 200mm wide by 300 mm depth flange and web of thickness is 20 mm is used as simply
supported beam for a span of 7 m. The girder carries a distributed load of 5 KN /m and a concentrated load
of 20 KN at mid-span.

Determine the

(i). The second moment of area of the cross-section of the girder

(ii). The maximum stress set up.

Solution:

The second moment of area of the cross-section can be determained as follows :

For sections with symmetry about the neutral axis, use can be made of standard | value for a rectangle
about an axis through centroid i.e. (bd 3 )/12. The section can thus be divided into convenient rectangles for
each of which the neutral axis passes through the centroid. Example in the case enclosing the girder by a

rectangle
Ig;|iri:har= lre-::tangle - lshaded partion
_ |200 % 300% |z o (90 %2607 [ e
12 12
= (4.5-2.64 10
=1.86=10* m*

[

The maximumstressmaybe foundfrom 300 mm !v/ v |
. . . N )

the simple bendingthearybyequation I///; :«/j: R
E:M:E ;/// y/ 2R0 mm
A A A |

M m 200 mim

Computation of Bending Moment:

In this case the loading of the beam is of two types

(a) Uniformly distributed load
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(b) Concentrated Load
In order to obtain the maximum bending moment the technique will be to consider each loading on the beam

separately and get the bending moment due to it as if no other forces acting on the structure and then

superimpose the two results.
l 20N
|

Q Em.ml : i i
! ‘E . ) ﬁ 3.5m

| [ | im

!" ! " | iam.m& ‘; + W

Wiz |

/_

s.Fn\< S.H.D 5.F.0

B |

[ this should be the
combined shear force
diagram for the above
bading]

B.M.0

Hence
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2
rII"I1m33-c"“' ZWTL-F%
20107 =7 N E=x10% =72
4 8
= (35.0 +30.63)10°
=G5 63 kMNm

— max™
I:rmznnc"" | I-I'Ilmax""

:55.53x1n3x150x1u3
106=10%
o =518 MNim?
dx

m

Shearing Stresses in Beams

All the theory which has been discussed earlier, while we discussed the bending stresses in beams was for
the case of pure bending i.e. constant bending moment acts along the entire length of the beam.

+P

P

P.a

Let us consider the beam AB transversely loaded as shown in the figure above. Together with shear force
and bending moment diagrams we note that the middle potion CD of the beam is free from shear force and
that its bending moment. M = P.a is uniform between the portion C and D. This condition is called the pure

bending condition.

Since shear force and bending moment are related to each other F= dM/dX (eq) therefore if the shear force
changes than there will be a change in the bending moment also, and then this won't be the pure bending.

Conclusions :
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Hence one can conclude from the pure bending theory was that the shear force at each X-section is zero
and the normal stresses due to bending are the only ones produced.

In the case of non-uniform bending of a beam where the bending moment varies from one X-section to
another, there is a shearing force on each X-section and shearing stresses are also induced in the material.
The deformation associated with those shearing stresses causes [J warping [ of the x-section so that the

g M _E

assumption which we assummed while deriving the relation y IR that the plane cross-section after
bending remains plane is violated. Now due to warping the plane cross=section before bending do not
remain plane after bending. This complicates the problem but more elaborate analysis shows that the

g_M_E

normal stresses due to bending, as calculated from the equation ¥

The above equation gives the distribution of stresses which are normal to the cross-section that is in x-
direction or along the span of the beam are not greatly altered by the presence of these shearing stresses.
Thus, it is justifiable to use the theory of pure bending in the case of non uniform bending and it is accepted
practice to do so.

Let us study the shear stresses in the beams.
Concept of Shear Stresses in Beams :

By the earlier discussion we have seen that the bending moment represents the resultant of certain linear
distribution of normal stresses cyover the cross-section. Similarly, the shear force Fx over any cross-section
must be the resultant of a certain distribution of shear stresses.

Derivation of equation for shearing stress :

Resultant stresses (this side is more as

compared to the other side)

e L

-_—r
um ________ = o+do dA
—— - e Yt o S This is the small 4
= = element over which
= i
7‘ F T:; ¥ Yo /l= A the stresses acts
- 4 -
\ Vo
M J
M-+iM Z = width of the
A . x- section
section 1 ) section 2

Resisting shear stress.

Assumptions :

1. Stress is uniform across the width (i.e. parallel to the neutral axis)
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2. The presence of the shear stress does not affect the distribution of normal bending stresses.

It may be noted that the assumption no.2 cannot be rigidly true as the existence of shear stress will cause a
distortion of transverse planes, which will no longer remain plane.

In the above figure let us consider the two transverse sections which are at a distance 1 8x" apart. The
shearing forces and bending moments being F, F + 8F and M, M + M respectively. Now due to the shear
stress on transverse planes there will be a complementary shear stress on longitudinal planes parallel to the
neutral axis.

Let tbe the value of the complementary shear stress (and hence the transverse shear stress) at a
distance [JY'g from the neutral axis. Z is the width of the x-section at this position

A is area of cross-section cut-off by a line parallel to the neutral axis.

Y= distance of the centroid of Area from the neutral axis.

Let 6, o + do are the normal stresses on an element of area A at the two transverse sections, then there is
a difference of longitudinal forces equal to ( do . 8A) , and this quantity summed over the area A is in

equilibrium with the transverse shear stress T on the longitudinal plane of area z 6x .

e TZhx= ,[dcr.dﬂn
from the bending theory equation

g_M

y oo

U:ml.y
U+IZ|U:|:M ! lamj'y

_ Gh.y

Thus de -

The figure shown below indicates the pictorial representation of the part.

wWwWw.jntuworld.com



WWW.j ntuwor ld.com

So substituting

Where [1Z' is the actual width of the section at the position where [t ' is being calculated and | is the total

But

i.e.

{o=da)if

{Pictorial representation
of entire part)

do = Shl.y
[
T.Zhu = Ida.d»‘-\
_ IEM B
I
T2 = ﬁ Jy.ﬁﬂx
_ &Ml
ox
T= i,[ y. G4
l.z

But from defintion, | y.dA =AYy

,[j,r.dﬂx iz the first moment of area of the shaded portion

and v = centraid of the area'd'
Hence

7= F Ay

l.z

moment of inertia about the neutral axis.

Shearing stress distribution in typical cross-sections:

Let us consider few examples to determaine the sheer stress distribution in a given X- sections

Rectangular x-section:

Consider a rectangular x-section of dimension b and d
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A is the area of the x-section cut off by a line parallel to the neutral axis. ¥ is the distance of the centroid of
A from the neutral axis

r = F.Ay
l.z
. .4
forthiscase A = h(i—y)
While ?:[1(d-yj+y]
22
. __ 1.4 b
] y—§(§+3,rj andz=b;l EVE
substitutingallthesevalues, intheformula
;= F.Ay
l.z
i 1 .d
Fhiz-yl.-iz+
_ (2 3*)2(2 ¥)
3
I:u_h'd
12
FI(8Y .
21z) 7Y
- b.d?
1
2
d 3
BFLl=| -
5 -
- b

This shows that there is a parabolic distribution of shear stress with y.
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The maximum value of shear stress would obviously beat the location y = 0.

I:'n'.l

F

.
3.

suchthat 1., =

&
a

E'l'
—|-|-:,a-

2b.

=0 Trax = 23}3 3 The value of 1., occurs at the neutral axis

The mean sh ear stressinthe beamis defined as

Trmean OF Ta /ﬂ' % d

S50 ToL.=14rT =191,

mean

_nll

Therefore the shear stress distribution is shown as below.

(de2) 2

T

‘_/ {Shear siress is disiributed
parabalically over a reclangular

(des2) .
' cross-sechion, il i maximuom al
.._-" y=0 and is zero at the extrame
! m ends)

["I!I

It may be noted that the shear stress is distributed parabolically over a rectangular cross-section, it is
maximum at y = 0 and is zero at the extreme ends.

| - section :

Consider an | - section of the dimension shown below.

- - Flange
» | / / b [Here flange and web
'y thickness are same|

web

A
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LoFAY
The shear stress distribution for any arbitrary shape is given as Zl

Let us evaluate the quantity Ay , the Ay quantity for this case comprise the contribution due to flange area
and web area

F

¥

D2

d.-2

Flange area

Area of the flange =B [?]

Distanceof thecentroidofthe flangefromthe LA

S-1{p-d),d
2 2 2
—_ O+d
U
Hence,
_ OD-dyfD-d
AF|FIange=B[T][ ] ]
-!—th
driz
M . [? A
Web Area -
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Areaoftheweb

s

Distanceof the centroid frorm M.A

—_1{d _
Y‘§[§ 3’]"’3’

Therefare,
_ N 1fd
-'E"fl"|web_h[§ Y]E[i"'}“]
Hence,
— OD-dyfD+d d d 1
A =] =] p— +h | Z- v
¥l ot 5 ][ 7 ] [2 r.f][2 3*]2
Thus,

_ D¢ -d?) b [
ﬁF|TmaIZB[T]+§ [T'FE]

Therefore shear stress,

F[BID* -d*) wfa 2]

T L

Y 7 ]

To get the maximum and minimum values of t substitute in the above relation.
y=0atN. A. And y = d/2 at the tip.

The maximum shear stress is at the neutral axis. i.e. for the condition y = 0 at N. A.

_~_ F R 2
T at —D—_[E: o? - d +I:n:|]
Hence, ma g Gbl lI ] .......... (2)

The minimum stress occur at the top of the web, the term bd 2 goes off and shear stress is given by the
following expression

—um= F 2 _ g2
Tminaty—dfz—m[a(m —d)]

The distribution of shear stress may be drawn as below, which clearly indicates a parabolic distribution
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A
¥

i

_ F 7 2
T —W[EE(D d)+hd]

Trir

Y

Tmax

Y

Tav

Y

Note: from the above distribution we can see that the shear stress at the flanges is not zero, but it has some
value, this can be analyzed from equation (1). At the flange tip or flange or web interface y = d/2.0bviously
than this will have some constant value and than onwards this will have parabolic distribution.

In practice it is usually found that most of shearing stress usually about 95% is carried by the web, and
hence the shear stress in the flange is neglible however if we have the concrete analysis i.e. if we analyze
the shearing stress in the flange i.e. writing down the expression for shear stress for flange and web

separately, we will have this type of variation.

Paraholic
=

|

y

L
L
3

Tmax™

\QML_J,

'y

T

|

Y

This distribution is known as the [top (1 hat(] distribution. Clearly the web bears the most of the shear stress
and bending theory we can say that the flange will bear most of the bending stress.
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Shear stress distribution in beams of circular cross-section:
Let us find the shear stress distribution in beams of circular cross-section. In a beam of circular cross-

section, the value of Z width depends on y.

Z

| =
f m\

f )

=

[ ——
B
"5:._

Using the expression for the determination of shear stresses for any arbitrary shape or a arbitrary section.

, = FAY _ FA [y da
71 Z1

Where Iy dA is the area moment of the shaded portion or the first moment of area.

Here in this case [1dA' is to be found out using the Pythagoras theorem
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7
Z 3 _ i
—_| +v =R
Y z
[5] =R2—3,r2|:|r§= T

7=2RE-
dA=7 dy =2 R% - & dy

| _ar?
. for acircular cross-section g
Hence,

FAY F S =
T= EIY:HR“ _[23,f RE -y dy

Where H=radiusofthe circle.
[Thelimitshave beentaken from y, to R because
we havetofind moment of areathe shaded portion]

4F R e
we g
Theintegration yieldsthefinalresult to be
4F[R? -y
r=
3InR?

Againthisisaparabalic distribution of shear stress, having
amaximumyaluewheny, =0

4F
3nR*
Obviously attheendsof the diameterthevalueof y; = £ thust=10

Tmax™ |1y =0 =

sothisagainaparabolic distribution;maximumattheneutralaxis

Also
T ar T = F _—F
awg mean E ﬂﬂz
Hence,
T = 4 T.
max™ 3

The distribution of shear stresses is shown below, which indicates a parabolic distribution
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el BN +R

- =

.

/

~_]

Principal Stresses in Beams

It becomes clear that the bending stress in beam oy is not a principal stress, since at any distance y from the
neutral axis; there is a shear stresslit[|( or 14y we are assuming a plane stress situation)

In general the state of stress at a distance y from the neutral axis will be as follows.

Rectangular ¥ - Section

q
a

At some point [IP" in the beam, the value of bending stresses is given as
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a, =$fnr a bearn of rectangular cross- section of dimensionsb andd;i= Erd;-
_12 Wy
Y

whereasthe value shear stress inthe rectangularcross- section isgivenas
_6F [d* _ 2
bd® | 4

Hencethevaluesof principle stresscanbe determined from the relations,

1 1
:j('jx +g!.r:'ij ﬂ‘('jx - f,ryj2 +4 T%'!,r

Letting a,, =0, 0, =g, thewalues of gy ando; canbe computedas

2
1{12My 12 My BF[d® -
Hence o, /o, = [ e ] 3 e ] [I:ud3 [__ ]]

dy, 0y = 6 — My £ tf 2 +F2[—-3.r]

Ty Ty

hd®
Also,
27
tan 2= —= putting o, =0
a, -a,
we get,
2
tan26=2"%
I:r:l:

After substituting the appropriate values in the above expression we may get the inclination of the principal
planes.

lllustrative examples: Let us study some illustrative examples,pertaining to determination of principal
stresses in a beam

1. Find the principal stress at a point A in a uniform rectangular beam 200 mm deep and 100 mm wide,
simply supported at each end over a span of 3 m and carrying a uniformly distributed load of 15,000 N/m.

A 15,000 Nim

A, il

3m

Solution: The reaction can be determined by symmetry

ld 5,000 N
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R1=R>=22,500 N

X 15,000 Mim

M
A 4

[ ] f |

22,500 M 225000 M

consider any cross-section X-X located at a distance x from the left end.
Hence,

S. F atxx =22,500 7 15,000 x

B.M atxx = 22,500 x [1 15,000 x (x/2) = 22,500 x [1 15,000 . x* / 2
Therefore,

S.Fax=1m=7,500N

B. Max=1m=15000N

SF],_,, =7.500N
BM|,_,., =15.000Nm

|
_ 15000=5=10% =12

m:m“:(zn:m*f

a, =11 26 MM /m?
For the compution of shear stresses

2
TzEdF dT—j,rEI putting y=50mm, d =200 mm

F=7500M
7=0.422 MM fm?

Now substituting these values in the principal stress equation,
We get o1 = 11.27 MN/m?

o2 = - 0.025 MN/m®

Bending Of Composite or Flitched Beams

A composite beam is defined as the one which is constructed from a combination of materials. If such a
beam is formed by rigidly bolting together two timber joists and a reinforcing steel plate, then it is termed as

a flitched beam.
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The bending theory is valid when a constant value of Young's modulus applies across a section it cannot be
used directly to solve the composite-beam problems where two different materials, and therefore different
values of E, exists. The method of solution in such a case is to replace one of the materials by an equivalent

section of the other.

cteed is mplamﬂ
b an esquivalent

/I./ l area nfun\'ul
% ¥ dy Tl ____ \% =]

Stesl

by a y

/1’ ¥
i |
i - L -

Campos be Saction Equivalent Sedlion

Consider, a beam as shown in figure in which a steel plate is held centrally in an appropriate recess/pocket
between two blocks of wood .Here it is convenient to replace the steel by an equivalent area of wood,
retaining the same bending strength. i.e. the moment at any section must be the same in the equivalent
section as in the original section so that the force at any given dy in the equivalent beam must be equal to

that at the strip it replaces.

at =a' t"or i=t—
a' ot

recallings = Ez

Thus
sEt=:E t
Again, for true similarity the strains must be equal,
£= s otEt=E t or E,=_
E
Thus, tI=E,.t
E

Hence to replace a steel strip by an equivalent wooden strip the thickness must be multiplied by the modular
ratio E/E'.

The equivalent section is then one of the same materials throughout and the simple bending theory applies.
The stress in the wooden part of the original beam is found directly and that in the steel found from the value
at the same point in the equivalent material as follows by utilizing the given relations.

U:t
a 1
g E
a E

Stress in steel = modular ratio x stress in equivalent wood
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The above procedure of course is not limited to the two materials treated above but applies well for any
material combination. The wood and steel flitched beam was nearly chosen as a just for the sake of
convenience.

Assumption

In order to analyze the behavior of composite beams, we first make the assumption that the materials are

bonded rigidly together so that there can be no relative axial movement between them. This means that all
the assumptions, which were valid for homogenous beams are valid except the one assumption that is no

longer valid is that the Young's Modulus is the same throughout the beam.

The composite beams need not be made up of horizontal layers of materials as in the earlier example. For
instance, a beam might have stiffening plates as shown in the figure below.

[ P |

s X X XX
= BIK X XXXX
X XX XX

Concrete, Eq

Again, the equivalent beam of the main beam material can be formed by scaling the breadth of the plate
material in proportion to modular ratio. Bearing in mind that the strain at any level is same in both materials,
the bending stresses in them are in proportion to the Young's modulus.

b1
-

E1

N\

I

&
v

b1+2bzEz ~Ex
Deflection of Beams
Introduction:

In all practical engineering applications, when we use the different components, normally we have to operate
them within the certain limits i.e. the constraints are placed on the performance and behavior of the
components. For instance we say that the particular component is supposed to operate within this value of
stress and the deflection of the component should not exceed beyond a particular value.

In some problems the maximum stress however, may not be a strict or severe condition but there may be
the deflection which is the more rigid condition under operation. It is obvious therefore to study the methods
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by which we can predict the deflection of members under lateral loads or transverse loads, since it is this
form of loading which will generally produce the greatest deflection of beams.

Assumption: The following assumptions are undertaken in order to derive a differential equation of elastic
curve for the loaded beam

1. Stress is proportional to strain i.e. hooks law applies. Thus, the equation is valid only for beams that are
not stressed beyond the elastic limit.

2. The curvature is always small.
3. Any deflection resulting from the shear deformation of the material or shear stresses is neglected.
It can be shown that the deflections due to shear deformations are usually small and hence can be ignored.

L B

- X

Consider a beam AB which is initially straight and horizontal when unloaded. If under the action of loads the
beam deflect to a position A'B' under load or infact we say that the axis of the beam bends to a shape A'B'. It
is customary to call A'B' the curved axis of the beam as the elastic line or deflection curve.

In the case of a beam bent by transverse loads acting in a plane of symmetry, the bending moment M varies
along the length of the beam and we represent the variation of bending moment in B.M diagram. Futher, it is
assumed that the simple bending theory equation holds good.

azhﬂ:
T

T m

If we look at the elastic line or the deflection curve, this is obvious that the curvature at every point is
different; hence the slope is different at different points.

To express the deflected shape of the beam in rectangular co-ordinates let us take two axes x and y, x-axis
coincide with the original straight axis of the beam and the y [ axis shows the deflection.

Futher,let us consider an element ds of the deflected beam. At the ends of this element let us construct the
normal which intersect at point O denoting the angle between these two normal be di

But for the deflected shape of the beam the slope i at any point C is defined,
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tani=j—Elr AT or i=j—3'r Assuming tani =i

u
Futher

ds=Rdi
howey er,
ds = dx [usually for smallcury ature]

Hence
ds = dx = Rdi
dx R

substitutingthevalueofi, one get
i
d [dy]zlnr déy 1

deldx) R &f R
Fromthe simplebendingtheory
ME El
—_ = _grh==—
T RTR
sothe basic differentialequation governingthe deflectionof beamsis
dy
h=ElI
i

This is the differential equation of the elastic line for a beam subjected to bending in the plane of symmetry.
Its solution y = f(x) defines the shape of the elastic line or the deflection curve as it is frequently called.

Relationship between shear force, bending moment and deflection: The relationship among shear
force,bending moment and deflection of the beam may be obtained as

Differentiating the equation as derived

dM_, &y
dx di
Thus,

iy

dy

Re calling 3™ =F
o
F=E|

Therefore, the above expression represents the shear force whereas rate of intensity of loading can also be
found out by differentiating the expression for shear force
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LB = _dF
dx
d43.f
w= —El
dx¥

Therefare if 'y'isthe deflection of the loadedbeam,
thenthefollowingimportantrelationscanbearrivedat

dy
lope =1
slope T
dij,r
B.t =El
dx?
dgj,r
Shearforce = El
di
d
loaddistribution = Elj_}j’
L

Methods for finding the deflection: The deflection of the loaded beam can be obtained various
methods.The one of the method for finding the deflection of the beam is the direct integration method, i.e.
the method using the differential equation which we have derived.

Direct integration method: The governing differential equation is defined as

dfy Mo Py
M = El or =
df Bl h?
onintegrating one get,
j_f'r=Igdx+A----thisequatinngivestheslnpe
X

of theloadedbeam.
Integrate once againto get the deflection,

y:”%dx+ﬂx}{+5

Where A and B are constants of integration to be evaluated from the known conditions of slope and
deflections for the particular value of x.

lllustrative examples : let us consider few illustrative examples to have a familiarty with the direct
integration method

Case 1: Cantilever Beam with Concentrated Load at the end:- A cantilever beam is subjected to a
concentrated load W at the free end, it is required to determine the deflection of the beam
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L )

In order to solve this problem, consider any X-section X-X located at a distance x from the left end or the
reference, and write down the expressions for the shear force abd the bending moment

SF|_, =-wW
BM| _, =-WW.x
Therefare M|,_, = -W.x
2
the gaverning equatinn% = dd?y
substituting the value of M interms of x then integrating the eguation one get
M _ dy
El i
dy __ Wx
=
dty W
—t=-_"4
Idf ] B
dy _ Wil
—d=- + A
dx 2El

Integrating once moare,

I
I%%:J-%E%dx+fﬂdx

3
¥ = —W_}{+,ﬂ,}{+EI
BEI

The constants A and B are required to be found out by utilizing the boundary conditions as defined below
ieatx=L;y=0 - (1)
atx=L;dy/dx=0  —--m-mmmmmmmemmeee (2)

Utilizing the second condition, the value of constant A is obtained as
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_ oyl
~ 2R
While employing the first condition yields
WL
¥=- 5T + AL +B
g WL
BEI
ol
- BEl ZEl
il -awl? 2wl
T EE ~ "BEI
_ W
- 3E

substituting the values of Aand B we get
y= W WL _WLE]
EIl BEI ZEI  3E
The slope aswell as the deflection would be
maximum at the free end hence putting x=0 we geat,

Wy

¥rax — FET

2
— i
[Slnpe]maxm —+E

Case 2: A Cantilever with Uniformly distributed Loads:- In this case the cantilever beam is subjected to U.d.
with rate of intensity varying w / length.The same procedure can also be adopted in this case

x
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SF[,_, =-w
2
EiM|xI——wx§=w[2]
M _ g
HET
a2y wd
Ez_ EEI
Idzyzf_wxz
2El
dy _ _ ¥
dx ﬁ
dy _ [ wi®
d +] Ad
I T =J- BET I
= Wit — +Ax+B
=)

Boundary conditions relevant to the problem are as follows:
1. Atx=L;y=0

2. Atx=L;dy/dx=0

The second boundary conditions yields

3
W
A=+
BEI

whereasthe firstboundary conditions yields
_ wl? wl
24El  BEI
ot
SEI
[ 4 3 4
Thus, y = T owe | wl_wl I

Ell 24 a] g

S0 ¥mgem willbe at % =0

:_wﬁ
Ymaxm ﬁ

dy] l.ru.lL3
d ) m BEL

Case 3: Simply Supported beam with uniformly distributed Loads:- In this case a simply supported beam is
subjected to a uniformly distributed load whose rate of intensity varies as w / length.
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~ wi/length

T \ 77;’

Wil

2 £

In order to write down the expression for bending moment consider any cross-section at distance of x metre
from left end support.

| ¥,

b

|
S Fl :w[ﬁ]-w.}{

e

el i
Tz
Thedifferential equation which givesthe elastic curve for the deflected beam is

dy _M_ 1 [wl.}{_ﬂ]

&2 Bl EIL2Z 2
dy _ [ wlx i
=) - | 2y + A
dx '[EEI T=
=wl}{2_wx3
4Bl BEl
Integrating,once more one gets
wle  we
=___ -____+Ax+B  ----- 1
U V= 7 < M

Boundary conditions which are relevant in this case are that the deflection at each support must be zero.

ie.atx=0;y=0:atx=Ly=0

let us apply these two boundary conditions on equation (1) because the boundary conditions are on y, This
yields B = 0.
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_ wl*wl?
12El 24El
wf
24El
sothe equation which gives the deflection curve is
1 IWL}{3 it WL3}{I

=l T

¥
Futher

In this case the maximum deflection will occur at the centre of the beam where x = L/2 [ i.e. at the position
where the load is being applied ].So if we substitute the value of x = L/2

Then el w ) wlfL
fmam |72 | B | 22| TR 24\

__ Gwl
Yo = " 3E4E

Conclusions
(i) The value of the slope at the position where the deflection is maximum would be zero.
(ii) Thevalue of maximum deflection would be at the centre i.e. at x = L/2.

The final equation which is governs the deflection of the loaded beam in this case is

E.f=1 wli®  wt wly
Ell 12 24 24

By successive differentiation one can find the relations for slope, bending moment, shear force and rate of
loading.

I

Deflection (y)

JEl= wlx® W wl® %
12 24 24
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Slope (dy/dx) /—‘ WL
24

WL
24

El dy _ Fwl?  dwr® wl
Tk 12 24 24

3" degree Polynomial
So the bending moment diagram would be

Bending Moment

dty _ 1 IWL}{ i wle
¥

d  El| 2 2 wi
i
- L LA
2 2
Single degred shear force
equation in '

Shear Force
Shear force is obtained by taking

third derivative.

'y wl
El = -w
A 2

Rate of intensity of loading

d43,f=_

di?t

El W

Case 4: The direct integration method may become more involved if the expression for entire beam is not
valid for the entire beam.Let us consider a deflection of a simply supported beam which is subjected to a
concentrated load W acting at a distance 'a' from the left end.

W

A iB C

¥
i
¥

¥

Let R1 & Rz be the reactions then,
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')
A lE' c
.
B Rz

B.Mfor the partion AB
M =Rix D<x<a
B.Mfor the portion BC
M. =Rpx-Wix-a)a<x<l

sa the differential equation for the two caseswould be,

z
Elj?: Fyx

iy
EIEZH1 ¥- (- a)

These two equations can be integrated in the usual way to find [ly' but this will result in four constants of
integration two for each equation. To evaluate the four constants of integration, four independent boundary
conditions will be needed since the deflection of each support must be zero, hence the boundary conditions
(a) and (b) can be realized.

Further, since the deflection curve is smooth, the deflection equations for the same slope and deflection at
the point of application of load i.e. at x = a. Therefore four conditions required to evaluate these constants
may be defined as follows:

(@) atx=0;y=0inthe portion ABi.e.0<x<a
(b)atx=1;y=0inthe portionBCie.asx<I

(c) at x = a; dy/dx, the slope is same for both portion
(d) at x = a; y, the deflection is same for both portion

By symmetry, the reaction R is obtained as
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R, =M
a+h
Hence
dy _ Wh
= £ LA = T
Elﬁf PRy O<x<a (1)
dy _ Wh
= - - 0 -4 [
Eld}{2 (a+h:|}{ W - a) asntl ()
integrating (17 and (22) we get,
dy _ Wb s
El=== +k Oixsg--nnmnm--
dx 2Ma+m) Kia )
dy _ Wh o W(x-a) ) el “
= - at®il--------
dx  2[a+b) 2 :

Using condition (c) in equation (3) and (4) shows that these constants should be equal, hence letting

K1=K2=K
Hence
dy Wb g
El== +k Dixda------ 3
dx 2(a+b) Hed )
dy _  Wh W - a)’
El == - +k S 4 4
% 2(a+b) 2 A @
Integrating agian equation (F1and (4) we get
Whoo o4
= SHLP------
Ely E[a+|:|:|}{ +hox +hy ODix<a (5]
3
Ely=_"b o Wh-a) thitky, AL wEleamene (B}
B(a+h) B
Ltilizing condition (a)in eguation (5) yields
ky =0

Ltilizing condition (b} in e guation (B) yields
Wwho . Wi-a)

0= (e +hl+k
Gla+h) B 4
Who o W -a)’
k,=- [ + -kl
* Bfa+h) B
Buta+b=I,
Thus,

Whia +hb)* | Wi’

ky =-
4 B B

-k(a+h)

Now lastly ks is found out using condition (d) in equation (5) and equation (6), the condition (d) is that,

At x = a; y; the deflection is the same for both portion
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Therefare y| equations ¥ Lo equation 6

or
3
Who g _ Wb s W(x-a)
+hkx +ksy = - +hx +k
Ela+b) 3T Elavn) 3 *
3
Wb Who . W(la-a)
— & +ka+k; = - +ha +k
Bla+b). 0 T Efa+n) 3 AT
Thus, k,=0,
OR
2 3
k4=—Wb|:a+b:l + b -k(a+bi=0
B B
Wb (a +b)*  wp®
kia+hb)=- +
(a+b) 5 5
k=_Wh(a+h:|+ Wk
B B(a+h)
so the deflection equations for each portion of the beam are
Ely= Wh +hx +k,

Ela+h]
_ Wb _Whia+bx Wb %
E(a+b) B E(a+b)
and for other portion

3
Wy'h q W[}{-aj
- +hx+k
Blath) 3 * T

Substituting the walue of 'K'inthe above equation

----forD£x=a----- (7

Ely=

_ Wk Wix-a)  Whlath)x  whx
B(a+h) = B Bia+b)
sao either of the equation () or (8 may be used to find the deflection at k=2

Forfora<=s<l----- {8

hence substituting x = a in either of the equation we get

Yl =- Wa'h?
2 3El[a+b)
ORfa=h=12
__wil
max™  45E]

ALTERNATE METHOD: There is also an alternative way to attempt this problem in a more simpler way. Let
us considering the origin at the point of application of the load,
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X
|I_:_|/2 x'_l . W
L
) = pe
W , w
X
Wy
SFl, =5

B.M_ = g[zl— }{]

substituting the value of Min the governing equation for the deflection
Wl
d¥y _ T[i H]
El

X
yo_ 1wl wed

x EI|"4 g
g= 1 WLt
El|l &

+ A,

" 1 +Ax+B
12

Boundary conditions relevant for this case are as follows
(i) atx=0; dy/dx=0
hence, A=0

(i) at x =1/2; y = 0 (because now | / 2 is on the left end or right end support since we have taken the origin at
the centre)

Thus,
e ow?
=|—-—+H
32 96
_ il
45

Hence he equation which governsthe deflectionwould be
_ 1w we? wl?
TE|TE

12 48
Hernce
e
\Trmaxm |atx=.;. = _@ At the centre
dy Lo e
. =t— At th d
[d}{]max“" etz T TEE e ends

Hence the integration method may be bit cumbersome in some of the case. Another limitation of the method
would be that if the beam is of non uniform cross section,

wWwWw.jntuworld.com



WWW.j ntuwor ld.com

i.e. it is having different cross-section then this method also fails.

So there are other methods by which we find the deflection like

1. Macaulay's method in which we can write the different equation for bending moment for different sections.
2. Area moment methods

3. Energy principle methods

THE AREA-MOMENT / MOMENT-AREA METHODS:

The area moment method is a semi graphical method of dealing with problems of deflection of beams
subjected to bending. The method is based on a geometrical interpretation of definite integrals. This is
applied to cases where the equation for bending moment to be written is cumbersome and the loading is
relatively simple.

Let us recall the figure, which we referred while deriving the differential equation governing the beams.

It may be noted that d6 is an angle subtended by an arc element ds and M is the bending moment to which
this element is subjected.

We can assume,
ds = dx [since the curvature is small]

hence, Rdb =ds
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48 _1_M
ds R El
dB _ M
ds El

But for small curvaturefbut Bis the angle slope is tanﬂ=$ for small
i

o

anglestand = Bhence # = ﬂsn:n We getd—Elf = Ehj,f putting ds = dux]
dx dx* El

Hence,

df M .

— == or|df = ——|----- 1

ax Bl E U

The relationship as described in equation (1) can be given a very simple graphical interpretation with
reference to the elastic plane of the beam and its bending moment diagram

[] *

Deﬂiuq .;urw:-T : tangents drawn at the
A | o end of small element ds.

Defection curse of e 1 1]
the beam H"";;,{ Arc = Angle ¥ radius
- 0 Ew: can take the radius
1 T 1o he moual o x
./f e This Isalsa within
Al "" reasonable aoclracy.

—{ - oy ————

Bending Moment diagram \‘H__"/F'_

of the beam subjected to —s| M . C
arbitrary type of loading

Ay

-— T ——d B
cantroid

Refer to the figure shown above consider AB to be any portion of the elastic line of the loaded beam and
A1Buis its corresponding bending moment diagram.

Let AO = Tangent drawn at A
BO = Tangent drawn at B

Tangents at A and B intersects at the point O.

Futher, AA ' is the deflection of A away from the tangent at B while the vertical distance B'B is the deflection
of point B away from the tangent at A. All these quantities are futher understood to be very small.

Let ds = dx be any element of the elastic line at a distance x from B and an angle between at its
tangents be d6. Then, as derived earlier
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Rl
dfé=——
El

This relationship may be interpreted as that this angle is nothing but the area M.dx of the shaded bending
moment diagram divided by ElI.

From the above relationship the total angle 6 between the tangents A and B may be determined as

B hdy
.9=j |
A

-] B
_=E£Md“

Since this integral represents the total area of the bending moment diagram, hence we may conclude this
result in the following theorem

Theorem I:

{ slope orf } _ %xarea of B.M diagram between

between any two points correspondingportion of B.M diagram

Now let us consider the deflection of point B relative to tangent at A, this is nothing but the vertical
distance BB'. It may be note from the bending diagram that bending of the element ds contributes to this
deflection by an amount equal to x do6[[each of this intercept may be considered as the arc of a circle of
radius x subtended by the angle 6]

B
5=_[ xdB

Hence the total distance B'B becomes A

The limits from A to B have been taken because A and B are the two points on the elastic curve, under
consideration]. Let us substitute the value of d6 = M dx / El as derived earlier

B B
_ Mdx S hdx
E—Ix—l _-[_EI ¥
A A [ This is infact the moment of area of the bending moment diagram]

Since M dx is the area of the shaded strip of the bending moment diagram and x is its distance
from B, we therefore conclude that right hand side of the above equation represents first moment area with
respect to B of the total bending moment area between A and B divided by El.

Therefore,we are in a position to state the above conclusion in the form of theorem as follows:

Theorem lI:

1 y first maoment of area with respect
El topointB, of the total B.M diagram

Deflection of point [/B' relative to point A

Futher, the first moment of area, according to the definition of centroid may be written as A where ¥ is
equal to distance of centroid and a is the total area of bending moment
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A

m ~

by =

Thus,

Therefore,the first moment of area may be obtained simply as a product of the total area of the B.M diagram

betweenthe points A and B multiplied by the distance * to its centroid C.

If there exists an inflection point or point of contreflexure for the elastic line of the loaded beam between the
points A and B, as shown below,

— e G
" B,

Then, adequate precaution must be exercised in using the above theorem. In such a case B. M diagram
gets divide into two portions +ve and Clve portions with centroids Ciand C,. Then to find an angle 6 between
the tangentsat the points A and B

D B

g = Ide o Mdx
. Bl g El

And similarly for the deflection of Baway fromthe tangent at Abecomes
o o

G = IM.d}{.}{_IM.dH.}{
» El s El

lllustrative Examples: Let us study few illustrative examples, pertaining to the use of these theorems
Example 1:

1. A cantilever is subjected to a concentrated load at the free end.lt is required to find out the deflection at
the free end.

Fpr a cantilever beam, the bending moment diagram may be drawn as shown below
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e
7T

TG Wil B r-.-1.|:ll.a|grarr|

Let us workout this problem from the zero slope condition and apply the first area - moment theorem

%[Area of B.M diagram between the points A and B]

1
—E[EL.WL]

WL 2

ZE

slope at A=

The deflection at A (relative to B) may be obtained by applying the second area - moment theorem

NOTE: In this case the point B is at zero slope.

Thus,
5:%[1’”51 mament of area of B.Mdiagram between A and B about A]

= gi[47]

e

_ W
3EI

Example 2: Simply supported beam is subjected to a concentrated load at the mid span determine the value
of deflection.

A simply supported beam is subjected to a concentrated load W at point C. The bending moment diagram is
drawn below the loaded beam.
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B.M digram.

Again working relative to the zero slope at the centre C.

[ﬂarea of B. M diagrambetween Aand C]

I'I'I|_u

slope atA=

- 1_ [[l][k][ﬂ]] we are taking half area of the B.Mbecause we

EIz2Az2I 4
have towark out this relative to a zero slope
_ Wil
16El
Deflection of A relative to C = central deflection of C
or
b= 1 Mnment of B.M diagrambetween points A and C about A

2
_L

EI [[ 3 ]

ABEI

Example 3: A simply supported beam is subjected to a uniformly distributed load, with a intensity of loading
W /length. It is required to determine the deflection.

The bending moment diagram is drawn, below the loaded beam, the value of maximum B.M is equal to WI* /
8

wWwWw.jntuworld.com



WWW.j ntuwor ld.com

/ "4 length
Eﬁmﬁm

-+ =

L

Wi
W za \
A B ’
G S.F.Diagram
WA
T

F
wl
a

B.M. Diagram

L2

-

T Wy

So by area moment method,
Slope at paint Cw.rtpoint A = %[Area of B.M diagram between point A and C]

1980

W

I
Ceflection at point C =%[s‘1‘a il
relative to &
ElNl 24 \e N2
= %.WL“

Macaulay's Methods

If the loading conditions change along the span of beam, there is corresponding change in moment
equation. This requires that a separate moment equation be written between each change of load point and
that two integration be made for each such moment equation. Evaluation of the constants introduced by
each integration can become very involved. Fortunately, these complications can be avoided by writing
single moment equation in such a way that it becomes continuous for entire length of the beam in spite of
the discontinuity of loading.

Note : In Macaulay's method some author's take the help of unit function approximation (i.e. Laplace
transform) in order to illustrate this method, however both are essentially the same.

For example consider the beam shown in fig below:
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Let us write the general moment equation using the definition M = ( 3 M ), Which means that we consider
the effects of loads lying on the left of an exploratory section. The moment equations for the portions AB,BC
and CD are written as follows

| x
500 N * 450 Mim

A E‘l “ wlyy y 40
. N ! e Mag = 480 xMm
_ 2m J dm | 2m S
Fi =480 N R R 920N Mye = [480 x-500(x-2)]M.m
. | x Mep = [aanx-ﬁuu(x-zj-?(xﬂf]m.m

It may be observed that the equation for Mcp will also be valid for both Mag and Mgc provided that the terms
(x-2)and (x- 3 )%are neglected for values of x less than 2 m and 3 m, respectively. In other words, the
terms (x-2)and (x-3 )2 are nonexistent for values of x for which the terms in parentheses are negative.

Yl
| 500 N 450 N/m
N e R P
A - ¥
pal Zm = im L <m o
Ri=480 N Ra =920 N

As an clear indication of these restrictions,one may use a nomenclature in which the usual form of

parentheses is replaced by pointed brackets, namely, (1 (1. With this change in nomenclature, we obtain a
single moment equation

M = [ABDK—EDD[}{—E:I—?[}{ -3)2]N_m

Which is valid for the entire beam if we postulate that the terms between the pointed brackets do not exists
for negative values; otherwise the term is to be treated like any ordinary expression.

As an another example, consider the beam as shown in the fig below. Here the distributed load extends
only over the segment BC. We can create continuity, however, by assuming that the distributed load extends
beyond C and adding an equal upward-distributed load to cancel its effect beyond C, as shown in the
adjacent fig below. The general moment equation, written for the last segment DE in the

new nomenclaturemay be written as:
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im iR m Lo2m 2m
Ry =600 M Rz=1300N
{a) BOO N
4000 Bim
LI I BN B B | 1
|| =TI
A El'll AARRAREE
P
. MR ol 111 L11d
im Im 2m 2m
Ry =500 N

400

M=[5DD}{—T|:}{-1JE , 400

(x-4) +13DD[}{—E)]N.m

It may be noted that in this equation effect of load 600 N won't appear since it is just at the last end of the
beam so if we assume the exploratary just at section at just the point of application of 600 N than x = 0 or
else we will here take the X - section beyond 600 N which is invalid.

Procedure to solve the problems

(i). After writing down the moment equation which is valid for all values of [Ix' i.e. containing pointed
brackets, integrate the moment equation like an ordinary equation.

(ii). While applying the B.C's keep in mind the necessary changes to be made regarding the pointed
brackets.

llustrative Examples :

1. A concentrated load of 300 N is applied to the simply supported beam as shown in Fig.Determine the
equations of the elastic curve between each change of load point and the maximum deflection in the beam.

I-'Il

300N
A 2m B im c
- J1¥ . .- ¥
R S
Ry =100M R:=200MN

Solution : writing the general moment equation for the last portion BC of the loaded beam,
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diy

Eld—E:M:UDDx—SDD{x—E})N.m M

X

Integrating twice the above equation to obtain slope and the deflection
E|d3" = (50: -180{x -2 +CyJNm? 2)

Ely [53D x - 80 fx - 2} +C1x+Cz]N.m3 e (3]

To evaluate the two constants of integration. Let us apply the following boundary conditions:

1. At point A where x = 0, the value of deflection y = 0. Substituting these values in Eq. (3) we find
C, = 0.keep in mind that < x -2 >3 is to be neglected for negative values.

2. At the other support where x = 3m, the value of deflection y is also zero.

substituting these values in the deflection Eq. (3), we obtain
5EI _ 2
0= 3 ED(B Ej +3.C, [or Cy=-133M.m

Having determined the constants of integration, let us make use of Egs. (2) and (3) to rewrite the
slope and deflection equations in the conventional form for the two portions.

segment AB (0 £ x£2m)
4y
Ed =[50 133 )M’ LY
E|3,f:[53D e 133}{]N ....... (5)
segment BC (2m= x £3m)

El 33" (505 - 180 (3 - 2)7 -133x]Nm? . (B)

Ely = [53D w -50(x-2)° —133}{]N.m3.......[?']|

Continuing the solution, we assume that the maximum deflection will occur in the segment AB. Its location
may be found by differentiating Eq. (5) with respect to x and setting the derivative to be equal to zero, or,
what amounts to the same thing, setting the slope equation (4) equal to zero and solving for the point of zero
slope.

We obtain

50 x°[1133=0o0rx=1.63m (It may be kept in mind that if the solution of the equation does not yield a
value < 2 m then we have to try the other equations which are valid for segment BC)

Since this value of x is valid for segment AB, our assumption that the maximum deflection occurs in this
region is correct. Hence, to determine the maximum deflection, we substitute x = 1.63 m in Eq (5), which
yields

Ely| . m=-145Mm* .. _.(8)

max
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The negative value obtained indicates that the deflection y is downward from the x axis.quite usually only the
magnitude of the deflection, without regard to sign, is desired; this is denoted by 8, the use of y may be
reserved to indicate a directed value of deflection.

if E=30 Gpaand|=1.9x10°mm*=1.9x10 °m*, Eq. (h) becomes
¥ |maem = [30:10°][1.9%107)
Then = -254mm

Example 2:

It is required to determine the value of Ely at the position midway between the supports and at the
overhanging end for the beam shown in figure below.

GO0 N
¥l im am 2m 2m
— - e o row ]
400 Mim
A Elll l 1111 1 1!: ] E
= R " *
Fq= 5008 Rz=1300MN

Solution:

Writing down the moment equation which is valid for the entire span of the beam and applying the
differential equation of the elastic curve, and integrating it twice, we obtain

2z
E'dd_i . [555}{ -%[x—uﬂ 300 4)? w1300 —E)]N.m
X
Bl - {25[”{2 22001 2 - 4) ve50(x-8)’ C1]N.m
X
Ely = 22_['}{3 _53_0(}{ —1)4 +53_D[}{ —4)4 + Eglil (% —Ef + G+ CE]N.r’n3

To determine the value of C», It may be noted that Ely = 0 at x = 0,which gives C, = 0.Note that the
negative terms in the pointed brackets are to be ignored Next,let us use the condition that Ely = 0 at the right
support where x = 6m.This gives

- 250 e 50
3 3

.50

0 ) + (2"« BCy or € = -1308N

Finally, to obtain the midspan deflection, let us substitute the value of x = 3m in the deflection
equation for the segment BC obtained by ignoring negative values of the bracketed terms ( x - 4 >4 and ( x -
6 >3. We obtain
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Ely = ESEW —%(2)4 -1308(3) = -1941 M.’
For the overhanging end where =3 mwe have

ey =(Z2e) -2 T Z ey 1a0a(e)

= -1814Mm?

Example 3:

A simply supported beam carries the triangularly distributed load as shown in figure. Determine the
deflection equation and the value of the maximum deflection.

Wi

2
- C——
L
Ry=inallid Rz=welid welid )
(b}

Solution:

Due to symmetry, the reactionsis one half the total load of 1/2wgL, or Ry = Rz = 1/4woL.Due to the advantage
of symmetry to the deflection curve from A to B is the mirror image of that from C to B. The condition of zero
deflection at A and of zero slope at B do not require the use of a general moment equation. Only the
moment equation for segment AB is needed, and this may be easily written with the aid of figure(b).

Taking into account the differential equation of the elastic curve for the segment AB and integrating twice,
one can obtain

dZ ¥

Elﬁ: Mg = —Lox- —— 2 1)
dy wolw?  wgn®

El=L = 2
dx g 2L 7 2)

wio Lt w0

El =1 0" G+ o,

4 24 goL 7 TH =)

In order to evaluate the constants of integration,let us apply the B.C'swe note that at the support A, y =0 at
x = 0.Hence from equation (3), we get C, = 0. Also,because of symmetry, the slope dy/dx = 0 at midspan
where x = L/2.Substituting these conditions in equation (2) we get

i WuL[k]z i W_n[k]“ rec, = -l

I 0 R B 192
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Hence the deflection equation from A to B (and also from C to B because of symmetry) becomes

Ely = wpLw? B g Ko _ B x
24 GOL 192
Wehichreducesto

Ely = -0 (2614 - 4013 + 1637
oL

The maximum deflection at midspan where ¥ = L2 isthen found to be
_ WI:IL4
120

Ely =

Example 4: couple acting

Consider a simply supported beam which is subjected to a couple M at adistance 'a' from the left end. It is
required to determine using the Macauley's method.

I i:_ ]
”‘"1:_2 a 3 ,..45”.
Ry = MJL L
T e -

To deal with couples, only thing to remember is that within the pointed brackets we have to take
some quantity and this should be raised to the power zero.i.e. M x - a )° . We have taken the power 0

(zero) ' because ultimately the term M(i( x - a )0 Should have the moment units.Thus with integration the
quantity( x - a ) becomes either ( x - a )1or[< X-a )2

Or
&M
A T ] | &
AN T
e | ahe b o
- L

Therefore, writing the general moment equation we get
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iy
M =Ry -M{x-ah or Eld—zzr'-ﬂ
i
Integrating twice we gat
dy e 1
El-L =R, =—-M{x-a% +C
R { ) 1

3
Ely =R1.%-g{}{ “alf e Cxe

Example 5:

A simply supported beam is subjected to U.d.l in combination with couple M. It is required to determine the
deflection.

200Mim
M=1800 N-m
ﬁ_‘\ TYYYYYYYYYYY
a7
Rl om 2m am  [Pom

This problem may be attemped in the some way. The general moment equation my be written as

200 {x - 43{x - 4}

M{x)  =Ryx-1800¢x -2V - - +R, {x - B)
2
=R1}{—1BDD{}{—2}D—M+RE{K—E}
Thus,
g2y o 200k -4

Integrate twice to get the deflection of the loaded beam.

Members Subjected to Combined Loads

Combined Bending & Twisting : In some applications the shaft are simultaneously subjected to bending
moment M and Torque T.The Bending moment comes on the shaft due to gravity or Inertia loads. So the
stresses are set up due to bending moment and Torque.

For design purposes it is necessary to find the principal stresses, maximum shear stress, which ever is used
as a criterion of failure.

From the simple bending theory equation

If o is the maximum bending stresses due to bending.
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For the case of circular shafts ymax™ ] equal to d/2 since y is the distance from the neutral axis.

diz

| is the moment of inertia for circular shafts

| =0nd* /64

Hence then, the maximum bending stresses developed due to the application of bending moment M is

gl_n :LE
B ima m%d'z

_3Z2M
gbl-na,gn _F (1)

From the torsion theory, the maximum shear stress on the surface of the shaft is given by the torsion
equation

Where 7' is the shear stress at any radius r but when the maximum value is desired the value of r should be
maximum and the value of r is maximum at r = d/2
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substituting the value of 1 we get

— 2

max™

The nature of the shear stress distribution is shown below :

r=di2

This can now be treated as the two [ dimensional stress system in which the loading in a vertical plane in
zeroi.e.ocy=0and 6 x= o and is shown below :

—> T

Ok
Ok

T *-————

Thus, the principle stresses may be obtained as
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Equivalent Bending Moment :

Now let us define the term the equivalent bending moment which acting alone, will produce the same
maximum principal stress or bending stress.Let M. be the equivalent bending moment, then due to bending

_32M,
7y, = e
Futher

o :g[m M+
Thus, equating the two we get

m:%[m+m1

Equivalent Torque :

At we here already proved that ¢ 1 and o » for the combined bending and twisting case are expressed by the
relations:

0,05 = %{Mi«l’hﬂz +T2]

ar o, :1—53 [hr1+-ﬁfrv12 +T2|]
i

9 "7
2

1_:3 {M+m]]—% fi- 2+T2]]/

="
S0 Tma:-:""

_ 1B 7.3 16
man = TS e
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f 2
where M +T is defined as the equivalent torque, which acting alone would produce the same maximum
shear stress as produced by the pure torsion

T, = M + T¢

Composite shafts: (in series)

Thus,

If two or more shaft of different material, diameter or basic forms are connected together in such a way that
each carries the same torque, then the shafts are said to be connected in series & the composite shaft so
produced is therefore termed as series [ connected.

: 9

Here in this case the equilibrium of the shaft requires that the torque [IT' be the same through out both the
parts.

In such cases the composite shaft strength is treated by considering each component shaft separately,
applying the torsion 1 theory to each in turn. The composite shaft will therefore be as weak as its weakest
component. If relative dimensions of the various parts are required then a solution is usually effected by
equating the torque in each shaft e.g. for two shafts in series

_ Gy _ Gads ¥
Ly Ly

T

In some applications it is convenient to ensure that the angle of twist in each shaft are equal i.e. 81 =02, so
L

:_|:| _—

Ly

I_l_':—

that for similar materials in each shaft 2
The total angle of twist at the free end must be the sum of angles 61 = 62 over each x - section

Composite shaft parallel connection: If two or more shafts are rigidly fixed together such that the applied
torque is shared between them then the composite shaft so formed is said to be connected in parallel.
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5
Sy

Fixed
end

gz
a3

o
It

For parallel connection.

Total Torque T=T1+ T2

In this case the angle of twist for each portion are equal and

for equal lengths(as is normaly the case for parallel shafts) 2

This type of configuration is statically indeterminate, because we do not know how the applied torque is
apportioned to each segment, To deal such type of problem the procedure is exactly the same as we have
discussed earlier,

Thus two equations are obtained in terms of the torques in each part of the composite shaft and the
maximun shear stress in each part can then be found from the relations.

T1:T1R1
Jq
T.R

T, =—2J E
2

Combined bending, Torsion and Axial thrust:

Sometimes, a shaft may be subjected to a combined bending, torsion and axial thrust. This type of situation
arises in turbine propeller shaft

If P = Thrust load
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an ¥ oy

Then c 4 = P/ A (stress due to thrust)

where o4 is the direct stress depending on the whether the steam is tensile on the whether the stress is
tensile or compressive

This type of problem may be analyzed as discussed in earlier case.

Shaft couplings: In shaft couplings, the bolts fail in shear. In this case the torque capacity of the coupling
may be determined in the following manner

Assumptions:

The shearing stress in any bolt is assumed to be uniform and is governed by the distance from its center to
the centre of coupling.
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i,

-
I.'{n_
=

[

Thus, the torque capacity of the coupling is given as
where

dp = diameter of bolt

T'» = maximum shear stress in bolt

n = no. of bolts

r = distance from center of bolt to center of coupling
THEORIES OF ELASTIC FAILURE

While dealing with the design of structures or machine elements or any component of a particular
machine the physical properties or chief characteristics of the constituent materials are usually found from
the results of laboratory experiments in which the components are subject to the simple stress conditions.
The most usual test is a simple tensile test in which the value of stress at yield or fracture is easily
determined.
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However, a machine part is generally subjected simultaneously to several different types of
stresses whose actions are combined therefore, it is necessary to have some basis for determining the
allowable working stresses so that failure may not occur. Thus, the function of the theories of elastic failure

is to predict from the behavior of materials in a simple tensile test when elastic failure will occur under any
conditions of applied stress.

A number of theories have been proposed for the brittle and ductile materials.

Strain Energy: The concept of strain energy is of fundamental importance in applied mechanics. The
application of the load produces strain in the bar. The effect of these strains is to increase the energy level of
the bar itself. Hence a new quantity called strain energy is defined as the energy absorbed by the bar during
the loading process. This strain energy is defined as the work done by load provided no energy is added or
subtracted in the form of heat. Some times strain energy is referred to as internal work to distinguish it from
external work [JW'. Consider a simple bar which is subjected to tensile force F, having a small element of
dimensions dx, dy and dz.

Ft— | on =0 — T

X

(F)load ™

—

elongation{ex.dx)

The strain energy U is the area covered under the triangle
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U=1Fe, 4

= —o, dydzdue,

a,.g, dudydz

Ty [%].d xdydz

U1l
volume 2 E

A three dimension state of stress respresented by o1, 62 and o3 may be throught of consisting of two distinct
state of stresses i.e Distortional state of stress

Deviatoric state of stress and dilational state of stress

Hydrostatic state of stresses.

s Om
Gﬂ'l
Fa
(Gj = GI'H) Gm
O = mean stress Distortional slate of strain  Dialational state of stress or
of Deviation hydrostatic state of strain

Gu= (ot o2t o)
3
Thus, The energy which is stored within a material when the material is deformed is termed as a strain
energy. The total strain energy U,

Ut = Ug+Un
Uq is the strain energy due to the Deviatoric state of stress and Uy is the strain energy due to the Hydrostatic
state of stress. Futher, it may be noted that the hydrostatic state of stress results in change of volume

whereas the deviatoric state of stress results in change of shape.

Different Theories of Failure : These are five different theories of failures which are generally used

(a) Maximum Principal stress theory ( due to Rankine )
(b) Maximum shear stress theory ( Guest - Tresca )

(c) Maximum Principal strain ( Saint - venant ) Theory
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(d) Total strain energy per unit volume ( Haigh ) Theory

(e) Shear strain energy per unit volume Theory ( Von [ Mises & Hencky )
In all these theories we shall assume.

oyp = stress at the yield point in the simple tensile test.

o1,lo2,Jo3 — the three principal stresses in the three dimensional complex state of stress systems in order of
magnitude.

(a) Maximum Principal stress theory :

This theory assume that when the maximum principal stress in a complex stress system reaches the elastic
limit stress in a simple tension, failure will occur.

Therefore the criterion for failure would be
G1= Oyp

For a two dimensional complex stress system o1 is expressed as

aEa
AL R

:UW

Oy

Ty

Ty

Y

Where oy, oy and 1, are the stresses in the any given complex stress system.
(b) Maximum shear stress theory:

This theory states that teh failure can be assumed to occur when the maximum shear stress in the complex
stress system is equal to the value of maximum shear stress in simple tension.

The criterion for the failure may be established as given below :
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BT To C LT Th »

T

For a simple tension case

- )
@y =, sin” 8

T, = %ay sin2f

whereas for the two dimentional complex stress system

T, -G
T :[ 12 2]

where a, =maximum principle stress
0, = minimum principal stress

gy-d, 1 2
50 f = i‘\((g"‘ —a, ) Ay

a, -, _ 1 _
5 —iaw=>~01 d,=0

2
= ,'((crx - cry;l s A7y = T
becormes the criterian for the failure.

W
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(c) Maximum Principal strain theory :

This Theory assumes that failure occurs when the maximum strain for a complex state of stress system
becomes equals to the strain at yield point in the tensile test for the three dimensional complex state of
stress system.

For a 3 - dimensional state of stress system the total strain energy U per unit volume in equal to the total
work done by the system and given by the equation
L = 17205 1720, &5 +1720, 5
substituting the values of 52, and 5
1
S E[ﬁﬁ - Y+ 0y :']
1
= T E[Uz = yloy + 03]
1
= E[ga — oy + '5’2:']
Thus, the faillure criterion becomes

ATV T ']
E 'E ?E] C
or

|U1 LI U pr|

34

(d) Total strain energy per unit volume theory :

The theory assumes that the failure occurs when the total strain energy for a complex state of stress system
is equal to that at the yield point a tensile test.

2
1 2 2 2 U'!.P
E[c:r1 LS SR . oY R N, S 0301)] ==
2 2 :I

gl g, + 032 - 293,80, + .05 + 033 = T

Therefore, the failure criterion becomes
It may be noted that this theory gives fair by good results for ductile materials.
(e) Maximum shear strain energy per unit volume theory :

This theory states that the failure occurs when the maximum shear strain energy component for the complex
state of stress system is equal to that at the yield point in the tensile test.

2
1
a6 [ 02"+ (o -0 (o -0 | = g
Wwhere G = shear modulus of regidity

[[01 —a P o, -0, +(o, - 01]2] =207,

m| 3

Hence the criterion for the failure becomes

As we know that a general state of stress can be broken into two components i.e,
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(i) Hydrostatic state of stress ( the strain energy associated with the hydrostatic state of stress is known as
the volumetric strain energy )

(ii) Distortional or Deviatoric state of stress ( The strain energy due to this is known as the shear strain
energy )

As we know that the strain energy due to distortion is given as
L - 2, 2, 2
distartion ~ 75 (o0, + (0, - 03]  + {05 -0,

This is the distortion strain energy for a complex state of stress, this is to be equaled to the maximum
distortion energy in the simple tension test. In order to get we may assume that one of the principal stress
say ([lo1 ) reaches the yield point ([loy, ) of the material. Thus, putting in above equation o2 = o3 = 0 we get
distortion energy for the simple testi.e

_ 20
v 126
Futher g, - g,
7
a . .
Thus, |y = % for a simple tension test.

Elastic Stability Of Columns
Introduction:

Structural members which carry compressive loads may be divided into two broad categories depending on
their relative lengths and cross-sectional dimensions.

Columns:

Short, thick members are generally termed columns and these usually fail by crushing when the yield stress
of the material in compression is exceeded.

Struts:

Long, slender columns are generally termed as struts, they fail by buckling some time before the yield stress
in compression is reached. The buckling occurs owing to one the following reasons.

(a). the strut may not be perfectly straight initially.
(b). the load may not be applied exactly along the axis of the Strut.

(c). one part of the material may yield in compression more readily than others owing to some lack of
uniformity in the material properties through out the strut.

In all the problems considered so far we have assumed that the deformation to be both progressive with
increasing load and simple in form i.e. we assumed that a member in simple tension or compression
becomes progressively longer or shorter but remains straight. Under some circumstances however, our
assumptions of progressive and simple deformation may no longer hold good and the member become
unstable. The term strut and column are widely used, often interchangeably in the context of buckling of
slender members.]
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At values of load below the buckling load a strut will be in stable equilibrium where the displacement caused
by any lateral disturbance will be totally recovered when the disturbance is removed. At the buckling load the
strut is said to be in a state of neutral equilibrium, and theoretically it should than be possible to gently
deflect the strut into a simple sine wave provided that the amplitude of wave is kept small.

Theoretically, it is possible for struts to achieve a condition of unstable equilibrium with loads exceeding the
buckling load, any slight lateral disturbance then causing failure by buckling, this condition is never achieved
in practice under static load conditions. Buckling occurs immediately at the point where the buckling load is
reached, owing to the reasons stated earlier.

The resistance of any member to bending is determined by its flexural rigidity El and is The quantity | may
be written as | = Ak®,

Where | = area of moment of inertia
A = area of the cross-section
k = radius of gyration.

The load per unit area which the member can withstand is therefore related to k. There will be two principal
moments of inertia, if the least of these is taken then the ratio

- length of member
k  least radius of gyration

Is called the slenderness ratio. It's numerical value indicates whether the member falls into the class of
columns or struts.

Euler's Theory : The struts which fail by buckling can be analyzed by Euler's theory. In the following
sections, different cases of the struts have been analyzed.

Case A: Strut with pinned ends:

Consider an axially loaded strut, shown below, and is subjected to an axial load [1P' this load [1P' produces
a deflection [Jy' at a distance (X' from one end.

Assume that the ends are either pin jointed or rounded so that there is no moment at either end.

Assumption:

The strut is assumed to be initially straight, the end load being applied axially through centroid.
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S —>

+B.M

¥
: - B.M :

According o sign
conmvention

B. h-'1|c = -Py
Futherwe know that
2
FEEAY
dx
di
El —L=-P v = M
dx? !

In this equation [JM'is not a function [x'. Therefore this equation can not be integrated directly as has been
done in the case of deflection of beams by integration method.

Thus,
dzj,r
El ™ + Py =10

Though this equation is in [y' but we can't say at this stage where the deflection would be maximum or
minimum.

(2]
m

So the above differential equation can be arranged in the following form i
Let us define a operator

D = d/dx

(D? + n) y =0 where n’ = P/EI

This is a second order differential equation which has a solution of the form consisting of complimentary
function and particular integral but for the time being we are interested in the complementary solution only[in
this P.I = 0; since the R.H.S of Diff. equation = 0]

Thus y = A cos (nx) + B sin (nx)

Where A and B are some constants.

y=ACDSJEx + Eiain,JE}{
Therefore El El

In order to evaluate the constants A and B let us apply the boundary conditions,
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(iatx=0;y=0
(ijatx=L;y=0
Applying the first boundary condition yields A = 0.

Applying the second boundary condition gives

Bsin LJE =0
El
. . |'F'
ThuaenherEi:D,nrsm[L E]

if B=0 that yO for all values of x hence the strut has not buckled yet. Therefore the solution required is

) F1l_ F1_ _
sm[LJg]—D Dr[LJE—T]—HDrﬂL =7
[F_ = _ El
or, ) — = = or P=_"+—
El L L?

From the above relationship the least value of P which will cause the strut to buckle, and it is called the
) Euler Crippling Load [] P from which w obtain.

a

T El
P==
E

It may be noted thatthe value of | used in this expression is the least moment of inertia
It should be noted that the other solutions exists for the equation

sin IJE =0 i.e. sin nL=0
El

The interpretation of the above analysis is that for all the values of the load P, other than those which make
sin nL = 0; the strut will remain perfectly straight since

y=BsinnL=0

For the particular value of

P - 7El
LI
sihnL =0 ornL=nm
Therefare n =7
L

Hence y= B sin nx=B sin %

Then we say that the strut is in a state of neutral equilibrium, and theoretically any deflection which it suffers

will be maintained. This is subjected to the limitation that (/L' remains sensibly constant and in practice slight
increase in load at the critical value will cause the deflection to increase appreciably until the material fails by
yielding.
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Further it should be noted that the deflection is not proportional to load, and this applies to all strut problems;
like wise it will be found that the maximum stress is not proportional to load.

The solution chosen of nL = & is just one particular solution; the solutions nL= 2x, 3n, 5x etc are equally
valid mathematically and they do, infact, produce values of [JP¢' which are equally valid for modes of
buckling of strut different from that of a simple bow. Theoretically therefore, there are an infinite number of
values of P , each corresponding with a different mode of buckling.

The value selected above is so called the fundamental mode value and is the lowest critical load producing
the single bow buckling condition.

The solution nL = 2x produces buckling in two half [ waves, 3= in three half-waves etc.

Py = HEE’I{‘ Pz =4 P B,

Fl.
L =x nL = 27 nL = 3n
Fundamenial Mode Sesond harrmon e Third harmonic
(First harmonic) (mid point Bracing) {Third point bracing
P TEl
L =l =7 or B = =

If L P 2mar B =4ﬂ2E| = 4P,
‘U'EI L4
= S 7El

|f |_ E = 3:'?!:”’ F.3 = |_2 :9P1

If load is applied sufficiently quickly to the strut, then it is possible to pass through the fundamental mode
and to achieve at least one of the other modes which are theoretically possible. In practical loading
situations, however, this is rarely achieved since the high stress associated with the first critical condition
generally ensures immediate collapse.

struts and columns with other end conditions: Let us consider the struts and columns having different
end conditions
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Case b: One end fixed and the other free:

1 A ko Drgin

—_—
s

writing down the value of bending moment at the point C

B M| = Fla-y)
Hence, the differential equation becomes,
dzy
El — = Pla -
du? II Fj

On rearranging we get
iy . Fy  Pa

i B OH
F_ o2

Let — =

EEI il

Hence in operator form, the differential equation reduces to ( D? + n? )y = n‘a

The solution of the above equation would consist of complementary solution and particular solution,
therefore

Ygen = A cos(nx) + sin(nx) + P. |

where

P.I = the P.l is a particular value of y which satisfies the differential equation
Henceyp;=a

Therefore the complete solution becomes

Y = A cos(nx) + B sin(nx) + a

Now imposing the boundary conditions to evaluate the constants A and B
(iYatx=0;y=0

This yields A = -a

(ii)atx=0; dy/dx=0

This yields B =0
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Hence

y =-acos(nx) + a

Futher,atx=L;y=a

Therefore a=-acos(nx)+a or 0 =cos(nL)

Now the fundamental mode of buckling in this case would be

nL =2
2
P - T 1 B . . .
£ L= E,Therefure,the Euler's crippling load is given as
_ 7Bl
TE
Case 3

Strut with fixed ends:

S EF
T,

AP A

L

7 "\<

L

[}

=

/lz/_i\ M F
|

T

L

Due to the fixed end supports bending moment would also appears at the supports, since this is the property
of the support.

Bending Moment at point C=M [] P.y
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£

Bl — =M-P
dx? !

Drdz_l'llr+E: E
dxf El El

ne o= %,Thereﬁ:re in the operator fram, the equation reduces to

2, 2y, - M
(0% +n )Y‘g
'.'l"geneml = '.'I"c-:-mplememarg.r + '.'I"parti-::.llarirrtegml
S U/ B
TR T

Hence the general solution would be
y = BCosnx+ A Sinm{+g

Boundry conditions relevant to this case are at x=0:y=0

i
B =- —
FI

Also at x = I:I;d—Elr =0 hence
dx

A
Therefore,

:—MCusm{ +M
= E g

h
=— [1- Cosnx
y=g )
Futher,tmaybenotedthatat x =L;y =0
ThenO = g (1- CosnL)

Thus,eﬂherg = or [1- Cosnl)=0

obvioushy [1- Cosnl) =0
cos nl =1

Hencethe least solutionwouldbe
nk =2n

\(g L =2x Thusthe buckling load or crippling load is

P - 4;?2.E|
Thus, L

Case 4

One end fixed, the other pinned
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c 7
—55 /K“““—» ,,{Y\l i
_/

[
¥
Sy

In order to maintain the pin-joint on the horizontal axis of the unloaded strut, it is necessary in this case to
introduce a vertical load F at the pin. The moment of F about the built in end then balances the fixing
moment.

With the origin at the built in end, the B,M at C is given as

di
El— =-Py + FiL-x
pe: y o+ FlL-x
dij,r
El—+Py = F(L-%)
dx
Hence
dy P _F

sy = jL-x
e gt

In the operator form the equation reduces to

(Dz +n2)3,r= %(L— ®)

F
Yparticular — E(L_ }{:I ar y =

(L=

Ml m

Thefull solution is therefore
y= A Cosmx+ B Sin nx+£(L— )

The boundry conditions relevants to the problem are at :=0;y=0

Hernce & = —E

Alsoat x :D;ﬂ: 1]
dx

Hence B = i

nP

ary = -ECDS ny + iSin ny +E[L— x)
P nP P

- Fore
¥y = ﬁ[Sm ne - nbCosnx + nfl- x)]

Alsowhenx=L;y=0
Therefore

nL CosnL=SinnL ortannL=nL
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The lowest value of nL ( neglecting zero) which satisfies this condition and which therefore produces the
fundamental buckling condition is nL = 4.49radian

P
=L = 449

ar E|

Pe 2

=1* =202

El

p - 2.05;;2 El

k

Equivalent Strut Length:

Having derived the results for the buckling load of a strut with pinned ends the Euler loads for other end
conditions may all be written in the same form.

e B, = L—zEl

Where L is the equivalent length of the strut and can be related to the actual length of the strut depending on
the end conditions.

The equivalent length is found to be the length of a simple bow(half sine wave) in each of the strut deflection
curves shown. The buckling load for each end condition shown is then readily obtained. The use of
equivalent length is not restricted to the Euler's theory and it will be used in other derivations later.

The critical load for columns with other end conditions can be expressed in terms of the critical load for a
hinged column, which is taken as a fundamental case.

For case(c) see the figure, the column or strut has inflection points at quarter points of its unsupported
length. Since the bending moment is zero at a point of inflection, the freebody diagram would indicates that
the middle half of the fixed ended is equivalent to a hinged column having an effective length Le = L / 2.

The four different cases which we have considered so far are:
(a) Both ends pinned (c) One end fixed, other free

(b) Both ends fixed (d) One end fixed and other pinned
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{a)

el P (d)
Y
A
L= 2L
( r
' Pe = 2 '€l
] .
v ~ ' El
& ¥ 4LZ

Comparison of Euler Theory with Experiment results
Limitations of Euler's Theory :

In practice the ideal conditions are never [ i.e. the strut is initially straight and the end load being
applied axially through centroid] reached. There is always some eccentricity and initial curvature present.
These factors needs to be accommodated in the required formula's.

It is realized that, due to the above mentioned imperfections the strut will suffer a deflection which
increases with load and consequently a bending moment is introduced which causes failure before the
Euler's load is reached. Infact failure is by stress rather than by buckling and the deviation from the Euler
value is more marked as the slenderness-ratio I/k is reduced. For values of I/k < 120 approx, the error in
applying the Euler theory is too great to allow of its use. The stress to cause buckling from the Euler formula
for the pin ended strut is

Euler'sstress, o, = P_E = ﬂ
A AR
But, | = Ak?
ZE

A plot of o versus | / k ratio is shown by the curve ABC.
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Euler's curve
g

Far strueiural steel,
cures colncide at Ik = 80

Elress .
curves coincide
G?Da——-'——'_“' C atlk =120
or / Tr——
Oc T ——
experimental
RS
50 100 150 1k
short  intermediste  — long column

Allowing for the imperfections of loading and strut, actual values at failure must lie within and below line
CBD.

Other formulae have therefore been derived to attempt to obtain closer agreement between the actual failing
load and the predicted value in this particular range of slenderness ratio i.e.l/k=40 to I/k=100.

(a) Straight [ line formulae :

The permissible load is given by the formulae

P=o A[1 —n[—]]
¥
Where the value of index [n' depends on the material used and the end conditions.

(b) Johnson parabolic formulae : The Johnson parabolic formulae is defined as

S 1-h[g]

(c) Rankine Gordon Formulae :

where the value of index [1b' depends on the end conditions.

1 1 1

S
P F. R

Where P = Euler crippling load

P. = Crushing load or Yield point load in Compression

Pr = Actual load to cause failure or Rankine load

Since the Rankine formulae is a combination of the Euler and crushing load for a strut.

1 1 1

—_ _ —
PR Pe Pc
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For a very short strut Pe is very large hence 1/ P swould be large so that 1/ P <can be neglected.

Thus Pr = P¢, for very large struts, P ¢ is very small so 1/ P . would be large and 1/ P .can be neglected
,hence Pr = P¢

The Rankine formulae is therefore valid for extreme values of 1/k.1t is also found to be fairly accurate for the
intermediate values in the range under consideration. Thus rewriting the formula in terms of stresses, we

have
1 1 1
_= +
gh o a A oA
1 1 1
—_ —
aod, d,
1 _ O *0y
o) Tg.0y
a_.a (o)
gz ¥ - w
d, + 14 i
UE
For strutswithbothendspinned
_ #E
ad, = | 5
a
7= T
)
1+ Y _l
T ELk
a
w
¢= 7
1+a !
k
= Ny
Where T El and the value of [1a' is found by conducting experiments on various materials.

Theoretically, but having a value normally found by experiment for various materials. This will take into
account other types of end conditions.

) a. A,
Rankineload= —¥

| I
1+ E[E]
Therefore

Typical values of [1a' for use in Rankine formulae are given below in table.

Material oy orflo, [Value ofa
MN/m2 Pinned ends Fixed ends
Low carbon 315 1/7500 1/30000
steel
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Cast Iron

540

1/1600

1/64000

Timber

35

1/3000

1/12000

note a = 4 x (a for fixed ends)

Since the above values of [1a' are not exactly equal to the theoretical values , the Rankine loads for

long struts will not be identical to those estimated by the Euler theory as estimated.

Strut with initial Curvature :

As we know that the true conditions are never realized , but there are always some imperfections.
Let us say that the strut is having some initial curvature. i.e., it is not perfectly straight before loading. The
situation will influence the stability. Let us analyze this effect.

by a differential calculus

Futher E
R

But for thiscase EII —1—| = Iyl
Ry

W(Appmximately)
o

El
R

1
R

sincestrutishaving someinitialcury ature

Mow putting

1 d¥y

Rodxf

Where [1 yo' is the value of deflection before the load is applied to the strut when the load is applied to the
strut the deflection increases to a value [y'. Hence
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|EEaT
R
z 2
ST R
dx dx
z 7
SV
dx dx
z 2
¥ _ d” ¥p
El— = -Py + El
. ! d?
If the pinended strut is under the action of a load P then obviously the BM would be'-py'
Hence

dy o8

dx dx
d'y Py _d'y
' TE i
Angain letting
Pz
=i
Y 42y o yg
d? i

The initial shape of the strut yo may be assumed circular, parabolic or sinusoidal without making much
difference to the final results, but the most convenient form is

.M
yop = C.sin—
| where C is some constant or here it is amplitude

Which satisfies the end conditions and corresponds to a maximum deviation [JC'. Any other shape could be
analyzed into a Fourier series of sine terms. Then

2 2
d¥+n2y—w:—(}5nm] sm ]
dx d? dx |

The computer solution would be therefare be

l-"'lgeneml = '-'I'Ic-:-mplementr!.r +'-'I'IFI

L
7

C.

. S
= A B -
Y cosnx +osinnx + TF sm[ | ]

T

Boundary conditions which are relevant to the problem are
atx=0;y=0thusB=0
Again

whenx=1;y=0o0rx=1/2;dy/dx=0
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the above condition gives B =0

s

Therefore the complete solution would be
CF

T

Again the above solution can be slightly rearranged. since
_ 7El

P, = -

L

F

hencetheterm after multiplying the denominator & numerator by El is equal to

7 El
I
TE g IRP

7 -n’El

Since n? = E

whereF, = BEuler'sload P=applied load
Thus

(7]

The crippling load is again

El
PeF =2

Since the BM for a pin ended strut at any point is given as
M = -Py and
Max BM = P ymax

Now in order to define the absolute value in terms of maximum amplitude let us use the symbol as [/,
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FER=R"
PP
=0 —*
(Pe - FI)
Therefare I = ﬁ since Yoo = —P‘-'
[PE ‘F'] [Pe - F']
sinTm{ =1 when Tm{ :;
Hence i = CPR
[Pe -p

Strut with eccentric load

Let e’ be the eccentricity of the applied end load, and measuring y from the line of action of the
load.

Then d*
or (D? + n?) y = 0 where n*= P/ El
Therefore Ygeneral = Ycomplementary
= Asin nx + Bcos nx
applying the boundary conditions then we can determine the constants i.e.
atx=0;y=ethusB=¢e
atx=1/2;dy/dx=0

Therefore

A cos n_I_ B sin n—|=EI
2 2

A cos n_I: B sin n_I
2

A,

1l
m
—
i)
=

I

&,

1
[au}
—
a0
=

I

Hence the complete solution becomes

wWwWw.jntuworld.com



WWW.j ntuwor ld.com

y = A sin(nx) + B cos(nx)

substituting the values of A and B we get
_ nl .
¥ =B tanismn}{ +COSNK

Note that with an eccentric load, the strut deflects for all values of P, and not only for the critical
value as was the case with an axially applied load. The deflection becomes infinite for tan (nl)/2 = « i.e. nl

P:ﬂ

e 3
= nt giving the same crippling load - However, due to additional bending moment set up by
deflection, the strut will always fail by compressive stress before Euler load is reached.

Since

nl .
¥ =& [tanismm{ + cnsnx]

_ nly . nl nl
¥ m| | = e [tan| =] sihn—+cos—
max ETI-E 2 2 2

=l fl
sin® — + cos’ —
2 2

fil
CoOs—

2
n

= e 1 1 sec—l
cos 2
2

Hence maximum bending moment would be

r""I1maJ-c"" =F 2"Imanuﬂ“'

= Pe seu::ll
2

Mow the maximurm stress is obtained by combined and direct strain

a = E +E stressduetobending 7. M;
A L [
b= o —

O T % Wher Z = Ify is section modulus

The second term is obviously due the bending action.

Consider a short strut subjected to an eccentrically applied compressive force P at its upper end. If
such a strut is comparatively short and stiff, the deflection due to bending action of the eccentric load will be
neglible compared with eccentricity (e’ and the principal of super-imposition applies.

If the strut is assumed to have a plane of symmetry (the xy - plane) and the load P lies in this plane
at the distance [e' from the centroidal axis ox.

Then such a loading may be replaced by its statically equivalent of a centrally applied compressive force [P’
and a couple of moment P.e
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o
= ]
e
IF
Il
. —

e |
i

12)
/

h

SIS

=]
|:|'1 = —
1. The centrally applied load P produces a uniform compressive A stress over each cross-section as
shown by the stress diagram.
h
|:|'2 = _I'IIII
2. The end moment [IM' produces a linearly varying bending stress | as shown in the figure.

Then by super-impostion, the total compressive stress in any fibre due to combined bending and
compression becomes,

o=L.M
A
_P M
.;r__+|_
A,
/s
g=E+M
A7

Energy Methods

Strain Energy

Strain Energy of the member is defined as the internal work done in defoming the body by the action of
externally applied forces. This energy in elastic bodies is known as elastic strain energy :

Strain Energy in uniaxial Loading
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Fig .1

Let as consider an infinitesimal element of dimensions as shown in Fig .1. Let the element be subjected to
normal stress ox.

The forces acting on the face of this element is oy. dy. dz
where
dydz = Area of the element due to the application of forces, the element deforms to an amount = ex dx

[] ex = strain in the material in x [J direction

_ Change in length
Crginal in length

Assuming the element material to be as linearly elastic the stress is directly proportional to strain as shown

in Fig . 2.
&
Ox
Complementary
energy
Strain energy
-
Ex
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Fig .2
~.0OFrom Fig .2 the force that acts on the element increases linearly from zero until it attains its full value.
Hence average force on the element is equal to ¥z ox . dy. dz.
.. Therefore the workdone by the above force
Force = average force x deformed length
=Y20x. dydz . ex.dx

For a perfectly elastic body the above work done is the internal strain energy [dull.

du = %cxdydzex dx 2
K
= EUIEI dudydz
K

du = EUI e, dv| 13

where dv = dxdydz
= Volume of the element

By rearranging the above equation we can write

du 1
l, = ™ = EUI £, Y

The equation (4) represents the strain energy in elastic body per unit volume of the material its strain energy
) density [ue' .

From Hook's Law for elastic bodies, it may be recalled that

du o Eel
=—=2 -1 . 5
v 2E 2 )
2
o
U:IETEEW 6]
wal

In the case of a rod of uniform cross [ section subjected at its ends an equal and opposite forces of
magnitude P as shown in the Fig .3.
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2
o
U= | =4
IEE !
Wil
L
2
LJ=I Pz,&dx
2EA
1]
=2
U:_
2AE

Modulus of resilience :

Fig .3

dv =Adx = Element volume

A= Area of the bar
L= Length of the bar

A7)

Yy
Madulus of resilience

Fig .4

Suppose L[ ox[! in strain energy equation is put equal to oy i.e. the stress at proportional limit or yield point.
The resulting strain energy gives an index of the materials ability to store or absorb energy without

permanent deformation
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UE

U, = % =)

So
The quantity resulting from the above equation is called the Modulus of resilience

The modulus of resilience is equal to the area under the straight line portion OY' of the stress [ strain
diagram as shown in Fig .4 and represents the energy per unit volume that the material can absorb without
yielding. Hence this is used to differentiate materials for applications where energy must be absorbed by
members.

Modulus of Toughness :

A modulus of
o toughness
Rupture
r
€r
Fig .5

Suppose [’ [strain] in strain energy expression is replaced by er strain at rupture, the resulting strain
energy density is called modulus of toughness

F 2
U=IEEI|:|}{=EZR dv

1]

z
_Eer”

L
2

)

From the stress [ strain diagram, the area under the complete curve gives the measure of modules of
toughness. It is the materials.

Ability to absorb energy upto fracture. It is clear that the toughness of a material is related to its ductility as
well as to its ultimate strength and that the capacity of a structure to withstand an impact Load depends
upon the toughness of the material used.

ILLUSTRATIVE PROBLEMS

1. Three round bars having the same length [IL' but different shapes are shown in fig below. The first
bar has a diameter [1d' over its entire length, the second had this diameter over one (1 fourth of its
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length, and the third has this diameter over one eighth of its length. All three bars are subjected to
the same load P. Compare the amounts of strain energy stored in the bars, assuming the linear
elastic behavior.

AIINIHY, 4 A

<« 3d —» a— 3d —

—» dle L/4 —»{d|le— L/8

L VP L

Solution :

1.The strain Energy of the first bar is expressed as
2
U1 = E
2EA
2. The strain Energy of the second bar is expressed as
PHiLAy PR(ELIAAY PR
= + =
= 2E9A  BEA

3.The strain Energy of the third bar is expressed as
PE(L/BY PE(TL/E)
= +
2EA 2E[9A)
L
* BEA
_2U,
4

Uz

1)
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From the above results it may be observed that the strain energy decreases as the volume of the bar

increases.

2. Suppose a rod AB must acquire an elastic strain energy of 13.6 N.m using E = 200 GPa. Determine
the required yield strength of steel. If the factor of safety w.r.t. permanent deformation is equal to 5.

d =20 mm

—tsm

Solution :

Factor of safety = 5

Therefore, the strain energy of the rod should be u =5 [13.6] = 68 N.m

Strain Energy density

The volume of the rod is

20 x15%10°

71 % 10% mm®

Yield Strength :

As we know that the modulus of resilience is equal to the strain energy density when maximum stress is

equal to oy .

2z
U:UL
2E
2z

o
O14d4= ¥
2 % (200 % 10%)

=, = 200 Mpa

It is important to note that, since energy loads are not linearly related to the stress they produce, factor of
safety associated with energy loads should be applied to the energy loads and not to the stresses.

Strain Energy in Bending :
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Fig .6
Consider a beam AB subjected to a given loading as shown in figure.
Let
M = The value of bending Moment at a distance x from end A.

From the simple bending theory, the normal stress due to bending alone is expressed as.

Pl

J = —
|

Substituting the above relation in the expression of strain energy

- 7
e U= | 2 dy
12E

z .2
:J‘h;a}; dy )

substituting dv = dxd A
Where d& =elemental cross-sectional area

2
MEE'; — iz a function of % alone
El
Mow substitiuting for dy in the expression of U,
L
ot
IE _U idA]dx 11
.!QEF y a1

W know I}fz dA represents the moment of inertia 'I' of the cross-section about its neutral axis.

L
2
U:Im—dx 12
0

2El

ILLUSTRATIVE PROBLEMS

1. Determine the strain energy of a prismatic cantilever beam as shown in the figure by taking into
account only the effect of the normal stresses.
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Solution : The bending moment at a distance x from end
A is defined as

1

Substituting the above value of M in the expression of strain energy we may write

L
PE}{E
L= d
IEEI §
i
L
I3
U= j_F'ﬁ
i
Problem 2 :

a. Determine the expression for strain energy of the prismatic beam AB for the loading as shown in
figure below. Take into account only the effect of normal stresses due to bending.
b. Evaluate the strain energy for the following values of the beam

P =208 KN ;L =3.6m=3600mm
A=09m=90mm;b=2.7m=2700 mm

E =200 GPa ; | = 104 x 108 mm*

Solution:
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/M1N_

Bending Moment : Using the free (1 body diagram of the entire beam, we may determine the values of
reactions as follows:

Ra=Pu/ LRg=Pa/L

For Portion AD of the beam, the bending moment is

A l) MF%K

=] P A
Pl re ]«

For Portion DB, the bending moment at a distance v from end B is

B

Al _ Pa
RB- L

Strain Energy :

Since strain energy is a scalar quantity, we may add the strain energy of portion AD to that of DB to obtain
the total strain energy of the beam.
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U= Llyp +Upg

E]

b
_ My*
Iﬁdx J‘ﬁdv

1} 1}
3 7 b 2
:LI P_b}{ d}{+Lj P_a'.,r dx
2El L 2El L
1] i}

_ 1 Pfpta,
ZEIE] 3 3

Z_2 7
: P<a I:u2 (3 +b)
BEIL
Sincela+h) =L
P2, 72
 BEIL

L

b. Substituting the values of P, a, b, E, |, and L in the expression above.

a2 2 2
U= (200 0% (@00) % (2700 _ oo Lor e

B {200 x 10%):% (104 x10%) % (3600)

Problem

3) Determine the modulus of resilience for each of the following materials.
a. Stainless steel . E =190 GPa [Iloy = 260MPa

b. Malleable constantan E = 165GPa [ ] oy = 230MPa

c. Titanium E = 115GPa [ oy = 830MPa

d. Magnesium E = 45GPa [ oy = 200MPa

4) For the given Loading arrangement on the rod ABC determine

(a). The strain energy of the steel rod ABC when

P =40 KN.

(b). The corresponding strain energy density in portions AB and BC of the rod.
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1000 m 20 m
— hg——
~ B
500m _ | | _16m
1 1]

i

Complementary Strain Energy :

Consider the stress strain diagram as shown Fig 39.1. The area enclosed by the inclined line and the
vertical axis is called the complementary strain energy. For a linearly elastic materials the complementary
strain energy and elastic strain energy are the same.

&

Ox
Complementary

Bnergy

Strain energy

Fig 39.1

Let us consider elastic non linear primatic bar subjected to an axial load. The resulting stress strain plot is as
shown.
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do /

01

-

St Llde, €

Fig 39. 2

The new term complementary work is defined as follows

P
W = [ 6 dP,
i
we also know
W+ = PS
A
=
W*or U*
[ TS T T T T |
dP1 |
) :
[ 3
P " !
|
Pi |
|
|
L L .
LBy s [
il E.. =

So In geometric sense the work W* is the complement of the work (/W' because it completes rectangle as
shown in the above figure

Complementary Energy

F
U* = W = [ 5,dP
1}
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Likewise the complementary energy density u* is obtained by considering a volume element subjected to the
stress o1 and e, in @ manner analogous to that used in defining the strain energy density. Thus

L* = TE1 do
1]

The complementary energy density is equal to the area between the stress strain curve and the stress axis.
The total complementary energy of the bar may be obtained from u* by integration

u‘=Idu

Sometimes the complementary energy is also called the stress energy. Complementary Energy is
expressed in terms of the load and that the strain energy is expressed in terms of the displacement.

Castigliano's Theorem : Strain energy techniques are frequently used to analyze the deflection of beam
and structures. Castigliano's theorem were developed by the Italian engineer Alberto castigliano in the year
1873, these theorems are applicable to any structure for which the force deformation relations are linear

Castigliano's Therom :

AP

3 l lpz

1 Yz =
o ) =
K
e e =T ANz
A%

Consider a loaded beam as shown in figure

Let the two Loads P1 and P, produce deflections Y41 and Y2 respectively strain energy in the beam is equal to
the work done by the forces.

1 1

U= SR + 5P, (1)

Let the Load P4 be increased by an amount AP1.

Let AP+ and AP, be the corresponding changes in deflection due to change in load to AP1.
1

Al = AR AY, +FAY, HRAY, I
Now the increase in strain energy 2

Suppose the increment in load is applied first followed by P4 and P2 then the resulting strain energy is
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U+AU = %ﬁﬂﬂ‘ﬂ +AP)Y, +R,AY, %Fm ¥ %F‘z A )

Since the resultant strain energy is independent of order loading,

Combing equation 1, 2 and 3. One can obtain

|.-'l-.F'1 iy = BAY, +F'2ﬁ‘f2| oA

equations (2} and (4) can be combined to obtain
Al 1

— =y 4+ AY .5

AR, 1 =50 (5]

or upon taking the limit as AP approaches zero [ Partial derivative are used because the starin energy is a
function of both P1 and P2 ]

all

et O )

For a general case there may be number of loads, therefore, the equation (6) can be written as

all _
o LA ¢4

The above equation is castigation's theorem:

The statement of this theorem can be put forth as follows; if the strain energy of a linearly elastic structure is
expressed in terms of the system of external loads. The partial derivative of strain energy with respect to a
concentrated external load is the deflection of the structure at the point of application and in the direction of
that load.

In a similar fashion, castigliano's theorem can also be valid for applied moments and resulting rotations of
the structure

ol
e ST -
a, (5)

Where
Mi = applied moment
q; = resulting rotation

Castigliano's First Theorem :
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L I

|

i%

In similar fashion as discussed in previous section suppose the displacement of the structure are changed
by a small amount d3;. While all other displacements are held constant the increase in strain energy can be
expressed as

=Ygl 9
A,

Where
oU / i — is the rate of change of the starin energy w.r.t &;.

It may be seen that, when the displacement §; is increased by the small amount dé ; workdone by the
corresponding force only since other displacements are not changed.

The work which is equal to Pid3; is equal to increase in strain energy stored in the structure

By rearranging the above expression, the Castigliano's first theorem becomes

The above relation states that the partial derivative of strain energy w.r.t. any displacement §; is equal to the
corresponding force P; provided that the strain is expressed as a function of the displacements.

ILLUSTRATIVE PROBLEMS
Using Castigliano's Theorem :

1. The cantilever beam CD supports a uniformly distributed Load w. and a concentrated load P as shown in
figure below. Suppose
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L=3m;w=6KN/m;P=6KNandE.|=5MN m? determine the deflection at D

=

Yyry

Yy
)

The deflection Y, [Jat the point D Where load [1P' is applied is obtained from the relation

— U

g = —
oF

Since P is acting vertical and directed downward & ; represents a vertical deflection and is positions

downward.
U EMam
2l 2l
S LG (1
" 3R IEmP * )
1]

The bending moment M at a distance x from D

M= —[F'}{+%W}{2] (D)

And its derivative with respect to [1P' is

a__

= ¥ U

Substituting for M and 6 M/ 6 P into equation (1)
I
1 1. .2
Yo=—= | (Prt=wx
. jlz Lunct)
o

3 2
v _i[&+£]

Bl 2 s

ubstituting the values of PLw and El
_ [Bx33x1 0° |, Bul 0 }{34]
310" 3 g

=26 55x1 0% m

Y =26.25 mm

1]
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P =60 KN

B

0.8m

az D
) 06m oI 15m .

Areas
a1 = 500 mm?
az = 1000 mm®
For the truss as shown in the figure above, Determine the vertical deflection at the joint C.
Solution:

Since no vertical load is applied at Joint C. we may introduce dummy load Q. as shown below

Q P

Using castigliano's theorem and denoting by the force Fi in a given member i caused by the combined
loading of P and Q. we have
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R Yer 1 _fRLYeF
\'I'rc E[,ﬂﬂ_lE]ﬁ EE[F ﬁ ...... |:1jl

Free body diagram : The free body diagram is as shown below

A Q
A Y C E
340 =——
3
4
3/40Q =8
B D

Force in Members:

Considering in sequence, the equilibrium of joints E, C, B and D, we may determine the force in each

member caused by load Q.
Joint E: FCE = FDE =0
Joint C: Fac = 0; Fep = -Q

Joint B: Fag = 0; Fgp = -3/4Q

N

~. Fan=5/4Q

Feo=0Q N
FE.D = 3/4 Q
The total force in each member under the combined action of Q and P is

2 RLi J2RL
Member Fi oF /16Q Li,m Ai,m - =
A ) a4

AB 0 0 0.8 5000x10°° 0

AC +15P/8 0 0.6 5000x10~° 0
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]

AD +5P/4+50/4 5/4 1.0 5000x10°° 3125P+3125Q
BD -21P/8-3Q/4 -3/4 0.6 1000x10°° 1181P+338Q
CD -Q -1 0.8 1000x10°° +800Q
CE 15P/8 0 1.5 500x10°° 0
DE -17P/8 0 1.7 1000x1 0—5 0
P =60 KN
FL,
=2 £:43DEP+4253Q ey
A Jal

Sub-(2) in (1)
Deflection of C.
FL | aF
Y= il B i
© E[ A, ]3[31
(43DEF‘ +4263 G‘!j

M| —

Since the load Q is not the part of loading therefore putting Q = 0

1 3
v.:—m[aaua]x[au x10°]

Y¥.=3.539 %107 m
¥e=353%mm

3. For the beam and loading shown, determine the deflection at point D. Take E = 200Gpa, | =

28.9x10° mm*

W= 54 kN/m

=

a:

1.35

b=225

L=3Em

Solution:

Castigliano's Theorem :
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Since the given loading does not include a vertical load at point D, we introduce the dummy load Q as
shown below. Using Castigliano's Theorem and noting that E.| is constant, we write.

_ mom
oA

1

~ Al

]dx

)

The integration is performed seperatly for portion AD and DB
Reactions
a+ 1 |W" %l:r
= S ==
q |
oYY Y Y Y Yy
b
Rale 2 S =(Re
o = ==
Using F.B.D of the entire beam
2
R.ﬂ.: ﬂ + [ E T
2L L
_whia+1/20%  _a
Rp=m—— =~ +0=7T
: C "L

Portion AD of Beam :
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A l M;
W
A
X

Ra =

L

[
"
M
juil

aa L
substituting inta equatiun (11 and integrating from A to D gives

b
EIIM1[ ] R'A}{[ 3 ]d}{
- RAEI h

3EIL
substituting for B 4 and then set the dummy load 'y’ equal to zero

h3
I[ ] EEILE """ @

Portion DB of Beam :

From Using the F.B.D shown below we find the bending moment at a distance V from end B is

W
VY
YY YYYYYYVYY Y i "IFB
MZ T 1';!" *
A V<b = Rg
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:
%:sz—ﬂ
2
whia +1/2b)% 2 W
= — s+ — - —
[ C : L] 2
oMy _ a8y
30 L

substituting into equation (1) and integrating from point 'b'where % =0 to point T where % = bwe write.

b
z
1 Mz%d‘f :1_"‘ Rﬁv_ﬂ vy
El an El 2 L
I
Rgab?® _wah4

JEIL  BEIL
Substituting for By and setting @ =0

1 M _Iwh(a+1f2hjjab3 wah®
—_— 2_ '|I|' = -
El aa L IEIL  BEIL

Sath* + ab®
T W e 3]
24EIL

Deflection at point D:

Recalling eq (1) . (2) and (3) we have

wab®

Yy = 43 + Bah + b
: 24E|L2[ |
3
= WA asb][ash]
24EIL
_wab®
Y= 24EIL[4E h] ........(4)‘
substituting the values of wa bE |l and Lwe obtain
¥p= 1272 mm 1|

4. For the uniform loaded beam with following supports. Determine the reactions at the supports

W
Y Y YY Y YYYYYYY 'qri
A |C
yaN B AN
L L2
= f=
Solution:
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Ans.
13
2
Rg= o2l
32
WL
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