CS2403- DIGITAL SIGNAL PROCESSING
UNIT |

Signals:
Signal is a function of one or more independent variables which contain
some information.

System:
A system is a set of elements or functional block that are connected
together and produces an output in response to an input signal.

Processing:
Operations performed by the system on the signal is called
processing.

TypesOf signal processing:
1.Analog signal processing.
2.Digital signal processing.

Analog signal processing:
In this processing input signal,output signal and the
system are all analog in nature.

Digital signal processing:
Dsp is the processing of signals by digital
systems.Input and output signals are also digital in nature.

Basic elements of Digital signal processing:
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ADC:

It converts analog input to digital input.

Digital Signal processor:

It performs amplification,attenuation,filtering,spectral analysis,feature
extraction etc operations on digital data.

DAC:

Some of the processed signals are required back in the analog form.So we

use DAC to conwert digital output to its analog equivalent.

Advantages of Dsp over Anlog signal processing:

1.Flexibility.
2.Accuracy.
3.Easy storage.

4 Mathematical processing.

5.Cost.
Applications:

1.Speech processing.
2.Telecommunication.

3.Biomedical Engineering.

4.Instrumentation
Types of signals based on time:
1.Continuous time signals.

2.Discrete time signals.

Continuous time signals:
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Continuous time or analog signals are signals that are
defined for every value ofa <t <b, where (a, b) canbe (-¥, +¥),i.e., x (t) = e-|t|
or x(t) = cos(pt). .

Frequency concept in continuous time signal:

J'G{;I): .’ICDS{QF-I-Q} —o0 < [ < oh

.rﬂ{r+Tp ]=1‘nl_r]. Tp =—: fundamental period. Increasing F means increasing

oscillation in time domain. F = 0 corresponds to Tp = 0.

Discrete time signal:

Discrete-time signals are defined at discrete-time instants and between
the two discrete time instants are undefined but are not zero. They can be obtained
either by sampling analog signals or they can be discrete in nature like discrete
measurement signals.

A discrete-time signal having a set of discrete values is called a digital
signal. Note that sampling an analog signal produces a discrete-time signal. Then
quantization of its values produces a digital signal.

vim)
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Thus, the sequence values x(0) to x(N - 1) may often be considered to be the
elements of a column vector as follows:

x = [x(0), x(1),...,x(N = 1)]"

Discrete-time signals are often derived by sampling a continuous-time signal, such
as speech, with an analogto-digital (A/D) conwverter) For example, a continuous-
time signal x,(t) that is sampled at a rate of fs = I/Ts samples per second produces
the sampled signal x(n), which is related to xa(t) as follows:

X(n)=Xo(nT;)
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Classification of Signals

1. Finite duratton  x(n) =0 n > N
Infinite duration

2. Right-Left sided
x(n)=0  n <N, right-sided
x(n)=0 n>N, left-sided

Some Elementary Discrete-Time Signals

1l n=
unit sample sequence oln)= {0 }
}I -_—

1 n=
unit step sequence u n [
lU n < O

. { ) n n=0
unit ramp u (n)=
P, 1_0 n<0

exponential x(n)=a" for all n
If @ is complex, then a = re’? — x(n)=r"e’?"

=r"(cos@n+ jsinfn)
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Energv and Power Signals

2
+0oo
Energy is defined as £ = Z‘.‘(‘(??] if E is finite, i.e., o < £ <%, then x(n) is callec

Energy Signal. However. many signals that have an infinite energy. have a finite average

power. Average power is defined as

= 11111 ] >, |-T(” * :

N—m 24 + -N

If we define the signal energy of x(n) over the interval (-N, N) as

N 2
Ey=> ‘x(_n‘ then = lim E,
N

N—x

and therefore. P, = lim

E,, clearly if E is finite, then P, = 0.
No=2N+1

Example — Unit Step Sequence

|HHW

Obviously, it is not an energy signal but it is a power signal.

uin)

]

N
p_iﬁzzﬁq Z‘T H‘ —frm 1,,2

_ N+1 1 _
[im——=—>" " .
N—x= 2N + 1 2 it is a power signal!
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Periodic and Aperiodic Sequences:

A discrete-time signal may always be classified as either being
periodic or aperiodic. A signal x(n) is said to be periodic if, for some positive real
integer N,

X(n)=x(n+N) (1.1)

for all n. This is equivalent to saying that the sequence repeats itself every N
samples. If a signal is periodic with

period N, it is also periodic with period 2N, period 3N, and all other integer
multiples of N. The fundamental period, which we will denote by N, is the
smallest positive integer.

If Eg. (1 .1) is not satisfied for any integer N, x(n) is said to be an aperiodic signal.

EXAMPLE 1.2.1 The signals

n a >
xi(n)=a uin):{c_ n<0

and xa(n) = cos(n?)
are not periodic, whereas the signal
is periodic and has a fundamental period of N = 16,
If x,(n) is a sequence that is periodic with a period N, and x;(n) is another sequence that is periodic with a
period N, the sum
x(n) = x1(n) 4+ xa2(n)
will always be periodic and the fundamental period is

NN,

= —— 1.2
ged(Ny, Na) (4.2)

where gcd(N), N2) means the greatest common divisor of Ny and N;. The same is true for the product; that is,
x(n) = xi(n)xz(n)
will be periodic with a period N given by Eq. (/.2). However, the fundamental period may be smaller.
Given any sequence x(n), a periodic signal may always be formed by replicating x(n) as follows:

00

¥(n) = Z x(n—kN)

k=—00

where N is a positive integer. In this case, y(n) will be periodic with period N.


http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

1.2.5 Symmetric Sequences

A discrete-time signal will often possess some form of symmetry that may be exploited in solving problems.
Two symmetries of interest are as follows:

Definition: A real-valued signal is said to be even if, for all n,
x(n) = x(—n)
whereas a signal is said to be odd if, for all n,
x(n) = —x(—n)
Any signal x(») may be decomposed into a sum of its even part, x.(r), and its odd part, x,(n), as follows:
x(n) = xe(n) + xo(n) (1.3)
To find the even part of x(n) we form the sum
xe(n) = 3{x(n) + x(—n))
whereas to find the odd part we take the difference
xo(n) = 3{x(n) = x(—n)}

For complex sequences the symmetries of interest are slightly different.

Definition: A complex signal is said to be conjugate symmetric* if, for all n,
x(n) = x"(—n)
and a signal is said to be conjugate antisymmetric if, for all n,
x(n) = —x*(—n)

Any complex signal may always be decomposed into a sum of a conjugate symmetric signal and a conjugate
antisymmetric signal,

1.2.6 Signal Manipulations

In our study of discrete-time signals and systems we will be concerned with the manipulation of signals. These
manipulations are generally compositions of a few basic signal transformations. These transformations may be
classified either as those that are transformations of the independent variable n or those that are transformations
of the amplitude of x(n) (i.e., the dependent variable). In the following two subsections we will look briefly at
these two classes of transformations and list those that are most commonly found in applications.
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Transformations of the Independent Variable

Sequences are often altered and manipulated by modifying the index n as follows:

y(n) = x(f(n))

where f(n) is some function of n. If, for some value of n. f(n) is not an integer, y(n) = x(f(n)) is undefined.
Determining the effect of modifying the index » may always be accomplished using a simple tabular approach
of listing, for each value of n, the value of f(n) and then setting y(n) = x(f(n)). However, for many index
transformations this is not necessary, and the sequence may be determined or plotted directly. The most common
transformations include shifting, reversal, and scaling, which are defined below.

Shifting This is the transformation defined by f(n) = n — ng. If y(n) = x(n — ngy), x(n) is shifted to
the right by ng samples if ng is positive (this is referred to as a delay), and it is shifted to the left by ng
samples if ng is negative (referred to as an advance).

Reversal This transformation is given by f(n)= — » and simply involves “flipping” the signal x(n)
with respect to the index n.

Time Scaling This transformation is defined by f(n)=Mn or f(n)=n/N where M and N are
positive integers. In the case of f(n)= Mn, the sequence x(Mn) is formed by taking every Mth sample
of x(n) (this operation is known as down-sampling). With f(n)=n/N the sequence y(n)=x(f(n)) is

defined as follows:
M
— =0,+N, £2N, ---
y(n) = I(N) .

0 otherwise

(this operation is known as up-sampling).

Examples of shifting, reversing, and time scaling a signal are illustrated in Fig. 1-2,

x(n)
3

2

1

-2 -1 1 2 3 4 5 6 7 8

{a) A discrete-time signal.

x(—n)

ol

-2 —1 1 2 3 4 5 6 7 8 -8 -7 -6 -5 -4 -3 -2 -1 1 2
(b) A delay by ng = 2. (¢) Time reversal.
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x(2n) xin/2)
3

TH g TT-& .MT._:

e
-2 ~1 1 2 3 4 5 6 7 8 -2 -1 I 2 3 4 5 6 7 8 9 1011

{d) Down-sampling by a factor of 2. (e} Up-sampling by a factor of 2.

Shifting, reversal, and time-scaling operations are order-dependent. Therefore, one needs to be careful in
evaluating compositions of these operations. For example, Fig. 1-3 shows two systems, one that consists of a
delay followed by a reversal and one that is a reversal followed by a delay. As indicated, the outputs of these
two systems are not the same.

xin) x(n — ng) x(=n —nq)
—_—— Too > T, I ——

(a) A delay T, followed by a time-reversal T,.

xin) x{=n) x{—n 4+ ng)
———— T, = Ty | ———

(b) A time-reversal T, followed by a delay T,

Fig. 1-3. Example illustrating that the operations of delay and reversal do
not commute.

Addition, Multiplication, and Scaling

The most common types of amplitude transformations are addition, multiplication, and scaling. Performing these
operations is straightforward and involves only pointwise operations on the signal.

Addition The sum of two signals
y(n) = xy(n) + x2(n) -0 <n<oo
is formed by the pointwise addition of the signal values.
Multiplication The multiplication of two signals
y(n) = x;(n)xy(n) —00<n<oo
is formed by the pointwise product of the signal values.

Scaling Amplitude scaling of a signal x(n) by a constant ¢ is accomplished by multiplying every
signal value by c:
y(n) = cx(n) -0 <h <o

This operation may also be considered to be the product of two signals, x(n) and f(n) = c.
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1.3 DISCRETE-TIME SYSTEMS

A discrete-time system is a mathematical operator or mapping that transforms one signal (the input) into another
signal (the output) by means of a fixed set of rules or operations. The notation T [-] is used to represent a general
system as shown in Fig. 1-4, in which an input signal x(n} is transformed into an output signal y(n) through
the transformation T'[-]. The input-output properties of a system may be specified in any one of a number of
different ways. The relationship between the input and output, for example, may be expressed in terms of a
concise mathematical rule or function such as

y(n) = x*(n)

or y(n)y = 0.5y(n — 1) + x(n)

It is also possible, however, to describe a system in terms of an algorithm that provides a sequence of instructions
or operations that is to be applied to the input signal, such as

yi(n) =05y(n — 1)+ 0.25x(n)
ya2(n) = 0.25y2(n — 1) + 0.5x(n)
ya(n) = 0.4y3(n — 1)+ 0.5x(n)
y(n) = yi(n) + y2(n) + y3(n)

In some cases, a system may conveniently be specified in terms of a table that defines the set of all possible
input-output signal pairs of interest.

x(n) y(n) =T[x(n)]

E— TI I

Fig. 1-4. The representation of a discrete-time system as a trans-
formation 7'[-] that maps an input signal x(n) into an output
signal y(n).

Discrete-time systems may be classified in terms of the properties that they possess. The most common
properties of interest include linearity, shift-invariance, causality, stability, and invertibility. These properties,
along with a few others, are described in the following section.

1.3.1 System Properties
Memoryless System
The first property is concerned with whether or not a system has memory.

Definition: A system is said to be memoryless if the output at any time n = n, depends only
on the input at time n = ng.

In other words, a system is memoryless if, for any ng, we are able to determine the value of y(np) given only the
value of x(ng).


http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

EXAMPLE 1.3.1 The system
y(n) = x*(n)

is memoryless because y(ng) depends only on the value of x(n) at time ny. The system
yn)y=x(n)+ x(n = 1)

on the other hand, is not memoryless because the output at time np depends on the value of the input both at time ny and at
time Ry — 1.

Static versus Dyvnamic Svstems

Static Systems = memory less = the output doesn’t depend on past or future values of

the input.

Dynamic Systems =having either infinite or finite memory.

Example: _1-’(?3) = Qx(n) + x(n)g Static

N
y(n)=>_ x(n — k) Dynamic-finite
k=0
¥(n)=>" x(n— k) Dynamic-infinite

k=0

Time 1mnvariant versus Time-Invariant Systems

A relaxed system [ 1s time-invariant if
x(n)— v(n)
VK. x(n-k)—=y(n-k)
Example: 1) y(n) =x(n)—xm—-1)
yin—rk)=xm—-Fk)—x(n—k—1) tiune invariant
2) v(n) = nx(n)
yim—-kl=m—-Fklxm—Fk)=nxn—Fk)—lkx(m—-F)
butx(n—k) - nxtn—k) =vin—k)

—> time variant
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Causality

A system is causal if the output at any time depends only on present and past values of
the inputs and not on future values of the input. y(n) = x(-n) is non-casual because v (-1)

=x(1)!

Stable versus Unstable Systems

A system is Stable if any bounded input produces bounded output (BIBO).
Otherwise, it is unstable.
Linearity
A system is linear if
T(a,x,(n)+a,x,(n)) = a,T[x,(n)]+ a,T[x, (n)]

two systems can be connected to each other in two ways:

x(n
™) I, |— | I |—» ym) T=T,eT, =TT,

= for LTI systems only

T;

™\

xJ g ) >y T=T,+ T,
\ T |—

Causality
A system property that is important for real-time applications is causality, which is defined as follows:

Definition: A system is said to be causal if, for any ng, the response of the system at time
no depends only on the input up to time n = nyg.

For a causal system, changes in the output cannot precede changes in the input. Thus, if x,(n) = x2(n) for
n < np, y1(n) must be equal to y2(n) for n < ng. Causal systems are therefore referred to as nonanticipatory.
An LSI system will be causal if and only if h(n) is equal to zero for n < 0.
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EXAMPLE 1.3.4 The system described by the equation y(n) = x(n)+x(n — 1) is causal because the value of the output at
any time n = ng depends only on the input x(a) at time np and at time ng — 1. The system described by y(n) = x{n) + x(n+1),
on the other hand, is noncausal because the output at time n = ny depends on the value of the input at time ng + 1.

Stability

In many applications, it is important for a system to have a response, y(n), that is bounded in amplitude whenever
the input is bounded. A system with this property is said to be stable in the bounded input-bounded output (BIBO)
sense. Specifically,

Definition: A system is said to be stable in the bounded input-bounded output sense if, for
any input that is bounded, |x(n)| < A < o0, the output will be bounded,

[y(n)l < B <

For a linear shift-invariant system, stability is guaranteed if the unit sample response is absolutely summable:

> ) < o0 (1.8)

n=—o0c

EXAMPLE 1.3.5 An L5I system with unit sample response h(rn) = a"u(n) will be stable whenever |a| < 1, because

o0 [= =] . 1
D Il =) _lal =i <!

n=—00 n={}

The system described by the equation y(r) = nx(n), on the other hand, is not stable because the response to a unit step,
x(n) = u(n), is y(n) = nu(n), which is unbounded.

1.4 CONVOLUTION

The relationship between the input to a linear shift-invariant system, x(n), and the output, y(n), is given by the

convolution sum
o0

x(n) * h(n) = Z x(h(n — k)

k=—oc

Because convolution is fundamental to the analysis and description of LSI systems, in this section we look at the
mechanics of performing convolutions. We begin by listing some properties of convolution that may be used to
simplify the evaluation of the convolution sum.

1.4.1 Convolution Properties

Convolution is a linear operator and, therefore, has a number of important properties including the commutative,
associative, and distributive properties. The definitions and interpretations of these properties are summarized
below.
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Commutative Property

The commutative property states that the order in which two sequences are convolved is not important. Mathe-
matically, the commutative property is

x(n) = hin) = hin) = x(n)

From a systems point of view, this property states that a system with a unit sample response h(n) and input x(n)
behaves in exactly the same way as a system with unit sample response x(n) and an input h(n). This is illustrated

in Fig. 1-5(a).

Associative Property

The convolution operator satisfies the associative property, which is

{x(n) * hi(n)} * ha(n) = x(n) * (h1(n) * ha(n)}

From a systems point of view, the associative property states that if two systems with unit sample responses
hy(n) and h,(n) are connected in cascade as shown in Fig. 1-5(b), an equivalent system is one that has a unit

sample response equal to the convolution of h,(n) and ha(n):

x(n)

heg(n) = hy(n) * ha(n)

hin)

vin)

I —

x(n)

——  hy(n)

hin)
—_— x(n)

yin)

{a) The commutative property.

Y

hyin)

ha(m)

yim)
e

x(n)

hy(n) * ha(n)

(k) The associative property.

x{n)

k J

ha(n)

Y

k

yin)

x(n)

hy(n) + ha(n)

{¢) The distributive property.

y(n)

yin)


http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Distributive Property

The distributive property of the convolution operator states that
x(n) * {hy(n) 4+ ha(n)} = x(n) * hy(n) + x(n) * ha(n)

From a systems point of view, this property asserts that if two systems with unit sample responses h(n) and
h3(n) are connected in parallel, as illustrated in Fig. 1-5(c), an equivalent system is one that has a unit sample
response equal to the sum of &, (n) and hz(n):

heg(n) = hi(n) + ha(n)

1.4.2 Performing Convolutions

Having considered some of the properties of the convolution operator, we now look at the mechanics of performing
convolutions. There are several different approaches that may be used, and the one that is the easiest will depend
upon the form and type of sequences that are to be convolved.

Direct Evaluation

When the sequences that are being convolved may be described by simple closed-form mathematical expressions,
the convolution is often most easily performed by directly evaluating the sum given in Eq. (/.7). In performing
convolutions directly, it is usually necessary to evaluate finite or infinite sums involving terms of the form «” or
na”. Listed in Table 1-1 are closed-form expressions for some of the more commonly encountered series.

EXAMPLE 1.4.1 Let us perform the convolution of the two signals

s

and

hin) = uin)

With the direct evaluation of the convolution sum we find

y(n) = x(n) * hin) = Z x(kYhin — k) = Z a‘ulkuin — k)

k==0g k=—og

Because u(k) is equal to zero for k < 0 and u(n — k) is equal to zero for k > n, when n < 0, there are no nonzero terms in
the sum and y(n) = 0. On the other hand, if n > 0,

A i t — an+l
y(n) = Za — i
k=0 —a

A+l

Therefore, y(n) =

u(n)
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Table 1-1 Closed-form Expressions for Some Commonly
Encountered Series

N-=1 |-"-1’JH o 1

|'|‘=, l“:—
;a — ;H 4 lal <1
N=1 N4 N ==

. (N—=D1a""" = Na" +a ; a
2= (T=ay 2 =gy <l
Nl NI
Y n=iINWN -1 Y nt=INN-DEN -1
n=0 n={

Graphical Approach

In addition to the direct method, convolutions may also be performed graphically. The steps involved in using
the graphical approach are as follows:

Plot both sequences, x(k) and A(k), as functions of k.
Choose one of the sequences, say /(k), and time-reverse it to form the sequence h(—k).

Shift the time-reversed sequence by n. [Note: If n > 0, this corresponds to a shift to the right (delay),
whereas if n < 0, this corresponds to a shift to the left (advance).]

Multiply the two sequences x(k) and h(n — k) and sum the product for all values of k. The resulting
value will be equal to y(n). This process is repeated for all possible shifts, n.

EXAMPLE 1.4.2 Toillustrate the graphical approach to convolution, let us evaluate y(n) = x(n)*h(n) where x(n)and hin)
are the sequences shown in Fig. 1-6 (a) and (b), respectively.To perform this convolution, we follow the steps listed above:

Because x (k) and A(k) are both plotted as a function of £ in Fig. 1-6 (@) and (b), we next choose one of the sequences
to reverse in time. In this example, we time-reverse h(k), which is shown in Fig. 1-6(c).

Forming the product, x{(k)h(—k), and summing over k, we find that ¥(0) = L.

Shifting h(k) to the right by one results in the sequence A(1 — k) shown in Fig. 1-6(d). Forming the product,
x(k)h(1 — k), and summing over k, we find that y(1) = 3.

Shifting (1 — k) to the right again gives the sequence A(2 — k) shown in Fig. 1-6 (¢). Forming the product,
x(k)h(2 — k), and summing over &, we find that y(2) = 6.

Continuing in this manner, we find that y(3) = 5, y(4) = 3, and y(n) = 0forn > 4.

We next take h(—k) and shift it to the left by one as shown in Fig. 1-6 (f). Because the product, x(k)h(=1 — k), is
equal to zero for all k, we find that y(—1) = 0. In fact, y(n) = O forall n < 0.

Figure 1-6(g) shows the convolution for all n.
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hi—k)
3 3
2 2
1 |
* -—0—8 8 ——0— 8 -
21 V1 23 4 5 6 7 8 —2 —| I 2 3 4 5 6 7 8
() {d)
h(2 — k) h(—1— k)
F
3 43
2 42
1 |
‘ ) k
— &
-2 — 1 2 3 4 5 6 7 8 -2 1 1 2 3 4 5 6 7 8
(e) 0]
y¥{n)
6
4
) I I )
ﬂ—.—.‘—l ST 3 L—f=
—2 | I 2 3 4 5 6 7 8

(&)

A useful fact to remember in performing the convolution of two finite-length sequences is that if x(n) is of
length L, and A(n) is of length L2, y(n) = x(n) * h(n) will be of length
L=L+L>—1

Furthermore, if the nonzero values of x(n) are contained in the interval [ M, N, ] and the nonzero values of A(n) are
contained in the interval [M},, N,], the nonzero values of y(n) will be confined to the interval [M, + M;,, N, +N;].
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Cross-Correlation

r(6)= fm‘(n){r(u—f) £=0,+1,+2

n=x

Definition: = in‘(ﬂ +£)v(n)
= x(£)* y(-¢)
ra(f)=15(=1)

When vin) = x(n), then it is called auto-correlation.

+x;

A symmetric (even) function 7_(¢) Z x(np(n—£)= Z x(nk(n+£) = x(n)* x(-n)

n=1x n=

H

Properties

F'n('[}) = f .T(ﬂ)' 1‘(31) = f |.1'{:ﬂ]2 = E,_ energy

nI—=x s —00

|J'JO,(£]| < Jra(0), (0) = \I.“EIEJ_

and . (f)<r.(o)=E,

Normalized auto or cross correlation:

_7=lf) . Ay
==t =50

For periodic signals. the correlation function i1s defined in one period:

<1

M

Z x(np(n—12).

?;_T(f) Lim

M—= M +1,5

where M is the number of observed samples.

If x and v are both periodic with period V. then

Im( Z x(n)v(n—£)= correlation is also a periodic sequence with period V.

<Y m=e
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1.5 DIFFERENCE EQUATIONS

The convolution sum expresses the output of a linear shift-invariant system in terms of a linear combination of
the input values x(n). For example, a system that has a unit sample response h(n) = «"u(n) is described by the
equation

oC
yn) =" atxn— k) (1.9)
=0
Although this equation allows one to compute the output y(#) for an arbitrary input x(n), from a computational
point of view this representation is not very efficient. In some cases it may be possible to more efficiently express
the output in terms of past values of the output in addition to the current and past values of the input. The previous
system, for example, may be described more concisely as follows:

y(n)=ayn — 1) + x(n) (1.10)

Equation (/./0) is a special case of what is known as a linear constant coefficient difference equation, or LCCDE.
The general form of a LCCDE is

9 7
Yy =" b(k)x(n — k) — > a(k)y(n — k) (1.11)
k=0

k=1

where the coefficients a(k) and h(k) are constants that define the system. If the difference equation has one or
more terms a(k) that are nonzero, the difference equation is said to be recursive. On the other hand, if all of
the coefficients a(k) are equal to zero, the difference equation is said to be nonrecursive. Thus, Eq. (1.10) is
an example of a first-order recursive difference equation, whereas Eq. (/.9) is an infinite-order nonrecursive
difference equation.

Difference equations provide a method for computing the response of a system, y(#n), to an arbitrary input
x(n). Before these equations may be solved, however, it is necessary to specify a set of initial conditions. For
example, with an input x(») that begins at time » = 0, the solution to Eq. (/.//) at time n = 0 depends on the

values of y(—1), ..., y(—p). Therefore, these initial conditions must be specified before the solution for n > 0
may be found. When these initial conditions are zero, the system is said to be in initial rest.

Given an LCCDE, the general solution is a sum of two parts,
y(n) = yp(n) + yp(n)

where y;,(n) is known as the homogeneous selution and yp(n) is the particular solution. The homogeneous
solution is the response of the system to the initial conditions, assuming that the input x(n) = 0. The particular
solution is the response of the system to the input x(n), assuming zero initial conditions.

The homogeneous solution is found by solving the homogeneous difference equation

P
Y+ atk)y(n —k)=0 (1.13)

k=1
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The solution to Eq. (/./3) may be found by assuming a solution of the form
ya(n) =z"

Substituting this solution into Eq. (/./3) we obtain the polynomial equation

P
P Ea(k)z"—* =0
k=1

or 2" PLzP 4 a(l)z" +a@)zP P+ +a(p—Dz4a(p) =0

The polynomial in braces is called the characteristic polynomial. Because it is of degree p, it will have p roots,
which may be either real or complex. If the coefficients a(k) are real-valued, these roots will occur in complex-
conjugate pairs (i.e., for each complex root z; there will be another that is equal to z*). If the p roots z; are
distinct, z; # z; for k # i, the general solution to the homogeneous difference equation is

b
i) = Agzf (1.14)
k=1

where the constants A, are chosen to satisfy the initial conditions. For repeated roots, the solution must be
modified as follows. If z, is a root of multiplicity m with the remaining p — m roots distinct, the homogeneous

solution becomes "
yi(n) = (A + Agn + -+ A,n™ )] + Z Apzp (1.15)

k=m+|

For the particular solution, it is necessary to find the sequence y,(n) that satisfies the difference equation for
the given x(n). In general, this requires some creativity and insight. However, for many of the typical inputs that
we are interested in, the solution will have the same form as the input. Table 1-2 lists the particular solution for
some commonly encountered inputs. For example, if x(n) = a"u(n), the particular solution will be of the form

yp(n) = Ca"u(n)

provided a is not a root of the characteristic equation. The constant C is found by substituting the solution into
the difference equation. Note that for x(n) = C&(n) the particular solution is zero. Because x(n) = 0 forn > 0,
the unit sample only affects the initial condition of y(n).

Table 1-2 The Particular Solution to an LCCDE
for Several Different Inputs

Term in x(n) Particular Solution

C C|

Cn Cin+0C,

Ca" C.a"

C cos(nwy) C, cos(nawy) + C; sin(nwy)

C sin(nwy) C cos(nay) + C; sin(nwy)

Ca" cos(nay) Ca" cos(nay) + Caa" sin(nwy)
Cé(n) None
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EXAMPLE 1.5.1 Let us find the solution to the difference equation
y(n) = 0.25y(n — 2) = x(n) (1.16)

for x(n) = u(n) assuming initial conditions of y(—1) = 1 and y(-2) = 0.
‘We begin by finding the particular solution. From Table |-2 we see that for x(n) = u(n)

}'p(ﬂ‘) = C,

Substituting this solution into the difference equation we find

C,—025C, =1
In order for this to hold, we must have l 4
G =107 3
To find the homogeneous solution, we set y,(n) = z", which gives the characteristic polynomial
2 -025=0
or (z+05)(z-05)=0

Therefore, the homogeneous solution has the form
yu(n) = A(0.5)" + Ay(—0.5)"

Thus, the total solution is
y(n) = % + A1(0.5)" + Ay(-0.5)" n=0 (117

The constants A; and A; must now be found so that the total solution satisfies the given initial conditions, y(—1) = 1 and
¥(—2) = 0. Because the solution given in Eq. (/./7) only applies for n > 0, we must derive an equivalent set of initial
conditions for y(0) and y(1). Evaluating Eq. (J./6)atn =0 and n = i, we have

y(0) —025y(-2) =x(0) =1

y D =025y(-1)=x(1)=1
Substituting these derived initial conditions into Eq. (/.17) we have

YO =4+ A+ A =1

y)=3+14,-14, =1

Solving for A| and A; we find

Thus, the solution is
yn) =3 - (057" +1(-05)" n=0

Although we have focused thus far on linear difference equations with constant coefficients, not all systems
and not all difference equations of interest are linear, and not all have constant coefficients, A system that
computes a running average of a signal x(n) over the interval [0, n], for example, is defined by
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l n
y(n) = mgl(ﬂ n=>0

This system may be represented by a difference equation that has time-varying coefficients:
n

y(n) = yin = 1)+ x(n) n=0

n+1

Although more complicated and difficult to solve, nonlinear difference equations or difference equations with
time-varying coefficients are important and arise frequently in many applications.

Z Transform:

The z-transform is a useful tool in the analysis of discrete-time
signals and systems and is the discrete-time counterpart of the Laplace transform
for continuous-time signals and systems. The z-transform may be used to solve
constant coefficient difference equations, evaluate the response of a linear time-
invariant system to a given input, and design linear filters.

Definition: The z-transform of a discrete-time signal x(n) is defined by’

o=
X(z) = E x(n)z™"
He==00
where z = re/” I1s a complex variable. The values of z for which the sum converges define a

region in the z-plane referred to as the region of convergence (ROC).

Notationally, if x(n) has a z-transform X (z), we write
Z
x(n) «— X(z)

The Region of Convergence (ROC) is the set of all values of z, where x(z) attains a
finite value
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M 1.6.3 Properties of ROC, Poles and Zeros

The following is a list of several important properties of the z-transform.

1. The ROC is a ring or a disc centered at the origin: ry < z < r9. Note that r; or
ry could be 0 or oc.

|:|Ro-c

e

Im{z)

Im(z)

D - N .

-

Im(z)

\ Relz)

(a) z(n) left-sided.

N

/

&

(b) Generic x(n).

\ |

/

Figure 1.76. The geometries of the ROC.

2. The ROC cannot contain any poles.

(c) x(n) right-sided.

3. If x(n) is a finite-duration sequence (i.e., x(n) = 0 except for Ny < n < Nj), then

the ROC is the whole z-plane except possibly z = 0.

4. If z(n) is a right-sided sequence (x(n) = 0 for n < Ny), then the ROC is

where ppa. 1s the outermost finite pole of X (z).

|Z| > |pmai‘|-.~

5. If z(n) is a left-sided sequence (x(n) = 0 for n > Na), then the ROC is

where ppip, 1s the innermost non-zero pole of X(z).

|z < |pm1'n|:

6. Generalizing Example 1.32 and Example 1.33, we have:

—a"u(—n — 1) «—

a"u(n) —

1—az—

1

—aqz 1’

1
1?7

where the ROC is |z| > |al, (1.51)

where the ROC is |z| < |al. (1.52)
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7. An LTI system is BIBO stable if and only if the ROC of its transfer function H(z)

includes z = 1, (i.e., includes the unit circle):

[Z }h{n)z_”] < oo
n z=1
i
Y |h(n)] < oo <« BIBO stability.

n

Examplel:

Let us consider the z-transform of a™u(n):

[ u)

ZT {a"u(n)} = ) a""

n=>0

— m Ef |ﬂ,z_1| < 1._.
z

2 —a

The region of convergence (ROC) is the set of all values of z for which the z-transform
converges. In this example, it is |z| > |al.

O Zero
X Pale

[]roC ) Tm(z)

Rel(z}
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Example2:

Let us find the z-transform of the sequence x(n) = —a"u(—n — 1).

o0 -1 -
X(2)= Z x(n)z ™" = — z "z " = — Z(a—lz 1
n=—oo n=—ro —

with the sum converging if |a~'z| < 1 or |z| < |a|. A pole-zero diagram with the region of convergence indicated is given
in the figure below.

Im(z)

Re(z)
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Common z-Transform Pairs

Sequence z-Transform Region of Convergence
8(n) 1 all z
I
a"u(n) —- lz| > |a|
| —az!
I
—a"u(—n — 1) lz| < |ef
| —@z!
er'l |
i el (V'S
na"u(n) 0 —ar ) Iz |
"u(—n — 1) w 2] < Jo
—na"u(—n — = 7| < |o
(1 —az 1)
(o t() | — (cos wg)z ™! 2> 1
COstH Wi 2| =
“o | — 2(cosawg)z—! + 2-2
(sinwg)z ™'
lz] = 1

sin(re Ju(n}

1 — 2{cosen)z~! 4+ 272

Properties:

Linearity
As with the DTFT, the z-transform is a linear operator. Therefore, if x(n) has a z-transform X(z) with a region
of convergence KR,, and if y(n) has a z-transform ¥ (z) with a region of convergence R,

w(n) = ax(n) + by(n) <> W(z) = aX(z) + b¥ (2)

and the ROC of w(n) will include the intersection of R, and R, that is,

R, contains R, N R,

However, the region of convergence of W (z) may be larger. Forexample, if x(n) = u(n)and y(n) = u(n — 1), the
ROC of X(z) and ¥ (z) is |z| = 1. However, the z-transform of w(n) = x(n) — y(n) = §(n) is the entire z-plane.

Time Reversal
If x(n) has a z-transform X (z) with a region of convergence R, that is the annulus & < |z| < £, the z-transform
of the time-reversed sequence x{—#) 18

x(—=n) -(—f-—b- X(iz™h

and has a region of convergence 1/8 < |z| < | /a, which is denoted by 1/R,.
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Shifting Property

Shifting a sequence (delaying or advancing) multiplies the z-transform by a power of z. That is to say, if x(n)
has a z-transform X(z),

x(n —ng) PN 27" X(2)

Because shifting a sequence does not affect its absolute summability, shifting does not change the region of
convergence. Therefore, the z-transforms of x(n) and x(n — np) have the same region of convergence, with the
possible exception of adding or deleting the points z = () and z = po.

Multiplication by an Exponential

If a sequence x(n) is multiplied by a complex exponential ",

a"x(n) <5 X '2)

This corresponds to a scaling of the z-plane. If the region of convergence of X(z) isr_ < |z| < ry, which will
be denoted by R, the region of convergence of X(a~'z)is |a|r_ < |z| < |a|r,, which is denoted by |a|R,. As
a special case, note that if x(n) is multiplied by a complex exponential. /",

e/ x(n) < X (e /*z)

which corresponds to a rotation of the z-plane.

Convolution Theorem
Perhaps the most important z-transform property is the convolution theorem, which states that convolution in

the time domain is mapped into multiplication in the frequency domain, that is,

y(n) = x(n) % h(n) <2 Y(z) = X(2)H(2)
The region of convergence of ¥ (z) includes the intersection of R, and R,

R, contains R, N R,

However, the region of convergence of Y (z) may be larger, if there is a pole-zero cancellation in the product
X(2)H(2).

Derivative
If X(z) is the z-transform of x(n), the z-transform of nx(n) is

nx(n) _.dX(:J
' © dz
Repeated application of this property allows for the evaluation of the z-transform of n*x(n) for any integer k.
These properties are summarized in Table 4-2. As illustrated in the following example, these properties are

useful in simplifying the evaluation of z-transforms.
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Conjugation

If X(z) is the z-transform of x(n), the z-transform of the complex conjugate of x(n) is
X(n) = X*(z")
As a corollary, note that if x(n) is real-valued, x(n) = x*(n), then
X(z) = X*(z")

Initial Value Theorem
If x(n) is equal to zero for n < 0, the initial value, x(0), may be found from X (z) as follows:
x(0) = |_l‘nrlj X(2)
This property is a consequence of the fact that if x(n) = 0 forn < 0,
X@) =xO+ x(Dz"" 4+ x(2)z7% 4
Therefore, if we let z — oo, each term in X(z) goes to zero except the first.

Example:
find the z-transform of x(n) = ne"w(—n). To find X(z), we will use the time-reversal and
derivative properties.

I g Izl =
1y 2
Therefore, -—) uin) «— lz] > =
o | —a=iz-!
and, using the time-reversal property,
1
a"u(—n) DAL |z] < o

l—w 'z
Finally, using the derivative property, it follows that the z-transform of na"u(—n) is
d 1 o'z

_zzl—a"'z:—(l—a lz)? 2l <@

A property that may be used to find the initial value of a causal sequence from its z-transform is the initial
value theorem.
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Final Value Theorem. Suppose that x(k), where x(k) =0 for £ < 0, has the z
transform X{z) and that all the poles of X(z) lie inside the unit circle, with the possible
exception of a simple pole at z = 1. [Thus 15 the condition for the stability of X(z), or the
condition for x(k) (k=0.1.2, ._.) to remain finite.] Then the final value of x(k), that is,

Eaat a1

the value of x(k) as k approaches infinity, can be given by
lj_m x(k) = l_i.llll[(l -z X (2)]

To prove the final value theorem, note that

ZIx(b)] = X(2) = i x(k)z™*

Zx(k-D]=z"X(2)=> x(k -1z

Hence,

Z x(k)zF - Z x(k-DzF =X(2)-z7X(2)

k=0 k-0

Taking the limit as z approaches unity, we have

liﬂ}[z x(k)z™ =3 x(k - 1):"’} = Lim[(1 - z X (2)]

i ] )

Because of the assumed stability condition and the condition that x(k) = 0 for k < 0, the
left-hand side of this last equation becomes

i [x (k) —x(k —1)] = [x(0) = x(=D]+ [x(1) = x(0)] + [x(2) = x(D)] + - = x(o0) = Lim x(k)

k=0
Hence,

lim x(k) = lim[(1 - =) X (2)]

The final value theorem is very useful in determining the
behavior of x(k) as £ — « from its z transform X7z).

THE INVERSE z-TRANSFORM

The z-transform is a useful tool in linear systems analysis, However, just as important as techniques for finding
the z-transform of a sequence are methods that may be used to invert the z-transform and recover the sequence
x(n) from X (z). Three possible approaches are described below.
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1 Partial Fraction Expansion

For z-transforms that are rational functions of z,

Eb(k)z" ﬁ(l — Bz

k=1
=C -
a(k)z* ]'1(1 —az Y

X(‘}_

M'»‘-‘II

k=0

a simple and straightforward approach to find the inverse z-transform is to perform a partial fraction expansion
of X(z). Assuming that p > g, and that all of the roots in the denominator are simple, o; # a; fori # k, X(z)
may be expanded as follows:

Ay

X(z)= —_—
(2) 1 —ayz!

(4.5)

I Mw:

for some constants A; fork = 1,2,..., p. The coefficients A; may be found by multiplying both sides of
Eq. (4.5)by (1 — a;z~") and setting z = ;. The result is
= [0 —wz"HX@)],_,
If p < g, the partial fraction expansion must include a polynomial in z~! of order (p —g). The coefficients of this
polynomial may be found by long division (i.e., by dividing the numerator polynomial by the denominator). For
multiple-order poles, the expansion must be modified. For example, if X(z) has a second-order pole at z = ay,
the expansion will include two terms,
B| B‘)

+
| =gz (1 =gz )2

where B, and B; are given by

d )
By = C!&I:;i—z“ -—Q‘,QZ"I]'X(Z):I

1=wy

By =[(1 -z YX(2)],_,

EXAMPLE Suppose that a sequence x(n) has a z-transform
NN Co s B b LR
=i+ 17 (=) (1- 1)

with a region of convergence |z| = % Because p = ¢ = 2, and the two poles are simple, the partial fraction expansion has
the form

X{z):C+]
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The constant C is found by long division:

2
T
%2—2 — %:_' +2
—iz7l 42
Therefore, C = 2 and we may write X(z) as follows:
R

and Ay=[(1- i7" )x@] L, =

ey

X(z)=2+ ey Sl R

Finally, because the region of convergence is the exterior of the circle |z] = 1 x(nYyis the right-sided sequence

x(n) = 28(n) +3(%)HM(H] - (ql}"u(n)

2 Power Series

The z-transform is a power series expansion,

[s.4]
X(z)= Z x()z "= (=D =Dz (O Fx(D 2 x4

N=—00

where the sequence values x(n) are the coefficients of z™" in the expansion. Therefore, if we can find the power
series expansion for X (z), the sequence values x(xn) may be found by simply picking off the coefficients of z7".
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EXAMPLE Consider the z-transform
X(z) = log{l +az™") Iz] = |al
The power series expansion of this function is

Sl
logi 1 +a:r = Z —(=1)"tlgn e
M

n=I|

Therefore, the sequence x(n) having this z-transform is

|
—(—1)y*g" n=>10
xi{n)= ¢ n

0 n =10

Difference Equation To see how the z-transform is related to the time-domain
representation, we erpand it :
Y(z) 1
X(z) 1—az1
Y(z) —az"1Y () X(2)
Y(z) = az Y (2)+ X(2)

Inverting the z-transform, we have:

y(n) = ay(n — 1) + x(n).

EXAMPLE Consider the linear constant coefficient difference equation
y(n) =0.25y(n — 2)+ x(n)

Let us find the solution to this equation assuming that x(n) = d(n — 1) with y(—1} = y(-2) = L.
™/e begin by noting that if the one-sided z-transform of y(n) is ¥,(z}, the one-sided z-transform of y(n — 2) is

o0

Dy =0 = p=2 + y(=D2 Y pmz T = y(=2) + y(= D27 + 27 ()

H=0 n=0


http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Therefore, taking the z-transform of both sides of the difference equation, we have
¥Vi(2) = 0.25[y(=2) + y(— Dz ' + 221 (2)] + X, (2)

where X (z) = z~'. Substituting for y(—1) and y(—2), and solving for ¥,(z), we have

a
To find y(n), note that ¥,(z) may be expanded as follows:?
11 9
Yi(z) = I—:—‘-‘,—; - rﬁ;
Therefore, o =[§(3)" = (= 3) Jum

Example2:

Evaluate the convolution of the two sequences
hin) = (0.5)"u(n) and x(n) = 3"u(—n)
To evaluate this convolution, we will use the convolution property of the z-transform. The z-transform of h(n) is

1
z=1

I
2

Hiz)=

- |zl > 3

and the z-transform of x(n) may be found from the time-reversal and shift properties, or directly as follows:

= 4]

LH
Xi(z) = Z x(n)z™" = Z 3zm

H=— 00 e
3 ! I 3!
:;{%z) zl—%_-::_l—:}z‘l |Z|-=:3

Therefore, the z-transform of the convolution, y(n) = x(n) * h(n), is

1 3!

Y(z) = — :
() 1 — %z" ] — 3z
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The region of convergence is the intersection of the regions |z| > 1 and |z| < 3, which is
inverse z-transform, we perform a partial fraction expansion of ¥ (z),

b | =

A B

Yiz)= = %z" -- a0
where A=[(1-3"")]_, =%
and B=[(1=3""YW(@).m=-¢

Therefore, it follows that
ym = (§)(3) utn) + (§)3"u(=n 1)

UNIT -1

DISCRETE FOURIER TRANSFORM:

The sequence X(k) is called the N-point DFT of x(n). These
coefficients are related to x(n) as follows:

N1
Xik) = Z_[‘[’jr}!’:_-'i::"k.';:‘\: D<=k <N

t=ll

Let x(n) be a finite-length sequence of length N that is equal to zero outside the interval
[0, N -1].

NI
x(n) = ml Y Xtk mHN 0= < N

=il

we write DFT pair as,

xm) &5 x k)

Comparison of DFT and DTFT:

< |z| < 3. To find the
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quﬁlparing the definition of the DFT of x(n) to the DTFT, it follows that the DFT coefficients are samples
of the DTFT:

N—=l [=5]
X (k)= Z;-(n}e'”””“"“' _ Z x{njf—jzrrn.t.-f.’v' — X(fjw}lw-inkf."-'
n=f{l =

Comparison of DFT and Z transform:

the DFT coefficients correspond to N samples of X (z) that are taken at N equally spaced points
around the unit circle:

X(k) = X(2)|,

sgrpl 2mk AN |

DFT PROPERTIES

In this section, we list some of the properties of the DFT. Because each sequence is assumed to be finite in length,
some care must be exercised in manipulating DFTs.

Linearity

If xy(n) and x2(n) have N-point DFTs X (k) and X.(k), respectively,

axy(n) + bhya(n) £ aX (k) 4+ bXak)

In using this property, it is important to ensure that the DFTs are the same length. I x(n) and xva(n) have
different lengths, the shorter sequence must be padded with zeros in order to make it the same length as the
longer sequence. For example, if xy(n) is of length Ny and xa2(n) is of length N> with N3 = Ny, x,(n) may be
considered to be a sequence of length V> with the last ¥y — N values equal 1o zero, and DFTs of length Ny may
be taken for both sequences.
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Symmetry
If x(n) is real-valued, X (k) 1s conjugate symmetric,

X(k) = X"((=k) = XN — k)w
and if x(n) is imaginary, X (k) is conjugate antisymmetric,

Xiky= =X "((—k)D) = —X"(UN — kny

Circular Shift

The circular shift of a sequence x(n) is defined as follows:
xl(n = np i Ralny = Fin — npyRy(n)

where ny is the amount of the shift and Ry (n) is a rectangular window:

| D<n <N

Ryim) = {E} else

A circular shift may be visualized as follows. Suppose that the values of a sequence x(n), fromn =01o0n =
N — 1, are marked around a circle as illustrated in Fig. or in an eight-point sequence. A circular shift to the
right by iy corresponds to a rotation of the circle ng positions in a clockwise direction, An example illustrating
the circular shift of a four-point sequence is shown in Fig. . Another way to circularly shift a sequence is to
form the periodic sequence ¥(n), perform a linear shift, ¥(n — ny), and then extract one period of ¥(n — ny) by
multiplying by a rectangular window.
If a sequence 1s circularly shifted. the DFT is multiplied by a complex exponential,
DFT

x((n = n)y Ran) &= Wi X k)

Similarly, with a circular shift of the DFT, X((k — kq))w . the sequence is multiplied by a complex exponential,

wrhox i) E X ((k + kohn
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—
—

z(0) z(6)
z(7) z(1) z(3) z(7)
z(6) z(2) z(4) z(0)
x(5) x(3) x(3) (1)
z(4) z(2)
(1) An eight-point sequence. {#) Circular shift by two.
z(n) z((n — 1))aRa(n)
! I I : ! ] .
*——+ *r——or—r
1 2 3 4 5 2 3 4 5
{a) A discrete-time signal of length N = 4. (P) Circular shift by one.
.} z((n — 2))4aRa(n) 5 z((n — 3))sRa(n)
29 2
n n
*—e * *— - *— e e
2 -1 1 2 3 4 5 —2 -1 | 1 2 3 4 5

(c) Circular shift by two. (d) Circular shift by three.
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Circular Convolution

Let i(n) and x(n) be finite-length sequences of length N with N-point DFTs H (k) and X (k). respectively. The
sequence that has a DFT equal to the product Y (k) = H(k)X (k) is

N-I Nl
yin) = I:Z hik)i(n — t)]RH[”} = { ZE[H - k]ifk}]RN[n]
=i

k=l
where X(n)and h(n) are the periodic extensions of the sequences x(n) and h(n), respectively. Because i(n) = hin)
for0 = n < N, the sum in Eq. may also be written as
[

N=
¥n) = [ > hk)yx(n - H]R,uu:.

k=0
The sequence y(n) in Eq. is the N-point circular convolution of hin) with x(n), and it is writien as
¥in) = hin) @ x(n) = x(n) @ hin)

The circular convolution of two finite-length sequences A(n) and x(n) is equivalent to one period of the periodic
convolution of the peniodic sequences h(n) and ¥(n),

y(n) = h(n) @ x(n) = [h(n) ®E(n)|Ry(n)

In general, circular convolution is not the same as linear convolution. and N -point circular convolution is diff-
erent. in general, from M -point circular convolution when M # N.
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EXAMPLE 1  Let us perform the four-point circular convolution of the two sequences A(n) and x(n) shown below.

| h(n) x(n)
+3 3
-1\-2 2
¢! I
1 n n
=3 = f33“5 —2—|r|2\4s

The four-point circular convolution is

3
y(n) = [Zﬁ(n - n,wc)] Ryln)

=0
which may be performed graphically, as follows, The value of y(n)atn =0 is
3
Y0 = Y h(=k)F(k)
k=0
Shown in the figure below is a plot of the sequence h(—k)R4(k).

H(=k)Ra(k)
2

e 4

I
1o,
Hlfr *
|

To evaluate y(0), we multiply this sequence by x(k) and sum the product from & = 0 to & = 3. The result is y(0) = 1. Next,
to find the value of y(1), we evaluate the sum
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Shown in the figure below is a plot of A(1 — KIR.(n).
Bl — k)YRaik)

2

—2 -l

+—0
l I 2 i 4

Multiplying by ik} and summing from k = 0 to & = 3, we find that (1) = 4. Repeating for n = 2 and n = 3, we have

3
¥2) =Y R2 - k)R =2

L=l

L]
¥(3) = k(3 —k)ik) =2

k=il

Therefore, v =hin) @ xin)=8n)+48n — 1)+ 28(n =2+ 28(n -3
By comparison, the linear convolution of hin) with x(a) is the following six-length sequence:

i) = x(n) = 8n) + &in — 104+ 28(n — 20 4+ 28in — 3) + 38in = 5)

Another way to perform circular convolution is to compute the DFTs of each sequence., multiply, and compute
the inverse DFT.

EXAMPLE 6.4.2 Let us perform the N -point circular convolution of x,(n) and xain) where

1 D=n<N-—1
xin) = xln) =
0 else

Because the N-point DFTs of xy(n) and x1(n) are

Xﬂhzkﬂhz}jw

=il

Som |V k=0
Yo else

N k=0
then _HI::.‘.'}Z L{HK;{H:
0 else
Therefore, the N-point circular convolution of x,(n) with xa(n) 18 the inverse DFT of X {k), which is

o [N 0=mEN—
xm) = 0 else


http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Circular Versus Linear Convolution

In general, circular convolution is not the same as linear convolution. However, there is a simple relationship
between circular and linear convolution that illustrates what steps must be taken in order to ensure that they are
the same. Specifically, let x{n) and h(n) be finite-length sequences and let v(n) be the linear convolution

yin) = x(n)« hin)

The N -point circular convolution of x(n) with A(r) is related 1o y(n) as follows:

Bim) @ xin) = [ z }’{n+kN]:l’R;.,{n} (4

k==oo

In other words, the circular convolution of two sequences is found by performing the linear convolution and
aliasing the result.
An important property that follows from Eq. (¢ | ) is that if y(n) is of length N or less, yin — kN)
Ra(n) = 0fork % (and
hin) @ x(n) = hin) = x(n)

that is, circular convolution is equivalent to linear convolution. Thus, if A(n) and x(n) are finite-length sequences
of length Ny and N», respectively, vin) = h(n)xx(n)isoflength Ny + N; — 1, and the N -point circular convolution
is equivalent to linear convolution provided N = N, + N2 — 1.

LINEAR CONVOLUTION USING THE DFT

The DFT provides a convenient way to perform convolutions without having to evaluate the convolution sum.
Specifically, if A(n) is N, points long and x{n) is N7 points long, A(n) may be linearly convolved with x(n) as
follows:

Pad the sequences hi{n) and x(n) with zeros so that they are of length N = N, + N, — 1.

Find the N -point DFTs of k(n) and x(n).

Multiply the DFTs to form the product ¥ (k) = H (kX (k).

Find the inverse DFT of ¥ ().

el .

Sectioned Conwolution:

In spite of its computational advantages, there are some difficulties with the DFT approach. For
example, if x(n) is very long, we must commit a significant amount of time computing very long
DFTs and in the process accept very long processing delays. In some cases, it may even be
possible that x(n) is roo long to compute the DFT. The solution to these problems is to use block
convolution, which inwlves segmenting the signal to be filtered, x(n), into sections. Each section
is then filtered with the FIR filter h(n), and the filtered sections are pieced together to form the
sequence y(n). There are two block conwlution techniques. The first is owverlap-add, and the
second is owerlap-save.
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Overlap-Add

Let x(n) be a sequence that is to be convolved with a causal FIR filter si(n) of length L:

L-1
y(n) = h(n) = x(n) = Z hk)x(n — k)

A=0
Assume that x(n) = 0 for n < 0 and that the length of x(n) is much greater than L. In the overlap-add method.
x(n) is partitioned into nonoverlapping subsequences of length M as illustrated in Fig. Thus, x(n) may be
written as a sum of shifted finite-length sequences of length M,

o0
x(n)= Z.t,(n - M)

=N

x(n+ M) n=0,1,..../ M-

I X; -
where x;(n) {0 dlie

Therefore, the hinear convolution of x(n) with h(n) is

o

o
y(n) = x(n) * h(n) = Z.\',(n —~ Mi)y*hin) = Z_v,(n - Mi) €. -1

r=A) 1al)

where y;(n) is the linear convolution of x;(n) with /i(n),

vi(n) = x;(n) * hin)

Overlap-Save

The second way that the DFT may be used to perform linear convolution is to use the overlap-save method. This
method takes advantage of the fact that the aliasing that occurs in circular convolution only affects a portion of
the sequence. For example, if x(n) and A(n) are finite-length sequences of lengths L and N, respectively, the
linear convolution y(n) is a finite-length sequence of lengths N + L — 1. Therefore, assuming that N = L, if
we perform an N -point circular convolution of x(n) with fi(n),

hin) ) xin) = { Z y[n++’:N}:|R,u[u}

A=

Because v{n 4+ N) is the only term that is aliased into the interval 0 < »n = N — 1, and because y(n + N) only
overlaps the first L — 1 values of y{n), the remaining values in the circular convolution will not be aliased. In
other words, the first L — | values of the circular convolution are not equal to the linear convolution, whereas
the last M = N — L + | values are the same (see Fig. ). Thus, with the appropriate partirioning of the input
sequence x(n), linear convolution may be performed by piecing rogether circular convolutions. The procedure
is as follows:

1. Let x;{n) be the sequence

] D=n="L—1]

=L+ L—len<N—1


http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

2. Perform the NV -point circular convolution of xy(n) with i(n) by forming the product H (k)X (k) and then
finding the inverse DFT, y,(n). The first L — | values of the circular convolution are aliased, and the last

- — N ——— [ — | —

z(n) | | | |

N =@
t
Zero Padding 1 PEy r
1 xa(n) F
yi(n) RN
Discard _f
yz2(n) NN ]
Discard J
ya(n) NN ]

Discard J
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N — L + 1 values correspond to the [inear convolution of x(n) with A(n). Due to the zero padding at
the start of x(n}), these last N — L 4 | values are the first N — L + 1 values of y(n)

yiny=wh+L—1) D=n=N-L

3. Let xa(n) be the N-poimt sequence that is extracted from x(n) with the first L — 1 values overlapping
with those of 1xy(n).

4. Perform an N-point circular convolution of va(n) with A(n) by forming the product H ()X (k) and
taking the inverse DFT, The first L — | values of y.(n) are discarded and the final N — L + | values are
saved and concatenated with the saved values of v (n):

yin+N—-L+1lh=wnn+L-1) O=sn=N-L
5. Steps 3 and 4 are repeated until all of the values in the linear convolution have been evaluated.

The reason for the name overlap-save 1s that x(n) is partitioned into overlapping sequences of length & and,
aftter performing the N-point circular convolution, only the last N — L + | values are saved.

The Fast Fourier Transform:

The discrete Fourier transform (DFT) is used to perform conwolutions. we
look at the computational requirements of the DFT and derive some fast algorithms for computing
the DFT. These algorithms are known, generically, as fast Fourier fransforms (FFTs). We begin
with the radix-2 decimation-in-time FFT. We then look at mixed-radix FFT algorithms and the
prime factor FFT.

RADIX-2 FFT ALGORITHMS
The N-point DFT of an N -point sequence x(n) is

N1
X(ky=) x(mW}

L

Because x{n) may be either real or complex, evaluating X (k) requires on the order of N complex multiplications
and N complex additions For each value of £, Therefore, because there are N values of X (k). computing an
N -point DFT requires N'* complex multiplications and additions.

The basic strategy that is used in the FFT algorithm is one of “divide and conquer,” which involves de-
composing an N-point DFT into successively smaller DFTs. To see how this works, suppose that the length of
x(m) is even (i.e., N is divisible by 2). If x(n) is decimated into two sequences of length N /2, computing the
N /2-point DFT of each of these sequences requires approximately (N /2)* multiplications and the same number
of additions. Thus, the two DFTs require 2(V/2)* = N * multiplies and adds. Therefore, if it is possible to find
the N-point DFT of x(n) from these two N /2-point DFTs in fewer than N?/2 operations, a savings has been
realized.
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Decimation-in-Time FFT
The decimation-in-time FFT algorithm is based on splitting (decimating) x(») into smaller sequences and finding
X (&) from the DFTs of these decimated sequences. This section describes how this decimation leads to an efficient

algorithm when the sequence length is a power of 2.
Let x(n) be a sequence of length N = 2", and suppose that x(n) is split (decimated) into two subsequences,

each of length N /2. As illustrated in Fig. the first sequence, g(n), is formed from the even-index terms,
N
eln) = x(2n) n=01....=—-=1
2
and the second, hin), 15 formed from the odd-index terms,
N
hin) =x(2n+ 1) rr=l.'l.l....,—2-—l

In terms of these sequences, the N-point DFT of x{n) s

N=l
Xik)y= Z,r-[n}w,'f = Z xmWit + Z x(myw

pra=lh noeven o oo
"

"
-1 ¥

= Z .E':!;}WEIH- + Z hl:f}ﬁ"l;;?'“ 1 1k
i=i

=0

il. 17(":'
1 2)  z(4) (1)
":{m 2(3) | z(5)
A I I A I
n
——
-2 =1 l 2 J 4 5 T B
(1) z{f)
Even-Index 17 (dd-Index Terms
gim) hin}
z(2) z(4)
z(3) z(5)
{0}
m
——s | A
-2 -1 1 2 1 4 5

z(6) z(1)


http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Uk __ pelk
Because W;" = W,/ ,,

£

X(ky= Y ghWi, + Wi > nnwy,
=} =}

bajE

——

Note that the first term is the N /2-point DFT of g(n), and the second is the N /2-point DFT of h(n):
Xy =Gk +WyHky  k=0.1,.... N -1

Although the N /2-point DFTs of gin) and hi(n) are sequences of length N /2, the periodicity of the complex
exponentials allows us to write

N N
GfH=G(k+5) H'[H=H(J;+ E)
Therefore, X (k) may be computed from the N /2-point DFTs G (k) and H (k). Note that because

LR AL 9
WA = WhWA = W)

N

then Wy TH(k+ %) = —WhH ()
and it is only necessarv to form the products Wj, H (k) for k = 0, 1,..., N/2 — 1. The complex exponentials
multiplying H (k) Care called rwiddle facrors. A block diagram showing the computations thai are

necessary for the first srage of an eight-point decimation-in-time FFT is shown in Fig.
If N /2 is even, ginyand A(n) may again be decimated. For example, G (k) may be evaluated as follows:
¥ i

Giky= Y gmWits = 3" eWily + 3 emwil,

TE WoEvEn w odd

i
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G(0)
z(0) O——- x{'m
G(1) ™\ /
4-Point
G(2) \ / /
2(4) 0—e—of  PFT a xu}
z(6) O——+o “><><><><x{3}
z(l) Qo -X{*ﬂ'
10, SO\
2(3) O——o X{s]

4-Point HE]'//\\
a5 o] DFT x©
z(7) O———ri . XI:T]

H(3) Wi
As before, this leads o
- -1
Gy =" gmWil, + Wi, E e(2n + LW,
n=() n=l¥

where the first term is the N /4-point DFT of the even samples of g(n), and the second is the N /4-point DFT of
the odd samples. A block diagram illustrating this decomposition is shown in Fig. . If &V is a power of 2, the
decimation may be continued until there are only two-point DFTs of the form shown in Fig.

2-Point
Wy
DFT
r{d) O] G(1)
z(2) O———r] G(2)
2-Point wl
DFT
z(6) O——— O G(3)
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g(0) X Q(0) = q(0) + g(1)
q(1) O '8 Q(1) = q(0) — q(1)

A two-point DFT.

-1 -1 -1
A complere eighr-point radix-2 decimation-in-time FFT,

Computing an N -point DFT using a radix-2 decimation-in-time FFT is much more efficient than calculating
the DFT directly, Forexample, if ¥ = 2", there are logs & = v srages of computation. Because each stage requires
N /2 complex multiplies by the twiddle factors W), and N complex additions. there are a total of 1N log, N
complex multiplications' and N log, N complex additions. i

From the structure of the decimation-in-time FFT algorithm, note that once a butterfly operation has been
performed on a pair of complex numbers, there is no need to save the input pair. Therefore, the output pair
may be stored in the same registers as the input. Thus, only one array of size N is required, and it is said
that the computations may be performed in place. To perform the computations in place, however, the input
sequence x(n) must be stored (or accessed ) in nonsequential order as seen in Fig. The shuffling of the inpui
sequence that takes place is due to the successive decimations of x(n). The ordering that results corresponds to a
bit-reversed indexing of the original sequence. In other words, if the index » is written in binary form, the order
in which in the input sequence must be accessed is found by reading the binary representation for # in reverse
order as illustrated in the table below for N = 8
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Bit-Reversed
n | Binary Binary n'
0 000 000 0
1 001 100 d4
2 010 010 2
3 0t (1] )
| 4 100 001 |
| 3 101 [0 ]
(3] 110 011 3
7 111 [ 7

Alternate forms of FFT algorithms may be derived from the decimation-in-time FFT by manipulating the
flowgraph and rearranging the order in which the results of each stage of the computation are stored. For example,
the nodes of the lowgraph may be rearranged so that the input sequence x(n) is in normal order, What is lost
with this reordering, however, is the ability to perform the computations in place.

Decimation-in-Frequency FFT

Another class of FFT algorithms may be derived by decimating the output sequence X (k) into smaller and smaller
subsequences. These algorithms are called decimation-in-frequency FFTs and may be derived as follows. Let
N be a power of 2, N = 2", and consider separately evaluating the even-index and odd-index samples of X (k).
The even samples are

NI

X2k =) xmwit

n=0
Separating this sum into the first N /2 points and the last N /2 points, and using the fact that W™ = W5, this
becomes

N-1
X(2k) = x(n)sz - Z x(mW,
n=N/2

ral

a
Il
=

With a change in the indexing on the second sum we have

¥

Y
i

Z H N nt B
X(2k) = Z .r{n)Wﬁ’f,;_ + z x(n + E)WLF"

m=l} n=()

N
-1

. (n+ 3 )k
Finally, because Wy 57" = W},,
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N
T_I

N
X(2k) = Z{: [.r{n] —I-x(n + —5)]14/;’;2
n=()
which is the N /2-point DFT of the sequence that is formed by adding the first N /2 points of x(n) to the last N /2.
Proceeding in the same way for the odd samples of X (k) leads to

4o
XQk+1)= Z{; Wy [x(n) - x(n + %)]Wﬂ}z (74)
A flowgraph illustrating this first stage of decimation is shown in Fig. 7-7. As with the decimation-in-time FFT,
the decimation may be continued until only two-point DFTs remain. A complete eight-point decimation-in-
frequency FFT is shown in Fig. 7-8. The complexity of the decimation-in-frequency FFT is the same as the
decimation-in-time, and the computations may be performed in place. Finally, note that although the input
sequence .x(n) is in normal order, the frequency samples X (k) are in bit-reversed order,
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:{n}c\ /{} ——0 X (0)
,-\ _ e X (2]
4-Point
DFT L ox()
) X (6]
———0 X (1)
4-Point . X
DFT X(5)
—— X (7)

Fig. 7-7.  Aneight-point decimation-in-frequency FFT algorithm af-
ter the first stage of decimation,

N o w
Or O O X(4)
v‘v o -1
=(2) Q ‘,v A .A, N .v. O X(2)
wi W
O O X(6)
)
-1

z(3) l

x(4) - -

+6) ’A‘A‘ Wi > i UL
/AN I
z(7) --w i O . v X(7)

-1 -1
Fig. 7-8. Eight-point radix-2 decimation-in-frequency FFT,

" - -1 - -
XX o e
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UNIT — 1l

IR FILTER DESIGN 9

STRUCTURES FOR IIR SYSTEMS

The input x(n) and output y(n) of a causal IIR filter with a rational system function

q
. > " bikyz
(2) = (z) k=0
A(z) r )
1 + Za{k}z
k=1

is described by the linear constant coefficient difference equation
q 7
y(ny =" btk)x(n —k) =Y _a(k)y(n —k)
k=0 k=1

In the following sections, several different implementations of this system are presented, including the direct
form structures, the cascade and parallel forms, and the transposed filter structures.

8.4.1 Direct Form

There are two direct form filter structures, referred 1o as direct form I and direct form Il. The direct form 1
structure is an implementation that results when Eq. (8.3) is written as a pair of difference equations as follows:

o
w(n) =Y _ btkx(n k)
k=0
P

y(n) = win) — Ea(k}y(n —k)

k=1

The first equation corresponds to an FIR filter with input x(n) and output w(#n), and the second equation
corresponds to an all-pole filter with input w(n) and output y(n). Therefore, this pair of equations represents a
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b(0)

—all)

—a(p - 1) 1
- ¢

Direct form | realization of an IIR filter.
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The direct form I structure is obtained by reversing the order of the cascade of B(z) and 1/ A(z) as illustrated
in Fig. - .. With this implementation, x(n) is first filtered with the all-pole filter 1/A(z) and then with B(z):

1
Yiz) = B(z}[mx’(z)]

xin) win) h(0) yin)

Reversing the order of the cascade in the direct form I filter structure.

This structure may be simplified by noting that the two sets of delays are delaying the same sequence. Therefore,

they may be combined as illustrated in Fig. for the case in which p = ¢. The computational requirements
for a direct form [I structure are as follows:

Number of multiplications: p 4+ ¢ + | per output sample
Number of additions: p 4+ g per output sample
Number of delays: max(p. ¢)

The direct form Il structure is said to be canonic because it uses the minimum number of delays for a given H(z).
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x(n) b(0) yin)

—al(l) | h(1)

e
F
I
v
e
>

P —

—alp - 1) hip—-1)

—aip) Bl )
— O

Direct form 11 realization of an IIR filter with p = g.

8.4.2 Cascade Structure

The cascade structure is derived by factoring the numerator and denominator polynomials of H(z):

if
—
Zb{kh max|p.gl | — ﬁ -

k=0 — A

P -
I+ atkz ™ bl
k=1

=

H{z) =

1 —a;:“

This factorization corresponds to a cascade of first-order filters, each having one pole and one zero. In general,
the coefficients o and B; will be complex. However, if i(n) is real. the roots of H(z) will occur in complex
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conjugate pairs, and these complex conjugate factors may be combined to form second-order factors with real
coefficients:
2
L+ Bz 4 Bz
I +ﬂ!|k2_] + @z :

Hi(z)

A sixth-order IIR filter implemented as a cascade of three second-order systems in direct form II is shown in
Fig.

A sixth-order 1R filter implemented as a cascade of three direct form I second-order systems.

There is considerable flexibility in how a system may be implemented in cascade form. For example, there
are different pairings of the poles and zeros and different ways in which the sections may be ordered.

Parallel Structure

An alternative to factoring H(z) is to expand the system function using a partial fraction expansion. Forexample,
with

ibm:‘* ﬁ(l —piz™h

k=0 k=1
~ =

| + Zu(k}:"' l_[[l — oz
k=1

if p > qganda; £ a, (the roots of the denominator polynomial are distinct}, H(z} may be expanded as a sum
of p first-order factors as follows:

H(z)=

[ A,{-
HE = ; | —apz™!
where the coefficients A; and «; are, in general, complex. This expansion corresponds to a sum of p first-order
system functions and may be realized by connecting these systems in parallel. If #(#n) is real, the poles of H(z)
will occur in complex conjugate pairs, and these complex roots in the partial fraction expansion may be combined
to form second-order systems with real coefficients:
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N

- vor + gz
Hiz)y=
=) ; | +oapz +anz—"

ShowninFig. isa sixth-order filter implemented as a parallel connection of three second-order direct form 11
systems. If p < g, the partial fraction expansion will also contain a term of the form

~—1 . ol =
otz ez

which is an FIR filter that is placed in parallel with the other terms in the expansion of H(z),
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xin)

o

Fig. 8-10. A sixth-order IIR filter implemented as a parallel con-
nection of three second-order direct form 11 structures.

Examplel:
Implement the system

HE) = =

g =

as a parallel network of first-order direct form structures.
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Factoring the denominator of the system function, we find

9 -1 _ 1,2
4+42 72

==+
To implement H{(z) as a paralle] network of first-order filters, we must express H(z) as a sum of first-order factors

using a partial fraction expansion. Because the order of the numerator is equal to the order of the denominator, this
expansion will contain a constant term,

Hiz)=

A
Hllz]=(?+l — +

2
—gz i+ i L | gt 327 + 4

_&z-qu_ 1,-1 4.2
T
sz 42

Therefore, C == 2, and we may write H(z) as follows:
7
1< |+2

Hiz)=2+

(1= 3= {1+ 37

Finally, with

we have, for the coefficients A and B,
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— V(s _ i —
and B=[(1+}")6w@)], _,= e =-1
4 =2
1
Thus, H(z)=2+ i [
l - | + EI
and the parallel network for this system is as shown below.
2
x(n) y(n)
O y———a0

Example 2:

8.10 Consider the causal linear shift-invariant filter with system function

[ 4+0.875z!
(1402z7"409:z-2)(1 - 0.7z71)

H(z) =

Draw a signal flowgraph for this system using

(a) Direct form |

(b) Direct form Il

(¢) A cascade of first- and second-order systems realized in direct form II

(d) A cascade of first- and second-order systems realized in transposed direct form 11
(e) A parallel connection of first- and second-order systems realized in direct form 11
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(@) Writing the system function as a ratio of polynomials in z~',

| +0.875:""

H() =
) | —0.5z7" +0.76z72 - 0.63:?

it follows that the direct form | realization of H(z) is as follows:

x(n) y(n)

Y
9
Y

}
-0.76
———0
A ) 4F =t
0.63
-
(b) For a direct form Il realization of H(z), we have
x(n) y(n)

-

o - O - -
o=l
{ 0.5 0.875
> - -

)
Y
L
i
o]
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(¢) Using a cascade of first- and second-order systems realized in direct form I1, we have a choice of either pairing
the zero with the first-order factor in the denominator or with the second-order factor. Although it does not
make a difference from a computational point of view, because the zero is closer to the pair of complex poles
than to the pole at z = 0.7, we will pair the zero with the second-order factor. With this pairing, the realization
of H(z) is as follows:

xin) vin)

(d) 1f we change the direct form I systems in part (¢) to transposed direct form II, we have the realization shown
below,
x(n) yin)

(e} For a parallel structure, H(z) must be expanded using a partial fraction expansion:

1 +0.875:7! A+ Bz C

H )= =
(2) (14+02::"+ 0951 —0.7z-1 1 4+02:"+0.9:1 + 1 —0.7z-1

The constants A, 8, and C may be found as follows. Recombining the two terms in the partial fraction expansion
as follows,

A+ Bz N C
14+02:-" 4092 1 —-0.7z7!

A+ CO)+(B+02C —0.7A):"" +(0.9C —0.7B)z"*
- (14+0.2:7"+0.9272)(1 —0.7z71)

H(z) =

and equating the coefficients in the numerator of this expression with the numerator of H(z), we have the
following three equations in the three unknowns A, B, and C:


http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

A+C =1
B8 +02C - 07A = 0.875
09C -0.78 =10

Solving for A, B, and C we find
A=102794 B =0.9265 ¢ =0.7206

and, therefore, the partial fraction expansion is

0.2794 + 0.9265z"! 0.7206

H(z) =
(z) 1 402z +09:2-2 T 1—-0.721

Thus, a parallel structure for /(z) is shown below.
0.7206

-

5

I

0.7

x(n) 0.2794 y(n)

IIR FILTER DESIGN

There are two general approaches used to design IIR digital filters. The most common is to design an analog IIR
filter and then map it into an equivalent digital filter because the art of analog filter design is highly advanced.
Therefore, it is prudent to consider optimal ways for mapping these filters into the discrete-time domain. Fur-
thermore, because there are powertful design procedures that facilitate the design of analog filters, this approach
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to IR filter design is relatively simple. The second approach to design IIR digital filters is to use an algorithmic
design procedure, which generally requires the use of a computer to solve a set of linear or nonlinear equations.
These methods may be used to design digital filters with arbitrary frequency response characteristics for which
no analog filter prototype exists or to design filters when other types of constraints are imposed on the design.

In this section, we consider the approach of mapping analog filters into digital filters. Initially, the focus
will be on the design of digital low-pass filters from analog low-pass filters. Techniques for transforming these
designs into more general frequency selective filters will then be discussed.

Analog Low-Pass Filter Prototypes

To design an IIR digital low-pass filter from an analog low-pass filter, we must first know how to design an
analog low-pass filter. Historically, most analog filter approximation methods were developed for the design of
passive systems having a gain less than or equal to 1. Therefore, a typical set of specifications for these filters is
as shown in Fig. with the passband specifications having the form

| =38, < |Ho(jQ)I < |

* |Ha (740 A |Ha(32)|
1 PONNNNNN R SSSNANNN
1—5;1 1 i IIVI"P*E! 'w [
NN 3. | N i I
| I | |
1 | I I
I I I |
L o
!
I | Al
5 1 A NN 4 | NN\
+ - > ) ' ¢ >}
2, Q, Qs £
(u) Specifications in terms of dp and &,. {1} Specifications in terms of ¢ and A

Two different conventions for specifying the passband and stopband deviations for an analog
low-pass filter.
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Another convention that is commonly used is to describe the passband and stopband constraints in terms of the
parameters € and A as illustrated in Fig. 9-5(h). Two auxiliary parameters of interest are the discrimination
factor,

and the selectivity factor

The three most commonly used analog low-pass filters are the Butterworth, Chebyshev, and elliptic filters.
These filters are described below.

Butterworth Filter

A low-pass Butterworth filter is an all-pole filter with a squared magnitude response given by

|H,(jQ))? = s
JE0N | + (i R/

The parameter N is the order of the filter (number of poles in the system function), and €2, is the 3-dB cutoff
frequency. The magnitude of the frequency response may also be written as

IH,(jQ)? = !
AP =T ragarje

g\ W
where €= (—f)
Q.

Steps to design Butterworth IR Filter:

[.  Find the values for the selectivity factor, 4, and the discrimination factor, d. from the filter specifications.
2. Determine the order of the filter required to meet the specifications using the design formula

N > logd

~ logk
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Set the 3-dB cutoff frequency, €., to any value in the range
QL1 —8,) 21" <@ <q,8;2 17"

Synthesize the system function of the Butterworth filter from the poles of

I
I+ (s/jQ )N

Ga(5) = H(s)H,(=5) =

that lie in the left-half s-plane. Thus,

N-1

—35
Hy(s) = l_l 3_ :L

k=0

=0,1,..., N=1

N+ 1+ 2k
where .u:ﬂfexplj[ +2‘: ]Hl k

Table The Coefficients in the System Function of a Normalized Butterworth Filter (2, = 1) for

Orders1 < N <8

N a @3 a; dy as g as ay

1 1.0000

2 1.4142 1.0000

3 2.0000 2.0000 1.0000

4 2.6131 3.4142 2.6131 1.0000

5 3.2361 5.2361 5.2361 3.2361 1.0000

6 3.8637 7.4641 9.1416 7.4641 3.8637 1.0000

7 4.4940 10.0978 14.5918 14.5918 10.0978 4.4940 1.0000

8 5.1258 13.1371 21.8462 25.6884 21.8462 13,1372 5.1258 1.0000
Examplel:

Let us design a low-pass Butierworth filter to meet the following specifications:

f,=6kHz  fi=10kHz §,=4, =0.|
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First, we compute the discrimination and selectivity factors:

1—8,)2—17" Q
d:[{ a_;}'l ] = 0.0487 k=5f‘=f£=u.ﬁ

Because N = ]— = 5.92

it follows that the minimum filter order is N = 6. With

fol(1 = 8,072 = 117"V = 6770

and f[s2=1]"" = 6819
the center frequency, f., may be any value in the range

6770 < f. <6819

The system function of the Butterworth filter may then be found using Eq. by first constructing a sixth-order normalized
Butterworth filter from Table

H,(s) =
() = 3863755 + 7.46415% £ 9.141657 + 7464157 + 3.8637s + |

and then replacing s with 5/, so that the cutoff frequency is . instead of unity
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Chebyshev Filters
Chebyshev filters are defined in terms of the Chebyshev polynomials:

cos(N cos™' x) x| <1
Twix) = _
cosh(N cosh™" x) lx] = 1

These polynomials may be generated recursively as follows,
Tir(x) = 2xTi(x) — Ti—y(x) k=1

with Ty(x) = 1 and T,(x) = x. The following properties of the Chebyshev polynomials follow from Eq.
1. For |x| < | the polynomials are bounded by | in magnitude, |Tx(x)| < 1, and oscillate between *1.
For |x| = |, the polynomials increase monotonically with x.
. Tn(l)=1forall N.
3. Tw(0)= =1 for N even, and Ty(0) = 0 for N odd.
4. All of the roots of Ty (x) are in the interval —1 < x < 1.

Type | filter:
There are two types of Chebyshev filters. A type I Chebyshev filter is all-pole with an equiripple passband
and a monotonically decreasing stopband. The magnitude of the frequency response is

|H,(j)? =
1 + Ezr.é(ﬂ/ﬂp)

where N is the order of the filter, €2, is the passband cutoff frequency, and € is a parameter that controls
the passband ripple amplitude. Because T3 (S2/ §2,) varies between 0 and 1 for |Q] < Q,, [Ha(j ) oscillates
between | and 1/(1 +¢2). As the order of the filter increases, the number of oscillations (ripples) in the passband
increases, and the transition width between the passband and stopband becomes narrower. Examples are given
in Fig. for N =5, 6.
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|Ha (7)1 |Ha (i)

A A

1 1

> (]

(«) Odd order (N = 5). {b) Even order (N =6).
Frequency response of Chebyshev type I filter for orders N = 5and N = 6,

The system function of a type I Chebyshev filter has the form

_Sk
5 -

N=—-1
Ha(s) = H,(0) [ ]
k0 Sk

where H,(0) = (1 - €2)"Y2if N is even, and H,(0) = 1 if N is odd.

Steps to design type | chebyshev filter:

Find the values for the selectivity factor, k, and the discrimination factor, d.
2. Determine the filter order using the formula

. cosh™'(1/d)
~ cosh™'(1/k)
3. Form the rational function

1
I+ €2Ti(s/j2p)

Ga(s) = Hy(s)Hy(—5) =

where € = [(1 — 8,)%2 — 11'/2, and construct the system function H,(s) by taking the N poles of G ,(s)
that lie in the left-half s-plane.
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Type |l filter:

A type Il Chebyshev filter, unlike a type [ filter, has a monotonic passband and an equiripple stopband, and
the system function has both poles and zeros. The magnitude of the frequency response is

Hu Q 2= > ~
S = T @20 Ta G DOF

where N is the order of the filter, 2, is the passband cutoff frequency, Q, is the stopband cutoff frequency, and
€ is the parameter that controls the stopband ripple amplitude. Again, as the order N is increased. the number of
ripples increases and the transition width becomes narrower. Examples are given in Fig. for N =5,6.

|Ha(702))2 |Ha (52
A A
1 j 1 j
S N~ R o~
> () > {1

(a) Odd order (N = 5). (#) Even order (N = 6).
Frequency response of a Chebyshev type Il filter for orders N = Sand N = 6.
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The system function of a type II Chebyshev filter has the form

N-I
oy § — bﬁ'
H,(s) = —
J:!] h.{- £ —a;
The poles are located at
Qz
ay = —
Sk

where s; fork =0, 1,..., N — 1 are the poles of a type 1 Chebyshev filter. The zeros by lie on the jQ-axis at
the frequencies for which Ty (2,/Q) = 0.

The procedure for designing a type [l Chebyshev filter is the same as for a type I filter, except that

e=(72-1)"

Example 1:
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If H,(s) is a third-order type I Chebyshev low-pass filter with a cutoff frequency 2, = | and € = 0.1,
find H,(s)H,(—s).

The magnitude of the frequency response squared for an N th-order type 1 Chebyshev filter is

I
| +€2T3(R/Q,)

|H, (G =

where Ty(x) is an Nth-order Chebyshev polynomial that is defined recursively as follows,
Tis(x)=2xTi(x) = Ty (x) k>1

with To(x) = 1 and Ty(x) = x. Therefore, to find the third-order Chebyshev polynomial, we first find 75(x) as
tollows,
Ta(x) = 2xTy(x) = Ty(x) = 2x* = |

and then we have
T3(x) = 2xTy(x) — Ty (x) = 4x* = 2x — x = x(4x? = 3)

Thus, the denominator polynomial in |H,(jQ)|? is

Na
| +€2T3'(Q—)
P

I + 0.01[Q4Q? -- 3))

= [+ 0.012°(16Q" - 24Q° +9)
and we have l

H,(jQ =
\Ha(jSDI" = 3 +0.09Q?2 — 0.24 + 0.169°

Because |H Q)P = |H ($)H (—5)),~,0

to find the rational function
Ga(s) = Hu(s )Ha( —5)

we make the substitution Q = s/j in |H,(jQ)I* as follows:

| |
Gulsy= I +0.09s/j) —0.24(s/j)* +0.16(s/j)* ~ 1 —0.095% — 0.24s* ~ 0.16s°
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Design of HIR Filters from Analog Filters

The design of a digital filter from an analog prototype requires that we transform h,(1) to h(n) or H(s) to H(z).
A mapping from the s-plane to the z-plane may be written as

H(z) = H,(s)|,

=miz)

where s = m(z) is the mapping function. In order for this transformation to produce an acceptable digital filter.
the mapping m(z) should have the following properties:

I.  The mapping from the j$2-axis to the unit circle, [z| = 1, should be one to one and onto the unit circle
in order to preserve the frequency response characteristics of the analog filter.

2. Points in the left-half s-plane should map to points inside the unit circle to preserve the stability of the
analog filter.

3. The mapping m(z) should be a rational function of z so that a rational H,(s) is mapped to a rational
H(z).

Methods to map analog filters into digital filters:
1.Impulse invariance.
2.Bilinear transformation.

Impuise Invariance

With the impuise invariance method, a digital filter is designed by sampling the impulse response of an analog
filter:
hin) = h,(nT,)

From the sampling theorem, it follows that the frequency response of the digital filter, H (¢/“), is related to the
frequency response H,(j$2) of the analog filter as follows:

, 1 &= w 2wk
He™y=— 3" H, ;2 +
=7 ;;Zx ‘("’ T T)

More generally, this may be extended into the complex plane as follows:

| = 2k
=gy = ? Z Hu(.'{—‘—j T )

P k= i

H(z)

The mapping between the s-plane and the z-plane is illustrated in Fig. Note that although the jS2-axis
maps onte the unit circle, the mapping is not one to one. In particular, each interval of length 27 /T, along the
J8-axis is mapped onto the unit circle (i.e., the frequency response is aliased). In addition, each point in the
left-half s-plane is mapped to a point inside the unit circle. Specifically, strips of width 2 /T, map onro the
z-plane. If the frequency response of the analog filter. H,(j<2). is sufficiently bandlimited, then

Hiey = (27

Although the impulse invariance may produce a reasonable design in some cases, this technique is essentially
limited to bandlimited analog filters.
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Im(z) i

Re(z) Wh_ S > O
1 SN\

Properties ol the s-plane to z-plane mapping in the impulse invariance method.

To see how poles and zeros of an analog filter are mapped using the impulse invariance method, consider
an analog filter that has a system function

The impulse response, h,(r), is

]ri
h(r) = z Ape®u(t)

=1

Therefore, the digital filter that is formed using the impulse invariance technique is

'” . 'P -
h(n) = ha(nT,) =Y Awe*" " u(nT,) =) Ag(e ") u(n)

and the system function is

- - A"‘
H(z) = Z | — otToz—l

k=l
Thus, a pole at s = s, in the analog filter is mapped to a pole at z = ¢ ™ in the digital filter,

1 |
: T o1
5 — 8 | —e5dliz™

The zeros, however, do not get mapped in any obvious way.
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The Bilinear Transformation

The bilinear transformation is a mapping from the s-plane to the z-plane defined by

21 —2z"1
T, 14z

Given an analog filter with a system function H,(s), the digital filter is designed as follows:

21 -z}
Hiz)=H,| ——
=) (T's I +z I)
The bilinear transformation is a rational function that maps the left-half s-plane inside the unit circle and maps

the j2-axis in a one-to-one manner onfo the unit circle. However, the relationship between the j$2-axis and the
unit circle is highly nonlinear and is given by the frequency warping function

QT,
w=2 arctan(T")

As aresult of this warping, the bilinear transformation will only preserve the magnitude response of analog filters
that have an ideal response that is piecewise constant. Therefore, the bilinear transformation is generally only
used in the design of frequency selective filters.

'The parameter I in the bilinear transtormation 1s normally included tor historical reasons. However, it does
not enter into the design process, because it only scales the jQ-axis in the frequency warping function, and this
scaling may be done in the specification of the analog filter. Therefore, T, may be set to any value to simplify the
design procedure. ’

I'he steps involved in the design of a digital low-pass filter with a passband cutoff frequency
w,, stopband cutoff frequency c,, passband ripple §,, and stopband ripple 4, are as follows:

I. Prewarp the passband and stopband cutoff frequencies of the digital filter, w, and w,, using the inverse
of Eq. (9./2) to determine the passband and cutoff frequencies of the analog low-pass filter. With

T, = 2, the prewarping function is
@
=
an| - )

2. Design an analog low-pass filter with the cutoff frequencies found in step | and a passband and stopband
ripple 4, and &, respectively.
3. Apply the bilinear transformation to the filter designed in step 2.
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Examplel:
_ Let us design a first-order digital low-pass filter with a 3-dB cutoff frequency of @, = 0.257 by applying
the bilinear transformation to the analog Butterworth filter
I

Ha$) = 070

Because the 3-dB cutoff frequency of the Butterworth filter is £2,., for a cutoff frequency @, = 0.25x in the digital filter, we
must have

Q = 2 0.257 0.828
. = T_'. an 5

Therefore, the system function of the analog filter is

Hots) = —
W =TT 088

Applying the bilinear transformation to the analog filter gives

] ] 4z
V= H, = =0.2920——MM
Hz) [”|'-=f:jf1 14 (2/0.828)(1 — == 1)/ (1 4+ 2=y ’ 1 - 0.4159z-

*

Note that the parameler T, does not enter into the design.

Frequency Transformations

The preceding section considered the design of digital low-pass filters from analog low-pass filters. There are
two approaches that may be used to design other types of frequency selective filters, such as high-pass, bandpass,
or bandstop filters. The first is to design an analog low-pass filter and then apply a frequency transformation to
map the analog filter into the desired frequency selective prototype. This analog prototype is then mapped to
a digital filter using a suitable s-plane to z-plane mapping. Table | provides a list of some analog-to-analog
transformations.
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Table 1 The Transformation of an Analog Low-pass Filter with a
3-dB Cutoff Frequency (2, to Other Frequency Selective Filters

Transformation Mapping New Cutoff Frequencies
£2,
Low-pass § =y Q,
n
| 2,82, ,
High-pass 5= B 2,
57+ Q,Q
Bandpass s = Q, W—‘IQ::‘, §2), Q,
jlﬂu - Qf:‘
Bandst § = Qp—a— Q, 2,
andstop § e vy !

The second approach that may be used is to design an analog low-pass filter. map it into a digital filter
using a suitable s-plane to z-plane mapping, and then apply an appropriate frequency transformation in the
discrete-time domain to produce the desired frequency selective digital filter. Table 2 provides a list of some
digital-to-digital transformations. The two approaches do not always result in the same design. For example,
although the second approach could be used to design a high-pass filter using the impulse invariance technique,
with the first approach the design would be unacceptable due to the aliasing that would occur when sampling the
analog high-pass filter.
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Table ? The Transformation of a Digital Low-Pass Filter with a Cutoff Frequency w, to Other Frequency
Selective Filters

Filter Type Mapping Design Parameters

' — o sin(ew, — w])/2
-pass T — o= .-'I . -.'u:f !
Low | —a- sinl(ew, + @’)/2]

w' = desired cutoff frequency
2= , J
High-pass 2 - rTe oa=- cos[{af,____-i- @)/2]
| 4+ az-! cos|{w, — w)/2)
w, = desired cutoff frequency

Bandpass 2= RaB/B+ DET 4B - D/B+ ) o = OSl@a + w0)/2]
P ; [(B—1/(B+ DIz — [2aB/(B+ DIz + 1 cos[(@ez — @1)/2]
B = cot[{ew,; — w.)/2)anlw,/2)

w, = desired lower cutoff frequency
w,y = desired upper cutoff frequency

1y, 2o Re/B+ DI 410 - B/ + B o = Sosl@a + w2)/2]
(1= B)/ (0 + Bz = [2a/(B + 1]z~ + 1 "~ cosl(@ = @,2)/2]
£ =r1anf(w — w,)/2]tan{ew,/2)

Bandstop

w, = desired lower cutoff frequency
w,; = desired upper cutoff frequency

UNIT - IV

1 Direct Form

The most common way to implement an FIR filter is in direct form using a rapped delay line as shown in th
figure below.

x(n} ©

h(N)

o yin)

This structure requires N + | multiplications, N additions, and NV delays. However, if there are some symmetrie
in the unit sample response, it may be possible to reduce the number of multiplications (see the section on linez
phase filters).
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2 Cascade Form

For a causal FIR filter, the system function may be factored into a product of first-order factors,

N N
H(z) = Zh(n]z"" =A ]‘[(1 —oz7 Y
n={) k=1

where @ fork = 1, ..., N are the zeros of H(z). If h(n) is real, the complex roots of H(z) occur in compl
conjugate pairs, and these conjugate pairs may be combined to form second-order factors with real coefficien

s
H(z) = A1+ bz + b))
k=1

Written in this form, H (z) may be implemented as a cascade of second-order FIR filters as illustrated in Fig.

An FIR filter implemented as a cascade of second-order systems.,
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.3 Linear Phase Filters

Linear phase filters have a unit sample response that is either symmetric, A(n) = h(N — n)
or antisymmertric  fi(n) = —h(N — ri]

This symmetry may be exploited to simplify the network structure. For example, if N is even and h(n)
symmetric (type I filter),

A

M | /
y(n) = Zh(k]_r[n -k = Z hik)x(n — k) +x(n =N+ k)] + h(;)x(n - i)
k=0

k=0 2

Therefore, forming the sums [x(n — k) + x(n — N 4+ k)| prior to multiplying by h(k) reduces the number «
multiplications. The resulting structure 1s shown in Fig. a  If N is odd and A(n) is symmetric (type I filter),
the structure is as shown in Fig. b There are similar structures for the antisymmetric (types III and 1V)
linear phase filters.

h(N [2)

()
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Y Al = 1)/2]

vism)

Direct form implementations for linear phase filters. (a) Type L (b) Type I1.

Example:
A linear shift-invariant system has a unit sample response given by

h(0)y=—0.01 A= 002 A~h2)=-0.10 h3)= 040
hi4)= -0.10 A5 = 0.02 h(6) = —0.01

Draw a signal flowgraph for this system that requires the minimum number of multiplications.

xina) ' Z

B
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FILTER SPECIFICATIONS

Before a filter can be designed, a set of filter specifications must be defined. For example, suppose that we would
like to design a low-pass filter with a cutoff frequency .. The frequency response of an ideal low-pass filtes
with linear phase and a cutoff frequency . is

: ¢ w| < w,
ffd{f'“”} — | | =
0 W < |w| <m
which has a unit sample response
sin(n — o,
hyln) = ———

miln — o)

Because this filter is unrealizable (noncausal and unstahle). it is necessary to relax the ideal constraints on the
frequency response and allow some deviation from the ideal response. The specifications for a low-pass filter
will typically have the form

1 =8, < |H(e™)| < 1+4, 0 < |o| < w,
|Hie!™)| = & we = |lw| <
as illustrated in Fig. Thus, the specifications include the passband cutoff frequency, a ., the stopband cutoff

frequency, w,, the passband deviation, 8, and the stopband deviation. 6,. The passband and stopband deviations

A |[H(e™)]|

\ANANNNRANRNN

146, -

B SN | |
| |
| |
| |
| I
|

«—— Passband ——>, e Stopband —>!
I 1 i
5, 4 i Ay

Transition ]‘7
Band

Filter specifications for a low-pass filter.
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are often given in decibels (dB) as follows:

o, = —20log(l —4,)
and o, = —20log(s,)

The interval [w,, o, ] 15 called the rransition band.
Once the filter specifications have been defined, the next step is to design a filter that meets these specific
1ons.

FIR FILTER DESIGN

The frequency response of an Nth-order causal FIR filter is

llll
Hiel™) = Eh[n}v S

il

and the design of an FIR filter involves finding the coefficients ii(n) that result in a frequency response that
satisfies a given seit of filter specifications. FIR filters have two important advantages over 1R filiers, First, they
are guaranteed 1o be stable, even after the filter coefficients have been quantized. Second, they may be easily
constrained to have (generalized) linear phase. Because FIR filters are generally designed to have linear phase,
in the following we consider the design of linear phase FIR filers.

Linear Phase FIR Design Using Windows

Let hiy(n) be the unit sample response of an ideal frequency selective filter with linear phase,
Hd{!ﬁ_.;m} — A{EIM]E’- Jddo— )

Because hyin) will generally be infinite in length, it is necessary to find an FIR approximation to Hyie'™). Wi
the window design method, the filter is designed by windowing the unit sample response,

hin) = hylmiwin)

where w(n) is a finite-length window that is equal to zero outside the interval 0 < 1 < N and 15 symmetric abo
its midpoint:
win) = wiN —n}
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Hi(e!™), is determined by two factors

1. The width of the main lobe of W (e,
2. The peak side-lobe amplitude of W{e'™),

T w(em)

Peak Sidelobe

L

- —)-| A |-<— Mainlobe "
Width

The DTFT of a typical window, which is characterized by the width of its main lobe, A,

and the peak amplitude of its side lobes, A, relative to the amplitude of W (e/*) at @ = 0.

Some general properties of windows are as follows:

1. Asthelength N of the window increases, the width of the main lobe decreases, which results ina decrease
in the transition width between passbands and stopbands. This relationship is given approximately by

NAf=¢

where Af is the transition width, and ¢ is a parameter that depends on the window.

2. The peak side-lobe amplitude of the window is determined by the shape of the window, and it is
essentially independent of the window length.

3. If the window shape is changed to decrease the side-lobe amplitude, the width of the main lobe will
generally increase.
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Some Common Windows

1 D=n=N
Rectangular | win) =
0 else
0.5-0.5 il D<n<N
Hanning' wmy=1"" cos N "
0 else
, .54 — 0.46 cm( ) D=n=N
Hamming win) = )
0 else
n
Blackman win) = 0.42 - 0. SLUS( ) + (.08 ﬂh( ) O=n=N
0 else

The Peak Side-Lobe Amplitude of Some Common Windows and the Approximate
Transition Width and Stopband Attenuation of an Nth-Order Low-Pass Filter
Designed Using the Given Window.,

Window

Side-Lobe Amplitude {dB)

Transition Width (A7)

Stopband Attenuation (dB)

Reclangular
Hanning
Hamming
Blackman

—13
=31
~41
—57

0.9/N
31/N
3.3/N
5.5/N

-2
—44
=53
—74

Kaiser window:

ol BC1 — [(n — a)/a]*)' ]

O=n
fo( )

win) = =N

where @« = N /2, and fy(-) is a zeroth-order modified Bessel function of the first kind, which may be easily
generated using the power series expansion
i [H‘f 2y ]

.|r|b{.r_} = ]
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The parameter 8 determines the shape of the window and thus controls the trade-off between main-lobe widl
and side-lobe amplitude. A Kaiser window is nearly optimum in the sense of having the most energy in its mai
lobe for a given side-lobe amplitude.

There are two empirically derived relationships for the Kaiser window that fa-:uht-:a.tf: the use of these window
to design FIR filters. The first relates the stopband ripple of a low-pass filter, w, = =20 log(4, ), to the parameter |

011020, — 8.T) o, = 30
A= { 0.5842(a, — 2™ + 0.07886(0, — 21) 21 =, =50
0.0 o, = 21

The second relates NV to the transition width Af and the stopband attenuation c,,

o, — 1.95

I Bl = 21
1436af ¢

Note that if @, < 21 dB, a rectangular window may be used (§ = 0),and N = 0.9/Af.

Examplel.:

Suppose that we would like to design a low-pass filter with a cutoft frequency w, = m /4, a transition
width A = 0.02n, and a stopband ripple §, = 0.01. Because o, = =20 1log(D.01) = —44, the Kaiser window parameter is

B = 0.5842(40 — 211" 4 0.07886(40 — 21) = 3.4

With Af = Aw/2m = 0,01, we have
_40-795
T 1436 (001

Therefore, hin) = hylnjw(n)

sinfin — | IZ}HIﬂ

where hglny = T

15 the unit sample response of the ideal low-pass filter.

Example 2:

Use the window design method to design a linear phase FIR filter of order N = 24 to approximate the
following ideal frequency response magnitude:
I lw| < 0.2

Hy(e!?)| =
Ha(e™1 =1, 021 < |w| <7
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The ideal filter that we would like to approximate is a low-pass filter with a cutoff frequency w, = 0.27. With
N = 24, the frequency response of the filter that is to be designed has the form

24
H(e_fm} — Zh(n){’_”“”
=i}
Therefore, the delay of h(n) is ¢ = N /2 = 12, and the ideal unit sample response that is to be windowed is

sinl0.27 (n — 12)]

faln) = (n — 12)m

All that is left to do in the design is to select a window. With the length of the window fixed, there is a trade-off
between the width of the transition band and the amplitude of the passband and stopband ripple. With a rectangular
window, which provides the smallest transition band,

0.9
Aw =2m - — = 00757
2%

and the filter is

sin[0.2min — 12)]
hin) = in—12)m
0 otherwise

0=<n=<24

However, the stopband attenuation is only 21 dB, which is equivalent to a ripple of 4, = 0.089. With a Hamm
window, on the other hand,

0=n=24

21[::) sin[0.2m(n — 12)]
24

hiny = [{].54 - U.46cus(— 12

and the stopband attenuation is 53 dB, or §; = 0.0022. However, the width of the transition band increase:

33
Aw = 2 - LYY = 0.275m

which, for most designs, would be too wide.

Frequency Sampling Filter Design

Another method for FIR filter design is the frequency sampling approach. In this approach, the desired frequer
response, Hg(e/), is first uniformly sampled at N equally spaced points between 0 and 27

Hk)y = Ha(e#N)y  k=0,1,...,N =1
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These frequency samples constitute an N -point DFT, whose inverse is an FIR filter of order N — 1;

=z

H (k)e!2mmkiN 0<n<N-1
0

1
h[ﬁ') = E

E
Il

The relationship between hA(n) and hy(n) 1s

him)= " hyn+kN) O0<n<N -1

h=—ng

FINITE WORD-LENGTH EFFECTS

In implementing a discrete-time system in hardware or software, it is important to consider the finite word-lengt
effects. For example, if a filter is to be implemented on a fixed-point processor, the filter coefficients must b
quantized to a finite number of bits. This will change the frequency response characteristics of the filter. In thi
section, we look at the finite precision effects in digital filter implementations.

Binary Representation of Numbers

There are two basic systems for representing numbers in a digital system: fixed point and floating point. The
is a trade-off in which type of representation to use. The dynamic range that is available in a floating-pot
representation 1s much larger than with fixed-point numbers. However, fixed-point processors are typically fast
and less expensive. Below, we briefly describe these number representations.

Fixed Point

[n the binary representation of a real number, x, using B + | bits, there are three commonly used formats: sig
magnitude, one’s complement. and two’s complement, with two's complement being the most common. In thes
systems, the only difference is in the way that negative numbers are represented.

. Sign magnitude: With a sign-magnitude format, a number x is represented as

Fil
X = Xm(_l)h“ ' Zb;?ﬂ-

i=l
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where X, is an arbitrary scale factor and where each of the birs b; are either O or 1. Thus, by is the sig
bit, and the remaining bits represent the magnitude of the fractional number. Bit b, is called the mos
significant bit (MSB). and bg is called the leust significant bit (LSB). For example, with X,, = 1,

x=0.8125=0.11010

and —x ==0.8125=1.11010

2. One's complement: In one’s complement form, a negative number is represented by complementin
all of the bits in the binary representation of the positive number. For example, with X,, = [ an

x = 0.8125 = 0.11010,
—x = —0.8125 = 0.11010 = 1.00101

3. Two's complement: With a two’s complement format, a real number x is represented as

B
¥ =X, (—bU + Z br2‘f)
=1

Thus, negative numbers are formed by complementing the bits of the positive number and adding | to th
least significant bit. For example, with X, = 1, the two’s complement representation of v = —0.812

15
xr=-=08125=0.11010 + 0.00001 = 1.00110

Note that with B + 1 bits, the smallest difference between two quantized numbers, the resolution, is
A= sz_ﬂ

and all quantized numbers lie on the range —X,, < x < X,,.

Floating Point

For a word length of 8 + 1 bits in a fixed-point number system, the resolution is constant over the entire range c
numbers, and the resolution decreases (A increases) in direct proportion to the dynamic range, 2X,,,. A floating
point number system covers a larger range of numbers at the expense of an overall decrease in resolution, wit
the resolution varying over the entire range of numbers. The representation used for floating-point numbers |

typically of the form _
x=M 2%

where M, the mantiysa, is a signed B ys-bit fractional binary number with l < |M| < l.and £, the exponent, |
a Bg-bit signed integer. Because M is a signed fraction, it may be represented using any of the representation
described above for fixed-point numbers.


http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Quantization Errors in Fixed-Point Number Systems

In performing computations within a fixed- or floating-point digital processor, it is necessary to quantize numbers
by either truncation or rounding from some level of precision to a lower level. For example, because multiplying
two [6-bit fixed-point numbers will produce a product with up to 31 bits of precision, the product will generally
need to be quantized back to 16 bits. Truncation and rounding introduce 4 quantization error

e = Q[x]—x

where x is the number to be quantized and ([ x] is the quantized number. The characteristics of the error depend
upon the number representation that is used. Truncating numbers that are represented in sign-magnitude form
result in a quantization error that is negative for positive numbers and positive for negative numbers. Thus, the
quantization error is symmetric about zero and falls in the range

—-A=e=A

where A=X,2%

On the other hand, for a two's complement representation, the truncation error is always negative and falls in the

range
—A=e=<0

With rounding, the quantization error is independent of the type of fixed-point representation and falls in th
range

| B

<es

ol >

For floating-point numbers, the mantissa is either rounded or truncated, and the size of the error depends on th
value of the exponent.

Quantization of Filter Coefficienis

In order to implement a filter on a digital processor, the filter coefficients must be converted into binary form.
This conversion leads to movements in the pole and zero locations and a change in the frequency response of
the filter. The accuracy with which the filter coefficients can be specified depends upon the word length of the
processor, and the sensitivity of the filter to coefficient quantization depends on the structure of the filter, as well
as on the locations of the poles and zeros.

For an FIR filter,

N
H(z)= Zfr(n)z "

n={}
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when the coerncients are quanllzed. the system Tunctuion becomes
N N
H(z) = Zh(n)z"' = Zlh(n) + Ak(n))z™" = H(z) + AH(z)
n=() n=(}

Thus, the quantization errors may be modeled as H(z) in parallel with AH(z) as shown in Fig. . If we
assume that the coefficients i#(n) are less than | in magnitude, and that the coefficients are rounded to B + | bits,

=2-8+D) « AR(n) <2718+

Therefore, a loose bound on the error in the frequency response is

N N
|AH (e!)| = Z Ah(n)e™""| < Z |AR(n)| < (N + 1)2-B+D
n={) n=()
- Hiz) »>
XiH) ¥(n)
——0 o Tm——
> AHIZ) =

Model for the coeflicient quantization error in FIR
filters.

As with [IR filters, if the zeros are tightly clustered, the zero locations will be sensitive to coefficier
quantization errors. However, FIR filters are commonly implemented in direct form for two reasons:

I. The zeros of FIR filters are not generally tightly clustered.
2. In direct form, linear phase is easily preserved.

Round-Off Noise

Round-off noise is introduced into a digital filter when products or sums ol products are quantized. For examplk
if two (B + 1)-bit numbers are multiplied, the product is a (28 + 1)-bit number. If the product is to be saved i
a (B + 1)-bit register or used in a (B + 1)-bit adder, it must be quantized to (8 + 1)-bits, which results in th
addition of round-off noise. This round-off noise propagates through the filter and appears at the output of th
filter as round-off noise. In this section. we illustrate the analysis of round-off noise effects by example.
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Example:

Consider the first-order all-pole filter with a system [unction

H(z)=

| —az!

If the input to this filter, e(n). is zero mean white noise with a variance o”, the variance of the output will b

2 2 - 2 2z 3 2n 2 1
ﬂ"r =a, Z 1.‘1‘[”" =ﬂ=_Z|ﬂ'| =Ufm

=% =il

xin) h0) ¥ln) = y(n) + f(n)
O— = I e O -— = L = O
. 'y 4 T
bil) —atl)
o - O e -+ O
z~! # i 4 B
h(2) —ut(2)
- -+

Thus, the quantization noise is filtered only by the poles of the filter, and the output noise satisfies the differenc
equation

2
fn)y=e,(m) =Y atk)f(n—k)
k=1
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If the noise sources are uncorrelated, as assumed by the third property above, the variance of ¢,(n) is the sum
the variances of the five noise sources, or

Q
il
Il
wn
Q
Il
N

Assuming that the filter is stable, and that the poles of the filter are complex,

Lta(Dz="+ a2 (I —relz=")1 —re-192-1)

the variance of the output noise is

~=—28 |

e ]
2 -1
o 12 2mj jc A(D)A(z™Y)

- 52_2‘3 I f zdz
N2 27 Jo (2 —relf)z —re )| —rel¥z) (] —re—ifz)

Using Cauchy’s residue theorem to evaluate this integral, we find that

5 218 /| 42 |
[ ar— 5
/ 12 1 =r2 ) r*41=2r"cos20

Note that as the poles move closer to the unit circle, » — 1, the variance of the output noise increases.

Overflow

Another issue in fixed-point implementations of discrete-time systems is overflow. If each fixed-point numb
is taken to be a fraction that is less than | in magnitude, each node variable in the network should be constrain
to be less than 1 in magnitude in order to avoid overflow, If we let i(n) denote the unit sample response of tl
system relating the input x(n) to the kth node variable, wy(n),

oo

o0
el = | Y xtn = mh(m)| < Xeax Y Vhelm)]

m=—o% =0
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where X 3, is the maximum value of the input x(#n). Therefore, a sufficient condition that |w(n)| < 1 soth

no overflow occurs in the network 1s |

i [ (m)]

mM=—0n0

-x mak E

for all nodes in the network. If this is not satisfied, x(n) may be scaled by a factor 5 so that

UNIT -V

Multirate signal processing:

_ _ , 1 ) .
Lets say we have x(n) = x,(nT) with a sampling rate F, = T and want to reduce its sampling rate

by an integer factor D. That is: x4(n) = x(nD) or xafh) = xa(nT’) = xa(n.D.T.) = x(nD) where
T’=D.T the decimated sampling rate.

X(m)z FFT{I(H)}=% E:XH(E—E] (1). and

=Tt T

1 Z 2l
Xi(0)=—— S x| —-“Z |asT'=DT ()
D-T,= DT DT

) 1 @,
Comparing 1 and 2 — X {&JI )= ) X D @y =D-w,.
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. . 27 : . .
If the original signal was over sampled and BW, <—. then there is no aliasing. However. if
D

L e . : T . :
this is not the case. then to avoid aliasing. one should filter x(n) by JE prior to down sampling by

a factor D.

xim)
T r ]

UP Sampling by a Factor L

. o T . , nT n
In this case. T = T therefore. x,(n)=x,(nT")= x”(?_} = \‘[E]
n v =
X, = x[E] n=0+L+2L.. = ;:(#]5(71 — kL)
0 else

Now in order to interpolate between the stretched samples of x(n). we mwmst pass the x,(n)

. e T
through a LPF with cutoff frequency @, = =
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Xu{mx] = S‘ Kij(k)c?(rr —k{_)} gion

= Jf_ xlk)e ™ = x (mIIL]:? @, = O

¥
k=—m L

So X{ @) becomes compressed for L > 0 and now pass X, (@) through LPF:

H(m}.)= {C 0< fl‘-'}.‘ .;_:%

0 else

-
Therefore. }’(mj,)= CX[mJ'L) 0= ‘m-"‘ E;E

0 else

L
Changing the Sampling Rate by a Factor D

We should first up sample by L. the down sample by D.

x(n) v(m)
- TL »| LPF » LPF |___ i IR
Rate F, - s L o — L
Up Sampling Decimation Rate F, = E ' Fl'
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x(n)
e F | FF i — Ifm)

Y(m_,.): %X[ ‘:‘;] gg‘mll‘illlill{ﬁ_%]

0 else

Filter Design for Sampling Rate Conversion

M-1
Lets use FIR filter H(z)= " h(k)z™
k=0
x(n) L
)
PPN Xufn) - hi0) yim)
3. > z! N . @_, ¢ D 5
L
f Decimator
hil) .
Up Sampling A
=
hi2) r

b

hM-1) _@
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This filter is simple but very inefficient because (L — I) times, the x,(n) is zero and still the filter
processes it. If L is large. then most of the inputs of the LPF filter is zero. Also, the output only

one of every D samples is needed. If we do this instead for a decimator:

. (m)
xfn) h(ﬂ) /'_\ ¥y
0 2 X >
-1
. The number of multiplication
*D h(l) 5 £
and addition is at E‘ rate.
z! Also, we can use the
. symmetry of hk) and still
| reduce computation
-
4D hM-1) 5

Sampling Rate Conversion by an Arbitrary Number

. L . . L 1023 .
Some fime the rate D L is very large. 1.e., D511 meaning to 1023 subfilters or polyphase

filters so seeking other methods.

1°' Order Approximation

. . . . T
Let’s assume T 1s the sample interval for x(n) and we want to upsample it by » (T =—). We
-

1 1 K .
can express —  as —=E+ f. where K and L are two integers and

¥ ¥

1 K 1 K+1
G-::,B<E:>—<—<:

7 . L is infact the number of polyphase filters due to upsampling.
-
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For example. let » = 2.2 then £_2 {i c:i_=
]

L 6 2.2

K +1
T

So the number of filters for

upsampling is 6. The time spacing between samples of the interpolated sequence is IJ‘

However, the desired conversion rate r = 2.2, for L = 6 corresponds to a decimation factor 2.727

PP e

which falls between K = 2 and K = 3. In the first appoximation method. we achieve the desired

decimation rate by selecting the output sample from the filter closest in time to the desired

sampling rate.

Note: upsampled data idealy has to be downsampled to 2.7. So we select either 2 or 3, anyone

closer to the ideal one.

Adaptive Filter:

Linear Filtering will be optimal only if it is designed with
some knowledge about the input data.lf this information is not known,then
adaptive filters are used.The adjustable parameters in the filter are

assigned with values based on the estimated statistical nature of the
signals.So,these filters are adaptable to the changing

environment. Adaptive filtering finds its application in adaptive noise
cancelling,line enhancing,frequency tracking,channel equalizations, etc.

Adaptive Filter Theory

A
u(n) .
| filter HM >

Adaptive efr
Y > weigl_lt control
algonithm

Few applications of Adaptive filter are:
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/

Adaptive
Filter

Z

U
o
System
Input
Input v
N Plant
Delay

a) Identification

Plant

Y

Y

Adaptive
Filter

v
+
d
>
System
Output
Output

L J

b) Inverse Modelling
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Least-Mean-Square (LMS) Adaptation Algorithm:

ufm—AM+2) I um—M+1)
d(n
. e (n)
e(mn)
din)

Parameters: M= # of taps

L= step-size parameter

2 2

0< U< — =3
E[|u(n — k]l}

tap —input power Z
Initialization: 1_%-‘(0] = 0 unless there 1s a prior knowledge.

k=0

Given: u(n)= M - by -1 tap input vector at time n.
d(n) = desired response time at n
To be computed:
win+ 1) = estimate of tap-weight vector at time n + J
Computation:
e(n) = d(n) " (n)-u(n)

Wwn+1)=w(n)+ uu(n)-e'(n)
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Normalized algorithm:

M =# of taps

L= adaptation constant, o < i< 2

a = a small positive constant

Initialization: w(0)=0

Given: u(n): M by 1 tap-input vector at time n
d(n): desired response at time n

Compute:

e(n)=d(n)—w" (n) u(n)

wn+1)= E(Hhﬁ u(n)e’(n)

As you see, g is divided by the norm of u(n) and hence, the name “Normalized”. In case of

having very small input, numerical difficulties may arise due to the division to || u(n)||". then we

. 1 1 . . . .
may define ,u(n}= £ = and in this light Normalized LMS may be viewed as LMS with a

|M?’I

time-varying step-size parameter. The rate of convergence of the Normalized LMS is faster than

the conventional LMS Algorithm.

Recursive Least Squares Algorithim (RLS)
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M = number of taps and A = forgetting factor < I
Given u(n): M-by-1 tap-input vector
d(n): desired response.
Initialize: P(0)= o' -I. o= small positive constant (i.e. 0.25)
w(0)=0
For each instant of time. n = 1, 2, __., compute:
/' P(n—1)u(n)
1+ /:_1 HH(H)- P(n—1)u(n)

e(n)=d(n)- " (n-1)-u(n)
w(n)= (n 1}+K n)e'(n)
Pn)=1"P(n-1)-1"K(n)-u"(n)-Pn-1)

A few kev features of the RLS Algorithm

K(n)=

¢ The mean of the learning curve of the RLS algorithm converges in about 2M iterations.
where M is the number of taps of the filter. Therefore. the RLS convergence rate is much
faster than that of LMS Algorithm.

e As the number of iterations. n, approaches infinity. the mean-squared error of RLS
approaches a final value equal to the variance & of the measurement error. In other words,
in theory. RLS algorithm produce zero error as n — <.

e Convergence of the RLS algorithm in the mean-squared sense is independent of the eigen

value spread of the correlation matrix of the input vector.

Speech Compression:

A voice signal has the frequency range of 300 to
3000Hz.It is sampled at a rate of 8 kHz and the word length of the digitized
signal is 12 bits.

The redundancy present in the voice signals can be reduced by signal
compression and coding.

The different voice compression and coding techniques are:
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i)\waveform coding-non-uniform,differential,adaptive quantization.

i) Transform coding-transform the voice signal to an orthogonal system and
then coding the transform.

li)Frequency band encoding-frequency range of voice signals are divided
into discrete channels and then each channel is coded separately.

Iv)Parametric methods-linear prediction.

Linear predictive coding(LPC):

LPC works on the principle of analysis by synthesis
which means that the encoder includes a replica of the decoder in its
design.DSP circuits can be used to implement LPC.Using LPC,high levels
of compression can be achieved.It involves the following operating steps:

1.Sampling the input speech at a designed rate using rectifier and 20Hz
low pass filter.

2.Analyzing the block of audio waveform samples.

3.Determining the perceptual features of the audio waveform.feature
extraction is done by analyzing the block of digitized samples known as
segment. The perceptual features are:

pitch

period

loudness

vocal tract excitation parameters.

4.Quantizing the sampled segments.

5.Computing the error signal which is the difference between the original
speech and its regenerated version.

6.Determining the new set of filter coefficients[c1,c2...cn] using the current
set of vocal tract model coefficients and linear combination of the previous
set of coefficients to minimize the error.

7. Transmitting the new set of coefficients for each quantized segment,in a
string of frames.Frame contains fields for pitch,loudness,period and
whether the signal is voiced or unvoiced and a new set of computed filter
coefficients.
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