UNIT-I

1. Basic Concept of Control System
Control Engineering is concerned with techniques that are used to solve the following six
problems in the most efficient manner possible.

(a)The identification problem :to measure the variables and convert data for analysis.

(b)The representation problem:to describe a system by an analytical form or mathematical model
(c)The solution problem:to determine the above system model response.

(d)The stability problem:general qualitative analysis of the system

(e)The design problem: modification of an existing system or develop a new one

() The optimization problem: from a variety of design to choose the best.

The two basic approaches to solve these six problems are conventional and modern approach. The
electrical oriented conventional approach is based on complex function theory. The modern
approach has mechanical orientation and based on the state variable theory.

Therefore, control engineering is not limited to any engineering discipline but is equally
applicable to aeronautical, chemical, mechanical, environmental, civil and electrical engineering.
For example, a control system often includes electrical, mechanical and chemical components.
Furthermore, as the understanding of the dynamics of business, social and political systems
increases; the ability to control these systems will also increase.

1.1.Basic terminologies in control system

System: A combination or arrangement of a number of different physical components to form
a whole unit such that that combining unit performs to achieve a certain goal.

Control: The action to command, direct or regulate a system.

Plant or process: The part or component of a system that is required to be controlled.
Input: Itis the signal or excitation supplied to a control system.

Output: It is the actual response obtained from the control system.

Controller: The part or component of a system that controls the plant.

Disturbances: The signal that has adverse effect on the performance of a control system.

Control system: A system that can command, direct or regulate itself or another system to
achieve a certain goal.

Automation: The control of a process by automatic means

Control System: An interconnection of components forming a system configuration that will
provide a desired response.

Actuator: It is the device that causes the process to provide the output. It is the device
that provides the motive power to the process.



Design: The process of conceiving or inventing the forms, parts, and details of system to
achieve a specified purpose.
Simulation: A model of a system that is used to investigate the behavior of a system by

utilizing actual input signals.

Optimization: The adjustment of the parameters to achieve the most favorable or
advantageous design.

Feedback Signal: A measure of the output of the system used for feedback to control
the system.

Negative feedback: The output signal is feedback so that it subtracts from the input signal.

Block diagrams: Unidirectional, operational blocks that represent the transfer functions of
the elements of the system.

Signal Flow Graph (SFG): A diagram that consists of nodes connected by several directed
branches and that is a graphical representation of a set of linear relations.

Specifications: Statements that explicitly state what the device or product is to be and to
do. It is also defined as a set of prescribed performance criteria.

Open-loop control system: A system that utilizes a device to control the process
without using feedback. Thus the output has no effect upon the signal to the process.

Closed-loop feedback control system: A system that uses a measurement of the output and
compares it with the desired output.

Regulator: The control system where the desired values of the controlled outputs are more
or less fixed and the main problem is to reject disturbance effects.

Servo system: The control system where the outputs are mechanical quantities like
acceleration, velocity or position.

Stability: It is a notion that describes whether the system will be able to follow the input
command. In a non-rigorous sense, a system is said to be unstable if its output is out of
control or increases without bound.

Multivariable Control System: A system with more than one input variable or more
than one output variable.

Trade-off: The result of making a judgment about how much compromise must be
made between conflicting criteria.

1.2. Classification
1.2.1. Natural control system and Man-made control system:

Natural control system: It is a control system that is created by nature, i.e. solar
system, digestive system of any animal, etc.

Man-made control system: It is a control system that is created by humans,
i.e. automobile, power plants etc.

1.2.2. Automatic control system and Combinational control system:



1.2.3.

1.2.4.

1.2.5.

1.2.6.

1.2.7.

1.2.8.

1.2.9.

Automatic control system: It is a control system that is made by using basic theories
from mathematics and engineering. This system mainly has sensors, actuators and
responders.

Combinational control system: It is a control system that is a combination of natur-
al and man-made control systems, i.e. driving a car etc.

Time-variant control system and Time-invariant control system:

Time-variant control system: It is a control system where any one or more
parameters of the control system vary with time i.e. driving a vehicle.

Time-invariant control system: It is a control system where none of its parameters
vary with time i.e. control system made up of inductors, capacitors and resistors only.

Linear control system and Non-linear control system:

Linear control system: It is a control system that satisfies properties of homogen-
eity and additive.

e Homogeneous property: f(x+y)=f(x)+f(y)

e Additive property: f(ax)=af(x)
Non-linear control system: It is a control system that does not satisfy properties of
homogeneity and additive, i.e. f(x)= X
Continuous-Time control system and Discrete-Time control system:

Continuous-Time control system: It is a control system where performances of all
of its parameters are function of time, i.e. armature type speed control of motor.

Discrete -Time control system: It is a control system where performances of all of
its parameters are function of discrete time i.e. microprocessor type speed control of
motor.

Deterministic control system and Stochastic control system:

Deterministic control system: It is a control system where its output is predictable
or repetitive for certain input signal or disturbance signal.

Stochastic control system:lIt is a control system where its output is unpredictable or
non-repetitive for certain input signal or disturbance signal.

Lumped-parameter control system and Distributed-parameter control system:

Lumped-parameter control system: It is a control system where its mathematical
model is represented by ordinary differential equations.

Distributed-parameter control system:It is a control system where its mathematical
model is represented by an electrical network that is a combination of resistors,
inductors and capacitors.

Aumbiaan potrainbbgstatput (SISO) control system and Multi-input-multi-output
SISO control system: It is a control system that has only one input and one output.

MIMO control system:It is a control system that has only more than one input and
more than one output.

Open-loop control system and Closed-loop control system:

Open-loop control system: It is a control system where its control action only
depends on input signal and does not depend on its output response.



Closed-loop control system:It is a control system where its control action depends
on both of its input signal and output response.

1.3. Open-loop control system and Closed-loop control system
1.3.1. Open-loop control system:

It is a control system where its control action only depends on input signal and does
not depend on its output response as shown in Fig.1.1.

control signal

u(t
Input o———| controller ® »| Plant p—» Output
rt) c(t)

Fig.1.1. An open-loop system
Examples: traffic signal, washing machine, bread toaster, etc.

Advantages:

o Eaopledesdgntananeasy to construct
e Highly stable operation

Dis-advantages:

o Nutirgccurate and reliable when input or system parameters are variable in
o Recalibration of the parameters are required time to time
1.3.2. Closed-loop control system:

It is a control system where its control action depends on both of its input signal and
output response as shown in Fig.1.2.

Error signal control signal
Input u(t) - _ Output
r(t) Controller > Plant o(t)
Comparator
Feedback signal, b(t)
Feedback |«

Fig.1.2. A closed-loop system
Examples: automatic electric iron, missile launcher, speed control of DC motor, etc.

Advantages:

o Nhregueratatectieraniby tvirenhanpdopensigsipreoptmalnsgstsmare variable in
nature

o  Hégh mankindaitityoéféperati dhese systems on output response

o Theetis fiamd itscafibratioratddnhe parameters are not required
Dis-advantages:

o Complex design and difficult to construct



o Expensive than that of open-loop control system

o Complicate for maintenance

o Less stable operation than that of open-loop control system

1.3.3. Comparison between Open-loop and Closed-loop control systems:

It is a control system where its control action depends on both of its input signal and
output response.

Sl.
No. Open-loop control systems Closed-loop control systems
1 No feedback is given to the control system | A feedback is given to the control system
2 Cannot be intelligent Intelligent controlling action
There is no possibility of undesirable Closgq . loop _control _|ntroduces the
3 S . possibility ~ of  undesirable  system
system oscillation(hunting) e .
oscillation(hunting)
The output will not very for a constant | In the system the output may vary for a
4 input, provided the system parameters | constant input, depending upon the
remain unaltered feedback
System output variation due to variation in L S
h System output variation due to variation in
5 parameters of the system is greater and the .
- parameters of the system is less.
output very in an uncontrolled way
6 Error detection is not present Error detection is present
7 Small bandwidth Large bandwidth
8 More stable Less stable or prone to instability
9 Affected by non-linearities Not affected by non-linearities
10 Very sensitive in nature Less sensitive to disturbances
11 Simple design Complex design
12 Cheap Costly




UNIT-II

2. Control System Dynamics
2.1. Definition: It is the study of characteristics behaviour of dynamic system, i.e.
(a) Differential equation

i. First-order systems
ii. Second-order systems
(b) System transfer function: Laplace transform

2.2.Laplace Transform: Laplace transforms convert differential equations into algebraic
equations. They are related to frequency response.

0

L{x(t)} =X (s)= [ x(tye~dt 2.1)
0
L{x(t)}=X (s):jx(t)e‘s‘dt (2.2)
0
Time-domain 7 Sine sin ot W
Laplace domain 2 2
No. | Function x(t)= STta
X(s)= L{x()}
LX)} 8 Cosine cos ot S
2 2
1 Delay 3(t-1) g™ S"+a
2 Unit impulse | 3(t) 1 9 Hyperbolic sinh at a
sine 2 o2
. 1
3 Unit step u(t) —
S 10 | Hyperbolic | cosh at S
cosine 2 2
1 S -«
4 Ramp t 5
S
11 | Exporentiall | a-<t gin wt %)
Exponential | 1 y decaying (s+a)’ +o°
5 decay € Sto sine wave
12 | Exporentiall | -t g it S+a
6 Exponerr]]tlal (1 et ) a y dt?caylng 5+ a)2 P
pproac s(s+a) cosine wave

2.3.Solution of system dynamics in Laplace form: Laplace transforms can be solved using
partial fraction method.
A system is usually represented by following dynamic equation.

N(s):% (2.3)

The factor of denominator, B(s) is represented by following forms,

i. Unrepeated factors



ii. Repeated factors
iii. Unrepeated complex factors

(i) Unrepeated factors

N(s) __A B
(s+a)(s+b) s+a s+b (2.4)
_A(s+b)+B(s+a)
~ (s+a)(s+b)

By equating both sides, determine A and B.

Example 2.1:
Expand the following equation of Laplacetransform in terms of its partial fractionsand obtain
its time-domain response.

2
Y(s)=—
(s+1(s+2)
Solution:
The following equation in Laplacetransform is expandedwith its partial fractions as follows.
2s A N B
(s+D(s+2) (s+1) (s+2)
2s _ A(s+2)+B(s+1)

= =
(s+D(s+2) (s+1)(s+2)
By equating both sides, A and B are determined as A=-2,B = 4. Therefore,

Y(S)Z—L-}—i
(s+)) (s+2)

Taking Laplace inverse of above equation,
y(t)=-2e"+4e™*

(if) Unrepeated factors
N(s) A . B A+B(s+a)

(s+a)? (s+a)® (s+a) (s+a)? 25)

By equating both sides, determine A and B.

Example 2.2:
Expand the following equation of Laplacetransform in terms of its partial fractionsand obtain
its time-domain response.

2s
Y(8) =5 —
(s+D)°(s+2)
Solution:
The following equation in Laplacetransform is expandedwith its partial fractions as follows.
25 A B C

(5+17(5+2) (5417 (541 (5+2)

By equating both sides, A and B are determined as A=-2,B = 4. Therefore,
Y(s)=— 2 - 4 3 4

(s+1)° (s+1) (s+2)

Taking Laplace inverse of above equation,

y(t)=-2te™ +4e" —4e™




(iii) Complex factors: They contain conjugate pairs in the denominator.
N(s) _ As+B

(s+a)(s+3) (s+a)’+p°

(2.6)

By equating both sides, determine A and B.

Example 2.3:
Expand the following equation of Laplacetransform in terms of its partial fractionsand obtain
its time-domain response.

V()= ot
(s+1+ j)(s+1-})
Solution:
The following equation in Laplacetransform is expandedwith its partial fractions as follows.
2 1
Y(8) =
(s+D)"+1 (s+1)°+1

Taking Laplace inverse of above equation,
y(t) =2e " cost+e " sint

2.4. Initial value theorem:
limyol-lim[sY (s)] @7
t—0

S

Example 2.4:
Determine the initial value of the time-domain response of the following equation using the
initial-value theorem.

V=t
(s+1+ j)(s+1-))
Solution:
Solution of above equation,
y(t) =2e " cost+e " sint
Applying initial value theorem,
. s(2s+1)
lim . ==
som (SH1+ J)(s+1-])
2.5.Final value theorem:
lim(y®)=lim[sY ()] (2.8)
o0 s—0

Example 2.5:
Determine the initial value of the time-domain response of the following equation using the
initial-value theorem.

2s
[ o o)

Solution:
Solution of above equation,



y(t)=-2te™" +4e" —4e™

Applying final value theorem,
. s(2s+1)

lim : <=
sow (S+1+ J)(s+1-j)
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3. Transfer Function
3.1. Definition: It is the ratio of Laplace transform of output signal to Laplace transform of input
signal assuming all the initial conditions to be zero, i.e.

Let, there is a given system with input r(t) and output c(t) as shown in Fig.3.1 (a), then its
Laplace domain is shown in Fig.3.1 (b). Here, input and output are R(s) and C(s) respectively.

rt) e——s gt} p—> clt) Rs) — Gis) }—> C(s
(@) (b)
x(t) o G(D) y(t)
(c)
Fig.3.1. (a) A system in time domain, (b) a system in frequency domainand (c) transfer function with differential
operator

G(s) is the transfer function of the system. It can be mathematically represented as follows.

G(s):w Equation Section (Next)(3.1)

Example 3.1: Determine the transfer function of the system shown inFig.3.2.

—AMN—

R L

Vi(t) c = Vo(t)

Fig.3.2. a system in time domain

Solution:
Fig.3.1 is redrawn in frequency domain as shown in Fig.3.2.

—AMA—YY
R Ls
Vi(s) 1 (s)\‘\ 1/Cs —— Vo (S)
- H

Fig.3.2. a system in frequency domain



Applying KVL to loop-1 of the Fig.3.2

Vi(s):£R+Ls+Cijl(s)

S

Applying KVL to loop-2 of the Fig.3.2
Fromeq (2.12),

Now, using eq (2.13) in eq (2.10),

Vi (s) :(R+ Ls+éJCsV0(s)

L Vo(s) _ 1 1

] = 2
Vi (s) [R+Ls+cij05 LCs? +RCs+1
S

Then transfer function of the given system is

1
 LCs?+RCs+1

G(s)

3.2.General Form of Transfer Function

G(S): K(S_Zl)(S—ZZ)...(S—Zm):K L (S_Zi)

(s=p)(s—p,).(s—p,) ﬁ(S—Zj)

Where, Z,, Z,...Z,, are called zeros and p,, p,...p, are called poles.

Number of poles n will always be greater than the number of zeros m

Example 3.2:
Obtain the pole-zero map of the following transfer function.
G(s) = (s=2)(s+2+ jd)(s+2- j4)
(s-3)(s—4)(s—5)(s+1+ j5)(s+1- j5)

Solution:

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

3.7)

The following equation in Laplacetransform is expandedwith its partial fractions as follows.

Zeros Poles

=2 5=3

s=-2-j4 | s=4

s=-2+j4 | s=5




s=-1-j5

s=-1+j5

s-plane

jo
(=]
()

Fig.3.3. pole-zero map

3.3.Properties of Transfer function:
e Zero initial condition

e It issame as Laplace transform of its impulse response

e Replacing ‘s’ by Edt in the transfer function, the differential equation can be obtained

e Poles and zeros can be obtained from the transfer function
e Stability can be known
e Can be applicable to linear system only

3.4. Advantages of Transfer function:
e It isa mathematical model and gain of the system

e Replacing ‘s’ by Edt in the transfer function, the differential equation can be obtained

o Poles and zeros can be obtained from the transfer function
e Stability can be known
e Impulse response can be found
3.5. Disadvantages of Transfer function:
e Applicable only to linear system
o Not applicable if initial condition cannot be neglected
e It gives no information about the actual structure of a physical system
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4. Description of physical system
4.1.Components of a mechanical system: Mechanical systems are of two types, i.e. (i)
translational mechanical system and (ii) rotational mechanical system.
4.1.1. Translational mechanical system

There are three basic elements in a translational mechanical system, i.e. (a) mass, (b)
spring and (c) damper.

(@) Mass: A mass is denoted by M. If a force f is applied on it and it displays
2

distance x, then f =M ((jjt;( as shown in Fig.4.1.

X

Fig.4.1. Force applied on a mass with displacement in one direction

If a force f is applied on a massM and it displays distance x;in the direction of f and
. . L d’x,  d?x, -
distance x, in the opposite direction, then f =M - as shown in Fig.4.2.

dt?  dt?

X~ =Xy

M s f

Fig.4.2. Force applied on a mass with displacement two directions

(b) Spring: A spring is denoted by K. If a force f is applied on it and it displays
distance x, then f =Kx as shown in Fig.4.3.

X

Fig.4.3. Force applied on a spring with displacement in one direction

If a force f is applied on a springK and it displays distance x;in the direction of f and
distance x; in the opposite direction, then f =K (x1 - xz) as shown in Fig.4.4.



Xz‘_‘ }_’Xl

K

e
Fig.4.4. Force applied on a spring with displacement in two directions

(c) Damper: A damper is denoted by D. If a force f is applied on it and it displays

distance x, then f =D j)t( as shown in Fig.4.5.

X

A=t

D

Fig.4.5. Force applied on a damper with displacement in one direction

If a force f is applied on a damperD and it displays distance x;in the direction of f and

dx _dx,

distance x; in the opposite direction, then f = D[ " J as shown in Fig.4.6.

dt
X, =X
[E f
D

Fig.4.6. Force applied on a damper with displacement in two directions

4.1.2. Rotational mechanical system

There are three basic elements in a Rotational mechanical system, i.e. (a) inertia, (b)

spring and (c) damper.

(@) Inertia: A body with aninertia is denoted by J. If a torqueT is applied on it and it
displays distance®, then T = J % . IfatorqueT is applied on a body with inertia
J and it displays distance 6; in the direction of T and distance 6. in the opposite

d2g, dzezj

dt*>  dt?

(b) Spring: A spring is denoted by K. If a torqueT is applied on it and it displays
distance®, then T = K@. If a torqueT is applied on a body with inertia J and it
displays distance ©; in the direction of T and distance 6, in the opposite
direction, then T =K (6, -6,).

(c) Damper: A damper is denoted by D. If a torqueT is applied on it and it displays

direction, then T =1J [

distanceO, then T = D?j—f. If a torqueT is applied on a body with inertia J and it



displays distance ©; in the direction of T and distance 6, in the opposite

direction, then T =D %—% .
dt dt

4.2. Components of an electrical system: There are three basic elements in an electrical system,
i.e. (a) resistor (R), (b) inductor(L) and (c) capacitor (C). Electrical systems are of two types,
i.e. (i) voltage source electrical system and (ii) current source electrical system.
4.2.1. Voltage source electrical system: If i is the current through a resistor(Fig.4.7) and v
is the voltage drop in it, then v=Ri.

If i is the current through an inductor (Fig.4.7) and v is the voltage developed in it,

then v= Lg.
dt

If i is the current through a capacitor(Fig.4.7) and v is the voltage developed in it,

then v= ijidt )
C

A
r
O

Fig.4.7. Current and voltage shown in resistor, inductor and capacitor

4.2.2. Current source electrical system:

If i is the current through a resistor and v is the voltage drop in it, then i =

If i is the current through an inductor and v is the voltage developed in it, then

i=Hvdt.

If i is the current through a capacitor and v is the voltage developed in it, then
i—cd.
dt
4.2.3. Work out problems:
Q.4.1. Find system transfer function betweenvoltage drop across the capacitanceand
input voltage in the followingRC circuit as shown in Fig.4.8.

I‘ R —ﬂ
AP
i o ?
Y

Fig.4.8.



Solution

Voltage across resistance, €, (t) =i(t)R

Voltage across capacitance, €. (t) = %J. i(t)dt
. 1.
Total voltage drop, €, =€, +e. =i(t)R +EI i(t)dt

Laplace transform of above equation, E,(S) = I(s) [ R+ Cij
s

System transfer function betweenvoltage drop across the capacitanceand input
E.(s) 1 1

voltage, = =
E/(s) RCs+1 7s+1

where, RC =t is the time-constant

Q.4.2. Find system transfer function betweenfunction between the inductance
currentto the source currentin the followingRL circuit as shown in Fig.4.9.

i

i L
R

t® e yg* y

Y

Fig.4.9.

Voltage across the Resistance, e(t) =i,R =i, =

Voltage across the Inductance, e(t) =L %[L =i, = %J.e(t)dt

e(t)
R

e 1
Total current, i, =i, +i, = ?+Eje(t)dt
Laplace transform of the current source,
1 1 E
1.(s)=E(s +— |and I, (S) =—
O=EO) § o et -
Transfer function between the inductance current to the source current,
L)y 1 1

1,(s) £s+1_ 7s+1




L. .
wheret = E is the time-constant

Q.4.3. Find system transfer function betweenfunction between the capacitance
voltageto the source voltage in the followingRLC circuit as shown in Fig.4.10.

RESISTANCE INDUCTANCE CAPACITANCE
R L I Cc
T AT 000000
i(t) !— l - J|
eR(t) 540 e(®
e(t) ﬁ_)
Fig.4.10.

Voltage across the Resistance, €(t) =IR
di

Voltage across the Inductance, e _(t) =L ot

Voltage across thecapacitance, €. (t) = %J. idt
. di 1.
Total voltage, e(t)=iR+L—+—idt
ge. e(t) atc)

Laplace transform of the voltage source, E(S) = I (S) [R +Ls+ CLJ
s

Transfer function between capacitance voltage and source voltage
2

Ec(s) 1 o,

E(s) _CS(RJFLSJFCJ-SJ (SZ+2§a)ns+wf)

R

1
wherew, =———= and { =——
JLC d ) L
C

Q.4.4.Find the transfer function of the following Spring-mass-damperas shown
in Fig.4.11.

k, N/m C

-4

£, N i SPRING 2
E— 7

FORCE MASS : ;

ﬂ C

¢, N-s/m [~

i Viscous damper
x(t), m
DISPLACEMENT

Fig.4.11.



Solution
X(s) 1 3 1
F(s) ms®+cs+k m(sz+2§a)ns+wf)

4.3. Analogous system: Fig.4.12 shows a translational mechanical system, a rotational control
system and a voltage-source electrical system.

MN— N
R L
v
i(t)
S )
(@)
[ J
< Z

D
(b)
/74
D K
I
" T
1 X
f
(c)
Fig.4.12. (a) a voltage-source electrical system,(b) a translational mechanical system and (c) a rotational control
system
From Fig4.12 (a), (b) and (c), we have
d’qg _dq 1
L—+R—+=q=v(t
dt? gt co (®)
2
J d—f + Dd—g +KO=T
dt dt

2
MO pH, k=t
a’ o dt

Where,



The solutions for all the above three equations given by eq (4.2) are same. Therefore, the
above shown three figures are analogous to each other. There are two important types of
analogous systems, i.e. force-voltage (f-v) analogy and force-current analogy. From eq (4.2),

q:jidt

f-v analogy can be drawn as follows.

Translational Rotational Electrical
Force (f) Torque (T) Voltage (v)
Mass (M) Inertia (J) Inductance (L)
Damper (D) Damper (D) Resistance (R)
Spring (K) Spring (K) Elastance (1/C)

Displacement (x)

Displacement (6)

Charge (q)

Velocity (u) = X

Velocity (u) = 6

Current (i) = g

Similarly, f-i analogy that can be obtainedfrom eq (4.1), can be drawn as follows.

Translational Rotational Electrical
Force (f) Torque (T) Current (i)
Mass (M) Inertia (J) Capacitance (C)
Damper (D) Damper (D) Conductance (1/R)
Spring (K) Spring (K) Reciprocal of Inductance (1/L)

Displacement (x)

Displacement (©)

Flux linkage (y)

Velocity (u) = X

Velocity (u) = 6

Voltage (V) = v
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5. Block Diagram Algebra
5.1.Basic Definition in Block Diagram model:

Block diagram: It is the pictorial representation of the cause-and-response relationship
between input and output of a physical system.

Input e——>»| Block |—— Output R(s) M G > CO
(@) (b)
Fig.5.1. (a) A block diagram representation of a system and (b) A block diagram representation with gain of a
system
Output: The value of input multiplied by the gain of the system.
C(s)=G(s)R(s) (5.1)

Summing point: It is the component of a block diagram model at which two or more signals
can be added or subtracted. In Fig.15, inputs R(s) and B(s) have been given to a summing
point and its output signal is E(s). Here,

E(s)=R(s)-B(s) (5.2)

Forward path e——

Take-off point

R(s) Gi(s) Gafs) ~—> C(s)

A

Summing B(s)
point

H(s) -

-

g Feedback path

Fig.5.2. A block diagram representation of a systemshowing its different components

Take-off point: It is the component of a block diagram model at which a signal can be taken
directly and supplied to one or more points as shown in Fig.5.2.

Forward path: It is the direction of signal flow from input towards output.

Feedback path: It is the direction of signal flow from output towards input.
5.2. Developing Block Diagram model from mathematical model:

Let’s discuss this concept with the following example.

Example: A system is described by following mathematical equations. Find its corresponding
block diagram model.

X, = 3% +2X, +5X, (5.3)

X, =X +4X, +3X%, (5.4)



Xy = 2% + X, + X

(5.5)

Example: Eq (5.3), (5.4) and (5.5) are combiningly results in the following block diagram

model.
X3(S)
xa(s) 2 x.(s) s X1(S)
XZ(S) 2
XZ(_Sz 4 )'(Q(S) 1/s X2(S)
X3(s)
1s X3(S)
X1(s) Joo

Fig.5.3. A block diagram representation of the above example



5.3. Rules for reduction of Block Diagram model:

?\:6 ﬁgle Configuration Equivalent Name
1 Rule 1 R(s)— Gi(s) » Gy(s) —>C(s) R(s)e—] G1(s)G2(s) —>=C(s) Cascade
> Gqfs)
2 | Rule2 R(s) —— (X)—*(S) R(s)—{ Gi(s}+Gofs) [—C(s) Parallel
Gfs)
R(s)— G(s) C(s) 50
S
3 Rule 3 £ R(s)— m —C(s) Loop
H(s)
R (o
R(s) ‘g‘ ‘z‘ C(s) (s) (s)
Associative
4 Rule 4 Law
Xo(s Xi(s
Xi(s)  Xals) 2(s) 1(s)
R(s) G(s) [—=C(s) | R(s)—| ©G(s) > C5) | Move take-
5 | Rule5 off point
X(s) X(s) 1/G(s) |« after a block
R(s) G(s) C(s) R(s Gls) —cCls) Move take-
6 Rule 6 off point
before a
X(s) — X(s)=—Gls) block
R(s) — G(s) C(s)
R(s) G(s) —C(s) Move
summing-
7 | Rule? G(s) point point
X(s) t after a block
X(s)
R(s)-—(»%— G(s) —»C(s) Move
R(s) ——= G(s) C(s) summing-
8 | Rules 1/G(s) point point
before a
X(s) ! block

X(s)




R(s) >

Rule 9 X1(s)<—

Xa(s)

»C(s)

R(s) —C(s)

Move take-
off point
after a
summing-
point

10

R(s)

Rule 10

Xa(s)

X1(s)

C(s)

R(s) C(s)

X,(s) Xi(s)

Move take-
off point
before a
summing-
point

Fig.5.4. Rules for reduction of Block Diagram model

5.4.Procedure for reduction of Block Diagram model:

Step 1: Reduce the cascade blocks.

Step 2: Reduce the parallel blocks.

Step 3: Reduce the internal feedback loops.

Step 4: Shift take-off points towards right and summing points towards left.

Step 5: Repeat step 1 to step 4 until the simple form is obtained.

C(s)

Step 6: Find transfer function of whole system as ——.

R(s)

5.5. Procedure for finding output of Block Diagram model with multiple inputs:

Step 1: Consider one input taking rest of the inputs zero, find output using the procedure
described in section 4.3.

Step 2: Follow step 1 for each inputs of the given Block Diagram model and find their

corresponding outputs.

Step 3: Find the resultant output by adding all individual outputs.
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6.

Signal Flow Graphs (SFGs)
It is a pictorial representation of a system that graphically displays the signal transmission in it.
6.1.Basic Definitions in SFGs:

Input or source node: It is a node that has only outgoing branches i.e. node ‘r’ in Fig.6.1.

Output or sink node: It is a node that has only incoming branches i.e. node ‘c’ in Fig.6.1.

Chain node: It is a node that has both incoming and outgoing branches i.e. nodes ‘x;’,

%", Xs", X", “Xs"and ‘xg” in Fig.6.1.

Gain or transmittance: It is the relationship between variables denoted by two nodes or

value of a branch. In Fig.6.1, transmittances are ‘t;’, ‘t,’,ts’,“ts’, “ts’and ‘ts’.

Forward path: It is a path from input node to output node without repeating any of the nodes
in between them. In Fig.6.1, there are two forward paths, i.e. path-1:°r-X;-X,-Xs-X4-Xs-Xe-C* and

path-2:‘r-X;-Xs-X4-Xs-Xg-C’.

Feedback path: It is a path from output node or a node near output node to a node near input

node without repeating any of the nodes in between them (Fig.6.1).

Loop: It is a closed path that starts from one node and reaches the same node after trading
through other nodes. In Fig.6.1, there are four loops, i.e. 100p-1:*Xo-Xs-X4-X1", 100P-2:*X5-Xs-

Xs’, 100P-3:“X1-Xp-X3-X4-X5-Xg-X1” @Nd 100p-4:*Xy-Xg-X4-X5-Xg-X1 .

Self Loop: It is a loop that starts from one node and reaches the same node without trading

through other nodes i.e. loop in node “x,” with transmittance “tss” in Fig.6.1.

Path gain: It is the product of gains or transmittances of all branches of a forward path. In

Fig.6.1, the path gains are Py = t;t,tstyts (for path-1) and P, = tetstyts (for path-2).

Loop gain: It is the product of gains or transmittances of all branches of a loop In Fig.6.1,

there are four |00pS, ie. L; = -totst, L, = -tsty, L= -t1totstytsts, and L4 = -tgtstatsts.

Dummy node: If the first node is not an input node and/or the last node is not an output node
than a node is connected before the existing first node and a node is connected after the
existing last node with unity transmittances. These nodes are called dummy nodes. In Fig.6.1,

‘r’ and ‘c’ are the dummy nodes.

Non-touching Loops: Two or more loops are non-touching loops if they don’t have any

common nodes between them. In Fig.6.1, L; and L are non-touching loops

Example:

ro

Fig.6.1. Example of a SFG model



6.2. Properties SFGs:
o Applied to linear system
Arrow indicates signal flow
Nodes represent variables, summing points and take-off points
Algebraic sum of all incoming signals and outgoing nodes is zero
SFG of a system is not unique
Overall gain of an SFG can be determined by using Mason’s gain formula

6.3.SFG from block diagram model:
Let’s find the SFG of following block diagram model shown in Fig.6.2.

1 1 o(s)
>
sL, +R, sJ+f

w |~

Kp

Fig.6.2. Armature type speed control of a DC motor

Step-1: All variables and signals are replaced by nodes.
Step-2: Connect all nodes according to their signal flow.

Step-3: Each ofgains is replaced by transmittances of the branches connected between two nodes
of the forward paths.

Step-4: Each ofgains is replaced by transmittances multiplied with (-1) of the branches connected
between two nodes of the forward paths.

. S I = -
sL+R, [~ K P s+t

[Z N

@



1 6
o > > O
(b)
Fig.6.3. Armature type speed control of a DC motor
6.4.Mason’s gain formula:
Transfer function of a system=
N
P.A
cs) &
G(s):—: = (6.1)

Where,
N=total number of forward paths
P.= path gain of k™ forward path

A= 1- (3 loop gains of all individual loops) + (3 gain product of loop gains of all possible
two non-touching loops) - (3 gain product of loop gains of all possible three non-touching
loops) + ...

A= value of A after eliminating all loops that touches k™ forward path

Example:

Find the overall transfer function of the system given in Fig.6.1 using Mason’s gain
formula.

Solution:
In Fig.6.1,

No. of forward paths: N =2

Path gain of forward paths: P, =tt,t.t,t. and P, =tgt;t,t.

Loop gain of individual loops: L, =-t,t;t,, L, =—t.t,, Ly =-tttt,tt; and L, = —tt,t,t.t,
No. of two non-touching loops = 2 i.e. L; and L,

No. of more than two non-touching loops = 0



A=1-(L+L+L+L,)+(LL)-0=1-L -, - L,—L, +LL,
A, =1-0=1andA,=1-0=1

_PA +PRA,
A

G(s)

G (s)= (titotstats ) (1) + (totstyts ) (1)
T4ttty + oty +ttotot bty + totat,toty + tottetet,

- tt bt b+ttt
T+ ttgty + bty + bttt bty + totat bty + tttett,

=G(s)
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7. Feedback Characteristics of Control System
7.1. Feedback and Non-feedback Control systems

Non-feedback control system: It is a control system that does not have any feedback paths.
It is also known as open-loop control system. It is shown in Fig.7.1 (a) and (b).

Feedback control system: It is a control system that has at least one feedback path. It is also
known as closed-loop control system. It is shown in Fig.7.2 (a) and (b).

Ris) — &) b— co G(s)
R(s) e——b—>C(s)

@
(b)

Fig.7.1. (a) Block diagram of a non-feedback control system and (b) SFG of a non-feedback control system

R(s) + G(s) »C(s) R(s)o—»—@ »——0 C(s)
H(s) (b)' R

@

Fig.7.2. (a) Block diagram of a feedback control system and (b) SFG of a feedback control system

7.2. Types of Feedback in a Control system
7.2.1. Degenerative feedback control system: It is a control system where the feedback
signal opposes the input signal. Here,

Error or actuating signal = (Input signal) — (Feedback signal).

Referring Fig.7.3,
E(s)=R(s)-B(s) (7.1)

and

(7.2)

G(s)

»C(s)

H(s)

r 3

Fig.7.3. (a) Block diagram of a degenerative feedback control system



7.2.2. Regenerative feedback control system: It is a control system where the feedback
signal supports or adds the input signal. Here,

Error or actuating signal = (Input signal) + (Feedback signal).

Referring Fig.7.4,

E(s)=R(s)+B(s) (7.3)
and
TZ(S):l—G(?s(;I)-I (s) 74

G(s) »C(s)

r 3

H(s)

Fig.7.4. Block diagram of a regenerative feedback control system

7.3. Effect of parameter variation on overall gain of a degenerative Feedback Control system

The overall gain or transfer function of a degenerative feedback control system depends upon
these parameters i.e. (i) variation in parameters of plant, and (ii) variation in parameter of
feedback system and (ii) disturbance signals.

The term sensitivity is a measure of the effectiveness of feedback on reducing the influence of
any of the above described parameters. For an example, it is used to describe the relative
variations in the overall Transfer function of a system T(s) due to variation in G(S).

L percentage change in T(s)
sensitivity =

percentage change in G(s)

7.3.1. Effect of variation in G(s) on T(s) of a degenerative Feedback Control system

In an open-loop system,
C(s)=G(s)R(s)

Let, due to parameter variation in plant G(s) changes to [G(s) + AG(s)] such that
|G(s)| >> |AG(s)|. The output of the open-loop system then changes to

C(s)+AC(s)=[G(s)+AG(s)]R(s)
= C(s)+AC(s)=G(s)R(s)+AG(s)R(s)
= AC(s)=AG(S)R(s) (7.5)

In an closed-loop system,



G(s)

1+G(s)H(s)

Let, due to parameter variation in plant G(s) changes to [G(s) + AG(s)] such that
|G(s)| >> |AG(s)|. The output of the open-loop system then changes to

C(s)= R(s)

oS
— C(s)+ AC(5) = G(s)+AG(s)

GEH(s)=ac (R E) )

Since, |G(s)| >> JAG(s)|, then G(s)H (s)U AG(s)H(s). Therefore, AG(s)H(s) is
neglected. Now,

)i AC (s _G $)+AG(s) .
) A= Gy ")
G(s) AG(s)
=+ A= G R e ")
Or
AC(S)—l+éZ§SH SR) (7.6)

Comparing eq (42 and (43), itis clear that AC (spen 100p) = (1 + GH) AC(ci0sed 100p)

This concept can be reproved using sensitivity. Sensitivity on T(s) due to variation in G(s) is
given by

ST - 8T/T ar G 7.7)
0G/G TG T
For open-loop system,
Sé M @ E =1 (7.8)
0G/G oG G
For closed-loop system,
1+GH)-GH
gr _OT/T _(1+GH) G 1 (7.9)

©T3/G (1+GH)  G/(L+GH) (1+GH)

Therefore, it is proved that SZ (open loop) — = (1+ GH)STY (closed loop)* Hence, the effect of

parameter variation in case of closed loop system is reduced by a factor of (1+GH)



7.3.2. Effect of variation in H(s) on T(s) of a degenerative Feedback Control system

This concept can be reproved using sensitivity. Sensitivity on T(s) due to variation in H(s) is
given by

g1 _OTT _oT H

= 7.10
"OMH/MH oH T (7.10)
For closed-loop system,
si=THog ©& | H _ —CH (7.11)
oH T (1+GH) G/(1+GH) (1+GH)

For higher value of GH, sensitivity S7 approaches unity. Therefore, change in H affects
directly the system output.
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8. Time Domain Analysis of Control Systems

8.1. Time response
Time response c(t)is the variation of output with respect to time. The part of time response

that goes to zero after large interval of time is called transient response c(t). The part of time
response that remains after transient response is called steady-state response cq(t).

C(t)

I ! S

[1F:]

04

[+] . a4 [i] 8 10 12 14 16 18 20 t
| Transient state | Steady state
Cis (t) Css (t)

Fig.7.1. Time response of a system

8.2. System dynamics

System dynamics is the study of characteristic and behaviour of dynamic systems
i.e.

i. Differential equations: First-order systems and Second-order systems,
ii. Laplace transforms,

iii. System transfer function,

iv. Transient response: Unit impulse, Step and Ramp

Laplace transforms convert differential equations into algebraic equations. They are related to
frequency response

0

L {x(t)} =X(s) = [ x(tye *dt 8.1)

0



No. Function Time-domain Laplace domain
X(t)= LX)} X(s)= L{x(t)}
1 Delay d(t-1) e
2 Unit impulse 3(t) 1
3 Unit step u(t) 1
S
4 Ramp t 1
S 2
5 Exponential decay e 1
S+o
6 Exponential approach (1_ e—«zt) a
s(s+a)
7 Sine sin ot )
s* + ?
8 Cosine cos ot S
s’ + 0’
9 Hyperbolic sine sinh ot o
s? — g2
10 Hyperbolic cosine cosh at S
s’ —a’
11 Exponentially decaying sine e~ sin wt @
wave (s+a)’ + o’
12 Exponentially decaying cosine e~ cosmt S+
wave (S+a)2 +602
8.3. Forced response
K(s-z)(s-12,)...(s—z
C(5)=G(s)R(s) =B 2). (2 tu) 62)

(S=P)(S—P,)...(5-Ppy)

R(s) input excitation

8.4.Standard test signals
8.4.1. Impulse Signal: An impulse signal 8(t) is mathematically defined as follows.

e undefined :t= 0}

(1) 0 t#£0 (83)

Laplace transform of impulse signal is



&(t)

Fig.7.2. Impulse signal

Dirac delta function
X(t)=xo(t-a)

X(1) x0(t—a)

) t=a Time
Integral property of Dirac delta function

[ o t-t,)dt = ()

Laplace transform of an impulse input

X(s)= Ie‘s‘ x0(t —a)dt = xe™

0

8.4.2. Step Signal: A step signal u(t) is mathematically defined as follows.

0 ;t<0
t =
u() K ;tzo}

Laplace transform of step signal is

utt)

(8.4)

(8.5)

(8.6)

(8.7)

(8.8)

(8.9)



8.4.3.

8.4.4.

8.4.5.

Fig.7.2. Step signal

Ramp Signal: A step signal r(t) is mathematically defined as follows.

0 ;t<O0
r(t): Kt ;tzo} (8.10)

Laplace transform of ramp signal is

R(s)=, (8.12)

rt) 4

—-.

Fig.7.3. Ramp signal

Parabolic Signal A step signal a(t) is mathematically defined as follows.

t<0
a(t)=kt2 8.12
M=k ., (8.12)
2
Laplace transform of parabolic signal is
As)= " (8.13)
s

a(t) 4

Fig.7.4. Parabolic signal

Sinusoidal Signal A sinusoidal x(t) is mathematically defined as follows.



x(t)=sinwt (8.14)

Laplace transform of sinusoidal signal is

X(s)=|esinwtdt= @ (8.15)
-([ s? + 0

=50 Hz

anplitude

Fig.7.4. Sinusoidal signal

8.5. Steady-state error:

A simple closed-loop control system with negative feedback is shown as follows.

G(s) »C(s)

H(s)

r 3

Fig.7.5. A simple closed-loop control system with negative feedback

Here,

E(s)=R(s)-B(s) (8.16)
B(s)=C(s)H(s) (8.17)
C(s)=E(s)G(s) (8.18)

Applying (1) in (9),
E(s)=R(s)-C(s)H(s) (8.19)

Using (11) in (12),
E(s)=R(s)—E(s)G(s)H(s) (8.20)

= [1+G(s)H(s) |E(s)=R(s) (8.21)



Steady-state error,

e, =lime(t)=limsE(s)

t—ow s—0
Using (15) in (16),
SR(s
esszlmsE(s):lim (

Therefore, steady-state error depends on two factors, i.e.

(@) type and magnitude of R(s)
(b) open-loop transfer function G(s)H(s)

8.6. Types of input and Steady-state error:

8.6.1.

8.6.2.

Step Input

Using (18) in (17),

() A

e, =lim

T G(s)H(s)

BT G()H(S) EBI:G(s)H(s)

=e,= A __A
ss . -
1+IST(1)G(S)H(S) 1+K,
Where,
KP:LiLrJ)G(s)H(s)
Ramp Input
A
R(S)Zs—z

Using (18) in (17),

o5
S2

~—
>

g, =lim

=% SLT)S-I-SG(S)H (s)

A
jess_limsG(s)H(s) v

s—0

Where,

s501+G(s)H(s) -0 s[1+G(S)H (S)]

(8.22)

(8.23)

(8.24)

(8.25)

(8.26)

(8.27)

(8.28)

(8.29)

(8.30)



8.6.3. Parabolic Input

Using (18) in (17),

% IR G(EH(s) SRS LrG(9)H ()]

=8 SILT(])serszG(s)H(s)
—e. = A _A
S T 2~V (o) WK
Isms G(s)H(s) K

Where,
Ky =lims’G(s)H(s)

s—0

Types of input and steady-state error are summarized as follows.

Error Constant Equation Steady-state error (eg)

Position Error Constant (Kp) Kp = IimG(s) H (S) A
s—0

Velocity Error Constant (Ky,) K, = ””3, sG (5) H (s)
S

Acceleration Error Constant (K,) K. —=limsG (s) H (S)
A=

s—0 SS

8.7. Types of open-loop transfer function G(s)H(s)and Steady-state error:
8.7.1. Static Error coefficient Method

The general form of G(s)H(s) is

_ K(1+Ts)(1+T,8)..(1+T,5)
GlEH(s)=; (L+T,8)(1+T,8)...(L+T,s)

Here, j = no. of poles at origin (s = 0)
or, type of the system given by eq (28) is j.
8.7.1.1. Type O
6(s) (S):K(1+Tls)(1+Tzs)...(1+Tns)
(1+T,5)(1+T,s)...(1+T,s)

Here,

(8.31)

(8.32)

(8.33)

(8.34)

(8.35)

(8.36)



Kp =limG(s)H(s)=K

s—0
Therefore,
A
eSS =
1+K
8.7.1.2. Type 1
G(s)H (5) K(1+Ts)(1+T,8)...(1+T,9)
(s)H(s)= $(1+7T,8)(1+T,8)..(1+T,s)
Here,
Ky :li_r)rgsG(s)H (s)=K
Therefore,
A
eSS =
K
8.7.1.3. Type 2
G(s)H (5) K(1+Ts)(1+T,8)...(1+T,s)
82 (14 T,8)(1+Tys). (14T, )
Here,
Ky =lims’G(s)H(s)=K
Therefore,
A
€ss = K

(8.37)

(8.38)

(8.39)

(8.40)

(8.41)

(8.42)

(8.43)

(8.44)

Steady-state error and error constant for different types of input are summarized as follows.

Step input Ramp input Parabolic input
Type
Kp €ss Ky €ss Ka €ss
Type 0 K A 0 0
o0 o0
P 1+K
A
Type 1 0 0 K K 0 0
A
Type 2 0 0 © 0 K X

The static error coefficient method has following advantages:

e Can provide time variation of error
o Simple calculation



But, the static error coefficient method has following demerits:

o Applicable only to stable system
e Applicable only to three standard input signals
« Cannot give exact value of error. It gives only mathematical value i.e. 0 or «



8.7.2. Generalized Error coefficient Method
From eq (15),

1
0 st 1O
So,
E(s)=R(s)F(s)
Where, F, = and F,(s)=R(s)

1+G(s)H(s)

Using convolution integral to eq (38)

t t
e(t)=[ f,(s)f, (t=7)dr = [ f,(x)r (t-7)d=
0 0
Using Taylor’s series of expansionto r(t—7),
‘L'Z 2'3
r(t—z)=r(t) —rr’(t)+ar"(t)—ar"'(t) +..

Now, applying eq (40) in eq (39),

t t

e(t)=[ f,(e)r (t)dz —[er'(1) fl(r)dr+j.%2!r"(t) fl(r)dr—j.%s!r"'(t) f,(v)dz + ..

0 0 0

Now, steady-state error, e is

e, =lime(t)

too

Therefore,

t t

too t—owo

(8.45)

(8.46)

(8.47)

(8.48)

(8.49)

e, = lime(t) =lim J.fl(r)r(t)dr—j.rr'(t) fl(r)dr+j.%2!r"(t)fl(r)dr—J.TS—s!r"'(t)fl(r)dr+...

0 0

or'(t) f (o )7 +T%2!r"(t) f(c)r —T%s!r'"(t) f(r)dr+..

(8.50)

@D
a
Il
o t—3
—y
fiy
—_
!
~—
=
—_
—
~—
o
!
|
o t—38

Eq (44) can be rewritten as

e =Cor (G () + 2217 (0)+ 207 (1) .

Where, Co, C1, Cy, Cs, etc. are dynamic error coefficients. These are given as

(8.51)



C, :! fy(v)de =limF (s)
r ._dF(s
C = ;[_T f,(z)dr = Ism%
. s ZF( , and so on...
_ [ i 1\
C, _l o7 (o) =lim=—=
< z'3 . dsFl(S)
C3 ZE').—E fl(‘[)d‘[‘i‘zlsm d53
8.8. First-order system:
A Governing differential equation is given by
y+7y=Kx(t)

Where, Time constant, sec = r,

Static sensitivity (units depend on the input and output variables) = K ,

y(t) is response of the system and
X(t) is input excitation
The System transfer function is

X(s)

ﬂ — G(S) — L
X (s) (Q+759)
K Y(s)
(I+rs)

Pole-zero map of a first-order system

O] s plane

A

Normalized response

In this type of response

(8.52)

(8.53)

(8.54)



e Static components are taken out leaving only the dynamic component
The dynamic components converge to the same value for different physical systems of
the same type or order

e Helps in recognizing typical factors of a system

8.8.1. Impulse input to a first-order system
Governing differential equation

y+7y=Kxo(t) (8.55)
Laplacian of the response
Y(s)= %K% Ll (8.56)
d+7s) 7 |4,
T
Time-domain response
t
y() = e (8.57)
T
Impulse response function of a first-order system
t
hi)=Ke (8.58)
T

By putting x =1 in the response
I
Response of a first-order system to any force excitation

Kt -t
y(t)=—[e “F(t-n)dn (8.59)
T 0

The above equation is called Duhamel’s integral. Normalized response of a first-order system to
impulse input is shown below.
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8.8.2. Step input to a first-order system
Governing differential equation

y+71y=Kxu(t) (8.60)



Laplacian of the response
KX; Kx, KX,

YS)=—"—= '-——0= (8.61)
sl+zs) s ¢ 1
T
Time-domain response
t
y(t) = Kx [1—e TJ (8.62)
Normalized response of a first-order system to impulse input is shown below.
8.8.3. Ramp input to a first-order system
Governing differential equation
y+zy=Kt (8.63)
Laplacian of the response
K 1
Y(s)=2—=—2—r+ Tl (8.64)
s*(l+7s) s° s s+
T
Time-domain response
t
%:t_mer (8.65)

Normalized response of a first-order system to impulse input is shown below.
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8.8.4. Sinusoidal input to a first-order system
Governing differential equation

y+7 Yy =KAsinot

Laplacian of the response

10

1

Y(s)= K [Aco} w { T TS

(1+7s) s> + 0 =1+(m)2 s+1/7 S+’

Time-domain response

yt) . o {

KA 1+(a)f)2 ®

Normalized response of a first-order system to impulse input is shown below.

.|, Transient response

‘ Steady-state response
0.04 | ‘ ‘ ‘ l ‘ ‘
|
|

"

amplitude

AT fu

time, sec

8.9.Second-order system
A Governing differential equation is given by

m 1.
e " —rcoswt +—sin wt}

L L i
0 05 1 15 2 25 a a5 4

+
?+w

d

(8.66)

(8.67)

(8.68)



my + ¢y + ky = Kx(t) (8.69)

Where, r = Time constant, sec,

K = Static sensitivity (units depend on the input and output variables),
m = Mass (kg),

¢ = Damping coefficient (N-s/m),

k = Stiffness (N/m),

y(t) is response of the system and

X(t) is input excitation

The System transfer function is

Y (s) _ K
X(s) mi{s*+20m,s+w}

(8.70)

X(s) | K Y6
m{s2 +2§a)ns+a):}

Pole-zero map

(@) C>1 over damped
Poles are:

5 ==, (¢ 2571 1)
Graphically, the poles of an over damped system is shown as follows.

1O s plane

A

o 7)

~a,(¢-V2" 1)

(b) ¢ =1 critically damped
Poles are:

5, =0, (8.72)

Graphically, the poles of an critically damped system is shown as follows.



L] s plane

A

— @,

(c) C<1 under damped
Poles are:

50 =0, (6 £ W1-¢7)
= 8y, = ¢, £ joy
Where, @, =Damped natural frequency
w, =o,\1-¢?
Graphically, the poles of an critically damped system is shown as follows.

]fD s plane

Here, tan g =
1-¢2

(d) ¢ =0 un-damped
Poles are:

(8.73)

(8.74)

(8.75)



J® s plane

Ja,

-J]o,

Solved problems:

1. Asingle degree of freedom spring-mass-damper system has the following data: spring stiffness 20
kN/m; mass 0.05 kg; damping coefficient 20 N-s/m. Determine

(@) undamped natural frequency in rad/s and Hz

(b) damping factor

(c) damped natural frequency n rad/s and Hz.
If the above system is given an initial displacement of 0.1 m, trace the phasor of the system for three
cycles of free vibration.

Solution:
3
o, =\E= 2220 _ 632 46 radis
m 0.05
0 83246 100 661z
2 27

= c 20
27km  24/20%10° x0.05

0, = \1-¢? =632.46y/1-0.322 = 600rad/s

f,=20 000 _ o571,
2r 2«

y(t) — Ae_g“’”t — 0.1e_0'32>(632'46t

=0.32

2. A second-order system has a damping factor of 0.3 (underdamped system) and an un-damped
natural frequency of 10 rad/s. Keeping the damping factor the same, if the un-damped natural
frequency is changed to 20 rad/s, locate the new poles of the system? What can you say about the
response of the new system?

Solution:

Given, ., =10 rad/s and w,, = 20 rad/s
oy =, 1-¢? =10§1-0.3° = 9.54rad/s

@, =0, N1-¢? =20§1- 0.3 =19.08rad/s

P, =—Gw, * jo, =—3+j9.54



Py, = (o, * jo, =—6+ j19.08
¢ 0.3

tan 8 = = =148
\/l_é,z \/1—0.32
) (O]
i ,,1 19.08 s plane
} | 0 _fo54
N
— =
-6 -3
i f-—-—.9.54
|
—————l19.08

8.9.1. Second-order Time Response Specifications with Impulse input
(@) Over damped case (§>1)
General equation

y+2§a)ny+a)fy:%5(t) (8.76)

Laplacian of the output

KX; 1
Y(s)=—" [ﬁj
m \ s° +2{w,s + o,

8.77)
_ K 1 B 1
2mam, \/¢? -1 {(s+§a)n —oNC 1) (5+Cw,+ oS —1}

Time-domain response

KXi =Gt o3 2
y(t)Z{m]eg Slnh(a)n g —1)t (878)

(b) Critically damped case ((=1)
General equation

KX
§+ iy =2 5(t) (8.79)
m
Laplacian of the output
Y(s)=K—Xi[ 5 ! Zj (8.80)
m { s° +o,
Time-domain response
y(t) = {K—X} o te™™ (8.81)
Mo,

(c) Under damped case (£<1)



Poles are: s, =—{w, £ jo,
General equation

y+2§a)ny+a)fy:%5(t) (8.82)

Laplacian of the output

Y(s) = K { L } (8.83)

m (S+Ca)n+jwd)(s+§a)n_ja)d)

Time-domain response

y(t) = {nfi} e sin w,t (8.84)

@y

Normalized impulse-response of a second-order system with different damping factors are shown
graphically as follows.

}Jnderdamped

ot rtically damped
g5 Overdamped

ol e =1

Normalized response

-0.2f

-0.4
0

Solved problems:

3. A second-order system has an un-damped natural frequency of 100 rad/s and a damping factor of
0.3. The value of the coefficient of the second time derivative (that is m) is 5. If the static
sensitivity is 10, write down the response (do not solve) for a force excitation shown in the figure
in terms of the Duhamel’s integral for the following periods of time: 0<t<t1, t1<t<t2 and t>t2.

Force

Solution:

Given, Undamped natural frequency ®,=100 rad/s
Damping factor £ =0.3

Coefficient of the second time derivative m=5



Static sensitivity K=10

0, = 0,\J1- 2 =100y/1-0.3> = 95.39 rad/s

Here,

t
F(t)=F —
(t) :

F() =

—(t,-t
(-
YO =—

Mo,

=y(t)=

= y(t)=

= y()=

8.9.2.

_ 0.057F

t
N 0.057F J'e‘3°’7 sin(95.397) (t, —t—n)dn
b

F

2

d o

t, -

Y
0.057F j e " sin(95.397 ) (t —n)dn

.0 057F %
tz

5x 95 39t1

by
0.057F [&sin(95.397) (t-n)dn
0

;0<t<t

't <t<t,

—n)e " sin (@,n)dn

Ie_o #4997 i (95.3977) (t —17)dny

0<t<t,,

je-3°'7 sin(95.397) (t —n)dn
0

L <t<t, and

‘>t

J.e‘3°”sm(95 39n)(t, —t—n)dn

Second-order Time Response Specifications with step input

y(t) =
m

Y (s) = -2
) {s(s+§a) +m,C° )(s+§a) —w,\¢? )}

a) {1 g {cosh(a)n 42—1)t+\/%sinh(a)n 42—1)1}

n

Y(s)—K—Xi 1
Cm [s(s+<w, + jo,)(s+ Lo, — jo)

y(t) =

n

Kxiz {1— g {cos gt + —° sin w, t}}
Mo, 1-¢7
¢

(8.85)

(8.86)

(8.87)

(8.88)



14} Ungderdamping

Normalized response

8.10. Time Response Specifications with step-input for under-damped case
For under-damped case, the step-response of a second-order is shown as follows

1.8 T
1 damping factor=0.1
3 st sttt Natural frequency 2 rad/s. ... s
1
i Overshoot
14511 _
1
1
1
1
12kt : T e s S e s e SR sy s e 5 e 55 i £ A 5 i s i s s s s s s s s
1
: - l 5%
y(t)ma),f 1l== . i Y e m e
i : : _7_;---4
Kx, 1 e
08 i i i : il
E ol H 5
[ H :
0.6 i | '
T T S T SR e s
[ 1 5
[l 1
| : H 5
0|1 i i 1
| 1 (Risetime) | :
G L I (settling time) |
' i | (peak time) i :
it |
0 ! i I | I
0 5 10 15 20 25
Time, sec
Kx. g et
y(t) =—7H<1- - sin(w,t + @) (8.89)
Mo | 1-¢
1_ 2
o =tan’ TC (8.90)

For this case, different time-domain specifications are described below.
(i) Delay time, td



(ii) Rise time, tr

(iii) Peak time, tp

(iv) Peak overshoot, Mp
(v) Settling time

For unity step input,
(i)Delay time, tq: It is the time required to reach 50% of output.

1 e_gwntd .
Y(td)zizl_ | CZ sin(wyty +¢)
o, = 1F0T¢ (8.91)
w

(ii) Rise time, t-:The time required by the system response to reach from 10% to 90% of the
final value for over-damped case, from 0% to 100% of the final value for under-damped case
and from 5% to 95% of the critically value for over-damped case.

_gwntr

y(tr):lzl—\/l_7

—Cant,

J1-¢2

Saogl, to=7n

sin(wgyt, +¢)

=

sin(wyt, +9) =0

—~t @ 8.92
r
Wd

(iii) Peak time, to: The time required by the system response to reach the first maximum value.

dy(t,)
dt
et
dl1- sin(wgt, +¢)
1-¢2
=— =0
dt
_gwntp
d| ———=sin(oyt, + @)
J1-¢2
=— =0
dt
41-¢°
= W,t, +¢ =tan =nr+¢;wheren=123,...
For n=1,
= Wdtp =Nnrxr
nz
:>tp " (8.93)
Wy

(iv) Peak overshoot, Mp: It is the time required to reach 50% of output.

Mp(%)zlooxz—(t—’;—):E



sin(ogt, +¢)

sin(z + @)

[ —Cont,
04) — Y _
=M, (%) 100><_1 \/1—75|n(wdtr+(0) 1]
_ _gwnl
(921002 ~-*_sin % ¢
=M _ (%) =100 x| ————sin(e,t, +¢) |=100x| — >
p d*p
| 1-¢7 V1-¢?
g g
(%)=100 SO, SR T Bl
=M, (%)=100x| ———sin(wy ——=—+¢) |=100x | ———
P -2 -t NZ
g g
(%) =100 £ - S I
=M (%)=100x| —sing |=100x| S \1-¢
P N N
i ;

= M, (%)=100xe ¥<°

(8.94)

(iv) Settling time, t;: It is the time taken by the system response to settle down and stay with in +2%

or 5% its final value.
For +2% error band,

Lot
cw,

For +5% error band,
t=——
TQw,

(8.95)

(8.96)

Time Specifications
SI. No.
Type Formula
1+0.7
1 Delay time ty _1+07¢
Wn
T —
2 Rise time t = e
Wy
. T
3 Peak time t,=—
Wy
- - ﬂg
4 Maximum overshoot M ; (%) —100xe Jie?
5 Settling ti t _i
ettling time T Tw




Solved Problems:

1. Consider the system shown in Figure 1. To improve the performance of the system a feedback is
added to this system, which results in Figure 2. Determine the value of K so that the damping
ratio of the new system is 0.4. Compare the overshoot, rise time, peak time and settling time and
the nominal value of the systems shown in Figures 1 and 2.

R(S) 20 R(S)
+k s(st1) " els) + t
Figure 1 Figure 2

Solution:
For Figure 1,

20
c(s) _ G(s) __s(s+l) _ 20
R(s) 1+G(s) 4, 20 s*+s+20

s(s+1)
Here, ? =20 and 2¢w, =1
o, =\/2_Orad/sand g:iz ! =0.112

20, 2x+/20
For Figure 2,

20

c(s) _ G(s) _ s(s+1+20K) _ 20
R(s) 1+G(s) 4. 20 s? +(1+20K)s+20

s(s+1+20K)
Here, o} =20 and 2¢w, =1+ 20K
, = /20 rad/s
But, given that £ =1+20K :1+20K =0.4

20, 220
=K =0.128

Transient characteristics of Figures 1 and 2

CharacteristicS Figure 1 Figure 2
Overshoot, M, 70% 25%
Rise time, t; sec 0.38 0.48
Peak time, t,, sec 0.71 0.77
Settling time (2%), sec 8 2.24
Steady-state value, c,, 1.0 1.0




Equation Chapter (Next) Section 1
1.1. Transient Response using MATLAB

C(s
Program 1: Find the step response for the following system ( ) = 235 +20
R(s) s°+5s+36

Solution:

>> num=[3 20]

num=

3 20

>> den=[1 5 36]

den=

1 5 36

>>sys=tf(num,den)

Transfer function:
3s+20

§"2+55+36
>>step(sys)

C(s) 20

Program 2: Find the step response for the following system =
J PSP Y R(s) sP+4s+25

Solution:
>> num=[20]
num=

20
>> den=[1 425]
den=

1 4 25
>>sys=tf(num,den)
Transfer function:
20

SN2+4s5+25

>>step(sys)



UNIT-111
Concept of stability

Stability is a very important characteristic of the transient performance of a system. Any working
system is designed considering its stability. Therefore, all instruments are stable with in a boundary of
parameter variations.

A linear time invariant (LTI) system is stable if the following two conditions are satisfied.
(i) Notion-1: When the system is excited by a bounded input, output is also bounded.
Proof:

A SISO system is given by

m m-1
C(s):G(S):bos +bs"t +..+b, ©.1)
a,s" +a,;s" .. +a,

So,
c(t)=a *[G(s)R(s)] 9.2)

Using convolution integral method

C(t):Tg(r)r(t—r)df (9.3)

g(r)=0 'G(s)=impulse response of the system

Taking absolute value in both sides,

00

jg(r)r(t—r)dr

0

(9.4)

e()]=

Since, the absolute value of integral is not greater than the integral of absolute value of the integrand

0

le(t) < [lo(z)r(t-7)dr|

0

=c(t)|<[lg(r)r(t-7)dz (9.5)

0

= [e(v)|<[lo(o)]|r (t-7)d=

0

Let, r(t) and c(t) are bounded as follows.

|r(t)|SM1<oo

(B <M, < &0

Then,



oo

le(t)] <My [|g(s)dr <M, 9.7)

0

Hence, first notion of stability is satisfied if _”g (r)|dr is finite or integrable.
0

(if) Notion-2: In the absence of the input, the output tends towards zero irrespective of initial
conditions. This type of stability is called asymptotic stability.

Effect of location of poles on stability

Pole-zero map | Normalized response

Over-damped close-loop poles

Ovesdamped system

|t $ plane

Critically damped close-loop poles

Pole-zero map Normalized response

Jcek 5 DIHIM Gritically dampod systom

Under-dampedclose-loop poles

Pole-zero map | Normalized response
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Negatively overdamped system

i'-'" § plane

Normelized response

- |

Closed-loop poles on the imaginary axis
Closed-loop can be located by replace the denominator of the close-loop response with s=jw.

Example:
1. Determine the close-loop poles on the imaginary axis of a system given below.

K
Cls)= s(s+1)

Solution:

Characteristics equation, B(s) =s” +s+K =0

Replacing s = jw

B(jo) = (jo)’ +(jw)+K =0

=(K-0?)+ jo=0

Comparing real and imaginary terms of L.H.S. with real and imaginary terms of R.H.S., we get

a)zx/?anda)zo

Therefore, Closed-loop poles do not cross the imaginary axis.

2. Determinetheclose the imaginary axis of a system given below.
B(s)=s*+6s*+8s+K =0.

Solution:

Characteristics equation,

B(jo) =(jo)’ +6(jw)* +8jw+K =0

=(K—6¢")+ jBow—a®)=0

Comparing real and imaginary terms of L.H.S. with real and imaginary terms of R.H.S., we get

o = +~/8 radisand K = 60 = 48

Therefore, Close-loop poles cross the imaginary axis for K>48.




Routh-Hurwitz’s Stability Criterion

General form of characteristics equation,
B(s)=as"+a,,s"" +--as+a =0
={s-5)s1)- (—1)=0

Where, I; = Roots of the characteristics equation

Necessary condition of stability:
Coefficients of the characteristic polynomial must be positive.

Example:

3. Consider a third order polynomial B(s) = s + 3s® +16s+130 . Although the coefficients of the

above polynomial are positive, determine the roots and hence prove that the rule about
coefficients being positive is only a necessary condition for the roots to be in the left s-plane.

Solution:
Characteristics equation, B(s) = s> +3s” +16s +130 =0
By using Newton-Raphson’s methodr, =5 and r,, =1+ j5

Therefore, from the above example, the condition that coefficients of a polynomial should be positive
for all its roots to be in the left s-plane is only a necessary condition.

Sufficient condition of stability:
2.4.2.1.Method | (using determinants)
The coefficients of the characteristics equation are represented by determinant form

as follows.
an—l n-3 n-5
a a a
An — n n-2 n-4 (98)
0 a, 53 -

Here, the determinant decreases by two along the row by one down the
column. For stability, the following conditions must satisfy.

a a an—l an—3 an—5
A=a,,>0A,=| """ "*|>0,A,=|a, a,, a,,[/>0- (9.9)
n an—Z
an—l an—3
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2.4.2.2.Method Il (using arrays)
The coefficients of the characteristics equation are represented by array form as

follows.
Sn an an—Z an—4
Sn_l n-1 an—3 an—5
n-2
Sn_3 bn—l bn—3 bn—5 (910)
S Cn—l Cn—3 Cn—5
Where,
b . = (an—l)(an—z) B an (an—3)
n-1 "~
an—l
a a —a_ (a
bn_3 — ( n—l)( n—4) n( n—5) (911)
an—l
c . = (bn—l)(an—S) — an—l (bn—3)
n-1
bn—l

For stability, the following conditions must satisfy.
The number of roots of B(s) with positive real parts is equal to the number of sign
changes an, an1, bn.1, Cn.a, €tc.

Example:

4. Find stability of the following system given by G(s) =

and H(s)=1 using Routh-

s(s+1)
Hurwitz stability criterion.
Solution:
_K
In the system, T(s)= G(s) __ S(s+D > K
1+G(s)H(s) 4, K s“+s+K
s(s+1)

Method-I,

Characteristics equation, B(s)= s2+s+K=0

A =1
Here, 1 0
A, = =K
1 K
>0

. A
For stability,
A, >

The system is always stable for K>0.
Method-II,
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Characteristics equation, B(s)=s’+s+K =0

Here, Routh array is

1 K
stf1 0
s°(K

There are no sign changes in first column elements of this array.Therefore, the system is always stable
for K>0.

5. Find stability of the following system given byG(s)z#and H(s)=1 using
s(s+2)(s+4)
Routh-Hurwitz stability criterion.

Solution:

K

G(s
In the system, C(s) = ( ) = s(s+2)(s+4) =— 2K
R(s) 1+G(s)H(s) 14 K $°+6s° +8s+ K
s(s+2)(s+4)

Method-I,

General form of characteristics equation, B(s)= a,8° +a,s* +as+a,=0

And in this system, characteristics equation is B(s)= s®+6s°+85+K =0

Here,sufficient condition of stability suggests

Al=8>O,A2=6 K=(48—K)>O,
1 8
6 K 0
A,=[1 8 0|=K(48-K)>0
0 6 K

Therefore, the system is always stable for K <48.
Method-II,

Characteristics equation is B(s)=s+6s’ +8s+K =0

andRouth’s array

g3 1 8

$2 6 K

48K
6
s’k

There are no sign changes in first column elements of this array if K <48. Therefore, the system is
always stable for 0 < K < 48.
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6. Find stability of the following system given by B(s)=s®+5s +10s + 3using Routh-Hurwitz
stability criterion.

Solution:

In this problem, given Characteristics equation is B (s) =5° +55%+10s +3 =0, andRouth’s array is

11 10
$’[5 3
9.4 0
0 3

There are no sign changes in first column elements of this array. Therefore, the system is always
stable.

7. Find stability of the following system given by B(s)=s’+2s’+3s+10 using Routh-Hurwitz
stability criterion.

Solution:
In this problem, given characteristics equation is
B(s)=s’+2s"+3s+10=0and

Routh’s array is

3

s°l1 3
s?[2 10
dl-2 0
0|10

There are two sign changes in first column elements of this array. Therefore, the system is unstable.

8. Examine stability of the following system given by s°+2s*+4s>+8s? +3s+1 using Routh-Hurwitz
stability criterion.

Solution:

In this problem, Routh’s array is

3

2.5

w
8 o N+

Here, the criterion fails. To remove the above difficulty, the following two methods can be used.
Method-1

(i) Replace 0 by g(very small number) and complete the array with e.
(if) Examine the sign change by taking ¢ -0

Now, Routh’s array becomes
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s° 4
g4 8 1
$ P 25 0
§2 5-8¢ 1 0

&
g 2.5(5_&)—5

& J
5-8¢

&

s° 1

Now putting £ — 0, Routh’s array becomes

s 1 4
st 2 8 1
$ P 25 0
§2 5-8¢ 1 0

&
. 2.5(5_&)—

&

5-8¢

&

s° 1

There are two sign changes in first column elements of this array. Therefore, the system is unstable.
Method-2

Replace s by 1 . The system characteristic equation §°+25" +4s° +8s?+35+1=0 becomes
z

i+£+i+§+§+170
VAR AR AR S

—=7%4+32%+82%+42%+2Z +1=0

Now, Routh’s array becomes

S 1 8 2
s' 3 4 1
sl 6.67 167 0
20325 1 0
s1[-0385 0 0
o 1 0 0

There are two sign changes in first column elements of this array. Therefore, the system is unstable.

9. Examine stability of the following system given by s°+2s*+25° +4s*+4s+8 using Routh-Hurwitz
stability criterion.

Solution:

In this problem, Routh’s array is
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1 2 4
s'(2 4 8
s$*0 0 0
SZ
S1
S0

Here, the criterion fails. To remove the above difficulty, the following two methods can be used.

The auxillary equation is
A(s)=2s"+45"+8

dA
:ﬂ =85 +8s
ds
Now, the array is rewritten as follows.

11 2 4
S 2
sl 8
s? 2
st|—24
o| 8

8
0
0

O 00 00 M~

There are two sign changes in first column elements of this array. Therefore, the system is

unstable.

10. Examine stability of the following system given by s*+5s°+2s?+3s+1=0 using Routh-Hurwitz
stability criterion. Find the number of roots in the right half of the s-plane.

Solution:

In this problem, Routh’s array is

s 2 2
s} 5 3

s?| 1.4 2
si[-4.14 0

N 2

There are two sign changes in first column elements of this array. Therefore, the system is unstable.
There are two poles in the right half of the s-plane.

Advantages of Routh-Hurwitz stability
(i) Stability can be judged without solving the characteristic equation
(i) Less calculation time
(iii) The number of roots in RHP can be found in case of unstable condition
(iv) Range of value of K for system stability can be calculated
(v) Intersection point with the jw-axis can be calculated
(vi) Frequency of oscillation at steady-state is calculated



Disadvantages of Routh-Hurwitz stability
(i) Itisvalid for only real coefficient of the characteristic equation
(if) Unable to give exact locations of closed-loop poles
(iii) Does not suggest methods for stabilizing an unstable system
(iv) Applicable only to the linear system
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Root locus

Definition:

The locus of all the closed-loop poles for various values of the open-loop gain K is called root locus.
The root-locus method is developed by W.R. Evans in 1954. It helps to visualize the various possibil-
ities of transient response of stable systems.

Closed-loop response function

Characteristic equation

Cs _ G(s)
R(s) 1+G(s)H(s)

1+G(s)H(s) =1+ K(s-z)(s—2,)--(s-2z,) o
(s—p)(s—py)...(s—py)

Vector from open-loop pole to the root-locus

OPEN LOoP PoLE| £- Pc
9=

Jow

[}

- <]

4- plane

(10.1)

(10.2)

p. - RooT tocusg
t
&
o
Vector from open-loop zero to the root-locus
\JCA)
5_ bb 6 5- P*‘CH\C
5 Sl ROOT Locus
OPEN LOOP
ZERO >
o
Behaviors of closed-loop poles
Closed-loop poles negative Exponential decay Stable
and real
Closed-loop poles complex Decaying and oscillatory Stable
with negative real parts
Closed-loop poles positive and | Exponential increase Unstable
real
Closed-loop poles complex Exponential and oscillatory Unstable
with positive real parts increase

BASIS for CONSTRUCTION



Construction steps

Determine the number of open-loop poles and zeros
Mark open-loop poles and zeros on the s-plane
Determine parts of the root-locus on the real axis
Determine breakaway and break-in points

Draw asymptotes to the root-locus

Determine angles of departure

Determine angles of arrival

NoakwbdpE

8xisDetermine points on the root-locus crossing imaginary
9. Obtain additional points and complete the root-locus

Starting points

K(S—2)(S—2,)..(S ~ 2,)
1+ G(s)H =1 =0 10.3
) = = p) (5= py) (103)

For K=0,

_ 5= P)(S=Py) (5= P) + K(S=2)(5-2,)..(5 - 2) _
(s = P)(s = Py)--(s = Py)

= (s—p)(s—p,)-(s-p,)=0 (10.4)

Open-loop poles are also closed-loop poles for K=0. A root-locus starts from every open-loop pole.

Ending points
Characteristics equation of a closed-loop system

1+ G(s)H (s) =1+ KE=2)E=2).. (5= 7,)

=0 (10.5)
(5= P)(s—Py)--.(s— Py)
For K=oo,
- K(s-z)(s-2,)..(s-z,)
(s—p)(s—Py)--(s—p,)
=(s-z)(s-1z,)..(s-z,)=0 (10.6)
Root-locus ends at an open-loop zero or at infin-
ity.
1+G(s)H (s) =1+|G(s)H (s)|(cosy + jsiny) =0 (10.7)
Angle criterion:
w=>06-> ¢; 180°+360k (10.8)
i=1 j=1

Where, 6, = angle in case of i pole and ;- angle in case of j™ zero
Magnitude criterion:



IG($)H (5)| =1 (10.9)

Desiging at a root-locus point

Using the magnitude of vectors drawn from open-loop poles and zeros to the root-locus point, we get
n

H(S_pi)

il _1GE=p)lIs=p) [ =Pu)l _

= (10.10)
s—2)|Is-2,)]...|(s-z
[e-z) |25 2)l-16-2)
j=1
Gain at a root-locuspoint is determinedusing synthetic division.
Example:
Determine K of the characteristic equation for the root s=-0.85.
Solution:
S3 4652 +8s+K =0 (10.11)

1 6 8 K
-0.85 -4.378 -3.079
1 5.15 3.622 K-3.079=0

Determine parts of the root-locus on the real axis

1. Start from open-loop poles on the real axis, extend on the real axis for increasing
values of the gain and end at an open-loop zero on the real axis.

2. Start from open-loop poles on the real axis, extend on the real axis for increasing
values of the gain and end at an infinite value on the real axis.

3. Start from a pair of open-loop poles on the real axis, extend on the real axis for
increasing values of gain, meet at a point and then leave the real axis and end at a
complex open-loop zero or infinity.

increasing values of gain, meet at a point and then leave the real axis. They may once
4. sgah Boter theaealcx spendlenp giapsnelodpezerad @ixas,adatgedvalnetoe tealreatiaxior

loop zero or an infinite value on the real axis. They could leave the real axis again and
5. Swarbfroompiex opaviguezenoeorlivdfiyles, enter the real axis and end at an open-

Angle contributions from complex poles
Complex poles and zeros do not contribute to the angle criterion on the real axis



Jw

A
4 -plane
-0
76
V]
COMPLEX OPEN
LOOP POLES
@ P f‘qo. ’S
»
® g PN

Determine breakaway and break-in points of the root-locus ( )

1+G(s)H(s) =1+ K25 —0

B(s)
f(s)=B(s)+ KA(s)=0

__B®)
- As)

£(5) = (5=8) (5 =8,).(S — Sy 1) =0

% =r(s- Sl)r_l(s B SZ)"‘(S - Sn—r+1) +(s— Sl)r-(S - SS)"(S — Sn—r+1) 4.
CI
ds

f'(s)=B(s)+ KA(s)=0

=K :—m
A(s)
Therefore,
B'(s)A(s)—B(s)A(s) =0

At breakaway and break-in points of the root-locus,

(10.12)

(10.13)

(10.14)

(10.15)

(10.16)

(10.17)

(10.18)

(10.19)

(10.20)



dK _ B'(s)A(s) — B(s)A'(s) 0 (10.21)
ds A%(s) '

Draw asymptotes to the root-locus

ASYMPTOTE

/\’007’ LocUs

6 =6 6. % @,
be % 5, @o = 4’1
6. % 64 L 3rge 5
Sk 2 4-0 43 x4eq

Angle of asymptotes
0
A :Mwhere, k=0, 1, 2, 3..
(n—m)

Location of asymptotes
k= 5P pa).(s = py)

(10.22)
(5-2)(5 = 2,)(5 - 2,)
n n-1
k.S —(p,+ P, +..-p,)s l+... (10.23)
s"—(z,+2,+...2,,))s" " +...
K =s"" —[(p + Py +..P,) = (2, + 2, +..2,)]8" ™+ (10.24)
S—p ~s—o, (10.25)
(s—z)=s-o, (10.26)
k=879 e _myesn (10.27)
(S_O-c)m
Gc:(p1+ P, +..py) (7 + 2, +..2,) (10.28)

(n—m)

Angle of departure

0, =180— (6, +6,) + ¢, (10.29)



Jew
i
Angle of
departure

o]
064=180 - >angles of vectors to the complex open-loop pole in question from other open - loop poles
+ X angles of vectors to the complex open-loop pole in question from all open-loop zeros

Angle of arrival

0,=180— (¢ +¢,)+(6,+6,+6,) (10.30)

- plane
B, Ps, 1% OFPENLOOP POLES
3.3,% OFENLOGF ZERCs

¢, ANGLE OF ARRIVAL

Y

o]
0,=180 - >-angles of vectors to the complex open-loop zero in question from other open- loop zeros
+ X angles of vectors to the complex open-loop zero in question from all open-loop poles

Determine points on the root-locus crossing imaginary axis

Real[l+G(jow)H (jw)]=0 (10.31)
imaginary[l+ G(jo)H (jo)] =0 (10.32)
Example
Problem-1: Draw the root-locus of the feedback system whose open-loop transfer function is given
K
by G(s)H(s) =
y G(s)H(s) 61D

Solution:

Step 1: Determine the number of open-loop poles and zeros
Number of open-loop poles n=2

Number of open-loop zeros m=0

Open-loop poles: s=0 and s=-1



Step 2: Mark open-loop poles and zeros on the s-plane

@ £=0 OPEN LOOP POLES

4= -1

Step 3: Determine parts of the root-locus on the real axis
Test points on the positive real axis

Jw

/ vectors from 4=02-1
v - 9,:0

* #
o 5 -
Test point ¢ b0

Test points in between the open-lop poles

:—I

b2-0"
VECTOR VEcroR

6
TeSfPotM:
VECTORs FROM ) Jw
$:0 ard - |
@l - 180°
Gz =180°
4 &
TEST POINT
h Jow
-1
ot 4 -
6

RooT Locus oto-1

Step 4: Determine breakaway and break-in point
Characteristic equation, K =-s(s+1)

dK =-25+1=0

breakaway point as ob:—0.5



Gain at the breakaway point
K, =-0.5-0]|-0.5-(-1)|=0.25

Jow

-1 2 =0 (/]
| geos

¥* -

q"

Breakaway point

Step 5: Draw asymptotes of the root-locus
Angle of asymptotes:

180°+k360 _180+360k

0,=0, =

(n—m) 2
0.=90° k=0
0. =270° k=1

Centroid of asymptotes

o. = (P + Py +.py) = (2 + 2, +...2,) :O_l:—O.S

(n—m) 2
Jw
ASYMPTOTE
.90°
g -1
6, -210°
‘2
6 --05
. (“d
e M9 Lo
———— -
11? > [
ASYMPTO
YMPTOTE |

Steps 6 & 7: Since there are no complex open-loop poles or zeros, angle of departure and arrival need
not be computed

Step 8: Determine points on the root-locus crossing imaginary axis

1+GH =1+ =s’+s+K=0

s(s+1)
B(j0) = (jo)’ +(jo)+K = (K -0") + jo
K-0*=0= jo=0
The root-locus does not cross the imaginary axis for any value of K>0



ASymMpToTs | 4 Jw
TEST ___4 )
FoINT ON \
THE ASYMP & -6
1806 A 6, : 1808
. g
_ - AN “
270} 8.5 v
S0
ASYMPTOTE
Here,
o ~lEVI-aK
2
} To AF“’
Kz ROOT LoCUS
GOYHH = _K
A(4+1)
-'\/ 0 -
K=0 K K=o )

1=

o
K=60

Problem-2: Draw the root-locus of the feedback system whose open-loop transfer function is given

K
by G(s)H(s):m

Solution:

Step 1: Determine the number of open-loop poles and zeros
Number of open-loop poles n=3

Number of open-loop zeros m=0

Open-loop poles: s=0, s=-2 and s=-4

Step 2: Mark open-loop poles and zeros on the s-plane

Jw

OPENLOOP
POLES
£:0,-2,4
I —
-4 .2 0 6

Step 3: Determine parts of the root-locus on the real axis
Test points on the positive real axis



Jw

93:0 62=0 9':0
) v > -
> S > wd
- - 0

4 2 J;TEST POINT

VECTORS FROM
OPEN LOOP POLES

Test points in between the open-lop poles

AJw
4 TEST POINT|
L %0 G C g _
-4 -2 / o 6
VECTORS
FROM OPEN
LOOP POLES
Jow
94](551_,8 A
LA 8" g 180° o
% - K -
-4 }/ -2 )
VECTORS
FROM OPEN
LOOP POLES
Jw
S TEST | P , \
(Os=180" ~ Ozz1B0 — g=180
-4 -2 0
VECTORS FROM OPEN
LOOP POLES '
IJ’m
— Y o < e

ROOT Locus ON THE REAL
AXTS

Step 4: Determine breakaway and break-in point
Characteristic equation, K =-s(s+2)(s+4)

%—K:—(s+2)(s+4)—s(s+4)—s(s+2):O

s

Breakaway point as c,=-0.85 and —-3.15

op = —3.15 is not on the root-locus and therefore not a breakaway or break-in point

Gain at the breakaway point



K, =/ -0.85-0(|-0.855 - (-2)||-0.85 - (-4) |=3.079

1 6 8 K
-0.85 -4.378 -3.079
1 5.15 3.622 K-3.079=0
b Jw
a 2 6
-0-85
(k:3-079)
Step 5: Draw asymptotes of the root-locus
Angle of asymptotes:
B 180° + k360 ~ 180+360k
‘ (n—m) 3
0.=60° k=0
0.=180° k =1
0. =300" k =2
Centroid of asymptotes
o - (P+Pp+.P) - (2, +2,+..2,) 0-2-4 _
‘ (n—m) 3
»‘;jasd (K: 48) ROOT
: Locus
ASYMPTOTE 2 CROSSING

J

ASYMPTOTE

-3j

-J
=9

-2:83J (K: 48 ROOT
Locus
CROSSING

Steps 6 & 7: Since there are no complex open-loop poles or zeros, angle of departure and arrival need

not be computed

Step 8: Determine points on the root-locus crossing imaginary axis

K

1+GH =1+ ———
s(s+2)(s+4)

=% +65°

+85s+K=0

B(jo) = (jo)® +6(jw)’ +8jo+K =(K —60?)+ j(80w—-w®)=0



When imaginary-part is zero, then o = J_r\/g =S= ij\/g and when real-part is zero,

then K = 60° = 48.
The root-locus does not cross the imaginary axis for any value of K>48.

1 6 8 48
+j2.828 -8+j16.97 -48
1 6+j2.828 J16.97 0
1 6+j2.828 J16.97
-j2.828 -j16.97
1 6 0

Therefore, closed-loop pole on the real axis for K=48 at s = -6

No. Closed-loop pqle K Second and third Remarks
on the real axis closed- loop poles
1 -4.309 3.07 -0.85,-0.85 Already computed
2 -4.50 5.625 -0.754j0.829
3 -5.00 15 -0.54j1.6583
4 -5.50 28.875 -0.25+j2.2776
5 -6.00 48 +j2.8284 Already computed
6 -6.5 73.125 0.25+j3.448
Determine the gain corresponding to s=-4.5
K=|-4.5-(-4)||-4.5-(-2)||-4.5-0|]= 5.625
$°+6s°+8s+K =0
1 6 8 K
-4.5 -6.75 -5.625
1 1.5 1.25 K-5.625=0

(s*+1.55+1.25)=0
S,5=-0.75+ j0.829




;

/(k:13-rﬂj
/25*3“
J o
2-331 (K=4g)
| x-2881s
2
78,315
@ ¥ “:5,1,1.5 J
f K s Hkﬂ,,ﬂ
F (Mo ko
=
4 55 -5 A‘-54-1-4 -3

-J
2J
| k28878
2.83J (K2 48)
A

025 -34J

AL SRR
-af

Problem-3: Draw the root-locus of the feedback system whose open-loop transfer function is given

K
by GO () =375 73
Solution:
Step 1: Determine the number of open-loop poles and zeros
Number of open-loop poles n=3
Number of open-loop zeros m=0
Open-loop poles: s=0, s=0 and s=-1
Step 2: Mark open-loop poles and zeros on the s-plane

JJ(JJ
OPEN 7)
LOOP 73
POLES 320,01
- 0 s

Step 3: Determine parts of the root-locus on the real axis
Test points on the positive real axis




Jod
1R S 1§
%“'&Uu 3:13°'T

e
A

Jed

Step 4: Determine breakaway and break-in point
Characteristic equation, K = —s?(s +1)

K _p

ds

= -25(s+1)—-s=0
=s(-25-3)=0

Breakaway point as o,= -2/3and 0
oy = -2/3is not on the root-locus and therefore not a breakaway or break-in point.
Therefore op,= 0 and the two loci start from the origin and breakaway at the origin itself.

Step 5: Draw asymptotes of the root-locus
Angle of asymptotes:

, _180°+k360 _ 180360k

‘ (n—m) 3
0, =60° k=0
0, =180° k =1
0, =300° k =2

Centroid of asymptotes
o = (py+ Py +-py)— (2, + 2, +...2,) _ 0—12_1
¢ (n—m) 3 3

60" e
_’1‘ %‘\(=(JO ] P

Steps 6 & 7: Since there are no complex open-loop poles or zeros, angle of departure and arrival need
not be computed.



Step 8: Determine points on the root-locus crossing imaginary axis

B(s)=s*+s°+K

B(jo) = (jo)’ +(jo)* +K = (K -0°) - jo’
When imaginary-part is zero, then @ =0 = s =0 and when real-part is zero,

then K = w® =0.

The root-locus does not cross the imaginary axis for any value of K>0.

Additional closed-loop poles

No. Closed-loop pole on the K Second and third
real axis closed- loop poles
1 -15 1.125 0.25+j0.82
2 -2.0 4 0.504j1.32
3 -2.5 9.375 0.754j1.78
4 -3.0 18 1.00+j2.23
Determine the gain corresponding to s=-1.5
K=|-1.5-(-1)||-1.5-(0)||-1.5-0|= 1.125
s +s%+1.125=0
1 1 0 1.125
-1.5 0.75 -1.125
1 -0.5 0.75 0

(s +1.55+1.25)=0
S,5=-0.25+ j0.82




K18 K 43T Reg W-t125

Lok

-3 -5 -2 -5

©-15-1-78))
J2j KA

Problem-4: Draw the root-locus of the feedback system whose open-loop transfer function is given

K
by G(s)H (s) =
y GEHE) s* +55° +8s% + 65

Solution:

Step 1: Determine the number of open-loop poles and zeros

s*+55° +85° +65=5(s"+25+2)(s+3) = (s+1— j)(s+1+ j)(s+3)s
Number of open-loop poles n=4

Number of open-loop zeros m=0

Open-loop poles: s=0 and s=-3, s=-1+j and s=-1-j

Step 2: Mark open-loop poles and zeros on the s-plane

AJ(U
X —1+J J
OPEN LOOP POLES
Lo-sd
K 0 IG
3 _2 N
-0'5)
X =t= -0'5)
Step 3: Determine parts of the root-locus on the real axis
Test points on the positive real axis
Lo
0z =0 J 51 0




o 60 6= 180°
-3 -2 -1 .
Jw
4o o
A
-3 -2 iy 8‘—.13,‘)[
IJ&J
-3 -2 -1

Step 4: Determine breakaway and break-in point
Characteristic equation, K =—(s* +5s° +8s? + 65)

LS
ds

= 45 +15s2 +165+6=0
=53 4+3.7552 +45+1.5=0

f'(s)=3s*+75s5+4
This equation is solved using Newton-Raphson’s method

~ f(s0)
n+l = “n '

f(s,)
No. Sn f (Sn) f ,(Sn) Sn+l
1 -3.75 -13.5 18.0625 -3.0026
2 -3.0026 -3.7721 8.5273 -2.5602
3 -2.5602 -0.9421 4.4624 -2.3491
4 -2.3491 -0.1658 2.9364 -2.2926
5 -2.2926 -0.0103 2.5737 -2.2886

_ 5

6 2.2886 5.03x10

Breakaway point as c,= -2.3

Gain at the breakaway point, K =|-2.3—-(-3) || -2.3-0]|-2.3—(-1+ j)||-2.3—(-1- j)|=4.33

K

-2.2886

-6.2053

-4.1073

-4.3316




1 2.7114 1.7947 1.8926 0
bJw
i 54
J
054
[
-0:5)
-1-5J
g'
Other closed-loop poles for K=4.3
1 2.7114 1.7947 1.893
-2.2886 -0.9676 -1.893
1 0.4228 0.8270 0
S, =-0.2114+j0.8814
Step 5: Draw asymptotes of the root-locus
Angle of asymptotes:
B 180° + k360 _180+360k
¢ (n—m) 4
0, =45" k=0
0.=135" k =1
0. =225k =2
0.=315" k=3
Centroid of asymptotes
o - (P+Pp+-P)— (2 +2,+...2,) 0-3-1+j-1—] _ 15

c

(n—m) 4

ot




l
154"
(044 (K=8-154)
J CRossing
PoiNT
0-5J
K=4-331
. ~2:288b
A o . ' -
- b -2 9
-0'5y
~2:5-0-12)/ -
oy 44 / -J .
(K=8 154) - 1094
' (KK=8:154)
S/ ‘54
Steps 6:Determine angles of departure
bJw
34
-14d J
l*:\ NEY n
4 52135
. 26:5¢ N‘ -
3 _2 - 2
g
2
NN y
-3

0, =180° — (135° + 26.56° + 90°) = —71.56° = 288.44°



Step 7: As there are no complex open-loop zeros, angle of arrival need not be computed.

Step 8: Determine points on the root-locus crossing imaginary axis
B(s)=s"+55*+8s* +6s+ K
B(jo) = (jo)* +5(jw)® +8(jo)* +6jo+K = (0* —80? + K) + j(6w —50°)

When imaginary-part is zero, then o = J_r\/g =S= J_rj\/g and when real-part is zero,

2
then K :BX(QJ—(QJ =8.16.
5 5

There are two closed-loop poles on the imaginary axis for any value of K>0.
Additional closed-loop poles

No. | S S Saa K
1 -0.25 -2.9217 -0.9142+0.7969 1.0742
2 -0.50 -2.8804 -0.8098+0.655i 1.5625
3 -0.75 -2.8593 -0.6953+0.5938; 1.7930
4 -1.0 -2.8393 -0.5804+0.6063j 2.0000
5 -1.25 -2.8055 -0.4722+0.6631j 2.3242
6 -1.75 -2.6562 -0.3763+0.7354j 2.8125
7 -2.0 -2.5214 -0.2393+0.8579 4.0

Root Locus

o
™

s " 1.004]  (K=8.154) &

Imag Axis
o
T

ar \ -1.094]  (K=8.154) .

Real Axis



Additional Information from Root-Locus Plot
1. Gain Margin

GM = 20log Rz
K

K is the gain of a feedback system at some point on the root-locus

K is the gain at which the system becomes unstable
2. Transient Characteristics

1

jooy = de, i-5?

PART oF
ROOT LOCUS
1_ 2
Where, f=tan™"~ gC
3. Percentage overshoot
_ ,-nltanp
M, =e
4. Settling time
Lo 4
o,

5. Steady-state error is also related to K.

Example

_de 2 -Jw,fi-g*

of

(10.33)

(10.34)

(10.35)

Problem-1: Draw the root-locus of the feedback system whose open-loop transfer function is given

K (32 +10s +100)
by G(s)H(s) =

JH(s)=1
s* +20s® +100s* +500s +1500 (s)

(@) Determine the value of gain at which the system will be stable and as well have a maximum

overshoot of 5%.
(b) What is the gain margin at this point?

(c) What is the steady-state error for a unit step excitation at the above point?

Solution:



-

tan B = =1.0487
(a) InM,
= B =46°
¢ = . 0.690 (10.36)
J1l+tan? g
Jow
5 A
30
20
-0.76+12.4
10 K=261
0 -0
)
20
-30
192.2

b) GM =20log——— =-2.65dB
(b) 96

(c) Position error
. K (s* +10s +100) 100K
K:=lim =

s00' 5% +20s° +100s? +500s+1500 1500
Steady-state error,
1 1 1500
Se (Cx)) = = =
1+ K, 1+100K /1500 1500+100K

S

_ 1500
1500 +100x 261

=5.4%

Se(0)



Root locus

The locus of all the closed-loop poles for various values of the open-loop gain K is called root locus.
The root-locus method is developed by W.R. Evans in 1954. It helps to visualize the various
possibilities of transient response of stable systems.

Closed-loop response function

C(s) _ G(s) (10.37)
R(s) 1+G(s)H(s) '
Characteristic equation
1+ G(s)H(s) =14+ =26 =7)-(5=2) _, (10.38)

(s—p)(s—Po)--(s—Py)
Vector from open-loop pole to the root-locus
Jw
) 4- plane
OPEN LOOP POLE| 8- Pu | «
| @7 L

p. - RO0OT Locus
[4

&
o
Vector from open-loop zero to the root-locus
\JCA)
5_ bb 6 8- P*‘CH\C
5 Sl ROOT Locus
OPEN LOOP
ZERO >
o
Behaviors of closed-loop poles
Closed-loop poles negative Exponential decay Stable
and real
Closed-loop poles complex Decaying and oscillatory Stable
with negative real parts
Closed-loop poles positive and | Exponential increase Unstable
real
Closed-loop poles complex Exponential and oscillatory Unstable
with positive real parts increase

BASIS for CONSTRUCTION
Construction steps
10. Determine the number of open-loop poles and zeros



11. Mark open-loop poles and zeros on the s-plane

12. Determine parts of the root-locus on the real axis

13. Determine breakaway and break-in points

14. Draw asymptotes to the root-locus

15. Determine angles of departure

16. Determine angles of arrival

17. Determine points on the root-locus crossing imaginary axis
18. Obtain additional points and complete the root-locus

Starting points
Characteristics equation of a closed-loop system

K(S—2)(S—2,).(S — 2,)
1+ G(s)H =1 =0 10.39
) = = p) (5= py) (10-39)

For K=0,

_, 5= P)(S=Py) (5= P) + K(S=2)(5-2,)..(5 - 20) _
(= P)(s = Py)--(s = Py)

= (5= P)(8 = Py)-(s—p,) =0 (10.40)

Open-loop poles are also closed-loop poles for K=0. A root-locus starts from every open-loop pole.

Ending points
Characteristics equation of a closed-loop system

K(S—2)(S—2,)..(S ~ 2,)
1+ G(s)H =1 =0 10.41
) = = p) (5= py) (1041)

For K=o,

- K(s-z)(s-2,)..(s-z,)
(5= p)(s—py)--(s—p,)

=(s-z)(s-1z,)..(s-z,)=0 (10.42)

Root-locus ends at an open-loop zero or at infinity.

Magnitude and angle criterion

1+G(s)H(s) =1+|G(s)H (s)|(cosy + jsiny) =0 (10.43)
Angle criterion:
n m
w=>06-> ¢;180°+360k (10.44)
i=1 j=1

Where, 6, = angle in case of i pole and ;- angle in case of " zero

Magnitude criterion:
|G(s)H (s)| =1 (10.45)

Determining gain at a root-locus point



Using the magnitude of vectors drawn from open-loop poles and zeros to the root-locus point, we get

n

H(S_pi)

i=1

[S—P)I[(S=p )| [(S=p)l_

m = (10.46)
s—2)|Is-2,)]..|(s-z
[e-z) |25 2)l-16-2)
j=1
Gain at a root-locus point is determined using synthetic division.
Example:
Determine K of the characteristic equation for the root s=-0.85.
Solution:
S3 4652 +8s+K =0 (10.47)

1 6 8 K
-0.85 -4.378 -3.079
1 5.15 3.622 K-3.079=0

Determine parts of the root-locus on the real axis

6.

7.

8.

10.

Start from open-loop poles on the real axis, extend on the real axis for increasing
values of the gain and end at an open-loop zero on the real axis.

Start from open-loop poles on the real axis, extend on the real axis for increasing
values of the gain and end at an infinite value on the real axis.

Start from a pair of open-loop poles on the real axis, extend on the real axis for
increasing values of gain, meet at a point and then leave the real axis and end at a
complex open-loop zero or infinity.

Start from a pair of open-loop poles on the real axis, extend on the real axis for
increasing values of gain, meet at a point and then leave the real axis. They may once
again enter the real axis and end at open-loop zeros or at a large value on the real axis.
Start from a pair of complex open-loop poles, enter the real axis and end at an open-
loop zero or an infinite value on the real axis. They could leave the real axis again and
end at a complex open-loop zero or infinity.

Angle contributions from complex poles
Complex poles and zeros do not contribute to the angle criterion on the real axis

)

e

COMPLEX OPEN
LOOP POLES

£ -plane
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Determine breakaway and break-in points of the root-locus

_1. kA6 _
1+G(s)H(s)=1+K B(S) =0

f(s)=B(s)+ KA(s)=0

__B®)
- As)

£(5) = (5=8) (5 =8,).(S — Sy 1) =0

% =r(s- Sl)r_l(s B SZ)"‘(S - Sn—r+1) +(s— Sl)r-(S - SS)"(S — Sn—r+1) 4.
IO/,
ds |,

f'(s)=B(s)+ KA(s)=0

BO

=>K= ;
A(s)

Therefore,
B'(s)A(s)—B(s)A(s) =0
At breakaway and break-in points of the root-locus,

dK _ B(s)A(s)—B(s)A(s) 0

ds A%(s)

Draw asymptotes to the root-locus

(10.48)

(10.49)

(10.50)

(10.51)

(10.52)

(10.53)

(10.54)

(10.55)

(10.56)

(10.57)



ASYMPTOTE

Angle of asymptotes
0
A :Mwhere, k=0, 1, 2, 3..
(n—m)
Location of asymptotes
k= 5P pa).(s = py)

(10.58)
(5= 2)(5~2)-(5~ 2)
n n-1
k=S —(p,+ P, +..-p,)s l+... (10.59)
S"—(z,+2,+..2,)s" " +...

K =" —[(py+ Py +..Py) = (2, + 2y + .2, )]S" "+ (10.60)
s—p ~s-o, (10.61)
(s—z)=s-o, (10.62)

_B20) _ nem (o myg s (10.63)
(s—o)"
c:(p1+ Py +...py)— (2, + 2, +...2,,) (10.64)

(n—m)

Angle of departure

0, =180— (6, +6,) + ¢, (10.65)



Jew
i
Angle of
departure

o]
064=180 - >angles of vectors to the complex open-loop pole in question from other open - loop poles
+ X angles of vectors to the complex open-loop pole in question from all open-loop zeros

Angle of arrival

0,=180— (¢ +¢,)+(6,+6,+6,) (10.66)

- plane
B, Ps, 1% OFPENLOOP POLES
3.3,% OFENLOGF ZERCs

¢, ANGLE OF ARRIVAL

Y

o]
0,=180 - >-angles of vectors to the complex open-loop zero in question from other open- loop zeros
+ X angles of vectors to the complex open-loop zero in question from all open-loop poles

Determine points on the root-locus crossing imaginary axis

Real[l+G(jow)H (jw)]=0 (10.67)
imaginary[l+ G(jo)H (jo)] =0 (10.68)
Example
Problem-1: Draw the root-locus of the feedback system whose open-loop transfer function is given
K
by G(s)H(s) =
y G(s)H(s) 61D

Solution:

Step 1: Determine the number of open-loop poles and zeros
Number of open-loop poles n=2

Number of open-loop zeros m=0

Open-loop poles: s=0 and s=-1



Step 2: Mark open-loop poles and zeros on the s-plane

@ £=0 OPEN LOOP POLES

4= -1

Step 3: Determine parts of the root-locus on the real axis
Test points on the positive real axis

Jw
/ vectors from 4=02-1
-1
* = - G0
Test poont e by=0

Test points in between the open-lop poles

Jw
62-0" 6, - 180’
VECTOR VECTDR

4,-:

6
TGSL‘ point

VECTORS FROM ) Jw
4:0 apd - |
9|: 180
62=180°
4
TEST PoINT 1

-1
%

5"

S

ROOT Locus oto-1

Step 4: Determine breakaway and break-in point
Characteristic equation, K =-s(s+1)
dK

— =-25+1=0
ds

breakaway point as ob:—0.5

Gain at the breakaway point



K, =/~0.5-01|-0.5— (~1)|= 0.25
Jow

-1 : Q- 0
o5

q"

-
Breakaway point

Step 5: Draw asymptotes of the root-locus
Angle of asymptotes:

180°+k360 _180+360k

0.=06, = =
(n—m) 2

0.=90° k=0

0. =270° k=1

Centroid of asymptotes
o - (pr+ P +..py)—(zy+2,+...2,) :O_l:—O.S

c

(n—m) 2
Jw
ASYMPTOTE
o
g1
6(‘ -270
6 --05
. c-
e s~!\"" 0
X S -
26 0
ASYMP
SYMPTOTE |

Steps 6 & 7: Since there are no complex open-loop poles or zeros, angle of departure and arrival need
not be computed

Step 8: Determine points on the root-locus crossing imaginary axis
1+GH =1+

=s?+5+K=0
s(s+1)

B(jo)=(jo)* +(jo) +K = (K -0*)+ jo
K-0*=0= jo=0
The root-locus does not cross the imaginary axis for any value of K>0



ASymMpToTs |

biw
TEST ___4 )
POINT ON \
THE ASymP &8
18- A 6, : 1808
. 9
_ - Anap “
270} 8.5 v
log
ASYMPTOTE
Here,
s -1+v1-4K
2
} To AF“’
Kz ROOT Locus
GOy K
A(4+1)
-'V 0 -
K=0 K K=o G

1=

To
K=p0

Problem-2: Draw the root-locus of the feedback system whose open-loop transfer function is given
by G(s)H(s)=—

s(s+2)(s+4)

Solution:

Step 1: Determine the number of open-loop poles and zeros

Number of open-loop poles n=3

Number of open-loop zeros m=0

Open-loop poles: s=0, s=-2 and s=-4

Step 2: Mark open-loop poles and zeros on the s-plane

Jw
OPEN LOOP
POLES

£:0,-2 -4

N
-4 -2 0 6

Step 3: Determine parts of the root-locus on the real axis
Test points on the positive real axis



Jw
93 =0 02 =0 9' =0
% AL - -
? AL » Vd‘
- - 0
4 2 % TEST POINT
VECTORS FROM
OPEN LOOP POLES

Test points in between the open-lop poles

AJw

8 TEST POIM
Y AN

AN

-2 ) 0 .

0)

VECTORS
FROM OPEN
LOOP POLES

Jow

VECTORS
FROM OPEN
LOOP POLES
Jw

T .
O3 =180" 6,=180 pl,,go'
X

-4 -2 0

VECTORS FROM OPEN
LOOP POLES '

ROOT Locus ON THE REAL
AXTS

Step 4: Determine breakaway and break-in point

Characteristic equation, K =-s(s+2)(s+4)
%—K:—(s+2)(s+4)—s(s+4)—s(s+2):O
s
Breakaway point as ¢,=-0.85 and -3.15
op = —3.15 is not on the root-locus and therefore not a breakaway or break-in point

Gain at the breakaway point



Ky =1~0.85-01|-0.855 - (~2) | -0.85 - (-4)|=3.079

1 6 8 K
-0.85 -4.378 -3.079
1 5.15 3.622 K-3.079=0
b Jw
a 2 6
-0-85
(k:3-079)
Step 5: Draw asymptotes of the root-locus
Angle of asymptotes:
0 - 180° + k360 180360k
‘ (n—m) 3
0, = 60° k =0
0, = 180° k =1
0, = 300° k=2
Centroid of asymptotes
o - (py+ P, +...p,)— (2, + 2, +...2,)) _0-2-4 _
¢ (n—m) 3
»‘;jasd (K: 48) ROOT
: Locus
ASYMPTOTE 2 CROSSING

-6

(e

-5
(k=30m)

ASYMPTOTE

J

-J
=9

-2:83J (K: 48 ROOT
-3J LoCUS
CROSSING

Steps 6 & 7: Since there are no complex open-loop poles or zeros, angle of departure and arrival need

not be computed

Step 8: Determine points on the root-locus crossing imaginary axis

1+GH=1+—-——
s(s+2)(s+4)

=s*+65°+85+K =0

B(jo) = (jo)° +6(jo)* +8jw+K = (K —602) + jBo —0®) =0



When imaginary-part is zero, then o = J_r\/g =S= ij\/g and when real-part is zero,

then K = 60° = 48.
The root-locus does not cross the imaginary axis for any value of K>48.

1 6 8 48
+j2.828 -8+j16.97 -48
1 6+j2.828 J16.97 0
1 6+j2.828 J16.97
-j2.828 -j16.97
1 6 0

Therefore, closed-loop pole on the real axis for K=48 at s = -6

No. Closed-loop pqle K Second and third Remarks
on the real axis closed- loop poles
1 -4.309 3.07 -0.85,-0.85 Already computed
2 -4.50 5.625 -0.754j0.829
3 -5.00 15 -0.54j1.6583
4 -5.50 28.875 -0.25+j2.2776
5 -6.00 48 +j2.8284 Already computed
6 -6.5 73.125 0.25+j3.448
Determine the gain corresponding to s=-4.5
K=|-4.5-(-4)||-4.5-(-2)||-4.5-0|= 5.625
s*+6s?+85+K =0
1 6 8 K
-4.5 -6.75 -5.625
1 1.5 1.25 K-5.625=0

(s +1.55+1.25)=0
S,5=-0.75+ j0.829
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Problem-3: Draw the root-locus of the feedback system whose open-loop transfer function is given

K
by GO () =375 73
Solution:
Step 1: Determine the number of open-loop poles and zeros
Number of open-loop poles n=3
Number of open-loop zeros m=0
Open-loop poles: s=0, s=0 and s=-1
Step 2: Mark open-loop poles and zeros on the s-plane

JJ(JJ
OPEN 7)
LOOP 73
POLES 320,01
- 0 s

Step 3: Determine parts of the root-locus on the real axis
Test points on the positive real axis




Jod
1R S 1§
%“'&Uu 3:13°'T

e
A

Jed

Step 4: Determine breakaway and break-in point
Characteristic equation, K =—-s?(s +1)

K _p

ds

= -25(s+1)—-s=0
=s(-25-3)=0

Breakaway point as o,= -2/3and 0
o, = -2/3is not on the root-locus and therefore not a breakaway or break-in point.
Therefore oy, = 0 and the two loci start from the origin and breakaway at the origin itself.

Step 5: Draw asymptotes of the root-locus
Angle of asymptotes:

, _180° +k360 _ 180:+360k

‘ (n—m) 3
0, =60° k=0
0, =180° k=1
0, =300° k =2

Centroid of asymptotes
o = (py+ Py +-py)— (2, + 2, +...2,) _ 0—12_1
¢ (n—m) 3 3

60" e
_’1‘ %‘\(=(JO ] P

Steps 6 & 7: Since there are no complex open-loop poles or zeros, angle of departure and arrival need
not be computed.



Step 8: Determine points on the root-locus crossing imaginary axis

B(s)=s*+s°+K

B(jo) = (jo)’ +(jo)* +K = (K -0°) - jo’
When imaginary-part is zero, then @ =0 = s =0 and when real-part is zero,

then K = w® =0.

The root-locus does not cross the imaginary axis for any value of K>0.

Additional closed-loop poles

No. Closed-loop pole on the K Second and third
real axis closed- loop poles
1 -15 1.125 0.25+j0.82
2 -2.0 4 0.504j1.32
3 -2.5 9.375 0.754j1.78
4 -3.0 18 1.00+j2.23
Determine the gain corresponding to s=-1.5
K=|-1.5-(-1)||-1.5-(0)||-1.5-0|= 1.125
s +s%+1.125=0
1 1 0 1.125
-1.5 0.75 -1.125
1 -0.5 0.75 0

(s +1.55+1.25)=0
S,5=-0.25+ j0.82




K18 K 43T Reg W-t125

Lok

-3 -5 -2 -5

©-15-1-78))
J2j KA

Problem-4: Draw the root-locus of the feedback system whose open-loop transfer function is given

K
by G(s)H (s) =
y GEHE) s* +55° +8s% + 65

Solution:

Step 1: Determine the number of open-loop poles and zeros

s*+55° +85° +65=5(s"+25+2)(s+3) = (s+1— j)(s+1+ j)(s+3)s
Number of open-loop poles n=4

Number of open-loop zeros m=0

Open-loop poles: s=0 and s=-3, s=-1+j and s=-1-j

Step 2: Mark open-loop poles and zeros on the s-plane

AJ(U
X —1+J J
OPEN LOOP POLES
Lo-sd
K 0 IG
3 _2 N
-0'5)
X =t= -0'5)
Step 3: Determine parts of the root-locus on the real axis
Test points on the positive real axis
Lo
0z =0 J 51 0




o 60 6= 180°
-3 -2 -1 .
Jw
e 0
A
-3 -2 iy 8‘—.13,‘)[
IJ&J
-3 -2 -1

Step 4: Determine breakaway and break-in point
Characteristic equation, K =—(s* +5s° +8s? + 65)

LS
ds

= 45 +15s2 +165+6=0
=53 4+3.7552 +45+1.5=0

f(s)=3s°+75s+4
This equation is solved using Newton-Raphson’s method

_s 160

n+l n f '(Sn)
No. Sy f (Sn) f '(Sn) Snat
1 -3.75 -13.5 18.0625 -3.0026
2 -3.0026 | -3.7721 8.5273 -2.5602
3 -2.5602 | -0.9421 4.4624 -2.3491
4 -2.3491 | -0.1658 2.9364 -2.2926
5 -2.2926 | -0.0103 2.5737 -2.2886

-5

6 -2.2886 -5.03x10

Breakaway point as o,= -2.3

Gain at the breakaway point, K 5 -2.3—(-3)||-2.3-0]|-2.3—=(-1+ j)||-2.3=(-1- ) |=4.33

K

-2.2886

-6.2053

-4.1073

-4.3316




1 2.7114 1.7947 1.8926

plw

54

-] J

@ .
¥ 054

-i5)

Other closed-loop poles for K=4.3

1 2.7114 1.7947 1.893
-2.2886 -0.9676 -1.893
1 0.4228 0.8270 0

s =-0.2114+j0.8814

34

Step 5: Draw asymptotes of the root-locus
Angle of asymptotes:

0 :18O°+k3602180i360k
‘ (n—m) 4

0, =45" k=0

0, =135" k =1

0, =225" k =2

0,=315" k=3

Centroid of asymptotes
_ (P+Pp+-P)—(Z+2,+..2,) 0-3-1+j-1—] _ 15
(n—m) 4
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154"
(044 (K=8-154)
J CRossing
PoiNT
0-5J
K=4-331
. ~2:288b
A o . ' -
- b -2 9
-0'5y
~2:5-0-12)/ -
oy 44 / -J .
(K=8 154) - 1094
' (KK=8:154)
S/ ‘54
Steps 6: Determine angles of departure
bJw
34
-14d J
l*:\ NEY n
4 52135
. 26:5¢ N‘ -
3 _2 - 2
g
2
NN y
-3

0, =180° — (135° + 26.56° + 90°) = —71.56° = 288.44°



Step 7: As there are no complex open-loop zeros, angle of arrival need not be computed.

Step 8: Determine points on the root-locus crossing imaginary axis
B(s)=s"+55*+8s* +6s+ K
B(jo) = (jo)* +5(jw)® +8(jo)* +6jo+K = (0* —80? + K) + j(6w —50°)

When imaginary-part is zero, then o = J_r\/g =S= J_rj\/g and when real-part is zero,

2
then K :BX(QJ—(QJ =8.16.
5 5

There are two closed-loop poles on the imaginary axis for any value of K>0.
Additional closed-loop poles

No. | S S Saa K
1 -0.25 -2.9217 -0.9142+0.7969 1.0742
2 -0.50 -2.8804 -0.8098+0.655i 1.5625
3 -0.75 -2.8593 -0.6953+0.5938; 1.7930
4 -1.0 -2.8393 -0.5804+0.6063j 2.0000
5 -1.25 -2.8055 -0.4722+0.6631j 2.3242
6 -1.75 -2.6562 -0.3763+0.7354j 2.8125
7 -2.0 -2.5214 -0.2393+0.8579 4.0

Root Locus

o
™

s " 1.004]  (K=8.154) &

Imag Axis
o
T

ar \ -1.094]  (K=8.154) .

Real Axis



Additional Information from Root-Locus Plot
6. Gain Margin

GM = 20log Rz
K

K is the gain of a feedback system at some point on the root-locus

K is the gain at which the system becomes unstable
7. Transient Characteristics

1

jooy = de, i-5?

PART oF
ROOT LOCUS
1_ 2
Where, f=tan™"~ gC
8. Percentage overshoot
_ ,-nltanp
M, =e
9. Settling time
Lo 4
o,

10. Steady-state error is also related to K.

Example

_de 2 -Jw,fi-g*

of

(10.69)

(10.70)

(10.72)

Problem-1: Draw the root-locus of the feedback system whose open-loop transfer function is given

K (32 +10s +100)

by G(s)H (s) =

JH(s)=1
s* +20s® +100s* +500s +1500 (s)

(@) Determine the value of gain at which the system will be stable and as well have a maximum

overshoot of 5%.
(b) What is the gain margin at this point?

(c) What is the steady-state error for a unit step excitation at the above point?

Solution:



-

tan 5 = =1.0487
(b) InM,
= B =46°
¢ = . 0.690 (10.72)
J1l+tan? g
Jow
5 A
30
20
-0.76+12.4
10 K=261
0 -0
)
20
-30
192.2

b) GM =20log——— =-2.65dB
(b) 96

(c) Position error
. K (s* +10s +100) 100K
K:=lim =

s00' 5% +20s° +100s? +500s+1500 1500
Steady-state error,
1 1 1500
Se (Cx)) = = =
1+ K, 1+100K /1500 1500+100K

S

_ 1500
1500+100 261

=5.4%

Se(0)



UNIT-IV
Frequency Response Analysis
Frequency Response
This is defined as the steady-state response of a system due to a sinusoidal

input.
X(s)—— C6) ——¥(s)
Here,
_C(s) _ N(s)
C()=R(s) " ra)(s+b)(5+0) L)
_ N(s)R(s)
=)= T a5 o (11.2)
Let, r(t)=Asinot, then
R(s)= Szi”’wz (11.3)

Using eq (3) in eq (2),

N(s
C(s)= (s+a)(s +(b)(s+c)...[sziww2} (11.4)
=C(s)= siiaJrsﬁibJrsiic+"'+s+81ja)+s?2ja)
In time domain, eq (5) becomes
c(t)=Ae ™ +Ae ™+ A +..+ Be ' + B,e (11.5)

The term with A terms are decaying components. So, they tend to zero as time tends to infinity.
Then, eq (5) becomes

Cy(t)=Be ' + B,/ (11.6)
Where,
_ A(L)G(S) :i|G(_ja))|ej4G(—jw)
IOy 2 (11.7)
B, = Aa)G.(S) :A. G(ja))|ej4(3(jw)
s+jo |, 2]

Since, |G (jo)|=[G(-jo)| and £G(-jo)=£G(jw)=¢



_A . —j(wt+ A - j(wt+
C(t)=2—j|G(ja))|e i(ot+9) +—_|G(ja))|e‘( t+4) (11.8)

2]
=c(t)=-AlG (jo)e™" {%} (11.9)
= c(t)=AlG(jo)[sin(wt+¢) (11.10)
=c(t)=B(w)sin(at+¢) (11.11)

Where, B(w)=A[G(jo)|

Therefore, the steady-state response of the system for a sinusoidal input of magnitude A and
frequency o is a sinusoidal output with a magnitude B(a)) frequency @ and phase shift ¢ .

The following plots are used in frequency response.

e Polar plot

o Bode plot

e Magnitude versus phase angle plot
Definition of frequency domain specifications

M A

M,

0.707

(i) Resonant peak (M, ): Maximum value of M ( jo) when o is varied from 0 to co.

(if) Resonant frequency (car) : The frequency at which M, occurs

(iii) Cut-off frequency (e, ) : The frequency at which M (je) has a value L tisthe frequency

V2

at which the magnitude is 3dB below its zero frequency value
(iv) Band-width (ca[,) It is the range of frequencies in which the magnitude of a closed-loop

system is = times of M,

V2



(v) Phase cross-over frequency: The frequency at which phase plot crosses -180°

(vi) Gain margin (GM): It is the increase in open-loop gain in dB required to drive the closed-loop
system to the verge of instability

(vii) Gain cross-over frequency: The frequency at which gain or magnitude plot crosses 0dB line

(viii) Phase margin (PM): It is the increase in open-loop phase shift in degree required to
drive the closed-loop system to the verge of instability

Correlation between time and frequency response For a second order system

C 2
(5)_ R (11.12)
R(s) s*+2w,s+a;
Putting S= jo
Cio) _ oy
R(jo) o -0®+ j2w,0
C(jo) 1 (11.13)
N _

G0

Let, u - , then

wn
C(jo) 1
R(jo) _(1—u2)+ j2cu (149
Now,
M (jo)=|M (jo)| M (jo) (11.15)
Where,
. 1
M (jo)=—; :
\/(l‘” ) +(2¢u) (11.16)
9:—tan‘l(£uzj
1-u
Now,
M, 1 (11.17)
20\1-¢°

o, = 0,\[1-2£? (11.18)



wb:wn\/1—2§2+«/4§4—4§2+2 (11.19)

PM =-180° + ¢ (11.20)

Where, ¢ =tan™

2¢
\/~/4g2 +1-2¢°

Advantages
e (Good accuracy

e Possible to test in lab

o Can be used to obtain transfer function that is not possible with analytical techniques

o FEasy to design open-loop transfer function from closed-loop performance in frequency
domain

e Itisvery easy to visualize the effect of disturbance and parameter variations.

Disadvantages
o Applied only to linear systems

o Frequency response for existing system is possible to obtain if the time constant is up to few
minutes

e Time consuming procedure

e Old and back dated method



Bode Plots

Magnitude plot and phase plot on a semi-log paper
Magnitude plot on a semi-log paper

40

20

Magnitude, dB
(=]

-40

10

10" 10
Frequency, rad/s

M =20log | G(jw)H (jw)|dB

Phase plot on a semi-log paper

360

| R

300 -

&
<

na
=]
=

180

Phase,degrees
g
T

100

i ] i

10" 10°
Frequency, rad/s

10



Magnitude versus phase Bode plot Nichols plot

20 T T
15+ :
10+ :
=]
&
=]
2 °
[
o
1]
= . )
_10 - aobl
.15 [ g
20 I | i 1 Sq | I |
0 50 100 150 200 250 300 350

Phase, degrees

Table:Basic frequency response factors

No | Laplace term Frequency response Type of factor
1 K K Constant
2 S jo Derivative factor
3 s 1 jo Integral factor
4 15+l (1+ jor) First order derivative factor
5 1/(ts+1) U1+ jor) First order integral factor
6 | S+2w,5+0) | 0 -0+ 20,0 Second order derivative factor
7 > L > 3 L - Second order integral factor
S+ 26w, S+w, | @) —0° + j2c0,0




Derivative factor: magnitude

M =20log|jw|=20logw dB (12.1)
ZLjow =90° (12.2)
AM =20log @, — 20log e, = 2010922 dB/decade (12.3)
w0,
AM =201log10 = 20 dB/decade (12.4)
AM =20log 2 ~ 6 dB/octave (12.5)
Table: Magnitude variation of a derivative factor for various multiples of the initial
frequency
@,
— 1 2 3 4 5 6 7 8 9 10
!
AM dB 0 6 10 12 14 16 17 18 19 20
40 T :
Dérivative fa'clo;’ : P
) ] SRS I i : S o
20 R ’/. ot
-‘% 10+ o i 7
= : |
ol /T
A0k / . i 20 dB!decad:e |
a : ) sfdafoctavé l
20 .z'l/ i i :'a L fo G et - i )
10 10 10 10°

Frequency, rad/s



Derivative Factor: (phase)

380

280

[}

[=]

(=]
T

Angle, degrees

=

o

[=]
T

100 -

50+

10
Frequency, rad/s

Table 15.3Derivative factor

Frequency, rad/s

0.1 1 10 | 30 | 100

Magnitude, dB -20 0 20 | 30 40

Phase, degrees 90 90 | 90 | 90 90

Integral factor: magnitude

M =20log

i‘ =-20logw dB
Jo
ZLjw =2170°
AM =—-20l0g w, + 20log w, =—20log 22 dB/decade
@,

AM =-20log10 =—-20dB/decade

AM = 20log 2 ~ —6 dB/octave

(12.6)

(12.7)

(12.8)

(12.9)

(12.10)



20

] : -6 dB/octave

10+ - e -20-dB/decade , et

Magnitude
o
T
L

20 - 2 ] : ,

-40 ” i z i \1 h )
10 10 10 10

Frequency, rad/s

Table 12.4Magnitude variation of an integral factor for various multiples of the initial frequency

@,
— 1 2 3 4 5 6 7 8 9 10
2]

AM ,dB | O -6 -10 -12 -14 -16 -17 -18 -19 -20

Integral factor: phase

350 [N AN T I O R

300 - , = = é et 1

250 _—r ; = ; -——

N
[=]
(=]
T
1

Angle, degrees

-
[5,]
(=]
T
1

Frequency, rad/s



Table: Bode magnitude and phase of an integral factor

Frequency, rad/s

01 |1 10 (20 | 100

Magnitude, dB | 20 | 0 -20 | -26 | -40

Phase, degrees | 270 | 270 | 270 | 270 | 270

First-order derivative factor: magnitude
2
M =20log[L+ jor|=20log(1+[wz] dB
For o<<w , M=0 dB
C
For o>>w ,
C

M ~ 20log-2 dB

@

Here, ® =1/t = corner frequency
C

For o>m»
C

AM =20log @, — 20log e, = 20log <2
oy

AM =201log10 = 20 dB/decade

AM =20log 2 ~ 6 dB/octave

(12.11)

(12.12)

(12.13)

(12.14)

(12.15)

Table 12.6Magnitude variation of a first-order derivative factor for various multiples of the corner

,

frequency
0]
— 1 2 3 4 5 6 7 8 9 10
a)C
A dl\g ’ 0 6 10 12 14 16 17 18 19 20
First-order derivative factor: phase
0 = 1+ jor =arctan(wr) (12.16)
0~0 W< We
10
0 = 45° {1+ |ogﬂj ;\]I_V_S<W<10Wc (12.17)

c

0 ~90 ;W > 10w,



Table:Phase angles of a first-order derivative factor around the corner frequency

w
— 1 2 3 4 5 6 7 8 9 10
a)C
0 ,deg | 45 59 66 72 76 80 83 86 88 90
w
> 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
C
0, deg 0 2 4 7 10 14 18 24 31 45

First-order derivative factor For

=1

First-order derivative factor: magnitude (3 dB correction at the corner frequency)

45

Table 15.8Bode magnitude and phase

Frequency, rad/s

01|1 |5 (10|20 100
Magnitude, dB | 0 3 |14(20| 26| 40
Phase, degrees | 0 45 |76 190 | 90 | 90

40

35

Magnitude, dB
M ] L2
=] i =}
T

'y
Cn
|

—
L=
T

10°

Freguency, rad/s

10’

10°




First-order derivative Factor: phase

30 : i T

First order derivative factbr 'tau=ﬁ

Phase

40

30

20

10+

‘0 '..1ate s Bl

1

10

Frequency, rad/s

First-order integral factor: magnitude

=20log _r dB

1/1+[a)r]2

M ~0, W << W,

M =20log

1+ jort

M z—ZOlogE dB, w>>w,
a)C

AM =—-20log @, + 20log w, =—20log 22 dB/decade
o)

AM =-20log 2 ~ —6 dB/octave

(12.18)

(12.19)

(12.20)

(12.21)

Table:Magnitude variation of a first-order integral factor for various multiples of the corner

frequency
o
— 1 2 3 4 5 6 7 8 9 10
a)C
Adl\él’ 0 6| -10| -12| -14| -16| -17| -18 | -19| -20




Table:Phase angles of a first-order integral factor around the corner frequency

o
— 1 2 3 4 5 6 7 8 9 10
a)C

Odeg | 315 301 294 288 284 280 277 274 272 270
o
P 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
C
6deg | 360 358 356 353 350 346 342 336 329 315
First-order integral factor: phase
0=360, w<w /10
6 =360 — 45° (1+ log ﬂj , 0/10<0<10 @
a)C
0 =360 — 45° {1+ |ogﬂj
a)C
6=270, ®>10 o,
Table:Bode magnitude and phase of a first-order integral factor
Frequency, rad/s
00101 |07 |1 7 |10 |20 | 100
Magnitude, dB | 0 0 -2 | -3 |-17 |-20 | -26 | -40
Phase, degrees | 360 | 360 | 322 | 315 | 277 | 270 | 270 | 270

First-order integral factor: magnitude




0 \‘_--\
N ‘t*\\ symptote
5 - - =
First order:integral factor tau=1 \<
il imate \\
151
\
a \
S -20(-
5-25 \\
_30 Juse
\
35 \
\\
\
401
A5 - 0 1 2
10 10 10 10 10
Frequency, rad/s
First-order integral factor: phase
360 .
Approxirmate
350|- . : 4
First orderintegral factor tau=1
340 : 4
Exac
330 -45 degrees/decade )
3320 = 1
3
2 — Approxima;g |
T
300 4
2901 4
280+ fCorner Approximate 4
requendy
270 ; . L
107 10? 10" 10” 10' 10°
Frequency, rad/s
Second-order derivative factor: magnitude
2 2 H
M =20log | w; —o° + j2lww, |
2 2
2
o o (12.22)
2
=20log| oy, || 1-— | +| 20 —
n @,
M = 40logw,, , W << W,
M = 20log (2zw,?),w =W, (12.23)

M =40 logw,w >>w,

For w>>w,



AM = 40log w, — 40log o, = 40log 2 dB/decade (12.24)
o
AM =40log10 = 40 dB/decade (12.25)
AM = 40log 2 ~12 dB/octave (12.26)
Magnitude variation of a second-order derivative factor for various multiples of the resonant
frequency
0]
— 1 2 3 4 5 6 7 8 9 10
a)n
AM dB 0 12 20 24 28 32 34 36 38 40
Second-order derivative factor: phase
202
0=/|w -0’ + j2lown, |=arctan 5 (12.27)
1-2
wn
9=0°, w<th
10
6=90°, w=w, (12.28)
6=180°, w>10w,
Bode magnitude and phase
on=1 rad/s, (=0.3
Frequency, rad/s 0.01 |01 |07 1 3 10 100
Magnitude, dB 0 0 -4 -4 18 40 80
Phase, degrees 0 0 39 90 167 180 | 180




80 T T
70 Second order derivative factor
Resonance frequency=1 radis
Damping factor=0.3 Ap_pr o)gmale
60~ H H
50 |
8
¢ 40 dB/decade |
g H
=
S 30| 4
=
20
10} s
Appro){imale
0 - - frequency ~
g I i T ? i i
10° 107 10' 10° 10' 10

Frequency, rad/s

180 T
Second order derivative factor
160 Resonance frequency =1 rad/s Approximate 2
Damping factor= _0.3
140 4
120 =
3
L1001 5
o
k) BEEL C
[y
8 80f B
o
60~ 5
40+ H
\Approximate
0 : : 3
: /Aprroxim.ate # Resonance Treq"ency
10° 107 10" 10° 10' 10°
Frequency, radfs
Second-order integral factor
1 | 1
M =20log|———— dB =20log
o, —0° + 2o, 22
Q)
o? || 1-— | +] 2¢ —
n 2
, @

~ - 40log @y, O<<m,
M=-20log (2{mn2), ®= oy

M= -40 log o, ®>>wm,

AM =-40log @, + 40log », =—40log “2 4B / decade
@,

(12.29)

(12.30)



AM =-401log10dB =—-40dB

(12.31)
Magnitude variation of a second-order integral factor for various multiples of the resonant frequency
0]
— 1 2 3 4 5 6 7 8 9 10
a)n
A('YIB 0 12 20 24 -28 32 34 36 -38 -40
| 1 % wg
0=2|——F— =360 —arctan 5 (12.32)
|a)n—a) + J2lom, 19"
o
0=0, w<wm,
0=270°, w=o,
0=180°, @>on
Bode magnitude and phase
Frequency, rad/s 001 (01 |07 1 3 10 100
Magnitude, dB 0 0 4 4 -18 -40 | -80
Phase, degrees 360 360 | 321 270 | 193 180 | 180

Magnitude plot



0 i R Exact H
Approximate :
A0k g
201~ gegond.order integral factor B
Resonance frequency=1 rad/s
m Damping factor=0.3
T30 bt 4
@
o
=
= :
g-40- s B
= Approximate
S0l : -40 dBidecade &l
Resonande :
frequency:
B0 o
701 ol
—80_3 i ..Hu‘_z i i\‘uu_1 L “\HHD i “iHH1 i “.‘H.Z
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Frequency, rad/s
Phase plot
360
: Approximate
340 ; : i
Second order integral factor : Lo
320~ Resonance frequency=1 rad/s - . = - 1
Damping factor=0.3 : Approximate
300 fesit : : - , \ ; H H
o \Ex_act :
L
0 280 = i .
o
L
T e 1 o N I e - e -
e
& 260 e
=
[
240 B
220+ H
: : Réesoance 3 :
DO sres e el Lo froguen Sord : 4
180 —— i e ;HmD — .
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Frequency, rad/s
Example 14.1

Draw the Bode magnitude and phase plot of the following open-loop transfer function and determine
gain margin, phase margin and absolute stability?

G(S)H(s):ﬁ

Solution

Applying s= jo,



G(jo)H(jo) ZW

The above frequency response function has two factors: (1) Integral factor and (2) First order integral
factor with a corner frequency of 1 rad/s

Bode magnitude of the transfer function

Frequency, radians/s
0.01 0.1 1 10 100
1 40 20 0 -20 -40
20log—dB
jo
1 0 0 -3 -20 -40
20log - dB
jo+1
Magnitude, dB 40 20 -3 -40 -80

o= 100 rad/s

Frequency, rad/s

0.01 0.1 1 10 100
1
Zj_a) degrees 270 270 270 270 270
VA degrees 360 360 315 270 270
Jo+
Bode phase, degrees 270 270 225 180 180




Magnitude, dB

40

20

Bract  GOWHGW=1/5(s+1) |

. Approximate

fGairé’u FOSS ' T :

i frequency
- 0.Bradis

-20 b

GM+80 dB

-60

-80

-100 ; ; R : - EE
10 10

10" 10
Frequency, rad/s

40 T T !

20 3 : f : : s

A L Gain
pproximate : L
-20 - : - : : margin o8 =2

Magnitude, dB

404"

Exac;:t
_60 R =2
_80' . -

ey e e (s T S

i i | I i i I
180 190 200 210 220 230 240 250 260 270
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Example
Draw the Bode magnitude and phase plot of the following open-loop transfer function and determine

gain margin, phase margin and absolute stability?

1
CEME) = s(s+2)(s+4))
Solution
G(jo)H (jo) = .

8ja)(jw+l)(jw+lj
2 4

The corner frequencies corresponding to first order integral factors are 2 rad/s and 4 rad/s. Minimum
frequency is chosen as 0.01 rad/s and maximum frequency 100 rad/s.

Table 14.1 Computation of Bode magnitude using asymptotic properties of the integral first-order

1

termz =—

2
x1 X2 x1 x10 X2 x1 x1 X2 x1 x10
Frequency, rad/s 2 4 2 20 20 10 20 40 10 100
Magnitude, dB 0 -6 0 -20 -20 -14 -20 -26 -14 -34

Table 14.2 Computation of Bode magnitude using asymptotic properties of the integral first-order

1
termt =—
4
x1 | x10 X2 x1 X2 x1 x1 x10
Frequency, rad/s 4 40 40 20 20 10 10 100
Magnitude, dB 0 -20 -20 -14 -14 -8 -8 -28
Table 12.3 Bode magnitude
Frequency, rad/s
Factor 0.01 0.1 02 |04 |1 2 4 10 |20 |40 100
1 -18 -18 -18 | -18 | -18 | -18 | -18 |-18 | -18 |-18 |-18
20log=
8
1 40 20 14 |8 0 -6 |-12 |-20 | -26 |-32 |-40
20log—
Jo
1 0 0 0 0 -1 |3 |6 |-14 |-20 |-26 |-34
20log —
19
2
1 0 0 0 0 0 -1 |-3 |-8 |-14 |-20 |-28
20log—
1941
4
Bode 22 2 -4 |-10 |-18 |-28 |-39 |-60 |-78 |-96 |-120
magnitude,




dB

Bode magnitude

30

20

Gain crossover

G(s)H(s)=1/s(s+2)(s*

4

. \“EC‘B,UEHCY:O 125 radfs
010 \\
A \ Approximate Gain
%_20 "\ z margin
g 32 dB
5-30 Exaé{
N
-40 \Q\
-50
\
-60
-70 2 o 0 1
10 10 10 10
Frequency, rad/s
Bode phase
Frequency, rad/s
Factor 001 (01 |02 |04 |1 2 4 10 20 |40 100
Ll 0 0 0 0 0 0 0 0 0 0 0
8
y 1 270 270 | 270 | 270 | 270 270 | 270 270 270 | 270 | 270
jo
y 1 360 360 | 360 | 346 | 328 315 | 301 284 270 | 270 | 270
19
2
y 1 360 360 | 360 | 360 | 342 326 | 315 297 285 | 270 | 270
19
4
Phase 270 270 | 270 | 256 | 220 191 | 166 131 105 | 90 90
degrees

Phase plot




Phase, degrees

280

260

2401

220

180 =

160 -

140

120

Phase
margin 85

Gls)H(s)=1/s(s+2)(s+4) el

Exact

Approximate

Phase crosagver
frequency
2.83radls 1

107

10

10
Frequency, rad/s



Bode plot
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Example:
Draw the Bode magnitude and phase plot of the following open-loop transfer function and determine

gain margin, phase margin and absolute stability?

G(s)H(s,):ﬁ

Solution
1
(jo)(jo)(jo+1)

There are two integral factors and an integral first-order term with a corner frequency of 1 rad/s
Bode magnitude

G(jo)H (jw) =

Frequency, rad/s
0.01 0.1 1 10 100
1
20log—dB 40 20 0 -20 -40
jo
1
20log o dB 40 20 0 -20 -40




1
20log - dB 0 0 -3 -20 -40
jo+1
Bode magnitude, dB 80 40 -3 -60 -120

Example
Draw the Bode magnitude and phase plot of the following open-loop transfer function and determine

gain margin, phase margin and absolute stability?

1
G(S)H(S)_s4+553+832+63
Solution
1

GEME) = s(s? +2s+2)(s+3)

. . 1
G(jw)H (jo)=

O (0 + 2(jo) + 2) (o) + 3

1

G(jw)H (jo) = 3

jw@Z—w6+jam+2yy§+n

Comparing the second order term with a standard second order term,

0} -0’ + j2¢wo,

1

o, =~2and{ = —.
n é/ \/E

For the first order integral factor, w.=3 rad/s

For (> 0.5, the response at resonance is less than theresponse at frequencies less than the resonant
frequencies

Table Computation of Bode magnitude using asymptotic properties of the integral second-order term

x1 | x10 x1 X2 x3 | x1 x1 | x10 x3 x1
Frequency, rad/s | 1.4 | 14 14 30 30 | 10 10 | 100 30 3
Magnitude, dB -6 | -46 -46 | -58 58 | 38 -38 | -78 -58 | -18

Table Computation of Bode magnitude using asymptotic properties of the integral first-order term

x1 | x3 X2 x1 X3 x1 x1 x10
Frequency, rad/s | 3 30 30 14 30 10 10 100
Magnitude, dB | 0 -20 -20 -14 -20 -10 -10 -30




Bode magnitude

Frequency, rad/s

Mn ¢

001(01 |014 |03 |1 J2 |3 10 |14 30 100

1 -10 |-10 |-10 -10 | -10 | -10 | -10 | -10 | -10 -10 -10
20log=
3
1 40 20 17 10 |0 -3 | -10 |-20 |-23 -30 -40
20log—
Jo
1 -6 -6 -6 -6 6 |-9 |-18 |-38 |-46 -58 -78
20log —
(2-0%)+j(2w))
1 0 0 0 0 0 -1 -3 -10 | -14 -20 -30
20log
—+1
: 3
Bode magnitude, dB 24 4 1 -6 -16 | -23 | -41 | -78 | -93 -118 -158
40
Exact Gis)H(s)=1/s(s*+25+2)(s+3
1 Gain crossovér l Gain margi“
: | ¢ frequency 0.158 rad/s ‘! 18 dB
B 20 :
[V OROPS WU T T 1 11 5 SN R W 5, U W B 10
-60,
-80 - ¥
100 ; ;i‘;‘;i1 SRS S T 1)
10° 10 10 10

Frequency, rad/s




Bode phase

Frequency, rad/s

On o
0.01 |01 0.14 0.3 1 J2 |3 10 14 30 100
Ll 0 0 0 0 0 0 0 0 0 0 0
3
1 270 | 270 | 270 270 | 270 | 270 |270 | 270 |270 |270 270
Z— degrees
jo
p 1 360 | 360 | 360 343 | 297 | 270 |221 |192 |180 | 180 180
(@-o")+ j(2e))
degrees
360 |360 | 360 360 [336 |330 |315 |291 |285 |270 270
4 , degrees
o)
j—+1
3
Bode phase, degrees | 270 | 270 | 250 253 |183 |150 (86 |33 15 0 0
300
2311 Ar;"”‘imatei G(s)H(s):'l/5(52+és+2)(sf+3)i
250 Exaé/: | i
Phase .o
© margin 71
D00 b
180

Phase, degrees
@
[=)
T

S50

Phase trossove
Frequency 1.09 rag§s

Frequency, rad/s




Nichols plot

40

20L Phase Margin

71°

20+

0L

Magnitude, dB

Exagt

60F Approximate

80

180

Gain Margin

18 dB

1 Il
50 100 150 200
Phase, degrees

Polar Plots

250

300

It is a graphical method of determining stability of feedback control systems by using the polar plot of

their open-loop transfer functions.

Example
Draw a polar plot of the open-loop transfer functionfor
GOH(E) =
s(s+1)
Frequency response
G(jo)H(jo)=———
(Jo)H (jo) io(ioD)
Magnitude
. K
G(jo)H (0)|=—F——
| | o1+ o
Angle

LG(jw)H(ja))z—Z—tan‘la)

270° < £G(jw)H (jo) <180°

Magnitude and phaseof the open-loopfrequency transfer function

(14.33)

(14.34)

(14.35)

(14.36)

(14.37)

No. Frequency, Magnitude Phase,
rad/s degrees
1 0 0 270




Polar plot of the transfer function

Example

180

w=0.2

2 0.2 4.9029 259
3 0.4 2.3212 248
4 0.8 0.9761 231
5 1 0.7071 225
6 4 0.0606 194
7 10 0.01 186
8 50 0.0004 181
9 100 0.0001 181
10 200 =0 ~180
s(s+1) and K=1

Draw a polar plot of the open-loop transfer functionfor K=1, 10, 25, 55

K

T S(s+2)(5+4)

Solution

Frequency response

G(jo)H (jo) =

K

jo(jo+2)(jo+4)




Magnitude

. . K
G(jo)H (jo)|=
| | oN? +4Jw? +16
Angle
. . T (0} w
/G H =—"—tan?t —tan?
(jo)H (jo) ) ) 4

The lies in Il and 111 quadrants as 90° < ZG(jo)H (jo) < 270°
Magnitude and phase of the open-loop frequencytransfer function (K=1)

No. | Frequency, | Magnitude | Phase,
rad/s degrees

1 0.1 1.2481 266

2 0.2 0.6211 261

4 0.4 0.3049 253

5 0.8 0.1423 237

6 1 0.1085 229

7 4 0.0099 162

8 10 0.0009 123

9 50 0 97

Polar plot of the transfer function GH :m for K=1, 10, 25, 55

Example

Draw a polar plot of the open-loop transfer function G(s)H (s) =

K
s?(s+1)




Solution
Frequency response

K

G(jo)H (jo) =

Magnitude

G(j@)H (jo) = ————

o \No
Angle

2

+1

(i)’ (jo+1)

£G(jo)H (jo) =-180° —tan "
The lies in Il quadrant only as 90° < /G (jw)H (jow) <180°
Magnitude and phase of the open-loop frequency transfer function (K=1)

No | TTERAE | masnitude | GO
1 0.4 5.803 158
2 0.5 3.5777 153
4 0.8 1.2201 141
5 1 0.7071 135
6 2 0.1118 117
7 3 0.0351 108
8 4 0.0152 104
9 5 0.0078 101

Polar plot of the transfer function GH =

s(s+2)(s+4)

for K=1, 10, 25, 55




180

270



Nyquist plot
Definition
Nyquist criterion is a graphical method of determining stability of feedback control systems
by using the Nyquist plot of their open-loop transfer functions.

Theory
Feedback transfer function

C(s)_  G(s)
R(s) 1+G(s)H(s)

(14.1)

Poles and zeros of theopen-loop transfer function

K(s—2)(s—2,)..(52 )
G(s)H = 14.2
B )= e p 5= p)(s— o) (142

L G H (s) - S PIE = P2) (5= Py) +K(S=2)(5=25). (5 2,) 143
(5= P(s= P2 (5~ Py)

Number of closed-loop poles - Number of zeros of 1+GH = N umber of open-loop poles

(s—2)(s-2,)(5-7)

1+G(s)H(s) = (14.9)
(5= P)(S—P2)-(S—Py)
2,2, ...z, = zeros of 1+G(s)H(s)
These are also poles of the close-loop transfer function
Magnitude
‘s— zcle -7, ...‘s— Z,
1+G(s)H (s)|= 2 " (14.5)
(s=p)l(s=py)|-|(s=p,)].
Angle
£8—-17,/45-1, /S—1,
Z1+G(s)H(s) = : : (14.6)

Z(s=p)4(s—p2)4(s—p,)

The s-plane to 1+GH plane mappingphase angle of the 1+G(s)H(s) vector, corresponding to a point on
the s-plane is the difference between the sum of the phase of all vectors drawn from zeros of
1+GH(close loop poles) and open loops on the s plane. If this point s is moved along a closed contour
enclosing any or all of theabove zeros and poles, only the phase of the vector of each of the enclosed
zeros or open-loop poles will change by 360°. The directionwill be in the same sense of the contour
enclosing zeros and in the opposite sense for the contour enclosing open-loop poles.



A-plane

Principle of argument

ll’m

<

S

Im
‘P i+GH plane

H+GH

&
k., b, Poles of
I+GH
;', 5{1 : g,eroes of
I+ GH
1+GH plane
Re
{+GH vector
Im
[y GH Plane
_.i -
o
i+GH Re
GH

When a closed contour in the s-plane encloses a certain number of poles and zeros of 1+G(s)H(s) in
the clockwise direction, the number ofencirclements of the origin by the corresponding contour in the

G(s)H(s)plane will encircle the point (-1,0) a number of times given by thedifference between the
number of its zeros and poles of 1+G(s)H(s) it enclosed on the s-plane.



joo

GH from the polar plot

Magnitude zero since n >m

-joo

N
M

GH from the mirror image of the
polar plot

Modified contour on the s-plane forchecking the existence of closed-looppoles

s=gelf

Magnitude of GH remains the same alongthe contourPhase of g changes from 270 to 90 degrees
Gain Margin and Phase Margin

Phase crossover frequency
, is the frequency at which the open-loop transfer function has a phase of

180°. The gain crossover frequency @, is the frequency at whichthe open-loop transfer function has a

unit gain

Gain margin

Phase margin

Jw

Jo

A- plane

>
s\/>
@

-

-Joe

m

M =-20l0g|G(je,)H(jo,)|

y = £G(jo,)H(jo,)-180°




A m

GH PLANE

UNIT

e —

CIRCLE

‘-\ . .
w:0| Glw) Hw)
STABLE

(b)
AIm  GHPLANE

UNIT CIRCLE

W

. F
|GCwop) Bieon)
W20 f Gliw) Hiw)

UNSTABLE

Procedure

(1) Locate open-loop poles on the s-plane

(2) Draw the closed contour and avoid open-loop poles on the imaginary axis

(3) Count the number of open-loop poles enclosed in the above contour of step 2, say P

(4) Plot G(jo)H(jw) and its reflection on the GH plane and map part of the small semi-circle
detour on the s-plane around poles (if any) on the imaginary axis.

(5) Once the entire s-plane contour is mapped on to the GH plane, count the number of
encirclements of the point (-1,0) and its direction. Clockwise encirclement is considered
positive, say N.

(6) The number of closed-loop poles in the right-half s-plane is given by Z=N+P. if Z >0, the
system is unstable.

(7) Determine gain margin, phase margin, and critical value of open-loop gain.



Example
Using Nyquist criterion, determine the stability of a feedback systemwhose open-loop transfer
function is given by

GEH(s) = s(sK+1)

Solution

Step 1Locate open-loop poles on the s-plane. Open-loop poles are at s=0 and —1. Let K=1

Step 2 Draw the closed contour on the s-plane to check the existenceof closed-loop poles in the right-
half s-plane.

Open-loop poles and s-plane contour

Jew
A-plare
J2002
M 28, -
-1 Joaff o2 ™ E o
~j206
F
G(jo)H (@) =—~—
oNl+ o
£G(jw)H (jo) =—’2[ —tan o
No. | Frequency, Magnitude Phase, B, GH plane,
rad/s degrees |, s-plane, deg|deg
1 0.2 Positive 4.9029 259 270 101
frequencies
2 0.4 2.3212 248 280 91
3 0.8 0.9761 231 290 80
4 1 0.7071 225 300 69
5 4 0.0606 194 310 58
6 10 0.01 186 320 46
7 50 0.0004 181 330 35
8 100 0.0001 181 340 23




9 200 0 180 350 12
10 -200 Negative 0 180 0 0
frequencies

11 -100 0.0001 179 10 348
12 -50 0.0004 179 20 337
13 -10 0.01 174 30 325
14 -4 0.0606 166 40 314
15 -1 0.7071 135 50 302
16 -0.8 0.9761 129 60 291
17 -0.4 2.3212 112 70 280
18 -0.2 4.9029 101 80 269

.f‘r‘_a'ﬁs,fer
functicr.
Wsts+y 70 AT

The above system is stable. Here, phase crossover frequency is very large (infinity) and gain
crossover frequency 0.786 rad/s. Phase angle corresponding to gain crossover frequency= 232%nd

Phase margin is 52°

Example
Using Nyquist criterion, determine the stability of a feedback systemwhose open-loop transfer
function is given by

G(S) H (5) = L

s(s+2)(s+4)

Solution

Step 1Locate open-loop poles on the s-plane. Open-loop poles are at s=0, -2 and —4. Let K=1

Step 2 Draw the closed contour on the s-plane to check the existenceof closed-loop poles in the right-
half s-plane.

Open-loop poles and s-plane contour



Ja

4-plane

F

The number of open-loop pole enclosed, P is zero

. . K
G(jo)H (jo)|=—— -
a)\/ o+ 4\/ o”+16
/G(jo)H (jo)=—" —tan™! @ _tant®
2 4
No. Phase, [B, s-plane,
Frequency Magnitude | degrees |deg
1 1.5 | Positive 3.4332 213 270
frequencies

2 2 2.1741 198 280
3 2.5 1.4568 187 290
4 2.83 1.1446 180 300,
5 3 1.017 177 310
6 3.5 0.7334 169 320
7 4.5 0.4122 156 330,
8 5 0.319 150 340
9 55 0.2513 146 350,
10 6 0.201 142 0

11 7 0.1339 136 10

12 8 0.0932 131 20

13 9 0.0673 126 30

14 9 Negative 0.0673 234 | 40

frequencies
15 8 0.0932 229 | 50
16 7 0.1339 224 60




17 6 0.201 218 70
18 55 0.2513 214 80
19 5 0.319 210 90
20 45 0.4122 204 0
21 35 0.7334 191 | 343
22 3 1.017 183 | 326
23 2.83 1.1446 180 | 309
24 25 1.4568 173 | 292
25 2 21741 162 | 276
26 15 3.4332 147 | 259
80
GH -
Plane
GH=55/s(s+2)(s+4)
wzf 18
180
270
Here, Z=N+P=2.

Hence, the above system is unstable.

Again,

Phase crossover frequency 2.83 rad/s

The gain at which the system becomes marginally stable, K* =55/1.1446 = 48

Gain margin

M =-20log|G(jo,)H (jo,)|
=—20log|1.1446| = -1.17dB

Gain crossover frequency =3 rad/s and the corresponding angle of GH=177"
Phase margin:l77—180:-30




Controllers

Basic Control Action and response of Control systems
An automatic controller compares the actual value of the plant output with the reference input
(desired value), determines the deviation, and produces a control signal that will reduce the de-
viation to zero or to a small value. The manner in which the automatic controller produces the
control signal is called the control action. Fig.1 is a block diagram of an industrial control
system, which consists of an automatic controller, an actuator, a plant and a sensor (measuring
element). The controller detects the actuating error signal, which is usually at a low power level,
and amplifies it to a sufficiently high level. The output of the controller is fed to an actuator
such as pneumatic motor or valve, hydraulic motor or electric motor. The actuator is the device
that produces the input to the plant according to the control signal so that the output signal will
approach the reference input signal.

The sensor or measuring element is device that converts the output variable into another suitable
variable such as a displacement, pressure or voltage that can be used to compare the output to
the reference input signal. This element is in the feedback path of the closed-loop system. The
set point of the controller must be converted to a reference input with the same units as feedback
signal from sensor.

Error Detector

Ref I/P é Amplifier Actuator Plant Output

Sensor |4

Fig.16.1. Basic Control Action and response of Control systems



CONTROLLERS
(i) P-controller
(ii) Pl-controller
(iii) PD-controller
(iv) PID-controller

P-controller
u
E(s) Kp (s)
(a)
R
AVAYAY
R1
p—yy >_. .
+
(b)
Fig.16.5

Control system with P-controller with inertia load

Controller Plant C( )

R(s) + 1 s

— ) Kp e i ﬁ i
Fig.16.6

For this system, closed-loop response is



KP

T2 K K
C(S): Js =— P — - p - (161)
R(s) Ky J°+K, J(s*+w))
1+ P
Js
C(s) K R(s) (16.2)
3 = .
J(s* +@?)
. 1
For step-input, R(s)= S
Step response becomes
c(t)=1-cosm,t (16.3)
K
Where, o, = T’)

i

Normalized response 1-5in @ _t

°

Solved problem

1. Consider the unity feedback system of Fig. 16.8. Let K,=20 and J=50. Determine the equation of
response for a unit step input and determine the steady-state error.

Controller Plant
R(s) _+ K 1 |
— () P ™ 32




Fig.16.8

Solution
Ke.

C(s) _ s _ Ky
R(s) 1+& Js* +K,
Js?

C(s) _ K,

R(S) J(s"+a?)

K
W, = |2 =\/Zrad/s
J 5

Kp
Jo?

n

c(t):(l—cos\EtJ
se(t)zl—(l—cos\Fthcos\Ft
5 5

2. Find the step response of the system shown inFig.16.9.

c(t) =

(1-cosw,t)

Controller Plant

R(s) , Ei® K. Mo 1 Ci(s)
»

Fig.16.9

Solution

K
Glz_F’

s+1



E(s) 1  s+1
R(s) 1+G,(s) s+2

1 s+1
=EO 1+G,(s) ) S+2

R(s)

Step response is

s+1
s(s+2)

= E/(s)=

U,(s) ~ Kp(S—i-l)
R(s) (s+2)

Ci(s) _ 1 _ 1
R(s) s+1+K, s+2

e(t)= %(1+ g2t )

)= (1-¢ 2]

0.8

Pave - . — - s
& Proportional controller

5,

e(t)

04

02

Integral controller

Fig.16.10

I-controller



Plant

RO 2. K Fé') S
AN s+ 1

s

()
Cz
[
R1
& —AM >_. o
+
(b)
Fig.16.11
G, =N
s(s+1)
E,(s) 1 1 _s(s+1)
R(s) 1+G,(5) ¢, K s*+s+1
s(s+1)
U,(s) K (s+1)
R(s) s?+s+1
C,(s) 1 B 1
R(s) s°+5+K, s2+s+1

\@1\@}

e, (t)=e " cos—t+——sin—t

C,(t) =1-e™ {isin %Hcos?t}

V3



08

Plant input

Proportional controller

Integral controller

0.4

L L 1 L
0 1 2 8 4 5
Time sec

Fig.16.12

PD-controller

EO_| Kk

U(s)

(@)
R>
—AM—
R1
[
|
cC =
(b)
Fig.16.13

Control system with P-controller with inertia load

R(s) +
R

Controller Plant
1
K p( 1+ 1:1 ) - I

C(s)

Fig.16.14



For this system, closed-loop response is

K, @+T,s)
= =— = .
R(s) 1 Kp(l+2TdS) Js*+ K, (L+T;s) P SerKpTd s+&
Js J
K, (1+T,s)
=C(s)= R(s) (16.5)
, KT K,
J| s+ S+—~
J J
. 1
For step-input, R(s)=
s
Step response becomes
c(t) = At {leg‘"nt [cosa)t+ 5 _sinw,t
Il d 1_2 d
n Vi-¢
(16.6)

K,T
+Ld{ ! }e‘g“’“‘sin(a)n 1—g2)t

‘]a)n \ll—gz

K
Where, @, =,[—>

J
Solved problem

3. Consider the unity feedback system of Figure 3. Let K,=20 and J=50. Determine the equation of
response for a unit step input and determine the steady-state error. Here, Kp =20, T =1 and J=50.

Controller Plant
R(s) + 1~ | Cs)
" ) Kp(1+1&5)——- E
Fig.16.14
Solution
C(s)  20(s+1) 20(1+5)

R(s) 50s2+20s+20 50(s2+2(w,s+m?)



K 5
c(t) =—"541-e"| cos o t + sinw, t
\] a)n ) [1_ gz
KT 1
pd —gopt o ( 2
++ —— e sin|w,\/1-¢ ) t
Jo {ﬂ—gz} n
K
c() = p2 =1
Jo;
Transient characteristic Only PD control .
No system damping
Maximum overshoot, % 35'09.
unsatisfactory

Rise time t,, sec 3.15

Peak time t,, sec 5.24

Settling time t;, sec (5% criterion) 15
Pl-controller

K; U(s)
E(s) Ko+
(@)
1/Cys
2 R,

€; W\/ >

(b)
Fig.16.15

Control system with PI-controller with inertia load

€,




Controller Plant. C
R(S)+ E(s) Kp"‘ﬁ ue 1 (s)

4 s s+1
Fig.16.16
For this system, closed-loop response is
. sK, +K.
G=|K +5 1S *h (16.7)
s Js+1)  s(s+1)
E@)z 1 __ s(s+1) (16.8)
R(s) 1+G,(s) s"+s(l+K,)+K,
s+1(sK, + K.
U(s) _ (2 JEK, +K) ) (16.9)
R(s) s +s(l+K,)+K
sK_ + K.
Cs)_ (GK;+K) ! (16.10)

R(s) s +s(+K,)+K, (s+1)
Step response

u(t) =1

et)=e™

o(t) = (1—e_t)

Proportional controller

e(f)=s (1)

Integral controller

Proportional+integral controller

L L | L
0 1 2 a 4 5 6 7 a 9 10
Time sec

Fig.16.17



T T T T
1.2}
Proplollionahintegral controller

e —

Integral controller

Proportional controller

Fig.16.18

Integral controller

Proportional+integral controller

o8t

o-loop response

Proportional controller

Clos:

0.4

Fig.16.19

PID-controller

K, U(s
&- K+de+ SI —-—(-2

€;

2

/

:
&

1Cis — .

®)
Fig.16.20



Here, transfer function of PID-controller,

Where,

Tuning of PID-controller
A. First Method (Ziegler and Nichols)

The Setup for obtaining system parameters for PID tuning

c(t)
— Plant b
Unit step input  Output
Fig.16.21
C(s) Ke™
U(s) 1+Ts
Ke—LS
C(s) = U(s
®) 1+Ts ®)

(16.11)

(16.12)

(16.13)

(16.14)

(16.15)



<(t) ‘

Tang!rjt to t!\e
lnﬂect}r‘n point
K /
1
I
I
I
|
Inflection |
point |
/A |
/ l
! -
Time
— L T
Fig.16.22
Ziegler-Nichols tuning rules based on step response
Type of controller Ko Ki Kg
P T 0 0
L
PI 0.9T L 0
L 0.3
PID 2L 0.5L
1.2 I
L
G =K |1 ! T
(8) =K, |1+ T,_s +14S
= L2r 1+ 1 +0.5Ls
L 2Ls
()
S+ L
G,(s)=0.6T~——~
S
Ziegler-Nichols tuning rule based on critical gain K, and critical period Pg,.
Type of controller Ko Ki Ky
P 0.5 Ker 0 0
Pl 0.45 K, 1/1.2 Py 0
PID 0.6 Ker 1/0.5P¢, 0.125 P




Where, K proportional constant of a switched-off integral and derivative controls at which sustained
oscillations of period P occur.

Second Method

Gc(s)zKp[1+%+Tdsj

(16.16)
1

P.s

cr

2
4
S+——
PCF
AN VA (16.17)
S

=0.6K,, [1+ +O'125PcrsJ

G, (s) = 0.075K

crcr



Sampled Question Sets
SET-I

CONTROL SYSTEM ENGINEERING-I

Time:-3Hrs Full Marks:70

Answer Question no.1 and any five questions from the rest.
Answer all parts of question at one place only
The figures in right hand margin indicate marks.
(Semi log graph papers are allowed)
1 Answer all the following questions briefly (Compulsory) [2x10]

(a)Distinguish between regulator and servo-control problem in control system study.
(b)Sketch the underdamped time response of a typical second order feedback control system subjected

to a unit step input. State the time domain performance indices.

(c)Prove that a Type-1 system has no steady state error for step input while the steady state error for
ramp input decreases for increase of Velocity error Constant(K,).

(d)Give the equation of intersect of asymptotes in root locus plot.
(e) What is system type number? Explain the practical significance of this number.

28

[yaEmT 2

(f)Show that the Phase Margin=tan where & is the damping ratio of the standard second

order system.

(g)List the advantages and disadvantages of carrying frequency analysis with Nyquist plot.
(h) State the Zeigler-Nichols tuning Rules for PID Controller.

(i) Give all the properties of a minimum phase transfer function.

(1)Explain with sketch the use of drag cup rotor in servo application.

2(a) The Block diagram of a feedback control system is given below. The output
Y(s)=C(s)R(s)+D(s)W(s). Find the transfer functions C(s) and D(s). [5]




(b)Describe the construction and working of a two phase motor suitable for use in AC servo systems.

[5]
3(a)Show that high loop gain in feedback control system results in
(i)good steady state tracking accuracy (ii)low sensitivity to process parameter variations
(iii)good disturbance signal rejection (iv)good relative stability
What are the factors limiting the gain? [6]
(b)Explain drawing a neat diagram, the principle of operation of a position servo using a synchro
system as error transducer. [4]

4.The peak overshoot (%M,) in a unit feedback control system is specified to be within 20% to 40%
range.

(a)Sketch the area in the s-plane in which dominant roots of the systems characteristic equation must
lie. This system has a settling time t=0.85 sec. [4]

(b)Determine the smallest value of third root such that dominance of the complex roots corresponding
to part (a) is preserved. Further, Determine the open loop transfer function of the system if M, =50%

[6]

5.(a)State the merits and demerits of using static error coefficients. The open loop transfer function in
10(1+s) .
s2(5s+6)’
using generalized error constants when subjected to an input signal given by r(t)=1+4t+3t% [5]

a unity feedback control system, is given by G(s)= Find the steady state error of the system

(b) )In a unity feedback control system, the open loop transfer function is given by

G(s)ZL ; Using Routh Hurwitz Criterion, determine the range of K for which the given
s(s+2)(s2+3)

system is stable. [5]
. L _ 20(1+Ks) |

6.(a) The Open loop transfer function of a control system is given as G(s)H(s)= SGrD (s

Sketch the Root Locus. Determine the value of K such that damping ratio(&) is 0.4. [7]

(b) State the use of Nichol’s Chart. [3]

7.Using Bode Plot, determine gain crossover frequency, phase crossover frequency, gain margin and
phase margin in a unity feedback control system, where, the open loop transfer function is given by

_20(0.2s+1)e™ 018
G(s)= s(0.5s+1) [10]

(10s+50) |
s2(s+3) '’

8. (a)A unity feedback system has open loop transfer function G(s) =



CONTROL SYSTEM ENGINEERING(1C323)

Time:-3Hrs Full
Marks:70

Answer Question no.1 and any five questions from the rest.
Answer all parts of question at one place only
The figures in right hand margin indicate marks.

(Semi log graph papers are allowed)

1. Answer all the following questions briefly (Compulsory) [2x10]
(a)What are the constraints in developing the transfer function of a device a part of larger system?

(b)The transfer function of a control system is T(s)=K/[S*+4S+K]; Find K if the system is critically
damped.

(c) What are the steady state errors of a Type-3 unity feedback system subjected to step input, ramp
input and parabolic input?

(d)Explain what do you mean by Root Contours.

10
(e) The magnitude of frequency response of a second order system is 5 at 0 rad/sec and peaks to ﬁ

at 5+/2 rad/ sec. Determine the transfer function of this underdamped system.

(f)Show that the bandwidth(wy)=c, J [(1 —28%) +,/4E* — 482 + 2 ]| where & is the damping ratio

and o, is the natural frequency of the standard second order system.

(g) Sketch the constant gain loci for the unity feedback system whose feed forward transfer function is

G(s)

T S(S+))
(h) Show that high loop gain in feedback control system results in good steady-state tracking accuracy
(i) State the use of Nichol’s Chart.

(j) State the merits and demerits of Pl Controller

2(a) Obtain the signal flow graph representation for a system represented by a block diagram as
shown below and determine the overall gain G(s):g; [5]



(b)Explain giving a schematic diagram how a synchro pair would be embodied in an AC position
control system. [5]

3(a)In a negative feedback control system, calculate separately, the sensitivity of the system transfer
function at s= jo=j1.6 rad/sec with respect to

60

(i)the forward path transfer function G(s) where G(s):S G 10)

(ii)feedback path transfer function H(s) where H(s)=0.8 [5]

(b)Describe in detail along with a schematic diagram, a typical position control system employing an
armature controlled DC Motor with a fixed field separately excited system. Derive the transfer
function. [5]

4.(a)What is system type number? Explain the practical significance of this number. [2]

(b) In a unit feedback control system, the open loop transfer function is given by G(s)=

s(cs+1)

By what factor should the amplifier gain k be multiplied so that the damping ratio(&) is enhanced
from 0.35 to 0.95. [8]

5(a)In a unit feedback control system, the open loop transfer function is given by

_ 109 e . -
G(s)——Sz G0 rei10) Find the static error coefficients (K,, K, and Ka) and the steady state error of

the system when subjected to an input signal given by r(t)=10+20t+30t". [5]

(b) )In a unit feedback control system, the open loop transfer function is given by

G(s)zé ; Using Routh Hurwitz Criterion, determine the range of K for which the given
s(s+2)(s2+s+2)
system is stable. [5]

K

6. (a)The Open loop transfer function of a control system is given as G(s)H(s)= m;

Sketch the Root Locus. [6]



(b)Given the open loop frequency response G(jo) = U+jV;

Obtain the radii and center locations of constant M and N circles [4]

7(a)Define minimum phase, non-minimum phase and All pass system. [2]

(b)Draw the Bode Plot of the open loop transfer function of a feedback system given by

10(s+3)
s(s+2)(s2+s+2)

G(s)H(s)= ; Also determine the system Stability. [8]

8(a)A unity feedback system has open loop transfer function G(s) :% ;

Use Nyquist criterion to determine if the system is stable in the closed loop configuration.[7]

(b)Describe two tuning methods, one based on ultimate gain and the other based on process reaction
curve. [3]

SET-I
Time:-3Hrs Full Marks:70
Answer Question no.1 and any five questions from the rest.
The figures in right hand margin indicate marks.

(Semi log graph papers are allowed)

1.Answer all the following questions briefly (Compulsory) [2x10]

(a)Sketch the underdamped time response of a typical second order feedback control system
subjected to a unit step input. State the time domain performance indices.

(b)The transfer function of a control system is T(s)=K/[S?+4S5+K]; Find K if the system is critically
damped.

(c)Prove that a Type-1 system has no steady state error for step input while the steady state error
for ramp input decreases for increase of Velocity Error Constant (K,).

(d)Give the equation of intersect of asymptotes in root locus plot.

(e)Explain what do you mean by Root Contours.

28
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(f)Show that the Phase Margin=tan™ where ¢ is the damping ratio of the standard

second order system.



(g)List the advantages and disadvantages of carrying frequency analysis with Nyquist plot.
(h) State the Zeigler-Nichols tuning Rules for PID Controller.
(i) Give all the properties of a minimum phase transfer function.

())Explain with sketch the use of drag cup rotor in servo application.

2(a)Obtain the signal flow graph representation for a system represented by a block diagram as

. . C
shown below and determine the overall gain G(s)= = [6]
N~ 1
g ol B |
e D
’/\A’. AN I | e .
Y Y s ] = \/)) ]

(b)Describe the construction and working of a two phase motor suitable for use in AC servo systems.

(4]

3(a)Show that high loop gain in feedback control system results in

(i)good steady state tracking accuracy (ii)low sensitivity to process parameter variations
(iif)good disturbance signal rejection (iv)good relative stability

What are the factors limiting the gain? [5]

(b)Explain drawing a neat diagram, the principle of operation of a position servo using a synchro
system as error transducer. [5]

4.The peak overshoot (%M,) in a unit feedback control system is specified to be within 20% to 40%
range.

(a)Sketch the area in the s-plane in which dominant roots of the systems characteristic equation
must lie. This system has a settling time t,=0.85 sec. [4]

(b)Determine the smallest value of 3 root such that dominance of the complex roots
corresponding to part (a) is preserved. Further, Determine the open loop transfer function of the
system if M,=50% [6]

5.(a)State the merits and demerits of using static error coefficients. The open loop transfer function

120(1+S) ; Find the steady state error of the
s2(5s+6)

system using generalized error constants when subjected to an input signal given by r(t)=1+4t+3t>,

(5]

in a unity feedback control system, is given by G(s)=



(b)In a unity feedback control system, the open loop transfer function is given by G(s)= X

s(s+2)(s2+3) ;
Using Routh Hurwitz Criterion, determine the range of K for which the given system is stable.
(5]
. - _ 20(1+Ks) |
6.(a) The Open loop transfer function of a control system is given as G(s)H(s)= SO ts)
Sketch the Root Locus. Determine the value of K such that damping ratio(€) is 0.4. [8]
(b) State the use of Nichol's Chart. [2]

7.Using Bode Plot, determine gain crossover frequency, phase crossover frequency, gain margin and

phase margin in a unity feedback control system, where, the open loop transfer function is given by
20(0.2s+1)e~01s

G(S): s(0.5s+1) [10]
8. A unity feedback system has open loop transfer function G(s) = % ; Use Nyquist criterion to
determine if the system is stable in the closed loop configuration. [10]
Set-1V
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A.The figures in the right hand margin indicate marks Answer any four including Question No.1
B.The symbols carry usual meaning

1. Answer the following questions (Compulsory) [5x1]
Y(s S+3

(@ If (5) =—

U(s) s“+3s+2

(b) Experimental measurements yield aplot of the magnitude of the frequency response function with a

resonance peak 1.35 atafrequency of 10rad/sec.

obtain the SFG representation of this transfer function.

(a)Estimate & and , of the dominating system poles

(c)Draw the schematic diagram of a DC closed loop position control system consisting of
(1) a pair of Potentiometers (INAmplifier  (ll)Armature controlled DC Servomotor
(IV)Gear Train as major component and explain the operation of this system

(d) .The open loop transfer function of a unity feedback control system is given by
G(s)=K/[(s+2)(s+4)(s’+6s+25)]; By applying Routh-Hurwitz criterion determine the range of K for
which the closed loop system will be stable:

(e)Draw the polar plot for the transfer function of the system G(s)H(s)=10/[s(s+1)?].



2(a)Consider a -ve unity feedback system with following OLTF. Obtain peak overshoot, damped

frequency of oscillation, settling time on 2% tolerance band and response of the system to unit

step input.
__ 0.4s+1
G(S) ~ s(s+0.6)

(b)The OLTF of a system is G(s)H(s)=100/[s(s+100)]. (i)Obtain Static and Dynamic error Constants.
(i)If the input is r(t)=A+Bt+Ct’, obtain the steady state error and the dynamic error.
[3+2]

3.Sketch the complete Bode plot of the unity feedback system whose open loop frequency function

10
; Determine the GM, PM and open loop gain for a GM of 20db. [5]
5(0.1s +1)(0.05s +1)
. K 1
4.Given the G(s)= (s+1) , and H(s)=(s+4)~. Sketch the root locus of the system.
S(S+

(i)Determine the value of K for which the system is at the verge of instability

(i))For the damping ratio 0.34, determine the value of K and the GM. [5]

5.(@) Show that the bandwidth of a linear standard second order control system = w,

\/[(1 —26%) + |4¢* — 4€ +2 ] where € is the damping ratio and wy, is the natural frequency of
system. What will be the resonant peak for the system whose transfer function is 5/(s?+2s+5)

(b)Determine the critical value of K for stability of a unity feedback system with loop transfer
function(S)=K/(S-1) using Nyquist stability criterion. [3+2]



