
UNIT-I

1. Basic Concept of Control System 
Control Engineering is concerned with techniques that are used to solve the following six 
problems in the most efficient manner possible. 

(a)The identification problem :to measure the variables and convert data for analysis. 

(b)The representation problem:to describe a system by an analytical form or mathematical model 

(c)The solution problem:to determine the above system model response. 

(d)The stability problem:general qualitative analysis of the system 

(e)The design problem: modification of an existing system or develop a new one 

(f)The optimization problem: from a variety of design to choose the best. 

The two basic approaches to solve these six problems are conventional and modern approach. The 
electrical oriented conventional approach is based on complex function theory.  The modern 
approach has mechanical orientation and based on the state variable theory.   

Therefore, control engineering is not limited to any engineering discipline but is equally 
applicable to aeronautical, chemical, mechanical, environmental, civil and electrical engineering. 
For example, a control system often includes electrical, mechanical and chemical components. 
Furthermore, as the understanding of the dynamics of business, social and political systems 
increases; the ability to control these systems will also increase. 

1.1. Basic terminologies in control system 

System: A combination or arrangement of a number of different physical components to form 
a whole unit such that that combining unit performs to achieve a certain goal. 

Control: The action to command, direct or regulate a system. 

Plant or process: The part or component of a system that is required to be controlled. 

Input: It is the signal or excitation supplied to a control system. 

Output: It is the actual response obtained from the control system. 

Controller: The part or component of a system that controls the plant. 

Disturbances: The signal that has adverse effect on the performance of a control system. 

Control system: A system that can command, direct or regulate itself or another system to 
achieve a certain goal. 

Automation: The control of a process by automatic means 

Control System: An interconnection of components forming a system configuration that will 
provide a desired response. 

Actuator: It is the device that causes the process to provide the output. It is the device 
that provides the motive power to the process. 



Design: The process of conceiving or inventing the forms, parts, and details of system to 
achieve a specified purpose. 
Simulation: A model of a system that is used to investigate the behavior of a system by 
utilizing actual input signals. 

Optimization: The adjustment of the parameters to achieve the most favorable or 
advantageous design. 

Feedback Signal: A measure of the output of the system used for feedback to control 
the system. 

Negative feedback: The output signal is feedback so that it subtracts from the input signal. 

Block diagrams: Unidirectional, operational blocks that represent the transfer functions of 
the elements of the system. 

Signal Flow Graph (SFG): A diagram that consists of nodes connected by several directed 
branches and that is a graphical representation of a set of linear relations. 

Specifications: Statements that explicitly state what the device or product is to be and to 
do. It is also defined as a set of prescribed performance criteria. 

Open-loop control system: A system that utilizes a device to control the process 
without using feedback. Thus the output has no effect upon the signal to the process. 

Closed-loop feedback control system: A system that uses a measurement of the output and 
compares it with the desired output. 

Regulator: The control system where the desired values of the controlled outputs are more 
or less fixed and the main problem is to reject disturbance effects.  

Servo system: The control system where the outputs are mechanical quantities like 
acceleration, velocity or position. 

Stability: It is a notion that describes whether the system will be able to follow the input 
command. In a non-rigorous sense, a system is said to be unstable if its output is out of 
control or increases without bound. 

Multivariable Control System: A system with more than one input variable or more 
than one output variable. 

Trade-off: The result of making a judgment about how much compromise must be 
made between conflicting criteria. 

1.2. Classification 
1.2.1. Natural control system and Man-made control system: 

Natural control system: It is a control system that is created by nature, i.e. solar 
system, digestive system of any animal, etc. 

Man-made control system: It is a control system that is created by humans, 
i.e. automobile, power plants etc. 

1.2.2. Automatic control system and Combinational control system: 



Automatic control system: It is a control system that is made by using basic theories 
from mathematics and engineering. This system mainly has sensors, actuators and 
responders. 

Combinational control system: It is a control system that is a combination of natur-
al and man-made control systems, i.e. driving a car etc. 

1.2.3. Time-variant control system and Time-invariant control system: 
Time-variant control system: It is a control system where any one or more 
parameters of the control system vary with time i.e. driving a vehicle. 

Time-invariant control system: It is a control system where none of its parameters 
vary with time i.e. control system made up of inductors, capacitors and resistors only. 

1.2.4. Linear control system and Non-linear control system: 

Linear control system: It is a control system that satisfies properties of homogen-
eity and additive. 

 Homogeneous property:      f x y f x f y    
 Additive property:    f x f x   

Non-linear control system: It is a control system that does not satisfy properties of 
homogeneity and additive, i.e.   3f x x 

1.2.5. Continuous-Time control system and Discrete-Time control system: 

Continuous-Time control system: It is a control system where performances of all 
of its parameters are function of time, i.e. armature type speed control of motor. 

Discrete -Time control system: It is a control system where performances of all of 
its parameters are function of discrete time i.e. microprocessor type speed control of 
motor. 

1.2.6. Deterministic control system and Stochastic control system: 
Deterministic control system: It is a control system where its output is predictable 
or repetitive for certain input signal or disturbance signal. 

Stochastic control system:It is a control system where its output is unpredictable or 
non-repetitive for certain input signal or disturbance signal. 

1.2.7. Lumped-parameter control system and Distributed-parameter control system: 
Lumped-parameter control system: It is a control system where its mathematical 
model is represented by ordinary differential equations. 

Distributed-parameter control system:It is a control system where its mathematical 
model is represented by an electrical network that is a combination of resistors, 
inductors and capacitors. 

1.2.8. Single-input-single-output (SISO) control system and Multi-input-multi-output (MIMO) control system: 
SISO control system: It is a control system that has only one input and one output. 

MIMO control system:It is a control system that has only more than one input and 
more than one output. 

1.2.9. Open-loop control system and Closed-loop control system: 
Open-loop control system: It is a control system where its control action only 
depends on input signal and does not depend on its output response. 



Closed-loop control system:It is a control system where its control action depends 
on both of its input signal and output response. 

1.3. Open-loop control system and Closed-loop control system 
1.3.1. Open-loop control system: 

It is a control system where its control action only depends on input signal and does 
not depend on its output response as shown in Fig.1.1. 

Fig.1.1. An open-loop system 

Examples: traffic signal, washing machine, bread toaster, etc. 

Advantages: 

 Simple design and easy to construct  Economical  Easy for maintenance 
 Highly stable operation 

Dis-advantages: 

 Not accurate and reliable when input or system parameters are variable in nature 
 Recalibration of the parameters are required time to time 

1.3.2. Closed-loop control system: 
It is a control system where its control action depends on both of its input signal and 
output response as shown in Fig.1.2. 

Fig.1.2. A closed-loop system 

Examples: automatic electric iron, missile launcher, speed control of DC motor, etc. 

Advantages: 

 More accurate operation than that of open-loop control system  Can operate efficiently when input or system parameters are variable in 
nature  

 Less nonlinearity effect of these systems on output response  High bandwidth of operation 

 There is facility of automation  Time to time recalibration of the parameters are not required 

Dis-advantages: 

 Complex design and difficult to construct 



 Expensive than that of open-loop control system
 Complicate for maintenance 
 Less stable operation than that of open-loop control system 

1.3.3. Comparison between Open-loop and Closed-loop control systems: 
It is a control system where its control action depends on both of its input signal and
output response. 

Sl.
No. Open-loop control systems Closed-loop control systems 
1 No feedback is given to the control system A feedback is given  to the control system 
2 Cannot be intelligent Intelligent controlling action 

3 There is no possibility of undesirable
system oscillation(hunting) 

Closed loop control introduces the
possibility of undesirable system
oscillation(hunting) 

4 
The output will not very for a constant
input, provided the system parameters
remain unaltered 

In the system the output may vary for a
constant input, depending upon the
feedback 

5 
System output variation due to variation in
parameters of the system is greater and the
output very in an uncontrolled way 

System output variation due to variation in
parameters of the system is less. 

6 Error detection is not present Error detection is present 
7 Small bandwidth Large bandwidth 
8 More stable Less stable or prone to instability 
9 Affected by non-linearities Not affected by non-linearities 
10 Very sensitive in nature Less sensitive to disturbances 
11 Simple design Complex design 
12 Cheap Costly 



UNIT-II

2. Control System Dynamics 
2.1. Definition: It is the study of characteristics behaviour of dynamic system, i.e. 

(a) Differential equation 

i. First-order systems 
ii. Second-order systems 

(b) System transfer function: Laplace transform 

2.2. Laplace Transform: Laplace transforms convert differential equations into algebraic
equations. They are related to frequency response. 

    
0
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
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2.3. Solution of system dynamics in Laplace form: Laplace transforms can be solved using
partial fraction method. 
A system is usually represented by following dynamic equation. 

   
 

A s
N s

B s
 (2.3) 

The factor of denominator, B(s) is represented by following forms, 

i. Unrepeated factors 



ii. Repeated factors 
iii. Unrepeated complex factors 

(i) Unrepeated factors 
( )

( )( )
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A s b B s a
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(2.4) 

By equating both sides, determine A and B. 

Example 2.1: 
Expand the following equation of Laplacetransform in terms of its partial fractionsand obtain
its time-domain response. 

2( )
( 1)( 2)

sY s
s s


 

Solution: 
The following equation in Laplacetransform is expandedwith its partial fractions as follows. 
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By equating both sides, A and B are determined as 2, 4A B   . Therefore, 

2 4( )
( 1) ( 2)

Y s
s s

  
 

Taking Laplace inverse of above equation, 
2( ) 2 4t ty t e e     

(ii) Unrepeated factors 
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 (2.5) 

By equating both sides, determine A and B. 

Example 2.2: 
Expand the following equation of Laplacetransform in terms of its partial fractionsand obtain
its time-domain response. 

2
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Solution: 
The following equation in Laplacetransform is expandedwith its partial fractions as follows. 
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By equating both sides, A and B are determined as 2, 4A B   . Therefore, 
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Taking Laplace inverse of above equation, 
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(iii) Complex factors: They contain conjugate pairs in the denominator. 

2 2
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By equating both sides, determine A and B. 

Example 2.3: 
Expand the following equation of Laplacetransform in terms of its partial fractionsand obtain
its time-domain response. 
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Solution: 

The following equation in Laplacetransform is expandedwith its partial fractions as follows. 
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Taking Laplace inverse of above equation, 
( ) 2 cos sint ty t e t e t    

2.4. Initial value theorem:  
   
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Example 2.4: 
Determine the initial value of the time-domain response of the following equation using the
initial-value theorem. 
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Solution of above equation, 
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Applying initial value theorem, 
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2.5. Final value theorem:  
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Example 2.5: 
Determine the initial value of the time-domain response of the following equation using the
initial-value theorem. 
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Solution: 
Solution of above equation, 
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UNIT-I

3. Transfer Function 
3.1.Definition: It is the ratio of Laplace transform of output signal to Laplace transform of input

signal assuming all the initial conditions to be zero, i.e. 

Let, there is a given system with input r(t) and output c(t) as shown in Fig.3.1 (a), then its
Laplace domain is shown in Fig.3.1 (b). Here, input and output are R(s) and C(s) respectively. 

(a) (b) 

(c) 

Fig.3.1. (a) A system in time domain, (b) a system in frequency domainand (c) transfer function with differential
operator 

G(s) is the transfer function of the system. It can be mathematically represented as follows. 

   
  zero initial condition

C s
G s

R s 
 Equation Section (Next)(3.1) 

Example 3.1: Determine the transfer function of the system shown inFig.3.2. 

Fig.3.2. a system in time domain 

Solution: 
Fig.3.1 is redrawn in frequency domain as shown in Fig.3.2. 

Fig.3.2. a system in frequency domain 



 

Applying KVL to loop-1 of the Fig.3.2 

   1
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 (3.2) 

Applying KVL to loop-2 of the Fig.3.2 
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 (3.3) 

From eq (2.12), 
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Now, using eq (2.13) in eq (2.10), 
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(3.5) 

Then transfer function of the given system is 
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1
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 
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3.2. General Form of Transfer Function 
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Where, 1 2, ... mz z z are called zeros and 1 2, ... np p p are called poles. 

Number of poles n will always be greater than the number of zeros m 

Example 3.2: 
Obtain the pole-zero map of the following transfer function. 

( 2)( 2 4)( 2 4)( )
( 3)( 4)( 5)( 1 5)( 1 5)

s s j s jG s
s s s s j s j

    


      
 

Solution: 
The following equation in Laplacetransform is expandedwith its partial fractions as follows. 

Zeros Poles

s=2 s=3

s=-2-j4 s=4

s=-2+j4 s=5 



s=-1-j5

s=-1+j5 

Fig.3.3. pole-zero map 

3.3. Properties of Transfer function: 
 Zero initial condition 
 It is same as Laplace transform of its impulse response 

 Replacing ‘s’ by d
dt

in the transfer function, the differential equation can be obtained 

 Poles and zeros can be obtained from the transfer function
 Stability can be known 
 Can be applicable to linear system only 

3.4. Advantages of Transfer function: 
 It is a mathematical model and gain of the system 

 Replacing ‘s’ by d
dt

in the transfer function, the differential equation can be obtained 

 Poles and zeros can be obtained from the transfer function
 Stability can be known 
 Impulse response can be found 

3.5. Disadvantages of Transfer function: 
 Applicable only to linear system 
 Not applicable if initial condition cannot be neglected 
 It gives no information about the actual structure of a physical system 



UNIT-I

4. Description of physical system 
4.1. Components of a mechanical system: Mechanical systems are of two types, i.e. (i)

translational mechanical system and (ii) rotational mechanical system. 
4.1.1. Translational mechanical system 

There are three basic elements in a translational mechanical system, i.e. (a) mass, (b)
spring and (c) damper. 

(a) Mass: A mass is denoted by M. If a force f is applied on it and it displays 

distance x, then 
2

2
d xf M
dt

  as shown in Fig.4.1. 

Fig.4.1. Force applied on a mass with displacement in one direction 

If a force f is applied on a massM and it displays distance x1in the direction of f and 

distance x2 in the opposite direction, then 
2 2

1 2
2 2

d x d xf M
dt dt

 
  

 
as shown in Fig.4.2. 

M

X1

f

X2

Fig.4.2. Force applied on a mass with displacement two directions 

(b) Spring: A spring is denoted by K. If a force f is applied on it and it displays
distance x, then f Kx as shown in Fig.4.3. 

Fig.4.3. Force applied on a spring with displacement in one direction 

If a force f is applied on a springK and it displays distance x1in the direction of f and
distance x2 in the opposite direction, then  1 2f K x x   as shown in Fig.4.4. 



Fig.4.4. Force applied on a spring with displacement in two directions 

(c) Damper: A damper is denoted by D. If a force f is applied on it and it displays 

distance x, then 
dxf D
dt

  as shown in Fig.4.5. 

Fig.4.5. Force applied on a damper with displacement in one direction 

If a force f is applied on a damperD and it displays distance x1in the direction of f and 

distance x2 in the opposite direction, then 1 2dx dxf D
dt dt

   
 

as shown in Fig.4.6. 

Fig.4.6. Force applied on a damper with displacement in two directions 

4.1.2. Rotational mechanical system 

There are three basic elements in a Rotational mechanical system, i.e. (a) inertia, (b)
spring and (c) damper. 

(a) Inertia: A body with aninertia is denoted by J. If a torqueT is applied on it and it 

displays distanceӨ, then 
2

2
dT J
dt


 . If a torqueT is applied on a body with inertia 

J and it displays distance Ө1 in the direction of T and distance Ө2 in the opposite 

direction, then 
2 2

1 2
2 2

d dT J
dt dt
  
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 

. 

(b) Spring: A spring is denoted by K. If a torqueT is applied on it and it displays
distanceӨ, then T K . If a torqueT is applied on a body with inertia J and it
displays distance Ө1 in the direction of T and distance Ө2 in the opposite
direction, then  1 2T K    . 

(c) Damper: A damper is denoted by D. If a torqueT is applied on it and it displays 

distanceӨ, then 
dT D
dt


 . If a torqueT is applied on a body with inertia J and it 



 

displays distance Ө1 in the direction of T and distance Ө2 in the opposite 

direction, then 1 2d dT D
dt dt
    

 
. 

4.2. Components of an electrical system: There are three basic elements in an electrical system, 
i.e. (a) resistor (R), (b) inductor(L) and (c) capacitor (C). Electrical systems are of two types, 
i.e. (i) voltage source electrical system and (ii) current source electrical system. 
4.2.1. Voltage source electrical system: If i is the current through a resistor(Fig.4.7) and v

is the voltage drop in it, then v Ri . 

If i is the current through an inductor (Fig.4.7) and v is the voltage developed in it, 

then 
div L
dt

 . 

If i is the current through a capacitor(Fig.4.7) and v is the voltage developed in it, 

then 
1v idt
C

  . 

Fig.4.7. Current and voltage shown in resistor, inductor and capacitor 

4.2.2. Current source electrical system: 

If i is the current through a resistor and v is the voltage drop in it, then vi
R 

 . 

If i is the current through an inductor and v is the voltage developed in it, then 
1i vdt
L

  . 

If i is the current through a capacitor and v is the voltage developed in it, then 
dvi C
dt

 . 

4.2.3. Work out problems: 
Q.4.1. Find system transfer function betweenvoltage drop across the capacitanceand
input voltage in the followingRC circuit as shown in Fig.4.8. 

Fig.4.8. 



Solution 

Voltage across resistance, ( ) ( )Re t i t R  

Voltage across capacitance, 
1( ) ( )Ce t i t dt
C

 

Total voltage drop, 
1( ) ( )i R Ce e e i t R i t dt
C

    

Laplace transform of above equation, 1( ) ( )iE s I s R
Cs

   
 

System transfer function betweenvoltage drop across the capacitanceand input 

voltage, ( ) 1 1
( ) 1 1

C

i

E s
E s RCs s

 
 

where, RC  is the time-constant 

Q.4.2. Find system transfer function betweenfunction between the inductance
currentto the source currentin the followingRL circuit as shown in Fig.4.9. 

Fig.4.9. 

Voltage across the Resistance, 
( )( ) R R

e te t i R i
R

    

Voltage across the Inductance, 
1( ) ( )L

L
die t L i e t dt
dt L

     

Total current, 
( ) 1 ( )a R L

e ti i i e t dt
R L

      

Laplace transform of the current source, 
1 1( ) ( )aI s E s
R Ls

   
 

and ( )L
EI s
Ls

  

Transfer function between the inductance current to the source current, 
( ) 1 1
( ) 11

L

a

I s
LI s ss
R


 





 

where L
R

  is the time-constant 

Q.4.3. Find system transfer function betweenfunction between the capacitance
voltageto the source voltage in the followingRLC circuit as shown in Fig.4.10. 

Fig.4.10. 

Voltage across the Resistance, ( )Re t iR

Voltage across the Inductance, ( )L
die t L
dt

  

Voltage across thecapacitance, 
1( )Ce t idt
C

 
Total voltage,   1die t iR L idt

dt C
   

Laplace transform of the voltage source, 1( ) ( )E s I s R Ls
Cs

    
 

Transfer function between capacitance voltage and source voltage 

 
2

2 2

( ) 1
1( ) 2

C n

n n

E s
E s s sCs R Ls

Cs


 

 
     
 

where
1

n LC
   and 

2

R
L
C

   

Q.4.4.Find the transfer function of the following Spring-mass-damperas shown
in Fig.4.11. 

Fig.4.11. 



Solution 

 2 2 2

( ) 1 1
( ) 2 n n

X s
F s ms cs k m s s 

 
   

4.3. Analogous system: Fig.4.12 shows a translational mechanical system, a rotational control
system and a voltage-source electrical system. 

(a) 

(b) 

(c) 

Fig.4.12. (a) a voltage-source electrical system,(b) a translational mechanical system and (c) a rotational control
system 

From Fig4.12 (a), (b) and (c), we have 

 
2

2

2

2

2

2

1d q dqL R q v t
dt Cdt

d dJ D K T
dtdt

d x dxM D Kx f
dtdt

 


  

  

  

Where,  



 

q idt  (4.2) 

The solutions for all the above three equations given by eq (4.2) are same. Therefore, the
above shown three figures are analogous to each other. There are two important types of
analogous systems, i.e. force-voltage (f-v) analogy and force-current analogy. From eq (4.2),
f-v analogy can be drawn as follows. 

Translational Rotational Electrical 
Force (f) Torque (T) Voltage (v) 
Mass (M) Inertia (J) Inductance (L) 
Damper (D) Damper (D) Resistance (R)
Spring (K) Spring (K) Elastance (1/C)
Displacement (x) Displacement (Ө) Charge (q)
Velocity (u) = x Velocity (u) =  Current (i) = q

Similarly, f-i analogy that can be obtainedfrom eq (4.1), can be drawn as follows. 

Translational Rotational Electrical 
Force (f) Torque (T) Current (i) 
Mass (M) Inertia (J) Capacitance (C) 
Damper (D) Damper (D) Conductance (1/R)
Spring (K) Spring (K) Reciprocal of Inductance (1/L)
Displacement (x) Displacement (Ө) Flux linkage (ψ)
Velocity (u) = x Velocity (u) =  Voltage (v) = 



 

UNIT-I

5. Block Diagram Algebra 
5.1. Basic Definition in Block Diagram model:  

Block diagram: It is the pictorial representation of the cause-and-response relationship
between input and output of a physical system. 

(a) (b) 

Fig.5.1. (a) A block diagram representation of a system and (b) A block diagram representation with gain of a
system 

Output: The value of input multiplied by the gain of the system. 

     C s G s R s  (5.1) 

Summing point: It is the component of a block diagram model at which two or more signals
can be added or subtracted. In Fig.15, inputs R(s) and B(s) have been given to a summing
point and its output signal is E(s). Here, 

     E s R s B s   (5.2) 

Fig.5.2. A block diagram representation of a systemshowing its different components 

Take-off point: It is the component of a block diagram model at which a signal can be taken
directly and supplied to one or more points as shown in Fig.5.2. 

Forward path: It is the direction of signal flow from input towards output.

Feedback path: It is the direction of signal flow from output towards input. 

5.2. Developing Block Diagram model from mathematical model:  
Let’s discuss this concept with the following example. 

Example: A system is described by following mathematical equations. Find its corresponding
block diagram model. 

1 1 2 33 2 5x x x x   (5.3) 

2 1 2 34 3x x x x   (5.4) 



3 1 2 32x x x x   (5.5) 

Example: Eq (5.3), (5.4) and (5.5) are combiningly results in the following block diagram
model. 

++

++

++

5

3

2

1/s

1/s

1/s

4

2

x1(s)

x2(s)

x3(s)+

+

+  1
x s

 2
x s

 3
x s

x3(s)

x1(s)

x2(s)

3

x2(s)

x3(s)

x3(s)

x2(s)

x1(s)

Fig.5.3. A block diagram representation of the above example 



 

5.3. Rules for reduction of Block Diagram model: 
Sl. 
No. 

Rule 
No. Configuration Equivalent Name 

1 Rule 1 Cascade 

2 Rule 2 Parallel 

3 Rule 3    
( )

1
G s 

G s H s Loop 

4 Rule 4 Associative
Law 

5 Rule 5 
Move take-
off point
after a block 

6 Rule 6 

Move take-
off point
before a
block 

7 Rule 7 

Move
summing-
point point
after a block 

8 Rule 8 

Move
summing-
point point
before a
block 



9 Rule 9 

Move take-
off point
after a
summing-
point  

10 Rule 10 

Move take-
off point
before a
summing-
point 

Fig.5.4. Rules for reduction of Block Diagram model 

5.4. Procedure for reduction of Block Diagram model: 
Step 1: Reduce the cascade blocks. 

Step 2: Reduce the parallel blocks. 

Step 3: Reduce the internal feedback loops. 

Step 4: Shift take-off points towards right and summing points towards left. 

Step 5: Repeat step 1 to step 4 until the simple form is obtained. 

Step 6: Find transfer function of whole system as  
 

C s
R s

. 

5.5. Procedure for finding output of Block Diagram model with multiple inputs: 
Step 1: Consider one input taking rest of the inputs zero, find output using the procedure
described in section 4.3. 

Step 2: Follow step 1 for each inputs of the given Block Diagram model and find their
corresponding outputs. 

Step 3: Find the resultant output by adding all individual outputs. 



UNIT-I

6. Signal Flow Graphs (SFGs) 
It is a pictorial representation of a system that graphically displays the signal transmission in it. 

6.1. Basic Definitions in SFGs:  
Input or source node: It is a node that has only outgoing branches i.e. node ‘r’ in Fig.6.1. 

Output or sink node: It is a node that has only incoming branches i.e. node ‘c’ in Fig.6.1.

Chain node: It is a node that has both incoming and outgoing branches i.e. nodes ‘x1’,
‘x2’,‘x3’,‘x4’,‘x5’and ‘x6’ in Fig.6.1. 

Gain or transmittance: It is the relationship between variables denoted by two nodes or
value of a branch. In Fig.6.1, transmittances are ‘t1’, ‘t2’,‘t3’,‘t4’,‘t5’and ‘t6’. 

Forward path: It is a path from input node to output node without repeating any of the nodes
in between them. In Fig.6.1, there are two forward paths, i.e. path-1:‘r-x1-x2-x3-x4-x5-x6-c’ and
path-2:‘r-x1-x3-x4-x5-x6-c’. 

Feedback path: It is a path from output node or a node near output node to a node near input
node without repeating any of the nodes in between them (Fig.6.1). 

Loop: It is a closed path that starts from one node and reaches the same node after trading
through other nodes. In Fig.6.1, there are four loops, i.e. loop-1:‘x2-x3-x4-x1’, loop-2:‘x5-x6-
x5’, loop-3:‘x1-x2-x3-x4-x5-x6-x1’ and loop-4:‘x1-x3-x4-x5-x6-x1’. 

Self Loop: It is a loop that starts from one node and reaches the same node without trading
through other nodes i.e. loop in node ‘x4’ with transmittance ‘t55’ in Fig.6.1. 

Path gain: It is the product of gains or transmittances of all branches of a forward path. In
Fig.6.1, the path gains are P1 = t1t2t3t4t5 (for path-1) and P2 = t9t3t4t5 (for path-2). 

Loop gain: It is the product of gains or transmittances of all branches of a loop In Fig.6.1,
there are four loops, i.e. L1 = -t2t3t6, L2 = -t5t7, L3 = -t1t2t3t4t5t8, and L4 = -t9t3t4t5t8. 

Dummy node: If the first node is not an input node and/or the last node is not an output node
than a node is connected before the existing first node and a node is connected after the
existing last node with unity transmittances. These nodes are called dummy nodes. In Fig.6.1,
‘r’ and ‘c’ are the dummy nodes. 

Non-touching Loops: Two or more loops are non-touching loops if they don’t have any
common nodes between them. In Fig.6.1, L1 and L2 are non-touching loops 

Example: 

Fig.6.1. Example of a SFG model 



6.2. Properties SFGs: 
 Applied to linear system 
 Arrow indicates signal flow 
 Nodes represent variables, summing points and take-off points 
 Algebraic sum of all incoming signals and outgoing nodes is zero 
 SFG of a system is not unique 
 Overall gain of an SFG can be determined by using Mason’s gain formula 

6.3. SFG from block diagram model: 
Let’s find the SFG of following block diagram model shown in Fig.6.2. 

Ea(s)
Ө(s)+

-
KT

Eb(s)

Kb

1
sJ f

1
s

1

a asL R
 s
s



Fig.6.2. Armature type speed control of a DC motor 

Step-1: All variables and signals are replaced by nodes. 

Step-2: Connect all nodes according to their signal flow. 

Step-3: Each ofgains is replaced by transmittances of the branches connected between two nodes
of the forward paths. 

Step-4: Each ofgains is replaced by transmittances multiplied with (-1) of the branches connected
between two nodes of the forward paths. 

1
sJ f

1
s

1

a a
sL R

 s
s



(a) 



 

1

a a
sL R

1
sJ f

1
s

(b) 

Fig.6.3. Armature type speed control of a DC motor 

6.4. Mason’s gain formula: 
Transfer function of a system= 

   
 

1

N

k k
k

P
C s

G s
R s




 




(6.1) 

Where, 

N= total number of forward paths 

Pk= path gain of kth forward path 

∆= 1 - (∑loop gains of all individual loops) + (∑gain product of loop gains of all possible
two non-touching loops) - (∑gain product of loop gains of all possible three non-touching
loops) + … 

∆k= value of ∆ after eliminating all loops that touches kth forward path

Example: 

Find the overall transfer function of the system given in Fig.6.1 using Mason’s gain
formula. 

Solution: 
In Fig.6.1, 

No. of forward paths: 2N 

Path gain of forward paths: 1 1 2 3 4 5P t t t t t  and 2 6 3 4 5P t t t t  

Loop gain of individual loops: 1 2 3 6L t t t  , 2 5 7L t t  , 3 1 2 3 4 5 8L t t t t t t   and 4 9 3 4 5 8L t t t t t   

No. of two non-touching loops = 2 i.e. L1 and L2 

No. of more than two non-touching loops = 0 



   1 2 3 4 1 2 1 2 3 4 1 21 0 1L L L L L L L L L L L L               

1 1 0 1    and 2 1 0 1   

  1 1 2 2P PG s   



 

       1 2 3 4 5 6 3 4 5

2 3 6 5 7 1 2 3 4 5 8 9 3 4 5 8 2 3 5 6 7

1 1
1

t t t t t t t t t
G s

t t t t t t t t t t t t t t t t t t t t t


 
    

 

  1 2 3 4 5 6 3 4 5

2 3 6 5 7 1 2 3 4 5 8 9 3 4 5 8 2 3 5 6 71
t t t t t t t t tG s

t t t t t t t t t t t t t t t t t t t t t


 
    
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7. Feedback Characteristics of Control System 
7.1. Feedback and Non-feedback Control systems 

Non-feedback control system: It is a control system that does not have any feedback paths. 
It is also known as open-loop control system. It is shown in Fig.7.1 (a) and (b). 

Feedback control system: It is a control system that has at least one feedback path. It is also
known as closed-loop control system. It is shown in Fig.7.2 (a) and (b). 

(a) 
(b) 

Fig.7.1. (a) Block diagram of a non-feedback control system and (b) SFG of a non-feedback control system 

(a) 
(b) 

Fig.7.2. (a) Block diagram of a feedback control system and (b) SFG of a feedback control system 

7.2. Types of Feedback in a Control system 
7.2.1. Degenerative feedback control system: It is a control system where the feedback

signal opposes the input signal. Here, 

Error or actuating signal = (Input signal) – (Feedback signal). 

Referring Fig.7.3, 

     E s R s B s   (7.1) 

and 

   
   1 1

G s
T s

G s H s



 (7.2) 

Fig.7.3. (a) Block diagram of a degenerative feedback control system 



7.2.2. Regenerative feedback control system: It is a control system where the feedback
signal supports or adds the input signal. Here, 

Error or actuating signal = (Input signal) + (Feedback signal). 

Referring Fig.7.4, 

     E s R s B s   (7.3) 

and 

   
   2 1

G s
T s

G s H s



 (7.4) 

Fig.7.4. Block diagram of a regenerative feedback control system 

7.3. Effect of parameter variation on overall gain of a degenerative Feedback Control system 
The overall gain or transfer function of a degenerative feedback control system depends upon
these parameters i.e. (i) variation in parameters of plant, and (ii) variation in parameter of
feedback system and (ii) disturbance signals. 

The term sensitivity is a measure of the effectiveness of feedback on reducing the influence of
any of the above described parameters. For an example, it is used to describe the relative
variations in the overall Transfer function of a system T(s) due to variation in G(s). 

ݕݐ݅ݒ݅ݐ݅ݏ݊݁ݏ =
(ݏ)ܶ ݊݅ ℎܽ݊݃݁ܿ ݁݃ܽݐ݊݁ܿݎ݁݌
(ݏ)ܩ ݊݅ ℎܽ݊݃݁ܿ ݁݃ܽݐ݊݁ܿݎ݁݌

7.3.1. Effect of variation in G(s) on T(s) of a degenerative Feedback Control system

In an open-loop system, 

     C s G s R s  

Let, due to parameter variation in plant G(s) changes to [G(s) + ∆G(s)] such that
|G(s)| >> |∆G(s)|. The output of the open-loop system then changes to 

         
           

C s C s G s G s R s

C s C s G s R s G s R s

       
     

 

     C s G s R s    (7.5) 

In an closed-loop system, 



   
     

1
G s

C s R s
G s H s

Let, due to parameter variation in plant G(s) changes to [G(s) + ∆G(s)] such that
|G(s)| >> |∆G(s)|. The output of the open-loop system then changes to 

   
   
       

       
         

1

1

G s G s
C s C s R s

G s G s H s

G s G s
C s C s R s

G s H s G s H s

      
     

 
   

  

Since, |G(s)| >> |∆G(s)|, then        G s H s G s H s� . Therefore,    G s H s  is 
neglected. Now, 

       
     

     
       

     

1

1 1

G s G s
C s C s R s

G s H s

G s G s
C s C s R s R s

G s H s G s H s

 
  




    

 

Or 

   
     

1
G s

C s R s
G s H s


 


(7.6) 

Comparing eq (42 and (43), it is clear that ∆ܥ(௢௣௘௡ ௟௢௢௣) = (1 + (௖௟௢௦௘ௗ ௟௢௢௣)ܥ∆ (ܪܩ

This concept can be reproved using sensitivity. Sensitivity on T(s) due to variation in G(s) is
given by 

T
G

T T T GS
G G G T
 

  
 

 (7.7) 

For open-loop system, 

1G
T TTS G G
G G G G
 

   
 

 (7.8) 

For closed-loop system, 

 
     2

1 1
1 11

T
G

GH GHT T GS
G G G GH GHGH

 
   
  

(7.9) 

Therefore, it is proved that ܵீ் (௢௣௘௡ ௟௢௢௣) = (1 + ்ீܵ(ܪܩ (௖௟௢௦௘ௗ  ௟௢௢௣). Hence, the effect of 

parameter variation in case of closed loop system is reduced by a factor of ଵ
(ଵାீு)

. 



7.3.2. Effect of variation in H(s) on T(s) of a degenerative Feedback Control system 

This concept can be reproved using sensitivity. Sensitivity on T(s) due to variation in H(s) is
given by 

T
H

T T T HS
H H H T
 

  
 

 (7.10) 

For closed-loop system, 

     2 1 11
T
H

T H G H GHS G
H T G GH GHGH

   
      
    

(7.11) 

For higher value of GH, sensitivity ܵு் approaches unity. Therefore, change in H affects 
directly the system output. 



 

UNIT-II

8. Time Domain Analysis of Control Systems 

8.1. Time response 
Time response c(t)is the variation of output with respect to time. The part of time response
that goes to zero after large interval of time is called transient response ctr(t). The part of time
response that remains after transient response is called steady-state response css(t). 

Fig.7.1. Time response of a system 

8.2. System dynamics 

System dynamics is the study of characteristic and behaviour of dynamic systems 

i.e. 

i. Differential equations: First-order systems and Second-order systems, 
ii. Laplace transforms, 
iii. System transfer function, 
iv. Transient response: Unit impulse, Step and Ramp 

Laplace transforms convert differential equations into algebraic equations. They are related to
frequency response 

    
0

( ) stx t e dt


  x t X sL (8.1) 



 

No. Function Time-domain 

x(t)= ℒ-1{X(s)} 

Laplace domain 

X(s)= ℒ{x(t)} 

1 Delay δ(t-τ) e-τs

2 Unit impulse δ(t) 1 

3 Unit step u(t) 

s
1  

4 Ramp t 
2

1
s

5 Exponential decay e-αt

s
1

 

6 Exponential approach  te 1  
)( 


ss

7 Sine sin ωt 
22 


s

8 Cosine cos ωt 
22 s

s
 

9 Hyperbolic sine sinh αt 
22 


s

10 Hyperbolic cosine cosh αt 
22 s

s
 

11 Exponentially decaying sine
wave 

te t sin  
22)( 


s

12 Exponentially decaying cosine
wave 

te t  cos  
2 2( )

s
s


 


 

8.3. Forced response 

1 2

1 2

( )( ) ( )( ) ( ) ( ) ( )
( )( ) ( )

m

n

K s z s z s zC s G s R s R s
s p s p s p

  
 

  



 (8.2) 

R(s) input excitation 

8.4. Standard test signals 
8.4.1. Impulse Signal: An impulse signal δ(t) is mathematically defined as follows. 

 
; 0

0 ; t 0
undefined t

t
 

  
(8.3) 

Laplace transform of impulse signal is 



  1s  (8.4) 

Fig.7.2. Impulse signal 

Dirac delta function 
( ) ( )ix t x t a  (8.5) 

Integral property of Dirac delta function 

( ) ( ) ( )o ot t t dt t  




   (8.6) 

Laplace transform of an impulse input 

0

( ) ( )st sa
i iX s e x t a dt x e


     (8.7) 

8.4.2. Step Signal: A step signal u(t) is mathematically defined as follows. 

 
0 ; 0

; t 0
t

u t
K

 
  

(8.8) 

Laplace transform of step signal is 

  KU s
s 

 (8.9) 



 

Fig.7.2. Step signal 

8.4.3. Ramp Signal: A step signal r(t) is mathematically defined as follows. 

 
0 ; 0

; t 0
t

r t
Kt

 
  

(8.10) 

Laplace transform of ramp signal is 

  2
KR s
s 

 (8.11) 

Fig.7.3. Ramp signal 

8.4.4. Parabolic Signal A step signal a(t) is mathematically defined as follows. 

  2

0
; 0
; t 0

2

t
a t Kt

  
 

(8.12) 

Laplace transform of parabolic signal is 

  3
KA s
s 

 (8.13) 

Fig.7.4. Parabolic signal 

8.4.5. Sinusoidal Signal A sinusoidal x(t) is mathematically defined as follows. 



  sinx t t  (8.14) 

Laplace transform of sinusoidal signal is 

  2 2
0

sinstX s e t dt
s






 

  (8.15) 

Fig.7.4. Sinusoidal signal 

8.5. Steady-state error: 
A simple closed-loop control system with negative feedback is shown as follows. 

Fig.7.5. A simple closed-loop control system with negative feedback 

Here, 

     E s R s B s   (8.16) 

     B s C s H s  (8.17) 

     C s E s G s  (8.18) 

Applying (1) in (9), 

       E s R s C s H s   (8.19) 

Using (11) in (12), 

         E s R s E s G s H s  (8.20) 

       1 G s H s E s R s       (8.21) 



 

   
   1
R s

E s
G s H s

 


 (8.22) 

Steady-state error, 

   
0

lim limss t s
e e t sE s

 
   (8.23) 

Using (15) in (16), 

   
   0 0

lim lim
1ss s s

sR s
e sE s

G s H s 
 


 (8.24) 

Therefore, steady-state error depends on two factors, i.e. 

(a) type and magnitude of R(s) 
(b) open-loop transfer function G(s)H(s) 

8.6. Types of input and Steady-state error: 
8.6.1. Step Input 

  AR s
s 

 (8.25) 

Using (18) in (17), 

       0 0
lim lim

1 1ss s s

As
Ase

G s H s G s H s 

 
 
  

 
 (8.26) 

   
0

1 lim 1ss
Ps

A Ae
G s H s K



  
 

 (8.27) 

Where, 

   
0

limP s
K G s H s


 (8.28) 

8.6.2. Ramp Input 

  2
AR s
s 

 (8.29) 

Using (18) in (17), 

       

   

   

2

0 0

0

0

lim lim
1 1

lim

lim

ss s s

ss s

ss
Vs

As
Ase

G s H s s G s H s

Ae
s sG s H s

A Ae
sG s H s K

 





 
 
  

    

 


  

(8.30) 

Where, 



 

   
0

limV s
K sG s H s


 (8.31) 

8.6.3. Parabolic Input 

  3
AR s
s 

 (8.32) 

Using (18) in (17), 

       

   

   

3

20 0

2 20

2

0

lim lim
1 1

lim

lim

ss s s

ss s

ss
As

As
Ase

G s H s s G s H s

Ae
s s G s H s

A Ae
Ks G s H s

 





 
 
  

    

 


  

(8.33) 

Where, 

   2

0
limA s

K s G s H s


 (8.34) 

Types of input and steady-state error are summarized as follows. 

Error Constant Equation Steady-state error (ess) 

Position Error Constant (KP)    
0

limP s
K G s H s


  

1ss
P

Ae
K




 

Velocity Error Constant (KV)    
0

limV s
K sG s H s




ss
V

Ae
K

  

Acceleration Error Constant (KA)    2

0
limA s

K s G s H s



ss

A

Ae
K

  

8.7. Types of open-loop transfer function G(s)H(s)and Steady-state error: 
8.7.1. Static Error coefficient Method 

The general form of G(s)H(s) is 

        
    

1 21 1 ... 1
1 1 ... 1

n
j

a b m

K T s T s T s
s T s

G
T s s

s
T

s H
  


  

 (8.35) 

Here, j = no. of poles at origin (s = 0) 

or, type of the system given by eq (28) is j. 

8.7.1.1. Type 0 

        
    

1 21 1 ... 1
1 1 ... 1

n

a b m

K T s T s T s
T s T s

G s
s

s
T

H
  


  

 (8.36) 

Here, 



 

   
0

limP s
K G s H s K


  (8.37) 

Therefore, 

1ss
Ae
K




(8.38) 

8.7.1.2. Type 1 

        
    

1 21 1 ... 1
1 1 ... 1

n

a b m

K T s T s T
G s

s
s T s T s T s

H s
  


  

 (8.39) 

Here, 

   
0

limV s
K sG s H s K


  (8.40) 

Therefore, 

ss
Ae
K 

 (8.41) 

8.7.1.3. Type 2 

        
    

1 2
2

1 1 ... 1
1 1 ... 1

n

a b m

K T s T s T s
s T s T s T s

G s H s
  


  

 (8.42) 

Here, 

   2

0
limA s

K s G s H s K


  (8.43) 

Therefore, 

ss
Ae
K 

 (8.44) 

Steady-state error and error constant for different types of input are summarized as follows. 

Type 
Step input Ramp input Parabolic input 

KP ess KV ess KA ess

Type 0 K
1

A
K

0  0 

Type 1  0 K
A
K

0 

Type 2  0  0 K
A
K

The static error coefficient method has following advantages: 

 Can provide time variation of error
 Simple calculation 



But, the static error coefficient method has following demerits: 

 Applicable only to stable system 
 Applicable only to three standard input signals 
 Cannot give exact value of error. It gives only mathematical value i.e. 0 or ∞



8.7.2. Generalized Error coefficient Method 

From eq (15), 

       1
1

E s R s
G s H s

 
  

  

So, 

     1 2E s F s F s  (8.45) 

Where, 
   1
1

1 
F

G s H s



 and    2F s R s  

Using convolution integral to eq (38) 

         1 2 1
0 0

t t

e t f f t d f r t d           (8.46) 

Using Taylor’s series of expansion to  r t  , 

         
2 3

...
2! 3!

r t r t r t r t r t 
          (8.47) 

Now, applying eq (40) in eq (39), 

                 
2 3

1 1 1 1
0 0 0 0

...
2! 3!

t t t t

e t f r t d r t f d r t f d r t f d                    (8.48) 

Now, steady-state error, ess is 

 limss t
e e t


  (8.49) 

Therefore, 

                 

               

2 3

1 1 1 1
0 0 0 0

2 3

1 1 1 1
0 0 0 0

lim lim ...
2! 3!

...
2! 3!

t t t t

ss t t

ss

e e t f r t d r t f d r t f d r t f d

e f r t d r t f d r t f d r t f d

         

         

 

   

 
        

  

       

   

   
(8.50) 

Eq (44) can be rewritten as 

       32
0 1 ...

2! 3!ss
CCe C r t C r t r t r t       (8.51) 

Where, C0, C1, C2, C3, etc. are dynamic error coefficients. These are given as 



   

   

   

   

0 1 10
0

1
1 1 0

0
22

1
2 1 20

0
33

1
3 1 30

0

lim

lim

lim
2!

lim
3!

s

s

s

s

C f d F s

dF s
C f d

ds

d F s
C f d

ds

d F s
C f d

ds

 

  


 


 

















 

  

 

   









, and so on… (8.52) 

8.8. First-order system: 
A Governing differential equation is given by 

( )y y Kx t   (8.53) 

Where, Time constant, sec =  , 
Static sensitivity (units depend on the input and output variables) = K , 
y(t) is response of the system and 
x(t) is input excitation 
The System transfer function is 

( ) ( )
( ) (1 )

Y s KG s
X s s

 


 (8.54) 

Pole-zero map of a first-order system 

Normalized response 

In this type of response 



 

 Static components are taken out leaving only the dynamic component 
 The dynamic components converge to the same value for different physical systems of 

the same  type or order 
 Helps in recognizing typical factors of a system 

8.8.1. Impulse input to a first-order system 
Governing differential equation 

( )iy y Kx t    (8.55) 

Laplacian of the response 

1( ) 1(1 )
i iKx KxY s
s s 



 
 

   
  

 

(8.56) 

Time-domain response 

( )
t

iKxy t e 




  (8.57) 

Impulse response function of a first-order system 

( )
tKh t e 




  (8.58) 

By putting x
i
=1 in the response 

Response of a first-order system to any force excitation 

0

( ) ( )
t tKy t e F t d  




   (8.59) 

The above equation is called Duhamel’s integral. Normalized response of a first-order system to
impulse input is shown below. 

8.8.2. Step input to a first-order system 
Governing differential equation 

( )iy y Kx u t   (8.60) 

( )

i

y t
Kx



/t 



 

Laplacian of the response 

( ) 1(1 )
i i iKx Kx KxY s

s s s s


  
 

(8.61) 

Time-domain response 

( ) 1
t

iy t Kx e 
 

   
 

(8.62) 

Normalized response of a first-order system to impulse input is shown below. 

8.8.3. Ramp input to a first-order system 
Governing differential equation 

y y Kt   (8.63) 

Laplacian of the response 

2 2

1( ) 1(1 )
KY s

s s s s s

 




   
 

(8.64) 

Time-domain response 
( ) ty t t e
K

 


    (8.65) 

Normalized response of a first-order system to impulse input is shown below. 

( )

i

y t
Kx



/t 



 

8.8.4. Sinusoidal input to a first-order system 
Governing differential equation 

siny y KA t    (8.66) 

Laplacian of the response 

 22 2 2 2 2 2

1( )
(1 ) 1/1

K A sY s
s s s s s

   
    

               
(8.67) 

Time-domain response 

 
/

2
( ) 1cos sin

1
ty t e t t

KA
    


    

 
(8.68) 

Normalized response of a first-order system to impulse input is shown below. 

8.9. Second-order system 
A Governing differential equation is given by 

( )

i

y t
Kx



/t 



 

( )my cy ky Kx t     (8.69) 

Where,  = Time constant, sec, 
K = Static sensitivity (units depend on the input and output variables),
m = Mass (kg), 
c = Damping coefficient (N-s/m), 
k = Stiffness (N/m), 
y(t) is response of the system and  
x(t) is input excitation 

The System transfer function is 

 2 2

( )
( ) 2 n n

Y s K
X s m s s 


 

 (8.70) 

Pole-zero map 

(a) ζ>1 over damped
Poles are:  

 2
1,2 1ns       (8.71) 

Graphically, the poles of an over damped system is shown as follows. 

(b) ζ =1 critically damped
Poles are:  

1,2 ns   (8.72) 

Graphically, the poles of an critically damped system is shown as follows. 



(c) ζ<1 under damped
Poles are:  

 2
1,2

1,2

j 1n

n d

s

s j

  

 

   

   
(8.73) 

Where, d Damped natural frequency 
21d n     (8.74) 

Graphically, the poles of an critically damped system is shown as follows. 

Here, 
2

tan
1






(d) ζ = 0 un-damped
Poles are:  

1,2 j ns    (8.75) 



Solved problems: 
1. A single degree of freedom spring-mass-damper system has the following data: spring stiffness 20

kN/m; mass 0.05 kg; damping coefficient 20 N-s/m. Determine 

(a) undamped natural frequency in rad/s and Hz  
(b) damping factor 
(c) damped natural frequency n rad/s and Hz. 

If the above system is given an initial displacement of 0.1 m, trace the phasor of the system for three
cycles of free vibration. 

Solution: 

320 10 632.46 rad/s
0.05n

k
m




    

632.46 100.66 Hz
2 2

n
nf







   

3

20 0.32
2 2 20 10 0.05

c
km

   
 

2 21 632.46 1 0.32 600rad/sd n        

600 95.37 Hz
2 2

d
df







   

0.32 632.46( ) 0.1nt ty t Ae e     

2. A second-order system has a damping factor of 0.3 (underdamped system) and an un-damped
natural frequency of 10 rad/s. Keeping the damping factor the same, if the un-damped natural
frequency is changed to 20 rad/s, locate the new poles of the system? What can you say about the
response of the new system? 

Solution: 

Given, 1 10 rad/sn  and 2 20 rad/sn 

1 1

2 21 10 1 0.3 9.54rad/sd n        

2 2

2 21 20 1 0.3 19.08rad/sd n        

1 11,2 3 9.54n dp j j        



 

2 23,4 6 19.08n dp j j      

2 2

0.3tan 17.45
1 1 0.3

o


  
 

8.9.1. Second-order Time Response Specifications with Impulse input 
(a) Over damped case (ζ>1) 

General equation 
22 ( )i

n n
Kxy y y t
m

      (8.76) 

Laplacian of the output 
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1 1
2 1 ( 1) ( 1

i

n n

i

n n n n n

KxY s
m s s

Kx
m s s

 

       

 
    

    
        

(8.77) 

Time-domain response 

 2

2
( ) sinh 1

1
nti

n

n

Kxy t e t
m

  
 


 

  
  

(8.78) 

(b) Critically damped case (ζ=1)
General equation 

2 ( )i
n

Kxy y t
m 

   (8.79) 

Laplacian of the output 

2 2

1( ) i

n

KxY s
m s 

 
   

(8.80) 

Time-domain response 

( ) nti
n

n

Kxy t te
m




 
  
 

(8.81) 

(c) Under damped case (ζ<1) 



Poles are: 1,2 n ds j     
General equation 

22 ( )i
n n

Kxy y y t
m

      (8.82) 

Laplacian of the output 
1( )

( )( )
i

n d n d

KxY s
m s j s j   

 
      

(8.83) 

Time-domain response 

( ) sinnti
d

d

Kxy t e t
m

 


 
  
 

(8.84) 

Normalized impulse-response of a second-order system with different damping factors are shown
graphically as follows. 

Solved problems: 

3. A second-order system has an un-damped natural frequency of 100 rad/s and a damping factor of 
0.3. The value of the coefficient of the second time derivative (that is m) is 5.  If the static
sensitivity is 10, write down the response (do not solve) for a force excitation shown in the figure
in terms of the Duhamel’s integral for the following periods of time: 0<t<t1, t1<t<t2 and t>t2. 

Solution: 

Given, Undamped natural frequency ωn=100 rad/s 

Damping factor  =0.3 

Coefficient of the second time derivative m=5 



Static sensitivity K=10 

2 21 100 1 0.3 95.39 rad/sd n        

Here, 

1
1

( ) ;0 tF t F t t
t

  

 2 1 2
2 1

( ) ;FF t t t t t t
t t

   


 
0

( ) ( ) sinn

t

d
d

Ky t F t e d
m

    


 

 

 

0.3 100

1 0
1

30

1 0

10( ) sin 95.39 ( )
5 95.39

;0
0.057 sin 95.39 ( )

t

t

Fy t e t d
t

t t
F e t d

t





  

  

 



  


 

 




, 

 

 

1

1

30

1 0
1 2

30
2

2 1

0.057( ) sin 95.39 ( )
;

0.057 sin 95.39 ( )

t

t

t

Fy t e t d
t

t t t
F e t t d

t t





  

  





  

 

  





and 

 

 

1

2

1

30

1 0
2

30
2

2 1

0.057( ) sin 95.39 ( )

;
0.057 sin 95.39 ( )

t

t

t

Fy t e t d
t

t t
F e t t d

t t





  

  





  



  






8.9.2. Second-order Time Response Specifications with step input 

2 2

1( )
( 1)( 1)

i
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KxY s
m s s s     

    
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(8.85) 

   2 2
2 2

( ) 1 cosh 1 sinh 1
1

nti
n n

n

Kxy t e t t
m

    
 


         
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(8.86) 
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2 2
( ) 1 cos sin

1
nti

d d
n

Kxy t e t t
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 
 

 


       
    

(8.88) 



8.10. Time Response Specifications with step-input for under-damped case 
For under-damped case, the step-response of a second-order is shown as follows 

2 2
( ) 1 sin( )

1

nt
i

d
n

Kx ey t t
m



 
 

     
  

(8.89) 

2
1 1

tan





 
  (8.90) 

For this case, different time-domain specifications are described below.  
(i) Delay time, td  



 

(ii) Rise time, tr 

(iii) Peak time, tp 

(iv) Peak overshoot, Mp 

(v) Settling time  

For unity step input,  
(i)Delay time, td: It is the time required to reach 50% of output.  

 
2

1 1 sin( )
2 1

n dt

d d d
ey t t



 




   

1 0.7

d
n

t
w


   (8.91) 

(ii) Rise time, tr:The time required by the system response to reach from 10% to 90% of the
final value for over-damped case, from 0% to 100% of the final value for under-damped case
and from 5% to 95% of the critically value for over-damped case.  
.  

 
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(iii) Peak time, tp:The time required by the system response to reach the first maximum value.  
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(iv) Peak overshoot, Mp: It is the time required to reach 50% of output.  
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(iv) Settling time, ts: It is the time taken by the system response to settle down and stay with in 2%
or 5% its final value.  
For 2% error band, 

4
s

n

t
w

  (8.95) 

For 5% error band, 
3

s
n

t
w

  (8.96) 

Sl. No. 
Time Specifications 

Type Formula 

1 Delay time 
1 0.7

d
n

t
w


  

2 Rise time r
d

t
w

 
  

3 Peak time p
d

t
w


  

4 Maximum overshoot   21% 100pM e





   

5 Settling time 
4

s
n

t
w

  



 

Solved Problems: 

1. Consider the system shown in Figure 1. To improve the performance of the system a feedback is
added to this system, which results in Figure 2. Determine the value of K so that the damping
ratio of the new system is 0.4. Compare the overshoot, rise time, peak time and settling time and
the nominal value of the systems shown in Figures 1 and 2. 

Figure 1 Figure 2 

Solution: 
For Figure 1, 

 
 

 

 
2

20
1( ) 20

201 ( ) 201
1

c s s sG s
R s G s s s

s s


  

  


Here, 2 20n  and 2 1n 

20n  rad/s and 1 1 0.112
2 2 20n




  


For Figure 2, 
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20
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c s G s s s K
R s G s s K s

s s K

   
   

 

Here, 2 20n  and 2 1 20Kn  

20n  rad/s 

But, given that 
1 20 1 20 0.4

2 2 20n

K K



 

    

0.128K 

Transient characteristics of Figures 1 and 2 

CharacteristicS Figure 1 Figure 2 
Overshoot, Mp 70% 25%
Rise time, tr, sec 0.38 0.48 
Peak time, tp, sec 0.71 0.77 
Settling time (2%), sec 8 2.24
Steady-state value, c∞ 1.0 1.0 



 

Equation Chapter (Next) Section 1
1.1. Transient Response using MATLAB 

Program 1: Find the step response for the following system  
  2

3 20
5 36

C s s
R s s s




 
Solution: 
>> num=[3 20]
num= 
3 20 
>> den=[1 5 36]
den= 
1 5 36
>>sys=tf(num,den) 
Transfer function: 
       3s+20
-------------------- 
    s^2+5s+36
>>step(sys) 

Program 2: Find the step response for the following system  
  2

20
4 25

C s
R s s s


 

 

Solution: 
>> num=[20]
num= 

20 
>> den=[1 425]
den= 

1 4 25
>>sys=tf(num,den)
Transfer function: 
20 
-------------------- 
    s^2+4s+25
>>step(sys) 



 

UNIT-III
Concept of stability 
Stability is a very important characteristic of the transient performance of a system. Any working
system is designed considering its stability. Therefore, all instruments are stable with in a boundary of
parameter variations. 

A linear time invariant (LTI) system is stable if the following two conditions are satisfied. 

(i) Notion-1: When the system is excited by a bounded input, output is also bounded. 

Proof: 

A SISO system is given by 
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...

m m
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C s b s b s bG s
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 (9.1) 

So,  

     1c t G s R s    (9.2) 

Using convolution integral method 
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   (9.3) 

   1g G s  = impulse response of the system 

Taking absolute value in both sides, 

     
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

  (9.4) 

Since, the absolute value of integral is not greater than the integral of absolute value of the integrand 
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(9.5) 

Let, r(t) and c(t) are bounded as follows. 

 
 

1

2

r t M

c t M

  

  
(9.6) 

Then, 



 

   1 2
0

c t M g d M 


   (9.7) 

Hence, first notion of stability is satisfied if  
0

g d 


  is finite or integrable. 

(ii) Notion-2: In the absence of the input, the output tends towards zero irrespective of initial
conditions. This type of stability is called asymptotic stability. 

 Effect of location of poles on stability 

Pole-zero map Normalized response 
Over-damped close-loop poles 

Critically damped close-loop poles
Pole-zero map Normalized response

Under-dampedclose-loop poles
Pole-zero map Normalized response



Un-dampedclose-loop poles 
Pole-zero map Normalized response

Negative Under-dampedclose-loop poles 
Pole-zero map Normalized response

Negative Over-dampedclose-loop poles 
Pole-zero map Normalized response



Closed-loop poles on the imaginary axis 
Closed-loop can be located by replace the denominator of the close-loop response with s=jω. 

Example: 
1. Determine the close-loop poles on the imaginary axis of a system given below. 

Solution: 

Characteristics equation, 2( ) 0B s s s K   

Replacing s jw

2( ) ( ) ( ) 0B j j j K     

2( ) 0K j    

Comparing real and imaginary terms of L.H.S. with real and imaginary terms of R.H.S., we get 

K  and 0 

Therefore, Closed-loop poles do not cross the imaginary axis. 

2. Determinetheclose the imaginary axis of a system given below. 
3 2( ) 6 8 0B s s s s K     . 

Solution: 

Characteristics equation, 
3 2( ) ( ) 6( ) 8 0B j j j j K       

2 3( 6 ) (8 ) 0K j      

Comparing real and imaginary terms of L.H.S. with real and imaginary terms of R.H.S., we get 

8   rad/s and 26 48K  

Therefore, Close-loop poles cross the imaginary axis for K>48. 

( )
( 1)

KG s
s s 






Routh-Hurwitz’s Stability Criterion 

General form of characteristics equation, 
1

1 1 0( ) 0n n
n nB s a s a s a s a

      

1 2( )( ) ( ) 0ns r s r s r      

Where, ir  Roots of the characteristics equation 

Necessary condition of stability: 
Coefficients of the characteristic polynomial must be positive. 

Example: 

3. Consider a third order polynomial 3 2( ) 3 16 130B s s s s    . Although the coefficients of the
above polynomial are positive, determine the roots and hence prove that the rule about 
coefficients being positive is only a necessary condition for the roots to be in the left s-plane. 

Solution: 

Characteristics equation, 3 2( ) 3 16 130 0B s s s s    

By using Newton-Raphson’s method 1 5r   and 2,3 1 5r j 

Therefore, from the above example, the condition that coefficients of a polynomial should be positive
for all its roots to be in the left s-plane is only a necessary condition. 

Sufficient condition of stability: 
2.4.2.1.Method I (using determinants) 

The coefficients of the characteristics equation are represented by determinant form
as follows. 

1 3 5

2 4

1 30

n n n

n n n
n
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a a a

a a

  

 
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




(9.8) 

Here, the determinant decreases by two along the row by one down the
column. For stability, the following conditions must satisfy. 

1 3 5
1 3

1 1 2 3 2 4
2

1 3

0, 0, 0
0

n n n
n n

n n n n
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a a a
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a a a a
a a
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  
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  


 

          (9.9) 
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2.4.2.2.Method II (using arrays) 
The coefficients of the characteristics equation are represented by array form as 
follows. 

 

2 4
1

1 3 5
2

1 3 5
3

1 3 5

n
n n n

n
n n n

n
n n n

n
n n n

a a as
a a as
b b bs
c c cs

 


  


  


  



 (9.10) 

Where, 
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1

1 4 5
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1

1 3 1 3
1

1
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( )( ) ( )      
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n

n
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n

n
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a
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b
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


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










 (9.11) 

For stability, the following conditions must satisfy. 
The number of roots of B(s) with positive real parts is equal to the number of sign 
changes an, an-1, bn-1, cn-1, etc. 

 

Example: 

4. Find stability of the following system given by ( )
( 1)

KG s
s s




 and ( ) 1H s   using Routh-

Hurwitz stability criterion. 

Solution: 

In the system,   2
( ) ( 1)

1 ( ) ( ) 1
( 1)

K
G s Ks sT s KG s H s s s K

s s

  
  



 

Method-I, 

Characteristics equation,   2 0B s s s K     

Here, 
1

2

1
1 0
1

K
K

 

  
 

For stability, 1

2

0
0

 

 
 

The system is always stable for K>0. 

Method-II, 
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Characteristics equation,   2 0B s s s K     

Here, Routh array is 
2

1

0

1
1 0

s K
s

Ks

 

There are no sign changes in first column elements of this array.Therefore, the system is always stable 
for K>0. 

5. Find stability of the following system given by ( )
( 2)( 4)

KG s
s s s


 

and ( ) 1H s   using 

Routh-Hurwitz stability criterion. 

Solution: 

In the system, 
 

 
    3 2

( ) ( 2)( 4)
1 6 81

( 2)( 4)

K
G sC s Ks s s

KR s G s H s s s s K
s s s

   
   

 

 

Method-I, 

General form of characteristics equation,   3 2
3 2 1 0 0B s a s a s a s a      

And in this system, characteristics equation is   3 26 8 0B s s s s K      

Here,sufficient condition of stability suggests 

 

 

1 2

3

6
8 0, 48 0,

1 8

6 0
1 8 0 48 0
0 6

K
K

K
K K

K

       

    

 

Therefore, the system is always stable for 48K  . 

Method-II, 

Characteristics equation is   3 26 8 0B s s s s K      

andRouth’s array 

3

2

1

0

1 8
6

48 0
6

s
Ks

K
s

s K

  

There are no sign changes in first column elements of this array if 48K  . Therefore, the system is 
always stable for 0 48K  . 
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6. Find stability of the following system given by   3 25 10 3B s s s s    using Routh-Hurwitz 
stability criterion. 

Solution: 

In this problem, given Characteristics equation is   3 25 10 3 0B s s s s     , andRouth’s array is 

3

2

1

0

1 10
5 3

9.4 0
3

s

s

s

s

 

There are no sign changes in first column elements of this array. Therefore, the system is always 
stable. 

7. Find stability of the following system given by   3 22 3 10B s s s s     using Routh-Hurwitz 
stability criterion. 

Solution: 

In this problem, given characteristics equation is 

  3 22 3 10 0B s s s s     and 

Routh’s array is 
3

2

1

0

1 3
2 10
2 0

10

s

s

s

s


 

There are two sign changes in first column elements of this array. Therefore, the system is unstable. 

8. Examine stability of the following system given by 5 4 3 22 4 8 3 1s s s s s      using Routh-Hurwitz 
stability criterion. 

Solution: 

In this problem, Routh’s array is 
5

4

3

2

1

0

1 4 3
2 8 1
0 2.5

s

s

s

s

s

s


 

Here, the criterion fails. To remove the above difficulty, the following two methods can be used. 

Method-1 

(i) Replace 0 by ε(very small number) and complete the array with ε. 
(ii) Examine the sign change by taking 0   

Now, Routh’s array becomes 
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5

4

3

2

1

0

1 4 3
2 8 1

2.5 0
5 8 1 0

5 82.5

5 8

1

s

s

s

s

s

s





 








   
 



 

Now putting 0  , Routh’s array becomes 
5

4

3

2

1

0

1 4 3
2 8 1

2.5 0
5 8 1 0

5 82.5

5 8

1

s

s

s

s

s

s





 








   
 



 

There are two sign changes in first column elements of this array. Therefore, the system is unstable. 

Method-2 

Replace s by . The system characteristic equation 5 4 3 22 4 8 3 1 0s s s s s       becomes 

5 4 3 2

1 2 4 8 3 1 0
Z Z Z Z Z
       

5 4 3 23 8 4 2 1 0Z Z Z Z Z        

Now, Routh’s array becomes 
5

4

3

2

1

0

1 8 2
3 4 1

6.67 1.67 0
3.25 1 0
0.385 0 0

1 0 0

s
s

s

s
s

s



 

There are two sign changes in first column elements of this array. Therefore, the system is unstable. 

9. Examine stability of the following system given by 5 4 3 22 2 4 4 8s s s s s      using Routh-Hurwitz 
stability criterion. 

Solution: 

In this problem, Routh’s array is 

1
Z
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5

4

3

2

1

0

1 2 4
2 4 8
0 0 0

s
s

s

s
s

s

Here, the criterion fails. To remove the above difficulty, the following two methods can be used. 
The auxillary equation is 
  4 22 4 8A s s s  

  38 8
dA s

s s
ds 

  

Now, the array is rewritten as follows. 
5

4

3

2

1

0

1 2 4
2 4 8
8 8 0
2 8 0
24 0
8

s
s

s

s
s

s



There are two sign changes in first column elements of this array. Therefore, the system is
unstable. 
10. Examine stability of the following system given by 4 3 25 2 3 1 0s s s s     using Routh-Hurwitz

stability criterion. Find the number of roots in the right half of the s-plane. 

Solution: 

In this problem, Routh’s array is 
4

3

2

1

0

1 2 2
5 3 0

1 .4 2
4 .1 4 0
2

s

s

s

s

s



There are two sign changes in first column elements of this array. Therefore, the system is unstable.
There are two poles in the right half of the s-plane. 

Advantages of Routh-Hurwitz stability 
(i) Stability can be judged without solving the characteristic equation 
(ii) Less calculation time 
(iii) The number of roots in RHP can be found in case of unstable condition 
(iv) Range of value of K for system stability can be calculated 
(v) Intersection point with the jw-axis can be calculated 
(vi) Frequency of oscillation at steady-state is calculated 
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Disadvantages of Routh-Hurwitz stability 
(i) It is valid for only real coefficient of the characteristic equation 
(ii) Unable to give exact locations of closed-loop poles 
(iii) Does not suggest methods for stabilizing an unstable system 
(iv) Applicable only to the linear system 



Root locus 

Definition: 

The locus of all the closed-loop poles for various values of the open-loop gain K is called root locus.
The root-locus method is developed by W.R. Evans in 1954. It helps to visualize the various possibil-
ities of transient response of stable systems. 
Closed-loop response function 

(
( )

( ) 1 ( ) ( )
C s G s
R s G s H s




 (10.1) 

Characteristic equation 

1 2

1 2

( )( )...( )1 ( ) ( ) 1 0
( )( )...( )

m

n

K s z s z s zG s H s
s p s p s p

  
   

  
 (10.2) 

Vector from open-loop pole to the root-locus 

Vector from open-loop zero to the root-locus 

Behaviors of closed-loop poles 

Closed-loop poles  negative 
and real 

Exponential decay Stable

Closed-loop poles complex
with negative real parts 

Decaying and oscillatory Stable 

Closed-loop poles  positive and
real 

Exponential increase Unstable 

Closed-loop poles complex
with positive real parts 

Exponential and oscillatory
increase 

Unstable 

BASIS for CONSTRUCTION 



Construction steps 
1. Determine the number of open-loop poles and zeros 
2. Mark open-loop poles and zeros on the s-plane 
3. Determine parts of the root-locus on the real axis 
4. Determine breakaway and break-in points 
5. Draw asymptotes to the root-locus 
6. Determine angles of departure 
7. Determine angles of arrival 

8. Determine points on the root-locus crossing imaginaryaxis 
9. Obtain additional points and complete the root-locus 

Starting points 
C

1 2

1 2

( )( )...( )1 ( ) ( ) 1 0
( )( )...( )

m

n

K s z s z s zG s H s
s p s p s p

  
   

  
 (10.3) 

For K=0, 

1 2 1 2

1 2

( )( )...( ) ( )( )...( ) 0
( )( )...( )

n m

n

s p s p s p K s z s z s z
s p s p s p

      
 

  

1 2( )( )...( ) 0ns p s p s p     (10.4) 

Open-loop poles are also closed-loop poles for K=0. A root-locus starts from every open-loop pole. 

Ending points 
Characteristics equation of a closed-loop system 

1 2

1 2

( )( )...( )1 ( ) ( ) 1 0
( )( )...( )

m

n

K s z s z s zG s H s
s p s p s p

  
   

  
 (10.5) 

For K=∞, 

1 2

1 2

( )( )...( )1
( )( )...( )

m

n

K s z s z s z
s p s p s p

  


  
 

1 2( )( )...( ) 0ms z s z s z     (10.6) 

Root-locus ends at an open-loop zero or at infin-
ity. 

1 1 ( ) ( ) 1 ( ) ( ) (cos sin ) 0G s H s G s H s j      (10.7) 

Angle criterion: 
0

1 1

180 360
n m

i j
i j

k   
 

     (10.8) 

Where, i  angle in case of ith pole and j  angle in case of jth zero 
Magnitude criterion: 



( ) ( ) 1G s H s  (10.9) 

D esiging at a root-locus point 
Using the magnitude of vectors drawn from open-loop poles and zeros to the root-locus point, we get 

1 1 2

1 2

1

( )
| ( ) || ( ) | ... | ( ) |
| ( ) || ) | ... | ( ) |

( )

n

i
i n
m

m
j

j

s p
s p s p s p K
s z s z s z

s z






  

 
  






(10.10) 

Gain at a root-locuspoint is determinedusing synthetic division. 

Example: 
Determine K of the characteristic equation for the root s=-0.85. 

Solution: 
3 26 8 0S s s K    (10.11) 

1 6 8 K

-0.85 -4.378 -3.079 

1 5.15 3.622 K-3.079=0 

Determine parts of the root-locus on the real axis 
1. Start from open-loop poles on the real axis, extend on the real axis for increasing

values of the gain and end at an open-loop zero on the real axis. 
2. Start from open-loop poles on the real axis, extend on the real axis for increasing

values of the gain and end at an infinite value on the real axis. 
3. Start from a pair of open-loop poles on the real axis, extend on the real axis for

increasing values of gain, meet at a point and then leave the real axis and end at a
complex open-loop zero or infinity. 

4. Start from a pair of open-loop poles on the real axis, extend on the real axis for
increasing values of gain, meet at a point and then leave the real axis. They may once
again enter the real axis and end at open-loop zeros or at a large value on the real axis. 

5. Start from a pair of complex open-loop poles, enter the real axis and end at an open-
loop zero or an infinite value on the real axis. They could leave the real axis again and
end at a complex open-loop zero or infinity. 

Angle contributions from complex poles  
Complex poles and zeros do not contribute to the angle criterion on the real axis 



Determine breakaway and break-in points of the root-locus ( )

1 ( ) ( ) 1 0
( )

A sG s H s K
B s

    (10.12) 

( ) ( ) ( ) 0f s B s KA s   (10.13) 

( )
)

B sK
As

   (10.14) 

1 2 1( ) ( ) ( )...( ) 0r
n rf s s s s s s s       (10.15) 

1
1 2 1 1 3 1

( ) ( ) ( )...( ) ( ) .( )..( ) ...r r
n r n r

df s r s s s s s s s s s s s s
ds


            (10.16) 

1

( ) 0
s s

df s
ds 

 (10.17) 

' ' '( ) ( ) ( ) 0f s B s KA s   (10.18) 

'

'
( )
( )

B sK
A s

    (10.19) 

Therefore, 

' '( ) ( ) ( ) ( ) 0B s A s B s A s  (10.20) 

At breakaway and break-in points of the root-locus, 



' '

2
( ) ( ) ( ) ( ) 0

( )
dK B s A s B s A s
ds A s


   (10.21) 

 Draw asymptotes to the root-locus 

Angle of asymptotes 
0180 360

( )c
k

n m






where, k=0, 1, 2, 3.. 

Location of asymptotes 
1 2

1 2

( )( )...( )
( )( )...( )

n

m

s p s p s pK
s z s z s z
  

 
  

 (10.22) 

1
1 2

1
1 2

( ... )
( ... ) ...

n n
n

m m
m

s p p p sK
s z z z s





   
 

   


(10.23) 

1
1 2 1 2[( ... ) ( ... )] ...n m n m

n mK s p p p z z z s           (10.24) 

i cs p s    (10.25) 

( )i cs z s    (10.26) 

1( ) ( ) ...
( )

n
n m n mc

cm
c

sK s n m s
s





  

     


(10.27) 

1 2 1 2( ... ) ( ... )
( )

n m
c

p p p z z z
n m


    




(10.28) 

Angle of departure 

1 2 1180 ( )d       (10.29) 



d=180
o

- angles of vectors to the complex open-loop pole in question from other open - loop poles
+ angles of vectors to the complex open-loop pole in question  from all open-loop zeros 

Angle of arrival 

1 3 1 2 3180 ( ) ( )a           (10.30) 

a=180
o

- angles of vectors to the complex open-loop zero  in question from other open- loop zeros
+ angles of vectors to the complex open-loop zero in question from all open-loop poles 

Determine points on the root-locus crossing imaginary axis 
Re [1 ( ) ( )] 0al G j H j   (10.31) 

[1 ( ) ( )] 0imaginary G j H j   (10.32) 

Example 
Problem-1: Draw the root-locus of the feedback system whose open-loop transfer function is given 

by ( ) ( )
( 1)

KG s H s
s s 




Solution: 
Step 1: Determine the number of open-loop poles and zeros
Number of open-loop poles n=2 
Number of open-loop zeros m=0 
Open-loop poles: s=0 and s=-1 



Step 2: Mark open-loop poles and zeros on the s-plane 

Step 3: Determine parts of the root-locus on the real axis 
Test points on the positive real axis 

Test points in between the open-lop poles 

Step 4: Determine breakaway and break-in point
Characteristic equation, ( 1)K s s  

2 1 0dK s
ds

   

breakaway point as σ
b
=-0.5 



Gain at the breakaway point 
| 0.5 0 || 0.5 ( 1) | 0.25bK         

Step 5: Draw asymptotes of the root-locus 
Angle of asymptotes: 

0

0

0

180 360 180 360
( ) 2

90 0

270 1

c c

c

c

k k
n m

k
k

 





 
  



 

 
Centroid of asymptotes 

1 2 1 2( ... ) ( ... ) 0 1 0.5
( ) 2

n m
c

p p p z z z
n m


     

   


Steps 6 & 7: Since there are no complex open-loop poles or zeros, angle of departure and arrival need
not be computed 
Step 8: Determine points on the root-locus crossing imaginary axis 

21 1 0
( 1)

KGH s s K
s s

      


2 2( ) ( ) ( ) ( )B j j j K K j           
2 0 0K j    

The root-locus does not cross the imaginary axis for any value of K>0  



Here, 
1 1 4

2
Ks   

  

Problem-2: Draw the root-locus of the feedback system whose open-loop transfer function is given 

by ( ) ( )
( 2)( 4)

KG s H s
s s s


 

Solution: 
Step 1: Determine the number of open-loop poles and zeros
Number of open-loop poles n=3 
Number of open-loop zeros m=0 
Open-loop poles: s=0, s=-2 and s=-4 
Step 2: Mark open-loop poles and zeros on the s-plane 

Step 3: Determine parts of the root-locus on the real axis 
Test points on the positive real axis 



Test points in between the open-lop poles 

Step 4: Determine breakaway and break-in point
Characteristic equation, ( 2)( 4)K s s s   

( 2)( 4) ( 4) ( 2) 0dK s s s s s s
ds

        

Breakaway point as σb=-0.85 and –3.15 
σb = –3.15 is not on the root-locus and therefore not a breakaway or break-in point
Gain at the breakaway point 



| 0.85 0 || 0.855 ( 2) || 0.85 ( 4) | 3.079bK            

1 6 8 K

-0.85 -4.378 -3.079 

1 5.15 3.622 K-3.079=0 

Step 5: Draw asymptotes of the root-locus 
Angle of asymptotes: 

0

0

0

0

180 360 180 360
( ) 3

60 0

180 1

300 2

c

c

c

c

k k
n m
k

k
k









 
 



 

 

 
Centroid of asymptotes 

1 2 1 2( ... ) ( ... ) 0 2 4 2
( ) 3

n m
c

p p p z z z
n m

       
   



Steps 6 & 7: Since there are no complex open-loop poles or zeros, angle of departure and arrival need
not be computed 

Step 8: Determine points on the root-locus crossing imaginary axis 
3 21 1 6 8 0

( 2)( 4)
KGH s s s K

s s s
       

 
3 2 2 3( ) ( ) 6( ) 8 ( 6 ) (8 ) 0B j j j j K K j              



 

When imaginary-part is zero, then 8 j 8s      and when real-part is zero, 
then 26 48K   . 
The root-locus does not cross the imaginary axis for any value of K>48. 

1 6 8 48 

+j2.828 -8+j16.97 -48

1 6+j2.828 J16.97 0

1 6+j2.828 J16.97  

-j2.828 -j16.97  

1 6 0 

Therefore, closed-loop pole on the real axis for K=48 at 6s  

No. Closed-loop pole
on the real axis K Second and third

closed- loop poles Remarks 

1 -4.309 3.07 -0.85,-0.85 Already computed

2 -4.50 5.625 -0.75j0.829  

3 -5.00 15 -0.5j1.6583 

4 -5.50 28.875 -0.25j2.2776  

5 -6.00 48 j2.8284 Already computed

6 -6.5 73.125 0.25j3.448  

Determine the gain corresponding to s=-4.5
K=|-4.5-(-4)||-4.5-(-2)||-4.5-0|= 5.625 

3 26 8 0s s s K   

1 6 8 K 

-4.5 -6.75 -5.625

1 1.5 1.25 K-5.625=0 

2( 1.5 1.25) 0s s  

2,3 0.75 0.829s j    



Problem-3: Draw the root-locus of the feedback system whose open-loop transfer function is given 

by 2( ) ( )
( 1)
KG s H s

s s 



Solution: 
Step 1: Determine the number of open-loop poles and zeros
Number of open-loop poles n=3 
Number of open-loop zeros m=0 
Open-loop poles: s=0, s=0 and s=-1 
Step 2: Mark open-loop poles and zeros on the s-plane 

Step 3: Determine parts of the root-locus on the real axis 
Test points on the positive real axis 



 

Step 4: Determine breakaway and break-in point
Characteristic equation, 2 ( 1)K s s  

 

0

2 ( 1) 0
2 3 0

dK
ds

s s s
s s



    

   

Breakaway point as σb= -2/3and 0 
σb = -2/3is not on the root-locus and therefore not a breakaway or break-in point.
Therefore σb= 0 and the two loci start from the origin and breakaway at the origin itself. 

Step 5: Draw asymptotes of the root-locus 
Angle of asymptotes: 

0

0

0

0

180 360 180 360
( ) 3

60 0

180 1

300 2

c

c

c

c

k k
n m
k

k
k









 
 



 

 

 
Centroid of asymptotes 

1 2 1 2( ... ) ( ... ) 0 1 1
( ) 3 3

n m
c

p p p z z z
n m

      
   



Steps 6 & 7: Since there are no complex open-loop poles or zeros, angle of departure and arrival need
not be computed. 



Step 8: Determine points on the root-locus crossing imaginary axis 
3 2( )B s s s K  

3 2 2 3( ) ( ) ( ) ( )B j j j K K j           
When imaginary-part is zero, then 0 0s    and when real-part is zero, 
then 2 0K   . 
The root-locus does not cross the imaginary axis for any value of K>0.
Additional closed-loop poles 

No. Closed-loop pole on the 
real axis 

K Second and third 
closed- loop poles 

1 -1.5 1.125 0.25±j0.82

2 -2.0 4 0.50±j1.32

3 -2.5 9.375 0.75±j1.78 

4 -3.0 18 1.00±j2.23 

Determine the gain corresponding to s=-1.5
K=|-1.5-(-1)||-1.5-(0)||-1.5-0|= 1.125 

3 2 1.125 0s s  

1 1 0 1.125 

-1.5 0.75 -1.125 

1 -0.5 0.75 0

2( 1.5 1.25) 0s s  

2,3 0.25 0.82s j    



Problem-4: Draw the root-locus of the feedback system whose open-loop transfer function is given 

by 4 3 2( ) ( )
5 8 6

KG s H s
s s s s


  

Solution: 
Step 1: Determine the number of open-loop poles and zeros 

4 3 2 25 8 6 ( 2 2)( 3) ( 1 )( 1 )( 3)s s s s s s s s s j s j s s              
Number of open-loop poles n=4 
Number of open-loop zeros m=0 
Open-loop poles: s=0 and s=-3, s=-1+j and s=-1-j  

Step 2: Mark open-loop poles and zeros on the s-plane 

Step 3: Determine parts of the root-locus on the real axis 
Test points on the positive real axis 



Step 4: Determine breakaway and break-in point
Characteristic equation, 4 3 2( 5 8 6 )K s s s s      

3 2

3 2

0

4 15 16 6 0

3.75 4 1.5 0

dK
ds

s s s

s s s



    

    
' 2( ) 3 7.5 4f s s s  

This equation is solved using Newton-Raphson’s method 

1 '

( )
( )

n
n n

n

f ss s
f s    

No.
ns ( )nf s ' ( )nf s 1ns 

1 -3.75 -13.5 18.0625 -3.0026

2 -3.0026 -3.7721 8.5273 -2.5602

3 -2.5602 -0.9421 4.4624 -2.3491

4 -2.3491 -0.1658 2.9364 -2.2926

5 -2.2926 -0.0103 2.5737 -2.2886

6 -2.2886
-5.03x10

-5

Breakaway point as σb= -2.3
Gain at the breakaway point, | 2.3 ( 3) || 2.3 0 || 2.3 ( 1 ) || 2.3 ( 1 ) | 4.33K j j              

1 5 8 6 K

-2.2886 -6.2053 -4.1073 -4.3316



1 2.7114 1.7947 1.8926 0 

Other closed-loop poles for K=4.3 

1 2.7114 1.7947 1.893

-2.2886 -0.9676 -1.893

1 0.4228 0.8270 0 

s
3,4

 =-0.2114±j0.8814  

Step 5: Draw asymptotes of the root-locus 
Angle of asymptotes: 

0

0

0

0

0

180 360 180 360
( ) 4

45 0

135 1

225 2

315 3

c

c

c

c

c

k k
n m
k

k

k

k











 
 



 

 

 

 

Centroid of asymptotes 
1 2 1 2( ... ) ( ... ) 0 3 1 1 1.25

( ) 4
n m

c
p p p z z z j j

n m
          

   




Steps 6:Determine angles of departure 

0 0 0 0 0 0180 (135 26.56 90 ) 71.56 288.44d         



Step 7: As there are no complex open-loop zeros, angle of arrival need not be computed. 

Step 8: Determine points on the root-locus crossing imaginary axis 
4 3 2( ) 5 8 6B s s s s s K    

4 3 2 4 2 3( ) ( ) 5( ) 8( ) 6 ( 8 ) (6 5 )B j j j j j K K j                   

When imaginary-part is zero, then 6 6
5 5

s j      and when real-part is zero, 

then 
26 68 8.16

5 5
K          

   
. 

There are two closed-loop poles on the imaginary axis for any value of K>0.
Additional closed-loop poles 

No. S1 S2 S3,4 K 

1 -0.25 -2.9217 -0.9142±0.7969j 1.0742 

2 -0.50 -2.8804 -0.8098±0.655j 1.5625 

3 -0.75 -2.8593 -0.6953±0.5938j 1.7930 

4 -1.0 -2.8393 -0.5804±0.6063j 2.0000

5 -1.25 -2.8055 -0.4722±0.6631j 2.3242

6 -1.75 -2.6562 -0.3763±0.7354j 2.8125

7 -2.0 -2.5214 -0.2393±0.8579j 4.0



Additional Information from Root-Locus Plot 
1. Gain Margin 

2

1

20log KGM
K

  (10.33) 

K1 is the gain of a feedback system at some point on the root-locus 
K2 is the gain at which the system becomes unstable  
2. Transient Characteristics 

Where, 
2

1 1
tan





 

  

3. Percentage overshoot 
/ tan

pM e    (10.34) 

4. Settling time 
4

s
n

t


 (10.35) 

5. Steady-state error is also related to K. 

Example 
Problem-1: Draw the root-locus of the feedback system whose open-loop transfer function is given 

by 
   

2

4 3 2

10 100
( ) ( ) , 1

20 100 500 1500

K s s
G s H s H s

s s s s

 
 

   
(a) Determine the value of gain at which the system will be stable and as well have a maximum
overshoot of 5%.  
(b) What is the gain margin at this point?  
(c) What is the steady-state error for a unit step excitation at the above point?
Solution: 



 

(a) 
0

tan 1.0487
ln

46
pM





 
 

 

2

1 0.690
1 tan 

 


(10.36) 

(b) 
192.220 log 2.65
261

GM dB    

(c) Position error 
2

4 3 2
0

( 10 100) 100
20 100 500 1500 1500lims

s

K s s KK
s s s s

 
 

   
 

Steady-state error, 
1 1 1500( )

1 1 100 /1500 1500 100e
s

S
K K K

   
  

 

1500( ) 5.4%
1500 100 261eS   

 
 



Root locus 

The locus of all the closed-loop poles for various values of the open-loop gain K is called root locus.
The root-locus method is developed by W.R. Evans in 1954. It helps to visualize the various
possibilities of transient response of stable systems. 
Closed-loop response function 

( ) ( )
( ) 1 ( ) ( )

C s G s
R s G s H s




 (10.37) 

Characteristic equation 

1 2

1 2

( )( )...( )1 ( ) ( ) 1 0
( )( )...( )

m

n

K s z s z s zG s H s
s p s p s p

  
   

  
 (10.38) 

Vector from open-loop pole to the root-locus 

Vector from open-loop zero to the root-locus 

Behaviors of closed-loop poles 

Closed-loop poles  negative
and real 

Exponential decay Stable 

Closed-loop poles complex
with negative real parts 

Decaying and oscillatory Stable 

Closed-loop poles  positive and 
real 

Exponential increase Unstable

Closed-loop poles complex 
with positive real parts 

Exponential and oscillatory 
increase 

Unstable

BASIS for CONSTRUCTION 
Construction steps 

10. Determine the number of open-loop poles and zeros 



 

11. Mark open-loop poles and zeros on the s-plane 
12. Determine parts of the root-locus on the real axis 
13. Determine breakaway and break-in points 
14. Draw asymptotes to the root-locus 
15. Determine angles of departure 
16. Determine angles of arrival 
17. Determine points on the root-locus crossing imaginary axis 
18. Obtain additional points and complete the root-locus 

Starting points 
Characteristics equation of a closed-loop system 

1 2

1 2

( )( )...( )1 ( ) ( ) 1 0
( )( )...( )

m

n

K s z s z s zG s H s
s p s p s p

  
   

  
 (10.39) 

For K=0, 

1 2 1 2

1 2

( )( )...( ) ( )( )...( ) 0
( )( )...( )

n m

n

s p s p s p K s z s z s z
s p s p s p

      
 

  

1 2( )( )...( ) 0ns p s p s p     (10.40) 

Open-loop poles are also closed-loop poles for K=0. A root-locus starts from every open-loop pole. 

Ending points 
Characteristics equation of a closed-loop system 

1 2

1 2

( )( )...( )1 ( ) ( ) 1 0
( )( )...( )

m

n

K s z s z s zG s H s
s p s p s p

  
   

  
 (10.41) 

For K=∞, 

1 2

1 2

( )( )...( )1
( )( )...( )

m

n

K s z s z s z
s p s p s p

  


  
 

1 2( )( )...( ) 0ms z s z s z     (10.42) 

Root-locus ends at an open-loop zero or at infinity. 

Magnitude and angle criterion 
1 ( ) ( ) 1 ( ) ( ) (cos sin ) 0G s H s G s H s j      (10.43) 

Angle criterion: 
0

1 1

180 360
n m

i j
i j

k   
 

     (10.44) 

Where, i  angle in case of ith pole and j  angle in case of jth zero 
Magnitude criterion: 

( ) ( ) 1G s H s  (10.45) 

Determining gain at a root-locus point 



Using the magnitude of vectors drawn from open-loop poles and zeros to the root-locus point, we get 

1 1 2

1 2

1

( )
| ( ) || ( ) | ... | ( ) |
| ( ) || ) | ... | ( ) |

( )

n

i
i n
m

m
j

j

s p
s p s p s p K
s z s z s z

s z






  

 
  






(10.46) 

Gain at a root-locus point is determined using synthetic division. 

Example: 
Determine K of the characteristic equation for the root s=-0.85. 

Solution: 
3 26 8 0S s s K    (10.47) 

1 6 8 K 

-0.85 -4.378 -3.079

1 5.15 3.622 K-3.079=0

Determine parts of the root-locus on the real axis 
6. Start from open-loop poles on the real axis, extend on the real axis for increasing

values of the gain and end at an open-loop zero on the real axis. 
7. Start from open-loop poles on the real axis, extend on the real axis for increasing

values of the gain and end at an infinite value on the real axis. 
8. Start from a pair of open-loop poles on the real axis, extend on the real axis for

increasing values of gain, meet at a point and then leave the real axis and end at a
complex open-loop zero or infinity. 

9. Start from a pair of open-loop poles on the real axis, extend on the real axis for
increasing values of gain, meet at a point and then leave the real axis. They may once
again enter the real axis and end at open-loop zeros or at a large value on the real axis. 

10. Start from a pair of complex open-loop poles, enter the real axis and end at an open-
loop zero or an infinite value on the real axis. They could leave the real axis again and
end at a complex open-loop zero or infinity. 

Angle contributions from complex poles  
Complex poles and zeros do not contribute to the angle criterion on the real axis 



 

Determine breakaway and break-in points of the root-locus
( )1 ( ) ( ) 1 0
( )

A sG s H s K
B s

    (10.48) 

( ) ( ) ( ) 0f s B s KA s   (10.49) 

( )
)

B sK
As

   (10.50) 

1 2 1( ) ( ) ( )...( ) 0r
n rf s s s s s s s       (10.51) 

1
1 2 1 1 3 1

( ) ( ) ( )...( ) ( ) .( )..( ) ...r r
n r n r

df s r s s s s s s s s s s s s
ds


            (10.52) 

1

( ) 0
s s

df s
ds 

 (10.53) 

' ' '( ) ( ) ( ) 0f s B s KA s   (10.54) 

'

'
( )
( )

B sK
A s

    (10.55) 

Therefore, 

' '( ) ( ) ( ) ( ) 0B s A s B s A s  (10.56) 

At breakaway and break-in points of the root-locus, 
' '

2
( ) ( ) ( ) ( ) 0

( )
dK B s A s B s A s
ds A s


   (10.57) 

Draw asymptotes to the root-locus 



Angle of asymptotes 
0180 360

( )c
k

n m






where, k=0, 1, 2, 3.. 

Location of asymptotes 
1 2

1 2

( )( )...( )
( )( )...( )

n

m

s p s p s pK
s z s z s z
  

 
  

 (10.58) 

1
1 2

1
1 2

( ... )
( ... ) ...

n n
n

m m
m

s p p p sK
s z z z s





   
 

   


(10.59) 

1
1 2 1 2[( ... ) ( ... )] ...n m n m

n mK s p p p z z z s           (10.60) 

i cs p s    (10.61) 

( )i cs z s    (10.62) 

1( ) ( ) ...
( )

n
n m n mc

cm
c

sK s n m s
s





  

     


(10.63) 

1 2 1 2( ... ) ( ... )
( )

n m
c

p p p z z z
n m


    




(10.64) 

Angle of departure 

1 2 1180 ( )d       (10.65) 



 

d=180
o

- angles of vectors to the complex open-loop pole in question from other open - loop poles
+ angles of vectors to the complex open-loop pole in question  from all open-loop zeros 

Angle of arrival 

1 3 1 2 3180 ( ) ( )a           (10.66) 

a=180
o

- angles of vectors to the complex open-loop zero  in question from other open- loop zeros
+ angles of vectors to the complex open-loop zero in question from all open-loop poles 

Determine points on the root-locus crossing imaginary axis 
Re [1 ( ) ( )] 0al G j H j   (10.67) 

[1 ( ) ( )] 0imaginary G j H j   (10.68) 

Example 
Problem-1: Draw the root-locus of the feedback system whose open-loop transfer function is given 

by ( ) ( )
( 1)

KG s H s
s s 




Solution: 
Step 1: Determine the number of open-loop poles and zeros
Number of open-loop poles n=2 
Number of open-loop zeros m=0 
Open-loop poles: s=0 and s=-1 



Step 2: Mark open-loop poles and zeros on the s-plane 

Step 3: Determine parts of the root-locus on the real axis 
Test points on the positive real axis 

Test points in between the open-lop poles 

Step 4: Determine breakaway and break-in point
Characteristic equation, ( 1)K s s  

2 1 0dK s
ds

   

breakaway point as σ
b
=-0.5

Gain at the breakaway point 



| 0.5 0 || 0.5 ( 1) | 0.25bK         

Step 5: Draw asymptotes of the root-locus 
Angle of asymptotes: 

0

0

0

180 360 180 360
( ) 2

90 0

270 1

c c

c

c

k k
n m

k
k

 





 
  



 

 
Centroid of asymptotes 

1 2 1 2( ... ) ( ... ) 0 1 0.5
( ) 2

n m
c

p p p z z z
n m


     

   


Steps 6 & 7: Since there are no complex open-loop poles or zeros, angle of departure and arrival need
not be computed 
Step 8: Determine points on the root-locus crossing imaginary axis 

21 1 0
( 1)

KGH s s K
s s

      


2 2( ) ( ) ( ) ( )B j j j K K j           
2 0 0K j    

The root-locus does not cross the imaginary axis for any value of K>0  



Here, 
1 1 4

2
Ks   

  

Problem-2: Draw the root-locus of the feedback system whose open-loop transfer function is given 

by ( ) ( )
( 2)( 4)

KG s H s
s s s


 

Solution: 
Step 1: Determine the number of open-loop poles and zeros
Number of open-loop poles n=3 
Number of open-loop zeros m=0 
Open-loop poles: s=0, s=-2 and s=-4 
Step 2: Mark open-loop poles and zeros on the s-plane 

Step 3: Determine parts of the root-locus on the real axis 
Test points on the positive real axis 



Test points in between the open-lop poles 

Step 4: Determine breakaway and break-in point
Characteristic equation, ( 2)( 4)K s s s   

( 2)( 4) ( 4) ( 2) 0dK s s s s s s
ds

        

Breakaway point as σb=-0.85 and –3.15 
σb = –3.15 is not on the root-locus and therefore not a breakaway or break-in point
Gain at the breakaway point 



| 0.85 0 || 0.855 ( 2) || 0.85 ( 4) | 3.079bK            

1 6 8 K

-0.85 -4.378 -3.079 

1 5.15 3.622 K-3.079=0 

Step 5: Draw asymptotes of the root-locus 
Angle of asymptotes: 

0

0

0

0

180 360 180 360
( ) 3

60 0

180 1

300 2

c

c

c

c

k k
n m
k
k

k









 
 



 

 

 
Centroid of asymptotes 

1 2 1 2( ... ) ( ... ) 0 2 4 2
( ) 3

n m
c

p p p z z z
n m


      

   


Steps 6 & 7: Since there are no complex open-loop poles or zeros, angle of departure and arrival need
not be computed 

Step 8: Determine points on the root-locus crossing imaginary axis 
3 21 1 6 8 0

( 2)( 4)
KGH s s s K

s s s
       

 
3 2 2 3( ) ( ) 6( ) 8 ( 6 ) (8 ) 0B j j j j K K j              



When imaginary-part is zero, then 8 j 8s       and when real-part is zero, 
then 26 48K   . 
The root-locus does not cross the imaginary axis for any value of K>48. 

1 6 8 48 

+j2.828 -8+j16.97 -48

1 6+j2.828 J16.97 0

1 6+j2.828 J16.97  

-j2.828 -j16.97  

1 6 0 

Therefore, closed-loop pole on the real axis for K=48 at 6s  

No. Closed-loop pole
on the real axis K Second and third

closed- loop poles Remarks 

1 -4.309 3.07 -0.85,-0.85 Already computed

2 -4.50 5.625 -0.75j0.829  

3 -5.00 15 -0.5j1.6583 

4 -5.50 28.875 -0.25j2.2776  

5 -6.00 48 j2.8284 Already computed

6 -6.5 73.125 0.25j3.448  

Determine the gain corresponding to s=-4.5
K=|-4.5-(-4)||-4.5-(-2)||-4.5-0|= 5.625 

3 26 8 0s s s K   

1 6 8 K 

-4.5 -6.75 -5.625

1 1.5 1.25 K-5.625=0

2( 1.5 1.25) 0s s  

2,3 0.75 0.829s j    



Problem-3: Draw the root-locus of the feedback system whose open-loop transfer function is given 

by 2( ) ( )
( 1)
KG s H s

s s 



Solution: 
Step 1: Determine the number of open-loop poles and zeros
Number of open-loop poles n=3 
Number of open-loop zeros m=0 
Open-loop poles: s=0, s=0 and s=-1 
Step 2: Mark open-loop poles and zeros on the s-plane 

Step 3: Determine parts of the root-locus on the real axis 
Test points on the positive real axis 



Step 4: Determine breakaway and break-in point
Characteristic equation, 2 ( 1)K s s  

 

0

2 ( 1) 0
2 3 0

dK
ds

s s s
s s



    

   
Breakaway point as σb= -2/3and 0 
σb = -2/3is not on the root-locus and therefore not a breakaway or break-in point.
Therefore σb = 0 and the two loci start from the origin and breakaway at the origin itself. 

Step 5: Draw asymptotes of the root-locus 
Angle of asymptotes: 

0

0

0

0

180 360 180 360
( ) 3

60 0

180 1

300 2

c

c

c

c

k k
n m
k
k

k









 
 



 

 

 
Centroid of asymptotes 

1 2 1 2( ... ) ( ... ) 0 1 1
( ) 3 3

n m
c

p p p z z z
n m

      
   



Steps 6 & 7: Since there are no complex open-loop poles or zeros, angle of departure and arrival need
not be computed. 



 

Step 8: Determine points on the root-locus crossing imaginary axis 
3 2( )B s s s K  

3 2 2 3( ) ( ) ( ) ( )B j j j K K j           
When imaginary-part is zero, then 0 0s    and when real-part is zero, 
then 2 0K   . 
The root-locus does not cross the imaginary axis for any value of K>0.
Additional closed-loop poles 

No. Closed-loop pole on the 
real axis 

K Second and third 
closed- loop poles 

1 -1.5 1.125 0.25±j0.82

2 -2.0 4 0.50±j1.32

3 -2.5 9.375 0.75±j1.78 

4 -3.0 18 1.00±j2.23 

Determine the gain corresponding to s=-1.5
K=|-1.5-(-1)||-1.5-(0)||-1.5-0|= 1.125 

3 2 1.125 0s s  

1 1 0 1.125 

-1.5 0.75 -1.125 

1 -0.5 0.75 0

2( 1.5 1.25) 0s s  

2,3 0.25 0.82s j    



Problem-4: Draw the root-locus of the feedback system whose open-loop transfer function is given 

by 4 3 2( ) ( )
5 8 6

KG s H s
s s s s


  

Solution: 
Step 1: Determine the number of open-loop poles and zeros 

4 3 2 25 8 6 ( 2 2)( 3) ( 1 )( 1 )( 3)s s s s s s s s s j s j s s              
Number of open-loop poles n=4 
Number of open-loop zeros m=0 
Open-loop poles: s=0 and s=-3, s=-1+j and s=-1-j  

Step 2: Mark open-loop poles and zeros on the s-plane 

Step 3: Determine parts of the root-locus on the real axis 
Test points on the positive real axis 



 

Step 4: Determine breakaway and break-in point
Characteristic equation, 4 3 2( 5 8 6 )K s s s s      

3 2

3 2

0

4 15 16 6 0

3.75 4 1.5 0

dK
ds

s s s

s s s



    

    
' 2( ) 3 7.5 4f s s s  

This equation is solved using Newton-Raphson’s method 

1 '

( )
( )

n
n n

n

f ss s
f s    

No. ns ( )nf s ' ( )nf s 1ns 

1 -3.75 -13.5 18.0625 -3.0026 

2 -3.0026 -3.7721 8.5273 -2.5602 

3 -2.5602 -0.9421 4.4624 -2.3491 

4 -2.3491 -0.1658 2.9364 -2.2926 

5 -2.2926 -0.0103 2.5737 -2.2886 

6 -2.2886 -5.03x10
-5

Breakaway point as σb= -2.3
Gain at the breakaway point, | 2.3 ( 3) || 2.3 0 || 2.3 ( 1 ) || 2.3 ( 1 ) | 4.33K j j              

1 5 8 6 K 

-2.2886 -6.2053 -4.1073 -4.3316 



1 2.7114 1.7947 1.8926 0 

Other closed-loop poles for K=4.3 

1 2.7114 1.7947 1.893 

-2.2886 -0.9676 -1.893

1 0.4228 0.8270 0 

s
3,4

 =-0.2114±j0.8814  

Step 5: Draw asymptotes of the root-locus 
Angle of asymptotes: 

0

0

0

0

0

180 360 180 360
( ) 4

45 0

135 1

225 2

315 3

c

c

c

c

c

k k
n m
k

k

k

k











 
 



 

 

 

 

Centroid of asymptotes 
1 2 1 2( ... ) ( ... ) 0 3 1 1 1.25

( ) 4
n m

c
p p p z z z j j

n m
          

   




Steps 6: Determine angles of departure 

0 0 0 0 0 0180 (135 26.56 90 ) 71.56 288.44d         



Step 7: As there are no complex open-loop zeros, angle of arrival need not be computed. 

Step 8: Determine points on the root-locus crossing imaginary axis 
4 3 2( ) 5 8 6B s s s s s K    

4 3 2 4 2 3( ) ( ) 5( ) 8( ) 6 ( 8 ) (6 5 )B j j j j j K K j                   

When imaginary-part is zero, then 6 6
5 5

s j      and when real-part is zero, 

then 
26 68 8.16

5 5
K          

   
. 

There are two closed-loop poles on the imaginary axis for any value of K>0.
Additional closed-loop poles 

No. S1 S2 S3,4 K 

1 -0.25 -2.9217 -0.9142±0.7969j 1.0742 

2 -0.50 -2.8804 -0.8098±0.655j 1.5625 

3 -0.75 -2.8593 -0.6953±0.5938j 1.7930 

4 -1.0 -2.8393 -0.5804±0.6063j 2.0000

5 -1.25 -2.8055 -0.4722±0.6631j 2.3242

6 -1.75 -2.6562 -0.3763±0.7354j 2.8125

7 -2.0 -2.5214 -0.2393±0.8579j 4.0



Additional Information from Root-Locus Plot 
6. Gain Margin 

2

1

20log KGM
K

  (10.69) 

K1 is the gain of a feedback system at some point on the root-locus 
K2 is the gain at which the system becomes unstable  
7. Transient Characteristics 

Where, 
2

1 1
tan





 

  

8. Percentage overshoot 
/ tan

pM e    (10.70) 

9. Settling time 
4

s
n

t


 (10.71) 

10. Steady-state error is also related to K. 

Example 
Problem-1: Draw the root-locus of the feedback system whose open-loop transfer function is given 

by 
   

2

4 3 2

10 100
( ) ( ) , 1

20 100 500 1500

K s s
G s H s H s

s s s s

 
 

   
(a) Determine the value of gain at which the system will be stable and as well have a maximum
overshoot of 5%.  
(b) What is the gain margin at this point?  
(c) What is the steady-state error for a unit step excitation at the above point?
Solution: 



(b) 
0

tan 1.0487
ln

46
pM





 
 

 

2

1 0.690
1 tan 

 


(10.72) 

(b) 
192.220 log 2.65
261

GM dB    

(c) Position error 
2

4 3 2
0

( 10 100) 100
20 100 500 1500 1500lims

s

K s s KK
s s s s

 
 

   
 

Steady-state error, 
1 1 1500( )

1 1 100 /1500 1500 100e
s

S
K K K

   
  

 

1500( ) 5.4%
1500 100 261eS   





 

UNIT-IV
Frequency Response Analysis 

Frequency Response 
This is defined as the steady-state response of a system due to a sinusoidal
input. 

Here, 

   
 

 
   ...

C s N s
G s

R s s a s b s c
 

  
 (11.1) 

     
   ...

N s R s
C s

s a s b s c
 

  
 (11.2) 

Let,   sinr t A t , then 

  2 2
AR s

s






 (11.3) 

Using eq (3) in eq (2), 

   
   

 

2 2

1 1 1 1 2

...

...

N s AC s
s a s b s c s

A A A B BC s
s a s b s c s j s j




 

       

      
    

(11.4) 

In time domain, eq (5) becomes 

  1 2 3 1 2...at bt ct j t j tc t A e A e A e B e B e           (11.5) 

The term with iA terms are decaying components. So, they tend to zero as time tends to infinity. 
Then, eq (5) becomes 

  1 2
j t j t

ssC t B e B e    (11.6) 

Where, 

     

     

1

2

2

2

j G j

s j

j G j

s j

A G s AB G j e
s j j

A G s AB G j e
s j j



















 








  



 


(11.7) 

Since,    G j G j    and    G j G j     



         
2 2

j t j tA Ac t G j e G j e
j j

      
  (11.8) 

   
2

j j
j t e ec t A G j e

j

 



  

    
 

(11.9) 

     sinc t A G j t     (11.10) 

     sinc t B t     (11.11) 

Where,    B A G j   

Therefore, the steady-state response of the system for a sinusoidal input of magnitude A and 
frequency  is a sinusoidal output with a magnitude  B  , frequency  and phase shift  . 

The following plots are used in frequency response. 

 Polar plot
 Bode plot 
 Magnitude versus phase angle plot 
Definition of frequency domain specifications 

(i) Resonant peak  rM : Maximum value of  M j when  is varied from 0 to ∞. 

(ii) Resonant frequency  r : The frequency at which rM occurs 

(iii) Cut-off frequency  c : The frequency at which  M j has a value 1
2

. It is the frequency 

at which the magnitude is 3dB below its zero frequency value 
(iv) Band-width  b : It is the range of frequencies in which the magnitude of a closed-loop 

system is 1
2

times of rM



(v) Phase cross-over frequency: The frequency at which phase plot crosses -1800 
(vi) Gain margin (GM): It is the increase in open-loop gain in dB required to drive the closed-loop

system to the verge of instability 
(vii) Gain cross-over frequency: The frequency at which gain or magnitude plot crosses 0dB line 

(viii) Phase margin (PM): It is the increase in open-loop phase shift in degree required to
drive the closed-loop system to the verge of instability 

Correlation between time and frequency response For a second order system 

 
 

2

2 22
n

n n

C s
R s s s


 


 

 (11.12) 

Putting s j

 
 

 
 

2

2 2

2

2

2

1

1 2

n

n n

nn

C j
R j j

C j
R j

j

 
    


  




 

 
   
    

  

(11.13) 

Let, 
n

u 


 , then 

 
   2

1
1 2

C j
R j u j u


 


 

 (11.14) 

Now,  

     M j M j M j     (11.15) 

Where, 

 
   

2 22

1
2

1

1 2

2tan
1

M j
u u

u
u





 


 

     

(11.16) 

Now, 

22 1
r

1M
 




(11.17) 

21 2r n     (11.18) 



2 4 21 2 4 4 2b n         (11.19) 

0180PM    (11.20) 

Where, 1

2 2

2tan
4 1 2


 


 

Advantages 
 Good accuracy 
 Possible to test in lab 
 Can be used to obtain transfer function that is not possible with analytical techniques 
 Easy to design open-loop transfer function from closed-loop performance in frequency 

domain 
 It is very easy to visualize the effect of disturbance and parameter variations. 

Disadvantages 
 Applied only to linear systems 
 Frequency response for existing system is possible to obtain if the time constant is up to few 

minutes 
 Time consuming procedure 
 Old and back dated method 



Bode Plots 
Magnitude plot and phase plot on a semi-log paper 

Magnitude plot on a semi-log paper 

20log | ( ) ( ) |M G j H j  dB 

Phase plot on a semi-log paper 



Magnitude versus phase Bode plot Nichols plot 

Table:Basic frequency response factors 

No Laplace term Frequency response Type of factor 

1 K K Constant

2 s j Derivative factor 

3 1/s 1/ j Integral factor 

4 s+1 (1+ j) First order derivative factor 

5 1/(s+1) 1/(1+ j) First order integral factor 

6 2 22 n ns s    2 2 2n nj      Second order derivative factor 

7 2 2
1

2 n ns s   2 2
1

2n nj    
 Second order integral factor 



Derivative factor: magnitude 
20 log 20logM j   dB (12.1) 

090j   (12.2) 

2
2 1

1

20log 20log 20logM 
 


    dB/decade (12.3) 

20log10 20M   dB/decade (12.4) 

20 log 2 6M   dB/octave (12.5) 

Table: Magnitude variation of a derivative factor for various multiples of the initial
frequency 

2

1


 1 2 3 4 5 6 7 8 9 10 

M dB 0 6 10 12 14 16 17 18 19 20 



 

Derivative Factor: (phase) 

Table 15.3Derivative factor 

Frequency, rad/s 
0.1 1 10 30 100 

Magnitude, dB -20 0 20 30 40
Phase, degrees 90 90 90 90 90

 Integral factor: magnitude 
120log 20logM
j




   dB (12.6) 

0270j   (12.7) 

2
2 1

1

20log 20log 20logM 
 


      dB/decade (12.8) 

20log10 20M     dB/decade (12.9) 

20log 2 6M    dB/octave (12.10) 



Table 12.4Magnitude variation of an integral factor for various multiples of the initial frequency 

2

1




1 2 3 4 5 6 7 8 9 10 

M , dB 0 -6 -10 -12 -14 -16 -17 -18 -19 -20

 Integral factor: phase 



Table: Bode magnitude and phase of an integral factor 

Frequency, rad/s

0.1 1 10 20 100

Magnitude, dB 20 0 -20 -26 -40 

Phase, degrees 270 270 270 270 270

First-order derivative factor: magnitude 

 
2

20 log 1 20log( 1M j     dB (12.11) 

For <<
c
, M≈0 dB

For >>
c
,
 

20log
c

M 


 dB (12.12) 

Here, 
c
 =1/ = corner frequency

For >
c
 

2
2 1

1

20log 20log 20logM 
 


     (12.13) 

20log10 20M   dB/decade (12.14) 

20 log 2 6M   dB/octave (12.15) 

Table 12.6Magnitude variation of a first-order derivative factor for various multiples of the corner
frequency 

c




1 2 3 4 5 6 7 8 9 10 

M ,
dB 

0 6 10 12 14 16 17 18 19 20 

 First-order derivative factor: phase 
 1 arctanj       (12.16) 

0 45 1 log

0 ;
10

1;

;

0
 10

90 10

c

c

c
c

c

ww

w w w

w w









 
 

 

 

 


 

(12.17) 



Table:Phase angles of a first-order derivative factor around the corner frequency 

c




1 2 3 4 5 6 7 8 9 10 

 , deg 45 59 66 72 76 80 83 86 88 90

c


 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

 , deg 0 2 4 7 10 14 18 24 31 45

First-order derivative factor For 
1 

Table 15.8Bode magnitude and phase 

Frequency, rad/s 

0.1 1 5 10 20 100

Magnitude, dB 0 3 14 20 26 40

Phase, degrees 0 45 76 90 90 90

First-order derivative factor: magnitude (3 dB correction at the corner frequency) 



First-order derivative Factor: phase 

First-order integral factor: magnitude 

 
2

1 120log 20log
1 1

M
j 

 
       

dB (12.18) 

 

 20l g

0,

 ,o

c

c
c

M w w

M dB w w






 


(12.19) 

2
2 1

1

20log 20log 20logM 
 


      dB/decade (12.20) 

20log 2 6M     dB/octave (12.21) 

Table:Magnitude variation of a first-order integral factor for various multiples of the corner
frequency 

c




1 2 3 4 5 6 7 8 9 10 

M ,
dB 

0 -6 -10 -12 -14 -16 -17 -18 -19 -20 



Table:Phase angles of a first-order integral factor around the corner frequency 

c




1 2 3 4 5 6 7 8 9 10 

 deg 315 301 294 288 284 280 277 274 272 270

c


 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

 deg 360 358 356 353 350 346 342 336 329 315

First-order integral factor: phase 
=360, <c /10 

0360 45 1 log
c




 
   

 
, c/10<<10 c 

0360 45 1 log
c




 
   

 

=270, >10 c 

Table:Bode magnitude and phase of a first-order integral factor 

Frequency, rad/s

0.01 0.1 0.7 1 7 10 20 100

Magnitude, dB 0 0 -2 -3 -17 -20 -26 -40 

Phase, degrees 360 360 322 315 277 270 270 270

First-order integral factor: magnitude 



First-order integral factor: phase 

Second-order derivative factor: magnitude 
2 2

2 22
2

2

20 log | 2 |

20 log 1 2

n n

n
n n

M j  

  
 

  

               

(12.22) 

,

,( )
,

 

 

 

n n
2

n n

n

M 40logw w w
M 20log 2zw w w

M 40 logw w w
(12.23) 

For nw w



 

2
2 1

1
40log 40log 40logM 

 


    dB/decade (12.24) 

40log10 40M   dB/decade (12.25) 

40log 2 12M   dB/octave (12.26) 

Magnitude variation of a second-order derivative factor for various multiples of the resonant
frequency 

n


 1 2 3 4 5 6 7 8 9 10 

M dB 0 12 20 24 28 32 34 36 38 40 

Second-order derivative factor: phase 

2 2
2

2

2
| 2 | arctan

1

n
n n

n

j


   



 
 
     
 
 

 

(12.27) 

0

0

0

0 ,
10

90 ,

180 , 10
 

n

n

n

ww

w w

w w







 

 

 

(12.28) 

Bode magnitude and phase  

ωn=1 rad/s, ζ=0.3 

Frequency, rad/s 0.01 0.1 0.7 1 3 10 100

Magnitude, dB 0 0 -4 -4 18 40 80

Phase, degrees 0 0 39 90 167 180 180 



Second-order integral factor 

2 2 2 22
2

2

1 120 log 20 log
2

1 2
n n

n
n n

M dB dB
j     

 

 
 
 

   
      

          

(12.29) 

M≈ - 40log n, <<n 

M=-20log (2n
2), = n 

M= - 40 log , >>n 

2
2 1

1

40log 40log 40log /M dB decade
 


      (12.30) 



 

40log10 40M dB dB     (12.31) 

Magnitude variation of a second-order integral factor for various multiples of the resonant frequency 

n


 1 2 3 4 5 6 7 8 9 10 

M
, dB 0 -12 -20 -24 -28 -32 -34 -36 -38 -40 

22 2

2

2
1 360 arctan

2 1

n

n n

n

j





  


 
 
    
    
 

(12.32) 

=0, <n 

=2700, =n 

=1800, >n 

Bode magnitude and phase  

Frequency, rad/s 0.01 0.1 0.7 1 3 10 100 

Magnitude, dB 0 0 4 4 -18 -40 -80

Phase, degrees 360 360 321 270 193 180 180

Magnitude plot 



Phase plot 

Example 14.1 
Draw the Bode magnitude and phase plot of the following open-loop transfer function and determine
gain margin, phase margin and absolute stability? 

1( ) ( )
( 1)

G s H s
s s 




Solution 

Applying s j , 



 

1( ) ( )
( 1)

G j H j
j j

 
 




The above frequency response function has two factors: (1) Integral factor and (2) First order integral
factor with a corner frequency of 1 rad/s 

Bode magnitude of the transfer function 
Frequency, radians/s

0.01 0.1 1 10 100

120log
j

dB 
40 20 0 -20 -40 

120log
1j 

dB 
0 0 -3 -20 -40 

Magnitude, dB 40 20 -3 -40 -80 


p
= 100 rad/s  

Frequency, rad/s

0.01 0.1 1 10 100 

1
j

  degrees 270 270 270 270 270 

1
1j




degrees 360 360 315 270 270 

Bode phase, degrees 270 270 225 180 180



 

GM=80 dB 



 

 

Example 
Draw the Bode magnitude and phase plot of the following open-loop transfer function and determine
gain margin, phase margin and absolute stability? 

1( ) ( )
( 2) 4)

G s H s
s s s


 

 

Solution 
1( ) ( )

8 1 1
2 4

G j H j
j jj

 
 


     
  

The corner frequencies corresponding to first order integral factors are 2 rad/s and 4 rad/s. Minimum
frequency is chosen as 0.01 rad/s and maximum frequency 100 rad/s. 

Table 14.1 Computation of Bode magnitude using asymptotic properties of the integral first-order 

term
1
2

 

x1 x2 x1 x10 x2 x1 x1 x2 x1 x10 
Frequency, rad/s 2 4 2 20 20 10 20 40 10 100
Magnitude, dB 0 -6 0 -20 -20 -14 -20 -26 -14 -34 

Table 14.2 Computation of Bode magnitude using asymptotic properties of the integral first-order 

term
1
4

 

x1 x10 x2 x1 x2 x1 x1 x10
Frequency, rad/s 4 40 40 20 20 10 10 100
Magnitude, dB 0 -20 -20 -14 -14 -8 -8 -28

Table 12.3 Bode magnitude  
Frequency, rad/s

Factor 0.01 0.1 0.2 0.4 1 2 4 10 20 40 100 

120log
8

-18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 

40 20 14 8 0 -6 -12 -20 -26 -32 -40

1
2

1log20


j
0 0 0 0 -1 -3 -6 -14 -20 -26 -34 

120log
1

4
j



0 0 0 0 0 -1 -3 -8 -14 -20 -28 

Bode
magnitude, 

22 2 -4 -10 -18 -28 -39 -60 -78 -96 -120 

j
1log20



 

dB

Bode magnitude  

Bode phase  

Frequency, rad/s 

Factor 0.01 0.1 0.2 0.4 1 2 4 10 20 40 100

1
8


0 0 0 0 0 0 0 0 0 0 0

1
j

  
270 270 270 270 270 270 270 270 270 270 270 

1

1
2
j



360 360 360 346 328 315 301 284 270 270 270 

1

1
4
j



360 360 360 360 342 326 315 297 285 270 270 

Phase
degrees 

270 270 270 256 220 191 166 131 105 90 90 

Phase plot 





Bode plot 

Example: 
Draw the Bode magnitude and phase plot of the following open-loop transfer function and determine
gain margin, phase margin and absolute stability? 

2
1( ) ( )

( 1)
G s H s

s s 




Solution 
1( ) ( )

( )( )( 1)
G j H j

j j j
 

  




There are two integral factors and an integral first-order term with a corner frequency of 1 rad/s
Bode magnitude  

Frequency, rad/s

0.01 0.1 1 10 100 

120log
j

dB 40 20 0 -20 -40 

120log
j

dB 40 20 0 -20 -40 



120log
1j 

dB 0 0 -3 -20 -40 

Bode magnitude, dB 80 40 -3 -60 -120

Example
Draw the Bode magnitude and phase plot of the following open-loop transfer function and determine
gain margin, phase margin and absolute stability? 

4 3 2
1( ) ( )

5 8 6
G s H s

s s s s


  

Solution 

2
1( ) ( )

( 2 2)( 3)
G s H s

s s s s


  

 2

1( ) ( )
( ) 2( ) 2 (( ) 3)

G j H j
j j j j

 
   


  

 2

1
3( ) ( )

(2 ) 2 ) 2 ( 1)
3

G j H j
j j j

 
  


   

Comparing the second order term with a standard second order term, 

2 2 2n nj     

2n  and 1
2

  . 

For the first order integral factor, c=3 rad/s 

For ζ> 0.5, the response at resonance is less than theresponse at frequencies less than the resonant
frequencies 

Table Computation of Bode magnitude using asymptotic properties of the integral second-order term 

x1 x10  x1 x2  x3 x1  x1 x10  x3 x1 

Frequency, rad/s 1.4 14 14 30 30 10 10 100 30 3 

Magnitude, dB -6 -46 -46 -58 -
58 

-
38 -38 -78 -58 -18 

Table Computation of Bode magnitude using asymptotic properties of the integral first-order term 

x1 x3 x2 x1 x3 x1 x1 x10
Frequency, rad/s 3 30 30 14 30 10 10 100
Magnitude, dB 0 -20 -20 -14 -20 -10 -10 -30 



 

Bode magnitude  

Frequency, rad/s

n c     

0.01 0.1 0.14 0.3 1 3 10 14 30 100 

120log
3

-10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10

120log
j

40 20 17 10 0 -3 -10 -20 -23 -30 -40 

 2

120log
(2 ) (2 )j  

 
-6 -6 -6 -6 -6 -9 -18 -38 -46 -58 -78 

120log
1

3
j 

0 0 0 0 0 -1 -3 -10 -14 -20 -30

Bode magnitude, dB 24 4 1 -6 -16 -23 -41 -78 -93 -118 -158 

2



Bode phase 

Frequency, rad/s

n c     

0.01 0.1 0.14 0.3 1 3 10 14 30 100 

1
3


0 0 0 0 0 0 0 0 0 0 0

1
j

  degrees 
270 270 270 270 270 270 270 270 270 270 270 

 2

1
(2 ) (2 )j 


 

degrees 

360 360 360 343 297 270 221 192 180 180 180 

1

1
3

j



, degrees 

360 360 360 360 336 330 315 291 285 270 270 

Bode phase, degrees 270 270 250 253 183 150 86 33 15 0 0 

2



Nichols plot 

Polar Plots 
It is a graphical method of determining stability of feedback control systems by using the polar plot of
their open-loop transfer functions. 

Example 
Draw a polar plot of the open-loop transfer functionfor 

( ) ( )
( 1)

KG s H s
s s 




(14.33) 

Frequency response 

( ) ( )
( 1)

KG j H j
j j

 
 




(14.34) 

Magnitude 

2
( ) ( )

1
KG j H 

 



(14.35) 

Angle 
1( ) ( ) tan

2
G j H j        (14.36) 

0 0270 ( ) ( ) 180G j H j     (14.37) 

Magnitude and phaseof the open-loopfrequency transfer function 

No. Frequency,
rad/s Magnitude Phase,

degrees 

1 0 ∞ 270 



2 0.2 4.9029 259 

3 0.4 2.3212 248 

4 0.8 0.9761 231 

5 1 0.7071 225 

6 4 0.0606 194 

7 10 0.01 186 

8 50 0.0004 181 

9 100 0.0001 181 

10 200 ≈0 ≈180 

Polar plot of the transfer function 
 1

K
s s 

and K=1 

Example  
Draw a polar plot of the open-loop transfer functionfor K=1, 10, 25, 55  

( 2)( 4)
KGH

s s s


 
Solution 
Frequency response 

( ) ( )
( 2)( 4)

KG j H j
j j j

 
  


 

ω=0.2

ω=∞



Magnitude 

2 2
( ) ( )

4 16
KG j H j 

  


 
Angle 

1 1( ) ( ) tan tan
2 2 4

G j H j   
         

The lies in II and III quadrants as 0 090 ( ) ( ) 270G j H j     
Magnitude and phase of the open-loop frequencytransfer function (K=1) 

No. Frequency, 
rad/s

Magnitude Phase,
degrees

1 0.1 1.2481 266 

2 0.2 0.6211 261 

4 0.4 0.3049 253 

5 0.8 0.1423 237 

6 1 0.1085 229 

7 4 0.0099 162 

8 10 0.0009 123 

9 50 0 97 

Polar plot of the transfer function
( 2)( 4)

KGH
s s s


 

for K=1, 10, 25, 55 

Example 

Draw a polar plot of the open-loop transfer function 2( ) ( )
( 1)
KG s H s

s s 






Solution 
Frequency response 

2( ) ( )
( ) ( 1)

KG j H j
j j

 
 




Magnitude 

2 2
( ) ( )

1
KG j H j 

 



Angle 

0 1( ) ( ) 180 tanG j H j       
The lies in II quadrant only as 0 090 ( ) ( ) 180G j H j     
Magnitude and phase of the open-loop frequency transfer function (K=1) 

No. Frequency,
rad/s Magnitude Phase,

degrees 

1 0.4 5.803 158 

2 0.5 3.5777 153 

4 0.8 1.2201 141 

5 1 0.7071 135 

6 2 0.1118 117 

7 3 0.0351 108 

8 4 0.0152 104 

9 5 0.0078 101 

Polar plot of the transfer function
( 2)( 4)

KGH
s s s


 

for K=1, 10, 25, 55 





Nyquist plot 
Definition 

Nyquist criterion is a graphical method of determining stability of feedback control systems
by using the Nyquist plot of their open-loop transfer functions. 

Theory 
Feedback transfer function  

( ) ( )
( ) 1 ( ) ( )

C s G s
R s G s H s




 (14.1) 

Poles and zeros of theopen-loop transfer function  
1 2

1 2

( )( )...( )( ) ( )
( )( )...( )

m

n

K s z s z s zG s H s
s p s p s p

  


  
 (14.2) 

1 2 1 2

1 2

( )( )...( ) ( )( )...( )1 ( ) ( )
( )( )...( )

n m

n

s p s p s p K s z s z s zG s H s
s p s p s p

      
 

  
(14.3) 

Number of closed-loop poles - Number of zeros of 1+GH = N umber of open-loop poles  

1 2

1 2

( )( )( )
1 ( ) ( )

( )( )...( )
nc c c

n

s z s z s z
G s H s

s p s p s p
  

 
  

 (14.4) 

1 2
, ...

n
c c cz z z = zeros of 1+G(s)H(s) 

These are also poles of the close-loop transfer function
Magnitude 

1 2

1 2

...
1 ( ) ( )

( ) ( ) ... ( ) .
nc c c

n

s z s z s z
G s H s

s p s p s p

  
 

  
 (14.5) 

Angle 

1 2

1 2

1 ( ) ( )
( ) ( ) ( )

nc c c

n

s z s z s z
G s H s

s p s p s p
     

  
     

 (14.6) 

The s-plane to 1+GH plane mappingphase angle of the 1+G(s)H(s) vector, corresponding to a point on
the s-plane is the difference between the sum of the phase of all vectors drawn from zeros of
1+GH(close loop poles) and open loops on the s plane. If this point s is moved along a closed contour
enclosing any or all of theabove zeros and poles, only the phase of the vector of each of the enclosed
zeros or open-loop poles will change by 3600. The directionwill be in the same sense of the contour
enclosing zeros and in the opposite sense for the contour enclosing open-loop poles. 



Principle of argument 

When a closed contour in the s-plane encloses a certain number of poles and zeros of 1+G(s)H(s) in
the clockwise direction, the number ofencirclements of the origin by the corresponding contour in the
G(s)H(s)plane will encircle the point (-1,0) a number of times given by thedifference between the
number of its zeros and poles of 1+G(s)H(s) it enclosed on the s-plane. 



Modified contour on the s-plane forchecking the existence of closed-looppoles 
js e   

Magnitude of GH remains the same alongthe contourPhase of β changes from 270 to 90 degrees
Gain Margin and Phase Margin 
Phase crossover frequency 

p is the frequency at which the open-loop transfer function has a phase of 

1800. The gain crossover frequency g is the frequency at whichthe open-loop transfer function has a 
unit gain 

Gain margin  
20log ( ) ( )p pM G j H j   (14.7) 

Phase margin  
( ) ( ) 180o

g gG j H j      (14.8) 

GH from the polar plot 

GH from the mirror image of the 
polar plot

Magnitude zero since n >m 



Procedure 
(1) Locate open-loop poles  on the s-plane 
(2) Draw the closed contour and avoid open-loop poles on the imaginary axis 
(3)  Count the number of open-loop poles enclosed in the above contour of step 2, say P 
(4) Plot G(j)H(j) and its reflection on the GH plane and map part of the small semi-circle

detour on the s-plane around poles (if any) on the imaginary axis. 
(5) Once the entire s-plane contour is mapped on to the GH plane, count the number of

encirclements of the point (-1,0) and its direction.  Clockwise encirclement is considered
positive, say N. 

(6) The number of closed-loop poles in the right-half s-plane is given by Z=N+P.  if Z >0, the
system is unstable. 

(7) Determine gain margin, phase margin, and critical value of open-loop gain. 



 

Example 
Using Nyquist criterion, determine the stability of a feedback systemwhose open-loop transfer
function is given by 

( ) ( )
( 1)

KG s H s
s s 




Solution 
Step 1Locate open-loop poles on the s-plane. Open-loop poles are at s=0 and –1. Let K=1 
Step 2 Draw the closed contour on the s-plane to check the existenceof closed-loop poles in the right-
half s-plane.  
Open-loop poles and s-plane contour  

2

1( ) ( )
1

G j H 
 




1( ) ( ) tan
2

G j H j        

No. Frequency,
rad/s 

Magnitude Phase,
degrees , s-plane, deg

, GH plane,
deg 

1 0.2 Positive 
frequencies 

4.9029 259 270 101 

2 0.4 2.3212 248 280 91 

3 0.8 0.9761 231 290 80 

4 1 0.7071 225 300 69 

5 4 0.0606 194 310 58 

6 10 0.01 186 320 46 

7 50 0.0004 181 330 35 

8 100 0.0001 181 340 23 



9 200 0 180 350 12 

10 -200 Negative 
frequencies 

0 180 0 0

11 -100 0.0001 179 10 348 

12 -50 0.0004 179 20 337 

13 -10 0.01 174 30 325 

14 -4 0.0606 166 40 314 

15 -1 0.7071 135 50 302 

16 -0.8 0.9761 129 60 291 

17 -0.4 2.3212 112 70 280 

18 -0.2 4.9029 101 80 269 

The above system is stable. Here, phase crossover frequency is very large (infinity) and gain
crossover frequency 0.786 rad/s. Phase angle corresponding to gain crossover frequency= 2320and 
Phase margin is 52

o

Example 
Using Nyquist criterion, determine the stability of a feedback systemwhose open-loop transfer
function is given by 

55( ) ( )
( 2)( 4)

G s H s
s s s


 

Solution 
Step 1Locate open-loop poles on the s-plane. Open-loop poles are at s=0, -2 and –4. Let K=1 
Step 2 Draw the closed contour on the s-plane to check the existenceof closed-loop poles in the right-
half s-plane.  
Open-loop poles and s-plane contour  



The number of open-loop pole enclosed, P is zero  

2 2
( ) ( )

4 16
KG j H j 

  


 
1 1( ) ( ) tan tan

2 2 4
G j H j   

         

No. 
Frequency Magnitude 

Phase,
degrees 

, s-plane,
deg 

1 1.5 Positive
frequencies 

3.4332 213 270

2 2 2.1741 198 280

3 2.5 1.4568 187 290

4 2.83 1.1446 180 300

5 3 1.017 177 310

6 3.5 0.7334 169 320

7 4.5 0.4122 156 330

8 5 0.319 150 340

9 5.5 0.2513 146 350

10 6 0.201 142 0 

11 7 0.1339 136 10 

12 8 0.0932 131 20 

13 9 0.0673 126 30 

14 -9 Negative 
frequencies 

0.0673 234 40 

15 -8 0.0932 229 50 

16 -7 0.1339 224 60 



17 -6 0.201 218 70 

18 -5.5 0.2513 214 80 

19 -5 0.319 210 90 

20 -4.5 0.4122 204 0 

21 -3.5 0.7334 191 343 

22 -3 1.017 183 326 

23 -2.83 1.1446 180 309 

24 -2.5 1.4568 173 292 

25 -2 2.1741 162 276 

26 -1.5 3.4332 147 259 

Here, Z=N+P=2. 
Hence, the above system is unstable.
Again, 
Phase crossover frequency 2.83 rad/s 
The gain at which the system becomes marginally stable, * 55 /1.1446 48K  
Gain margin  

20 log ( ) ( )

20log 1.1446 1.17 dB
p pM G j H j  

   

Gain crossover frequency =3 rad/s and the corresponding angle of GH=177
o

Phase margin=177-180=-3
o 



Controllers 
Basic Control Action and response of Control systems 

An automatic controller compares the actual value of the plant output with the reference input
(desired value), determines the deviation, and produces a control signal that will reduce the de-
viation to zero or to a small value. The manner in which the automatic controller produces the
control signal is called the control action. Fig.1 is a block diagram of an industrial control
system, which consists of an automatic controller, an actuator, a plant and a sensor (measuring
element). The controller detects the actuating error signal, which is usually at a low power level,
and amplifies it to a sufficiently high level. The output of the controller is fed to an actuator
such as pneumatic motor or valve, hydraulic motor or electric motor.  The actuator is the device
that produces the input to the plant according to the control signal so that the output signal will
approach the reference input signal. 

The sensor or measuring element is device that converts the output variable into another suitable
variable such as a displacement, pressure or voltage that can be used to compare the output to
the reference input signal. This element is in the feedback path of the closed-loop system. The
set point of the controller must be converted to a reference input with the same units as feedback
signal from sensor. 

Fig.16.1. Basic Control Action and response of Control systems 

Ref I/P Amplifier Actuator Plant 

Sensor 

Error Detector

Output 



(i) P-controller 
(ii) PI-controller 
(iii) PD-controller 
(iv) PID-controller

P-controller 

(a) 

(b) 

Fig.16.5 

Control system with P-controller with inertia load 

Fig.16.6 

For this system, closed-loop response is 

CONTROLLERS
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For step-input,   1R s
s 



Step response becomes 

( ) 1 cos nc t t  (16.3) 

Where, p
n

K
J

 

Fig.16.7 

Solved problem 

1. Consider the unity feedback system of Fig. 16.8. Let Kp=20 and J=50. Determine the equation of
response for a unit step input and determine the steady-state error. 



Fig.16.8 

Solution 
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2. Find the step response of the system shown inFig.16.9. 

Fig.16.9 
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Fig.16.10 

I-controller 
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Fig.16.11 
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Fig.16.12 

PD-controller 

(a) 

C

R

+
-ei eo

R1

R2

+
-

R

(b) 

Fig.16.13 

Control system with P-controller with inertia load 

Fig.16.14 



 

For this system, closed-loop response is 
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Where, p
n

K
J

 

Solved problem 

3. Consider the unity feedback system of Figure 3. Let Kp=20 and J=50. Determine the equation of
response for a unit step input and determine the steady-state error. Here, K

p
 =20, T

d
 =1 and J=50. 

Fig.16.14 

Solution 
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Transient characteristic Only PD control 
No system damping 

Maximum overshoot, % 35.09
unsatisfactory 

Rise time tr, sec 3.15 
Peak time tp, sec 5.24 

Settling time ts, sec (5% criterion) 15 

PI-controller 

(a) 

(b) 

Fig.16.15 

Control system with PI-controller with inertia load 



Fig.16.16 

For this system, closed-loop response is 
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Step response 
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 ( ) 1 tc t e   

Fig.16.17 



Fig.16.18 

Fig.16.19 

PID-controller 

(a) 

(b) 

Fig.16.20 



 

Here, transfer function of PID-controller,  
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Tuning of PID-controller 

A. First Method (Ziegler and Nichols) 

The Setup for obtaining system parameters for PID tuning 

Fig.16.21 
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Fig.16.22 

Ziegler-Nichols tuning rules based on step response 

Type of controller Kp Ki Kd

P T
L

0 0

PI 0.9T
L 0.3

L 0 

PID 
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Ziegler-Nichols tuning rule based on critical gain Kcr and critical period Pcr. 

Type of controller Kp Ki Kd

P 0.5 Kcr 0 0 
PI 0.45 Kcr 1/1.2 Pcr 0

PID 0.6 Kcr 1/0.5Pcr 0.125 Pcr 



 

Where, Kcr proportional constant of a switched-off integral and derivative controls at which sustained
oscillations of period Pcr occur. 

Second Method 
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Sampled Question Sets 
SET-I 

CONTROL SYSTEM ENGINEERING-I 

Time:-3Hrs                                                                                           Full Marks:70 

Answer Question no.1 and any five questions from the rest. 

Answer all parts of question at one place only 

The figures in right hand margin indicate marks. 

(Semi log graph papers are allowed) 

1 Answer all the following questions briefly (Compulsory)                                                           [2x10]

(a)Distinguish between regulator and servo-control problem in control system study.  
(b)Sketch the underdamped time response of a typical second order feedback control system subjected
to a unit step input. State the time domain performance indices. 

(c)Prove that a Type-1 system has no steady state error for step input while the steady state error for
ramp input decreases for increase of Velocity error Constant(Kv). 

(d)Give the equation of intersect of asymptotes in root locus plot. 

(e) What is system type number? Explain the practical significance of this number.  

(f)Show that the Phase Margin=tan-1 ଶஞ

ටඥସஞరାଵ  ିଶஞమ
where ξ is the damping ratio of the standard second 

order system. 

(g)List the advantages and disadvantages of carrying frequency analysis with Nyquist plot. 

(h) State the Zeigler-Nichols tuning Rules for PID Controller. 

(i) Give all the properties of a minimum phase transfer function. 

(j)Explain with sketch the use of drag cup rotor in servo application. 

2(a) The Block diagram of a feedback control system is given below. The output 
Y(s)=C(s)R(s)+D(s)W(s). Find the transfer functions C(s) and D(s).    [5] 



(b)Describe the construction and working of a two phase motor suitable for use in AC servo systems. 
[5] 

3(a)Show that high loop gain in feedback control system results in 

(i)good steady state tracking accuracy (ii)low sensitivity to process parameter variations 

(iii)good disturbance signal rejection              (iv)good relative stability 

What are the factors limiting the gain?      [6] 

(b)Explain drawing a neat diagram, the principle of operation of  a position servo using a synchro
system as error transducer.        [4] 

4.The peak overshoot (%Mp) in a  unit feedback control system is specified to be within 20% to 40%
range. 

(a)Sketch the area in the s-plane in which dominant roots of the systems characteristic equation must
lie. This system has a settling time ts=0.85 sec.       [4] 

(b)Determine the smallest value of third root such that dominance of the complex roots corresponding
to part (a) is preserved. Further, Determine the open loop transfer function of the system if Mp =50%

[6] 

5.(a)State the merits and demerits of using static error coefficients. The open loop transfer function in

a unity feedback control system, is given by G(s)= ଵ଴(ଵାୱ)
ୱమ(ହୱା଺); Find the steady state error of the system

using generalized error constants when subjected to an input signal given by r(t)=1+4t+3t2. [5] 

(b) )In a unity feedback control system, the open loop transfer function is given by 

G(s)= ୏
ୱ(ୱାଶ)(ୱమାଷ)

; Using Routh Hurwitz Criterion, determine the range of K for which the given

system is stable.            [5] 

6.(a) The Open loop transfer function of a control system is given as G(s)H(s)= ଶ଴(ଵା୏ୱ)
ୱ(ୱାଵ)(ସାୱ)

; 

Sketch the Root Locus. Determine the value of K such that damping ratio(ξ) is 0.4.  [7] 

(b) State the use of Nichol’s Chart.        [3] 

7.Using Bode Plot, determine gain crossover frequency, phase crossover frequency, gain margin and
phase margin in a unity feedback control system, where, the open loop transfer function is given by 

G(s)=ଶ଴(଴.ଶୱାଵ)ୣషబ.భ౩

ୱ(଴.ହୱାଵ) .          [10] 

8. (a)A unity feedback system has open loop transfer function G(s) =(ଵ଴ୱାହ଴)
ୱమ(ୱାଷ) ; 



CONTROL SYSTEM ENGINEERING(IC323) 

Time:-3Hrs                                                                                                                           Full 
Marks:70 

Answer Question no.1 and any five questions from the rest.  

Answer all parts of question at one place only 

The figures in right hand margin indicate marks. 

(Semi log graph papers are allowed) 

1. Answer all the following questions briefly (Compulsory)                                                      [2x10] 

(a)What are the constraints in developing the transfer function of a device a part of larger system? 

(b)The transfer function of a control system is T(s)=K/[S2+4S+K]; Find K if the system is critically
damped. 

(c) What are the steady state errors of a Type-3 unity feedback system subjected to step input, ramp
input and parabolic input? 

(d)Explain what do you mean by Root Contours. 

(e) The magnitude of frequency response of a second order system is 5 at 0 rad/sec and peaks to 
3

10

at  5 2  rad / sec. Determine the transfer function of this underdamped system. 

(f)Show that the bandwidth(ωb)=ωnට[(1 − 2ξଶ) + ඥ4ξସ − 4ξଶ + 2  ] where ξ is the damping ratio

and ωn  is the natural frequency of  the standard second order system. 

(g) Sketch the constant gain loci for the unity feedback system whose feed forward transfer function is

G(s)=
)1( SS

K
 

(h) Show that high loop gain in feedback control system results in good steady-state tracking accuracy 

(i) State the use of Nichol’s Chart. 

(j) State the merits and demerits of PI Controller 

2(a) Obtain the signal flow graph representation for a system represented by a block diagram as
shown below and determine the overall gain G(s)=େ

ୖ
;      [5] 



(b)Explain giving a schematic diagram how a synchro pair would be embodied in an AC position
control system.           [5] 

3(a)In a negative feedback control system, calculate separately, the sensitivity of the system transfer
function at s= jω=j1.6 rad/sec  with respect to  

(i)the forward path transfer function G(s) where G(s)= ଺଴
ୱ(ୱାଵ଴)

(ii)feedback path transfer function H(s) where H(s)=0.8     [5] 

(b)Describe in detail along with a schematic diagram, a typical position control system employing an
armature controlled DC Motor with a fixed field separately excited system. Derive the transfer
function.             [5] 

4.(a)What is system type number? Explain the practical significance of this number.  [2] 

(b) In a unit feedback control system, the open loop transfer function is given by G(s)= ୩
ୱ(ୡୱାଵ)

By what factor should the amplifier gain k be multiplied so that the damping ratio(ξ) is enhanced
from 0.35 to 0.95.          [8] 

5(a)In a unit feedback control system, the open loop transfer function is given by

G(s)= ଵ଴ଽ
ୱమ(ୱାଵ଴)(ୱమାୱାଵ଴)

; Find the static error coefficients (Kp, Kv, and Ka) and the steady state error of

the system when subjected to an input signal given by r(t)=10+20t+30t2.    [5] 

(b) )In a unit feedback control system, the open loop transfer function is given by 

G(s)= ୏
ୱ(ୱାଶ)(ୱమାୱାଶ)

; Using Routh Hurwitz Criterion, determine the range of K for which the given

system is stable.            [5] 

6. (a)The Open loop transfer function of a control system is given as G(s)H(s)= ୏
ୱ(ୱమାସୱାହ)

; 

Sketch the Root Locus.          [6] 



(b)Given the open loop frequency response G(jω) = U+ jV; 

Obtain the radii and center locations of constant M and N circles    [4] 

7(a)Define minimum phase, non-minimum phase and All pass system.    [2] 

(b)Draw the Bode Plot of the open loop transfer function of a feedback system given by

G(s)H(s)= ଵ଴(ୱାଷ)
ୱ(ୱାଶ)(ୱమାୱାଶ)

; Also determine the system  Stability.     [8] 

8(a)A unity feedback system has open loop transfer function G(s) = (ୱାଶ)
(ୱାଵ)(ୱିଵ)

; 

Use Nyquist criterion to determine if the system is stable in the closed loop configuration. [7] 

(b)Describe two tuning methods, one based on ultimate gain and the other based on process reaction
curve.            [3] 

SET-III 

Time:-3Hrs                                                                                                            Full Marks:70 

Answer Question no.1 and any five questions from the rest.  

The figures in right hand margin indicate marks. 

(Semi log graph papers are allowed) 

1.Answer all the following questions briefly (Compulsory)                                                [2x10] 

(a)Sketch  the underdamped  time response  of a typical second order feedback control system 
subjected to a  unit step input. State  the  time domain performance  indices.  

(b)The transfer function of a control system is T(s)=K/[S2+4S+K]; Find K if the system is critically
damped. 

(c)Prove that a Type-1 system has no steady state error for step input while the steady state error
for ramp input decreases for increase of Velocity Error Constant (Kv). 

(d)Give the equation of intersect of asymptotes  in root locus plot. 

(e)Explain what do you mean by  Root Contours. 

(f)Show that the Phase Margin=tan-1 ଶξ

ඨටସξరାଵ  ିଶξమ

where ξ is the damping ratio of the standard 

second order system. 



(g)List the advantages and disadvantages of carrying frequency analysis with Nyquist plot. 

(h) State the Zeigler-Nichols tuning Rules for PID Controller. 

(i) Give all the properties of a minimum phase transfer function. 

(j)Explain with sketch the use of drag cup rotor in servo application. 

2(a)Obtain the signal flow graph representation for a system represented by a block diagram as

shown below and determine the overall gain G(s)= େ
ୖ

;     [6] 

(b)Describe the construction and working of a two phase motor suitable for use in AC servo systems. 
[4] 

3(a)Show that high loop gain in feedback control system results in 

(i)good steady state tracking accuracy (ii)low sensitivity to process parameter variations 

(iii)good disturbance signal rejection  (iv)good relative stability 

What are the factors limiting the gain?       [5] 

(b)Explain drawing a neat diagram, the principle of operation of  a position servo using a synchro
system as error transducer.        [5] 

4.The peak overshoot (%Mp) in a  unit feedback control system is specified to be within 20% to 40%
range. 

(a)Sketch the area in the s-plane in which dominant roots of the systems characteristic equation
must lie. This system has a settling time ts=0.85 sec.      [4] 

(b)Determine the smallest value of 3rd  root such that dominance of the complex roots
corresponding to part (a) is preserved. Further, Determine the open loop transfer function of the
system if  Mp=50%              [6] 

5.(a)State the merits and demerits of using static error coefficients. The open loop transfer function

in a unity feedback control system, is given by G(s)= ଵ଴(ଵାୱ)
ୱమ(ହୱା଺) ; Find the steady state error of the

system using generalized error constants when subjected to an input signal given by r(t)=1+4t+3t2.
[5] 



(b)In a unity feedback control system, the open loop transfer function is given by G(s)= ୏
ୱ(ୱାଶ)(ୱమାଷ)

; 

Using Routh Hurwitz Criterion, determine the range of K for which the given system is stable. 
[5] 

6.(a) The Open loop transfer function of a control system is given as G(s)H(s)= ଶ଴(ଵା୏ୱ)
ୱ(ୱାଵ)(ସାୱ)

; 

Sketch the Root Locus. Determine the value of K such that damping ratio(ξ) is 0.4. [8] 

(b) State the use of  Nichol’s Chart.        [2] 

7.Using Bode Plot, determine gain crossover frequency, phase crossover frequency, gain margin and
phase margin in a unity feedback control system, where, the open loop transfer function is given by   

G(s)= ଶ଴(଴.ଶୱାଵ)ୣషబ.భ౩

ୱ(଴.ହୱାଵ) .        [10] 

8. A unity feedback system has open loop transfer function G(s) = (ଵ଴ୱାହ଴)
ୱమ(ୱାଷ) ; Use Nyquist criterion to

determine if the system is stable in the closed loop configuration.  [10] 

Set-IV 
Sub: Control  System Engineering (3:1:0)

Time Duration : Two Hours  Date 8.10.2013                  Maximum 20 Marks 

A.The figures in the right hand margin indicate marks Answer any four including Question No.1 
B.The symbols carry usual meaning 

1. Answer the following questions (Compulsory)      [5x1] 

(a) If 
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obtain the SFG  representation of this transfer function. 

(b) Experimental   measurements  yield   a plot   of the magnitude  of  the frequency response  function with  a
resonance  peak  1.35  at a frequency  of 10rad/sec. 

(a)Estimate     and  n   of the dominating  system  poles     

   (c)Draw the schematic diagram  of a DC closed loop position control system consisting   of   

   (I) a pair of Potentiometers (II)Amplifier (III)Armature controlled DC Servomotor 

(IV)Gear Train as major component  and explain the operation of this system 

(d) .The open loop transfer function of a unity feedback control system is given by
G(s)=K/[(s+2)(s+4)(s2+6s+25)]; By applying Routh-Hurwitz  criterion determine  the range of K for
which the closed loop system will be stable: 

(e)Draw the polar plot for  the  transfer function of the system G(s)H(s)=10/[s(s+1)2]. 



2(a)Consider a -ve unity feedback system with following OLTF. Obtain peak overshoot, damped

frequency of oscillation, settling time on 2% tolerance band and response of the system to unit

step input. 

(ݏ)ܩ = ଴.ସ௦ାଵ
௦(௦ା଴.଺)

(b)The OLTF  of a system is G(s)H(s)=100/[s(s+100)]. (i)Obtain Static and Dynamic error Constants. 
(ii)If the input is  r(t)=A+Bt+Ct2,  obtain the steady state error and the dynamic error.                              
[3+2] 

3.Sketch the complete Bode plot of the unity feedback system whose open loop frequency function  

)105.0)(11.0(
10

 sss
; Determine the GM, PM and open loop gain for a GM of 20db.                  [5] 

4.Given the G(s)= 
)1( ss

K
, and H(s)=(s+4)-1. Sketch the root locus of the system. 

(i)Determine the value of K for which the system is at the verge of instability 

(ii)For the damping ratio 0.34, determine the value of K and the GM.    [5] 

5.(a) Show that the bandwidth of a linear standard second order control system = ωn 

ඨ[൫1 − 2ξଶ൯+ ට4ξସ − 4ξଶ + 2  ] where ξ is the damping ratio and ωn  is the natural frequency of 

system. What will be the resonant peak for the system whose transfer function is 5/(s2+2s+5)

(b)Determine the critical value of K for stability of a unity feedback system with  loop transfer
function(S)=K/(S-1)  using Nyquist stability criterion.    [3+2] 


