UNIT-I

1. Basic Concept of Control System

Control Engineering is concerned with techniques that are used to solve the following six problems in the most efficient manner possible.

- (a) The identification problem: to measure the variables and convert data for analysis.
- (b) The representation problem: to describe a system by an analytical form or mathematical model
- (c) The solution problem: to determine the above system model response.
- (d)The stability problem:general qualitative analysis of the system
- (e) The design problem: modification of an existing system or develop a new one
- (f) The optimization problem: from a variety of design to choose the best.

The two basic approaches to solve these six problems are conventional and modern approach. The electrical oriented conventional approach is based on complex function theory. The modern approach has mechanical orientation and based on the state variable theory.

Therefore, control engineering is not limited to any engineering discipline but is equally applicable to aeronautical, chemical, mechanical, environmental, civil and electrical engineering. For example, a control system often includes electrical, mechanical and chemical components. Furthermore, as the understanding of the dynamics of business, social and political systems increases; the ability to control these systems will also increase.

1.1. Basic terminologies in control system

System: A combination or arrangement of a number of different physical components to form a whole unit such that that combining unit performs to achieve a certain goal.

Control: The action to command, direct or regulate a system.

Plant or process: The part or component of a system that is required to be controlled.

Input: It is the signal or excitation supplied to a control system.

Output: It is the actual response obtained from the control system.

Controller: The part or component of a system that controls the plant.

Disturbances: The signal that has adverse effect on the performance of a control system.

Control system: A system that can command, direct or regulate itself or another system to achieve a certain goal.

Automation: The control of a process by automatic means

Control System: An interconnection of components forming a system configuration that will provide a desired response.

Actuator: It is the device that causes the process to provide the output. It is the device that provides the motive power to the process.

Design: The process of conceiving or inventing the forms, parts, and details of system to achieve a specified purpose.

Simulation: A model of a system that is used to investigate the behavior of a system by utilizing actual input signals.

Optimization: The adjustment of the parameters to achieve the most favorable or advantageous design.

Feedback Signal: A measure of the output of the system used for feedback to control the system.

Negative feedback: The output signal is feedback so that it subtracts from the input signal.

Block diagrams: Unidirectional, operational blocks that represent the transfer functions of the elements of the system.

Signal Flow Graph (SFG): A diagram that consists of nodes connected by several directed branches and that is a graphical representation of a set of linear relations.

Specifications: Statements that explicitly state what the device or product is to be and to do. It is also defined as a set of prescribed performance criteria.

Open-loop control system: A system that utilizes a device to control the process without using feedback. Thus the output has no effect upon the signal to the process.

Closed-loop feedback control system: A system that uses a measurement of the output and compares it with the desired output.

Regulator: The control system where the desired values of the controlled outputs are more or less fixed and the main problem is to reject disturbance effects.

Servo system: The control system where the outputs are mechanical quantities like acceleration, velocity or position.

Stability: It is a notion that describes whether the system will be able to follow the input command. In a non-rigorous sense, a system is said to be unstable if its output is out of control or increases without bound.

Multivariable Control System: A system with more than one input variable or more than one output variable.

Trade-off: The result of making a judgment about how much compromise must be made between conflicting criteria.

1.2. Classification

1.2.1. Natural control system and Man-made control system:

Natural control system: It is a control system that is created by nature, i.e. solar system, digestive system of any animal, etc.

Man-made control system: It is a control system that is created by humans, i.e. automobile, power plants etc.

1.2.2. Automatic control system and Combinational control system:

Automatic control system: It is a control system that is made by using basic theories from mathematics and engineering. This system mainly has sensors, actuators and responders.

Combinational control system: It is a control system that is a combination of natural and man-made control systems, i.e. driving a car etc.

1.2.3. Time-variant control system and Time-invariant control system:

Time-variant control system: It is a control system where any one or more parameters of the control system vary with time i.e. driving a vehicle.

Time-invariant control system: It is a control system where none of its parameters vary with time i.e. control system made up of inductors, capacitors and resistors only.

1.2.4. Linear control system and Non-linear control system:

Linear control system: It is a control system that satisfies properties of homogeneity and additive.

- Homogeneous property: f(x+y) = f(x) + f(y)
- Additive property: $f(\alpha x) = \alpha f(x)$

Non-linear control system: It is a control system that does not satisfy properties of homogeneity and additive, i.e. $f(x) = x^3$

1.2.5. Continuous-Time control system and Discrete-Time control system:

Continuous-Time control system: It is a control system where performances of all of its parameters are function of time, i.e. armature type speed control of motor.

Discrete -Time control system: It is a control system where performances of all of its parameters are function of discrete time i.e. microprocessor type speed control of motor.

1.2.6. Deterministic control system and Stochastic control system:

Deterministic control system: It is a control system where its output is predictable or repetitive for certain input signal or disturbance signal.

Stochastic control system:It is a control system where its output is unpredictable or non-repetitive for certain input signal or disturbance signal.

1.2.7. Lumped-parameter control system and Distributed-parameter control system:

Lumped-parameter control system: It is a control system where its mathematical model is represented by ordinary differential equations.

Distributed-parameter control system: It is a control system where its mathematical model is represented by an electrical network that is a combination of resistors, inductors and capacitors.

1.2.8. SYMENG Comprohising Secretary part (SISO) control system and Multi-input-multi-output

SISO control system: It is a control system that has only one input and one output.

MIMO control system:It is a control system that has only more than one input and more than one output.

1.2.9. Open-loop control system and Closed-loop control system:

Open-loop control system: It is a control system where its control action only depends on input signal and does not depend on its output response.

Closed-loop control system:It is a control system where its control action depends on both of its input signal and output response.

1.3. Open-loop control system and Closed-loop control system

1.3.1. Open-loop control system:

It is a control system where its control action only depends on input signal and does not depend on its output response as shown in Fig.1.1.

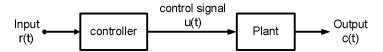


Fig.1.1. An open-loop system

Examples: traffic signal, washing machine, bread toaster, etc.

Advantages:

- Europhoricaligntenancesy to construct
- Highly stable operation

Dis-advantages:

- Naturaccurate and reliable when input or system parameters are variable in
- Recalibration of the parameters are required time to time

1.3.2. Closed-loop control system:

It is a control system where its control action depends on both of its input signal and output response as shown in Fig.1.2.

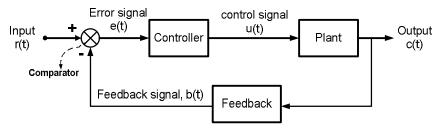


Fig.1.2. A closed-loop system

Examples: automatic electric iron, missile launcher, speed control of DC motor, etc. **Advantages:**

- Other communication to the state of the control o
- High rbanklincialtility of forectrate these systems on output response
- There is timed itecalibration at of the parameters are not required

Dis-advantages:

• Complex design and difficult to construct

- Expensive than that of open-loop control system
- Complicate for maintenance
- Less stable operation than that of open-loop control system

1.3.3. Comparison between Open-loop and Closed-loop control systems:

It is a control system where its control action depends on both of its input signal and output response.

Sl. No.	Open-loop control systems	Closed-loop control systems	
1	No feedback is given to the control system	A feedback is given to the control system	
2	Cannot be intelligent	Intelligent controlling action	
3	There is no possibility of undesirable system oscillation(hunting)	Closed loop control introduces the possibility of undesirable system oscillation(hunting)	
4	The output will not very for a constant input, provided the system parameters remain unaltered	In the system the output may vary for a constant input, depending upon the feedback	
5	System output variation due to variation in parameters of the system is greater and the output very in an uncontrolled way		
6	Error detection is not present	Error detection is present	
7	Small bandwidth	Large bandwidth	
8	More stable	Less stable or prone to instability	
9	Affected by non-linearities	Not affected by non-linearities	
10	Very sensitive in nature Less sensitive to disturbances		
11	Simple design Complex design		
12	Cheap	Costly	

UNIT-II

- 2. Control System Dynamics
 - **2.1. Definition:** It is the study of characteristics behaviour of dynamic system, i.e.
 - (a) Differential equation
 - i. First-order systems
 - ii. Second-order systems
 - (b) System transfer function: Laplace transform
 - **2.2.Laplace Transform:** Laplace transforms convert differential equations into algebraic equations. They are related to frequency response.

$$L\left\{x(t)\right\} = X\left(s\right) = \int_{0}^{\infty} x(t)e^{-st}dt$$
(2.1)

$$L\left\{x(t)\right\} = X\left(s\right) = \int_{0}^{\infty} x(t)e^{-st}dt$$
 (2.2)

No.	Function	Time-domain $x(t)=$ $\mathcal{L}^{-1}\{X(s)\}$	Laplace domain $X(s) = \mathcal{L}\{x(t)\}$
1	Delay	$\delta(t- au)$	e ^{-ts}
2	Unit impulse	δ(t)	1
3	Unit step	u(t)	$\frac{1}{s}$
4	Ramp	t	$\frac{1}{s^2}$
5	Exponential decay	e ^{-αt}	$\frac{1}{s+\alpha}$
6	Exponential approach	$\left(1-e^{-\alpha t}\right)$	$\frac{\alpha}{s(s+\alpha)}$

7	Sine	sin ωt	$\frac{\omega}{s^2 + \omega^2}$
8	Cosine	cos ωt	$\frac{s}{s^2 + \omega^2}$
9	Hyperbolic sine	sinh αt	$\frac{\alpha}{s^2 - \alpha^2}$
10	Hyperbolic cosine	cosh αt	$\frac{s}{s^2-\alpha^2}$
11	Exponentiall y decaying sine wave	$e^{-\alpha t}\sin \omega t$	$\frac{\omega}{(s+\alpha)^2+\omega^2}$
12	Exponentiall y decaying cosine wave	$e^{-\alpha t}\cos\omega t$	$\frac{s+\alpha}{(s+\alpha)^2+\omega^2}$

2.3. Solution of system dynamics in Laplace form: Laplace transforms can be solved using partial fraction method.

A system is usually represented by following dynamic equation.

$$N(s) = \frac{A(s)}{B(s)} \tag{2.3}$$

The factor of denominator, B(s) is represented by following forms,

i. Unrepeated factors

- ii. Repeated factors
- iii. Unrepeated complex factors

(i) Unrepeated factors

$$\frac{N(s)}{(s+a)(s+b)} = \frac{A}{s+a} + \frac{B}{s+b}
= \frac{A(s+b) + B(s+a)}{(s+a)(s+b)}$$
(2.4)

By equating both sides, determine A and B.

Example 2.1:

Expand the following equation of Laplacetransform in terms of its partial fractions and obtain its time-domain response.

$$Y(s) = \frac{2s}{(s+1)(s+2)}$$

Solution:

The following equation in Laplacetransform is expanded with its partial fractions as follows.

$$\frac{2s}{(s+1)(s+2)} = \frac{A}{(s+1)} + \frac{B}{(s+2)}$$

$$\Rightarrow \frac{2s}{(s+1)(s+2)} = \frac{A(s+2) + B(s+1)}{(s+1)(s+2)}$$

By equating both sides, A and B are determined as A = -2, B = 4. Therefore,

$$Y(s) = -\frac{2}{(s+1)} + \frac{4}{(s+2)}$$

Taking Laplace inverse of above equation,

$$v(t) = -2e^{-t} + 4e^{-2t}$$

(ii) Unrepeated factors

$$\frac{N(s)}{(s+a)^2} = \frac{A}{(s+a)^2} + \frac{B}{(s+a)} = \frac{A+B(s+a)}{(s+a)^2}$$
 (2.5)

By equating both sides, determine A and B.

Example 2.2:

Expand the following equation of Laplacetransform in terms of its partial fractions and obtain its time-domain response.

$$Y(s) = \frac{2s}{(s+1)^2(s+2)}$$

Solution:

The following equation in Laplacetransform is expanded with its partial fractions as follows.

$$\frac{2s}{(s+1)^2(s+2)} = \frac{A}{(s+1)^2} + \frac{B}{(s+1)} + \frac{C}{(s+2)}$$

By equating both sides, A and B are determined as A = -2, B = 4. Therefore,

$$Y(s) = -\frac{2}{(s+1)^2} + \frac{4}{(s+1)} - \frac{4}{(s+2)}$$

Taking Laplace inverse of above equation,

$$y(t) = -2te^{-t} + 4e^{-t} - 4e^{-2t}$$

(iii) Complex factors: They contain conjugate pairs in the denominator.

$$\frac{N(s)}{(s+a)(s+\overline{a})} = \frac{As+B}{(s+\alpha)^2 + \beta^2}$$
 (2.6)

By equating both sides, determine A and B.

Example 2.3:

Expand the following equation of Laplacetransform in terms of its partial fractions and obtain its time-domain response.

$$Y(s) = \frac{2s+1}{(s+1+j)(s+1-j)}$$

Solution:

The following equation in Laplacetransform is expanded with its partial fractions as follows.

$$Y(s) = \frac{2s}{(s+1)^2 + 1} + \frac{1}{(s+1)^2 + 1}$$

Taking Laplace inverse of above equation,

$$y(t) = 2e^{-t}\cos t + e^{-t}\sin t$$

2.4. Initial value theorem:

$$\lim_{t \to 0} [y(t)] = \lim_{s \to \infty} [sY(s)]$$
(2.7)

Example 2.4:

Determine the initial value of the time-domain response of the following equation using the initial-value theorem.

$$Y(s) = \frac{2s+1}{(s+1+j)(s+1-j)}$$

Solution:

Solution of above equation,

$$y(t) = 2e^{-t}\cos t + e^{-t}\sin t$$

Applying initial value theorem,

$$\lim_{s \to \infty} \frac{s(2s+1)}{(s+1+j)(s+1-j)} = 2$$

2.5. Final value theorem:

$$\lim_{t \to \infty} (y(t)) = \lim [sY(s)]$$
(2.8)

Example 2.5:

Determine the initial value of the time-domain response of the following equation using the initial-value theorem.

$$Y(s) = \frac{2s}{(s+1)^{2}(s+2)}$$

Solution:

Solution of above equation,

$$y(t) = -2te^{-t} + 4e^{-t} - 4e^{-2t}$$
Applying final value theorem,
$$\lim_{s \to \infty} \frac{s(2s+1)}{(s+1+j)(s+1-j)} = 2$$

UNIT-I

3. Transfer Function

3.1.Definition: It is the ratio of Laplace transform of output signal to Laplace transform of input signal assuming all the initial conditions to be zero, i.e.

Let, there is a given system with input r(t) and output c(t) as shown in Fig.3.1 (a), then its Laplace domain is shown in Fig.3.1 (b). Here, input and output are R(s) and C(s) respectively.

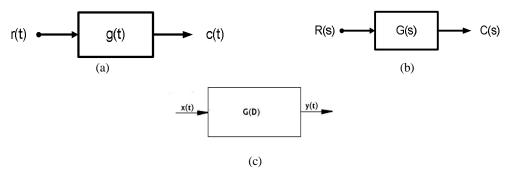


Fig.3.1. (a) A system in time domain, (b) a system in frequency domainand (c) transfer function with differential operator

G(s) is the transfer function of the system. It can be mathematically represented as follows.

$$G(s) = \frac{C(s)}{R(s)}\Big|_{zero \ initial \ condition}$$
 Equation Section (Next)(3.1)

Example 3.1: Determine the transfer function of the system shown in Fig. 3.2.

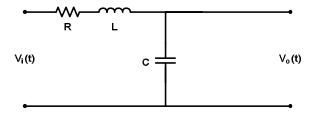


Fig.3.2. a system in time domain

Solution:

Fig. 3.1 is redrawn in frequency domain as shown in Fig. 3.2.

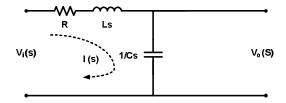


Fig.3.2. a system in frequency domain

Applying KVL to loop-1 of the Fig.3.2

$$V_{i}(s) = \left(R + Ls + \frac{1}{Cs}\right)I(s)$$
(3.2)

Applying KVL to loop-2 of the Fig.3.2

$$V_o(s) = \left(\frac{1}{Cs}\right)I(s) \tag{3.3}$$

From eq (2.12),

$$I(s) = V_o(s) / \left(\frac{1}{Cs}\right) = CsV_o(s)$$
(3.4)

Now, using eq (2.13) in eq (2.10),

$$V_{i}(s) = \left(R + Ls + \frac{1}{Cs}\right)CsV_{o}(s)$$

$$\Rightarrow \frac{V_{o}(s)}{V_{i}(s)} = \frac{1}{\left(R + Ls + \frac{1}{Cs}\right)Cs} = \frac{1}{LCs^{2} + RCs + 1}$$
(3.5)

Then transfer function of the given system is

$$G(s) = \frac{1}{LCs^2 + RCs + 1} \tag{3.6}$$

3.2. General Form of Transfer Function

$$G(s) = \frac{K(s-z_1)(s-z_2)...(s-z_m)}{(s-p_1)(s-p_2)...(s-p_n)} = K \frac{\prod_{i=1}^{m} (s-z_i)}{\prod_{i=1}^{n} (s-z_i)}$$
(3.7)

Where, z_1 , $z_2...z_m$ are called zeros and p_1 , $p_2...p_n$ are called poles.

Number of poles n will always be greater than the number of zeros m

Example 3.2:

Obtain the pole-zero map of the following transfer function.

$$G(s) = \frac{(s-2)(s+2+j4)(s+2-j4)}{(s-3)(s-4)(s-5)(s+1+j5)(s+1-j5)}$$

Solution:

The following equation in Laplacetransform is expanded with its partial fractions as follows.

Zeros	Poles
s=2	s=3
s=-2-j4	s=4
s=-2+j4	s=5

s=-1-j5
s=-1+j5

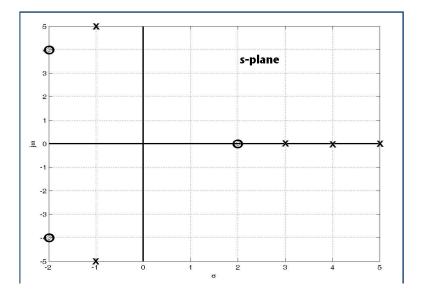


Fig.3.3. pole-zero map

3.3. Properties of Transfer function:

- Zero initial condition
- It is same as Laplace transform of its impulse response
- Replacing 's' by $\frac{d}{dt}$ in the transfer function, the differential equation can be obtained
- Poles and zeros can be obtained from the transfer function
- Stability can be known
- Can be applicable to linear system only

3.4. Advantages of Transfer function:

- It is a mathematical model and gain of the system
- Replacing 's' by $\frac{d}{dt}$ in the transfer function, the differential equation can be obtained
- Poles and zeros can be obtained from the transfer function
- Stability can be known
- Impulse response can be found

3.5. Disadvantages of Transfer function:

- Applicable only to linear system
- Not applicable if initial condition cannot be neglected
- It gives no information about the actual structure of a physical system

UNIT-I

- 4. Description of physical system
 - **4.1. Components of a mechanical system:** Mechanical systems are of two types, i.e. (i) translational mechanical system and (ii) rotational mechanical system.
 - 4.1.1. Translational mechanical system

There are three basic elements in a translational mechanical system, i.e. (a) mass, (b) spring and (c) damper.

(a) **Mass:** A mass is denoted by M. If a force f is applied on it and it displays distance x, then $f = M \frac{d^2x}{dt^2}$ as shown in Fig.4.1.

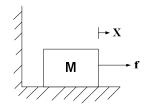


Fig.4.1. Force applied on a mass with displacement in one direction

If a force f is applied on a massM and it displays distance x_i in the direction of f and distance x_2 in the opposite direction, then $f = M \left(\frac{d^2 x_1}{dt^2} - \frac{d^2 x_2}{dt^2} \right)$ as shown in Fig.4.2.

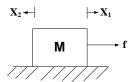


Fig.4.2. Force applied on a mass with displacement two directions

(b) **Spring:** A spring is denoted by K. If a force f is applied on it and it displays distance x, then f = Kx as shown in Fig.4.3.

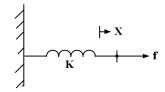


Fig.4.3. Force applied on a spring with displacement in one direction

If a force f is applied on a springK and it displays distance x_1 in the direction of f and distance x_2 in the opposite direction, then $f = K(x_1 - x_2)$ as shown in Fig.4.4.

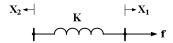


Fig.4.4. Force applied on a spring with displacement in two directions

(c) **Damper:** A damper is denoted by D. If a force f is applied on it and it displays distance x, then $f = D \frac{dx}{dt}$ as shown in Fig.4.5.

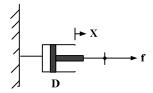


Fig.4.5. Force applied on a damper with displacement in one direction

If a force f is applied on a damperD and it displays distance x_I in the direction of f and distance x_2 in the opposite direction, then $f = D \begin{pmatrix} dx_1 - dx_2 \\ dt \end{pmatrix}$ as shown in Fig.4.6.

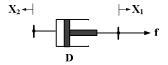


Fig.4.6. Force applied on a damper with displacement in two directions

4.1.2. Rotational mechanical system

There are three basic elements in a Rotational mechanical system, i.e. (a) inertia, (b) spring and (c) damper.

- (a) **Inertia:** A body with aninertia is denoted by J. If a torque T is applied on it and it displays distance θ , then $T = J \frac{d^2 \theta}{dt^2}$. If a torque T is applied on a body with inertia J and it displays distance θ_I in the direction of T and distance θ_2 in the opposite direction, then $T = J \left(\frac{d^2 \theta_1}{dt^2} \frac{d^2 \theta_2}{dt^2} \right)$.
- (b) **Spring:** A spring is denoted by K. If a torque T is applied on it and it displays distance θ , then $T = K\theta$. If a torque T is applied on a body with inertia J and it displays distance θ_I in the direction of T and distance θ_2 in the opposite direction, then $T = K(\theta_1 \theta_2)$.
- (c) **Damper:** A damper is denoted by D. If a torque T is applied on it and it displays distance θ , then $T = D \frac{d\theta}{dt}$. If a torque T is applied on a body with inertia J and it

displays distance Θ_1 in the direction of T and distance Θ_2 in the opposite direction, then $T = D \left(\frac{d\theta_1}{dt} - \frac{d\theta_2}{dt} \right)$.

- **4.2. Components of an electrical system:** There are three basic elements in an electrical system, i.e. (a) resistor (R), (b) inductor(L) and (c) capacitor (C). Electrical systems are of two types, i.e. (i) voltage source electrical system and (ii) current source electrical system.
 - **4.2.1.** Voltage source electrical system: If i is the current through a resistor(Fig.4.7) and v is the voltage drop in it, then v = Ri.

If *i* is the current through an inductor (Fig.4.7) and *v* is the voltage developed in it, then $v = L \frac{di}{dt}$.

If *i* is the current through a capacitor(Fig.4.7) and *v* is the voltage developed in it, then $v = \frac{1}{C} \int i dt$.

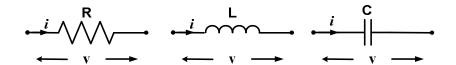


Fig.4.7. Current and voltage shown in resistor, inductor and capacitor

4.2.2. Current source electrical system:

If *i* is the current through a resistor and *v* is the voltage drop in it, then $i = \frac{v}{R}$.

If i is the current through an inductor and v is the voltage developed in it, then $i = \frac{1}{L} \int v dt$.

If i is the current through a capacitor and v is the voltage developed in it, then $i = C \frac{dv}{dt}$.

4.2.3. Work out problems:

Q.4.1. Find system transfer function betweenvoltage drop across the capacitance and input voltage in the following RC circuit as shown in Fig.4.8.

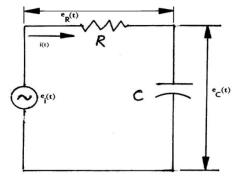


Fig.4.8.

Solution

Voltage across resistance, $e_R(t) = i(t)R$

Voltage across capacitance, $e_C(t) = \frac{1}{C} \int i(t) dt$

Total voltage drop, $e_i = e_R + e_C = i(t)R + \frac{1}{C}\int i(t)dt$

Laplace transform of above equation, $E_i(s) = I(s) \left(R + \frac{1}{Cs} \right)$

System transfer function betweenvoltage drop across the capacitance and input voltage, $\frac{E_C(s)}{E_i(s)} = \frac{1}{RCs+1} = \frac{1}{\tau s+1}$

where, $RC = \tau$ is the time-constant

Q.4.2. Find system transfer function betweenfunction between the inductance currentto the source currentin the followingRL circuit as shown in Fig.4.9.

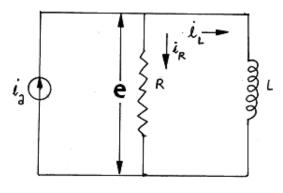


Fig.4.9.

Voltage across the Resistance, $e(t) = i_R R \Rightarrow i_R = \frac{e(t)}{R}$

Voltage across the Inductance, $e(t) = L \frac{di_L}{dt} \Rightarrow i_L = \frac{1}{L} \int e(t) dt$

Total current, $i_a = i_R + i_L = \frac{e(t)}{R} + \frac{1}{L} \int e(t) dt$

Laplace transform of the current source,

$$I_a(s) = E(s) \left(\frac{1}{R} + \frac{1}{Ls}\right)$$
 and $I_L(s) = \frac{E}{Ls}$

Transfer function between the inductance current to the source current,

$$\frac{I_L(s)}{I_a(s)} = \frac{1}{\frac{L}{R}s + 1} = \frac{1}{\tau s + 1}$$

where $\tau = \frac{L}{R}$ is the time-constant

Q.4.3. Find system transfer function betweenfunction between the capacitance voltageto the source voltage in the following RLC circuit as shown in Fig.4.10.

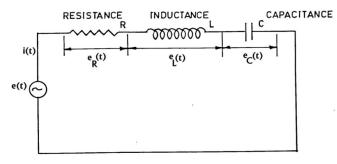


Fig.4.10.

Voltage across the Resistance, $e_R(t) = iR$

Voltage across the Inductance, $e_L(t) = L \frac{di}{dt}$

Voltage across the capacitance, $e_C(t) = \frac{1}{C} \int idt$

Total voltage, $e(t) = iR + L\frac{di}{dt} + \frac{1}{C}\int idt$

Laplace transform of the voltage source, $E(s) = I(s) \left(R + Ls + \frac{1}{Cs} \right)$

Transfer function between capacitance voltage and source voltage

where
$$\omega_n = \frac{1}{\sqrt{LC}}$$
 and $\zeta = \frac{R}{2\sqrt{\frac{L}{C}}}$

Q.4.4.Find the transfer function of the following Spring-mass-damperas shown in Fig.4.11.

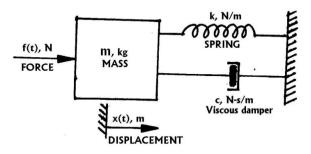


Fig.4.11.

Solution

$$\frac{X(s)}{F(s)} = \frac{1}{ms^2 + cs + k} = \frac{1}{m(s^2 + 2\zeta\omega_n s + \omega_n^2)}$$

4.3. Analogous system: Fig.4.12 shows a translational mechanical system, a rotational control system and a voltage-source electrical system.

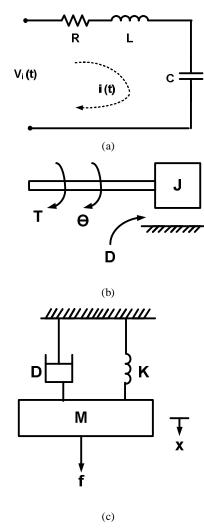


Fig.4.12. (a) a voltage-source electrical system,(b) a translational mechanical system and (c) a rotational control system

From Fig4.12 (a), (b) and (c), we have

$$L\frac{d^{2}q}{dt^{2}} + R\frac{dq}{dt} + \frac{1}{C}q = v(t)$$

$$J\frac{d^{2}\theta}{dt^{2}} + D\frac{d\theta}{dt} + K\theta = T$$

$$M\frac{d^{2}x}{dt^{2}} + D\frac{dx}{dt} + Kx = f$$

Where,

$$q = \int idt \tag{4.2}$$

The solutions for all the above three equations given by eq (4.2) are same. Therefore, the above shown three figures are analogous to each other. There are two important types of analogous systems, i.e. force-voltage (f-v) analogy and force-current analogy. From eq (4.2), f-v analogy can be drawn as follows.

Translational	Rotational	Electrical
Force (f)	Torque (T)	Voltage (v)
Mass (M)	Inertia (J)	Inductance (L)
Damper (D)	Damper (D)	Resistance (R)
Spring (K)	Spring (K)	Elastance (1/C)
Displacement (x)	Displacement (θ)	Charge (q)
Velocity (u) = \dot{x}	Velocity (u) = $\dot{\theta}$	Current (i) = \dot{q}

Similarly, f-i analogy that can be obtained from eq (4.1), can be drawn as follows.

Translational	Rotational	Electrical
Force (f)	Torque (T)	Current (i)
Mass (M)	Inertia (J)	Capacitance (C)
Damper (D)	Damper (D)	Conductance (1/R)
Spring (K)	Spring (K)	Reciprocal of Inductance (1/L)
Displacement (x)	Displacement (Θ)	Flux linkage (ψ)
Velocity (u) = \dot{x}	Velocity (u) = $\dot{\theta}$	Voltage (v) = $\dot{\psi}$

UNIT-I

5. Block Diagram Algebra

5.1. Basic Definition in Block Diagram model:

Block diagram: It is the pictorial representation of the cause-and-response relationship between input and output of a physical system.

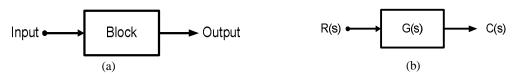


Fig.5.1. (a) A block diagram representation of a system and (b) A block diagram representation with gain of a system

Output: The value of input multiplied by the gain of the system.

$$C(s) = G(s)R(s) \tag{5.1}$$

Summing point: It is the component of a block diagram model at which two or more signals can be added or subtracted. In Fig.15, inputs R(s) and B(s) have been given to a summing point and its output signal is E(s). Here,

$$E(s) = R(s) - B(s) \tag{5.2}$$

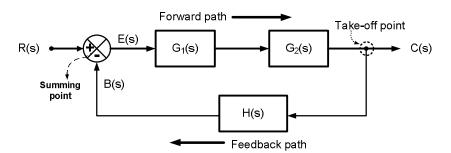


Fig.5.2. A block diagram representation of a systemshowing its different components

Take-off point: It is the component of a block diagram model at which a signal can be taken directly and supplied to one or more points as shown in Fig.5.2.

Forward path: It is the direction of signal flow from input towards output.

Feedback path: It is the direction of signal flow from output towards input.

5.2. Developing Block Diagram model from mathematical model:

Let's discuss this concept with the following example.

Example: A system is described by following mathematical equations. Find its corresponding block diagram model.

$$\dot{x}_1 = 3x_1 + 2x_2 + 5x_3 \tag{5.3}$$

$$\dot{x}_2 = x_1 + 4x_2 + 3x_3 \tag{5.4}$$

$$\dot{x}_3 = 2x_1 + x_2 + x_3 \tag{5.5}$$

Example: Eq (5.3), (5.4) and (5.5) are combiningly results in the following block diagram model.

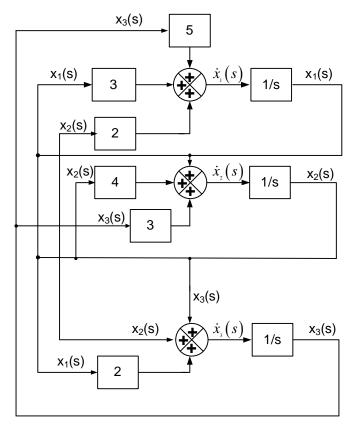


Fig.5.3. A block diagram representation of the above example

5.3. Rules for reduction of Block Diagram model:

Sl. No.	Rule No.	Configuration	Equivalent	Name
1	Rule 1	$R(s) \longrightarrow G_1(s) \longrightarrow G_2(s) \longrightarrow C(s)$	$R(s) \longrightarrow G_1(s)G_2(s) \longrightarrow C(s)$	Cascade
2	Rule 2	$G_1(s)$ $G_2(s)$	$R(s) \longrightarrow \boxed{G_1(s) + G_2(s)} \longrightarrow C(s)$	Parallel
3	Rule 3	R(s) $+$ $G(s)$ $+$ $H(s)$	$R(s) \longrightarrow \boxed{\frac{G(s)}{1 \pm G(s)H(s)}} \longrightarrow C(s)$	Loop
4	Rule 4	$R(s) \longrightarrow C(s)$ $X_1(s) \qquad X_2(s)$	$R(s) \xrightarrow{\qquad \qquad } C(s)$ $X_{2}(s) \qquad X_{1}(s)$	Associative Law
5	Rule 5	R(s) $G(s)$ $C(s)$	$R(s) \longrightarrow G(s)$ $X(s) \longleftarrow 1/G(s)$	Move take- off point after a block
6	Rule 6	$R(s) \longrightarrow G(s)$ $X(s) \longleftarrow C(s)$	$R(s) \longrightarrow G(s)$ $X(s) \longleftarrow G(s)$	Move take- off point before a block
7	Rule 7	$R(s) \longrightarrow G(s)$ $X(s)$	$R(s) \longrightarrow G(s)$ $G(s)$ $X(s)$	Move summing- point point after a block
8	Rule 8	$R(s) \longrightarrow G(s) \longrightarrow C(s)$ $X(s)$	$R(s) \longrightarrow G(s)$ $1/G(s)$ $X(s)$	Move summing- point point before a block

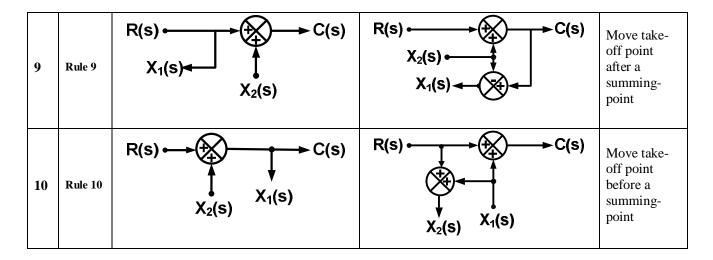


Fig. 5.4. Rules for reduction of Block Diagram model

5.4. Procedure for reduction of Block Diagram model:

Step 1: Reduce the cascade blocks.

Step 2: Reduce the parallel blocks.

Step 3: Reduce the internal feedback loops.

Step 4: Shift take-off points towards right and summing points towards left.

Step 5: Repeat step 1 to step 4 until the simple form is obtained.

Step 6: Find transfer function of whole system as $\frac{C(s)}{R(s)}$.

5.5. Procedure for finding output of Block Diagram model with multiple inputs:

Step 1: Consider one input taking rest of the inputs zero, find output using the procedure described in section 4.3.

Step 2: Follow step 1 for each inputs of the given Block Diagram model and find their corresponding outputs.

Step 3: Find the resultant output by adding all individual outputs.

UNIT-I

6. Signal Flow Graphs (SFGs)

It is a pictorial representation of a system that graphically displays the signal transmission in it.

6.1. Basic Definitions in SFGs:

Input or source node: It is a node that has only outgoing branches i.e. node 'r' in Fig.6.1.

Output or sink node: It is a node that has only incoming branches i.e. node 'c' in Fig.6.1.

Chain node: It is a node that has both incoming and outgoing branches i.e. nodes ' x_1 ', ' x_2 ', ' x_3 ', ' x_4 ', ' x_5 ' and ' x_6 ' in Fig.6.1.

Gain or transmittance: It is the relationship between variables denoted by two nodes or value of a branch. In Fig.6.1, transmittances are 't₁', 't₂', 't₃', 't₄', 't₅' and 't₆'.

Forward path: It is a path from input node to output node without repeating any of the nodes in between them. In Fig.6.1, there are two forward paths, i.e. path-1: $r_{x_1-x_2-x_3-x_4-x_5-x_6-c}$ and path-2: $r_{x_1-x_3-x_4-x_5-x_6-c}$.

Feedback path: It is a path from output node or a node near output node to a node near input node without repeating any of the nodes in between them (Fig.6.1).

Loop: It is a closed path that starts from one node and reaches the same node after trading through other nodes. In Fig.6.1, there are four loops, i.e. loop-1: $x_2-x_3-x_4-x_1$, loop-2: $x_5-x_6-x_5$, loop-3: $x_1-x_2-x_3-x_4-x_5-x_6-x_1$ and loop-4: $x_1-x_3-x_4-x_5-x_6-x_1$.

Self Loop: It is a loop that starts from one node and reaches the same node without trading through other nodes i.e. loop in node ' x_4 ' with transmittance ' t_{55} ' in Fig. 6.1.

Path gain: It is the product of gains or transmittances of all branches of a forward path. In Fig. 6.1, the path gains are $P_1 = t_1t_2t_3t_4t_5$ (for path-1) and $P_2 = t_9t_3t_4t_5$ (for path-2).

Loop gain: It is the product of gains or transmittances of all branches of a loop In Fig.6.1, there are four loops, i.e. $L_1 = -t_2t_3t_6$, $L_2 = -t_5t_7$, $L_3 = -t_1t_2t_3t_4t_5t_8$, and $L_4 = -t_9t_3t_4t_5t_8$.

Dummy node: If the first node is not an input node and/or the last node is not an output node than a node is connected before the existing first node and a node is connected after the existing last node with unity transmittances. These nodes are called dummy nodes. In Fig.6.1, 'r' and 'c' are the dummy nodes.

Non-touching Loops: Two or more loops are non-touching loops if they don't have any common nodes between them. In Fig. 6.1, L_1 and L_2 are non-touching loops

Example:

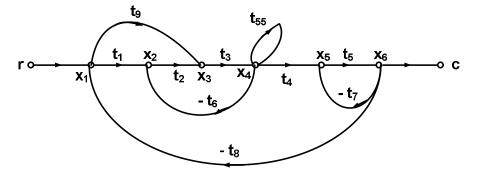


Fig. 6.1. Example of a SFG model

6.2. Properties SFGs:

- Applied to linear system
- Arrow indicates signal flow
- Nodes represent variables, summing points and take-off points
- Algebraic sum of all incoming signals and outgoing nodes is zero
- SFG of a system is not unique
- Overall gain of an SFG can be determined by using Mason's gain formula

6.3. SFG from block diagram model:

Let's find the SFG of following block diagram model shown in Fig.6.2.

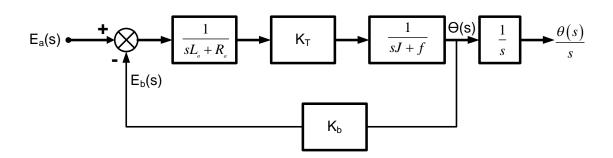
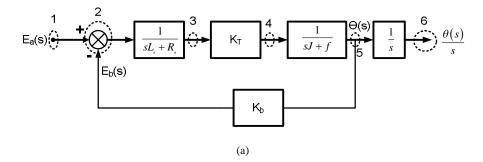


Fig.6.2. Armature type speed control of a DC motor

- **Step-1:** All variables and signals are replaced by nodes.
- Step-2: Connect all nodes according to their signal flow.
- **Step-3:** Each ofgains is replaced by transmittances of the branches connected between two nodes of the forward paths.
- **Step-4:** Each ofgains is replaced by transmittances multiplied with (-1) of the branches connected between two nodes of the forward paths.



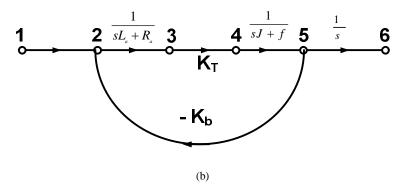


Fig.6.3. Armature type speed control of a DC motor

6.4. Mason's gain formula:

Transfer function of a system=

$$G(s) = \frac{C(s)}{R(s)} = \frac{\sum_{k=1}^{N} P_k \Delta_k}{\Delta}$$
(6.1)

Where,

N= total number of forward paths

 P_k = path gain of k^{th} forward path

 Δ = 1 - (Σ loop gains of all individual loops) + (Σ gain product of loop gains of all possible two non-touching loops) - (Σ gain product of loop gains of all possible three non-touching loops) + ...

 Δ_k = value of Δ after eliminating all loops that touches k^{th} forward path

Example:

Find the overall transfer function of the system given in Fig.6.1 using Mason's gain formula.

Solution:

In Fig.6.1,

No. of forward paths: N=2

Path gain of forward paths: $P_1 = t_1 t_2 t_3 t_4 t_5$ and $P_2 = t_6 t_3 t_4 t_5$

 $\mbox{Loop gain of individual loops: } L_1 = -t_2t_3t_6 \ , \ L_2 = -t_5t_7 \ , \ L_3 = -t_1t_2t_3t_4t_5t_8 \ \ \mbox{and} \ \ L_4 = -t_9t_3t_4t_5t_8 \ \ \mbox{and} \ \ L_4 = -t_9t_3t_4t_5t_8 \ \ \mbox{and} \ \ \mbox{Loop gain of individual loops: } L_1 = -t_2t_3t_6 \ , \ \ L_2 = -t_3t_7 \ , \ \ L_3 = -t_1t_2t_3t_4t_5t_8 \ \ \mbox{and} \ \ \ L_4 = -t_9t_3t_4t_5t_8 \ \ \mbox{distance} \ \ \mbox{distance} \ \ \mbox{distance} \ \mbox{distan$

No. of two non-touching loops = 2 i.e. L_1 and L_2

No. of more than two non-touching loops = 0

$$\Delta = 1 - (L_1 + L_2 + L_3 + L_4) + (L_1 L_2) - 0 = 1 - L_1 - L_2 - L_3 - L_4 + L_1 L_2$$

$$\Delta_1 = 1 - 0 = 1 \text{ and } \Delta_2 = 1 - 0 = 1$$

$$G(s) = \frac{P_1 \Delta_1 + P_2 \Delta_2}{\Delta}$$

$$\Rightarrow G(s) = \frac{(t_1 t_2 t_3 t_4 t_5)(1) + (t_6 t_3 t_4 t_5)(1)}{1 + t_2 t_3 t_6 + t_5 t_7 + t_1 t_2 t_3 t_4 t_5 t_8 + t_9 t_3 t_4 t_5 t_8 + t_2 t_3 t_5 t_6 t_7}$$

$$\Rightarrow G(s) = \frac{t_1 t_2 t_3 t_4 t_5 + t_6 t_3 t_4 t_5}{1 + t_2 t_3 t_6 + t_5 t_7 + t_1 t_2 t_3 t_4 t_5 t_8 + t_9 t_3 t_4 t_5 t_8 + t_2 t_3 t_5 t_6 t_7}$$

UNIT-I

7. Feedback Characteristics of Control System

7.1. Feedback and Non-feedback Control systems

Non-feedback control system: It is a control system that does not have any feedback paths. It is also known as open-loop control system. It is shown in Fig. 7.1 (a) and (b).

Feedback control system: It is a control system that has at least one feedback path. It is also known as closed-loop control system. It is shown in Fig.7.2 (a) and (b).

Fig.7.1. (a) Block diagram of a non-feedback control system and (b) SFG of a non-feedback control system

Fig. 7.2. (a) Block diagram of a feedback control system and (b) SFG of a feedback control system

7.2. Types of Feedback in a Control system

7.2.1. Degenerative feedback control system: It is a control system where the feedback signal opposes the input signal. Here,

Error or actuating signal = (Input signal) – (Feedback signal).

Referring Fig.7.3,

$$E(s) = R(s) - B(s) \tag{7.1}$$

and

$$T_1(s) = \frac{G(s)}{1 + G(s)H(s)} \tag{7.2}$$

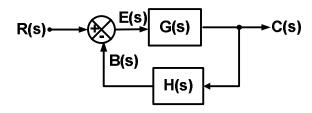


Fig.7.3. (a) Block diagram of a degenerative feedback control system

7.2.2. Regenerative feedback control system: It is a control system where the feedback signal supports or adds the input signal. Here,

Error or actuating signal = (Input signal) + (Feedback signal).

Referring Fig.7.4,

$$E(s) = R(s) + B(s) \tag{7.3}$$

and

$$T_2(s) = \frac{G(s)}{1 - G(s)H(s)} \tag{7.4}$$

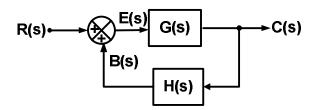


Fig.7.4. Block diagram of a regenerative feedback control system

7.3. Effect of parameter variation on overall gain of a degenerative Feedback Control system

The overall gain or transfer function of a degenerative feedback control system depends upon these parameters i.e. (i) variation in parameters of plant, and (ii) variation in parameter of feedback system and (ii) disturbance signals.

The term sensitivity is a measure of the effectiveness of feedback on reducing the influence of any of the above described parameters. For an example, it is used to describe the relative variations in the overall Transfer function of a system T(s) due to variation in G(s).

$$sensitivity = \frac{percentage\ change\ in\ T(s)}{percentage\ change\ in\ G(s)}$$

7.3.1. Effect of variation in G(s) on T(s) of a degenerative Feedback Control system

In an open-loop system,

$$C(s) = G(s)R(s)$$

Let, due to parameter variation in plant G(s) changes to $[G(s) + \Delta G(s)]$ such that $|G(s)| >> |\Delta G(s)|$. The output of the open-loop system then changes to

$$C(s) + \Delta C(s) = [G(s) + \Delta G(s)]R(s)$$

$$\Rightarrow C(s) + \Delta C(s) = G(s)R(s) + \Delta G(s)R(s)$$

$$\Rightarrow \Delta C(s) = \Delta G(s)R(s)$$
(7.5)

In an closed-loop system,

$$C(s) = \frac{G(s)}{1 + G(s)H(s)}R(s)$$

Let, due to parameter variation in plant G(s) changes to $[G(s) + \Delta G(s)]$ such that $|G(s)| >> |\Delta G(s)|$. The output of the open-loop system then changes to

$$C(s) + \Delta C(s) = \frac{\left[G(s) + \Delta G(s)\right]}{1 + \left[G(s) + \Delta G(s)\right]H(s)}R(s)$$

$$\Rightarrow C(s) + \Delta C(s) = \frac{G(s) + \Delta G(s)}{1 + G(s)H(s) + \Delta G(s)H(s)}R(s)$$

Since, $|G(s)| >> |\Delta G(s)|$, then $G(s)H(s) \square \Delta G(s)H(s)$. Therefore, $\Delta G(s)H(s)$ is neglected. Now,

$$C(s) + \Delta C(s) = \frac{G(s) + \Delta G(s)}{1 + G(s)H(s)}R(s)$$

$$\Rightarrow C(s) + \Delta C(s) = \frac{G(s)}{1 + G(s)H(s)}R(s) + \frac{\Delta G(s)}{1 + G(s)H(s)}R(s)$$

Or

$$\Delta C(s) = \frac{\Delta G(s)}{1 + G(s)H(s)}R(s) \tag{7.6}$$

Comparing eq (42 and (43), it is clear that $\Delta C_{(open \, loop)} = (1 + GH) \, \Delta C_{(closed \, loop)}$

This concept can be reproved using sensitivity. Sensitivity on T(s) due to variation in G(s) is given by

$$S_G^T = \frac{\partial T/T}{\partial G/G} = \frac{\partial T}{\partial G} \times \frac{G}{T}$$
(7.7)

For open-loop system,

$$S_G^T = \frac{\partial T/T}{\partial G/G} = \frac{\partial G}{\partial G} \times \frac{G}{G} = 1 \tag{7.8}$$

For closed-loop system,

$$S_G^T = \frac{\partial T/T}{\partial G/G} = \frac{\left(1 + GH\right) - GH}{\left(1 + GH\right)^2} \times \frac{G}{G/\left(1 + GH\right)} = \frac{1}{\left(1 + GH\right)}$$
(7.9)

Therefore, it is proved that $S_{G\ (open\ loop)}^T = (1 + GH)S_{G\ (closed\ loop)}^T$. Hence, the effect of parameter variation in case of closed loop system is reduced by a factor of $\frac{1}{(1+GH)}$.

7.3.2. Effect of variation in H(s) on T(s) of a degenerative Feedback Control system

This concept can be reproved using sensitivity. Sensitivity on T(s) due to variation in H(s) is given by

$$S_H^T = \frac{\partial T/T}{\partial H/H} = \frac{\partial T}{\partial H} \times \frac{H}{T}$$
(7.10)

For closed-loop system,

$$S_{H}^{T} = \frac{\partial T}{\partial H} \times \frac{H}{T} = G \left[\frac{-G}{\left(1 + GH\right)^{2}} \right] \times \frac{H}{G/\left(1 + GH\right)} = \frac{-GH}{\left(1 + GH\right)}$$
(7.11)

For higher value of GH, sensitivity S_H^T approaches unity. Therefore, change in H affects directly the system output.

UNIT-II

8. Time Domain Analysis of Control Systems

8.1. Time response

Time response c(t) is the variation of output with respect to time. The part of time response that goes to zero after large interval of time is called transient response $c_{tr}(t)$. The part of time response that remains after transient response is called steady-state response $c_{ss}(t)$.

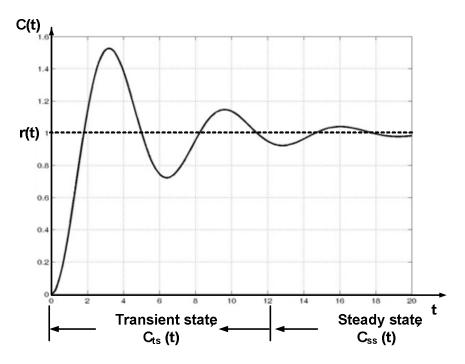


Fig.7.1. Time response of a system

8.2. System dynamics

System dynamics is the study of characteristic and behaviour of dynamic systems

i.e.

- i. Differential equations: First-order systems and Second-order systems,
- ii. Laplace transforms,
- iii. System transfer function,
- iv. Transient response: Unit impulse, Step and Ramp

Laplace transforms convert differential equations into algebraic equations. They are related to frequency response

$$\mathbf{L}\left\{\mathbf{x}(\mathbf{t})\right\} = \mathbf{X}(\mathbf{s}) = \int_{0}^{\infty} x(t)e^{-st}dt$$
(8.1)

No.	Function	Time-domain	Laplace domain
		$x(t) = \mathcal{L}^{-1}\{X(s)\}$	$X(s)=\mathcal{L}\{x(t)\}$
1	Delay	δ(t-τ)	e ^{-ts}
2	Unit impulse	δ(t)	1
3	Unit step	u(t)	$\frac{1}{s}$
4	Ramp	t	$\frac{1}{s^2}$
5	Exponential decay	e ^{-αt}	$\frac{1}{s+\alpha}$
6	Exponential approach	$(1-e^{-cat})$	$\frac{\alpha}{s(s+\alpha)}$
7	Sine	sin ωt	$\frac{\omega}{s^2 + \omega^2}$
8	Cosine	cos ωt	$\frac{s}{s^2 + \omega^2}$
9	Hyperbolic sine	sinh at	$\frac{\alpha}{s^2 - \alpha^2}$
10	Hyperbolic cosine	cosh αt	$\frac{s}{s^2 - \alpha^2}$
11	Exponentially decaying sine wave	$e^{-\alpha t}\sin\omega t$	$\frac{\omega}{(s+\alpha)^2+\omega^2}$
12	Exponentially decaying cosine wave	$e^{-\alpha t}\cos\omega t$	$\frac{s+\alpha}{(s+\alpha)^2+\omega^2}$

8.3. Forced response

$$C(s) = G(s)R(s) = \frac{K(s - z_1)(s - z_2)...(s - z_m)}{(s - p_1)(s - p_2)...(s - p_n)}R(s)$$
(8.2)

R(s) input excitation

8.4. Standard test signals

8.4.1. Impulse Signal: An impulse signal $\delta(t)$ is mathematically defined as follows.

$$\delta(t) = \frac{undefined \quad ; t = 0}{0 \quad ; t \neq 0}$$
(8.3)

Laplace transform of impulse signal is

$$\delta(s) = 1 \tag{8.4}$$

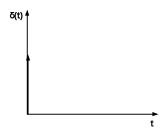
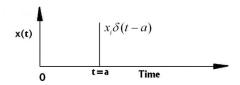


Fig.7.2. Impulse signal

Dirac delta function

$$x(t) = x_i \delta(t - a) \tag{8.5}$$



Integral property of Dirac delta function

$$\int_{-\infty}^{\infty} \phi(t)\delta(t - t_o)dt = \phi(t_o)$$
(8.6)

Laplace transform of an impulse input

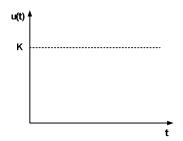
$$X(s) = \int_{0}^{\infty} e^{-st} x_i \delta(t - a) dt = x_i e^{-sa}$$
(8.7)

8.4.2. Step Signal: A step signal u(t) is mathematically defined as follows.

$$u(t) = \begin{cases} 0 & ; t < 0 \\ K & ; t \ge 0 \end{cases}$$
 (8.8)

Laplace transform of step signal is

$$U(s) = \frac{K}{s} \tag{8.9}$$



8.4.3. Ramp Signal: A step signal r(t) is mathematically defined as follows.

$$r(t) = \begin{cases} 0 & ; t < 0 \\ Kt & ; t \ge 0 \end{cases}$$
 (8.10)

Laplace transform of ramp signal is

$$R(s) = \frac{K}{s^2} \tag{8.11}$$

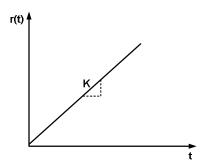


Fig.7.3. Ramp signal

8.4.4. Parabolic Signal A step signal a(t) is mathematically defined as follows.

$$a(t) = \frac{0}{Kt^2} \quad ; t < 0$$

$$(8.12)$$

Laplace transform of parabolic signal is

$$A(s) = \frac{K}{s^3} \tag{8.13}$$

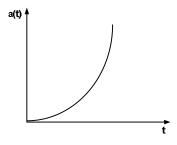


Fig.7.4. Parabolic signal

8.4.5. Sinusoidal Signal A sinusoidal x(t) is mathematically defined as follows.

$$x(t) = \sin \omega t \tag{8.14}$$

Laplace transform of sinusoidal signal is

$$X(s) = \int_{0}^{\infty} e^{-st} \sin \omega t \, dt = \frac{\omega}{s^2 + \omega^2}$$
 (8.15)

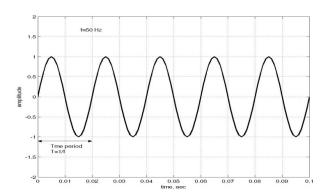


Fig.7.4. Sinusoidal signal

8.5. Steady-state error:

A simple closed-loop control system with negative feedback is shown as follows.

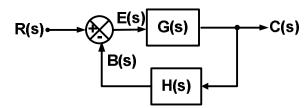


Fig. 7.5. A simple closed-loop control system with negative feedback

Here,

$$E(s) = R(s) - B(s)$$
(8.16)

$$B(s) = C(s)H(s) \tag{8.17}$$

$$C(s) = E(s)G(s) \tag{8.18}$$

Applying (1) in (9),

$$E(s) = R(s) - C(s)H(s)$$
(8.19)

Using (11) in (12),

$$E(s) = R(s) - E(s)G(s)H(s)$$
(8.20)

$$\Rightarrow [1+G(s)H(s)]E(s) = R(s)$$
(8.21)

$$\Rightarrow E(s) = \frac{R(s)}{1 + G(s)H(s)}$$
(8.22)

Steady-state error,

$$e_{ss} = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s)$$
(8.23)

Using (15) in (16),

$$e_{ss} = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)H(s)}$$

$$(8.24)$$

Therefore, steady-state error depends on two factors, i.e.

- (a) type and magnitude of R(s)
- (b) open-loop transfer function G(s)H(s)

8.6. Types of input and Steady-state error:

8.6.1. Step Input

$$R(s) = \frac{A}{s} \tag{8.25}$$

Using (18) in (17),

$$e_{ss} = \lim_{s \to 0} \frac{s\left(\frac{A}{s}\right)}{1 + G(s)H(s)} = \lim_{s \to 0} \frac{A}{1 + G(s)H(s)}$$
 (8.26)

$$\Rightarrow e_{ss} = \frac{A}{1 + \lim_{s \to 0} G(s)H(s)} = \frac{A}{1 + K_P}$$
(8.27)

Where,

$$K_P = \lim_{s \to 0} G(s) H(s) \tag{8.28}$$

8.6.2. Ramp Input

$$R(s) = \frac{A}{s^2} \tag{8.29}$$

Using (18) in (17),

$$e_{ss} = \lim_{s \to 0} \frac{s\left(\frac{A}{s^2}\right)}{1 + G(s)H(s)} = \lim_{s \to 0} \frac{A}{s\left[1 + G(s)H(s)\right]}$$

$$\Rightarrow e_{ss} = \lim_{s \to 0} \frac{A}{s + sG(s)H(s)}$$

$$\Rightarrow e_{ss} = \frac{A}{\lim_{s \to 0} sG(s)H(s)} = \frac{A}{K_V}$$
(8.30)

Where,

$$K_V = \lim_{s \to 0} sG(s)H(s) \tag{8.31}$$

8.6.3. Parabolic Input

$$R(s) = \frac{A}{s^3} \tag{8.32}$$

Using (18) in (17),

$$e_{ss} = \lim_{s \to 0} \frac{s\left(\frac{A}{s^3}\right)}{1 + G(s)H(s)} = \lim_{s \to 0} \frac{A}{s^2 \left[1 + G(s)H(s)\right]}$$

$$\Rightarrow e_{ss} = \lim_{s \to 0} \frac{A}{s^2 + s^2 G(s)H(s)}$$

$$\Rightarrow e_{ss} = \frac{A}{\lim_{s \to 0} s^2 G(s)H(s)} = \frac{A}{K_A}$$
(8.33)

Where,

$$K_A = \lim_{s \to 0} s^2 G(s) H(s) \tag{8.34}$$

Types of input and steady-state error are summarized as follows.

Error Constant	Equation	Steady-state error (e _{ss})
Position Error Constant (K _P)		$e_{ss} = \frac{A}{1 + K_P}$
	$K_V = \lim_{s \to 0} sG(s)H(s)$	·
Acceleration Error Constant (K _A)	$K_A = \lim_{s \to 0} s^2 G(s) H(s)$	$e_{ss} = \frac{A}{K_A}$

8.7. Types of open-loop transfer function G(s)H(s) and Steady-state error:

8.7.1. Static Error coefficient Method

The general form of G(s)H(s) is

$$G(s)H(s) = \frac{K(1+T_1s)(1+T_2s)...(1+T_ns)}{s^{j}(1+T_ns)(1+T_hs)...(1+T_ms)}$$
(8.35)

Here, j = no. of poles at origin (s = 0)

or, type of the system given by eq (28) is j.

8.7.1.1. Type 0

$$G(s)H(s) = \frac{K(1+T_1s)(1+T_2s)...(1+T_ns)}{(1+T_ns)(1+T_hs)...(1+T_ns)}$$
(8.36)

Here,

$$K_P = \lim_{s \to 0} G(s)H(s) = K \tag{8.37}$$

Therefore,

$$e_{ss} = \frac{A}{1+K} \tag{8.38}$$

8.7.1.2. Type 1

$$G(s)H(s) = \frac{K(1+T_1s)(1+T_2s)...(1+T_ns)}{s(1+T_as)(1+T_bs)...(1+T_ms)}$$
(8.39)

Here,

$$K_V = \lim_{s \to 0} sG(s)H(s) = K \tag{8.40}$$

Therefore,

$$e_{ss} = \frac{A}{K} \tag{8.41}$$

8.7.1.3. Type 2

$$G(s)H(s) = \frac{K(1+T_1s)(1+T_2s)...(1+T_ns)}{s^2(1+T_as)(1+T_bs)...(1+T_ms)}$$
(8.42)

Here,

$$K_A = \lim_{s \to 0} s^2 G(s) H(s) = K$$
 (8.43)

Therefore,

$$e_{ss} = \frac{A}{K} \tag{8.44}$$

Steady-state error and error constant for different types of input are summarized as follows.

Туре	Step input		Ramp input		Parabolic input	
	K _P	e_{ss}	K _V	e_{ss}	K _A	e_{ss}
Type 0	K	$\frac{A}{1+K}$	0	∞	0	8
Type 1	∞	0	K	$\frac{A}{K}$	0	∞
Type 2	∞	0	∞	0	K	$\frac{A}{K}$

The static error coefficient method has following advantages:

- Can provide time variation of error
- Simple calculation

But, the static error coefficient method has following demerits:

- Applicable only to stable system
- Applicable only to three standard input signals
 Cannot give exact value of error. It gives only mathematical value i.e. 0 or ∞

8.7.2. Generalized Error coefficient Method

From eq (15),

$$E(s) = \left[\frac{1}{1 + G(s)H(s)}\right]R(s)$$

So,

$$E(s) = F_1(s)F_2(s)$$
 (8.45)

Where,
$$F_1 = \frac{1}{1 + G(s)H(s)}$$
 and $F_2(s) = R(s)$

Using convolution integral to eq (38)

$$e(t) = \int_{0}^{t} f_{1}(\tau) f_{2}(t-\tau) d\tau = \int_{0}^{t} f_{1}(\tau) r(t-\tau) d\tau$$
 (8.46)

Using Taylor's series of expansion to $r(t-\tau)$,

$$r(t-\tau) = r(t) - \tau r'(t) + \frac{\tau^2}{2!} r''(t) - \frac{\tau^3}{3!} r'''(t) + \dots$$
 (8.47)

Now, applying eq (40) in eq (39),

$$e(t) = \int_{0}^{t} f_{1}(\tau)r(t)d\tau - \int_{0}^{t} \tau r'(t)f_{1}(\tau)d\tau + \int_{0}^{t} \frac{\tau^{2}}{2!}r''(t)f_{1}(\tau)d\tau - \int_{0}^{t} \frac{\tau^{3}}{3!}r'''(t)f_{1}(\tau)d\tau + \dots$$
 (8.48)

Now, steady-state error, e_{ss} is

$$e_{ss} = \lim_{t \to \infty} e(t) \tag{8.49}$$

Therefore,

$$e_{ss} = \lim_{t \to \infty} e(t) = \lim_{t \to \infty} \left[\int_{0}^{t} f_{1}(\tau) r(t) d\tau - \int_{0}^{t} \tau r'(t) f_{1}(\tau) d\tau + \int_{0}^{t} \frac{\tau^{2}}{2!} r''(t) f_{1}(\tau) d\tau - \int_{0}^{t} \frac{\tau^{3}}{3!} r'''(t) f_{1}(\tau) d\tau + \dots \right]$$

$$\Rightarrow e_{ss} = \int_{0}^{\infty} f_{1}(\tau) r(t) d\tau - \int_{0}^{\infty} \tau r'(t) f_{1}(\tau) d\tau + \int_{0}^{\infty} \frac{\tau^{2}}{2!} r''(t) f_{1}(\tau) d\tau - \int_{0}^{\infty} \frac{\tau^{3}}{3!} r'''(t) f_{1}(\tau) d\tau + \dots$$
(8.50)

Eq (44) can be rewritten as

$$e_{ss} = C_0 r(t) + C_1 r'(t) + \frac{C_2}{2!} r''(t) + \frac{C_3}{3!} r'''(t) + \dots$$
(8.51)

Where, C₀, C₁, C₂, C₃, etc. are dynamic error coefficients. These are given as

$$C_{0} = \int_{0}^{\infty} f_{1}(\tau) d\tau = \lim_{s \to 0} F_{1}(s)$$

$$C_{1} = \int_{0}^{\infty} -\tau f_{1}(\tau) d\tau = \lim_{s \to 0} \frac{dF_{1}(s)}{ds}$$

$$C_{2} = \int_{0}^{\infty} \frac{\tau^{2}}{2!} f_{1}(\tau) d\tau = \lim_{s \to 0} \frac{d^{2}F_{1}(s)}{ds^{2}}$$

$$C_{3} = \int_{0}^{\infty} -\frac{\tau^{3}}{3!} f_{1}(\tau) d\tau + \lim_{s \to 0} \frac{d^{3}F_{1}(s)}{ds^{3}}$$
(8.52)

8.8. First-order system:

A Governing differential equation is given by

$$y + \tau \dot{y} = Kx(t) \tag{8.53}$$

Where, Time constant, $\sec = \tau$,

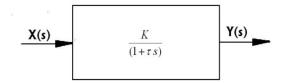
Static sensitivity (units depend on the input and output variables) = K,

y(t) is response of the system and

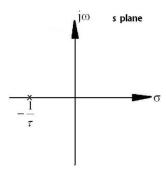
x(t) is input excitation

The System transfer function is

$$\frac{Y(s)}{X(s)} = G(s) = \frac{K}{(1+\tau s)}$$
(8.54)



Pole-zero map of a first-order system



Normalized response

In this type of response

- Static components are taken out leaving only the dynamic component
- The dynamic components converge to the same value for different physical systems of the same type or order
- Helps in recognizing typical factors of a system

8.8.1. Impulse input to a first-order system

Governing differential equation

$$y + \tau \ \dot{y} = Kx_i \delta(t) \tag{8.55}$$

Laplacian of the response

$$Y(s) = \frac{Kx_i}{(1+\tau s)} = \frac{Kx_i}{\tau} \left(\frac{1}{s+\frac{1}{\tau}}\right)$$
(8.56)

Time-domain response

$$y(t) = \frac{Kx_i}{\tau} e^{-\frac{t}{\tau}} \tag{8.57}$$

Impulse response function of a first-order system

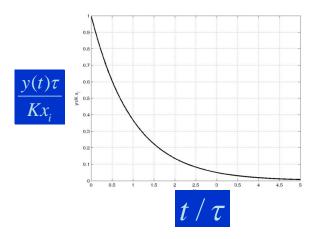
$$h(t) = \frac{K}{\tau} e^{-\frac{t}{\tau}} \tag{8.58}$$

By putting $x_i=1$ in the response

Response of a first-order system to any force excitation

$$y(t) = \frac{K}{\tau} \int_{0}^{t} e^{-\frac{t}{\tau}} F(t - \eta) d\eta$$
 (8.59)

The above equation is called Duhamel's integral. Normalized response of a first-order system to impulse input is shown below.



8.8.2. Step input to a first-order system

Governing differential equation

$$y + \tau \dot{y} = Kx_i u(t) \tag{8.60}$$

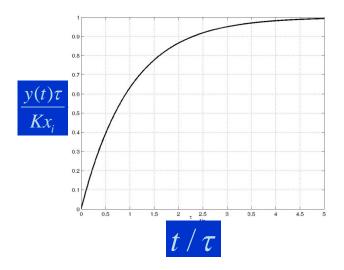
Laplacian of the response

$$Y(s) = \frac{Kx_i}{s(1+\tau s)} = \frac{Kx_i}{s} - \frac{Kx_i}{s+1}$$
(8.61)

Time-domain response

$$y(t) = Kx_i \left(1 - e^{-\frac{t}{\tau}} \right)$$
 (8.62)

Normalized response of a first-order system to impulse input is shown below.



8.8.3. Ramp input to a first-order system

Governing differential equation

$$y + \tau \ \dot{y} = Kt \tag{8.63}$$

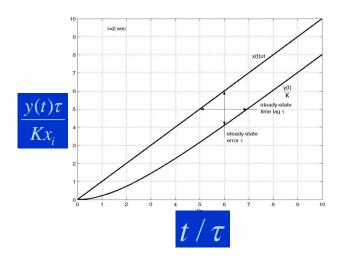
Laplacian of the response

$$Y(s) = \frac{K}{s^{2}(1+\tau s)} = \frac{1}{s^{2}} - \frac{\tau}{s} + \frac{\tau}{s+\frac{1}{\tau}}$$
(8.64)

Time-domain response

$$\frac{y(t)}{K} = t - \tau + \tau e^{-\frac{t}{\tau}}$$
 (8.65)

Normalized response of a first-order system to impulse input is shown below.



8.8.4. Sinusoidal input to a first-order system

Governing differential equation

$$y + \tau \ \dot{y} = KA \sin \omega t \tag{8.66}$$

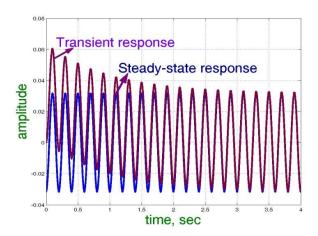
Laplacian of the response

$$Y(s) = \frac{K}{(1+\tau s)} \left(\frac{A\omega}{s^2 + \omega^2}\right) = \frac{\omega}{1 + (\omega\tau)^2} \left\{ \frac{\tau}{s + 1/\tau} - \frac{\tau s}{s^2 + \omega^2} + \frac{1}{s^2 + \omega^2} \right\}$$
(8.67)

Time-domain response

$$\frac{y(t)}{KA} = \frac{\omega}{1 + (\omega \tau)^2} \left\{ \tau e^{-t/\tau} - \tau \cos \omega t + \frac{1}{\omega} \sin \omega t \right\}$$
 (8.68)

Normalized response of a first-order system to impulse input is shown below.



8.9. Second-order system

A Governing differential equation is given by

$$m\ddot{y} + c\dot{y} + ky = Kx(t) \tag{8.69}$$

Where, τ = Time constant, sec,

K =Static sensitivity (units depend on the input and output variables),

m = Mass (kg),

c = Damping coefficient (N-s/m),

k = Stiffness (N/m),

y(t) is response of the system and

x(t) is input excitation

The System transfer function is

$$\frac{Y(s)}{X(s)} = \frac{K}{m\left\{s^2 + 2\zeta\omega_n s + \omega_n^2\right\}}$$
(8.70)

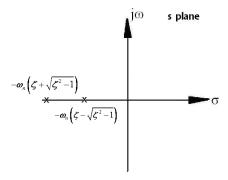
$$\frac{X(s)}{m\left\{s^2 + 2\zeta\omega_n s + \omega_n^2\right\}} \qquad Y(s)$$

Pole-zero map

(a) ζ>1 over damped Poles are:

$$s_{1,2} = -\omega_n \left(\zeta \pm \sqrt{\zeta^2 - 1} \right)$$
 (8.71)

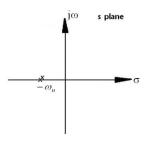
Graphically, the poles of an over damped system is shown as follows.



(b) $\zeta = 1$ critically damped Poles are:

$$s_{1,2} = -\omega_n (8.72)$$

Graphically, the poles of an critically damped system is shown as follows.



(c) ζ <1 under damped Poles are:

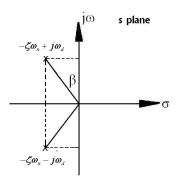
$$s_{1,2} = -\omega_n \left(\zeta \pm j \sqrt{1 - \zeta^2} \right)$$

$$\Rightarrow s_{1,2} = -\zeta \omega_n \pm j \omega_d$$
(8.73)

Where, ω_d = Damped natural frequency

$$\omega_d = \omega_n \sqrt{1 - \zeta^2} \tag{8.74}$$

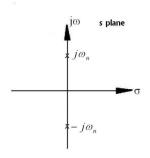
Graphically, the poles of an critically damped system is shown as follows.



Here,
$$\tan \beta = \frac{\zeta}{\sqrt{1-\zeta^2}}$$

(d) $\zeta = 0$ un-damped Poles are:

$$s_{1,2} = -\pm j\omega_n \tag{8.75}$$



Solved problems:

- 1. A single degree of freedom spring-mass-damper system has the following data: spring stiffness 20 kN/m; mass 0.05 kg; damping coefficient 20 N-s/m. Determine
 - (a) undamped natural frequency in rad/s and Hz
 - (b) damping factor
 - (c) damped natural frequency n rad/s and Hz.

If the above system is given an initial displacement of 0.1 m, trace the phasor of the system for three cycles of free vibration.

Solution:

$$\omega_n = \sqrt{\frac{k}{m}} = \sqrt{\frac{20 \times 10^3}{0.05}} = 632.46 \text{ rad/s}$$

$$f_n = \frac{\omega_n}{2\pi} = \frac{632.46}{2\pi} = 100.66 \,\mathrm{Hz}$$

$$\zeta = \frac{c}{2\sqrt{km}} = \frac{20}{2\sqrt{20 \times 10^3 \times 0.05}} = 0.32$$

$$\omega_d = \omega_n \sqrt{1 - \zeta^2} = 632.46 \sqrt{1 - 0.32^2} = 600 \text{ rad/s}$$

$$f_d = \frac{\omega_d}{2\pi} = \frac{600}{2\pi} = 95.37 \,\text{Hz}$$

$$y(t) = Ae^{-\zeta\omega_n t} = 0.1e^{-0.32 \times 632.46t}$$

2. A second-order system has a damping factor of 0.3 (underdamped system) and an un-damped natural frequency of 10 rad/s. Keeping the damping factor the same, if the un-damped natural frequency is changed to 20 rad/s, locate the new poles of the system? What can you say about the response of the new system?

Solution:

Given,
$$\omega_{n1} = 10 \text{ rad/s}$$
 and $\omega_{n2} = 20 \text{ rad/s}$

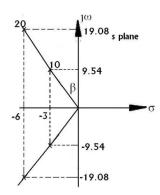
$$\omega_{d_1} = \omega_{n_1} \sqrt{1 - \zeta^2} = 10\sqrt{1 - 0.3^2} = 9.54 \,\text{rad/s}$$

$$\omega_{d_2} = \omega_{n_2} \sqrt{1 - \zeta^2} = 20\sqrt{1 - 0.3^2} = 19.08 \,\text{rad/s}$$

$$p_{1,2} = -\zeta \omega_{n_1} \pm j\omega_{d_1} = -3 \pm j9.54$$

$$p_{3,4} = -\zeta \omega_{n_2} \pm j\omega_{d_2} = -6 \pm j19.08$$

$$\tan \beta = \frac{\zeta}{\sqrt{1 - \zeta^2}} = \frac{0.3}{\sqrt{1 - 0.3^2}} = 17.45^\circ$$



8.9.1. Second-order Time Response Specifications with Impulse input

(a) Over damped case $(\zeta > 1)$

General equation

$$\ddot{y} + 2\zeta \omega_n \dot{y} + \omega_n^2 y = \frac{Kx_i}{m} \delta(t)$$
 (8.76)

Laplacian of the output

$$Y(s) = \frac{Kx_i}{m} \left(\frac{1}{s^2 + 2\zeta\omega_n s + \omega_n^2} \right)$$

$$= \frac{Kx_i}{2m\omega_n \sqrt{\zeta^2 - 1}} \left\{ \frac{1}{(s + \zeta\omega_n - \omega_n \sqrt{\zeta^2 - 1})} - \frac{1}{(s + \zeta\omega_n + \omega_n \sqrt{\zeta^2 - 1})} \right\}$$
(8.77)

Time-domain response

$$y(t) = \left[\frac{Kx_i}{m\omega_n\sqrt{\zeta^2 - 1}}\right]e^{-\zeta\omega_n t}\sinh\left(\omega_n\sqrt{\zeta^2 - 1}\right)t$$
(8.78)

(b) Critically damped case (ζ =1) General equation

$$\ddot{y} + \omega_n^2 y = \frac{Kx_i}{m} \delta(t) \tag{8.79}$$

Laplacian of the output

$$Y(s) = \frac{Kx_i}{m} \left(\frac{1}{s^2 + \omega_n^2} \right) \tag{8.80}$$

Time-domain response

$$y(t) = \left\{ \frac{Kx_i}{m\omega_n} \right\} \omega_n t e^{-\omega_n t}$$
 (8.81)

(c) Under damped case (ζ <1)

Poles are: $s_{1,2} = -\zeta \omega_n \pm j\omega_d$

General equation

$$\ddot{y} + 2\zeta \omega_n \dot{y} + \omega_n^2 y = \frac{Kx_i}{m} \delta(t)$$
 (8.82)

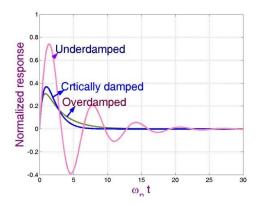
Laplacian of the output

$$Y(s) = \frac{Kx_i}{m} \left\{ \frac{1}{(s + \zeta\omega_n + j\omega_d)(s + \zeta\omega_n - j\omega_d)} \right\}$$
(8.83)

Time-domain response

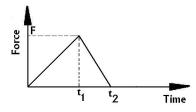
$$y(t) = \left\{ \frac{Kx_i}{m\omega_d} \right\} e^{-\zeta\omega_n t} \sin \omega_d t \tag{8.84}$$

Normalized impulse-response of a second-order system with different damping factors are shown graphically as follows.



Solved problems:

3. A second-order system has an un-damped natural frequency of 100 rad/s and a damping factor of 0.3. The value of the coefficient of the second time derivative (that is m) is 5. If the static sensitivity is 10, write down the response (do not solve) for a force excitation shown in the figure in terms of the Duhamel's integral for the following periods of time: 0<t<t1, t1<t<t2 and t>t2.



Solution:

Given, Undamped natural frequency $\omega_n=100 \text{ rad/s}$

Damping factor $\xi = 0.3$

Coefficient of the second time derivative m=5

Static sensitivity K=10

$$\omega_d = \omega_n \sqrt{1 - \zeta^2} = 100\sqrt{1 - 0.3^2} = 95.39 \text{ rad/s}$$

Here.

$$F(t) = F \frac{t}{t_1} \quad ; 0 \le t < t_1$$

$$F(t) = \frac{F}{t_2 - t_1} (t_2 - t) \quad ; t_1 \le t < t_2$$

$$y(t) = \frac{K}{m\omega_d} \int_0^t F(t - \eta) e^{-\zeta \omega_n \eta} \sin(\omega_d \eta) d\eta$$

$$\Rightarrow y(t) = \frac{10F}{5 \times 95.39 t_1} \int_0^t e^{-0.3 \times 100 \eta} \sin(95.39 \eta) (t - \eta) d\eta$$

$$= \frac{0.057F}{t_1} \int_0^t e^{-30 \eta} \sin(95.39 \eta) (t - \eta) d\eta$$

$$\Rightarrow y(t) = \frac{0.057F}{t_1} \int_0^{t_1} e^{-30 \eta} \sin(95.39 \eta) (t - \eta) d\eta$$

$$+ \frac{0.057F}{t_2 - t_1} \int_{t_1}^t e^{-30 \eta} \sin(95.39 \eta) (t_2 - t - \eta) d\eta$$

$$\Rightarrow y(t) = \frac{0.057F}{t_1} \int_{t_1}^{t_1} e^{-30 \eta} \sin(95.39 \eta) (t - \eta) d\eta$$

$$+ \frac{0.057F}{t_2 - t_1} \int_0^{t_1} e^{-30 \eta} \sin(95.39 \eta) (t - \eta) d\eta$$

$$+ \frac{0.057F}{t_2 - t_1} \int_0^{t_2} e^{-30 \eta} \sin(95.39 \eta) (t_2 - t - \eta) d\eta$$

$$; t > t_2$$

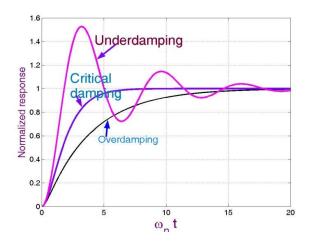
8.9.2. Second-order Time Response Specifications with step input

$$Y(s) = \frac{Kx_i}{m} \left\{ \frac{1}{s(s + \zeta\omega_n + \omega_n\sqrt{\zeta^2 - 1})(s + \zeta\omega_n - \omega_n\sqrt{\zeta^2 - 1})} \right\}$$
(8.85)

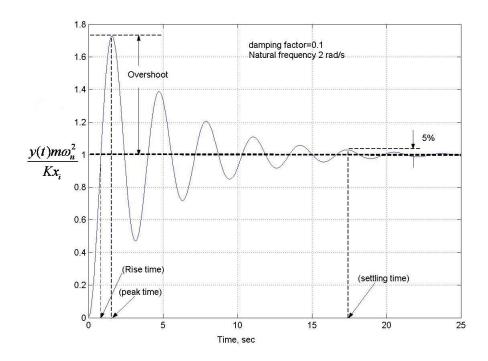
$$y(t) = \frac{Kx_i}{m\omega_n^2} \left\{ 1 - e^{-\zeta\omega_n t} \left[\cosh\left(\omega_n \sqrt{\zeta^2 - 1}\right) t + \frac{\zeta}{\sqrt{\zeta^2 - 1}} \sinh\left(\omega_n \sqrt{\zeta^2 - 1}\right) t \right] \right\}$$
(8.86)

$$Y(s) = \frac{Kx_i}{m} \left\{ \frac{1}{s(s + \zeta\omega_n + j\omega_d)(s + \zeta\omega_n - j\omega_d)} \right\}$$
(8.87)

$$y(t) = \frac{Kx_i}{m\omega_n^2} \left\{ 1 - e^{-\zeta\omega_n t} \left[\cos \omega_d t + \frac{\zeta}{\sqrt{1 - \zeta^2}} \sin \omega_d t \right] \right\}$$
(8.88)



8.10. Time Response Specifications with step-input for under-damped case For under-damped case, the step-response of a second-order is shown as follows



$$y(t) = \frac{Kx_i}{m\omega_n^2} \left\{ 1 - \frac{e^{-\zeta\omega_n t}}{\sqrt{1-\zeta^2}} \sin(\omega_d t + \varphi) \right\}$$
 (8.89)

$$\varphi = \tan^{-1} \frac{\sqrt{1 - \zeta^2}}{\zeta} \tag{8.90}$$

For this case, different time-domain specifications are described below.

(i) Delay time, td

- (ii) Rise time, tr
- (iii) Peak time, tp
- (iv) Peak overshoot, Mp
- (v) Settling time

For unity step input,

(i)Delay time, ta: It is the time required to reach 50% of output.

$$y(t_d) = \frac{1}{2} = 1 - \frac{e^{-\zeta \omega_n t_d}}{\sqrt{1 - \zeta^2}} \sin(\omega_d t_d + \varphi)$$

$$\Rightarrow t_d = \frac{1 + 0.7\zeta}{w_n}$$
(8.91)

(ii) Rise time, tr:The time required by the system response to reach from 10% to 90% of the final value for over-damped case, from 0% to 100% of the final value for under-damped case and from 5% to 95% of the critically value for over-damped case.

.

$$y(t_r) = 1 = 1 - \frac{e^{-\zeta \omega_n t_r}}{\sqrt{1 - \zeta^2}} \sin(\omega_d t_r + \varphi)$$

$$\Rightarrow \frac{e^{-\zeta \omega_n t_r}}{\sqrt{1 - \zeta^2}} \sin(\omega_d t_r + \varphi) = 0$$

$$\Rightarrow \omega_d t_r + \varphi = \pi$$

$$\Rightarrow t_r = \frac{\pi - \varphi}{w_d}$$
(8.92)

(iii) Peak time, tp: The time required by the system response to reach the first maximum value.

$$\frac{dy(t_p)}{dt} = 0$$

$$\Rightarrow \frac{d\left[1 - \frac{e^{-\zeta\omega_n t_p}}{\sqrt{1 - \zeta^2}}\sin(\omega_d t_p + \varphi)\right]}{dt} = 0$$

$$\Rightarrow \frac{d\left[-\frac{e^{-\zeta\omega_n t_p}}{\sqrt{1 - \zeta^2}}\sin(\omega_d t_p + \varphi)\right]}{dt} = 0$$

$$\Rightarrow \frac{d\left[-\frac{e^{-\zeta\omega_n t_p}}{\sqrt{1 - \zeta^2}}\sin(\omega_d t_p + \varphi)\right]}{dt} = 0$$

$$\Rightarrow w_d t_p + \varphi = \tan^{-1}\frac{\sqrt{1 - \zeta^2}}{\zeta} = n\pi + \varphi \text{; where } n = 1, 2, 3, \dots$$

For n=1,

$$\Rightarrow w_d t_p = n\pi$$

$$\Rightarrow t_p = \frac{n\pi}{w_d} \tag{8.93}$$

(iv) Peak overshoot, M_p: It is the time required to reach 50% of output.

$$M_p(\%) = 100 \times \frac{y(t_p) - 1}{1}$$

$$\Rightarrow M_{p}(\%) = 100 \times \left[1 - \frac{e^{-\zeta \omega_{n} t_{p}}}{\sqrt{1 - \zeta^{2}}} \sin(\omega_{d} t_{p} + \varphi) - 1\right]$$

$$\Rightarrow M_{p}(\%) = 100 \times \left[-\frac{e^{-\zeta \omega_{n} t_{p}}}{\sqrt{1 - \zeta^{2}}} \sin(\omega_{d} t_{p} + \varphi)\right] = 100 \times \left[-\frac{e^{-\zeta \omega_{n} \frac{\pi}{\omega_{d}}}}{\sqrt{1 - \zeta^{2}}} \sin(\omega_{d} t_{p} + \varphi)\right]$$

$$\Rightarrow M_{p}(\%) = 100 \times \left[-\frac{e^{-\frac{\pi\zeta}{\sqrt{1 - \zeta^{2}}}}}{\sqrt{1 - \zeta^{2}}} \sin(\omega_{d} \frac{\pi\zeta}{\sqrt{1 - \zeta^{2}}} + \varphi)\right] = 100 \times \left[-\frac{e^{-\frac{\pi\zeta}{\sqrt{1 - \zeta^{2}}}}}{\sqrt{1 - \zeta^{2}}} \sin(\pi + \varphi)\right]$$

$$\Rightarrow M_{p}(\%) = 100 \times \left[\frac{e^{-\frac{\pi\zeta}{\sqrt{1 - \zeta^{2}}}}}{\sqrt{1 - \zeta^{2}}} \sin\varphi\right] = 100 \times \left[\frac{e^{-\frac{\pi\zeta}{\sqrt{1 - \zeta^{2}}}}}{\sqrt{1 - \zeta^{2}}} \sqrt{1 - \zeta^{2}}\right]$$

$$\Rightarrow M_{p}(\%) = 100 \times e^{-\frac{\pi\zeta}{\sqrt{1 - \zeta^{2}}}}$$

$$\Rightarrow M_{p}(\%) = 100 \times e^{-\frac{\pi\zeta}{\sqrt{1 - \zeta^{2}}}}}$$

$$\Rightarrow M_{p}(\%) = 100 \times e^{-\frac{\pi\zeta}{\sqrt{1 - \zeta^{2}}}}$$

$$\Rightarrow M_{p}(\%) = 100 \times e^{-\frac{\pi\zeta}{\sqrt{1 - \zeta^{2}}}}}$$

$$\Rightarrow M_{p}(\%) = 100 \times e^{-\frac{\pi\zeta}{\sqrt{1 - \zeta^{2}}}}$$

(iv) Settling time, t_s : It is the time taken by the system response to settle down and stay with in $\pm 2\%$ or $\pm 5\%$ its final value.

For ±2% error band,

$$t_s = \frac{4}{\zeta w_n} \tag{8.95}$$

For ±5% error band,

$$t_s = \frac{3}{\zeta w_n} \tag{8.96}$$

Sl. No.	Time Specifications		
S1. No.	Туре	Formula	
1	Delay time	$t_d = \frac{1 + 0.7\zeta}{w_n}$	
2	Rise time	$t_r = \frac{\pi - \varphi}{w_d}$	
3	Peak time	$t_p = \frac{\pi}{w_d}$	
4	Maximum overshoot	$M_{p}(\%) = 100 \times e^{-\frac{\pi \zeta}{\sqrt{1-\zeta^{2}}}}$	
5	Settling time	$t_s = \frac{4}{\zeta w_n}$	

Solved Problems:

1. Consider the system shown in Figure 1. To improve the performance of the system a feedback is added to this system, which results in Figure 2. Determine the value of K so that the damping ratio of the new system is 0.4. Compare the overshoot, rise time, peak time and settling time and the nominal value of the systems shown in Figures 1 and 2.

Figure 1

Figure 2

Solution:

For Figure 1,

$$\frac{c(s)}{R(s)} = \frac{G(s)}{1 + G(s)} = \frac{\frac{20}{s(s+1)}}{1 + \frac{20}{s(s+1)}} = \frac{20}{s^2 + s + 20}$$

Here,
$$\omega_n^2 = 20$$
 and $2\zeta\omega_n = 1$

$$\omega_n = \sqrt{20} \text{ rad/s and } \zeta = \frac{1}{2\omega_n} = \frac{1}{2 \times \sqrt{20}} = 0.112$$

For Figure 2,

$$\frac{c(s)}{R(s)} = \frac{G(s)}{1 + G(s)} = \frac{\frac{20}{s(s+1+20K)}}{1 + \frac{20}{s(s+1+20K)}} = \frac{20}{s^2 + (1+20K)s + 20}$$

Here,
$$\omega_n^2 = 20$$
 and $2\zeta\omega_n = 1 + 20$ K

$$\omega_n = \sqrt{20} \text{ rad/s}$$

But, given that
$$\zeta = \frac{1 + 20K}{2\omega_n} = \frac{1 + 20K}{2\sqrt{20}} = 0.4$$

$$\Rightarrow K = 0.128$$

Transient characteristics of Figures 1 and 2

CharacteristicS	Figure 1	Figure 2
Overshoot, M _p	70%	25%
Rise time, t _r , sec	0.38	0.48
Peak time, t _p , sec	0.71	0.77
Settling time (2%), sec	8	2.24
Steady-state value, c_{∞}	1.0	1.0

Equation Chapter (Next) Section 1

1.1. Transient Response using MATLAB

Program 1: Find the step response for the following system $\frac{C(s)}{R(s)} = \frac{3s + 20}{s^2 + 5s + 36}$

Solution:

Program 2: Find the step response for the following system $\frac{C(s)}{R(s)} = \frac{20}{s^2 + 4s + 25}$

Solution:

UNIT-III

Concept of stability

Stability is a very important characteristic of the transient performance of a system. Any working system is designed considering its stability. Therefore, all instruments are stable with in a boundary of parameter variations.

A linear time invariant (LTI) system is stable if the following two conditions are satisfied.

(i) **Notion-1:** When the system is excited by a bounded input, output is also bounded.

Proof:

A SISO system is given by

$$\frac{C(s)}{R(s)} = G(s) = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_m}{a_0 s^n + a_1 s^{n-1} + \dots + a_n}$$
(9.1)

So,

$$c(t) = \alpha^{-1} [G(s)R(s)]$$
(9.2)

Using convolution integral method

$$c(t) = \int_{0}^{\infty} g(\tau)r(t-\tau)d\tau$$
 (9.3)

 $g(\tau) = \alpha^{-1}G(s)$ = impulse response of the system

Taking absolute value in both sides,

$$\left|c(t)\right| = \left|\int_{0}^{\infty} g(\tau)r(t-\tau)d\tau\right| \tag{9.4}$$

Since, the absolute value of integral is not greater than the integral of absolute value of the integrand

$$\begin{aligned} & \left| c(t) \right| \le \int_{0}^{\infty} \left| g(\tau) r(t - \tau) d\tau \right| \\ \Rightarrow & \left| c(t) \right| \le \int_{0}^{\infty} \left| g(\tau) r(t - \tau) \right| d\tau \\ \Rightarrow & \left| c(t) \right| \le \int_{0}^{\infty} \left| g(\tau) \right| \left| r(t - \tau) \right| d\tau \end{aligned}$$

$$(9.5)$$

Let, r(t) and c(t) are bounded as follows.

$$\begin{aligned} & |r(t)| \le M_1 < \infty \\ & |c(t)| \le M_2 < \infty \end{aligned} \tag{9.6}$$

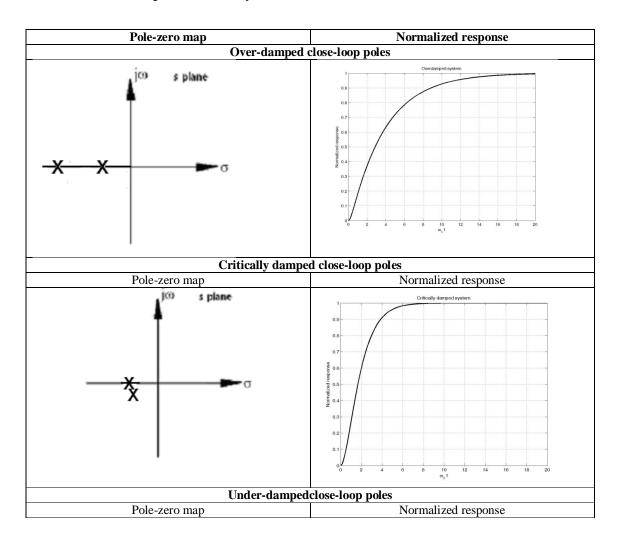
Then,

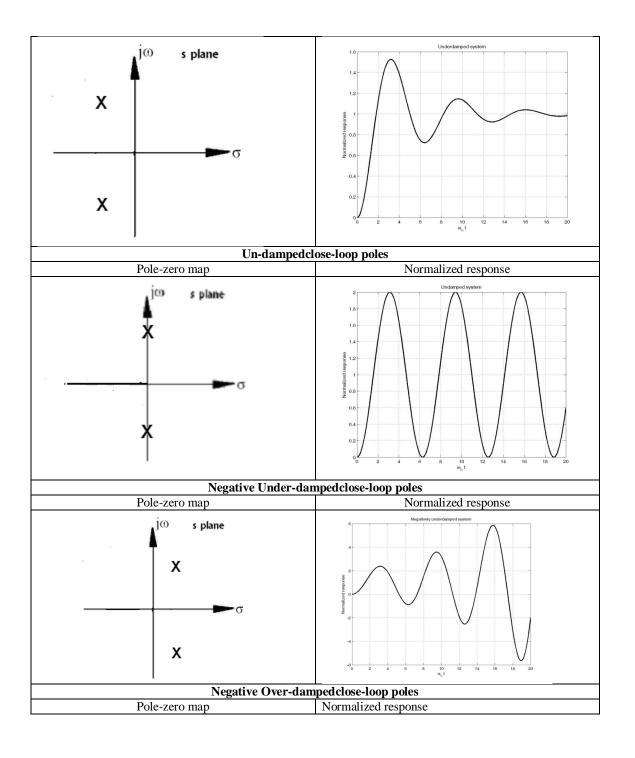
$$\left|c(t)\right| \le M_1 \int_{0}^{\infty} \left|g(\tau)\right| d\tau \le M_2 \tag{9.7}$$

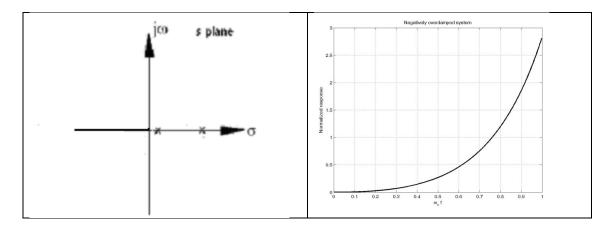
Hence, first notion of stability is satisfied if $\int_{0}^{\infty} |g(\tau)| d\tau$ is finite or integrable.

(ii) **Notion-2:** In the absence of the input, the output tends towards zero irrespective of initial conditions. This type of stability is called asymptotic stability.

Effect of location of poles on stability







Closed-loop poles on the imaginary axis

Closed-loop can be located by replace the denominator of the close-loop response with s=j\omega.

Example:

1. Determine the close-loop poles on the imaginary axis of a system given below.

$$G(s) = \frac{K}{s(s+1)}$$

Solution:

Characteristics equation, $B(s) = s^2 + s + K = 0$

Replacing s = jw

$$B(j\omega) = (j\omega)^2 + (j\omega) + K = 0$$

$$\Rightarrow (K-\omega^2)+j\omega=0$$

Comparing real and imaginary terms of L.H.S. with real and imaginary terms of R.H.S., we get

$$\omega = \sqrt{K}$$
 and $\omega = 0$

Therefore, Closed-loop poles do not cross the imaginary axis.

2. Determine the close the imaginary axis of a system given below.

$$B(s) = s^3 + 6s^2 + 8s + K = 0$$
.

Solution:

Characteristics equation,

$$B(j\omega) = (j\omega)^3 + 6(j\omega)^2 + 8j\omega + K = 0$$

$$\Rightarrow (K-6\omega^2)+j(8\omega-\omega^3)=0$$

Comparing real and imaginary terms of L.H.S. with real and imaginary terms of R.H.S., we get

$$\omega = \pm \sqrt{8}$$
 rad/s and $K = 6\omega^2 = 48$

Therefore, Close-loop poles cross the imaginary axis for K>48.

Routh-Hurwitz's Stability Criterion

General form of characteristics equation,

$$B(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0 = 0$$

$$\Rightarrow (s-r_1)(s-r_2)\cdot\cdot(s-r_n)=0$$

Where, r_i = Roots of the characteristics equation

Necessary condition of stability:

Coefficients of the characteristic polynomial must be positive.

Example:

3. Consider a third order polynomial $B(s) = s^3 + 3s^2 + 16s + 130$. Although the coefficients of the above polynomial are positive, determine the roots and hence prove that the rule about coefficients being positive is only a necessary condition for the roots to be in the left s-plane.

Solution:

Characteristics equation, $B(s) = s^3 + 3s^2 + 16s + 130 = 0$

By using Newton-Raphson's method $r_1 = -5$ and $r_{2,3} = 1 \pm j5$

Therefore, from the above example, the condition that coefficients of a polynomial should be positive for all its roots to be in the left s-plane is only a necessary condition.

Sufficient condition of stability:

2.4.2.1.Method I (using determinants)

The coefficients of the characteristics equation are represented by determinant form as follows.

$$\Delta_{n} = \begin{vmatrix} a_{n-1} & a_{n-3} & a_{n-5} & \cdots \\ a_{n} & a_{n-2} & a_{n-4} & \cdots \\ 0 & a_{n-1} & a_{n-3} & \cdots \end{vmatrix}$$
(9.8)

Here, the determinant decreases by two along the row by one down the column. For stability, the following conditions must satisfy.

$$\Delta_{1} = a_{n-1} > 0, \Delta_{2} = \begin{vmatrix} a_{n-1} & a_{n-3} \\ a_{n} & a_{n-2} \end{vmatrix} > 0, \Delta_{3} = \begin{vmatrix} a_{n-1} & a_{n-3} & a_{n-5} \\ a_{n} & a_{n-2} & a_{n-4} \\ 0 & a_{n-1} & a_{n-3} \end{vmatrix} > 0 \cdots$$
(9.9)

2.4.2.2.Method II (using arrays)

The coefficients of the characteristics equation are represented by array form as follows.

$$\begin{vmatrix}
s^{n} & a_{n} & a_{n-2} & a_{n-4} \\
s^{n-1} & a_{n-1} & a_{n-3} & a_{n-5} \\
s^{n-2} & b_{n-1} & b_{n-3} & b_{n-5} \\
s^{n-3} & c_{n-1} & c_{n-3} & c_{n-5} \\
\vdots & & & & & & \\
\end{vmatrix} (9.10)$$

Where,

$$b_{n-1} = \frac{(a_{n-1})(a_{n-2}) - a_n(a_{n-3})}{a_{n-1}}$$

$$b_{n-3} = \frac{(a_{n-1})(a_{n-4}) - a_n(a_{n-5})}{a_{n-1}}$$

$$c_{n-1} = \frac{(b_{n-1})(a_{n-3}) - a_{n-1}(b_{n-3})}{b_{n-1}}$$
(9.11)

For stability, the following conditions must satisfy.

The number of roots of B(s) with positive real parts is equal to the number of sign changes a_n , a_{n-1} , b_{n-1} , c_{n-1} , etc.

Example:

4. Find stability of the following system given by $G(s) = \frac{K}{s(s+1)}$ and H(s) = 1 using Routh-Hurwitz stability criterion.

Solution:

In the system,
$$T(s) = \frac{G(s)}{1 + G(s)H(s)} = \frac{\frac{K}{s(s+1)}}{1 + \frac{K}{s(s+1)}} = \frac{K}{s^2 + s + K}$$

Method-I,

Characteristics equation, $B(s) = s^2 + s + K = 0$

$$\Delta_1 = 1$$
Here,
$$\Delta_2 = \begin{vmatrix} 1 & 0 \\ 1 & K \end{vmatrix} = K$$

For stability,
$$\Delta_1 > 0$$

 $\Delta_2 > 0$

The system is always stable for K>0.

Method-II,

Characteristics equation, $B(s) = s^2 + s + K = 0$

Here, Routh array is

$$\begin{vmatrix}
s^2 \\
s^1 \\
1 \\
s^0 \\
K
\end{vmatrix} K$$

There are no sign changes in first column elements of this array. Therefore, the system is always stable for K>0.

5. Find stability of the following system given by $G(s) = \frac{K}{s(s+2)(s+4)}$ and H(s) = 1 using Routh-Hurwitz stability criterion.

Solution:

In the system,
$$\frac{C(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)} = \frac{\frac{K}{s(s+2)(s+4)}}{1 + \frac{K}{s(s+2)(s+4)}} = \frac{K}{s^3 + 6s^2 + 8s + K}$$

Method-I,

General form of characteristics equation, $B(s) = a_3 s^3 + a_2 s^2 + a_1 s + a_0 = 0$

And in this system, characteristics equation is $B(s) = s^3 + 6s^2 + 8s + K = 0$

Here, sufficient condition of stability suggests

$$\Delta_{1} = 8 > 0, \Delta_{2} = \begin{vmatrix} 6 & K \\ 1 & 8 \end{vmatrix} = (48 - K) > 0,$$

$$\Delta_{3} = \begin{vmatrix} 6 & K & 0 \\ 1 & 8 & 0 \\ 0 & 6 & K \end{vmatrix} = K(48 - K) > 0$$

Therefore, the system is always stable for K < 48.

Method-II,

Characteristics equation is $B(s) = s^3 + 6s^2 + 8s + K = 0$

andRouth's array

$$\begin{vmatrix}
s^{3} & 1 & 8 \\
s^{2} & 6 & K \\
48 - K & 0 \\
s^{0} & K
\end{vmatrix}$$

There are no sign changes in first column elements of this array if K < 48. Therefore, the system is always stable for 0 < K < 48.

6. Find stability of the following system given by $B(s) = s^3 + 5s^2 + 10s + 3$ using Routh-Hurwitz stability criterion.

Solution:

In this problem, given Characteristics equation is $B(s) = s^3 + 5s^2 + 10s + 3 = 0$, and Routh's array is

$$\begin{vmatrix}
s^3 & 1 & 10 \\
s^2 & 5 & 3 \\
s^1 & 9.4 & 0 \\
s^0 & 3
\end{vmatrix}$$

There are no sign changes in first column elements of this array. Therefore, the system is always stable.

7. Find stability of the following system given by $B(s) = s^3 + 2s^2 + 3s + 10$ using Routh-Hurwitz stability criterion.

Solution:

In this problem, given characteristics equation is

$$B(s) = s^3 + 2s^2 + 3s + 10 = 0$$
 and

Routh's array is

$$\begin{vmatrix}
s^3 & 1 & 3 \\
s^2 & 2 & 10 \\
s^1 & -2 & 0 \\
s^0 & 10
\end{vmatrix}$$

There are two sign changes in first column elements of this array. Therefore, the system is unstable.

8. Examine stability of the following system given by $s^5 + 2s^4 + 4s^3 + 8s^2 + 3s + 1$ using Routh-Hurwitz stability criterion.

Solution:

In this problem, Routh's array is

Here, the criterion fails. To remove the above difficulty, the following two methods can be used.

Method-1

- (i) Replace 0 by ϵ (very small number) and complete the array with ϵ .
- (ii) Examine the sign change by taking $\varepsilon \to 0$

Now, Routh's array becomes

$$\begin{array}{c|cccc}
s^{5} & 1 & 4 & 3 \\
s^{4} & 2 & 8 & 1 \\
s^{3} & \varepsilon & 2.5 & 0 \\
s^{2} & \frac{5-8\varepsilon}{\varepsilon} & 1 & 0 \\
s^{1} & \frac{2.5\left(\frac{5-8\varepsilon}{\varepsilon}\right) - \varepsilon}{\frac{5-8\varepsilon}{\varepsilon}} \\
s^{0} & 1 & \end{array}$$

Now putting $\varepsilon \rightarrow 0$, Routh's array becomes

There are two sign changes in first column elements of this array. Therefore, the system is unstable.

Method-2

Replace s by $\frac{1}{Z}$. The system characteristic equation $s^5 + 2s^4 + 4s^3 + 8s^2 + 3s + 1 = 0$ becomes

$$\frac{1}{Z^5} + \frac{2}{Z^4} + \frac{4}{Z^3} + \frac{8}{Z^2} + \frac{3}{Z} + 1 = 0$$

$$\Rightarrow Z^5 + 3Z^4 + 8Z^3 + 4Z^2 + 2Z + 1 = 0$$

Now, Routh's array becomes

There are two sign changes in first column elements of this array. Therefore, the system is unstable.

9. Examine stability of the following system given by $s^5 + 2s^4 + 2s^3 + 4s^2 + 4s + 8$ using Routh-Hurwitz stability criterion.

Solution:

In this problem, Routh's array is

Here, the criterion fails. To remove the above difficulty, the following two methods can be used.

The auxillary equation is

$$A(s) = 2s^4 + 4s^2 + 8$$

$$\Rightarrow \frac{dA(s)}{ds} = 8s^3 + 8s$$

Now, the array is rewritten as follows.

There are two sign changes in first column elements of this array. Therefore, the system is unstable.

10. Examine stability of the following system given by $s^4 + 5s^3 + 2s^2 + 3s + 1 = 0$ using Routh-Hurwitz stability criterion. Find the number of roots in the right half of the s-plane.

Solution:

In this problem, Routh's array is

There are two sign changes in first column elements of this array. Therefore, the system is unstable. There are two poles in the right half of the s-plane.

Advantages of Routh-Hurwitz stability

- (i) Stability can be judged without solving the characteristic equation
- (ii) Less calculation time
- (iii) The number of roots in RHP can be found in case of unstable condition
- (iv) Range of value of K for system stability can be calculated
- (v) Intersection point with the jw-axis can be calculated
- (vi) Frequency of oscillation at steady-state is calculated

Disadvantages of Routh-Hurwitz stability

- (i) It is valid for only real coefficient of the characteristic equation
- (ii) Unable to give exact locations of closed-loop poles
- (iii) Does not suggest methods for stabilizing an unstable system
- (iv) Applicable only to the linear system

Root locus

Definition:

The locus of all the closed-loop poles for various values of the open-loop gain K is called **root locus**. The root-locus method is developed by W.R. Evans in 1954. It helps to visualize the various possibilities of transient response of stable systems.

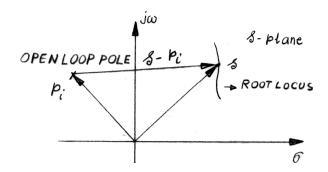
Closed-loop response function

$$\frac{C\ s}{R(s)} = \frac{G(s)}{1 + G(s)H(s)} \tag{10.1}$$

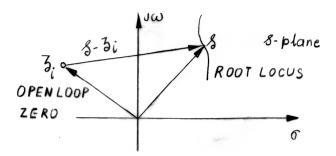
Characteristic equation

$$1 + G(s)H(s) = 1 + \frac{K(s - z_1)(s - z_2)...(s - z_m)}{(s - p_1)(s - p_2)...(s - p_n)} = 0$$
(10.2)

Vector from open-loop pole to the root-locus



Vector from open-loop zero to the root-locus



Behaviors of closed-loop poles

Closed-loop poles negative	Exponential decay	Stable
and real		
Closed-loop poles complex	Decaying and oscillatory	Stable
with negative real parts		
Closed-loop poles positive and	Exponential increase	Unstable
real		
Closed-loop poles complex	Exponential and oscillatory	Unstable
with positive real parts	increase	

BASIS for CONSTRUCTION

Construction steps

- 1. Determine the number of open-loop poles and zeros
- 2. Mark open-loop poles and zeros on the s-plane
- 3. Determine parts of the root-locus on the real axis
- 4. Determine breakaway and break-in points
- 5. Draw asymptotes to the root-locus
- 6. Determine angles of departure
- 7. Determine angles of arrival

8xisDetermine points on the root-locus crossing imaginary

9. Obtain additional points and complete the root-locus

Starting points

$$1 + G(s)H(s) = 1 + \frac{K(s - z_1)(s - z_2)...(s - z_m)}{(s - p_1)(s - p_2)...(s - p_n)} = 0$$
(10.3)

For K=0,

$$\Rightarrow \frac{(s-p_1)(s-p_2)...(s-p_n) + K(s-z_1)(s-z_2)...(s-z_m)}{(s-p_1)(s-p_2)...(s-p_n)} = 0$$

$$\Rightarrow (s-p_1)(s-p_2)...(s-p_n) = 0$$
(10.4)

Open-loop poles are also closed-loop poles for K=0. A root-locus starts from every open-loop pole.

Ending points

Characteristics equation of a closed-loop system

$$1 + G(s)H(s) = 1 + \frac{K(s - z_1)(s - z_2)...(s - z_m)}{(s - p_1)(s - p_2)...(s - p_n)} = 0$$
(10.5)

For $K=\infty$.

$$1 << \frac{K(s-z_1)(s-z_2)...(s-z_m)}{(s-p_1)(s-p_2)...(s-p_n)}$$

$$\Rightarrow (s-z_1)(s-z_2)...(s-z_m) = 0$$
(10.6)

Root-locus ends at an open-loop zero or at infinity.

$$1 + G(s)H(s) = 1 + |G(s)H(s)|(\cos\psi + j\sin\psi) = 0$$
 (10.7)

Angle criterion:

$$\psi = \sum_{i=1}^{n} \theta_i - \sum_{j=1}^{m} \varphi_j \, 180^0 \pm 360k \tag{10.8}$$

Where, θ_i = angle in case of ith pole and $\varphi_{j=}$ angle in case of jth zero Magnitude criterion:

$$|G(s)H(s)| = 1 \tag{10.9}$$

Desiging at a root-locus point

Using the magnitude of vectors drawn from open-loop poles and zeros to the root-locus point, we get

$$\frac{\prod_{i=1}^{n} (s - p_i)}{\prod_{j=1}^{m} (s - z_j)} = \frac{|(s - p_1)||(s - p_2)|...|(s - p_n)|}{|(s - z_1)||(s - z_2)|...|(s - z_m)|} = K$$
(10.10)

Gain at a root-locuspoint is determined using synthetic division.

Example:

Determine K of the characteristic equation for the root s=-0.85.

Solution:

$$S^3 + 6s^2 + 8s + K = 0 ag{10.11}$$

1	6	8	K
	-0.85	-4.378	-3.079
1	5.15	3.622	K-3.079=0

Determine parts of the root-locus on the real axis

- 1. Start from open-loop poles on the real axis, extend on the real axis for increasing values of the gain and end at an open-loop zero on the real axis.
- 2. Start from open-loop poles on the real axis, extend on the real axis for increasing values of the gain and end at an infinite value on the real axis.
- 3. Start from a pair of open-loop poles on the real axis, extend on the real axis for increasing values of gain, meet at a point and then leave the real axis and end at a complex open-loop zero or infinity.

increasing values of gain, meet at a point and then leave the real axis. They may once

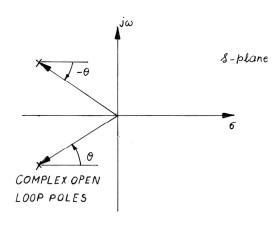
4. Spant from the paraloxispermelloup and penelloup zerod on as a date of value that the alreadiax for

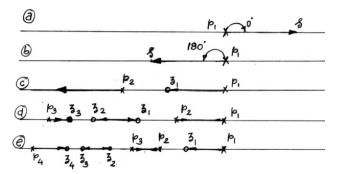
loop zero or an infinite value on the real axis. They could leave the real axis again and

5. Strattafraction on placity of exochlopole exempeon limitiveles, enter the real axis and end at an open-

Angle contributions from complex poles

Complex poles and zeros do not contribute to the angle criterion on the real axis





Determine breakaway and break-in points of the root-locus ()

$$1 + G(s)H(s) = 1 + K\frac{A \ s}{B(s)} = 0 \tag{10.12}$$

$$f(s) = B(s) + KA(s) = 0 (10.13)$$

$$K = -\frac{B(s)}{As} \tag{10.14}$$

$$f(s) = (s - s_1)^r (s - s_2)...(s - s_{n-r+1}) = 0$$
(10.15)

$$\frac{df(s)}{ds} = r(s - s_1)^{r-1}(s - s_2)...(s - s_{n-r+1}) + (s - s_1)^r.(s - s_3)..(s - s_{n-r+1}) + ...$$
 (10.16)

$$\left. \frac{df(s)}{ds} \right|_{s=s_1} = 0 \tag{10.17}$$

$$f'(s) = B'(s) + KA'(s) = 0$$
 (10.18)

$$\Rightarrow K = -\frac{B'(s)}{A'(s)} \tag{10.19}$$

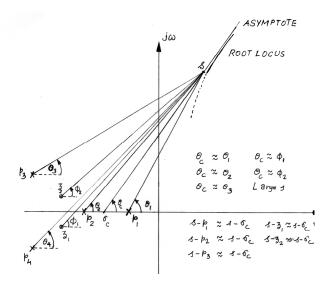
Therefore,

$$B'(s)A(s) - B(s)A'(s) = 0$$
 (10.20)

At breakaway and break-in points of the root-locus,

$$\frac{dK}{ds} = -\frac{B'(s)A(s) - B(s)A'(s)}{A^2(s)} = 0$$
 (10.21)

Draw asymptotes to the root-locus



Angle of asymptotes

$$\theta_c = \frac{180^0 + k360}{(n-m)}$$
 where, $k=0$, 1, 2, 3...

Location of asymptotes

$$-K = \frac{(s - p_1)(s - p_2)...(s - p_n)}{(s - z_1)(s - z_2)...(s - z_m)}$$
(10.22)

$$-K = \frac{s^n - (p_1 + p_2 + \dots p_n)s^{n-1} + \dots}{s^m - (z_1 + z_2 + \dots z_m)s^{m-1} + \dots}$$
(10.23)

$$-K = s^{n-m} - [(p_1 + p_2 + ...p_n) - (z_1 + z_2 + ...z_m)]s^{n-m-1} + ...$$
 (10.24)

$$s - p_i \approx s - \sigma_c \tag{10.25}$$

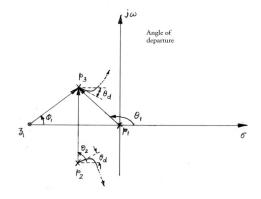
$$(s - z_i) \approx s - \sigma_c \tag{10.26}$$

$$-K = \frac{(s - \sigma_c)^n}{(s - \sigma_c)^m} = s^{n-m} - (n - m)\sigma_c s^{n-m-1} + \dots$$
 (10.27)

$$\sigma_c = \frac{(p_1 + p_2 + \dots p_n) - (z_1 + z_2 + \dots z_m)}{(n - m)}$$
(10.28)

Angle of departure

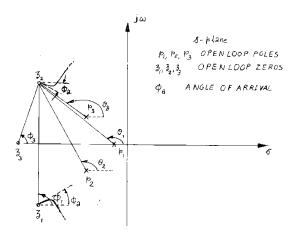
$$\theta_d = 180 - (\theta_1 + \theta_2) + \varphi_1 \tag{10.29}$$



 θ_d =180 - Σ angles of vectors to the complex open-loop pole in question from other open - loop poles + Σ angles of vectors to the complex open-loop pole in question from all open-loop zeros

Angle of arrival

$$\theta_a = 180 - (\phi_1 + \phi_3) + (\theta_1 + \theta_2 + \theta_3) \tag{10.30}$$



 θ_a =180° - Σ angles of vectors to the complex open-loop zero in question from other open-loop zeros + Σ angles of vectors to the complex open-loop zero in question from all open-loop poles

Determine points on the root-locus crossing imaginary axis

$$\operatorname{Re} al[1 + G(j\omega)H(j\omega)] = 0 \tag{10.31}$$

$$imaginary[1+G(j\omega)H(j\omega)]=0$$
 (10.32)

Example

Problem-1: Draw the root-locus of the feedback system whose open-loop transfer function is given

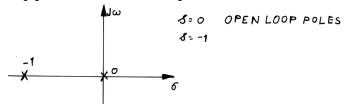
by
$$G(s)H(s) = \frac{K}{s(s+1)}$$

Solution:

Step 1: Determine the number of open-loop poles and zeros

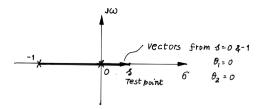
Number of open-loop poles n=2 Number of open-loop zeros m=0 Open-loop poles: s=0 and s=-1

Step 2: Mark open-loop poles and zeros on the s-plane

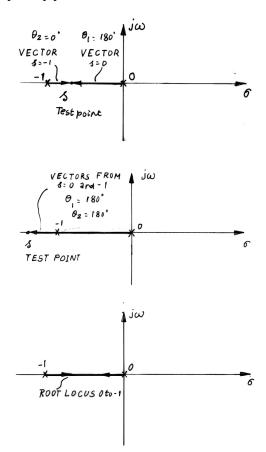


Step 3: Determine parts of the root-locus on the real axis

Test points on the positive real axis



Test points in between the open-lop poles



Step 4: Determine breakaway and break-in point

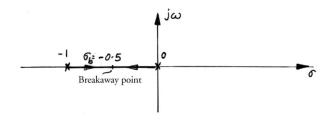
Characteristic equation, K = -s(s+1)

$$\frac{dK}{ds} = -2s + 1 = 0$$

breakaway point as $\sigma_b = -0.5$

Gain at the breakaway point

$$K_b = |-0.5 - 0||-0.5 - (-1)| = 0.25$$



Step 5: Draw asymptotes of the root-locus

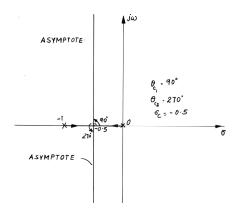
Angle of asymptotes:

$$\theta_c = \theta_c = \frac{180^0 + k360}{(n-m)} = \frac{180 \pm 360k}{2}$$

$$\theta_c = 90^0 \ k = 0$$

$$\theta_c = 270^0 \ k = 1$$

Centroid of asymptotes
$$\sigma_c = \frac{(p_1 + p_2 + ... + p_n) - (z_1 + z_2 + ... + z_m)}{(n - m)} = \frac{0 - 1}{2} = -0.5$$



Steps 6 & 7: Since there are no complex open-loop poles or zeros, angle of departure and arrival need not be computed

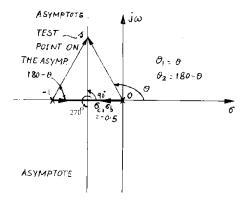
Step 8: Determine points on the root-locus crossing imaginary axis

$$1 + GH = 1 + \frac{K}{s(s+1)} = s^2 + s + K = 0$$

$$B(j\omega) = (j\omega)^{2} + (j\omega) + K = (K - \omega^{2}) + j\omega$$

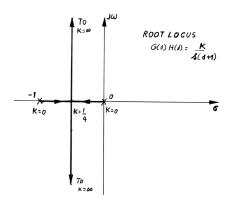
$$K - \omega^2 = 0 \Rightarrow j\omega = 0$$

The root-locus does not cross the imaginary axis for any value of K>0



Here.

$$s = \frac{-1 \pm \sqrt{1 - 4K}}{2}$$



Problem-2: Draw the root-locus of the feedback system whose open-loop transfer function is given

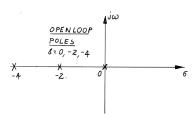
by
$$G(s)H(s) = \frac{K}{s(s+2)(s+4)}$$

Solution:

Step 1: Determine the number of open-loop poles and zeros

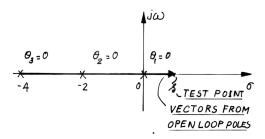
Number of open-loop poles n=3 Number of open-loop zeros m=0 Open-loop poles: s=0, s=-2 and s=-4

Step 2: Mark open-loop poles and zeros on the s-plane

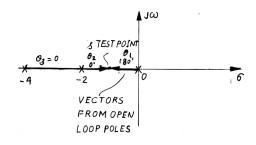


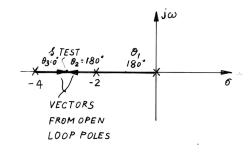
Step 3: Determine parts of the root-locus on the real axis

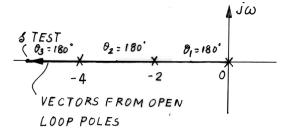
Test points on the positive real axis

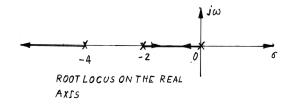


Test points in between the open-lop poles









Step 4: Determine breakaway and break-in point

Characteristic equation, K = -s(s+2)(s+4)

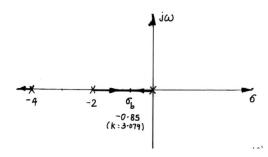
$$\frac{dK}{ds} = -(s+2)(s+4) - s(s+4) - s(s+2) = 0$$

Breakaway point as σ_b =-0.85 and -3.15

 $\sigma_b = -3.15$ is not on the root-locus and therefore not a breakaway or break-in point Gain at the breakaway point

$$K_b = |-0.85 - 0||-0.855 - (-2)||-0.85 - (-4)|= 3.079$$

1	6	8	K
	-0.85	-4.378	-3.079
1	5.15	3.622	K-3.079=0



Step 5: Draw asymptotes of the root-locus

Angle of asymptotes:

$$\theta_c = \frac{180^0 + k360}{(n-m)} = \frac{180 \pm 360k}{3}$$

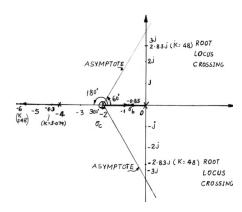
$$\theta_{c} = 60^{0} \ k = 0$$

$$\theta_c = 180^0 \ k = 1$$

$$\theta_c = 300^0 \ k = 2$$

Centroid of asymptotes

$$\sigma_c = \frac{(p_1 + p_2 + \dots p_n) - (z_1 + z_2 + \dots z_m)}{(n - m)} = \frac{0 - 2 - 4}{3} = -2$$



Steps 6 & 7: Since there are no complex open-loop poles or zeros, angle of departure and arrival need not be computed

Step 8: Determine points on the root-locus crossing imaginary axis

$$1 + GH = 1 + \frac{K}{s(s+2)(s+4)} = s^3 + 6s^2 + 8s + K = 0$$
$$B(j\omega) = (j\omega)^3 + 6(j\omega)^2 + 8j\omega + K = (K - 6\omega^2) + j(8\omega - \omega^3) = 0$$

When imaginary-part is zero, then $\omega=\pm\sqrt{8} \Rightarrow s=\pm \mathrm{j}\sqrt{8}$ and when real-part is zero, then $K=6\omega^2=48$.

The root-locus does not cross the imaginary axis for any value of K>48.

1	6	8	48
	+j2.828	-8+j16.97	-48
1	6+j2.828	J16.97	0
1	6+j2.828	J16.97	
	-j2.828	-j16.97	
1	6	0	

Therefore, closed-loop pole on the real axis for K=48 at s = -6

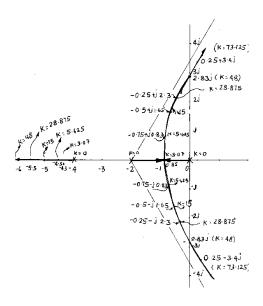
No.	Closed-loop pole on the real axis	K	Second and third closed- loop poles	Remarks
1	-4.309	3.07	-0.85,-0.85	Already computed
2	-4.50	5.625	-0.75±j0.829	
3	-5.00	15	-0.5±j1.6583	
4	-5.50	28.875	-0.25±j2.2776	
5	-6.00	48	±j2.8284	Already computed
6	-6.5	73.125	0.25±j3.448	

Determine the gain corresponding to s=-4.5 K=|-4.5-(-4)||-4.5-(-2)||-4.5-0|=5.625

$$s^3 + 6s^2 + 8s + K = 0$$

1	6	8	K
	-4.5	-6.75	-5.625
1	1.5	1.25	K-5.625=0

$$(s^2 + 1.5s + 1.25) = 0$$
$$s_{2,3} = -0.75 \pm j0.829$$



Problem-3: Draw the root-locus of the feedback system whose open-loop transfer function is given

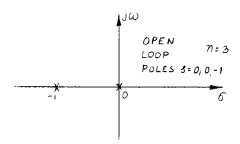
by
$$G(s)H(s) = \frac{K}{s^2(s+1)}$$

Solution:

Step 1: Determine the number of open-loop poles and zeros

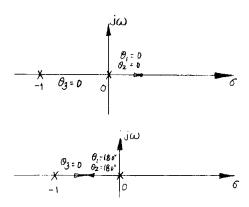
Number of open-loop poles n=3 Number of open-loop zeros m=0 Open-loop poles: s=0, s=0 and s=-1

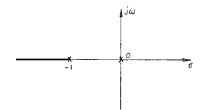
Step 2: Mark open-loop poles and zeros on the s-plane



Step 3: Determine parts of the root-locus on the real axis

Test points on the positive real axis





Step 4: Determine breakaway and break-in point

Characteristic equation, $K = -s^2(s+1)$

$$\frac{dK}{ds} = 0$$

$$\Rightarrow -2s(s+1) - s = 0$$

$$\Rightarrow s(-2s-3) = 0$$

Breakaway point as $\sigma_b = -2/3$ and 0

 $\sigma_b = -2/3$ is not on the root-locus and therefore not a breakaway or break-in point.

Therefore $\sigma_b = 0$ and the two loci start from the origin and breakaway at the origin itself.

Step 5: Draw asymptotes of the root-locus

Angle of asymptotes:

$$\theta_c = \frac{180^0 + k360}{(n-m)} = \frac{180 \pm 360k}{3}$$

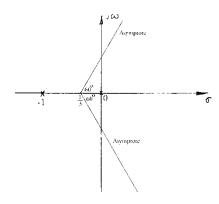
$$\theta_{c} = 60^{0} \ k = 0$$

$$\theta_c = 180^0 \ k = 1$$

$$\theta_c = 300^0 \ k = 2$$

Centroid of asymptotes

$$\sigma_c = \frac{(p_1 + p_2 + \dots p_n) - (z_1 + z_2 + \dots z_m)}{(n - m)} = \frac{0 - 1}{3} = -\frac{1}{3}$$



Steps 6 & 7: Since there are no complex open-loop poles or zeros, angle of departure and arrival need not be computed.

Step 8: Determine points on the root-locus crossing imaginary axis

$$B(s) = s^3 + s^2 + K$$

$$B(j\omega) = (j\omega)^3 + (j\omega)^2 + K = (K - \omega^2) - j\omega^3$$

When imaginary-part is zero, then $\omega = 0 \Rightarrow s = 0$ and when real-part is zero,

then
$$K = \omega^2 = 0$$
.

The root-locus does not cross the imaginary axis for any value of K>0. Additional closed-loop poles

No.	Closed-loop pole on the real axis	K	Second and third closed- loop poles
1	-1.5	1.125	0.25±j0.82
2	-2.0	4	0.50±j1.32
3	-2.5	9.375	0.75±j1.78
4	-3.0	18	1.00±j2.23

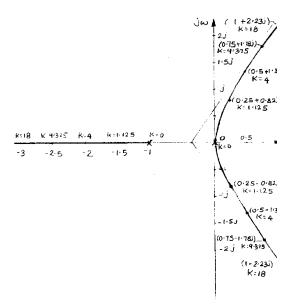
Determine the gain corresponding to s=-1.5

$$s^3 + s^2 + 1.125 = 0$$

1	1	0	1.125
	-1.5	0.75	-1.125
1	-0.5	0.75	0

$$(s^2 + 1.5s + 1.25) = 0$$

$$s_{2,3} = -0.25 \pm j0.82$$



Problem-4: Draw the root-locus of the feedback system whose open-loop transfer function is given

by
$$G(s)H(s) = \frac{K}{s^4 + 5s^3 + 8s^2 + 6s}$$

Solution:

Step 1: Determine the number of open-loop poles and zeros

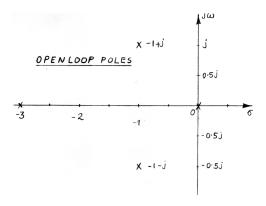
$$s^4 + 5s^3 + 8s^2 + 6s = s(s^2 + 2s + 2)(s + 3) = (s + 1 - j)(s + 1 + j)(s + 3)s$$

Number of open-loop poles n=4

Number of open-loop zeros m=0

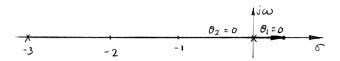
Open-loop poles: s=0 and s=-3, s=-1+j and s=-1-j

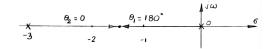
Step 2: Mark open-loop poles and zeros on the s-plane

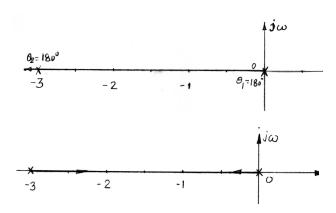


Step 3: Determine parts of the root-locus on the real axis

Test points on the positive real axis







Step 4: Determine breakaway and break-in point

Characteristic equation, $K = -(s^4 + 5s^3 + 8s^2 + 6s)$

$$\frac{dK}{ds} = 0$$

$$\Rightarrow 4s^3 + 15s^2 + 16s + 6 = 0$$

$$\Rightarrow s^3 + 3.75s^2 + 4s + 1.5 = 0$$

$$f'(s) = 3s^2 + 7.5s + 4$$

This equation is solved using Newton-Raphson's method

$$S_{n+1} = S_n - \frac{f(S_n)}{f(S_n)}$$

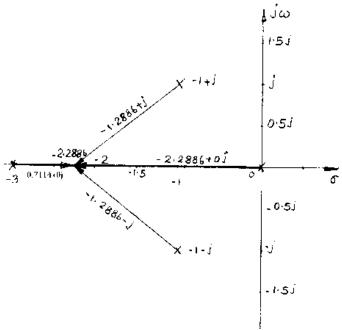
No.	S_n	$f(s_n)$	$f'(s_n)$	S_{n+1}
1	-3.75	-13.5	18.0625	-3.0026
2	-3.0026	-3.7721	8.5273	-2.5602
3	-2.5602	-0.9421	4.4624	-2.3491
4	-2.3491	-0.1658	2.9364	-2.2926
5	-2.2926	-0.0103	2.5737	-2.2886
6	-2.2886	-5.03x10		

Breakaway point as $\sigma_b = -2.3$

Gain at the breakaway point, K = |-2.3 - (-3)||-2.3 - (-1 + j)||-2.3 - (-1 + j)||-2.3 - (-1 - j)|= 4.33

1	5	8	6	K
	-2.2886	-6.2053	-4.1073	-4.3316

1 2.7114 1.7947 1.8926 0	
--------------------------	--



Other closed-loop poles for K=4.3

1	2.7114	1.7947	1.893
	-2.2886	-0.9676	-1.893
1	0.4228	0.8270	0

$$s_{3,4} = -0.2114 \pm j0.8814$$

Step 5: Draw asymptotes of the root-locus

Angle of asymptotes:

$$\theta_c = \frac{180^0 + k360}{(n-m)} = \frac{180 \pm 360k}{4}$$

$$\theta_c = 45^0 \ k = 0$$

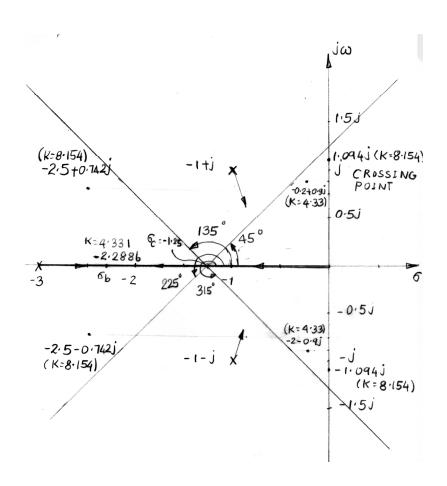
$$\theta_c = 135^0 \ k = 1$$

$$\theta_c = 225^0 \ k = 2$$

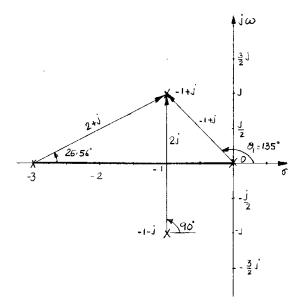
$$\theta_c = 315^0 \ k = 3$$

Centroid of asymptotes

$$\sigma_c = \frac{(p_1 + p_2 + \dots p_n) - (z_1 + z_2 + \dots z_m)}{(n - m)} = \frac{0 - 3 - 1 + j - 1 - j}{4} = -1.25$$



Steps 6:Determine angles of departure



$$\theta_d = 180^{\circ} - (135^{\circ} + 26.56^{\circ} + 90^{\circ}) = -71.56^{\circ} = 288.44^{\circ}$$

Step 7: As there are no complex open-loop zeros, angle of arrival need not be computed.

Step 8: Determine points on the root-locus crossing imaginary axis

$$B(s) = s^4 + 5s^3 + 8s^2 + 6s + K$$

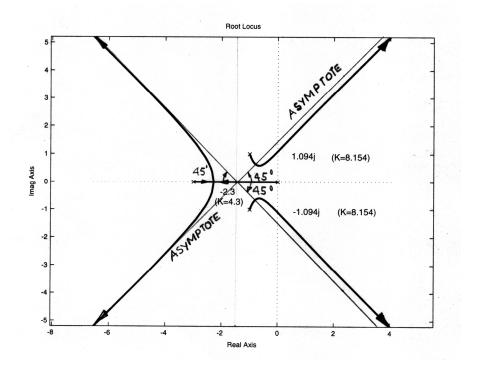
$$B(j\omega) = (j\omega)^4 + 5(j\omega)^3 + 8(j\omega)^2 + 6j\omega + K = (\omega^4 - 8\omega^2 + K) + j(6\omega - 5\omega^3)$$

When imaginary-part is zero, then $\omega = \pm \sqrt{\frac{6}{5}} \Rightarrow s = \pm j \sqrt{\frac{6}{5}}$ and when real-part is zero,

then
$$K = 8 \times \left(\frac{6}{5}\right) - \left(\frac{6}{5}\right)^2 = 8.16$$
.

There are two closed-loop poles on the imaginary axis for any value of K>0. Additional closed-loop poles

No.	S_1	S_2	S _{3,4}	K
1	-0.25	-2.9217	-0.9142±0.7969j	1.0742
2	-0.50	-2.8804	-0.8098±0.655j	1.5625
3	-0.75	-2.8593	-0.6953±0.5938j	1.7930
4	-1.0	-2.8393	-0.5804±0.6063j	2.0000
5	-1.25	-2.8055	-0.4722±0.6631j	2.3242
6	-1.75	-2.6562	-0.3763±0.7354j	2.8125
7	-2.0	-2.5214	-0.2393±0.8579j	4.0



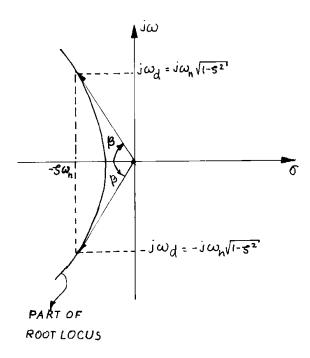
Additional Information from Root-Locus Plot

1. Gain Margin

$$GM = 20\log\frac{K_2}{K_1}$$
 (10.33)

 K_1 is the gain of a feedback system at some point on the root-locus K_2 is the gain at which the system becomes unstable

2. Transient Characteristics



Where,
$$\beta = \tan^{-1} \frac{\sqrt{1-\zeta^2}}{\zeta}$$

3. Percentage overshoot

$$M_p = e^{-\pi/\tan\beta} \tag{10.34}$$

4. Settling time

$$t_s = \frac{4}{\zeta \omega_n} \tag{10.35}$$

5. Steady-state error is also related to K.

Example

Problem-1: Draw the root-locus of the feedback system whose open-loop transfer function is given

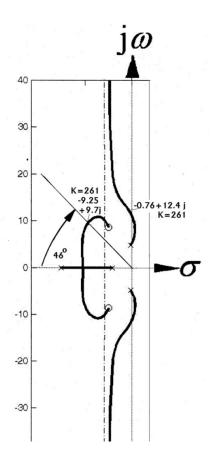
by
$$G(s)H(s) = \frac{K(s^2 + 10s + 100)}{s^4 + 20s^3 + 100s^2 + 500s + 1500}, H(s) = 1$$

- (a) Determine the value of gain at which the system will be stable and as well have a maximum overshoot of 5%.
- (b) What is the gain margin at this point?
- (c) What is the steady-state error for a unit step excitation at the above point?

Solution:

(a)
$$\tan \beta = \frac{-\pi}{\ln M_p} = 1.0487$$
$$\Rightarrow \beta = 46^0$$

$$\zeta = \frac{1}{\sqrt{1 + \tan^2 \beta}} = 0.690 \tag{10.36}$$



(b)
$$GM = 20\log \frac{192.2}{261} = -2.65dB$$

(c) Position error

(c) Position error
$$K_{s} = \lim_{s \to 0} \frac{K(s^{2} + 10s + 100)}{s^{4} + 20s^{3} + 100s^{2} + 500s + 1500} = \frac{100K}{1500}$$
Steady-state error,

$$S_e(\infty) = \frac{1}{1+K_s} = \frac{1}{1+100K/1500} = \frac{1500}{1500+100K}$$

$$S_e(\infty) = \frac{1500}{1500 + 100 \times 261} = 5.4\%$$

Root locus

The locus of all the closed-loop poles for various values of the open-loop gain K is called **root locus**. The root-locus method is developed by W.R. Evans in 1954. It helps to visualize the various possibilities of transient response of stable systems.

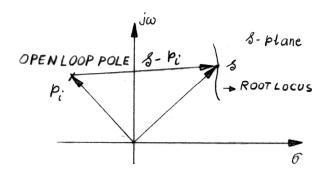
Closed-loop response function

$$\frac{C(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)}$$
(10.37)

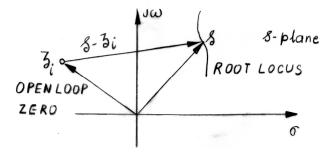
Characteristic equation

$$1 + G(s)H(s) = 1 + \frac{K(s - z_1)(s - z_2)...(s - z_m)}{(s - p_1)(s - p_2)...(s - p_n)} = 0$$
(10.38)

Vector from open-loop pole to the root-locus



Vector from open-loop zero to the root-locus



Behaviors of closed-loop poles

Closed-loop poles negative and real	Exponential decay	Stable
Closed-loop poles complex with negative real parts	Decaying and oscillatory	Stable
Closed-loop poles positive and real	Exponential increase	Unstable
Closed-loop poles complex with positive real parts	Exponential and oscillatory increase	Unstable

BASIS for CONSTRUCTION

Construction steps

10. Determine the number of open-loop poles and zeros

- 11. Mark open-loop poles and zeros on the s-plane
- 12. Determine parts of the root-locus on the real axis
- 13. Determine breakaway and break-in points
- 14. Draw asymptotes to the root-locus
- 15. Determine angles of departure
- 16. Determine angles of arrival
- 17. Determine points on the root-locus crossing imaginary axis
- 18. Obtain additional points and complete the root-locus

Starting points

Characteristics equation of a closed-loop system

$$1 + G(s)H(s) = 1 + \frac{K(s - z_1)(s - z_2)...(s - z_m)}{(s - p_1)(s - p_2)...(s - p_n)} = 0$$
(10.39)

For K=0,

$$\Rightarrow \frac{(s-p_1)(s-p_2)...(s-p_n) + K(s-z_1)(s-z_2)...(s-z_m)}{(s-p_1)(s-p_2)...(s-p_n)} = 0$$

$$\Rightarrow (s-p_1)(s-p_2)...(s-p_n) = 0$$
(10.40)

Open-loop poles are also closed-loop poles for K=0. A root-locus starts from every open-loop pole.

Ending points

Characteristics equation of a closed-loop system

$$1 + G(s)H(s) = 1 + \frac{K(s - z_1)(s - z_2)...(s - z_m)}{(s - p_1)(s - p_2)...(s - p_n)} = 0$$
(10.41)

For $K=\infty$,

$$1 << \frac{K(s-z_1)(s-z_2)...(s-z_m)}{(s-p_1)(s-p_2)...(s-p_n)}$$

$$\Rightarrow (s-z_1)(s-z_2)...(s-z_m) = 0$$
(10.42)

Root-locus ends at an open-loop zero or at infinity.

Magnitude and angle criterion

$$1 + G(s)H(s) = 1 + |G(s)H(s)|(\cos\psi + j\sin\psi) = 0$$
 (10.43)

Angle criterion:

$$\psi = \sum_{i=1}^{n} \theta_i - \sum_{j=1}^{m} \varphi_{j=1} 180^0 \pm 360k$$
 (10.44)

Where, θ_i = angle in case of i^{th} pole and $\varphi_{j=}$ angle in case of j^{th} zero

Magnitude criterion:

$$|G(s)H(s)| = 1$$
 (10.45)

Determining gain at a root-locus point

Using the magnitude of vectors drawn from open-loop poles and zeros to the root-locus point, we get

$$\frac{\prod_{i=1}^{n} (s - p_i)}{\prod_{j=1}^{m} (s - z_j)} = \frac{|(s - p_1)||(s - p_2)|...|(s - p_n)|}{|(s - z_1)||(s - z_2)|...|(s - z_m)|} = K$$
(10.46)

Gain at a root-locus point is determined using synthetic division.

Example:

Determine K of the characteristic equation for the root s=-0.85.

Solution:

$$S^3 + 6s^2 + 8s + K = 0 ag{10.47}$$

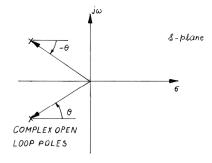
1	6	8	K
	-0.85	-4.378	-3.079
1	5.15	3.622	K-3.079=0

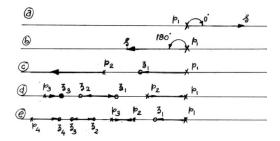
Determine parts of the root-locus on the real axis

- 6. Start from open-loop poles on the real axis, extend on the real axis for increasing values of the gain and end at an open-loop zero on the real axis.
- 7. Start from open-loop poles on the real axis, extend on the real axis for increasing values of the gain and end at an infinite value on the real axis.
- 8. Start from a pair of open-loop poles on the real axis, extend on the real axis for increasing values of gain, meet at a point and then leave the real axis and end at a complex open-loop zero or infinity.
- 9. Start from a pair of open-loop poles on the real axis, extend on the real axis for increasing values of gain, meet at a point and then leave the real axis. They may once again enter the real axis and end at open-loop zeros or at a large value on the real axis.
- 10. Start from a pair of complex open-loop poles, enter the real axis and end at an open-loop zero or an infinite value on the real axis. They could leave the real axis again and end at a complex open-loop zero or infinity.

Angle contributions from complex poles

Complex poles and zeros do not contribute to the angle criterion on the real axis





Determine breakaway and break-in points of the root-locus

$$1 + G(s)H(s) = 1 + K\frac{A(s)}{B(s)} = 0$$
(10.48)

$$f(s) = B(s) + KA(s) = 0 (10.49)$$

$$K = -\frac{B(s)}{As} \tag{10.50}$$

$$f(s) = (s - s_1)^r (s - s_2)...(s - s_{n-r+1}) = 0$$
(10.51)

$$\frac{df(s)}{ds} = r(s - s_1)^{r-1}(s - s_2)...(s - s_{n-r+1}) + (s - s_1)^r.(s - s_3)..(s - s_{n-r+1}) + ...$$
(10.52)

$$\left. \frac{df(s)}{ds} \right|_{s=s_1} = 0 \tag{10.53}$$

$$f'(s) = B'(s) + KA'(s) = 0$$
 (10.54)

$$\Rightarrow K = -\frac{B'(s)}{A'(s)} \tag{10.55}$$

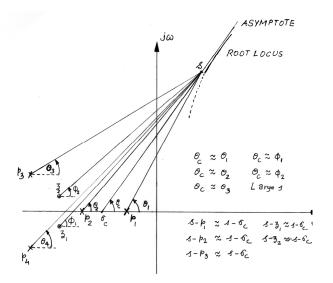
Therefore,

$$B'(s)A(s) - B(s)A'(s) = 0$$
 (10.56)

At breakaway and break-in points of the root-locus,

$$\frac{dK}{ds} = -\frac{B'(s)A(s) - B(s)A'(s)}{A^2(s)} = 0$$
(10.57)

Draw asymptotes to the root-locus



Angle of asymptotes

$$\theta_c = \frac{180^0 + k360}{(n-m)}$$
 where, $k=0, 1, 2, 3...$

Location of asymptotes

$$-K = \frac{(s - p_1)(s - p_2)...(s - p_n)}{(s - z_1)(s - z_2)...(s - z_m)}$$
(10.58)

$$-K = \frac{s^n - (p_1 + p_2 + \dots p_n)s^{n-1} + \dots}{s^m - (z_1 + z_2 + \dots z_m)s^{m-1} + \dots}$$
(10.59)

$$-K = s^{n-m} - [(p_1 + p_2 + \dots p_n) - (z_1 + z_2 + \dots z_m)]s^{n-m-1} + \dots$$
 (10.60)

$$s - p_i \approx s - \sigma_c \tag{10.61}$$

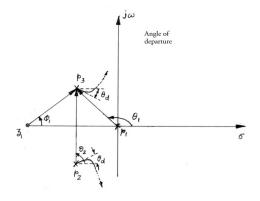
$$(s - z_i) \approx s - \sigma_c \tag{10.62}$$

$$-K = \frac{(s - \sigma_c)^n}{(s - \sigma_c)^m} = s^{n-m} - (n - m)\sigma_c s^{n-m-1} + \dots$$
 (10.63)

$$\sigma_c = \frac{(p_1 + p_2 + \dots p_n) - (z_1 + z_2 + \dots z_m)}{(n - m)}$$
(10.64)

Angle of departure

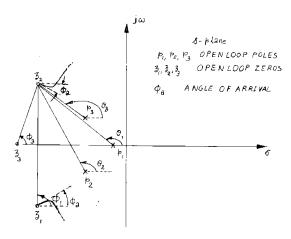
$$\theta_d = 180 - (\theta_1 + \theta_2) + \varphi_1$$
 (10.65)



 θ_d =180 - Σ angles of vectors to the complex open-loop pole in question from other open - loop poles + Σ angles of vectors to the complex open-loop pole in question from all open-loop zeros

Angle of arrival

$$\theta_a = 180 - (\phi_1 + \phi_3) + (\theta_1 + \theta_2 + \theta_3) \tag{10.66}$$



 θ_a =180° - Σ angles of vectors to the complex open-loop zero in question from other open-loop zeros + Σ angles of vectors to the complex open-loop zero in question from all open-loop poles

Determine points on the root-locus crossing imaginary axis

$$\operatorname{Re} al[1 + G(j\omega)H(j\omega)] = 0 \tag{10.67}$$

$$imaginary[1+G(j\omega)H(j\omega)]=0$$
 (10.68)

Example

Problem-1: Draw the root-locus of the feedback system whose open-loop transfer function is given

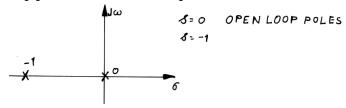
by
$$G(s)H(s) = \frac{K}{s(s+1)}$$

Solution:

Step 1: Determine the number of open-loop poles and zeros

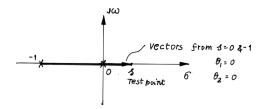
Number of open-loop poles n=2 Number of open-loop zeros m=0 Open-loop poles: s=0 and s=-1

Step 2: Mark open-loop poles and zeros on the s-plane

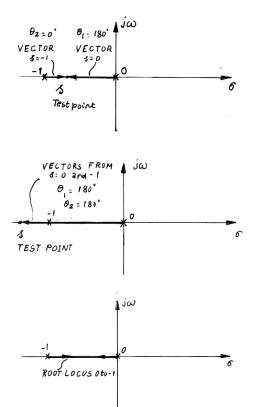


Step 3: Determine parts of the root-locus on the real axis

Test points on the positive real axis



Test points in between the open-lop poles



Step 4: Determine breakaway and break-in point

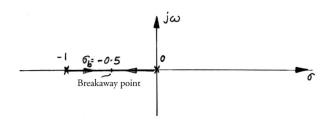
Characteristic equation, K = -s(s+1)

$$\frac{dK}{ds} = -2s + 1 = 0$$

breakaway point as $\sigma_b = -0.5$

Gain at the breakaway point

$$K_b = |-0.5 - 0||-0.5 - (-1)| = 0.25$$



Step 5: Draw asymptotes of the root-locus

Angle of asymptotes:

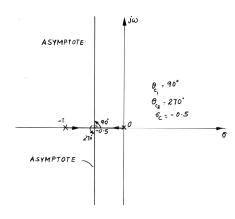
$$\theta_c = \theta_c = \frac{180^0 + k360}{(n-m)} = \frac{180 \pm 360k}{2}$$

$$\theta_{c} = 90^{0} \ k = 0$$

$$\theta_c = 270^0 \ k = 1$$

Centroid of asymptotes

$$\sigma_c = \frac{(p_1 + p_2 + \dots p_n) - (z_1 + z_2 + \dots z_m)}{(n - m)} = \frac{0 - 1}{2} = -0.5$$



Steps 6 & 7: Since there are no complex open-loop poles or zeros, angle of departure and arrival need not be computed

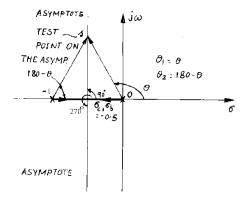
Step 8: Determine points on the root-locus crossing imaginary axis

$$1 + GH = 1 + \frac{K}{s(s+1)} = s^2 + s + K = 0$$

$$B(j\omega) = (j\omega)^2 + (j\omega) + K = (K - \omega^2) + j\omega$$

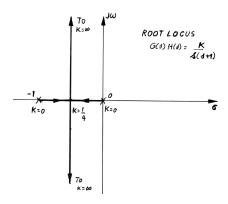
$$K - \omega^2 = 0 \Rightarrow j\omega = 0$$

The root-locus does not cross the imaginary axis for any value of K>0



Here.

$$s = \frac{-1 \pm \sqrt{1 - 4K}}{2}$$



Problem-2: Draw the root-locus of the feedback system whose open-loop transfer function is given

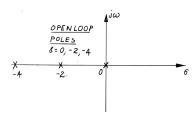
by
$$G(s)H(s) = \frac{K}{s(s+2)(s+4)}$$

Solution:

Step 1: Determine the number of open-loop poles and zeros

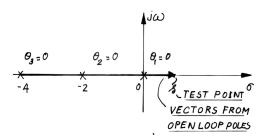
Number of open-loop poles n=3 Number of open-loop zeros m=0 Open-loop poles: s=0, s=-2 and s=-4

Step 2: Mark open-loop poles and zeros on the s-plane

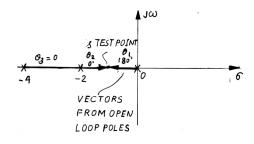


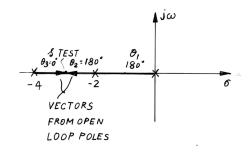
Step 3: Determine parts of the root-locus on the real axis

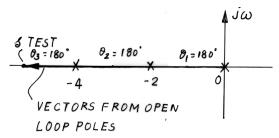
Test points on the positive real axis

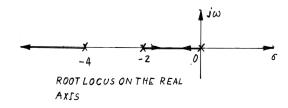


Test points in between the open-lop poles









Step 4: Determine breakaway and break-in point Characteristic equation, K = -s(s+2)(s+4)

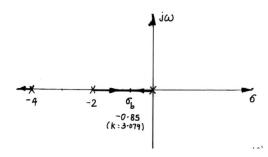
$$\frac{dK}{ds} = -(s+2)(s+4) - s(s+4) - s(s+2) = 0$$

Breakaway point as σ_b =-0.85 and -3.15

 $\sigma_b = -3.15$ is not on the root-locus and therefore not a breakaway or break-in point Gain at the breakaway point

$$K_b = |-0.85 - 0||-0.855 - (-2)||-0.85 - (-4)|= 3.079$$

1	6	8	K
	-0.85	-4.378	-3.079
1	5.15	3.622	K-3.079=0



Step 5: Draw asymptotes of the root-locus

Angle of asymptotes:

$$\theta_c = \frac{180^0 + k360}{(n-m)} = \frac{180 \pm 360k}{3}$$

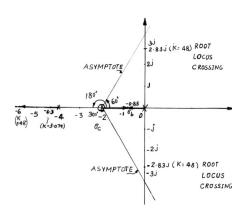
$$\theta_{c} = 60^{0} \ k = 0$$

$$\theta_c = 180^0 \ k = 1$$

$$\theta_c = 300^0 \ k = 2$$

Centroid of asymptotes

$$\sigma_c = \frac{(p_1 + p_2 + \dots p_n) - (z_1 + z_2 + \dots z_m)}{(n - m)} = \frac{0 - 2 - 4}{3} = -2$$



Steps 6 & 7: Since there are no complex open-loop poles or zeros, angle of departure and arrival need not be computed

Step 8: Determine points on the root-locus crossing imaginary axis

$$1 + GH = 1 + \frac{K}{s(s+2)(s+4)} = s^3 + 6s^2 + 8s + K = 0$$

$$B(j\omega) = (j\omega)^3 + 6(j\omega)^2 + 8j\omega + K = (K - 6\omega^2) + j(8\omega - \omega^3) = 0$$

When imaginary-part is zero, then $\omega = \pm \sqrt{8} \Rightarrow s = \pm j\sqrt{8}$ and when real-part is zero, then $K = 6\omega^2 = 48$.

The root-locus does not cross the imaginary axis for any value of K>48.

1	6	8	48
	+j2.828	-8+j16.97	-48
1	6+j2.828	J16.97	0
1	6+j2.828	J16.97	
	-j2.828	-j16.97	
1	6	0	

Therefore, closed-loop pole on the real axis for K=48 at s = -6

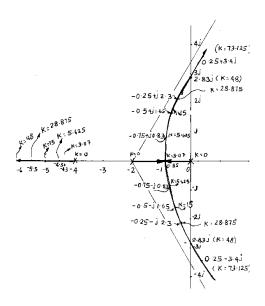
No.	Closed-loop pole on the real axis	K	Second and third closed- loop poles	Remarks
1	-4.309	3.07	-0.85,-0.85	Already computed
2	-4.50	5.625	-0.75±j0.829	
3	-5.00	15	-0.5±j1.6583	
4	-5.50	28.875	-0.25±j2.2776	
5	-6.00	48	±j2.8284	Already computed
6	-6.5	73.125	0.25±j3.448	

Determine the gain corresponding to s=-4.5 K=|-4.5-(-4)||-4.5-(-2)||-4.5-0|= 5.625

$$s^3 + 6s^2 + 8s + K = 0$$

1	6	8	K
	-4.5	-6.75	-5.625
1	1.5	1.25	K-5.625=0

$$(s^2 + 1.5s + 1.25) = 0$$
$$s_{2,3} = -0.75 \pm j0.829$$



Problem-3: Draw the root-locus of the feedback system whose open-loop transfer function is given

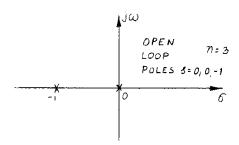
by
$$G(s)H(s) = \frac{K}{s^2(s+1)}$$

Solution:

Step 1: Determine the number of open-loop poles and zeros

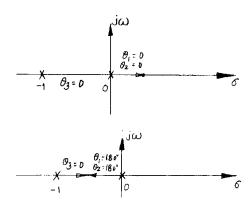
Number of open-loop poles n=3 Number of open-loop zeros m=0 Open-loop poles: s=0, s=0 and s=-1

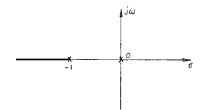
Step 2: Mark open-loop poles and zeros on the s-plane



Step 3: Determine parts of the root-locus on the real axis

Test points on the positive real axis





Step 4: Determine breakaway and break-in point

Characteristic equation, $K = -s^2(s+1)$

$$\frac{dK}{ds} = 0$$

$$\Rightarrow -2s(s+1) - s = 0$$

$$\Rightarrow s(-2s-3) = 0$$

Breakaway point as $\sigma_b = -2/3$ and 0

 $\sigma_b = -2/3$ is not on the root-locus and therefore not a breakaway or break-in point.

Therefore $\sigma_b = 0$ and the two loci start from the origin and breakaway at the origin itself.

Step 5: Draw asymptotes of the root-locus

Angle of asymptotes:

$$\theta_c = \frac{180^0 + k360}{(n-m)} = \frac{180 \pm 360k}{3}$$

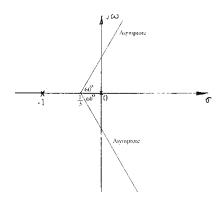
$$\theta_c = 60^0 \ k = 0$$

$$\theta_c = 180^0 \ k = 1$$

$$\theta_c = 300^0 \ k = 2$$

Centroid of asymptotes

$$\sigma_c = \frac{(p_1 + p_2 + \dots p_n) - (z_1 + z_2 + \dots z_m)}{(n - m)} = \frac{0 - 1}{3} = -\frac{1}{3}$$



Steps 6 & 7: Since there are no complex open-loop poles or zeros, angle of departure and arrival need not be computed.

Step 8: Determine points on the root-locus crossing imaginary axis

$$B(s) = s^3 + s^2 + K$$

$$B(j\omega) = (j\omega)^3 + (j\omega)^2 + K = (K - \omega^2) - j\omega^3$$

When imaginary-part is zero, then $\omega = 0 \Rightarrow s = 0$ and when real-part is zero,

then
$$K = \omega^2 = 0$$
.

The root-locus does not cross the imaginary axis for any value of K>0. Additional closed-loop poles

No.	Closed-loop pole on the real axis	K	Second and third closed- loop poles
1	-1.5	1.125	0.25±j0.82
2	-2.0	4	0.50±j1.32
3	-2.5	9.375	0.75±j1.78
4	-3.0	18	1.00±j2.23

Determine the gain corresponding to s=-1.5

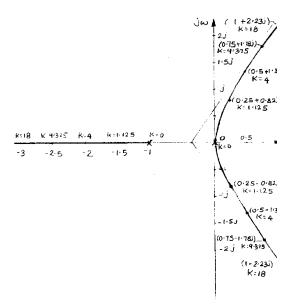
$$K=|-1.5-(-1)||-1.5-(0)||-1.5-0|=1.125$$

$$s^3 + s^2 + 1.125 = 0$$

1	1	0	1.125
	-1.5	0.75	-1.125
1	-0.5	0.75	0

$$(s^2 + 1.5s + 1.25) = 0$$

$$s_{2,3} = -0.25 \pm j0.82$$



Problem-4: Draw the root-locus of the feedback system whose open-loop transfer function is given

by
$$G(s)H(s) = \frac{K}{s^4 + 5s^3 + 8s^2 + 6s}$$

Solution:

Step 1: Determine the number of open-loop poles and zeros

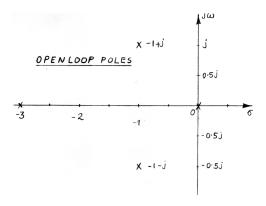
$$s^4 + 5s^3 + 8s^2 + 6s = s(s^2 + 2s + 2)(s + 3) = (s + 1 - j)(s + 1 + j)(s + 3)s$$

Number of open-loop poles n=4

Number of open-loop zeros m=0

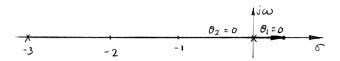
Open-loop poles: s=0 and s=-3, s=-1+j and s=-1-j

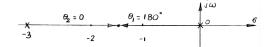
Step 2: Mark open-loop poles and zeros on the s-plane

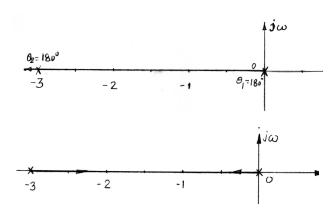


Step 3: Determine parts of the root-locus on the real axis

Test points on the positive real axis







Step 4: Determine breakaway and break-in point

Characteristic equation, $K = -(s^4 + 5s^3 + 8s^2 + 6s)$

$$\frac{dK}{ds} = 0$$

$$\Rightarrow 4s^3 + 15s^2 + 16s + 6 = 0$$

$$\Rightarrow s^3 + 3.75s^2 + 4s + 1.5 = 0$$

$$f'(s) = 3s^2 + 7.5s + 4$$

This equation is solved using Newton-Raphson's method

$$S_{n+1} = S_n - \frac{f(S_n)}{f'(S_n)}$$

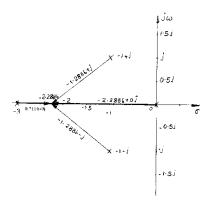
No.	S_n	$f(s_n)$	$f'(s_n)$	S_{n+1}
1	-3.75	-13.5	18.0625	-3.0026
2	-3.0026	-3.7721	8.5273	-2.5602
3	-2.5602	-0.9421	4.4624	-2.3491
4	-2.3491	-0.1658	2.9364	-2.2926
5	-2.2926	-0.0103	2.5737	-2.2886
6	-2.2886	-5.03x10		

Breakaway point as $\sigma_b = -2.3$

Gain at the breakaway point, K = |-2.3 - (-3)||-2.3 - (-1 + j)||-2.3 - (-1 + j)||-2.3 - (-1 - j)|= 4.33

1	5	8	6	K
	-2.2886	-6.2053	-4.1073	-4.3316

1 2./114 1./94/ 1.8920 0	1	2.7114	1.7947	1.8926	0
--------------------------	---	--------	--------	--------	---



Other closed-loop poles for K=4.3

1	2.7114	1.7947	1.893
	-2.2886	-0.9676	-1.893
1	0.4228	0.8270	0

$$s_{3,4} = -0.2114 \pm j0.8814$$

Step 5: Draw asymptotes of the root-locus

Angle of asymptotes:

$$\theta_c = \frac{180^0 + k360}{(n-m)} = \frac{180 \pm 360k}{4}$$

$$\theta_c = 45^0 \ k = 0$$

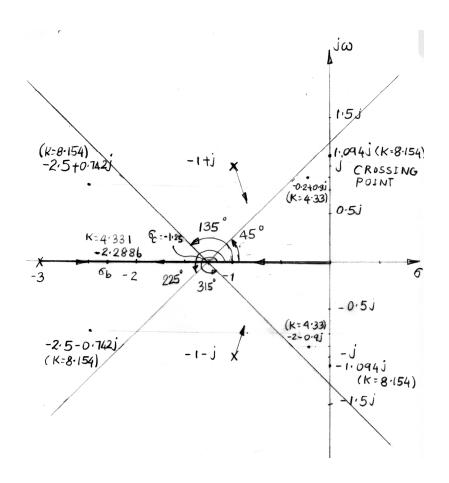
$$\theta_c = 135^0 \ k = 1$$

$$\theta_c = 225^0 \ k = 2$$

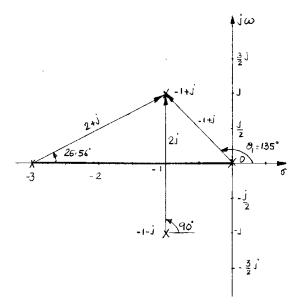
$$\theta_c = 315^0 \ k = 3$$

Centroid of asymptotes

$$\sigma_c = \frac{(p_1 + p_2 + \dots p_n) - (z_1 + z_2 + \dots z_m)}{(n - m)} = \frac{0 - 3 - 1 + j - 1 - j}{4} = -1.25$$



Steps 6: Determine angles of departure



$$\theta_d = 180^{\circ} - (135^{\circ} + 26.56^{\circ} + 90^{\circ}) = -71.56^{\circ} = 288.44^{\circ}$$

Step 7: As there are no complex open-loop zeros, angle of arrival need not be computed.

Step 8: Determine points on the root-locus crossing imaginary axis

$$B(s) = s^4 + 5s^3 + 8s^2 + 6s + K$$

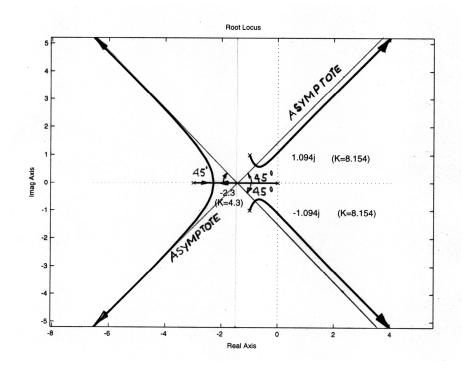
$$B(j\omega) = (j\omega)^4 + 5(j\omega)^3 + 8(j\omega)^2 + 6j\omega + K = (\omega^4 - 8\omega^2 + K) + j(6\omega - 5\omega^3)$$

When imaginary-part is zero, then $\omega = \pm \sqrt{\frac{6}{5}} \Rightarrow s = \pm j \sqrt{\frac{6}{5}}$ and when real-part is zero,

then
$$K = 8 \times \left(\frac{6}{5}\right) - \left(\frac{6}{5}\right)^2 = 8.16$$
.

There are two closed-loop poles on the imaginary axis for any value of K>0. Additional closed-loop poles

No.	S_1	S_2	S _{3,4}	K
1	-0.25	-2.9217	-0.9142±0.7969j	1.0742
2	-0.50	-2.8804	-0.8098±0.655j	1.5625
3	-0.75	-2.8593	-0.6953±0.5938j	1.7930
4	-1.0	-2.8393	-0.5804±0.6063j	2.0000
5	-1.25	-2.8055	-0.4722±0.6631j	2.3242
6	-1.75	-2.6562	-0.3763±0.7354j	2.8125
7	-2.0	-2.5214	-0.2393±0.8579j	4.0



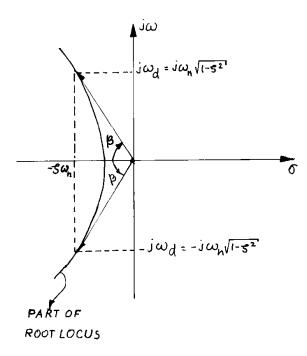
Additional Information from Root-Locus Plot

6. Gain Margin

$$GM = 20\log\frac{K_2}{K_1}$$
 (10.69)

 K_1 is the gain of a feedback system at some point on the root-locus K_2 is the gain at which the system becomes unstable

7. Transient Characteristics



Where,
$$\beta = \tan^{-1} \frac{\sqrt{1-\zeta^2}}{\zeta}$$

8. Percentage overshoot

$$M_{p} = e^{-\pi/\tan\beta} \tag{10.70}$$

9. Settling time

$$t_s = \frac{4}{\zeta \omega_n} \tag{10.71}$$

10. Steady-state error is also related to K.

Example

Problem-1: Draw the root-locus of the feedback system whose open-loop transfer function is given

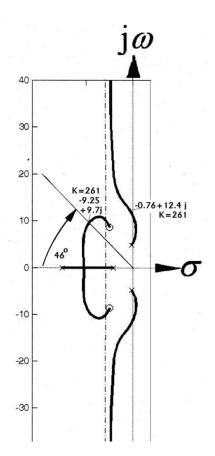
by
$$G(s)H(s) = \frac{K(s^2 + 10s + 100)}{s^4 + 20s^3 + 100s^2 + 500s + 1500}, H(s) = 1$$

- (a) Determine the value of gain at which the system will be stable and as well have a maximum overshoot of 5%.
- (b) What is the gain margin at this point?
- (c) What is the steady-state error for a unit step excitation at the above point?

Solution:

(b)
$$\tan \beta = \frac{-\pi}{\ln M_p} = 1.0487$$
$$\Rightarrow \beta = 46^0$$

$$\zeta = \frac{1}{\sqrt{1 + \tan^2 \beta}} = 0.690 \tag{10.72}$$



(b)
$$GM = 20\log \frac{192.2}{261} = -2.65dB$$

(c) Position error

(c) Position error
$$K_{s} = \lim_{s \to 0} \frac{K(s^{2} + 10s + 100)}{s^{4} + 20s^{3} + 100s^{2} + 500s + 1500} = \frac{100K}{1500}$$
Steady-state error,

$$S_e(\infty) = \frac{1}{1+K_s} = \frac{1}{1+100K/1500} = \frac{1500}{1500+100K}$$

$$S_e(\infty) = \frac{1500}{1500 + 100 - 261} = 5.4\%$$

UNIT-IV

Frequency Response Analysis

Frequency Response

This is defined as the steady-state response of a system due to a sinusoidal input.

$$X(s) \longrightarrow G(s) \longrightarrow Y(s)$$

Here,

$$G(s) = \frac{C(s)}{R(s)} = \frac{N(s)}{(s+a)(s+b)(s+c)...}$$
(11.1)

$$\Rightarrow C(s) = \frac{N(s)R(s)}{(s+a)(s+b)(s+c)\dots}$$
(11.2)

Let, $r(t) = A \sin \omega t$, then

$$R(s) = \frac{A\omega}{s^2 + \omega^2} \tag{11.3}$$

Using eq (3) in eq (2),

$$C(s) = \frac{N(s)}{(s+a)(s+b)(s+c)...} \left[\frac{A\omega}{s^2 + \omega^2} \right]$$

$$\Rightarrow C(s) = \frac{A_1}{s+a} + \frac{A_1}{s+b} + \frac{A_1}{s+c} + ... + \frac{B_1}{s+j\omega} + \frac{B_2}{s-j\omega}$$
(11.4)

In time domain, eq (5) becomes

$$c(t) = A_1 e^{-at} + A_2 e^{-bt} + A_3 e^{-ct} + \dots + B_1 e^{-j\omega t} + B_2 e^{j\omega t}$$
(11.5)

The term with A_i terms are decaying components. So, they tend to zero as time tends to infinity. Then, eq (5) becomes

$$C_{ss}(t) = B_1 e^{-j\omega t} + B_2 e^{j\omega t}$$
 (11.6)

Where,

$$B_{1} = \frac{A\omega G(s)}{s - j\omega}\bigg|_{s = -j\omega} = \frac{-A}{2j} |G(-j\omega)| e^{j\angle G(-j\omega)}$$

$$B_{2} = \frac{A\omega G(s)}{s + j\omega}\bigg|_{s = j\omega} = \frac{A}{2j} |G(j\omega)| e^{j\angle G(j\omega)}$$
(11.7)

Since, $|G(j\omega)| = |G(-j\omega)|$ and $\angle G(-j\omega) = \angle G(j\omega) = \phi$

$$c(t) = \frac{-A}{2j} |G(j\omega)| e^{-j(\omega t + \phi)} + \frac{A}{2j} |G(j\omega)| e^{j(\omega t + \phi)}$$
(11.8)

$$\Rightarrow c(t) = -A|G(j\omega)|e^{-j\omega t} \left[\frac{e^{j\phi} - e^{-j\phi}}{2j}\right]$$
 (11.9)

$$\Rightarrow c(t) = A|G(j\omega)|\sin(\omega t + \phi)$$
(11.10)

$$\Rightarrow c(t) = B(\omega)\sin(\omega t + \phi) \tag{11.11}$$

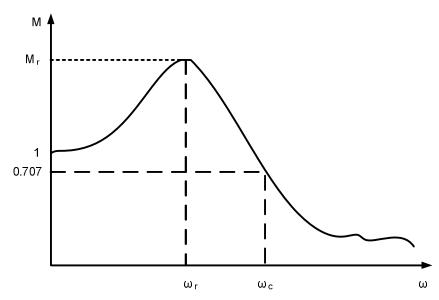
Where, $B(\omega) = A |G(j\omega)|$

Therefore, the steady-state response of the system for a sinusoidal input of magnitude A and frequency ω is a sinusoidal output with a magnitude $B(\omega)$, frequency ω and phase shift ϕ .

The following plots are used in frequency response.

- Polar plot
- Bode plot
- Magnitude versus phase angle plot

Definition of frequency domain specifications



- (i) Resonant peak (M_r) : Maximum value of $M(j\omega)$ when ω is varied from 0 to ∞ .
- (ii) Resonant frequency (ω_r) : The frequency at which M_r occurs
- (iii) Cut-off frequency (ω_c) : The frequency at which $M(j\omega)$ has a value $\frac{1}{\sqrt{2}}$. It is the frequency at which the magnitude is 3dB below its zero frequency value
- (iv) Band-width (ω_b) : It is the range of frequencies in which the magnitude of a closed-loop system is $\frac{1}{\sqrt{2}}$ times of M_r

- (v) Phase cross-over frequency: The frequency at which phase plot crosses -180°
- (vi) Gain margin (GM): It is the increase in open-loop gain in dB required to drive the closed-loop system to the verge of instability
- (vii) Gain cross-over frequency: The frequency at which gain or magnitude plot crosses 0dB line
- (viii) Phase margin (PM): It is the increase in open-loop phase shift in degree required to drive the closed-loop system to the verge of instability

Correlation between time and frequency response For a second order system

$$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$
(11.12)

Putting $s = j\omega$

$$\frac{C(j\omega)}{R(j\omega)} = \frac{\omega_n^2}{\omega_n^2 - \omega^2 + j2\zeta\omega_n\omega}$$

$$\Rightarrow \frac{C(j\omega)}{R(j\omega)} = \frac{1}{\left(1 - \frac{\omega^2}{\omega_n^2}\right) + j2\zeta\left(\frac{\omega}{\omega_n}\right)}$$
(11.13)

Let, $u = \frac{\omega}{\omega_n}$, then

$$\frac{C(j\omega)}{R(j\omega)} = \frac{1}{(1-u^2) + j2\zeta u}$$
(11.14)

Now.

$$M(j\omega) = |M(j\omega)| \angle M(j\omega)$$
(11.15)

Where,

$$\left| M \left(j\omega \right) \right| = \frac{1}{\sqrt{\left(1 - u^2 \right)^2 + \left(2\zeta u \right)^2}}$$

$$\theta = -\tan^{-1} \left(\frac{2\zeta u}{1 - u^2} \right)$$
(11.16)

Now,

$$M_r = \frac{1}{2\zeta\sqrt{1-\zeta^2}}$$
 (11.17)

$$\omega_r = \omega_n \sqrt{1 - 2\zeta^2} \tag{11.18}$$

$$\omega_b = \omega_n \sqrt{1 - 2\zeta^2 + \sqrt{4\zeta^4 - 4\zeta^2 + 2}}$$
 (11.19)

$$PM = -180^0 + \varphi \tag{11.20}$$

Where,
$$\varphi = \tan^{-1} \frac{2\zeta}{\sqrt{4\zeta^2 + 1} - 2\zeta^2}$$

Advantages

- Good accuracy
- Possible to test in lab
- Can be used to obtain transfer function that is not possible with analytical techniques
- Easy to design open-loop transfer function from closed-loop performance in frequency domain
- It is very easy to visualize the effect of disturbance and parameter variations.

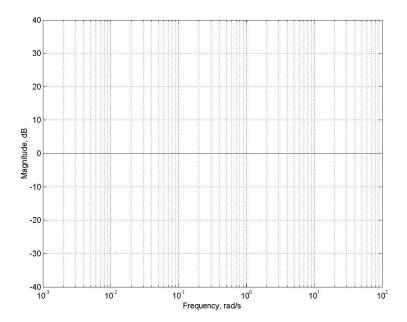
Disadvantages

- Applied only to linear systems
- Frequency response for existing system is possible to obtain if the time constant is up to few minutes
- Time consuming procedure
- Old and back dated method

Bode Plots

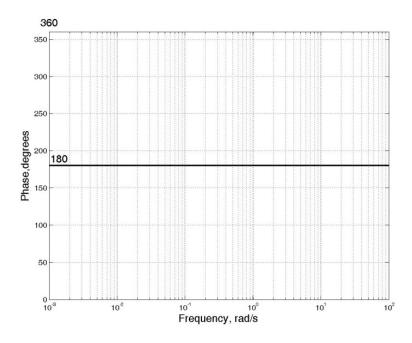
Magnitude plot and phase plot on a semi-log paper

Magnitude plot on a semi-log paper



 $M = 20\log |G(j\omega)H(j\omega)| dB$

Phase plot on a semi-log paper



Magnitude versus phase Bode plot Nichols plot

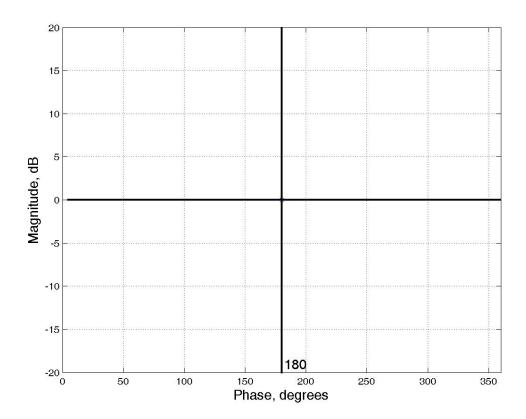


Table:Basic frequency response factors

No	Laplace term	Frequency response	Type of factor
1	K	K	Constant
2	S	jω	Derivative factor
3	1/s	$1/j\omega$	Integral factor
4	τs+1	$(I+j\omega au)$	First order derivative factor
5	$1/(\tau s+1)$	$1/(1+j\omega\tau)$	First order integral factor
6	$s^2 + 2\varsigma\omega_n s + \omega_n^2$	$\omega_n^2 - \omega^2 + j2\varsigma\omega_n\omega$	Second order derivative factor
7	$\frac{1}{s^2 + 2\varsigma\omega_n s + \omega_n^2}$	$\frac{1}{\omega_n^2 - \omega^2 + j2\varsigma\omega_n\omega}$	Second order integral factor

Derivative factor: magnitude

$$M = 20\log|j\omega| = 20\log\omega \, dB \tag{12.1}$$

$$\angle j\omega = 90^0 \tag{12.2}$$

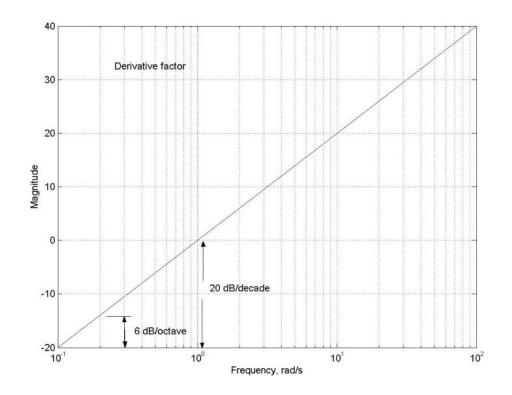
$$\Delta M = 20\log \omega_2 - 20\log \omega_1 = 20\log \frac{\omega_2}{\omega_1} \, dB/decade \qquad (12.3)$$

$$\Delta M = 20\log 10 = 20 \,\mathrm{dB/decade} \tag{12.4}$$

$$\Delta M = 20 \log 2 \approx 6 \, \text{dB/octave} \tag{12.5}$$

Table: Magnitude variation of a derivative factor for various multiples of the initial frequency

$\frac{\omega_2}{\omega_1}$	1	2	3	4	5	6	7	8	9	10
ΔM dB	0	6	10	12	14	16	17	18	19	20



Derivative Factor: (phase)

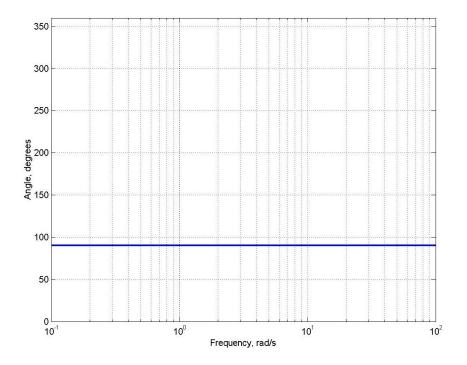


Table 15.3Derivative factor

		Frequ	ency, 1	ad/s	
	0.1	1	10	30	100
Magnitude, dB	-20	0	20	30	40
Phase, degrees	90	90	90	90	90

Integral factor: magnitude

$$M = 20\log\left|\frac{1}{j\omega}\right| = -20\log\omega \, dB \tag{12.6}$$

$$\angle j\omega = 270^0 \tag{12.7}$$

$$\Delta M = -20\log \omega_2 + 20\log \omega_1 = -20\log \frac{\omega_2}{\omega_1} dB/decade$$
 (12.8)

$$\Delta M = -20\log 10 = -20 \, \text{dB/decade} \tag{12.9}$$

$$\Delta M = 20\log 2 \approx -6 \text{ dB/octave}$$
 (12.10)

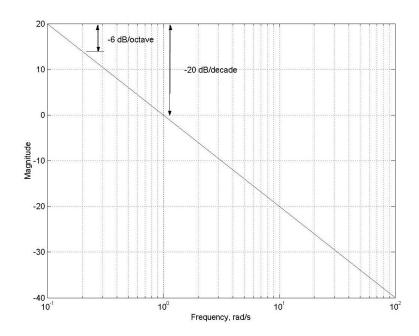


Table 12.4Magnitude variation of an integral factor for various multiples of the initial frequency

$\frac{\omega_2}{\omega_1}$	1	2	3	4	5	6	7	8	9	10
ΔM , dB	0	-6	-10	-12	-14	-16	-17	-18	-19	-20

Integral factor: phase

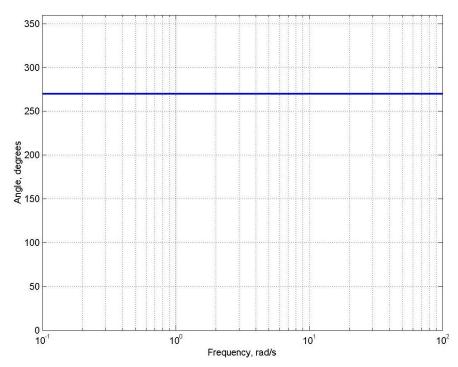


Table: Bode magnitude and phase of an integral factor

	Frequency, rad/s								
	0.1	1	10	20	100				
Magnitude, dB	20	0	-20	-26	-40				
Phase, degrees	270	270	270	270	270				

First-order derivative factor: magnitude

$$M = 20\log|1 + j\omega\tau| = 20\log(\sqrt{1 + [\omega\tau]^2}) dB$$
 (12.11)

For $\omega << \omega_c$, $M \approx 0 \text{ dB}$

For $\omega >> \omega_c$,

$$M \approx 20 \log \frac{\omega}{\omega_c} dB$$
 (12.12)

Here, $\omega_c = 1/\tau = corner$ frequency

For $\omega > \omega$

$$\Delta M = 20\log \omega_2 - 20\log \omega_1 = 20\log \frac{\omega_2}{\omega_1}$$
 (12.13)

$$\Delta M = 20 \log 10 = 20 \, \text{dB/decade}$$
 (12.14)

$$\Delta M = 20 \log 2 \approx 6 \, \text{dB/octave} \tag{12.15}$$

Table 12.6Magnitude variation of a first-order derivative factor for various multiples of the corner frequency

$\frac{\omega}{\omega_c}$	1	2	3	4	5	6	7	8	9	10
ΔM , dB	0	6	10	12	14	16	17	18	19	20

First-order derivative factor: phase

$$\theta = \angle 1 + j\omega\tau = \arctan(\omega\tau) \tag{12.16}$$

$$\theta \approx 0 \qquad ; w < \frac{w_c}{10}$$

$$\theta = 45^0 \left(1 + \log \frac{\omega}{\omega_c} \right) \quad ; \frac{w_c}{10} < w < 10w_c$$

$$\theta \approx 90 \qquad : w > 10w_c$$
(12.17)

Table:Phase angles of a first-order derivative factor around the corner frequency

$\frac{\omega}{\omega_c}$	1	2	3	4	5	6	7	8	9	10
$ heta$, \deg	45	59	66	72	76	80	83	86	88	90
$\frac{\omega}{\omega_c}$	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
$ heta$, \deg	0	2	4	7	10	14	18	24	31	45

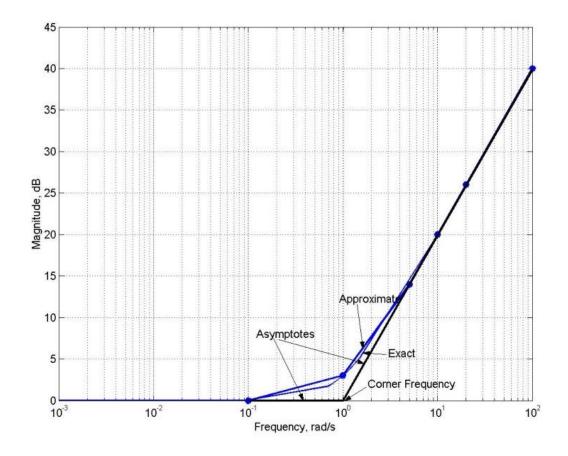
First-order derivative factor For

 $\tau = 1$

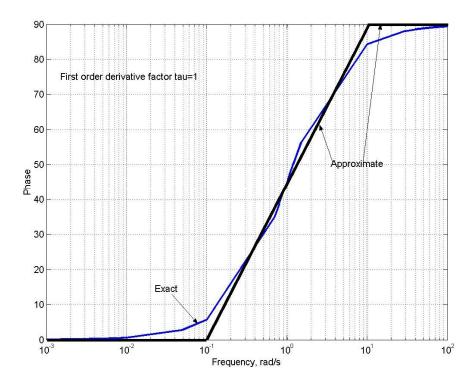
Table 15.8Bode magnitude and phase

		Frequency, rad/s									
	0.1	1	5	10	20	100					
Magnitude, dB	0	3	14	20	26	40					
Phase, degrees	0	45	76	90	90	90					

First-order derivative factor: magnitude (3 dB correction at the corner frequency)



First-order derivative Factor: phase



First-order integral factor: magnitude

$$M = 20\log\left|\frac{1}{1+j\omega\tau}\right| = 20\log\left(\frac{1}{\sqrt{1+[\omega\tau]^2}}\right) dB$$
 (12.18)

$$M \approx 0,$$
 $w \ll w_c$
$$M \approx -20 \log \frac{\omega}{\omega_c} dB, \quad w \gg w_c$$
 (12.19)

$$\Delta M = -20\log \omega_2 + 20\log \omega_1 = -20\log \frac{\omega_2}{\omega_1} dB/decade$$
 (12.20)

$$\Delta M = -20\log 2 \approx -6 \, \text{dB/octave} \tag{12.21}$$

Table:Magnitude variation of a first-order integral factor for various multiples of the corner frequency

$\frac{\omega}{\omega_c}$	1	2	3	4	5	6	7	8	9	10
ΔM , dB	0	-6	-10	-12	-14	-16	-17	-18	-19	-20

Table:Phase angles of a first-order integral factor around the corner frequency

$\frac{\omega}{\omega_c}$	1	2	3	4	5	6	7	8	9	10
θ deg	315	301	294	288	284	280	277	274	272	270
$\frac{\omega}{\omega_c}$	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
θ deg	360	358	356	353	350	346	342	336	329	315

First-order integral factor: phase

$$\theta$$
=360, ω < ω _c /10

$$\theta = 360 - 45^{0} \left(1 + \log \frac{\omega}{\omega_c} \right), \ \omega_c / 10 < \omega < 10 \ \omega_c$$

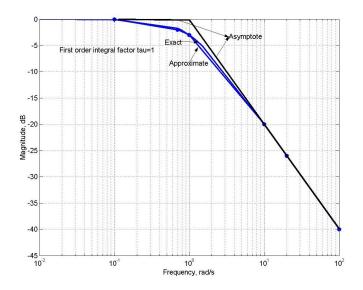
$$\theta = 360 - 45^0 \left(1 + \log \frac{\omega}{\omega_c} \right)$$

$$\theta$$
=270, ω >10 ω_c

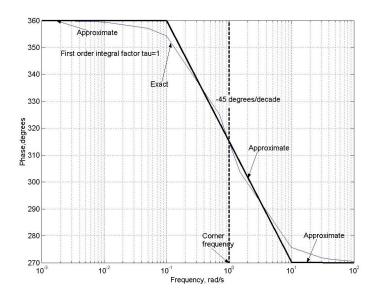
Table:Bode magnitude and phase of a first-order integral factor

			Fr	equen	cy, rad	/s		
	0.01	0.1	0.7	1	7	10	20	100
Magnitude, dB	0	0	-2	-3	-17	-20	-26	-40
Phase, degrees	360	360	322	315	277	270	270	270

First-order integral factor: magnitude



First-order integral factor: phase



Second-order derivative factor: magnitude

$$M = 20\log |\omega_n^2 - \omega^2 + j2\zeta\omega\omega_n|$$

$$= 20\log \left(\omega_n^2 \sqrt{\left(1 - \frac{\omega^2}{\omega_n^2}\right)^2 + \left(2\zeta\frac{\omega}{\omega_n}\right)^2}\right)$$
(12.22)

$$\begin{split} \mathbf{M} &\approx 40 log \mathbf{w}_n \,, \mathbf{w} << \mathbf{w}_n \\ \mathbf{M} &= 20 log \,\, (2 z \mathbf{w}_n^{\,\, 2}), \mathbf{w} = \mathbf{w}_n \\ \mathbf{M} &= 40 \,\, log \mathbf{w}, \mathbf{w} >> \mathbf{w}_n \end{split} \tag{12.23}$$

$$\Delta M = 40\log \omega_2 - 40\log \omega_1 = 40\log \frac{\omega_2}{\omega_1} \, dB/decade \qquad (12.24)$$

$$\Delta M = 40 \log 10 = 40 \, \text{dB/decade}$$
 (12.25)

$$\Delta M = 40 \log 2 \approx 12 \, \text{dB/octave} \tag{12.26}$$

Magnitude variation of a second-order derivative factor for various multiples of the resonant frequency

$\frac{\omega}{\omega_n}$	1	2	3	4	5	6	7	8	9	10
$\Delta\!M$ dB	0	12	20	24	28	32	34	36	38	40

Second-order derivative factor: phase

$$\theta = \angle |\omega_n^2 - \omega^2 + j2\zeta\omega\omega_n| = \arctan\left(\frac{2\zeta\frac{\omega}{\omega_n}}{1 - \frac{\omega^2}{\omega_n^2}}\right)$$
(12.27)

$$\theta = 0^{0}, \quad w < \frac{w_{n}}{10}$$

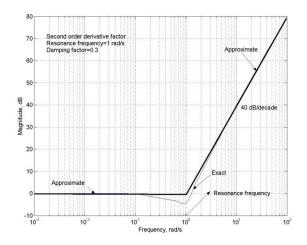
 $\theta = 90^{0}, \quad w = w_{n}$

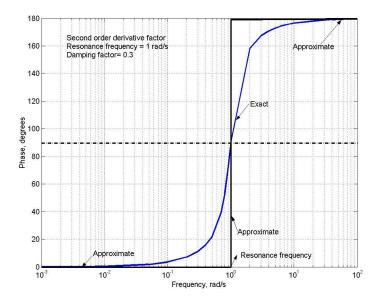
 $\theta = 180^{0}, \quad w > 10w_{n}$
(12.28)

Bode magnitude and phase

$$\omega_n=1 \text{ rad/s}, \zeta=0.3$$

Frequency, rad/s	0.01	0.1	0.7	1	3	10	100
Magnitude, dB	0	0	-4	-4	18	40	80
Phase, degrees	0	0	39	90	167	180	180





Second-order integral factor

$$M = 20 \log \left| \frac{1}{\omega_n^2 - \omega^2 + j2\zeta\omega\omega_n} \right| dB = 20 \log \left(\frac{1}{\omega_n^2 \sqrt{\left(1 - \frac{\omega^2}{\omega_n^2}\right)^2 + \left(2\zeta\frac{\omega}{\omega_n}\right)^2}} \right) dB \quad (12.29)$$

$$M\approx -40\log \omega_n, \omega <<\omega_n$$

M=-20log
$$(2\zeta\omega_n^2)$$
, $\omega = \omega_n$

$$M=-40 \log \omega, \omega >> \omega_n$$

$$\Delta M = -40\log\omega_2 + 40\log\omega_1 = -40\log\frac{\omega_2}{\omega_1} dB / decade$$
 (12.30)

$$\Delta M = -40\log 10 dB = -40 dB \tag{12.31}$$

Magnitude variation of a second-order integral factor for various multiples of the resonant frequency

$\frac{\omega}{\omega_n}$	1	2	3	4	5	6	7	8	9	10
ΔM , dB	0	-12	-20	-24	-28	-32	-34	-36	-38	-40

$$\theta = \angle \left| \frac{1}{\omega_n^2 - \omega^2 + j2\zeta\omega\omega_n} \right| = 360 - \arctan\left(\frac{2\zeta \frac{\omega}{\omega_n}}{1 - \frac{\omega^2}{\omega_n^2}} \right)$$
(12.32)

$$\theta=0$$
, $\omega<\omega_n$

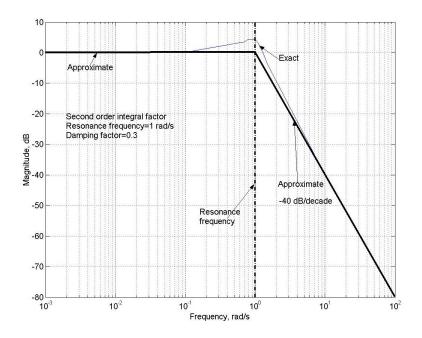
$$\theta=270^{\circ}, \omega=\omega_{\rm n}$$

$$\theta=180^{\circ}, \omega>\omega_n$$

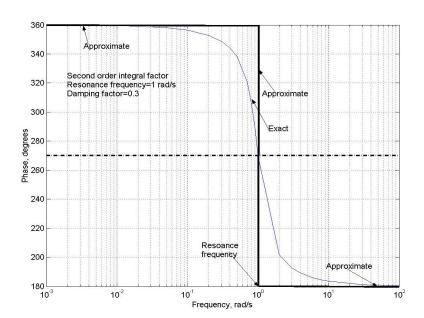
Bode magnitude and phase

Frequency, rad/s	0.01	0.1	0.7	1	3	10	100
Magnitude, dB	0	0	4	4	-18	-40	-80
Phase, degrees	360	360	321	270	193	180	180

Magnitude plot



Phase plot



Example 14.1

Draw the Bode magnitude and phase plot of the following open-loop transfer function and determine gain margin, phase margin and absolute stability?

$$G(s)H(s) = \frac{1}{s(s+1)}$$

Solution

Applying $s = j\omega$,

$$G(j\omega)H(j\omega) = \frac{1}{j\omega(j\omega+1)}$$

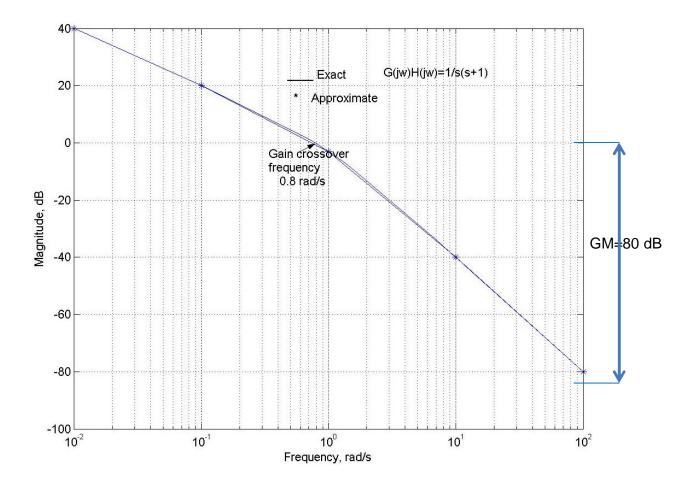
The above frequency response function has two factors: (1) Integral factor and (2) First order integral factor with a corner frequency of 1 rad/s

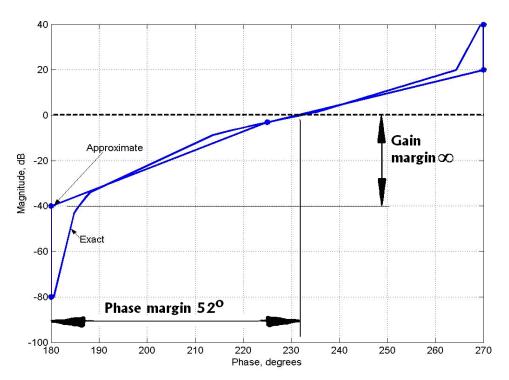
Bode magnitude of the transfer function

		Frequ	uency, rad	ians/s	
	0.01	0.1	1	10	100
$20\log\frac{1}{j\omega}dB$	40	20	0	-20	-40
$20\log\frac{1}{j\omega+1}\mathrm{dB}$	0	0	-3	-20	-40
Magnitude, dB	40	20	-3	-40	-80

$$\omega_p = 100 \text{ rad/s}$$

		Free	quency, rad/s		
	0.01	0.1	1	10	100
$\angle \frac{1}{j\omega}$ degrees	270	270	270	270	270
$\angle \frac{1}{j\omega+1}$ degrees	360	360	315	270	270
Bode phase, degrees	270	270	225	180	180





Example

Draw the Bode magnitude and phase plot of the following open-loop transfer function and determine gain margin, phase margin and absolute stability?

$$G(s)H(s) = \frac{1}{s(s+2)(s+4)}$$

Solution

$$G(j\omega)H(j\omega) = \frac{1}{8j\omega\left(\frac{j\omega}{2} + 1\right)\left(\frac{j\omega}{4} + 1\right)}$$

The corner frequencies corresponding to first order integral factors are 2 rad/s and 4 rad/s. Minimum frequency is chosen as 0.01 rad/s and maximum frequency 100 rad/s.

Table 14.1 Computation of Bode magnitude using asymptotic properties of the integral first-order term $\tau = \frac{1}{2}$

	х1	х2		х1	x10	х2	х1	х1	х2	х1	x10
Frequency, rad/s	2	4		2	20	20	10	20	40	10	100
Magnitude, dB	0	-6	Ī	0	-20	-20	-14	-20	-26	-14	-34

Table 14.2 Computation of Bode magnitude using asymptotic properties of the integral first-order term $\tau = \frac{1}{4}$

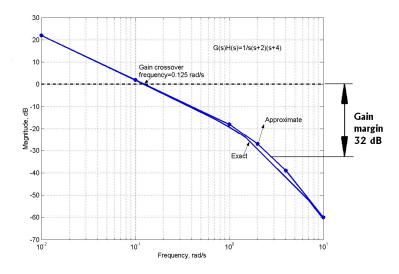
	х1	x10	x2	x1	x2	x1	х1	x10
Frequency, rad/s	4	40	40	20	20	10	10	100
Magnitude, dB	0	-20	-20	-14	-14	-8	-8	-28

Table 12.3 Bode magnitude

1 able 12.5 Box	Inagintura			Freq	uency,	, rad/s					
Factor	0.01	0.1	0.2	0.4	1	2	4	10	20	40	100
$20\log\frac{1}{8}$	-18	-18	-18	-18	-18	-18	-18	-18	-18	-18	-18
$20\log\frac{1}{j\omega}$	40	20	14	8	0	-6	-12	-20	-26	-32	-40
$20\log\frac{1}{\frac{j\omega}{2}+1}$	0	0	0	0	-1	-3	-6	-14	-20	-26	-34
$20\log\frac{1}{\frac{j\omega}{4}+1}$	0	0	0	0	0	-1	-3	-8	-14	-20	-28
Bode magnitude,	22	2	-4	-10	-18	-28	-39	-60	-78	-96	-120

dB						

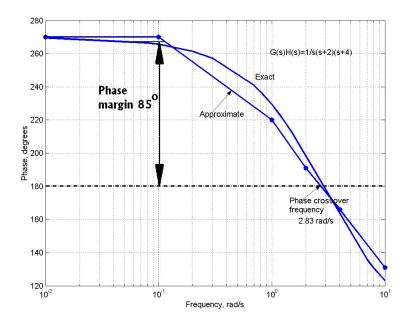
Bode magnitude



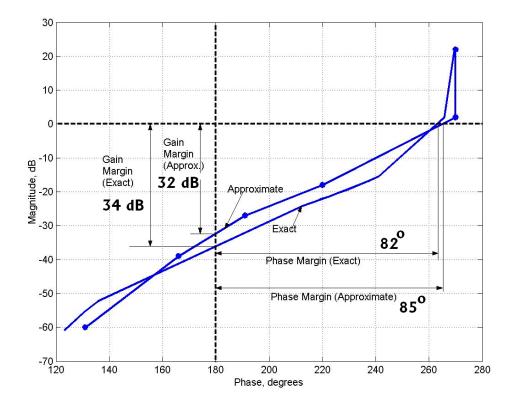
Bode phase

					Free	quency,	rad/s				
Factor	0.01	0.1	0.2	0.4	1	2	4	10	20	40	100
$\angle \frac{1}{8}$	0	0	0	0	0	0	0	0	0	0	0
$\angle \frac{1}{j\omega}$	270	270	270	270	270	270	270	270	270	270	270
$\angle \frac{1}{\frac{j\omega}{2}+1}$	360	360	360	346	328	315	301	284	270	270	270
$\angle \frac{1}{\frac{j\omega}{4}+1}$	360	360	360	360	342	326	315	297	285	270	270
Phase degrees	270	270	270	256	220	191	166	131	105	90	90

Phase plot



Bode plot



Example:

Draw the Bode magnitude and phase plot of the following open-loop transfer function and determine gain margin, phase margin and absolute stability?

$$G(s)H(s) = \frac{1}{s^2(s+1)}$$

Solution

$$G(j\omega)H(j\omega) = \frac{1}{(j\omega)(j\omega)(j\omega+1)}$$

There are two integral factors and an integral first-order term with a corner frequency of 1 rad/s Bode magnitude

		Freq	uency, 1	rad/s							
	0.01 0.1 1 10 100										
$20\log\frac{1}{j\omega}dB$	40	20	0	-20	-40						
$20\log \frac{1}{j\omega} dB$	40	20	0	-20	-40						

$20\log\frac{1}{j\omega+1}\mathrm{dB}$	0	0	-3	-20	-40
Bode magnitude, dB	80	40	-3	-60	-120

Example

Draw the Bode magnitude and phase plot of the following open-loop transfer function and determine gain margin, phase margin and absolute stability?

$$G(s)H(s) = \frac{1}{s^4 + 5s^3 + 8s^2 + 6s}$$

Solution

$$G(s)H(s) = \frac{1}{s(s^2 + 2s + 2)(s + 3)}$$

$$G(j\omega)H(j\omega) = \frac{1}{j\omega((j\omega)^2 + 2(j\omega) + 2)((j\omega) + 3)}$$

$$G(j\omega)H(j\omega) = \frac{\frac{1}{3}}{j\omega((2-\omega^2) + j2\omega) + 2)(j\frac{\omega}{3} + 1)}$$

Comparing the second order term with a standard second order term,

$$\omega_n^2 - \omega^2 + j2\zeta\omega\omega_n$$

$$\omega_n = \sqrt{2}$$
 and $\zeta = \frac{1}{\sqrt{2}}$.

For the first order integral factor, $\omega_c=3$ rad/s

For ζ > 0.5, the response at resonance is less than the response at frequencies less than the resonant frequencies

Table Computation of Bode magnitude using asymptotic properties of the integral second-order term

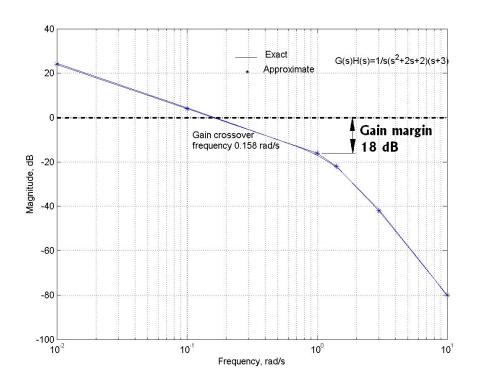
	x1	x10	х1	х2	хЗ	х1	х1	x10	х3	х1
Frequency, rad/s	1.4	14	14	30	30	10	10	100	30	3
Magnitude, dB	-6	-46	-46	-58	- 58	- 38	-38	-78	-58	-18

Table Computation of Bode magnitude using asymptotic properties of the integral first-order term

	х1	х3	x2	х1	х3	х1	х1	x10
Frequency, rad/s	3	30	30	14	30	10	10	100
Magnitude, dB	0	-20	-20	-14	-20	-10	-10	-30

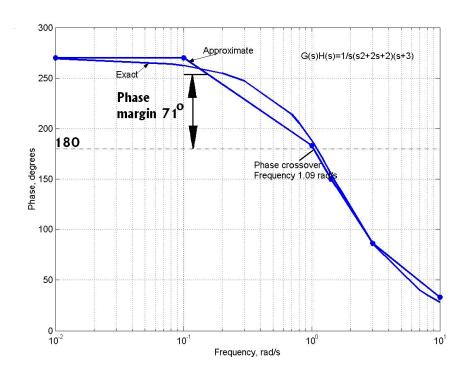
Bode magnitude

		Frequency, rad/s									
						$\omega_{\rm n}$	$\omega_{\rm c}$				
	0.01	0.1	0.14	0.3	1	$\sqrt{2}$	3	10	14	30	100
$20\log\frac{1}{3}$	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10
$20\log\frac{1}{j\omega}$	40	20	17	10	0	-3	-10	-20	-23	-30	-40
$20\log\frac{1}{\left((2-\omega^2)+j(2\omega)\right)}$	-6	-6	-6	-6	-6	-9	-18	-38	-46	-58	-78
$20\log\frac{1}{j\frac{\omega}{3}+1}$	0	0	0	0	0	-1	-3	-10	-14	-20	-30
Bode magnitude, dB	24	4	1	-6	-16	-23	-41	-78	-93	-118	-158

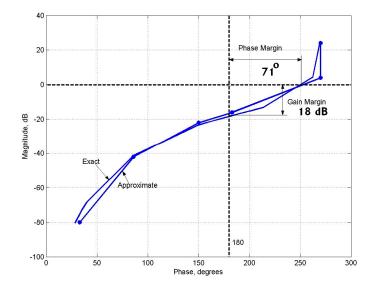


Bode phase

	Frequency, rad/s										
						$\omega_{\rm n}$	$\omega_{\rm c}$				
	0.01	0.1	0.14	0.3	1	$\sqrt{2}$	3	10	14	30	100
$\angle \frac{1}{3}$	0	0	0	0	0	0	0	0	0	0	0
$\angle \frac{1}{j\omega}$ degrees	270	270	270	270	270	270	270	270	270	270	270
	360	360	360	343	297	270	221	192	180	180	180
$\angle \frac{1}{j\frac{\omega}{3}+1}$, degrees	360	360	360	360	336	330	315	291	285	270	270
Bode phase, degrees	270	270	250	253	183	150	86	33	15	0	0



Nichols plot



Polar Plots

It is a graphical method of determining stability of feedback control systems by using the polar plot of their open-loop transfer functions.

Example

Draw a polar plot of the open-loop transfer function for

$$G(s)H(s) = \frac{K}{s(s+1)}$$
 (14.33)

Frequency response

$$G(j\omega)H(j\omega) = \frac{K}{j\omega(j\omega+1)}$$
(14.34)

Magnitude

$$|G(j\omega)H(\omega)| = \frac{K}{\omega\sqrt{1+\omega^2}}$$
 (14.35)

Angle

$$\angle G(j\omega)H(j\omega) = -\frac{\pi}{2} - \tan^{-1}\omega \tag{14.36}$$

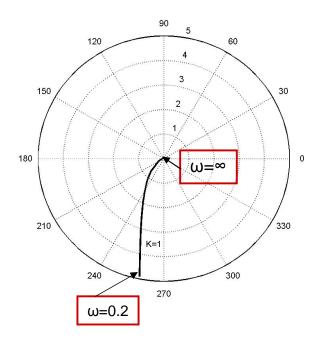
$$270^{0} < \angle G(j\omega)H(j\omega) < 180^{0}$$
(14.37)

Magnitude and phase of the open-loop frequency transfer function

No.	Frequency, rad/s	Magnitude	Phase, degrees
1	0	∞	270

2	0.2	4.9029	259
3	0.4	2.3212	248
4	0.8	0.9761	231
5	1	0.7071	225
6	4	0.0606	194
7	10	0.01	186
8	50	0.0004	181
9	100	0.0001	181
10	200	≈0	≈180

Polar plot of the transfer function $\frac{K}{s(s+1)}$ and K=1



Example

Draw a polar plot of the open-loop transfer function for K=1, 10, 25, 55

$$GH = \frac{K}{s(s+2)(s+4)}$$

Solution

Frequency response
$$G(j\omega)H(j\omega) = \frac{K}{j\omega(j\omega+2)(j\omega+4)}$$

Magnitude

$$|G(j\omega)H(j\omega)| = \frac{K}{\omega\sqrt{\omega^2 + 4}\sqrt{\omega^2 + 16}}$$

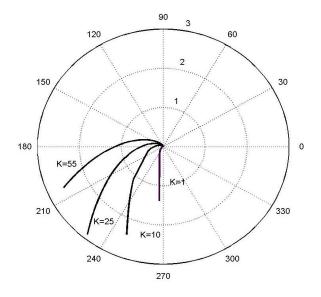
Angle

$$\angle G(j\omega)H(j\omega) = -\frac{\pi}{2} - \tan^{-1}\frac{\omega}{2} - \tan^{-1}\frac{\omega}{4}$$

The lies in II and III quadrants as $90^{\circ} < \angle G(j\omega)H(j\omega) < 270^{\circ}$ Magnitude and phase of the open-loop frequencytransfer function (K=1)

No.	Frequency, rad/s	Magnitude	Phase, degrees
1	0.1	1.2481	266
2	0.2	0.6211	261
4	0.4	0.3049	253
5	0.8	0.1423	237
6	1	0.1085	229
7	4	0.0099	162
8	10	0.0009	123
9	50	0	97

Polar plot of the transfer function $GH = \frac{K}{s(s+2)(s+4)}$ for K=1, 10, 25, 55



Example

Draw a polar plot of the open-loop transfer function $G(s)H(s) = \frac{K}{s^2(s+1)}$

Solution

Frequency response

$$G(j\omega)H(j\omega) = \frac{K}{(j\omega)^2(j\omega+1)}$$

Magnitude

$$|G(j\omega)H(j\omega)| = \frac{K}{\omega^2 \sqrt{\omega^2 + 1}}$$

Angle

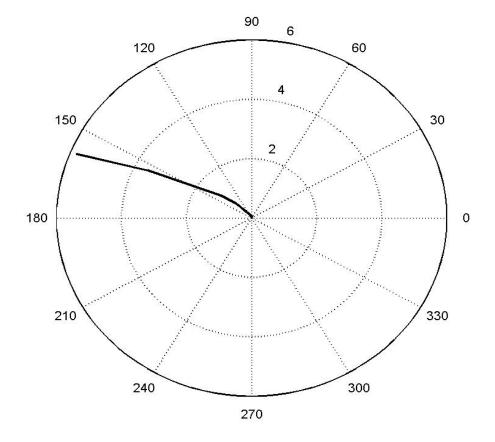
$$\angle G(j\omega)H(j\omega) = -180^{\circ} - \tan^{-1}\omega$$

The lies in II quadrant only as $90^{\circ} < \angle G(j\omega)H(j\omega) < 180^{\circ}$

Magnitude and phase of the open-loop frequency transfer function (K=1)

No.	Frequency, rad/s	Magnitude	Phase, degrees
1	0.4	5.803	158
2	0.5	3.5777	153
4	0.8	1.2201	141
5	1	0.7071	135
6	2	0.1118	117
7	3	0.0351	108
8	4	0.0152	104
9	5	0.0078	101

Polar plot of the transfer function
$$GH = \frac{K}{s(s+2)(s+4)}$$
 for K=1, 10, 25, 55



Nyquist plot

Definition

Nyquist criterion is a graphical method of determining stability of feedback control systems by using the Nyquist plot of their open-loop transfer functions.

Theory

Feedback transfer function

$$\frac{C(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)}$$
(14.1)

Poles and zeros of theopen-loop transfer function

$$G(s)H(s) = \frac{K(s-z_1)(s-z_2)...(s-z_n)}{(s-p_1)(s-p_2)...(s-p_n)}$$
(14.2)

$$1 + G(s)H(s) = \frac{(s - p_1)(s - p_2)...(s - p_n) + K(s - z_1)(s - z_2)...(s - z_m)}{(s - p_1)(s - p_2)...(s - p_n)}$$
(14.3)

Number of closed-loop poles - Number of zeros of 1+GH = N umber of open-loop poles

$$1 + G(s)H(s) = \frac{(s - z_{c_1})(s - z_{c_2})(s - z_{c_n})}{(s - p_1)(s - p_2)...(s - p_n)}$$
(14.4)

$$z_{c_1}, z_{c_2}...z_{c_n} = \text{zeros of } 1 + G(s)H(s)$$

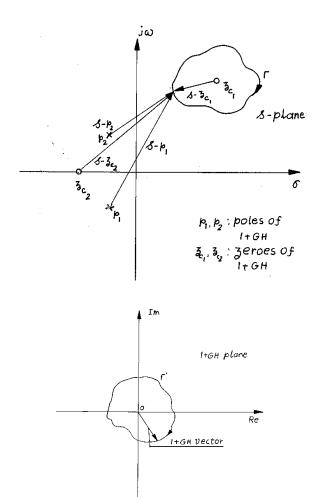
These are also poles of the close-loop transfer function Magnitude

$$|1+G(s)H(s)| = \frac{|s-z_{c_1}| |s-z_{c_2}| ... |s-z_{c_n}|}{|(s-p_1)| |(s-p_2)| ... |(s-p_n)|}.$$
(14.5)

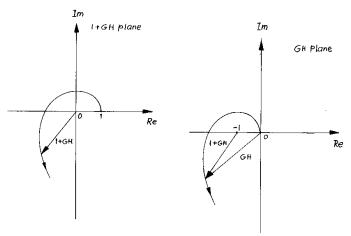
Angle

$$\angle 1 + G(s)H(s) = \frac{\angle s - z_{c_1} \angle s - z_{c_2} \angle s - z_{c_n}}{\angle (s - p_1) \angle (s - p_2) \angle (s - p_n)}$$
(14.6)

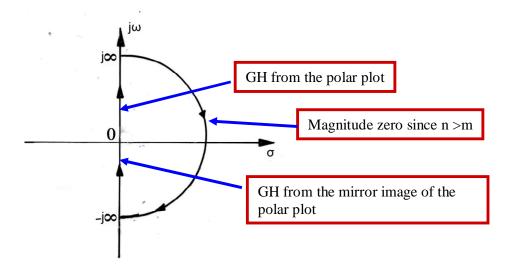
The s-plane to 1+GH plane mappingphase angle of the 1+G(s)H(s) vector, corresponding to a point on the s-plane is the difference between the sum of the phase of all vectors drawn from zeros of 1+GH(close loop poles) and open loops on the s plane. If this point s is moved along a closed contour enclosing any or all of theabove zeros and poles, only the phase of the vector of each of the enclosed zeros or open-loop poles will change by 360° . The directionwill be in the same sense of the contour enclosing zeros and in the opposite sense for the contour enclosing open-loop poles.



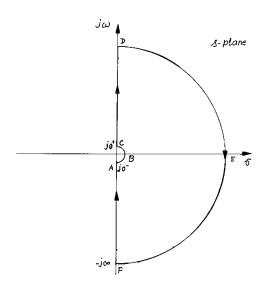
Principle of argument



When a closed contour in the s-plane encloses a certain number of poles and zeros of 1+G(s)H(s) in the clockwise direction, the number of encirclements of the origin by the corresponding contour in the G(s)H(s) plane will encircle the point (-1,0) a number of times given by the difference between the number of its zeros and poles of 1+G(s)H(s) it enclosed on the s-plane.



Modified contour on the s-plane forchecking the existence of closed-loop poles $s = \varepsilon e^{j\beta}$



Magnitude of GH remains the same along the contourPhase of β changes from 270 to 90 degrees **Gain Margin and Phase Margin**

Phase crossover frequency

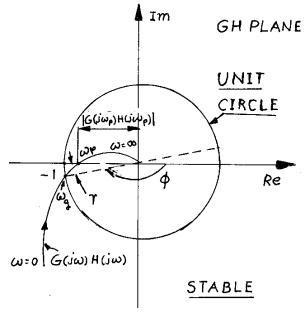
 ω_p is the frequency at which the open-loop transfer function has a phase of 180^0 . The gain crossover frequency ω_g is the frequency at whichthe open-loop transfer function has a unit gain

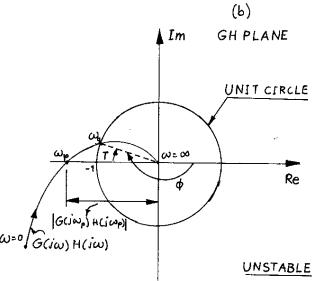
Gain margin

$$M = -20\log \left| G(j\omega_p) H(j\omega_p) \right| \tag{14.7}$$

Phase margin

$$\gamma = \angle G(j\omega_g)H(j\omega_g) - 180^{\circ} \tag{14.8}$$





Procedure

- (1) Locate open-loop poles on the s-plane
- (2) Draw the closed contour and avoid open-loop poles on the imaginary axis
- (3) Count the number of open-loop poles enclosed in the above contour of step 2, say P
- (4) Plot $G(j\omega)H(j\omega)$ and its reflection on the GH plane and map part of the small semi-circle detour on the s-plane around poles (if any) on the imaginary axis.
- (5) Once the entire s-plane contour is mapped on to the GH plane, count the number of encirclements of the point (-1,0) and its direction. Clockwise encirclement is considered positive, say N.
- (6) The number of closed-loop poles in the right-half s-plane is given by Z=N+P. if Z>0, the system is unstable.
- (7) Determine gain margin, phase margin, and critical value of open-loop gain.

Example

Using Nyquist criterion, determine the stability of a feedback systemwhose open-loop transfer function is given by

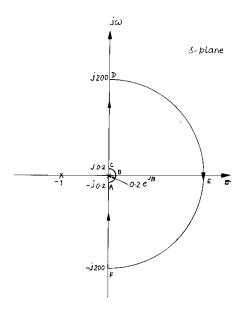
$$G(s)H(s) = \frac{K}{s(s+1)}$$

Solution

Step 1Locate open-loop poles on the s-plane. Open-loop poles are at s=0 and -1. Let K=1

Step 2 Draw the closed contour on the s-plane to check the existenceof closed-loop poles in the righthalf s-plane.

Open-loop poles and s-plane contour



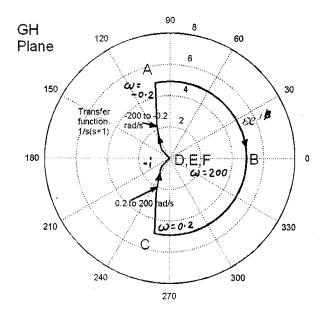
$$|G(j\omega)H(\omega)| = \frac{1}{\omega\sqrt{1+\omega^2}}$$

$$\angle G(j\omega)H(j\omega) = -\frac{\pi}{2} - \tan^{-1}\omega$$

$$\angle G(j\omega)H(j\omega) = -\frac{\pi}{2} - \tan^{-1}\omega$$

No.	Frequency, rad/s		Magnitude	Phase, degrees	β, s-plane, deg	β, GH plane, deg
1	0.2	Positive frequencies	4.9029	259	270	101
2	0.4	requeneres	2.3212	248	280	91
3	0.8		0.9761	231	290	80
4	1		0.7071	225	300	69
5	4		0.0606	194	310	58
6	10		0.01	186	320	46
7	50		0.0004	181	330	35
8	100		0.0001	181	340	23

9	200		0	180	350	12
10	-200	Negative frequencies	0	180	0	0
11	-100	requeneres	0.0001	179	10	348
12	-50		0.0004	179	20	337
13	-10		0.01	174	30	325
14	-4		0.0606	166	40	314
15	-1		0.7071	135	50	302
16	-0.8		0.9761	129	60	291
17	-0.4		2.3212	112	70	280
18	-0.2		4.9029	101	80	269



The above system is stable. Here, phase crossover frequency is very large (infinity) and gain crossover frequency 0.786 rad/s. Phase angle corresponding to gain crossover frequency= 232^0 and Phase margin is 52°

Example

Using Nyquist criterion, determine the stability of a feedback systemwhose open-loop transfer function is given by

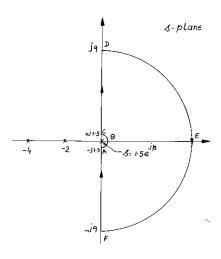
$$G(s)H(s) = \frac{55}{s(s+2)(s+4)}$$

Solution

Step 1Locate open-loop poles on the s-plane. Open-loop poles are at s=0, -2 and -4. Let K=1

Step 2 Draw the closed contour on the s-plane to check the existenceof closed-loop poles in the right-half s-plane.

Open-loop poles and s-plane contour



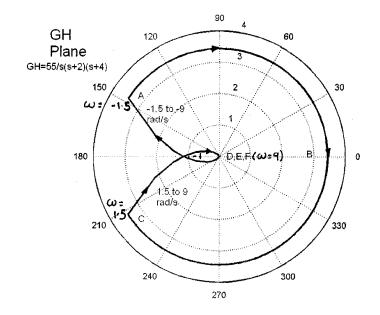
The number of open-loop pole enclosed, P is zero

$$|G(j\omega)H(j\omega)| = \frac{K}{\omega\sqrt{\omega^2 + 4}\sqrt{\omega^2 + 16}}$$

$$\angle G(j\omega)H(j\omega) = -\frac{\pi}{2} - \tan^{-1}\frac{\omega}{2} - \tan^{-1}\frac{\omega}{4}$$

No.	Frequency		Magnitude	Phase, degrees	β, s-plane, deg
1	1.5	Positive	3.4332	213	270
2	2	frequencies	2.1741	198	280
3	2.5		1.4568	187	290
4	2.83		1.1446	180	300
5	3		1.017	177	310
6	3.5		0.7334	169	320
7	4.5		0.4122	156	330
8	5		0.319	150	340
9	5.5		0.2513	146	350
10	6		0.201	142	0
11	7		0.1339	136	10
12	8		0.0932	131	20
13	9		0.0673	126	30
14	-9	Negative frequencies	0.0673	234	40
15	-8	1	0.0932	229	50
16	-7		0.1339	224	60

17	-6	0.201	218	70
18	-5.5	0.2513	214	80
19	-5	0.319	210	90
20	-4.5	0.4122	204	0
21	-3.5	0.7334	191	343
22	-3	1.017	183	326
23	-2.83	1.1446	180	309
24	-2.5	1.4568	173	292
25	-2	2.1741	162	276
26	-1.5	3.4332	147	259



Here, Z=N+P=2.

Hence, the above system is unstable.

Again

Phase crossover frequency 2.83 rad/s

The gain at which the system becomes marginally stable, $K^* = 55/1.1446 = 48$ Gain margin

$$M = -20\log |G(j\omega_p)H(j\omega_p)|$$

= -20\log |1.1446| = -1.17 dB

Gain crossover frequency =3 rad/s and the corresponding angle of GH=177 $^{^{\rm o}}$ Phase margin=177-180=-3 $^{^{\rm o}}$

Controllers

Basic Control Action and response of Control systems

An automatic controller compares the actual value of the plant output with the reference input (desired value), determines the deviation, and produces a control signal that will reduce the deviation to zero or to a small value. The manner in which the automatic controller produces the control signal is called the control action. Fig.1 is a block diagram of an industrial control system, which consists of an automatic controller, an actuator, a plant and a sensor (measuring element). The controller detects the actuating error signal, which is usually at a low power level, and amplifies it to a sufficiently high level. The output of the controller is fed to an actuator such as pneumatic motor or valve, hydraulic motor or electric motor. The actuator is the device that produces the input to the plant according to the control signal so that the output signal will approach the reference input signal.

The sensor or measuring element is device that converts the output variable into another suitable variable such as a displacement, pressure or voltage that can be used to compare the output to the reference input signal. This element is in the feedback path of the closed-loop system. The set point of the controller must be converted to a reference input with the same units as feedback signal from sensor.

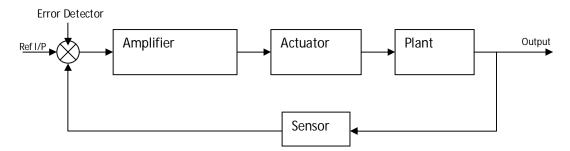


Fig.16.1. Basic Control Action and response of Control systems

CONTROLLERS

- (i) P-controller
- (ii) PI-controller
- (iii) PD-controller
- (iv) PID-controller

P-controller

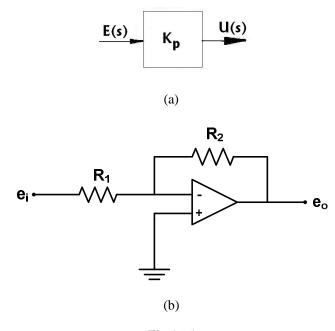


Fig.16.5

Control system with P-controller with inertia load

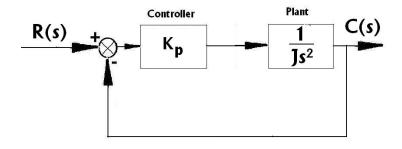


Fig.16.6

For this system, closed-loop response is

$$\frac{C(s)}{R(s)} = \frac{\frac{K_p}{Js^2}}{1 + \frac{K_p}{Js^2}} = \frac{K_p}{Js^2 + K_p} = \frac{K_p}{J(s^2 + \omega_n^2)}$$
(16.1)

$$\Rightarrow C(s) = \frac{K_p}{J(s^2 + \omega_n^2)} R(s)$$
 (16.2)

For step-input, $R(s) = \frac{1}{s}$

Step response becomes

$$c(t) = 1 - \cos \omega_n t \tag{16.3}$$

Where,
$$\omega_n = \sqrt{\frac{K_p}{J}}$$

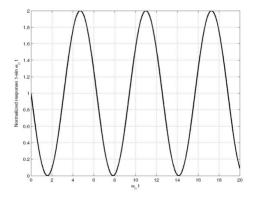
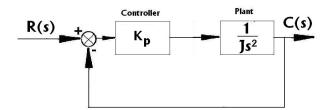


Fig.16.7

Solved problem

1. Consider the unity feedback system of Fig. 16.8. Let K_p=20 and J=50. Determine the equation of response for a unit step input and determine the steady-state error.



Solution

$$\frac{C(s)}{R(s)} = \frac{\frac{K_p}{Js^2}}{1 + \frac{K_p}{Js^2}} = \frac{K_p}{Js^2 + K_p}$$

$$\frac{C(s)}{R(s)} = \frac{K_p}{J\left(s^2 + \omega_n^2\right)}$$

$$\omega_n = \sqrt{\frac{K_p}{J}} = \sqrt{\frac{2}{5}} \text{ rad/s}$$

$$c(t) = \frac{K_p}{J\omega_n^2} (1 - \cos \omega_n t)$$

$$c(t) = \left(1 - \cos\sqrt{\frac{2}{5}}t\right)$$

$$s_e(t) = 1 - \left(1 - \cos\sqrt{\frac{2}{5}}t\right) = \cos\sqrt{\frac{2}{5}}t$$

2. Find the step response of the system shown in Fig. 16.9.

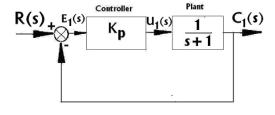


Fig.16.9

Solution

$$G_1 = \frac{K_p}{s+1}$$

$$\frac{E_1(s)}{R(s)} = \frac{1}{1 + G_1(s)} = \frac{s+1}{s+2}$$

$$\Rightarrow E_1(s) = \frac{1}{1 + G_1(s)} R(s) = \frac{s+1}{s+2} R(s)$$

Step response is

$$\Rightarrow E_1(s) = \frac{s+1}{s(s+2)}$$

$$\frac{U_1(s)}{R(s)} = \frac{K_p(s+1)}{(s+2)}$$

$$\frac{C_1(s)}{R(s)} = \frac{1}{s+1+K_p} = \frac{1}{s+2}$$

$$e_1(t) = \frac{1}{2} \left(1 + e^{-2t} \right)$$

$$c_1(t) = \frac{1}{2} \left(1 - e^{-2t} \right)$$

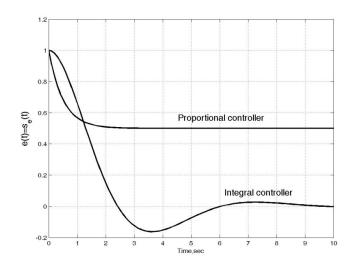
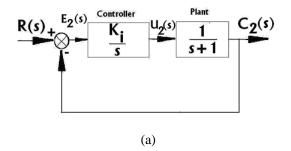


Fig.16.10

I-controller



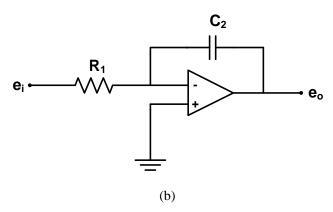


Fig.16.11

$$G_2 = \frac{K_i}{s(s+1)}$$

$$\frac{E_2(s)}{R(s)} = \frac{1}{1 + G_2(s)} = \frac{1}{1 + \frac{K_i}{s(s+1)}} = \frac{s(s+1)}{s^2 + s + 1}$$

$$\frac{U_2(s)}{R(s)} = \frac{K_i(s+1)}{s^2 + s + 1}$$

$$\frac{C_2(s)}{R(s)} = \frac{1}{s^2 + s + K_i} = \frac{1}{s^2 + s + 1}$$

$$e_2(t) = e^{-0.5t} \left(\cos \frac{\sqrt{3}}{2} t + \frac{1}{\sqrt{3}} \sin \frac{\sqrt{3}}{2} t \right)$$

$$c_2(t) = 1 - e^{-0.5t} \left\{ \frac{1}{\sqrt{3}} \sin \frac{\sqrt{3}}{2} t + \cos \frac{\sqrt{3}}{2} t \right\}$$

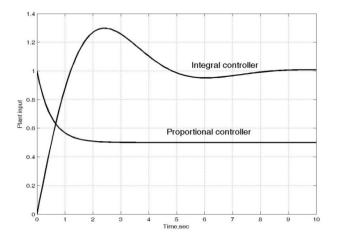


Fig.16.12

PD-controller

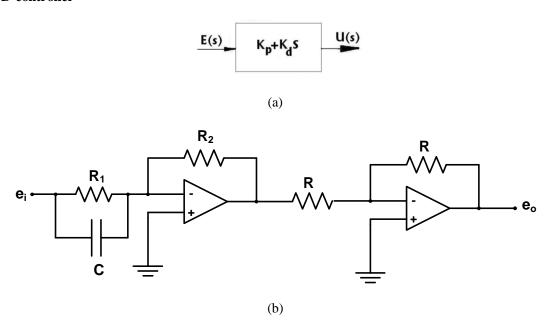


Fig.16.13

Control system with P-controller with inertia load

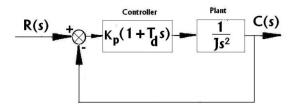


Fig.16.14

For this system, closed-loop response is

$$\frac{C(s)}{R(s)} = \frac{\frac{K_p(1+T_ds)}{Js^2}}{1+\frac{K_p(1+T_ds)}{Js^2}} = \frac{K_p(1+T_ds)}{Js^2 + K_p(1+T_ds)} = \frac{K_p(1+T_ds)}{J\left(s^2 + \frac{K_pT_d}{J}s + \frac{K_p}{J}\right)}$$
(16.4)

$$\Rightarrow C(s) = \frac{K_p(1 + T_d s)}{J\left(s^2 + \frac{K_p T_d}{J} s + \frac{K_p}{J}\right)} R(s)$$
(16.5)

For step-input, $R(s) = \frac{1}{s}$

Step response becomes

$$c(t) = \frac{K_p}{J\omega_n^2} \left\{ 1 - e^{-\varsigma\omega_n t} \left[\cos \omega_d t + \frac{\varsigma}{\sqrt{1 - \varsigma^2}} \sin \omega_d t \right] \right\}$$

$$+ \frac{K_p T_d}{J\omega_n} \left\{ \frac{1}{\sqrt{1 - \varsigma^2}} \right\} e^{-\varsigma\omega_n t} \sin \left(\omega_n \sqrt{1 - \varsigma^2} \right) t$$
(16.6)

Where,
$$\omega_n = \sqrt{\frac{K_p}{J}}$$

Solved problem

3. Consider the unity feedback system of Figure 3. Let $K_p=20$ and J=50. Determine the equation of response for a unit step input and determine the steady-state error. Here, $K_p=20$, $T_d=1$ and J=50.

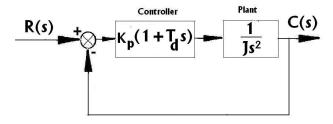


Fig.16.14

Solution

$$\frac{C(s)}{R(s)} = \frac{20(s+1)}{50s^2 + 20s + 20} = \frac{20(1+s)}{50(s^2 + 2\zeta\omega_n s + \omega_n^2)}$$

$$c(t) = \frac{K_p}{J\omega_n^2} \left\{ 1 - e^{-\varsigma\omega_n t} \left[\cos \omega_d t + \frac{\varsigma}{\sqrt{1 - \varsigma^2}} \sin \omega_d t \right] \right\}$$

$$+ \frac{K_p T_d}{J\omega_n} \left\{ \frac{1}{\sqrt{1 - \varsigma^2}} \right\} e^{-\varsigma\omega_n t} \sin \left(\omega_n \sqrt{1 - \varsigma^2} \right) t$$

$$c(\infty) = \frac{K_p}{J\omega_n^2} = 1$$

Transient characteristic	Only PD control	
Transferit characteristic	No system damping	
Maximum overshoot, %	35.09	
iviaximum oversnoot, %	unsatisfactory	
Rise time t _r , sec	3.15	
Peak time t _p , sec	5.24	
Settling time t _s , sec (5% criterion)	15	

PI-controller

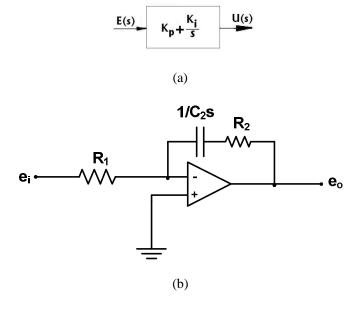


Fig.16.15

Control system with PI-controller with inertia load

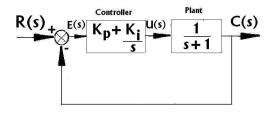


Fig.16.16

For this system, closed-loop response is

$$G = \left(K_p + \frac{K_i}{s}\right) \left(\frac{1}{s+1}\right) = \frac{sK_p + K_i}{s(s+1)}$$
 (16.7)

$$\frac{E(s)}{R(s)} = \frac{1}{1 + G_1(s)} = \frac{s(s+1)}{s^2 + s(1 + K_p) + K_i}$$
(16.8)

$$\frac{U(s)}{R(s)} = \frac{(s+1)(sK_p + K_i)}{s^2 + s(1+K_p) + K_i} = 1$$
(16.9)

$$\frac{C(s)}{R(s)} = \frac{(sK_p + K_i)}{s^2 + s(1 + K_p) + K_i} = \frac{1}{(s+1)}$$
(16.10)

Step response

$$u(t) = 1$$

$$e(t) = e^{-t}$$

$$c(t) = \left(1 - e^{-t}\right)$$

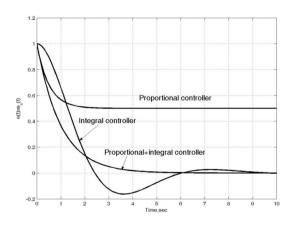


Fig.16.17

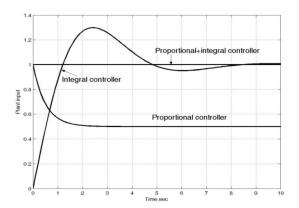


Fig.16.18

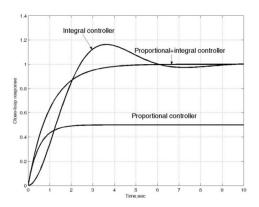


Fig.16.19

PID-controller

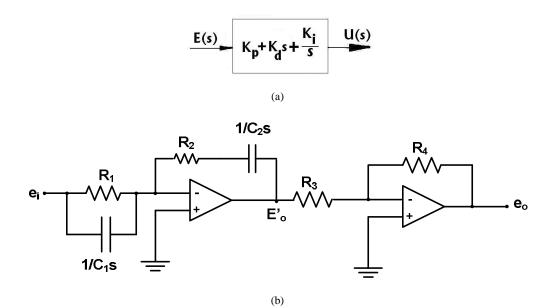


Fig.16.20

Here, transfer function of PID-controller,

$$G_c(s) = K_p + K_d s + \frac{K_i}{s}$$
(16.11)

$$\Rightarrow G_c(s) = K_p \left(1 + T_d s + \frac{T_i}{s} \right)$$
 (16.12)

Where,

$$T_{i} = \frac{K_{i}}{K_{p}}$$

$$T_{d} = \frac{K_{d}}{K_{p}}$$

$$(16.13)$$

Tuning of PID-controller

A. First Method (Ziegler and Nichols)

The Setup for obtaining system parameters for PID tuning

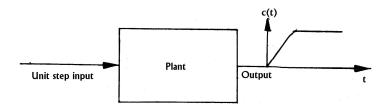


Fig.16.21

$$\frac{C(s)}{U(s)} = \frac{Ke^{-Ls}}{1 + Ts}$$
 (16.14)

$$C(s) = \frac{Ke^{-Ls}}{1+Ts}U(s)$$
(16.15)

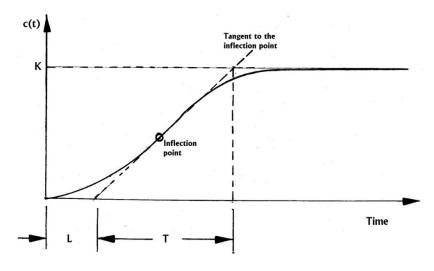


Fig.16.22

Ziegler-Nichols tuning rules based on step response

Type of controller	K _p	K _i	K _d
Р	T	0	0
	\overline{L}		
PI	0.9T	L	0
	\overline{L}	0.3	
PID	1.2 T	2L	0.5L
	L		

$$G_{c}(s) = K_{p} \left(1 + \frac{1}{T_{i}s} + T_{d}s \right)$$
$$= \frac{1.2T}{L} \left(1 + \frac{1}{2Ls} + 0.5Ls \right)$$

$$G_c(s) = 0.6T \frac{\left(s + \frac{1}{L}\right)^2}{s}$$

Ziegler-Nichols tuning rule based on critical gain K_{cr} and critical period $P_{\text{cr}}.$

Type of controller	K_p	K _i	K_d
Р	0.5 K _{cr}	0	0
PI	0.45 K _{cr}	1/1.2 P _{cr}	0
PID	0.6 K _{cr}	1/0.5P _{cr}	0.125 P _{cr}

Where, K_{cr} proportional constant of a switched-off integral and derivative controls at which sustained oscillations of period P_{cr} occur.

Second Method

$$G_{c}(s) = K_{p} \left(1 + \frac{T_{i}}{s} + T_{d}s \right)$$

$$= 0.6K_{cr} \left(1 + \frac{1}{0.5P_{cr}s} + 0.125P_{cr}s \right)$$
(16.16)

$$G_c(s) = 0.075 K_{cr} P_{cr} \frac{\left(s + \frac{4}{P_{cr}}\right)^2}{s}$$
 (16.17)

Sampled Question Sets

SET-I

CONTROL SYSTEM ENGINEERING-I

Time:-3Hrs Full Marks:70

Answer Question no.1 and any five questions from the rest.

Answer all parts of question at one place only

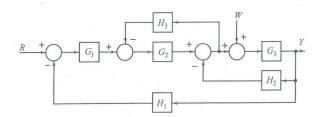
The figures in right hand margin indicate marks.

(Semi log graph papers are allowed)

1 Answer all the following questions briefly (Compulsory)

[2x10]

- (a) Distinguish between regulator and servo-control problem in control system study. (b) Sketch the underdamped time response of a typical second order feedback control system subjected to a unit step input. State the time domain performance indices.
- (c)Prove that a Type-1 system has no steady state error for step input while the steady state error for ramp input decreases for increase of Velocity error $Constant(K_v)$.
- (d) Give the equation of intersect of asymptotes in root locus plot.
- (e) What is system type number? Explain the practical significance of this number.
- (f)Show that the Phase Margin= $\tan^{-1}\frac{2\xi}{\sqrt{\sqrt{4\xi^4+1}-2\xi^2}}$ where ξ is the damping ratio of the standard second order system.
- (g)List the advantages and disadvantages of carrying frequency analysis with Nyquist plot.
- (h) State the Zeigler-Nichols tuning Rules for PID Controller.
- (i) Give all the properties of a minimum phase transfer function.
- (j)Explain with sketch the use of drag cup rotor in servo application.
- 2(a) The Block diagram of a feedback control system is given below. The output Y(s)=C(s)R(s)+D(s)W(s). Find the transfer functions C(s) and D(s). [5]



(b)Describe the construction and working of a two phase motor suitable for use in AC servo systems.

[5]

3(a)Show that high loop gain in feedback control system results in

(i)good steady state tracking accuracy

(ii)low sensitivity to process parameter variations

(iii)good disturbance signal rejection

(iv)good relative stability

What are the factors limiting the gain?

[6]

(b)Explain drawing a neat diagram, the principle of operation of a position servo using a synchro system as error transducer. [4]

4. The peak overshoot ($\% M_p$) in a unit feedback control system is specified to be within 20% to 40% range.

(a)Sketch the area in the s-plane in which dominant roots of the systems characteristic equation must lie. This system has a settling time t_s =0.85 sec. [4]

(b)Determine the smallest value of third root such that dominance of the complex roots corresponding to part (a) is preserved. Further, Determine the open loop transfer function of the system if $M_p = 50\%$

5.(a)State the merits and demerits of using static error coefficients. The open loop transfer function in a unity feedback control system, is given by $G(s) = \frac{10(1+s)}{s^2(5s+6)}$; Find the steady state error of the system using generalized error constants when subjected to an input signal given by $r(t) = 1 + 4t + 3t^2$. [5]

(b))In a unity feedback control system, the open loop transfer function is given by

 $G(s) = \frac{K}{s(s+2)(s^2+3)}$; Using Routh Hurwitz Criterion, determine the range of K for which the given system is stable. [5]

6.(a) The Open loop transfer function of a control system is given as $G(s)H(s) = \frac{20(1+Ks)}{s(s+1)(4+s)}$;

Sketch the Root Locus. Determine the value of K such that damping ratio(ξ) is 0.4. [7]

(b) State the use of Nichol's Chart. [3]

7.Using Bode Plot, determine gain crossover frequency, phase crossover frequency, gain margin and phase margin in a unity feedback control system, where, the open loop transfer function is given by $G(s) = \frac{20(0.2s+1)e^{-0.1s}}{s(0.5s+1)}.$ [10]

8. (a) A unity feedback system has open loop transfer function $G(s) = \frac{(10s+50)}{s^2(s+3)}$;

CONTROL SYSTEM ENGINEERING(IC323)

Time:-3Hrs Full

Marks:70

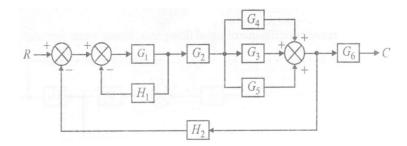
Answer Question no.1 and any five questions from the rest.

Answer all parts of question at one place only

The figures in right hand margin indicate marks.

(Semi log graph papers are allowed)

- 1. Answer all the following questions briefly (Compulsory) [2x10]
- (a) What are the constraints in developing the transfer function of a device a part of larger system?
- (b) The transfer function of a control system is $T(s)=K/[S^2+4S+K]$; Find K if the system is critically damped.
- (c) What are the steady state errors of a Type-3 unity feedback system subjected to step input, ramp input and parabolic input?
- (d)Explain what do you mean by Root Contours.
- (e) The magnitude of frequency response of a second order system is 5 at 0 rad/sec and peaks to $\frac{10}{\sqrt{3}}$ at $5\sqrt{2}$ rad/sec. Determine the transfer function of this underdamped system.
- (f)Show that the bandwidth(ω_b)= $\omega_n \sqrt{[(1-2\xi^2)+\sqrt{4\xi^4-4\xi^2+2}]}$ where ξ is the damping ratio and ω_n is the natural frequency of the standard second order system.
- (g) Sketch the constant gain loci for the unity feedback system whose feed forward transfer function is $G(s) = \frac{K}{S(S+1)}$
- (h) Show that high loop gain in feedback control system results in good steady-state tracking accuracy
- (i) State the use of Nichol's Chart.
- (j) State the merits and demerits of PI Controller
- 2(a) Obtain the signal flow graph representation for a system represented by a block diagram as shown below and determine the overall gain $G(s) = \frac{C}{R}$; [5]



(b)Explain giving a schematic diagram how a synchro pair would be embodied in an AC position control system. [5]

3(a)In a negative feedback control system, calculate separately, the sensitivity of the system transfer function at $s = j\omega = j1.6$ rad/sec with respect to

(i) the forward path transfer function G(s) where G(s)= $\frac{60}{s(s+10)}$

(ii) feedback path transfer function
$$H(s)$$
 where $H(s)=0.8$ [5]

(b)Describe in detail along with a schematic diagram, a typical position control system employing an armature controlled DC Motor with a fixed field separately excited system. Derive the transfer function. [5]

4.(a) What is system type number? Explain the practical significance of this number. [2]

(b) In a unit feedback control system, the open loop transfer function is given by $G(s) = \frac{k}{s(cs+1)}$

By what factor should the amplifier gain k be multiplied so that the damping $ratio(\xi)$ is enhanced from 0.35 to 0.95. [8]

5(a)In a unit feedback control system, the open loop transfer function is given by

 $G(s) = \frac{109}{s^2(s+10)(s^2+s+10)}$; Find the static error coefficients (K_p , K_v , and Ka) and the steady state error of the system when subjected to an input signal given by $r(t) = 10 + 20t + 30t^2$. [5]

(b))In a unit feedback control system, the open loop transfer function is given by

 $G(s) = \frac{K}{s(s+2)(s^2+s+2)}$; Using Routh Hurwitz Criterion, determine the range of K for which the given system is stable. [5]

6. (a) The Open loop transfer function of a control system is given as $G(s)H(s) = \frac{K}{s(s^2+4s+5)}$;

Sketch the Root Locus. [6]

(b)Given the open loop frequency response $G(j\omega) = U + jV$;

7(a)Define minimum phase, non-minimum phase and All pass system.

[2]

[4]

(b)Draw the Bode Plot of the open loop transfer function of a feedback system given by

$$G(s)H(s) = \frac{10(s+3)}{s(s+2)(s^2+s+2)}; Also determine the system Stability.$$
[8]

8(a)A unity feedback system has open loop transfer function $G(s) = \frac{(s+2)}{(s+1)(s-1)}$;

Use Nyquist criterion to determine if the system is stable in the closed loop configuration.[7]

(b)Describe two tuning methods, one based on ultimate gain and the other based on process reaction curve. [3]

SET-III

Time:-3Hrs Full Marks:70

Answer Question no.1 and any five questions from the rest.

The figures in right hand margin indicate marks.

(Semi log graph papers are allowed)

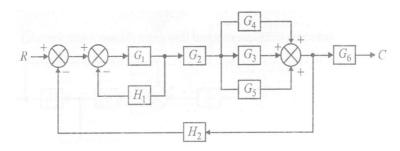
1. Answer all the following questions briefly (Compulsory)

[2x10]

- (a)Sketch the underdamped time response of a typical second order feedback control system subjected to a unit step input. State the time domain performance indices.
- (b) The transfer function of a control system is $T(s)=K/[S^2+4S+K]$; Find K if the system is critically damped.
- (c)Prove that a Type-1 system has no steady state error for step input while the steady state error for ramp input decreases for increase of Velocity Error Constant (K_v) .
- (d) Give the equation of intersect of asymptotes in root locus plot.
- (e)Explain what do you mean by Root Contours.
- (f)Show that the Phase Margin=tan $^{\text{-}1}\frac{2\xi}{\sqrt{4\xi^4+1}-2\xi^2}$ where ξ is the damping ratio of the standard

second order system.

- (g)List the advantages and disadvantages of carrying frequency analysis with Nyquist plot.
- (h) State the Zeigler-Nichols tuning Rules for PID Controller.
- (i) Give all the properties of a minimum phase transfer function.
- (j) Explain with sketch the use of drag cup rotor in servo application.
- 2(a)Obtain the signal flow graph representation for a system represented by a block diagram as shown below and determine the overall gain $G(s) = \frac{C}{R}$; [6]



- (b)Describe the construction and working of a two phase motor suitable for use in AC servo systems. [4]
- 3(a)Show that high loop gain in feedback control system results in
- (i)good steady state tracking accuracy (ii)low sensitivity to process parameter variations
- (iii)good disturbance signal rejection (iv)good relative stability

What are the factors limiting the gain?

[5]

- (b)Explain drawing a neat diagram, the principle of operation of a position servo using a synchro system as error transducer. [5]
- 4. The peak overshoot $(%M_p)$ in a unit feedback control system is specified to be within 20% to 40% range.
- (a)Sketch the area in the s-plane in which dominant roots of the systems characteristic equation must lie. This system has a settling time t_s =0.85 sec. [4]
- (b)Determine the smallest value of 3^{rd} root such that dominance of the complex roots corresponding to part (a) is preserved. Further, Determine the open loop transfer function of the system if $M_p=50\%$ [6]
- 5.(a)State the merits and demerits of using static error coefficients. The open loop transfer function in a unity feedback control system, is given by $G(s) = \frac{10(1+s)}{s^2(5s+6)}$; Find the steady state error of the system using generalized error constants when subjected to an input signal given by $r(t)=1+4t+3t^2$.

(b)In a unity feedback control system, the open loop transfer function is given by $G(s) = \frac{K}{s(s+2)(s^2+3)}$; Using Routh Hurwitz Criterion, determine the range of K for which the given system is stable.

[5]

6.(a) The Open loop transfer function of a control system is given as $G(s)H(s) = \frac{20(1+Ks)}{s(s+1)(4+s)}$

Sketch the Root Locus. Determine the value of K such that damping ratio(ξ) is 0.4. [8]

(b) State the use of Nichol's Chart.

[2]

7. Using Bode Plot, determine gain crossover frequency, phase crossover frequency, gain margin and phase margin in a unity feedback control system, where, the open loop transfer function is given by $G(s) = \frac{20(0.2s+1)e^{-0.1s}}{s(0.5s+1)}.$ [10]

8. A unity feedback system has open loop transfer function $G(s) = \frac{(10s+50)}{s^2(s+3)}$; Use Nyquist criterion to determine if the system is stable in the closed loop configuration. [10]

Set-IV

Sub: Control System Engineering (3:1:0)

Time Duration: Two Hours

Date 8.10.2013

Maximum 20 Marks

A. The figures in the right hand margin indicate marks Answer any four including Question No.1 B. The symbols carry usual meaning

1. Answer the following questions (Compulsory)

[5x1]

(a) If
$$\frac{Y(s)}{U(s)} = \frac{s+3}{s^2+3s+2}$$
 obtain the SFG representation of this transfer function.

- (b) Experimental measurements yield a plot of the magnitude of the frequency response function with a resonance peak 1.35 at a frequency of 10rad/sec.
 - (a) Estimate ξ and ω_n of the dominating system poles
 - (c)Draw the schematic diagram of a DC closed loop position control system consisting of
 - (I) a pair of Potentiometers (II)Amplifier (III)Armature controlled DC Servomotor
 - (IV)Gear Train as major component and explain the operation of this system
 - (d) .The open loop transfer function of a unity feedback control system is given by $G(s)=K/[(s+2)(s+4)(s^2+6s+25)]$; By applying Routh-Hurwitz criterion determine the range of K for which the closed loop system will be stable:
 - (e)Draw the polar plot for the transfer function of the system $G(s)H(s)=10/[s(s+1)^2]$.

2(a)Consider a -ve unity feedback system with following OLTF. Obtain peak overshoot, damped frequency of oscillation, settling time on 2% tolerance band and response of the system to unit step input.

$$G(s) = \frac{0.4s+1}{s(s+0.6)}$$

- (b) The OLTF of a system is G(s)H(s)=100/[s(s+100)]. (i) Obtain Static and Dynamic error Constants. (ii) If the input is $r(t)=A+Bt+Ct^2$, obtain the steady state error and the dynamic error. [3+2]
- 3. Sketch the complete Bode plot of the unity feedback system whose open loop frequency function

$$\frac{10}{s(0.1s+1)(0.05s+1)}$$
; Determine the GM, PM and open loop gain for a GM of 20db. [5]

- 4. Given the G(s)= $\frac{K}{s(s+1)}$, and H(s)=(s+4)⁻¹. Sketch the root locus of the system.
- (i)Determine the value of K for which the system is at the verge of instability
- (ii) For the damping ratio 0.34, determine the value of K and the GM. [5]
- 5.(a) Show that the bandwidth of a linear standard second order control system = ω_n $\sqrt{\left[\left(1-2\xi^2\right)+\sqrt{4\xi^4-4\xi^2+2~\right]}}$ where ξ is the damping ratio and ω_n is the natural frequency of system. What will be the resonant peak for the system whose transfer function is $5/(s^2+2s+5)$
- (b)Determine the critical value of K for stability of a unity feedback system with loop transfer function(S)=K/(S-1) using Nyquist stability criterion. [3+2]