[image: image77.png]

[image: image78.png]

COMPUTER PROGRAMMING IN C COURSE - MATERIAL
COURSE FILE FOR THE ACADEMIC YEAR 2017-18
COURSE: I YEAR B.TECH
SUBJECT: COMPUTER PROGRAMMING IN C
[image: image79.png]

COMPUTER PROGRAMMING
 COURSE – MATERIAL
Vision and Mission of the Institute:

VISION

To be recognized as a premier institution in offering value based and futuristic quality technical education

to meet the technological needs of the society

MISSION

· To impart value based quality technical education through innovative teaching and learning methods

· To continuously produce employable technical graduates with advanced technical skills to meet the current and future technological needs of the society

· To prepare the graduates for higher learning with emphasis on academic and industrial research

Vision , Mission &PEOs of the Department of CSE
VISION

· To produce globally competent and industry ready graduates in Computer Science & Engineering by imparting quality education with a know-how of cutting edge technology and holistic personality
MISSION

· To offer high quality education in Computer Science & Engineering in order to build core competence for the graduates by laying solid foundation in Applied Mathematics, and program framework with a focus on concept building

· The department promotes excellence in teaching, research, and collaborative activities to prepare graduates for professional career or higher studies

· Creating intellectual environment for developing logical skills and problem solving strategies, thus to develop, able and proficient computer engineer to compete in the current global scenario
Program Educational Objectives (PEOs)

· Excel in professional career or higher education by acquiring knowledge in mathematical,
computing and engineering principles

· To provide intellectual environment for analyzing and designing computing systems for technical needs

· Exhibit professionalism, multidisciplinary teamwork and adapt to current trends by engaging in lifelong learning
and practice their profession with legal, social and ethical responsibilities

Vision , Mission &PEOs of the Department of ECE
VISION

· To promote excellence in technical education and scientific research in

· electronics and communication engineering for the benefit of society

MISSION

· To impart excellent technical education with state of art facilities inculcating values and lifelong

· learning attitude

· To develop core competence in our students imbibing professional ethics and team spirit

· To encourage research benefiting society through higher learning

Program Educational Objectives (PEOs)

· 1.Excel in professional career & higher education in Electronics & Communication Engineering and allied fields through rigorous quality education

· 2.Exhibit professionalism, ethical attitude, communication skills, team work in their profession and adapt to current trends by engaging in lifelong learning

· 3. Solve real life problems relating to Electronics & Communications Engineering for the benefits of society

Vision , Mission &PEOs of the Department of MECH
VISION

To be a center of excellence in offering value based and futuristic quality technical

education in the field of mechanical engineering.

MISSION
1. Impart quality technical education imbibed with values by providing state of the art laboratories
and effective teaching and learning process

2. Produce industry ready mechanical engineering graduates with advanced technical

and lifelong learning skills

3. Prepare graduates for higher learning and research in mechanical engineering and its allied areas

Program Educational Objectives (PEOs)

1. The graduates exhibit strong knowledge in mathematics, sciences and engineering
for successful employment or higher education in mechanical engineering

2. The graduates design and implement complex modeling systems, conduct research and work
 with multi disciplinary teams

3. The graduates communicate effectively with lifelong learning attitude and function
as responsible members of global society

[image: image80.png]

COMPUTER PROGRAMMING COURSE - MATERIAL
Program Outcomes
1. Engineering knowledge: An ability to apply knowledge of computing, mathematics, science
 and engineering fundamentals appropriate to the discipline

2. Problem analysis: An ability to analyze a problem, and identify and formulate the
computing requirements appropriate to its solution

3. Design/development of solutions: An ability to design, implement, and evaluate a
computer-based system, process, component, or program to meet desired needs
 with appropriate consideration for public health and safety, cultural, societal
and environmental considerations

4. Conduct investigations of complex problems: An ability to design and conduct experiments,
as well as to analyze and interpret data

5. Modern tool usage: An ability to use current techniques, skills, and modern tools necessary
for computing practice

6. The engineer and society: An ability to analyze the local and global impact of
computing on individuals, organizations, and society

7. Environment and sustainability: Knowledge of contemporary issues

8. Ethics: An understanding of professional, ethical, legal, security and social issues and responsibilities

9. Individual and team work: An ability to function effectively individually and
on teams, including diverse and multidisciplinary, to accomplish a common goal

10. Communication: An ability to communicate effectively with a range of audiences

11. Project management and finance: An understanding of engineering and management principles
 and apply these to one’s own work, as a member and leader in a team, to manage projects

12. Life-long learning: Recognition of the need for and an ability to engage in continuing
professional development
Computer programming subject course out-comes
	CO1
	Demonstrate computer System and Software development process

	CO2
	Design algorithms and develop programs involving selection structures and looping structures.

	CO3
	Design and develop large programs using functions and arrays.

	CO4
	Implement memory management techniques and perform string processing

	CO5
	Organize heterogeneous data.

	CO6
	Organize files to manage large amount of data.

INTRODUCTION
Computer technology plays an increasing role in the information revolution. Today, the application of computers is all pervasive in everybody’s life. A sound knowledge of how computers process data and information has, therefore, become indispensable for anyone who seeks employment not only in the area of IT but also in any other field.
COMPUTER PROGRAMMING
Computer Programming is dedicated to writing, testing and maintaining programs that computers follow to perform their functions. To create programs that control the behaviour of a machine, we need programming languages. This book enables students to master the necessary skills for computer programming with C language shows them how to use these skills wisely with data structures and algorithms.
C PROGRAMMING LANGUAGE
C is a general-purpose structured programming language that is powerful, efficient and compact. C combines the features of high-level language with the elements of the assembler and is thus close to both man and machine. The growth of C during the last few years has been phenomenal. It has emerged as the language of choice for most applications due to speed, portability and compactness of code. It has now been implemented on virtually every sort of computer, from micro to mainframe.
HOW IS THE BOOK ORGANIZED
The book covers the basic anatomy of a computer system,input devices, processor,output devices and memory management and also discusses algorithms and flowcharts in Unit-I. Unit I also introduces programming in C language, which talks about the basic structure of C programs and their execution, how to declare constants, variables and data types, details the input and output operations, built-in operators and how to build expressions using them and also covers decision making and looping structures. Unit-II provides detailed exposition of functions and arrays. Pointers and the basic concepts of strings are covered in Unit-III. Unit-IV covers the concepts of Enumerated, structures and unions types. Unit-V covers the Concepts of files.
[image: image81.jpg]JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
I B.Tech. I Mid Examinations, November - 2011
COMPUTER PROGRAMMING AND DATA STRUCTURES
Objective Exam
Name: Hall Ticket No. A

Answer All Questions. All Questions Carry Equal Marks.Time: 20 Min. Marks: 10.

I Choose the correct alternative:

1. What will be sum of the binary numbers 1111 and 11001 []
(A) 111100 (B) 100010 (C) 11110 (D) 101000

2. Which one of the following is known as the language of the computer []
(A) Programming language (B) Machine language
(C) High level language (D) Assembly level language

3. Find the output []
Void main()

{char a[]= 12345\0 ;

int i=strlen(a);

printf{ here in 3 %d\n ,++i);}

(A) herein3 (B) herein36 (C) 6 D) 3

4. Which of the following is syntactically correct []
(A) for(); (B) for(); (C) for(.), (D) for(:);

5. Find out the output for the following []
#include<stdio.h>
main() {
int ¢c=--2;
printf{ ¢=%d ,c);}
(A) -2 B) O ©) 2 (D) None

6. Identify the result []
Void main()
{ int i=5;
Printf{ %d ,i+++++);}
A5 B)Y6 (© 10 (D) compiler error

7. which one of the following is not a translator program []
(A) Assembler (B) Interpreter (C) Linker (D) Compiler

8. ‘What will be the ASCII Octal value of A []
(A) 100 (B) 101 (€) 110 D) 111

9. a<<l is equal to [1
(A) multiplyingby2 (B) dividingby2 (C) added2 (D) None

COMPUTER PROGRAMMING COURSE - MATERIAL
	COMPUTER PROGRAMMING IN C
	
	

	B.Tech. I Year I Sem.
	L
	T/P/D C

	Course Code: CS104ES/CS204ES
	3
	0/0/0 3

UNIT - I

Introduction to Computers – Computer Systems, Computing Environments, Computer Languages,

Creating and running programs, Program Development, algorithms and flowcharts ,

 Number systems- Binary, Decimal, Hexadecimal and Conversions, storing integers and real numbers.

Introduction to C Language – Background, C Programs, Identifiers, Types, Variables, Constants,

Input / Output, Operators (Arithmetic, relational, logical, bitwise etc.), Expressions,

Precedence and Associativity, Expression Evaluation, Type conversions,

Statements- Selection Statements(making decisions) – if and switch statements,

 Repetition statements (loops)-while, for, do-while statements, Loop examples, other statements

 related to looping break, continue, goto, Simple C Program examples.

UNIT - II

Functions-Designing Structured Programs, Functions, user defined functions, inter function

communication, Standard functions, Scope, Storage classes-auto, register, static, extern, scope rules,

type qualifiers, recursion- recursive functions, Limitations of recursion, example C programs.

Arrays – Concepts, using arrays in C, inter function communication, array applications- linear search, binary search and bubble sort, two – dimensional arrays, multidimensional arrays, C program examples.
UNIT - III

Pointers – Introduction (Basic Concepts), Pointers for inter function communication,

pointers to pointers, compatibility, Pointer Applications-Arrays and Pointers, Pointer Arithmetic

 and arrays, Passing an array to a function, memory allocation functions, array of pointers,

programming applications, pointers to void, pointers to functions.

Strings – Concepts, C Strings, String Input / Output functions, arrays of strings,

string manipulation functions, string / data conversion, C program examples.

.
UNIT - IV

Enumerated, Structure ,and Union Types– The Type Definition (typedef), Enumerated types,
Structures –Declaration, initialization, accessing structures, operations on structures,
Complex structures-Nested structures, structures containing arrays, structures containing pointers,
arrays of structures, structures and functions, Passing structures through pointers,
self referential structures, unions, bit fields, C programming examples,
command–line arguments, Preprocessor commands.

UNIT – V

Input and Output – Concept of a file, streams, text files and binary files, Differences between
text and binary files, State of a file, Opening and Closing files, file input / output functions
 (standard library input / output functions for files), file status functions (error handling),
Positioning functions (fseek ,rewind and ftell), C program examples.
6

Text books:

1) Computer Science: A Structured Programming Approach Using C, B.A. Forouzan and R. F. Gilberg, Third Edition,
Cengage Learning.

2)
Programming in C. P. Dey and M Ghosh , Second Edition, Oxford University Press.

Reference books:

1)
The C Programming Language, B.W. Kernighan and Dennis M. Ritchie, Second Edition, Pearson education.

2)
Programming with C, B. Gottfried, 3rd edition, Schaum’s outlines, McGraw Hill Education

(India) Pvt Ltd.

3)
C From Theory to Practice, G S. Tselikis and N D. Tselikas, CRC Press.

4)
Basic computation and Programming with C, Subrata Saha and S. Mukherjee, Cambridge University Press.
LESSON PLAN

	
	S.No
	UNIT
	CLASS
	TOPIC
	TEXT BOOK/
	REMARKS
	

	
	
	
	
	
	REF. BOOK
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	1
	UNIT- I

Introduction to Computers and C languages
	L1
	Introduction to computers-

computer definition
	T1
	
	

	
	
	
	
	Computer and Computer System
	
	
	

	
	2
	
	 L2
	Computing Environments
	T1
	
	

	
	3
	
	L3
	Computer Languages
	T1
	
	

	
	4
	
	L4
	Creating and running programs
	T1
	
	

	
	5
	
	L5
	Creating and running programs
	T1
	
	

	
	6
	
	L6
	Program Development
	T1
	
	

	
	7
	
	L7
	Algorithm
	T1
	
	

	
	8
	
	L8
	Flowchart
	T1
	
	

	
	9
	
	L9
	Number system-Binary,Decimal,Hexadecimal
	T1
	
	

	
	10
	
	L10
	Number system- conversions,storing intgergers and real numbers
	T1
	
	

	
	11
	
	L11
	History of C, Features of C language
	T1
	
	

	
	12
	
	L12
	Identifiers ,keywords
	T1
	
	

	
	13
	
	L13
	Data types, Variables
	T1
	
	

	
	14
	
	L14
	Operators
	T1
	
	

	
	15
	
	L15
	Operators precedence & associativity
	T1
	
	

	
	16
	
	L16
	Expression Evaluation, Type conversions
	T1,R3,R4
	
	

	
	
	
	
	Control Statements- if, and switch
	
	
	

	
	17
	
	L17
	Control Statements- if, and switch
	T1,R3,R4
	
	

	
	18
	
	L18
	Repetitive statement-for, do-while statement
	T1,R3,R4
	
	

	
	19
	
	L19
	Repetitive statement-for, do-while
	T1,R3,R4
	
	

	
	
	
	
	
	
	
	

	
	
	Unit -II

Functions and Arrays
	
	Functions–Function definition,
	T1,R3,R4
	
	

	
	20
	
	L20
	declaration
	
	
	

	
	21
	
	
	User defined Function
	T1,R3,R4
	
	

	
	22
	
	L21
	Inter function communication
	T1,R3,R4
	
	

	
	23
	
	L22
	Standard functions
	T1,R3,R4
	
	

	
	24
	
	L23
	Storage classes
	T1,R3,R4
	
	

	
	25
	
	L24
	Type qualifiers
	T1,R3,R4
	
	

	
	26
	
	L25
	Recursion& limitations of recursion
	T1
	
	

	
	27
	
	L26

L27
	Example C programs
	T1,R3,R4
	
	

	
	
	
	
	
	
	
	

	
	28
	
	
	Arrays– Array definition,
	T1,R3,R4
	
	

	
	
	
	L28
	declaration
	
	
	

	
	29
	
	L29
	Inter function communication
	T1,R3,R4
	
	

	
	30
	
	L30
	Array applications-linear ,binary search
	
	
	

	
	31
	
	L31
	Array applications-bubble sort
	T1,R3,R4
	
	

	
	32
	
	L32
	Two-dimensional arrays
	T1,R3,R4
	
	

	
	33
	
	L33
	Three-dimensional arrays, multi-
	T1,R3,R4
	
	

	
	
	
	
	dimensional arrays
	
	
	

	
	37
	UNIT- III

Pointers and Strings
	
	Pointers- Introduction to Pointers
	T1,R3,R4
	
	

	
	38
	
	
	Pointer for inter function
	T1,R3,R4
	
	

	
	
	
	
	communication
	
	
	

	
	39
	
	
	Pointer to pointers
	T1,R3,R4
	
	

	
	40
	
	
	Pointer compatibility
	T1,R3,R4
	
	

	
	
	
	
	
	
	
	

	41
	
	
	Arrays and pointers
	T1,R3,R4
	

	42
	
	
	Pointer arithmetic and arrays
	T1,R3,R4
	

	43
	
	
	Passing arrays to function
	T1,R3,R4
	

	44
	
	
	Dynamic Memory Allocation
	T1,R3,R4
	

	
	
	
	
	
	

	45
	
	
	Array of pointers
	T1,R3,R4
	

	46
	
	
	Pointer to void, pointer to functions
	T1,R3,R4
	

	47
	
	
	Strings- Introduction to strings
	T1,R3,R4
	

	48
	
	
	String Input/output
	T1,R3,R4
	

	49
	
	
	Array of strings
	T1,R3,R4
	

	50
	
	
	String manipulation functions
	T1,R3,R4
	

	51
	
	
	String/data conversion functions
	T1,R3,R4
	

	52
	
	
	Example programs
	T1,R3,R4
	

	53
	UNIT- IV

Enumerated,

Structure, and Union

types
	
	Enumerated, Structure ,and
	T1,R3,R4
	

	
	
	
	Union Types– typedef keyword
	
	

	54
	
	
	Enumeration type
	T1,R3,R4
	

	55
	
	
	Introduction to structure
	T1,R3,R4
	

	56
	
	
	Declaration, definitions, accessing
	T1,R3,R4
	

	57
	
	
	Operations on structures
	T1,R3,R4
	

	58
	
	
	Complex structures
	T1,R3,R4
	

	59
	
	
	Structures and functions
	T1,R3,R4
	

	60
	
	
	Passing structures through pointers
	T1,R3,R4
	

	61
	
	
	Self referential structures
	T1,R3,R4
	

	62
	
	
	Unions
	T1,R3,R4
	

	63
	
	
	Bit-fields
	T1,R3,R4
	

	64
	
	
	Example programs
	T1,R3,R4
	

	65
	
	
	Command-line arguments
	T1,R3,R4
	

	66
	
	
	Example programs
	T1,R3,R4
	

	67
	UNIT- V

Input and output-concept of files
	
	Input/Output- concepts of a file and streams
	T1,R3,R4
	

	68
	
	
	Text and binary files
	T1,R3,R4
	

	69
	
	
	State of files
	T1,R3,R4
	

	70
	
	
	Opening and closing of files
	T1,R3,R4
	

	71
	
	
	File input and output functions
	T1,R3,R4
	

	72
	
	
	File status functions(error handling)
	T1,R3,R4
	

	73
	
	
	File positioning functions(fseek,rewind and ftell)
	T1,R3,R4
	

	74
	
	
	Example programs
	T1,R3,R4
	

[image: image82.png]Code No: 09A1EC01 R09

B. Tech I Year Examinations; May/June -20:12.!
COMPUTER PROGRAMMING AND DATA STRUCTURES
(Common to all Branches)
Time: 3 hours Max. Marks: 75
Answer any five questions
All guestions carry:equal marks

Explain and specify the interactions between various components that support the
basic functionality of a computer.

Draw the flow chart to check whether a given number is perfect or not.
Describe various categories of computing environments.

What is "tjpe conversion?”Explain briefly about implicit and expl
conversions.

An integer is divisible by 9 if the sum of its digit is also divisible by 9. Write a C
program that prompts the user to input an integer. The program should then output
the number and a message stating whether the number is divisible by 9. [8+9]

What is a storage class? Explain various :stora'ée classes in C with examples.
b) Explain the differences between call-by-value and call-by- reference with suitable
examples. [8+7]

Explain how strings are declared and initialized in C?
What afé the:arithmetic djerators that aré fierthitted on paiii ¢;;s'7
Write a “C’ program to reverse the string passed as an argument that cannot be
altered. [4+4+7]

5.a) What is a self referential structure? How it differs from nested structures. Explain

6.a) What are the ways to set the file pointer randomly in a file? Explain.
b) Write a ‘C’ program to copy the content of one file to another file. [8+7]

given intege: iff;an

array of o elemems

b) Ilustrate the results for each pass of selection sort, for the following array of
elements 2, 3, 78, 5, 46, 32, 56, 8, 100, 9. [8+71

an example routine.

kokkok ok

[image: image83.png]

UNIT-I

COMPUTER PROGRAMMING COURSE - MATERIAL
COURSE CONTENTS

 Page No.s
[image: image84.png]UNIT -

[image: image85.png]

HYPERLINK \l "_TOC_250004"
Introduction to Computers
-

 10-37
Introduction to C Language
-
 38-70

UNITII
Designing Structured Programmes
-
 72-90
Arrays
-
 91-106
UNIT
III
Pointers
-
 108-123
Strings
-
 123-136
UNIT - IV
Derived types
– Structures &Unions
-
 138-154

-

 UNIT
V
Input and Output – Files - 156-175
=====
Objective type questions
-
 178-180
Questions with answers
-
 181-237
Viva Questions
-
 238-241
JNTU Objective/Bit Papers
-
 242-260
JNTU External Question Paper
-
 261-407
[image: image86.png]

COMPUTER PROGRAMMING COURSE - MATERIAL
[image: image87.png]

[image: image88.png]

[image: image89.jpg]

COMPUTER PROGRAMMING COURSE - MATERIAL
COMPUTER :
[image: image90.png]UNIT-II

It is a high speed electronic device that accepts and stores input data and instructions, processes the data and produces the desired output.
Input
Output
(raw data / Instructions)
(Information i.e. processed data)
COMPUTER SYSTEMS
· [image: image91.png]

It is made up of 2 major components
· They are :
1) Hardware
2) Software
Computer Hardware :
· These are the physical components of a computer
· It consists of 5 Parts
1) Input Devices
4) Primary Storage
2) Output Devices
5) Secondary Storage
3) CPU
Block diagram of a Computer
[image: image92.png]UNIT-III

[image: image93.png]

COMPUTER PROGRAMMING COURSE - MATERIAL
Input Devices
· These are used to enter data and programs into the computer
· These are for man to machine communication
· egs: Keyboard, mouse, scanner, touch screen, audio input.
Output Devices
· These are used to get the desired output from the computer
· These are for machine to man communication
· egs: Printer, Monitor, Speakers
· If the output is shown on monitor then it is called “Soft copy”
· If the output is printed on a paper using printer then it is called “hard copy”
CPU (Central Processing Unit)
· It is responsible for processing the instructions
· It consists of 3 parts
1) ALU – Arithmetic & Logic Unit
2) CU- Control Unit
3) Memory
· ALU performs arithmetic operations like addition,subtraction,multiplication,division and logical operations like comparisons among data
· CU is responsible for movement of data inside the system
· Memory is used for storage of data and programs. It is divided into 2 parts.
1) Primary Memory/ Main Memory
2) Secondary Memory/ Auxilary Memory
1) Primary Memory
· It is also called main memory
· Data is stored temporarily i.e. data gets erased when computer is turned off
· Eg: RAM
2) Secondary Memory
· It is also called as auxilary memory
· Data is stored permanently so that user can reuse the data even after power loss.
· Eg: Hard disk, CD, DVD, Floppy etc.
12
COMPUTER SOFTWARE

COMPUTER PROGRAMMING COURSE - MATERIAL
· [image: image94.png]UNIT-IV

The software is used to make the hardware of the computer to function
· Software is collection of programs (or) instructions
· Computer software is divided into 2 categories
1) System Software
2) [image: image95.png]

Application Software
1. System Software
· They constitute set of programs that manage the hardware resources of a computer
· It is divided into 3 classes
[image: image96.png]UNIT-V

Operating System
· It acts as an interface between the user and the hardware
· It makes the system to operate in an efficient manner
· Egs: MS DOS, Windows, UNIX, LINUX, etc.
System Support
[image: image97.png]

COMPUTER PROGRAMMING COURSE - MATERIAL
· They provide some utilities and other operating services
· eg: Sort utilities, disk formatting utilities, Security monitors
System Development
· It includes
a) Language translators – Used for converting programs into machine language
b) Debuggers – for error free programs
c) CASE tools – Computer Assisted Software Engineering Tools
2. Application Software
· It contains programs for performing tasks
· [image: image98.png]

It is divided into 2 classes
General purpose software
· These are purchased from software developers
· They can be used for more than one application
· Eg: word processors, DBMS etc…
Application Specific Software
· It can be used only for intended purpose i.e. for which they were designed
· eg: Accounting system, hospital management system, banking system. Etc.
[image: image99.png]

[image: image100.png]

COMPUTER PROGRAMMING COURSE - MATERIAL
COMPUTER ENVIRONMENTS
· In early days, there was only one environment i.e. the mainframe computer. It occupies much space and consumed large amount of power.
· With the invention of transistor and IC (Integrated Circuits) technology, mini computers were introduced in which many components are fused together.
· After invention of microprocessor technology, the environment changed resulting in mini- computers and personal computers
· The computing environments are classified into 4 types. They are
1) Personal computing environment
2) Time sharing environment
3) Client – server environment
4) Distributed computing environment
1) Personal computing environment
· In a personal computer, all the basic elements of the CPU are combined into the microprocessor and all the hardware components are tied together.
· The whole computer can be used by the user to perform his task independently
[image: image101.png]

· Disadvantage

COMPUTER PROGRAMMING COURSE - MATERIAL
Fig : personal computing environment
[image: image102.png]

Much of the CPU time is wasted
2) Time- Sharing environment
· For effective usage of CPU time, many users are connected to one (or) more computers to form a time- sharing environment.
· There will be a central computer which performs the following:
· controls the shared resources
· manages shared data & printing
· does the computing
Advantage :
Computer is busy always reducing CPU idle time
Disadvantage
Response becomes slow as the number of users connected to the central computer increases
[image: image103.png]

Terminals
Fig : Time-sharing environment
3) Client – Server environment
· This environment splits the computing function between a central computer and user computer
· Users are given personal computer (PC’s) on workstations so that some of computation responsibility can be moved from central computer and assigned to the workstation
[image: image104.png]

COMPUTER PROGRAMMING COURSE - MATERIAL
· User’s workstations (or) micro computers are called as “Clients”
· The powerful central mainframe (or) micro computer is known as “Server”
Advantages
· Response time is faster
· Users are more productive
[image: image105.png]

4) Distributed computing environment
· It provides integration of computing functions between different servers and clients
· “Internet” provides connectivity to different servers throughout the world.
· It provides
-- reliable
-- scalable
-- highly available network
[image: image106.png]

COMPUTER PROGRAMMING COURSE - MATERIAL
[image: image107.png]

Fig:Distributed computing environment
COMPUTER LANGUAGES
· Computer programming languages are used to give instructions to the computer in a language which computer understands
· Computer languages are classified into 3 types
1) Machine languages
2) Symbolic languages
3) High level languages
1) Machine languages
· Computer is a machine and since its memory can store only 1’s and 0’s, instructions must be given to the computer in streams of 1’s and 0’s i.e. binary code.
· These are easily understandable by the machine
· Programs written in binary code can be directly fed to computer for execution and it is known as machine language.
Advantage :
· Execution is very fast since there is no need of conversion
Disadvantage :
· Writing and reading programs in machine language is very difficult
· Machine instructions are difficult to remember
2) Symbolic Languages

COMPUTER PROGRAMMING COURSE - MATERIAL
· [image: image108.png]

It is also called as assembly language
· An assembly program contains “Mnemonics”
· “Mnemonic” means information can be memorized easily and is generally in the form of abbreviations.
Advantage :
· Easy to read and write programs in assembly language when compared to machine language
· Mnemonics are easy to remember
Disadvantage :
· Assembly programs are machine dependent
· Execution is slow since it needs conversion into machine language
· “Assembler” is used to convert assembly language program into machine language.
[image: image109.png]

[image: image110.png]

[image: image111.png]

Assembly language program
Machine Language code
3) High level languages
· A set of languages which are very close to our native languages are called “ high-level languages”.
· High level languages have control structures, I/O facilities, hardware independence
· eg: FORTRAN, COBOL, PASCAL, C, C++ etc..
Advantage :
· Machine independence i.e. programs are “Portable” i.e. programs can be moved from one system to another
· Easy to learn and understand
· Takes less time to write programs
Disadvantage :
· High level language programs needs a translator for conversion into machine language
· [image: image112.png]

‘Compilers’ (or) ‘Interpreters’ are used for converting high level language program into machine language..
[image: image113.jpg]10. Explain selection sort and bubble sort with a suitable example.
OR

11. What are searching operations on linear lists? Explain the singly
implementation.

linked list

skeskoskskok koK KKK K

[image: image114.jpg]Code No: 111AF R13

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD
B.Tech I Year Examinations, June - 2014
COMPUTER PROGRAMMING
(Common to all Branches)
Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A.
Part B consists of 5 Units. Answer any one full question from each unit. Each
question carries 10 marks and may have a, b, ¢ as sub questions.

PART- A
l.a) Distinguish between variables and constants. [2m]
b) What is inter function communication? [3m]
c) Write brief notes on memory allocation functions. [2m]
d) Discuss about bit fields. [3m]
e) Describe the dequeue operations. [2m]
f) Discuss briefly about goto statement. [3m]
g) Write the array applications. [2m]
h) Describe arrays of strings. [3m]
i) Write brief notes on unions. [2m]
i) Explain binary search. [3m]
PART- B
2 State and explain various identifiers in C program. And also discuss about
operator precedence in expression evaluation with a suitable example.
OR
B Explain with a sample program about while, for, do-while and switch statements
in C programming.
4. What are type qualifiers? Write recursive and iterative approaches programs to
find factorial of a given number. ‘
OR
5 What are type qualifiers in a C program? And write a C program to find product
of two n X n matrices.
6. Explain pointer arithmetic. Discuss with a suitable example how to pass an array
to a function.
OR
T Discuss various applications of pointers. State and explain with a sample program
various string manipulation functions.
8. Explain about declaration, initialization and accessing of structures. And also
discuss about complex structures.
OR
9 What are file streams? Discuss about state of file, opening and closing file with a

sample C program.

High level language program
Machine Language code
· Compiler converts entire statements in the program at a time.
· Interpreter converts one statement at a time.
21
[image: image115.png]4.a)

b)

6.a)

b)

7.a)
What
b)

8.a)

b)

Consider the following C-program segment.
int x[4][4]={{1.2,3,5},{4,5,6,8},{7.8,9,10}};

int **a=x;

int **b=a++;

what are values of the following C-expressions? Justify your answer.
i) **a i)*(*(atl)) iii) *(*at1)+2)

WVYRRbES VKb FIDFL viyRRar2)+T

Write C-function void insert (char af], char c, int *n, int i) that inserts character c at
index i in the array by shifting all elements above that position by 1 and
incrementing n. [6+9]

Write C-structures for departmental store application. Each departmental store
contains departmental store Id (3 characters), store location (dynamically
allocated string), items (dynamically allocated structures) and number of items. A
store can offer 1 to 1000 items. Each Item contains Item code (4 characters), current
stock, unit of measure in the following set (Single, dozen, kilogram, liter, meter,
square meter) and price. Using this structure, Write C- function to count the
number of items whose price is above the given amount. [15]

Differentiate between fprintf and fwrite statements. When do you prefer to use
fwrite instead of fprintf ?

Given filename, index and value, Write C-program that reads element of binary files
of long integer array at the given index, add value to it and store back at that
location. [7+8]

Write algorithm/Program for binary search to find the given element within array. For
data binary search is not applicable?

Show the quick sort results for each exchange for the following initial array of elements
3554121823 154538 [7+8]

Using recursive function for factorial, explain the execution of the function call
factorial(5) using stack.

Write C-structure for implementing Stack using an array. Using this structure, write
functions for push and pop operations. [7+8]

-000-

COMPUTER PROGRAMMING COURSE - MATERIAL
CREATING AND RUNNING PROGRAMS
· Program consists of set of instructions written in a programming language
· The job of a programmer is to write and test the program.
· There are 4 steps for converting a ‘C’ program into machine language.
1) Writing and editing the program
2) Compiling the program
3) Linking the program
4) Executing the program
1) Writing and editing the program
· ‘Text editors’ are used to write programs.
· Users can enter, change and store character data using text editors
· Special text editor is often included with a compiler
· After writing the program, the file is saved to disk. It is known as ‘source file’
· This file is input to the compiler
[image: image116.png]Code.No: 09A1ECO1 RO9 SET-4

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
I B.TECH - REGULAR EXAMINATIONS, JUNE - 2010
C PROGRAMMING AND DATA STRUCTURES

(COMMON TO CE, EEE, ME, ECE, CSE, CHEM, EIE, BME, IT, MECT, E.COMP.E,

l.a)
b)

2.a)

b)

3.a)

b)

MMT, MEP, AE, ICE, BT, AME)
Time: 3hours Max.Marks:75
Answer any FIVE questions
All questions carry equal marks

List and explain the functions of various parts of computer hardware.
A university gives grades based on the percentage of marks obtained in the
examinations as follows:

Percentage of marks Grade

70 and above Distinction

60 and above but below 70 First

50 and above but below 60 Second

40 and above but below 50 Third

below 40 Fail

Write a flowchart that inputs the percentage marks and output the division. [6+9]

Write minimal C- expressions for the following:
i) 6a*+3a’-52%-6a+22

i) 1 ab+ 2 bc
3 5

ii) Equivalent to C-statement while (a > = b)a = a-b where a and b are unsigned
integers.

iv) True if x/y >3 without zero divide, false otherwise

V) If x<y then -1 else if x ==y then 0 else 1(use ternary operator)

vi) Fourth bit from the right if the number x is treated in binary representation.
What is the difference between the following C-words?

i) count and int il) 526 and “526”

Write C-program that reverses the decimal digits of integer value at input.

For example, for input 5379, the program need to output 9735. [6+2+7]

Consider the following recursive function

void toh(int n, char src, char dist, char inter)

{

if (n>0)

{

toh(n-1, src, inter, dist);

printf(“move %d from %s to %s\n”, n, src,dist);
toh(n-1,inter,dist,src);

}

}

What is the output printed by the above program for the function call toh
(4 A% B’ CY)?

Write C-function float max(float af], int n) that returns the maximum value of the first
n positions of array a. [8+7]

C file
[image: image117.png]4.a)

6.a)
b)

7.a)

b)

8.a)

b)

b)

Consider the following C- program segment.
char*months[12]={*JANUARY”,”FEBRAURY”,”MARCH”,”APRIL”,
"MAY”,”JUNE”,”JULY”,”AUGUST”,”SEPTEMBER”,”OCTOBER”,”"NOVEMB
ER”,”"]DECEMBER”};

char **a= months;

char **b = a++;

What are the values of the following expressions? Justify your answer.

) ¥ ii) *(*(a+5)+3)
i) *a+7) iv) *((a+9)H6)=="(*a+11)+7)
YV RED) i) R

Write C-function void exchange (int *x, int *y) that exchange the values pointed by x
and y. In addition the function requires counter that count the number of times the
function is invoked. [6+9]

Write C-structures for line diagram. The Line diagram has the following fields:
diagram Name (dynamically allocated string), no of lines, lines(dynamically

allocated structure). The line diagram can have 1 to 500 lines. Each line contains

two end points, line thickness in pixels and color in the following set (red, black,

blue, green, yellow, orange). Each point contains X-coordinate and Y-coordinate in
pixels. Using this structure, write a function int countlines (struct line_diagram *I,
int ¢) that returns the number of lines in the given color c. [15]

List and explain different format literals available in printf statement.
Write C-language program that reads a C-program file and outputs number of lines
in the program. [7+8]

Write an algorithm or C-function for selection sort for sorting an array of integer in
ascending order.
Demonstrate the selection sort results for each pass for the following initial array of
elements.

21635713914 182 [7+8]

Write an algorithm that convert the given infix expression in to post fix. = Demonstrate
your algorithm using stack for the expression a + b*c

Write C-structures for implementing queues using Linked Lists. Using these
structures, write C-function for dequeue operation. [7+8]

-000-

[image: image118.png]Code.No: 09A1ECO1 R0O9 SET-3

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
I B.TECH - REGULAR EXAMINATIONS, JUNE - 2010
C PROGRAMMING AND DATA STRUCTURES

(COMMON TO CE, EEE, ME, ECE, CSE, CHEM, EIE, BME, IT, MECT, E.COMP.E,

l.a)
b)

2.a)

b)

3.a)

b)

MMT, MEP, AE, ICE, BT, AME)
Time: 3hours Max.Marks:75
Answer any FIVE questions
All questions carry equal marks

What is an algorithm? List and explain the properties of algorithm.
A utility company charges its customers based on their monthly utilization in terms
of units as follows:

Description charge

First 100 units Rs.10 per unit

Next 200 units Rs. 9 per unit

Next 200 units Rs.8 per unit

Next units Rs.7 per unit

Write flowchart that reads monthly units of a customer and output the charge amount.

[7+8]

Write minimal C- expressions for the following:

i) 6b*+3b°-5b%+6b+15

R c a 4b

ii) Increment x and then add to z

iv) Maximum of the values of 3 variables a, b and ¢

v) True if the value of character variable c is in uppercase, otherwise false
vi) Rightmost octal digit in the value of integer variable x

What is the difference between the following C-words?

i)5and ‘5’ ii) if and ++

Write C-program for generation of multiplication table for the given integer input x.
For example, if input is 5, the program need to output

5X1=5
5X2=10
5X10=50 [6+2+7]

Consider the following recursive function

int bbb(int n,int r)

{

printf(“%d %d\n”,n,r);

if (r==0 || n==r)return 1;

else return bbb(n-1,r)+bbb(n-1,r-1);

}

What output is printed for the function call bbb (4,2)? What does the function do?
Write a C-program that reads the given n observations at input and computes

average of n observations and find the number of observations above average value.
The input is value of n followed by n observations. [8+7]

[image: image119.png]6.a)
b)

7.a)
b)

8.a)

b)

{

int i=20,j=30, *x, *y;

x=&i;

y=&j;

funtest(x,y);

printf(“%d %d %d %d\n”,i,j,*x,*y);

funtest(x,y);

printf(“%d %d %d %d\n”,i,j,*x,*y);

}

Trace the above program execution (changed variable values and bindings of each
statement during execution). What is the output of above program? [15]

Write C-structures for a country with the following fields: country Name(dynamically

allocated string), currency code(3 letter string), number of states and
states(dynamically allocated structures). A country can have 1 to 100 states. Each
state is associated with name (dynamically allocated string), area, and
population. The area of the country is the sum of the areas of all the states in the
country. Similarly the population of the country is population of all states put
together. Write function void countrystats(struct — country *c, int *a, int *b)that
computes the area and population of the country and places at locations pointed by
aandb. [15]

List and explain the streams functions for binary files along with their prototypes.
Write a C-function that takes a binary file of long integers and appends a new long
integer at the end that is sum of all integers in the original file. [7+8]

Write an algorithm or program for sorting integers using bubble sort.
Show the bubble sort results for each pass for the following initial array of

elements.
3518712523163 1 [7+8]

Write an algorithm for evaluating postfix expression. Demonstrate your algorithm
with stack contents for each operation using the post fix expression 2 3 5 + *

Write structures for Linked list implementation of Stack and a function for pop
operation. [8+7]

-000-

Programmer
Source file
2) Compiling the program
· “Compiler” is a software that translates the source file into machine language
· The ‘C’ compiler is actually 2 separate programs
a) Preprocessor
b) Translator
A) Preprocessor
· It reads the source code and prepares it for the translator
· It scans for special instructions known as ‘preprocessor’ commands which start with ‘ #’ symbol
· These commands tell the preprocessor to look for special code libraries and make substitutions
· The result of preprocessing is called ‘translation’ unit
22
[image: image120.png]Code.No: 09A1ECO1 RO9 SET-2

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
I B.TECH - REGULAR EXAMINATIONS, JUNE - 2010
C PROGRAMMING AND DATA STRUCTURES
(COMMON TO CE, EEE, ME, ECE, CSE, CHEM, EIE, BME, IT, MECT, E.COMP.E,
MMT, MEP, AE, ICE, BT, AME)
Time: 3hours Max.Marks:75
Answer any FIVE questions
All questions carry equal marks

l.a) List out the various steps in software development.
b) Given the 3 sides of triangle a, b and ¢ as input, Draw a flowchart to test whether it is
isosceles, equilateral or not. It should also validate whether the input forms a triangle
or not. (Ex. 10, 3, 3 is not a triangle) [6+9]

2.a) Write minimal C-expressions for the following:
i) 5a*+3a’-4a’+6at+12

i L-2_<

iii) If the given integer value of x is treated as binary, the fifth bit from
the right.
iv) Absolute value of variable x.
v) True if x is exactly divisible by 5 but not divisible by 3, otherwise false.
vi) Subtract x from y and then increment x.
b) What is the difference between the following C-words?
i) 253 and 0253
i) ‘r’ and ‘\r’
¢) Write C-program for determining whether the given integer at input is perfect number
or not. A number is said to be perfect number if the sum of factors is equal to number
itself. For example, the factors of 6 are 1, 2, 3 whose sum 1+2+3=6. [6+2+7]

3.a) Write recursive function int ged(int m, int n) that returns greatest common divisor of
m and n where m>n. Write an equivalent iterative version. Compare them. In order to
find ged, if m is exactly divisible by n, then n is the value of ged, otherwise it is ged of
the n and the remainder of the division. For example. ged(6,4)=gcd(4,2)=2

b) Write C-function int minpos(float x[], int n) that returns position of the first minimum
value among the first n elements of the given array x. [8+7]

4. Consider the following program:

void funtest(int *a, int *b)

{

static int i=10;

int j=5;

J=ite;

i=i+b;

*a=i;

*b=j;

}

int main()

COMPUTER PROGRAMMING COURSE - MATERIAL
[image: image121.png]6.a)
b)

7.a)

b)

8.a)

b)

}

b=b+ *a;

int main()

{

int a=10,b=5,¢=20,*x;

x=&a;

testfun(x,b);

printf(“%d %d %d %d\n”,a,b,c,*x);

testfun(x,c);

printf(“%d %d %d %d\n”,a,b,c,*x);

}
Trace the above program execution (changed variable values and bindings of each
statement during execution). What is the output of above program? [15]

Write C-structures for the College data. College contains the following fields:

College code (2characters), College Name (dynamically allocated string), year of
establishment, number of courses and courses(dynamically allocated structure). A
College can offer 1 to 50 courses. Each course is associated with course name
(String), duration, number of students. The number of students in the college is sum
of number of students in all the courses in the college. Write a function int
collegeeStrength (struct College *c) that returns the number of students in the

college pointed by c. [15]

List and explain Streams functions of text files along with their prototypes.
Write C-program for finding the number of words in the given text file. Assume that
the words are separated by one or more blanks. [7+8]

Write an algorithm or C-program for sorting integers in ascending order using

insertion sort.

Demonstrate the insertion sort results for each insertion for the following initial array of
elements.

25615128349182 [7+8]

What are the operations on Linear Lists? Differentiate between using Arrays and
Linked Lists for implementation of Linear Lists.

Write Structure for implementing Linked List of integers. Write C-function for
insertion operation in Linked List. [7+8]

-000-

[image: image122.png]Code.No: 09A1ECO1 R0O9 SET-1

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
I B.TECH - REGULAR EXAMINATIONS, JUNE - 2010
C PROGRAMMING AND DATA STRUCTURES

(COMMON TO CE, EEE, ME, ECE, CSE, CHEM, EIE, BME, IT, MECT, E.COMP.E,

1.a)

b)

2.a)

b)

3.a)

b)

4a)

b)

MMT, MEP, AE, ICE, BT, AME)
Time: 3hours Max.Marks:75
Answer any FIVE questions
All questions carry equal marks

Explain the functions of the following:

i) Preprocessor

ii) Compiler

i) Linker.

Draw a flowchart to find maximum and minimum of the given three input numbers.

[6+9]
Write minimal C-expressions for the following:
i) 3x* +5x° —4x* +7x+20
.. a b ¢
i) —————

iii) Digit at 100’s place of the given integer x. (Ex. Digit at 100’s place in 2578 is
5).

iv) If a> b then the value of expression is a-b, otherwise b-a

V) True if 5 <x <10, otherwise false

vi) Divide the integer variable x by 16 using bit-wise operators

What is the difference between the following c-words?

i) amount and “amount”

i) 200 and 200.0

A number is said to be prime, if it is not exactly divisible by any other numbers other
than 1 and the number it self. For example 7 and 11 are primes. Write C- language

program that reads a number from input and determine whether it is a prime or not.
[6+2+7]

Write a recursive function double power(double x, int n) that returns x™ Write an
equivalent iterative version. Compare them.

Using arrays and iteration, Write C-language program that outputs minimum
number of currency notes required for the given amount at input. For example, an
amount of Rs.4260 shall output 1000s — 4; 100s — 2; 50s -1; 10s-1. The currency
denominations are 1000,500,100,50,20,10,5,2 and 1. [8+7]

Consider the following C-program.
void testfun(int *a, int b)
{
int x=2;
static int y=5;
y=y+b;

[image: image123.jpg][

Code.No: 09A1ECO1 R0O9 ‘ SET-4

I - B.TECH EXAMINATIONS, DECEMBER - 2010
COMPUTER PROGRAMMING AND DATA STRUCTURES

(COMMON TO CE, EEE, ME, ECE, CSE, CHEM, EIE, BME, IT, MECT, E.COMP.E,

MMT, MEP, AE, ICE, BT, AME)

Time: 3hours Max.Marks:75

1a)

b)

2 a)
b)

3a)
b)

4a)

b)

5a)

b)

6a)
b)

7 a)
b)

8 a)

b)

Answer any FIVE questions
All questions carry equal marks

List the activities involved in each phase of waterfall system development life
cycle model?

What are the different types of errors one can encounter during the program
execution? [10+5]

What is an identifier? What are the naming rules for identifiers in C?

List different categories of C operators based on their functionality? Give
examples?

Explain different types of coding constants in a C? [3+8+4]

Explain different categories of functions in C with simple illustrative examples?
Write a C program using functions to calculate the factorial of a given number?
[10+5]

Demonstrate command-line arguments using a simple program? Explain?
Differentiate between a pointer and a variable? How a pointer is declared and
initialized? What do you mean by pointer to another pointer?

Write a C function to convert the string passed as an argument to its uppercase
equivalent? [6+4+5]

What is an enumerated type? How it can be declared? What are the different ways
one can initialize enumerations?

Differentiate between self referential and nested structures with suitable
examples? [7+8]

What is the purpose of the ferror() and feof() functions?
What are the possible ways to set the file pointer to the beginning of the file?
Write a C program to count the number of words in a given file? [4+4+7]

Write a C program for selection sort using functions?
An Array contains 3, 13, 7, 26, 44, 23, 98, and 57. Trace the steps using quick
sort? [9+6]

Trace the output string and the stack contents at every step in converting the
expression A * B/ (C — D)+ E * F - G into postfix expression?

Write a C Program to demonstrate the operations of a Stack using arrays? [6+9]

--000--

Source File
translation unit
B) Translator
· It does the actual work of converting the program into machine language
· It reads the translation unit and results in ‘object module’ i.e., code in machine language
· But it is not yet executable because it does not have the ‘C’ and other functions included.
[image: image124.jpg]Code.No: 09A1ECO1 R0O9 ‘ SET-3

1- B.TECH EXAMINATIONS, DECEMBER - 2010
COMPUTER PROGRAMMING AND DATA STRUCTURES
(COMMON TO CE, EEE, ME, ECE, CSE, CHEM, EIE, BME, IT, MECT, E.COMP.E,
MMT, MEP, AE, ICE, BT, AME)
Time: 3hours Max.Marks:75
Answer any FIVE questions
All questions carry equal marks
l1a) Differentiate between application software and system software?
b) Draw a flowchart for finding the sum of ‘n” numbers starting from 1?
c) Briefly discuss various computing environments with neat diagrams? [2+5+8

2a) What do you mean by operator precedence and associativity? How one can
override the precedence defined by C language? Give illustrative examples?
b) Explain the structure of a C program? [7+8

3a) Discuss with suitable examples the storage classes available in C?
b) Derive the expression for finding the address of any element of a 1-dimensional

array? [10+5
4a) Discuss briefly the following pointers.
L. Pointer pointing to a variable
1. Pointer pointing to a constant
III. Constant pointer pointing to a variable
IV. Constant pointer pointing to constant.
b) Write a C program to swap two integers using functions. [10+5]

5a) How many possible ways one can access the members of a structure using a
structure variable and a pointer to a structure variable? Illustrate with examples.

b) Differentiate between Arrays of structures and structures containing arrays with

suitable examples? [5+10

6a) Explain syntax with illustrative examples the functions support reading and
writing formatted data to and from files?
b) Write a C program to count characters and lines in a given file? [7+8

7a) Write a C program for bubble sort using functions?
b) An Array contains 3, 13, 7, 26, 44, 23, 98, and 57. Trace the steps using merge
sort? [9+6

8a) Write the steps with illustrative figures involved in the following operations of a
singly linked list without the head node?

L. Delete the first element
II. Delete the last element
III. Delete before a given element
IV. Delete after a given element.
b) What is a doubly linked list? What is the main advantage over singly linked
list? [12+3]

--000--

[image: image125.jpg]Code.No: 09A1ECO1 R0O9 SET-2 \

I - B.TECH EXAMINATIONS, DECEMBER - 2010
COMPUTER PROGRAMMING AND DATA STRUCTURES
(COMMON TO CE, EEE, ME, ECE, CSE, CHEM, EIE, BME, IT, MECT, E.COMP.E,
MMT, MEP, AE, ICE, BT, AME)

Time: 3hours Max.Marks:75
Answer any FIVE questions
All questions carry equal marks

la) Define Algorithm? What are the characteristics that any algorithm should satisfy?
b) Draw a flowchart for finding maximum of given three integers?
¢) Differentiate between compiler and interpreter? [7+4+4]

2 a) Differentiate between if-else-if ladder and switch statement?
b) What is the implicit type conversion hierarchy that is applied while evaluating
expressions?
¢) Listand give examples for different bitwise operators available in ‘C’? [4+4+7]

3a) Whatis the need for user-defined functions?
b) What are the different ways in which 1-dimensional arrays can be declared and

initialized?
c¢) Write a C program using recursion for finding GCD (Greatest Common Divisor)
of two given numbers? [4+3+8]

4a) Explain the syntax with suitable examples the dynamic memory allocation
functions available in C?
b) Write a C function to find the length of a string passed as an argument? [12+3]

5a) Differentiate between structures and unions?
b) What do you mean by bit fields? How bit fields are different from structures?
c) Suppose or oppose the statement “In C a structure contains a union inside it”.
Give suitable example? [5+5+5]

6a) Distinguish between getc() and getchar() functions?
b) Explain the general format of fseek() function with illustrative examples?
¢) Write a C program to append the contents of a file to another file? [4+5+6]

7a) Write a C program for insertion sort using functions?
b) An Array contains 47, 3, 66, 32, 56, and 92. After two passes of a sorting
algorithm, the array has been rearranged to: 3, 47, 66, 32, 56, and 92. Which
sorting algorithm among selection, insertion, and bubble sort is used? Defend

your answer? [9+6]
8 Write the steps with illustrative figures involved in the following operations of a

singly linked list without the head node?

I Insert into an empty List

1L Insert at the first position

II1. Insert at the last position

IV. Insert before a given element

V. Insert after a given element. [15]

--000--

[image: image126.jpg]Code.No: 09A1ECO1 R0O9 SET-1

I - BTECH EXAMINATIONS, DECEMBER - 2010
COMPUTER PROGRAMMING AND DATA STRUCTURES
(COMMON TO CE, EEE, ME, ECE, CSE, CHEM, EIE, BME, IT, MECT, E.COMP.E,
MMT, MEP, AE, ICE, BT, AME)

Time: 3hours Max.Marks:75
Answer any FIVE questions
All questions carry equal marks

l.a) Explain and specify the interactions between various components that support the
basic functionality of a computer?
b) Discuss in detail the program execution steps? [7+8]

2.a) List the basic data types, their sizes and range of values supported by ‘C’

language?

b) Describe the purpose of commonly used conversion characters in scanf()
function?

c) Explain the only ternary operator available in ‘C’ with illustrative example?

[6+6+3]

3.a) Differentiate between call by value and call by reference with suitable examples?
b) Write a ‘C’ program using functions to check whether the given 3x3 matrix is
symmetric or not? [8+7]

4.a) Explain how strings are declared and initialized in ‘C’?
b) What are the arithmetic operators that are permitted on pointers?

c¢) Write a ‘C’ function to reverse the string passed as an argument that cannot be
altered? [4+6+5]

5.a) Briefly explain the type definition statement in ‘C’? Give any two examples
where usage of type definition statement increases the readability of programs?

b) Write a ‘C’ program to read, write, add, subtract, multiply and divide two

complex numbers? (Represent complex number using structures). [4+11]

6.a) What is a file? How to open and close different types of files in ‘C*?
b) Explain the possible modes of opening files? In all these modes what happens
when the file doesn’t exist and the file already exists?
¢) Write a ‘C’ program to copy the contents of a file to another file? [4+5+6]

7.a) Write a C program for binary search using functions without using recursion?
b) An array contains 8, 13, 17, 26, 44, 56, 88, and 97. Trace the steps using binary
search Algorithm.
L. To find value 88
1I. To find the value 20
111 To find the value 8. [9+6]

8.a) What is the main disadvantage of Queue over Circular Queue?
b) Write a ‘C’ Program to demonstrate the operations of a Circular queue using
arrays? [3+12]
--000--

[image: image127.png]7.a)

b)

8.a)
b)

Write an algorithm or program for binary search to find a given integer in an array

of integers.

[llustrate the results of bubble sort for each pass, for the following initial array of

elements: 44 36 57 19 25 89 28

Explain the properties of the abstract data structure stack.
Explain the algorithm to convert infix expression to postfix expression.

* %k ok ok %k

[8+7]

[7+8]

Translation unit
Object Module
.obj file
3) Linking programs
· ‘Linker’ assembles input /output functions, mathematical library functions and some of the functions that are part of source program into final executable program
· [image: image128.png]Code.No: 09A1ECO1 RO9 SET-4

I B.TECH - EXAMINATIONS, JUNE - 2011
COMPUTER PROGRAMMING AND DATA STRUCTURES

(COMMON TO CE, EEE, ME, ECE, CSE, CHEM, EIE, BME, AE, AME, BT, ECOMPE,

ETM, IT, ICE, MCT, MMT, MIE, MIM)

Time: 3hours Max.Marks:75

1.a)

b)
2.a)

b)

3.a)

b)

4.a)

b)

5.a)

b)

Answer any FIVE questions
All questions carry equal marks

Write an algorithm to read ten positive integers and find out how many are perfect
squares (such as 49, 81). You may assume that the input values read are in the
range 1 to 10000.

List the various steps in software development. [8+7]

Write minimal C expressions for the following:

i) x* -3x%+3x -1

ii) Digit at the 10's place of the given positive integer x (for example, digit at
the 10’s place in 3458 is 5)

iii) True if the given positive integer x is a multiple of both 17 and 11, false

otherwise.

iv) Remainder when unsigned integer variable x is divided by 8, using bitwise
operators.

V) True if 25 > a > 10, false otherwise

vi) Second bit from the right if the number x is treated in binary
representation.

Write a complete C Program to read ten integers and find:

(i) The number of even integers and their sum, and

(ii) The number of odd integers and their sum. [6+9]

Write a complete C program to perform these functions:

(i) to return the factorial of the given number using recursion, and

(i) to return the factorial of the given number using iteration.

Write a complete C program to do the following: Read data to fill a two
dimensional array int table [4] [4]. Then print the sum of each column and sum
of each row. [8+7]

Write the C function int minpos (float x[], int n) that returns the position of the
first minimum value among the first » elements of the given array x.
Explain the use of functions strepy () and stremp () [9+6]

Explain how complex numbers can be represented using structures. Write two C
functions: one to return the sum of two complex numbers passed as parameters,
and another to return the product of two complex numbers passed as parameters.
Explain the following with examples:

i) Enumerated types ii) Unions. [9+6]

Write a complete C program to reverse the first » characters in a file. The file
name and the value # are specified on the command line. Incorporate validation of
arguments: that is, the program should check that the number of arguments passed
and also the value of » are meaningful. [15]

It is called as executable file that it is ready for execution
.exe file
[image: image129.png]7.a)

b)

Write an algorithm or C program for sorting integers in ascending order using

selection sort.
Illustrate the results for each pass of selection sort, for the following the initial

array of elements: 23 78 45 8 32 56 [9+6]

Explain what is a queue and operations performed on queue. Provide C code for
the same. [15]

* %k ok ok ok

[image: image130.png]Code.No: 09A1ECO1 R0O9 SET-3

I B.TECH - EXAMINATIONS, JUNE - 2011
COMPUTER PROGRAMMING AND DATA STRUCTURES
(COMMON TO CE, EEE, ME, ECE, CSE, CHEM, EIE, BME, AE, AME, BT, ECOMPE,
ETM, IT, ICE, MCT, MMT, MIE, MIM)
Time: 3hours Max.Marks:75
Answer any FIVE questions
All questions carry equal marks

l.a) Write an algorithm to find out all the factors of a given positive integer.
b) What is a flow chart? Draw a flow chart to read ten integers and print the sum of
squares of all ten values. [8+7]

2.a) Write minimal C expressions for the following:
i) X -4+ 7x-12
i) Absolute value of (a-b)
iii) Remainder when unsigned integer variable x is divided by 8, using bitwise

operators.

iv) True if the given positive integer x is even and is also a multiple of 7, false
otherwise.

V) Minimum of the values of three variables a, b and c.

vi) True if the given character variable ¢ represents a numeral (that is '0'...'9"),
false otherwise.

b) Write a complete C program that reads a value in the range 1 to 12 and print the
name of that month and the next month: Print error for any other input value. (For
example, print “May followed by June” if the input is 5. Note that December is
followed by January). [6+9]

3.a) What is recursion? Write a complete C program that reads a positive integer N,
compute the first N Fibonacci numbers using recursion and print the results.
[llustrate how the results are computed when the value of N is 4?

b) Explain how matrices can be represented using two dimensional arrays. Explain
with code how Transpose of a matrix can be done. [8+7]

4.a) Write a complete C program that displays the position or index in the string S
where the string T begins. The program displays -1 if S does not contain T. For
example, if S is “information processing” and T is “process”, the value displayed
is 12. The strings S and T are supplied by the user.

b) Explain the following:
i) Array of pointers

ii) Malloc function. [9+6]
5. Explain the following with examples:

a) Selfreferential structures

b) Typedef

¢) Enumerated types. [5+5+5]

6.a) Explain what is a text file and what is a binary file.
b) Write a complete C program for finding the number of words in the given text
file. Assume that the words are separated by blanks or tabs. [6+9]

[image: image131.png]Code.No: 09A1ECO1 R0O9 SET-2

I B.TECH - EXAMINATIONS, JUNE - 2011
COMPUTER PROGRAMMING AND DATA STRUCTURES

(COMMON TO CE, EEE, ME, ECE, CSE, CHEM, EIE, BME, AE, AME, BT, ECOMPE,

ETM, IT, ICE, MCT, MMT, MIE, MIM)

Time: 3hours Max.Marks:75

l.a)
b)

2.a)

b)
3.2)
b)
4.2)

b)

6.a)

b)

7.a)

b)

Answer any FIVE questions
All questions carry equal marks

What is an algorithm? Write an algorithm to find out if a given number is a prime.
Draw a flow chart to read ten positive integers and print how many are multiples

of 7. [8+7]
Write minimal C ex?ressions for the following:

i) P-4+ 7x

ii) Maximum of the values of three variables a, b and ¢

ii) Digit at the 100's place of the given positive integer x (for example, digit
at the 100's place in 3458 is 4)
iv) True if the given positive integer X is even, false otherwise

v) Increment x, and then add to z

vi) True if the given positive integer x is a multiple of 3 and 7, false
otherwise.

What are the bitwise operators in C? Explain the same with examples. 6+9

What is recursion? Write a complete C program that reads a positive integer,
calculate the factorial of the number using recursion, and print the result.
Explain the facilities provided by the C preprocessor with examples. 8+7

Write a complete C program that reads a string and prints if it is a palindrome or
not.
Explain about memory allocation functions in C. 8+7

Explain the following with examples:
a) Pointers to structures b) Self referential structures ¢) Unions. [5+5+5

Explain the different modes that can be provided as a parameter to the fopen()
function.

Write a complete C program for the following: There are two input files named
“first.dat” and “second.dat”. The files are to be merged. That is, copy the content
of “first.dat” and then the content of “second.dat” to a new file named
“result.dat”. [6+9]

Write a C program or algorithm to sort an array of integers in ascending order
using insertion sort.

Illustrate the results of insertion sort for each pass, for the following initial array
of elements: 68 57 99 33 122 200 [9+6]

What is a singly linked list? Explain with C code how the insertion, deletion and
searching operations are performed on a singly linked list. [15]

A %k ok ok ok

Object file
executable file
4) Executing Programs
· ‘Loader’ is the software that gets the program that is ready for execution into the memory
· When everything is loaded, the program takes control and the ‘Runner’ begins its execution.
· [image: image132.png]Code.No: 09A1ECO1 RO9 SET-1

I B.TECH - EXAMINATIONS, JUNE - 2011
COMPUTER PROGRAMMING AND DATA STRUCTURES

(COMMON TO CE, EEE, ME, ECE, CSE, CHEM, EIE, BME, AE, AME, BT, ECOMPE,

ETM, IT, ICE, MCT, MMT, MIE, MIM)

Time: 3hours Max.Marks:75

l.a)

b)

2.a)

b)

3.a)
b)

4.a)

b)

6.a)

b)

7.a)
b)

8.a)
b)

Answer any FIVE questions
All questions carry equal marks

What is an algorithm? Write an algorithm to read five integers and find out if the
values are in ascending order.

Draw a flow chart to read ten integer values and print the sum of squares of the
values. [8+7]

Write mlmmal C expresswns for the following:

i) 2x*+3x -4x+ 7x -10

ii) Digit at the 10's place of the given positive integer x (for example, digit at the
10's place in 3458 is 5)

iii) True if the given positive integer x is odd, false otherwise

iv) Add x toy, and then decrement x

v) Trueif 5 <=a <= 10, false otherwise

vi) Fourth bit from the right if the number x is treated in binary representation.

Write a complete C Program to print all the prime numbers between 1 and n.

Where ‘n’ is the value supplied by the user. [6+9]

Explain the following storage classes with examples: auto, register, extern.
Explain how two dimensional arrays can be used to represent matrices. Write C
code to perform matrix addition and matrix multiplication. [6+9]

Consider the function maxpos that has two parameters: int maxpos(int arr[], int n)

n is greater than or equal to 1, but less than or equal to the size of the array arr.

Code the function maxpos to return the position of the first maximum value

among the first n elements of the array arr.

What are command line arguments? Illustrate their use with a simple C program.
[9+6]

Explain the following with examples:

a) Nested structures b) Array of structures ¢) Unions. [5+5+5]

List and explain the Streams functions for text files along with their prototypes.

Write a complete C program to copy data from one file to another file. The name

of the source file and the name of the destination file are supplied by the user.
[6+9]

Explain bubble sort with the algorithm or a C program.

[llustrate the results of bubble sort for each pass, for the following initial array of

elements: 68 67 99 33 122 200 [9+6]

Explain what is stack and the operations performed on stack.
Explain how a stack be implemented using arrays. [7+8]

ok ok sk ok

[image: image133.png]Code No: 09A1ECO01 RO0O9

B. Tech I Year Examinations, December-January, 2011-2012

COMPUTER PROGRAMMING AND DATA STRUCTURES

SET-4

(COMMON TO CE, EEE, ME, ECE, CSE, CHEM, EIE, BME, IT, MCT, ETM, MMT, ECOMPE,

AE, ICE, BT, AME, MIE, MIM)

Time: 3 hours Max. Marks: 75

Answer any five questions
All questions carry equal marks

1.a) Define the flow chart? Draw a flow chart for finding roots of a quadratic equation with all

cases?
b) What are various conditional and relational operators in ‘C’, explain them with an
example. 15
2.a) Explain the control statements in ‘C’ language with an example?
b) Explain various looping statements in ‘C’ language with example? 15
3.a) Explain briefly auto and extern storage classes with examples?
b) Write short notes on scope of variables? 15
4.a) Whatis an array? What are different types of array? Explain with examples?
b) Write a ‘C” program using pointer to perform string comparison? 15
5. What is a structure? Give its advantage? Give an example of creating and accessing
members of a structure? 15
6. Elaborate file handling functions in ‘C” with the help of sample code? 15
7. Explain the Quick sort algorithm with the help of an example? 15
8. Write a ‘C’ program to implement Queue operations (Insert and Delete)? 15

sfoskok sk sk

In the process of execution, the program reads the data from the user, processes the data and prepares the output
[image: image134.png]Code No: 09A1ECO01 RO9 SET-3

B. Tech I Year Examinations, December-January, 2011-2012
COMPUTER PROGRAMMING AND DATA STRUCTURES
(COMMON TO CE, EEE, ME, ECE, CSE, CHEM, EIE, BME, IT, MCT, ETM, MMT, ECOMPE,
AE, ICE, BT, AME, MIE, MIM)
Time: 3 hours Max. Marks: 75
Answer any five questions
All questions carry equal marks

1.a) Define Algorithm and Flow Chart?
b) A utility company charges its customers based on their monthly utilization in terms of
units as follows:
Description charge:
First 100 units Rs.10 per unit
Next 200 units Rs. 9 per unit
Next 200 units Rs.8 per unit
Next units Rs.7 per unit
Write an Algorithm and flowchart that reads monthly units of a customer and output the
charge amount. 15

2.a) What are various conditional and bitwise operations in ‘C’, explain them with an

example?
b) Explain various looping statements in ‘C’ language with example? 15
3. What are various arithmetic and assignment operators in ‘C’, explain them with an
example. 15

4.a) What is an array? What are different types of array? Explain with examples?
b) What is a pointer? Define pointer-pointer concept with the help of an example? [15

5. Write a program using structures to display following information for each student name,
Roll-number, mark1, mark2, mark3, total, average? 15

6. Describe various types of files with an example for each? 15

7. Explain the Merge sort algorithm with the help of an example? 15

8. Write a ‘C’ program to implement stack operations (Push and Pop)? 15

seokosk sk

COMPUTER PROGRAMMING COURSE - MATERIAL
PROGRAM DEVELOPMENT
· Programming is a problem solving task / activity
· Programmers use the software development method for solving problems
· It consists of the following 6 phases
1) Requirements
2) Analysis
3) Design
4) Coding
5) Testing
6) Maintenance
1) Requirements
· Information about the problem must be stated clearly and unambiguously
· Main objective of this phase is to eliminate unimportant aspects and identify the root problem
2) Analysis
· It involves identifying the problem inputs, outputs, that the program must produce
· It also determines the required format in which results should be displayed
3) Design
· It involves designing algorithms, flowcharts (or) GUI’s (Graphical User Interfaces)
· Designing the ‘algorithm’ is to develop a list of steps called algorithm to solve the problem and then verify that the algorithm solves the problem intended.
· “Top – down design” is followed i.e. list the major steps (or) sub problems that need to be solved
· “Flow charts” are used to get the pictorial representation of the algorithm.
· Algorithm for a programming problem consists of at least the following sub problems
1. Get the data
2. Perform the computations
3. Display the results
4) Coding / Implementation
· This step involves writing algorithm as a program by selecting any one of the high – level languages that is suitable for the problem.
· Each step of the algorithm is converted into one (or) more statements in a programming language.
5) Testing
· Checking / verifying whether the completed program works as desired is called “ Testing”
· Running the program several times using different sets of data verifies whether a program works correctly for every situation provided in the algorithm.
24
COMPUTER PROGRAMMING COURSE - MATERIAL
· After testing, the program must be free from the following errors.
a) Syntax errors
b) Logical errors
c) Run-time errors
6) Maintenance
· It involves modifying a program to remove previously undetected errors and to keep it up-to- date as government regulations (or) company polices change.
· [image: image135.png]Code No: 09A1ECO1 RO9 SET-2

B. Tech I Year Examinations, December-January, 2011-2012
COMPUTER PROGRAMMING AND DATA STRUCTURES
(COMMON TO CE, EEE, ME, ECE, CSE, CHEM, EIE, BME, IT, MCT, ETM, MMT, ECOMPE,
AE, ICE, BT, AME, MIE, MIM)
Time: 3 hours Max. Marks: 75
Answer any five questions
All questions carry equal marks

1.a) What is meant by compilation ? Explain in detail?

b) What are the C keywords? Elaborate them? 15
2.a) What are unary operators and their uses? Describe logical operators with their return
values?
b) Write a C program to shift inputted data by 2 bits left? 15

3.a) Compare different ways of passing parameters with an example.
b) What are Storage classes? Explain different types of Storage Classes? Compare them?

15
4.a) Discuss the different arithmetic operations with pointers? Explain the comparison of two
pointers?
b) Write a C program to display all the elements of an array using a pointer? 15
5. Write C-structures for the College data. College contains the following fields:

College code (2characters), College Name, year of establishment, number of courses and
courses. A College can offer 1 to 50 courses. Each course is associated with course name
(String), duration, number of students. The number of students in the college is sum of
number of students in all the courses in the college. Write a function

int collegeStrength(struct College *c)
that returns the number of students in the college pointed by c. 15

6.a) What are the different Input/output operations on Files ?
b) How the data is searched in sequential files? Mention the different techniques used with

an example. 15

7.a) Write a program to explain selection sort . Which type of technique does it belong?

b) Write a C program that implements a binary search? 15
8. Write a program to evaluate the following expression A /B * (C + D) / A to prefix using
stack. 15

skosfesk sk sk

Many organizations maintains a program for some period of time i.e. 5 years
[image: image136.png]Code No: 09A1ECO1 RO9 SET-1

B. Tech I Year Examinations, December-January, 2011-2012
COMPUTER PROGRAMMING AND DATA STRUCTURES

(COMMON TO CE, EEE, ME, ECE, CSE, CHEM, EIE, BME, IT, MCT, ETM, MMT, ECOMPE,

AE, ICE, BT, AME, MIE, MIM)

Time: 3 hours Max. Marks:

Answer any five questions
All questions carry equal marks

Explain different categories of an algorithm with an example?
What are the differences between signed and unsigned data types, list out them?

Explain the types of operators available in C?

75

15

Write a C program with Exclusive OR operation between the two integers and display the

result?

What are the formatted and unformatted functions? What are the escape sequences?

15

9

Define Recursion? Write a C-Program to find the factorial of a number using Recursion?

Describe the features of pointers? Explain an array of pointer with an example?
Write a C program to accept string using character pointer and display it?

Write C-structures for departmental store application. Each departmental store ¢

15

15

ontains

departmental store Id (3 characters), store location (string), items (structures) and
number of items. A store can offer 1 to 1000 items. Each Item contains Item code (4
characters), current stock, unit of measure in the following set (Single, dozen, kilogram,
liter, meter, square meter) and price. Using this structure, Write C- function to count the

number of items whose price is above the given amount.
Write C-language program that reads a C-program file and outputs number of line
program.

List and explain the streams functions for binary files along with their prototypes.

Write an algorithm or program for sorting integers using bubble sort.

Show the bubble sort results for each pass for the following initial array of elements.

35187 125231631

Write an algorithm for evaluating postfix expression. Demonstrate your algorith
stack contents for each operation using the post fix expression 2 3 5 + *

15

s in the

15

15

m with

Explain about i) Stack ii) queue.

sokok ok

15

 SHAPE * MERGEFORMAT

 SHAPE * MERGEFORMAT

 SHAPE * MERGEFORMAT

· [image: image137.jpg][1

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Fill in the blanks

C has no direct support for data files.

External sorting methods are applied on large sets of data which reside on

checks for a file error.

Stack is very similar to a list except that a stack is more

A

nodes are added to the rear end of the queue.

search is also called as half-interval search.

Two stacks are used to implement a

Many complex applications can be easily carried out with

A

sort is a sort algorithm that returns the same results each time.

sorting technique is also called as exchange sort.

devices.

[image: image138.jpg]JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
I B.Tech. III Mid-Term Examinations, April/May — 2012
COMPUTER PROGRAMMING AND DATA STRUCTURES
Objective Exam
Name: Hall Ticket No. A

Answer All Questions. All Questions Carry Equal Marks.Time: 20 Min. Marks: 10.

I Choose the correct alternative:

1. Find out the Internal Sorting methods
(A) bubble sort (B) insertion sort (C) selection sort (D)All

2. The algorithms having complexity of O(n), O(nz) are known as
(A) sophisticated algorithms (B) simple algorithms (C) deterministic algorithms (D) All

3. Which one of the following operation returns a pointer to a temporary file
(A) tmpfile() (B) fprint() (C) vprint() (D) freturn()

4. fscanf() reads byte input from stdin,a file stream or a buffer
(A)direct (B) unformatted (C) formatted (D) None

5. rewind() is which type of operation in files
(A) file I/O (B) formatted I/O (C) file status (D) standard I/O

6. Which one of the following is the retum type of ftell()
(A) Int (B) void (C) long (D) None

7. Which one of the following Returns the number of elements on the stack]
(A) get-size():Float (B) get-size():Integer (C) top():item-type (D) All

8. What is the disadvantage of linked list]
(A) slow search (B) fixed size (C) slow insertion (D)All

9. What is the Best case performance of the Quick sort]
(A)O(nlogn) B) O(nz) (©) O(n) (D)None

10. Best case performance of Binary search is]

(A) O (B) O(1) (C) Ofnlogn) (D) None

[image: image139.jpg]10.

II

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Consider the following and find the output
Main()

{ int a=0;int b=30;char x=1;

If (a,b,x)

Printf(Hello);

}

(A) compiler error (B) abxHello (C) Hello (D) None

Fill in the blanks

The process of repeating a group of statements in an algorithm is known as

Extend the term CPU

Monitor, keyboard, mouse and printers are devices

C was developed by

is used to compile your ¢ program
Short Integer size is bytes
The while loop repeats a statement until the test at the top proves

The statement transfers control to a statement within its body

The is a unconditional branching statement used to transfer control of the program from

one statement to another

ANSI stands for

This is called ‘waterfall’ model
· It is necessary to go back to the previous phase to rework it
EXAMPLE FOR PROGRAM DEVELOPMENT
1) Problem requirement
· Finding the roots of a quadratic equation, ax2+bx+c
· There will be 2 roots for such quadratic equation
2) Analysis
Input
:
a,b,c values Output:
r1, r2 values
[image: image140.jpg]II

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Fill in the Blanks

If all the data that is to be sorted can be accommodated at a time in memory is called sorting.

A list allows traversal of the list in forward direction, but not in backward
direction.

A Doubly Linked List is a data structure having an ordered list of nodes, in which each node consists
of pointers.

A file must first be properly before it can be accessed for reading or writing.
A linked list does not require any extra space therefore it does not extra memory.
Complexity of Quick Sort in the Best case is

Complexity is defined to be the time the computer takes to run a program.

A Circular Doubly Linked List (CDL)is a with first node linked to last node and
vice-versa.
Once the files are , they stay open until you close them or end the program.

complexity is defined to be the amount of memory the computer needs to run a
program.

Procedure :

r1 
2a
[image: image141.jpg]JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
I B.Tech. III Mid Examinations, May — 2011
COMPUTER PROGRAMMING AND DATA STRUCTURES
Objective Exam
Name: Hall Ticket No. A

Answer All Questions. All Questions Carry Equal Marks. Time: 20 Min. Marks:10.
I Choose the correct alternative:

1. The I/0 library functions are listed the header file [
(A)<stdio.h> (B) <conio.h> (C) <ctype.h> (D) None

2. Postfix notation is sometimes called as [
(A)Polish notation (B)reverse polish notation (C) Both A&B (D)None

3. Postfix expression for (1+2)*7 [
(A)12*7+ (B)127+* (C)12+7* (D)None

4. Standard error stream is called [
(A)error (B)stderr (C)stdio (D)None

5. If the file was not able to be opened, then the value returned by
the fopen routine is [
(A)Null (B) non-empty (C) empty (D)None

6. Divide and conquer mechanism is used in [
(A)Selection sort (B)Quick sort (C) Bubble sort (D)Merge sort

7. Before searching, the list of items should be sorted in ascending order

can be done in [
(A)Binary searching (B) Linear searching (C) Both A&B (D)None

8. Time Complexity of Bubble sort is [
(A)O(nlogn)(B)O(1)(C)O(n?)(D)None

9. Select the smallest and Exchange mechanism is used in [
(A) Insertion sort (B) Bubble sort (C) Quick sort (D) selection sort

10. O(N) is of which time complexity [
(A)Quadratic (B)Linear (C)Cubic (D)Logic

[image: image142.jpg]10.

II

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Which of the following is an equivalent postfix form of the infix expression (Based on C language
Precedence and Associativity Rules) : A+B*C D/E []
a) AB+C*D-E/ b) ABC*+DE/- c¢) ABC*+D-E/ d) AB+CD-*E/

Finding the previous element of a given element in the list is easy in which of the following
implementations of the List []
a) Doubly Linked List b) Circular Linked List ¢) Singly Linked List

d) All the above three Lists

Fill in the blanks
In a Queue, deletion of an element takes place at the end called as

searching technique requires the elements to be in sorted order

Collection of elements and their relationships are called as

In a Singly Linked List, each node must contain data and to the next node

If the last node of the singly linked list points to the first node of the same list, then the list is called
as

Time Complexity (efficiency) of the linear search is

Time Complexity of the Selection Sort is

function checks for end of file

rewind() function sets the file position pointer to

files contain data stored in the internal format of the computer

r2 
2a
3) Design
Algorithm
1. start
2. Read a,b,c values
3. Compute d = b2  4ac
4. if d > 0 then
a) r1 = b+ sqrt (d)/(2*a) b) r2 = b sqrt(d)/ (2*a)

COMPUTER PROGRAMMING COURSE - MATERIAL
[image: image143.jpg]JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
I B.Tech. III Mid Examinations, May - 2010
COMPUTER PROGRAMMING AND DATA STRUCTURES
Objective Exam
Name: Hall Ticket No. N

Answer All Questions. All Questions Carry Equal Marks. Time: 20 Min. Marks: 10.

I Choose the correct alternative:

1. C Supports [1
a) Only Text Streams b) Only Binary Streams
¢) Both Text and Binary Streams d) No Streams

2. Opening a file that exists in the system with write mode []

a) Deletes the existing file and creates an empty file for writing

b) Erases the old content and allows for writing new content

c) Opens the file and appends the new content to the existing content
d) Results an error message File Already Exists

3. Which of the following is not a Standard Stream
a) stdin b) stdout c¢) stderr d) stdfile

4. Which of the following uses the divide-and-conquer design strategy
a) Binary Search b) Linear Search c¢) Insertion Sort d) Selection Sort

5. Which of the following an external sorting technique
a) Quick Sort b) Merge Sort c¢) Selection Sort d) Insertion Sort

6. Which of the following is the best sorting technique to sort large data sets
a) Insertion Sort b) Selection Sort c¢) Bubble Sort d) Quick Sort

7. Which of the following allows insertion and deletion of elements at any place in the list?
a) Stack b) Queue c) Linked List d) Double Ended Queue (DeQueue)

8. Which of the following is not an application of Stacks?
a) Checking the Balancing of parenthesis in an expression
b) Converting an expression from infix to postfix
¢) Evaluating the Postfix Expression
d) Keeping track of the jobs submitted to a printer

5. otherwise if d = 0 then
a) compute r1 = -b/2a
r2=-b/2a
b) print r1,r2 values
6. otherwise if d < 0 then print roots are imaginary
7. Stop
Flowchart

COMPUTER PROGRAMMING COURSE - MATERIAL
 SHAPE * MERGEFORMAT

 SHAPE * MERGEFORMAT

[image: image144.jpg]II

11,

12:

13.

14.

15;

16.

17.

18.

19:

20.

Fill in the blanks
is the standard library function is used to reverse the given string
The parameters in a function definition are called as parameters
input/output function is used for reading a string having multiple words
The pointer stores of a variable

If one or more members are pointer to the same structure, the structure is known as
Structure

The array elements always stored in memory locations
The function is used to allocate block of memory
is collection o f dissimilar data items

is programming technique that allows the programmer to express operations in terms
of Themselves

is a collection is related information that is permanently stored on the disk.

True

False

 SHAPE * MERGEFORMAT

[image: image145.jpg]JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
I B.Tech. II Mid Examinations, March - 2010
COMPUTER PROGRAMMING AND DATA STRUCTURES
Objective Exam
Name: Hall Ticket No. A

Answer All Questions. All Questions Carry Equal Marks. Time: 20 Min. Marks: 10.

I Choose the correct alternative:

1: If you don’t initialize a static array, what would be the elements set to? []
a)0 b) an known value c¢) 1 d) the character constant \0”

2 The amount of storage required for holding elements of the array depends on [1
a) size b) data type ¢) data type & size d) Runtime requirement

3. How many values a function can return at a time [1
a)2 b) any number of values c)only 1 d) no values 0

4. In which parameter passing mechanism, actual argument values are unchanged? []
a) By value b) by value reference ¢) by name d) by reference

5 The statement : printf (“%d”, size of(**")); prints [1
a) zero b) 1 ¢) garbage d) an error message

6. One structure cannot be a member of [1
a) some other structure b) an array ¢) a union d) the same structure

T The type of any pointer is : []
a) integer data type b) character data type
¢) unsigned integer data type d) none of these

8. Which of the following is wrong with respect to functions []

a) it facilitates the top-down modular programming
b) function will provide reusability of the code

¢) afunction will always return some value
d)reduce the length of the program

9. Structure is a data type whose members are []
a) all different data types b) all same data types
¢) may be different or same d) no element is defined

10. s[2][1] is same as []

a) *((s+2)+1) b) *((s+2)*1) €) *(ks+2)+1) d) (%(s+2)+1)

False

Is
True

d==0?
Print r1, r2 values

Print roots are imaginary
[image: image146.jpg]II.

11

12,

13

14.

15.

16.

17

18.

19.

20.

Fill in the blanks:
is the largest value that an unsigned short int type varible can store

The hardware along with the read-only software that resides on this hardware is combinely called
as

logical operator is true only when both operands are true
The order of evaluation can be changed by using _____ in an expression
A for loop with no test condition is called as loop
Execution of a C program begins at
loop in C is both counter controlled and pretest loop
In menu driven programs loop statement is used
In flowcharts, decisions are represented by using symbol

acts as an interface between the computer hardware and user of the computer

[image: image147.jpg]JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
I B.Tech. I Mid Examinations, November - 2009
COMPUTER PROGRAMMING & DATA STRUCTURES
Objective Exam
Name: Hall Ticket No. A

Answer All Questions. All Questions Carry Equal Marks. Time: 20 Min. Marks: 10.

I Choose the correct alternative:

1. ‘Which of the following is not an input device [1
a) plotter b) scanner c¢) keyboard d) mouse

2% ‘Which of the following is the correct order of operators for the evaluation for the expression
z=X+y*2/4 %21 [1
a) ¥/ %+-= b) -%?*+=)/ *%-+= d) */%-+=

3. How many times the body of the following loop executed? x=5; y=50; while(y! =0) {y/=x;}[]
a) 4 b) 1 c) 4 d) 2

4. The paralellogram is used to represent ___ type of statements in flow charts [1
a) Input/Output b) Functions ¢) Decision d) Processing

5: Which of the following statement is syntactically correct [1

a) printf(*“%d”, &a); b) scanf(“%d”, a); c) scanf(“%d”, #a); d) scanf(“%d”, &a);

6. ‘Which of the following is the correct syntax of for loop [1
a) for(i=o, i<10, i++) b) for(i=0; i++; i<=10)
¢) for(i=0; i<10; i++) d) for(i=0, i++, i<=10)

7. ‘Which of the following is not a translator program [1
a) linker b) assembler ¢) interpreter d) compiler

8. Which of the following loop executes the body of the loop at least once []
a) while b) for ¢) do..while d) all of the above

9. ‘Which of the following is used inside a loop to terminate the current iteration and start with the
next generation [1
a) break b) continue ¢) goto d) return

10. Object Code produced by which of the following phase [1

a) preprocessing b) linking ¢) compilation d) editing

[image: image148.png]

Stop
4. Implementation
include<stdio.h>
include<conio.h>
include<math.h> main ()
{

C-code
[image: image149.png]

float a,b,c,r1,r2,d; clrscr ();
printf (“enter a,b,c values”);
scanf (“ %f %f %f”, &a, &b, &c); d= b*b – 4*a*c;
if (d>0)
{

COMPUTER PROGRAMMING COURSE - MATERIAL
r1 = -b+sqrt (d) / (2*a); r2 = -b-sqrt (d) / (2*a);
printf (“Roots are real and are %f %f”, r1, r2);
}
else if (d= =0)
{
}
else
getch ();
}
5) Testing

r1 = -b/(2*a);
r2 = -b/(2*a);
printf (“Roots are equal and are %f %f”, r1, r2);
printf(“Roots are imaginary”);
[image: image150.png]

Case 1: Enter a,b,c values : 1 4 3
r1 = -1
r2 = -3
Case 2: Enter a,b,c values : 1 2 1
r1 = -1
r2 = -1
Case 3: Enter a,b,c values : 1 1 4
Roots are imaginary
ALGORITHM:
· It is a step – by – step procedure for solving a problem
· If algorithm is written in English like sentences then it is called as ‘PSEUDO CODE’
Properties of an Algorithm
An algorithm must posses the following 5 properties. They are
1. Input
2. Output
3. Finiteness
4. Definiteness
5. Effectiveness

COMPUTER PROGRAMMING COURSE - MATERIAL
1. [image: image151.png]

Input : An algorithm must have zero (or) more number of inputs
2. Output: Algorithm must produce one (or) more number of outputs
3. Finiteness : An algorithm must terminate in countable number of steps
4. Definiteness: Each step of the algorithm must be stated clearly
5. Effectiveness: Each step of the algorithm must be easily convertible into program statements
Example
Algorithm for finding the average of 3 numbers
1. start
2. Read 3 numbers a,b,c
3. Compute sum = a+b+c
4. compute avg = sum/3
5. Print avg value
6. Stop
FLOW CHART
Diagramatic representation of an algorithm is called flow chart
Advantages of flow chart
· It is very easy to understand because the reader follows the process quickly from the flowchart instead of going through the text.
· It is the best way of representing the sequence of steps in an algorithm
· It gives a clear idea about the problem
· Various symbols are used for representing different operations
· Arrows are used for connecting the symbols and show the flow of execution
Symbols used in flowchart:

COMPUTER PROGRAMMING COURSE - MATERIAL
[image: image152.png]

[image: image153.jpg]Programmer

(oo

e
it man (vid)

()
Compiler I> & 8
m %%

(RS
(BB
101110110100 Executable

<

Source

Opject

[image: image154.jpg]Clients
(orowsers)

[image: image155.jpg]

[image: image156.jpg]Hard Drive
(Intomal)

	Name
	Symbol
	Purpose

	Terminal
	 SHAPE * MERGEFORMAT

oval
	Start /stop/begin/end

	Input / output
	 SHAPE * MERGEFORMAT

Parallelogram
	Input/output of data

	Process
	 SHAPE * MERGEFORMAT

Rectangle
	Any processing to be performed can be represented

	Decision box
	 SHAPE * MERGEFORMAT

Diamond
	Decision operations that determine which of the alternative paths to be followed

	Connector
	Circle
	Used to connect different parts of flowchart

	Flow
	 SHAPE * MERGEFORMAT

Arrows
	Joins 2 symbols and also represents flow of execution

	Pre defined process
	Double sided rectangle
	Modules (or)subroutines specified else where

	Page connector
	Pentagon
	Used to connect flowchart in 2 different pages

	For loop symbol
	 SHAPE * MERGEFORMAT

Hexagon
	Shows initialization, condition and incrementation of loop variable.

	Document
	 SHAPE * MERGEFORMAT

Printout
	Shows the data that is ready for printout

Example

COMPUTER PROGRAMMING COURSE - MATERIAL
[image: image157.jpg]‘GROUP OF INSTITUTIONS
EXPLORE TO INVENT

Flowchart for finding the average of 3 numbers

NUMBER SYSTEM:

Frequently used number systems are.

	S.No.
	Number System & Description

	1
	Decimal Number System

Base is 10;Digits used :0 to 9

	2
	Binary Number System
Base is :2; Digits used: 0, 1

	3
	Octal Number System
Base is 8; Digits used: 0 to 7

	4
	Hexa Decimal Number System
Base 16. Digits used: 0 to 9, Letters used: A- F

Decimal Number System:

The number system that we use in our day-to-day life is the decimal number system. Decimal number system
 has base 10 as it uses 10 digits from 0 to 9. In decimal number system, the successive positions to the left
 of the decimal point represent units, tens, hundreds, thousands and so on.

Each position represents a specific power of the base (10). For example, the decimal number 1234 consists of
 the digit 4 in the units position, 3 in the tens position, 2 in the hundreds position, and 1 in the thousands position,
 and its value can be written as

(1x1000)+ (2x100)+ (3x10)+ (4xl)

=(1x103)+ (2x102)+ (3x101)+ (4xl00)

=1000 + 200 + 30 + 4
=1234

Binary Number System

Characteristics:

· Uses two digits, 0 and 1.

· Also called base 2 number system.

· Each position in a binary number represents a 0 power of the base (2). Example, 20.
· Last position in a binary number represents a x power of the base (2). Example, 2x where x represents the last
· position - 1.

EXAMPLE

Binary Number: 10101

Calculating Decimal Equivalent:

	Step
	Binary Number
	Decimal Number

	Step 1
	101012
	((1 x 24) + (0 x 23) + (1 x 22) + (0 x 21) + (1 x 20))10

	Step 2
	101012
	(16 + 0 + 4 + 0 + 1)10

	Step 3
	101012
	2110

Note: 101012 is normally written as 10101.

Octal Number System

Characteristics

· Uses eight digits: 0, 1, 2, 3, 4, 5, 6, 7.

· Also called base 8 number system.

· Each position in a octal number represents a 0 power of the base (8). Example, 80.

· Last position in a octal number represents a x power of the base (8). Example, 8x where x represents
· the last position - 1.

EXAMPLE

Octal Number: 125708
Calculating Decimal Equivalent:

	Step
	Octal Number
	Decimal Number

	Step 1
	125708
	((1 x 84) + (2 x 83) + (5 x 82) + (7 x 81) + (0 x 80))10

	Step 2
	125708
	(4096 + 1024 + 320 + 56 + 0)10

	Step 3
	125708
	549610

Note: 125708 is normally written as 12570.

Hexadecimal Number System

Characteristics

· Uses 10 digits and 6 letters: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

· Letters represent numbers starting from 10. A = 10. B = 11, C = 12, D = 13, E = 14, F = 15.

· Also called base 16 number system.

· Each position in a hexadecimal number represents a 0 power of the base (16). Example, 160.

· Last position in a hexadecimal number represents a x power of the base (16). Example, 16xwhere x represents the last position - 1.

EXAMPLE

Hexadecimal Number: 19FDE16
Calculating Decimal Equivalent:

	Step
	Hexadecimal number
	Decimal Number

	Step 1
	19FDE16
	((1 x 164) + (9 x 163) + (F x 162) + (D x 161) + (E x 160))10

	Step 2
	19FDE16
	((1 x 164) + (9 x 163) + (15 x 162) + (13 x 161) + (14 x 160))10

	Step 3
	19FDE16
	(65536+ 36864 + 3840 + 208 + 14)10

	Step 4
	19FDE16
	10646210

Note: 19FDE16 is normally written as 19FDE.

Conversions:

There are many methods or techniques, which can be used to convert numbers from one base to another.
 We'll demonstrate here the following:
· Binary to decimal
· Binary to Hexadecimal
· Hexadecimal to decimal

· Hexadecimal to binary
· Decimal to binary

· Decimal to hexadecimal
Binary to Decimal conversion:

Binary Number: 101012
Calculating Decimal Equivalent:

	Step
	Binary Number
	Decimal Number

	Step 1
	101012
	((1 x 24) + (0 x 23) + (1 x 22) + (0 x 21) + (1 x 20))10

	Step 2
	101012
	(16 + 0 + 4 + 0 + 1)10

	Step 3
	101012
	2110

Note: 101012 is normally written as 10101.

Binary to Hexadecimal conversion:

Binary to Hexadecimal

Steps
Step 1 - Divide the binary digits into groups of four (starting from the right). Zeros are added as
needed to complete a four bit group
Step 2 - Convert each group of four binary digits to one hexadecimal symbol.

EXAMPLE

Binary Number: 101012
Calculating hexadecimal Equivalent:

	Step
	Binary Number
	Hexadecimal Number

	Step 1
	101012
	0001 0101

	Step 2
	101012
	110 510

	Step 3
	101012
	1516

Binary Number: 101012 = Hexadecimal Number: 1516
Hexadecimal to Decimal conversion
Hexadecimal Number: 19FDE16
Calculating Decimal Equivalent:

	Step
	Hexadecimal number
	Decimal Number

	Step 1
	19FDE16
	((1 x 164) + (9 x 163) + (F x 162) + (D x 161) + (E x 160))10

	Step 2
	19FDE16
	((1 x 164) + (9 x 163) + (15 x 162) + (13 x 161) + (14 x 160))10

	Step 3
	19FDE16
	(65536+ 36864 + 3840 + 208 + 14)10

	Step 4
	19FDE16
	10646210

Note: 19FDE16 is normally written as 19FDE.

Hexadecimal to Binary Conversion:

Step 1 - Convert each hexadecimal digit to a 4-digit binary number (the hexadecimal digits may be treated
as decimal for this conversion).

Step 2 - Combine all the resulting binary groups (of 4 digits each) into a single binary number.

EXAMPLE 1:

Hexadecimal Number: 9F2
Calculating Binary Equivalent:
Convert 9F2(16)to its binary equivalent
9 F 2

1001 1111 0010

9F2(16)= 100111110010(2)
Example2: Convert BA6 (16)to binary equivalent
B

A

6

1011

1010

0110
BA6 (16)= (1011 1010 0110)2
Example 3: convert 15(16) to binary equivalent

1 5

0001

0101

15(16)=00010101(2)=10101(2)
Hexadecimal Number: 1516 = Binary Number: 101012
Decimal to Other Base System

Steps

Step 1 - Divide the decimal number to be converted by the value of the new base.

Step 2 - Get the remainder from Step 1 as the rightmost digit (least significant digit) of new base number.

Step 3 - Divide the quotient of the previous divide by the new base.

step 4 - Record the remainder from Step 3 as the next digit (to the left) of the new base number.

Repeat Steps 3 and 4, getting remainders from right to left, until the quotient becomes zero in Step 3.

The last remainder thus obtained will be the most significant digit (MSD) of the new base number.

EXAMPLE: converting decimal to binary

Decimal Number: 2910
Calculating Binary Equivalent:

	Step
	Operation
	Quotient
	Remainder
	

	Step 1
	29 / 2
	14
	1
	

	Step 2
	14 / 2
	7
	0
	

	Step 3
	7 / 2
	3
	1
	

	Step 4
	3 / 2
	1
	1
	

	Step 5
	1 / 2
	0
	1
	

As mentioned in Steps 2 and 4, the remainders have to be arranged in the reverse order so that the
 first remainder becomes the least significant digit (LSD) and the last remainder becomes the most significant
digit (MSD).

Decimal Number: 2910 = Binary Number: 111012.
EXAMPLE: converting decimal to hexadecminal
Here is an example of using repeated division to convert 1792 decimal to hexadecimal:
	Step
	Operation
	Quotient
	Remainder
	Hexadecimal value

	Step 1
	1792/16
	112
	0
	0

	Step 2
	112/16
	7
	0
	0

	Step 3
	7/16
	0
	7
	7

(1792)10=(700)16
The only addition to the algorithm when converting from decimal to hexadecimal is that a table must be
 used to obtain the hexadecimal digit if the remainder is greater than decimal 9.

Decimal:
0
1
2
3
4
5
6
7

Hexadecimal:
0
1
2
3
4
5
6
7

Decimal:
8
9
10
11
12
13
14
15

Hexadecimal:
8
9
A
B
C
D
E
F

For example, 423 decimal converted to hex is:
	Step
	Operation
	Quotient
	Remainder
	hexadecimal

	Step 1
	423/16
	26
	7
	7

	Step 2
	26/16
	1
	10
	A

	Step 3
	1/16
	0
	1
	1

(423)10=(1A7)16
 Decimal fraction conversion to anther base

step1:Multiply decimal number by the base (2, 8,...)

step2:The integer is the highest order digit.

step3:Repeat first two steps until fraction becomes zero

Example: Convert (0.625)10to binary number
	Multiply by 2
	Integer
	Fraction
	coefficient
	 direction

	0.625*2
	1
	0.25
	1
	

	0.25*2
	0
	0.50
	0
	

	0.50*2
	1
	0
	1
	

(0.625)10=(0.101)2

Example: Convert (0.985)10to hexadecimal number
	Multiply by 2
	Integer
	Fraction
	coefficient
	hexadecimal
	 direction

	0.985*16
	15
	.76
	15
	F
	

	0.76*16
	12
	.16
	15
	F
	

	.16*16
	2
	.56
	2
	2
	

	.56*16
	8
	.96
	8
	8
	

	.96*16
	15
	.36
	15
	F
	

	.36*16
	5
	.76
	5
	5
	

(0.985)10= (.FF28F5)16
Example: Convert (29.625)10 to its equivalent binary number

Step1: Convert integer part i.e. 29 to binary

	Step
	Operation
	Quotient
	Remainder
	direction

	Step 1
	29 / 2
	14
	1
	

	Step 2
	14 / 2
	7
	0
	

	Step 3
	7 / 2
	3
	1
	

	Step 4
	3 / 2
	1
	1
	

	Step 5
	1 / 2
	0
	1
	

So 29 is representated as 11101

Step2: convert real part i.e 0.625 to binary

	Multiply by 2
	Integer
	Fraction
	coefficient
	 direction

	0.625*2
	1
	0.25
	1
	

	0.25*2
	0
	0.50
	0
	

	0.50*2
	1
	0
	1
	

 So 0.625 is represented as 0.101

Final result is (29.625)10=(1101.101)2
Example, (423.985)10 to hexadecimal:

step1: convert integer part i.e423 to hexadecimal
	Step
	Operation
	Quotient
	Remainder
	hexadecimal
	direction

	Step 1
	423/16
	26
	7
	7
	

	Step 2
	26/16
	1
	10
	A
	

	Step 3
	1/16
	0
	1
	1
	

 So 423 is represented as 1A7

Step 2: convert real part 0.985 to hexadecimal

	Multiply by 2
	Integer
	Fraction
	coefficient
	hexadecimal
	 direction

	0.985*16
	15
	.76
	15
	F
	

	0.76*16
	12
	.16
	15
	F
	

	.16*16
	2
	.56
	2
	2
	

	.56*16
	8
	.96
	8
	8
	

	.96*16
	15
	.36
	15
	F
	

	.36*16
	5
	.76
	5
	5
	

So 0.985 is represented as .FF28F5

(426.985)10=(1A7.FF28F5)16
COMPUTER PROGRAMMING COURSE - MATERIAL
INTRODUCTION TO ‘C’ LANGUAGE
· ‘C’ is a high –level programming language developed in 1972 by Dennis Ritchie at AT & T Bell Laboratories
· It was primarily developed for system programming i.e. for designing operating systems, compilers etc
Importance of ’C’ Language
1. It is a robust language, whose rich set of built-in functions and operations can be used to write any complex program
2. It is a middle level language because the ‘C’ compiler combines the capabilities of an assembly language with the features of a high-level language and therefore it is well suited for writing both system software and business packages.
3. ‘C’ Programs are efficient and fast
4. C is highly portable, that is ‘C’ programs written on one computer can be run on another with little (or) no modification.
5. ‘C’ Language is well suited for structured programming, thus requiring the user to think of a problem in terms of function modules (or) blocks.
6. ‘C’ program has the ability to extend itself.
· It was named ‘C’ because it is an offspring of BCPL (Basic Combined Programming Language) which was popularly called ‘B’ language.
General form of a ‘C’ program
/* documentation section */ preprocessor directives global declaration
main ()
{
local declaration executable statements
}
returntype function name (argument list)
{
local declaration executable statements
}
Example:
/* Author : Ramu

COMPUTER PROGRAMMING COURSE - MATERIAL
Aim : Program for finding circumference of circle*/
#include<stdio.h>
#include<conio.h>
#define PI 3.1415 main ()
{
float c, r; clrscr ();
printf (“enter radius of circle”); scanf (“%f”, &r);
c = 2 * PI * r;
printf (“Circumference = %f”, c); getch ();
}
‘C’ LANGUAGE ELEMENTS
‘C’ program contains several elements which are present in structure of ‘C’ program. They are
1) Comment lines
2) Preprocessor directives
3) Variable declaration & data types
4) Executable statements
1. Comment lines
· In ‘C’, comment lines are placed in “ /* */”
· Single line and multiple lines are enclosed in /* and */
· Comment lines are ignored by the compiler
· The documentation section is enclosed in comment lines
· Documentation section consists of a set of comment lines giving the name of the program, the author and other details, which the programmer would like to use later.
2. Preprocessor directives
· It consists of a) link section
b) Definition Section
· The link section provides instructions to the compiler to link functions from the system library eg : #include < stdio.h>
 41

COMPUTER PROGRAMMING COURSE - MATERIAL
· The definition section defines all symbolic constants eg : #define PI 3.1415
· Preprocessor directive must start with ‘#’ (hash) symbol.
3. Variable declaration & data types Variable
· It is the name given to a memory location that may be used to store a data value
· A variable may take different values at different times during execution
· A variable name may be chosen by the programmer in a meaningful way so as to reflect its function (or) nature in the program
Eg: sum, avg , total etc.
Rules for naming a variable
1) They must begin with a letter
2) The length of the variable must not exceed 31 characters in ANSI standard. But first eight characters are treated as significant by many compilers
3) Upper and lowercase characters are different
Eg: total, TOTAL, Total are 3 different variables
4) The variable name should not be a keyword
5) White space is not allowed
Data Types
· Data type specifies the set of values and the type of data that can be stored in a variable.
· They allow the programmer to select the type appropriate to the needs of application. Types :
1) Primary data types
2) Derived data types
1. Primary data types
‘C’ compilers support 4 fundamental data types They are
1) integer
2) character
3) Floating – point
4) Double precision floating point
42
COMPUTER PROGRAMMING COURSE - MATERIAL
PRIMRARY DATA TYPES

	Floating point type

	float
	double
	long double

1. Integral data type
· Integral data types are used to store whole numbers and characters
· It is further classified into
a) integer data type
b) character data type
a) Integer data type
· This data type is used to store whole numbers
· It has 3 classes of integer storage namely, short int, int and long int in both signed and unsigned forms
	Integer Data type

	Type
	size (in bytes)
	Range
	Control string

	Short int (or) signed short int
	1
	-128 to 127
	% h

	Unsigned short int
	1
	0 to 255
	% uh

	int (or) signed int
	2
	-32768 to 32767
	% d or %i

	unsigned int
	2
	0 to 65535
	% u

	Long int (or) signed long int
	4
	-2147483648 to
2147483647
	%ld

	Unsigned long int
	4
	0 to 4294967295
	%lu

b) character data type
· This data type is used to store characters
· These characters are internally stored as integers
· Each character has an equivalent ASCII value eg: ‘A’ has ASCII value 65
43
COMPUTER PROGRAMMING COURSE - MATERIAL
	Character data type

	Type
	Size (in bytes)
	Range
	Control string

	Char (or) signed char
	1
	- 128 to +127
	%c

	Unsigned char
	1
	0 to 255
	%c

2. Floating – point Data types
· It is used to store real numbers (i.e., decimal point numbers).
· For 6 digits of accuracy, ‘float’ is used.
· For 12 digits of accuracy, ‘double' is used.
· For more than 12 digits of accuracy, ‘long double’ is used..
	Floating point data type

	Type
	Size (in bytes)
	Range
	Control string

	Float
	4
	3.4 E – 38 to 3.4 E + 38
	%f

	Double
	8
	1.7 E – 308 to 1.7 E +308
	%lf

	long double
	10
	3.4 E – 4932 to 1.1 E +4932
	%Lf

Variable declaration Syntax:
Datatype v1,v2,… vn;
Where v1, v2,...vn are names of variables
eg: int sum;
float a,b;
· Variable can be declared in 2 ways
1. local declaration
2. global declaration
· ‘local declaration’ is declaring a variable inside the main block and its value is available within that block
· ‘global declaration’ is declaring a variable outside the main block and its value is available through out the program.
· Eg :
int a, b;
/* global declaration*/ main ()
{
int c; /* local declaration*/
44
-
-
-
}

COMPUTER PROGRAMMING COURSE - MATERIAL
EXECUTABLE STATEMENTS:
· A ‘C’ program contains executable statements
· The ‘C’ compiler translates the executable statements into machine language
· The machine language versions of these statements are executed by the compiler when a user runs program
Types

1) Input – output statements
2) Assignment statements
1. Input – output statements
· Storing a value into memory is called ‘ input operation’.
· After executing the computations, the results are stored in memory and the results can be displayed to the user by ‘output operation’
· All input / output operations in ‘C’ are performed using input / output functions
· The most common I/O functions are supplied as part of the ‘C’ standard I/O library through the preprocessor directive # include<stdio.h>
· Most commonly used I/O functions are
a) printf ()
b) scanf ()
a) printf () function: Syntax:
printf(“format string”, print list);
e.g.: printf (“average of 3 numbers = %f”,avg);
· The printf () function displays the value of its format string after substituting the values of the expressions in the print list.
· It also replaces the escape sequences such as ‘\n’ by their meanings.
b) scanf () function Syntax:
scanf (“format string”, input list); e.g.:
scanf (“%d %f”, &a, &b);
· The scanf () function copies into memory data typed at the keyboard by the program user during program execution.
· The input list must be preceded by ampersand (&)
45
COMPUTER PROGRAMMING COURSE - MATERIAL
2) Assignment statements
· The assignment statements stores a value (or) a computational result in a variable and is used to perform most arithmetic operations in a program.
· Syntax:
variable=expression
 e.g.:
1. c = a+b;
2. avg = sum/3;
3. r1 = (b*b – 4 * a*c);
· The variable before the assignment operator is assigned the value of the expression after it.
· The previous value of variable is destroyed
EXPRESSIONS
· Def: An expression is a combination of operators and operands which reduces to a single value
· An operand is a data item on which an operation is performed.
· An operator indicates an operation to be performed on data eg;
z = 3+2*1
z = 5
Types

1. Primary expressions
The operand in the primary expression can be a name, a constant or any parenthesized expression E.g.: c = a+ (5*b);
2. Postfix expressions:
The operator will be after the operands in a postfix expression Eg:
ab+
3. Prefix expressions
The operator is before the operand in a prefix expression. Eg:
+ab
38
COMPUTER PROGRAMMING COURSE - MATERIAL
4. unary expression:
It contains one operator and one operand eg: a++, --b
5. Binary expression
It contains 2 operands and one operator Eg: a+b, c-d
6. Ternary expression
It contains 3 operands and one operator Eg ; Exp1? Exp2 :Exp3
If Exp1 is true ,Exp2 is executed. otherwise Exp3 is executed.
OPERATORS AND EXPRESSIONS
· Operator performs an operation on data
· Operators are classified into
1. Arithmetic operators.
2. Relational operators.
3. Logical operators.
4. Assignment operators.
5. Increment and decrement operators.
6. Bitwise operators.
7. Conditional operators.
8. Special operators.
1). Arithmetic operator
· These operators are used for numerical calculations (or) to perform arithmetic operations like addition, subtraction etc.
	Operator
	Description
	Example
	a =20, b=10
	output

	+
	Addition
	a+b
	20+10
	30

	-
	Subtraction
	a-b
	20-10
	10

	*
	Multiplication
	a*b
	20*10
	200

	/
	Division
	a/b
	20/10
	2 (quotient)

	%
	Modular division
	a%b
	20%10
	0 (remainder)

39
· Program: main ()
{

COMPUTER PROGRAMMING COURSE - MATERIAL
int a= 20, b = 10; printf (“ %d”, a+b);
printf (“ %d”, a-b);
printf (“ %d”, a*b);
printf (“ %d”, a/b);
printf (“ %d”, a%b);
}

Output
30
10
200
2
0
2).Relational operators :
· These are used for comparing two expressions.
	Operator
	Description
	Examble
	a =10, b=20
	output

	<
	less than
	a<b
	10<20
	1

	<=
	less than (or) equal to
	a<=b
	10< = 20
	1

	>
	greater than
	a>b
	10>20
	0

	>=
	greater than (or) equal to
	a>=b
	10> =20
	0

	= =
	equal to
	a= =b
	10 = = 20
	0

	! =
	not equal to
	a! = b
	10 ! =20
	1

· The output of a relational expression is either true (1) (or) false (0)
· Program
main ()
{
int a= 10, b = 20; printf (“ %d”, a<b);
printf (“ %d”, a<=b);
printf (“ %d”, a>b);
printf (“ %d”, a>=b);
printf (“ %d”, a = =b);
printf (“ %d”, a ! =b);
}

Output
1
1
0
0
0
1
3. Logical Operators
· These are used to combine 2 (or) more expressions logically
· They are logical AND (&&) logical OR (||) and logical NOT (!)
40
Logical AND (&&)
Logical OR(||)
Logical NOT (!)
Program:
main ()
{

COMPUTER PROGRAMMING COURSE - MATERIAL
int a= 10, b = 20, c= 30;
printf (“ %d”, (a>b) && (a<c));
printf (“ %d”, (a>b) | | (a<c));
printf (“ %d”, ! (a>b));
}

Output
0
1
1
4. Assignment operators
· It is used to assign a value to a variable
Types
1) simple assignment
2)compound assignment
41
COMPUTER PROGRAMMING COURSE - MATERIAL
	Operator
	Description
	Example

	=
	Simple assignment
	a=10

	+ =, - =,
* =, / =, %=
	Compound assignment
	a+=10  a=a+10 a-=10 
a=a-10

Program:
main ()
{
int a= 10,;
printf (“ %d”, a);
printf (“ %d”, a+ =10);

Output
10
20
}
5. Increment and decrement operator:
a) Increment operator (++):
· It is used to increment the value of a variable by 1
· 2 types : i) pre increment
ii) post increment
· increment operator is placed before the operand in preincrement and the value is first incremented and then operation is performed on it.
eg: z = ++a;
a= a+1 z=a
· increment operator is placed after the operand in post increment and the value is incremented after the operation is performed
eg: z = a++;
z=a
a= a+1
Program
main ()
{
int a= 10, z; z= ++a ;
printf (“z= %d”, z);
printf (“ a=%d”, a);

Output
z=11 a =11

main ()
{
int a= 10, z; z= a++;
printf (“z= %d”, z);
printf (“a=%d”, a);
}

Output
z=10
a = 11
}
42
b) Decrement operator : (- -)

COMPUTER PROGRAMMING COURSE - MATERIAL
· It is used to decrement the values of a variable by 1 2 types : i) pre decrement
ii) post decrement
· decrement operator is placed before the operand in predecrement and the value is first decremented and then operation is performed on it.
eg: z = - - a;
a= a-1 z=a
· decrement operator is placed after the operand in post decrement and the value is decremented after the operation is performed
eg: z = a--;

z=a a= a-1
Program:
main ()
{
int a= 10, z; z= --a;
printf (“z= %d”, z);
printf (“ a=%d”, a);
}

Output
z=9 a =9

main ()
{
int a= 10, z; z= a--;
printf (“z= %d”, z);
printf (“a=%d”, a);
}

Output
z=10
a = 9

6. Bitwise Operator
Unlike other operators, bitwise operators operate on bits (i.e. on binary values of on operand)
	Operator
	Description

	&
	Bitwise AND

	|
	Bitwise OR

	^
	Bitwise XOR

	<<
	Left shift

	>>
	Right shift

	~
	One’s complement

43
COMPUTER PROGRAMMING COURSE - MATERIAL
eg: let a= 12, b=10
a&b

a&b = 8
a | b = 14
a ^ b
	
	8
	4
	2
	1

	a =12
	1
	1
	0
	0

	b =10
	1
	0
	1
	0

	a ^b
	0
	1
	1
	0

a ^ b = 6
Program
main ()
{
int a= 12, b = 10; printf (“ %d”, a&b);
printf (“ %d”, a| b);
printf (“ %d”, a ^ b);
}

Outp
8
14
6
Left Shift
· If the value of a variable is left shifted one time, then its value gets dou
 eg: a = 10 then a<<1 = 20
COMPUTER PROGRAMMING COURSE - MATERIAL
a=10
a<<1
Fill it with zero
a<<1 = 20
Right shift
If the value of a variable is right shifted one time, then its value becomes half the original value
 eg: a = 10 then a>>1 = 5 a=10
a>>1
0
Discard it
a>>1 = 5
Ones complement
· It converts all ones to zeros and zeros to ones
· Eg: a = 5 then ~a=2 [only if 4 bits are considered] a=5
~a
Program
main ()
{

~a = 2
}
Signed

int a= 20, b = 10,c=10; printf (“ %d”, a<<1);
printf (“ %d”, b>>1);
printf (“ %d”, ~c);
1’s complement = - [give no +1]

Output
40
5
11

45
Eg : ~10 = - [10+1] = -11
~-10 = - [-10+1] = 9

COMPUTER PROGRAMMING COURSE - MATERIAL
unsigned
1’s complement = [65535 – given no]
7. Conditional operator (? :)
· It is also called ternary operator
· Syntax:
exp1 ? exp2 : exp3
· if exp1 is true exp2 is evaluated, otherwise exp3 is evaluated
· it can also be represented in if – else form if (exp1)
exp2;
Program
main ()

else

exp3;
{
int z;
z = (5>3) ? 1:0;
printf (“%d”,z);

Output
1
}
8) Special operations
Some of the special operations are comma, ampersand(&), size of operators.
a) Comma: (,)
It is used as separator for variables eg; a=10, b=20
b) Address:(&)
It is used to get the address of a variables.
c) Size of () ;
It is used to get the size of a data type of a variable in bytes.
Program:
main ()
{

COMPUTER PROGRAMMING COURSE - MATERIAL
int a=10; float b=20 ;
printf (“ a= %d
b=%f”, a,b); printf (“ Address of a =%u “ , &a) ; printf (“ Address of b =%u” ,&b) ;
printf (“Size of a = %d ” , sizeof (a)) ; printf (“Size of b = %d ”, sizeof (b)) ;
}
a
b
Out Put :
a=10 b=20.00
1234
5678
Address of a =1 2 3 4
Address of b = 5 6 7 8
Only for this example
Size of a = 2 bytes Size of b = 4 bytes
EXPRESSION EVALUATION, PRECEDENCE AND ASSOCIATIVITY
· Expressions are evaluated by the ‘C’ compiler based on precedence and associativity rules.
· If an expression contains different priority operators then precedence rules are considered.
Operator Precedence Chart
	Operator Type
	Operator
	Associativity

	Primary Expression Operators
	() [] . -> expr++ expr--
	left-to-right

	Unary Operators
	* & + - ! ~ ++expr --expr (typecast) sizeof
	right-to-left

	Binary Operators
	* / %
	left-to-right

	
	+ -
	

COMPUTER PROGRAMMING COURSE - MATERIAL
	
	>> <<
	

	
	< > <= >=
	

	
	== !=
	

	
	&
	

	
	^
	

	
	|
	

	
	&&
	

	
	||
	

	Ternary Operator
	?:
	right-to-left

	Assignment Operators
	= += -= *= /= %= >>= <<= &= ^= |=
	right-to-left

	Comma
	,
	left-to-right

Eg:
C =
30 - 10
*
2
Here, 10*2 is evaluated first since ‘*’ has more priority than ‘-‘ and ‘=’
· If an expression contains same priority then assoiciativity rules are considered i.e. left right (or right to left)
eg:
z= a*b/c
z = 40 *
20 / 10
Here ‘*’ and ‘/’ have same priority so, left to right
associativity is considered
COMPUTER PROGRAMMING COURSE - MATERIAL
1
800
2
z
Eg: x =5 *4 + 8/2
x
=
53
8*0

4
+
8
/
2

1
2
4
x = 24
Parenthesis has highest priority and comma has least priority among operators
Type Conversions
Converting one data type into another is the concept of type conversion
2 types
1. Implicit type conversion
2. Explicit type conversion
· Implicit type conversion is automatically done by the compiler by converting smaller data type into a larger data type.
Eg:
int i,x; float f; double d; long int l;
COMPUTER PROGRAMMING COURSE - MATERIAL
x
=
l
/
i
+
x
-
f
-
d
 long

long
 SHAPE * MERGEFORMAT

int
double
Here, the above expression finally evaluates to a’double’ value Explicit type conversion is done by the user by using (type) operator Eg:
int a,c;
float b;
c = (int) a + b
int

int float float
Here, the resultant of ‘a+b’ is converted into ‘int’ explicitty and then assigned to ‘c’ Program:
main ()
{
printf (“%d”, 5/2);
printf (“%f”, 5.5/2);
printf (“%f”, (float) 5/2);
}

Output
2
2.75
2.5
Decision statements :

COMPUTER PROGRAMMING COURSE - MATERIAL
These are used to make a decision among the alternative paths They are
1. simple – if statement
2. if – else statement
3. nested – if else statement
4. else – if ladder
5. switch statement
1. Simple – if statement
· ‘if’ keyword is used to execute a set of statements when the logical condition is true Syntax :
if (condition)
{
Statement (s)
}
Flow chart
Program
/* checking whether a number is greater than 50 */ main ()
{
int a;
printf (“enter a number”); scanf (“%d”, &a);
if (a>50)
51
}
Output

COMPUTER PROGRAMMING COURSE - MATERIAL
printf (“%d is greater than 50”, a);
1) enter a number 60
2) enter a number 20
60 is greater than 50
no output.
2. if else statement
· If –else statement takes care of true as well as false conditions
· ‘true block’ is executed when the condition is true and ‘false block’ (or) ‘else block’ is executed when the condition is false.
Syntax:
if (condition)
{
}
else
{
}
Flow chart

True block statement(s)
False block statement(s)

Program
/* checking for even (or) odd number */ main ()
{
int n;
52
printf (“enter a number”); scanf (“%d”, &n);
if (n%2 ==0)

COMPUTER PROGRAMMING COURSE - MATERIAL
else
}
Output

printf (“%d is even number”, n); printf(“%d is odd number”, n);
1) enter a number 10
2) enter a number 5 10 is even number

5 is odd number 3. Nested if - else statement
· A ‘nested if’ is an if statement that is the object of either if (or) an else
· ‘if’ is placed inside another if (or) else
Syntax:
if (condition1)
{
if (condition2)
stmt1;
else
}

stmt2;
else
{

if (condition3)
stmt3;
else
}

stmt4;

53
COMPUTER PROGRAMMING COURSE - MATERIAL

main ()
{
int a,b,c;
printf (“enter 3 numbers”);
scanf (“%d%d%d”, &a, &b, &c); if (a>b)
{
if (a>c)
printf (“%d is largest”, a); else
printf (“%d is largest”, c);
}
else
{
}

if (b>c)
printf (“%d is largest”, b); else
printf (“%d is largest”, c);
54
}
Output
enter 3 numbers = 10 20 30
30 is largest

COMPUTER PROGRAMMING COURSE - MATERIAL
4. Else – if ladder
· This is the most general way of writing a multi-way decision
Syntax
if (condition1)
stmt1;
else if (condition2)
stmt2;
- - - - -
- - - - -
else if (condition n)
stmtn;
else
stmt x;
flow chart
True

Condi tion1?

False
Stmt1

 True

Condi tion2?

False

 SHAPE * MERGEFORMAT

- - - - - -

 True

False
	Stmt n
	Stmt x

	
	

55
COMPUTER PROGRAMMING COURSE - MATERIAL
Program
/* finding roots of quadratic equation */
#include <math.h> main ()
{
int a,b,c,d; float r1, r2
printf (“enter a,b,c values”); scanf (“%d%d%d”, &a, &b, &c); d= b*b – 4*a*c ;
if (d>0)
{
r1 = (-b+sqrt(d)) / (2*a);
r2 = (-b-sqrt(d)) / (2*a);
printf (“root1 = %f, root2 == %f”, r1, r2);
}
else if (d= = 0)
{
}
else
}

r1 = -b / (2*a);
r2 = -b/ (2*a);
printf (“root1 = %f, root2 = %f”, r1, r2);
printf ("roots are imaginary”);
Output
1) enter a,b, c values : 1 4 3 Root 1 = -1
Root 2 = -3
2) enter a,b, c values : 1 2 1 Root 1 = -1
Root 2 = -1
3) enter a,b, c values : 1 2 3 roots are imaginary
56
5. Switch statement

COMPUTER PROGRAMMING COURSE - MATERIAL
· It is used to select one among multiple decisions
· ‘switch’ successively tests a value against a list of integer (or) character constant.
· When a match is found, the statement (or) statements associated with that value are executed.
Syntax
switch (expression)
{
case value1 : stmt1;
break; case value2 : stmt2;
break;
- - - - - -
default : stmt – x;
}
Flow chart
57
main ()
{

COMPUTER PROGRAMMING COURSE - MATERIAL
int n;
printf (“enter a number”); scanf (“%d”, &n);
switch (n)
{
case 0 : printf (“zero”) break;
case 1 : printf (‘one”); break;
default : printf (‘wrong choice”);
}
}
Output
enter a number 1
one
Loop control statements
· These are used to repeat set of statements
· They are
1) for loop
2) while loop
3) do-while loop
1) for loop Syntax
for (initialization ; condition ; increment / decrement)
{
body of the loop
}
58
Flow chart

COMPUTER PROGRAMMING COURSE - MATERIAL
· for statement contains 3 parts
i) initialization is usually an assignment statement that is used to set the loop control variable
ii) The condition is a relational expression that determines when the loop will exit.
iii) The increment/decrement part defines how the loop control variable will change each time loop is repeated.
iv) loop continues to execute as long as the condition is true.
v) Once the condition is false, program continues with the next statement after for loop.
Program
main()
{
int k;
for (k = 1; k<=s; k++)
{
printf (”%d”,k);
}

Output
1
2
3
4
5
}
2) while loop Syntax
while (condition)
{
body of the loop
}
59
COMPUTER PROGRAMMING COURSE - MATERIAL

· Intialization is done before the loop
· Loop continues as long as the condition is true
· Incrementation and decrementation part is done within the loop
Program
main()
{
int k; k = 1;
while (k< = 5)
{

Output
1
2
printf (”%d”,k);
3
k++;
4
}
}
5
3) do-while loop Syntax
Initialization do
{
body of the loop inc/ dec
} while (condition);
60
Flow chart

COMPUTER PROGRAMMING COURSE - MATERIAL
Program
main()
{
}

int k; k = 1;
do
{
printf (”%d”,k); k++;
} while (k <= 5);

Output
1
2
3
4
5
Nested for loops
· In nested for loops one (or) more for statements are included in the body of the loop
· The number of iterations in this type of structure will be equal to number of iterations in the outer loop multiplied by the number of iterations in the inner loop
61
Program
main()
{
int i,j;
for (i=1; i<=2; i++)
{
for (j=1;j<=2; j++)
{
printf (”%d”, i*j);

COMPUTER PROGRAMMING COURSE - MATERIAL
Output
1
2
2
4
}
}
3
	}
Execution
	i*j
	6

	i=1
j=1
	1
	

	j=2
	2
	

	i=2
j=1
	2
	

	j=2
	4
	

	i=3
j=1
	3
	

	j=2
	6
	

Other related statements
1) break
2) continue
3) goto
1) break
Syntax
·
It is a keyword used to terminate the loop (or) exit from the block
· The control jumps to next statement after the loop (or) block
· ‘break is used with for, while, do-while and switch statement
· When break is used in nested loops then only the innermost loop is terminated
{
Stmt1; Stmt2;
break;
Stmt3; Stmt4;
}

Output
1
2
3

62
Program
main()
{
int i;
for (i=1; i<=5; i++)
{

COMPUTER PROGRAMMING COURSE - MATERIAL
printf (”%d”, i); if (i= =3)
break;
}
}
2) continue
· It is a keyword used for continuing the next iteration of the loop
· It skips the statements after the continue statement
· It is used with for, while and do-while
Syntax
{
}
Program
main()
{

continue; Stmt3; Stmt4;

Output
1
3
int i;
4
for (i=1; i<=5; i++)
5
{
if (i= =2) continue, printf(“%d”, i)
}
}
3) goto
COMPUTER PROGRAMMING COURSE - MATERIAL
· It is used to after the normal sequence of program execution by transferring the control to some other part of program
Syntax
goto label;
label :stmt

label : stmt
goto label;
Program
main()
{

Output
Hello
you
printf(’Hello”);
goto l1; printf(”How are”); l1: printf(”you”);
}
COMPUTER PROGRAMMING COURSE - MATERIAL

COMPUTER PROGRAMMING COURSE - MATERIAL

FUNCTIONS:
Def : A function is a self contained block that carries out a specific well defined task.
Advantages
1. Reusability i.e. a function may be used by many other programs.
2. The length of the source program can be reduced.
3. It is easy to locate and isolate a faulty function.
4. It facilitates top-down modular programming.
Top down design and structure charts
· “Top down design” is a problem solving method in which a complex problem is solved by breaking up into sub problems.
· It proceeds from the original problem at the top level to the sub problems at each lower level
· “structure chart” is a documentation tool that shows the relationships among the sub problems of a problem.

· The splitting of a problem into its related sub problems is analogous to the process of refining an algorithm.
e.g. Performing arithmetic operations on 2 numbers
1. find sum
2. find difference
3. find product
4. find quotient
Refined algorithm for 1st step
take 2 numbers a, b
sum, c = a + b
print sum
COMPUTER PROGRAMMING COURSE - MATERIAL
Structure chart

Types of functions
Functions are broadly classified into 2 types They are
1) predefined functions
2) user defined functions
1) predefined (or) library functions
· These functions are already defined in the system libraries
· Programmer can reuse the existing code in the system libraries to write error free code.
· But to use the library functions, user must be aware of syntax of the function.
eg: 1) sqrt() function is available in math.h library and its usage is : y= sqrt (x)
number must be positive eg: y = sqrt (25)
then ‘y’ = 5
2 printf () function is available in stdio.h library
3) clrscr () function is available in conio.h library
Program
#include<stdio.h>
#include<conio.h>
#include<math.h> main ()
{
67
int x,y; clrscr ();

COMPUTER PROGRAMMING COURSE - MATERIAL
printf (“enter a positive number”); scanf (“ %d”, &x)
y = sqrt(x); printf(“squareroot = %d”, y); getch();
}
Output
Enter a positive number 25 Squareroot = 5
2) user defined functions
These functions must be defined by the programmer (or) user
Programmer has to write the coding for such functions and test them properly before using them The syntax of the function is also given by the user and therefore need not include any header files. Eg: main (), swap (), sum () etc
Program
#include<stdio.h>
#include<conio.h> main ()
{
int sum (int, int); int a, b, c;
clrscr ();
printf (“enter 2 numbers”); scanf (“ %d %d”, &a ,&b) c = sum (a,b);
printf(“sum = %d”, c); getch();
}
int sum (int a, int b)
{
int c; c=a+b;
68
return c;
}

COMPUTER PROGRAMMING COURSE - MATERIAL

Output
Enter 2 numbers 10
20
Sum = 30
Communications Among functions
Functions communicate among themselves using arguments and return value.
Farm of ‘C’ function
return-datatype function name (argument list)
{
local variable declarations; executable statements(s); return (expression);
}
eg: void mul (int x, int y)
{
int p; p=x*y;
printf(“product = %d”,p);
}
Return values and their types
· A function may (or) may not send back any value to the calling function
· If it does, it is done through the return statement
· A called function can only return one value per call
· The return types are void, int, float, char and double.
· If a function is not returning any value then its return type is ‘void’
Function name
· A function must follow the same rules of formation as other variables name in ‘C’
· A function name must not duplicate library routine names (or) predefined function names.
Argument list
· The argument list contains valid variable names separated by commas
· The argument variables receive values from the calling function, thus providing a means for data communication from the calling function to the called function.
69
Calling a function

COMPUTER PROGRAMMING COURSE - MATERIAL
· A function can be called by simply using the function name in a statement
Function definition
· When the compiler encounters a function call, the control is transferred to the function definition.
· All the statements ,in the called function, are together called as function definition
Function header
· The first line in the function definition is called function header.
Actual parameter
· All the variables inside the function call are called actual parameters.
Formal parameters
· All the variables inside the function header are called formal parameters
Program
#include<stdio.h>
#include<conio.h> main ()
{
int mul (int, int);
function prototype int a,b,c;
clrscr();
printf (“enter 2 numbers”); scanf(“%d %d”, &a, &b);
c = mul (a,b);
function call printf(“product =%d”,c);
Actual parameters getch ();
}
int mul (int a, int b)
Formal parameters
{
function header
int c;
c = a *b;
Function definition return c;
}
Output
Enter 2 numbers:
10
20
Product = 200
70
COMPUTER PROGRAMMING COURSE - MATERIAL
Categories of functions:
· Depending on whether arguments are present (or) not and whether a value is returned (or) not, functions are categorized into:
1) functions without arguments and without return values
2) functions without arguments and with return values
3) Functions with arguments and without return values
4) Functions with arguments and with return values.
1) functions without arguments and without return values
	Calling function
	Analysis
	Called function

	main ()
{

fun ();
}
	No arguments are passed No values are sent back
	fun ()
{

}

eg: main ()
{
void sum (); clrscr ();
sum ();
getch ();
}
void sum ()
{
int a,b,c;
printf(“enter 2 numbers”); scanf (“%d%d”, &a, &b); c = a+b;
printf(“sum = %d”,c);
}

Output
Enter 2 numbers
10
20
Sum=30

71
COMPUTER PROGRAMMING COURSE - MATERIAL
2) Functions without arguments and with return values
	Calling function
	Analysis
	Called function

	main ()
{
int c;

c= fun ();

}
	No arguments are passed
values are sent back
	fun ()
{

return c;
}

eg: main ()
{
int sum (); int c; clrscr ();
c= sum (); printf(“sum = %d”,c); getch ();
}
int sum ()
{
int a,b,c;
printf(“enter 2 numbers”); scanf (“%d%d”, &a, &b); c = a+b;
return c;
}

Output
enter 2 numbers
10
20
Sum = 30
3) Functions with arguments and without return values
	Calling function
	Analysis
	Called function

	main ()
{

fun (a,b);

}
	Arguments are passed No values are sent back
	fun (int a, int b)
{

}

72
eg: main ()
{

COMPUTER PROGRAMMING COURSE - MATERIAL
void sum (int, int); int a,b;
clrscr ();
printf(“enter 2 numbers”); scanf(“%d%d”, &a,&b); sum (a,b);
getch ();
}
void sum (int a, int b)
{
int c; c= a+b;
printf (“sum=%d”, c);

Output
enter 2 numbers
10 20
sum = 30
}
4) Functions with arguments and with return values.

eg:
main ()
{
int sum (int,int); int a,b,c;
clrscr ();
printf(“enter 2 numbers”); scanf(“%d%d”, &a,&b); c= sum (a,b);
73
printf (“sum=%d”, c); getch ();
}

COMPUTER PROGRAMMING COURSE - MATERIAL
int sum (int a, int b)
{
int c; c= a+b;
return c;

Output
enter 2 numbers
10
20
Sum = 30
}
Scope
· “scope” of a variable determines the part of the program where it is visible
2 types
1. local scope
2. global scope
1. local scope
· Local scope specifies that variables defined within the block are visible only in that block and invisible outside the block.
2. global scope
· Global scope specifies that variables defined outside the block are visible upto end of the program.
eg:

int c= 30;
/* global area */ main ()
{
output

}
fun ()
{
}

int a = 10;
printf (“a=%d, c=%d” a,c); fun ();
printf (“c=%d”,c);

Local function area
a =10, c = 30
c = 30
74
Storage classes

COMPUTER PROGRAMMING COURSE - MATERIAL
There are 4 storage classes (or) storage class specifiers supported in ‘C’ They are:
1) auto
2) extern
3) static
4) register
1. automatic variables / Local variables.
· Keyword : auto
· These are also called local variables
· Scope
· Scope of a local variable is available within the block in which they are declared.
· These variables are declared inside a block
· Default value: garbage value eg:
main ()
{
auto int i=1;
{
auto int i=2;
{
auto int i=3; printf (“%d”,i)
}

Output
3
2
printf(“%d”, i);
1
}
printf(“%d”, i);
}
2. global Variables / external variables
· Keyword : extern
· These variables are declared outside the block and so they are also called global variables
· Scope:
Scope of a global variable is available throughout the program.
· Default value: zero
75
eg:

COMPUTER PROGRAMMING COURSE - MATERIAL
extern int i =1; /* this ‘i’ is available throughout program */ main ()
{
}
fun ()
{
}

int i = 3; /* this ‘i' available only in main */ printf (“%d”, i);
fun ();
printf (“%d”, i);

Output
3
1
3) Static variables
· Keyword : static
· Scope
Scope of a static variable is that it retains its value throughout the program and in between function calls.
· Static variables are initialized only once.
· Default value: zero
eg:
main ()
{
inc ();
inc ();
inc ();
}
inc ()
{
static int i =1; printf (“%d”, i); i++;
}
Output
1
2
3
4. Register variables

main ()
{
inc ();
inc ();
inc ();
}
inc ()
{
auto int i=1; printf (“%d”, i); i++;
}
Output
1
1
1

76
· Keyword : register

COMPUTER PROGRAMMING COURSE - MATERIAL
· Register variable values are stored in CPU registers rather than in memory where normal variables are stored.
· Registers are temporary storage units in CPU
· They allow faster access time for register variables than normal variables
eg:
main ()
{
register int i;
for (i=1; i< =5; i++) printf (”%d ”,i);
}
Output
1
2
3
4
5
Scope rules
· Scope rules relate to the accessibility, period of existence and boundary of usage of variables.
1) Scope rules related to statement Blocks :
· Block is set of statement enclosed in curly braces
· Variables declared in a block are accessible and usable within that block and doesnot exist outside it
eg:
main ()
{
{
}
{
}
}
output

int i = 1;
printf (“%d”,i);
int j=2; printf(“%d”,j);

‘i' is available within this block only
‘j' is available within this block only
1
2
77
COMPUTER PROGRAMMING COURSE - MATERIAL
· Even if the variables are redeclared in their respective blocks and with the same name, they are considered differently
main ()
{
}
Output

{
int i = 1;
printf (“%d”,i);
}
{
int i =2;
printf (“%d”,i);
}

/* Both i’s are declared in different blocks so, they are treated differently even though they have same name */
eg:

1
2
· redeclaration of variables within the blocks bearing the same names as those in the outer block masks the outer block variables while executing the inner blocks.
main ()
{
{
}
}

int i = 1; int i = 2;
printf (“%d”,i);

/* inner block variable dominates outer block variable with same name
*/
Output : 2
· Variables declared outside the inner blocks are accessible to the nested blocks, provided these variable are not declared within the inner block
main ()
{
int i = 1;
{
int j = 2;

/* ‘i’ is available within the inner block also */
78
COMPUTER PROGRAMMING COURSE - MATERIAL
}
}
Output

printf (“%d”,j);
printf (“%d”,i);
2
1
2. Scope rules related to functions
· Function is a self contained block that performs a particular task.
· Variables declared within the function body are called local variables
· These variables only exist inside the specific function that creates them. They are unknown to other functions and to the main functions also
· The existence of local variables ends when the function completes its specific task and returns to the calling point.
eg: main ()
{
int a=10, b = 20;
printf (“before swapping a=%d, b=%d”, a,b); swap (a,b);
printf (“after swapping a=%d, b=%d”, a,b);
}
swap (int a, int b)
{
int c; c=a; a=b; b=c;
}
Output:
Before swapping a=10, b=20 After swapping a = 10, b=20
· Variables declared outside the function body are called global variables.
· These variables are accessible by any of the functions
79
eg: include<stdio.h> int a=10, b = 20; main()
{

COMPUTER PROGRAMMING COURSE - MATERIAL
printf (“before swapping a=%d, b=%d”, a,b); swap ();
printf (“after swapping a=%d, b=%d”, a,b);
}
swap ()
{
int c; c=a; a=b; b=c;
}
Output
Before swapping a = 10, b =20 After swapping a = 20, b = 10 Type Qualifiers
Type qualifiers add special attributes to existing datatypes.

1. Const
There are 3 types of constants
a) Literal constants
b) Defined constants
c) Memory constants
a) Literal constants
· unnamed constants are used to specify data
eg:
80
COMPUTER PROGRAMMING COURSE - MATERIAL
a=b+5
Here ‘5’ is literal constant
b) defined constants
· They use preprocessor command ‘define” with #
Eg: #define PI 3.1415
c) Memory constants
· It uses ‘C’ type qualifier ‘const’ to indicate that the data cannot be changed
· Syntax: const type identifier = value
· eg:
const float pi = 3.1415
· it is simply giving a literal name.
Program
#define PI 3.1415 main ()
{
const float cpi = 3.14
printf (“literal constant = %f”,3.14); printf (“defined constant = %f”, PI); printf (“memory constant = %f”,cpi);
}
Output
literal constant = 3.14 defined constant = 3.1415 memory constant = 3.14
2. volatile
· ‘volatile’ type qualifier is used to tell the compiler that a variable is shared
· That is, a variable may be referenced and changed by other programs (or) entities if it is declared as volatile
Eg: volatile int x;
3. restrict
· This is used only with pointers
· It indicates that the pointer is only the initial way to access the deferenced data
· It provides more help to the compiler for optimization.
Eg;

int *ptr
81
int a= 0; ptr = &a;

COMPUTER PROGRAMMING COURSE - MATERIAL
*ptr+=4;

Cannot be replaced with
*ptr+=9
*ptr+=5;
Eg:
·
Here the compiler cannot replace the two statements *ptr+=4 and *ptr+=5 by one statement
*ptr+=9, because it does not know if the variable ‘a’ can be accessed directly (or) through other pointers.
· Same program fragment using ‘restrict’ qualifier is as follows
restrict int *ptr int a= 0;
ptr = &a;
*ptr+=4;

Can be replaced with
*ptr+=9

*ptr+=5;
· Here the compiler can replace the 2 statements by one statement, *ptr+=9 because it is sure that variable cannot be accessed through any other resources.
Recursive Functions
· “recursion” is the process of defining something in terms of it self.
· “recursive function” is a function that calls itself again in the body of the function
Eg:
82
COMPUTER PROGRAMMING COURSE - MATERIAL
· A function fact (), which computes the factorial of an integer ‘N’ ,which is the product of all whole numbers from 1 to N
· When fact () is called with an argument of 1 (or) 0, the function returns 1. otherwise, it returns the product of n*fact (n-1), this happens until ‘n’ equals 1.
Fact (5) =5* fact (4)
=5*4*3* fact (3)
=5*4*3*2* fact (2)
=5*4*3*2*1 fact (1)
=5*4*3*2*1
= 120.
main ()
{
int n,f;
int fact (int); clrscr ();
printf (“enter a number”); scanf (“%d”, &n);
f= fact (n);
printf (factorial value = %d”,f);
}
int fact (int n)
{
int f;
if ((n==1) || (n==0))
return 1;
else
f= n*fact (n-1);
return f;
}
Output
Enter a number 5 Factorial value = 120
83
Preprocessor commands

COMPUTER PROGRAMMING COURSE - MATERIAL
· ‘preprocessor’ is a program that processes the source code before it passes through the compiler
· It operates under the control of preprocessor directives which begin with the symbol #
3 types
1) Macro substitution directives
2) File inclusion directives
3) compiler control directives
1) Macro substitution directives
· It replaces every occurence of the identifier by a predefined string.
Syntax for defining a macro
define identifier string Eg: #define
PI 3.1415
#define f(x)
x *x
#undef PI
Program
Program
#define wait getch()
#define wait getch()
main ()
main ()
{
{
clrscr ();
#undef wait;
printf (“Hello”);
clrscr ();
wait ;
printf (“Hello”);
}
wait ;
Output:
}
Hello
Output
Error since wait is undefined before using it
2. File inclusion directives:
· An external file containing functions (or) macro definitions can be included using #include directive
Syntax
Eg:

include <filename> (or) #include “filename”
#include <stdio.h>
Output
main ()
Hello
{
84
printf (“hello”);
}

COMPUTER PROGRAMMING COURSE - MATERIAL
The definition of the function printf () is present in <stdio.h>header file.
3. Compiler control directives
· C pre processor offers a feature known as conditional compilation, which can be used to switch ON (or) OFF a particular line (or) group of lines in a program.
Eg:
#if, #else, #endif etc.
#define LINE 1 main ()
{
#ifdef LINE
printf (”this is line number one”);

Output
This is line number one
#else
#endif
}

printf(‘This is line number two”);
ARRAYS
· Array: An array is a group of related data items that share a common name (or) Homogenous collection of data items that share a common name.
· A particular value in an array is identified using its “index number” or “subscript”
Advantage
· The ability to use a single name to represent a collection of items and to refer to an item by specifying the item number enables the user to develop concise and efficient programs
Declaring for declaring array
Syntax : for declaring array:

Eg:
1. float height [50]
This declares ‘height’ to be an array containing 50 float elements
2. int group[10]
· This declares the ‘group’ as an array to contain a maximum of 10 integer constants
· Individual elements are identified using “ array subscripts”
85
COMPUTER PROGRAMMING COURSE - MATERIAL
· While complete set of values are referred to as an array, individual values are called “elements”
Eg: To represent a set of 5 numbers by an array, it can be declared as follows int a[5];
· Then computer reserves 5 storage locations each of 2 bytes.
	a[0]

	a[1]

	a[2]

	a[3]

	a[4]

· First element is identified by subscript ‘zero’ i.e., a[0] represents first element of the array.
· If there are ‘n’ elements in array then subscripts range from 0 to n-1
Initialization
To store values into an array it can be done as follows.
	a[0] = 10;
	10
	a[0]

	a[1] = 20;
	20
	a[1]

	a[2] = 30;
	30
	a[2]

	a[3] = 40;
	40
	a[3]

	a[4] = 50;
	50
	a[4]

An array can also be initialized at the time of declaration as follows int a[5] = { 10,20,30,40,50};
Types of arrays
Arrays are broadly classified into 3 types. They are
1) one – dimensional arrays
2) two – dimensional arrays
3) Multi – dimensional arrays
1. one – dimensional arrays Syntax: datatype array name [size];
Eg: int a[5];
Initialization;
An array can be initialized in 2 ways.
a) compile time initialization
86
b) Runtime initialization

COMPUTER PROGRAMMING COURSE - MATERIAL
Program for compile time initialization and sequential access using for loop
main ()
{

storing
int a[5] = {10,20,30,40,50};
int i; clrscr ();
printf (“elements of the array are”); for (i=0; i<5; i++)
printf (“%d, a[i]); getch ();
}
accessing
Output: Elements of the array are
10
20
30
40
50
Program for runtime initialization and sequential access using for loop
main ()
{
}
output

int a[5],i;
clrscr ();
printf (“enter 5 elements”); for (i=0; i<5; i++)
scanf(”%d”, &a[i]); printf(“elements of the array are”); for (i=0; i<5; i++)
printf(”%d ”, a[i]); getch ();

Storing / assigning values to element of an array
Accessing the elements of the aray
Note :

enter 5 elements 10
20
30
40
50
elements of the array are :
10
20
30
40
50
· The output of compile time initialized program will not change during different runs of the program
87
Searching

COMPUTER PROGRAMMING COURSE - MATERIAL

· Finding a key element among list of elements

· If the given element is present in the list then the searching process is said to be successful
· If the given element is not present in the list then the searching process is said to be unsuccessful
Types :

· C language provides two types of searching techniques. They are:

1) Linear search
2) Binary search

1) Linear Search

· Searching for the key element is done in a linear fashion

· It is the simplest searching technique

· It does not expect the list to be sorted.

· Limitation:
o It consumes more time and reduce the power of system

i/p : unsorted list of elements, key o/p :
success – if key is found

unsuccess – otherwise

eg:
Key = 40

[i] = = key

main ()

{

int a[50], n, i, key, flag = 0; clrscr();

printf(“enter the no: of elements”); scanf (“%d”,&n);

printf(“enter the elements”); for (i=0; i<n; i++)

scanf(“%d”, &a[i]); printf(“enter a key element”); scanf (“%d”, &key)

for (i=0; i<n; i++)

{

if (a[i] = = key)

{

COMPUTER PROGRAMMING COURSE - MATERIAL

flag = 1; break;

}

}

if (flag = = 1)

printf(“search is successful”);

else
getch ();

}

printf(“search is unsuccessfull”);

2) Binary Search
· This method can be applied only to sorted list.

· The given list is divided into two equal parts.

· The given key is compared with the middle element of the list.

· 3 situations may occur:

· If the middle element matches the key then the search will end successfully here

· If the middle element is greater than the key then the search will proceed in the left partition

· If the middle element is lower than the key then the search will proceed int the right partition.

i/p : unsorted list of elements, key o/p :
success – if key is found

unsuccess – otherwise
low
mid
high key = 20

mid = (low +high) /2

low
high

 SHAPE * MERGEFORMAT

Low
high

program

main ()

{

COMPUTER PROGRAMMING COURSE - MATERIAL

int a[50], n, i, key, flag = 0, low, mid, high; clrscr();

printf(“enter the no: of elements”); scanf (“%d”,&n);

printf(“enter the elements”); for (i=0; i<n; i++)

scanf(“%d”, &a[i]); printf(“enter a key element”); scanf (“%d”, &key);

low = 0; high = n-1;

while (low< = high)

{

mid = (low + high) /2; if (a[mid] = = key)

{

}

else

{

flag = 1; break;

if (a[mid] > key)

high = mid -1;

else

}

}

low = mid+1

if (flag = =1)

printf (“search is successful”);

 else

printf(“search is unsuccessful”);

getch ();

}

SORTING

COMPUTER PROGRAMMING

COURSE - MATERIAL

Sorting : It is the process of arranging elements either in ascending (or) descending order.

Types : C language provides 5 sorting techniques

	1)
Bubble sort
	(or)
	Exchange Sort

	2)
Selection sort
	
	

	3)
Insertion sort
	(or)
	Linear sort

	4)
Quick sort
	(or)
	Partition exchange sort

	5)
Merge Sort
	(or)
	External sort

1) Bubble sort
· It is the simplest sorting technique

· It is also called exchange sort

· Procedure:
1. compare the first element with the remaining elements in the list and exchange(swap) them if they are not in order.

2. Repeat the same for other elements in the list until all the elements gets sorted Consider the elements

	0
	1
	2
	3
	4

	10

30
	50
	40
	30

10
	20

1st pass : compare 1st element with remaining elements

	a[0] > a[1] 
	30 >50 (F) 
	no exchange

	a[0] > a[2] 
	30 >40 (F) 
	no exchange

	a[0] > a[3] 
	30 >10 (T) 
	exchange

	a[0] > a[1] 
	10>20 (F) 
	no exchange

	10
	50
	40
	30
	20

2nd Pass : Compare 2nd element with rem. elements

	0
	1
	2
	3
	4

	10
	
	20

30
	50

 40
	40

30
	30

20

	
	
	40

50
	
	
	

COMPUTER PROGRAMMING COURSE - MATERIAL

	a[1] > a[2] 
	50 >40 (T) 
	exchange

	a[1] > a[3] 
	40 >30 (T) 
	exchange

	a[1] > a[4] 
	30 >20 (T) 
	exchange

	10
	20
	50
	40
	30

3rd Pass : Compare 3rd element with remaining elements

	0
	1
	2
	3
	4

	10
	20
	30

40

50
	50

40
	40

30

 SHAPE * MERGEFORMAT

a[2] > a[3] 
50 >40 (T) 
exchange

a[2] > a[4] 
40 >30 (T) 
exchange

	10
	20
	30
	50
	40

4th Pass : Compare 4th element with remaining Elements

	0
	1
	2
	3
	4

	10
	20
	30
	40

50
	50

40

a[3] > a[4] 
50 >40 (T) 
exchange

	10
	20
	30
	40
	50

Procedure

for (i=0; i<n-1; i++)

{

for (j=i+1; j<n; j++)

{

if (a[i] > a[j])

163

COMPUTER PROGRAMMING COURSE - MATERIAL

{

t=a[i]; a[i] = a[j]; a[j] = t;

}

}

}

Program

main ()

{

int a [50], i,j,n,t; clrscr ();

printf(“enter the No: of elements in the list”); scanf(“%d”, &n);

printf(“enter the elements”); for (i=0; i<n; i++)

{

scanf (“%d”, &a[i]);

}

printf(“Before bubble sorting the elements are”); for (i=0; i<n; i++)

printf(“%d \t”, a[i]); for (i=0; i<n-1; i++)

{

for (j=i+1; j<n; j++)

{

if (a[i] > a[j])

{

t = a[i]; a[i] = a[j]; a[j] = t;

}

}

164

COMPUTER PROGRAMMING COURSE - MATERIAL

}

printf (”after bubble sorting the elements are”) for (i=0; i<n; i++)

printf(“%d\t”, a[i]); getch ();

}

O/p : Enter No : of elements in the list =5 Enter the elements 30,50,40,10,20

Before bubble sorting the elements are 30 50 40 10 20

After bubble sorting the elements are 10 20 30 40 50

Complexity of sorting techniques

	Algorithm
	Worst Case
	Avg. case
	Best Case

	Bubble sort
	O(n2)
	O(n2)
	O(n2)

Complexity of searching techniques

	Algorithm
	Worst Case
	Avg. case
	Best Case

	Linear Search
	O(n)
	O(n)
	O(n)

	Binary Search
	O(logn)
	O(logn)
	O(n)

COMPUTER PROGRAMMING COURSE - MATERIAL

2. Two – dimensional arrays
· These are used in situations where a table of values have to be stored (or) in matrices applications
· Syntax :
datatype array_ name [rowsize] [column size];
 Eg: int a[5] [5];
· No of elements in array = rowsize *columnsize = 5*5 = 25
Initialization :
Program for compile time initialization and sequential access using nested for loop
main ()
{
int a[3][3] =
{10,20,30,40,50,60,70,80,90};
int i,j; clrscr ();
printf (“elements of the
array are”);
for (i=0; i<3; i++)
{
for (j=0;j<3; j++)
{
printf(“%d \t”, a[i] [j]);
}
printf(“\n”);
}
}
output

getch ();
elements of the array are:

	10
	20
	30

	40
	50
	60

	70
	80
	90

88
COMPUTER PROGRAMMING COURSE - MATERIAL
Program for runtime initialization and sequential access using nested for loop
main ()
{
int a[3][3] ,i,j; clrscr ();
printf (“enter elements of array”); for (i=0; i<3; i++)
{
for (j=0;j<3; j++)
{
scanf(“%d ”, &a[i] [j]);
}
}
printf(“elements of the array are”); for (i=0; i<3; i++)
{
for (j=0;j<3; j++)
{
printf(“%d\t ”, a[i] [j]);
}
printf(“\n”)
}
}
output

getch();
Enter elements of array : 1
2
3
4
5
6
7
8
9
Elements of the array are

	1
	2
	3

	4
	5
	6

	7
	8
	9

89
3. Multi –dimensional arrays

COMPUTER PROGRAMMING COURSE - MATERIAL
· ‘C’ allows arrays of 3 (or) more dimensions
· The exact limit is determined by compiler
Syntax:
· datatype arrayname [size1] [size2] ----- [sizen];
· eg: for 3 – dimensional array:
int a[3] [3] [3];
· No of elements = 3*3*3 = 27 elements
Program
main ()
{
int a[2][2] [2] = {1,2,3,4,5,6,7,8};
int i,j,k;
clrscr ();
printf (“elements of the array are”); for (i=0; i<2; i++)
{
for (j=0;j<2; j++)
{
for (k=0;k<2; k++)
{
printf(“%d ”, a[i] [j] [k]);
}
}
}
getch();
}
Output : Elements of the array are :
1
2
3
4
5
6
7
8
90
Arrays and functions

COMPUTER PROGRAMMING COURSE - MATERIAL
There are 2 ways of passing arrays as arguments to functions. They are
1) sending entire array as argument to function
2) sending individual elements as argument to function.
1. sending entire array as argument to function
· To send entire array as argument, just send the array name in the function call.
· To receive the entire array, an array must be declared in the function header..
Eg: main ()
{
void display (int a[5]); int a[5], i;
clrscr();
printf (“enter 5 elements”); for (i=0; i<5; i++)
scanf(“%d”, &a[i]); display (a);
getch();
}

Sending entire array ‘a’ using array name
Receiving entire array
void display (int a[5])
{
int i;
printf (“elements of the array are”); for (i=0; i<5; i++)
printf(‘%d ”, a[i]);
}
Output
Enter 5 elements
10
20
30
40
50
Elements of the array are
10
20
30
40
50
COMPUTER PROGRAMMING COURSE - MATERIAL
2. sending individual elements as argument to function.
· If individual elements are to be passed as arguments then array elements along with their subscripts must be given in function call
· To receive the elements, simple variables are used in function definition main ()
{
void display (int, int); int a[5], i;
clrscr();
printf (“enter 5 elements”); for (i=0; i<5; i++)
scanf(“%d”, &a[i]);
display (a [0], a[4]); getch();
}
void display (int a, int b)
{
print f (“first element = %d”,a); printf (“last element = %d”,b);
}
Output
Enter 5 elements
10
20
30
40
50
First element = 10 Last element = 50
COMPUTER PROGRAMMING COURSE - MATERIAL

COMPUTER PROGRAMMING COURSE - MATERIAL
POINTERS
Pointer : Pointer is a variable that stores the address of another variable.
Features of Pointers
· Pointer saves the memory space
· Execution time with pointer is faster because data is manipulated with the address i.e. direct access to memory location
· The memory is accessed efficiently with the pointer i.e. dynamically memory is allocated and deallocated
· Pointers are used with data structures
Pointer declaration, initialization and accessing.
Consider the following statement : int qty = 179;
The representation of the variable in memory is as follows

Declaring a pointer

It means ‘p’ is a pointer variable that holds the address of another integer variable.
Initialization of a pointer
· Address operator (&) is used to initialize a pointer variable. Eg:
int qty = 175;
int *p; p= &qty;
COMPUTER PROGRAMMING COURSE - MATERIAL
Accessing a variable through its pointer
· To access the value of the variable, indirection operator (*) is used.
eg :
‘*’ can be treated as value at address
· The 2 statements are equivalent to the following statement p = &qty;
n = *p;
n =qty
Program
main ()
{
int x,y; int *p; clrscr (); x= 10;
p = &x; y= *p;
printf (“Value of x = %d”, x);
printf (“x is stored at address %u”, &x); printf (“Value of x using pointer = %d”, *p); printf (“address of x using pointer = %u”, p); printf (“value of x in y = %d”, y);
*p = 25;
printf (“now x = %d”, x) getch ();
}
Output
Value of x = 10
x is stored at address = 5000 Address of x using pointer = 10
95
Address of x using pointer = 5000 Value of x in y = 10
Now x = 25

COMPUTER PROGRAMMING COURSE - MATERIAL
Arithmetic operations using pointers
Like any other variables, pointer variables can be used in expressions. For eg. If p1 and p2 are properly declared and initialized then the following statements are valid
a) *p1 + *p2 b) *p1 - *p2 c) *p1 * *p2
d) *p1 / *p2
Note : There must be a blank space between / and * otherwise it is
treated as beginning of comment line
e) p1 + 4
f) p2 - 2
g) p1 - p2
Note: returns the no. of elements in between p1 and p2 if both of them point to same array
h) p1++
i) – – p2
j) sum + = *p2
j) p1 > p2
k) p1 = = p2
l) p1 ! = p2
Note : Comparisons can be used meaningfully in handling arrays and strings
The following statements are invalid
a) p1 + p2
b) p1 * p2
c) p1 / p2
d) p1 / 3 Program main ()
{
int a,b,x,y,z; int *p1, *p2; a =12;
b = 4;
96
p1= &a;

COMPUTER PROGRAMMING COURSE - MATERIAL
a
b
x
y
p2 = &b;
x = *p1 * * p2 – 6; y= 4 - *p2 / *p1+10;
printf (“Address of a = %u”, p1); printf (“Address of b = %u”, p2); printf (“a= %d b =%d”, a,b);
printf (“x= %d y =%d”, x,y);
}

4
1234
5678
p1 1234

42
14
p2
Output
Address of a = 1234 Address of b = 5678 a = 12 b= 4
x = 42 y= 14
Pointers and arrays
· Continuous memory locations are allocated for all the elements of the array by the compiler
· The base address is the location of the first element (index 0) of the array. Eg : int a [5] = {10, 20,30,40,50};
The five elements are stored as follows
	Elements
	a[0]
	a[1]
	a[2]
	a[3]
	a[4]

	Value
	10
	20
	30
	40
	50

	Address
	1000
	1002
	1004
	1006
	1008

base address a= &a[0]=1000
if ‘p’ is declared as integer pointer, then the array ‘a’ can be pointed by the following assignment

97
COMPUTER PROGRAMMING COURSE - MATERIAL
· Every value of ‘a’ can be accessed by using p++ to move from one element to another. When a pointer is incremented, its value is increased by the size of the datatype that it points to. This length is called the “scale factor”
· The relationship between ‘p’ and ‘a’ is shown below
	P
	= &a[0]
	=
	1000

	P+1
	= &a[1]
	=
	1002

	P+2
	= &a[2]
	=
	1004

	P+3
	= &a[3]
	=
	1006

	P+4
	= &a[4]
	=
	1008

· Address of an element is calculated using its index and the scale factor of the datatype. For eg:
· instead of using array indexing, pointers can be used to access array elements.
· *(p+3) gives the value of a[3]
Program
main ()
{
int a[5]; int *p,i; clrscr ();
printf (”Enter 5 lements”); for (i=0; i<5; i++)
scanf (“%d”, &a[i]); p = &a[0];
printf (“Elements of the array are”); for (i=0; i<5; i++)
printf(“%d”, *(p+i)); getch();
}
98
Output
Enter 5 elements : 10 20 30 40 50

COMPUTER PROGRAMMING COURSE - MATERIAL
Elements of the array are : 10
20
30
40
50
Pointers and two dimensional arrays :
· Memory allocation for a 2-dimensional array is as follows: int a[3] [3]
=
{1,2,3,4,5,6,7,8,9};
1234
1236
1238
1240
1242
1244
1246
1248
1250
1st row
2nd row
3rd row base address = 1234 = &a[0] [0]
Assigning base address to a pointer
· Pointer is used to access the elements of 2 – dimensional array as follows

a[1] [2]
= *(1234 + 1*3+2)
= *(1234 + 3+2)
= *(1234 + 5*2)
Scale factor
= * (1234+10)
=
*(1244)
a[1] [2]
= 6
Program
main ()
{
int a[3] [3], i,j; int *p;
clrscr ();
printf (“Enter elements of 2D array”); for (i=0; i<3; i++)
{
99
COMPUTER PROGRAMMING COURSE - MATERIAL
for (j=0; j<3; j++)
{
scanf (“%d”, &a[i] [j]);
}
}
p = &a[0] [0];
printf (“elements of 2d array are”); for (i=0; i<3; i++)
{
For (j=0; j<3; j++)
printf (”%d \t”, *(p+i*3+j));
}
}
output

printf (“\n”);
}
getch ();
enter elements of 2D array
1
2
3
4
5
6
7
8
9
Elements of 2D array are 1
2
3
4
5
6
7
8
9
Array of pointers
· It is collection of addresses (or) collection of pointers
Declaration
datatype *pointername [size];
eg: int *p[5];
It represents an array of pointers that can hold 5 integer element addresses p[0]
p[1]
p[2]
p[3]
p[4]
	
	
	
	
	

Initialization
‘&’ is used for initialization
Eg :
int a[3] = {10,20,30};
int *p[3], i;
100
COMPUTER PROGRAMMING COURSE - MATERIAL
for (i=0; i<3; i++)
(or)
for (i=0; i<3,i++) p[i] =

&a[i];
p[i] =
a+i; a
p
Accessing
Indirection operator (*) is used for accessing Eg:
for (i=0, i<3; i++)
printf (”%d”, *p[i]);
Program
main ()
{
int a[3] = {10,20,30};
int *p[3],i;
for (i=0; i<3; i++) p[i] = &a[i];
printf (elements of the array are”) for (i=0; i<3; i++)
printf (”%d \t”, *p[i]); getch();
}
Output elements at the array are : 10 20 30
Pointer to pointer:
· Pointer to pointer is a variable that holds the address of another pointer
Declaration
datatype ** pointer_name;
Eg : int **p;
p is a pointer to pointer
101
Initialization :

COMPUTER PROGRAMMING COURSE - MATERIAL
‘&’ is used for initialization Eg:
int a = 10;
int *p; int **q; p = &a; q =&p;

Accessing :
· Indirection operator (*) is used for accessing
Program
main ()
{
int a = 10; int *p; int **q;
p = &a; q = &p;
printf(“a =%d”,a);
printf(“a value through pointer = %d”, *p);
printf(“a value through pointer to pointer = %d”, **q);
}
Output
a=10
a value through pointer = 10
a value through pointer to pointer = 10
102
Void pointers :

COMPUTER PROGRAMMING COURSE - MATERIAL
· It is a pointer that can hold the address of any datatype variable (or) can point to any datatype variable
Declaration
void *pointername; eg : void *vp;
Accessing
· Type cast operator is used for accessing the value of a variable through its pointer.
Syntax:
* ((type cast) void pointer)
Eg :

int i=10; void *vp; vp = &i;
printf (“%d”, * ((int*) vp));
type cast
Program
main ()
{
int i =10; float f = 5.34; void *vp; clrscr ();
vp = &i;
printf (“i = %d”, * ((int*)vp)); vp = &f;
printf (“f = %f”, * ((float*) vp)); getch ();
}
Output
i = 10
f = 5.34
103
Memory allocation functions

COMPUTER PROGRAMMING COURSE - MATERIAL
Memory can be allocated in 2 ways :

· If memory is allocated at compile time, it cannot be changed during execution. There will be a problem of either insufficiency or else wastage of memory.
· The solution is to create memory dynamically i.e. as per the requirement of the user during execution of program.
· The standard library functions used for dynamic memory management are:
1) malloc ()
2) calloc ()
3) realloc ()
4) free ()
1) malloc ();
· This function is used for allocating a block of memory in bytes at runtime.
· It returns a void pointer, which points to the base address of allocated memory
Syntax :
void *malloc (size in bytes)
Eg:

1) int *ptr;
ptr = (int *) malloc (1000);
2) int *ptr;
ptr = (int *) malloc (n * sizeof (int));
Note : if the memory is not free, it returns NULL 2) Calloc ():
· This function is used for allocating continuous blocks of memory at run time.
· This is especially designed for arrays
· It returns a void pointer which points to the base address of the allocated memory
Syntax : void *calloc (numbers of elements, size in bytes) Eg:
1) int *ptr;
ptr = (int *) calloc (500,2);
104
COMPUTER PROGRAMMING COURSE - MATERIAL
Here, 500 blocks of memory each of size 2 bytes will be allocated continuously. Total memory allocated
= 1000 bytes.
2) int *ptr;
ptr = (int *) calloc (n, sizeof (int));

3. realloc () :
· It is used for reallocating already allocated memory
· It can either reduce (or) extend the allocated memory
· It returns a void pointer that points to the base address of reallocated memory
Syntax

500 x 2
= 1000
bytes
Eg:

Free void *realloc (pointer, newsize);
int *ptr;
ptr = (int *) malloc (1000);
- - -
- - -
- - -
ptr = (int *) realloc (ptr, 500);
- - -
- - -
ptr = (int *) realloc (ptr, 1500);
4. free ():
· This function frees (or) deallocates previously allocated memory space..
· With dynamic runtime allocation, it is our responsibility to release the space when it is not required for effective usage of memory.
Syntax
free (pointer);
Eg:
int *ptr;
ptr = (int *) malloc (1000);
- - -
- - -
- - -
free (ptr);
105
Pointers and functions;

COMPUTER PROGRAMMING COURSE - MATERIAL
pass by value: Here values are sent as arguments void main()
{
void swap(int,int); int a,b;
clrscr();
printf(“enter 2 numbers”); scanf(“%d%d”,&a,&b);
printf(“Before swapping a=%d b=%d”,a,b); swap(a,b);
printf(“after swapping a=%d, b=%d”,a,b); getch();
}
void swap(int a,int b)
{
int t;
all these statements is equivalent to
t=a;
a = (a+b) – (b =a);
a=b;
or
b=t;
a = a + b;
}
b = a – b;
a = a – b;
o/p:
enter 2 numbers 10 20 Before swapping a=10 b=20 After swapping a=10 b=20
pass by reference: Here addresses are sent as arguments
void main()
{
void swap(int *,int *); int a,b;
clrscr();
printf(“enter 2 numbers”);
106
scanf(“%d%d”,&a,&b);

COMPUTER PROGRAMMING COURSE - MATERIAL
printf(“Before swapping a=%d b=%d”,a,b); swap(&a, &b);
printf(“after swapping a=%d, b=%d”,a,b); getch();
}
void swap(int *a,int *b)
{
}
o/p:

int t; t=*a;
*a=*b;
*a = (*a + *b) – (*b = * a);
*b=t;
enter 2 numbers 10 20 Before swapping a=10 b=20 After swapping a=20 b=10
Pointer to functions:
· It holds the base address of function definition in memory
Declaration
· datatype (*pointername) ();
· The name of the function itself specifies the base address of the function. So, initialization is done using function name.
 Eg:
int (*p) ();
p = display;
if display () is a function that is defined.
107
COMPUTER PROGRAMMING COURSE - MATERIAL
Program for calling a function using pointer to function
Program
main ()
{
int (*p) (); clrscr ();
p = display;
*(p) ();
getch ();
}
display ()
{
printf(“Hello”);
}
Output
Hello
Command line arguments :
· An executable program that performs a specific task for operating system is called as command
· These commands are issued from the prompt of operating system.
· Some arguments are to be associated with the commands and hence these are called “ command” line arguments. They are
1) argc

argument count
2) argv

argument vector
argc : it contains the total number of arguments passed from command prompt
argv : it is a pointer to an array of character strings which contains names of arguments. Each word is an argument
for eg :
c: |> sample. Exe
hello how are you
arguments
Here, argc = 5
argv[0] = sample.exe
argv[3] = are
argv[1] = hello
argv[4] = you argv [2] = how
Program
108
main (int argc, char *argv[])
{

COMPUTER PROGRAMMING COURSE - MATERIAL
int i; clrscr();
printf (“ no. of arguments given at command prompt = %d”, argc); printf (“ arguments given at command prompt are \n”);
for (i = 1; i <argc; i++)
printf (”%s\n ”, argv[i]); getch();
}
Output
Steps:
1) compile the program
2) Run the program
3) Go to command prompt and give the input c:|> sample.exe hello how are you.
No. of arguments given at command prompt is = 5 arguments given at command prompt are :
hello How Are You
Strings basics:

STRINGS
String : array of characters (or) collection of characters is called a string
Declaration :
char stringname [size];
eg: char a[50];
string of length 50 characters
Initialization
a) using single character constant:
char a[10] = { ‘H’, ‘e’, ‘l’, ‘l’, ‘o’ ,‘\0’}
	‘H’
	‘e’
	‘l’
	‘l’
	‘o’
	‘\0’
	

b) using string constants :
109
char a[10] = “Hello”:;

COMPUTER PROGRAMMING COURSE - MATERIAL

	‘H’
	‘e’
	‘l’
	‘l’
	‘o’
	‘\0’

‘\0’ is called null character.
It marks the end of the string
‘\0’ is automatically placed by the compiler if a string constant is given as input. User must take care of placing ‘\0’ at the end if single character constants are given. Accessing:
· There is a control string “%s” used for accessing the string till it encounters ‘\0’
Program
main ()
{
char a[10] = “Hello”; clrscr ();
printf (“ given string is %s”,a) getch ();
}
Output : Given string is Hello
Input and output for strings
program : using printf () and scanf () for reading & writing strings. main ()
{
char a[30];
printf(“enter your name”); scanf (“%s”,a);
printf (“your name is %s”,a); getch ();
}
Output
1. Enter your name : Ramu
2. Enter your name : Ram kumar
110
COMPUTER PROGRAMMING COURSE - MATERIAL
Your name is Ramu
Your name is Ram Note :
1. ‘&’ is not used for accepting string because name of the string itself specifies the base address of the string
2. space is not accepted as a character by scanf()
3. ‘\0’ is automatically placed by the compiler at the end.
Program : Using gets () and puts () for reading and writing strings. main ()
{
char a[30];
printf (“enter your name”); gets (a);
printf(“Your name is”); puts (a);
}
Out put
1. Enter your Name : Ramu
2) Enter your name : Ram kumar Your name is Ramu
Your name is Ram kumar
Note : Space is also accepted as a character by gets ()
String Library functions
· There are some predefined functions designed for handling strings which are available in the library “string.h”
They are :
1) strlen ()
6. strcmp ()
2) strcpy ()
7. strncmp ()
3) strncpy ()
8. strrev ()
4) strcat ()
9.strstr()
5) strncat ()
1). strlen ()
· This function gives the length of the string i.e. the number of characters in a string.
Syntax:
111
int strlen (string name) program
#include <string.h> main ()
{

COMPUTER PROGRAMMING COURSE - MATERIAL
char a[30] = “Hello”; int l;
l = strlen (a);
printf (“length of the string = %d”, l); getch ();
}
Output
length of the string = 5
Note : “\0” will not be counted as a character.
2). strcpy ()
· This function is used for copying source string into destination string
· The length of the destination string must be greater than (or) equal to that of the source string Syntax:
strcpy (Destination string, Source String);
Eg:
1) char a[50];
2) char a[50];
strcpy (“Hello”,a);
strcpy (a,”hello”);
o/p: error
o/p:
a= “Hello” program
#include <string.h>
main ()
a
{
char a[50], b[50];
clrscr ()
b
printf (“enter a source string”); scanf(“%s”, a);
strcpy (b,a);
printf (“copied string = %s”,b); getch ();
}

H
E
l
l
O
\0
	H
	E
	l
	l
	O
	\0

112
Output

COMPUTER PROGRAMMING COURSE - MATERIAL
Enter a source string : Hello Copied string = Hello
3) strncpy ()
· This function is used for copying ‘n’ characters of source string into destination string
· The length of the destination string must be greater than (or) equal to that of the source string Syntax:
strncpy (Destination string, Source String, n);
program
#include <string.h>
main ()
a
{
H
E
l
l
o
\o
char a[50], b[50];
clrscr ()
b
printf (“enter a string”); gets (a);
strncpy (b,a,3);
b[3] = ‘\0’;
printf (“copied string = %s”,b); getch ();
}
Output
Enter a string : Hello Copied string = Hel
s1
It is also used for extracting substrings;
Eg: char result[10], s1[15] = “Jan 10 2010”; strncpy (result, &s1[4], 2);
result[2] = ‘\0’
result
o/p :Result = 10

J
a
n
1
0
2
0
1
0
\0
1
0
\o
4) strcat ():
· This is used for combining or concatenating two strings.

113
COMPUTER PROGRAMMING COURSE - MATERIAL
· The length of the destination string must be greater than the source string
· The resultant concatenated string will be in the source string. Syntax:
strcat (Destination String, Source string); program
#include <string.h> main()
{
char a[50] = “Hello”;
char b[20] = “Good Morning”; clrscr ();
strcat (a,b);
printf(“concatenated string = %s”, a); getch ();
}
Output
Concatenated string = Hello Good Morning
5) strncat ():
· This is used for combining or concatenating n characters of one string into another.
· The length of the destination string must be greater than the source string
· The resultant concatenated string will be in the source string.
Syntax:
strncat (Destination String, Source string,n); program
#include <string.h> main ()
{
char a [30] = “Hello”;
char b [20] = “Good Morning”; clrscr ();
strncat (a,b,4);
a [9] = ‘\0’;
114
COMPUTER PROGRAMMING COURSE - MATERIAL
printf(“concatenated string = %s”, a); getch ();
}
Output
Concatenated string = Hello Good.
String comparison
6) strcmp
· This function compares 2 strings
· It returns the ASCII difference of the first two non – matching characters in both the strings.
Syntax
int strcmp (string1, string2);
If the difference is equal to zero
string1 = string2
If the difference is positive
string1> string2
If the difference is negative
string1 <string2 eg:
1) char a[10]= “there” char b[10] = “their” strcmp (a,b);
	t
	h
	e
	i
	r
	\0

Output: string1 >string2
‘r’ > ‘i’
2) char a[10]= “their” char b[10] = “there” strcmp (a,b);
	t
	h
	e
	r
	e
	\0

Output: string1 <string2
3) char a[10]= “there” char b[10] = “there” strcmp (a,b);
Output: string1 =string2

‘i’< ‘r’

115
4) char a[10]= “there” char b[10] = “the” strcmp (a,b)
Output: string1 >string2
5) char a[10]= “the” char b[10] = “there” strcmp (a,b);
Output: string1 <string2
Program
main ()
{

COMPUTER PROGRAMMING COURSE - MATERIAL

	t
	h
	e
	\0

‘r’ > ‘\0’
	t
	h
	e
	r
	e
	\0

‘\0’ < ‘r’
char a[50] b [50]; int d;
clrscr();
printf (“enter 2 strings”); scanf (“%s %s”, a,b);
d = strcmp (a,b); if (d==0)
printf(“%s is equal to %s”, a,b); else if (d>0)
printf(“%s is greater than %s”,a,b); else if (d<0)
printf(“%s is less than %s”, a,b); getch ();
}
7. strncmp ()
· This function is used for comparing first ‘n’ characters of 2 strings
Syntax :
strncmp (string1, string2, n) Eg:
char a[10] = “the”;
116
char b[10] = “there” strncmp (a,b,3);

COMPUTER PROGRAMMING COURSE - MATERIAL
Output : Both strings are equal
8. strrev()
· The function is used for reversing a string
· The reversed string will be stored in the same string
Syntax :
strrev (string)
Program main ()
{
char a[50] ; clrscr();
printf (“enter a string”); gets (a);
strrev (a);
printf(“reversed string = %s”,a) getch ();
}
Output : enter a string
Hello Reverse string

= olleH
9. strstr():
· It is used to search whether a substring is present in the main string or not.
· It returns pointer to first occurrence of s2 in s1
Syntax :
strstr(mainsring,substring);
Program void main()
{
char a[30],b[30]; char *found;
clrscr();
printf("Enter a string:\t"); gets(a);
117
COMPUTER PROGRAMMING COURSE - MATERIAL
printf("Enter the string to be searched for:\t"); gets(b);
found=strstr(a,b); if(found)
printf("%s is found in %s in %d position",a,b,found-a);
else
printf("-1 since the string is not found");
getch();
}
Output:
Enter a string: how are you
Enter the string to be searched for:
you you is found in 8 position
Arrays of pointers: (to strings)
· It is an array whose elements are pointers to the base address of the string
· It is declared and initialized as follows char *a[] = {“one”, “two”, “three”};
Here, a[0] is a pointer to the base address of the string “one” a[1] is a pointer to the base address of the string “two” a[2] is a pointer to the base address of the string “three”
	o
	n
	e
	\0
	t
	w
	o
	\0
	t
	h
	r
	e
	e
	\0

1234
1238
1242
a [0]
a [1]
a [2]
Advantage :
· Unlink the two dimensional array of characters. In (array of strings), in array of pointers to strings there is no fixed memory size for storage.
· The strings occupy only as many bytes as required hence, there is no wastage of space.
Program
118
main ()
{

COMPUTER PROGRAMMING COURSE - MATERIAL
}
Output

char *a[5] = {“one”, “two”, “three”, “four”, “five”}; int i;
clrscr ();
printf (“the strings are”) for (i=0; i<5; i++)
printf (“%s”, a[i]); getch ();
The strings are : one
two
three
four
five
Character operations
Character : it can be a character (A-Z(or) a- z); digit (0-9), a white space, special symbol
Declaration
char a= ‘A’; using a character constant.
Character input / ouput functions

eg:
char a;
scanf(“%c”, &a);
printf (“%c”, &a);
a = getchar ();
putchar (a);
a = getch ();
putch (a);
Character analysis and conversion functions
· There are some predefined functions available in “ctype.h” library for analyzing the character input and converting them.

[image: image18]
119
COMPUTER PROGRAMMING COURSE - MATERIAL
	Function
	Checks whether entered character is

	1. isalpha ()
2. isdigit ()
3. isspace ()
4. ispunct ()
5. islower ()
6. isupper ()
7. isalphanumeric()
	An alphabet (or) not A digit (or) not
A space, a newline (or) tab A special symbol (or) not
A lower case letter of alphabet An upper case letter of alphabet An alphabet/digit or not

	Converting functions

	Function
	

	tolower ()
	Converts an upper case alphabet to lower case

	toupper ()
	Converts a lower case alphabet to upper case

Program
#include <ctype.h> main ()
{
char a = ‘D’; clrscr ();
if (isalpha (a))
printf (“%c is an alphabet”,a);
else
printf (“%c is not an alphabet”,a);
getch ();
}
Output
D is an alphabet
String to number and number to string conversion
There are 2 functions available for conversion. They are:
1) sscanf()
-
used for converting string to number
2) sprintf ()
-
used for converting number to string
1) string to number converstion
· sscanf () – takes a string as an input and converts it into numbers
120
COMPUTER PROGRAMMING COURSE - MATERIAL
Syntax:
sscanf (string name, “ control string”, variable list)
for eg:
a
- i/p
%s
Program main ()
{

day
%d
%d
%d

- o/p
char a[20] = “02 01 2010”;
int day, mon, yr; clrscr();
sscanf (a, “%d%d %d”, &day, &mon, &yr); printf (“Day =%d”, day);
printf (“Month = %d”, mon); printf (“Year = %d”, yr); getch ();
}
Output
Day = 02
Month = 01
Year = 2010
2. Number to string conversion

COMPUTER PROGRAMMING COURSE - MATERIAL
· sprintf() takes different numeric values as input and converts it into a single string Syntax :
sprintf (string name, “control string”, variable list)
for eg:
-
i/p
o/p
%s
Program main ()
{
char a[50];
int day = 02, mon = 01, yr = 2010; crlscr();
sprintf (a, “%d/%d/%d”, day, mon, yr); printf (“today’s date =%s”,a);
getch ();
}
Output
Today’s date is 02/01/2010.
COMPUTER PROGRAMMING COURSE - MATERIAL

Introduction :

COMPUTER PROGRAMMING COURSE - MATERIAL
STRUCTURES AND UNIONS
· Structure : It is a collection of different datatype variables, grouped together under a single name. (or) It is heterogenous collection of data items that share a common name
Features of structure
1. It is possible to copy the contents of all structure elements of different datatypes to another structure variable of its type using assignment operator
2. To handle complex datatypes, it is possible to create structure within another structure, which is called nested structures.
3. It is possible to pass entire structure, individual elements of structure and address of structure to a function
4. It is possible to create structure pointers
Declaration and initialization of structures.
General form of structure declaration struct tagname
{
datatype member1; datatype member2; datatype member n;
};
Here, struct
-
keyword
tagname
-
specifies name of structure
member1, member2 - -
specifies the data items that make up structure.
Eg:

struct book
{
int pages;
char author [30]; float price;
};
Structure variables

COMPUTER PROGRAMMING COURSE - MATERIAL
There are 3 ways of declaring structure variables
1) struct book
{
}b;
2) struct
{
}b;

int pages;
char author[30]; float price;
int pages;
char author[30]; float price;

Note : Tagname can be ignored if the variable is declared of the time of defining structure
3) struct book
{
int pages;
char author[30]; float price;
};
struct book b;
Initialization and accessing of structures
· The link between a member and a structure variable is established using member operator (or) dot operator
· Initialization can be done in the following ways
1. struct book
{
int pages;
char author[30]; float price;
} b = {100, “balu”, 325.75};
2. struct book
{
125
int pages;
char author[30]; float price;
};

COMPUTER PROGRAMMING COURSE - MATERIAL
struct book b = {100, “balu”, 325.75};
3. using member operator struct book
{
int pages;
char author[30]; float price;
} ;
struct book b;
b. pages = 100;
strcpy (b.author, “balu”); b.price = 325.75;
4. using scanf ()
struct book
{
int pages;
char author[30]; float price;
} ;
struct book b;
scanf (“%d”, &b.pages);
scanf (“%s”, b.author);
scanf (“%f”, &b. price); main ()
{
struct book b; clrscr ();
printf (“enter no of pages, author, price of book”); scanf (“%d%s%f”, &b.pages, b.author, &b.price); printf(“ Details of book are”);
126
COMPUTER PROGRAMMING COURSE - MATERIAL
printf(“pages =%d, author = %s, price = %f”, b.pages, b.author, b.price); getch();
}
Structure within structure (or) Nested structures
· Creating a structure inside another structure is called nested structure
· Consider the following example struct emp
{
}e;

int eno;
char ename[30]; float sal;
float da; float hra; float ea;
· This is structure defines eno, ename, sal and 3 kinds of allowances. All the items related to allowances can be grouped together and declared under a sub – structure as shown below. stuct emp
{
int eno;
char ename[30]; float sal;
struct allowance
{
}e;

}a;

float da; float hra; float ea;
· The inner most member in a nested structure can be accessed by changing all the concerned structure variables (from outer most to inner most) with the member using dot operator
Eg :

e.eno;
e.ename
e.sal;
a;
e.a.hra;
e.a.ea;

127
COMPUTER PROGRAMMING COURSE - MATERIAL
Program
struct emp
{
int eno;
char ename[30]; float sal;
struct allowance
{
}e;

}a;

float da; float hra; float ea;
main ()
{
clrscr ();
printf(“enter eno, ename, salary”);
scanf (“%d%s%f”, &e.eno, e.ename, &e.sal); printf (“enter da, hra, ea, values”);
scanf (“%f%f%f’’, &e.a.da, &e.a.hra, &e.a.ea); printf(“employee details are”)
printf (“number = %d”, e.eno); printf (“name = %s”, e.ename); printf(“salary = %f”, e.sal);
printf(“Dearness Allowance = %f”, e.a.da); printf (“House Rent Allowance = %f”, e.a.hra); printf(“City Allowance = %f”, e.a.ea);
getch ()
}
128
Array of structures:

COMPUTER PROGRAMMING COURSE - MATERIAL
· The most common use of structure is array of structures
· To declare an array of structures, first the structure must be defined and then an array variable of that type.
Eg: struct book b[10];
10 elements in an array of structures of type ‘book’
Program for accepting and printing details of 10 students
struct student
{
int sno;
char sname[30]; float marks;
};
main ()
{
struct student s[10]; int i;
clrscr ();
for (i=0; i<10; i++)
{
printf(“enter details of students%d”, i+1);
scanf (“%d%s%f”, & s[i]. sno, s[i]. sname, &s[i].marks);
}
for (i=0; i<10; i++)
{
printf (“the details of student %d are”, i+1); printf (“Number = %d”, s[i]. sno);
printf (“name = %s”, s[i]. sname); printf (“marks =%f”, s[i]. marks);
}
getch ();
}
129
Pointer to structure:

COMPUTER PROGRAMMING COURSE - MATERIAL
· It holds the address of the entire structure .
· Mainly these are used to create complex data structures such as linked lists, trees, graphs and so on.
· The members of the structure can be accessed using a special operator called arrow operator (
) .
Declaration
struct tagname *ptr; eg; struct student *s;
Accessing ;
ptr
membername;
eg: ssno, ssname, smarks; struct student
{
int sno;
char sname[30]; float marks;
};
main ()
{
struct student s; struct student *st; clrscr ();
printf(“enter sno, sname, marks”);
scanf (“%d%s%f”, & s.sno, s.sname, &s. marks); st = &s;
printf (“details of the student are”); printf (“Number = %d”, st sno); printf (“name = %s”, stsname); printf (“marks =%f”, st marks); getch ();
}
Structure and functions
130
COMPUTER PROGRAMMING COURSE - MATERIAL
· There are 3 ways by which the values of structure can be transferred from one function to another.
1) passing individual members as arguments to function
· Each member is passed as an argument in the function call.
· They are collected independently in ordinary variables in function header.
Eg:
struct date
{
int day; int mon; int yr;
};
main ()
{
struct date d= {02,01,2010}; clrscr ();
display (d.day, d.mon, d.yr); getch ();
}
display (int a, int b, int c)
{
printf(“day = %d”, a); printf(“month = %d”,b); printf(“year = %d”,c);
}
2. Passing entire structure as an argument to function
· Name of the structure variable is given as argument in function call
· It is collected in another structure variable in function header Disadvantage : A copy of the entire structure is created again wasting memory Program
struct date
{
int day; int mon; int yr;
131
};
main ()
{

COMPUTER PROGRAMMING COURSE - MATERIAL
struct date d= {02,01,2010}; display (d);
getch ();
}
display (struct date dt)
{
printf(“day = %d”, dt.day); printf(“month = %d”,dt.mon); printf(“Year = %d”,dt.yr);
}
3. Passing the address of structure as an argument to function
· The Address of the structure is passed as an argument to the function
· It is collected in a pointer to structure in function header
Advantages:
1. No wastage of memory as there is no need of creating a copy again
2. No need of returning the values back as the function can access indirectly the entire structure and work on it.
Program
struct date
{
int day; int mon; int yr;
};
main ()
{
struct date d= {02,01,2010}; display (&d);
getch ();
}
132
display (struct date *dt)
{

COMPUTER PROGRAMMING COURSE - MATERIAL
}
Union

printf(“day = %d”, dtday); printf(“month = %d”,dtmon); printf(“Year = %d”,dt yr);
Def : A union is a memory location that is shared by several variables of different data types.
Syntax:
union uniontag
{
datatype member 1;
datatype member 2;

datatype member n;
};
Eg:

union sample
{
int a; float b; char c;
};
Declaration of union variable
1) union sample
{
}s;

int a;
float b;
4bytes
char c;
s
a
 SHAPE * MERGEFORMAT

2) union
b
{
c
 SHAPE * MERGEFORMAT

133
}s;

int a; float b; char c;

COMPUTER PROGRAMMING COURSE - MATERIAL
3) union sample
{
int a; float b; char c;
};
union sample s;
· when a union is declared, the compiler automatically creates a variable large enough to hold the largest variable type in the union.
· At any time only one variable can be referred.
Initialization and accessing
· To access a union member, the same syntax as that of the structure is used
· The dot operator is used for accessing members normally
· The arrow operator (
) is used for accessing the members using pointer
program
union sample
{
int a; float b; char c;
}
main ()
{
union sample s = {10, 20.5, ‘A’}; clrscr();
printf(“a=%d”,s.a);
printf(“b=%f”,s.b);
printf(“c=%c”,s.c);
134
getch ();
}

COMPUTER PROGRAMMING COURSE - MATERIAL
Output
a = garbage value b = garbage value c = A

Only the variable that is stored at last will retain its value

Differences between structures and Unions
	Structure
	Union

	1. Definition
Structure is heterogenous collection of data items grouped together under a single name
2. syntax;
struct tagname
{
datatype member1; datatype member2;

};
3. Eg:
struct sample
{
int a; float b; char c;
};
4. Keyword : struct
5. Memory allocation
a 2 bytes
b 4 bytes
c 1 byte
7 bytes
6. Memory allocated is the sum of sizes of all the datatypes in structure
(Here, 7bytes)
7. Memory is allocated for all the members of the structure differently
	1. Definition
A union is a memory location that is shared by several variables of different datatypes.
2. syntax;
union tagname
{
datatype member1; datatype member2;

};
3. Eg:
union sample
{
int a; float b; char c;
};
4. Keyword : union
5. Memory allocation
a b c
6. Memory allocated is the maximum size allocated among all the datatypes in union (Here, 4bytes)
7. Only one member will be residing in the memory at any particular instance

Union of structures
135
COMPUTER PROGRAMMING COURSE - MATERIAL
· A structure can be nested inside a union and it is called union of structures
· It is also possible to create a union inside a structure
Program
struct x
{
};
union z
{
};

int a; float b;
struct x s;
main ()
{
union z u; clrscr ();
u.s.a = 10;
u.s.b = 30.5; printf(“a=%d”, u.s.a); printf(“b=%f”, u.s.b); getch ();
}
Output
a= 10
b = 30.5
Typedef ;
· ‘C’ allows to define new datatype names using the ‘typedef’ keyword
· Using ‘typedef’, user will not actually create a new datatype but define a new name for an existing type.
Syntax :
typedef datatype newname;
eg :
int a;
136
COMPUTER PROGRAMMING COURSE - MATERIAL
· This statement tells the compiler to recognize ‘num’ as another name for ‘int’.
· ‘num’ is used to create another variable ‘a’ .
· ‘num a’declares ‘a’ as a variable of type ‘int’.
Program
main ()
{
typedef int hours; hours h;
clrscr (); printf(“enter hours”); scanf (“%d”, &h);
printf(“Minutes =%d”, h*60); printf(“Seconds = %d”, h*60*60); getch ();
}
Output :
Enter hours =1
Minutes = 60
Seconds = 360
Example for typedefining a structure
typedef employee
{
} emp;

int eno;
char ename[30]; float sal;
main ()
{
emp e = {10, “ramu”, 5000}; clrscr();
printf(“number = %d”, e.eno); printf(“name = %d”, e.ename); printf(“salary = %d”, e.sal); getch ();
}
137
Bit Fields

COMPUTER PROGRAMMING COURSE - MATERIAL
· These are used to change the order of allocation of memory from bytes to bits
· A bit field is a set of adjacent bits whose size can be from 1 to 16 bits in length
· There are occasions where data items require much less than 16 bits of space. In such cases memory will be wasted. Bit fields can pack several data items in a word of memory
Syntax
datatype name : bit – length;
· The datatype can be either int (or) unsigned int (or) signed int.
· Bit length specifies the number of bits
· The largest value that can be stored is 2n – 1, where ‘n’ is bit length
NOTE :
1) Bit fields cannot be arrayed
2) scanf () cannot be used to read values into bit fields
3) cannot use pointer to access the bit fields
4) Bit fields should be assigned values within the range of their size
	Bit Length
	Range of values

	1
2
3
n
	0 to 1
0 to 3 (22-1)
0 to 7 (23-1)
0 to 2n-1

Eg:
1) struct pack
{
int count; unsigned a : 2; unsigned b : 3;
};
Here, count will be in 2 bytes. ‘a’ and ‘b’ will be packed into next 1 byte
2) struct pack
{
unsigned a : 2; int count; unsigned b : 3;
};
138
COMPUTER PROGRAMMING COURSE - MATERIAL
Here, ‘a’ will be in 1 byte, ‘count’ in 2 bytes and ‘b’ in 1 bytes.
Note ;
1. Bit Fields are packed into words as they appear in the definition
2. All unsigned bit fields must be placed in order for effectively using the memory
Program
struct vehicle
{
unsigned type : 3;
Note: Instead of 6 bytes only 1 byte of memory unsigned fuel : 2;

will be allocated
unsigned model : 3;
};
main ()
{
struct vehicle v; v.type = 4;
v. fuel = 2;
v. model = 5;
printf (“type of vehicle =%d”, v.type); printf (“fuel =%d”, v.fuel);
printf (“model =%d”, v.model);
}
Enumerated Data type
· These are used by the programmers to create their own data types and define what values the variables of these datatypes can hold.
Keyword : enum
Syntax :
enum tagname
{
};
eg :

identifier1, identifier2,…….,identifier n
enum week
{

139
COMPUTER PROGRAMMING COURSE - MATERIAL
mon,tue, wed, thu, fri, sat, sun
};
· Here, with identifier values are constant unsigned integers and start from 0.
· Mon refers 0, tue refers 1 and so on.
Program :
main ()
{
enum week {mon, tue, wed, thu, fri, sat, sun}; clrscr ();
printf (“Monday = %d”, mon); printf (“Thursday = %d”, thu); printf (“Sunday = %d”, sun);
}
Output : Monday = 0
Thursday =3
Sunday =6
· enum identifiers can also be assigned initial value.
Program
main ()
{
enum week {mon=1, tue, wed, thu, fri, sat, sun}; clrscr ();
printf (“Monday = %d”, mon); printf (“Thursday = %d”, thu); printf (“Sunday = %d”, sun);
}
Output : Monday = 1
Thursday =4
Sunday =7
140
COMPUTER PROGRAMMING COURSE - MATERIAL

FILES
Definition :It is collection of records (or) It is a place on hard disk where data is stored permanently.
Types of Files:

(1)Text file (2)Binary File
1. Text File : It contains alphabets and numbers which are easily understood by human beings.
2. Binary file : It contains 1’s and 0’s which are easily understood by computers.
· Based on the data that is accessed, files are classified in to
(1) Sequential files
(2) Random access files
(1) Sequential files: Data is stored and retained in a sequential manner.
(2) Random access Files : Data is stored and retrieved in a random way.
Operations on files : 1. Naming the file
2. Opening the file
3. Reading from the file
4. Writing into the file
5. Closing the file
Syntax for opening and naming file.
1) FILE *File pointer;
Eg : FILE * fp;
2) File pointer = fopen (“File name”, “mode”); Eg : fp = fopen (“sample.txt”, “w”);
Modes of the opening the file :
r
-
File is opened for reading w
-
File is opened for writing
a
-
File is opened for appending (adding)
r+
-
File is opened for both reading & writing w+
-
File is opened for both writing & reading a+
-
File is opened for appending & reading rt
-
text file is opened for reading
wt
-
text file is opened for writing
at
-
text file is opened for appending
COMPUTER PROGRAMMING COURSE - MATERIAL
r+t
-
text file is opened for reading & writing
w+t
-
text file is opened for both writing & reading a+t
-
text file is opened for both appending & reading rb
-
binary file is opened for reading
wb
-
binary file is opened for writing
ab
-
binary file is opened for appending
r+b
-
binary file is opened for both reading & writing w+b
-
binary file is opened for both writing & reading a+b
-
binary file is opened for both appending & reading.
1) Write mode of opening the file
FILE *fp;
fp =fopen (“sample.txt”, “w”);
a) If the file does not exist then a new file will be created
b) If the file exists then old content gets erased & current content will be stored.
2. Read mode of opening the file:
FILE *fp
fp =fopen (“sample.txt”, “r”);
a) If the file does not exists, then fopen function returns NULL value.
b) If the file exists then data is read from the file successfullly
3. Append mode of opening a file
FILE *fp;
fp =fopen (“sample.txt”, “a”);
a) If the file doesn’t exists, then a new file will be created.
b) If the file exists, the current content will be appended to the old content
	Mode
	Exist
	Not exist

	r
	Read
	fp = “NULL”

	w
	Current Content
	New file will be created

	a
	Old content Current content
	New file will be created

I/O STREAMS:
Stream : flow of data

I/0 functions:
1) high level I/o

COMPUTER PROGRAMMING COURSE - MATERIAL
scanf()
printf ()
· These are easily understood by human beings
· Advantage: portability.
2) Low level I/o
· These are easily understood by computer
· Advantages. Execution time is less
· Disadvantage: Non protability
High level I/o Functions
1) fprintf ()
-
to write data into a file
2) fscanf ()
-
To read data from a file
3) putc ()/ fputc()
-
to write a character into a file
4) getc () /fgetc()
-
to read a character from a file
5) putw ()
-
To write a number into a file
6) getw ()
-
To read number from a file
7) fputs ()
-
To write a string into a file
8) fgets ()
-
To read a string from a file 9)fread()
-
To read an entire record from a file 10)fwrite()
-
To write an entire record into a file
fprint () & fscanf () functions
1) fprint ()
Syntax : fprintf (file pointer, “ control string”, variable list) Eg:
FILE *fp;
fprintf (fp, “%d%c”, a,b);
COMPUTER PROGRAMMING COURSE - MATERIAL
2) fscanf ()
Syntax : fscanf(file pointer, “control string”, & variable list); Eg:
FILE *fp;
fscanf (fp, “%d%c”, &a,&b);
Program for storing the details of an employee in a file and print the same
main ()
{
FILE *fp; int eno;
char ename [30]; float sal;
clrscr ();
fp =fopen (“emp.txt”, “w”);
printf (“enter the details of eno, ename, sal”); scanf (“%d%s%f”, &eno, ename, &sal); fprintf (fp, “%d%s%f”, eno, ename, sal); fclose (fp);
fp = fopen (“emp.txt”, “r”);
fscanf (fp, “%d%s%f”, &eno, ename, &sal); printf (“employee no: = %d”, eno);
printf (“employee name = %s”, ename); printf (“salary = %f”, sal);
fclose (fp); getch();
}
Program for storing the details of 60 employers in a file and print the same
main ()
{
FILE *fp; int eno, i;
char ename [80]; float sal;
clrscr ();
144
COMPUTER PROGRAMMING COURSE - MATERIAL
fp = fopen (“emp1. txt”, “w”); for (i=1; i<60; i++)
{
printf (“enter the eno, ename, sal of emp%d”, i); scanf (“%d%s%f”, &eno, ename, &sal);
fprintf (fp, “%d %s %f”, eno, ename, sal);
}
fclose (fp);
fp = fopen (“emp1.txt”, “r”); for (i=1; i<60; i++)
{
fscanf(fp, “%d %s %f”, &eno, ename, &sal); printf (“details of employee %d are \n”, i);
printf (“eno = %d, ename = %s, sal = %f”, eno, ename, sal);
}
fclose (fp); getch ();
}
putc() and getc() functions:
1) putc (): It is used for writing a character into a file Syntax :
putc (char ch, FILE *fp); Eg :
FILE *fp;
char ch; putc(ch, fp);
2) get c () : It is used to read a character from file Syntax :
char getc (FILE *fp);
Eg:
FILE *fp; char ch;
ch = getc(fp);
145
COMPUTER PROGRAMMING COURSE - MATERIAL

Program :
main ()
{
FILE *fp; char ch; clrscr ();
fp = fopen (“characters.txt”, “w”);
printf (“enter text. press ctrl+z at the end”); while ((ch = getchar ())! = EOF)
{
putc(ch, fp);
}
fclose (fp);
fp =open (“characters. txt”, “r”); printf (“file content is \n”); while ((ch = getc (fp))! = EOF)
{
putchar (ch);
}
fclose (fp); getch ();
}
Output:
Enter text press ctrl+z at the end. Hello how r u ^z
File Content is Hello How r u
146
putw () and getw () functions:

COMPUTER PROGRAMMING COURSE - MATERIAL
1. putw() : It is used for writing a number into file. Syntax: putw (int num, FILE *fp);
Eg:
FILE *fp; int num;
putw(num, fp);
2. getw (): It is used for reading a number from a file Syntax :
int getw (FILE *fp); Eg :
FILE *fp;
int num;
num = getw(fp);
Program for storing no’s from 1 to 10 and print the same
main ()
{

File
FILE *fp; int i; clrscr ();
fp = fopen (“number. txt”, “w”); for (i =1; i< = 10; i++)
{
putw (i, fp);
}
fclose (fp);
fp =fopen (“number. txt”, “r”); printf (“file content is ”);
for (i =1; i< = 10; i++)
{
i= getw(fp); printf (“%d”,i);
147
}
fclose (fp); getch ();
}

COMPUTER PROGRAMMING COURSE - MATERIAL
Program for copying the contents of one file into another file
main ()
{
FILE *fp1, *fp2; char ch;
clrscr ();
fp1 = fopen (“file1.txt”, “w”);
printf (“enter text press ctrl+z at the end”); while ((ch = getchar ())! = EOF)
{
putc(ch, fp1);
}
fclose (fp1);
fp1 =fopen (“file1. txt”, “r”);
fp2 =fopen (“file2. txt”, “w”); while ((ch = getc (fp1))! = EOF)
{
putc(ch,fp2);
}
fclose (fp1); fclose (fp2);
fp2 = fopen (“file2.txt”, “r”); printf (“File2 contents are”); while ((ch = getc(fp2))! = EOF)
putchar (ch); fclose (fp2);
getch ();
}
148
COMPUTER PROGRAMMING COURSE - MATERIAL
Program for displaying the contents of a file
main ()
{
FILE *fp; char ch ; clrscr ();
fp = fopen (“file1.txt”,”r”); if (fp = = NULL)
{
}
else
{
}

printf (“File does not exist”);
printf (“file content is”)
while ((ch = getc(fp))! = EOF) putchar (ch);
fclose (fp); getch ();
}
Program to merge two files into a third file. (the contents of file1, file2 are placed in file3)
main ()
{
FILE *fp1, *fp2, *fp3; char ch;
clrscr ();
fp1 = fopen (“file1.txt”, “w”); printf (“enter text into file1”); while ((ch = getchar ())! = EOF)
{
putc(ch, fp1);
}
fclose (fp1);
fp2 = fopen (“file2.txt”, “r”);
149
COMPUTER PROGRAMMING COURSE - MATERIAL
printf (“enter text into file2”); while ((ch = getchar ())! = EOF)
putc(ch, fp2); fclose (fp2);
fp1 =fopen (“file1. txt”, “r”);
fp2 =fopen (“file2. txt”, “r”);
fp3 =fopen (“file3. txt”, “w”); while ((ch = getc (fp1))! = EOF)
putc(ch,fp3);
while ((ch = getc (fp2))! = EOF) putc(ch,fp3);
fclose(fp1); fclose (fp2); fclose (fp3);
fp3 = fopen (“file3.tx”, “r”); printf (“File3 contents is”); while ((ch = getc(fp3))! = EOF)
purchar (ch); fclose (fp3);
getch ();
}
fput c () and fgetc () functions :
1) fputc() : It is used for writing a character in to a file . Syntax :
fputc (char ch, FILE *fp); Eg :
FILE *fp;
char ch; fputc (ch.fp);
2. fgetc() : This is used for reading a character from a file Syntax :
fputc (char ch, FILE *fp); Eg :
FILE *fp;
char ch;
150
ch = fgetc(fp);

COMPUTER PROGRAMMING COURSE - MATERIAL
fgets () and fputs () functions :
1) fgets () : It is used for reading a string from a file Syntax :
fgets (string variable, No. of characters, File pointer); Eg :
FILE *fp;
char str [30]; fgets (str,30,fp);
2) fputs () : It is used for writing a string into a file Syntax :
fputs (string variable, file pointer); Eg :
FILE *fp;
char str[30]; fputs (str,fp);
Program :
main ()
{

File
FILE *fp; char str [30]; int i,n;
clrscr ();
printf (“enter no of strings”); scanf (“%d”, & n);
fp = fopen (‘strings.txt”, “w”); for (i=1; i<=n; i++)
{
printf (”enter string %d”,i); gets (str);
fputs (str, fp);
151
}
fclose (fp);

COMPUTER PROGRAMMING COURSE - MATERIAL
fp = fopen (”strings.txt”, ”r”); for (i=1; i<=n; i++)
{
fgets (str, 30, fp);
printf (”string %d =”, i); puts (str);
}
fclose (fp); getch ();
}
fread () and fwrite () functions
1. fread () : It is used for reading entire record at a time.
Syntax : fread(& structure variable, size of (structure variable), no of records, file pointer); Eg : struct emp
{
} e;

int eno;
char ename [30]; float sal;
FILE *fp;
fread (&e, sizeof (e), 1, fp);
2. fwrite () : It is used for writing an entire record at a time.
Syntax : fwrite(& structure variable , size of structure variable, no of records, file pointer); Eg : struct emp
{
} e;

int eno:
char ename [30]; float sal;
FILE *fp;
fwrite (&e, sizeof(e), 1, fp);
152
COMPUTER PROGRAMMING COURSE - MATERIAL
program for storing the details of 60 students into a file and print the same using fread () and fwrite ()
struct student
{
int sno;
char sname [30]; float marks;
};
main ()
{
struct student s[60]; int i;
FILE *fp; clrscr ();
fp = fopen (“student1. txt”, “w”); for (i=0; i<60; i++)
{
printf (“enter details of student %d”, i+1);
scanf (“%d%s%f”. &s[i].sno,s[i].sname, &s[i].marks);
fwrite (&s[i], sizeof (s[i]), 1, fp);
}
fclose (fp);
fp = fopen (“student1. txt”, “r”); for (i=0; i<60; i++)
{
printf (“details of student %d are”, i+1); fread (&s[i], sizeof (s[i]) ,1,fp); printf(“student number = %d”, s[i]. sno.); printf(“student name = %s”, s[i]. sname.); printf(“marks = %f”, s[i]. marks);
}
fclose (fp) getch();
}
153
COMPUTER PROGRAMMING COURSE - MATERIAL
ERROR HANDLING IN FILES:-
· Some of the errors in files are
1. Trying to read beyond end of file
2. Device over flow
3. Trying to open an invalid file
4. Performing a invalid operation by opening a file in a different mode.
Functions for error handling.
1) ferror ()
2) perror ()
3) feof ()
1. ferror ()
It is used for detecting an error while performing read / write operations.
Syntax :
int ferror (file pointer);
eg :
FILE *fp;
if (ferror (fp))
printf (“error has occurred”);
it returns zero if success and a non- zero otherwise.
2. perror ()
It is used for printing an error.
Syntax :
perror (string variable); Eg :
FILE *fp;
char str[30] = ”Error is”; perror (str);
O/P : Error is : error 0
Program :
154
main ()
{

COMPUTER PROGRAMMING COURSE - MATERIAL
FILE *fp;
char str[30] = “error is”; int i = 20;
clrscr ();
fp = fopen (“sample. txt”, “r”); if (fp = = NULL)
{
printf (“file doesnot exist”);
}
else
{
fprintf (fp, “%d”, i); if (ferror (fp))
{
}
fclose (fp); getch ();
}

perror (str);
printf (“error since file is opened for reading only”);
O/P:
Error is : Error1 
compiler generated.
Error since file is opened for reading 
by us.
3. feof ()
It is used for checking whether end of the file has been reached (or) not.
Syntax :
int feof (file pointer); Eg :
FILE *fp;
if (feof (fp))
printf (“reached end of the file”);
If returns a non zero if success and zero otherwise.
Program:
155
main ()
{

COMPUTER PROGRAMMING COURSE - MATERIAL
FILE *fp; int i,n; clrscr ();
fp = fopen (“number. txt”, “w”); for (i=0; i<=100;i= i+10)
{
putw (i, fp);
}
fclose (fp);
fp = fopen (“number. txt”, “r”); printf (“file content is”);
for (i=0; i<=100; i++)
{
n = getw (fp); if (feof (fp))
{
printf (“reached end of file”); break;
}
else
{
printf (“%d”, n);
}
}
fclose (fp); getch ();
}
Outpute : File content is
10
20
30
40
50
60
70
80
90
100
Reached end of the file.
156
Other file functions Random accessing of files
1. ftell ()
2. rewind ()
3. fseek ()

COMPUTER PROGRAMMING COURSE - MATERIAL
1. ftell () : It returns the current postion of the file pointer Syntax : int n = ftell (file pointer)
Eg :
FILE *fp;
int n;
n = ftell (fp);
Note : ftell () is used for counting the no of characters entered into a file.
2. rewind ()
It makes the file pointer move to the beginning of the file. Syntax: rewind (file pointer);
Eg : FILE *fp;

rewind (fp); n = ftell (fp);
printf (“%d”, n);
o/p: 0 (always).
3. fseek ()
It is used to make the file pointer point to a particular location in a file.
Syntax: fseek(file pointer,offset,position);
offset :
· The no of positions to be moved while reading or writing.
· If can be either negative (or) positive. Positive - forward direction. Negative – backward direction .
position :
· it can have 3 values. 0 – Beginning of the file
1 – Current position
157
2 – End of the file

COMPUTER PROGRAMMING COURSE - MATERIAL
Eg :
1. fseek (fp,0,2) - fp is moved 0 bytes forward from the end of the file.
2. fseek (fp, 0, 0) – fp is moved 0 bytes forward from beginning of the file
3. fseek (fp, m, 0) – fp is moved m bytes forward from the beginning of the file.
4. fseek (fp, -m, 2) – fp is moved m bytes backward from the end of the file.
Errors :
1. fseek (fp, -m, 0);
2. fseek(fp, +m, 2);
Write a program for printing some content in to the file and print the following ?
1. Number of characters entered into the file.
2. Reverse the characters entered into the file.
main ()
{
FILE *fp; char ch; int n; clrscr ();
fp = fopen (“reverse. txt”, “w”);
printf (“enter text press ctrl+z of the end”); while ((ch = getchar()) ! EOF)
{
}
n = ftell (fp)

putc (ch, fp);
printf (“No. of characters entered = %d”, n); rewind (fp);
n = ftell (fp);
printf (“fp value after rewind = %d”,n); fclose (fp);
fp = fopen (“reverse.txt”, “r”); fseek (fp, -1, 2);

158
COMPUTER PROGRAMMING COURSE - MATERIAL
printf (“reversed content is”); do
{
ch = getc (fp); printf (“%c”, ch);
} while (!fseek (fp, -2, 1); fclose (fp);
getch ();
}
Output : Enter text press ctrl z at the end.
How are you ^z
No. of characters entered = 11 fp value after rewind =0
Reversed content is uoy era woh.
Command line arguments
· Arguments given at command prompt.
· main () takes 2 arguments.
1) int argc – argument count.
2) char *argv [] – argument vector.
Program :
main (int arg c, char * argv [])
{
int i; clrscr ();
printf (“no. of arguments = %d”, argc);
printf (“arguments given at cmd prompt are”); for (i=0; i<argc; i++)
{
printf (“%s \t”, argv [i]);
}
getch ();
}
Program : for reversing characters in a file given at command prompt
main (int argc, char *argv [])
{
FILE *fp; char ch; clrscr ();
fp = fopen (argv[1], “w”);

COMPUTER PROGRAMMING COURSE - MATERIAL
printf (“enter text press ctrl+z at the end”); while ((ch = getchar ())! = EOF)
putc (ch, fp); fclose (fp);
fp = fopen (argv[1], “r”);
fseek (fp, argv[2], 0); do
{
ch = getc (fp); putchar (ch);
} while (! fseek (fp, -2, 1)); fclose (fp);
getch ();
}
COMPUTER PROGRAMMING COURSE - MATERIAL
COMPUTER PROGRAMMING COURSE - MATERIAL
COMPUTER PROGRAMMING COURSE - MATERIAL
OBJECTIVE TYPE QUESTIONS
UNIT-I – INTRODUCTION TO COMPUTERS
1. Which of the following is not an input device (a)plotter
(b) scanner (c) keyboard (d) mouse
2. Which of the following is the correct order of operators for the evaluation for the expression Z=x+y*z/4%2-1
(a) */%+-= (b) -%!+*=
(c)/*%-+= (d) */%-+=
3 The parallelogram is used to represent ----- type of statements in flowcharts
(a) input/output
(b) Functions (c)decision (d) processing
(4) Which of the following is not a translator program (a)linker (b)assembler (c) interpreter (d) compiler
(5) Object code produced by which of the following phase (a)preprocessing (b)linking (c) compilation (d)editing
(6) In flowchart ,decisions are represented by using
symbol
(a) diamond (b)circle (c) square (d)rectangle
(7)
acts as an interface between the computer hardware and user of the computer (a)o.s (b)hardware (c) software (d) none of the above
(8) The hardware along with the read-only software that resides on this hardware is combinely called as
(9) The order of evaluation can be changed by using
in an expression?
(10) Who is father of computer (11)Computer is an
device
BITS
1)A Computer consists of --- units. a)3 b) 4 c) 5 d) 6
2) Keyboard is an example of ------ unit.
a) Memory b) Input c) Output d) ALU
3) ALU stands for -------
a) Arithmetic Logic Unit b) Arithmetic Lower Unit c) Add Logical Unit
d) None of the above
4) RAM is considered as a ----------
a) Volatile Memory b) Non volatile Memory c) Permanent
d) None of the above
5) ------ contains the a program during the manufacturing itself.
a) RAM b) ROM c) Both a and b
d) None of the above
6) ------- unit is used to store information.
COMPUTER PROGRAMMING COURSE - MATERIAL
a) Input b) Output c) Control
d) Memory
7) In Stored program concept ---- and --- are stored in the same memory.
a) Data and Instruction
b) Data and Operands c) Instruction and operation code d) None of the above
8) Microprocessor is the heart of ------ computer.
a) Digital
b) Analog c) Both a and b d) None of the above Answers:
1) c 2) b 3) a 4) a 5) b 6) d
7) a 8) a
9) ---- and ---- are examples of input device.
10) Printout of a program is considered as ------.
11). Payroll program stored on CD is considered as ----.
12) Dot matrix printer is an example of --------.
13). Laser printer is an example of -----.
14) The speed of Dot matrix printer is expressed as ----
15) The speed of Laser printer is expressed as ----
Answers:: 9)Keyboard, Mouse 10) Hardcopy 11)Softcopy 12)Impact printer 13)Non-impact 14)Characters per second (CPS) 15)Pages per Minute (PPM)
1. RAM is a --------memory.
2. Floppy disk storage capacity is -----.
3. Concentric circles in a floppy disk is known as -----
4. ROM is also known as -----.
5. ROM is a ----- memory.
6. Hard disk is ---- than primary memory.
7. CD-ROM storage capacity is ---- .
8. Information stored in a CD is accessed through ---- Answers
1. Volatile 2. 1.44 MB
3. tracks
4. firmware
5. Nonvolatile
6. Bigger
7. 700 MB
8. light

COMPUTER PROGRAMMING COURSE - MATERIAL

1. Machine language is expressed in terms of ----------------------.
2. Assembly language is written with the help of ------------------
3. High level language is similar to ------------------------
4. Compiler converts ---------------- language into --------------------- language.
5. Assembler converts ---------------- language into ------------------ language.
6. Interpreter converts high level language into machine language ---- by ----. 7. edit is an example of -------------------.-
8. Ms-word is an example of --------------------
9. To display files in the MS-DOS , ------------------------- command is used.
Answers :
1)0 and 1. 2) Mnemonics 3) English 4)High, machine 5) Assembly , machine
6) line , line 7) editor 8) word processor 9)DIR
COMPUTER PROGRAMMING COURSE - MATERIAL
UNIT-I – INTRODUCTION TO C
Predict the output or error(s) for the following:
1. main()
{
int i=-1,j=-1,k=0,l=2,m; m=i++&&j++&&k++||l++; printf("%d %d %d %d %d",i,j,k,l,m);
}
Answer:
0 0 1 3 1
2. main()
{
int i=3; switch(i)
{
default:printf("zero"); case 1: printf("one"); break;
case 2:printf("two"); break;
case 3: printf("three"); break;
}
}
Answer :
three
3. main()
{
printf("%x",-1<<4);
}
Answer:
fff0
4. main()
{
int c=- -2; printf("c=%d",c);
}
Answer:
c=2;
5. main()
{
int i=10; i=!i>14;
Printf ("i=%d",i);
}
Answer: i=0
COMPUTER PROGRAMMING COURSE - MATERIAL
6. main()
{
printf("\nab");
printf("\bsi");
printf("\rha");
}
Answer:
hai
7. main()
{
int i=5;
printf("%d%d%d%d%d%d",i++,i--,++i,--i,i);
}
Answer:
45545
8. main()
{
printf("%p",main);
}
Answer:
Some address will be printed
9. main()
{
int i=400,j=300; printf("%d..%d");
}
Answer:
400..300
10. void main()
{
int i=5; printf("%d",i++ + ++i);
}
Answer:
Output Cannot be predicted exactly.
11. void main()
{
int i=5; printf("%d",i+++++i);
}
Answer:
Compiler Error
12. #include<stdio.h> main()
208
{
int i=1,j=2; switch(i)
{
case 1: printf("GOOD"); break;
case j: printf("BAD"); break;

COMPUTER PROGRAMMING COURSE - MATERIAL
}
}
Answer:
Compiler Error: Constant expression required in function main.
13. main()
{
int i;
printf("%d",scanf("%d",&i)); // value 10 is given as input here
}
Answer:
1
14. main()
{
int i=0;
for(;i++;printf("%d",i)) ;
printf("%d",i);
}
Answer:
1
15. main()
{
printf("%d", out);
}
int out=100;
Answer:
Compiler error: undefined symbol out in function main.
16. main()
{
int i=-1;
+i;
printf("i = %d, +i = %d \n",i,+i);
}
Answer:
i = -1, +i = -1
17. main()
{
char not; not=!2;
printf("%d",not);
209
}
Answer:
0

COMPUTER PROGRAMMING COURSE - MATERIAL
18. main()
{
int k=1;
printf("%d==1 is ""%s",k,k==1?"TRUE":"FALSE");
}
Answer:
1==1 is TRUE
19. main()
{
int y;
scanf("%d",&y); // input given is 2000
if((y%4==0 && y%100 != 0) || y%100 == 0)
printf("%d is a leap year"); else
printf("%d is not a leap year");
}
Answer:
2000 is a leap year
20. main()
{
int i=-1;
-i;
printf("i = %d, -i = %d \n",i,-i);
}
Answer:
i = -1, -i = 1
21. #include<stdio.h> main()
{
const int i=4; float j;
j = ++i;
printf("%d %f", i,++j);
}
Answer:
Compiler error
22. main()
{
int i=5,j=6,z;
210
printf("%d",i+++j);
}

COMPUTER PROGRAMMING COURSE - MATERIAL
Answer:
11
23. main()
{
int i =0;j=0; if(i && j++)
printf("%d..%d",i++,j);
printf("%d..%d,i,j);
}
Answer:
0..0
24. int i;
main(){ int t;
for (t=4;scanf("%d",&i)-t;printf("%d\n",i)) printf("%d--",t--);
}
// If the inputs are 0,1,2,3 find the o/p
Answer:
4--0
3--1
2--2
25. main(){
int a= 0;int b = 20;char x =1;char y =10; if(a,b,x,y)
printf("hello");
}
Answer:
hello
26. void main()
{
unsigned giveit=-1; int gotit;
printf("%u ",++giveit); printf("%u \n",gotit=--giveit);
}
Answer:
0 65535
27. main()
{
float me = 1.1; double you = 1.1; if(me==you)
printf("I love U");
else printf("I hate U");
}

COMPUTER PROGRAMMING COURSE - MATERIAL
Answer:
I hate U
28. a<<1 is equivalent to
a) multiplying by 2 b) dividing by 2 c) adding 2 d)none of the above
Ans. (a)
29. The operation of a stair case switch best explains the
a) or operation
b) and operation
c)exclusive nor operation d)exclusive or operation
30. Which of the following is/are syntactically correct?
Ans. (d) a) for(); b) for(;); c) for(,); d) for(;;);
31. The expression 4+6/3*2-2+7%3 evaluates to
Ans. (d) a) 3 b) 4 c) 6 d) 7
32. Any C program
a) must contain at least one function b) need not contain any function c) needs input data
d) none of the above
Ans. (d)
33. Using goto inside for loop is equivalent to using
a) continue b) break c) return d)none of the above
Ans. (d)
34. The program fragment int a=5, b=2; printf(“%d”,a+++++b);
a) prints 7 b)prints 8 c) prints 9 d)none of the above
35. printf(“ab” , “cd”,”ef”); prints
a) ab abcdef c) abcdef, followed by garbage value d) none of the above
36. Consider the following program segment.
i=6720; j=4; while((i%j)==0)
{
i=i/j; j=j+1;
}
On termination j will have the value a) 4 b) 8 c) 9 d) 6720
COMPUTER PROGRAMMING COURSE - MATERIAL
	1. Which of the following language is predecessor to C Programming Language?

	A
	B
	BCPL
	[image: image21.png]

C++

	2. C programming language was developed by

	Dennis Ritchie
	Ken Thompson
	[image: image22.png]

Bill Gates
	[image: image23.png]

Peter Norton

	3. C was developed in the year

	1970
	1972
	1976
	[image: image24.png]

1980

	4. C is a
language

	High Level
	Low Level
	Middle Level
	[image: image25.png]

Machine Level

	5. C language is available for which of the following Operating Systems?

	DOS
	Windows
	Unix
	[image: image26.png]

All of these

	6. Which of the following symbol is used to denote a pre-processor statement?

	!
	#
	~
	[image: image27.png]

;

	7. Which of the following is a Scalar Data type

	Float
	Union
	Array
	[image: image28.png]

Pointer

	8. Which of the following are tokens in C?

	Keywords
	Variables
	Constants
	[image: image29.png]

All of the above

	9. What is the valid range of numbers for int type of data?

	0 to 256
	-32768 to +32767
	-65536 to +65536
	[image: image30.png]

No specific range

	10. Which symbol is used as a statement terminator in C?

	!
	#
	~
	[image: image31.png]

;

	11. Which escape character can be used to begin a new line in C?

	\a
	\b
	\m
	[image: image32.png]

\n

COMPUTER PROGRAMMING COURSE - MATERIAL
	12. Which escape character can be used to beep from speaker in C?

	\a
	\b
	\m
	[image: image33.png]

\n

	13. Character constants should be enclosed between

	Single quotes
	Double quotes
	Both a and b
	[image: image34.png]

None of these

	14. String constants should be enclosed between _

	Single quotes
	Double quotes
	Both a and b
	[image: image35.png]

None of these

	15. Which of the following is invalid?

	‘’
	“ “
	‘a’
	[image: image36.png]

‘abc’

	16. The maximum length of a variable in C is

	8
	16
	32
	[image: image37.png]

64

	17. What will be the maximum size of a float variable?

	1 byte
	2 bytes
	4 bytes
	[image: image38.png]

8 bytes

	18. What will be the maximum size of a double variable?

	1 byte
	4 bytes
	8 bytes
	[image: image39.png]

16 bytes

	19. A declaration float a,b; occupies
of memory

	1 byte
	4 bytes
	8 bytes
	[image: image40.png]

16 bytes

	20. The size of a String variable is

	1 byte
	8 bytes
	16 bytes
	[image: image41.png]

None of these

COMPUTER PROGRAMMING COURSE - MATERIAL
Operators in C Programming Language
	1. Which of the following is an example of compounded assignment statement?

	a = 5
	a += 5
	a = b = c
	[image: image42.png]

a = b

	2. The operator && is an example for
operator.

	Assignment
	Increment
	Logical
	[image: image43.png]

Rational

	3. The operator & is used for

	Bitwise AND
	Bitwise OR
	Logical AND
	[image: image44.png]

Logical OR

	4. The operator / can be applied to

	integer values
	float values
	double values
	[image: image45.png]

All of these

	5. The equality operator is represented by

	:=
	.EQ.
	=
	[image: image46.png]

==

	6. Operators have hierarchy. It is used to know which operator

	is most important
	is used first
	is faster
	[image: image47.png]

operates on large numbers

	7. The bitwise AND operator is used for

	Masking
	Comparison
	Division
	[image: image48.png]

Shifting bits

	8. The bitwise OR operator is used to

	set the desired bits to
1
	set the desired bits to
0
	divide numbers
	[image: image49.png]

multiply numbers

	9. Which of the following operator has the highest precedence?

	*
	[image: image50.png]

==
	[image: image51.png]

=>
	[image: image52.png]

+

	10. The associativity of ! operator is

	Right to Left
	[image: image53.png]

Left to Right
	[image: image54.png]

(a) for Arithmetic and (b) for Relational
	[image: image55.png]

(a) for Relational and
(b) for Arithmetic

COMPUTER PROGRAMMING COURSE - MATERIAL
	11. Which operator has the lowest priority?

	++
	%
	[image: image56.png]

+
	[image: image57.png]

||

	12. Which operator has the highest priority?

	++
	%
	+
	[image: image58.png]

||

	13. Operators have precedence. A Precedence determines which operator is

	faster
	takes less memory
	evaluated first
	[image: image59.png]

takes no arguments

	14. Integer Division results in

	Rounding the fractional part
	truncating the fractional part
	Floating value
	[image: image60.png]

An Error is generated

	15. Which of the following is a ternary operator?

	?
	*
	sizeof
	[image: image61.png]

^

	16. What will be the output of the expression 11 ^ 5?

	5
	6
	11
	[image: image62.png]

None of these

	17. The type cast operator is

	(type)
	cast()
	//
	[image: image63.png]

" "

	18. Explicit type conversion is known as

	Casting
	Conversion
	Disjunction
	[image: image64.png]

Separation

	19. The operator + in a+=4 means

	a = a + 4
	a + 4 = a
	a = 4
	[image: image65.png]

a = 4 + 4

	20. p++ executes faster than p+1 because

	p uses registers
	p++ is a single instruction
	++ is faster than +
	[image: image66.png]

None of these

COMPUTER PROGRAMMING COURSE - MATERIAL
UNIT-II – FUNCTIONS & ARRAYS
Predict the output or error(s) for the following:
1. main()
{
char s[]="man"; int i;
for(i=0;s[i];i++)
printf("\n%c%c%c%c",s[i],*(s+i),*(i+s),i[s]);
}
Answer:
mmmm
aaaa nnnn
2. main()
{
extern int i; i=20;
printf("%d",i);
}
Answer:
Linker Error : Undefined symbol '_i'
3. #define int char main()
{
int i=65; printf("sizeof(i)=%d",sizeof(i));
}
Answer:
sizeof(i)=1
4. #define square(x) x*x main()
{
int i;
i = 64/square(4); printf("%d",i);
}
Answer:
64
5. #include <stdio.h>
#define a 10 main()
{
#define a 50 printf("%d",a);
}
Answer:
50

COMPUTER PROGRAMMING COURSE - MATERIAL

6. #define clrscr() 100 main()
{
clrscr(); printf("%d\n",clrscr());
}
Answer:
100
7. main()
{
clrscr();
}
clrscr();
Answer:
No output/error
8. main()
{
int i=1; while (i<=5)
{
printf("%d",i); if (i>2)
goto here; i++;
}
}
fun()
{
here: printf("PP");
}
Answer:
Compiler error: Undefined label 'here' in function main
9. #define f(g,g2) g##g2 main()
{
int var12=100; printf("%d",f(var,12));
}
Answer:
218
100
10. main()
{
extern out; printf("%d", out);
}
int out=100;
Answer:
100

COMPUTER PROGRAMMING COURSE - MATERIAL
11. main()
{
show();
}
void show()
{
printf("I'm the greatest");
}
Answer:
Compiler error: Type mismatch in redeclaration of show.
12. int i,j;
for(i=0;i<=10;i++)
{ j+=5;
assert(i<5);
}
Answer:
Runtime error: Abnormal program termination. assert failed (i<5), <file name>,<line number>
13. #define FALSE -1
#define TRUE 1
#define NULL 0 main() {
if(NULL)
puts("NULL"); else if(FALSE) puts("TRUE"); else puts("FALSE");
}
Answer:
TRUE
14. #define max 5
#define int arr1[max] main()
{
219
typedef char arr2[max]; arr1 list={0,1,2,3,4}; arr2 name="name";
printf("%d %s",list[0],name);
}

COMPUTER PROGRAMMING COURSE - MATERIAL
Answer:
Compiler error (in the line arr1 list = {0,1,2,3,4})
15. int i=10;
main()
{
extern int i;
{
int i=20;
{
const volatile unsigned i=30; printf("%d",i);
}
printf("%d",i);
}
printf("%d",i);
}
Answer:
30,20,10
16. #include<stdio.h> main()
{
int a[2][2][2] = { {10,2,3,4}, {5,6,7,8} };
int *p,*q;
p=&a[2][2][2];
*q=***a; printf("%d..%d",*p,*q);
}
Answer:
garbagevalue..1
17. #include<stdio.h> main()
{
register i=5; char j[]= "hello";
printf("%s %d",j,i);
}
Answer:
hello 5
18. main()
{
int i=_l_abc(10);
220
printf("%d\n",--i);
}
int _l_abc(int i)
{
return(i++);
}
Answer:
9

COMPUTER PROGRAMMING COURSE - MATERIAL
19. main()
{
char c=' ',x,convert(z); getc(c);
if((c>='a') && (c<='z')) x=convert(c); printf("%c",x);
}
convert(z)
{
return z-32;
}
Answer:
Compiler error
20. main()
{
int i;
i = abc(); printf("%d",i);
}
abc()
{
_AX = 1000;
}
Answer:
1000
21. What are the following notations of defining functions known as?
i. int abc(int a,float b)
{
/* some code */
}
ii. int abc(a,b)
int a; float b;
{
/* some code*/
}
Answer:
i. ANSI C notation
ii. Kernighan & Ritche notation
22. void main()
221
{
static int i=5; if(--i){ main();
printf("%d ",i);
}
}
Answer:
0 0 0 0

COMPUTER PROGRAMMING COURSE - MATERIAL

23. void main()
{
int k=ret(sizeof(float));
printf("\n here value is %d",++k);
}
int ret(int ret)
{
ret += 2.5; return(ret);
}
Answer:
Here value is 7
24. void main()
{
char a[]="12345\0"; int i=strlen(a);
printf("here in 3 %d\n",++i);
}
Answer:
here in 3 6
25. void main()
{
int i;
char a[]="\0";
if(printf("%s\n",a)) printf("Ok here \n"); else
printf("Forget it\n");
}
Answer:
Ok here
26. main()
{
clrscr();
}
clrscr();
222
Answer:
No output/error
27. main()
{
static int var = 5; printf("%d ",var--); if(var)
main();
}

COMPUTER PROGRAMMING COURSE - MATERIAL
Answer:
5 4 3 2 1
28. C preprocessor
a) tales care of conditional compilation b) tales care of macros c) tales care of include files
d) acts before compilations
29. A preprocessor command
a) need not start on a new line
b) need not start on the first column c) has # as the first character
d) comes before the first executable statement
30. The following program output is main()
{
int a=4; change(a); printf(“%d”,a);
}
change(int a)
{ printf(“%d”,++a); }
a)5 5 b)4 5 c) 5 4 d)4 4
31. The output of the following program is main()
{
static int x[]={1, 2, 3, 4, 5, 6, 7, 8}; int i;
for(i=2;i<6;i++) x[x[i]]=x[i]; for(i=0; i<8;i++) printf(“%d”,x[i]);
}
a) 1 2 3 3 5 5 7 8
b)1 2 3 4 5 6 7 8
c) 8 7 6 5 4 3 2 1
d)1 2 3 5 4 6 7 8
32. The order in which actual parameters are evaluated in a function call
a) is from the left b)is from the right
c) is compiler dependent d)none of the above
33. The default parameter passing mechanism is
a) call by value b) call by reference c) call by value result d) none
34. C does no automatic array bound checking. This is
a) true b) false c) C’s asset d) C’s shortcoming
35. If a two dimensional array is used as a formal parameter, then
a) both the subscripts may be left empty
b) the first(row) subscript may be left empty c)the first subscript must be left empty

d) both the subscripts must be left empty
223
COMPUTER PROGRAMMING COURSE - MATERIAL
36. If storage class is missing in the array definition, by default it will be taken to be
a) automatic b) external c) static
d) either automatic or external depending on the place of occurrence
37. Consider the declaration
static char hello[]=“hello”; The output of printf(“%s\n”,hello); will be the same as that of
a) puts(“hello”);
b) puts(hello);
c) printf(“%s\n”, “hello”);
d) puts(“hello\n”);
38. The array name can be pointer to
a) another array b) another variable c) to that array only d) none
39. Array of pointers to table of strings saves
a) time b) memory c) CPU utilization d)none of the above
40. The following program main()
{
inc(); inc(); inc();
}
inc()
{
static int x; printf(“%d”,++x);
} prints
a)0 1 2
b) 1 2 3 c) 3 consecutive, but unpredictable numbers d) 1 1 1
UNIT-III – POINTERS & STRINGS
Predict the output or error(s) for the following:
1. main()
{
int c[]={2.8,3.4,4,6.7,5};
int j,*p=c,*q=c; for(j=0;j<5;j++) { printf(" %d ",*c);
++q; }
for(j=0;j<5;j++){
printf(" %d ",*p);
++p; }
}
Answer:
2 2 2 2 2 2 3 4 6 5
2. main()
{
char *p="hai friends",*p1; p1=p;
while(*p!='\0') ++*p++; printf("%s %s",p,p1);
}
224
Answer:
ibj!gsjfoet
3. void main()
{
char far *farther,*farthest;

COMPUTER PROGRAMMING COURSE - MATERIAL

printf("%d..%d",sizeof(farther),sizeof(farthest));
}
Answer:
4..2
4. main()
{
char *p; p="Hello";
printf("%c\n",*&*p);
}
Answer:
H
5. main()
{
static char names[5][20]={"pascal","ada","cobol","fortran","perl"}; int i;
char *t; t=names[3];
names[3]=names[4]; names[4]=t;
for (i=0;i<=4;i++) printf("%s",names[i]);
}
Answer:
Compiler error: Lvalue required in function main
6. #include<stdio.h> main()
{
char s[]={'a','b','c','\n','c','\0'}; char *p,*str,*str1;
p=&s[3]; str=p; str1=s;
printf("%d",++*p + ++*str1-32);
}
Answer:
M
7. main()
{
int a[2][3][2] = {{{2,4},{7,8},{3,4}},{{2,2},{2,3},{3,4}}};
printf(“%u %u %u %d \n”,a,*a,**a,***a); printf(“%u %u %u %d \n”,a+1,*a+1,**a+1,***a+1);
225
}
Answer: 100, 100, 100, 2
114, 104, 102, 3

COMPUTER PROGRAMMING COURSE - MATERIAL
8. main()
{
int a[] = {10,20,30,40,50},j,*p;
for(j=0; j<5; j++)
{
printf(“%d” ,*a); a++;
}
p = a;
for(j=0; j<5; j++)
{
printf(“%d ” ,*p); p++;
}
}
Answer:
Compiler error: lvalue required.
9. main()
{
static int a[] = {0,1,2,3,4};
int *p[] = {a,a+1,a+2,a+3,a+4}; int **ptr = p;
ptr++;
printf(“\n %d %d %d”, ptr-p, *ptr-a, **ptr);
*ptr++;
printf(“\n %d %d %d”, ptr-p, *ptr-a, **ptr);
*++ptr;
printf(“\n %d %d %d”, ptr-p, *ptr-a, **ptr);
++*ptr;
printf(“\n %d %d %d”, ptr-p, *ptr-a, **ptr);
}
Answer:
111
222
333
344
10. pointers are of
a) integer data type
b) character data type c) unsigned integer data type d) none of these
11. main()
{
void *vp;
char ch = ‘g’, *cp = “goofy”; int j = 20;
vp = &ch;
printf(“%c”, *(char *)vp);
226
vp = &j; printf(“%d”,*(int *)vp); vp = cp;

COMPUTER PROGRAMMING COURSE - MATERIAL
printf(“%s”,(char *)vp + 3);
}
Answer:
g20fy
12. main ()
{
static char *s[] = {“black”, “white”, “yellow”, “violet”}; char **ptr[] = {s+3, s+2, s+1, s}, ***p;
p = ptr;
**++p;
printf(“%s”,*--*++p + 3);
}
Answer:
ck
13. main()
{
int i, n;
char *x = “girl”; n = strlen(x);
*x = x[n]; for(i=0; i<n; ++i)
{
printf(“%s\n”,x); x++;
}
}
Answer:
(blank space) irl
rl l
14. main()
{
char *cptr,c; void *vptr,v; c=10; v=0;
cptr=&c; vptr=&v; printf("%c%v",c,v);
}
Answer:
Compiler error (at line number 4): size of v is Unknown.
227
15. main()

COMPUTER PROGRAMMING COURSE - MATERIAL

{
char *str1="abcd"; char str2[]="abcd";
printf("%d %d %d",sizeof(str1),sizeof(str2),sizeof("abcd"));
}
Answer:
2
5 5
16. main()
{
int *j;
{
int i=10; j=&i;
}
printf("%d",*j);
}
Answer:
10
17. void main()
{
int const * p=5; printf("%d",++(*p));
}
Answer:
Compiler error: Cannot modify a constant value.
18. main()
{
char *p; int *q; long *r; p=q=r=0; p++; q++; r++;
printf("%p...%p...%p",p,q,r);
}
Answer:
0001...0002...0004
19. main(int argc, char **argv)
{
printf("enter the character"); getchar(); sum(argv[1],argv[2]);
}
228
sum(num1,num2) int num1,num2;
{
return num1+num2;
}
Answer:
Compiler error.
20. # include <stdio.h> int one_d[]={1,2,3}; main()
{
int *ptr; ptr=one_d; ptr+=3; printf("%d",*ptr);
}
Answer:
garbage value
21. # include<stdio.h> aaa() { printf("hi"); }
bbb(){ printf("hello"); }
ccc(){ printf("bye"); } main()
{

COMPUTER PROGRAMMING COURSE - MATERIAL
int (*ptr[3])(); ptr[0]=aaa; ptr[1]=bbb; ptr[2]=ccc; ptr[2]();
}
Answer:
bye
22. In the following pgm add a stmt in the function fun such that the address of 'a' gets stored in 'j'.
main(){ int * j;
void fun(int **); fun(&j);
}
void fun(int **k) { int a =0;
/* add a stmt here*/
}
Answer:
*k = &a
23. main()
{
char *p;
229
p="%d\n"; p++;
p++;
printf(p-2,300);
}
Answer:
300
24. func(a,b)
int a,b;
{

COMPUTER PROGRAMMING COURSE - MATERIAL
}
main()
{

return(a= (a==b));
int process(),func();
printf("The value of process is %d !\n ",process(func,3,6));
}
process(pf,val1,val2) int (*pf) ();
int val1,val2;
{
return((*pf) (val1,val2));
}
Answer:
The value if process is 0 !
25. main()
{
char *p;
printf("%d %d ",sizeof(*p),sizeof(p));
}
Answer:
1 2
26. main()
{
char string[]="Hello World"; display(string);
}
void display(char *string)
{
printf("%s",string);
}
Answer:
Compiler Error : Type mismatch in redeclaration of function display
230
COMPUTER PROGRAMMING COURSE - MATERIAL
27. #include<stdio.h> main()
{
char s[]={'a','b','c','\n','c','\0'}; char *p,*str,*str1;
p=&s[3]; str=p; str1=s;
printf("%d",++*p + ++*str1-32);
}
Answer:
77
28. #include<stdio.h> main()
{
int a[2][2][2] = { {10,2,3,4}, {5,6,7,8} };
int *p,*q; p=&a[2][2][2];
*q=***a;
printf("%d----%d",*p,*q);
}
Answer:
SomeGarbageValue---1
29. puts(argv[0])prints
a) the name of the source code file b) the number of command line arguments c) argv d)the name of the executable code file
30. The address operator &, cannot act on
a) R-values
b) arithmetic expressions c) members of a structure d) local variables
31. The argument used to print the number of command line arguments is a)printf(“%d”,argv); b) printf(“%d”,argv[0]); c) printf(“%d”,argc); d) none
32. In command line arguments main() function takes
number of arguments a) 1 b) 2 c)3 d)4
231
COMPUTER PROGRAMMING COURSE - MATERIAL
Unit – IV – ENUMERATED, STRUCTURE ,AND UNION TYPES
Predict the output or error(s) for the following:
1
#include<stdio.h> main()
{
struct xx
{
int x=3;
char name[]="hello";
};
struct xx *s; printf("%d",s->x); printf("%s",s->name);
}
Answer: Compiler Error
2. #include<stdio.h> main()
{
struct xx
{
int x; struct yy
{
char s; struct xx *p;
};
struct yy *q;
};
}
Answer: Compiler Error
3. enum colors{ BLACK,BLUE,GREEN} main()
{
printf("%d..%d..%d",BLACK,BLUE,GREEN);
return(1);
}
Answer: 0..1..2
4. #include<stdio.h> main()
{
struct xx
{
int x=3;
char name[]="hello"; };
struct xx *s=malloc(sizeof(struct xx)); printf("%d",s->x); printf("%s",s- >name);
}
Answer: Compiler Error
5. struct aaa{
struct aaa *prev; int i;
232
main()
{

struct aaa *next; };

COMPUTER PROGRAMMING COURSE - MATERIAL
struct aaa abc,def,ghi,jkl; int x=100; abc.i=0;abc.prev=&jkl; abc.next=&def; def.i=1;def.prev=&abc;def.next=&ghi; ghi.i=2;ghi.prev=&def; ghi.next=&jkl;
jkl.i=3;jkl.prev=&ghi;jkl.next=&abc; x=abc.next->next->prev->next->i; printf("%d",x);
}
Answer: 2
6. struct point
{
int x; int y; };
struct point origin,*pp; main()
{
pp=&origin;
printf("origin is(%d%d)\n",(*pp).x,(*pp).y); printf("origin is (%d%d)\n",pp-
>x,pp->y);
}
Answer: origin is(0,0) origin is(0,0)
7. What is the output for the program given below
typedef enum errorType{warning, error, exception,}error; main()
{
error g1; g1=1; printf("%d",g1);
}
Answer: Compiler error: Multiple declaration for error
8. typedef struct error{int warning, error, exception;}error; main()
{
}
Answer: 1

error g1; g1.error =1; printf("%d",g1.error);
9. main()
{

struct student
{
char name[30]; struct date dob;
}stud;
struct date
{
int day,month,year;
};
scanf("%s%d%d%d",stud.rollno,&student.dob.day,&student.dob.month,&student.dob.year);
233
COMPUTER PROGRAMMING COURSE - MATERIAL
}
Answer: Compiler Error: Undefined structure date
10. Is the following code legal? struct a
{
int x; struct a *b;
}
Answer: Yes.
11. #include<stdio.h> main()
{
struct xx
{
int x; struct yy
{
char s; struct xx *p;
};
struct yy *q;
};
}
Answer: Compiler Error
12. Structures may contains
a) multiple data items b)single data items
c) a only
d) a&b Ans: a
13. The size of structure and union is same when they contain
a)single member
b) any number of members
c) a & b
d) none
Ans : a
14. The operator used to find the size of any variable
a) sizeof
b) Sizeof
c) sizeOf
d) all the above
Ans: a
15. The operator that is used to access the members of the structure using pointer variable
a) .
b) ->
c) *
d) none of the above
Ans : b
16. The operator used to access the member of the structure
a) .
b) ->
c) *
d) none of the above
Ans : a
17. The operator -> is same as the combinations of the operators
a) * and .
b) & and .
c) * and & d) none of the above Ans :
18. Bit fields are used to
a) save time
b) save memory
c) change order of allocation of memory
d) none of the above
19. Union can store
number of values at a time
COMPUTER PROGRAMMING COURSE - MATERIAL
a) all its members
b) only 1
b) 2
d) cannot hold value
COMPUTER PROGRAMMING COURSE - MATERIAL
Unit – IV – INPUT AND OUTPUT
Predict the output or error(s) for the following:
1. what will be the position of the file marker? a: fseek(ptr,0,SEEK_SET);
b: fseek(ptr,0,SEEK_CUR);
Answer :
a: The SEEK_SET sets the file position marker to the starting of the file.
b: The SEEK_CUR sets the file position marker to the current position of the file.
2. #include<stdio.h> main()
{
FILE *ptr; char i; ptr=fopen("zzz.c","r"); while((i=fgetch(ptr))!=EOF)
printf("%c",i);
}
Answer: contents of zzz.c followed by an infinite loop
3. There were 10 records stored in “somefile.dat” but the following program printed 11 names. What went wrong?
void main()
{
struct student
{
char name[30], rollno[6]; }stud;
FILE *fp = fopen(“somefile.dat”,”r”); while(!feof(fp))
{
fread(&stud, sizeof(stud), 1 , fp); puts(stud.name);
}
}
Explanation: fread reads 10 records and prints the names successfully. It will return EOF only when fread tries to read another record and fails reading EOF (and returning EOF). So it prints the last record again. After this only the condition feof(fp) becomes false, hence comes out of the while loop.
4. #define assert(cond) if(!(cond)) \
(fprintf(stderr, "assertion failed: %s, file %s, line %d
\n",#cond,\ FILE , LINE), abort())
void main()
{
int i = 10; if(i==0) assert(i < 100); else
printf("This statement becomes else for if in assert macro");
}
Answer: No output
COMPUTER PROGRAMMING COURSE - MATERIAL
5 .What is the problem with the following code segment? while ((fgets(receiving array,50,file_ptr)) != EOF);
Answer: fgets returns a pointer
6. If a file is opened in r+ mode then
a)reading is possible
b)writing is possible
c) it will be created if it does not exist
d)appending is possible
7. If a file is opened in w+ mode then
a)reading is possible
b)writing is possible
c) it will be created if it does not exist
d)appending is possible
8. If a file is opened in r mode then
a)reading is possible
b)writing is possible
c) it will be created if it does not exist
d)appending is possible
9. If a file is opened in a mode then
a)reading is possible
b)writing is possible
c) it will be created if it does not exist
d)appending is possible
10. ftell
a) is a function

b) gives the current file position indicator c)can be used to find the size of a file
d) none of the above
11. The fseek function
a) needs 2 arguments
b)makes rewind function unnecessary c)takes 3 arguments
d)none of the above
12. rewind function takes
number of arguments a) 1
b) 2
c)3

d) 0
13. fseek(fptr,0,0) is equivalent to
a) ftell
b) rewind
c)a & b
d) none of the above
14. .ferror function is used to find
a) logical
b) file opening
c)data
d)all the above
15. The contents of the file are lost if it is opened in
mode
a) a
b)w
c) w+
d) a+
16. The contents of the file are safe if it is opened in
mode
a) a
b)r
c) a+b
d)all the above
17. The valid binary modes of operation are
a) ab
b)rb+
c) wb+
d)ab+
18. rewind function is used to
a) reset the file pointer
b) point it to the end of the file
c) stay at current position
d)none of the above
19. feof function checks for

COMPUTER PROGRAMMING COURSE - MATERIAL
a) file opening error
b) data error
c) end of file
d) file closing error
20. The value returned by fopen() function when the file is not opened
a) 0
b) garbage value
c) NULL
d) none of the above
21. The fcloseall() function performs
a) closing of all the files b) closes all the files that are opened by that program c)closes only specified files
d) none of the above
22. The function that is not used for random access to files is a)rewind
b)ftell c)fseek
d)fprintf
COMPUTER PROGRAMMING COURSE - MATERIAL
Unit -V – SEARCHING AND SORTING
1The time complexity of binary search in average case is
a) O(n) b) O(n2) c) O(nlogn) d) O(logn)
2..The time complexity of bubble sort in best case is
a) O(n) b) O(n2) c) O(nlogn) d) O(logn)
3. The time complexity of selection sort in best case is
a) O(n) b) O(n2) c) O(nlogn) d) O(logn)
4..The time complexity of insertion sort in best case is
a) O(n) b) O(n2) c) O(nlogn) d) O(logn)
5. The time complexity of quick sort in best case is
a) O(n) b) O(n2) c) O(nlogn) d) O(logn)
6. The time complexity of heap sort in best case is
a) O(n) b) O(n2) c) O(nlogn) d) O(logn)
7. Binary search is effective only when the elements are in
a) ascending order
b) descending order
c) a& b
d) jumbled order
8.. In worst case quick sort behaves like
a) insertion b)heap c) selection) bubble
9..The time complexity of bubble sort in worst case is
a) O(n) b) O(n2) c) O(nlogn) d) O(logn)
10. The time complexity of selection sort in worst case is
a) O(n) b) O(n2) c) O(nlogn) d) O(logn)
11 .The time complexity of insertion sort in worst case is
a) O(n) b) O(n2) c) O(nlogn) d) O(logn)
12..The time complexity of quick sort in worst case is
a) O(n) b) O(n2) c) O(nlogn) d) O(logn)
13.. The time complexity of heap sort in worst case is
a) O(n) b) O(n2) c) O(nlogn) d) O(logn)
14. The time complexity of merge sort in worst case is
a) O(n) b) O(n2) c) O(nlogn) d) O(logn)
15. Quick sort is an application of
a) greedy method b) partition exchange sort
c) partition sort
d)divide and conquer
16. Merge sort is an application of
a)greedy method b) partition exchange sort
c) partition sort
d)divide and conquer
COMPUTER PROGRAMMING COURSE - MATERIAL
17. The space complexity of Quick sort in average case is
a) O(n) b) O(n2) c) O(nlogn) d) O(logn)
18. .The space complexity of bubble sort in average case is
a) O(n) b) O(n2) c) O(nlogn) d) O(logn)
COMPUTER PROGRAMMING COURSE - MATERIAL
UNIT –V - DATA STRUCTURES
1. .Linked list uses
type of memory allocation
a) static
b)random
c)dynamic d)compile time
2. .Binary tree can be implemented using
a)arrays b) double linked list c) a& b d) b only
3. In a complete binary tree, if the parent is at nth position then the children will be at a)n+1, n+2 b)2n,2n-1 c)2n,2n+1 d)2n+1,2n-1
4. The number of non leaf nodes in a complete binary tree of height 5 is a) 16 b)32 c) 31 d)15
5..The number of leaf nodes in a complete binary tree of height 5 is a) 16 b)32 c) 31 d)15
6. The number of nodes in a complete binary tree of height 5 is a) 16 b)32 c) 31 d)15
7. The number of edges in a minimum cost spanning tree of n nodes is
a) n b)n+1 c)n-1 d)2n
8. Travelling sales man problem is an application of
a) spanning trees b) binary tree c) greedy method d)divide and conquer
9. The number of extra pointers required to reverse a singly linked list is a)1 b)2 c) 3 d)4
10. The number of extra pointers required to reverse a double linked list is a)1 b) 2 c) 3 d)4
11. The functions used for memory allocation
a) malloc b)calloc c)a&b d) none of the above
COMPUTER PROGRAMMING COURSE - MATERIAL
Predict the output or error(s) for the following:
	1.main()
	
	
	
	
	
	
	

	{
	
	
	
	
	
	
	

	main();
	
	
	
	
	
	
	

	}
	
	
	
	
	
	
	

	Answer:

	Runtime error : Stack overflow.

	2.The prefix equivalent for the postfix ab+cd+* is

	a)a+b*c+d
	b)+ab*+cd
	c)*+ab+cd
	d)*++abcd
	

	3.The postfix equivalent for the prefix *++abcd is

	a)ab+c+d*
	b)abcd++*
	c)ab+cd+*
	d)ab+c*d+
	

	4.The infix equivalent to the postfix expression abc+d-*e%f/ is

	a) a+b*c-d%f/f
	
	b) a*(b+c-d)%e/f
	c)a*b+c-d%e/f
	d)a*(b-c+d)%e/f

	5.Evaluate the expression 2*3/5+6-4

	a) 1
	b) 2
	c)3
	d) 4
	
	
	
	

	6.The value of the prefix expression +/*2-5 6 4 3 is

	a) 1
	b) 2
	c)3
	d) 4
	
	
	
	

	7. The value of the postfix expression 1 4 +3 / 2 * 6 4 % - is

	a) 1
	b)-1
	c)0
	d)4
	
	
	
	

	8.Towers of Hanoi is an application of

	a) stack
	
	b) queue
	c) linked list
	d) dequeue
	

	9.The data structure used in railway reservation is

	a) stacks
	b) queues
	c)priority queues
	d) binary tree

10.The data structure applicable for a fully packed bus is
	a) stacks
	b) queues
	c)priority queues
	d) binary tree

	11. The recursive functions are evaluated using

	a) stacks
	b) queues
	c)priority queues
	d) binary tree

	12.The nested loops are evaluated using

	a) stacks
	b) queues
	c)structures
	d) binary tree

	13.The data structure used in resource sharing systems is

	a) stacks
	b) queues
	c)arrays
	d) binary tree

	14.Which of the following is not a linear data structure

	a) stacks
	b) queues
	c)linked list
	d) binary tree

	15.In evaluation of postfix expression the data structure used is

	a) stacks
	b) queues
	c)arrays
	d) binary tree

COMPUTER PROGRAMMING COURSE - MATERIAL
OBJECTIVETYPEQUESTIONS
Which of the following is correct output?
1. void main(){
int x=100;
if(!!x) printf(“x=%d”,!x); else printf(“x=%d”,x);
}
a. 0
b. 2 c. 1.5
d. 100
2. void main(){
float a=0.5, b=0.9;
if(a&&b>0.9)
printf(“it is ur style”);
else
printf(“it is my style”);
}
a. it is ur style
b. it is our style
c. it is my style
d. no output
3. void main(){
int x=10, y=20;

COMPUTER PROGRAMMING COURSE - MATERIAL
if(!(!x) && x)
printf(“x=%d”,x);
}
a. 10
b. 20
c. 1
d. 0

else

printf(“y=%d”,y);

4. void main(){
char ch=291; printf(“%d%d%c”,32770,ch,ch);
}
a. 291
b. -32766 35#
c. 32770chch d. 32770
5. void main (){
int a,b;
a = -3- -3;
b = -3 - - (-3);
printf(“a=%d b= %d”,a,b);
}
a. a=0 b=-6 b. a=-3 b=+3
244
c. a=-6 b=+6
d. a=6 b=0
6. void main(){
int x;

COMPUTER PROGRAMMING COURSE - MATERIAL

x= -3 + 4 – 7 * 8 / 5 % 10;
printf(“x = %d”,x);
}
a. 23
b. 6
c. 7
d. 0
7. void main(){
int x=3, y=4, z=4;
printf(“ans = %d”, (z>=y>=x?100:200));}
a. 100
b. 300
c. 200
d. No Output
8. void main(){
int a=30, b=40, x; x=(a!=10) && (b=50);
printf(“x= %d”,x);
}
a. 10
b. 50
245
c. 1
d. 0
9. void main(){

COMPUTER PROGRAMMING COURSE - MATERIAL

float x=12.25, y=13.65;
if(x=y)
printf(“x and y are equal”);
else
printf(“x and y are not equal”);
}
a. x and y are not equal
b. x and y are equal
c. No output
d. None of thea bove
10. void main (){
int i=1, j=1;
for(;j;printf(“%d%d\t”,i,j)) j=i++ <= 5;
}
a. 21 31 41 51 61 70
b. 21 30 41 50 61 70
c. 20 30 40 50 60 70
d. 21 31 41 51 61 71
11. void main() {
int i=3, j=2, k=1, d;
246
COMPUTER PROGRAMMING COURSE - MATERIAL
d = ij&k, printf(“d = %d\t”,d); d=ij&~k;
printf(“d = %d”,d);
}
a. d = 3 d=3
b. d=2 d=2
c. d=3 d=2
d. none of the above
12. void main() {
int i=2;
printf(“i-- = %d”, i--);
} a. i-- = 2
b. i-- = 3
c. i-- = 1
d. none of the above.
13. void main() {
float y=0.9;
long double z= 0.9;
if(y = = z)
printf(“hello world”);
else
printf(“hai world”); }
a. hello world
b. hai world
247
c. no output
d. none of the above
14. void main(){

COMPUTER PROGRAMMING COURSE - MATERIAL

static int c=5; printf(“%d\t”,c--); if(c)
main();
}
a. 5 4 3 2 1
b. 1 2 3 4 5
c. 5 4 3 3 3
d. none of the above
15. int i;
void main(){
int j;
for(;;){
if(j=fun(i))
printf(“%d”,j);
else
break;
}
}
fun(x){
int x;
static int v=2; v--;
248
return (v-x);

COMPUTER PROGRAMMING COURSE - MATERIAL

}
a. 1
b. 5
c. 0
d. None of the above
16. What will be the output of the following program in UNIX OS with CC compiler and TC compiler?
void main() {
int i=5;
printf("\n%d",++i + ++i + ++i + ++i + ++i);
}
a. 41.
b. 42
c. 51
d. 62
17. void main() {
if (!(1&&0)) {
printf("OK I am done.");
}
else {
printf("OK I am gone.");
} }
a. OK I am done
b. OK I am gone
c. None of the above
249
COMPUTER PROGRAMMING COURSE - MATERIAL
18.
void main() {
char *a = "Hello "; char *b = "World"; clrscr();
printf("%s", strcpy(a,b));
}
a. World.
b. Hello
c. Hello World
d. World Hello
19.
int z,x=5,y=-10,a=4,b=2; z = x++ - --y * b / a;
What number will z in the sample code above contain?
a. 5
b. 6
c. 10
d. 11
e. 12 [Ans]
20. With every use of a memory allocation function, what function should be used to release allocated memory which is no longer needed?
a. unalloc()
b. dropmem()
c. dealloc()
d. release()
250
e. free() [Ans]

COMPUTER PROGRAMMING COURSE - MATERIAL

void *ptr;
myStruct myArray[10]; ptr = myArray;
Which of the following is the correct way to increment the variable "ptr"?
A. ptr = ptr + sizeof(myStruct); [Ans]
B. ++(int*)ptr;
C. ptr = ptr + sizeof(myArray);
D. increment(ptr);
E. ptr = ptr + sizeof(ptr); 22.
char* myFunc (char *ptr) { ptr += 3;
return (ptr);
}
int main() {
char *x, *y;
x = "HELLO";
y = myFunc (x);
printf ("y = %s \n", y);
return 0;
}
What will print when the sample code above is executed?
A. y = HELLO
251
B. y = ELLO
C. y = LLO
D. y = LO [Ans]
E. x = O 23.

COMPUTER PROGRAMMING COURSE - MATERIAL
struct node *nPtr, *sPtr; /* pointers for a linked list. */
for (nPtr=sPtr; nPtr; nPtr=nPtr->next)
{
free(nPtr);
}
The sample code above releases memory from a linked list. Which of the choices below accurately describes how it will work?
A. It will work correctly since the for loop covers the entire list.
B. It may fail since each node "nPtr" is freed before its next address can be accessed.
C. In the for loop, the assignment "nPtr=nPtr->next" should be changed to "nPtr=nPtr.next".
D. This is invalid syntax for freeing memory.
E. The loop will never end.
24. What function will read a specified number of elements from a file?
A. fileread()
B. getline()
C. readfile()
D. fread()
E. gets()
25. "My salary was increased by 15%!"
Select the statement which will EXACTLY reproduce the line of text above.
A. printf("\"My salary was increased by 15/%\!\"\n");
252
COMPUTER PROGRAMMING COURSE - MATERIAL
B. printf("My salary was increased by 15%!\n");
C. printf("My salary was increased by 15'%'!\n");
D. printf("\"My salary was increased by 15%%!\"\n");[Ans]
E. printf("\"My salary was increased by 15'%'!\"\n");
26. What is a difference between a declaration and a definition of a variable?
A. Both can occur multiple times, but a declaration must occur first.
B. There is no difference between them.
C. A definition occurs once, but a declaration may occur many times.
D. A declaration occurs once, but a definition may occur many times. [Ans]
E. Both can occur multiple times, but a definition must occur first.
27. int testarray[3][2][2] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
What value does testarray[2][1][0] in the sample code above contain?
A. 3
B. 5
C. 7
D. 9
E. 11[Ans]
28. int a=10,b; b=a++ + ++a;
printf("%d,%d,%d,%d",b,a++,a,++a);
what will be the output when following code is executed A. 12,10,11,13
B. 22,10,11,13
C. 22,11,11,11
D. 12,11,11,11
253
E. 22,13,13,13[Ans]
29. int x[] = { 1, 4, 8, 5, 1, 4 };
int *ptr, y; ptr = x + 4; y = ptr - x;

COMPUTER PROGRAMMING COURSE - MATERIAL
What does y in the sample code above equal?
A. -3
B. 0
C. 4[Ans]
D. 4 + sizeof(int)
E. 4 * sizeof(int
30. void myFunc (int x)
{
if (x > 0) myFunc(--x);
printf("%d, ", x);
}
int main()
{
myFunc(5);
return 0;
}
What will the above sample code produce when executed? A. 1, 2, 3, 4, 5, 5,
B. 4, 3, 2, 1, 0, 0,
254
C. 5, 4, 3, 2, 1, 0,
D. 0, 0, 1, 2, 3, 4, [Ans]
E. 0, 1, 2, 3, 4, 5,
31. 11 ^ 5

COMPUTER PROGRAMMING COURSE - MATERIAL

What does the operation shown above produce?
A. 1
B. 6
C. 8
D. 14 [Ans]
E. 15
32. #define MAX_NUM 15
Referring to the sample above, what is MAX_NUM?
A. MAX_NUM is an integer variable.
B. MAX_NUM is a linker constant.
C. MAX_NUM is a precompiler constant.
D. MAX_NUM is a preprocessor macro. [Ans]
E. MAX_NUM is an integer constant.
33. Which one of the following will turn off buffering for stdout?
A. setbuf(stdout, FALSE);
B. setvbuf(stdout, NULL);
C. setbuf(stdout, NULL);
D. setvbuf(stdout, _IONBF);
E. setbuf(stdout, _IONBF);
34. What is a proper method of opening a file for writing as binary file?
A. FILE *f = fwrite("test.bin", "b");
255
COMPUTER PROGRAMMING COURSE - MATERIAL
B. FILE *f = fopenb("test.bin", "w");
C. FILE *f = fopen("test.bin", "wb");
D. FILE *f = fwriteb("test.bin");
E. FILE *f = fopen("test.bin", "bw");
35. Which one of the following functions is the correct choice for moving blocks of binary data that are of arbitrary size and position in memory?
A. memcpy()
B. memset()
C. strncpy()
D. strcpy()
E. memmove()[Ans]
36. int x = 2 * 3 + 4 * 5;
What value will x contain in the sample code above?
A. 22
B. 26[Ans]
C. 46
D. 50
E. 70
37. void * array_dup (a, number, size)
const void * a; size_t number; size_t size;
{
void * clone; size_t bytes;
assert(a != NULL);
256
bytes = number * size; clone = alloca(bytes); if (!clone)
return clone; memcpy(clone, a, bytes); return clone;
}

COMPUTER PROGRAMMING COURSE - MATERIAL

The function array_dup(), defined above, contains an error. Which one of the following correctly analyzes it?
A. If the arguments to memcpy() refer to overlapping regions, the destination buffer will be subject to memory corruption.
B. array_dup() declares its first parameter to be a pointer, when the actual argument will be an array.
C. The memory obtained from alloca() is not valid in the context of the caller. Moreover, alloca() is nonstandard.
D. size_t is not a Standard C defined type, and may not be known to the compiler.
E. The definition of array_dup() is unusual. Functions cannot be defined using this syntax.
38. int var1;
If a variable has been declared with file scope, as above, can it safely be accessed globally from another file?
A. Yes; it can be referenced through the register specifier.
B. No; it would have to have been initially declared as a static variable.
C. No; it would need to have been initially declared using the global keyword.[Ans]
D. Yes; it can be referenced through the publish specifier.
E. Yes; it can be referenced through the extern specifier.
39. time_t t;
Which one of the following statements will properly initialize the variable t with the current time from the sample above?
A. t = clock();[Ans]
B. time(&t);
C. t = ctime();
D. t = localtime();
E. None of the above

COMPUTER PROGRAMMING COURSE - MATERIAL

40. Which one of the following provides conceptual support for function calls?
A. The system stack[Ans]
B. The data segment
C. The processor's registers
D. The text segment
E. The heap
COMPUTER PROGRAMMING COURSE - MATERIAL
QUESTIONS WITH ANSWERS
Question 1. What is the difference between #include <file> and #include ?file?
Answer:
When writing your C program, you can include files in two ways. The first way is to surround the file you want to include with the angled brackets < and >. This method of inclusion tells the preprocessor to look for the file in the predefined default location. This predefined default location is often an INCLUDE environment variable that denotes the path to your include files. For instance, given the INCLUDE variable
INCLUDE=C:COMPILERINCLUDE;S:SOURCEHEADERS;
using the #include <file> version of file inclusion, the compiler first checks the C:COMPILERINCLUDE directory for the specified file. If the file is not found there, the compiler then checks the S:SOURCEHEADERS directory. If the file is still not found, the preprocessor checks the current directory.
The second way to include files is to surround the file you want to include with double quotation marks. This method of inclusion tells the preprocessor to look for the file in the current directory first, then look for it in the predefined locations you have set up. Using the #include ?file? version of file inclusion and applying it to the preceding example, the preprocessor first checks the current directory for the specified file. If the file is not found in the current directory, the C:COMPILERINCLUDE directory is searched. If the file is still not found, the preprocessor checks the S:SOURCEHEADERS directory.
The #include <file> method of file inclusion is often used to include standard headers such as stdio.h or stdlib.h. This is because these headers are rarely (if ever) modified, and they should always be read from your compiler?s standard include file directory.
The #include ?file? method of file inclusion is often used to include nonstandard header files that you have created for use in your program. This is because these headers are often modified in the current directory, and you will want the preprocessor to use your newly modified version of the header rather than the older, unmodified version.
Question 2 : if "condition" printf("Hello"); else printf("World")
what should be the condition,
so the output will be HelloWorld
Answers:
1.
if(!printf("hello"))
printf("hello"); else printf("world");
2.
#include<stdio.h> main()
{
if(printf("hello")!=0)
printf("world"); else printf("world");
}

COMPUTER PROGRAMMING COURSE - MATERIAL

Question3 :
Can we execute printf statement without using semicolon? Answers:
By using if, for, do while, while loop we execute printf statement without using semicolon. example shown below...
main()
{
if(printf("hello"))
}
We cannot Execute printf statement alone without using semicolon. Every program statement in a C language must end with a semicolon(;). It will show the error "Statement Missing ;"
Question4 :
Why should I prototype a function? Answers:
A function prototype tells the compiler what kind of arguments a function is looking to receive and what kind of return value a function is going to give back. This approach helps the compiler ensure that calls to a function are made correctly and that no erroneous type conversions are taking place.
Question5 :
What is a static function?
A static function is a function whose scope is limited to the current source file. Scope refers to the visibility of a function or variable. If the function or variable is visible outside of the current source file, it is said to have global, or external, scope. If the function or variable is not visible outside of the current source file, it is said to have local, or static, scope.
Question6 :
Write the equivalent expression for x%8? Answers: x&7
Question7 :
What is the purpose of main() function? Answers:
The function main() invokes other functions within it.It is the first function to be called when the program starts execution.
Question8 :
How to print a statement without using printf() in C? Answers:using getchar()
main()
{
int i; char c;
260
for(i=0;i!=' ';i++)
{
c=getchar(); putchar(c,n);
}
getch();
}

COMPUTER PROGRAMMING COURSE - MATERIAL

Question9 :
What is a pragma?
Answers:The #pragma preprocessor directive allows each compiler to implement compiler-specific features that can be turned on and off with the #pragma statement. For instance, your compiler might support a feature called loop optimization. This feature can be invoked as a command-line option or as a
#pragma directive.
To implement this option using the #pragma directive, you would put the following line into your code:
#pragma loop_opt(on)
Conversely, you can turn off loop optimization by inserting the following line into your code:
#pragma loop_opt(off)
Question10 :
What is a C-preprocessor? Answers:
C- preprocessor is also called as header files like #include<stdio.h>,<conio.h>,etc. These are used for including various functions and files in our programs.
Question11 :
How to perform addition,subtraction of 2 numbers without using addition and subtraction operators?
Answers:
main()
{
int a,b,c; printf("enter 2 nos");
scanf("%d%d",&a,&b); for(i=1;a>0;i++)
a=a-1; for(j=i;b>0;j++) b=b-1;
printf("addition of %d+%d:%d",a,b,(j-1));
}
1. FOR ADDING TWO NUMBERS
261
#include<stdio.h>
#include<conio.h> void main()
{
int a,b,c,i;
clrscr(); printf("Enter A : ");
scanf("%d",&a);
printf("Enter B : ");
scanf("%d",&b); c=b;
for(i=1; i<=a; i++)
{
b++
;
}

COMPUTER PROGRAMMING COURSE - MATERIAL
printf("Sum of %d and %d id : %d ",a,c,b); getch();
}
=================================== FOR SUBTRACTION
#include<stdio.h>
#include<conio.h> void main()
{
int a,b,c,i;
clrscr(); printf("Enter A : ");
scanf("%d",&a);
printf("Enter B : ");
scanf("%d",&b); c=a;
for(i=1; i<=b; i++)
{
a--
;
}
printf("Subtraction of %d and %d id : %d ",c,b,a); getch();
}
Question12:
Nesting of loops in C may continue upto how many levels? Answers:
we can do nesting of loops in C upto 15 times and also depends on compilers.
Question13 :
COMPUTER PROGRAMMING COURSE - MATERIAL
why n++ executes faster than n+1? Answers:
The expression n++ requires a single machine instruction such as INR to carry out the increment operation whereas, n+1 requires more instructions to carry out this operation.
Question 14:
What is the difference between declaring a variable and defining a variable? Answers:
Declaring a variable means describing its type to the compiler but not allocating any space for it. Defining a variable means declaring it and also allocating space to hold the variable. You can also initialize a variable at the time it is defined.
Question 15: What is an lvalue?
Answers: example to demonstrate lvalue
#define CONSTANT_VAR 10 int var=1;
int* pntr_int=5; CONSTANT_VAR = 15;
The variable var is an integer, which is a storable location in memory. Therefore, the statement var = 1 qualifies var to be an lvalue. Notice the second assignment statement, *pntr_int = 5. By using the * modifier to reference the area of memory that pntr_int points to, *pntr_int is qualified as an lvalue.
In contrast, observe the CONSTANT variable:
In this statements, the left side of the statement evaluates to a constant value that cannot be changed because constants do not represent storable locations in memory. Therefore, this assignment statements do not contain lvalues and will be flagged by your compiler as errors.
COMPUTER PROGRAMMING COURSE - MATERIAL
VIVA QUESTIONS
1) What is a Computer?
2) What is CPU?
3) What is ALU?
4) What is CU?
5) What is RAM?
6) What is ROM?
7) What are the input and output devices?
8) What is the need for cache memory?
9) Differentiate between main memory and second memory.
10) What is hardware?
11) Mention the different types of hardware components?
12) What are the different types of keyboards?
13) Differentiate between serial and parallel keyboard.
14) How do you classify printers?
15) Differentiate between serial and parallel printer.
16) What is meant by softcopy output?
17) What is meant by hardcopy output?
18) What are the different types of mouse?
19) What is programming?
20) What is software?
21) What are the different types of software?
22) What are the different types of programming languages?
23) Differentiate between interpreter and compiler.
24) Differentiate between loader and linker.
25) Differentiate between Application software and System software.
26) What is an operating system?
27) Differentiate between compiler and assembler.
28) What is translator?
29) What is meant by interpretation?
30) What is meant by source program?
31) What is meant by object program?
32) Give examples for High Level Languages.
COMPUTER PROGRAMMING COURSE - MATERIAL
33) Give examples for Assembly Level Languages.
34) Give examples for Specific purpose HLL.
35) Differentiate between internal & external DOS commands.
36) How do you classify the computers based on the size & capability?
37) How do you classify the computers based on principle of working?
38) What is computer network?
39) What are the different types of DOS?
40) What is DOS?
41) Who developed B language?
42) Who developed C language?
43) How do you make comments in C program?
44) How the name C is derived?
45) What is preprocessor statement?
46) Differentiate between constant and variable.
47) What is data type?
48) Name the basic data types of C.
49) Differentiate between string constant and character constant.
50) What is the range of integer, char, float for a 16-bit computer?
51) What is a statement?
52) What is a keyword?
53) Differentiate between keywords and identifiers.
54) What is the need for an escape sequences?
55) What is a symbolic constant?
56) How do you classify C operators?
57) What is the use of modulus operator?
58) What is meant by mixed mode operation?
59) What are bitwise operators?
60) What is unary operator?
61) What is binary operator?
62) What is typecasting?
63) What is a conditional / ternary operator?
64) What is need for type conversion?
65) Differentiate between && and &.
66) Differentiate between pre-increment/decrement & post-increment/decrement.
265
COMPUTER PROGRAMMING COURSE - MATERIAL
67) Differentiate between Unformatted and formatted i/o statements.
68) How do you classify the control statements?
69) Differentiate between while and do-while loop.
70) Differentiate between break and continue.
71) When do you prefer for loop statement?
72) What is looping?
73) What is an array?
74) Give the classification of arrays?
75) Differentiate between an array and an ordinary variable.
76) Array variable is also called as
.
77) What are character arrays?
78) When do you use two-dimensional character array?
79) Name the different string handling functions?
80) What is meant by modularization?
81) Differentiate between standard functions & user-defined functions?
82) Differentiate between arguments and parameters.
83) Differentiate between local and global variables.
84) Name the different methods of parameter passing?
85) How does the function definition differ from function declaration?
86) What is recursive function?
87) What is meant by scope of a variable?
88) What is a structure?
89) Differentiate between array and structure.
90) What are embedded structures?
91) How do you access the member of a structure?
92) What is union?
93) Differentiate between union and structure.
94) What is a pointer?
95) Differentiate between address operator and dereferencing operator.
96) How do you declare a pointer variable
97) What is difference between structure and union?
98) What is use of structure?
99) What is use of union?
100) What is function recursion?
COMPUTER PROGRAMMING COURSE - MATERIAL
101) What is nesting of function call?
102) What is pointer?
103) What is array in C?
104) What is array of array?
105) Write a printf statement without using any semi colon.
106) What is array of pointer?
107) What is array of function?
108) What is array of structure?
109) What is difference between pass by value and pass by reference?
110) What is use of stack?
111) What is use of void?
112) What is FILE pointer?
113) What is difference between array and link list?
114) What is difference between array of character and string?
115) How can you open a file in C?
116) How can you write in a file in C?
117) How can you calculate size of union?
118) How can you calculate size of a function?
119) How can you calculate size of structure?
120) How will initialize the member of union?
121) Why we can initialize only first member of union?
122) What is difference between structure and array?
123) What is self referential structure?
124) How can you access the member of structure variables?
125) How can you access the member of union variables?
126) What is nested structure?
 SHAPE * MERGEFORMAT

JNTU PREVIOUS OBJECTIVE / BIT PAPERS
COMPUTER PROGRAMMING COURSE - MATERIAL
COMPUTER PROGRAMMING COURSE - MATERIAL

COMPUTER PROGRAMMING & DATA STRUCTURES KEYS
I. Choose the correct alternative:
	1. A
	2. A
	3. C
	4. A
	5. D

	6. C
	7. A
	8. C
	9. B
	10. C

II. Fill in the blanks:
16
11. 2
- 1 or 65535
12. Firmware
13. Logical AND (&&)
14. Parenthesis or ()
15. Infinite
16. First statement of main ()
17. for loop
18. do..while
19. Rhombus or Diamond
20. Operating System (OS)
COMPUTER PROGRAMMING COURSE - MATERIAL

COMPUTER PROGRAMMING COURSE - MATERIAL

COMPUTER PROGRAMMING AND DATA STRUCTURES
Keys
I. Choose the correct alternative:
	1) B
	2) C
	3) C
	4) A
	5) B

	6) D
	7) C
	8) C
	9) A
	10) C

II Fill in the blanks:
11) strrev()
12) formal parameters
13) gets
14) address
15) self referential
16) sequential or contiguous
17) malloc
18) structure
19) recurision
20) file
COMPUTER PROGRAMMING COURSE - MATERIAL

COMPUTER PROGRAMMING COURSE - MATERIAL

COMPUTER PROGRAMMING AND DATA STRUCTURES KEYS
I Choose the correct alternative
	1. C
	2. B
	3. D
	4. A
	5. B

	6. D
	7. C
	8. D
	9. B
	10. A

II Fill in the blanks
11. front
12. Binary Search
13. Data Structure
14. Link or pointer
15. Circular List
16. O(n)
2
17. O(n)
18. feof()
COMPUTER PROGRAMMING COURSE - MATERIAL
19. the beginning of the file
20. binary
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
I B.Tech. I Mid Examinations, December - 2010 COMPUTER PROGRAMMING AND DATA STRUCTURES
Objective Exam
Answer All Questions. All Questions Carry Equal Marks. Time: 20 Min. Marks: 10.
I. Choose the correct alternative:
1. What type of errors are checked during compilation
[
]
(a) logical errors
(b) divide by zero error
(c) run - time errors
(d) syntax error
2. Which one of the following numeric value is used to represent base of the binary number a) 8
b)10
c)2
d)16
3. What will be the binary value of B

[
] a) 1001
b)1011
c)1100
d)1101
4. Which of the following is not a translator program
[
]
a) Linker
b) Assembler
c) Compiler
d) Interpreter
5. The program fragment
[
]
int a=5, b=2;
a) prints 7
b) prints 8
c) prints 9
d) none of the above
6. What will be sum of the binary numbers 1111 and 1 1 00 1
[
] a) 101000
b) 100010
c) 11110
d) 111100
7. Which one of the folio wing is known as the language of the computer
[
]
a) Programming Language
b) High Level Language
c) Machine Language
d) Assembly language
	8.
Consider the following program segment. i=6720; j=4; while((i%j)=0)
On termination j will have the value
	
	[
[
]
]

	a) 4
b)8
c)9
	d) 6720
	
	

	9.
Which of the folio wing is/are syntactically correct a)for();
b) for(;);
c) forQ;
	d)for(;;);
	[
]

10. #include<stdio.h> main()
{
inti=lj=2; switch(i)
{
easel: printf("GOOD"); break;

COMPUTER PROGRAMMING COURSE - MATERIAL
casej: printf("BAD");
[
]
break;
a) GOOD
b)BAD
c) GOOD BAD
d) Compiler Error
II
Fill in the Blanks
11. ALU stands for

12.
translates the high level language source code into low-level language
13. The size of long double variable is

14. The
of an operator gives the order in which expressions involving operators of the same precedence are evaluated.
15. The output of the assembler in the form of sequence of 0's and 1's is called

16. The process of repeating a group of statements in an algorithm is known as

17. The # symbol is known as

18. are identifiers reserved by the C language for special use

19. The
of an operator gives the order in which operators are applied in expressions
20.
is very similar to the while loop except that the test occurs at the end of the loop body
COMPUTER PROGRAMMING COURSE - MATERIAL
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
I B.Tech. II Mid Examinations, March - 2011 COMPUTER PROGRAMMING AND DATA STRUCTURES
Objective Exam
Answer All Questions. All Questions Carry Equal Marks. Time: 20 Min. Marks: 10.
I.
Choose the correct alternative
1. struct a
[
]
{intl; float j;
};
Which of the following syntax is correct to declare a structure variable
A. struct union a;
B. union struct a;
C. union a t;
D. struct a t;
2. Which of the following is used with printf () function for printing the Address of a variable
[
]
A. %d
B. %u
C. %f
D. %c
3. structj int I;
[
]
flaot j;} s; sizeof (s) will be
A. 4 bytes
B. 2 bytes
C. 6 bytes
D. 0 bytes
4. The process of calling a function using pointers to pass the address of variables is known as
[
]
A. call by argument
B. call by parameter
C. call by value
D. call by reference
	5.
main()
	
	[
]

	{int a=5,b,*c;c=&a;b=*c;
	
	

	printf("\n value of a=%d & b=%d",a,b,)}
	
	

	A. a=3,b=3
B. a=4,b=4
C. a=6,b=6
	D. a=5,b=5
	

6. main()
[
]
{
char *strl="abcd"; char str2[]="abcd";
printf ("%d%d%d", sizeof(str 1),sizeof(str2),sizeof("abcd"));
}
A. 2 5 5
B. 5 5 2
C. Compiler error
D. 5 2 5
7. A block of memory is allocated using the function
[
]
A. falloc()
B. dalloc()
C. malloc()
D. calloc()
8. In union all members use
[
]
A. no location
B. same location
C. different location
D. no storage
9. Which of the folio wing storage classes is used to allocate memory in cpu registers [
]
A. auto
B. register
C. static
D. extern
COMPUTER PROGRAMMING COURSE - MATERIAL
10. If we declare an array like int a[4] = {1, 2, 3, 4, 5} then
[
]
A. results in compilation error
B. valid but skip the last value 5.
C. valid but skip the first value 1
D. Initializes all values of array with 0
II Fill in the blanks
11. The standard library function strcmp ("JNTUH", "JNTUK") returns
12. The general format of realloc function is

13. Structure elements can be accessed through a pointer to a structure using the operator _
14. Self referential structure means

15. A program obtaining its memory while it is running is called as
.
16. The name of the array refers to
address
17. In command line arguments program the first argument of the main function Indicates
18. In enum wd={SUN, MON, TUE=5, WED, THU, FRI, SAT}, The value Assigned to enum constant FRI is

19. Pointers
the execution speed (increased/decrease)
20. Pre Processing statements are started with
symbol
COMPUTER PROGRAMMING COURSE - MATERIAL
COMPUTER PROGRAMMING COURSE - MATERIAL
COMPUTER PROGRAMMING AND DATA STRUCTURES KEYS
I Choose the correct alternative:
	1. A
	2. B
	3. C
	4. B
	5. A

	6. D
	7. A
	8. C
	9. D
	10. B

	II Fill in the blanks
11. Internal
	
	12. Singly linked
	
	

	13. Two
15. Waste
	
	14. Opened
16. O(n log n)
	
	

	17. Time
19. Open
	
	18. Doubly linked list
20. space
	
	

COMPUTER PROGRAMMING COURSE - MATERIAL
COMPUTER PROGRAMMING COURSE - MATERIAL

COMPUTER PROGRAMMING AND DATA STRUCTURES KEYS
I Choose the correct alternative
	1. D
	2. B
	3. B
	4. D
	5. C

	6. D
	7. C
	8. B
	9. A
	10. C

II Fill in the blanks
11. Iteration
12. Central Processing Unit
13. Hardware
14. Dennis Ritchie
15. ALT+F9
16. 2
17. false
18. switch
19. goto
20. American National Standards Institute
COMPUTER PROGRAMMING COURSE - MATERIAL
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
I B.Tech. II Mid-Term Examinations, February - 2012 COMPUTER PROGRAMMING AND DATA STRUCTURES
Objective Exam
Answer All Questions. All Questions Carry Equal Marks.Time: 20 Min. Marks: 10.
	I
1.
	Choose the correct alternative:
Which one of the following indicates that the function returns nothing
[
]

	
	(A)main()
(B)Void()
(C) functionQ
(D)A11
	

	2.
	Which one of the following cannot be de-referenced
[
(A) typedef *
(B) int *
(C) void *
(D) All
]

	3.
	What is the Standard Header File for the function'absQ'
[(A)ctype.h
(B) stdlib.h
(C)math.h
(D)None
]

	4.
	Given data: char stringl [] = "first";then stringl [3]=?
[
(A) r
(B) s
(C) i
(D) None
]

	5.
	Function prototype scope is Used for identifiers in
[
(A) parameter list
(B) Blocks
(C) Arrays
(D)A11
]

	6.
	The value of a pointer is the address of the corresponding object or function
[
(A) special value&function
(B) address&object
(C) address&constant
]
(D) None

7. If Strings are used as 'int strcmp(char const *sl, char const *s2);'then how will you get return value less than zero
[
]
(A) if si and s2 are equal;
(B) if si precedes s2 in lexicographical order;
(C) if si follows s2
(D) None
8. Communicating information between functions is possible from
[
]
(A) modules
(B) Parameters
(C) variables
(D) None
9. What is the Standard Header File for the function 'tolowerQ'
[
]
(A) stdlib.h
(B)string.h
(C) ctype.h
(D) stdio.h
10. Where do you get more Performance
[
]
(A) Iteration
(B) Recursion
(C)BothA&B
(D)None
283
II. Fill in the Blanks

COMPUTER PROGRAMMING COURSE - MATERIAL

11. Find out pow(2.5,3) =

12. An unspecified return-value-type is always assumed by the compiler to be

13. Names in different enumerations must always be

14.
programming evolved in the 1970s
15. All
functions return data type double
16. A
pointer points to a heap-dynamic variable that has been de-allocated.
17.
header files Create file with functions
18. Often, typedefis used in combination with
to declare a synonym (or an alias) for a structure
19. Program exits prematurely is caused by
error
20. C is used to insert common definitions into source files
COMPUTER PROGRAMMING AND DATA STRUCTURES KEYS
I Choose the correct alternative
	1. B
	2. C
	3. B
	4. B
	5. A

	6. B
	7. B
	8. B
	9. C
	10. A

	II Fill in the blanks
11. 15.625
	
	12. int
	
	

	13. distinct
15. math
	
	14. structured
16. dangling
	
	

	17. custom
19. fatal
	
	18. struct
20. preprocessor
	
	

COMPUTER PROGRAMMING COURSE - MATERIAL

COMPUTER PROGRAMMING COURSE - MATERIAL

COMPUTER PROGRAMMING AND DATA STRUCTURES KEYS
I. Choose the correct alternative
	1. D
	2. B
	3. A
	4. C
	5. C

	6. C
	7. B
	8. A
	9. A
	10. B

	II Fill in the blanks
11. random-access
	
	12. secondary storage
	
	

	13. ferror ()
15. New
17. Queue
19. deterministic
	
	14. restricted
16. binary
18. linked list
20. Bubble
	
	

COMPUTER PROGRAMMING
 SHAPE * MERGEFORMAT

JNTU PREVIOUS EXTERNAL QUESTION PAPERS
[image: image69.emf]

[image: image70.emf]
[image: image71.emf]
[image: image72.emf]

[image: image73.emf]
COMPUTER PROGRAMMING COURSE - MATERIAL
COMPUTER PROGRAMMING COURSE - MATERIAL

COMPUTER PROGRAMMING COURSE - MATERIAL
COMPUTER PROGRAMMING COURSE - MATERIAL
COMPUTER PROGRAMMING COURSE - MATERIAL
COMPUTER PROGRAMMING COURSE - MATERIAL
COMPUTER PROGRAMMING COURSE - MATERIAL
COMPUTER PROGRAMMING COURSE - MATERIAL
COMPUTER PROGRAMMING COURSE - MATERIAL
COMPUTER PROGRAMMING COURSE - MATERIAL
COMPUTER PROGRAMMING COURSE - MATERIAL
COMPUTER PROGRAMMING COURSE - MATERIAL
COMPUTER PROGRAMMING COURSE - MATERIAL
COMPUTER PROGRAMMING COURSE - MATERIAL
COMPUTER PROGRAMMING COURSE - MATERIAL
COMPUTER PROGRAMMING COURSE - MATERIAL
COMPUTER PROGRAMMING COURSE - MATERIAL

COMPUTER PROGRAMMING COURSE - MATERIAL
COMPUTER PROGRAMMING COURSE - MATERIAL

COMPUTER PROGRAMMING COURSE - MATERIAL
COMPUTER PROGRAMMING COURSE - MATERIAL

COMPUTER PROGRAMMING COURSE - MATERIAL
COMPUTER PROGRAMMING COURSE - MATERIAL

COMPUTER PROGRAMMING COURSE - MATERIAL
STUDENT SEMINAR TOPICS :-
· Concepts of Control statements.
· Functions, inter function communication.
· Arrays
· Parameter passing Techniques
· Pointers
· Strings
· String Manipulation functions
· Dynamic Memory Allocation Functions
· Structures, Unions
· Files
· Searching Techniques, Sorting Techniques
· Data structures
COMPUTER PROGRAMMING COURSE - MATERIAL
ASSIGNMENT QUESTIONS
UNIT – 1
Introduction to computers
THEORY Questions:
Set-1:
1. Explain and specify the interactions between various components that support the basic functionality of a computer? (OR) Explain the architecture of a computer system.
2. Discuss in detail the program execution steps? (OR)Explain the concept of creating and running programs?
3. Explain the concept of Algorithm? What are the characteristics that any algorithm should satisfy? Use suitable example.
Set-2:
1. Explain the concept of Flowcharts? Use suitable example.
2. Explain the concept of software? Differentiate between application software and system software?
3. Explain the concept of computer languages. Differentiate between compiler and interpreter?
Set-3:
1. Briefly discuss various computing environments with neat diagrams?
2. What are the different types of errors one can encounter during the program execution?
Set-4:
1. Explain the concept of software development.
2. List the activities involved in each phase of waterfall system development life cycle model? Problems(Not only these FLOWCHARTS and ALGORITHMS, in exam you can be asked to write any other FLOWCHARTS and ALGORITHMS):
Set-1:
1. Draw a flowchart for finding maximum of given three integers?
2. Draw a flowchart for finding the sum of ‘n’ numbers starting from 1?
3. Write an algorithm to read five integers and find out if the values are in ascending order.
Set-2:
1. Draw a flow chart to read ten integer values and print the sum of squares of the values.
2. Write an algorithm to find out if a given number is a prime.
3. Draw a flow chart to read ten positive integers and print how many are multiples of 7
Set-3:
1. Write an algorithm to find out all the factors of a given positive integer.
2. Draw a flow chart to read ten integers and print the sum of squares of all ten values.
Set-4:
1. Write an algorithm to read ten positive integers and find out how many are perfect squares (such as
49, 81). You may assume that the input values read are in the range 1 to 10000.
2. Write an algorithm and draw a flowchart to find factorial of a given number.
Introduction to C Language
THEORY Questions:
Set-1:
1. List the basic data types, their sizes and range of values supported by ‘C’ language? Also describe the concept of variable and its declaration and initialization.
COMPUTER PROGRAMMING COURSE - MATERIAL
2. What is type casting? What is the implicit type conversion hierarchy that is applied while evaluating expressions? Use suitable examples. Also explain explicit type casting. Use suitable examples.
3. Explain different categories of C operators based on their functionality(purpose)? Give examples?
Set-2:
1. Explain the structure of a C program? Use suitable example.
2. Explain different types of coding constants in a C? (Explain Types of constants) Use suitable examples.
3. What is an identifier? What are the naming rules for identifiers in C? Use suitable examples.
Set-3:
1. What do you mean by operator precedence and associativity? How one can override the precedence defined by C language? Give illustrative examples?
2. Explain the concept of control structures? Use suitable examples.
Set-4:
1. Explain commonly used formatting input and formatting output functions in C? Use suitable examples.
(about printf() and scanf() and their format specifiers such as %d, %f etc)
2. a)Explain the concept of keywords. List the keywords.
b) Difference between
i) while and do-while
ii) else-if ladder and switch
ii)
if and switch
iv)
keyword and identifier
c) What are modifiers that can be applied on basic data types?
d) What are tokens? Use suitable examples.
Problems(Not only these PROGRAMS, in exam you can be asked to write any other PROGRAMS):
Set-1:
1. Write a C program to find biggest of three given numbers.
2. Write a C program to find factorial of a given positive integer.
3. Write a C program to find roots of quadratic equation.
4. Write a C program to check whether a given number is prime or not.
5. Write a C program to find reverse of a given number.
6. Write a C program to check whether a given number is palindrome or not.
Set-2:
1. Write a C program to find sum of n given numbers.
2. Write a C program to find average of n given numbers.
3. Write a C program to find largest number of list of n given numbers.
4. Write a C program to displays all prime numbers with in the range from 1 to n.
5. Write a C program to convert temperature from Fahrenheit to Celsius.(c = (f-32)/1.8)
6. Write a C program to print Fibonacci series of n terms.
Set-3:
1. Write a C program to count number of words, lines, characters in a given text.
2. Write a C program to convert lower case letter to uppercase letter.
3. Write a C program to convert decimal to binary number.
313
COMPUTER PROGRAMMING COURSE - MATERIAL
4. Write a C program to convert decimal to octal number.
5. Write a C program to interchange or swap two variables with the help of third variable.
6. Write a C program to interchange or swap two variables without third variable.
Set-4:
1. Write a C program to print Pascal’s triangle.
2. Write a C program to print pyramid of numbers.
3. Write a C program to compute the following. 1+x+x2 + x3+. . . + xn
4. Write a complete C program that reads a value in the range 1 to 12 and print the name of that month and the next month: Print error for any other input value. (For example, print “May followed by June” if the input is 5. Note that December is followed by January).
5. Write a C program that prints the given integer in words. (e.g., if input is 238, output would be TWO THREE EIGHT)
6. Write minimal C expressions for the following: a)
x3 - 4x2 + 7x -12
b) Absolute value of (a-b)
c) Remainder when unsigned integer variable x is divided by 8, using bitwise operators.
d) True if the given positive integer x is even and is also a multiple of 7, false otherwise.
e) Minimum of the values of three variables a, b and c.
f) True if the given character variable c represents a numeral (that is '0'...'9'), false otherwise.
g) Digit at the 10's place of the given positive integer x (for example, digit at the 10's place in 3458 is 5)
h) True if the given positive integer x is odd, false otherwise
i) Add x to y, and then decrement x
j) True if 5 <= a <= 10, false otherwise
k) Fourth bit from the right if the number x is treated in binary representation.
l) Maximum of the values of three variables a, b and c
m) Digit at the 100's place of the given positive integer x (e.g., digit at the 100's place in 3458 is 4)
n) True if the given positive integer x is even, false otherwise
o) Increment x, and then add to z
p) True if the given positive integer x is a multiple of 3 and 7, false otherwise.
q) Digit at the 10's place of the given positive integer x (e.g., digit at the 10’s place in 3458 is 5)
r) True if the given positive integer x is a multiple of both 17 and 11, false otherwise.
s) Remainder when unsigned integer variable x is divided by 8, using bitwise operators.
u) True if 25 > a = 10, false otherwise
v) Second bit from the right if the number x is treated in binary representation.
7. Write a complete C Program to read ten integers and find:
(i) The number of even integers and their sum, and
(ii) The number of odd integers and their sum.
314
COMPUTER PROGRAMMING COURSE - MATERIAL
UNIT – II (Functions and Arrays)
THEORY Questions:
Set-1:
1. What is the need for user-defined functions. Explain the concept of functions? Use suitable examples.
(about function , its prototype or declaration, definition, call)
2. a)
Explain different categories of functions in C with simple illustrative examples?
b) Explain the concept of Header files? Use suitable examples.
c) Explain the concept of Library functions.
Use suitable examples.
3
Explain the concept of arrays(1-D, 2-D, 3-D arrays (or) multidimensional arrays). Use suitable examples.
Set-2:
1. a)
What are the different ways in which 1-dimensional arrays can be declared and initialized?
b) What are the different ways in which 2-dimensional arrays can be declared and initialized?
c) What are the different ways in which 3-dimensional arrays can be declared and initialized?
2. What are parameter passing techniques? Use suitable examples.
(OR) Differentiate between call by value and call by reference with suitable examples?
3. What is recursion? Use suitable example.
Set-3:
1. Discuss with suitable examples the storage classes available in C?
2. Explain the concept of preprocessor directives in C. Use suitable examples. (OR) Explain the facilities provided by the C preprocessor with examples.
Set-4:
1. a)
Explain the concept of macros in C. Use suitable examples.
b)
Explain the concept of function-like macros. Use suitable examples.
2. a)
Explain how two dimensional arrays can be used to represent matrices.
b) Explain how 1-dimensional arrays are passed to functions. Use suitable examples.
c) Explain how 2-dimensional arrays are passed to functions. Use suitable examples.
d) Explain how multi-dimensional arrays are passed to functions. Use suitable examples.
e) Explain type qualifiers (OR) access modifiers.
Problems(Not only these PROGRAMS, in exam you can be asked to write any other PROGRAMS):
Set-1:
1. Write a ‘C’ program using functions to check whether the given 3x3 matrix is symmetric or not
2. Write a C program using recursion for finding GCD (Greatest Common Divisor) of two given numbers?
Set-2:
1. a) Write a complete C program to find the factorial of the given number using recursion.
b) Write a complete C program to find the factorial of the given number using iteration. 2.Write C code to perform matrix addition and matrix multiplication.
Set-3:
1. Write a C program that solves Towers of Hanoi problem.
2. Write a complete C program that reads a positive integer N, compute the first N Fibonacci numbers using recursion and print the results. Illustrate how the results are computed when the value of N is 4?
315
COMPUTER PROGRAMMING COURSE - MATERIAL
3. Write a complete C program to do the following: Read data to fill a two dimensional array int table [4] [4]. Then print the sum of each column and sum of each row.
Set-4:
1. Write a C program that finds transpose of a given matrix.
2. Write a C program to swap two integers using functions
UNIT – III (Pointers and Strings) THEORY Questions:
Set-1:
1. What is a string? Explain how strings are declared and initialized in ‘C’? Use suitable examples. (OR) Differentiate between a pointer and a variable? How a pointer is declared and initialized?
2. Explain the concept of pointers and its operators? Use suitable examples.
3. Explain the concept of dynamic memory allocation(about malloc(), calloc(),etc). Use suitable examples.
(OR) Explain about memory allocation functions in C. Use suitable examples. (OR) Explain the concept of memory management in C. Use suitable examples.
Set-2:
1. a)
What are the arithmetic operators that are permitted on pointers?
(OR)
Explain the concept of pointer expressions (or) pointer arithmetic.
b) How to find address of array. Use suitable examples. (OR)
Explain the use of arrays with pointers.
c) Derive the expressions for finding the address of any element of a 1-dimensional array, 2-D arrays?
2. Discuss briefly the following pointers.
i) Pointer pointing to a variable
ii) Pointer pointing to a constant
iii) Constant pointer pointing to a variable
iv) Constant pointer pointing to constant.
v) Pointer pointing to another pointer
vi) Array of pointers
vii) Compatibility of pointers
viii) pointer pointing to functions.
3. What are command line arguments? Illustrate their use with a simple C program.
Set-3:
1. Explain the string handling(string manipulation) functions and string/data conversion functions? Use suitable examples.
2. How functions are used as arguments in a function call. Use suitable examples.
Set-4:
1. Explain the library functions that are used to perform input and output of strings. Use suitable examples.
2. Explain array of strings. Use suitable examples.
(OR) How 2-dimensional character array can be initialized. Use suitable examples.
COMPUTER PROGRAMMING COURSE - MATERIAL
Problems(Not only these PROGRAMS, in exam you can be asked to write any other PROGRAMS):
Set-1:
1. Write a ‘C’ function to find reverse of given string that can be passed as an argument that cannot be altered?
2. Write a C program to find reverse of a given string.
3. Write a C function to find the length of a string that can be passed as an argument?
Set-2:
1. Write a C program to find the length of a given string.
2. Write a C program to concatenate two given strings into one string.
3. Write a C program to check whether one string is a substring of another string.
(OR) Write a complete C program that displays the position or index in the string S where the string T
begins. The program displays -1 if S does not contain T. For example, if S is “information processing” and T is “process”, the value displayed is 12. The strings S and T are supplied by the user.
Set-3:
1. Write a C function to convert the string passed as an argument to its uppercase equivalent?
2. Write a C program that arranges the list of n given strings in an ascending order.(Use array of strings)
3. Write a complete C program that reads a string and prints if it is a palindrome or not. (OR) Write a C program that checks whether a given string is palindrome or not
Set-4:
1. Write the C function int minpos (float x[], int n) that returns the position of the first minimum value among the first n elements of the given array x.
2. Consider the function maxpos that has two parameters: int maxpos(int arr[], int n) n is greater than or equal to 1, but less than or equal to the size of the array arr. Code the function maxpos to return the position of the first maximum value among the first n elements of the array arr.
UNIT –IV
Derived data types
THEORY Questions:
Set-1:

COMPUTER PROGRAMMING COURSE - MATERIAL
1. Explain the concept of derived data types in C? Use suitable examples.
2. Briefly explain the type definition statement in ‘C’? Give any two examples where usage of type definition statement increases the readability of programs?
(OR)Explain the use of typedef keyword. Use suitable examples.
3. Explain the concept of structures? Use suitable examples.
Set-2:
1. Explain the concept of unions? Use suitable examples.
2. What do you mean by bit fields? How bit fields are different from structures? (OR)
Explain the concept of bit fields? Use suitable examples.
3. Explain the concept of structures with pointers? Use suitable examples. (OR) Explain the concept of pointers to structures? Use suitable examples.
Set-3:
1. How many possible ways one can access the members of a structure using a structure variable and a pointer to a structure variable? Illustrate with examples.
2. a) Differentiate between Arrays of structures and structures containing arrays with suitable examples?
b) Differentiate between structures and unions?
c) Differentiate between self referential and nested structures with suitable examples?
d) Suppose or oppose the statement “In C a structure contains a union inside it”. Give suitable example?
3. What is an enumerated type? How it can be declared? What are the different ways one can initialize enumerations? (OR) Explain the concept of enumeration. Use suitable examples.
Set-4:
1. Explain the concept of array of structures. Use suitable examples.
2. Explain the following with suitable examples :
a) Nested structures
b) Self referential structures
3. How structures are passed to functions? Use suitable examples.
Input and Output (or) Files
THEORY Questions:
Set-1:
1. Explain the concept of file processing? Use suitable examples.
2. What is a file? How to open and close different types of files in ‘C’?
3. Explain the possible modes of opening files? In all these modes what happens when the file doesn’t exist and the file already exists?
Set-2:
1. List and explain the Streams functions (or) file functions for text files along with their prototypes.
(OR) Explain library functions that can be used in file processing. Use suitable examples.
2. Explain commonly used library functions for reading and writing files. Use suitable examples.
COMPUTER PROGRAMMING COURSE - MATERIAL
Set-3:
1. Explain syntax with illustrative examples the functions support reading and writing formatted data to and from files?
(OR) Explain library functions for formatting input and formatting output operations on files. Give examples.
2. Explain the concept of random access files? (OR) Explain the use of ftell() and fseek() functions. Use suitable examples.
Set-4:
1. Explain error handling functions in file I/O. (OR) What is the purpose of the ferror() and feof() functions?
2. What are the possible ways to set the file pointer to the beginning of the file?
Problems(Not only these PROGRAMS, in exam you can be asked to write any other PROGRAMS):
Set-1:
1. Write a ‘C’ program to copy the contents of a file to another file?
Set-2:
1. Write a C program to count characters , lines and words in a given file? Assume that the words are separated by blanks or tabs.
Set-3:
1. Write a complete C program for the following: There are two input files named “first.dat” and “second.dat”. The files are to be merged. That is, copy the content of “first.dat” and then the content of “second.dat” to a new file named “result.dat”.
Set-4:
1. Write a complete C program to reverse the first n characters in a file. The file name and the value n are specified on the command line. Incorporate validation of arguments: that is, the program should check that the number of arguments passed and also the value of n are meaningful.
UNIT –V
Searching and Sorting
THEORY Questions(prepare only these PROGRAMS, in exam you can be asked to write any of these PROGRAMS only):
Set-1:
1. Explain the concept of searching? Write a C program for implementing linear search method. Give example.
Set-2:
1. Explain the concept of searching? Write a C program for implementing binary search method. Give example.
Set-3:
COMPUTER PROGRAMMING COURSE - MATERIAL
1. Explain the concept of sorting? Write a C program for implementing bubble sort method. Give example.
Set-4:
1. Explain the concept of sorting? Write a C program for implementing selection sort method. Give example.
Problems: (Don’t write programs. Just give an examples and diagrams that illustrates the concept)
Set-1:
1. An array contains 8, 13, 17, 26, 44, 56, 88, and 97. Trace the steps using binary search Algorithm.
I. To find value 88
II. To find the value 20
III. To find the value 8.
2
An Array contains 47, 3, 66, 32, 56, and 92. After two passes of a sorting algorithm, the array has been rearranged to: 3, 47, 66, 32, 56, and 92. Which sorting algorithm among selection and bubble sort is used? Defend your answer?
Set-2:
1. Illustrate the results of selection sort for each pass, for the following initial array of elements:
68
57
99
33
122
200
2. An Array contains 3, 13, 7, 26, 44, 23, 98, and 57. Trace the steps using bubble sort
Set-3:
1. Illustrate the results for each pass of selection sort, for the following the initial
array of elements: 23 78 45 8 32 56
2. An Array contains 3, 13, 7, 26, 44, 23, 98, and 57. Trace the steps using selection sort
Set-4:
1. An array contains 13, 17, 8, 16, 54, 44, 25, and 50. Trace the steps using linear search Algorithm.
I. To find value 25
II. To find the value 54
III. To find the value 80.
COMPUTER PROGRAMMING COURSE - MATERIAL
Data Structures
THEORY Questions(prepare only these QUESTIONS & PROGRAMS, in exam you can be asked to write any of these QUESTIONS & PROGRAMS only):
Set-1:
1. a)
What is a singly linked list and its ADT(abstract data type)? Use suitable example.
b)
Write a C program to implement a singly linked list. (OR) Explain with C code how the insertion, deletion and searching operations are performed on a singly linked list.
Set-2:
1. a)
Explain the concept of stacks and its ADT(abstract data type)?
b) Explain how a stack be implemented using arrays(array representation). Write a C Program to demonstrate the operations of a Stack using arrays?
c) Explain how a stack be implemented using pointers(or linked representation). Write a C Program to demonstrate the operations of a Stack using pointers?
Set-3:
1 . a)
Explain the concept of queues and its ADT(abstract data type)? What is the main disadvantage of Queue
over Circular Queue?
b)
Explain how a queue be implemented using arrays(array representation). Write a C Program to demonstrate the operations of a Queue using arrays?
Set-4:
1.
a)
Explain how a queue be implemented using pointers(or linked representation). Write a C Program to demonstrate the operations of a Queue using pointers?
COMPUTER PROGRAMMING COURSE - MATERIAL
CONTINUES ASSESSMENT PROGRAM (CAP)
UNIT-I (Green)
1) The most widely used computer device is.
	A) Solid state disks
	B) External hard disk

	C) Internal hard disk
	D) Mouse

ANSWER: C
2) The period of Second generation computers is
	A) 1956-1964
	B) 1956-1963

	C) 1957-1970
	D) 1958-1963

ANSWER: B
3) What computers are used for fastest type of computer that can perform complex operations at very high speed?
	A) Micro
	B) Mini

	C) Mainframe
	D) Super

ANSWER: D
4) The main working used by the computer are
	A) RAM
	B) ROM

	C) DVD
	D) CD

ANSWER: A
5) A special type of memory chip that holds software that can be read but not written to
	A) RAM
	B) Mother Board

	C) ROM
	D) CPU

ANSWER: C
6) C99 standard guarantess uniqueness of
characters for external names.
A) 31
B) 6
C) 12
D) 14 ANSWER: A
COMPUTER PROGRAMMING COURSE - MATERIAL
7) Which of the following is not a valid variable name declaration?
A) int _a3;
B) int a_3;
C) int 3_a;
D) int _3a ANSWER: C
8) Variable names beginning with underscore is not encouraged. Why?
A) It is not standardized
B) To avoid conflicts since assemblers and loaders use such names
C) To avoid conflicts since library routines use such names
D) To avoid conflicts with environment variables of an operating system ANSWER: C
9) What is the output of this C code?

A) Compile time error
B) 10 20
C) Undefined value
D) 10
ANSWER: A
10) Does this compile without error?

323
COMPUTER PROGRAMMING COURSE - MATERIAL
A) Yes
B) No
C) Depends on the C standard implemented by compilers
D) None of the mentioned
ANSWER: C
11) What is the output of this C code?

A) Compile time error
B) -1
C) 1
D) Implementation defined
ANSWER: B
12) What is the output of this C code?

A) Compile time error B) -1 1
C) 1 -1
324
COMPUTER PROGRAMMING COURSE - MATERIAL
D) Implementation defined
ANSWER: B
13) What is the output of this C code?

A) Value of x is 12
B) Value of x is 13
C) Value of x is 10
D) Undefined behavior Answer: D
14) What is the output of this C code?

a) 15
b) 16 c) 15.6
d) 10
View Answer
Answer:a
15. What is the output of this C code?

325
COMPUTER PROGRAMMING COURSE - MATERIAL
a) Syntax error
b) 1
c) 10
d) 5 Answer: b
16. What is the output of this C code?

a) Value of x is 12
b) Value of x is 13
c) Value of x is 10
d) Undefined behaviour Answer:d
17. What is the output of this C code?

326
COMPUTER PROGRAMMING COURSE - MATERIAL
a) 15
b) 16 c) 15.6
d) 10 Answer: a
18. What is the output of this C code?

a) Syntax error
b) 1
c) 10
d) 5 Answer: b
19. What is the output of this C code?

a) 3
b) 0
c) 2
d) Run time error Answer:a
20. What is the output of this C code?
327
COMPUTER PROGRAMMING COURSE - MATERIAL
a) 3
b) 1
c) Compile time error
d) Run time error Answer:c
21. What is the output of the below code considering size of short int is 2, char is 1 and int is 4 bytes?

a) 2, 1, 2
b) 2, 1, 1
c) 2, 1, 4
d) 2, 2, 8
Answer:c
22. What is the output of this C code?

a) a = 1, b = 1
b) a = 2, b = 1 c) a = 1, b = 2
328
COMPUTER PROGRAMMING COURSE - MATERIAL
d) a = 2, b = 2 Answer:b
23. What is the output of this C code?

a) a = 10, b = 9 b) a = 10, b = 8 c) a = 5, b = 9 d) a = 5, b = 8 Answer:c
24. What is the output of this C code?

a) inside if
b) inside else if
c) inside else
329
COMPUTER PROGRAMMING COURSE - MATERIAL
d) Compile time error View Answer
Answer:c
25. What is the output of this C code?

a) 2.000000
b) 4.000000
c) 3.000000
d) Run time error Answer:c
UNIT-I (Yellow)
1) A byte consist of how many bits.
	A) 8
	B) 9

	C) 10
	D) 16

ANSWER: A
2) Special type of program that loads automatically when you start your computer.
	A) MS-office
	B) Internet

	C) OS
	D) None of these

3) Finite number of sequential instructions are called
	A) Flow chart
	B) Control flow

	C) Program flow
	D) Algorithm

ANSWER: D
4) Debugging is the process of
330
COMPUTER PROGRAMMING COURSE - MATERIAL
	A) Deploying the program
	B) Coding

	C) Checking errors in the program
	D) Design structure of program

ANSWER: C
5) Rom can only perform
operations.
	A) Read
	B) Write

	C) Access
	D) Delete

ANSWER: A
6) The format identifier ‘%i’ is also used for
data type?
A) char
B) int
C) float
D) double
ANSWER: B
7) What is the size of an int data type?
a) 4 Bytes
b) 8 Bytes
c) Depends on the system/compiler
d) Cannot be determined
ANSWER: C
8) Which of the following cannot be a variable name in C?
a) volatile
b) true
c) friend
d) export
ANSWER: A
9) Which of the following declaration is not supported by C?
A) String str;
B) char *str;
C) float str = 3e2;
D) Both (a) and (c)
ANSWER: A
10) What is the output of this C code?

331
COMPUTER PROGRAMMING COURSE - MATERIAL
A) Implementation defined
B) 1
C) 3
D) Compile time error Answer: B
11) What is the output of this C code?

A) Implementation defined
B) -1
C) -3
D) Compile time error Answer:B
12) The precedence of arithmetic operators is (from highest to lowest) A) %, *, /, +, -
B) %, +, /, *, -
C) +, -, %, *, /
D) %, +, -, *, /
Answer: A
13) Which among the following are the fundamental arithmetic operators, ie, performing the desired operation can be done using that operator only?
A) +, -
B) +, -, %
C) +, -, *, /
D) +, -, *, /, %
Answer: A
332
COMPUTER PROGRAMMING COURSE - MATERIAL
14) The precedence of arithmetic operators is (from highest to lowest) a) %, *, /, +, -
b) %, +, /, *, -
c) +, -, %, *, /
d) %, +, -, *, /
Answer:a
15) Which of the following is not an arithmetic operation? a) a *= 10;
b) a /= 10; c) a != 10; d) a %= 10;
Answer:c
16) What is the output of this C code?
 SHAPE * MERGEFORMAT

a) 6
b) 5
c) 0
d) Varies Answer:a
17) What is the output of this C code?

a) 6
b) 5
c) 0
d) Varies Answer:b
333
COMPUTER PROGRAMMING COURSE - MATERIAL
18) What is the output of this C code?

a) -2147483648
b) -1
c) Run time error
d) 8 Answer:d
19) What is the final value of j in the below code?

a) 0
b) 10
c) Depends on the compiler
d) Depends on language standard
Answer:a
20) What is the final value of j in the below code?

334
COMPUTER PROGRAMMING COURSE - MATERIAL
a) 0
b) 20
c) Compile time error
d) Depends on language standard Answer:a
21) What is the output of this C code?

a) Yes
b) No
c) Depends on the compiler
d) Depends on the standard Answer:b
22) function tolower(c) defined in library works for
a) Ascii character set
b) Unicode character set
c) Ascii and utf-8 but not EBSIDIC character set
d) Any character set Answer:d .
23) What is the output of this C code?

335
COMPUTER PROGRAMMING COURSE - MATERIAL
a) true
b) false
c) Depends on the compiler
d) No print statement Answer:d
24) What is the output of this C code?

a) yes no
b) yes
c) no
d) Compile time error View Answer
Answer:c
25) What is the output of this C code?

336
COMPUTER PROGRAMMING COURSE - MATERIAL
a) Hi is printed 8 times, hello 7 times and then hi 2 times
b) Hi is printed 10 times, hello 7 times
c) Hi is printed once, hello 7 times
d) Hi is printed once, hello 7 times and then hi 2 times View Answer
Answer:d
UNIT-I (Red)
1) Who is father of modern computers?
	A) Abraham Lincoln
	B) James Gosling

	C) Charles Babbage
	D) Gordon E. Moore

ANSWER: C
2)
are software which is used to do particular task.
	A) Operating system
	B) Program

	C) Data
	D) Software

ANSWER: B
3) How many generations of computers we have?
	A) 6
	B) 7

	C) 5
	D) 4

ANSWER: C
4) One of the Input device in computer are
	A) Keyboard
	B) Os

	C) Pen drive
	D) Cable

ANSWER: A
5) RAM stands for.
337
COMPUTER PROGRAMMING COURSE - MATERIAL
	A) Random access memory
	B) Read only memory

	C) Read access memory
	D) Raid act memory

ANSWER: A
6) Which data type is most suitable for storing a number 65000 in a 32-bit system?
a) short
b) int
c) long
d) double
ANSWER: A
7) Which is valid C expression?
a) int my_num = 100,000;
b) int my_num = 100000;
c) int my num = 1000;
d) int $my_num = 10000;
ANSWER: B
8) What is the problem in following variable declaration? float 3Bedroom-Hall-Kitchen?;
a) The variable name begins with an integer
b) The special character ‘-’
c) The special character ‘?’
d) All of the mentioned
ANSWER: D
9) What is the output of this C code?

a) Value of x is 2.3
b) Value of x is 1
c) Value of x is 0.3
d) Compile time error Answer:D
10) What is the output of this C code?
338
COMPUTER PROGRAMMING COURSE - MATERIAL
a) Value of x is 1
b) Value of x is 2
c) Value of x is 3
d) Compile time error Answer: A
11) Which of the following is not an arithmetic operation? A) a *= 10;
B) a /= 10; C) a != 10; D) a %= 10;
Answer C
12) Which of the following data type will throw an error on modulus operation(%)?
A) char
B) short
C) int
D) float Answer:D
13) Which of the following data type will throw an error on modulus operation(%)?
a) char
b) short
c) int
d) float Answer:d
14) Which among the following are the fundamental arithmetic operators, ie, performing the desired operation can be done using that operator only?
a) +, -
b) +, -, %
c) +, -, *, /
339
COMPUTER PROGRAMMING COURSE - MATERIAL
d) +, -, *, /, %
Answer: a
15) Which type conversion is NOT accepted?
a) From char to int
b) From float to char pointer
c) From negative int to char
d) From double to char Answer:b
16). Comment on the output of this C code?

a) Output will be All is Well I am Well
b) Output will be I am Well I am not a River
c) Output will be I am Well
d) Compile time errors during compilation View Answer
Answer:d
17) What is the output of this C code?

340
COMPUTER PROGRAMMING COURSE - MATERIAL
a) 0We are Happy
b) 1We are Happy
c) 1We are Sad
d) Compile time error View Answer
Answer:d
18) Comment on the output of this C code?
a) if (ch == ‘a’ && ch == ‘A’) printf(“true”);
b) if (ch == ‘a’)
if (ch == ‘a’) printf(“true”);
c) if (ch == ‘a’ || ch == ‘A’) printf(“true”);
d) Both a and b Answer:c
19) Switch statement accepts.
a) int
b) char
c) long
d) All of the mentioned Answer:d
20) Which loop is most suitable to first perform the operation and then test the condition?
a) for loop
b) while loop
c) do-while loop
d) None of the mentioned Answer:c
21) What is the output of this C code?
341
COMPUTER PROGRAMMING COURSE - MATERIAL
a) 5, 5
b) 5, 10
c) 10, 10
d) Syntax error Answer:c
22. The correct syntax for running two variable for loop simultaneously is.
a) for (i = 0; i < n; i++) for (j = 0; j < n; j += 5)
b) for (i = 0, j = 0;i < n, j < n; i++, j += 5) c) for (i = 0; i < n;i++){}
for (j = 0; j < n;j += 5){}
d) None of the mentioned Answer:b
23. Which for loop has range of similar indexes of 'i' used in for (i = 0;i < n; i++)?
a) for (i = n; i>0; i–)
b) for (i = n; i >= 0; i–) c) for (i = n-1; i>0; i–) d) for (i = n-1; i>-1; i–) Answer:d
24. Which of the following cannot be used as LHS of the expression in for (exp1;exp2; exp3) ?
a) Variable
b) Function
c) typedef
342
COMPUTER PROGRAMMING COURSE - MATERIAL
d) macros View Answer
Answer:d
25. What is the output of this C code?

a) The control won’t fall into the for loop
b) Numbers will be displayed until the signed limit of short and throw a runtime error
c) Numbers will be displayed until the signed limit of short and program will successfully
terminate
d) This program will get into an infinite loop and keep printing numbers with no errors View Answer
Answer:c

UNIT-II
(Green)

1. What is the output of this C code?
1.
#include <stdio.h>
2.
int main()
3.
{
4. void foo();
5. printf("1 ");
6. foo();
7.
}
8.
void foo()
9.
{
10. printf("2 ");
11.
}
a) 1 2
b) Compile time error
343
c) 1 2 1 2
d) Depends on the compiler ASWER: B

COMPUTER PROGRAMMING COURSE - MATERIAL
2. What is the output of this C code?
1. #include <stdio.h>
2. int main()
3.
{
4.
void foo(), f();
5.
f();
6.
}
7.
void 3. What is the output of this C code?
1. #include <stdio.h>
2. int main()
3.
{
4. void foo();
5. void f()
6.
{
7.
foo();
8.
}
9.
f();
10.
}
11.
void foo()
12.
{
13. printf("2 ");
14.
}
a) 2 2
b) 2
c) Compile time error
d) Depends on the compiler ANSWER: D
3. What is the output of this C code?

344
6. foo();
7. return 0;
8.
}
9.
void foo()
10.
{
11. printf("2 ");
12.
}
a) Compile time error
b) 2
c) Depends on the compiler
d) Depends on the standard Answer:b

COMPUTER PROGRAMMING COURSE - MATERIAL
4. What is the output of this C code?
1. #include <stdio.h>
2. void foo();
3. int main()
4.
{
5.
void foo(int);
6.
foo(1);
7.
return 0;
8.
}
9.
void foo(int i)
10.
{
11. printf("2 ");
12.
}
a) 2
b) Compile time error
c) Depends on the compiler
d) Depends on the standard Answer:a
5. What is the output of this C code?

345
6. foo();
7. return 0;
8.
}
9.
void foo()
10.
{
11. printf("2 ");
12.
}
a) 2
b) Compile time error
c) Depends on the compiler
d) Depends on the standard Answer:b

COMPUTER PROGRAMMING COURSE - MATERIAL
6. What is the output of this C code?
1. include <stdio.h>
2. void m()
3.
{
4.
printf("hi");
5.
}
6. void main()
7.
{
8.
m();
9.
}
a) hi
b) Run time error
c) Nothing
d) Varies Answer:a
7. What is the output of this C code?

346
9.
void m()
10.
{
11. printf("hi");
12.
}
13.
}
a) hi
b) Compile time error
c) Nothing
d) Varies Answer:b
8. The output of the code below is
1. #include <stdio.h>
2. void main()
3.
{
4. int k = m();
5. printf("%d", k); 6.
}
7.
void m()
8.
{
9. printf("hello");
10.
}
a) hello 5
b) Error
c) Nothing
d) Junk value Answer:a
9. The output of the code below is

COMPUTER PROGRAMMING COURSE - MATERIAL
1. #include <stdio.h>
2. int *m()
3.
{
4. int *p = 5;
5. return p;
6.
}
7.
void main()
8.
{
9. int *k = m();
10. printf("%d", k);
11.
}

347
a) 5
b) Junk value
c) 0
d) Error Answer:a

COMPUTER PROGRAMMING COURSE - MATERIAL
10. The output of the code below is
1. #include <stdio.h>
2. int *m();
3. void main()
4.
{
5. int *k = m();
6. printf("hello ");
7.
printf("%d", k[0]);
8.
}
9.
int *m()
10.
{
11.
int a[2] = {5, 8};
12. return a;
13.
}
a) hello 5 8
b) hello 5
c) hello followed by garbage value
d) Compilation error Answer:c
11) What is the output of this C code?
1. #include <stdio.h>
2. void main()
3.
{
4.
m();
5.

printf("%d", x); 6.
}
7. int x;
8. void m()
9.
{
10.
x = 4;
11.
}
a) 4
b) Compile time error
348
c) 0
d) Undefined Answer:b

COMPUTER PROGRAMMING COURSE - MATERIAL
12) What is the output of this C code?
1. #include <stdio.h>
2. int x;
3. void main()
4.
{
5. printf("%d", x); 6.
}
a) Junk value
b) Run time error
c) 0
d) Undefined Answer:c
13) Comment on the output of this C code?
1. #include <stdio.h>
2. int main()
3.
{
4.
int i;
5.
for (i = 0;i < 5; i++)
6. int a = i;
7. printf("%d", a); 8.
}
a) a is out of scope when printf is called
b) Redeclaration of a in same scope throws error
c) Syntax error in declaration of a
d) No errors, program will show the output 5 Answer:c
14) Which variable has the longest scope?

349
3. int main()
4.
{
5. int c;
6. return 0;
7.
}
8. int a;
a) a
b) b
c) c
d) Both (a) and (b) Answer:b

COMPUTER PROGRAMMING COURSE - MATERIAL
15) Comment on the output of this 2 C code?
1. #include <stdio.h> //Program 1
2. int main()
3.
{
4. int a;
5. int b;
6. int c;
7.
}
8.
9. #include <stdio.h> //Program 2
10. int main()
11.
{
12.
int a;
13.
{
14.
int b;
15.
}
16.
{
17. int c;
18.
}
19.
}
a) They are both the same
b) Scope of C is till the end of program
c) All operation in Program 1 can also be performed in Program 2
d) Both (a) and (c) Answer:c
16) The sequence of allocation and deletion of variables for the following code is.
350
1. #include <stdio.h>
2. int main()
3.
{
4.
int a;
5.
{
6. int b;
7.
}
8.
}
a) a->b, a->b
b) a->b, b->a
c) b->a, a->b
d) b->a, b->a Answer:b

COMPUTER PROGRAMMING COURSE - MATERIAL
17) Array sizes are optional during array declaration by using
keyword.
a) auto
b) static
c) extern
d) register Answer:c
18) What is the output of this C code?
1. #include <stdio.h>
2. void main()
3.
{
4.
int x = 3;
5.
{
6.
x = 4;
7. printf("%d", x);
8.
}
9.
}
a) 4
b) 3
c) 0
d) Undefined Answer:a
351
COMPUTER PROGRAMMING COURSE - MATERIAL
19) What is the output of this C code?

a) 1, 1
b) 1, 2
c) 2, 1
d) 2, 2
Answer: b
20) The C-preprocessors are specified with
symbol.
a) #
b) $
c) ” ”
d) None of the mentioned Answer: a
21) What is the output of this C code?

352
a) Compile time error
b) 4
c) 1
d) 2 Answer:a

COMPUTER PROGRAMMING COURSE - MATERIAL
22) What is the output of this C code?

a) 37
b) Compile time error
c) Varies
d) Depends on compiler Answer:b
23) What is the output of this C code?

a) 37
b) Run time error
c) Varies
d) Depends on compiler Answer:a
COMPUTER PROGRAMMING COURSE - MATERIAL
24) What is the output of this C code?

a) Run time error
b) 32
c) int
d) const Answer: b
25) Which of the following Macro substitution are accepted in C?
a) #define A #define A VAR 20
b) #define A define
#A VAR 20
c) #define #A #define
#A VAR 20
d) None of the mentioned View Answer
Answer: d
COMPUTER PROGRAMMING COURSE - MATERIAL
UNIT-II
Yellow
1) What is the output of this C code?
1. #include <stdio.h>
2. void main()
3.
{
4.
m();
5.
void m()
6.
{
7. printf("hi");
8.
}
9.
}
a) hi
b) Compile time error
c) Nothing
d) Varies Answer: b
2) What is the output of this C code?
1. #include <stdio.h>
2. void main()
3.
{
4.
m();
5.
}
6.
void m()
7.
{
8. printf("hi");
9.
m();
10.
}
a) Compile time error
b) hi
c) Infinite hi
d) Nothing Answer: c
3) What is the output of this C code?
1. #include <stdio.h>
2. void main()
3.
{
4.
static int x = 3;
5.
x++;
6.
if (x <= 5)
7.
{
8. printf("hi");
9. main();
10.
}
11.
}
a) Run time error
b) hi
c) Infinite hi
d) hi hi Answer: d

COMPUTER PROGRAMMING COURSE - MATERIAL

4. What is the output of this code having void return-type function?
1. #include <stdio.h>
2. void foo()
3.
{
4.
return 1;
5.
}
6.
void main()
7.
{
8. int x = 0;
9. x = foo();
10. printf("%d", x);
11.
}
a) 1
b) 0
c) Runtime error
d) Compile time error Answer: d
5. What will be the data type returned for the following function?
356
1. #include <stdio.h>
2. int func()
3.
{

COMPUTER PROGRAMMING COURSE - MATERIAL
4. return (double)(char)5.0; 5.
}
a) char
b) int
c) double
d) multiple type-casting in return is illegal Answer: b
6) What is the output of this C code?
1. #include <stdio.h>
2. int x = 5;
3. void main()
4.
{
5. int x = 3;
6. printf("%d", x);
7.
{
8.
x = 4;
9.
}
10. printf("%d", x);
11.
}
a) Run time error
b) 3 3
c) 3 5
d) 3 4 Answer: d
7) What is the output of this C code?

357
9.
}
10. printf("%d", x);
11.
}
a) 3 3
b) 3 4
c) 3 5
d) Run time error Answer: a

COMPUTER PROGRAMMING COURSE - MATERIAL
8) Which of the following are an external variable?
1. #include <stdio.h>
2. int func (int a)
3.
{
4. int b;
5. return b;
6.
}
7.
int main()
8.
{
9. int c;
10. func (c);
11.
}
12. int d;
a) a
b) b
c) c
d) d Answer: d
9) What will be the output?
1. #include <stdio.h>
2. int main()
3.
{
4.
printf("%d", d++);
5.
}
6. int d = 10;
a) 9
b) 10
c) 11
358
d) Compile time error Answer: d
10) What will be the output?

COMPUTER PROGRAMMING COURSE - MATERIAL

1. #include <stdio.h>
2. double var = 8;
3. int main()
4.
{
5. int var = 5;
6. printf("%d", var); 7.
}
a) 5
b) 8
c) Compile time error due to wrong format identifier for double
d) Compile time error due to redeclaration of variable with same name Answer: a
11) What is the output of this C code?
1. #include <stdio.h>
2. int i;
3. int main()
4.
{
5.
extern int i;
6.
if (i == 0)
7. printf("scope rules\n"); 8.
}
a) scope rules
b) Compile time error due to multiple declaration
c) Compile time error due to not defining type in statement extern i
d) Nothing as i value is not zero being automatic variable Answer: a
12. What is the output of this C code (without linking the source file in which ary1 is defined)?
1. #include <stdio.h>
2. int main()
359
3.
{
4. extern ary1[];

COMPUTER PROGRAMMING COURSE - MATERIAL
5. printf("scope rules\n"); 6.
}
a) scope rules
b) Linking error due to undefined reference
c) Compile time error because size of array is not provided
d) Compile time error because datatype of array is not provided Answer: a
13. What is the output of this C code after linking with source file having definition of ary1?
1. #include <stdio.h>
2. int main()
3.
{
4. extern ary1[];
5.
printf("%d\n", ary1[0]);
6.
}
a) Value of ary1[0]
b) Compile time error due to multiple definition
c) Compile time error because size of array is not provided
d) Compile time error because datatype of array is not provided Answer: d
14) What is the output of this C code?
1. #include <stdio.h>
2. int x = 5;
3. void main()
4.
{
5.
int x = 3;
6.
m();
7.

printf("%d", x); 8.
}
9.
void m()
10.
{
11.
x = 8;
12.
n();
13.
}
14.
void n()
15.
{
16.
printf("%d", x);
360
17.
}
a) 8 3
b) 3 8
c) 8 5
d) 5 3 Answer: a

COMPUTER PROGRAMMING COURSE - MATERIAL
15) What is the output of this C code?
1. #include <stdio.h>
2. int x;
3. void main()
4.
{
5.
m();
6.

printf("%d", x); 7.
}
8. void m()
9.
{
10.
x = 4;
11.
}
a) 0
b) 4
c) Compile time error
d) Undefined Answer: b
16) What is the output of this C code?
1. #include <stdio.h>
2. static int x = 5;
3. void main()
4.
{
5.
int x = 9;
6.
{
7.
x = 4;
8.
}
9. printf("%d", x);
10.
}
a) 9
b) 5
361
c) 4
d) 0 Answer: c

COMPUTER PROGRAMMING COURSE - MATERIAL
17) What is the output of this C code?
1. #include <stdio.h>
2. void main()
3.
{
4.
{
5.
int x = 8;
6.
}
7. printf("%d", x); 8.
}
a) 8
b) 0
c) Undefined
d) Compile time error Answer: d
18) Which of the following are C preprocessors?
a) #ifdef
b) #define
c) #endif
d) All of the mentioned Answer: d
19) #include statement must be written
a) Before main()
b) Before any scanf/printf
c) After main()
d) It can be written anywhere Answer: b
362
COMPUTER PROGRAMMING COURSE - MATERIAL
20) #pragma exit is primarily used for?
a) Checking memory leaks after exitting the program
b) Informing Operating System that program has terminated
c) Running a function at exitting the program
d) No such preprocessor exist Answer: c
21) What is the correct syntax to send a 3-dimensional array as a parameter? (Assuming declaration int a[5][4][3];)
a) func(a);
b) func(&a);
c) func(*a);
d) func(**a); Answer: a
22) What is the output of this C code?
 SHAPE * MERGEFORMAT

a) 32
b) 45
c) Compile time error
d) Varies Answer: c
23) What is the output of this C code?

363
COMPUTER PROGRAMMING COURSE - MATERIAL
a) Run time error
b) hi hi
c) Nothing
d) hi Answer: d
24) What is the output of this C code?

a) 9
b) 11
c) 12
d) 21 Answer: b
25) What is the output of this C code?

364
2. main()
3.
{
4.
int n = 0, m = 0;
5.
if (n > 0)
6.
if (m > 0)
7. printf("True");
8. else
9. printf("False");
10.
}
a) True
b) False
c) No Output will be printed
d) Run Time Error Answer: c

COMPUTER PROGRAMMING COURSE - MATERIAL
UNIT-II RED
1. Which of the following is a correct format for declaration of function?
a) return-type function-name(argument type);
b) return-type function-name(argument type){}
c) return-type (argument type)function-name;
d) Both (a) and (b)
Answer: a
2. Which of the following function declaration is illegal?
a) int 1bhk(int);
b) int 1bhk(int a);
c) int 2bhk(int*, int []);
d) All of the mentioned
Answer: d
3. Which function definition will run correctly?
a) int sum(int a, int b) return (a + b);
b) int sum(int a, int b)
{return (a + b);}
c) int sum(a, b) return (a + b);
d) Both (a) and (b)
Answer: b
4. Can we use a function as a parameter of another function? [Eg: void wow(int func())]
a) Yes, and we can use the function value conveniently
365
COMPUTER PROGRAMMING COURSE - MATERIAL
b) Yes, but we call the function again to get the value, not as convenient as in using variable
c) No, C does not support it.
d) This case is compiler dependent
Answer: c
5. The value obtained in the function is given back to main by using
_
keyword?
a) return
b) static
c) new
d) volatile Answer: a
6) Which of the following function declaration is illegal?
a) double func(); int main(){} double func(){}
b) double func(){}; int main(){}
c) int main()
{
double func();
}
double func(){//statements}
d) None of the mentioned Answer: d
7) What is the return-type of the function sqrt()
a) int
b) float
c) double
d) Depends on the data type of the parameter Answer: c
8) What is the problem in the following declarations? int func(int);
double func(int); int func(float);
a) A function with same name cannot have different signatures
b) A function with same name cannot have different return types
366
COMPUTER PROGRAMMING COURSE - MATERIAL
c) A function with same name cannot have different number of parameters
d) All of the mentioned Answer: d
9) Functions in C are ALWAYS:
a) Internal
b) External
c) Both Internal and External
d) External and Internal are not valid terms for functions Answer: b
10) Global variables are:
a) Internal
b) External
c) Both (a) and (b)
d) None of the mentioned Answer: b
11) What is the scope of an external variable?
a) Whole source file in which it is defined
b) From the point of declaration to the end of the file in which it is defined
c) Any source file in a program
d) From the point of declaration to the end of the file being compiled Answer: d
12) What is the scope of a function?
a) Whole source file in which it is defined
b) From the point of declaration to the end of the file in which it is defined
c) Any source file in a program
d) From the point of declaration to the end of the file being compiled Answer: d
13) Automatic variables are variables that are
a) Declared within the scope of a block, usually a function
b) Declared outside all functions
c) Declared with auto keyword
367
COMPUTER PROGRAMMING COURSE - MATERIAL
d) Declared within the keyword extern
Answer: a
14) Automatic variables
a) Exist only within that scope in which it is declared
b) Cease to exist after the block is exited
c) Both a & b
d) Only 1
Answer: c
15) Automatic variables are allocated memory in
a) heap
b) Data segment
c) Code segment
d) stack.
Answer: d
16) What is the output of this C code?
1. #include <stdio.h>
2. void main()
3.
{
4. int x;
5.
}
here x is
a) automatic variable
b) static variable
c) register variable
d) global variable.
Answer: a
17) Automatic variables are initialised to
a) Zero
b) Junk value
c) Nothing
d) Both a & b
Answer: b
18) Which of the following storage class supports char data type?
a) register
b) static
c) auto
368
d) All of the mentioned

COMPUTER PROGRAMMING COURSE - MATERIAL

Answer: d
19) The variable declaration with no storage class specified is by default:
a) auto
b) extern
c) static
d) register Answer: a
20) The #include directive
a) Tells the preprocessor to grab the text of a file and place it directly into the current file
b) Statements are typically placed at the top of a program
c) both a & b
d) None of a & b Answer: c
21) The preprocessor provides the ability for
.
a) The inclusion of header files
b) The inclusion of macro expansions
c) Conditional compilation and line control.
d) All of the mentioned Answer: d
22) If #include is used with file name in angular brackets
a) The file is searched for in the standard compiler include paths
b) The search path is expanded to include the current source directory
c) Both a & b
d) None of the mentioned Answer: a
23) Applications of multidimensional array are?
a) Matrix-Multiplication
COMPUTER PROGRAMMING COURSE - MATERIAL
b) Minimum Spanning Tree
c) Finding connectivity between nodes
d) All of the mentioned Answer: d
24) Comment on the following code?
 SHAPE * MERGEFORMAT

a) No errors, it will show the output 20
b) Compile time error, the printf braces aren’t closed
c) Compile time error, there are no open braces in #define
d) Both (b) and (c).
Answer: a
25) Which of the following properties of #define not true?
a) You can use a pointer to #define
b) #define can be made externally available
c) They obey scope rules
d) All of the mentioned Answer: d
COMPUTER PROGRAMMING COURSE - MATERIAL
UNIT-3 --RED
1. Comment on the following pointer declaration? int *ptr, p;
a) ptr is a pointer to integer, p is not
b) ptr and p, both are pointers to integer
c) ptr is a pointer to integer, p may or may not be
d) ptr and p both are not pointers to integer
View Answer
Answer:a
2. Comment on the following? const int *ptr;
a) You cannot change the value pointed by ptr
b) You cannot change the pointer ptr itself
c) Both (a) and (b)
d) You can change the pointer as well as the value pointed by it
View Answer
Answer:a
3. Which is an indirection operator among the following?
a) &
b) *
c) ->
d) .
View Answer
Answer:b
4 . Which of the following are correct syntaxes to send an array as a parameter to function:
a) func(&array);
b) func(array);
c) func(*array);
d) func(array[size]); View Answer Answer:a & b
5. Different ways to initialize an array with all elements as zero are
a) int array[5] = {};
b) int array[5] = {0};
c) int a = 0, b = 0, c = 0; int array[5] = {a, b, c};
d) All of the mentioned
View Answer
Answer:d
COMPUTER PROGRAMMING COURSE - MATERIAL
6. . Which of the following declaration is illegal? a) int a = 0, b = 1, c = 2;
int array[3] = {a, b, c};
b) int size = 3; int array[size];
c) int size = 3;
int array[size] = {1, 2, 3};
d) All of the mentioned
View Answer
Answer:c
7. . What is the output of this C code?

a) Same address is printed.
b) Different address is printed.
c) Compile time error
d) Nothing
View Answer
8. . Which of the following operand can be applied to pointers p and q? (Assuming initialization as int *a = (int *)2; int *b = (int *)3;)
a) a + b
b) a – b
c) a * b
d) a / b View Answer Answer:b
9. What is the size of *ptr in a 32-bit machine, (assuming initialization as int *ptr = 10;)?
a) 1
b) 2
c) 4
d) 8
View Answer
Answer:c
10. Which of following logical operation can be applied to pointers? (Assuming initialization int *a = 2; int *b = 3;)
372
COMPUTER PROGRAMMING COURSE - MATERIAL
a) a | b
b) a ^ b
c) a & b
d) None of the mentioned
View Answer
Answer:d
11. . How to call a function without using the function name to send parameters?
a) typedefs
b) Function pointer
c) Both (a) and (b)
d) None of the mentioned
View Answer
Answer:b
12. 24. Which of the following is not possible in C?
a) Array of function pointer
b) Returning a function pointer
c) Comparison of function pointer
d) None of the mentioned
View Answer
Answer:d
13. 25 Pointer is
A. A keyword used to create variables
B. A variable that stores address of an instruction
C. A variable that stores address of other variable
D. All of the above
Answer: Option C
14. The operator used to get value at address stored in a pointer variable is A.*
B.& C.&&
D. ||
Answer: Option A
15. Is the NULL pointer same as an uninitialised pointer? A.YES
B.NO
ANSWER: B
16. Which of the following function sets first n characters of a string to a given character?
A. strinit()
B. strnset()
C. strset() D.strcset()
Answer: Option B
17. If the two strings are identical, then strcmp() function returns
A. -1 B.1 C.0
373
D.YES ANSWER:C

COMPUTER PROGRAMMING COURSE - MATERIAL
18. How will you print \n on the screen?
A. printf("\n");
B. echo "\\n";
C. printf('\n');
D. printf("\\n");
Answer: Option D
19. The library function used to find the last occurrence of a character in a string is
A. strnstr()
B. laststr()
C. strrchr()
D. strstr()
Answer: C
20. Which of the following function is used to find the first occurrence of a given string in another string?
A. strchr()
B. strrchr()
C. strstr()
D. strnset()
Answer: Option C
21. . Strcat function adds null character
a) Only if there is space
b) Always
c) Depends on the standard
d) Depends on the compiler
View Answer
22. The return-type used in String operations are.
a) void only
b) void and (char *) only
c) void and int only
d) void, int and (char *) only
View Answer
Answer:d
23. String operation such as strcat(s, t), strcmp(s, t), strcpy(s, t) and strlen(s) heavily
rely upon.
a) Presence of NULL character
b) Presence of new-line character
c) Presence of any escape sequence
d) None of the mentioned
View Answer
Answer:a
24. . Which of the following function compares 2 strings with case-insensitively?
a) strcmp(s, t)
b) strcmpcase(s, t)
374
COMPUTER PROGRAMMING COURSE - MATERIAL
c) strcasecmp(s, t)
d) strchr(s, t) View Answer Answer:c
25. What will be the value of var for the following? var = strcmp(“Hello”, “World”);
a) -1
b) 0
c) 1
d) strcmp has void return-type
View Answer
UNIT-3: BLUE
1. . Which of the following does not initialize ptr to null (assuming variable declaration of a as int
a=0;?
a) int *ptr = &a;
b) int *ptr = &a – &a;
c) int *ptr = a – a;
d) All of the mentioned
View Answer
Answer:a
2. Which of the following can never be sent by call-by-value?
a) Variable
b) Array
c) Structures
d) Both (b) and (c) View Answer Answer:b
3. What is the output of this C code?

a) 5
b) Address of 5
c) Nothing
d) Compile time error
View Answer
375
COMPUTER PROGRAMMING COURSE - MATERIAL
Answer:d
4. Which type of variables can have same name in different function:
a) global variables
b) static variables
c) Function arguments
d) Both (b) and (c) View Answer Answer:d
5. Arguments that take input by user before running a program are called?
a) main function arguments
b) main arguments
c) Command-Line arguments
d) Parameterized arguments
View Answer
Answer:c
6. The maximum number of arguments that can be passed in a single function are
 a) 127
b) 253
c) 361
d) No limits in number of arguments
View Answer
Answer:b
7. What is the output of this C code?

a) 5 6
b) 6 5
c) 5 5
d) 6 6
View Answer
Answer:a
376
COMPUTER PROGRAMMING COURSE - MATERIAL
8. . What is the output of this C code?

a) 5 6
b) 5 5
c) 6 5
d) 6 6
View Answer
Answer:c
9. . What is the output of this C code?

a) Address of x
b) Junk value
c) 0
d) Run time error View Answer Answer:c
10. What is the output of this C code?

377
COMPUTER PROGRAMMING COURSE - MATERIAL
a) 0 0 0 0 0
b) 6 5 3 0 0
c) Run time error
d) 6 5 3 junk junk View Answer Answer:b
11. . What is the output of this C code?

a) 6
b) 6 5
c) 6 junk value
d) Compile time error View Answer Answer:d
12. What is the output of this C code?

378
COMPUTER PROGRAMMING COURSE - MATERIAL
a) 1
b) Compile time error
c) Some garbage value
d) Undefined variable View Answer Answer:a
13. What is the output of this C code?

a) 4
b) 5
c) Compile time error
d) 3
View Answer
Answer:b
14. . What is the output of the code given below?

a) 1
b) Compile time error
c) Undefined behaviour
379
COMPUTER PROGRAMMING COURSE - MATERIAL
d) 2
View Answer
Answer:b
15. What is the output of this C code?

a) Different address is printed
b) Same address is printed
c) Run time error
d) Nothing View Answer Answer:b
16. What is the output of this C code?

a) h e
b) l l
c) l o
d) l e
View Answer
Answer:d
17. What is the output of this C code?

380
COMPUTER PROGRAMMING COURSE - MATERIAL
a) e h
b) Compile time error
c) h h
d) h e
View Answer
Answer:d
18. What is the output of this C code?

a) 1
b) 4
c) Compile time error
d) Depends on the compiler
View Answer
Answer:b
19. . Correct syntax to pass a Function Pointer as an argument
a) void pass(int (*fptr)(int, float, char)){}
b) void pass(*fptr(int, float, char)){}
c) void pass(int (*fptr)){}
d) void pass(*fptr){} View Answer Answer:a
20. Can you combine the following two statements into one?
Char *p;
p = (char*) malloc(100);
381

COMPUTER PROGRAMMING COURSE - MATERIAL
	#include<stdio.h>
int main()
{
int x=30, *y, *z;
y=&x; /* Assume address of x is 500 and integer is 4 byte size */ z=y;
*y++=*z++; x++;
printf("x=%d, y=%d, z=%d\n", x, y, z); return 0;
}

	A. x=31, y=502, z=502 B. x=31, y=500, z=500 C. x=31, y=498, z=498 D. x=31, y=504, z=504
Answer: Option D

25. What is the output of this C code?

a) equal
b) unequal
c) Compilation error
d) Depends on the compiler
View Answer
Answer:b
UNIT-3:GREEN
1. What is the output of this C code?

#include <stdio.h>

383
COMPUTER PROGRAMMING COURSE - MATERIAL
a) nullp nullq
b) Depends on the compiler
c) x nullq where x can be p or nullp depending on the value of NULL
d) p q
View Answer
Answer:a
2. What is the output of this C code?

a) Compile time error
b) Segmentation fault/runtime crash
c) 10
d) Undefined behaviour
View Answer
Answer:a
3. What is the output of this C code?

384
COMPUTER PROGRAMMING COURSE - MATERIAL
a) Compile time error
b) Undefined behaviour
c) 10
d) 0.000000
View Answer
Answer:d
4. What is the output of this C code?

a) 10
b) Compile time error
c) Segmentation fault/runtime crash since pointer to local variable is returned
d) Undefined behaviour
View Answer
Answer:a
5. What is the output of this C code?

385
COMPUTER PROGRAMMING COURSE - MATERIAL
a) 10
b) Compile time error
c) Segmentation fault/runtime crash
d) Undefined behaviour
View Answer
Answer:a
6. What is the output of this C code?

a) 10,10
b) 10,11
c) 11,10
d) 11,11
View Answer Answer:d Sanfoundry Globa
7. What is the output of this C code?

386
COMPUTER PROGRAMMING COURSE - MATERIAL
a) Same address
b) Different address
c) Compile time error
d) Varies View Answer Answer:a
8. What is the output of this C code?

a) 0 1
b) Compile time error
c) 0xbfd605e8 0xbfd605ec
d) 0xbfd605e8 0xbfd605e8
View Answer
Answer:b
:
9. What is the output of this C code?

a) 10
b) Some garbage value
c) Compile time error
387
COMPUTER PROGRAMMING COURSE - MATERIAL
d) Segmentation fault/code crash
View Answer
Answer:c
10. What is the output of this C code?

a) 10
b) Some garbage value
c) Compile time error
d) Segmentation fault View Answer Answer:a
11. What is the output of this C code?

a) 10.000000
b) 0.000000
c) Compile time error
d) Undefined behaviour
View Answer
388
COMPUTER PROGRAMMING COURSE - MATERIAL
Answer:b
12. What is the output of this C code?

a) 2 97
b) 2 2
c) Compile time error
d) Segmentation fault/code crash
View Answer
Answer:a
13. What is the output of this C code?

a) 2 2 b) 2 97
389
COMPUTER PROGRAMMING COURSE - MATERIAL
c) Undefined behaviour
d) Segmentation fault/code crash
View Answer
Answer:a
14. What is the output of this C code?

a) Compile time error b) 10 10
c) Undefined behaviour d) 10 11
View Answer
Answer:a
15. What is the output of this C code?

390
COMPUTER PROGRAMMING COURSE - MATERIAL
a) 11 11 11
b) 11 11 Undefined-value
c) Compile time error
d) Segmentation fault/code-crash
View Answer
Answer:b
16. What is the output of the code below?

a) 11 11
b) Undefined behaviour
c) Compile time error
d) Segmentation fault/code-crash
View Answer
Answer:a
17. What is the output of this C code?

391
COMPUTER PROGRAMMING COURSE - MATERIAL
a) 6
b) 6 5
c) 6 junk value
d) Compile time error View Answer Answer:d
19. What is the output of this C code?

a) h h
b) Run time error
c) l l
d) e e
View Answer
Answer:d
20. What is the output of the code given below?

a) 1
b) 2
c) Compile time error
d) Some garbage value
View Answer
Answer:b
392
COMPUTER PROGRAMMING COURSE - MATERIAL
21. What is the output of the code given below?

a) 2 3
b) Compile time error
c) 2 4
d) 2 somegarbagevalue
View Answer
Answer:d
22. What is the output of this C code?

a) 102
b) 104
c) 108
d) 116
View Answer
23. Comment on the output of this C code?

a) 2
b) 3
393
COMPUTER PROGRAMMING COURSE - MATERIAL
c) 5
d) Compile time error View Answer Answer:d
24. What is the output of this C code?

a) h e
b) e l
c) h h
d) e e
View Answer
Answer:d
25. What is the output of this C code?

a) Illegal application of ++ to void data type
b) pointer function initialized like a variable
c) Both (a) and (b)
d) None of the mentioned
View Answer
Answer:c
394
UNIT -4 – (RED)

COMPUTER PROGRAMMING COURSE - MATERIAL

1. Which of the following are themselves a collection of different data types?
a) string
b) structures
c) char
d) All of the mentioned Answer:b
2. User-defined data type can be derived by
.
a) struct
b) enum
c) typedef
d) All of the mentioned
Answer:d
3. Which operator connects the structure name to its member name?
a) -
b) <-
c) .
d) Both (b) and (c)
Answer:c
4. Which of the following cannot be a structure member?
a) Another structure
b) Function
c) Array
395
d) None of the mentioned
Answer:b

COMPUTER PROGRAMMING COURSE - MATERIAL

5. Which of the following structure declaration will throw an error?
a) struct temp{}s; main(){}
b) struct temp{}; struct temp s; main(){}
c) struct temp s; struct temp{}; main(){}
d) None of the mentioned
Answer:d
6. What is the output of this C code?
#include <stdio.h> struct student
{
int no;
char name[20];
}
void main()
{
struct student s;
396
s.no = 8; printf("hello");

COMPUTER PROGRAMMING COURSE - MATERIAL
}
a) Compile time error
b) Nothing
c) hello
d) Varies Answer:a
7. What is the output of this C code?
#include <stdio.h> void main()
{
struct student
{
int no;
char name[20];
};
struct student s; s.no = 8; printf("%d", s.no);
}
a) Nothing
b) Compile time error
c) Junk
d) 8
Answer:d
8. Which of the following return-type cannot be used for a function in C?
a) char *
b) struct
c) void
d) None of the mentioned Answer:d
9. Which of the following is not possible under any scenario? a) s1 = &s2;
b) s1 = s2;
c) (*s1).number = 10;
d) None of the mentioned
397
Answer:d

COMPUTER PROGRAMMING COURSE - MATERIAL
10. Which of the following operation is illegal in structures?
a) Typecasting of structure
b) Pointer to a variable of same structure
c) Dynamic allocation of memory for structure
d) All of the mentioned
Answer:a
11. Presence of code like “s.t.b = 10″ indicate.
a) Syntax Error
b) structure
c) double data type
d) An ordinary variable name Answer:b
12. Which of the following uses structure?
a) Array of structures
b) Linked Lists
c) Binary Tree
d) All of the mentioned
Answer:d
13. What is the correct syntax to declare a function foo() which receives an array of structure in function?
a) void foo(struct *var);
b) void foo(struct *var[]);
c) void foo(struct var);
d) None of the mentioned
Answer:a
14. Which of the following are incorrect syntax for pointer to structure? (Assuming struct temp{int b;}*my_struct;)
a) *my_struct.b = 10;
b) (*my_struct).b = 10;
c) my_struct->b = 10;
d) Both (a) and (b) Answer:a
15. Which of the following is an incorrect syntax to pass by reference a member of a structure in
a function?
(Assume: struct temp{int a;}s;)
a) func(&s.a);
b) func(&(s).a);
c) func(&(s.a));
d) None of the mentioned Answer:d
16. Which of the following structure declaration doesn’t require pass-by-reference?
a) struct{int a;}s; main(){}
b) struct temp{int a;}; main(){
struct temp s;
398
}
c) struct temp{int a;}; main(){}
struct temp s;
d) None of the mentioned Answer:d

COMPUTER PROGRAMMING COURSE - MATERIAL
17. For the following function call which option is not possible?
func(&s.a); //where s is a variable of type struct and a is the member of the struct.
a) Compiler can access entire structure from the function.
b) Individual member’s address can be displayed in structure.
c) Individual member can be passed by reference in a function.
d) Both (b) and (c). Answer:a
18. What is the output of this C code?
#include <stdio.h> struct student
{
char *c;
struct student *point;
};
void main()
{
struct student s; printf("%d", sizeof(s));
}
a) 5b) 9c) 8d) 16 Answer:c
19. Size of a union is determined by size of the.
a) First member in the union
b) Last member in the union
c) Biggest member in the union
d) Sum of the sizes of all members View Answer
Answer:c
20. Comment on the following union declaration?
1. #include <stdio.h>
2. union temp
3.
{
4. int a;
5. float b;
6. char c;
7.
};
union temp s = {1,2.5,’A'}; //REF LINE
Which member of the union will be active after REF LINE?
a) a
b) b
c) c
d) Such declaration are illegal Answer:a
21.. What would be the size of the following union declaration?
#include <stdio.h>
399
union uTemp
{
double a; int b[10]; char c;
}u;

COMPUTER PROGRAMMING COURSE - MATERIAL
(Assuming size of double = 8, size of int = 4, size of char = 1)
a) 4
b) 8
c) 40
d) 80 Answer:c
22. Members of a union are accessed as
.
a) union-name.member
b) union-pointer->member
c) Both a & b
d) None of the mentioned Answer:c
23. Which of the following data types are accepted while declaring bit-fields?
a) char
b) float
c) double
d) None of the mentioned Answer:a
24. Which of the following reduces the size of a structure?
a) union
b) bit-fields
c) malloc
d) None of the mentioned Answer:b
25. In the declaration of bit-fields, struct-declarator:
declarator
type-specifier declarator opt : constant-expression The constant-expression specifies
a) The width of the field in bits.
b) Nothing
c) The width of the field in bytes.
d) Error Answer:a
UNIT-4 –(BLUE)
1. In the declaration of bit-fields, struct-declarator:
declarator
type-specifier declarator opt : constant-expression The constant-expression must be
a) Any type
b) Nothing
400
c) Integer value
d) Nonnegative integer value Answer:d

COMPUTER PROGRAMMING COURSE - MATERIAL
2. Which of the following is not allowed?
a) Arrays of bit fields
b) Pointers to bit fields
c) Functions returning bit fields
d) None of the mentioned Answer:d
3. Bit fields can only be declared as part of a structure.
a) false
b) true
c) Nothing
d) Varies Answer:b
4. The following declarations in order are short a : 17;
int long y : 33;
a) Legal, legal
b) Legal, illegal
c) Illegal, illegal
d) Illegal, legal Answer:c
5. Which of the following is not possible?
a) A structure variable pointing to itself
b) A structure variable pointing to another structure variable of same type
c) 2 different type of structure variable pointing at each other.
d) None of these Answer:d
6. For the following expression to work, which option should be selected. string p = “HELLO”;
a) typedef char [] string;
b) typedef char *string;
c) Both (a) and (b)
d) Such expression cannot be generated in C Answer:b
7. Which of the given option is the correct method for initialization? typedef char *string;
a) *string *p = “Hello”;
b) string p = “Hello”;
c) *string p = ‘A’;
d) Not more than one space should be given when using typedef Answer:b
8. Which of the following is FALSE about typedef?
a) typedef follow scope rules
b) typedef defined substitutes can be redefined again. (Eg: typedef char a; typedef int a;)
c) You cannot typedef a typedef with other term.
d) All of the mentioned Answer:b
9. typedef which of the following may create problem in the program
401
a) ;
b) printf/scanf
c) Arithmetic operators
d) All of the mentioned Answer:d

COMPUTER PROGRAMMING COURSE - MATERIAL
10. What is the output of this C code?
#include <stdio.h> typedef struct p
{
int x, y;
}k;
int main()
{
struct p p = {1, 2}; k k1 = p;
printf("%d\n", k1.x);
}
a) Compile time error
b) 1
c) 0
d) Depends on the standard Answer:b
11. What is the output of this C code?
#include <stdio.h> void main()
{
struct student
{
int no;
char name[20];
};
struct student s; no = 8; printf("%d", no);
}
a) Nothing
b) Compile time error
c) Junk
d) 8
View Answer Answer:b
12. Number of bytes in memory taken by the below structure is
#include <stdio.h> struct test
{
int k; char c;
};
a) Multiple of integer size
b) integer size+character size
402
c) Depends on the platform
d) Multiple of word size Answer:b

COMPUTER PROGRAMMING COURSE - MATERIAL
13. What is the output of this C code?
#include <stdio.h> struct
{
int k; char c;
};
int main()
{
struct p;
p.k = 10; printf("%d\n", p.k);
}
a) Compile time error
b) 10
c) Undefined behaviour
d) Segmentation fault
Answer:a
14. What is the output of this C code?
#include <stdio.h> struct
{
int k; char c;
} p;
int p = 10; int main()
{
p.k = 10;
printf("%d %d\n", p.k, p);
}
a) Compile time error b) 10 10
c) Depends on the standard
d) Depends on the compiler Answer:a
15. What is the output of this C code?
#include <stdio.h> struct p
{
int k; char c;
};
int p = 10; int main()
{
403
struct p x;
x.k = 10;
printf("%d %d\n", x.k, p);
}

COMPUTER PROGRAMMING COURSE - MATERIAL
a) Compile time error b) 10 10
c) Depends on the standard
d) Depends on the compiler Answer:b
16. What is the output of this C code?
#include <stdio.h> struct p
{
int k; char c; float f;
};
int p = 10; int main()
{
struct p x = {1, 97}; printf("%f %d\n", x.f, p);
}
a) Compile time error b) 0.000000 10
c) Somegarbage value 10 d) 0 10
Answer:b
17. What is the output of this C code?
#include <stdio.h> struct point
{
int x; int y;
};
int main()
{
struct point p = {1}; struct point p1 = {1}; if(p == p1)
printf("equal\n"); else
printf("not equal\n");
}
a) Compile time error
b) equal
c) depends on the standard
d) not equal Answer:a
18. What is the output of this C code?
404
#include <stdio.h> struct point
{

COMPUTER PROGRAMMING COURSE - MATERIAL
int x; int y;
};
void foo(struct point*); int main()
{
struct point p1 = {1, 2}; foo(&p1);
}
void foo(struct point *p)
{
printf("%d\n", *p.x++);
}
a) Compile time error
b) Segmentation fault/code crash
c) 2
d) 1 Answer:a
19. What is the output of this C code?
#include <stdio.h> struct point
{
int x; int y;
};
void foo(struct point*); int main()
{
struct point p1 = {1, 2}; foo(&p1);
}
void foo(struct point *p)
{
printf("%d\n", *p->x++);
}
a) Compile time error
b) 1
c) Segmentation fault/code crash
d) 2 Answer:a
20. What is the output of this C code?
#include <stdio.h> struct student
{
char *name;
};
struct student fun(void)
405
{
struct student s; s.name = "alan"; return s;
}

COMPUTER PROGRAMMING COURSE - MATERIAL
void main()
{
struct student m = fun(); printf("%s", m.name);
}
a) Nothing
b) alan
c) Run time error
d) Varies Answer:b
21. What is the output of this C code?
#include <stdio.h> struct point
{
int x; int y;
};
void foo(struct point*); int main()
{
struct point p1[] = {1, 2, 3, 4}; foo(p1);
}
void foo(struct point p[])
{
printf("%d\n", p->x);
}
a) 1
b) 2
c) 3
d) Compile time error Answer:a
22. What is the output of this C code?
#include <stdio.h> struct point
{
int x; int y;
} p[] = {1, 2, 3, 4, 5};
void foo(struct point*); int main()
{
foo(p);
}
void foo(struct point p[])
406
COMPUTER PROGRAMMING COURSE - MATERIAL
{
printf("%d %d\n", p->x, p[2].y);
}
a) 1 0
b) Compile time error
c) 1 somegarbagevalue
d) Undefined behaviour Answer:a
23. What is the output of this C code?
#include <stdio.h> struct student
{
char *c;
};
void main()
{
}
a) 2
b) 4

struct student s[2]; printf("%d", sizeof(s));
c) 16
d) 8 Answer:d
24. What is the output of this C code?
#include <stdio.h> struct student
{
char *c;
};
void main()
{
struct student *s; s->c = "hello";
printf("%s", s->c);
}
a) hello
b) Segmentation fault
c) Run time error
d) Nothing Answer:b
25. What is the output of this C code?
#include <stdio.h> struct student
{
char *c;
};
void main()
{
struct student m;
407
struct student *s = &m; (*s).c = "hello";
printf("%s", m.c);
}

COMPUTER PROGRAMMING COURSE - MATERIAL
a) Run time error
b) Nothing
c) Varies
d) hello Answer:d
UNIT-4 .(GREEN)
1. What is the output of this C code?
#include <stdio.h> struct student
{
char *c;
};
void main()
{
struct student n;
struct student *s = &n; (*s).c = "hello"; printf("%p\n%p\n", s, &n);
}
a) Different address
b) Run time error
c) Nothing
d) Same address Answer:d
2. What is the output of this C code?
#include <stdio.h> union utemp
{
int a; double b; char c;
}u;
int main()
{
u.c = 'A';
u.a = 1;
printf("%d", sizeof(u));
}
The output will be: (Assuming size of char = 1, int = 4, double = 8)
a) 1
408
b) 4
c) 8
d) 13 Answer:c

COMPUTER PROGRAMMING COURSE - MATERIAL
3. What is the output of this C code?
#include <stdio.h> union p
{
int x; float y;
};
int main()
{
union p p, b;
p.x = 10; printf("%f\n", p.y);
}
a) Compile time error
b) Implementation dependent C) 10.000000
d) 0.000000
Answer:b
4. Which of the following share a similarity in syntax?
1. Union, 2. Structure, 3. Arrays and 4. Pointers
a) 3 and 4
b) 1 and 2
c) 1 and 3
d) 1, 3 and 4 Answer:b
5. What is the output of this C code?
#include <stdio.h> union p
{
int x; char y;
}k = {1, 97};
int main()
{
printf("%d\n", k.y);
}
a) Compile time error
b) 97
c) a
d) 1 Answer:d
6. What is the output of this C code?
#include <stdio.h> union
{
int x;
409
char y;
}p;
int main()
{

COMPUTER PROGRAMMING COURSE - MATERIAL
p.x = 10;
printf("%d\n", sizeof(p));
}
a) Compile time error
b) sizeof(int) + sizeof(char)
c) Depends on the compiler
d) sizeof(int) Answer:d
7. What is the output of this C code?
#include <stdio.h> union
{
int x; char y;
}p;
int main()
{
p.y = 60;
printf("%d\n", sizeof(p));
}
a) Compile time error
b) sizeof(int) + sizeof(char)
c) Depends on the compiler
d) sizeof(char) Answer:c
8. The correct syntax to use typedef for struct is.
a) typedef struct temp
{
int a;
}TEMP;
b) typedef struct
{
int a;
}TEMP;
c) struct temp
{
int a;
};
typedef struct temp TEMP;
d) All of the mentioned Answer:d
9. typedef int (*PFI)(char *, char *)creates
a) type PFI, for pointer to function (of two char * arguments) returning int
b) Error
c) type PFI, function (of two char * arguments) returning int
d) type PFI, for pointer
410
Answer:a
10. typedef declaration
a) Does not create a new type

COMPUTER PROGRAMMING COURSE - MATERIAL
b) It merely adds a new name for some existing type.
c) Both a & b
d) None of the mentioned Answer:c
11. What is the output of this C code?
#include <stdio.h> typedef struct student
{
char *a;
}stu;
void main()
{
stu s;
s.a = "hi"; printf("%s", s.a);
}s
a) Compile time error
b) Varies
c) hi
d) h Answer:a
12. What is the output of this C code?
#include <stdio.h> int main()
{
struct p
{
char *name; struct p *next;
};
struct p *ptrary[10]; struct p p, q; p.name = "xyz"; p.next = NULL; ptrary[0] = &p;
q.name = (char*)malloc(sizeof(char)*3); strcpy(q.name, p.name);
q.next = &q; ptrary[1] = &q;
printf("%s\n", ptrary[1]->next->next->name);
}
a) Compile time error
b) Depends on the compiler.
c) Undefined behaviour
d) xyz Answer:d
13. What is the output of this C code?
411
#include <stdio.h> typedef struct p *q; int main()
{

COMPUTER PROGRAMMING COURSE - MATERIAL
struct p
{
int x; char y; q ptr;
};
struct p p = {1, 2, &p}; printf("%d\n", p.ptr->x); return 0;
}
a) Compile time error
b) 1
c) Depends on the compiler
d) None of the mentioned
Answer:a
14. What is the output of this C code?
#include <stdio.h> int main()
{
typedef struct p *q; struct p
{
int x; char y; q ptr;
};
struct p p = {1, 2, &p}; printf("%d\n", p.ptr->x); return 0;
}
a) Compile time error
b) 1
c) Depends on the compiler
d) Depends on the standard Answer:b
15. What is the output of this C code?
#include <stdio.h> struct student
{
char *c;
};
void main()
{
struct student m;
struct student *s = &m;
412
s->c = "hello"; printf("%s", m.c);
}

COMPUTER PROGRAMMING COURSE - MATERIAL
a) Run time error
b) Nothing
c) hello
d) Varies Answer:c
16. What is the output of this C code?
#include <stdio.h> struct student
{
char *c;
};
void main()
{
struct student m;
struct student *s = &m; s->c = "hello"; printf("%s", s->c);
}
a) hello
b) Run time error
c) Nothing
d) Depends on compiler
Answer:a
17. What is the output of this C code?
#include <stdio.h> struct point
{
int x; int y;
};
void foo(struct point*); int main()
{
struct point p1[] = {1, 2, 3, 4}; foo(p1);
}
void foo(struct point p[])
{
printf("%d %d\n", p->x, ++p->x);
}
413
a) 1 2
b) 2 2
c) Compile time error
d) Undefined behaviour

COMPUTER PROGRAMMING COURSE - MATERIAL

Answer:b
18. What is the output of this C code?
#include <stdio.h> struct student fun(void)
{
struct student
{
char *name;
};
struct student s; s.name = "alan"; return s;
}
void main()
{
struct student m = fun(); printf("%s", m.name);
}
a) Compile time error
b) alan
c) Nothing
d) Varies Answer:a
19. What is the output of this C code?
#include <stdio.h> struct p
{
int x; int y;
};
int main()
{
struct p p1[] = {1, 2, 3, 4, 5, 6}; struct p *ptr1 = p1;
printf("%d %d\n", ptr1->x, (ptr1 + 2)->x);
}
a) 1 5
b) 1 3
c) Compile time error
d) 1 4 Answer:a
20. What is the output of this C code?
#include <stdio.h> struct p
414
{
int x[2];
};

COMPUTER PROGRAMMING COURSE - MATERIAL
struct q
{
int *x;
};
int main()
{
struct p p1 = {1, 2}; struct q *ptr1;
ptr1->x = (struct q*)&p1.x; printf("%d\n", ptr1->x[1]);
}
a) Compile time error
b) Segmentation fault/code crash
c) 2
d) 1 Answer:b
21. What is the output of this C code?
#include <stdio.h> struct point
{
int x; int y;
};
void foo(struct point*); int main()
{
struct point p1[] = {1, 2, 3, 4}; foo(p1);
}
void foo(struct point p[])
{
printf("%d\n", p[1].x);
}
a) Compile time error
b) 3
c) 2
d) 1 Answer:b
22. What is the output of this C code(according to C99 standard)?
#include <stdio.h> struct p
{
int k; char c; float f;
};
int main()
415
COMPUTER PROGRAMMING COURSE - MATERIAL
{
struct p x = {.c = 97, .k = 1, 3}; printf("%f \n", x.f);
}
a) 3.000000
b) 0.000000
c) Compile time error
d) Undefined behaviour Answer:b
23. What is the output of this C code(according to C99 standard)?
#include <stdio.h> struct p
{
int k; char c; float f;
};
int main()
{
struct p x = {.c = 97}; printf("%f\n", x.f);
}
a) 0.000000
b) Somegarbagevalue
c) Compile time error
d) None of the mentioned View Answer
Answer:a
23. What is the output of this C code(according to C99 standard)?
#include <stdio.h> struct p
{
int k; char c; float f;
};
int main()
{
struct p x = {.c = 97, .f = 3, .k = 1}; printf("%f\n", x.f);
}
a) 3.000000
b) Compile time error
c) Undefined behaviour d) 1.000000
View Answer Answer:a
24. For what minimum value of x in a 32-bit Linux OS would make the size of s equal to 8 bytes? struct temp
{
416
int a : 13; int b : 8; int c : x;
}s;
a) 4
b) 8
c) 12
d) 32 Answer:c

COMPUTER PROGRAMMING COURSE - MATERIAL
25. What type of data is holded by variable u int this C code?
#include <stdio.h> union u_tag
{
int ival; float fval; char *sval;
} u;
The variable u here
a) Will be large enough to hold the largest of the three types;
b) Will be large enough to hold the smallest of the three types;
c) Will be large enough to hold the all of the three types;
d) None of the mentioned View Answer
Answer:a
UNIT 5-RED
1. Two main measures for the efficiency of an algorithm are
a. Processor and memory
b. Complexity and capacity
c. Time and space
d. Data and space
ANSWER: C
2. The time factor when determining the efficiency of algorithm is measured by
a. Counting microseconds
b. Counting the number of key operations
c. Counting the number of statements
d. Counting the kilobytes of algorithm ANSWER: B
3. The space factor when determining the efficiency of algorithm is measured by
a. Counting the maximum memory needed by the algorithm
b. Counting the minimum memory needed by the algorithm
c. Counting the average memory needed by the algorithm
417
COMPUTER PROGRAMMING COURSE - MATERIAL
d. Counting the maximum disk space needed by the algorithm ANSWER: A
4. Which of the following case does not exist in complexity theory
a. Best case
b. Worst case
c. Average case
d. Null case ANSWER:D
5. The Worst case occur in linear search algorithm when
a. Item is somewhere in the middle of the array
b. Item is not in the array at all
c. Item is the last element in the array
d. Item is the last element in the array or is not there at all ANSWER:D
6. The Average case occur in linear search algorithm
a. When Item is somewhere in the middle of the array
b. When Item is not in the array at all
c. When Item is the last element in the array
d. When Item is the last element in the array or is not there at all ANSWER:A
7. The complexity of the average case of an algorithm is
a. Much more complicated to analyze than that of worst case
b. Much more simpler to analyze than that of worst case
c. Sometimes more complicated and some other times simpler than that of worst case
d. None or above ANSWER:A
8. The complexity of linear search algorithm is
a. O(n)
b. O(log n)
c. O(n2)
d. O(n log n)
ANSWER:A
9. The complexity of Binary search algorithm is
418
a. O(n)
b. O(log)
c. O(n2)
d. O(n log n)
ANSWER:B

COMPUTER PROGRAMMING COURSE - MATERIAL

10. The complexity of Bubble sort algorithm is
a. O(n)
b. O(log n)
c. O(n2)
d. O(n log n) ANSWER:C
11. The complexity of merge sort algorithm is
a. O(n)
b. O(log n)
c. O(n2)
d. O(n log n) ANSWER:D
12. The indirect change of the values of a variable in one module by another module is called
a. internal change
b. inter-module change
c. side effect
d. side-module update ANSWER:C
13. Which of the following data structure is not linear data structure?
a. Arrays
b. Linked lists
c. Both of above
d. None of above ANSWER:D
14. Which of the following data structure is linear data structure?
a. Trees
b. Graphs
c. Arrays
d. None of above
419
COMPUTER PROGRAMMING COURSE - MATERIAL
ANSWER:C
15. The operation of processing each element in the list is known as
a. Sorting
b. Merging
c. Inserting
d. Traversal ANSWER:D
16. Finding the location of the element with a given value is:
a. Traversal
b. Search
c. Sort
d. None of above ANSWER:B
17. Arrays are best data structures
a. for relatively permanent collections of data
b. for the size of the structure and the data in the structure are constantly changing
c. for both of above situation
d. for none of above situation ANSWER:A
18. Linked lists are best suited
a. for relatively permanent collections of data
b. for the size of the structure and the data in the structure are constantly changing
c. for both of above situation
d. for none of above situation ANSWER:B
19. Each array declaration need not give, implicitly or explicitly, the information about
a. the name of array
b. the data type of array
c. the first data from the set to be stored
d. the index set of the array ANSWER:C
20. The elements of an array are stored successively in memory cells because
420
COMPUTER PROGRAMMING COURSE - MATERIAL
a. by this way computer can keep track only the address of the first element and the addresses of other elements can be calculated
b. the architecture of computer memory does not allow arrays to store other than serially
c. both of above
d. none of above ANSWER:A
21. Which data structure allows deleting data elements from front and inserting at rear?
a. Stacks
b. Queues
c. Deques
d. Binary search tree ANSWER:B
22. Identify the data structure which allows deletions at both ends of the list but insertion at only one end.
a. Input-restricted deque
b. Output-restricted deque
c. Priority queues
d. None of above ANSWER:A
23. Which of the following data structure is non-linear type?
a. Strings
b. Lists
c. Stacks
d. None of above ANSWER:D
24. Which of the following data structure is linear type?
a. Strings
b. Lists
c. Queues
d. All of above ANSWER:D
25. To represent hierarchical relationship between elements, which data structure is suitable?
a. Deque
b. Priority
c. Tree
d. All of above ANSWER:C
421
COMPUTER PROGRAMMING COURSE - MATERIAL
UNIT-5 BLUE
1. Which of the following sorting algorithm is of divide-and-conquer type?
a. Bubble sort
b. Insertion sort
c. Quick sort
d. All of above ANSWER:C
2. An algorithm that calls itself directly or indirectly is known as
a. Sub algorithm
b. Recursion
c. Polish notation
d. Traversal algorithm ANSWER:B
3. Which of the following data structures are indexed structures?
a. linear arrays
b. linked lists
c. both of above
d. none of above ANSWER:A
4. Which of the following is not the required condition for binary search algorithm?
a. The list must be sorted
b. there should be the direct access to the middle element in any sublist
c. There must be mechanism to delete and/or insert elements in list
d. none of above ANSWER:C
5. Which of the following is not a limitation of binary search algorithm?
a. must use a sorted array
b. requirement of sorted array is expensive when a lot of insertion and deletions are needed
c. there must be a mechanism to access middle element directly
d. binary search algorithm is not efficient when the data elements are more than 1000. ANSWER:D
6. In STACK
A. You can access the element which is entered at last
B. You can access the element which is entered at beginning
C. You can access the element from any position
D. All the above ANSWER:A
7. A variable P is called pointer if
422
COMPUTER PROGRAMMING COURSE - MATERIAL
a. P contains the address of an element in DATA.
b. P points to the address of first element in DATA
c. P can store only memory addresses
d. P contain the DATA and the address of DATA ANSWER:A
8. Which of the following data structure can't store the non-homogeneous data elements?
a. Arrays
b. Records
c. Pointers
d. None ANSWER:A
9. Which of the following data structure store the homogeneous data elements?
a. Arrays
b. Records
c. Pointers
d. None ANSWER:B
10. Each data item in a record may be a group item composed of sub-items; those items which are indecomposable are called
a. elementary items
b. atoms
c. scalars
d. all of above ANSWER:D
11. The difference between linear array and a record is
a. An array is suitable for homogeneous data but the data items in a record may have different data type
b. In a record, there may not be a natural ordering in opposed to linear array.
c. A record form a hierarchical structure but a linear array does not
d. All of above ANSWER:D
12. Which of the following statement is false?
a. Arrays are dense lists and static data structure
b. data elements in linked list need not be stored in adjacent space in memory
c. pointers store the next data element of a list
d. linked lists are collection of the nodes that contain information part and next pointer ANSWER:C
13. Binary search algorithm can not be applied to
a. sorted linked list
b. sorted binary trees
c. sorted linear array
d. pointer array ANSWER:A
423
COMPUTER PROGRAMMING COURSE - MATERIAL
14. When new data are to be inserted into a data structure, but there is no available space; this situation is usually called
a. underflow
b. overflow
c. housefull
d. saturated
ANSWER:B
15. The situation when in a linked list START=NULL is
a. underflow
b. overflow
c. housefull
d. saturated ANSWER:A
16. Which of the following is two way list?
a. grounded header list
b. circular header list
c. linked list with header and trailer nodes
d. none of above ANSWER:D
17. Which of the following name does not relate to stacks?
a. FIFO lists
b. LIFO list
c. Piles
d. Push-down lists
ANSWER:A
18. The term "push" and "pop" is related to the
a. array
b. lists
c. stacks
d. all of above
ANSWER:C
19. A data structure where elements can be added or removed at either end but not in the middle
a. Linked lists
b. Stacks
c. Queues
d. Deque
ANSWER:D
20. which one of the following is the feature of queue
A. LIFO
B. FILO
424
C. FIFO
D. None
ANSWER:C

COMPUTER PROGRAMMING COURSE - MATERIAL

21) A sorting algorithm which can prove to be a best time algorithm in one case and a worst time algorithm at other time?
A. Selection Sort
B. Heap Sort
C. Quick Sort
D. All of the above
ANSWER:C
22. What is the meaning of FIFO?
A. First In Fast Out
B. Fast In First Out
C. First In First Out
D. None of the above ANSWER:C
23. Adding data to stack is called?
A. Push
B. Pop
C. Both
D. None
ANSWER:A
24. Items can be removed from the both end of?
A. Stack
B. Queue
C. Tree
D. Deque
ANSWER :D
25. In linked list each entry contains?
A. Data
B. Link
C. Both data and link
D. No data and link
425
COMPUTER PROGRAMMING COURSE - MATERIAL
UNIT-5- GREEN
1) If the sequence of operations - push(1), push(2), pop, push(1), push(2), pop, pop, pop, push(2), pop are performed on a stack, the sequence of popped out values are ?
2, 2, 1, 1, 2
2, 2, 1, 2, 2
2, 1, 2, 2, 1
2, 1, 2, 2, 2
Answer = A
2) Queue can be used to implement ?
A. radix sort
B. quick sort
C. recursion
D. depth first search Answer = A
3) What is Data Structure ?
A. Way to organize data
B. Accessing of data elements in specified manner
C. Organization of mathematical and logical concepts
D. All of Above Answer = D .
4) Which operation is not possible on Data Structure ?
A. Traversing
B. Insertion
C. Reading
D. Deletion Answer = C
5) The memory address of the first element is called ?
A. Floor Address
B. Foundation Address
C. First Address
D. Base Address Answer = D .
6) The value of first linked list address is ?
A. 0
B. -1
C. 1
D. None of Above Answer = A
7) The situation in linked list START=NULL is called ?
A. Overflow
B. Underflow
C. Both of above
D. None of Above
426
Answer = B

COMPUTER PROGRAMMING COURSE - MATERIAL

8) Length of the linear array can be found by using the formula ? Where UB is upper Bound, LB is Lower Bound of the array.
A. UB - LB + 1
B. LB + UB
C. LB - UB
D. LB - UB + 1 Answer = A
9) The restriction while using the binary search is ?
A. List should be small in number
B. List should be large in number
C. List should be sorted
D. No restriction Answer = C .
10) The terms PUSH and POP are related to ?
A. Arrays
B. Stacks
C. Linked List
D. None Answer = B
11) The operation of processing element is called ?
A. Traversing
B. Inserting
C. Deleting
D. Searching Answer = A
12) The complexity of binary search algorithm is ?
A. n
B. nlogn
C. logn
D. n2 Answer = D
13) The linked list implementation of sparse matrices is superior to the generalized dope vector method because it is?
A. Conceptually easier
B. Completely dynamic
C. Efficient in accessing an entry
D. Efficient if the sparse matrix is a band matrix
E. A and B Answer = E
14) As part of maintenance work, you are entrusted with the work of rearranging the library books in a shelf in proper order, at the end of each day. The ideal choice will be ?
A. Bubble sort
B. Insertion sort
427
C. Selection sort
D. Heap sort Answer = B

COMPUTER PROGRAMMING COURSE - MATERIAL
15The way a card game player arranges his cards as he picks them up one by one, is an example of ?
A. bubble sort
B. selection sort
C. insertion sort
D. merge sort Answer = C
16) The average successful search time for sequential search on 'n' items is ?
A. n/2
B. (n - 1)/2
C. (n + 2)/2
D. log(n) + 1 Answer = C
17) Linked lists are suitable for which of the following problems ?
A. Insertion sort
B. Binary search
C. Radix sort
D. Polynomial manipulation Answer = B .
18) Recursion is sometimes called ?
A. Circular definition
B. Complex definition
C. Procedure
D. Union Answer =A
19) To access a structure element using a pointer, operator is used?
A. dot (.)
B. pointer (&)
C. pointer (*)
D. arrow (->) Answer =D
20. Which of the following linked list below have last node of the list pointing to the first node?
A. circular doubly linked list
B. circular linked list
C. circular singly linked list
D. doubly linked list Right Answer: C
21. Can stack be describe as a pointer?
A. Yes
B. No
Right Answer: A
22. The time required in best case for search operation in binary tree is
A. O(n)
B. O(log n)
C. O(2n)
428
D. O(log 2n) Right Answer: B

COMPUTER PROGRAMMING COURSE - MATERIAL
23. What does the following function do for a given Linked List with first node as head? void fun1(struct node* head)
{
if(head == NULL) return;
fun1(head->next); printf("%d ", head->data);
}
A.Prints all nodes of linked lists
B.Prints all nodes of linked list in reverse order C.Prints alternate nodes of Linked List D.Prints alternate nodes in reverse order ANSWER: B
24. Which of the following points is/are true about Linked List data structure when it is compared with array
A.Arrays have better cache locality that can make them better in terms of performance. B.It is easy to insert and delete elements in Linked List
C.Random access is not allowed in a typical implementation of Linked Lists
D.The size of array has to be pre-decided, linked lists can change their size any time. E.All of the above
ANSWER: E
25. Consider the function f defined below. struct item
{
int data;
struct item * next;
};
int f(struct item *p)
{
return (
(p == NULL) ||
(p->next == NULL) ||

COMPUTER PROGRAMMING COURSE - MATERIAL

((P->data <= p->next->data) && f(p->next))
);
}
For a given linked list p, the function f returns 1 if and only if A.the list is empty or has exactly one element
B.the elements in the list are sorted in non-decreasing order of data value C.the elements in the list are sorted in non-increasing order of data value D.not all elements in the list have the same data value.
ANSWER:B
COMPUTER PROGRAMMING COURSE - MATERIAL
PREVIOUS YEAR QUESTION PAPER JNTUH :-
COMPUTER PROGRAMMING
COMPUTER PROGRAMMING

COMPUTER

SYSTEM

HARDWARE

SOFTWARE

ALU

CU

Primary Memory

Input Devices

Output Devices

Hard

ware

System

Software

Operating

System

System

Support

System

Development

Application

Software

general

purpose

application

specific

Computer

System

Computer

Hardware

Computer

Software

CPU

Peripherals

System

Software

Application

Software

i/p

devices

o/p

devices

Operating

System

System

Support

General

Purpose

Application

Specific

System

Development

Fig: Client-server environment

Assembler

Compiler / Interpreter

#include<stdio.h> main ()

{

}

Text Editor

Preprocessor

Translator

00110 100

10101 010

1011001100

110111011

1100101010

Linker

23

System requirements

Analysis

Design

Coding

Testing

Maintenance

b 	b2  4ac

b  b2  4ac

Start

Read 3 Numbers

IS d>0?

Compute d	b2-4ac

Compute

r1	 -b+sqrt(d)/ (2*a) r2	 -b- sqrt(d)/ (2*a)

Compute r1	-b/(2*a) r2  -b/(2*a)

Print r1, r2 values

�
�
�
�

Start

Read 3 Numbers a,b,c

Compute sum	a+b+c

Print avg value

Stop

Compute avg	sum/3

Integral Type

Integer�
�
Signed�
Unsigned�
�
int

short int long int�
unsigned int unsigned short int unsigned long int�
�

character�
�
signed char unsigned char�
�

Expression

Primary

Postfix

prefix

unary

binary

ternary

exp1�
exp2�
exp1&&exp2�
�
T�
T�
T�
�
T�
F�
F�
�
F�
T�
F�
�
F�
F�
F�
�

exp1�
exp2�
exp1||exp2�
�
T�
T�
T�
�
T�
F�
T�
�
F�
T�
T�
�
F�
F�
F�
�

exp�
!(exp)�
�
T�
F�
�
F�
T�
�

Operator�
Description�
Example�
a =10, b=20,c=30�
output�
�
&&�
logical AND�
(a>b) && (a<c)�
(10>20) & & (10<30)�
0�
�
||�
logical OR�
(a>b) | | (a<c)�
(10>20) ||(10<30)�
1�
�
!�
logical NOT�
! (a>b)�
! (10>20)�
1�
�

Bitwise AND�
�
a�
b�
a &b�
�
0�
0�
0�
�
0�
1�
0�
�
1�
0�
0�
�
1�
1�
1�
�

Bitwise OR�
�
a�
b�
a | b�
�
0�
0�
0�
�
0�
1�
1�
�
1�
0�
1�
�
1�
1�
1�
�

�
a | b�
�
�
�
8�
4�
�
a =12�
1�
1�
�
b =10�
1�
0�
�
a | b�
1�
1�
�

�
8�
4�
2�
1�
�
a =12�
1�
1�
0�
0�
�
b =10�
1�
0�
1�
0�
�
a &b�
1�
0�
0�
0�
�

Bitwise XOR�
�
a�
b�
a ^b�
�
0�
0�
0�
�
0�
1�
1�
�
1�
0�
1�
�
1

2

0

1

1

ut

bled�
1

1

0

0

0

44�
0�
�

32�
16�
8�
4�
2�
1�
�
�
�
1�
0�
1�
0�
�

�
1�
0�
1�
0�
0�
�

1

0

1

8�
4�
2�
1�
�
1�
0�
1�
0�
�

8�
4�
2�
1�
�
�
1�
0�
1�
�

�
0�
1�
0�
�

10

20.00

1

20

2

10

3

3

 float

float

Double

`

float

 Float

Statement (s)

True

Cond

ition?

False

True block statement(s)

False block statement (s)

True

Cond

ition?

False

Stmt1

Stmt2

Stmt3

Stmt4

Flow chart

True

Cond

ition1

False

 True	

Condi

tion2

False	

 True	

Cond

ition3

False	

Program

/* largest of 3 numbers */

Condit ion n?

Stmt2

Stmt1

Stmt2

Stmt-x

Switch

(expressi on)

Exp =value1

Exp =value2

|

|

default

Program

Body of the loop

Initialization

condition

Increment/

decrement

False

True

Body of the loop

Flow chart

initialization

Is

expression?

False

True

Incr/ dec

Incr/ dec

True

Is

expression?

False

initialization

Body of the loop

Stmt1; Stmt2;

Forward jump

backward jump

FUNCTIONS

Main Program

Function1

Function 2

Function 3

Function 4

Arithmetic Operations

on 2numbers

Find Sum

Find Difference

Find Product

Find Quotient

Input 2

Numbers a, b

Product =

a*b

Print Product

Calling function�
Analysis�
Called function�
�
main ()

{

int c;

c= fun (a,b);

}�
Arguments are passed

value are sent back�
fun (int a, int b)

{

return c;

}�
�

Type qualifiers

Const

volatile

restrict

datatype array_name [size];

a[0]�
10�
�
a[1]�
20�
�
a[2]�
30�
�
a[3]�
40�
�
a[4]�
50�
�

a[0] [0]

10�
a[0] [1]

20�
a[0] [2]

30�
�
a[1] [0]

40�
a[1] [1]

50�
a[1] [2]

60�
�
a[2] [0]

70�
a[2] [1]

80�
a[2] [2]

90�
�

a[0] [0]

10�
a[0] [1]

20�
a[0] [2]

30�
�
a[1] [0]

40�
a[1] [1]

50�
a[1] [2]

60�
�
a[2] [0]

70�
a[2] [1]

80�
a[2] [2]

90�
�

179

qty

Variable

value

5000

Address

int *p;

Variable�
value�
�
Address�
�
qty�
175�
�
5000�
�
�
�
�
�
�
p�
5000�
�
5048�
�

int qty = 175, *p,n; p = &qty;

n = *p;

x

10 25

y

10

p

5000

12

5678

p = a;

(or) p = &a[0];

Address of a[3] = base address + (3* scale factor of int)

= 1000 + (3*2)

= 1000 +6

= 1006

a[i] = *(p+i)

a[0] [0]�
a[0] [1]�
a[0] [2]�
a[1] [0]�
a[1] [1]�
a[1] [2]�
a[2] [0]�
a[2] [1]�
a[2] [2]�
�
1�
2�
3�
4�
5�
6�
7�
8�
9�
�

int *p;

p = &a[0] [0];

(or) p =a

a[i] [j] = *(p+i*columnsize+j)

a[0]�
a[1]�
a[2]�
�
10�
20�
30�
�
1234�
1236�
1238�
�

p[0]�
p[1]�
p[2]�
�
1234�
1236�
1238�
�

a�
�
10�
�
1234�
�

P�
�
1234�
�
5000�
�

q�
�
5000�
�

Memory

allocation

Static

(at compile time)

Dynamic

(at run time)

�
�
�
�
�
�
�
�
�
�

ptr

main ()

{

clrscr (); display (); getch();

}

display ()

{

printf (“Hello”);

}

I/o functions

 	Input		 	Output	

scanf ()

gets ()

printf ()

puts ()

H�
E�
l�
\o�
�

t

h

e

r

e

\0

t

h

e

i

r

\0

t

h

e

r

e

\0

t�
h�
e�
r�
e�
\0�
�

t

h

e

r

e

\0

t

h

e

\0

1234�
�
�
�
�
�
�
1238�
�
�
�
�

Array of pointers�
�
�
1242�
�
�
�

input functions�
�
scanf ()�
�
getchar () getch () getche ()�
�

ouput functions�
�
printf ()�
�
putchar () putch ()�
�

Analysis functions

month

year

02	01	2010

02

01

2010

-

02

%d

01

%d

2010

%d

02/01/2010

-

�
�
�
�
�

4 bytes�
�
�
�
�

typedef int	num; num a;

FILE *fp;

fp = fopen (“sample.txt”, “w”);

Keyboard

Monitor

Input stream

‘C’

Program

Output stream

getchar ()

putc ()

Keyboard

file

Monitor

putchar ()

getc ()

scanf (“%d”)

putw ()

printf (“%d”)

getw ()

Keyboard

Monitor

gets ()

fputs ()

puts ()

fgets ()

Keyboard

Monitor

20

0�
1�
�
10�
20�
�

10�
20�
30�
40�
50�
�
0�
1�
2�
3�
4�
�

a

0�
1�
2�
3�
4�
�
20�
50�
40�
30�
10�
�

Note : if there are ‘n’ elements in the list then (n-1) passes are required for getting the sorted list of elements.

30�
50�
40�
10�
20�
�

COMPUTER PROGRAMMING COURSE - MATERIAL

COURSE - MATERIAL

300

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

#include <stdio.h>

void foo(const int *); int main()

{

const int i = 10; printf("%d ", i); foo(&i);

printf("%d", i);

}

void foo(const int *i)

{

*i = 20;

}

1.

2.

3.

4.

5.

6.

#include <stdio.h>

int main()

{

for (int k = 0; k < 10; k++); return 0;

}

1.

2.

#include <stdio.h>

int main()

3.

{

4.

5.

int i = -3;

int k = i % 2;

6.

7.

printf("%d\n", k);

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

#include <stdio.h>

int main()

{

int i = 3;

int l = i / -2; int k = i % -2;

printf("%d %d\n", l, k); return 0;

}

1.

2.

3.

4.

5.

6.

7.

#include <stdio.h>

void main()

{

int a = 3;

int b = ++a + a++ + --a; printf("Value of b is %d", b);

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

#include <stdio.h>

int main()

{

int a = 10; double b = 5.6; int c;

c = a + b; printf("%d", c);

}

1.

2.

#include <stdio.h>

int main()

3.

4.

5.

6.

7.

8.

{

int a = 10, b = 5, c = 5;

int d;

d = a == (b + c); printf("%d", d);

}

1.

2.

3.

4.

5.

6.

7.

#include <stdio.h>

void main()

{

int a = 3;

int b = ++a + a++ + --a; printf("Value of b is %d", b);

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

#include <stdio.h>

int main()

{

int a = 10; double b = 5.6; int c;

c = a + b; printf("%d", c);

}

1.

2.

3.

4.

5.

6.

7.

8.

#include <stdio.h>

int main()

{

int a = 10, b = 5, c = 5; int d;

d = a == (b + c); printf("%d", d);

}

1.

2.

3.

4.

5.

6.

7.

#include <stdio.h>

void main()

{

int x = 0, y = 2, z = 3; int a = x & y | z; printf("%d", a);

}

1.

2.

3.

4.

5.

6.

#include <stdio.h>

int main()

{

int x = 1, y = 0, z = 3;

x > y ? printf("%d", z) : return z;

}

1.

2.

3.

4.

5.

6.

7.

8.

#include <stdio.h>

int main()

{

short int i = 20; char c = 97;

printf("%d, %d, %d\n", sizeof(i), sizeof(c), sizeof(c + i)); return 0;

}

1.

2.

3.

4.

5.

6.

7.

#include <stdio.h>

int main()

{

int a = 1, b = 1, c; c = a++ + b;

printf("%d, %d", a, b);

}

1.

2.

3.

4.

5.

6.

7.

8.

#include <stdio.h>

int main()

{

int a = 10, b = 10; if (a = 5)

b--;

printf("%d, %d", a, b--);

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

#include <stdio.h>

int main()

{

int x = 0; if (x == 1)

if (x == 0)

printf("inside if\n"); else

printf("inside else if\n");

else

printf("inside else\n");

}

1.

2.

3.

4.

5.

6.

7.

#include <stdio.h>

void main()

{

double k = 0;

for (k = 0.0; k < 3.0; k++);

printf("%lf", k);

}

1.

2.

3.

4.

5.

#include <stdio.h>

int main()

{

int i = 5;

i = i / 3;

6.

7.

8.

printf("%d\n", i);

return 0;

}

1.

2.

3.

4.

5.

6.

7.

8.

#include <stdio.h>

int main()

{

int i = -5;

i = i / 3; printf("%d\n", i); return 0;

}

1.

2.

3.

4.

5.

6.

7.

#include <stdio.h>

void main()

{

int x = 1, y = 0, z = 5; int a = x && y || z++; printf("%d", z);

}

1.

2.

3.

4.

5.

6.

7.

#include <stdio.h>

void main()

{

int x = 1, y = 0, z = 5; int a = x && y && z++; printf("%d", z);

}

1.

2.

3.

4.

5.

6.

7.

#include <stdio.h>

void main()

{

int x = 1, z = 3; int y = x << 3; printf(" %d\n", y);

}

1.

2.

3.

4.

5.

6.

7.

8.

#include <stdio.h>

int main()

{

int i = 0, j = 0;

if (i && (j = i + 10))

//do something

;

}

1.

2.

3.

4.

5.

6.

7.

8.

#include <stdio.h>

int main()

{

int i = 10, j = 0;

if (i || (j = i + 10))

//do something

;

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

#include <stdio.h>

int main()

{

int i = 1;

if (i++ && (i == 1)) printf("Yes\n");

else

printf("No\n");

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

#include <stdio.h>

int main()

{

int x = 0; if (x == 1)

if (x >= 0)

printf("true\n"); else

printf("false\n");

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

#include <stdio.h>

#define max(a) a int main()

{

int x = 1; switch (x)

{

case max(2):

printf("yes\n"); case max(1):

printf("no\n");

break;

}

}

1.

2.

3.

4.

5.

6.

7.

#include <stdio.h>

void main()

{

int i = 0; while (i < 10)

{

i++;

8.

9.

10.

11.

12.

printf("hi\n");

} while (i < 8) i++;

printf("hello\n");

}

1.

2.

3.

4.

5.

6.

#include <stdio.h>

void main()

{

int x = 5.3 % 2; printf("Value of x is %d", x);

}

1.

2.

3.

4.

5.

6.

7.

#include <stdio.h>

void main()

{

int y = 3;

int x = 5 % 2 * 3 / 2; printf("Value of x is %d", x);

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

#include <stdio.h>

int main()

{

int a = 1; if (a)

printf("All is Well "); printf("I am Well\n");

else

printf("I am not a River\n");

}

1.

2.

3.

4.

5.

6.

7.

8.

#include <stdio.h>

int main()

{

if (printf("%d", printf("))) printf("We are Happy");

else if (printf("1")) printf("We are Sad");

}

1.

2.

3.

4.

5.

6.

7.

#include <stdio.h>

switch (ch)

{

case 'a':

case 'A':

printf("true");

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

#include <stdio.h>

int main()

{

int i = 0, j = 0; while (i < 5, j < 10)

{

i++; j++;

}

printf("%d, %d\n", i, j);

}

1.

2.

3.

4.

5.

6.

7.

8.

#include <stdio.h>

int main()

{

short i;

for (i = 1; i >= 0; i++) printf("%d\n", i);

}

1.

2.

3.

4.

5.

#include <stdio.h>

void foo(); int main()

{

void foo();

1.

2.

3.

4.

5.

#include <stdio.h>

void foo(); int main()

{

void foo(int);

1.

2.

3.

4.

5.

6.

7.

8.

#include <stdio.h>

void m(); void n()

{

m();

}

void main()

{

1.

2.

#include <stdio.h>

int b;

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

#include <stdio.h>

int main()

{

int one = 1, two = 2;

#ifdef next one = 2;

two = 1;

#endif

printf("%d, %d", one, two);

}

1.

2.

3.

4.

5.

6.

7.

#include <stdio.h>

int main()

{

int ary[2][3];

ary[][] = {{1, 2, 3}, {4, 5, 6}};

printf("%d\n", ary[1][0]);

}

1.

2.

3.

4.

5.

6.

#include <stdio.h>

void main()

{

#define max 37; printf("%d", max);

}

1.

2.

3.

4.

5.

6.

#include <stdio.h>

void main()

{

#define max 37 printf("%d", max);

}

1.

2.

3.

4.

5.

6.

7.

#include <stdio.h>

void main()

{

#define const int const max = 32; printf("%d", max);

}

1.

2.

3.

4.

5.

6.

7.

8.

#include <stdio.h>

int x = 5; void main()

{

int x = 3; printf("%d", x);

{

int x = 4;

1.

2.

3.

4.

5.

6.

7.

#include <stdio.h>

void main()

{

#define max 45

max = 32; printf("%d", max);

}

1.	#include <stdio.h>

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

define max

void m()

{

printf("hi");

}

void main()

{

max; m();

}

1.

2.

3.

4.

5.

6.

7.

8.

#include <stdio.h>

#define A 1 + 2

#define B 3 + 4 int main()

{

int var = A * B; printf("%d\n", var);

}

1.	#include <stdio.h>

1.

2.

3.

4.

5.

6.

#include <stdio.h>

#define var 20); int main()

{

printf("%d\n", var

}

1.

2.

3.

4.

5.

6.

7.

#include <stdio.h>

void main()

{

int a[3] = {1, 2, 3};

int *p = a; printf("%p\t%p", p, a);

}

1.

2.

3.

4.

5.

6.

7.

#include <stdio.h>

void main()

{

int x = 0;

int *ptr = &5; printf("%p\n", ptr);

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

#include <stdio.h>

void m(int *p, int *q)

{

int temp = *p; *p = *q; *q = temp;

}

void main()

{

int a = 6, b = 5;

m(&a, &b);

printf("%d %d\n", a, b);

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

#include <stdio.h>

void m(int p, int q)

{

int temp = p; p = q;

q = temp;

}

void main()

{

int a = 6, b = 5;

m(a, b);

printf("%d %d\n", a, b);

}

1.

2.

3.

4.

5.

6.

7.

#include <stdio.h>

void main()

{

int x = 0;

int *ptr = &x; printf("%d\n", *ptr);

}

1.

2.

#include <stdio.h>

void m(int *p)

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

{

int i = 0;

for(i = 0;i < 5; i++) printf("%d\t", p[i]);

}

void main()

{

int a[5] = {6, 5, 3};

m(&a);

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

#include <stdio.h>

void m(int p, int q)

{

printf("%d %d\n", p, q);

}

void main()

{

int a = 6, b = 5;

m(a);

}

#include <stdio.h> int main()

{

int ary[4] = {1, 2, 3, 4};

printf("%d\n", *ary);

}

#include <stdio.h> int main()

{

const int ary[4] = {1, 2, 3, 4}; int *p;

p = ary + 3;

*p = 5;

printf("%d\n", ary[3]);

}

#include <stdio.h> int main()

{

int ary[4] = {1, 2, 3, 4}; int p[4];

p = ary; printf("%d\n", p[1]);

}

#include <stdio.h> void main()

{

char *s = "hello"; char *p = s; printf("%p\t%p", p, s);

}

#include <stdio.h> void main()

{

char *s= "hello"; char *p = s;

printf("%c\t%c", *(p + 3),	s[1]);

}

#include <stdio.h> void main()

{

char *s = "hello"; char *p = s;

printf("%c\t%c", *p, s[1]);

}

#include <stdio.h> int main()

{

int a[4] = {1, 2, 3, 4};

void *p = &a[1]; void *ptr = &a[2]; int n = 1;

n = ptr - p; printf("%d\n", n);

}

COMPUTER PROGRAMMING COURSE - MATERIAL

char p = *malloc(100);

char *p = (char) malloc(100);

char *p = (char*)malloc(100);

char *p = (char *)(malloc*)(100);

Answer: C

If a variable is a pointer to a structure, then which of the following operator is used to access data members of the structure through the pointer variable?

.

&

*

->

Answer: Option D

What would be the equivalent pointer expression for referring the array elementa[i][j][k][l] A. ((((a+i)+j)+k)+l)

B. *(*(*(*(a+i)+j)+k)+l)

C. (((a+i)+j)+k+l)

D. ((a+i)+j+k+l)

Answer: Option B

Answer: Option B

What will be the output of the program ?�
�
�
#include<stdio.h>

int main()

{

int i=3, *j, k; j = &i;

printf("%d\n", i**j*i+*j); return 0;�
�
}

30

27

9

3

Answer: A

24.

What will be the output of the program ?

382�
�

#include <stdio.h> int main()

{

char *str = "hello, world"; char *str1 = "hello, world"; if (strcmp(str, str1))

printf("equal");

else

printf("unequal");

}

int main()

{

char *p = NULL; char *q = 0;

if (p)

printf(" p ");

else

printf("nullp");

if (q) printf("q\n");

else

printf(" nullq\n");

}

#include <stdio.h> int main()

{

int i = 10; void *p = &i;

printf("%d\n", (int)*p); return 0;

}

#include <stdio.h> int main()

{

int i = 10; void *p = &i;

printf("%f\n", *(float*)p); return 0;

}

#include <stdio.h> int *f();

int main()

{

int *p = f(); printf("%d\n", *p);

}

int *f()

{

int *j = (int*)malloc(sizeof(int));

*j = 10; return j;

}

#include <stdio.h> int *f();

int main()

{

int *p = f(); printf("%d\n", *p);

}

int *f()

{

int j = 10; return &j;

}

#include <stdio.h> int main()

{

int *ptr, a = 10;

ptr = &a;

*ptr += 1; printf("%d,%d/n", *ptr, a);

}

#include <stdio.h> int x = 0;

void main()

{

int *ptr = &x; printf("%p\n", ptr); x++;

printf("%p\n ", ptr);

}

#include <stdio.h> int x = 0;

void main()

{

int *const ptr = &x; printf("%p\n", ptr); ptr++;

printf("%p\n ", ptr);

}

#include <stdio.h> void foo(int*); int main()

{

int i = 10;

foo((&i)++);

}

void foo(int *p)

{

printf("%d\n", *p);

}

#include <stdio.h> void foo(int*); int main()

{

int i = 10, *p = &i;

foo(p++);

}

void foo(int *p)

{

printf("%d\n", *p);

}

#include <stdio.h> void foo(float *); int main()

{

int i = 10, *p = &i;

foo(&i);

}

void foo(float *p)

{

printf("%f\n", *p);

}

#include <stdio.h> int main()

{

int i = 97, *p = &i;

foo(&i); printf("%d ", *p);

}

void foo(int *p)

{

int j = 2;

p = &j; printf("%d ", *p);

}

#include <stdio.h> int main()

{

int i = 97, *p = &i;

foo(&p); printf("%d ", *p); return 0;

}

void foo(int **p)

{

int j = 2;

*p = &j; printf("%d ", **p);

}

#include <stdio.h> int main()

{

int i = 11; int *p = &i; foo(&p);

printf("%d ", *p);

}

void foo(int *const *p)

{

int j = 10;

*p = &j; printf("%d ", **p);

}

#include <stdio.h> int main()

{

int i = 10; int *p = &i; foo(&p);

printf("%d ", *p);

printf("%d ", *p);

}

void foo(int **const p)

{

int j = 11;

*p = &j; printf("%d ", **p);

}

#include <stdio.h> int main()

{

int i = 10;

int *const p = &i; foo(&p); printf("%d\n", *p);

}

void foo(int **p)

{

int j = 11;

*p = &j; printf("%d\n", **p);

}

#include <stdio.h> void m(int p)

{

printf("%d\n", p);

}

void main()

{

int a = 6, b = 5;

m(a, b);

printf("%d %d\n", a, b);

}

#include <stdio.h> void main()

{

char *s= "hello"; char *p = s;

printf("%c\t%c", 1[p], s[1]);

}

#include <stdio.h> int main()

{

int ary[4] = {1, 2, 3, 4}; int *p = ary + 3; printf("%d\n", p[-2]);

}

#include <stdio.h> int main()

{

int ary[4] = {1, 2, 3, 4}; int *p = ary + 3;

printf("%d %d\n", p[-2], ary[*p]);

}

#include <stdio.h> int main()

{

double *ptr = (double *)100;

ptr = ptr + 2; printf("%u", ptr);

}

#include <stdio.h> int main()

{

int *p = (int *)2; int *q = (int *)3; printf("%d", p + q);

}

#include <stdio.h> void main()

{

char *s = "hello"; char *p = s;

printf("%c\t%c", *(p + 1), s[1]);

}

#include <stdio.h> void first()

{

printf("Hello World");

}

void main()

{

void *ptr() = first; ptr++

ptr();

}

COURSE - MATERIAL

COURSE - MATERIAL

