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1.Institute Vision & Mission :

Vision of the institute

To be recognized as a premier institution in offering value based and futuristic quality
technical education to meet the technological needs of the society.

Mission of the institute

To impart value based quality technical education through innovative teaching and learning
methods.

To continuously produce employable technical graduates with advanced technical skills to
meet the current and future technological needs of the society.

To prepare the graduates for higher learning with emphasis on academic and industrial
research.

Mechanical department:

Vision of the Department

To be a center of excellence in offering value based and futuristic quality technical education
in the field of mechanical engineering.

Mission of the Department

1. Impart quality technical education imbibed with values by providing state of the art
laboratories and effective teaching and learning process.

2.Produce industry ready mechanical engineering graduates with advanced technical and
lifelong learning skills.

3.Prepare graduates for higher learning and research in mechanical engineering and its allied
areas.




PROGRAMME OUTCOMES:

Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems.

1. Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of
mathematics, natural sciences, and engineering sciences.

2. Design/development of solutions: Design solutions for complex engineering problems and
design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural,

societal, and environmental considerations.

3. Conduct investigations of complex problems: Use research based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis of
the information to provide valid conclusions.

4. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering activities
with an understanding of the limitations.

5. The engineer and society: Apply reasoning informed by the contextual knowledge to assess
societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
the professional engineering practice.

6. Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
for sustainable development.

7. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.

8. Individual and team work: Function effectively as an individual, and as a member or leader
in diverse teams, and in multidisciplinary settings.

9. Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and
write effective reports and design documentation, make effective presentations, and give and
receive clear instructions.

10. Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member and
leader in a team, to manage projects and in multidisciplinary environments.

11. Lifelong learning: Recognize the need for, and have the preparation and ability to engage

in independent and lifelong learning in the broadest context of technological change



Course out comes

CO1 Interpret the concept of Laplace transforms

CcOo2 Apply Laplace transform techniques for solving DE’s

CO3 Evaluate integrals using Beta and Gamma functions

CO4 Determine the multiple integrals and can apply these concepts to find

areas, volumes , moment of inertia etc of regions on a plane or in space

CO5 Demonstrate an understanding of vector differentiation.

CO6 Find the line, surface and volume integrals and converting them
From One to another




Syllabus copy
UNIT-I

Laplace Transforms: Laplace transforms of standard functions, Shifting theorems,
derivatives and integrals, properties- Unit step function, Dirac’s delta function, Periodic
function, Inverse Laplace transforms, Convolution theorem (without proof).

Applications: Solving ordinary differential equations (initial value problems) using Laplace
transforms.

UNIT-1I

Beta and Gamma Functions: Beta and Gamma functions, properties, relation between Beta
and Gamma functions, evaluation of integrals using Beta and Gamma functions.

Applications: Evaluation of integrals.

UNIT-11I

Multiple Integrals: Double and triple integrals, Change of variables, Change of order of
integration.

Applications: Finding areas, volumes& Center of gravity (evaluation using Beta and Gamma
functions).
UNIT-1V

Vector Differentiation: Scalar and vector point functions, Gradient, Divergence, Curl and
their physical and geometrical interpretation, Laplacian operator, Vector identities.

UNIT-V

Vector Integration: Line Integral, Work done, Potential function, area, surface and volume
integrals, Vector integral theorems: Greens, Stokes and Gauss divergence theorems (without
proof) and related problems.

Text Books:

1. Advanced Engineering Mathematics by R K Jain & S R K Iyengar, Narosa Publishers
2. Engineering Mathematics by Srimanthapal and Subodh C. Bhunia, Oxford Publishers
References:

1. Advanced Engineering Mathematics by Peter V. O. Neil, Cengage Learning
Publishers.

2. Advanced Engineering Mathematics by Lawrence Turyn, CRC Press



LESSON PLAN:

UNI | UNIT SUB TOPICS NO. Of Sugg | Remark
T NAME Lectures ested |s
NO Required Book
s
1 Laplace Defination of Laplace Transforms L1
transform Laplace transform of some L2,L3,1L4 TI,
standardfunctions. R1,
Laplace Transform of unitstep R2
function L5,L6,L7
First shifting theorem L8
Second shifting theorem L9,L10,L11 Unit-1 is
Scale property L12,1.13, complete
Inverse Laplace Transforms L14, dbyLl16
Convolution theorem L15,L16
Solving ODE using Laplace
Problems on inverse Laplace
Transforms
Revision of Laplace Transform
17 Beta and Defination of gamma functions ,L17,
Gamma Problems on gamma functions L18,L19, T1,T2 | Unit-2 is
functions Definition of Beta functions L20,L21, , R1, | complete
Problems on Beta functions L22,1.23, R2 d by
Beta and gamma relation L24, L-28
Problems on beta and gamma L25,1.26,
relation. L27, 128
Revision
I Multiple 1 Multiple integrals — double L29, T1,
integrals integrals. L30,L31 R1, Unit-3 is
2 Finding the area of a region using | L32 R2 complete
double integration L33,L.34 d by
3. change of order of integration L35,L36, L-41
4. change of variables (polar, L37,L38,
cylindrical and spherical L39, L40,
L41,
v Vector 1.Introduction 142,143, T1,T2
Differentiat | 2.Gradient, Divergence, Curl and L44, , R1,
ion their properties L45, R2 Unit-4 is
146,147, complete
3.Problems on Gradiant L48,1.49, d by
4.problems on Divergence L50, L-53
5.Problems on curl L51,L52,
L53,
A\ Vector Laplacian operator L54,L55,L5 | T2
Calculus Line Integral — work done 6,L.57,L58,L Unit-5 is
Surface Integral 59,160, complete
Volume Integral L61,L62,L6 d by
Green’s ,Gauss’s divergence and 3,L64. L-64
Stoke’s theorem
TOTAL NO. OF CLASSES 64




SESSION EXECUTION LOG

UNI

NO

UNIT
NAME

SUB TOPICS

Expected period

Laplace
transform

Defination of Laplace Transforms
Laplace transform of some
standardfunctions.

Laplace Transform of unitstep
function

First shifting theorem

Second shifting theorem
Scale property

Inverse Laplace Transforms
Convolution theorem

Solving ODE using Laplace
Problems on inverse Laplace
Transforms

Revision of Laplace Transforms

27/07/17 to
26/08/17

n

Beta and
Gamma
functions

Defination of gamma functions
Problems on gamma functions
Definition of Beta functions
Problems on Beta functions
Beta and gamma relation
Problems on beta and gamma
relation.

Revision

26/08/17 to
15/09/17

III

Multiple
integrals

1 Multiple integrals — double
integrals.

2 Finding the area of a region using

double integration

3. change of order of integration
4. change of variables (polar,
cylindrical and spherical

16/09/17 to
20/10/17

v

Vector
Differentiat
ion

1.Introduction
2.Gradient, Divergence, Curl and
their properties

3.Problems on Gradiant
4.problems on Divergence
5.Problems on curl

21/10/17 to
06/11/17

Vector
Calculus

Laplacian operator

Line Integral — work done
Surface Integral

Volume Integral

Green’s ,Gauss’s divergence and
Stoke’s theorem

07/11/17 To
18/11/17

TOTAL NO. OF CLASSES

64




UNIT-I
LAPLACE TRANSFORMS
Definition:
Let f(t) be a function defined for all positive values of t, then the
Laplace transform of f(t) denoted by L {f(t)} or 7(s) is defined by
L{f(t)} = f(8)= [[et Foydt.  —mmmmmmmmmmmmmm oo 1
Provided that the integral exists. Here the parameter ‘s’ is a real
or complex number.
The relation (1) can also be written as f(t)= L=*(f(s)).
f(t) is said to be inverse laplace transform of f(s).
The symbol ‘L’ is called the laplace transform operator. The
function f(t) must satisfy the following conditions for the
existence of the laplace transform.
(a) The function f(t) must be piece-wise continuous in any
limited interval 0<a<t<b.
(b) The function f(t) is of exponential order.
Formulae

L(1) =

1
L(t) ==

L(t") =2

L(e") = = (s-a>0)

L(e™)=—

5+a

L(cosat) =—>— if s>0

s’ +a



L(coshat) = 2

2 2
s +a

L(sinat) = —— if s>0

s2+a?

L(sinhat) = =

First shifting theorem:

If L(f(t)) = f(s) then L(e** f(t) = f(s-a), s-a>0

Second shifting theorem:
f(t-a) toa
If L(f(t)) = f(s) and gi) = 0 t<a then
L(g(t)= e (s)
1. Find the laplace transform of e=3* (2cos5t — 3sin5t).
We have
L(2cos5t — 3sinSt) = = - ) =270

24 25 2425

Now applying first shifting theorem
L(e~3* (2cos5t — 3sin5t)) = =2

-2 c
5=+ 13

Changes s to s+3

_ 2(s+3)-15 __  25-9

(s+3)2+25  s%+65+34

2. If L(f(t)) = Z=222 then find L(f(3t)) using change of scale

(s—1)2

property.
Given L(f(t)) = == = f(s)

(s-

By change of scale property
L(f31) = 76)

(EN2_qarEnac _
g'uSJ 1“"3J+‘3 — 9(5%— 45+45)

FE_ g3 fe—Ty3
Lo 1) (5-3)

|

Wl



3. Find the laplace transform of g(t) where g(t) = cos

) ife!

Sol: Let f(t) = cost
L(f(t)) = z7=1(s)

g(t)jL fit- ) =cos (t-5),  if >~
0 if t<

Applying second shifting theorem, we get

_se 3™

L(g(t) = = s24 1) s+

4. Find L(t* e~?tcos2t)

5

L(cost) = o

L(e 2*cost) = changing s to s+2

5+2
(s+2)24+1

5+4
52445+ 5

d* o s42

.y _ 12 \
L(f_zg_‘”COSt) _(_1) dst 52+45+5']

_ ({zs+4j{52+45+ 1';j
(52+4s+ 5)2

-0 cosat—ecosbt
——— dt

5. using laplace transform evaluate |

(t-3

if t<t
3

i

—gp lcosat—cosbt) dt

Sol: Given integral is same as [ e :

. (cosat—cosbt)
i.e L(————) where s = 0

5 5

since L(cosat-cosbt) = — - =—

{cosat—cosbt) _ pfO_ 3 5

L( t ) s G 52+i12) ds
1 poo 25 25

2 'J'T ('52+-:12 N 52+i:lzj dS



%[105(5 + a?) — log(s? — b?)]?

_1 7w
—g[lﬂg(—zl 5z )] s
-z

52+ vy
_ 1 2402
= 3 los(Gs)
o0 _ . {(cosat—cosbt) s2+p2
sp AmEaRs BReRR) Z
[ ems (220 gy = Ly T,

Take s=0 then

-0 cosat—cosbt — i E 2 — E
s — 2 lﬂg(aj log(ﬂj

6.Find L(Z

we know that L(sint) = ,° _

by first shifting theorem L(e™*sint) = (=) s>+

is+11% +1

= f(s)
L(e rﬁs:’]:t) _ J.::af(g) dS

=" __ds =[tani(s+ 1)]”

45 (z+1)%+1

=tan"leo - tan"*(s+ 1)

- tan (s + 1)

t 1A

= cot™ s+ 1)

"

[ tan tx+ cot lx

vl



7. Find the laplace transform of periodic function f(t) with
period T, where

- E9 OS t SE
T 2
f(t)+ 3E-— g =t=T
L 0<t<Z
T 2
Given f(t) —=t=T

Since f(t) is periodic function with period T, we have

L) = ===

[} et f(o) dt

_ 1

- i UFe fode e fy dt]

T
= I_E;—S‘T [”'02 —h.l.' {‘“"_t EJ dt+ IT E—SI" (BE _ Ej dt]

T
1 4E

= —— [Z [Fte~star - EJ‘ge—Sf dt+3E [ e=tde- 2
2

-T
Jr te™stdt
Z

e

1 45 et e~ 12 =St e
= sl (M) - Do 'E((_—SJ '

0 -
_((_j - ]Té
Ts - e
1 4F T == e 2 1 B —Ts 3E _ -Ts
T e—"TT[T (Zez - +_)+;(€2 '1)-—( St _ gz
_ 1 —25 T8 = 4f -Ts 5 =TS ;a5 o 35 TS
_l—e—ST[s €z _(1 ez)t-e - T 5+T€2]
_ 1 4F —Ts 25 —-Ts 3E 5
ST [T52(1-E : j'TE 2 -TE‘ I's. ;]

8. Find L(vt + %)3



(1r+—) = (¢ )3+(—)3+3 N (4.,'E+?1?

2 1 1 1
=tz +—3+3(t2 + =
tz £z

2 2 9 1
=+:++z2+3tz+ 3+72

L(tz+ 7z + 32+ 3t72) = L(e2) + L(¢72) + 3L(¢2) + 3L(¢

e
L(t") =< whenn>-1
|3 311 =
L) _ztr o _3Et 54T
] 3 3
szt 52 sz
| 2 (1 — "
_ (—+1 Y —2.f . ]
L(t 3/2) =3 éﬂ == = ﬁr-11_1 1.C. \II_: = -
5 2 ;2 5 2 “
2 T
f1
£ 1=
1/2 =
L =2— =320
ozt EE!
| 1
1141 =
-1/2
L") == =7
5 2 52

¢ 33 VI 20T 3 3T 4 3T
L(t:+ :+3t:+3t‘ (‘5) ‘r1_|_2(w )+ y

4 =
52 5 z 52 g

9. Using Laplace transform

show thatf t2o4t gin2edt = =

300

sol: we note that the given integral is same as [~ t“e~* sin2t
dt
1.e. L( t?sin2t) where s =4

But L(t?sin2t) = (- 1) (L(Sln2t))

2 @z 2
) ast -[5}2+4)
=2, _( (s2+ 4\2 S)



=-4 ()

(s7+4)°

—_4 [{52+ 4)%1-52(s°+ 4}.25]
(52+4)

_ 4[{52+4[ s+ 4)—4(s 2“]

(s2+4)
_ —4(4—3s5%)
(s2+4)3
B0 5 o . _ —4(4-3s%)
[, tPe ™ sin2edt= ——
: (5<+4)
Putting s = 4, we get
o, 4(48-4) _ 4(44) 11
| “tZe~*t sin2tdt = ==
Jo (20)2 20(400) 500

10. Find L(jc:(fc: coshat dt) dt)

Sol: Let f(t) = coshat then
L(f(t)) = L(coshat) =

Using the theorem on Laplace transform of integral

- p— 1 r
L(_Jor coshat dt) — < j‘(S)

1 s 1

: Z_ 2y feZ2— q27
5 (s2—a<) (s=—a<)

Applying again
S 1

L(_';,r( _l'; coshat dt) dt) = % —

Fe2 — 27 Fed — 27
(52—a%) s{sf—a?)

11. Find -1 (log (1“))

Let f(s) = log (=)
=log (1 +s)—2 logs
Then (F1s) = () - =
LYFl) =L () 200
=et-2

(D)tLt(Fls)=et-2



= L_l Fls) s

-
2—eg ™"

t

» 17 (log () =/~

INVERSE LAPLACE TRANSFORM:

If 7(s) 1s the Laplace transform of a function f{(t) then f(t) is

called the inverse laplace transform of f(s) and it is denoted by

LAS)) e

f(t) = L7 {f(s)}

where L~ is called the inverse Laplace transform operator.

Table of Inverse Laplace transform:

S.no f(s) LYf(s)} = f(t)
1 |L 1
<
2 1 n
_q]!+1 E
3 _riL+1 K n > _1 f”
y (n+1)
4 1 Eai
5—1n
5 1 g~ a
®+u
6 1 % sinat
g2 4 a2 “
7 5 cosat
g5+ a-
8 1 L sinhat
Sz_' — a4 a
9 S coshat
Sf. —_— a/_
10 | ——or = e sinbt or = e~




— sinbt
(s+a)Z+b
Il | ———or e“*cosbt or e~#*cosbt
F+a
(s+a)®+b*
12 | ———or L ¢4t sinhbt or et
(s—a)*—b= b b
S S sinhbt
(5+a)® bt
13 _—sz or e?*coshbt or e~*tcoshbt
(s—a)*-—
F+a
(s+a)®-b*
12. . Find
14 2as t sinat
L_l[ (5'4 +a )f'
15 | s°—a’ tcosat
(s 4+ a?)
. -]
(5241) (5249) (s2425)
1 1 1
Sol. Wehavef——( —-——)
S2+1) (52+9) (sB+1)  (52+9)
Resolving into partial fractions
. 1 _1 [ 1 1 ]
Y (s? 1) (57 125) 8 L(s?11) (s?125) (57 19) (57 125)

_1r1 1 1 1
o 8 [; ({524_1: - (s2425) ) T 1e ({52+93 B (s2+425) )

1 1 1 1 1 1 1
—5 [E ({52+13 ) - E {524.93 ) + E {52+253 )]

1

8
Qs 2416 [ 52+1 ) -G 52+9“ )+ ({52+253 )]

1 5
" (s2+1) (5249) f52+4:., 3092 [ 6. ( 2+1ﬁ -24. ( °+3°‘ + 8. (s2+4573) ]
1 . —
Hence L *[ ; (s2+1) (s249) (s2+25 ‘] N
- - - -1
3092 [16 L™ (s2+1) 24.17 (s3+37) +8. L {53+52j]

—_ [ 16cosat — 24cos3t+8cos5t]

30‘:'

13. Find 171

( “+4s+a,]



We have

1 L - 7-1 1
L [(52+4s+5;] L [fs+232+1]

-2t} —1[_7513]

= e~ % sint = f(t)

=€
» By second shifting theorem

-1 = —2(t-2) A (te
L [SHHD’]TE sin(t-2), t>2

(or)
0 t<2

(57 +45+5)

Where H(t-2) is the Heaviside unit step function.

| ] = e~2¢=Dsin(t-2) H(t-2)

14. Find inverse Laplace transform of log(g)
Sol: Let f(s) = 10g(§)
L(f(1) = log(:)) = log(s+1) — log(s-1)
“L(f(®) = (-1) ; (log(st1) — log(s-1))
=Dl ;-]
T
= L(e’- e7") = L(2sinht)
Comparing b.s we get
L(f(t)) = 2sinht

. f(t) == sinht

15. Find .1 ]

52+lj (52-1)
We have

_ i/l 1 1
L2 (s2+1) “52 1“] z 1(5 ({52—13 ) {52+1j))

1 1 _ 1
:E [L_l({sz_lj) - L L({52+13 )]




= - (sinht — sint)

= t'.'l|l—l-

Hence L77[ ]= ”!gf{'_u]du

ol Ve %
s{s=+1) (5=-1)

——1=
s(s24+1) (s2-1)

1.e. L_l[ l (qrnh: — sini)du

lel—l

[

= =(coshu + cosu) §

]

= %[(coshtJrcost) — (1+1)]
= é[coshtJrcott 2]

Convolution Theorem:
IFL(f(t)) = f(s) and L(g(t)) = g(s) then L{f{t) * g(t)} = f(s)-
g(s) (or)
LH{f(s). g(3)} = f(t) * g(t)

1. Find 2-1[ ——= ] =-1[ 2sin2t — 3sint3t ] by using

(s2+4) (s2+9) ]
Convolution Theorem.
Sol:

Let f(s) =

and g(s) =

52+‘342

Then f(t)= cos2t and g(t) = cos3t

N 't —57 e %
' | (52+4] {52+e;] cos2t * cos3t
T )
= ), cos2u. cos3(t —u)au

“2cos2u. cos3(t —u)du

t\\.'lll—l ba |

'J
!Or[ 0s(2u + 3t — 3u) + cos(2u — 3t + 3u)|du

bd |

Jg {fcos[(2 — 3)u+ 3t] +cos [(2+ 3)u+ 3t)]}du

[sin f(2—3)u+3t} sin {{2+3]u—3r}] t
2-3 2+3 0

[(sin2t-sin3t) +2 (sin2t+sin3t)]

[ [ R




[ Sin2t(—=+3) + sin3t(;+;)]

[sin2t(2) + sin3t(9)]

wlk= kIl PRI

[-2sin2t + 3sin3t]
= = [2sin2t - 3sin3t]

z

_ 5
L
[ (5244) (5249)

1= _Tl [2sin2t - 3sin3t]

2. Find £~*[ ——-] using the Convolution theorem.

; ] _1[ ; : ]
(e24.72%2 TeZ Iy reZopgn
(s=+a<) (s=+a<} (s<+a=<]

Sol: L1

Let f(s) = and a(s) =

2+ﬂ2w
IHA(s) y =171 -“52::12"} = cosat = f(t) and

- - = -1 1
LHa(s8) ;= LM g

5 = sinat = g(t)

». By the Convolution theorem,

L~ [ ——] = (cosat) * (i sinat)

is2+a?)
1 pt .
== | (cosau sina(t —u)]du
= (t —w)]d
1, ot . : : ,
== Ua (sin(au + at —au) — sin(au — at + au]du

[! (sin(at) — sin (2au — at)|du

[szrm;t U+ —cos(Zau — at)]§

= I~J|H

,, [tsinat + la cosat - ,,acostat] = % sinat

L—l[ "= % sinat

Fel4g2y2
(s<+a<)



5+8

()24 22
(s)=+2

= 3L ] since by first shifting

theorem

= oL ] T 877 {q;iﬂ]}
= e5t[cos2t + 8. - sin2t]
= e>[cos2t + 4 sin2t]
LY %] =e>[cos2t + 4 sin2t]
19. Find 1-1[2 + slog(:2)]
Let f(s)=log(*=;) = log(s -1) —log(s+1)
Fe=1 -
Now 1[F3(s)] = 173[% - ]
Le (-Dtf(t) = (e - e7%)
f(t) = L*[7(s)]

— —f_1{€t _ E—t)

Thus f(t) = -*[log(*™2)] = 2 [£—2] = Zsinht

Also f(0)=10
« 17 [slog()] = - [s.7(s)] = £(1)
-4 [:.1'1.15'?&

dt t

= [ sinht — tcosht]
Hence 1% [2 + slog()] = 17*(2) + L7 [slog()]
= i[ sinht — tcosht] since i7*(2) doesnot
exist.
Solution of O.D.E equations with constant co-efficient:

L[f'(t)] = S"L{f(t)] — S™'£(0) - S"* f'(0)..............
f*1(0)



20. Using Laplace transform Solve (n3- n2+4D -4) y = 68~
sin2x, y=1, Dy=-19,

D’y=-37 atx =0

Given differential equation can be written as

y oy 4+4y! -4y =68e7SiN2X ~-n-mmmmmmmmmmee (1)

taking L.T on B.S of equation (1) we get,

L(y'"") - L(y'") + 4L(y")-4L(y) = 68L(e*sin2x)

i.e. [s'L(y) — 5°y(0) =sy'(0) - y''(0)] — [s"L(y) — sy(0)
~y'(0)]

+4[s.L(y)-y(0)] -4 L(y) =68. ———.....(2)

(5—17%+2

using the given conditions y(0) = 1, y'(0) =-19, y''(0)=
-37
(2) reduces to

[s’L(y) — s™=19s +37] — [s’L(y) —s +19] + 4 [ s.L(y) -1] — 4 L(y)

136

(s—1)2+22

136

1.e. (s3- s2+4s -4) L(y) - s4+20s+14 =

(s)°—25+5

i.e. (s3- s>+4s -4) L(y) = —2° +5°-20s-14

(512 —25+5

(s-1) (s*+4) L(y) = s* —2257+315% -725-70

52 —2:+53

ie. L(y) — 5% —225 4315 -72s-70

P - -
5—1)52+41(52-25+5)

o 2252+3152—?25—?-::-]

Ty = 177 e asrozsns)
21. Solve the D.E ££ — 4 2 — 12x = ¢** given that x(0) = | and
x'(0) = -2 using

Laplace transforms.

Given equation can be written as

11 4.1 .
X -4x-12x = o3¢



taking L. T on both sides we get,

L(x'") — 4L(x")-12L(x)=L(e3*)

Using the given conditions , it reduces to
[s2-L(x)-s+2] -4[s.L(x)-1] -12L(x) = =
ie. (s?-4s-12) L(x) = = +5 -6

or (s+2)(s-6) L(x) = —+s -6

orL(x)= ————+ 1]

[(5—37(5—8) 5+2

le X =L [——+ L[]

Z+2)(5-3)s5-8)

Let = =2+ 245

(5+215—31s—-8&) 5+2 5—3 I—&

+ 1= A(s-3)(s-6)+B(s+2)(s-6)+c(s+2)(s-3)

Put s=-2 in (3)

~1=40A =:>A:$
Put s=31n (3)

»1=-15B —=B = —15
Put s=6 in (3)

v 1=24C =::C=i
Substitute A, B and C we get

1 1 1 1

= - +
s+21s—3){s—6) 40{s+2) 15{s-3) 24{(s-8)

1 1 T 1 1 1 _ 1
HCHCCX—EL1[—]-;1[;1[;]"'241[-1[;]"_Ll[ ]

5+2 5+2

1 a 1 1 -
=21 p-2t _ __Ezt + L gbttp-2t

40 1= 24
41 _ 4 1 . 1

= pa z.-f__GEv_i__Eﬁnﬁ
40 15 24

22. Using Laplace transform, Solve (D*+4D +5) y =5 Given that
y(0) =0 and y''(0) = 0.

Sol: Given differential equation can be written as



y Hy'+5y =5
taking L. T on both sides we get
L(y')+4L(y )+5L(y) = L(5)
=[s*L(y) — sy(0) - y'(0)] + 4[s.L(y) — y(0) + 5L(y)] =
5.L(1)
Using the given conditions, it reduces to

(s2+4s+5) L(y) =

=1-e—zt.z,—1[ =+ 2]

is2+1] (52 +17]
= (1 - e72%)(cost+2sint)
23. Find L *(cot™'s)
Sol: #(s) = cot’'s

Then Fi(s) = i
We have L71(f(s)) = (-1) t f{(t)
() = LTHf(s)] = _—1 LHF(s)]

:_1_1
— L7~

1452

=

—smt
24. IF L(f(t)) = f(s) then L) = [ F(s)ds
Given that L(f(t)) = 7(s)
Then 7(s) = L(f(t)) = [, e~ f(t)dt



Integrating on both sides w.r.to ‘s’ from s to =
v D feas = [T e~ f(t)dt] ds
Interchanging the order of integration in the repeated integrals as

s and t are independent variables, we have

17 F(s)ds = | dt[ ] e <tf(t)ds]
= [, O f ~fds]dt

= j(ﬂ[ ]fdt

st

= [0 ] dt

7] dt
= [ et FR]dt= [T f(s)ds

L(f%) = [ f(s)ds
25. Find L[f; e ~‘costat]
Let f(t) = e~ * cost
+L(f(t)) = L( e~ cost)

5

= (::j52+1}) changes s to s+1
. +1 —
 (s2+2s+2) =f(s)

Using the theorem of L.T of integrals,

L[f{f e *fcostat] :% F(s)

s+1

s{s2+25+3)

26. Using Laplace transform evaluate [ ° E_r_fe_zrdt

Er—

at
dt where s=0 ---

The given interval same as [, e~

= ["1.(e"t — o~2) ds



Since L( )—f “f(s)ds
_f (__

s+1 =42

=[log(s+ 1) - log(s+ 2)] <

3z

s+1,l
ls+2)

= [log {-

(1+—\1

= llog (¢ 31

145
=log 1 - log {EH_;:;}

5/

5+1

1.e. L

by using (1) we get,
[ e (= LE=T) = log()

Put s=0
= [c zrdt = -log(%) = -log2
L fe =4t = -log?2
27. Find inverse Laplace transforms %
ls<+65+13)
5+3
LCt f(S) N 5 +&5s5+1 3,!
—_ st3
(s+3)2422)?
LHE) = L ]
—3t —1
—€ [- (52 +22),2]
=e %, %sinZt
2.2
t .
since L[ 2+32;2] = —— sin2t

t _ .
=-e 3t sin2t



14 ¢ ”j

28. Evaluate L[~

(s24+1)

) = U

(s2+1) (s2+1) (s2+1)

Sol: L7

]

Since L—i[l__;2+1_l] = sint = f(t) say

By second shifting theorem
L‘l[ 20 ] = [ sin(t-7) , t>r]
0, t<n

}] =sin(t - »t) H(t - «)

1 e -5
Or. [:j's2 +1
= sintH(t - )

Hence - "";I] = sint — sint. H(t - n) = sint[ 1-H(t - )]

Where H(t - n) is the Heaviside unit step function.

29. Solve the Differential equation y'' + n’y = a sin(nt+2), y(0)=
0 and y'(0) = 0 using Laplace transform. or
Using Laplace transform Solve (D* + n®)x=a sin(nt+2), x=Dx=0
at t=0
Sol:  Given equation can be written as x'' + n’x = a (sinnt cos2
+ cosnt sin2)
Taking Laplace Transform on both sides we get,
L(x'")+n’L(x) = a cos2. L(sin nt) + a sin2. L(cosnt)

[s°L(x) — s(x)(0) - x'(0)] + n*(X)

Using the given condition

L(x) =acos2 . (I,

)+ a sin2 .

2_,_]2,2

Taking inverse Laplace Transform on both sides, we get



X =ancos2. I'! [———]+asin2. L7 [

(5% +n?)? (2 +]!2:I2]

We have L‘{%] = f;f{f)df

[~ [——] = Zsinnt

(524022 in
. T— 1 g 1 5
- L [(52 +J:2]2] =1 [; " (52 +]!2:I2]
— 1 £ -
= ;IG t sinnt dt
1

[ -ntcosnt + sinnt]

2n8

[

“ X = an cos2. —[ -ntcosnt + sinnt] + a sin2. —sinnt

a

—[ -nt cos2cosnt + cos2. Sinnt +nt sin2sinnt]

%)

a

—[ sinnt cos2 — nt( cosnt. Cos2 - sinnt sin2]

%)

a

[ sinnt cos2 — nt( cosnt+2)]

n2

%)



UNIT -1
Laplace Transform:

Objective type Questions:

1.L(e")

(a) I/s+1 (b)l/s-3(c)1/s+3 (d) 1/s
2. L(tD)

(a) 1/s” (b) 1/s°  (c) 2/s° (d) 2/s*
3. L()

(a) 1/s° (b) 1/5°  (c) 24/’ (d) 120/s°

4. L(sin*2t)
(a) s/s(s°+ 16) (b)) s+ 2/s(s*+ 16) (c) s*+ 4/s(s*+ 16)
(d) s*+8/s(s™+16)
5. L(cosh2t)
(a) 2/s*- 4 (b)s/s*-4  (c)s/s* +4 (d)
2/s2 +4
6. L(te™)
(@) 1/(s - 2)* (b) s/(s - 2)* (c)s +2/(s-2) (d)s
+2/s*+4
7. L(tsinht)=
(a) 2/(s*- 1> (b)s/(s*- 1) (c) 2s/(s* - 1)° (d)s
- 2/(s*- 1)
8. L'[1/s - 5]
(a) e (b) e™ (c) sint (d) te™
9.L'[2/s - 9)
(a) 2¢™" (b) 2sint (c) ™ (d) e



10. L'[6/5"]
(a) t* (b) t (c) t! (d) /6

11. L[ 1/(s + 2)(s - 4)]
(@e* —e"  (b)e'—e™ (c) 1/6[e™ —e™] (d)
Vle™ — e

12. L(sintcost)

(a) 2/s* + 4 (b) 1/s*+4  (c)2/s*-4 (d) s/s* +
4

13. L'[s + 5/s* - 4s + 5]
(a) e*'cos2t (b)e™sint  (c) e*cost+ 5¢'sint  (d) e
?(sint+cost)

14. L[e* — e*'i]
(a) log[(s-3)/s-2] (b)log[s-2/s-3] (c)log[s+4/s—9]
(d) log[s + 2/s + 3]
15. L(cos™)
(a)s/s°+4  (b)s/2(s°+4) (c) 1/2s + (s> +4) (d)1/2s+
s/2(s* + 4)
16. L '[log s + 6/s — 2]

(@e—et  (b)e®—et (c)e” +et (d)e™ + ¢
i
17.L7'[5/57]
(a) st (b) t*/24 (c) (5/24) t* (d)t
18. L' [3s/s” + 16]
(a) cos4t/3 (b) 3co4t (c) cos4t (d) 3sin4t

19.1f [F(t-a)]=0 , 0<t<a then L[F(t-a)]=

as az

(@) e (b) s e7 (©) - (d) =

5




20. L(sinh4t)

(a) ;2j15 (b) 52:_15 (C) 52i16 (d) :ziiﬁ
21. If L(f(t))=== then L| f(t)dt| =
(a) _.fi 4 (b) 521 a4 (C) s;j- 4 (d) 5|f526+ 4]

22. -t [1/s"]is possible only when n is
(a) Positive integer  (b) zero (c) negative Integer (d)
negative rational

23. 1 | 1] =

(a) cost u(t-m) (b) sint u(t-m(c) -sint u(t-m)(d)
-cost u(t-m)
24. 17 [u:s+a:|1.gs+5;.]
(@) e (b) (e — o)
(©) (e +e™™) (d) = (e + ")
25. L7 [1]
(a) 0 (b)1 (c)st (d) 8(t-1)
26. Lt [27]
@ = (O : © = (=
27. Lt [31/s4]
(@ (b) () = (d)
28. Laplace transform of f(t) is defined as
(@)  [Tetr@ae (b) [ ra () [T et rwar (d)
[ esedt
29. T(n) =

(a) e x™tdx  (b) [, e*x""dx (c) [, e*dx (d) none



30. T(3)

(d)=
(d) 5

d) =2

(dy

(a) VT (b) (c) m* (d)o
31. When s>a L(e* t*)
@ = O © = @
32. [Tt
(@ 0 (b) 1 (©) 3 (d) =
33. If Lt(t-a) is a unit step function,L {H(t-a)}
(@) (b) : (c)e
34, L(y7)
(a) — (b) - (C)f%
35. When |s| >k L(sinhkt)
(& (b) < (©) ==
36. T(n+1)
(a) n! (b) n (c)n-1
37. The value of [~ e~*cos3tdt
38 1 [
39. L [%]:
40. L [=5]=
41. 1 1=
42. [ i_=
43, I i]—
44. Llt2etl=
45. IfL[f()]= e= then L[f(20)]=

46. If f(0)=0 then L(f* () =

1

47.
48. 1 [ ==
49. L [fr*(0)=
50. 1-* [ !

- B - -
ls—a)l (s—.:-;]




UNIT-II

Beta and gamma functions

1. THE GAMMA FUNCTION

The gamma function may be regarded as a generalization of n! (n-factorial), where n is any
positive integer to x!, where x is any real number. (With limited exceptions, the discussion that
follows will be restricted to positive real numbers.) Such an extension does not seem reasonable,
yet, in certain ways, the gamma function defined by the improper integral

I'(x) = [ e d (1)

JO

meets the challenge. This integral has proved valuable in applications. However, because it
cannot be r presented through elementary functions, establishment of its properties take some
effort. Some of the important ones are outlined below.

The gamma function is convergent for x > 0. It follows from eq.(1) that
From (1): T'(x+1)= J tetat
0
Integrating by parts
.t o 00
T(x+1) = [t" (e—)] + xj etrldt
~1/], "
. = {0 -0} +xI'(x)
ST+ 1) =xT(x) (2)

This is a fundamental recurrence relation for gamma functions. It can also be written as
I'x)y=(x-DHI'(x — 1).

A number of other results can be derived from this as follows: If x = n, a positive integer, i.c. if n
>1, then

I'n+1) = nl'(n).
= n(n—1)'(rn—1) since I'(n) = (n— 1)T'(n — 1)
= nn—1)(n—-2'n—2) since '(n—1)=(n—2)'(n—2)
= n(n—1)(n—2)(n—3)...1(1)
= ‘plT{1]

But I'l1) = o tfe 't = [—e*f]; ==
= int+l]=x=! (3)



Example:

I'(7) =6!=720, TI(8)=71=5040, TI'(9)=40320
We can also use the recurrence relation in reverse

(g + 1) = z2l'(%) = T(z)= M

i ¢

What happens when x = 1? We will investigate.
@)= J t12etdt
0
Putting t = u?, dt = 2udu, then

r@=[

0

O
wle ™ 2udy = zj e du.
0

Unfortunately, J e du cannot easily be determined by normal
0

means. It is, however, important, so we have to find a way of getting
round the difficulty.

Evaluation of J e dx
0

00

LetI :J e ¥dx, then alsol = J eV dy
0 0

o= (Cema) ([ erw)-[ [ e e
0 0 0 JO

da = 6x 6y represents an element of area in the x—y plane and the
integration with the stated limits covers the whole of the first
quadrant,

Converting to polar coordinates, the element of area éa = r 66 ér. Also,
X4y =12
soe W) —

For the integration to cover the same region as before,

y
rbe
B9 d
R the limits of rare r=0tor = oo
Ty the limits of @ are § = 0 to 6 = /2.
|
|
o = . =
/2 poo /2 2%
IZ:J e’zrdrdﬁ:J | a0
0 (1] 0 2 0






Before that diversion, we had established that
() = zr e du
0

We now know that j e du= _? 1‘(%) =7
0
From this, using the recurrence relation I'(x+ 1) =xI'(x), we can

obtain the following
@) =3 T@=3(vm - 1“(%):%
T 3w
r@-3 1@ -3(%F) - r@-3F

Negative values of x

I'x+1)
X

Since I'(x) = , then asx — 0, I'(x) —» o0 .". T'(0) = .

The same result occurs for all negative integral values of x - which does
not follow from the original definition, but which is obtainable from
the recurrence relation.

Because at x=—1, I'(-1) = —F_(—(P =00
x==2, I'(-2) = i:zl—) = 00 etc.
Also, at x=-1, F(—%):?'%l):—-z\/v—r
2
and at x=-3, r(-3 =P(:§%)=§\/Tr
2

So we have

(a) For n a positive integer
IF(n+1)=nl'(n) =n!
I'(l1)=1; T'0)=oc0; I'(—n)=Z%c

(o0
Evaluate | x’e*dx.
Jo

We recognise this as the standard form of the gamma function
00

I'(x)=| #letdt with the variables changed.

Jo

It is often convenient to write the gamma function as
00

() = { X te*dx
Jo
Our example then becomes

OO0 00
I= j Xe*dx = J X le*dy  wherev=............
0 0



i.e. J x” e* dx =T'(8) = 7! = 5040
0

Graph of y =T'(x)

Values of I'(x) for a range of positive values of x are available in
tabulated form in various sets of mathematical tables. These, together
with the results established above, enable us to draw the graph of

y =T(x).
x 0 05 10 15 20 25 30 35 40
I'(x) | co 1772 1-000 0886 1-000 1329 2-000 3-323 6-000

x 05 -15 -25 -35
I(x) | —3-545 2:363 —0.945 0270

VY

T 1

-1 0 1

M=

N+
w—+
ad

Example:

o0
Evaluate J x3 e ™ dx.
0

[o.9]
If we compare this with I'(v) = [ x"~1 e dx, we must reduce the
0

power of e to a single variable, i.e. put y = 4x, and we use this

substitution to convert the whole integral into the required form.
y=4x ., dy=4dx Limits remain unchanged.

The integral now becomes ............

1 6 3
[ j— = — Ne— = —
256 T(4) 256 3 256 128



2. THE BETA FUNCTION

The beta function is a two-parameter composition of gamma functions that has been useful enough in
application to gain its own name.

The beta function B(m, n), is defined by
1
B(m, n) =J 211 - X" dx (1)
0

which converges for m > 0and n > 0.
Putting (1-x)=u .. x=1—-u .. dx=-du

Limits: whenx=0,u=1; whenx=1,u=0

1
. B(m, n) = — Jju —u)" 1wl du= La —u)™ ! " 1du

= j; u"'(1 — )™ du = B(n, m)
. B(m, n) = B(n, m) (2)

ARternative form of the beta function
We had

1
B(m, n) = J X1 — 2y dx
0
If we put x = sin? @, the result then becomes ............

Because if x = sin®#, dx =2sing cos6 dé.
Whenx=0,0=0; whenx=1,0=x/2.1-x=1—sin?¢ = cos® @

/2
. B(m, n) = ZJ sin?"-2 g cos®*2 §sin# cos g dd
0

/2
", B(m, n) = ZJ sin?"-1 g cos®*~1 4 dg (3)
0

Relation between the gamma and Beta Functions

If m and n are positive integers
(m—1){(n—1)!
(m+n-—1)
Also, we have previously established that, for # a positive integer,
n=1(n+1)
.(m-1)=0T(m) and (n— 1! =I(n)
and also (m +n-— 1_)! = F(m + n_)
m-NDln-1)! T(mI'(n
 Bm, )= (m +)n(— 1)1) N l"((m)+(n))
I(m)I'(n)
I'(m +n)
not necessarily integers.

B(m, n) =

The relation B(m, n) = holds good even when m and n are



Application of gamma and beta functions
The use of gamma and beta functions in the evaluation of definite integrals depends largely on the ability
to change the variables to Express the integral in the basic form of the beta function

1
J A" 41— x)" Tax
0
/2
or its trigonometrical form 2 J sin®~! g cos*"1 0de.
0

Example:

1
Evaluate I = j (1 —x)*dx.
0

i
Compare this with B(m, n) = j #r0— 3 dx
0
Thenm—-1=5 . m=6 and n—-1=4 .. n=5

I=B(6,5)=...ccc......
514! 1
=86 5) = Jor = 1260

Example:

1
Evaluate I = j *V1 — x2dx.
0

1
Comparing this with B(m, n) = J -l ~ x)"‘ldx

0
we see that we have xZ in the root, instead of a single x.
Therefore, put x> =y .. x=yt dx=231y idy

The limits remain unchanged. .. I'=............

Because
1 1
I=J yz(lﬂy)’ﬂy‘%dng YL~ p)dy
0 0
m-1=3 . m=§ and n-1=1 n=3
1=4843.9

Expressing this in gamma functions

_1T@rQ)
2 T4

From our previous work on gamma functions

P(%)zg; F(%)Z%—ﬁ; I(4) = 3!
=1 Gvr/H/T/2)  m
2

3! 3z

Now you can work through this one in much the same way. There are
no tricks.



Exercises

1. Evaluate o
3. Evaluate I = [§ 222 o im,
Y :
2. Evaluate
T(6) L(1:5) r'(-3)
@ 3rm ® s © r(%;)z

(d) Jo x5 e *dx (e)J x% e dx.

3. Determine
1

(@ | x%(2-x)%dx
JO
(/2
(b) sin” § cos® 6 df
JO
© [ sin? 46 cos® 46 do.
JO
4. Evaluate
T() . TI@ | r(2s),
@ 21“(3) ®) (-3’ © I'(3-5)’
4 —x . 8 —2x
(d) I, x“e* dx; (e) j':xe dx.

5. Determine

(@ | xPe*dx; (b) J xte 3% dx;
0

JO

© [ 2e?ay (@ rﬁ-e-ﬁ dx.
0

Jo

00

If m and n are positive constants, show that j x"e™™'dx can be
0

; 1 m+1
expressed in the form P Ty /"I‘( = )

7. Evaluate the following integrals
1/2
@) J K(1 - 22)3dx
0
c1/v2

(b) x2V1 — 2x2 dx
Jo
rm/2
() sin® @ cos* @ d¢
JO
(/2
@ sin #v/'coss 9 dg
Jo
rm/4
(e) sin® 26 cos® 26 d¢
Jo
r1/3
@ x*V1 — 9x2 dx.
JO




UNIT-III

Multiple Integrals& its applications

Definite Integrals: Let y =f(x) be a function of one variable define and bounded on [a,b]
consider the sum .7 . f(x;) &X; of this sum tends to a finite limit as n =>% such that length

of &x; tends to O for arbitrary choice of the t;’s. The limit is define to be the definite integral

b
J. fQ)dx.
The generalization of this definition to two dimensions is called a double integral and to

three dimensions is called a triple integral.

Double  Integral: An  expression of the form |

b :.. 7} -
-[:1 f;sz f(x ,¥)dx dy is called an iterated integral or double integral.
1y
1 ;
1) Evaluate f{' f;: g Xty dy dx
= 2
Ans: = > (e —1)

2) Evaluate J:}l J;: * (x s }’2 ) dxdy

_ (1 Vx 2 2

e 2, 4 V%
= x:ﬂdx [x“y + pl R
. 2 = :KE:'E _ 3 _3
= _ X Vx+ |- [x°+ 3]]dx
J-l % :_fx}% sy o
" laolvr T
02 WZ  axt
- s s nk
2 "2 '
2 2 E 30+14-—-35 S 3




P.T ff f:(xy + e¥ydx dy

LD Oy + eyayax

LHS= ff [f:(xy + oY) dx]dy
iy S+ e xle
[y S+ 407 = [y .2+ 307 ey
- [lly 2+ eldy
-[y. o+ e¥]3
~(Grare?)-Cro

7

=7-—+{-?2—e
4

21 -
=—+ Ez—e
4

g _ -2 .
RHS= [ [[](xy + e¥)dxdy

Pl epe
(xS +e] — G+ella

=f;[1—x+€2 —E’] dx
2

=[§%+€2x—ex]§

=(§*9+ 3e? — 36’)-(3* 16+4e%-40)

21 :
- —+e’ ¢
4

% L.H.S=R.H.S



3). Evaluate f f v dx dy where R is the region bounded by the parabolas V= = 4x and x? = 4y

The co-ordinates of points O & A are
(0,0) and (4.,4)

4
4 _4x xt
:f%=ﬂ[?_2.1b]dx
1 ::;2 ::;2 4
:E[ﬂr'? 1. 5]‘:’
=3l _15]
_1160-64 196 48
L L
..ffyd'xd}E?

4). Evaluate f f x° + j-‘z dx dy in positive quadrant for which x+y<I.



ffx2 + }’dedyZ

1 1—x
zj d‘xf (x?+ y*) dy
¥=0 =0

—xﬂ(x}'+ Y 1de

-
=

}

=f [x (1—x)+
- —x3+—(1—3x+3x2—x3)]clx

1
E _)cr

14—3

[

| dx

4

I
—~

X
"4

P
b
[FN]
W =

Ly | b2

W W
B

1
+—=-
3

|

q [ x?+ yRdxdy=-
Change of order of integration:
5). Evaluate the following integrals by changing the order of integration.

Sol:

o
Il yPdxdy
The area of integration lies between y=0 which is x-axis and
y=VT—x2=>x2+p2=]
Which is a circle. Also limits of x are 0 to 1.

Hence the region of integration is OAB and is divided into vertical strip for changing the order of

integration; we shall divide the region of integration into horizontal strips.



The new limits of integration become x = 0 to x= V1 — V * and those for ‘ywillbe y=0to y =
1.

Hence

[
BT yraedy = [fydy 57 y? dx

- [yl (x)“ " 1dy

1

= oo VN1 —yidy
Puty=sin? dy=cosf df
y=0 =@ =0,

y=1=>0 =

SEE

ﬂ"

hence I= 92 GSH?, 9-‘20329{739

d= | =

NN
| SN Y
=
Juy

0. Iy I -

Sol. The region of integration lies between x=y a straight line and passing through the origin x=a

dy dx

and y=0. Also the limits for y are 0 to a, which is A AE and the region is divided by horizontal

strips.

By changing the order of integration take a vertical strip PQ so that the new limits become y=0 to

y=x and x varies from 0 to a.

\J
Hence I = f f, 21472 7dy dx y 7’;"(‘}1
a x x " B E L
= . "

- x=ﬂdx f}"ﬂx3+;3dy " / MB
ek 1_‘} \
[ _,x. Gtan™*=)Fdx N S
X
0 X
¥,
4




o

f _]'“a(x + v3) dx dy

Sol. The region of integration is defined by y= I~ => j-‘z
N

=z which is a parabola and y= S
a

x=ay is a straight line passing through the origin. The points of intersection are O(0,0) and

A(a,l). The limits for x are 0 to a.

Integration is done by taking strip parallel to y-axis. By changing the order of integration take a

strip PQ parallel to x-axis. The limits for x in this case will be x=a j-‘z

be y=0 to y=1.

“1= [ fmhkr+—y)dxdy

—J} —o Jymay2 (X% + ¥?) dx dy

- L3 ; )
2 ay
= — X d
JyzolG T ¥7x), 2 dY
e 3_ay° 4v4
=l Gt ay’ ————ay*)dy
- L 3,7 3
oy ¥ a- ¥ ¥
SEL gl X gy
3 4 4 3 7 5
a® a a® g a a
:——‘,——_—_— :_—‘r—
12 21 5 28 20
[x 3

T a
ff “‘(x + y¥)dxdy =335

Change of variables:

Let x and y be functions of u and v and let x

_fR [ F(x,v)dx dy is transformed into fRi [ F{0(w, v),x(u,v)} | J|du dv

to x=ay and that for y will

O(u,v) and y

P
&
€A
l.= y
= x(u,v) then



a{x,v)
.

Where (] = is the jacobian of transformation from (x,y) to(u,v) co-ordinates and R'is the

LRy

region in the uv plane corresponding to R in the xy plane.

In polar co-ordinates x=rcosf , y= rsinf

gx  ox

g=|or ee|_ |cos€ —rsing
dy  dy sinf  rcosfB
ar @8

“ [y [ fCov)dxdy = [, [ f{rcosd, rsing} rdé
8). Evaluate the following integrals by changing to polar co-ordinates.
[~ + %
Jo Jp € S "dxdy
Since both x and y vary from 0 to =%, the region of integration is the xoy plane, change to polar

co-ordinates, x=rcos#, y = rsinfl dx dy = r dr df and (x% + ¥?) = 2. In the region of

I
integration ‘r’ varies from 0 to = and 8 varies from 0 to —.

T

v s le T S L2 o oo —_
wfo fy e T Daxdy=[2 [ e rdrdf

Put t =12
l'ldt =2r dr
r=0=t=0

=¥ =>t=1C

-
oL

[z [Fe-tdt
N N 6

_1 > —tq:
L 2[—et1za0

1 E
-—>J2 (0— 1)

T
1

L =

. 5 16 o
9). Show by double integration, the area between the parabolas V= =4ax and x~ = 4ay is < a-



Sol: The P OI of given curves is A(0,0) and B(4a,4a). by taking a vertical strip parallel to y-axis.

We get the area between the two parabolas as:

v .
% W .- t\‘ Qs
la ; (
- .
ey
1a py=2+ax
- Jx=0 ﬁ dx
ia
da Ex'a
=Jy=o ]xz dy
aa
4a —
= 2ax ——) dx
3 da
— xZ x> 32 5, 16 5, 16 .
) {2 Va5 - =| =Ta*-—a*=-—a’
= 12 3 3 3
2 Q
. rda y=2 Vax 16 5
"fx=ﬂf.=:f dx - 3
J ia

Triple integrals:
Let f(x,y,z) be a function which is defined at all points in a finite region v in space. Let & X, &V,

dzbe an elementary volume v enclosing of the point (x,y,z) thus the triple summation.

limgx—o 22X f(x, ¥, 2) x> 6y, 0z
Sy —0
Sz—=0

If it exists is written as fff f(x,v,2z) dx dydz which is called the triple integral of f(x,y,z) over
the region v.

If the region v is bounded by the surfaces x=x;, Xx=x,, y=y1, Y=Y2, Z=21, z=7; then

I FCx, v, 2)axdydz = [2 72 [* f(x, v, 2)dx dy dz



Note:

(1) If x1, X2; y1, V25 21, zp are all constants then the order of integration is immaterial
provide the limits of integration are changed accordingly.

1.€.

2 V2 Xz

= f f f f(x,y,2z)dx dy dz
zy “¥1 <
.

V2 rE3 ;2

1 1 I - ~ " N
= 1 I I fly v zidy a7 dv

i i i JRX, Y, 24X aZ 4%

B e

F L1 =1 1

%z ¥z fEz

I ] I £ ™1 1. 7
= 1 I I fLY, WV ANIA IV (LXK

i i i AL .

o S, Sz

T AL <L — A4

(11) If, however Z,, Z, are functions of x and y and vy, ¥, are functions of x while X

and X, are constants then the integration must be performed first w.r.to ‘z’ then w.r.to

‘y’ and finally w.r.to ‘x’.

1.€.

I f(x, v, 2)dxdydz =
¥=b Fyv=05(x) rz={x¥y)
= J f J. fx,y,z)dz dy dx
x= }? =

a Jy=0,() Jz=8,(x)

10). Evaluate the following integrals:

-2 12—yl
(i) fﬂl f; ' fl:;~ Y xyz dz dy dx

. L;l:u { F___ 1:;2 [

y= z=0
T T  ay as
) fxlzg{ f;? [x}f ::jl—j—yﬂﬁ]} dy dx
_%f::{r {f;:?[ xy —x°y — xyﬂ} dy dx



1—x2
1 -1 Xy x3y? N
1 [} Xyt Xyt dx

27x=01[ 2 2 4 1y
1 01 x(1—-x? 3 (1—x? x(1-x2)2
EECE e S B Co D B € D
2 “x=0 2 2 4
1 rlx—x®—x3+x%) x(1—2x%+xh)
- - d
2-0 2 4
1 r1lx—2x3 +_1:5) 2x3 —.1:—.1:5]
- — dx
2-0 2 4

zifﬂl x — 2x3 + x%dx

1
1 [xz 2x* x5
gl2 4 s lg
11 1 1 1
- -+
82 2 8 48

f f” * f” S Xyz d‘zd‘ydx=i
e rlogy e’
@ I, I 92 I, logydzdx dy

Sol. I=f;=1 fmg} fz logzdz dx dy

x

Consider f;:xl ngZ dz = [ZngZ — Z]f
—e" oge”. -t +1
—xe*.e*
et (x-1)+1

I=f;=1 fmg:L —1)e™+1} dx

Conmderfxx ~los }{(X)E' e +1} dx

logy
X ¥ _ p¥ L 1] ay

— [XE x=1



. logy
= [xe® — 2" + 1];

= IVIOZV — ZV+logy] — [e-2e+1]

= (y+ 1)logy — 2y + (e — 1)

.'.I=f;=1y£ogy + logy — 2y + (e — 1)dy

g

1

2 2 .
=[§wmf—iﬂ-ﬂ%w—y—y2+&—lh]

EE Ez 2
=[?gggg -5+ eloge —e — e* + (e — De]-
Clogl —-+ logl—1-1+e—1]
2 2
=("_'? — % +e— 2E)—(-i—3-e)
C2ef-ef-getitiz 1
- ; =3

e clogy e’ 1 4
=—[e" -8
I 177 I logy dz dx dy (€7 -8e+13]

[2° 8et13]



MULTIPLE INTEGRALS

L. JF; .I-.:. j‘ dj' d:{'
OF ®:  © CE
[E (% v dxdy
(a) 1("12+’5'2) (b) ?(ﬂzﬂ?z) (c) f(a:+bz) (d)i—b(a2+b2)
dx dy
3. 'I. ‘J. |1 —x2 ) 1—-v2]
@:  ®T ©F @°
9 I‘ I' E_1+12IXdy
@; o On @7
0. [T 5 rards
@75 O = @

1 p1-x®
11. The iterated integral for f—l fr} g f(x, y)dx dy after changing order of

Integration is-------

Ans: f I 11 Lhzf(x;:t-‘)dxd:v

12. _f f d ¢ d Vafter changing to polar co-ordinates is
(a) jﬁ? j{f r35in8 dr dé () [ [ r?sin8 dr d8
E a
(c )_I-; fﬂ T sinf dr df (d) None
a bBT-y2

13. _fna fn- ¥ xy dx dvafter changing the order of integration is

b/ gZ—x? a, b2-y2

@/ [P xydxdy ® [ 7 [ yxdydx



©)fy [ xy dxdy (d) None

14. _f; _]'12 f; xvzdxdydz

@3 O @ @7
15. The area enclosed by the parabolas x* =y and v *=x is
@ O © (@
16). The area of the region bounded by V' * =4ax and x° = 4ay is
@ ®E 0 02
3 3 3 3

2 2
17. the area of a plate in the form of a quadrant of the ellipse 1_2 + L—z = 1is
a b

mahb mahb mah

(a) e (b) . (c) : (d) None
18. _[: f: f: X Vvxdxdydz
@3 OF ©; @ =

1 2 3
9. 7], [ dxdydz
(a) 12 (b) 24 (c) 48 (d) 36
20. The volume of tetrahedron formed by the surfaces x=0, y=0,z=0 and

X W =z
— 4o
a b [

abc abe abe abe

@ O ©F @



1)

2)

3)

4)

5)

6)

MULTIPLE INTEGRALS

[1+xZ  dy dx

. 1 v
(i) Evaluate fD J;} 1+ 22442

2
(ii) Evaluate Lf fﬂx x(x% + y?)dxdy

(i) Evaluate ff{kz + 1?7 dx dy in the positive quadratic for which
x +y<l

(ii ) Evaluate ﬂ (x* + v*) dx dy over the area bounded by the ellipse

2 2

_I_

=

=1.

QM|H
i

b
I .
7 [asin 8 vdrdb
Evaluate -[D f{r iz
VaZ —

2 2

4a ry  x"-y o
Evaluate f{]- jﬁ iyl dx dy by changing into polar co- ordinates.

4a

. . . 1 f2—x
By changing the order of integration, evaluate fﬂ fxg Xy dx {f}’

W 1—x° fﬁll_ X —y”
1]

Evaluate f; fﬂ xyz dz dy dx



UNIT-1V
Vector Differentiation and Vector Operators

INTRODUCTION

In this chapter, vector differential calculus 1is
considered, which extends the basic concepts of
differential  calculus, such as, continuity and
differentiability to vector functions in a simple and natural
way. Also, the new concepts of gradient, divergence and

curl are introduced.

DIFFERENTIATION OF A VECTOR FUNCITON

Let S be a set of real numbers. Corresponding to each
scalar t € S, let there be associated a unique vector 7. Then
7 1s said to be a vector (vector valued) function. S 1s

called the domain of 7. We write 7 = 7(t).

Let 7 ;ibe three mutually perpendicular unit vectors

in three dimensional space. We can write ; = 7(t)=

Loi+fH0j+ A0k, where fi(t), f(t), f3(t) are real valued



functions (which are called components of 7). (we shall

assume that 7 ;. r are constant vectors).

1. Derivative:
Let 7 be a vector function on an interval / and a € /.

then LZHUM, if exists, is called the derivative of 7 at
a and is denoted by 7'(a) or (%fj) at t = a. we also say that

7 is differentiable at t =a if 7'(a) exists.

2. Higher order derivatives

Let 7be differentiable on an interval / and 7'= ‘;_fjbe the
derivative of 7. Ltmfl(fz%fl(“) exists for every a € [ . it is
denoted by 7''= dig} :
Similarly we can define 7'''(7) etc.

We now state some properties of differentiable
functions (without proof)
(1) Derivative of a constant vector is a.

If z and » are differentiable vector functions, then



(4) i(Exl;) :d—axb_+ chﬁ
d dt dt

(5). If 71s a differentiable vector function and ¢ is a

scalar differential function, then <)~ % . ;

(6). r=rwi+roi+rok , where fi(t), fo(t), f3(t) are

Cartesian components of the vector 7, then
ﬂzﬁhﬁﬂr%l?
dt dt dt dt

(7). The necessary and sufficient condition for 7(t) to
be constant vector function is %= 0.

3. Partial Derivatives
Partial differentiation for vector valued functions can

be introduced as was done in the case of functions of real
variables. Let 7 be a vector function of scalar variables p,
g, t. Then we write 7= 7(p,q,f). Treating ¢ as a variable

and p,q as constants, we define

f(paq7t+§t)_j(paqat)
ot

If exists, as partial derivative of ;7 w.r.t. £ and is denot by

s
ot

Lté‘t—)()

Similarly, we can define %,%also. The following are

some useful results on partial differentiation.



4. Properties

8¢ _
8t ¢

2). IfA1sa constant, then %(4—) 2 %_a

—(¢a)—

3). If ¢ is a constant vector, then 5(@:5%
4). —(aﬂ?):—i—_
5). ﬁ(a.l?):a—a.5+a.§

0 ,_ — a - _
6) E(axb)z—xb +ax—
7). Let s=ri+rj+rk , where f;, f5, fzare differential scalar

functions of more then one variable, Then %=5%+ j%w? %

(treating 7.7.% as fixed directions)

5. Higher order partial derivatives

Let 7= 7(p,g.2). Then 27 - at@ apé; ap(g{j
6.Scalar and vector point functions: Consider a region
in three dimensional space. To each point p(x,y,z),
suppose we associate a unique real number (called scalar)
say ¢. This ¢(x,y,z) is called a scalar point function. Scalar

point function defined on the region. Similarly if to each

point p(x,y,z)we associate a unique vector 7(x,y,z) we



associate a unique vector 7(x,y,z). 7 is called a vector
point function.
Examples:

For example take a heated solid. At each point
p(x,y,z)of the solid, there will be temperature T(x,y,z).
This T 1s a scalar point function.

Suppose a particle (or a very small insect) is tracing a
path in space. When it occupies a position p(x,y,z) in
space, it will be having some speed, say, v. This speedv is
a scalar point function.

Consider a particle moving in space. At each point P
on its path, the particle will be having a velocity s which
is vector point function. Similarly, the acceleration of the
particle is also a vector point function.

In a magnetic field, at any point P(x,y,z) there will be
a magnetic force 7(x,y,z). This is called magnetic force
field. This 1s also an example of a vector point function.
The students will come across several scalar and vector

point functions in their respective subjects of study.



7. Tangent vector to a curve in space.

Consider an interval [a,b].
Let x = x(t),y=y(t),z=z(t)be continuous and derivable for
a<t <b.

Then the set of all points (x(t),y(t),z(t)) is called a
curve in a space.
Let A = (x(a),y(a),z(a)) and B = (x(b),y(b),z(b)). These
A,B are called the end points of the curve. If A =B, the
curve in said to be a closed curve.

Let P and Q be two neighbouring points on the curve.

Let o9 = #(1),00 = 7(t + 8t) = 7+ 67.Then 67 = 0Q — OF = PQ

Then %is alongthe vector PQ. As Q—P, PQ and

hence % tends to be along the tangent to the curve at P.



Hence « 2= % will be a tangent vector to the curve at P,

a0 St dt

(This % may not be a unit vector)

Suppose arc length AP = s. if we take the parameter

as the arc length parameter, we can observe that % is unit

ds

tangent vector at P to the curve.

VECTOR DIFFERENTIAL OPERATOR

Def. The vector differential operator V(read as del) is

defined as
VE;§+ j§+l€§. This operator possesses properties
X y Z

analogous to those of ordinary vectors as well as
differentiation operator. We will define now some
quantities known as “gradient”, “divergence” and
“curl” involving this operator V. We must note that this
operator has no meaning by itself unless i1t operates on

some function suitably.

GRADIENT OF A SCALAR POINT FUNCTION




Let ¢(x,y,z) be a scalar point function of position
defined in some region of space. Then the vector function

ZZ—¢+;-Z_¢+EZ_¢ 1s known as the gradient of ¢ or V¢
X y 74

V(I)_ (1—+]—+k£)¢ 8¢+E8¢

oy 0z

Properties:
(1) If f and g are two scalar functions then grad(f
+g)=grad f+ grad g
(2) The necessary and sufficient condition for a
scalar point function to be constant is that VI = o
(3)  grad(fg) = flgrad g)+g(grad 1)
(4) Ifcisaconstant, grad (cf) = c(grad f)

(5) grad ( ﬁj _ g(gmdf)g—zf(gmd 2 (¢20)

(6) Letr = xityj+zk. Then dr= (dx)i+(dy) j+(dz)k. if

¢ is any scalar point function, then ag=2u %41 % 4
’ ox oy 0z

0 0 -0
=li—+j—+k—
ox "oy oz



DIRECTIONAL DERIVATIVE

Let ¢(x,y,z) be a scalar function defined throughout some
region of space. Let this function have a value ¢ at a point
P whose position vector referred to the origin O is OP =r.

let p+A¢ be the value of the function at neighbouring

point Q. If sz =7+ Ar. . Let Ar be the length of A~
A
ﬁ gives a measure of the rate at which ¢ change when we

move from P to Q. then limiting value 2 s ar-o1s called
the derivative of ¢ in the direction of PQ or simply

directional derivative of ¢ at P and is denoted by d¢/dr.

Theorem 1: The directional derivative of a scalar point
function ¢ at a point P(x,y,z) in the direction of a unit

vector e 1s equal to e. grad ¢=e. V¢.

Level Surface
If a surface ¢(x,y,z)= ¢ be drawn through any point P(r),

such that at each point-on it, function has the same value



as at P, then such a surface 1s called a level surface of the
function ¢ through P.
e.g : equipotential or isothermal surface.
Theorem 2:V¢ at any point is a vector normal to the level
surface ¢(x,y,z)=c through that point, where ¢ i1s a
constant.
The physical interpretation of V¢

The gradient of a scalar function ¢(x,y,z) at a point
P(x,y,z) i1s a vector along the normal to the level surface
d(x,y,z) = ¢ at P and is in increasing direction. Its
magnitude 1s equal to the greatest rate of increase of ¢.
Greatest value of directional derivative of ¢ at a point P

= |grad ¢| at that point.

SOLVED EXAMPLES
Example 1: If a=x+y+z, b= x"+y*+z*, ¢ = xy+yz+zx,
prove that [grad a, grad b, grad c] = 0.
oa oa oa _

Sol:- Given a=x+y+z &£ &%
ox oy 0z

Grada=Va= ZZZ—a:i+j+z
X



: 2,2, 2
Given b= x4y +z % _5, P _5, P _»,

ox " Oy " Oz

Gradb Vb _l_@ j? EZ—b—2xz+2y]+2zk
Y 4

Agaln C = XY"‘YZ"‘ZX a—=y+z, —:Z+x,?=y+x

Grad c = {@+J_@+"@:(y+z)f+(z+x)j'+(x+y)l€
ox oy oz

1 1 1
2x 2y 2z
y+zz+xx+y

[grad a, grad b, grad c] =0

[grad a, grad b, grad c] =

=0, (on simplification)

Example 2: Show that V[f(r)] = L rwhere 7= i+ yj+ .

Sol:-since 7= xi+,j+ -k, we have — X2+y2+22
Differentiating w.r.t. ‘x’ partially, we get
y or z

21.@:2)6 @:—Slmllarlya—:— —==
Ox ox r oy oz r

VI[i(1)] (z—+1—y+k jf() S (r)— >
—f<r)Z WAGH

Note : From the above result, V(logr) = .

Example 3: Prove that V(r")= nr"*-

Sol:- Let 7= xi+y+z and r = . Then we have =

x*+y*+z° Differentiating w.r.t. x partially, we have
or z

21'@:2x:>gz—Szmllarly—@:Z —==
ox ox r 8y r oz r

V(rn): Zfaﬁ(r”)225nr - —le’l!’ - —nr 221)( nr" ()
X
Note : From the above result, we can have



(1). v(ij_ taking n = -1 (2) grad r = 7, taking n = 1

Example 4: Find the directional derivative of f =
xy+yz+zx in the direction of vector 7+2j+2¢ at the point
(1,2,0).
Sol:- Given f = xy+yz+zx.

Grad f= _%+ _—£+26—];—(y+z)z +(z+X)]+(x+ V)

If & 1s the unit vector 1n the direction of the vector 7+2j+ 2%,
then

g 2742k =l(f+2]’+2lz)

NIP 427 427 3
Directional derivative of falong the given direction = z.vr
_Z (T+27+2k)[(v+2)1+ (z+ )7+ (x + v)k]at (1,2,0]

3
[+ +2E ) +20+0)(120) = —

Example S: Find the directional derivative of the function
xy*+yz*+zx” along the tangent to the curve x =t, y = t*, z =
t at the point (1,1,1).
Sol: - here f= xy*+yz*+zx’

Vf= %+ -i 51; = (y2+2xy)j+(x2+2yz)k

At (1,1,1), Vf—32+3]‘+31€
Let r be the position vector of any point on the curve
X=t,y=t2,z=t3. then



I'= xi+yj+zk=ti+t* j+°k

Z—Z=5+2tj+3t21€—(5+2]—'+31;)at (19171)

We know that Z_j 1s the vector along the tangent to the

curve.
Unit vector along th: tangent =¢ ¢ = 2222 _ =25k

W1+2=+ 3* VJig

Directional derivative along the tangent = Vfe

= _1 (f+2]‘+3l€).3(i_+]'+k) 18

iz Jia iz
Example 6: Find the directional derivative of the function

—{0+2+3)=

f = x°-y*+2z" at the point P =(1,2,3) in the direction of the
line 7o where Q = (5,0,4).

Sol:- The position vectors of P and Q with respect to the
origin are OP = 7+2j+3k and OQ = si+4k
PO=0Q —OP = 4i-2j+k

Let  be the unit vector in the direction of PQ. Then
__41 2j+k

e =
V21

gradf_ 1—+ 5 ZJ;_ 2xi—2yj +4zk

The directional derivative of 7 at P (1,2,3) in the
direction of PQ = z.Vf

= L (47-27+k).2xi—2y] + 4zk)

1
V21 V21

L (28)

V2t

Bx+4y+ 4Z)m(1,2,3) =



Example 7: Find the greatest value of the directional
derivative of the function f= x’yz’ at (2,1,-1).
Sol: we have

grad f= ;¥ ey V7Y o ii 2 ety k =—4i-47+ 12k at

ay oz
(2,1,-1).

Greatest value of the directional derivative of f=
Vf|=V16+16+144= 411,

Example 8: Find the directional derivative of xyz*+xz at
(1, 1,1) in a directional of the normal to the surface
3xy*+ty=z at (0,1,1).
Sol:- Let f(x, y, z) = 3xy*+y-z=0

Let us find the unti normal e to this surface at (,1,1).

Then

@23 : I 6xy+1@:—1
ox " Oy oz

Vf=3y2it+(6xy+1)j-k
(VHo.a1y = 31tj-k=n

n_ 3i+j-k 3l+] k

|n| VO+1+1 Vi1
2
Let g(x,y,z) = xyz"+xz then
og a_g_ 2 8_g_
8x_yZ +z, ay—xz,az—2xy+x

Vg=(yz*+z)i+xz’j+(2xyz+x)k
And [Vg] (1,1,1) = 21+J+3k



Directional derivative of the given function in the
direction of z at (1,1,1) = Vg.z

—(D i1 3i+j-k) 6+1-3 4
(21+J+3k).( i j_ TR

Example 9: Find the directional derivative of 2xy+z2 at
(1,-1,3) in the direction of i+ 253k .
Sol: Let f= 2XY+ZZZl:2y, U

X oy 0z

grad =572 -2i+25+2: and (grad fat (1,-1,3)=

—2i +2]+6k
given vector 1S a=i+2j+3k=fa=+1+4+9=114

directional derivative of f in the direction of z
aVf (i+2j+3k)(-20+2j+6k). —2+4+18 20

a ia T e

Example 10: Find the directional derivative of ¢ =
x“yz+4xz” at (1,-2,-1) in the direction 2i-j-2k.

Sol:- Given ¢ = x’yz+4xz’
o¢ o _ »_ 0¢

L =2xyz+4z, —=x"z,—=x"y+8xz
ox oy 0z

Hence V(I) — ng—¢=f(2xyz+422)+]_'x22+/;(x2y+8xz)
X

Vo at (1,-2,-1) = i(4+4)+(-1)+k(-2-8)= 8i-j-10k.

The unit vector in the direction 2i-j-2k is
2i— j - 2k.

NAd+1+4

a= =%(2i—j—2k)



Required directional derivative along the given
direction = V¢. a
= (81-J-10k). 1/3 (2i1-j-
2k)
= 1/3(16+1+20) =
37/3.
Example 11: If the temperature at any point in space

is given by t = xy+yz+zx, find the direction in which
temperature changes most rapidly with distance from
the point (1,1,1) and determine the maximum rate of
change.

Sol:- The greatest rate of increase of t at any point is

given in magnitude and direction by Vt.

We have Vt = (172+J_'£+1;2J(xy+yz+zx)
o oo

= fy+2)+jz+x)+k@+y=2i+2j+2cat (1,1,1)

Magnitude of this vector is V2> +27 +2> =iz =243

Hence at the point (1,1,1) the temperature changes
most rapidly in the direction given by the vector 2i+2j+2k

and greatest rate of increase = 2.3.



Example 12: Findthe directional derivative of ¢(X,y,z) =
x*yz+4xz” at the point (1,-2,-1) in the direction of the
normal to the surface f{x,y,z) = x log z-y* at (-1,2,1).

Sol:- Given ¢(x,y,z) = x’yz+4xz" at (1,-2,-1) and fix,y,z) =
x log z-y* at (-1,2,1)

Now Vo= 727,20

= Qxyz+4z°)i +(x*2)] + (x*y + 8x2)k
(VO)1.2-1) = 2O + 40T+ (1) (=D ] +[(1°)(=2) + 8- Dk - - - ~()
= 8i—j—-10k

Unit normal to the surface

Ax,y,z)=x log z- y* is |Vj:1

now Vf=; af 6f+k(2f log 27 +(=2y) ] +
'y zZ

N|><

at (-1,2,1), Vf= 1og(1){—2(2)j+_T11€=—4j—l€

Vf _ —4j-k. —4j-k.

vl Jie+1 17

Directional derivative = V(I) W

(81 5 IOk) —4j—k. 4+10 14

NTARN TN



Example 13: Find a unit normal vector to the given
surface x°y+2xz = 4 at the point (2,-2,3).
Sol:- Let the given surface be = x"y+2xz — 4

On differentiating,

gszwaZz,g:xz gsz.

dx dy " 0z

gradf= Zfzizf(2xy+2z)+]_’x2 + 2xk)
x

(grad f) at (2,-2,3) = i(-s+6)+4j+4k)=—27 +4] + 4k
grad (f) 1s the normal vector to the given surface at the
given point.

Hence the required wunit normal vector %fz

2—i +2j+2k). —i+2j+2k
241+2% +2° 3

Example 14: Evaluate the angle between the normals to
the surface xy= z* at the points (4,1,2) and (3,3,-3).

Sol:- given surface is f(x,y,z) = xy= z°

Let » and #be the normals to this surface at (4,1,2) and
(3,3,-3) respectively.

Differentiating partially, we get



grad f= yi+y-2:k
»= (grad f) at (4,1,2) =i+4j-4k
n,= (grad f) at (3,3,-3) = 37 +37+6k

Let O be the angle between the two normals.

ma, (i+4j—4k) (3i+3j+6k)

cos O = - .
| V1416416 9+9+36

(G+12-24) -9
NN NN
Example 15: Find a unit normal vector to the surface

x*+y*+2z° = 26 at the point (2, 2 ,3).

Sol:- Let the given surface be f(x,y,z) = x*+y*+2z* —
26=0. Then

1—2x af—2y %=4z.

ox ) "oz

grad f= zle - 2xi+2yj+4zk

normal vector at(2,2,3) = [Vf]p23) =
41+4J+12K

unit normal vector = Y =3+/%36) _i+/j+3k

V] N TN




Example 16: Find the values of a and b so that the
surfaces ax™-byz = (a+2)x and 4x’y+z’= 4 may intersect
orthogonally at the point (1, -1,2).

(or) Find the constants a and b so that surface ax*-
byz=(a+2)x will orthogonal to 4x”y+z’=4 at the point (1,-
1,2).

Sol:- let the given surfaces be f(x,y,z) = ax>-byz - (a+2)x--

And g(x,y,z) = 4X°y+2- 4ommmmmemmnee (2)
Given the two surfaces meet at the point (1,-1,2).
Substituting the point in (1), we get

at+2b-(at+2) =0 = b=1

now g _ 2ax — (a +2), g _ —bz =,% = —by.
Ox oy 0z

Vf= 27% -[(2a-(at2)]i-2bj+bk = (a-2)i-
2bj+bk

= (a-2)1-2j+k = 5, normal vector to
surface 1.

AISO o = 8xy, o = 4x2,a—g =3z,

ox oy 0z



Vg= ZZg—i _8xyi+4x’j+3z°k

(Vg).-12 = -81+4j+12k = &,, normal vector to surface 2.
Given the surfaces f(x,y,z), g(x,y,z) are orthogonal at the
point (1,-1,2).

[vr]ve]=0= ((a-2)i-2j+k). (-8i+4j+12k)=0

—=-81+16-8+12 = a =5/2

Hence a = 5/2 and b=1.

Example 17: Find a unit normal vector to the surface z=
x*+y* at (-1,-2,5)
Sol:- let the given surface be f = x’+y*-z

1=2x, %=2y,1=—1.
ox oy 0z

grad f=Vf =ng_f;=2xi+2yj—k

(V1) at (-1,-2,5)= -2i-4j-k

Vf 1s the normal vector to the given surface.

Hence the required unit normal vector = %:
“2i-4j—k  _=2-d4j-k_ 1 o
\/(_2)2+(_4)2+(_1)2 \/ﬁ \/i( 1+4j+ )



Example 18: Find the angle of intersection of the spheres
X*+y*+z° =29 and x’+y*+z" +4x-6y-8z-47 =0 at the point
(4,-3,2).

Sol:- Let f= x*+y*+z* -29 and g = x’+y*+z° +4x-6y-82-47

Then grad = 7%, ;9 7Y - 2:i+255+22k and
ox oy 0z

grad g = Qx+4)7+Q2y-6)j+Q2z-8)k
The angle between two surfaces at a point 1s the
angle between the normals to the surfaces at that point.
Let »= (grad f) at (4,-3,2) =8i-6j+4k
n,= (grad f) at (4,-3,2) = 12i-12j -4k
The vectors # and # are along the normals to the two
surfaces at (4,-3,2). Let O be the angle between the

surfaces. Then

D 152 [19
Cos 0=2"2 - s@=cos™|,|—
7,7, 116304 29

Example 19: Find the angle between the surfaces

x*+y*+z> =9, and z = x*+y’- 3 at point (2,-1,2).
Sol:- Let ¢, = x*+y*+z* -9=0 and ¢,= x*+y’-z- 3=0 be the

given surfaces. Then



Vo= 2x1+2yj+2zk and V¢, = 2xi1+2yj-k
Let »= V¢, at(2,-1,2)= 4i-2j+4k and
n=V, at (2,-1,2) = 41-2j)-k
The vectors » and #are along the normals to the two

surfaces at the point (2,-1,2). Let 0 be the angle between

the surfaces. Then

Cos Q= MM _(4i-2j+4k) @4i-2j-k) _16+4-4_ 16 _ 8
7 V16+4+16 V16+4+16 6421 6421 3421

&
-.0=cos™ .
[3\/ 21)

Example 20: If z 1s constant vector then prove that grad
a.7)=a
Sol: Let 2= 4i+a,j+ak, Where aj,a,,a3 are constants.

a.r— (alf+a2]+a3l€).(xf+y]+zE):a1x+ a,y+a,z
@) = a, 2 @) = ay (@) = a,
oy Z

Ox
grad (E.F):alf+a2j+a3l€:c7
Example 21: If V¢= 2+ 25+ 0%, find ¢.

Sol:- we know that V= igi+jgl+l€gl
X y z

Given that Vo= yzi + 2+ xk



Comparing the corresponding coefficients, we have
o _ ., 00 _ 09

, X, —/— =X
ox > oy 0z 7

Integrating partially w.r.t. x,y,z, respectively, we get
¢= xyz + a constant independent of x.

= Xyz + a constant independent of y.

= Xyz + a constant independent of z.

Here a possible form of ¢ is ¢= xyz+a constant.

DIVERGENCE OF A VECTOR

Let 7be any continuously differentiable vector point
function. Then af Zf; e is called the divergence of

X

and 1s written as div

i.ediv 7= ‘é é .é ({§+J‘ﬁ+/€3}j
hence we can write div 7as
div /=V.;
This 1s a scalar point function.
Theorem 1: If the vector 7= fi+s,j+fk, thendiv 7 =

o, s
ox Oy 0Oz

Prof: Given /= ri+rj+fk



T o, o
Ox Ox Ox Ox

Also 7% -% . Similarly 7% -%and £ % -%

ox  Ox oy Oy 0z oz

We have div f=2{{afj 9,9 ,9%
Ox ox Oy Oz
Note : If 7 is a constant vector then ‘Zi,%,aaiare ZEros.
X A

div 7=0 for a constant vector ;.
Theorem 2: div (f+§) = divf+divg
Proof: div (f+g) Zz— ) Zl —div f +divg .

Note: If ¢ 1s a scalar functlon and 7 1s a vector function,
then

(1). @vyp= {5(; % n j% ik a—iﬂ(/ﬁ
= {(af )% + (a.j)% +(ak) %}zﬁ
= {(af )% + (a.j)% +(ak) %}
=Y (@ ,) ¢ and
(i1). @v);= z(— )_ by proceeding as in (i) [simply replace ¢
by 7 in (1)].
SOLENOIDAL VECTOR

A vector point function 7 1s said to be 7solenoidal if
div 7=0.




Physical interpretation of divergence:

Depending upon ; in a physical problem, we can
interpret div 7 (= V.7).

Suppose F(x,y,z,t) is the velocity of a fluid at a
point(Xx,y,z) and time °‘t’. though time has no role in
computing divergence, it 1s considered here because
velocity vector depends on time.

Imagin a small rectangular box within the fluid as
shown 1n the figure. We would like to measure the rate
per unit volume at which the fluid flows out at any given
time. The divergence of 7 measures the outward flow or
expansions of the fluid from their point at any time. This
gives a physical interpretation of the divergence.

Similar meanings are to be understood with respect to
divergence of vectors 7from other branches. A detailed
elementary interpretation can be seen in standard books

on fluid dynamics, electricity and magnetism etc.



SOLVED EXAMPLES

Example 1: If f= xy217+2x2y2]_'—3yzzl€ ﬁnd le ]_” at(l, -1, 1)
Sol:- = xpii+2x%yzj -3yz%k . Then

div = %+%+%:
ox oy 0Oz

(div 7) at (1, -1, 1) = 14246 =9

2y, O 2 0 2y _ 2—|— 2 -
L@ em L (ae) =Y F2X2-6y7

Example 2: find div 7= grad(x’+y’+2z’-3xyz)

Sol:- Let ¢= x’+y +z’-3xyz. Then

o¢ =3x* -3yz, o =3y —3zx,% =3z> —3xy
ox oy 0z

grad o= 5%+]%+l€% = 3[(x2 — )i +(yP —zx)j+ (22 —xp)k]
ox oy Oz

v 7=%,9% =0 > 0. o 0o o
le f 8x+8y+82 6x[3(x yz)].ay[3(y zx)].az[3(z )]

= 3(2%)+3(2)+3(22) = 6(x-H+2)

Example 3: If 7= +3y)i+(-22)j+ @+ p)k 18 solenoidal, find
P.

Sol:- Let 7= x+30)i+(=2)j+ e+ p2)k = fi+f, ]+ 1k

We have %1%, % _,
Ox Oy 0z

div 7=%,% %= [+]14+p =2+p

ox oy 0Oz



since 7 1s solenoidal, we have div s =0 —>p=-2

Example 4: Find div= 7 Find n if it 1s solenoidal?
Sol: Given 7= 7 Where 7= r=xi+j+zk and r=|F]

We have * = x*+y*+z°

Differentiating partially w.r.t. x , we get

2r@=2x:>@=£,

ox ox r
Similarly -2 4% -2
oy r oz r

f:rn (xf+y]+zE)

diV = i n i n i n
/ ax(” x)+ay(7’ J/)"'az(” z)

— L or L, Or S or
= " —x+wr" —y+wr" —z 41"
X oy 0z

=" {£+y—2+i}+3r” =nr"! (r—)+31‘n = nrn+3rn: (Il+3)l‘n

2
r r r r

Let 7= .+ be solenoidal. Then div 7= 0
(n+3)r" =0 = n=-3

Example 5: Evaluate V.(éjwhere F=xi+yj+zkandr =[] .

Sol:- We have
r=xityjtzk and r = ¥+, +22

or Y ana =
Ox r r

X
r Oz
S T=r 10 =Xy HTUZK = ik



Hence V. [1J=%+%+%
P) ox @y 6z

We have f|= > x> ‘Zi:rs.ux(_sw.z—r
X X

V(éj: Zf.%=3r3 —31/’52362
X

r
=3r>-3r* = 3r7-3r° =0

Example 6: Find div = where 7 = i+ 7+

Sol:- We have 7. = xivyj+zk =fi+f,j+fik
divr=%,%,%=0

0 0
— ) +—0)+—(2)=1+1+1=3
ox 0oy 0z Ox ) oy ) 0z =)

CURL OF A VECTOR
Def: Let 7 be any continuously differentiable

vector point function. Then the vector function defined by

n ]x5f+kxils called curl of 7 and is denoted by curl 7

o
or (Vxy).

— - - ¥ [;
Curlf Zx8x+ o va—Z(zxaxj

Theorem 1: If 7 is differentiable vector point function
given by 7=si+r,j+rk then curl 7 =

AN AN
o o) ez o) o oy
f2k 6-](:3’ _j

Proof : curl 7 = zzx—m le—(ﬁl+fzj+f3k) Z( 5
ox X

=(Te )T L)L 2
ox ox oy oy oz oz



(G- YA 2L
oy Oz oz Ox ox Oy

Note : (1) The above expression for curl 7 can be remembered easily
through the representation.

ik
;=10 0 0| =V
curl 7 x w Vx 7
Lo
note : (2) If 7 1s a constant vector then curl 7= 5.
Theorem 2: curl @+5)=curia+curb
Proof: curl(aig)=zfxai(aiy)
—~—.[6a 0b)\_— oa _ob
—ZZx(a—ziaj_szgilea

= curla +curl b

1. Physical Interpretation of curl

If wis the angular velocity of a rigid body rotating
about a fixed axis and wsis the velocity of any point
P(x,y,z) on the body, then % = 2 curl 5. Thus the angular
velocity of rotation at any point 1s equal to half the curl of
velocity vector. This justifies the use of the word “curl of
a vector”.

2. Irrotational Motion, Irrotational Vector



Any motion in which curl of the velocity vector 1s a
null vector 1.e curl =0 is said to be Irrotational.

Def: A vector 7 1s said to be Irrotational if curl 7 = .

If 7is Irrotational, there will always exist a scalar
function @(x,y,z) such that y=grad ¢. This is called scalar
potential of 7.

It 1s easy to prove that, if 7 = grad ¢, then curl 7= 0.
Hence Vx 7 = 0 < there exists a scalar function ¢ such
that 7= V¢.

This idea 1s useful when we study the “work done by a

force” later.

SOLVED EXAMPLES
Example 1: if 7= 7+2:)27-3)-2k find curl rat the point
(1,-1,1).
Sol:- Let 7= w7+2+*y2j-322k. Then
P k
curl 7= Vx;7= ;;x % %

xy® 2x’yz  —3yz’



z[% (-3y2%) —g(zxzyzﬂ +j(§ (xy2>—§x(—3yz2>j +1€(a—i(2x2yz) —%(xyz)j
:zT(— 3z° - 2xzz)+ 7(0=0)+ k(4xyz - 2xy)

=curl j=at (1,-1,1) = -7-2x.

Example 2: Find curl ; where 7= grad(x’+y’+2z’-3xyz)
Sol:- Let ¢= x’+y’+z’-3xyz. Then

grad (I): ZZ_Z—¢ =3(x? — y2)i +3(y* —zx)j+3(z2 —xp)k
x

i j k
= — 3|0 o 3
curl grad ¢= Vx grad ¢= 3= 5 =

2 2 2
X'—=yz y —zx z"—xy

=3[i(~x+x)-j~y+y)+k(-z+2)]=0
curl 7= o.
Note: We can prove in general that curl (grad ¢)=0.(1.e)
grad ¢ is always irrotational.

Example 3: Prove that if ris the position vector of an
point in space, then r7is Irrotational. (or) Show that curl
(7)) =0

Sol:- Let 7= xi+yj+zc andr= || . r’= x2+y2+zz.



Differentiating partially w.r.t. °x’ partially, we get

2r @: 2x:>@
Ox X

X
r

Similarly ? Y aa P
Y

r 0z r

r = |7 rn( xi + yj +zk)

xr" zr"

J
2
ox oy 0z
yr
_-{ 0 0 - 0 0 _
—i(a(lf”z)—g(lf”y}J+j(§(r”x)—a(r"z)jjtk

= ZZT znr"” ar_ ynr™™! ar =nr"" Zf Z(Zj - z(ij
oy oz r r

nr'"? [(zy - yz)zT + (xz - zx)]_' + (xy - yz)l;]
_ _ n-2 r—q_—
wr2[0f +0j+0k)= NI~ [0]=0
Hence r"7is Irrotational.

7\
[

(r"y)—%(r"x)}

Example 4: Prove that curl =0
Sol:- Let 7= xi+yj+zk
curl =¥ ix2(7)= ¥ (i) - 9+0= 0
7 1s Irrotational vector.
Example 5: If z1s a constant vector, prove that curl

axr a 3r __
[ 3 j:—r—3+r—5(a.7’).

r

Sol:- We have 7= i+ j+zk

o _y o _s o
ox ’8y ]’82

If jf =rthen r° = x™+y+z°

=k



—_ { 1. 3 _} axi  3x(a.xr)
ax ey —SXV = — .
r

3 5

r r r
ixi[axfj:z_x{ﬂ——(_ _)} lx(axl) 3xlx(axr)

ox\ r r r r
—(@a-(@.a) 3x

[(z 7ya —(i.a)r]

]/.

Let a= ai+a,j+ak. Then i.a=a;, etc.

(axrj Z(a az)_3_x(a a7)
r
_Ofaxr) a- al__
zxa( j—z Z(xa a,xr)

3
r l"

=3a-a _3_a( )+—(a X+a,y+a,z)
.

Example 6: Show that the vector - yz)i+ (2 -2+ -x)k
is irrotational and find its scalar potential.
Sol: let = (P =)+ —zx) j+ (2 —x)k

i j k
Then curl /=2 K o =S i(cx+x)=0
f ™ & 5 Zl( X+ Xx)

2 2 2
X' =yz y —zx z°—Xxp

7 1s Irrotational. Then there exists ¢ such that =V ¢.



= 17%+j%+l;g—¢: (x* —y2)i + (> —zx) j+ (22 —xp)k
Z

ox oy
Comparing components, we get
%: -z == _[(x2 —yz)dx :x3—3—xyz+f,(y,z) ...... @))
o¢ 2 v’
i AL =——xyz+ f,(z,%)...... 2
o7 x=¢ 3 yz+ f5(2,%)......(2)
%:zz —xy:>¢:z——xyz+f3(x,y) ...... (3)
0z 3

From (1), (2),(3), 4=>"2"% -

1
" ¢=§(x3 +y° +2°) = xyz + cons tan ¢

Which is the required scalar potential.

Example 7: Find constants a,b and c if the vector 7=
(2x+3y+az)i +(bx+ 2y +32) j+ 2x+ev+32)k 18 Irrotational.

SOI:' Given f=Q@x+3y+az)i +(bx+2y+32) j+ 2x+cy+32)k

i j k
Curl ;= |2 © o .
ox oy 0z

2x+3y+az bx+2y+3z 2x+cy+3z

(c=3)i+Q2-a)j+(b-3)k

If the vector 1s Irrotational then curl 7= o
c-3 =2-a=0, b-3 = 0 =c=3, a=2, b=3.



Example 8: If {(r) is differentiable, show that curl { 7f(r)}
= o where r =i+ j+z .
Sol: 1= 7=\ +y2 42" I =X +y+z°

=>2r or _ 2x:>@:£, Simﬂarly Z_r = l,and@ =Z
Y

ox ox r r oz r

curl {7 f(r) } = curl {f(r)( »i+yj+zk )}=curl arei+yrej+zrok
i k
0 0 - 0 0
a 5 g = Z{@[zf(”)]—g[w{(”)]}
xf(r)y  yf(r) zf (r)

Q) ~.I

- 1 or 1 or _ 0 1 Z_ 1 E
Zl{Zf (F)a—yf (F)a}—ZZ[Zf (r)>=f (I”)J

I
ol

Example 9: If 7 1s Irrotational vector, evaluate div(1xr)
where 7 = i+ j+zk .

Sol: we have » =i+ ,j+&

Given z is an 1rrational vector

VX1 =5



1.(Vx7)=0...3)
Hence div (2x7)=0. [using (2) and (3)]

Example 10: Find constants a,b,c so that the vector 1=
(x+2y+az)i +(bx-3y—z)j+(Ax+cy+22)k 1s Irrotational. Also find (I)
such that 7= V¢.

SOl: Given vector iS A= (x+2y+az)i+(bx-3y—z) j+(4x+cy +22)k
Vector 7 1s Irrotational = curl 7 = o

i
0
ox oz

x+2y+az bx-3y—-z 4dx+cy+2z

\8) | QD .
QD =
Il
=Y

—

= @+Di+(@-4)j+b-2)k=0

= (c+D)i+(@-4)j+b-2)k = 0i+0/+0k
Comparing both sides,
ct+1=0, a-4=0, b-2=0



= -1, a=4,b=2
NOW 4= (x+2y+az)i +(bx-3y—z)j +(4x+cy +22)k , ON substituting the
values of a,b,c
we have 1= V¢.

:>Z:(x+2y+az)f+(bx—3y—z)]’+(4x+cy+22)l;: {%+j%+];%
ox oy 0z

Comparing both sides, we have

W _x+2y+dz == X*/242xy+4zx+(y,2)
2 -2x-3y-z == 2xy-3y2/2-yz4/:(2.X)
%:4X—y+22 =0= 4xz-yz+z2+f3(X,y)
Hence ¢= x*/2 -3y*/2+Z2"+2xy+4zx-yz+c

Example 11: If o is a constant vector, evaluate curl V
where V = ox7r.

: V= 50 o) = 55 O s o
Sol: curl (0x7) X () = 21){ . xr+wxax}

=Y ix{0+axi] [ ax(bxc)=(ac)b —(ab)e]

=Y ix(oxi) =Y [(DHo-(.0)i]=) o-) (.0)=3v-0=20



Assignments
1.If 7 =e""Y"%¢+7+ find curl 7.

2. Prove that 7 = (+2)i+c+x)j+x+wk 18 Irrotational.

3. Prove that V.(ax 7)=-z . curl ; where z1s a constant
vector.

4. Prove that curl (ax7)=2z where z is a constant vector.
5.1f 7= »yi-2zcj+2yzk find (1) curl 7 (i) curl curl 7.

OPERATORS
Vector differential operator \%
The operator V = za_+ Ja_+k— 1s defined such that V=

199,79 7% where ¢ is a scalar point function.

ox oy 0z

Note: If ¢ 1s a scalar point function then V¢= grad ¢=
el
i
(2) Scalar differential operator z.V
The operator z.V = (a.i)g—¢+(a. j)%uaﬁ)g—‘z’ is defined such that

(@ V=@ 2L +@ps@n?
And (z.V) 7= (al)_+(a])é+( k) o

(3). Vector differential operator aXxV
The operator zxV= (axz>i+(axj)i+(ax1€)aiis defined such that

(l) ( XV)(I)_(axz)—Jr(ax]) ¢+(axk) ¢



(11) (aXV) = (axz)l+(a])é+(a k)@

(in). (zxV)x j=(axi)xa—f;+(a)g")x£+(axk)xa—i

(4). Scalar differential operator V.
The operator V = ;. a_+ H ai+k 2 is defined such that
Y
. f PN
V. = ay 82
Note: V. 7 1s defined as div it is a scalar point function.
(5). Vector differential operator V x

The operator V x = fxai+ jxai+/€xaiis defined such that
X y 4

VX]_‘: fxg%—j_’xg%—lgxg
ox oy

Oz

Note : Vx 7 is defined as curl 7. It is a vector point
function.
(6). Laplacian Operator V>

PIT 2 52)SE (e S

8y oy’
Thus the operator V=2 . 5:2 + ;22 is called Laplacian

operator.
Note : (i). Vo= V.(Vd) = div(grad ¢)

(ii). if V?¢=0 then ¢ is said to satisfy Laplacian
equation. This ¢ is called a harmonic function.

SOLVED EXAMPLES



Example 1: Prove that div.(grad r™)= m(m+1)r™? (or)
VA(r™) = m(m+1)r"™* (or) VA1) = n(n+1)r">

Sol: Let 7=+« and r = 5 then 1* = X'+y*+7°.
Differentiating w.r.t. ’x’ partially, wet get 2r%= 2x :>2_:=

X

Similarly =2 and = *
Y

r 0z r

Now grad(rm) — Zfai(rm):merm'I%:merm" f:Z:ler'"_zx
x x r

div (grad I'm) = Zfai[mrm‘zx] :mZ[(m—Z)rm_3 ?xjtrm_z}
x

=MY |[(m - 2)r" 5% 4172 |=mlm - 2rm Y 2 4 ]
= m[(m-2)r"™(r*)+3r™?]
= m[(m-2) r™*+3r™*]= m[(m-2+3)r"™?]=
m(m+1)r"™>.
Hence VA(r™) = m(m+1)r"™>

Example 2: Show that V*[f{r)]= ‘:_{+3fli _ i+ 2oy where
r=|.

Sol: grad [f(r)] = VA= Lilyen-XirmE-%irn?



div [grad ()] = V[Ai0)] = V.VAin= 2] r0)*]

r;[f‘mx]—f‘(r)x;(r)

2
7

(f (r)iix 4 (r)j e (r)x(jj
=2 ;

r

rf“(r)xx+rf1(r)—f1(r)x(xj
— Z r . r

r

?rf“[r)—k fH(r) —x7 fi[r

f“(er\ ——Zfi(r)——fi(rjz
=Y 26+ 2 - Laer

2
= FUR() +2F0)

Example 3: If ¢ satisfies Laplacian equation, show that
V¢ 1s both solenoidal and Irrotational.

Sol: given V¢ = 0 =div(grad ¢)= 0 = grad ¢ is
solenoidal

We know that curl (grad ¢) = o=>grad ¢ i1s always

Irrotational.

Example 4:Show that (1) (z.V)¢=z.V¢ (11) (z.V)7=a.



Sol: (l) Leta = gi+a,j+ak. Then

a.V= (al+a2]+ak)(l—+15+ka—)— +azay+a3a%
— 6(/5
(V)= 0,26 2

Hence (z.V)¢=z.V

(z.V)ri= Zal(%(F):zal(%:a117+a2j+a3l€:c7
Example 5: Prove that (1) (7xV)7=0  (11). (7 xXV)x7= -27
Sol: (1) (fXV)F:Z(fxf).%: 3 ()i =0
(i) (7XV)= i) £ x(ii) 2 x(B)

(7 XV)Xr= (s (ﬁq")xg—; + xS =3 (A =3 [(7i- 7]

= (fOi+(fDi+(fRk=3f=-2f.
Example 6: Find div 7. Where 7= grad (x’+y +z’-3xyz)
Sol: Let o= x+y +z-3xyz. Then

=3(x? —y2)i +3(y? —zx) j+3(x? —xp)k = —Fi+F,j+ Fk (say)

I
g
%|§



div 7 =88Fl v a; 2y 8; s = 6x+6y+6z= 6(x+)+z)
x Oy Z

1.e div[grad(x3+y3+z3—3xyZ)]= Vz(x3+y3+z3—3xyz)=

6(x+y+z).

Example 7: If /= (x*+y*+z°)" then find div grad fand
determine n if div grad /= 0.
Sol: let  f=(x*+y+z)"and 7 =i+ j+:k

r == rr= X2+y2+22

=) = ()" =r™"

f()=-2nr""
and  /''(r) = (-2n)(-2n-1)r*"?= 2n(2n+1)r>"

We have div grad f= V)= (0)+* ()= 2n)2n+1)r™
2 4n 2
= 1*?[2n(2n+1-2)]= (2n)(2n-1)r>">

If div grad f(1) is zero, we getn=00or n=".,



Example 8: Prove that VX(A"’”] Q-nd  nA)7

n n+2

r r

Sol: we have 7 =xi+yj+zk and 1= = ¥ +,7+2°

T

% and

_oF
o : oy -/ g
r* = x4y +z°.....(1)
Diff. (1) partially,

or or

2 2= 2x :>—:£, Similarly gzl,and@ z
X ox r oy r Oz r
VX(Aij :Z;xi((Axf)J
7" ox\{ r"
— ny = n—1
NOW (Axr) in(L P L an ar
ox\ r" ox\ r" r Ox
n__ n-2 _— _ _
= Zx{r ! nzl; xr}:Ax[—ni— n2 xf}
r r r
_A):i - n+2 X(AXF)
r r
lfxi((Axr)jzzx(Am) nx l_x(Axr)
ox\ r" r" r"

— (i.z‘)Ar—n @A) _ r’j’fz [(((.7)4 - (. A)P)]

Let 4i+4,j+4k Then ii-
;xi((Axf)jz(A—Alij_ 4]
ox\ r" " Pt

And zix ((Axr)j Z(Z_A”Tj— 1A - A7
r

r



— 34-4

- rﬁz [rZZ]+—r’Z2 (Ax+ A,y + A,2)

24 —— Q2-mA nF —_
- —(4.r)= p +— (A.7r)
r r" r r

Hence the result.

VECTOR IDENTITIES

Theorem 1: If z is a differentiable function and ¢ 1s a

differentiable scalar function. Then prove that div(¢pz )=
(grad ¢).a+¢ div z or V.(dpz )= (Vd)a+d(V.a)
Proof: diV(d)a):V.((l)a):Zi%(ﬁ)
=zi{and )=z ) 2 5

= z(;%}a{yg—zjﬁ(vma+¢(V. 7)
Theorem 2: prove that curl (¢z)= (grad ¢)xz+¢ curl z
Proof : curl (d)a)ZVX(d)a):zix%(w)

— zlx[—xa+¢ xj Z( ijxa +2[1x6—ij¢

= Voxa+(Vxa)p=(grad ¢)xz+¢ curl z



Theorem 3: Prove that grad (z.5 )=
(b.N)a +(@N)b +bxcurl @+ axcurl b

Proof: Consider

axcurl(b)=ax(Vxb) = c_zxz i x(f X g—b]
X
_ ( 8bJ
= Zax ix—
ox

saxcurlb :Zf(a.%J —@v)b ... (1)
Slmllaﬂy , bxcurlb :Zf(ﬁ.g—ij—(l;y)c_z ce (2)
(1)+(2) gives

axcurlb +bxcurla = Zf(ﬁ.g—bj —(@v)b + z f(l;.g—aj —(bNV)a
X X

axcurlb +bxcurla +@V)b +(b.V)a =Y || E.% + l;.a—a
ox ox

=ZZ%(5.}?)
=V(a.r)=grad (z.5)

Theorem 4: Prove that div (2*5 )= b.cuta-a.curib



ox

Proof: div (¢%7) :zzai(axz;):zz{g_axma—xagj
X X

(da (_0b) <:.0a\r ~[:.0b)-
—Zl.(axbj+2{axa)—Z(zxaxj.b Z(zxaxja
= (Vxa).b —(Vxb).a =b.curla —a.curl b
Theorem 5 : cwi(@b)=adivh —bdiva+®BV)a-@v)h

ox

Proof : curl (axb) :fo%(c_le;) = fo{g—le;wta_x@}
fo(i—ixl?j+2?x(ﬁx%}
Slin@ _(78@ % 570 5o _
_Z{(z.b)ax (z.aij}+2{£l. ax]a (i.a) o }_|_
—78_ 7(3_— —al;_ — 75—
= Z(b.z)a—Z—Z(z.a—zjb +Z(z.gja —(.a z.gjb
=(bN)a—(aN)b+(Vhb)a—(aV)b
=(Vb)a—-(V.a)b+(bN)a—-(aVvV)b
=adivb —bdiva +(b.N)a —(a V)b
Theorem 6: Prove that curl grad ¢ = 0.
Proof: Let ¢ be any scalar point function. Then

grad ¢ = ZT%-{-]_'%-FE%
ox oy 0z



ToTk
curl (grad ®) = |5x E Gz
d¢ do deb
ol v =z
AR AN KR A
oyoz  ozoy ) '\ oxoz ozox ) | oxdy  oyox

note: Since crul (grad ¢)= 0, we have grad ¢ 1s always

Irrotational.

Theorem 7: Prove that div crul /=0

Proof : Let f = fii + f, ] + fok

i

@)|Q) .

=curl fVxf = ai
X

/i /2

:(%
o

s

= - 0
oodi lf=V.(Vxf)=
iv curl f (Vxf) (éy

ox

_ 9%
Oz

~ Rl =

jzz

9 _
ox Oy

oz o oz F ox

o

_9
Oy

0
+_

v
ox Oz 0z

|



A A Al it it
Ox0y Ox0z 0Oyox Oy0Oz 0zOx Oz0y

Theorem 8: If f and g are two scalar point functions,

prove that div(fVg)= fV’g+Vf. Vg

Sol: Let fand g are two scalar point functions. Then

v.(fvg):%[ fg_fji( fa_g}g[ fa_gj

ov\” o) ez oz

o oy’ ox oy oy oz oz

f62g 8g 0’g +6f6g afag Gfﬁg
g ox ox oy 8y oz oz

Vi )15 55)

0z ox oy oz

= fV’g+Vf. Vg

Theorem 9: Prove that Vx(Vxz)= V(V.7)-V*a.
Proof: Vx(Vxa) = zz%(wa)

Now fxi(VxE) =17x£ _xa—a+]xa—a+Exa—a
Ox Oox 0 0

ox

. £T o’a - o'a - azaj
=ix|ix— +jx + kx
oy’ 2



s - azc_l r
=ix| ix— |+ix Jx +ix| k
ox axz
2— 2— 2—
zaf j_oa ;04 cii=lij=ik=0]
ox ox® ﬁxéz
_78( 8aj ) ( j ( aj o’a
=i— +k
ox\  Ox y y oz ox) ox’

— a_a_ az—_ _. (o’a o’a oa
sz (an) ZZ Z V(V.a) (6x2+6y2+522]

=Vx(Vxa)=V(V.3)-Va

SOLVED EXAMPLES

Example 1: Prove that (V/xVg)is solenoidal.

Sol: We know that div (a*5) = b.cuta-a.cwib (see Theorem

4)

Take a=€f and b= Vg

Then div (VI x Vg) = Vg. curl (Vi) - V1. curl (Vg)=0
VfxVg is solenoidal.



Example 2: Prove that (1) div. {(rx a) x b}=-2(b .a)
(11) curl {(r. a) x b=b x a where a and b are constant

vectors.

Sol: (1) .

div{(7xa )xb | = div[(Fb)a — (a.b 7]
=div(Fr.b)a —(a.b)r

[(7.1; )div a+a.grad (17 b )]— [(E.l; ivr +r.grad (5.1; )]
We have div @ = 0,divF =3, grad (a.b) =0

div {(FXa)xb} = 0+ & grad(.b) — 3(a. b)

= 52%[?-5}—3[25'5)

=a 35.5—3[25.5}
= .:TZL_[:I.E}—S[:ET.E}

= a.b—3(a.b) = —2(a.b)

- —2(5.)

Example 3: Prove that v[v.ﬂ:‘r_ff.
Sol: we have v( j ZZ—H

B



e oot

Example 4: Find (AxV)¢, if A = yz* i- 3xz* j+2xyzk and

d = xyz.

Sol : We have
i J k

AxV= yzt  =3xz° 2xyz
o o 9
ox Oy oz

= i{%(—?axzz)—%(hyz)}—j{a—i(yzz)—a—i(zxyz)}+/{%(yzz)—§(—3xzz)}
=(-6Xxz-2XZ7)-] (2yz—2yz)+k(zz+322)= -8xz i—0j+4zzk
(AXV)d, = (-8xz i+4z°k)xyz = -8x°yz” i+4xyz’k



UNIT-V
Vector Integration

1. Line integral:- (i) [F.dris called Line integral of F along ¢

Note : Work done byralong a curve cis [Fdr

Example 5: If 7(x°-27) i-6yz j+8xZ° k, evaluatef 7. dr from the

point (0,0,0) to the point (1,1,1) along the Straight line from
(0,0,0) to (1,0,0), (1,0,0) to (1,1,0) and (1,1,0) to (1,1,1).
Solution : Given F= (x-27)i -6yz;+8xz°k

NOW 1= xi+yj+zk = dr dxit+dyj+dzk

F.dr = (x*-27)dx — (6yz)dy +8xz°dz

(1) Along the straight line from O = (0,0,0) to A =(1,0,0)
Here y =0 =z and dy=dz=0. Also x changes from 0 to
1.

_27:__80
3

W | =

ojAF.dEZ j (x*-27)dx = E—zhﬁ:

(i1)) Along the straight line from A = (1,0,0) to B =(1,1,0)
Here x =1, z=0 = dx=0, dz=0. y changes from O to 1.



- 1
[ F.dr= [(-6y2)dv=0
AB y=0

(i11) Along the straight line from B = (1,1,0) to C = (1,1,1)
x =1 =y  dx=dy=0 and z changes from 0 to 1.

_ _ 1 1 3 1
_[ F.dr= I8x22d2= I8xzzdz: Si_ :§
BC 0 -0 3 o 3

N oo — 88
(z)+(zz)+(lll):>_£ Fodr ==

Example : 6 If 7(5xy-6x°)i (2y-4x)], evaluate [£.ar along the

curve C in xy plane y=x’from (1,1) to (2,8).
Solution : Given F(5xy-6x%)i(2y-4x)],
Along the curve y=x*, dy =3x” dx

F(5x*-6x%)i +(2x°-4x)j, [Putting y=x" in (1)]

dr= dxi+dyjt+dd +3x°dx

F.di=[(5x"-6x%)i +(2x7-4X)]. dxi +3x7dX]

= (5x* — 6x%) dx+(2x” — 4x)3x’dx

= (6x7+5x*-12x° -6x°)dx

Hence [ F.ar= (60 +5:* 12 -6
= 1

6 3 4 3
=645 125 65 |=(x* +x°—3x* —2x3)
6 5 4 4

= 16(4+2-31) — (1+1-3-2) = 32+3 = 35



Example 7: Find the work done by the force rF = zit+xj+yk,

when it moves a particle along the arc of the curve » = cost i +
sint j-t kfromt=0tot =2~

Solution : Given force F = zi = xj +yk and the arc is » = cost / +
sint j-t

l.e., X =cost,y=sint, z=-t
dr=(-sin t i tcost ;-k)dt
F.dr= (-t i+cost j+sint k). (-sin t i + cost j- x)dt = (t sin t + cos
t — sin t)dt

Hence work done = Tﬁ.d? = 2f(t sint+ cos’t—sint) dt

27 27
= [t(~cost)|” - j sin?)dt +)+ J (Lt cos2t J sinz dt
0

0 0

. 2z
= -2z —(cost)y" +l(t+ sztj +(cost)y”
22,

——27r—(1—1)+%(27r)+(1—1)=—27z+7r:—7r

Assignment

1. Find | F.drwhere F=x’y’i+yi and the curve y’=4x in the
xy-plane from (0,0) to (4.,4).
2.1f F=3xyi-5zj+10xkevaluate [ F.dr along the curve

x=t+1,y=2t},z=t fromt =1 to t= 2.

3. If F=yi+z;+xk, find the circulation of 7 round the curve ¢
where c is the circule x* +y* =1, z=0.



4. (i) If p=x*y2 evaluate[ g r along with curve x=t, y =2t, z=3t
from t =0 to t=1.
(11) If p=2x0%z+5° y,evazuazej #ir where c is the curve x=t, y=t2,

z=1t from t=0 to t=1.
5. (1) Find the work done by the force

F=(x*—yz)i+(y* - 2x) j+ (= —x)k In taking particle from (1,1,1) to
3,-5,7).

(i1) Find the work done by the force r=(2y+3)i+(zx) j+(yz-x)k
when it moves a particle from the point (0,0,0) to (2,1,1)

along the curve x = 2t%, y =t, z=t°

2. Surface integral: [ F.ndsis called surface integral problems.

Problem 1 : Evaluate [Fnds where F = z1 + xj— 3y°zk and S is

the surface x” + y* = 16 included in the first octant between z
=0and z=5.

Sol. The surface S is x>+ y” = 16 included in the first octant

between z=0 and z = 5.
Let db=x"+y" =16

Then v¢=i@+j@+k%=2xi+zyj

ox ~0X

unit normal n=_"% - XY e ne g

Vo| 4




Let R be the projection of S on yz plane

Then J-F ndS = _UFndde‘ ................ *
R n.i

Given F =zi+xj- 3y’zk

F. HI%(XZ—I-X}’)

and n.i=

NS

In yz plane, x =0,y =4

In first octant, y varies from 0 to 4 and z varies from 0 to 5.

— _ (" 5 xzt+xy\dydz
[Fas = | j( : jx

4

= JA( IS (y+dz)dz) dy

y=| z=0

= 90.

Problem 2 : If 7 = zi + xj— 3y°zk, evaluate [FndSwhere S is

the surface of the cube bounded by x=0,x=a,y=0,y=a, z

=0,z=a.



Sol. Given that S is the surface of the x=0,x=a,y=0,y=

e a2
a,z=0,z=a, and F = zi + Xj— 3y'zk we n~~ #7 ~oobeeds

jl_s.ndS. ‘ )
(i) For OABC Q P
Eqn is z = 0 and dS = dxdy 0 X
n o=k /
[Fnds = -[° -[ (yz)dxdy=0
(i)For PQRS

Eqn is z=a and dS = dxdy

Sjzl_?ndS = I( yf y(a)dy) dx:%4

(ili) For OCQR
Eqnisx =0, and n =-i, dS =dydz
JFnds = yj: [ 4xzdydz =0

(iv) For ABPS
Egqnisx=a, and n =-i, dS =dydz
Sj FndS = j( Zj: 4azdz)dy =2a’

(v)For OASR



Eqnisy =0, and n =—j, dS = dxdz
Il_:.ndS = ja r y’dzdx =0

(vi)  For PBCQ
Eqnisy=a, and n =—j, dS = dxdz
jl?.ﬁdS = - ja rydedX:O

From (1) — (vi) we get

3a’

4
[Fnds =0+ +0+ 2 +0-ad="
Se



3. VOLUME INTEGRALS
Let V be the volume bounded by a surface - 1 (u,v). Let F(r) be

a vector point function define over V. Divide V into m sub-

regions of volumes &,,67,...7,...sV,

m

Let P; (r; ) be a point ins, then form the sum I, = 3 Fensv,. Let

m —o in such a way that & shrinks to a point,. The limit of I;, if
it exists, is called the volume integral of () in the region V is

denoted by [F(r)avor [ Fav

Cartesian form : Let F=(-)i=F i+F,i+F,kwhere F,, F,, F5 are
functions of x,y,z. We know that
dv = dx dy dz. The volume integral given by

[Fav=[[[F (Fi+Fi+Fdx dy dz=i=[[[ rdxdydz +;=[[[ F,

dxdydz +«=[[[ rdxdydz



m If F = (2x —32)i —2xyj —4uxk then evaluate (i) jv. F dvand (if) j V x Fdv
1’4

>
, ¥ is the closed region bounded by x = 0,y=0,2=0,2x+2y+z=4

_B9F - 8F — OF
wtion: (N V-F=7-—+ ] —+k-—=4x-2x=2x.
Solution : i

= dx=0 2 2
2 (ie)2—x and x= ‘m2 (i.e)

The limits are : z=0toz =4—-2x-2y, y=0t0

2-x4-2x-2y 2 2-x
jv Fay = j _[ IZxdrdydz | [exat> >
x=0y=0 == x=0 y=0
2 2-x 2 2-x
j jzx(4 ~2x - 2y)dxdy = 4_[ j(zx x* —xy)dedy
x=0y=0 x=0 p=0
e 2 2 2-x 2 R
=4J'[2xy—x2y—iy—] dx=4j[(2x—x2)(2—x)—f(z.—x)z}f:
2 3
0 0 0
2 4 3 2
8 8
~[@x® -8 +83)ds = T Zosadd| =
12 2 " 3
i i k
i Z
G vxF=| & & Sil_j_24
& o &
2x2—32 —2xy —4x
2 2-x
ijde HJ'U 2yk)dx dy dz = j’ J(_, ~2yk)(2) P e dy
¥ x=0 y=0

2-x
[ G-29r4-20-200 y
=0

;}
x=0

¥
. X
2 2-x
o j j{j[(4-2x)—2y]—E[(4—2x)-2y—4y2]}¢‘“’y
x=0y=0 .

i 2-x ~ 2 l— f 3 2y
j(4—2x)y—y2] dx—k II-(4-2x)y2—i} dx
3 0

S

x=0 0 x=0



1 2, rf2 3
=il@rn?a-E[2@-x)1dx
Ikl

51 i 4T
_jlewr [ 2 (M} e
3 0 3 —4 b 3

(EXERCISE 12.3)

(1) Evaluate jﬁ(2x+ y)dv where V' is the closed region bounded by the cylinder z=4_,2 a“d-

planes x=0, y=0, y=2, and z=0.
(2 If $=45¢2y evaluate J,”,‘bd" where V is the closed region bounded by the Plﬂnes'
¥
4x+2y+z=8,y=0,z=0.

(3) Evaluate Jﬁdv when F = xi + yj + zk and Visthe regionbounded by x =0,y =0,y =6,2=4,;~ 20
v

i
i
—
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2. Vector Integral Theorems

Introduction
In this chapter we discuss three important vector integral

theorems: (1) Gauss divergence theorem, (i1) Green’s theorem in

plane and (iii) Stokes theorem. These theorems deal with

conversion of

(i) [ F.nds into a volume integral where S is a closed

S

surface.
(ii) [ Fdr into a double integral over a region in a plane

when C is a closed curve in the plane and.
(iii) | (vx4).nds into a line integral around the boundary of

an open two sided surface.



In solid mechanics, fluid mechanics, quantum mechanics,
electrical engineering and various other fields, these theorems
will be of great use. Evaluation of an integral of one type may be
difficult and using one of the appropriate theorems we may be
able to evaluate to the equivalent integral easily. Hence readers

are advised to grasp the significance in each case.

I. GAUSS’S DIVERGENCE THEOREM
(Transformation between surface integral and volume
integral)

Let S be a closed surface enclosing a volume v. if Fis a
continuously differentiable vector point function, then

Ididev:jﬁ.;i ds
When nis the outward drawn normal vector at any point of S.

SOLVED EXAMPLES

Example 1: Verify Gauss Divergence theorem for
F = (x* —-y2)1- 2x*y] + zk taken over the surface of the cube
bounded by the planes x =y =z = a and coordinate planes.

Sol: By Gauss Divergence theorem we have



G Q& E & & [T

=2 ] I}
RHS = J ]J(S:«:—E:«:—l]d:{ d}'d:=J J J[:a.':— Ldxdydz= J J [13 —:a.') dy d
oo o oo o oo " o
B . f_ r L - ('[3 . e _= _zﬂg . - _ _zﬂg B ;
_JJ[E aldy dz J [3 a| (v)§ dz 33 {‘I)HJ({_ (\3 a)[a)
o 0 i 2 2
=S +at.(D)

Verification: We will calculate the value of J F.7ld5 owver the six faces of the cube.

5

(1) For S; =PQAS; unit outward drawn normal » =:

x=a; ds=dy dz; 0<y<a, 0<z<a F
Fn=x*-yz=a%—vyzsincex =a o p
el el
P _ f f o A » X
J J F.AdS = J J (a® — yz)dy dz =
2 Z=0y=0 9
Zz
H R e
= QS'!. _1'_' z az
= 52 2
=0 ¥=0
a a
— [ 2 a-
= J [a —5z)dz
=0
a* .
= a¥——..\2
7 }

(i1)) For S, = OCRB; unit outward drawn normal 7 = -

x=a; ds=dy dz; 0<y<a, y<z<a



F.in——{x*—yz)— yzsincex — 0

e e @

J’ J F.7dS = J J yzdy dz = ;IE[%]E:EZQZ

o =0 w=0 =

_a £l _a ™y
= ? J ZGZ_I” 13)
z=0

For S; =RBQP; Z=a; ds =dxdy; i=
0<x<a, 0<y<a

Fii=z=asmmcez=a

o a
J J F.dS = J J adydy=a®..(4)
- y=0x=0

For S; = OASC; z = 0; 7 = -%, ds = dxdy;
0<x<a, 0<y<a

Fn=—z=0 sincez=1

For Ss=PSCR; y =a; i =7, ds = dzdx;

0<x<a, 0<z<a

|

S =0..(5)

- — . el . el .
Fin==7yv"y=-=ny" sinrey=n

[ o

J j F.fds= j j:ﬁj—zaxf}dza‘x

Sg x=0z=0



L xR -2a%
= —222(= ) = . (6)
0

(vi) For S¢=0BQA;y=0; 7=-j, ds = dzdx;

0<x<a, 0<y<a

ad

=S ta :J J J V.F dvusing (1)

Hence Gauss Divergence theorem is veri fied

Example 2: Compute [(ax* + by* + cz*)dsover the surface of the
sphere x’+y’+z" = 1

Sol: By divergence theorem [F.7ds —f 7.7 av



Hence by Gauss Divergence theorem,

4ot

J (ax? +by? +cz)dS = J (a+b+cldv=(ath+clV= ?[a +b+c)
5 v

4w
[Sfﬂce V= EY is the volume of the sphere of unit radius

Example 3: By transforming into triple integral, evaluate

[ [** dy dz + x*y dz dx + x*dx dy where S is the closed surface
consisting of the cylinder x’+y” = a* and the circular discs z=
0,z=b.

Sol: Here F, = x®F, =x%v.F, =x%zand F= I+ Fj+ Ek




By Gauss Divergence theorem,

(g o [ ([ [(F  OF OR\ ., .
" dy dz + F, dz dx + F, dx dy = (_ﬁ_—ﬁr—_ﬁ_Jda_a’}d_

J J (x®dydz+x?ydzdx+ x*dxdy) = J J J S5x* dx dy dz

5
=5 J J J 1 dx dy dz
-8 y=—n g —pe 220
I? = 1-.1" vz 1-.1"
=20 J J J x? dx dy dz [Integrand is even function]
o o ==0
=20 J J x*(z)5dxdy = 20b J J xZdxdy
v o = o
= 20b J () T dx = E'DE:IJ xiya? —x? dx
==0 o
=20b J a® sin® 8/ a? —a?sin? 8@ (acosfdd)
0
T
[;@ut x =asin® ==>dx =acosf df whenx=a==>= 8 = Efmd x=0=== 8=20
=20a*h jggin: 8 cos®Bdf = 5a°h fc_[E sinf cosf)® df = Sa*b jgi_css_ﬂ dé

o
/=

S5a*h [E sin 45‘] B S5a*h [;r] g
2 4 1, 2




Example 4: Applying Gauss divergence theorem, Prove that

(¥ Ads =3aver [F . dg=3v
Sol: Let 7 = xt + v+ =k we know that div 7= 3

By Gauss divergence theorem, [r.7ds = [ divF dv

Take F=7 == J 7ol = J 3dV = 3V. Henre the result

g v

Example 5: Show that |, (axt + byj+ czk).7ds = (a+ b + c), where S

is the surface of the sphere x’+y’+z’=1.

Sol: Take F = axi+ byj+ czk

_0F, OF, 6F

By Gauss divergence theorem,
. FadS=[ V.FdV=(a+b+e) [, dV=(a+b+c)V

|

We have V = Err?g for the sphere.Herer =1

"t 4
J Frads=(a+b+c) el

Example6: Using Divergence theorem, evaluate

2 2, 22
jfg (xdydz+vyvdzdx+zdxdy) where 5X +y +z°=a



Sol: we have by Gauss divergence theorem, [ 7.7ds = [ divFdv
L.H.S can be written as [(F,dvdz + F.dzdx + F,dxdv) 1in Cartesian form

Comparing with the given expression we have F,=x, F,=y, Fs=z

J div Fdv = J 3de = 3V

Here V is the volume of the sphere with radius a.

4

V= —mwa®
3

Hence [[(xdyvdz+ vdzdx+ zdx dv) = 4ma®

Example 7: Apply divergence theorem to evaluate

JI. (x+z)dy dz+ (y+ zg,dx + (x + y)dxdy where S IS the surface of the
sphere x’+y*+z’=4

Sol: Given [ [, (x+ 2)dy dz + (v + z.dx + (x + y)dxdy

Here F| = x+z, F, = ytz, F3=x+ty
6F, &6F, _ OF GF, 6F, GF

3
— =lL=—=1L—= 0 and =~ 1 n -
ox ay [ sy X ay [0 sy

=14140=2

By Gauss Divrgence theorem,



I, Fdydz + Fydzdx + Fydxdy = [ [ [, (4 'Z—r —%] dxdvdz

=J J J 2dxdydz = EJ dv = 2V

=2 [; ,T(Q:]g] = ? [for the sphere,radius = 2]

Example 8: Evaluate | F ads if F= xy1 + 227+ 2yzk Over the
tetrahedron bounded by x=0, y=0, z=0 and the plane
x+y+z=1.

Sol: Given F = xyt+ 2%+ 2yzk, then div. F = y+2y = 3y

1 1-xl-x-y

J F.nds = J div F dv = J J J 3yvdx dy dz

x=0 y=0 =z=0

=3 f TE _1'[:];__“"'_:"d1'd_1.'=3 f ]Tx v(l—x—v)dxdy
zgj [(l;;*'?a_(l;"*‘JS]m-:aj' 9, a—u:r—l:: :

Exémple 9: Use divergehce theorem to evaluate
I [F.ds where F=X I+y’j+Z’k and S is the surface of the sphere
X+y*+z’ = r?
Sol: We have
PF=20D+ 0D+ =36+ +2)

By divergence theorem,



V.Fdv = [[ [V.Fav =[] [3(x*+y*+z%)dxdydz

—_ [ -
o T i

=3 J J Jrf(rfsinedrdadcp)

r=0 =0 ¢$=0

[Changing inte spherical polar coordinates x = rsinfcosg,y =rsinfsing ,z = rcos#]

i) T

JJF.-:E:E J JT*sinE J dep | dr df
5 r=08=0 &=0
& T s T
3 J j r*sinf (2mr— 0) drdf = 67 J T';'[j sin f dlﬁ'ldr
r=0A=0 r=0 m
= &7 J T';'(—CGSH;I'E_ dr = —EuTJ T"'[cn:rs;r —cos0) dr
r=0 b
- . =" 12ma’
=12 ] ridr = 12 [— =
5 >l >

Example 10: Use divergence theorem to evaluate ;. 7as
where F = 4xi — 2y% + 2k and S is the surface bounded by the
region x’+y’=4, z=0 and z=3.

Sol: We have

_ g a - a .
div F=UV.F =—{(4x)+—(-2y")+ —(z" =4 —4y + 2z
8x ay &z

By divergence theorm,

J' J F.ds = j j j v.Fav

r



—_—

— J ﬁTi f (4— 4y + 22)dx dy dz

x=-2 y=—F-x% 2=0

|

- 1

& NTTX
= J [(4 —4y)z+ 27  dxdy
= J J [12(1— y) + 9] dx dy
R e
= J (21 —12v)dx dy
= J 21dy —12 J vy | dx
= J 21X2 J dy — 12(0) |dx

[since tge integrans in forst integral is even and in 2nd integral it is on odd function)

A

=42 J ()3 dx

(=]

-

=42 J J4 —x2dx = 42x2 J V4—x?dx

X 4 % .
=84 [— Vvd—x-+—sin "=
2 .



Example 11: Verify divergence theorem for r=x%i + y?j + 22k

over the surface S of the solid cut off by the plane x+y+z=a

in the first octant.

Sol; By Gauss theorem, [F.7ds = [ diw F dv

Letp=x+v+z—abethe given plane then
i) & 3]
T¢ = l,_ﬁ—¢l= l,_ﬁ—¢= 1
dx avy iz

& _
gradg = IT¢=I—I—J{

ax

gradep T+J+k

Unit normal =

Let R be the projection of S on xy-plane
Then the equation of the given plane will be x+y=a =» y=a-x

Also when y=0, x=a
J1F.ﬁd5:= J1 J'ifijﬁjfiﬁg

o o—x o o—x

SN N e ) )
= J J 5 - = J J [x*+v +({a—x—y)]dxdy [sincex +vyv+z

x=0y=0 S dx l'."lr_'n' 0 y=0

1/43
= j’; j:‘“"[z %+ 2y® = 2ax + 2xv— 2ayv+ a’]dx dy
: ) 5,3 ) ) a—x

= J 2xv +— +xyv- —2axv—ay- +a"y o

x=0 o

— J [2x%(a—x)+ %[n —x)P +xla=—x) =2ax(a=—x)—ala—x)" +a’(a—x)dx

r=0
F.ads = [ > 234 3ax? — 2a%x 42 3).:{-—“;- implification ...(1)
J T = J 3:‘1. ax amx 3 a X = 4 y OTL SUMPLL] LCALLOTE ...
n

Given F = x% +yi+ 27k



div F = ;—l (x7)+ ;_1.(1':) —EJ—: (z¥=2(x+y+2)

o G@—x oa—xX—Qa

x=0 y=0 =z=0

(=L —
o
ra
I
P
-
|
ot
P
ra
Nl
=y
=
=
L
I
=L S
(=L —
Fan)
=
ra
|
L
ra
I
=
1
|
2
-
et
P
=
-
=y
-

‘[a—x)[Ea:—x:—ax)cfx=a? ...... (2)

I
e

o

Hence from (1) and (2), the Gauss Divergence theorem is
verified.

Example 12: Verify divergence theorem for 2x’yi-y’j+4xz’k
ove the region of first octant of the cylinder y*+z’=9 and x=2.
(or) Evaluate ;. fF ads, where F —2x7yi—y’j+ 4x’k aDd S is the
closed surface of the region in the octant bounded by the
cylinder y2+z2 = 9 and the planes x=0, x=2, y=0, z=0

Sol: Let 7 = 2x2yi — y?j + 42’k

_ & , g . 0 :
V.F=—(2x")+—(—v")+—(4xz") =4xv—2v + Bxz
Ox dv Oz



E D
A
C L]
O —p Z
A '
Vo 4zt =9

2 3497

j j j (4xy — 2y + 8xz)dz dy dx

Z=0y=0 =z=0

J]Jres
J [[oo-amved] we

—r

=]

[(41’}’_ 2y)W9 —y* + 4x(9 —y:]] dy dx

Il Il
= T b = b
l:m'__“'sm

f[(l —2x)(—2¥) /9 — ¥? + 4x(9 - ¥7)] dy dx
o

Jllo-oes>

J{—(l—zx][ﬂ 27] +4x[27 —9]}dx = J —18(1—2x) 4+ 72x]dx

le

-

= [—18(x — x?) £ ?2%]5, = _18(2—4)+36(4) = 36+ 144 = 180... ..

(1)



Now we sall calculate J F.7i ds forall the five faces.

=
JF.ﬁd5= J F.ﬁdS—JF.ﬁdS—---—JF.ﬁdS
I £ £ £

Where S, is the face OAB, S, 1s the face CED, S; 1s the face
OBDE, S, 1s the face OACE and S; 1s the curved surface ABDC.

(i)OnS;:x =0,1= —i. F.i=0 Hence J Fads=20

ta

Lae
|
=5
o,
Lo

Il
ﬂ'i-.___\_‘ [7F]
[ L

o

a

&,

-t

&,

58}

I

e

s}

|5

e
&,
L

(iii)JOn S;:yv=0,1= —j F.i=40. Hence J F.rids =10
5z

(iv)}On S,:z=0,7= —F Frni=0 HERCEJFRCIrS:D
S

5 — Gx Gy

Where R is the projection of 5. on xv — plane.

|Zkl



2 3

_ J J 4yz? — _1:3 dx dy = J J [4x(9 — y2) — 3 (9 _},:)-%] dy dx

1\.". 9 — y-

x=0 y=0

- -

P

- % )
= j 72x dx — 18 J dx = ?z(?) —18(x)3 = 144 — 36 = 108
o o ~ o

Thus [, FAds=0+72+0+0+108= 180 ... ... (2)
Hence the Divergence theorem is verified from the equality of

(1) and (2).

Example 13: Use Divergence theorem to evaluate

[ [(x1+yf+ 2°k).7i.ds whereS 1s the surface bounded by the cone
x’+y’=z" in the plane z = 4.

Sol: Given [ [(x7 1 7 | =2k).7.ds whereS 18 the surface bounded by

the cone x*+y’=z" in the plane z = 4.

2k

Let F = Y+ Y]+ =

By Gauss Divergence theorem,we have

J1 [[:xf—_‘»'f—::p‘;}.ﬁ.ds - J J [L?.M«;-

Now 7.F = Z(x) + () —é(:f)= 1+1+2z=2(1+72)

-

Ontheconex”+v> =z andz=4==> x"+y* =16

The limits arez=0tod,y=oto+16 —x? ,x =01to 4

I~lg =z 1



216 —x~ =
=2 J J [4 + 8]dx dy = 2X12 J [vI3e ™ dx

o il o

16 — 16 sin® & .4 cos 8dB

— 4

=24J J16 — x2dx = 24

)

(=]

] T
[;@ut x =4sinf ==>dx = 4cosf db.Alsoz=0==> 0 =0andx=4==> 0 = 3

il

JJ J V.Fdv=296 X4J 4,/ 1 —sin 28 c&gﬂd{?:?E_Xﬂljc&S:B de
o o
{1+ cos2é ([l cos28

:965(4J dﬁ':@ﬁmJ[—— > ]d

o o

1 1 sin 2872
=384 [— += ] =961

2 2 2

Example 14: Use Gauss Divergence theorem to evaluate
[ [ (y22T+ zx*] + 22°k).ds, where 18 the closed surface bounded by
the xy plane and the upper half of te sphere x*+y’+z’=a’

Sol: Divergence theorem states that

J1!1F.ds=[ J [ 7.F dv

Here V.F = %[}'::) —; (zx¥) 4+ 5[2::) = 4z
J1 J F.ds = j J J 4z dx dy dz

5

Introducing spheical polar coordinatesx = rsin fcosg,v =rsinfsing .,z
=rcosf thendx dvdz= r? dr df do



—_ [ -
o T i

J1 J F.ds =4 J J J (rcos @) (r* sin @ dr df dg)

5 r=0 620 ¢=0
=4 J J?‘Ssinﬂcosﬂ J dep | dr d8
r=08=0 =0
=4, J J risinBcosf (2w — 0)dr d@
r=08=0
- 7 T ¢ cos 28T
=4q JT"‘ JsinEEdE dr = 4 JT"‘(— ) dr
2/,
=0 1) =0

=(=2m) [Jr*(1=1)dr =0

Example 15: Verify Gauss divergence theorem for
T =x'1+y’1+ 2k taken over the cuve bounded by x =0, x = a,

y=0,y=a,z=0,z=a.

Sol: We have F=x 1+ 7+ 2%k

N ¥ . 0 . 0 2 - 5 5
VF=—(x")+—(v')+—(z°)=3x"+ 3y +3z-
0x oy oz

J, J j V.Fdv = J J J1[31': +3y? £ 328 dy dy d=

=3 j J J (x*+y? + z7)dx dy dz
=0 y=0x=0

. . .fl_ 3 . ! a
= J J [ 4+ oxv-+ :':a_') dv dz
B=

=0 y=0 N o




=348
To evaluate the surface integral divide the closed
surface S of the cube into 6 parts.
1.e., S;:The face DEFA  ; S, : The face
OBDC

S, : The face AGCO ; Ss: The face
GCDE

S; : The face AGEF ; S¢: The face AFBO
J' J F.fids = J J F.fds + J J F.fids + -+ J J F.7ds

OnS, wehaven=1.x= a

J JF.ﬁdS = J J [:-:‘ISI—_‘;'SJ?—ISE}.ICII}' dz

=z, ==0y=0




f f aldy dz —af[x'“

=0 =0
= a*(@)§ =@
OnS,wehaven=—=Lx =10

JJF fids = f J-[vj—zgk}( i)ldvdz=20

=0 y=0

OnS;,wehavern=J,v=a

=1
=1

=0 x=

OnS,wehaven=—=J,v=20

o

ff?.ﬁds= f f(xEI—ZEE}.(—jjdxdz= 0

=0 x=0

OnS.,wehaven=kz=a

fands— f f[x:—x;—ak}kdxdl

=l x=
f fﬂ; dxdy =a f[:cju v=a (y)§ =
y=0x=
OnS.,wehaveni=—-kz=20

5[ fﬁ'ﬁdsz f f(ng_ v (=k)de dy =

y=Ex=0

f[ng—agj—zw}.;—dxdz= : f fdxd;,-:agfadz:a*-(z)g
=0 o



Thugj Jﬁ.ﬁds= a® +0+ta*+0+a*+0=3a°

=

Henece J J F. ads = J J P.F dv

L

The Gauss divergence theorem is verified.

Assignment
1. Evaluate [ xdy dz + y dz dx + zdxdy OVET x* + y? + =]
2. Compute [[(a*x®+ by + 229z ds  over the ellipsoid
a’x?+ byt +ciz=]
(Hint: Volume of the ellipsoid , V=_—=-)
3. Find [r. 7ds where F =2 «%— y%j+ 4xzk and S 1s the region in
the first octant bounded by »* + z*=9 and x=0,x=2.
4. Find [ (4.+i - 2y%j +z2%).74as Where S Is the region bounded by »2
+ y2 =4, z=0 and z=3.
5. Verity divergence theorem for F=6zi + (2x+y) 7 -xx, taken

over the region bounded by the surface of the cylinder »*+ =9

included in z=0, z=8, x=0 and y=0. [JNTU 2007 S(Set No.2)]



II. GREEN’S THEOREM IN A PLANE

(Transformation Between Line Integral and Surface Integral
) [JNTU 2001S].

If S 1s Closed region in xy plane bounded by a simple closed
curve C and if M and N are continuous functions of x and y
having continuous derivatives in R, then

$ Mdx + Ndy = [[ (- ‘Z—] dxdy,

Where C is traversed in the positive(anti clock-wise) direction

& .
vk
AL_/V/
Y= | &
X=a K:ti,’x
T 0

Solved Examples
BNl CRR Verify Green’s theorem in plane for

$(3x% — 8y*)dx + (4v—s6xv)dy where C 1s the region bounded by y==
and y=x7 .
Solution: Let M=3x-8,> and N=4y-6xy. Then

2 AN _ i
E = —16, s . 61



We have by Green’s theorem,

355 Mdx + Ndy = ﬂ; (Z—_: - ?] dxdy

Now I.J [Z—\—?] dxdy = [[ (16y — 6y)dxdy

=10

_Jl vdedy =10 _Jr;: 0 _Jr:i vdvdx = 10 _Jr;': 0 [T]A dx

e

Bl eiems(E-L) =s(-y)=1 (1)

Verification:
We can write the line integral along ¢
=[line integral along y=+*(from O to A) + [line integral along »

=X(from A to O)]

:f1+f:(saY)

Now fizj;-;c_{[Ex: —8(x?)?¥]dx + [4x? — 6x(x)]2xdx} |y =x? = ET = 2x



:J’: (3x%+8x% — 20x%)dx = —1
And

]

I, = Jrlc' [EE:{S — 81':1.:{:( + [45— 6x 3 2}21—: = dx] = Jrfﬂﬁxf —11x + E:Idx =2

ol Tz _qezi2=3/20

From(1) and (2), we have § max+vay = [J (2 - 22 axay

Hence the verification of the Green’s theorem.

DN Evaluate by Green’s theorem [ ¢y sinx)dx | cosxay

where C is the triangle enclosed by the lines y=0, X=2, =y = 2x

[JINTU 1993, 1995 S, 2003 S, 2007, (H) June 2010(Set No.2)]
Solution : Let M=y-sinx and N = cosx Then

2u=1 and e sinx
dy a

x

By Green’s theorem ¢ max +nvay = [ (£ -2) dedy

{
5\ 0x v

= J; (v—sinx)dx + cosx dy = ﬂ; (—1 —sinx)dx

B
2
:_Jr.‘r z Jr% (l n -
=0 ].'“:E' x=n/2
o y=0 A

:.J:T:.; (sinx+ 1)

:_T:f;l: x(sinx + 1)dx

__TL:[[—CDS x+x)]5 — J: ’ 1(—cosx +x)dx



_T:[:'"(_ cosx + x) +sinx —AT]

T

T[—xcosx—%—sinx]ﬂ =—'[——l]=—(7——)
B CRE Evaluate by Green’s theorem for

§ (x? coshy)dx | (v | sinx)dy Where C is the rectangle with vertices
(0,0),(x,0), (,1), (0,1).

Solution: Let M=x?—coshy, N =y + sinx

. 32 = —sinhy and I = cosx
By Green’s theorem,  § max + vy = [ (£ -2%) dxay ,
= ¢ (x* —coshy)dx + (v + sinx)dy = [ [(cosx +sinh (©, ”,—tn 1)
:J:_: o fiz olcosx + sinh y)dydx = j:_: o lyecosx + cosh v)1dx .
- of (r. 0)
S lcosx + cosh1 —1]dx = (sinx + xcosh1 —x)]
=m(coshl — 1)

IelnllRiR A Vector field is given by F = (sinv)[i] + x(1 + cosy)[f]
Evaluate the line integral over the circular path x*+y? = 2%, z=0

(1) Directly (11) By using Green’s theorem



Solution : (i) Using the line integral

[JNTU 96, (A) June 2011 (Set No.4)

¢ F.dr = § Fidx + Fdy = ¢ sinydx + x(1 + cosy)dy
—¢ sin ydx +x cosydy = xdy = $ d(xsiny) + xdy

Given Circle is x*+y? = a*. Take x=a cos6# and y=asing so that dx=-
a sing 46 and
dy=aces¢ds and 6 =0 - 2=
. $F.dr= [ "d[a cosfsin(a sin8)] + ;" a( cos8)a cosd dé

=[a cos@sin(a sin8)]F + 4a® [T cos’ 8 d6

=0+4a°. .2 —ma
(11)Using Green’s theorem
Let M=siny and N=x(1 + cosy). Then

N

%:c:os_x' and = -(1+ cosvy)

By Green’s theorem,
ggc Mdx + Ndy = j]'s (a— - ?\] dxdy
t ¢ sinydy 4 (14 cosyldy = [ J (—cosv+ Leosy)dxdy == [[ dxdy

_j:_ [dA=A =ma* (v area of circle = ma?)

We observe that the values obtained in (i) and (i1) are same to

that Green’s theorem 1is verified.



I el )R Show that area bounded by a simple closed curve C

is given by 24 xdy - vax and hence find the area of

(i)The ellipse X=acost 1B,y =bsing o (i.e) 5+5 =1] J
(IT )The Circle X=acos8,y = asin@ (i.e)x2 +y? = a
Solution: We have by Green’s theorem

$ Mdxe +Ndy = [ [ (- j—] dxdy

Here M=-y and N=x so that 2 = —1 anaZ" =1
¢ xdy — ydx =2 [ dxdy = 24 Where A 1s the area of the surface.
f = [ xdy — ydx = A

(1)For the ellipse Xx=acos# and y=bsing and e = 0 - 2=

- Area, .4:}95 xdy — yvdx = lfn_:x[[a cos@)(bcos@) — (b sin@ (—a sinf))]|d 8

=Llap fc_ﬂ"_l:cos:rﬁ' + 5in?8) df == ab(8) = "B (2w —0) = mak

(i1))Put a=b to get area of the circle A=xa’

Example 6: Verify Green’s theorem for [ [(xy+y?)dx + x%dy]
where C is bounded by y=x and y=x
Solution:

s an aM
By Green’s theorem, we have [ mdr+ vay = [ (£~ Z2) dxdy



Here M=xy +,* and N=x?

y A

—> X

(0]

The line y=x and the parabola y=x* intersect at O(0,0) and A(1,1)
Now j'c Mdx + Ndy = J"L Mdx + Ndy + j-c, Mdx + Ndy cen (1)

Along c, (i.e.v =x?), the line integral is

[ Mdx + Ndy = [[1‘[1‘3) +x%)de + x7d(x?) [[1‘3 +x+2x%)dx = [[31‘3 + %) dx

4 5y 1 5
=(3 AT—%]E_ =l eT
....... 2)

Along ¢, (i.e.y =) from (1,1) to (0,0), the line integral is

-J;. Mdx + Ndy = f:.(x' x + xdx + x2%dx [v dy = dx]

=[ svtdr =3 [Cxtdr=3(2) = (+5)2=0-1=-1

‘1

...(3)
From (1), (2) and (3), we have

[ Mdx+Ndy= E—-1=22
c - 20 20

..(4)



Now [ (&~ 27) dray = [ (2x — x — 2y) dxdy
= f::c- jA: r (x — 2y)dxdy = f; (xy — v?) % dx

RIG2—x2) = (2 —x9)]dx = [} (x* — x®)dx

...(5)
From(4)and(s),We have[ Mdx + Ndy = [|_ ( ZT_ ‘;—] dxdy
Hence the verification of the Green’s theorem.
Using Green’s theorem evaluate
[.(2xy — xdx + (x? + 1) dy, Where “C” is the closed curve of the
region bounded by y=»* and v*==x

[JNTU 20038, 2006S,2008S, Aug2008S, June 2009,

(K) Nov 2009 S (Set No.1)]

Solution:




The two parabolas y* = » and v = »* are intersecting at O(0,0),and
P(1,1)
Here M=2xy-x: and N=x2 +,2

i N )
&—— 2 ﬂﬂdg—zl

Hence ‘3——?= ¥ —2x =0

By Green’s theorem [ mdx + nvdy = f ( ) dxda

i.e.,f.(2x —x?)dx + (22 + ¥ dy = [ [ .(0)dxdy = 0

Verify Green’s theorem for

[[(3x2 - 8y?dx + (4y — 6xy)dy] Where ¢ 1s the region bounded by x=0,
y=0 and x+y=1. [JNTU 20038,
2007S(Set No.3)

Solution : By Green’s theorem, we have

_J:f Mdx + Ndy = jl (%— %] dxdy

Here M=3:2-8,? and N=4y-6xy

0 i —

28]

':'r = 16y and a—\ =6¥

4

C1n
!



Now [ Mdx +Ndy =+ [  Mdx+ Ndy+ [, _Mdx+Ndy+ [ Mdx+ Ndy
(1)
Along OA,y=0 ~dy=0
gy, 1
L NAr = (Y3424 =[] =
[, Mdx+Ndy = [ 3x%dx [3 JE 1
Along AB, x+y=1 - dy=-dx and x=1-y and varies from O to 1.

[z Mdx + Ndy = j’; [3(v—=1)" =8y (—=dyv) +[4v +6v(y —a)ldy

:J: (—=5vZ —6v + 3)(—dyv) + (6v* — 2v)dy

. e 1
:f,:_i[ll_‘-': +4y —3)dy = [11-'T L4l 3},]
Sl 2 /,
—11 5 3= g

Along BO, x=0 - dx=o0and limits of y are from 1 to 0

250
[, Mdx+ Ndy = [ 4ydy = (4%) = (2y)i=-2
v 27y

from (1), we have | max+ vay=1+2-2=2

E

Now ffc [Z—; - ?J dxdy = _J::E_ fiz_:[—ﬁu + 16v)dxdy
:10 _J:_lzc_ [ji;: _1'.:'1[_1,'] ::‘1[;';_' = ]_l::," _J.-I:-1 [?]1:_-1. ﬂrl.

‘0

=5 f:[l —x)dx =5 [':1-&'-3]:.

-3

= [1-1° - - 0T
From (2) and (3), we have [ wax +ndy = ] (5 - 35 dxdy

Hence the verification of the Green’s Theorem.



B Pl Apply Green’s theorem to evaluate
5}55(21': —vIdx + (x*+ v dv, where cis
The boundary of the area enclosed by the x-axis and upper half

of the circle =2 + v2 = a2

[JNTU 2008S, (A)June 2010, 2011(Set No.2)]
Solution : Let M=2x2-y? and N=x2+ > Then

aM
By

= —2y and i—“ = 2x

/ <
// )
\4

Figure
» By Green'sTheorem, J:: Mdx + Ndy = J’fc (Z—‘— ?] dxdy

= %[[21‘3 —vIdx + (x*+vHdy] = U (2x 4+ 2v)dxdy

=2 I L(x+w)dy



:2f: f:’r(cosuﬁ' + sin @).7d Bdr
[Changing to polar coordinates (r,8), r varies from 0 to a and &

varies from 0 to =]

+[(2}. — v dx + (x* +v3)dy] = J !*J(cosﬂ—sin{?)dﬁ'

[

S+ =%
Find the area of the Follum of Descartes
x3+ y3 = 3ary(a > 0)using Green's

Theorem.

[INTU 2006(Set No.1]

Solution: from Green’s theorem, we have

[ Pdx +Qdy = [], (—; —huar

By Green’s theorem, Area = 3§ (xcy — yax)

Considering the loop of follum Descartes(a>0)
~[2(22)] e and dy=[z (z

The point of intersection of the loop is (F-F)=t=1

Let x=52 .y = 25 e

Along OA, t varies from 0 tol.
v 2 fedy — yax) =2 [ (D) [E(ED)]ar - (320) [ (E2)] a

(g




SRR '__.;_-.i-'] s e
B i e =

=l ar [Put 1+ =x = 3t7 dt = da
L.L.:
x=1, U.L..x=2]
=222 2o 2 L ae =32 g, units(a>0).

IDERUIREl: Verify Green’s theorem in the plane for
[ = xy¥) dx + (v — 2x3)dy
Where C i1s square with vertices (0,0), (2,0), (2,2), (0,2).
[JINTU Aug,
2008S, (H)June2009,(K) May2010(Set No.2)]
Solution: The Cartesian form of Green’s theorem in the plane is

Mdx + Ndv = o a’:m:h
i (2

r.|.-|ﬁ-

Here M=x* - xy* and N=y? — 2xy

L M 3 aprand = —ay
By B



y=2
c *
(0.2) |82
‘i\
x=0 v | -
O +
(20

Evaluation of | (mdx + ndy)

To Evaluate | (x2 — xy®)dx + (v* - 2xy)dy, We shall take C in four
different segments viz (i) along OA(y=0) (i1) along AB(x=2)
(i11) along BC(y=2) (iv) along CO(x=0).

(i)Along OA(y=0)

x°

_].C[x: — vy dx + (v? —2xv)dy = _fc: x2dx = (—]_ =§

(1)
(i)Along AB(x=2)
jc[x': —xvdx + (v? —2xv)dy = fcz (v —4v)dy [ x=2,dx =0]

[E_E}.:JE:[g_gjzg[_éjz_g_ﬂ ....(2)

(iii)Along BC(y=2)

jc(l': —xvHdx +(v? — 2xv)dy = J’:E(x: — 8x)dx [ v =2,dy = 0]



e

(iv)Along CO(x=0)

_J:f[:gj —xvHdx +(v:—2xv)dv = ff vidx [ x=0,dc=0]= [?]i ==
(&)

Adding(1),(2),(3) and (4), we get

_jrc(x: xv3)de | (v 2xyv)dy = : 136 ;f 2 = :; =3

.05

Evaluation of (- ?] dxdy

Here x ranges from 0 to 2 and y ranges from 0 to 2.
(55— 55 dxay = [ [ (=2y + 3xy¥)dxdy

a 7.5 2
:f' (—21‘1.'——° 1."} dv
o ST )

:_fc_:[—4_u'— 6vi)dy = (—2v* + 2y7)3

=-8+16=8
...(6)
From (5) and (6), we have
S Mdx +Ndy =[] (%— ?] dxdy

Hence the Green’s theorem is verified.

Assignments




(1) Evaluate §.(3x+ 4)dx+ (2x —3y) dy where ¢ is the circle

(2) Verify Green’s theorem in the plane for
$(x2 — xy3)dx + (»2 — 2x3)dy Where c¢ 1s the square with vertices
(0,0), (2,0), (2,2) and (0,2). [JINTU Sep 2008,
2008S, INTU(H) 2009(Set No.1)]

(3) Use Green’s theorem to evaluate 4, x2(1+y)dx + (3 +x%)dy
where c is the square bounded by y=11andx - 11.

4) Find the area bounded by one arc of the cycloid x=a

®)) Find the area bounded by the hypocycloid
x23 4923 =g¥3 g = 0.
(6) Find §(x2 - y?)ax + dx + 3xy2dy Where ¢ is the circle x2+y2 =4

in xy plane.

Answers

D8z (3  (#Bmr (5= (6)12=

IHI. STOKE’S THEOREM

(Transformation between Line Integral and Surface

Integral) [JNTU 2000]



Let S be a open surface bounded by a closed, non
intersecting curve G. if 7 is any differentieable vector point
function then Qﬁ, F.d F:L curl F.7ds where ¢ istraversed in the positive

direction and 7 is unit cutward drawn normal at any point of the surface.

Solved Examples

IB€11sl) GRN Prove by Stokes theorem, Curl grad ¢=o

Solution: Let S be the surface enclosed by a simple closed curve

C.

~ By Stokes thearem

[ (curl grandg).ni ds = [ (VxVg).7 dS = gﬁr"-?cz:.ch = gﬁr V. dr

+ k=2) — (idx + jdy + kdz)

L5 F]
0
|
L5 F]

=4 (22 ar 22 v 12242 = =
5 (5o oy W T % dz) = fdg = ¢,

where P is any point on C.

=l

[eurl grade. 7 ds =0 = curl gradg =

|5 €V I PH prove that [ ecurl 7.ds = [ ¢ f.d7 — [ curl grade X fds
Solution: Applying Stokes theorem to the function ¢ 7

l¢fdr= Jeurl(of).nds = [(grade X f + ¢eurlf) ds



~ [ peurlfids = [ ¢ f.dFi— [Ve X f.ds

Example 3: Prove that ¢ vf.47 = o.

Solution: By Stokes Theorem,

$ ((Vf).d7 = [curlf Vf.Aids = [ [f curlVf +VFX Vf].7ds

J0. fds = 0.[+ curlVf =0 and VFX Vf = 0]

e VIR Prove that § ivg.d7 = [(VfX vg).Ads
Solution: By Stokes Theorem,
gﬁcﬂf‘\?g. dr) = ff[?}{[ﬂ?’g)].ﬁ ds = ff[?f}{ Vg +f curl grad g].ﬁdS

=[[VX(fvg)]-7ds [+ curl(grad g) =70]

Verify Stokes theorem for F = —y37+x%, Where S is
the circular disc

+ylstz=0 [INTU
99,2007,2008S(Set No.4)]

Solution: Given that 7 = —y*7 = +%;. The boundary of C of Sis a
circle in xy plane.

x* +v? = 1,z = 0. We use the parametric co-ordinates x=cos

dv=snf,z=00=8 =< 2m;



dx=-sins 48 and dy =coss a6

.« § Fdr=[ Fdx+ Fdy+Fdz = —vidx +x%dy

=

:f:x (1— 2sin’ 8 cos~6) dﬁ':j;x o

sin®@(—sinf) + cos®Beosf]df = j’:x[mg;‘ﬂ + sin*@)df

1 _j::_::r (25inf cos8)7d@

T sin?2d@ = (Zm— @) —l_fr__:ﬁ[l — cos48)ds

— 27 1 27
=, d8 —<],

_2;?_[__5'——5-&45'] 2'?__':7 -y

T
Nowv x F = 5
o J(Vx F)dds =3 [ (27 + y?) k. Aids
We have (k.7)ds — dx dy and R is the region on xy — plane
2 J[T(Vx F)dds =3 [[_(x* +¥*) dx dy
Put x=r c0S¢,v = r sin®.. dxdy = rdr d0
R is varying from 0 to 1 and O< o = 2.
2.rdr de — &

I.'||

[(Vx F).ads =37 [

L.H.S=R.H.S.Hence the theorem is verified.

Example6: IfF= yi+ (x — 2xz2)j — xvk, evaluate L["-? % F).fids Where Sis the

= a’, above the xv — plane.

surface of sphere »*+ 2+ -
Solution: Givenrs = vi + (x — 2xz)] — xvk.

By Stokes Theorem,




_J;("-? ® Fj.ﬁn’gzj; Fidx + Fydy + Fydz = [_ydx + (x —2xz)dy — xydz

Above the xy plane the sphere is x*+ v*+=a%z=0

J F.dr = J_v-:fx + xdy.

Put x=a cos B,y:aSiIlﬁ' so that dx = —a sinfd?, dy = acosfdd and? =0 — 2x

J1 F.dr = Jur[a sinf) (—a sinf) df + (acosf)(aces8)dd
c o

=a? f:n cos28 df = a” [E:.t:g]c. = ET (o)=20

IsrEi AV crify Stokes theorem for 7 = (2x — v)1— v2% - y*zk over
the upper half surface of the sphere «*+ »* + > = ibounded by the

projection of the xy-plane.

[INTU2006,2007,2007S,2008,JNTU(A) June2009(Set No.2)]
Solution: The boundary C of S is a circle in xy plane i.e +* +y*
=1, z=0
The parametric equations are X=cess, y = sinf, 6 = 0 - 2=
. dx= —sinf db, dy = cosf db
[ F.di=[ F.di=] F.dx+F.dy +F.dz= [(2x —y)dx — yz’dy —y’zdz

=/ (2x — y)dx(since z = 0 and dz = 0)

=["(2cos6 — sinB)sind df = [ sin’B d = [~ sin2 de

do — [ sin26 df = [}9 = $sin26 +3. cos28|
2 2 = o

— 2w 1—cos28
g=0




:}(2;‘? —0)+0 —%. (cos4r — cos0) =m

T 7 k
. _ g _ — i I
Agaln VxF— i ai o | FH—2yz+2yz) —J0-0) +k(0+1) =k
2x—v —=yI® =y°z

w [V x F).ads= [ k.fids = [ [ dxdy
Where R is the projection of S on xy plane and & #ids = dvdy

Now

1

il qu- dxdy = 4 f__l_c_ JFEE_A dydx = 4 fj'_c_ Vi—x?dx =4 [% V1—x*+ %sin_ tx
F x= = x= 2 2 o

=4 [}sin'i l] =2=x

.. The Stokes theorem 1s verified.

Example 8: Verify Stokes theorem for the function 7= x271+xy;
integrated round the square in the plan z=0 whose sides are
along the lines x=0, y=0, x=a, y=a.

Solution: Given F=x27+xvj



y
o }—21=2 B (a, a)
(0, a)
X=4d
0 A(a 0)
Fig. 13

By Stokes Theorem, f (vx F).nds= F.d7

Now v x F=

L.H.S., [ (vx F).ads=[ y(7.k)ds = [, vdxdy
n.k.ds = dxdvand R 1s the region bounded for the square.
o [ (VX F)ads = [7[% ydydx =
R.H.S. =[F.df = [ (x%dx + xvdy)

But frar=f F.ari [ F.dri [ _F.dm1 [ F.dr
(1)Along OA: y=0, z=0, dy=0, dx=0

oo Fedi= [Jatdx = ?

(i1)Along AB:x=a, z=0,dx=0,dz=0

S Fod7 = [T aydx =&

(ii1)Along BC: y=a,z=0,dy=0,dz=0



[ FodF= [P0y =la
(iv)Along CO: x=0, z=0, dx=0, dz=0

« [, F.dF = [ ody =0
Adding [F.ar=1ta®+ta® +1a* v 0 =1a7
Hence the verification.

Example 9: Apply Stokes theorem, to evaluate ¢ vax | zay 1 xaz)

where c is the curve of intersection of the sphere «* + y* + z? =&
and x+z=a. [JINTU 1997, 2006S, 2008S(Set No.1,3)]
Solution : The intersection of the sphere »* + y* + 22 = a* and the

plane x+z=a. is a circle in the plane x+z=a. with AB as
diameter.
Equation of the plane is xtz=a=+2 =1
~0A+ 0B =aied=(a00)and B= (0,0a)
~ length of the diameter A = Var +a? +0=ay2
Radius of the circle, r==<
Let

F.dr = ydx + zdy + xdz = F.dv = F. [ Tdx + jdv + }?a’:} = vydx + zdy + xd:z

= F=yT+zj+xk

T 7 k
a 8 a - =T
curlF—|=— = Z|=-—-|1t+J+k
: dx dy d= [ J }

v oz x




Let 7 be the unit normal to this surface. 7 ==

L
b

- -

Then s=x+z-a, v,= 7+ k. a= "= =%

-
v

HenCC E}SEF. dF = [ecurl F.fids (by Stokes Theorem)

I
I
—
=i
I
bl
I
=
RS
—,
'||?I.-|
L —
(@N
w2
I
|
—y
e,
1k
|
s
™
o,
Ly

i

:-\;EJ; ds = =25 = =2 [%] = ':f

Example 10: Apply the Stoke’s theorem and show that

Jo [ curl F.7ids =0 where F 1S any vector and S =x*+y2+ 27 =1
[JNTU 1998]
Solution: Cut the surface if the Sphere x>+ y? + 22 = 1 by any plane,

Let s, and s,denotes its upper and lower portions a C, be the
common curve bounding both these portions.

+ [Leurl F.ds = [, F.dS+ [, F.ds

Applying Stoke’s theorem,

Jeurl F.ds=[ F.dR— [ F.dR =0

The 2™ integral curl 7.4 is negative because it is traversed in
opposite direction to first integral.

The above result is true for any closed surface S.

Example 11: Evaluate by Stokes theorem

$(x +v)dx + (2x — z)dy + (v + z)dz where C 1s the boundary of the
triangle with vertices (0,0,0), (1,1,0).



Solution: Let F.dr =F.( idx +jdy + kdz) = (x + vide + (2x —2)dy + (v + z)dz
Then F=(x+ )7+ (2x —2)f+ (v + )k

By Stokes theorem, §_F.d7= [ [ curl F.Ads

/8(1,1,0)
\\/ .
O/ ‘ — —_— X

P A(1,0,0)

v

z

Where S is the surface of the triangle OAB which lies
In the xy plane. Since the z Co-ordinates of O,A and B
Are zero. Therefores = k. Equation of OA is y=0 and

that of OB, y=x in the xy plane.

~ curl F.ads=curl F.x dx dy = dx dy
¢F.di=[[dxdy=[[ dA=A=areaof the 2 045

:%OA X ABZj—, X1X1=1



Example 12: Use Stoke’s theorem to evaluate | [ curi F.74s Over
the surface if the paraboloid z+x>+ y*> = 1,z = o where
F=vi+zj+xk

Solution : By Stoke’s theorem

_j; curl F.ds = E}Sf. dF = j{ (:_k'f— zj+x E} ( tdx + jdy + En’:}

=[_ydx (Since z = 0,dz = 0) ...(1)
Where C is the circle x>+ y* =1
The parametric equations of the circle are x=cesé, v = sing
o dx = — sinB dé
Hence (1) becomes
Jycurl F.ds = [T sin6(—sing)df = — [, sin>6d6 = —4 [7'* sin®0d6 = —4 X 2x T=-7
Example 13: Verify Stoke’s theorem for 7 = (x? + y2)7 - 2xy7 taken
round the rectangle bounded by the lines x=+a,y =0,y =1
{JINTU 2003, 2005 (Set No.1)]
Solution: Let ABCD be the rectangle whose vertices are (a,0),
(a,b), (-a,b) and (-a,0).
Equations of AB, BC, Cd and Da are x=a, y=b, x=-a and y=0.

We have to prove that 7. a7 = [ cwri £.7ds



gSEF. dr = 356{(1': + 3T — 2xvih { Tdx + jdv)

:gsc (1‘3 —_1.': ) dx — 2Zxydy

:IAE_IEE_IED_IDA (1)

YA
C(-a,b) y=b Biab)
<
X=-ay - A X=4d
- X
D(-a,0) (@) y=0 A(a,0)

(1)along AB, x=a, dx=0

from (1), [, = [*., ~2ev dy = ~2a[Z] = ~ab’

|:.

(i1)Along BC, y=b, dy=0

from (1), [, =779 + b2)dx [*'E—Ezv;-fx]m == 2ap?
(ii1)along CD, x=-a, dx=0

from (1), [ = jf':b 2ay dy = 2a[y?]%, = —ab’
(iv)Along DA, y=0, dy=0

from (1), [ =% «%dx Hj :i

()+(ii)+(iii)+(iv) gives



— - —1a° 5 a1 2a% -
W Fodi = abl-——— —2ab- — -i'I.:.’.‘-"+T = —4dab-
b = o

..(2)
Consider [ curl F.7ds

Vector Perpendicular to the xy-plane 1s 7 =&

I
d

Bx
(:L: i _"p'f:l _2:'-.}..

.'_'-:!"l'-'.l.- e

~ curl F—

Since the rectangle lies in the xy plane,
a=kand ds =dx dy

qu: ,—4ydx dy

[ocurl F.ads = [ —4vk.kdxdy = [7__
= S v dx dy- AT yIxE = 47 2avdy
= 4aly?i, = 4ab®

..(3)
Hence from (2) and (3), the Stoke’s theorem is verified.
Example 14: Verify Stoke’s theorem for
F=(v—»+2)i+(v=+4)j-~-k where S is the surface of the cube x
=0, y=0, z=0, x=2, y=2,7z=2 above the xy plane.
{INTU 2006S(Set No.1)]
Solution: Given F = (v —z + 2)i+ (v=+ 4)7— x=zk where S is the surface
of the cube.
X=0, y=0, z=0, x=2, y=2, z=2 above the xy plane.



By Stoke’s theorem, we have [ curi F.fids = [ F.a7

T 7 k
vxF=| 2 2 =0+ —jl—z+ ) +RO-1) =y (1-2)]—k
v—z+2 v+4 -—xz

w[VxFads=[[F-1dcdy (~z=0dz=0)=—4
(1)
To find [F.ur

[Fdr=] [[_1,'— 2+ )T+ (vz+4)j— :L-:Ej. (dx: + dyy + dzk)
= [[(v—z+ 2)dx+ (vz +4)dy — (xz)dz]

Sis the surface of the cube above the xy-plane

nz=0=4dz=0

o | Fdr= [(v+ 2)dx+ | 4dy

Along 74,y =0,z =0,dy = 0,dz = 0,x change from 0 ta 2.

[aax=2[03=4 ... (2)

Along B¢,y = 2,z = 0,dy = 0,dz = 0,x change from 2 to 0.

fPade=4[]=-8 ... .(3)

Along @5, = 2,z =0,dx = 0,dz = 0,y change from0to 2

[Fdri=["adv=[20y]i=8 ... 4)

Along @5,x = 0,z =0,dx = 0,dz = 0,y change from 2 to 0,

S 4dy = -8 ....(5)



Above the surface When z=2
Along o4, ffFar=o0 ....(6)
Along a'5',x =2,z =2,dx = 0,dz = 0,y changes from 0 to 2
[FF.dF=["(2y + 4)dy = z—L tay]i=4+8=12 ..(7)
Along 3¢,y =2,z = 2,dy = 0,dz = 0,X changes from 2 to 0
JiFdr=0

...(8)
Along c'p',x=0z=2dx=0dz =0,y changes from 2 to 0.
Fey+a=2 —]r +4y]% = -12

...(9)
(2)+(3)+(4)+(5)+H6)+HT)+(8)+(9) gives

J.F.d7=4-8+8-8+0+12+0-12= 4
.....(10)
By Stokes theorem, We have
| F.di=] curl F.ads=-4

Hence Stoke’s theorem i1s verified.

IR el ERE: Verify the Stoke’s theorem for 7 =i+ 27+ xk and

surface is the part of the sphere =+ y2+ 22 =1 above the xy plane.



Solution: Given F =i+ -j+ +k over the surface

We have to prove [ F.a7=/ [ curl F.7ds

F.d7=. (Yi+z7 + k). (dsi+ dvf + dzk)=ydx + zdy + xdz
J.(vds + zdy + xdz) = [ ydx (in xy plane z = 0,dz = 0)

Let X=cos8, v = sind = dx = —sinB df, dy = cos8 df

- -

.« [F.d7= [ yde= [ ydx [ +vP=12=0]

:fc_ sinf (—sinf)d8 = —ﬂLf sin’6d6

—_4_J' m/117cosf g = g [(%:] —%(Sfﬂﬂ':}]

SCER

(1)

J —
Curlr=|3, ox a/ay asaz|=-(1+)+Fk)
Vv z X

-

Unit normal vector 7 = |_: = ZEMITER — g i+ ok

vEl y 2xC+4y-+azc

Substituting the spherical polar coordinates, we get
1= sinf cos@T+ sinfsingdJ+ cosfk

o Curl F.7i = —(sinf cos¢ + sind sin ¢ + cosd)

[ Curl F.iids = — | "E [ _Eﬁglmﬂ cosg + sindsin g + cosf)sing dod ¢

_—J' Slmﬁ' sin ¢ — sinf cos¢ + ¢cosf| ;" sinBds

=-2n [7'* cosBsingd = —u [7'* sin26d8 = (—m) [<2Z]
z g



= (-1-1)=-n

.(2)
From (1) and (2), we have
[F.d7=[[Curl F.Ads = —=
. Stoke’s theorem 1is verified.
Example 16: Verify Stoke’s theorem for 7 = (x? + )7+ 2235 OVer
the box bounded by the planes x=0,x=a,y=0,y=b.
[JNTU 2008 (Set No.1)]

Solution :

(0,5)C B(a,b)

0 A(a,0)

Stoke”s theorem states that [ Fa7= [ curiF7ds

Given F = (x? — y3)T4 2xy]

i 7 k
Curlr=| 9/, 9/5 95 | =—1(0—0) —7(0—0) + k(2y + 2y) = 4vk
x? —_1.': 2xv )]

R.H.S= f[ Curl Fonds = _f ﬂh[E ’r_a:'} ds



Let R be the region bounded by the rectangle
[:E.ﬁ}dﬂ = dx dv

_ch Curl F.aids = J:-:=|:- fﬂzc 4y dx dy = L::: [4T]: dx = 2b* Jf.:=|:- ldx

=2b2(x)s =2ak
To Calculate L.H.S
F.d7 = (x? — y?)dx + 2xy dy
Let ) O=(0,0),4 = (2,0),5 = (3, b) and
C=(),b) are the vertices of the rectangle.
(1)Along the line OA
Y=0; dy=0, x ranges from O to a.
J,, F.df=[° x%dx= H.: =<
(i1)Along the line AB
X=a; dx=0, y ranges from 0 to b.
[ Fodi= [ (2xy)dy = [za %]zéa:of
(i11)Along the line BC
Y=Db; dy=0, x ranges from a to 0
f,, Fdi=[" (x*=y)dx= [——m]i =0-(=-p%)
=ap* - =

(iv) Along the line CO
X=,dx=0,y changes from b to 0



J,F.dr =] _, 2evdy =0
Adding these four values

—z3

[, F.dF =% + ab’+ab® — £ = 2ab’
L.H.S = R.H.S
Hence the verification of the stoke’s theorem.
EXAMPLE 17: Verify Stoke’s theorem for F=(x* — v )i + 2xy;j
over the box bounded by the planes x=0,x=a,y=0,y=b,z=c
[JNTU (K) June 2009 (Set No.1)]

Solution: Given 7/=(x* - y*)i + 2XYyj

Let C denote the boundary of the box .
Then [ F.ar = [ (x> y2)dx | 2xvdy

The curve C is made up of four lines
OA,AB,BC and CO.

Along OA : y=0,dy=0



y=>b 5
C (0,b) - , B(a.b)
Y =
e —P X

O A (a,0)
J’GA(:LE — 32 Ydx + 2xydy = J'EE ldy = [EE];L — 53 ________
——————————— ()
Along AB : x=a,dx=0
IAE (9_-2 — _1,rf )dg_- + 2xvdy :23 fcb vdy = za (_ ]g‘ = ab? = —mmmm———— o
————————— @)
Along BC : y=b,dy=0
fAE (1‘3 —_vjjdx— 2xvdy — f:(x: — b* Jdx = [’3_‘? —b:xJ z = _( 53 _ﬁsz
=2 (3)
Along CO : x=0,dx=0
o [ (k% —yP)de+ 2xydy = [ 0.dy = 0

4)



------------------ ®))
i ] K
Again,Curl rF=vxr= | %5 %%y Ya:| =4yi
*=y* 2xv 0
Hencer=k.
J(Vx F).ads = [ aydedy =4[ [ vdydx
= a w2y} = 1.2 — 2 n i — 1,2
—4 Iy [E :J:;dx =22 fcﬂ dx = 2b (l:].;] = 2ab?  mmmmmem—————eee-
(0)

From (5) and (6) , we find that [ 7. 47 = [] curl F.7ds

Hence the verification of the Stoke’s theorem .

EXAMPLE 18: Verify Stoke’s theorem for £7=y2: — 2xy;j taken
round the rectangle bounded by
x=+b, y=0,y=a.

Solution:



C £ B
X=-Dy AX=b
> > X
D @) A y=0 >
T 7 k
Curl 4= é‘fg dx 8}{ dy af'( az| _4yJE
_1'2 —2xy 0

For the given surface S, a=&

(Curl F).i = —4vy
NOW [[ (Curl F).7ds = [[ —4vdxdy

= [7, |1, —4vdx] dy

— _J:: _41.},] _bbd}‘

JE.ar = [+ [t foe v I

[F.dFf = y?dx— 2xydy

Along DA, y=0,dy=0, [ r.a7=0(~ Far=0)
Along AB, x=b,dx=0



[ F.dF = f_fz.:.—E b_vd_v:—b_‘rzlg =—a’b
Along BC,y=a,dy=0

jgc F.dr — L: Y afax=—2a’b

Along CD, x=-b,dx=0
[ Fodi = [ 2bydy=—py?|0 = —d’b.

[.F.ar = 0-a’b-2a’b —a*b=—4a’h ------- (2)
From (1),(2) j_7.a7 =[] (curl F).7ids

Hence the theorem is verified.

EXAMPLE 19: Using Stroke’s theorem evaluate the integral
f.F.ar where

F=2y*1+3x%; -(2x+2z)k and C is the boundary of the triangle whose
vertices are (0,0,0),(2,0,0),(2,2,0).

Solution:
1 7 L
Curl £= 5!,55 . 'a,"'a}. a,e'iaz =2j+ (6X'4Y) k
2v? 3x° —2x—z




—» <

B(2,2
/’/’/‘
P ’l‘
O /‘/ﬂ-/ . L__ — X
(0.0) ' - A (2.0

Since the z-coordinate of each vertice of the triangle is zero , the
triangle lies in the xy-plane .

- (Curl 7).7= 6x-4y

Consider the triangle in xy-plane .

Equation of the straight line OB is y=x.

By Stroke’s theorem

J.F.dr = [[ (Curl F).fds

:_J;.::E. .JF:I;[E;‘;_ — ‘1-1,) d_')_'d}r = _J;_jzc_ |:_JFA: I:_[ﬁl‘::_' — ‘1‘3)'::{3 d’x
— 2 L o 5 . i
= [ eyl = (e - 2x%)dx
— 4-;|2 — 32
30 3

EXAMPLE 20: Evaluate [y (v x F).7as, where 7=(x>+y-4)i + 3xyj
+(2xz+z1k and S is the surface of, (i). The hemisphere x>+ y* + 2
=16 above the xy-plane , (i1) The paraboloid

Z=4 - («* + y*) above the xy-plane .



Solution: (1) Given 7=(x*+y-4): + 3xyj 2

+(2xz+-)k B
Let s=xt+vj| 2L

f/ - S ™ -
\ /0
Then dr=:idx + jdv + kd=. /

JI(VX F).7ds= ¢ F .dr

we have to find

dix? Ly—DdyL 3xvdy L (2xz L+ 29dz
—'E'\ - - - - Y -

OBJECTIVE TYPE QUESTIONS
(1) For any closed surface S, [[cuwl!Fads =
(a)0 (by 2r (c) = (d) ¢F ur
(2) 1f S is any closed surface enclosing a volume V and

F=xt+2yjt3zk then  [[ Fads=

(@) V (b)3V (c)6V (d)None
(3)If  F=axi+yjtzithen ¢7ar=
(@) 0 (b) - (c) x (d) None

4) JFx mds =



(a) 0 (b)r ()1 (d) None

(5) [+ .ads =

(a) V (b) 3V (c) 4V (d) None
(6) If 1 1is the unit outward drawn normal to any closed surface

then [ divrar =

(a) S (b)2S (c) 3S (d) None
(7) $rvr.dr =
(a) f (b)2f ()0 (d) None

(8) The value of the line integral [ grad(x+v—=z)d7 from (0, 1,-1)
to(1,2,0) s

(a) -1 (b)0 (c)2 (d)3

(9) A necessary and sufficient condition that the line integral
J4.dr =0 for every closed curve c is that

(a)divA=0 (b)divA 0 (c)curl A=0 (d)curlA O

(10) If 7 =axi + byj+ czk where a, b, ¢ are constants then J| F .7ds
where S 1s the surface of the unit sphere is

(@) 0 (b) Zra+b+e) (C) In(a+b+e) (d) none

(11) . Dx Fdv =
(a) [Ax Fds (b) 0 )V (d)S
(12) [ oxdv=




(a) j7 ¢ds (b) 0 ©V @
(13) [ fog.dr—

(@) 0 (b) J(vfxFpg) (c)~ (d)S

(14) JJE xdvdx + vdzdx + zdxdy where S: x2+ y2+z2=g2as

(a) 4p (b) %m‘{s (C) 4 7qk (d) 4~
ANSWERS

(H d @c B)a @DHa S b (BV)a(Dc
®d  Oc

(10) b (1D)a (12)a (13)b (14)c



Assignment Mid-1
Subject:M2

oo cosat—cosbt
d

1. Find a) L(fot te~'sindt)  b); ———dt ¢) L'l(s4j:a4 ) (CO-1)

1if0<t<?2
2.Find a) L(|sint|) b) Find L(f(t)) if f()={2if 2 <t < 4
0if t >4

t—E) ift<z

¢) Find L(f(t)) iff(t){ cos (£ =3 3 (CO-1)
0 lf t> 3

3. Solve the following differential equations by using laplace transforms
a) (D*n”)x=a sin(nt+a) given x=Dx=0 at t=0.

b) y(t)=1-e7t +f0ty(t —u) sinudu (CO-2)

1 T 3 o =
4.Find @) [{x(B-x*)dx b)ffcos:fsinz6de  ofy me—  d)f e "dx
e)f,” 37+ dx (CO-3)

1 T

1
5. Prove that a) B(m+3 ,mt) )=——r"vis
n-1
2

b) prove that r (%) r (%) r G) c (%) ______ c (nT—l) _ (27r)1_

nz

(CO-3)

Assignment Mid -2

1. a)Prove thatV x (V x @) = V(V.a) — V?a.

b) Prove that div(gradr™) = m(m + 1)r™"2 OR V2(r™) = m(m + 1)r™ 2. (CO5)
2. a) Prove that curl(aXh) = adivb —bdiva+ (b.V)a— (a.V)b

b) Find a and b such that the surfaces ax? — byz = (a + z) and 4ax?y + z3 = 4.

cut orthogonally at (1,—1,2). (CO5)
3. a) Verify divergence theorem for 2x?yi — y?j + 4xz%k taken over the region of first

Octant of the cylinder y2+z2=9, and x=0, x=2.
b) Using Divergence theorem, evaluate [[. (x dydz + y dzdx + z dxdy), where
S:x2+y%+2z%=a? (CO6)

4. a) Verify Green’s theorem for J.( y-sinx)dx + cos xdy where C is the triangle formed by

c



the Points (0,0),( 7 /2,0),( 7 /2,1).

b) Verify Stokes theorem for F =(x*+y?)i-2xyj taken round the rectangle bounded by the
Lines x=1a,y=0,y=b. (CO06)

5.a) Find the volume of the tetrahedron bounded by the planes x = 0,y = 0,z = 0 and

Z424Z=1,
a b c
b) Find the centroid of the area enclosed by parabola y? = 4ax and the x-axis and latus
rectum. (CO4)
Mid exam question paper along with sample Answers Scripts
MID-1
Answer any two questions 5x2=10
la). Find L (™3¢ [[=% dt)
b). FindL"(log (=) (CO1)
2a). Solve yll = tcos 2t giveny (0)=y'1(0) =0
b) y(t)=1-e7¢ +f0ty(t —u) sinu du (CO2)

3a) Prove that a)8(m,n) = 2 [2sin®™7'6 cos*"~'6 d and

o P e (3 (3 () (2)or () - eI (o)

n n nz

=y

4a) find a) f m
b) fo 374 dx
1 S 1(r(3))?
¢) Prove that [ (1 —x™) = dx = n 2 n(z) (CO3)
Mn
MID-2
Answer any two questions 5x2=10

la. Find the center of gravity of the area of the cardioids r=a(1+cos@).
Using triple integral find the volume of the sphere whose radius is a units.
b) Find the area of the circle x? + y?=a?using double integration. (CO4)

2a) If ? =3x*7 y; + }’xz 7 +2x° yz%. Show that I f dr s independent of the path of

integration. Hence evaluate the integral when C is any path joining (0,0,0) to (2,1,3).
b) Find the values of a and b so that the surfaces ax? — byz = (a + 2)x and 4x%y + z3> = 4

intersect orthogonally at point (1,-1,2). (CO5)
3) Verify Green’s theorem for $[(3x2 — 8y?)dx + (4y — 6xy)dy] where c is the region
bounded by x=0,y=0 and x+y=1. (CO06)

4a) Using Divergence theorem, evaluate . ¢ (xdydz +y dzdx + z dxdy), where



S: x% 4+ y? + z% = a®.

b) If F= yi+(x-2xz)j-xyk, evaluate [(VXF).nds where S is the surface of sphere x? + y%+z% =a® in
Xy plane. (Coe6)
Scheme of Evaluation
Mapping of co’s with po’s
Relationship Course Outcomes (CO) Programs Outcomes (PO)
Course PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 | PO11 | PO12
Outcomes
co1 3 2 2 2 - - - - - - - -
C02 3 2 2 2 - - - - - - - -
co3 3 2 2 2 - - - - - - - -
C04 3 2 2 2 - - - - - - - -
Co5 3 2 2 2 - - - - - - - -
Co6 3 2 2 2 - - - - - - - -
1-LOW 2-MEDIUM 3-HIGH

Attainment of cos & pos (Excel sheet)

Question Bank

Unit-1
-1 55-2
LL (52 (s+2)(s+3))
. . 1 1
2.using convolution find L (S STD6D) (52+16))

3.Evaluate L{e* (cos 2t+(1/2)sinh 2t)} (2005 sep)

4 .Find the Laplace transform of e™3! (2cos5t-3sin5t).(sep 2007)
5. Find the Laplace transform of e* (3sin 2t-5cosh 2t).(sep 2003)
6. Find the Laplace transform of e * sinh bt.(2003 sep)




7. Using the therom on transformation of derivatives, find the Laplace transform
ofe*.(2000

8.Laplace transform of integral.(2003 sep)

9.Find L~1{s/(s*-a%)}.(may 2006)

10.Find inverse laplace transform of (sz+s-2)/s(s+3)(s-2).(2005 sep)

11.Find inverse Laplace transform of (s+2)/(s*-25+5).(2003 sep)

12.Find inverse Laplace transform of (3s-14)/(s*-4s+8).(may 2003).

Unit-2

1.Relation between beta and gamma functions.
2.f055in59cosg 6do

1 L dx
3.f0 Vi1-x2

1= dx
4.f, Vixm
2

oox_
6.f0 1+x*

dx

7.f0°° xMe ™" dx
8.f0°°:—:dx

9.J7 sin™xcos™x dx
10.f01 x™(log x)"dx

Unit-3
1.Find [f(x +y)?dxdy over the area bounded by the ellipse x*/a*+y*/b*=1.(sept 2006)

2.Evaluate [[(x? + y?)dxdy in positive quadrant for which x+y< 1.(may 20006)

3.Evaluate [[(x?+y?)dxdy ove the area bounded by the ellipse x*/a’+y?/b*=1.(.(Dec
2010)

4 .Evaluate [[r3drde over the area included between the circles r=2 sine and r=4
sine.(Dec 2010)

5.Evaluate the triple integral [ffxy*z dx dy dz taken through the positive octant of
the sphere  x’*+y*+z*=a’ . (Dec 2010)



6.Evaluate [[[z2 dx dy dz taken over the volume bounded by the surfaces
x*+y?=a’ x*+y’=z and  Z=0.(may 1999)

7.Evaluate [f[xyz dx dy dz where V is the domain bounded by the coordinate planes
and the plane x+y+z=1(Dec 2000)

8.Evaluate [[f xyz dx dy dz,where the domain V is bounded by the plane x+y+z=a
and the

Coordinate planes.(sep 2006)

9.Find the area of the loop of the curve r=a(l+cose).(sep 2007)

10.Find the volume common to the cylinder xz+y2=a2 and x*+z’=a’.(Dec 2000)

11.Find volume bounded by the cylinder x*+y*=4,y+z=4 and z=0.(sep 2000)

12.Find the volume of the solid generated by the revolution of the cardioid r=a(l-
cose).(may 2006)

13.Find the volume of the region bounded by z=x2+a2,z=0,x=-a,x=a,y=-a,y=a.(sep
2008)

14.Find the volume of the solid generated by the revolution of the cardioid r=a(l-

cose) about its axis.(may 2007)

15.Find by double integral ,the volume of the solid bounded by z=0,x*+y’=land

x+y+z=3.(may 2010)

Unit-4

1. Find the work done by the force = F= (2y+3)i+xzj+(yz-x)k When it moves a particle from the
point (0,0,0) to (2,1,1) along the Curve x=2t?, y=t and z=t* (dec-2010)

2. Use divergence theorem to evaluate [f  (y?z%i + z°x?j + z°y?k).fids ~ where S is the part

of the unit sphere above xy-plane (dec-2010)

3. If F and G are two vectors, then prove that div(FXG) = FcurlG — G.curlF (dec-2010)

4. Evaluate gﬁc xdy + ydx  where c is the loop of the Folium of D’cartes
3at 3at?

=Y S oo (dec-2010)
5. verify stoke’s theorem for F=(2x-y)i-yz?j-y?zk over upper half surface of x*+y*+z>=1 bounded
by its projection on the xy-plane (dec-2010)

Unit-5



1.evaluate Green’s theorem | c (x? — coshy)dx + (y + sinx)dy where c is the rectangle with

vertices (0,0),(J],0),([],1),(0,1) (dec-2010)
2. Find the directional derivative of f(X,y,z)=zx?-xyz at the point (1,3,1) in the direction of the
vector 3i-2j+k (jun-2011)
3. Evaluate the line integral [ (x* + xy)dx + (x* + y?)dy where c is the square formed by the
Lines y=+1,x=*1 (jun-2011)
4. In what direction from the point (-1,1,2) is the directional derivative of o(x,y,z) = xy*z* a
maximum what is the magnitude of this maximum. (jun-2011)
5.find the circulation of F~ round the curve ¢ where F = (e*siny)i + (e*cosy)j and c is the
rectangle whose vertices are (0,0),(1,0),(1,]]/2),(0,] ]/2) (jun-201T1)

6. Prove that if @ and ¢ are scalar functions. Then prove that V@XV¢ is solenoidal (jun-2011)
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