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1.Institute  Vision & Mission : 
 
 Vision of the institute 
To be recognized as a premier institution in offering value based and futuristic quality 
technical education to meet the technological needs of the society. 
Mission of the institute 
To impart value based quality technical education through innovative teaching and learning 
methods. 
To continuously produce employable technical graduates with advanced technical skills to 
meet the current and future technological needs of the society. 
To prepare the graduates for higher learning with emphasis on academic and industrial 
research. 

Mechanical department: 
Vision of the Department  
To be a center of excellence in offering value based and futuristic quality technical education 
in the field of mechanical engineering. 
Mission of the Department 
1. Impart quality technical education imbibed with values by providing state of the art 
laboratories and effective teaching and learning process.  
2.Produce industry ready mechanical engineering graduates with advanced technical and 
lifelong learning skills.  
3.Prepare graduates for higher learning and research in mechanical engineering and its allied 
areas. 

 

 

 

 

 

 

 

 

 

 

 
 
 



PROGRAMME OUTCOMES: 
Engineering knowledge: Apply the knowledge of mathematics, science, engineering 
fundamentals, and an engineering specialization to the solution of complex engineering 
problems. 
1. Problem analysis: Identify, formulate, review research literature, and analyze complex 
engineering problems reaching substantiated conclusions using first principles of 
mathematics, natural sciences, and engineering sciences. 
2. Design/development of solutions: Design solutions for complex engineering problems and 
design system components or processes that meet the specified needs with appropriate 
consideration for the public health and safety, and the cultural, 
societal, and environmental considerations. 
3. Conduct investigations of complex problems: Use research based knowledge and research 
methods including design of experiments, analysis and interpretation of data, and synthesis of 
the information to provide valid conclusions. 
4. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern 
engineering and IT tools including prediction and modeling to complex engineering activities 
with an understanding of the limitations. 
5. The engineer and society: Apply reasoning informed by the contextual knowledge to assess 
societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to 
the professional engineering practice. 
6. Environment and sustainability: Understand the impact of the professional engineering 
solutions in societal and environmental contexts, and demonstrate the knowledge of, and need 
for sustainable development. 
7. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and 
norms of the engineering practice. 
8. Individual and team work: Function effectively as an individual, and as a member or leader 
in diverse teams, and in multidisciplinary settings. 
9. Communication: Communicate effectively on complex engineering activities with the 
engineering community and with society at large, such as, being able to comprehend and 
write effective reports and design documentation, make effective presentations, and give and 
receive clear instructions. 
10. Project management and finance: Demonstrate knowledge and understanding of the 
engineering and management principles and apply these to one’s own work, as a member and 
leader in a team, to manage projects and in multidisciplinary environments. 
11. Lifelong learning: Recognize the need for, and have the preparation and ability to engage 

in independent and lifelong learning in the broadest context of technological change 

 

 

 

 

 

 

 

 



                Course  out comes  
         
CO1 Interpret  the concept of Laplace transforms

CO2 Apply Laplace transform techniques for solving DE’s 
 

CO3 Evaluate integrals using Beta and Gamma functions 

CO4 Determine the multiple integrals and can apply these concepts to find 
areas, volumes , moment of inertia etc of regions on a plane or in space 


CO5 Demonstrate an understanding of vector differentiation. 

CO6  Find the line, surface and volume integrals and converting them                             
From  One to another        
 

    
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Syllabus copy 
UNIT–I 

 
Laplace Transforms: Laplace transforms of standard functions, Shifting theorems, 
derivatives and integrals, properties- Unit step function, Dirac’s delta function, Periodic 
function, Inverse Laplace transforms, Convolution theorem (without proof). 

 
Applications: Solving ordinary differential equations (initial value problems) using Laplace 
transforms. 

 
UNIT-II 

 
Beta and Gamma Functions: Beta and Gamma functions, properties, relation between Beta 

and Gamma functions, evaluation of integrals using Beta and Gamma functions. 
 
Applications: Evaluation of integrals. 

 
UNIT–III 

 
Multiple Integrals: Double and triple integrals, Change of variables, Change of order of 
integration. 

 
Applications: Finding areas, volumes& Center of gravity (evaluation using Beta and Gamma 
functions). 

UNIT–IV 
 
Vector Differentiation: Scalar and vector point functions, Gradient, Divergence, Curl and 
their physical and geometrical interpretation, Laplacian operator, Vector identities. 

 
UNIT–V 
 
Vector Integration: Line Integral, Work done, Potential function, area, surface and volume 
integrals, Vector integral theorems: Greens, Stokes and Gauss divergence theorems (without 
proof) and related problems. 
 
 
 
Text Books: 
1. Advanced Engineering Mathematics by R K Jain & S R K Iyengar, Narosa Publishers 
2. Engineering Mathematics by Srimanthapal and Subodh C. Bhunia, Oxford Publishers 
References: 
1. Advanced Engineering Mathematics by Peter V. O. Neil, Cengage Learning 
Publishers. 
2. Advanced Engineering Mathematics by Lawrence Turyn, CRC Press



                                

LESSON PLAN: 
 
 

UNI
T 
NO 

UNIT 
NAME 

SUB TOPICS NO. Of 
Lectures 
Required 

Sugg
ested 
Book
s 

Remark
s 

I Laplace 
transform  

Defination of Laplace Transforms 
Laplace transform of some 
standardfunctions. 
Laplace Transform of unitstep 
function 
First shifting theorem 
Second shifting theorem 
Scale property 
Inverse Laplace Transforms 
Convolution theorem 
Solving ODE  using Laplace  
Problems on inverse Laplace 
Transforms 
 
Revision of Laplace Transform 

L1 
L2,L3,L4 
 
 
L5,L6,L7 
L8 
L9,L10,L11 
L12,L13, 
L14, 
L15, L16 
 

 
T1, 
R1, 
R2 

 
 
 
 
 
 
Unit-1 is 
complete
d by L16 
 
 
 

II Beta and 
Gamma 
functions 

Defination of gamma functions 
Problems on gamma functions 
Definition of Beta functions  
Problems on Beta functions 
Beta and gamma relation 
Problems on beta and gamma 
relation. 
Revision 

,L17, 
L18,L19, 
L20,L21, 
L22,L23, 
L24, 
L25,L26, 
L27, L28 

 
T1,T2
, R1, 
R2 

 
Unit-2 is 
complete
d by 
 L-28 
 
 

III Multiple 
integrals 

1 Multiple integrals – double 
integrals. 
2 Finding the area of a region using 
double integration 
3. change of order of integration 
4. change of variables (polar, 
cylindrical and spherical 
 

L29, 
L30, L31 
L32 
L33,L34 
L35,L36, 
L37,L38, 
L39, L40, 
L41, 

T1, 
R1, 
R2 

 
Unit-3 is 
complete
d by 
L-41 

IV Vector 
Differentiat
ion 

1.Introduction 
2.Gradient, Divergence, Curl and 
their properties 
 
3.Problems on Gradiant 
4.problems on Divergence 
5.Problems on curl 

L42,L43, 
L44, 
L45, 
L46,L47, 
L48,L49, 
L50, 
L51,L52, 
L53, 

T1,T2
, R1, 
R2 

 
 
Unit-4 is 
complete
d by                    
L-53 
 
 

V Vector 
Calculus 

Laplacian operator 
Line Integral – work done 
Surface Integral 
Volume Integral 
Green’s ,Gauss’s divergence and 
Stoke’s theorem 

L54,L55,L5
6,L57,L58,L
59,L60, 
L61,L62,L6
3,L64. 
 

T2 
Unit-5 is 
complete
d by         
L-64 

                                          TOTAL NO. OF CLASSES                                    64 

 



 

                          SESSION EXECUTION LOG 
 
 

UNI
T 
NO 

UNIT 
NAME 

SUB TOPICS 
Expected period 

I 
Laplace 

transform 

Defination of Laplace Transforms 
Laplace transform of some 
standardfunctions. 
Laplace Transform of unitstep 
function 
First shifting theorem 
Second shifting theorem 
Scale property 
Inverse Laplace Transforms 
Convolution theorem 
Solving ODE  using Laplace  
Problems on inverse Laplace 
Transforms 
 
Revision of Laplace Transforms 

 
27/07/17 to 

26/08/17 

II 
Beta and 
Gamma 

functions 

Defination of gamma functions 
Problems on gamma functions 
Definition of Beta functions  
Problems on Beta functions 
Beta and gamma relation 
Problems on beta and gamma 
relation. 
Revision  

26/08/17   to 
15/09/17 

III 
Multiple 
integrals 

1 Multiple integrals – double 
integrals. 
2 Finding the area of a region using 
double integration 
3. change of order of integration 
4. change of variables (polar, 
cylindrical and spherical 
 

16/09/17   to 
20/10/17 

IV 
Vector 

Differentiat
ion 

1.Introduction 
2.Gradient, Divergence, Curl and 
their properties 
 
3.Problems on Gradiant 
4.problems on Divergence 
5.Problems on curl 

 
 

21/10/17    to 
06/11/17 

V 
Vector 

Calculus 

Laplacian operator 
Line Integral – work done 
Surface Integral 
Volume Integral 
Green’s ,Gauss’s divergence and 
Stoke’s theorem 

 
 

07/11/17  To 
18/11/17 

                                          TOTAL NO. OF CLASSES                                 64    

    

 



 

 

                                   UNIT-I 

LAPLACE TRANSFORMS 

Definition: 

Let f(t) be a function defined for all positive values of t, then the 

Laplace transform of f(t) denoted by L{f(t)} or (s) is defined by 

L{f(t)} = (s)= dt.      ----------------------1 

Provided that the integral exists. Here the parameter ‘s’ is a real 

or complex number. 

The relation (1) can also be written as f(t)= ( (s)). 

f(t) is said to be inverse laplace transform of (s). 

The symbol ‘L’ is called the laplace transform operator. The 

function f(t) must satisfy the following conditions for the 

existence of the laplace transform. 

(a) The function f(t) must be piece-wise continuous in any 

limited interval 0<a≤t≤b. 

(b) The function f(t) is of exponential order. 

Formulae 

L(1) =  

L(t) =  

L(tn) =  

L(eat) =  (s-a>0) 

L(e-at) =  

L(cosat) =
22 as

s


  if s>0 



L(coshat) = 
22 as

s


 

L(sinat) =  if s>0 

L(sinhat) =  

First shifting theorem: 

If L(f(t)) = (s) then L(  = (s-a), s-a>0 

Second shifting theorem: 

 f(t-a)       t>a 

If L(f(t)) = (s) and g(t) =  0             t<a          then 

  L(g(t))=  (s)    

1. Find the laplace transform of   (2cos5t – 3sin5t). 

We have  

L(2cos5t – 3sin5t) =  -   =  

Now applying first shifting theorem 

L(  (2cos5t – 3sin5t)) =  

Changes s to s+3 

     =   =  

2. If L(f(t)) =  then find L(f(3t)) using change of scale 

property. 

 Given L(f(t)) =  = (s) 

 By change of scale property 

   L(f(3t)) =  ( ) 

                                      =    =   



3. Find the laplace transform of g(t) where g(t) =     cos      (t- 

)        if t>  

0     if t<  

               Sol: Let f(t) = cost 

      L(f(t))  =   = (s) 

  g(t) =      f(t- ) = cos (t- ),        if t>  

 0                  if t<  

 Applying second shifting theorem, we get 

     L(g(t))  =  ( )  =  

4. Find L(t2 cos2t) 

L(cost) =  

L( cost)    =  changing s to s+2 

    =  

 =   

L( cost)  = (-1)2  (  

 = (  

5. using laplace transform evaluate  

Sol:         Given integral is same as  

    i.e L( ) where s = 0 

  since L(cosat-cosbt) =  -  

 L( )    = ) ds 

  =   ds 



 =  

  =   

 =   

 =  [log1- ] 

 =  [0 -  

  = -    

  =   

 Take s=0 then 

                  =  (  = log(  

 

 

6.Find L( ) 

we know that L(sint) =  

by first shifting theorem L( sint) = ) s->s+1   

          =  

 = (s) 

L( ) =  ds  

=  ds  =  

                                                             =  -  

 -  

      =      

      



7. Find the laplace transform of periodic function f(t) with 

period T, where  

 ,            0≤ t ≤  

f(t) =  3E -  ,              t T 

 

 ,            0≤ t ≤  

Given        f(t) =  3E -  ,               t T 

 

 Since f(t) is periodic function with period T, we have 

 L(f(t)) =  dt 

 =  [ dt + dt ] 

 =  [  dt + dt ] 

=  [ - E dt + 3E  -  

 

           =  - E(  + 3E (  - 

  

        =   +  ) +  (  - 1) -  (  - 

)] 

         =  [   + (1-  +   -   +  ] 

 =  [ (1-  -   - - ] 

 =  [ (1-  - 2  - 3  – 1 

8. Find L(  + )3 



(  + )3 =  +  + 3.  .  (  + ) 

  =  +  + 3 (  + ) 

 =  +  + 3 + 3  

             L(  +  + 3 + 3 ) = L( ) + L( ) + 3L( ) + 3L(

) 

                       L(tn) =       when n>-1 

  L(t3/2) =       =   =    

 L(t-3/2) =    =   =                        i.e.  = -

 

 L(t1/2) =      =     

 L(t-1/2) =      =     

               L(  +  + 3 + 3 ) =  ( ) -   +  ( ) +  

9.  Using Laplace transform  

show that dt =  

sol:  we note that the given integral is same as 

dt 

i.e. L( ) where s =4 

But L( ) = (-1)2  (L(sin2t)) 

                          = (-1)2  ( ) 

                           = 2.  (  2s) 



                            = - 4  (  

                             = - 4 [ ] 

                                        = - 4 ] 

 =  

                 dt =  

 Putting s = 4, we get 

 dt =  =  =  

10.  Find L(  dt) 

Sol: Let f(t) = coshat then 

L(f(t)) = L(coshat) =  = (s) 

Using the theorem on Laplace transform of integral 

  L  =  (s) 

 = .  =  

 Applying again  

 L(  dt) = .  =  

 

11. Find  (log ( )) 

Let (s) = log ( ) 

 = log (1 + s) – 2 logs 

            Then s) = ( ) -  

                s) =  ( ) -2  

                                           = - 2 

                     (-1) t  s) = - 2 



         =  s) =  

   (log ( )) =  

 

 

INVERSE LAPLACE TRANSFORM: 

If (s) is the Laplace transform of a function f(t) then f(t) is 

called the inverse laplace transform of (s) and it is denoted by 

(s)} i.e. 

 f(t) = (s)} 

where  is called the inverse Laplace transform operator. 

Table of Inverse Laplace transform: 

S.no (s) (s)} =  f(t) 

1 
 

1 

2 
  

3  , n > -1 

 

4 
 

 

5 
 

 

6 
 

 sinat 

7 
 

cosat 

8 
 

 sinhat 

9 
 

coshat 

10  or  sinbt or  



 

 

 

 

 

 

 

 

12. Find 

[ 

] 

    Sol.   We have  = (  - ) 

                   Resolving into partial fractions 

                =  [  - ] 

 =  [  (  - ) -  (  - ) 

 =  [  ( ) -  ( ) +  ( )] 

 =  [ ) – ) + )] 

            =  [16.  - 24 .  + 8. ] 

       Hence [ ] = 

   =  [16.   - 24 .  + 8. ] 

 =  [ 16cosat – 24cos3t+8cos5t] 

13. Find  [ ] 

 sinbt 

11  or 

 

cosbt or cosbt 

12  or 

 

 sinhbt or  

sinhbt 

13  or 

 

coshbt or coshbt 

14 
 

t sinat 

15 
 

tcosat 



We have 

 [ ] = ] 

 = ] =  sint = f(t) 

  By second shifting theorem 

  [ ] =           sin(t-2), t>2                       

(or)         

0 t<2 

                             [ ] = sin(t-2) H(t-2) 

                  Where H(t-2) is the Heaviside unit step function. 

14. Find inverse Laplace transform of log( ) 

Sol: Let (s) = log( ) 

 L( (t)) = log( ) = log(s+1) – log(s-1) 

  L( (t)) = (-1)  (log(s+1) – log(s-1)) 

 = (-1)[  - ] 

 =  -  

 = L( - ) = L(2sinht) 

               Comparing b.s we get 

 L( (t)) = 2sinht  

 f(t) =  sinht 

15. Find [ ] 

We have  

[ ] = (  (  - )) 

 =  ( ) - ( )] 



  =  (sinht – sint) 

 Hence [ ] =  

                                i.e. [ ] =   

                                 =  

                                                       = [(cosht+cost) – (1+1)] 

                                           = [cosht+cott -2] 

Convolution Theorem: 

         If L(f(t)) = (s) and L(g(t)) = (s) then L{f(t) * g(t)} = (s).

(s)                    (or) 

                             { (s). (s)} = f(t) * g(t) 

 

1. Find [ ] = -  [ 2sin2t – 3sint3t ] by using 

Convolution Theorem. 

Sol: 

Let f(s) =  and g(s) =  

Then f(t)= cos2t and g(t) = cos3t 

 [ ] = cos2t * cos3t 

                        =  

 =   

 =  

                                     =  

 

 =   

 =  [ (sin2t-sin3t) +  (sin2t+sin3t)] 



 =  [ sin2t( + ) + sin3t( + )] 

 =  [sin2t( ) + sin3t( )] 

 =  [-2sin2t + 3sin3t] 

 =  [2sin2t - 3sin3t] 

  [ ] =  [2sin2t - 3sin3t] 

2. Find [ ] using the Convolution theorem. 

Sol:   [ ] = [ ] 

Let (s) =  and (s) =  

(s) } = { } = cosat = f(t) and 

(s) } = { } =  sinat = g(t) 

 By the Convolution theorem, 

[ ] = (cosat) * (  sinat) 

                      =   

 =   

 =  

 =   

 =  [tsinat +  cosat - costat] =  sinat 

 [ ] =  sinat 

 

3. Find [ ] 

Sol:       [ ] = [ ] 

   = [ ] 



   = [ ] since by first shifting 

theorem 

 = [ ] + 8 [ ]} 

 = [cos2t + 8.  sin2t] 

 = [cos2t + 4 sin2t] 

 [ ] = [cos2t + 4 sin2t] 

19. Find [2 + slog( )] 

 Let (s)= log( ) = log(s -1) –log(s+1) 

             (s)=  -  

    Now [ (s)] = [  - ] 

i.e (-1)tf(t) =  - ) 

f(t) = [ (s)] 

                =  - ) 

Thus f(t) = [log( )] = ] = sinht 

Also f(0) = 0 

  [slog( )] = [s. (s)] = f1(t) 

 = -2  [  

 = [ sinht – tcosht] 

     Hence  [2 + slog( )] = (2) +  [slog( )] 

         = [ sinht – tcosht] since (2) doesnot 

exist. 

Solution of O.D.E equations with constant co-efficient: 

                    L[fn(t)] = SnL{f(t)] – Sn-1f(0) - Sn-2 f1(0)………….. 

fn-1(0) 



20. Using Laplace transform Solve ( - +4D -4) y = 68

sin2x, y=1, Dy= -19,  

                   D2y= -37 at x = 0 

                   Given differential equation can be written as 

                   y111-y11+4y1-4y =68 sin2x -----------------(1) 

                   taking L.T on B.S of equation (1) we get, 

                   L(y111) - L(y11) + 4L(y1)-4L(y) = 68L( sin2x) 

                  i.e. [s3L(y) – s2y(0) –sy1(0) - y11(0)] – [s2L(y) – sy(0) 

–y1(0)]  

                    + 4 [ s.L(y) – y(0)] – 4 L(y) = 68. …..(2) 

               using the given conditions y(0) = 1, y1(0) = -19, y11(0)= 

-37 

               (2) reduces to 

[s3L(y) – s2–19s +37] – [s2L(y) – s +19] + 4 [ s.L(y) -1] – 4 L(y) 

=  

                   i.e. ( - +4s -4) L(y) - s2+20s+14 =  

                   i.e. ( - +4s -4) L(y) =  +s2-20s-14 

                   (s-1) ( +4) L(y) =   

                     i.e. L(y) =  

                       or y = [ ] 

21. Solve the D.E  – 4  – 12x =  given that x(0) = 1 and 

x1(0) = -2 using   

       Laplace transforms. 

Given equation can be written as  

 x11-4x1-12x =  



 taking L.T on both sides we get, 

 L(x11) – 4L(x1)-12L(x)=L(  

 Using the given conditions , it reduces  to 

 [ -L(x)-s+2] -4[s.L(x)-1] -12L(x) =  

 i.e. ( -4s-12) L(x) =  + s -6 

 or (s+2)(s-6) L(x) = + s -6 

 or L(x) =  + [ ] 

 i.e. x = ]+ [ ] 

 Let  =  +  

     1 = A(s-3)(s-6)+B(s+2)(s-6)+c(s+2)(s-3) 

  Put s=-2 in (3) 

    1 = 40A A =  

  Put s=3in (3) 

    1 = -15B  B =  

  Put s=6 in (3) 

    1 = 24C  C =  

  Substitute A, B and C we get 

                         =  -  +  

Hence x =  [ ] -  [ ] +  [ ] +   [ ] 

 =  -  + +  

 = -  +  

 

22. Using Laplace transform, Solve ( +4D +5) y = 5 Given that 

y(0) = 0 and y11(0) = 0. 

 Sol: Given differential equation can be written as 



   y11+4y1+5y = 5 

   taking L.T on both sides we get 

   L(y11)+4L(y1)+5L(y) = L(5) 

   [ L(y) – sy(0) - y1(0)] + 4[s.L(y) – y(0) + 5L(y)] = 

5.L(1) 

  Using the given conditions, it reduces to 

   ( +4s+5) L(y) =  

    L(y) =  =  -  

   y = [ - ] 

         = [ ] - ] 

       = 1 -  . ] 

  = 1 -  . [  + ] 

                   = (1 - )(cost+2sint) 

23. Find (cot-1s) 

Sol: (s) = cot-1s  

  Then (s) = (cot-1s) =  

  We have ( (s)) = (-1) t f(t) 

  f(t) = [ (s)] = [ 1(s)] 

    = [  

                   = [  

  = sint 

24. If L(f(t)) = (s) then L  =  

 Given that L(f(t)) = (s) 

  Then (s) = L(f(t)) =  f(t)dt 



  Integrating on both sides w.r.to ‘s’ from s to  

   = f(t)dt] ds 

Interchanging the order of integration in the repeated integrals as 

s and t are independent variables, we have 

   = f(t)ds] 

   = dt 

   = dt 

   = ] dt 

   = ] dt 

   = ] dt =  

 L  =  

25. Find L[ costat] 

 Let f(t) =  cost 

   L(f(t)) = L(  cost) 

    =  changes s to s+1 

    =  =  

 Using the theorem of L.T of integrals, 

   L[ costat] =  

 =  

26. Using Laplace transform evaluate dt 

           The given interval same as dt where s=0 ---

--------(1) 

 L( ) = ) ds 



 Since L(  = ds 

                        = - ) ds 

                           =  

    =  

    =  

    = log 1 -  

    = -  

  i.e. L( ) = -  = -log( ) 

by using (1) we get,  

  dt = L( )  = -log( ) 

Put s=0 

 = dt = -log( ) = -log2 

 dt = -log2 

27. Find inverse Laplace transforms   

 Let  =  

                =  

             ( (s)) = [ ] 

              = [ ] 

              =  . sin2t   

 since [ ] =  sin2t 

 =  . sin2t 



28. Evaluate [ ] 

Sol: [ ] = [ ] + [ ] 

 Since [ ] = sint = f(t) say 

 By second shifting theorem 

[ ] =        sin(t- ) , t>  

                                                       0,     t<  

Or [ ] =sin(t - ) H(t - ) 

  = sintH(t - ) 

Hence [ ] = sint – sint.H(t - ) = sint[1-H(t - )] 

Where H(t - ) is the Heaviside unit step function. 

 

29. Solve the Differential equation y11 + n2y = a sin(nt+2), y(0)= 

0 and y1(0) = 0 using Laplace transform. or  

Using Laplace transform Solve (D2 + n2)x=  a sin(nt+2), x=Dx=0 

at t=0 

Sol:      Given equation can be written as x11 + n2x = a (sinnt cos2 

+ cosnt sin2) 

Taking Laplace Transform on both sides we get, 

L(x11)+n2L(x) = a cos2. L(sin nt) + a sin2. L(cosnt) 

[s2L(x) – s(x)(0) - x1(0)]  + n2(X)  = a cos2 ( ) = a 

sin2( ) 

Using the given condition 

L(x) = acos2 . ( ) + a sin2 .  

Taking inverse Laplace Transform on both sides, we get 



x = ancos2.  [ ] + a sin2.  [ ] 

We have [ ] =  

  [ ] = sinnt 

  [ ] =  [  . ] 

    =  

    = [ -ntcosnt + sinnt] 

  x = an cos2. [ -ntcosnt + sinnt] + a sin2. sinnt 

  = [ -nt cos2cosnt + cos2. Sinnt +nt sin2sinnt] 

  = [ sinnt cos2 – nt( cosnt. Cos2 - sinnt sin2] 

  = [ sinnt cos2 – nt( cosnt+2)] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

UNIT - I 

Laplace Transform: 

Objective type Questions: 

1.L(e3t) 

(a) 1/s + 1 (b) 1/s - 3 (c) 1/s + 3  (d) 1/s 

2. L(t2) 

(a) 1/s2   (b) 1/s3  (c) 2/s3  (d) 2/s4 

3. L(t5) 

(a)  1/s5  (b) 1/s6 (c) 24/s5  (d) 120/s6 

4. L(sin22t) 

(a) s2/s(s2 + 16)    (b) s2 + 2/s(s2 + 16)    (c) s2 + 4/s(s2 + 16)

 (d) s2+8/s(s2+16) 

5. L(cosh2t) 

(a) 2/s2 - 4  (b) s/s2 - 4 (c) s/s2  + 4             (d) 

2/s2 + 4 

6. L(te2t) 

(a) 1/(s - 2)2  (b) s/(s - 2)2           (c) s + 2/(s - 2)2  (d) s 

+ 2/s2 + 4 

7. L(tsinht)= 

(a) 2/(s2 - 1)2 (b) s/(s2 - 1)2           (c) 2s/(s2 - 1)2  (d) s 

- 2/(s2 - 1)2 

8. L-1[1/s - 5] 

(a) e5t  (b) e-5t  (c) sint   (d) te5t 

9. L-1[2/s - 9) 

(a) 2e-9t   (b) 2sint (c) e9t   (d) e5t 



10. L-1[6/s4] 

(a) t2   (b) t3  (c) t4   (d) t3/6 

11. L-1[1/(s + 2)(s - 4)] 

(a) e-2t  –  e-4t  (b) e4t – e-2t     (c) 1/6[e-4t – e-2t]   (d) 

½[e4t – e-2t] 

12. L(sintcost) 

(a) 2/s2 + 4   (b) 1/s2 + 4 (c) 2/s2 - 4  (d) s/s2 + 

4 

13. L-1[s + 5/s2 - 4s + 5] 

(a) e-2tcos2t  (b) e-2tsint (c) e-2tcost + 5e-2tsint  (d) e-

2t(sint+cost) 

14. L[e2t – e3t/t] 

(a) log[(s - 3)/s -2]      (b) log [s - 2/s - 3] (c) log[s + 4/s – 9]

 (d) log[s + 2/s + 3] 

15. L(cos2t) 

(a) s/s2 + 4       (b) s/2(s2 + 4)  (c) 1/2s  +  ½(s2 + 4) (d) 1/2s + 

s/2(s2 + 4) 

16. L-1[log s + 6/s – 2] 

(a) e 2t – e-6t/t  (b) e-6t – e2t/t (c) e2t  + e6t/t         (d) e2t + e-

6t/t 

17. L-1[5/s5] 

(a)  5t4  (b) t4/24  (c) (5/24) t4  (d) t5 

18. L-1 [3s/s2 + 16] 

(a) cos4t/3   (b) 3co4t  (c) cos4t  (d) 3sin4t 

19.If [F(t-a)]=0 , 0<t<a then L[F(t-a)]=   

      (a)    (b) s   (c)    (d)  

 



 20. L(sinh4t) 

(a)   (b)    (c)   (d)  

21.  If L(f(t))=  then L  = 

(a)    (b)      (c)   (d)  

22.      is possible only when n is 

(a) Positive integer (b) zero (c) negative Integer (d) 

negative rational 

23.     = 

(a) cost u(t-   (b)  sint u(t-  (c)  -sint u(t- (d) 

 -cost u(t-  

24.   

(a)      (b)   

(c)     (d)  

25.    

(a) 0  (b)1   (c) t  (d) (t-1) 

26.    

(a)   (b)   (c)   (d)  

27.     

(a)   (b)   (c)   (d)  

28. Laplace transform of f(t) is defined  as 

(a)  (b)   (c)  (d) 

 

29.  

(a)  (b)  (c)  (d) none 



30.  

(a)   (b)    (c)   (d) 0 

31. When s>a  L(  ) 

(a)   (b)   (c)  (d)  

32.  

(a) 0  (b) 1  (c)   (d)  

33. If  Lt(t-a) is a unit step function,L{H(t-a)} 

(a)   (b)   (c)    (d)  

34. L(  ) 

(a)   (b)    (c)    (d)  

35. When   >k ,L(sinhkt) 

(a)   (b)    (c)   (d)  

36.  

(a) n!  (b) n  (c)n-1   (d)  

37. The value of  

38.   =  _________________ 

39.    = ___________________ 

40. L  = _______________________ 

41.   =  _________________ 

42.   =  _________________ 

43.   =  _________________ 

44. L =  _________________ 

45. If L[f(t)]=    then L[f(2t)]=_________________ 

46. If f(0)=0 then L(   _________________ 

47.   =  _________________ 

48.   =  _________________ 

49.   =  _________________ 

50.   =  _________________ 



 
   
 

                            UNIT-II 
 

Beta and gamma functions 
 

1. THE GAMMA FUNCTION 

 
The gamma function may be regarded as a generalization of n! (n-factorial), where n is any 
positive integer to x!, where x is any real number. (With limited exceptions, the discussion that 
follows will be restricted to positive real numbers.) Such an extension does not seem reasonable, 
yet, in certain ways, the gamma function defined by the improper integral 
 
 
 
 
 
meets the challenge. This integral has proved valuable in applications. However, because it 
cannot be r presented through elementary functions, establishment of its properties take some 
effort. Some of the important ones are outlined below. 
 
The gamma function is convergent for x > 0.  It follows from eq.(1) that 
 
 
 
 
 
 
 
 
 
 
 
 
 
This is a fundamental recurrence relation for gamma functions. It can also be written as 

Γ(x) = (x − 1)Γ(x − 1). 
 
A number of other results can be derived from this as follows: If x = n, a positive integer, i.e. if n 
≥ 1, then 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Example: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Negative values of x 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Example: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
2. THE BETA FUNCTION 

 
The beta function is a two-parameter composition of gamma functions that has been useful enough in 
application to gain its own name. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Relation between the gamma and Beta Functions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Application of gamma and beta functions 

 
The use of gamma and beta functions in the evaluation of definite integrals depends largely on the ability 
to change the variables to Express the integral in the basic form of the beta function 
 
 
 
 
 

 
Example: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Example: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
Exercises 

1. Evaluate  
 
 

2. Evaluate  
 
 
 
 
 
 

3. Determine  
 
 
 
 
 
 
 
 
 

4. Evaluate  
 
 
 
 
 
 

 
5. Determine  

 
 
 
 

 
6. 

 
 
 
 
 
 
 

7.  Evaluate the following integrals 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
UNIT-III 

                             Multiple Integrals& its applications 

 

Definite Integrals: Let y =f(x) be a function of one variable define and bounded on [a,b] 

consider the sum )  of this sum tends to a finite limit as n =>  such that length 

of  tends to O for arbitrary choice of the ti’s.  The limit is define to be the definite integral 

. 

 The generalization of this definition to two dimensions is called a double integral and to 

three dimensions is called a triple integral. 

Double Integral: An expression of the form  or 

 is called an iterated integral or double integral. 

1) Evaluate dy dx 

Ans: =  (  

2) Evaluate  dxdy 

  = dy 

  = dx 

  =  

  =   

  =   

  =  +  -   =   =  =  



P.T ) dx dy 

 = ) dy dx 

 L.H.S = ) dx]dy 

  = dy 

  = dy 

  =  

  =  

  = (  * 4 + ) - (  + e) 

  = 7 -  +  – e 

  =  +  – e 

 R.H.S = ) dx] dy 

  = dx 

  = dx 

  = dx 

  =  

  = (  * 9+ ) - ( * 16+ -4e) 

  =  +  – e  

 L.H.S =R.H.S 

 



3). Evaluate  where R is the region bounded by the parabolas  = 4x and  = 4y 

  The co-ordinates of points O & A are 

  (0,0) and (4,4) 

 

 

   =  

    =  

    =  -  

   =  

  = [ 32- ] 

  = [ ] = [ ] =  

 =  

 

4). Evaluate  dx dy in positive quadrant for which x+y≤1. 



 

 dxdy =  

 

           =   dx 

    =  +  

   =  

   =  -  .  +  -  

  =  -  +  -  =  =  

dxdy =  

Change of order of integration: 

5). Evaluate the following integrals by changing the order of integration. 

Sol:  

  

The area of integration lies between y=0 which is x-axis and  

y =  =>  +  = 1 

Which is a circle. Also limits of x are 0 to 1. 

Hence the region of integration is OAB and is divided into vertical strip for changing the order of 

integration; we shall divide the region of integration into horizontal strips. 



The new limits of integration become x = 0 to x=  and those for ‘y’ will be y=0 to y = 

1. 

Hence  

 =   

    =  

    =   

Put y = sin  dy=cos  

y=0 => , 

y=1 =>  

hence I=  

   =  .  .  =  

 

6). dy dx 

Sol. The region of integration lies between x=y a straight line and passing through the origin x=a 

and y=0. Also the limits for y are 0 to a, which is  and the region is divided by horizontal 

strips. 

By changing the order of integration take a vertical strip PQ so that the new limits become y=0 to 

y=x and x varies from 0 to a. 

Hence I = dy dx 

       = dy 

     = 

 



      =  

         =  =  

                 dy dx =  

7).  

Sol. The region of integration is defined by y=  =>  =  which is a parabola and y=  => 

x=ay is a straight line passing through the origin. The points of intersection are O(0,0) and 

A(a,1). The limits for x are 0 to a. 

Integration is done by taking strip parallel to y-axis. By changing the order of integration take a 

strip PQ parallel to x-axis. The limits for x in this case will be x=a  to x=ay and that for y will 

be y=0 to y=1. 

  I =  

 =  

  =  

  =  

  =  

  =  +  -  -   =  +  

  =  +  

Change of variables: 

Let x and y be functions of u and v and let x =  and y = x(u,v) then 

 is transformed into  



Where  =  is the jacobian of transformation from (x,y) to(u,v) co-ordinates and R1is the 

region in the uv plane corresponding to R in the xy plane. 

In polar co-ordinates x=rcos  , y= rsin  

  =  =  = r 

  =  

8). Evaluate the following integrals by changing to polar co-ordinates. 

 dxdy 

Since both x and y vary from 0 to , the region of integration is the xoy plane, change to polar 

co-ordinates, x= , y =  dx dy = r dr d  and  = . In the region of 

integration ‘r’ varies from 0 to  and  varies from 0 to . 

  dxdy =  r dr d  

Put t =  

  dt = 2r dr 

r =0 => t=0 

r=  => t =   

I = d  

       = d  

   = d  

   =  =  .  =  

9). Show by double integration, the area between the parabolas  = 4ax and   = 4ay is  



Sol: The P OI of given curves is A(0,0) and B(4a,4a). by taking a vertical strip parallel to y-axis. 

We get the area between the two parabolas as: 

 

A =  

  = dy 

  = dx 

  =    =  -  =  

           =  

Triple integrals: 

Let f(x,y,z) be a function which is defined at all points in a finite region v in space. Let ,  

be an elementary volume v enclosing of the point (x,y,z) thus the triple summation. 

,  

If it exists is written as  dx dydz which is called the triple integral of f(x,y,z) over 

the region v. 

If the region v is bounded by the surfaces x=x1, x=x2, y=y1, y=y2, z=z1, z=z2 then 

dxdydz =  



Note: 

(i) If x1, x2; y1, y2; z1, z2 are all constants then the order of integration is immaterial 

provide the limits of integration are changed accordingly. 

i.e. 

 

 

 

(ii) If, however ,  are functions of x and y and ,  are functions of x while 

and  are constants then the integration must be performed first w.r.to ‘z’ then w.r.to 

‘y’ and finally w.r.to ‘x’. 

i.e. 

dxdydz = 

 

10). Evaluate the following integrals: 

(i)  

Sol                

                      

=  

=  



=  

=  

=  

=  

=  

=  

=  [  -  + ]=  

=  

(ii)    

Sol.    I =  

Consider  =  

    =  log e -  + 1 

    = x - +1 

    = (x-1) + 1 

I =  + 1} dx 

Consider  - + 1} dx 

 



 

+logy] – [e-2e+1] 

 

 I = dy 

  

= – 

-  

= –( -3-e) 

=  =  [  -8e+13] 

 =  [  -8e+13] 

  



 

MULTIPLE INTEGRALS 

1.  

      (a)       (b)   (c)   (d)  

2. + ) dx dy 

     (a) ( + )    (b) ( + ) (c) ( + )     (d) ( + ) 

3.  

      (a)   (b)   (c)   (d)  

9.      dxdy 

      (a)   (b)   (c)   (d)  

10.  

         (a)   (b)   (c)   (d)  

11. The iterated integral for  after changing order of    

           Integration is------- 

 Ans:  

12. after changing to polar co-ordinates is 

  (a) sin   (b)  sin  

   (c )  sin   (d) None 

13. after changing the order of integration is 

  (a)   (b)  



  (c )    (d) None 

14.  

  (a)   (b)   (c)   (d)  

15. The area enclosed by the parabolas  = y and =x is 

  (a)  (b)   (c)   (d)  

16). The area of the region bounded by  = 4ax and  = 4ay is 

  (a)  (b)   (c)  (d)  

17. the area of a plate in the form of a quadrant of the ellipse  is 

  (a)  (b)   (c)   (d) None 

18.  

  (a)   (b)   (c)   (d)  

19.  

  (a) 12  (b) 24  (c) 48  (d) 36 

20. The volume of tetrahedron formed by the surfaces x=0, y=0,z=0 and  

           = 1 is 

  (a)   (b)   (c)   (d)  

  



  

                             MULTIPLE INTEGRALS 

1) (i) Evaluate  

(ii) Evaluate  dx dy 

2) (i) Evaluate  dx dy in the positive quadratic for which 

                 x + y≤1 

(ii ) Evaluate  dx dy over the area bounded by the ellipse   

          = 1. 

3) Evaluate   

4) Evaluate  dx dy by changing into polar co- ordinates. 

5) By changing the order of integration, evaluate  

6) Evaluate  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

xyz dz dy dx 
 



UNIT-IV 
Vector Differentiation and Vector Operators 

 
INTRODUCTION 

 In this chapter, vector differential calculus is 

considered, which extends the basic concepts of 

differential calculus, such as, continuity and 

differentiability to vector functions in a simple and natural 

way. Also, the new concepts of gradient, divergence and 

curl are introduced. 

DIFFERENTIATION OF A VECTOR FUNCITON 

 Let S be a set of real numbers. Corresponding to each 

scalar t ε S, let there be associated a unique vector f . Then

f  is said to be a vector (vector valued) function. S is 

called the domain of f . We write f  = f (t). 

 
 Let kji ,, be three mutually perpendicular unit vectors 

in three dimensional space. We can write f  = f (t)= 

ktfjtfitf )()()( 321   , where f1(t), f2(t), f3(t) are real valued 



functions (which are called components of  f ). (we shall 

assume that kji ,,  are constant vectors). 

 
1. Derivative: 
 Let f  be a vector function on an interval I and a є I. 
then  

at

aftf
Lt at






)()( , if exists, is called the derivative of  f  at 

a and is denoted by f
1(a) or 









dt

fd  at t = a. we also say that 

f  is differentiable at t =a if  f
1(a) exists. 

 
2. Higher order derivatives 
Let f be differentiable on an interval I and f

1= 
dt

fd be the 

derivative of f . 
at

aftf
Lt at






)()( 11

 exists for every a Є I1 . it is 

denoted by f
11= 

2

2

dt

fd .  

Similarly we can define f
111(t) etc. 

 
We now state some properties of differentiable 

functions (without proof) 

 (1) Derivative of a constant vector is a . 

If  a  and b  are differentiable vector functions, then 

 (2). 
dt

bd

dt

ad
ba

dt

d
 )(  

  
 (3). 

dt

bd
ab

dt

ad
ba

dt

d
..).(   



 (4). 
dt

bd
xabx

dt

ad
bxa

dt

d
)(  

  
 (5). If f is a differentiable vector function and  is a 
scalar differential function, then f

dt

d

dt

fd
f

dt

d 
 )(  

 (6). f = ktfjtfitf )()()( 321   , where f1(t), f2(t), f3(t) are 
Cartesian components of the vector f , then 

k
dt

df
j

dt

df
i

dt

df

dt

fd 321   

 (7). The necessary and sufficient condition for f (t) to 
be constant vector function is 

dt

fd = 0. 

 
3. Partial Derivatives 
 Partial differentiation for vector valued functions can 

be introduced as was done in the case of functions of real 

variables. Let f  be a vector function of scalar variables p, 

q, t. Then we write f = f (p,q,t). Treating t as a variable 

and p,q as constants, we define  

    
t

tqpfttqpf
Lt t






),,(),,(
0




 

If exists, as partial derivative of  f  w.r.t. t and is denot by 

t

f



  

 Similarly, we can define 
p

f



 ,
q

f



 also. The following are 

some useful results on partial differentiation. 
 



4. Properties 
 
1) 

t

a
a

t
a

t 















 )(  

2). If λ is a constant, then 
t

a
a

t 







 )(  

3). If c  is a constant vector, then 
t

cc
t 






 
 )(  

4). 
t

b

t

a
ba

t 












)(  

5). 
t

b
ab

t

a
ba

t 












..).(  

6). 
t

b
xabx

t

a
bxa

t 












)(  

7). Let f = kfjfif 321   , where f1, f2, f3are differential scalar 

functions of more then one variable, Then 
t

f
k

t

f
j

t

f
i

t

f


















 321

(treating kji ,,  as fixed directions) 
 
 
5. Higher order partial derivatives 

 Let f = f (p,q,t). Then .,
2

2

2

etc
t

f

ptp

f

t

f

tt

f









































  

6.Scalar and vector point functions: Consider a region 

in three dimensional space. To each point p(x,y,z), 

suppose we associate a unique real number (called scalar) 

say . This (x,y,z) is called a scalar point function. Scalar 

point function defined on the region. Similarly if to each 

point p(x,y,z)we associate a unique vector f (x,y,z) we 



associate a unique vector f (x,y,z). f  is called a vector 

point function. 

Examples: 

 For example take a heated solid. At each point 

p(x,y,z)of the solid, there will be temperature T(x,y,z). 

This T is a scalar point function. 

 Suppose a particle (or a very small insect) is tracing a 

path in space. When it occupies a position p(x,y,z) in 

space, it will be having some speed, say, v. This speedv is 

a scalar point function. 

 Consider a particle moving in space. At each point P 

on its path, the particle will be having a velocity v  which 

is vector point function. Similarly, the acceleration of the 

particle is also a vector point function. 

 In a magnetic field, at any point P(x,y,z) there will be 

a magnetic force f (x,y,z). This is called magnetic force 

field. This is also an example of a vector point function. 

The students will come across several scalar and vector 

point functions in their respective subjects of study. 



 
 

 

 

7. Tangent vector to a curve in space. 

 Consider an interval [a,b]. 

Let x = x(t),y=y(t),z=z(t)be continuous and derivable for 

a t b. 

 Then the set of all points (x(t),y(t),z(t)) is called a 

curve in a space. 

Let A = (x(a),y(a),z(a)) and B = (x(b),y(b),z(b)). These 

A,B are called the end points of the curve. If A =B, the 

curve in said to be a closed curve. 

 Let P and Q be two neighbouring points on the curve. 

 Let  

 Then 
t

r



 is along the vector PQ. As Q→P, PQ and 

hence 
t

PQ


 tends to be along the tangent to the curve at P. 



Hence  
t

r
lt
t 


 0

= 
dt

rd  will be a tangent vector to the curve at P. 

(This 
dt

rd  may not be a unit vector) 

 Suppose arc length AP = s. if we take the parameter 

as the arc length parameter, we can observe that 
ds

rd  is unit 

tangent vector at P to the curve. 

VECTOR DIFFERENTIAL OPERATOR 

 Def. The vector differential operator (read as del) is 

defined as  


z

k
y

j
x

i












 . This operator possesses properties 

analogous to those of ordinary vectors as well as 

differentiation operator. We will define now some 

quantities known as “gradient”, “divergence” and 

“curl” involving this operator . We must note that this 

operator has no meaning by itself unless it operates on 

some function suitably. 

 
GRADIENT OF A SCALAR POINT FUNCTION 



 Let (x,y,z) be a scalar point function of position 

defined in some region of space. Then the vector function 

z
k

y
j

x
i













   is known as the gradient of  or  

 = (
z

k
y

j
x

i












 ) = 
z

k
y

j
x

i












   

 

 

Properties: 

(1) If f and g are two scalar functions then grad(f 

g)= grad f  grad g 

(2) The necessary and sufficient condition for a 

scalar point function to be constant is that f = 


O 

(3) grad(fg) = f(grad g)+g(grad f) 

(4) If c is a constant, grad (cf) = c(grad f) 

(5) grad )0(,
)()(

2












g

g

ggradffgradg

g

f  

(6) Let r = xi+yj+zk. Then dr= (dx)i+(dy) j+(dz)k. if 

 is any scalar point function, then dz
z

dy
y

dx
x

d










































z
k

y
j

x
i  



DIRECTIONAL DERIVATIVE  

Let (x,y,z) be a scalar function defined throughout some 
region of space. Let this function have a value  at a point 
P whose position vector referred to the origin O is OP = r. 
let +Δ be the value of the function at neighbouring 
point Q.  If  Δr. . Let Δr be the length of Δ . 

gives a measure of the rate at which  change when we 

move from P to Q. then limiting value  is called 

the derivative of  in the direction of PQ or simply 

directional derivative of  at P and is denoted by d/dr. 

 

Theorem 1: The directional derivative of a scalar point 

function  at a point P(x,y,z) in the direction of a unit 

vector e is equal to e. grad =e. . 

 

Level Surface 

If a surface (x,y,z)= c be drawn through any point P(r), 

such that at each point on it, function has the same value 



as at P, then such a surface is called a level surface of the 

function  through P. 

e.g : equipotential or isothermal surface. 

Theorem 2: at any point is a vector normal to the level 

surface (x,y,z)=c through that point, where c is a 

constant. 

The physical interpretation of  

 The gradient of a scalar function (x,y,z) at a point 

P(x,y,z) is a vector along the normal to the level surface 

(x,y,z) = c at P and is in increasing direction. Its 

magnitude is equal to the greatest rate of increase of . 

Greatest value of directional derivative of  at a point P 

= |grad | at that point.  

 
SOLVED EXAMPLES 

Example 1:  If a=x+y+z, b= x2+y2+z2 , c = xy+yz+zx, 
prove that [grad a, grad b, grad c] = 0. 
Sol:- Given a=x+y+z      1,1,1 















z

a

y

a

x

a  

Grad a = a = zji
x

a
i 



  



Given b= x2+y2+z2
z

z

b
y

y

b
x

x

b
2,2,2 













  

Grad b = b = kzjyix
z

b
z

y

b
j

x

b
i 222 













  

Again c = xy+yz+zx   xy
z

c
xz

y

c
zy

x

c















,,  

Grad c = kyxjxzizy
z

c
z

y

c
j

x

c
i )()()( 













  

[grad a, grad b, grad c] = )(,0222

111

tionsimplificaon

yxxzzy

zyx 



 

[grad a, grad b, grad c] =0 
 
Example 2: Show that [f(r)] = r

r

rf i )( where r = kzjyix  . 

Sol:-since r = kzjyix  , we have r2= x2+y2+z2 
 Differentiating w.r.t. ‘x’ partially, we get 
2r

r

z

z

r

r

y

y

r
Similarly

r

x

x

r
x

x

r




















,.2  

[f(r)] =  



























r

x
rfi

x

r
rfirf

z
k

y
j

x
i )()()( 11  

 =   r
r

rf
xi

r

rf
.

)()( 11

 

Note : From the above result, (log r) = r
r 2

1  

 
Example 3: Prove that (rn)= nrn-2

r . 
Sol:- Let  r = kzjyix   and r = r . Then we have r2 = 

x2+y2+z2 Differentiating w.r.t. x partially, we have 
2r

r

z

z

r
and

r

y

y

r
Similarly

r

x

x

r
x

x

r




















.2  

(rn)=   








)()( 2211 rrnxirn

r

x
nri

x

r
nrir

x
i nnnnn  

Note : From the above result, we can have 



(1). ,
1

3r

r

r









  taking n = -1 (2) grad r = 

r

r , taking n = 1 

 
Example 4: Find the directional derivative of f = 
xy+yz+zx in the direction of vector kji 22   at the point 
(1,2,0). 
Sol:- Given f = xy+yz+zx. 
 Grad f = kyxjxzizy

z

f
z

y

f
j

x

f
i )()()( 













  

If e  is the unit vector in the direction of the vector kji 22  , 
then  
 

  )22(
3

1

221

22
222

kji
kji

e 



  

Directional derivative of f along the given direction  =  

 

 
 
 
Example 5: Find the directional derivative of the function 
xy2+yz2+zx2 along the tangent to the curve x =t, y = t2, z = 
t3 at the point (1,1,1). 
Sol: - here f = xy2+yz2+zx2 
  f = 

z

f
k

y

f
j

x

f
i













 = (y2+2xy)j+(x2+2yz)k 

 At (1,1,1) ,   f = kji 333   
 Let r be the position vector of any point on the curve 
x =t , y = t2, z = t3. then  
 



r =  kzjyix ktjtit 32   
  




ktjti

t

r 232 )32( kji  at (1,1,1) 

We know that 
t

r



  is the vector along the tangent to the 

curve. 
Unit vector along the tangent = e  

 
Directional derivative along the tangent = f .e  
  = 

14

1
)32( kji  .3 )( kji 

14

18
)321(

14

3
  

Example 6: Find the directional derivative of the function 

f = x2-y2+2z2 at the point P =(1,2,3) in the direction of the 

line PQ  where Q = (5,0,4). 

 

Sol:- The position vectors of P and Q with respect to the 

origin are OP = kji 32   and OQ = ki 45   

 PQ =OQ  –OP  = kji  24  

 Let e  be the unit vector in the direction of PQ. Then  

21

24 kji
e


  

 grad f = 














z

f
k

y

f
j

x

f
i kzjyix 422   

 The directional derivative of f  at P (1,2,3) in the 
direction of PQ = e .f 
 = 

21

1
)24( kji  . )422( kzjyix  )28(

21

1
)448(

21

1
)3,2,1(  atzyx  



 
Example 7: Find the greatest value of the directional 
derivative of the function f = x2yz3 at (2,1,-1). 
Sol: we have 
 grad f = 















z

f
k

y

f
j

x

f
i kyzxjzxixyz 22323 32  = kji 1244   at 

(2,1,-1). 
 Greatest value of the directional derivative of f = 

1441616 f = .114  

 
Example 8:  Find the directional derivative of xyz2+xz at 

(1, 1 ,1) in a directional of the normal to the surface 

3xy2+y= z at (0,1,1). 

Sol:- Let f(x, y, z)  3xy2+y- z = 0 

 Let us find the unti normal e to this surface at (,1,1). 

Then  

 .1,16,3 2 














z

f
xy

y

f
y

x

f  

 f = 3y2i+(6xy+1)j-k 

 (f)(0,1,1) = 3i+j-k = n 

 e = 
11

3

119

3 kjikji

n

n 





  

 Let g(x,y,z) = xyz2+xz then 

xxy
z

g
xz

y

g
zyz

x

g















2,, 22  

 g=(yz2+z)i+xz2j+(2xyz+x)k 

 And [g] (1,1,1) = 2i+j+3k 



 Directional derivative of the given function in the 

direction of e  at (1,1,1) = g.e  

     =(2i+j+3k). 
11

4

11

316

11

3











  kji  

Example 9: Find the directional derivative of 2xy+z2 at 
(1,-1,3) in the direction of kji 32  . 
Sol: Let  f = 2xy+z2

.2,2,2 z
z

f
x

y

f
y

x

f














  

 grad  f = kzjxiy
x

f
i 222 



  and (grad f)at (1,-1,3)= 

kji 622   
 given vector is  1494132  akjia  

 directional derivative of f in the direction of a  

 
14

20

14

1842

14

).622)(32(.








 kjikji

a

fa  

 
Example 10: Find the directional derivative of  = 

x2yz+4xz2 at (1,-2,-1) in the direction 2i-j-2k. 

Sol:- Given  = x2yz+4xz2 

 .8,,42 222 xzyx
z

zx
y

zxyz
x














   

Hence  = )8()42( 222 xzyxkzxjzxyzi
x

i 





  

  at (1,-2,-1) = i(4+4)+j(-1)+k(-2-8)= 8i-j-10k. 

 The unit vector in the direction 2i-j-2k is 

  )22(
3

1

414

.22
kji

kji
a 




  



 Required directional derivative along the given 

direction = . a  

        = (8i-j-10k). 1/3 (2i-j-

2k) 

        = 1/3(16+1+20) = 

37/3. 

Example 11: If the temperature at any point in space 

is given by t = xy+yz+zx, find the direction in which 

temperature changes most rapidly with distance from 

the point (1,1,1) and determine the maximum rate of 

change. 

Sol:- The greatest rate of increase of t at any point is 

given in magnitude and direction by t. 

 We have t = )( zxyzxy
z

k
y

j
x

i 




















  

 = kjiyxkxzjzyi 222)()()(  at (1,1,1) 

 Magnitude of this vector is 3212222 222   

 Hence at the point (1,1,1) the temperature changes 

most rapidly in the direction given by the vector kji 222 

and greatest rate of increase = 32 . 



Example 12: Findthe directional derivative of (x,y,z) = 

x2yz+4xz2 at the point (1,-2,-1) in the direction of the 

normal to the surface f(x,y,z) = x log z-y2 at (-1,2,1). 

Sol:- Given (x,y,z) = x2yz+4xz2 at (1,-2,-1) and f(x,y,z) = 

x log z-y2 at (-1,2,1) 

 Now  = k
z

j
y

i
x 











   

  = kxzyxjzxizxyz )8()()42( 222   

()(1,-2,-1) = )1()]1(8)2)(1[(])1()1[(])1(4)1)(2)(1(2[ 222  kji  

  = kji 108   

 Unit normal to the surface 

f(x,y,z)= x log z- y2 is 
f

f



  

now f = 














z

f
k

y

f
j

x

f
i k

z

x
jyiz  )2(log  

at (-1,2,1), f =  kjkji 


 4
1

1
)2(2)1log(  

f

f



 = 
17

.4

116

.4 kjkj 




  

Directional derivative = .
f

f



  

   = ( kji 108  ). .
17

14

17

104

17

.4





 kj  



Example 13: Find a unit normal vector to the given 

surface x2y+2xz = 4 at the point (2,-2,3). 

Sol:- Let the given surface be f = x2y+2xz – 4 

 On differentiating, 

 .2,,22 2 x
z

f
x

y

f
zxy

x

f














  

grad f = )2)22( 2 kxxjzxyi
x

f
i 



  

(grad f) at (2,-2,3) = kjikji 442)44)68(   

grad (f) is the normal vector to the given surface at the 

given point. 

Hence the required unit normal vector 
f

f



 =

3

22

2212

).22(2
22

kjikji 




  

Example 14: Evaluate the angle between the normals to 

the surface xy= z2 at the points (4,1,2) and (3,3,-3). 

Sol:- given surface is f(x,y,z) = xy= z2 

Let 1n  and 2n be the normals to this surface at (4,1,2) and 

(3,3,-3) respectively. 

 Differentiating partially, we get 



 .2,, z
z

f
x

y

f
y

x

f














  

 grad f = kzjxiy 2  

 1n = (grad f) at (4,1,2)  = kji 44   

 2n = (grad f) at (3,3,-3) = kji 633   

 Let  be the angle between the two normals. 

  

 cos  = 
3699

)633(
.

16161

)44(

21

21










kjikji

nn

nn  
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)24123( 
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  

Example 15: Find a unit normal vector to the surface 
x2+y2+2z2 = 26 at the point (2, 2 ,3). 
 
Sol:- Let the given surface be f(x,y,z)  x2+y2+2z2 – 
26=0. Then 
 
 .4,2,2 z

z

f
y

y

f
x

x

f














  

 grad f = 





x

f
i 2xi+2yj+4zk 

 normal vector at(2,2,3) = [f ](2,2,3) = 
4I+4J+12K 

 unit normal vector = 
f

f



 =
11

3

114

)3(4 kjikji 


  



Example 16: Find the values of a and b so that the 

surfaces ax2-byz = (a+2)x and 4x2y+z3= 4 may intersect 

orthogonally at the point (1, -1,2). 

(or) Find the constants a and b so that surface ax2-

byz=(a+2)x will orthogonal to 4x2y+z3=4 at the point (1,-

1,2).  

Sol:- let the given surfaces be f(x,y,z) = ax2-byz - (a+2)x--

-----------(1) 

         And g(x,y,z) = 4x2y+z3- 4------------(2) 

         Given the two surfaces meet at the point (1,-1,2). 

        Substituting the point in (1), we get 

 a+2b-(a+2) = 0  b=1 

             now  .,),2(2 by
z

f
bz

y

f
aax

x

f














  

 f = 





x

f
i [(2a-(a+2)]i-2bj+bk = (a-2)i-

2bj+bk 

    = (a-2)i-2j+k = 1n , normal vector to 

surface 1. 

Also   .3,4,8 22 z
z

g
x

y

g
xy

x

g














  



g = 





x

g
i 8xyi+4x2j+3z2k 

(g)(1,-1,2) = -8i+4j+12k = 2n , normal vector to surface 2. 

Given the surfaces f(x,y,z), g(x,y,z) are orthogonal at the 

point (1,-1,2). 

    0. gf ((a-2)i-2j+k). (-8i+4j+12k)=0 

-81+16-8+12  a =5/2 

Hence a = 5/2 and b=1. 

 

Example 17: Find a unit normal vector to the surface z= 

x2+y2 at (-1,-2,5) 

Sol:- let the given surface be f = x2+y2-z 

 .1,2,2 














z

f
y

y

f
x

x

f  

 grad f = f = 





x

f
i 2xi+2yj-k 

 (f) at (-1,-2,5)= -2i-4j-k  

 f  is the normal vector to the given surface. 

Hence the required unit normal vector = 
f

f



 =

)42(
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1
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)1()4()2(
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kji
kjikji
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




  



Example 18: Find the angle of intersection of the spheres 

x2+y2+z2 =29 and x2+y2+z2 +4x-6y-8z-47 =0 at the point 

(4,-3,2). 

Sol:- Let f =  x2+y2+z2 -29 and g = x2+y2+z2 +4x-6y-8z-47 

 Then grad f= 














z

f
k

y

f
j

x

f
i kzjyix 222   and 

 grad g = kzjyix )82()62()42(   

 The angle between two surfaces at a point is the 

angle between the normals to the surfaces at that point. 

 Let 1n = (grad f) at (4,-3,2)  =8 kji 46   

 2n = (grad f) at (4,-3,2) = kji 41212   

 The vectors 1n  and 2n are along the normals to the two 

surfaces at (4,-3,2). Let θ be the angle between the 

surfaces. Then  

Cos θ= 









 
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19
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304116
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21 
nn

nn  

Example 19: Find the angle between the surfaces 

x2+y2+z2 =9, and z = x2+y2- 3 at point (2,-1,2). 

Sol:- Let 1 = x2+y2+z2 -9=0 and 2= x2+y2-z- 3=0 be the 

given surfaces. Then  



 1= 2xi+2yj+2zk and 2 = 2xi+2yj-k 

Let 1n = 1 at(2,-1,2)=  4i-2j+4k  and  

 2n = 2 at (2,-1,2) = 4i-2j-k 

The vectors 1n  and 2n are along the normals to the two 

surfaces at the point (2,-1,2). Let θ be the angle between 

the surfaces. Then 

 Cos θ =  
213

8

216

16

216

4416

16416

)24(
.

16416

)424(

21

21 












kjikji

nn

nn  

 







 

213

8
cos 1 . 

Example 20: If  a  is constant vector then prove that grad 

( a . r )= a  

Sol: Let a = kajaia 321  , where a1,a2,a3 are constants. 

a . r = ( kajaia 321  ).( )kzjyix  = zayaxa 321   

321 ).(,).(,).( ara
z

ara
y

ara
x














  

grad ( a . r )= kajaia 321  = a  

Example 21: If  =  kxyjzxiyz  , find . 

Sol:- we know that = 
z

f
k

y

f
j

x

f
i













  

 Given that =  kxyjzxiyz   



Comparing the corresponding coefficients, we have 

xy
z

zx
y

yz
x














 
,,  

 Integrating partially w.r.t. x,y,z, respectively, we get 

= xyz + a constant independent of x. 

= xyz + a constant independent of y. 

= xyz + a constant independent of z. 

Here a possible form of  is = xyz+a constant. 

 

DIVERGENCE OF A VECTOR 

 Let f be any continuously differentiable vector point 

function. Then 
z

f
k

y

f
j

x

f
i














... is called the divergence of f

and is written as div f . 

 i.e div f =
z

f
k

y

f
j

x

f
i




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







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x
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






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


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

  

 hence we can write div f as  

 div f = . f  
 This is a scalar point function. 
Theorem 1: If the vector f = kfjfif 321  , then div f  =  

z

f

y

f

x

f













 321  

Prof:  Given f = kfjfif 321   
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

 3.  

We have div f = 
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
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
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Note : If f  is a constant vector then 
z

f

y

f

x

f











 321 ,, are zeros. 

div f =0 for a constant vector f . 
 
Theorem 2: div ( gf  ) = gdivfdiv   
Proof: div ( gf  ) =    g

x
if

x
i









 .. = gdivfdiv  . 

Note: If  is a scalar function and f  is a vector  function, 
then 

(i).  
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




  and 

(ii). fa ).(  = .).(
x

f
ia




 by proceeding as in (i) [simply replace  

by f  in (i)]. 
 

SOLENOIDAL VECTOR 
 A vector point function f  is said to be f solenoidal if 
div f =0. 
 



Physical interpretation of divergence: 

 Depending upon f  in a physical problem, we can 

interpret div f  (= . f ). 

 Suppose F (x,y,z,t) is the velocity of a fluid at a 

point(x,y,z) and time ‘t’. though time has no role in 

computing divergence, it is considered here because 

velocity vector depends on time. 

 Imagin a small rectangular box within the fluid as 

shown in the figure. We would like to measure the rate 

per unit volume at which the fluid flows out at any given 

time. The divergence of F  measures the outward flow or 

expansions of the fluid from their point at any time. This 

gives a physical interpretation of the divergence. 

 Similar meanings are to be understood with respect to 

divergence of vectors f from other branches. A detailed 

elementary interpretation can be seen in standard books 

on fluid dynamics, electricity and magnetism etc. 

 
 



SOLVED EXAMPLES 
 

Example 1: If f = kyzjyzxixy 222 32   find div f  at(1, -1, 1). 

Sol:- f = kyzjyzxixy 222 32  . Then 

div f = 
z

f

y

f

x

f













 321 = 













)3()2()( 222 yz

z
yzx

y
xy

x
y2+2x2z-6yz 

(div f ) at (1, -1, 1) = 1+2+6 =9 

 

Example 2: find div f = grad(x3+y3+z3-3xyz) 

Sol:- Let = x3+y3+z3-3xyz. Then  

 xyz
z

zxy
y

yzx
x

33,33,33 222 












   

 grad  =
z

k
y

j
x

i












   = 3 ])()()[( 222 kxyzjzxyiyzx   

 div f =
z
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f
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 321 = )](3[)].(3[)].(3[ 222 xyz
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
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
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 = 3(2x)+3(2y)+3(2z) = 6(x+y+z) 

Example 3: If  f = kpzxjzyiyx )()2()3(   is solenoidal, find 

P. 

Sol:- Let f = kpzxjzyiyx )()2()3(  = kfjfif 321   

 We have p
z

f

y

f

x

f














 321 ,1,1  

  div f =
z

f

y

f

x

f













 321 = 1+1+p =2+p 



 since  f  is solenoidal, we have div  f  = 0  p = -2 

 
Example 4: Find div f = .rr n Find n if it is solenoidal? 
Sol: Given f = .rr n where f = rrandkzjyixr   

 We have r2 = x2+y2+z2 
 Differentiating partially w.r.t. x , we get 
  
 ,22
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 =  
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r
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x
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2
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222
1 3  








 +3rn = nrn+3rn= (n+3)rn 

 Let  f = .rr n  be solenoidal. Then div f = 0 
 (n+3)rn = 0  n= -3  
 
Example 5: Evaluate . 








3r

r where rrandzkyjxir  . 

Sol:- We have 
 r = xi+yj+zk and r = 222 zyx   
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3r

r
 = .r  r-3 = r-3xi+r-3yj+r-3zk = f1i+f2j+f3k 



 Hence . 




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
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 We have f1= r-3 x
x

r
rxr

x

f








  .)3(1. 431  

   
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
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
3r
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

 2531 33. xrr
x

f
i  

 = 3r-3-3r-5 r2 = 3r-3-3r-3 =0 

Example 6: Find div .r where .r = kzjyix   

Sol:- We have .r = kzjyix  = kfjfif 321   

 div .r = 
z

f

y

f

x

f




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CURL OF A VECTOR 

 Def: Let f  be any continuously differentiable 

vector point function. Then the vector function defined by 

z

f
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y

f
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x

f
xi









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

 is called curl of f  and is denoted by curl f  

or (x f ). 

Curl f  =  
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Theorem 1: If f  is differentiable vector point function 

given by f = kfjfif 321   then curl f  = 
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Proof : curl f  =   
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Note : (1) The above expression for curl f  can be remembered easily 

through the representation. 

 curl f  = 

321 fff

zyx

kji











  =x f  

 note : (2) If f  is a constant vector then curl f = o . 

Theorem 2:  curl   bcurlacurlba   

Proof:  curl    ba
x

xiba 

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b
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a
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  = bcurlacurl   
 

1. Physical Interpretation of curl 

  If w is the angular velocity of a rigid body rotating 

about a fixed axis and v is the velocity of any point 

P(x,y,z) on the body, then w  = ½ curl v . Thus the angular 

velocity of rotation at any point is equal to half the curl of 

velocity vector. This justifies the use of the word “curl of 

a vector”.  

2. Irrotational Motion, Irrotational Vector 



 Any motion in which curl of the velocity vector is a 

null vector i.e curl v =0 is said to be Irrotational. 

Def: A vector f  is said to be Irrotational if curl f  = 0. 

 If f is Irrotational, there will always exist a scalar 

function (x,y,z) such that f =grad . This is called scalar 

potential of f . 

It is easy to prove that, if f  = grad , then curl f = 0. 

Hence x f  = 0  there exists a scalar function  such 

that f = . 

This idea is useful when we study the “work done by a 

force” later. 

 
SOLVED EXAMPLES 

Example 1: if f = kyzjyzxixy 222 32  find curl f at the point 

(1,-1,1). 

Sol:- Let f = kyzjyzxixy 222 32  . Then  

 curl f = x f = 
222 32 yzyzxxy
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kji
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=      xyxyzkjzxzi 240023 22   

= curl f = at (1,-1,1) = .2ki   

 

 

Example 2: Find curl f  where f = grad(x3+y3+z3-3xyz) 

Sol:- Let = x3+y3+z3-3xyz. Then  

grad = kxyzjzxyiyzx
x

i )(3)(3)(3. 222 





  

curl grad = x grad = 3

xyzzxyyzx
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222

 

   =       0][3  zzkyyjxxi  

  curl f = 0. 

Note: We can prove in general that curl (grad )=0.(i.e) 

grad  is always irrotational. 

 

Example 3: Prove that if r is the position vector of an 

point in space, then rn
r is Irrotational. (or) Show that curl

 

Sol:- Let r = kzjyix   and r = r r2= x2+y2+z2. 

 



 Differentiating partially w.r.t. ‘x’ partially, we get 
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       ][2 kyzxyjzxxziyzzynr n   
 ]000[2 kjinr n  = nrn-2 [ 0]=0 
Hence rn

r is Irrotational. 
 
Example 4: Prove that curl r =0 
Sol:- Let r = kzjyix   
 curl r =    




)( ixir

x
xi 0+0= 0 

 r  is Irrotational vector. 
Example 5: If a is a constant vector, prove that curl 

)..(
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Sol:- We have r = kzjyix   
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If r = r then  r2 = x2+y2+z2 
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
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
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
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
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x
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
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
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Let a = kajaia 321  . Then i . a = a1 , etc. 
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Example 6: Show that the vector kxyzjzxyiyzx )()()( 222   
is irrotational and find its scalar potential. 
Sol: let f = kxyzjzxyiyzx )()()( 222   

 Then curl f =

xyzzxyyzx

zyx

kji















222

=  0)( xxi  

 
f  is Irrotational. Then there exists  such that f =. 




z

k
y

j
x

i












  = kxyzjzxyiyzx )()()( 222   

Comparing components, we get 
  




)1)......(,(

3
1

3
22 zyfxyz

x
dxyzxyzx

x


  

 

)2)......(,(
3

2

3
2 xzfxyz

y
zxy

y







  

)3)......(,(
3

3

3
2 yxfxyz

z
xyz

z







  

 
From (1), (2),(3),  xyz

zyx





3

333

  

 
tconsxyzzyx tan)(

3

1 333    

Which is the required scalar potential. 
 
Example 7: Find constants a,b and c if the vector f = 

kzcyxjzybxiazyx )32()32()32(   is Irrotational. 
 
Sol:- Given f = kzcyxjzybxiazyx )32()32()32(   

 Curl f =  

zcyxzybxazyx

zyx

kji

323232 











 =

kbjaic )3()2()3(   
 
If the vector is Irrotational then curl f = 0 

c-3 = 2-a=0, b-3 = 0 c=3, a=2, b=3. 
 



Example 8: If f(r) is differentiable, show that curl { r f(r)} 
= 0 where r  = kzjyix  . 
Sol: r = r = 222 zyx    r2 = x2+y2+z2 

 ,22
r

x

x

r
x

x

r
r 








  similarly 
r

z

z

r
and

r

y

y

r










,  

curl{ r f(r)}= curl{f(r)( kzjyix  )}= curl krfzjrfyirfx )(.)(.)(.(   
 

=  





























)]([)]([

)()()(

ryf
z

rzf
y

i

rzfryfrxf

zyx

kji

 

 

  
























r

z
ryf

r

y
rzfi

z

r
ryf

y

r
rzfi )()()()( 1111  

 
= 0. 
 
Example 9: If A  is Irrotational vector, evaluate div( A x r ) 
where r  = kzjyix  . 
Sol: we have r  = kzjyix   
Given A  is an irrational vector 
x A  = 0 
div ( A x r ) = .( A x r ) 
 = r .(x A )- A .(x r ) 
 = r .( 0)- A .(x r )   [ using (1)] 
 = - A .(x r )…..(2) 
 



Now  x r = 

zyx

zyx

kji











 = 

0




















































x

y
y

x
kx

z
z

x
jy

z
z

y
i  

 
A .(x r )=0 …(3) 
 
Hence div ( A x r )=0.  [using (2) and (3)] 
 
Example 10:  Find constants a,b,c so that the vector A =

kzcyxjzybxiazyx )24()3()2(   is Irrotational. Also find  
such that A = . 
 
Sol: Given vector is A = kzcyxjzybxiazyx )24()3()2(   
 Vector A  is Irrotational  curl A  =  0 
 

 0

2432

















zcyxzybxazyx

zyx

kji

 

 
 0)2()4()1(  kbjaic  

 kbjaic )2()4()1(  = kji 000   

Comparing both sides, 

c+1=0, a-4=0, b-2=0 



c= -1, a=4,b=2 

now A = kzcyxjzybxiazyx )24()3()2(  , on substituting the 

values of a,b,c  

we have  A = . 

 A = kzcyxjzybxiazyx )24()3()2(  = 
z

k
y

j
x

i












   

Comparing both sides, we have 






x

 x+2y+4z = x2/2+2xy+4zx+f1(y,z) 






y

 2x-3y-z = 2xy-3y2/2-yz+f2(z,x) 






z

 4x-y+2z = 4xz-yz+z2+f3(x,y) 

Hence = x2/2 -3y2/2+z2+2xy+4zx-yz+c 

Example 11: If  is a constant vector, evaluate curl V 
where V = x r .  
 
Sol: curl (x r ) =  




)( rx

x
xi   


















x

r
xrx

x
xi 

  

  
 =  ])..().()([]0[ cbabcacxbxaixxi   

 =     23).(]).().([)( iiiiiiixxi  

 
 
 



Assignments 
1. If f  = ex+y+z

)( kji   find curl f .  

2. Prove that f  = kyxjxzizy )()()(   is Irrotational. 

3. Prove that .( xa f )= a  . curl f  where a is a constant 

vector. 

4. Prove that curl ( xa r )=2 a  where a  is a constant vector. 

5. if f = kyzjzxiyx 222  find (i) curl f  (ii) curl curl f . 

OPERATORS 
Vector differential operator  
 The operator  = 

z
k

y
j

x
i













  is defined such that = 

z
k

y
j

x
i













   where  is a scalar point function. 

Note: If  is a scalar point function then = grad = 






x
i
  

(2) Scalar differential operator a . 
The operator a . = 

z
ka

y
ja

x
ia













 
).().().(  is defined such that 

( a .)=
z

ka
y

ja
x

ia












 
).().().(  

And ( a .) f =
z

f
ka

y

f
ja

x

f
ia














).().().(  

(3). Vector differential operator a x 
The operator a x= 

z
kxa

y
jxa

x
ixa














)()()( is defined such that  

(i). ( a x)=
z

kxa
y

jxa
x

ixa












 
)()()(  



(ii). ( a x). f =
z

f
kxa

y

f
jxa

x

f
ixa














).().(.)(  

(iii). ( a x)x f =
z

f
xkxa

y

f
xjxa

x

f
xixa














)()()(  

(4). Scalar differential operator . 
            The operator  = 

z
k

y
j

x
i














... is defined such that 

. f =
z

f
k

y

f
j

x

f
i














...  

Note: . f  is defined as div f it is a scalar point function. 
(5). Vector differential operator  x 
The operator  x = 

z
xk

y
xj

x
xi













 is defined such that 

 x f = 
z

f
xk

y

f
xj

x

f
xi













  

Note : x f  is defined as curl f . It is a vector point 
function. 
(6). Laplacian Operator 2 

 

.=  























































 2

2

2

2

2

2

2

2

2

.
zyxxz

k
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j
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i
x

i  

Thus the operator 2
2

2

2

2

2

2

zyx 











  is called Laplacian 

operator. 
Note : (i). 2= .() = div(grad ) 
 (ii). if 2=0 then  is said to satisfy Laplacian 
equation. This  is called a harmonic function. 
 
 

SOLVED EXAMPLES 



Example 1: Prove that div.(grad rm)= m(m+1)rm-2 (or) 

2(rm) = m(m+1)rm-2 (or) 2(rn) = n(n+1)rn-2 

Sol: Let kzjyixr   and r = r  then r2 = x2+y2+z2. 

Differentiating w.r.t. ’x’ partially, wet get 2r
x

r



 = 2x 
x

r



 = 

r

x . 

Similarly 
y

r



 = 
r

y  and 
z

r



 = 
r

z  

Now grad(rm) = 



)( mr

x
i =





x

r
mri m 1 = 

r

x
mri m 1 =  xmri m 2  

div (grad rm) =  




][ 2 xmr

x
i m =m 













  23)2( mm rx

x

r
rm  

  =m        224224 )2()2( mmmm rxrmmrxrm  

  = m[(m-2)rm-4(r2)+3rm-2] 

  = m[(m-2) rm-2+3rm-2]= m[(m-2+3)rm-2]= 

m(m+1)rm-2. 

 Hence 2(rm) = m(m+1)rm-2 

Example 2: Show that 2[f(r)]= )(
2

)(
2 111

2

2

rf
r

rf
dr

df

rdr

fd
 where 

r = r . 

Sol: grad [f(r)] = f(r)= 
r

x
rfi

x

r
rfirf

x
i  









)()()]([ 11  



div [grad f(r)] = 2[f(r)] = .f(r)= 













r

x
rf

x

r
)(1  

  =  







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xrfxrf
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  =






















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1111 )()()(
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






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1111 )()()(

r

r

x
xrfrfrx
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x
rrf

 

 

 

 

 
Example 3: If  satisfies Laplacian equation, show that 

 is both solenoidal and Irrotational. 

Sol: given 2 = 0 div(grad )= 0  grad  is 

solenoidal 

We know that curl (grad ) = 0grad  is always 

Irrotational. 

 
Example 4:Show that (i) ( a .)= a . (ii) ( a .) r = a . 



Sol: (i). Let a  = kajaia 321  . Then  

 a .= ( kajaia 321  ).(
z

k
y

j
x

i













... )=

z
a

y
a

x
a














321.  

 ( a .)=
z

a
y

a
x

a












 
321

 

Hence  ( a .)= a . 

(ii). r  = kzjyix   

 i
x

r





 j

y

r





k

z

r




  

 ( a .) r =  



)(1 r

x
a  





x
a1 kajaia 321  = a  

Example 5: Prove that (i) ( f x) r =0      (ii). ( f x)x r = f2  

Sol: (i) ( f x) r =




x

r
ixf ).( =  iixf ).( =0 

(ii) ( f x)=
z

kxfx
y

jxfx
x

ixf











)()()(  

 ( f x)x r =    













fiifixixf

z

r
xkxf

y

r
xjxf

x

r
xixf ).()()()()(  

 = .23).().().( ffkkfjjfiif   

Example 6: Find div F . Where F = grad (x3+y3+z3-3xyz)  

Sol:  Let = x3+y3+z3-3xyz. Then  

 F = grad  

 





x
i
 = kxyxjzxyiyzx )(3)(3)(3 222  = )(321 saykFjFiF   



  

 div F =
z

F

y

F

x

F













 321 = 6x+6y+6z= 6(x+y+z) 

 i.e div[grad(x3+y3+z3-3xyz)]= 2(x3+y3+z3-3xyz)= 

6(x+y+z). 

 

Example 7: If  f= (x2+y2+z2)-n  then find div grad f and 

determine n if div grad f= 0. 

Sol:  let  f= (x2+y2+z2)-n and r  = kzjyix   

 r = r  r2 = x2+y2+z2 

 f(r) = (r2)-n = r-2n 

 f1(r)= -2n r-2n-1 

and  f11(r) = (-2n)(-2n-1)r-2n-2= 2n(2n+1)r-2n-2 

 

We have div grad f = 2f(r)= f11(r)+2/rf
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If div grad f(r) is zero, we get n = 0 or  n = ½ . 
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Hence the result. 
 
 

VECTOR IDENTITIES 
 
Theorem 1: If a  is a differentiable function and  is a 
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Theorem 6: Prove that curl grad  = 0. 

Proof: Let  be any scalar point function. Then  
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note: Since crul (grad )= 0, we have grad  is always 

Irrotational. 

Theorem 7: Prove that div crul f=0 
kfjfiffLetoof 321:Pr 

 

321 fff

zyx

kji

fxfcurl













 

 

 k
y

f

x

f
j

z

f

x

f
i

z

f

y

f





















































 122323  

 




































































y

f

x

f

zz

f

x

f

yz

f

y

f

x
fxfcurldiv 122323).(  

0
222222























































xyyx
k

xzzx
j

yzzy
i





01
2

2
2

1
2

3
2

2
2

3
2
































yz

f

xz

f

zy

f

xy

f

zx

f

yx

f  

Theorem 8: If f and g are two scalar point functions, 

prove that div(fg)= f2g+f. g   

Sol: Let f and g are two scalar point functions. Then  
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SOLVED EXAMPLES 
 
Example 1: Prove that (f xg)is solenoidal. 

Sol:  We know that div ( a
x

b ) = bcurlaacurlb ..    (see Theorem 

4) 

Take a=f and b= g 

Then div (f x g) = g. curl (f) - f. curl (g)=0 

 f xg is solenoidal. 

 

 



Example 2: Prove that ( i ) div. {(r x a) x b}= -2( b .a)  

(ii) curl {(r. a) x b=b x a where a and b are constant 

vectors. 

Sol: (i) .  
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Example 3: Prove that .
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Example 4: Find (Ax), if A = yz2 i- 3xz2 j+2xyzk and 
 = xyz. 
 
Sol : We have 
 

Ax= 

zyx

xyzxzyz

kji
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x
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=(-6xz-2xz)-j(2yz-2yz)+k(z2+3z2)= -8xz i-0j+4z2k 

(Ax), = (-8xz i+4z2k)xyz = -8x2yz2 i+4xyz3k   

 
 

 

 

 

 





UNIT-V 
Vector Integration 

 

1. Line integral:- (i)


 rdF
c

. is called Line integral of 


F  along c  

Note : Work done  by


F along a curve c is 


 rdF
c

.  

 

Example 5:  If 


F (x2-27) 


i -6yz 


j +8xz2 

k, evaluate  d


r from the 

point (0,0,0) to the point (1,1,1) along the Straight line from 

(0,0,0) to (1,0,0), (1,0,0) to (1,1,0) and (1,1,0) to (1,1,1). 

Solution : Given 


F = (x2-27)


i  -6yz


j +8xz2 

k 

Now  r = ix + jy + kz  rd idx + jyd + kdz  



F . rd  = (x2-27)dx – (6yz)dy +8xz2dz 

 

(i) Along the straight line from O = (0,0,0) to A = (1,0,0) 

Here y =0 =z and dy=dz=0. Also x changes from 0 to 

1. 


OA

 


F . rd = 
1

o

(x2-27)dx = 
1

0

3

27
3 








 x

x = 
3

80
27

3

1 
  

 
(ii) Along the straight line from A = (1,0,0) to B = (1,1,0) 

Here x =1, z=0   dx=0, dz=0. y changes from 0 to 1. 








AB

 


F . rd = 



1

0

0)6(
y

dyyz  

(iii) Along the straight line from B = (1,1,0) to C = (1,1,1) 

x =1 =y 


 dx=dy=0 and z changes from 0 to 1. 


BC

 


F . rd = 



1

0

28
z

dzxz 



1

0

28
z

dzxz
3
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iiiiii )()()(


F . rd  = 
3

88  

Example : 6 If 


F (5xy-6x2)


i (2y-4x)


j , evaluate 
C



F. rd  along the 

curve C in xy plane y=x3from (1,1) to (2,8). 

Solution : Given 


F (5xy-6x2)


i (2y-4x)


j , 

Along the curve y=x2, dy =3x2 dx 



F (5x4-6x2)


i +(2x3-4x)


j , [Putting y=x3 in (1)] 

           d r = idx + jdy + idx  +3x2dx  

.


F d r = [(5x4-6x2)


i +(2x3-4x)


j ]. idx  +3x2dx j  

= (5x4 – 6x2) dx+(2x3 – 4x)3x3dx 

 = (6x5+5x4-12x3 -6x2)dx 

Hence 
 3xy



F. rd = 
2

1

2345 )61256( dxxxxx  

=  21436
3436

323
4

.6
4

.12
5

.5
6

.6 xxxx
xxxx









  

 = 16(4+2-31) – (1+1-3-2) = 32+3 = 35 



Example 7: Find the work done by the force 


F = iz + jx + ky , 

when it moves a particle along the arc of the curve 


r = cost 


i  + 

sint j -t kfrom t = 0 to t = 2  

Solution : Given force 


F = zi = xj +yk and the arc is 


r = cost 


i  + 

sin t j -t 

i.e., x = cost, y= sin t, z = -t 

 d r = (-sin t 


i  +cost j -k)dt 

.


F d r = (-t 


i+cost j +sin t k). (-sin t 


i  + cost j - k)dt = (t sin t + cos2 

t – sin t)dt 

Hence work done = 
2

0

  .


F d r  = 
2

0

  (t sin t + cos2 t – sin t ) dt 

  =      






2

0

2

0

2

0

2

0 sin
2

2cos1
)sin)cos( tdt

t
dtttt dt  

  =   


 2

0

2

0

2
0 cos

2

2sin

2

1
)(cos2 t

t
tt 








  

  =   2)11()2(
2

1
)11(2

 
Assignment 

1. Find 
c

  .


F d r where 


F = x2y2 

i+y


i  and the curve y2=4x in the 

xy-plane from (0,0) to (4,4). 

2. If  


F =3xy


i-5z j +10xkevaluate 
C



F .d


r along the curve 

x=t2+1,y=2 t2, z = t3 from t = 1 to t= 2. 

3. If 


F =y


i+z j +xk , find the circulation of 


F  round the curve c 
where c is the circule x2 +y2 =1, z=0. 



4. (i) If 



c

rdevaluateyzx  ,32  along with curve x= t, y =2t, z=3t 

from t = 0 to t=1. 

(ii) If 



c

rdevaluateyxzxy  ,2 22  where c is the curve x=t, y=t2, 

z= t3 from t=0 to t=1. 
5. (i) Find the work done by the force 

 


 kxyzjzxyiyzxF )()( 22 2 in taking particle from (1,1,1) to 

3,-5,7). 

(ii) Find the work done by the force   kxyzjzxiyF )()(32 


when it moves a particle from the point (0,0,0) to (2,1,1) 

along the curve x = 2t2, y = t, z=t3 

2. Surface integral: dsnF
c



 . is called surface integral problems. 

 
Problem 1 : Evaluate F.ndS  where F = zi + xj 3y2zk and S is 

the surface x2 + y2 = 16 included in the first octant between z 

= 0 and z = 5. 

Sol.   The surface S is x2 + y2 = 16 included in the first octant 

between z = 0 and z = 5. 

Let  = x2 + y2 = 16 

Then   = i j k 2xi 2yj
x x x

  
   

  
 

   unit normal  2 2xi yj
n   (  x  + y  = 16)

4

 
 


  



Let R be the projection of S on yz plane 

Then  
S

F.ndS  = 
R

dydz
F.n

n . i
  ……………. * 

Given  F  = zi + xj 3y2zk 

 1
F . n (xz xy)

4
   

and  x
n . i

4
  

In yz plane, x = 0, y = 4 

In first octant, y varies from 0 to 4 and z varies from 0 to 5. 

 
S

F.ndS  = 
4 5

z 0y 0

xz xy dydz

x4

4



 
 
 

   

   =  
4 5

z 0y 0

(y dz)dz  dy


   

   = 90. 

 

Problem 2 : If F  = zi + xj 3y2zk, evaluate 
S

F.ndS where S is 

the surface of the cube bounded by x = 0, x = a, y = 0, y= a, z 

= 0, z = a. 



Sol.  Given that S is the surface of the x = 0, x = a, y = 0, y = 

a, z = 0, z = a,  and F  = zi + xj 3y2zk we need to evaluate

S

F.ndS . 

(i) For OABC 

Eqn is z = 0 and dS = dxdy 

 n  k   

S
1

F.ndS  = 
a

x 0


a

y 0

 (yz) dxdy = 0 

(ii) For PQRS 

Eqn is z = a and dS = dxdy 

n  k  

2S

F.ndS  =  
4aa

x 0 y 0

a
y(a)dy  dx

2 

   

(iii) For OCQR 

Eqn is x = 0,  and n  i  , dS = dydz 

3S

F.ndS  = 
aa

z 0y 0

4xzdydz 0


   

(iv) For ABPS 

Eqn is x = a,  and n  i  , dS = dydz 

3S

F.ndS  =  
aa

4

z 0y 0

4azdz dy 2a


   

(v) For OASR 

O A

S
R

Q

y

C

P

B

X

 



Eqn is y = 0,  and n j , dS = dxdz 

5S

F.ndS  = 
aa

2

z 0y 0

y dzdx 0


   

(vi) For PBCQ 

Eqn is y = a,  and n j , dS = dxdz 

6S

F.ndS  = 
aa

2

z 0y 0

y dzdx 0


   

From (i) – (vi) we get 

6S

F.ndS  = 0 + 
4a

2
 + 0 + 42a  + 0  a4 = 

43a

2
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3._VOLUME INTEGRALS 

Let V be the volume bounded by a surface 


 fr (u,v). Let 


F (


r ) be 

a vector point function define over V. Divide V into m sub-

regions of volumes mp VVVV  ....,...., 21  

Let Pi (


r i ) be a point in rV  then form the sum Im = 


m

i

VrF
1

1.)1(   Let 

m   in such a way that 1V shrinks to a point,. The limit of Im if 

it exists, is called the volume integral of 


F (


r ) in the region V is 

denoted by dvrF
V



 )( or .dvF
V




 

Cartesian form : Let  


 kFiFiFirF 321 where F1, F2, F3 are 

functions of x,y,z. We know that  

dv = dx dy dz. The volume integral given by 

)( 3211



    kFiFiFFdvF
v

dx dy dz = 1Fi   


dxdydz + 2Fj   


dxdydz + 3Fk   


dxdydz





 

2. Vector Integral Theorems 
Introduction  

In this chapter we discuss three important vector integral 

theorems: (i) Gauss divergence theorem, (ii) Green’s theorem in 

plane and (iii) Stokes theorem. These theorems deal with 

conversion of  

(i) 
S



nF . ds into a volume integral where S is a closed 

surface. 

(ii) 
C



rdF .  into a double integral over a region in a plane 

when C is a closed curve in the plane and. 

(iii) 
S

)(


 Ax .


nds into a line integral around the boundary of 

an open two sided surface. 



In solid mechanics, fluid mechanics, quantum mechanics, 

electrical engineering and various other fields, these theorems 

will be of great use. Evaluation of an integral of one type may be 

difficult and using one of the appropriate theorems we may be 

able to evaluate to the equivalent integral easily. Hence readers 

are advised to grasp the significance in each case. 

 
I. GAUSS’S DIVERGENCE THEOREM 
(Transformation between surface integral and volume 
integral) 

 Let S be a closed surface enclosing a volume v. if 


F is a 
continuously differentiable vector point function, then 

 





V s

nFFdvdiv .  dS 

When 


nis the outward drawn normal vector at any point of S. 
 

SOLVED EXAMPLES 
 

Example 1: Verify Gauss Divergence theorem for 

 taken over the surface of the cube 

bounded by the planes x = y = z = a and coordinate planes.  

Sol: By Gauss Divergence theorem we have 



 

 

 

 

(i) For S1 = PQAS; unit outward drawn normal  

x=a; ds=dy dz; 0≤y≤a, 0≤z≤a  

 

 

 

 

 

(ii) For S2 = OCRB; unit outward drawn normal  

x=a; ds=dy dz; 0≤y≤a, y≤z≤a  



 

 

 

(iii) For S3 = RBQP; Z = a; ds = dxdy;  

0≤x≤a, 0≤y≤a  

 

 

(iv) For S4 = OASC; z = 0; , ds = dxdy; 

0≤x≤a, 0≤y≤a  

 

 

(v) For S5 = PSCR; y = a; , ds = dzdx; 

0≤x≤a, 0≤z≤a  

 

 



 

 

(vi) For S6 = OBQA; y = 0; , ds = dzdx; 

0≤x≤a, 0≤y≤a  

 

 

 

 

 

 

 

Example 2: Compute over the surface of the 

sphere x2+y2+z2 = 1 

Sol: By divergence theorem  

 

 

 



 

 

 

Hence by Gauss Divergence theorem,  

 

 

 

Example 3: By transforming into triple integral, evaluate 

 where S is the closed surface 

consisting of the cylinder x2+y2 = a2 and the circular discs z= 

0 , z= b.  

Sol: Here  

 

 

 

 

z 

 

 



x 

 

 

By Gauss Divergence theorem,  

 

 

 

 

 

 

 

  =  

 



 

Example 4: Applying Gauss divergence theorem, Prove that 

 

Sol: Let  we know that div  

By Gauss divergence theorem,  

 

 

Example 5: Show that where S 

is the surface of the sphere x2+y2+z2=1.  

Sol: Take  

 

By Gauss divergence theorem, 

 

 

 

 

Example6: Using Divergence theorem, evaluate  

x2+y2+z2=a2 



Sol: we have by Gauss divergence theorem,  

L.H.S can be written as  in Cartesian form  

Comparing with the given expression we have F1=x, F2=y, F3=z 

Then  

 

Here V is the volume of the sphere with radius a.  

 

Hence  

 

Example 7: Apply divergence theorem to evaluate 

 S is the surface of the 

sphere x2+y2+z2=4 

Sol: Given  

Here F1 = x+z, F2 = y+z, F3= x+y 

 

By Gauss Divrgence theorem,  



 

 

 

 

Example 8: Evaluate  over the 

tetrahedron bounded by x=0, y=0, z=0 and the plane 

x+y+z=1.  

Sol: Given F = , then div. F = y+2y = 3y 

 

 

 

 
Example 9: Use divergence theorem to evaluate 

x3i+y3j+z3k and S is the surface of the sphere 

x2+y2+z2 = r2 

Sol: We have  

  

By divergence theorem,  



 =  

 

 

 

 

 

 

 

Example 10: Use divergence theorem to evaluate  

where  and S is the surface bounded by the 

region x2+y2=4, z=0 and z=3.  

Sol: We have 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 



Example 11: Verify divergence theorem for  

over the surface S of the solid cut off by the plane x+y+z=a 

in the first octant.  

Sol; By Gauss theorem,  

 

 

 

 

Let R be the projection of S on xy-plane 

Then the equation of the given plane will be x+y=a  y=a-x 

Also when y=0, x=a 

 

 
=  

 

 

 
Given  



 

 

 

 

 

 

 

 
Hence from (1) and (2), the Gauss Divergence theorem is 
verified.  
 
 
Example 12: Verify divergence theorem for 2x2yi-y2j+4xz2k 

ove the region of first octant of the cylinder y2+z2=9 and x=2.  

(or) Evaluate and S is the 

closed surface of the region in the octant bounded by the 

cylinder y2+z2 = 9 and the planes x=0, x=2, y=0, z=0 

Sol: Let  

 



 

 

 

 

 

 

 

 



 

 

Where S1 is the face OAB, S2 is the face CED, S3 is the face 

OBDE, S4 is the face OACE and S5 is the curved surface ABDC.  

 

 

 

 

 

 

 

 

 

Hence  



 

 

 = 180 … … (2) 

Hence the Divergence theorem is verified from the equality of 

(1) and (2).  

 

Example 13: Use Divergence theorem to evaluate 

S is the surface bounded by the cone 

x2+y2=z2 in the plane z = 4.  

Sol: Given S is the surface bounded by 

the cone x2+y2=z2 in the plane z = 4.  

Let  

 

 
Now  

 
 

 

 



 

 

 

 

 

 

 

Example 14: Use Gauss Divergence theorem to evaluate 

S is the closed surface bounded by 

the xy plane and the upper half of te sphere x2+y2+z2=a2 

Sol: Divergence theorem states that  

 

 

 

 



 

 

 

 

 

 

 

Example 15: Verify Gauss divergence theorem for 

 taken over the cuve bounded by x = 0, x = a, 

y= 0, y = a, z = 0, z = a.  

Sol: We have  

 

 

 

 



 

 

 

 

 

To evaluate the surface integral divide the closed 

surface S of the cube into 6 parts.  

i.e.,  S1 : The face DEFA      ; S4 : The face 

OBDC 

 S2 : The face AGCO     ; S5 : The face 

GCDE 

 S3 : The face AGEF   ; S6: The face AFBO 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Assignment 

1. Evaluate over  +  + =1 

2. Compute    over the ellipsoid 

=1  

(Hint: Volume of the ellipsoid , V=  ) 

3. Find .  where  =2 + 4xz  and S is the region in 

the first octant bounded by  + =9 and x=0,x=2. 

4. Find  Where S Is the region bounded by  

+  =4, z=0 and z=3. 

5. Verity divergence theorem for F=6z  + (2x+y)  -x , taken 

over the region bounded by the surface of the cylinder   +  =9 

included in z=0, z=8, x=0 and y=0.     [JNTU 2007 S(Set No.2)] 

 



II. GREEN’S THEOREM IN A PLANE 

(Transformation Between Line Integral and Surface Integral 

) [JNTU 2001S]. 

If S is Closed region in xy plane bounded by a simple closed 

curve C and if M and N are continuous functions of x and y 

having continuous derivatives in R, then 

, 

Where C  is traversed in the positive(anti  clock-wise) direction 

 

 

Solved Examples 

Example 1: Verify Green’s theorem in plane for  

  where C is the region bounded by y=   

and y=  . 

Solution: Let  M=3 -  and N=4y-6xy. Then 

,  



 

 

We have by Green’s theorem, 

 

Now   

                                                    =10

 

                                                     =5

       ….(1) 

Verification: 

     We can write the line integral along c 

=[line integral along y= (from O to A) + [line integral along 

=x(from A to O)] 

= + (say) 

Now     =  



                 =  

And        

 

 

From(1) and (2), we have   

Hence the verification of the Green’s theorem. 

 

Example 2:  Evaluate by Green’s theorem   

where C  is the triangle enclosed by the lines y=0, x= ,  

[JNTU 1993, 1995 S, 2003 S, 2007, (H) June 2010(Set No.2)] 

Solution :  Let M=y-  Then 

=1 and       =-  

 By Green’s  theorem      

  

                                                            =-  

                                                           =  

                                                           =  

                                                                =

 

 



                                                                 =

 

                                                                  =

 

 

Example 3:  Evaluate by Green’s theorem for  

 where C is the rectangle with vertices 

,  

Solution:  Let M=    

  

By Green’s theorem,      

   

=  

                                                                          =

 

                                                                          =  

 

Example 4:  A Vector  field is given by  

Evaluate the line integral over the circular path + , z=0 

(i) Directly  (ii) By using Green’s theorem  

 



Solution :   (i) Using the line integral                                                             

[JNTU 96, (A) June 2011 (Set No.4)  

 

                     =  

Given Circle is + . Take x=a  and y=a  so that dx=-

a  and  

dy=a  and  

 

                                 =  

                                =0+  

(ii)Using Green’s theorem 

Let M=  and N=x  Then 

=   and       =-  

By Green’s theorem, 

 

 

                                                                    =    

 

We observe that the values obtained in (i) and (ii) are same to 

that Green’s theorem is verified. 



 

Example 5: Show that area bounded by a simple closed curve C 

is given by  and hence find the area of  

(i)The ellipse x=  

(II )The Circle x=  

Solution: We have by Green’s theorem       

 

Here M=-y and N=x so that  

 where A is the area of the surface. 

 

(i)For  the ellipse x=  and y=  and  

=  

                   =  

(ii)Put  a=b to get area of the circle A=  

 

 

Example 6: Verify Green’s theorem for   

where C is bounded by y=x and y=  

Solution: 

By Green’s theorem, we have  



Here M=xy +  and N=  

 

The line y=x and the parabola y=  intersect at O  and A  

Now                        …..(1) 

Along   the line integral is  

 

                                          =   =                                                                    

…….(2) 

 

Along   from  to  the line integral is  

 

                               = =0-1=-1                                  

….(3) 

From (1), (2) and (3), we have 

                                                                                                       

…(4) 



Now  

                                                  =  

                                                  =

 

                                                  =  =                                                                  

….(5) 

From  

Hence the verification of the Green’s  theorem. 

Example 7: Using Green’s theorem evaluate 

Where “C” is the closed curve of the 

region bounded by   y=   and  

                   [JNTU 2003S, 2006S,2008S, Aug2008S, June 2009, 

(K) Nov 2009 S (Set No.1)] 

Solution: 

 



The two parabolas   are intersecting at O and 

P(1,1) 

Here M=2xy-    and N=   +  

 

Hence  

By Green’s theorem  

i.e.,  

Example 8: Verify Green’s theorem for 

 where c  is the region bounded by x=0, 

y=0 and x+y=1.                                       [JNTU 2003S, 

2007S(Set No.3) 

Solution : By Green’s theorem, we have 

 

Here M=3  and N=4y-6xy 

 

 



Now                  

….(1) 

Along OA, y=0      

 

Along AB, x+y=1   and x=1-y and varies from 0 to 1. 

 

                                =  

                                =  

                          =  

Along BO, x=0  and limits of y are from 1 to 0 

.     

 from (1), we have   

Now   

                                                 =10  

                                                =5  

                                                =- =  

From (2) and (3), we have       

Hence the verification of the Green’s  Theorem. 

 



Example 9: Apply Green’s theorem to evaluate 

 

The boundary of the area enclosed by the x-axis and upper half 

of the circle  

                                                                                                          

[JNTU 2008S, (A)June 2010, 2011(Set No.2)] 

Solution : Let M=  and N=  Then 

 

 

 

 

                                                                                                              

=2  



                                                                                                               

=2  

[Changing to polar coordinates (r, , r varies from 0 to a and  

varies from 0 to ] 

 

                                                                                                  =2.

 

Example 10: Find the area of the Follum of Descartes 

 

Theorem.                                                                                                                

[JNTU 2006(Set No.1] 

Solution: from Green’s theorem, we have 

 

By Green’s theorem, Area =  

Considering the loop of follum Descartes(a>0) 

       Let x= Then dx=  and dy=  

The point of intersection of the loop is  

Along OA, t varies from 0 to1. 

 



                                      =  

                                        =  

                                        =  

                                        =  [Put 1+  

                                                                                             L.L. : 

x=1, U.L.:x=2] 

                                         =  units(a>0). 

Example 11: Verify  Green’s theorem in the plane for 

 

Where C  is square with vertices (0,0), (2,0), (2,2), (0,2). 

                                                                          [JNTU Aug, 

2008S, (H)June2009,(K) May2010(Set No.2)] 

Solution: The Cartesian form of Green’s theorem in the plane is  

 

Here M=  and N=  

3  and  



 

Evaluation of  

   To Evaluate , we shall take C in four 

different segments viz (i) along OA(y=0) (ii) along AB(x=2) 

(iii) along BC(y=2) (iv) along CO(x=0). 

(i)Along OA(y=0) 

                                                    

…..(1) 

(ii)Along  AB(x=2) 

[  

                                                                  =

                  ….(2) 

(iii)Along BC(y=2) 

[  



                                                                 =                                        

…(3) 

(iv)Along CO(x=0) 

[            

…..(4) 

Adding(1),(2),(3) and (4), we get 

                                                 

…(5) 

Evaluation of   

Here x ranges from 0 to 2 and y ranges from 0 to 2. 

 

                                      =  

                                       =  

                                       =-8+16=8                                                                                                   

…(6) 

From (5) and (6), we have 

 

Hence the Green’s theorem is verified. 

 

Assignments 



(1) Evaluate  where c is the circle 

 

(2) Verify Green’s theorem in the plane for 

 where c is the square with vertices 

(0,0), (2,0), (2,2) and (0,2).                [JNTU Sep 2008, 

2008S, JNTU(H) 2009(Set No.1)] 

(3) Use Green’s theorem to evaluate  

where c is the square bounded by y=  

(4)  Find the area bounded by one arc of the cycloid x=a

 

(5)  Find the area bounded by the hypocycloid 

 

(6)  Find  where c is the circle  

in xy plane. 

 

Answers 

(1)-8       (3)          (4)3         (5)          (6)12  

III. STOKE’S THEOREM 

          (Transformation between Line Integral and Surface 

Integral)                      [JNTU 2000] 



         Let S be a open surface bounded by a closed, non 

intersecting curve G. if   is any differentieable vector point 

function then =  

direction and   

 

Solved Examples 

Example 1: Prove by Stokes theorem, Curl grad =  

Solution: Let S be the surface enclosed by a simple closed curve 

C. 

 

 

                                              =  

                                               =  

where P is any point on C. 

 

 

 

Example 2: prove that  

Solution: Applying Stokes theorem to the function  

 



 

Example 3: Prove that  

Solution: By Stokes Theorem, 

 

.  

 

 

 

Example 4: Prove that  

Solution: By Stokes Theorem, 

ds 

                        =  

 

Example 5: Verify Stokes theorem for , Where S is 

the circular disc 

                                                           [JNTU 

99,2007,2008S(Set No.4)] 

Solution: Given that . The boundary of C of S is a 

circle in xy plane. 

We use the parametric co-ordinates x=cos

 



dx=-sin  and dy =cos  

 

                          =  

                          = =  

                          =  

                           =2 =2  

Now  

 

We have  

.  

Put x=r cos  

R is varying from 0 to 1 and 0  

. .rdr d  

L.H.S=R.H.S.Hence the theorem is verified. 

 

Example6: If . Sis the 

surface of sphere  

Solution: Given  

    By Stokes Theorem, 



. =  

 Above the xy plane the sphere is  

 

Put x=a cos ,y=asin  

 

                                          =  

 

Example 7: Verify Stokes theorem for  over 

the upper half surface of the sphere bounded by the 

projection of the xy-plane. 

                                             

[JNTU2006,2007,2007S,2008,JNTU(A) June2009(Set No.2)] 

Solution: The boundary C of S is a circle in xy plane i.e

=1, z=0 

The parametric equations are x=  

 

 

                  =  

                   =  

                    =  



                    =  

Again  =  

. =  

Where R is the projection of S on xy plane and  

      Now 

 

                                     = 2 =  

 Stokes theorem is verified. 

 

Example 8: Verify Stokes theorem for the function   

integrated round the square in the plan z=0 whose sides are 

along the lines x=0, y=0, x=a, y=a. 

Solution: Given  



 

By Stokes Theorem, . =  

Now = y 

L.H.S. , . =  

and R is the region bounded for the square. 

.  

R.H.S. =  

But   

(i)Along  OA: y=0, z=0, dy=0, dx=0 

 

(ii)Along AB:x=a, z=0,dx=0,dz=0 

 

(iii)Along BC: y=a,z=0,dy=0,dz=0 



 

(iv)Along CO: x=0, z=0, dx=0, dz=0 

 

Adding   

Hence the verification. 

Example 9: Apply Stokes theorem, to evaluate  

where c is the curve of intersection of the sphere  

and x+z=a.          [JNTU 1997, 2006S, 2008S(Set No.1,3)] 

Solution : The intersection of the sphere  the 

plane x+z=a. is a circle in the plane x+z=a.  with AB as 

diameter. 

Equation of the plane is x+z=a  

 

=a  

       Radius of the circle, r=  

        Let 

 

 

=  



Let  be the unit normal to this surface.  

Then s=x+z-a,  

Hence   

                               =- ds =  

                                =-  

Example 10: Apply the Stoke’s theorem and show that 

 is any vector and S =                                                                                                                    

[JNTU 1998] 

Solution: Cut the surface if the Sphere  

Let denotes its upper and lower portions a C, be the 

common curve bounding both these portions. 

 

Applying Stoke’s theorem, 

 

The 2nd integral curl  is negative because it is traversed in 

opposite direction to first integral. 

The above result is true for any closed surface S. 

Example 11: Evaluate by Stokes theorem  

 where C is the boundary of the 

triangle with vertices (0,0,0), (1,1,0). 



Solution: Let   

Then  

By Stokes theorem,  

 

Where S is the surface of the triangle OAB which lies 

In the xy plane. Since the z Co-ordinates of O,A and B  

Are zero. Therefore . Equation of OA is y=0 and  

that  of OB, y=x in the xy plane. 

= 2  

 

ds=curl  

 the  

                     = OA X AB=  



 

Example 12: Use Stoke’s theorem to evaluate  over 

the surface if the paraboloid z+ where 

 

Solution : By Stoke’s theorem 

 

 

  =                          …(1) 

Where C  is the circle  

The parametric equations of the circle are x=  

 

Hence (1) becomes  

=-  

Example 13: Verify Stoke’s theorem for  taken 

round the rectangle bounded by the lines x=                                                                                     

{JNTU 2003, 2005 (Set No.1)] 

Solution: Let ABCD be the rectangle whose vertices are (a,0), 

(a,b), (-a,b) and (-a,0). 

Equations of AB, BC, Cd and Da are x=a, y=b, x=-a and y=0. 

We have to prove that  



 

                  =  

                   =          …..(1)      

 

(i)along AB, x=a, dx=0 

 from (1),  

(ii)Along BC, y=b, dy=0 

 from (1),  =  

(iii)along CD, x=-a, dx=0 

 from (1),  

(iv)Along DA, y=0, dy=0 

 from (1),  =  

(i)+(ii)+(iii)+(iv) gives  



-- +                                          

….(2) 

Consider  

Vector Perpendicular to the xy-plane is  

=  

Since the rectangle lies in the xy plane, 

and ds =dx dy 

 

                               = -4  

                                =                                                                    

…..(3) 

Hence from (2) and (3), the Stoke’s theorem is verified. 

Example 14: Verify Stoke’s theorem for 

 where S is the surface of the cube x 

=0, y=0, z=0, x=2, y=2,z=2 above the xy plane.                                

{JNTU 2006S(Set No.1)] 

Solution: Given  where S is the surface 

of the cube. 

X=0, y=0, z=0, x=2, y=2, z=2 above the xy plane.  



By Stoke’s theorem, we have  

=  

 

                                               

…..(1) 

To find  

. (dx  

             =   

Sis the surface of the cube above the xy-plane 

 

 

Along  

  ……..(2) 

Along  

  ……. .(3) 

Along  

=     ……(4) 

Along  

.    …..(5) 



Above the surface When z=2 

Along     ….(6) 

Along y changes from 0 to 2 

    ….(7)   

Along x changes from 2 to 0 

                                                                                                         

….(8) 

Along y changes from 2 to 0. 

                                                          

…..(9) 

       (2)+(3)+(4)+(5)+(6)+(7)+(8)+(9) gives 

                                     

…..(10) 

By Stokes theorem, We have 

= ds=-4 

Hence Stoke’s theorem is verified. 

 

Example 15: Verify the Stoke’s  theorem for  and 

surface is the part of the sphere   



Solution: Given   over the surface 

 

We have to prove =  

. (y =ydx + zdy + xdz 

 

Let x=  

 [  

                        =  

                         =  

                       =-                                                           

…..(1) 

Curl = (  

Unit normal vector =  

Substituting the spherical polar coordinates, we get  

 

 

d  

                              =  

                              =-2  



                               =                                                                

…..(2) 

From (1) and (2), we have 

 

’s theorem is verified. 

Example 16: Verify Stoke’s theorem for  over 

the box bounded by the planes x=0,x=a,y=0,y=b.                                                                               

[JNTU 2008 (Set No.1)] 

Solution : 

 

Stoke”s theorem states that       

Given  

Curl =  

R.H.S=  



Let R be the region bounded by the rectangle 

 

 

                              =2 2a  

To  Calculate L.H.S 

 

Let ) O= and  

          C=(),b) are the vertices of the rectangle. 

(i)Along the line OA 

Y=0; dy=0, x ranges from 0 to a. 

 

(ii)Along the line AB 

X=a; dx=0, y ranges from 0 to b. 

=a  

(iii)Along the line BC 

Y=b; dy=0, x ranges from a to 0 

 

                  =a  

(iv) Along the line CO 

X=,dx=0,y changes from b to 0 



 =  =0 

Adding these four values 

 =  =  

 

 L.H.S  =   R.H.S 

Hence the verification of the stoke’s theorem. 

EXAMPLE 17: Verify Stoke’s theorem for =  + 2xy  

over the box bounded by the planes x=0,x=a,y=0,y=b,z=c  

   [JNTU (K) June 2009 (Set No.1)] 

Solution: Given =  + 2xy  

Let C denote the boundary of the box . 

Then  =  

The curve C is made up of four lines  

OA,AB,BC and CO. 

Along OA : y=0,dy=0 



 

   =   =      =                       --------

-----------(1) 

Along AB : x=a,dx=0 

 

   =2a   = 2a     =             ----------

---------(2) 

Along  BC : y=b,dy=0 

   =   =      =0 –       

=   --(3)        

Along CO : x=0,dx=0 

   =   =   0                      -------------------

(4) 

 



(1) + (2) + (3)   +  (4) gives  =   = ---------

------------------(5) 

Again , Curl  =  =       =4y  

Hence . 

=     = 4  

  =4  = 2  = 2  = 2  ----------------

(6) 

From (5) and (6) , we find that  =  

Hence the verification of the Stoke’s theorem . 

 

EXAMPLE 18: Verify Stoke’s theorem for =  – 2xy  taken 

round the rectangle bounded by  

x= , y=0,y=a. 

 

Solution:  



 

    Curl  =  = -4y  

For the given surface S,  

 

 

Now   =  

                                        =  

                                       = ]  

                                  =  = ]  =  --------(1) 

  =  

 =  

Along DA , y=0,dy=0,  =0 (  

Along AB, x=b,dx=0 



 = =   =  

Along BC,y=a,dy=0 

 = =  

 

Along CD, x=-b,dx=0 

 = =  = . 

  = 0 =   -------(2) 

From (1),(2)  =  

Hence the theorem is verified. 

 

EXAMPLE 19: Using Stroke’s theorem evaluate the integral 

  where 

=2 +3  -(2x+z  and C is the boundary of the triangle whose 

vertices are (0,0,0),(2,0,0),(2,2,0). 

Solution: 

Curl  =    = 2  + (6x-4y)  



 

Since the z-coordinate of each vertice of the triangle is zero , the 

triangle lies in the xy-plane . 

 =k 

(Curl = 6x-4y 

Consider the triangle in xy-plane . 

Equation of the straight line OB is y=x. 

By Stroke’s theorem  

 =  

              =         =  

            =      |     =   

          =  4 |    =  

EXAMPLE 20: Evaluate , where =( +y-4)  + 3xy

+(2xz+  and S is the surface of, (i). The hemisphere 

=16  above the xy-plane , (ii) The paraboloid  

Z=4 - (  above the xy-plane . 



Solution:  (i) Given =( +y-4)  + 3xy

+(2xz+  

Let  z  

Then  = . 

=  

we have to find 

 

 

 

 

 

 

OBJECTIVE TYPE QUESTIONS 

(1) For any closed surface S,    = 

(a) 0   (b)      2   (c)    (d)  

(2)  if S is any closed surface enclosing a volume V and 

 +3z     then       =  

(a) V   (b)3V   (c)6V    (d)None 

(3) If   +z then      = 

(a) 0   (b)   (c) x    (d) None 

(4)      x        = 



 (a) 0   (b) r   (c) 1    (d) None 

(5)    .   = 

 (a) V   (b) 3V   (c)  4V    (d) None 

(6) If   is the unit outward drawn normal to any closed surface 

then     = 

 (a) S   (b)2S   (c) 3S    (d) None 

(7)          = 

 (a) f   (b)2f  (c) 0   (d) None 

(8) The value of the line integral     from (0, 1,-1) 

to (1 , 2, 0)     is 

 (a) -1   (b) 0   (c) 2    (d) 3 

(9) A necessary and sufficient condition that the line integral 

  =0  for every closed curve c is that 

 (a) div A=0   (b)div A 0  (c) curl A=0 (d) curl A 0 

(10) If  =axi + byj+ czk where a, b, c are constants then  

where S is the surface of the unit sphere is  

(a) 0   (b)  (c)   (d) none 

(11)  =_________________ 

(a)   (b) 0   (c) V   (d) S 

(12)  = __________ 



(a)   (b) 0   (c) V   (d)  

(13) = _____________ 

(a) 0   (b) ) (c)   (d) S 

(14)  where S:  as 

(a) 4p    (b)                          (c)  4  (d) 4  

 

ANSWERS 

(1) d  (2) c   (3)  a  (4) a   (5)  b   (6) a  (7) c  

(8) d  (9) c  

(10)  b   (11) a    (12) a    (13) b   (14) c 

 

 

 

 

 

 

 

 

 

 



 

Assignment   Mid-1 
Subject:M2 

      1. Find a) L(∫ �������4�
�

�
)       b)∫

�����������

�
 ��

�

�
         c) L-1(

��

������ )  (CO-1) 
 

     2. Find   a) L(|����|)           b) Find L(f(t)) if  f(t)=�

1 �� 0 < � < 2
2 �� 2 < � < 4
0 �� � > 4      

� 

   c)   Find L(f(t)) if f(t)=�
cos �� −

�

�
�  �� � <

�

�

0                       �� � >
�

�

�                (CO-1) 

 
3. Solve the following differential equations by using laplace transforms  
 a) (D2+n2)x=a sin(nt+α) given x=Dx=0 at t=0. 

            b) y(t)=1-��� +∫ �(� − �) ���� ��
�

�
                                     (CO-2) 

 

4. Find    �) ∫ �
�

�
(8 − �� )

�

���    b)∫ ���
�

��
�

�
�

sin
�

�
� ��          c)∫

��

������  

�

�
        d)∫ ���

�
��

�
dx 

 e)∫ 3�����

�
dx                                    (CO-3) 

 

5. Prove that  a) B(m+
�

�
  ,m+

�

�
  )=

�

� �(�,�)����� 

 b) prove that ɾ �
�

�
� ɾ �

�

�
� ɾ �

�

�
� ɾ �

�

�
� … … ɾ �

���

�
� =

(��)
���

�

�
�
�

   (CO-3) 

                                         

Assignment Mid -2 
1. a) Prove that∇ × (∇ × ��) = ∇(∇. ��) − ∇���. 

b) Prove that ���(������) = �(� + 1)����  OR   ∇�(��) = �(� + 1)����.   (CO5)   

      2.  a) Prove that  ����������� =  a� divb� − b� diva� +  �b�. ∇�a� − (a�. ∇)b� 
             b) Find a and b such that the surfaces a�� − ��� = (� + �)  and 4���� + �� = 4. 

              ��� ���ℎ�������� �� (1, −1,2).                                                            (CO5) 

      3. a) Verify divergence theorem for 2���� − ��� + 4���� taken over the region of first  

              Octant of the cylinder ��+��=9, and x=0, x=2.                                    

           b) Using Divergence theorem, evaluate∬ (� ���� + � ���� + � ����)
�

, where 

                 S: �� + �� + �� = ��.                                                         (CO6)              

4. a) Verify Green’s theorem for 
c

( y-sinx)dx + cos xdy where C is the triangle formed by          



     the Points (0,0),( /2,0),( /2,1). 

          b) Verify Stokes theorem for F =(x2+y2)i-2xyj taken round the rectangle bounded by the 

             Lines x=±�,y=0,y=b.                                                                  (CO6) 

5.a) Find the volume of the tetrahedron bounded by the planes � = 0, � = 0, � = 0 ��� 

  
�

�
+

�

�
+

�

�
= 1. 

b) Find the centroid of the area enclosed by parabola �� = 4�� and the x-axis and latus 

rectum.                                                                                                       (CO4) 

    Mid exam question paper along with sample Answers Scripts 

MID-1 
Answer any two questions                       5x2=10 

1a). Find L (����  ∫
����

�

�

�
 �� ) 

b).   FindL-1(log (
   ���  

���
) )                                         (CO1) 

2a). Solve  ��� = � cos 2�  given y (0) = ���(0) = 0 

 b)  y (t) = 1-��� +∫ �(� − �) ���� ��
�

�
                            (CO2)           

3a) Prove that a)�(�, �) = 2 ∫ �������� �������� ��
�

�
�

  and 

   b) Prove that ɾ �
�

�
� ɾ �

�

�
� ɾ �

�

�
� ɾ �

�

�
� … … ɾ �

���

�
� =

(��)
���

�

�
�
�

           (CO3) 

4a) find a) ∫
��

������

�

�
  

              b) ∫ 3�����

�
dx 

c) Prove that  ∫ (1 − ��)  
�

� 
�

�
 �� =  

�

�

(┌ �
�

�
�  )�

�┌ �
�

�
�

             (CO3) 

 
MID-2 

Answer any two questions                               5x2=10 
 

1a. Find the center of gravity of the area of the cardioids r=a(1+cos�).    
Using triple integral find the volume of the sphere whose radius is a units. 
b) Find the area of the circle �� + ��=��using double integration.          (CO4) 

2a) If f = 3x2 z2 y i + j x2 z2 +2x3 yz k . Show that 
c

f .d r  is independent of the path of      

integration. Hence evaluate the integral when C is any path joining (0,0,0) to (2,1,3). 
b) Find the values of a and b so that the surfaces ��� − ��� = (� + 2)� and 4��� + �� = 4          
intersect orthogonally at point (1,-1,2).                                                               (CO5) 
3) Verify Green’s theorem for ∮[(3�� − 8��)�� + (4� − 6��)��] where c is the region   
bounded by x=0,y=0 and x+y=1.                                                              (CO6) 

4a) Using Divergence theorem, evaluate ∬ (� ���� + � ���� + � ����)
�

, where 



     S: �� + �� + �� = ��. 
b) If F= yi+(x-2xz)j-xyk, evaluate ∫(∇��). ��� where S is the surface  of sphere �� + ��+�� =��    in 

xy plane.                                                                                                       (CO6) 

Scheme of Evaluation 

 

 

Mapping   of co’s with po’s 

 

 

 Relationship Course Outcomes (CO) Programs Outcomes (PO) 

Course 

Outcomes 

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 

C01 3 2 2 2 - - - - - - - - 

C02 3 2 2 2 - - - - - - - - 

C03 3 2 2 2 - - - - - - - - 

C04 3 2 2 2 - - - - - - - - 

C05 3 2 2 2 - - - - - - - - 

CO6 3 2 2 2 - - - - - - - - 

      
         1-LOW         2-MEDIUM            3-HIGH 

 

 

Attainment of cos & pos (Excel sheet) 

 

 

 

 

Question  Bank 

Unit-1 

1. ���(
����

��(���)(���)
) 

2.using convolution  find ��� �
�

�(����)(����)(�����)
� 

3.Evaluate L{�� (cos 2t+(1/2)sinh 2t)}(2005 sep) 

4 .Find the Laplace transform of  ���� (2cos5t-3sin5t).(sep 2007) 

5. Find the Laplace transform of ��� (3sin 2t-5cosh 2t).(sep 2003) 

6. Find the Laplace transform of ���� sinh bt.(2003 sep) 



7. Using the therom on transformation of derivatives, find the Laplace transform 

of���.(2000  

8.Laplace transform of integral.(2003 sep) 

9.Find ���{s/(s2-a2)}.(may 2006) 

10.Find inverse laplace transform of (s2+s-2)/s(s+3)(s-2).(2005 sep) 

11.Find inverse Laplace transform of (s+2)/(s2-2s+5).(2003 sep) 

12.Find inverse Laplace transform of (3s-14)/(s2-4s+8).(may 2003). 

 
 
    
Unit-2 
1.Relation  between beta and gamma functions. 

2.∫ ��������
�

�

�

�
�

��� 

3.∫
��

√����
���

�
 

4.∫
��

√����
���

�
 

6.∫
��

����
���

�
 

7.∫ �������
��

�

�
 

8.∫
��

�� ��
�

�
 

9.∫ ����������
�

�
�

�� 

10.∫ ��(log �)���
�

�
 

 
 
Unit-3 
1.Find ∬(� + �)� ����  over the area bounded by the ellipse x2/a2+y2/b2=1.(sept 2006) 

2.Evaluate ∬(�� + ��)����  in positive quadrant for which x+y< 1.(may 2006) 

3.Evaluate ∬(�� + ��)����  ove the area bounded by the ellipse x2/a2+y2/b2=1.(.(Dec 

2010) 

4.Evaluate  ∬ �� ���Ѳ over the area included between the circles r=2 sinө and r=4 

sinө.(Dec 2010) 

5.Evaluate the triple integral  ∭ ���z dx dy dz taken through the positive octant of 

the sphere    x2+y2+z2=a2 . (Dec 2010) 



6.Evaluate  ∭ �� dx dy dz taken over the volume bounded by the surfaces 

x2+y2=a2,x2+y2=z and    Z=0.(may 1999) 

7.Evaluate ∭ ��� dx dy dz where V is the domain bounded by the coordinate planes 

and the plane x+y+z=1(Dec 2000) 

8.Evaluate  ∭ ��� dx dy dz,where the domain V is bounded by the plane x+y+z=a 

and the  

   Coordinate planes.(sep 2006) 

9.Find the area of the loop of the curve r=a(1+cosө).(sep 2007) 

10.Find the volume common to the cylinder  x2+y2=a2 and  x2+z2=a2.(Dec 2000) 

11.Find volume  bounded by the cylinder x2+y2=4,y+z=4 and z=0.(sep 2000) 

12.Find the volume of the solid generated by the revolution of the cardioid r=a(1-

cosө).(may 2006) 

13.Find the volume of the region bounded by z=x2+a2,z=0,x=-a,x=a,y=-a,y=a.(sep 

2008) 

14.Find the volume of the solid generated by the revolution of the cardioid r=a(1-

cosө) about its        axis.(may 2007) 

15.Find by double integral ,the volume of the solid bounded by z=0,x2+y2=1and 

x+y+z=3.(may 2010) 

 
. 
Unit-4 
 
1. Find the work done by the force ⁻ F= (2y+3)i+xzj+(yz-x)k When it moves a particle from the 
    point (0,0,0) to (2,1,1) along the Curve x=2t², y=t and z=t³                       (dec-2010) 

2. Use divergence theorem to evaluate ∬ (����� + ����� + �����). ����
�

     where S is the part 

of the unit sphere above xy-plane            (dec-2010) 
3. If F and G are two vectors, then prove that ���(����̅) = �������̅ − �̅. ������        (dec-2010) 

4. Evaluate  ∮ ��� + ���
�

     where c is the loop of the Folium of D’cartes  

� =
���

����
, � =

����

����
                       (dec-2010) 

5. verify stoke’s theorem for F=(2x-y)i-yz²j-y²zk over upper half surface of x²+y²+z²=1 bounded 
by its projection on the xy-plane            (dec-2010) 
 
 
Unit-5 
 



1.evaluate Green’s theorem ∫ (�� − ���ℎ�)�� + (� + ����)��
�

    where c is the rectangle with 

vertices (0,0),(∏ ,0),( ∏,1),(0,1)                       (dec-2010) 
2. Find the directional derivative of f(x,y,z)=zx²-xyz at the point (1,3,1) in the direction of the 
vector    3i-2j+k                           (jun-2011) 

3. Evaluate the line integral ∫ (�� + ��)�� + (�� + ��)��
�

 where c is the square formed by the  

    Lines y=±1,x=±1                          (jun-2011) 
4. In what direction from the point (-1,1,2) is the directional derivative of ø(x,y,z) = xy²z³ a 
maximum what is the magnitude of this maximum.                    (jun-2011) 
5.find the circulation of F⁻  round the curve c where �� = (������)� + (������)� and c is the 
rectangle whose vertices are (0,0),(1,0),(1,∏/2),(0,∏/2)                     (jun-2011) 
6. Prove that if ø and �  are scalar functions. Then prove that ∇∅�∇� is solenoidal  (jun-2011) 
 

Power point presentation 

Websites/URLS/e-Resources 

1.http://mathforcollege.com/nm/nbm/gen/05inp/ 
2.http://www.mece.panam.edu/~jakypuros/Teaching/MECE2450/Notes/PolynomialInterpolation
.pdf 
3.http://nm.mathforcollege.com/topics/fft_continuous.html 
4.http://users.ece.gatech.edu/~mcclella/2025/labs-s01/Lab11s01.pdf 
5.http://www.enm.bris.ac.uk/admin/courses/EMa2/PDEs/PDES_0203/EMa2_pdes_notes.pdf 
6.http://ar-new.mak.ac.ug/academics/courses/partial-differential-equations.html-0 
7.http://maths.york.ac.uk/www/Vector1-0910 
8.http://www.youtube.com/watch?v=NG9hkGQwT3k 
9.http://www.youtube.com/watch?v=sDn5cc-8gHY 
10.http://www.youtube.com/watch?v=lCNHXhLg2dI 
11. http://www.youtube.com/watch?v=oYsb4rW2GUU 
12. http://www.youtube.com/watch?v=U8riFeiiu3s 
13. http://www.youtube.com/watch?v=6ozQ9INV59s 
14.http://www.cengage.com/aushed/instructor.do?product_isbn=9780534370145 
15. http://na.uni-tuebingen.de/~lubich/pcam-ode.pdf 
16. http://teacher.buet.ac.bd/cfc/CE205/CE205_Lec1.pdf 
17. http://en.wikibooks.org/wiki/Numerical_Methods/Equation_Solving 
18. http://www3.nd.edu/~powers/ame.60611/M.pdf 
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