MATHEMATICS - IV

Definition of a Complex Variable

» Let D be the set of complex numbers. A rule f defined on D which assigns to every z
in D, a complex number w, is called a function f or mapping f on D and it can be
written as w = f(z). Here z is a complex variable and can be written as z = x + iy
where x, y are real and ;i = Jj

» The set D is called domain of definition of f. The set of all w= f(z) (where z is an

element of D) is called the range of f.

» If a and y are real variables, then z=a+iy is called a complex variable,

Representation of Argand plane

» The plane representing complex numbers as ordered pairs of real number is called

complex plane and Argand plane or Gaussian plane.

» If corresponding to each value of a complex variable z=(x+iy) in a given region
R,there correspond one or more values of another complex variable w(=u+iv),then w

is called a function of the complex variable z and is denoted by,w = f(z2) = u + iv

~ Therefore w can be written as w = f(z) = u + iv where u and v are real
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Since z = x + iy and z depends on x and y, u and v also depends on x and y. Hence,
u=u(x, y)and v = v(x, y)

v

» In general, w = f(z) = u(x, y) + iv(x, y) where, u and v are real and imaginary parts

of w = f(2) respectively.

» If to each value of z,there corresponds one and only one value of w,then w is called

a single-valued function of z.

» If to each value of z,there correspond more than one values of w, then w is called a
multi-valued function of 2,

Solved Problems

1)w="f(z) =2° . Findthe valueatz = 2 + i

Solution :
Given f(z) = 2*
Letz = x + 1y
f(z) = (x +iy)? = x* -y’ + i 2xy
Compare with u + v

u=x -y real part

v = 2xy imaginary part

z =2 + 1, comparing we get x=2, y=1
u=2{-1=3

v=221=4

atz=2+i,fz) =3+ 4i

2) If w =f(z) = 2 +2, find its real and imaginary parts. Also find f(z) at 1+i.
Solution :

weflz) =2+ 2= (x+0y)7+ (X +iy) = (¥ + y + 2ixy) + (x + iy)

= (X7 =y 4 x)+1(2xy +y) = U+ iv(say)

Thenu=x’ -y’ +xandv = 2xy + yand f(141) = (1+1)? + (1+i) = 1 + 3i




e=disc around w = w,

+ Letw =u + iv represent all the complex numbers where u and v are real on a
rectangular Cartesian coordinate plane (u, v). This is called the w-plane or (u, v)
plane

+ let w, be a point represented on this plane. Then, the set of all points w for which

= |« ie. = <#[is called the <- disc around w,. This is also called as an «-

neighbourhood of w, .{w|0 < |w - w, | < <} is called the deleted «- disc around w,

Limit of f(z)

A function w = f(2) is said to tend to limit | as z approaches a point z, , if for every real
«, we can find a positive & such that |[f(z) - |< < for0<|z-2,|<d

It is written as lim f(z) =/

z-plane W-plane

Limit along five different paths :

« In order for the limit to exist, the function must be approaching the same value
regardless of the path that we take as we move in towards (a, b)

« There are literally an infinite number of paths that we can take as we move in
towards (a, b) . Here are a few examples of paths that we could take




= A couple of straight lines as well as a couple of stranger paths {which aren’t straight
line paths) are also shown

= Only 6 paths are included in the abowve graph
= By varying the slope of the straight line paths there are an infinite number of paths
~ We will only consider the paths that aren’t straight line paths

=~ In other words, to show that a limit exists we need to check an infinite number of
paths and verify that the function is approaching the same wvalue regardless of the
path we are using to approach the point

~ In graphical point of view, a function will be continuous at a point if the graph
doesn't have any holes or breaks at that point

~ This method is a very nice way to determine if the limit doesn't exist. If we can find
two paths upon which the function approaches different values as we get near the
point then we will know that the limit doesn’t exist

Properties of Limits :
1. If limit of a function exist as z — z_, then it is unique
2. letf=u+iv,z=x%x+iy, 2, = X, + iy, then
im f(z)=w, - iv. <> lim =« and lim = v,
3. If limF ()= f,.limG(2)= g,
DIm[F()+G)] - f, *+ 8,
2)lim [F(2).G(2)] = /5.8,

F(:)I—L,g_r()

J

3) Iim =
—= | G(2)]| g,

HlimcF(z)=c./,

Solved Problems

1)Using the definition of limit, prove that hm < 11 =2

Solution : o
=% =1

let f(z) = |
this function is not defined when z = 1
Whenz =« l.f(z)=2z+ 1. Thus f(z)-2=z+1-2=2z-1
S22 < whenever |z -1 <e

laking & =«. the condition for limit is satisfied for every e >0.

=% -1

oo lim =2

1
—p -
‘ i




2)Show that lim {2y i) = i

Solution ;

Consider 7y = 2y =i

Let ==0and [v|<& 4|v-2|<1

= x|«
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5) Determine whether the limit exist or not. If they do exist, give the value of the limit,
i
Xy

lim b

Xy 00] x

. ":
Solution :

The given function is not continuous at origin.
Hence, we wall use the path y = x. Along this path we have,

: .\"‘ V , .\"‘.\' . .Y.' ; .\':
im ——== lm ———= Im ——= lim —

L00 " gt a0 gt pxt )00t pxt 300 ¢ 4]

=0

Now, lets try the path v = x'. Along this path the limit becomes,
! 1) 6

. e 85 i Xy g X
m ———= lm ———= lm —=
1) =00y +.\-' (1) =00 .\'° +‘.\'} ’ n;.r-'.‘O‘_x

We now have two paths that give different values for the limit and so the limit doesnt exist




. v

6) Show that liﬂl . + . does not exist even though this function approaches the same
R

limit along every straight line through the origin.

Solution :

oxy
Path I :hm ——

im0 =0
=1y =

Paih 11 <l

Path 11I: Along anv straight line through origin

< - hmo0-0
-y e

Lety = nx

Xy . my’ mx

lim- =~ =hm — =hm -=0
it B R SR S SRS

Path IV: Letv - mx-

. R . mx” . " . .
hm —— = lm————=1im - = 0 and different for different values of m.
e i S e A TR Sl B

A+

Therefore the limit does not exist

. | | 1
7) Determine where the given function is continuous (a) —— (b)
inside a unit circle. How about in the complex plane. % 771
Solution

|
= 18 continuous everywhere except where 1+ 7' = 0=z =21
o

When unit circle is considered, z|< L.z =21 are excluded. Thus —— 1s continuous mside z|= ]

|
Similarly, - 15 also continuous mside [z|= 1. If the entire complex plane is considered, both L and

z 142

are discontinuous, at 7 = 11 and 7 = | respectively

7-1




8) Show that every differentiable function is continuous
Solution :

Let f(z) be differentiable at z,. Then

f(2)=1(2,)

JS'(z;)=lm exists

o f(z:) 15 well defined.
J(2)=f(z)

Consider. hm f(z) - f(z,)=hm = 2

f(2)= f(z,)

*0

= lim imz-z = f'(z)hm(z-2,)=0

Thus, lim f(z)=1lim f(z,) = f(z,)

- f(2) 15 continuous at =,

Continuous Functions

» A function f(z) is said to be continuous at z = z, if f(z,) is defined and

lim f(z) = f(z,)

« A function f is continuous at a point z_, if corresponding to each positive number <, a
number & > 0 exist, such that

f(2)- f(z,)| <€ whenever |z-z,|<d

Properties of continuous functions

1. If fis a continuous function of z at every point in a closed region R, then fis
bounded in R

2. If Fand G are continuous at Z, then F+G, F-G, F.G, F/G G # 0 are also continuous
3. Any polynomial function is continuous
4. All trigonometric functions are continuous

5. 1f f(z) is continuous then |f(z)| is also continuous




Solved Problems

1)Show that the function f(z)— > is not continuous atz = O
Solution :

Let z = x + iy

Suppose = — 0 along x-axis. Thenwehave v ~ 0.z —x.z = x
LI X

slim=—=lim— =1
s} = 1= y-

Again suppose = » 0 along v-axis.

Thenx =0z =jvand - = -iv
- . =i

slim= = lim—— = -1
=tz o=l gy

lim = does not exist.

2)Show that the function J(2) =T is continuous over C.
Solution :
We have f(z)— f(z,)| =z -z, .Forany given >0 choose € = J.we get

z—z|<8=2|f(2)-f(z,) <€
2o f(2) 1s continuous at =,

Here =, 1s arbitrary. Thus f(2) 1s continuous over €.

4) Show that f(z) = xy? + i(2x-y) is continuous for all z.

Solution:

Given f(z) = xy? + i(2x-y)

Consider f(z) = u(x, y) + iv(x, y) where u(x, y) = xy? and v(x, y) = 2x - y which are
continuous everywhere,

Hence f(z) is continuous for all z.




5) Is the function defined by

" RN |

2" +3i2-2 f .
—_— or 2 =1 . s o S : s

f(2)=" z+i " continuous. If not can the function be refined to make it continuous at z = =17
S. forz = -1!

Solution:

() . : .
f(2)= ‘f—) 1s continuous when g(z) and h(z) are continuous except at h(z) = 0.
A2

So fiz) 1s continuous everywhere except at z = -1, since g(2). h(z) are continuous.
Continuity at z = -1

, o xei ) S3i(xiv)-2 L o -3y-2 . —p=2 1
lim f(z)= lim —— = im ———=lim ——=--=i
e i (x=n)=i U (A )] oot O} i
§ g dx=1)=3
Also, lim f(2) = lim f(z)= hm———— =1
-y - T !

1

Shm f(z)miade f(=f)

S f(2) 18 not continuous at 2=«
Suppose we define fiz) as fi4) = 1 mstead of &, then f{2) is continuous at z =+ and is therefore continuous everywhere,

This discontinmuaty & 2 = -1 13 known as removable discontimnty




Derivative of f(z)

+ Let w = f(z), be a given function defined for all z in the neighbourhood of z,.
flz. +A5)= f(2)

« If lim
R LY

exist, then the function f(z) is said to be derivable at z

Note:
« If a function is differentiable at a point, then it is continuous there

+ A function can be continuous at a point, but not differentiable at that point

Solved Problems

1) Find the derivative of z¢

Solution :

, Co(zeAn) - 2zAmeas
f T{.'.'] = lllll. { ) = ]1]1]. S —

A —l, - Ar—s ) -
=lmm2z+A-=2-

L i

2) Find the derivative of w = f(z) = z° - 2z at the point where (i) z =z, (i} z = 1
Solution :

We have
. flzo = AD) - f(z))
(=)= lim: :
. i -
iz ]il'ﬂ[:'— + Ay =2(z, 4+ Az) (=) -2=,)
. = Ll l:
Lo e (As) 3 (A) =35 () =25 —2A— s 2
lim
o A-
lim 3z 3z Ar+(An) —21=32] -2
In general. f'(z)- 3= 2.7z

(ii)Substimting = =1, weget f'(1)=3 -2 =1




3) Show that the function f{z) = z", where n is a positive integer is differential for all
values of z, where n is a positive integer

Solution

Given f(z) =7

=+ A2) (o) -1 (=+ Ay -Z=7
= lim

S (=) = lim - A= At A=

Y ].E:+ML_‘”:”:[.\:}; bt (AZ) - ="
= lim =
S el A
. -1 ., _ " _.
— lim .-r:"l+"(" ):"‘[\:l-...+{\:1 "= pznt
A —+l) 3 |

Hence. f'(2) exists for all values of z.
Properties of Differentiation
If f(z), g(z) are differentiable functions in a domain D, then

d . d . d
N—| iz~ glz)=— f(z2)——g(2)
) /e = () e

o d
’_‘}d:lr.f{:,?]—(. f(2)

s

o . o d
3) f(z)he(z)]=fi(z) (z)=gi(z) (=)
n’:l' 5 ] J el= & 5 el= /

.

d . d
d "r{__J -L‘E'.l{f:‘f{-l _r'.]'.;_jﬂ.}

d: | glz) |g<:]lx

Definitions

Analytic function :
Let a function f(z) be derivable at every point z in the = neighbourhood of z_, then f(z) is
said to be analytic at z,

Entire function :
If f(2) is analytic at every point z on the complex plane, f{z) is said to be an entire
function

Singular point :

A point at which an analytic function ceases to have derivative is called singular point. If
f'(z,) does not exist at z = z, then z = z, is called a singular point of f(z)

Example :

If f(z) = 1/z is analytic at every point 2 20

Then f(z) = -1/z? ifz+0

At z = 0, f(z) does not exist

z = 0 is an isolated singular point of f(z).




Cauchy Riemann Equations

The necessary and sufficient conditions for the derivative of function f(z) = w = u(x, y)
+ i v(x, y) to exist for all values of ; in the Region R are

-

u v oo

il

l—.—. are continuous functionsof x and vin R

Y v Oy oy

=

S TS e A S

(A S T T

Ihe relations given by (1) are known as Cauchv-Riemann equations or briefly C-R equations.

Proof :

Condition is necessary : Let (z) be analytic in the domain R.
We have to prove that u and v satisfy the equations <Y _<Y ¢ ¢4 _ <V provided the

partial derivatives exist & & & &

If f(z) possesses a unique derivanve at point z then £(z) = hm f*as) - 7(2) exists
O -

. [u{n: +AV. VA - v - .‘p'l] - [u{' V.V + :'11.1'._1'}]
= hm
& =l Av+iAv

A=l

— (1)

Since f'(z) exists and is same for all the directions along which Az — 0.
Case - I:

Let Az — 0 along X-axis, put Az = Ax
Taking limit as Az — 0 of (1), we get :

Ly Av v+ Av)=mix. v) ; vix+Av v - .\J'}-ruurr}q.

SUz)=hm
A= Av iy Ax + Ay ‘
oy A )=o) vy Ax v)=vix, ) '
~ lim : SN . .
e 'Ill, l\. lt' _|
= g + r'L;—‘ u,+voexistsas f () cxjg.l-_,]




Case 11 :

Let Az = iAy
" . i lxy + A v+ \v)—uix v) WMr+ Av. v=Av)—vx, \'t-
Now. f'(7) - hm - = i - = -
= Av -\ Ay ~iw [
. wx. v+ A\)—u(xv) viv.v= M) —vix )
lim : = Sl : : :
A iAr iz !
1 & o Y
_'-—".—T.— i— —(2)
e oV el c

Here fiz) cannot possibly be analytic unless these two limits are identical. Thus. a necessary condition

. co o GRE: CY cu &
that f(z) be analyticis —=—=i—+ — or
X h) A O

oy oy o =
T ot 0 Ve 2 S A ),
cx v oox cx

1.¢. C-R ¢quation must be sanshed

Condition is Sufficient :

. . N . o fu fn v v .
Suppose fiz)1s a Single-valued function possessing parnal denvatives — . —. —.— at ¢ach point of the
o Oy ox iy

region and C-R equation given by (3) are sansfied. By Tavlor's theorem for a function of two vanables,

we have,

Flz=A)=nx+ax.r=81r)-r=dx.1r=41)

cw . Cu o % S &
SHG V)| 0N oV (st VXY Cer s oy v
‘x & ‘x &y )
. RTINS i TR & P . .
=) i Sx s i O) [dncu:rdmg terms of higher d-:gm:]
v Ox o O

= -

) . A TR 5 N I TRs S
= flz+82)- flz)= i |8x - -i— &y
& & I =

Condition is Sufficient :

Now using C-R equation (3). in above we have.

. = . ou___ov| . —cv_ O |
',(:+O:)_'/(:);I — Ffi— |OXNF| —Fit—= IO_\'
| &x cx cx ox |
o ov |, iov cu |
= = A fi= i(’.\' 5 b= ll()_\‘
| Cx ax | |l & Ex ]
- Cn v |, . [ Cu cv ).
= =t ](o.\- +HIoy)=| _—+1 on
| &x X \ X cx
. . f(z+SE2)—-f(2) cu .ov cu . cu
..../'(:)—llm' ( _) - ( =it e O i e
6:—0 o= cx cx cx v

which proves the sutficient conditions.




Maxima —Minima Principle

Theorem 1
If f is a continuous function defined on the closed interval [a,b],.there is (at least) on
point in [a,b] where f has a largest value, and there is one point where f has smallest

value,

Consider a curve from the point corresponding to x=a to the point corresponding to
w = b.

The curve has the highest point called the maximum wvalue and the place has a low

point called the minimum wvalue.

The theorem has two principal hypotheses.

1. The interval [a,b] is closed

2. The function f is continuous

# Consider the function f{x) =1/x is continuous in the open

interval D=x=<1

# It has no maximum value in this gpen interval.

» Consider the function f{x)= x‘is continuous in the open interval
Dex<2.

n [FA T

» This function has no maximum or minimum value in the open

Interval, ]

» In closed Interval maximum value =4 and minimum value=0.

Definition

A function f(x) is said to have a maximum or minimum at x=a according as
corresponding to a small positive number € f(x)<f(a) or f{x)>f{a) for all x such that
O<|x-al<€




Working rule for finding the Maxima and Minima of a function

1. Find f(x) and equate it to zero. Let the roots of f(x)=0 be x=a ,r=1,2,.....,n.

2. Find f"(a ).If (0 )>0,x=0 is @ minimum of f(x).If f“(0 )<0,x=a_is a maximum of
f(x).

3. If f"(u,)=0 for some r.Find f"(a, )20,x= « Is neither a maximum nor a minimum of

f(x).In this case x= u, is called a point of inflection.

4 If f""(a, )=0 for some r.Find f*' (a, ).If f*' (¢, )>0, x=«, isa

minimum of f(x).If f*' (a, )<0, x= « is @ minimum of f(x).

5 If f*' (u, )=0- Find f*' (a, ).If f*' (a, )20, X= «a, is neither a
maximum nor a minimum of f(x).If f*'(«, )=0,find f*" («, ).If fro
(a, )>0, x= «a, is a minimum of f(x) and if f*'(a, )<0, x= «, is

a maximum of f(x).

6 If f*(u, )=0,proceed to the next higher derivative as shown

above in rule 5 and so on.




Problems:

1.Find the points of maxima and minima of the following functions.
(1)2x" = 21x" +36x +10

Solution:

(2x' =21x" +36x =10

For maxima and minima we have,

B 0iie6x’ — 425+ 36=0
dvx
or X' Tx+6=0
or X° -6x-x+6=0
or X(X-6)-1(x-6)-0
or (X-1Xx-6)-0, 1.
x=1.6
dv
Now, —=]12x-42
(-

Which is negative for x=1 and positive for x=6.Hence,x=1 is a point of maxima and

x=6 15 a point of minima.

(ii)v = x"log x

For maxima and minima we have,

h , !
2 _0.ie 2xlogx+x"—=0
dx v
or x(2logx+1)=0
or 2Qlogx+1=0 as x=0
1
or log x—-—
= b

1
or Xx=¢ *




d*y 1
——=2logx+2x.—+1=3+2logux
ax- X
1 2 1 P
dy : [
Ar xe -.f—:=3+210gc =3+2 -7 =2>0
ax” \

Therefore=e-? is a point of minima.

2.Given y=x°+5x*+5,Find the extreme value of y,if any, where x is assumed to be a

real variable.

Solution:
We have 3 3
ry=x"+35x"+5
Then dv -
= = 5x' +15x°
dx
dv ' 2 O
NG, /—:U_'>5.\' +15x" =0 orx(x~+3)=0
dx

Since x is a real variable,x?+3+0
Hence x=0 Is a possible point of extreme value.
We have

v'=20x"+30x and v'(0)=0

Hence x=0 is neither a point of maxima or minima.

We have

yT = 60xT + 30 and  vU(0) = 30

Hence x=0 is a point of inflection.




Harmonic and Conjugate Harmonic Functions

Harmonic function :

+ Solutions of Laplace equations are called harmonic functions {or) the functions which
satisfy the laplace equation

t-: =
_—I:?"'(_—'? — ﬂ
cx’ fl‘l."

are known as Harmonic functions.

Laplacian operator :

vz S ¢ s called Laplacian operator

-

Xt oot

-

Conjugate harmonic function :

« If two harmonic functions u and v satisfy the Cauchy Riemann equations in a domain
D and they are the real and imaginary parts of an analytic function f(z) in D then u is
said to be a conjugate harmonic function of u in D

+ Two harmonic functions u and v which are such that u + iv is an analytic function are
called conjugate harmonic functions

« Iff(z) = u + ivis analytic and u and v satisfy laplace equation then u and v are
called conjugate harmonic functions

Polar Form of a C-R equation

If f(z) = f(re®) = u(r, 8) + i v(r, 8) and f(z) is derivable at z, = r, &° then

i - 1 &v v | cu

cr rcd or rof




Proof :
Let z = re® Then, f{z) = u(r, 8) + iv (r, 8)
Differentiating it with respect to r partially, we get,

-

fizr fiz)

fize”

s T

(
cr r

£z iri‘ llllh'_'i"'l'.}-—il”
"L o S

Similarly differntiating partially with respect to #, we get,

cf oz . -
= ()= = f(z)\rie"
i e
N
S s (e ) 2 (2)
e

Using (1) and (2)

Sl =iv )= —(u. +iv,)
- ree’
o 1év 1 éu
H+iv, ==—=i=-—
retd rcd

Equating real and imaginary parts, we get
cu laév év 1du
&r réf ir rit

Hence, the result follows. These are called Cauchy-Riemann equation in polar form




Corollary :

. Su o 1én 1 & &y Ly
If f'(2)exists, then e S =0and s - e
orToror rg o orcr
Proof :
We have, L_” )
or rce
& G
and _|—=_|——.i'_..:'
cft o

Differentiating (1) partially with respect to ¥, we get,

(e 1 & JrI e
ars el réréd
- -
lew 1 a
From (1), we have .
rerorgh

1
Differentiating (2) parnally with respect to # and multiphymg mth - wegd —
r r

Eu 1éu 1 &n
Addmg the above three conditions, we gét —+=—+—=—=0
& rir O
v o lay 1 &
Similarty, we can prove that —=-—+— -0

&r' rér or CH°

Note :

If f'(2) exists (and also |f"(z)])

(1) u, v satisfy Laplace’s equations
(i) u and v are harmonic functions

Solved Problems

o .-\'
%—.l

1) (iIYf(Z) = xy + iy is every where continuous but not analytic

(ii)f{z,) = x, v, + iy, is well defined for any z_, = x, + iy,

Solution

2 lim f(z) — hm xy +

Iim = x, v, v, = ()
W W,
Iim = x v, 0, = f(z,)
A T ]

ey
. fis continuous evervw here

(i)Y Flz) = u + iv = xy + iy
u = Xy, v =y
u, =y, u =x,v, =0, v =1
C-R equations are not satisfied
f is not satisfied




2) (i)An analytic function with constant real part is constant
(ii}An analytic function with constant imaginary pat is constant

Solution :
{i) Let w = u + iv bean analytic function
By Cauchy-Riemann equations & 2 4% 2 .
[ c 3 [}

By given data real part is constant.

cu oy i
Letu=k, then —=— and — =0
& O ey

fu &)
From (1) we get =0and . 0
1 Y

Thus, v is indepéndent of x and y.

Therefore we can take v = k,, a constant

w=u+iv=Kk, +ik, i.e.w =k, wis constant
{ii) similarly, we can show that an analytic function with constant imaginary part is
constant,

3) Show that real and imaginary parts of an analytic function are harmonic

Solution :
Let f{z) = u + iv be an analytic function

u v
&x &y
cu oy .
— = — by Cauchy-Riemann equanon — ()
o Oy
e . . &u Cv .
Difterentiating (1) pamtially wath respecttox. — . =~ —=(3)
[ G e 3
e e o Cu & .
Differentiaring (2) pamtially with respecttoy.— = 2 (1)
(o Y o
. C'u v
{3y ~(4)gives, — + —=10
(o
usansty Laplace equanon. hence 1 1s hanmonic
- - . du v
Again Differentiating (1) with respect toy, — = — ()
fHéxr &
. . o N &u v
Again Differentianng (2) with respect o X, — =— —+(6)
ady o

(8)—(6) gives fq_i +E_1 0
(.x a..

v osatisfies Laplace equation. Hence, v is hanmonic. Thus, both i and v are harmonic functions.




Lou_ér

=— = (1)
& &y
fu & .
— = — by Cauchv-Riemann equanom — (2)
& O
e . . T T
Differentiating ( 1) parmially wath respecttox, —— = —— —(3)
L S s 4 ¥
e - . . u
Differentiating ( 2) partially with respectto v, = » (4D
& Ady
. cu &
(3« (dgves, — + — =
& Ay
1 sansty Laplace equartion, hence u 15 harmonic
N . . cn Oy
Again Differentiaung (1) with respect oy, —— = — —»(5)
avéx O
I - . &u &y
Agam Differentianing (2) with respect 10X, — = — = (6)
oty Ox
. R == S =t
(S1=i(6hgmves = =0
o

-1 satisfies Laplace equation. Hence, v is hammonic. Thus, both & and v are hanmonic fumctions.

5) Show that the function u(x, y) = e* cosy is harmonic. Determine its harmonic
conjugate v(x, y) and the analytic function f(z) = u + iv
Solution :

Given u(x, y) = e* cos y

Differentiating with respect to x and y, we get

cu . cu X
— =¢'cosvand — = -e'smyv
cu Cy
Cu 2 Cu =
~ e'cosvand -¢’ cos
e ey”
Cu CCu
hence —  — =0

aT Oy

Thus, u 18 a harmonic funcnon. [ & v be the hamonic conpugate of u. Then by Cauchyv-Riemann equations,

we get,

- o

cu cl o

— ==——=€ smy —(l)
x a

Integrating v =¢" sin vy - 7(v)

(.:\: =e'cosyv+ f'(v) (D)
cv
R & S .
Again — = — =€ Cos Vv
[ AR o

From (2) and (3). we get.

e cosv=¢ cosv+ fr)orfilry)=0= flv)=c
Hence from (1). we get

Vee simy4c

Lf(Z)=uvivae cosviiesmmyeic=¢e (cosviisinyv)+ic=¢e +ic=¢e +ic




6) Find k such that f(x, y) = x* + 3xky! may be harmaonic and find its conjugate

Solution
We have f(x, y) = x' + 3xky?

f &f

Y et Y gk and £ - 60 S gk,
Ly (%) X (A
Since fix, v) 1s harmonie, therefore {_. L, {_. / =0re. v -O6kr=0=x(1+k)=0=2x=0k=-1
e &y
hence, fix) ¥ =3x°
. . s & ' & ) .
Let gix. v)be the compugate of f(x. v). Then de 2 v~ ;ﬂnﬁ' = —ia‘r - id_r (usimg C-R equanion)
O o & o

= 6k - (3x - 3h ) (Qhk=-1)
Thas is exact differential equation.
Integrating, g = |-{31j|' fﬁ'-[—]_t'; v -, v 15 constant

6y — -3 — sc=3v"y-1 ¢

i - ] L I.‘

Milne-Thomson's Method

« By this method f(z) is directly constructed without finding v (or Ju and the method is
given below :

« Letf{(z)= u(x, y) + iv(x, y)
» Since, z=x + iy, z=x-iv we have

Now considering this relation as a formal identity in two independent variables z and
Putting - = zin (2), we get

f(z)=u(z, 0) + iv(z, 0)----(3)
Therefore (3) is same as (1), if we replace x by zand y by 0

Thus to express any function in terms of z, replace x by z and y by 0.




Now, én v fu o fu .
fiz)=—+i— =—-i—.by Cauchy-Riemann equations
cx £ty X cy

Cu . cu L . .
let —=gix,v)and —=¢.(x,v).Then (2 =d(x v)-ig.(x, 1)
- o ‘ ’
Now, to express (7)) completely m terms of 2. we replace x by z and v by 0. (4)

S =d2,0) i X y)

Hence. fiz) = |[@(2.00-ia(2.0))d + ¢
where, ¢ 15 a complex constant
Smnlarlvaf (v, v) s given, we can find u such that u =i 1s analvie. By usimg Milne-Thomsons method

- -

cn0voov i

flzy=—+i—=—+1—, by C-R equations

v Oy O Cx

v v .
() +ngdx y) whae — = wi(x ) ad v palx, v) =y (2,0)+ . (2,0)
aY C

SIRE j-li;f; (2,0) i (2.0)]dz + ¢,

Solved Problems

1) Find the analytic function whose real partise” (x siny -y cos y)
Solution :
Let f(z) = u + iv, whereu =e* (xsiny -y cosy)

Differentiating partially with respect to x and y, we get

cu <o ) v cu 4 3
—=¢ '(siny)+(xsiny - veosv)-e ')and —=e (xcosy+ vsiny-cosy)
v v

éu ov Ou wm, . . :
S'(z)= — + i— = — i—(using Cauchy-Riemann equation)
o x &x O
= €7 (SIN ) = YSIN ¥+ VoS V) =707 (XCOS 1+ VSin v =cos v)
By Milne-Ihomson's method. /(=) 15 expressed in terms of z by replacing x by zand y by 0
S L @) =0=e (=) ==Kze" —€")

Integrating with respect to 2. we have f(z) =ize * = constant.




2) Find the analytic function whose imaginary part is e* (x siny + y cos y)
Solution :

Givenv = e* (xsiny +ycosy) ------- (1)

. , , , o - , -
Differentiating (1) pamally wath respect tox, — = &'/ (x=1)smy=veosy |
cx :

i . o, . -
Dhfterennating (1) parnally with respectlox, — - ¢ [Ix- )siny=1¢osy |
Q) -

L i TR & NN s AN R T )
Butf7)- —=f——=i—=¢ [(x=1)cosv=ysmy|=ie [(v=1)smy+ycosy |
[y [ LY - - - -
Usmeg Malne-Thomson method £17) r:{:-ll[Fumngr zand v ﬂ]
Integrating, f(7) = 2¢' =c.ie.u=iv =(x=n)e' " =c=(x=i)e & =c=¢ (x=i)(cosy+isiny)+¢
CHEIV= e (XYCoSY - sy )-ie (Xsmy -y +Cosy)c

Equating real parts, i =¢ (xcos v -sin 1)~ ¢

3) Find the conjugate harmonic function of the harmonic function u = x? = y?
Solution :

Glven u = %2 -y? - -=<-= (1)
o : . cu A
Differentiating (1) partially with respectto x. — = 2 x
cx
Again Differentiating. =2 (2]
CX "

3 . Cu
Differentianing (1) partially with respectto vy, — = =2
cy

C°n

Again Differentiating, —= =2 = (3)
cy”
d%u. &%
| (2)-(3) gives ——~+ ——=0

" u 1s harmonic




. . . . cue Rk a7 S - .
let v be its harmonic conjugate f(z)= —+r—=— 71— =2x+ 2 ¥
X [ 5 [ah Y o

Using AMilne-Thomson method, £ (=) = 2=
Integrating. we get f(z) = 2" + ¢

b v —(x - vy + ik where ¢ — ik
S(z)=x" — v +i2xv sk = x — 1

+ H2xv = k)

Equaling imaginary parts v — 2xv — & is the required form.

S) If f(z) = u + iv be an analytic function of z and if u - v

= (X = y)(x? +4xy + y? ).
Find f(z) in terms of z
Solution :
Given f(z) = u + iv - - - - - (1)
if(Z)=1v -V  mmmimimia (2)

(1) + (2) gives, f(z) (i +1) = (U - Vv)+ i(u + V)

(L+1)f(2)=U+iVwhereU=u-v,V=u+yvV

. : {
Diffemnanng (1+1)f'(z) = (_

cx cx A cx Cx

(v + v+ v )+ (v + v N 2x = dv) 0| Ax" =dxr -y )+ (x— v )(dx+20) |

A+)f(3)=3x +6x13 =3y —i :3\'. —6xv—31"
Usmg Milne-Thomson method (1+§) F(z) = 32" —i3z" (Puting x = z and v = 0)
On Integrating. (1+i)/(2) -~ (1=i)z" =¢

.“:)_l i, ¢ _4a 0o

el I 1$1

UNIT Il : COMPLEX INTEGRATION




Finite integrals

Let us consider F(t) = U(t) + iV(t), ast=b----- (1)
where U and V are real valued, sectionally continuous, functions of t in closed [a, b].

Each of the functions U(t)and V(t} is such that [a, b] can be divided into a finite
number of sub intervals in each of which the functions are continuous and has finite
limits from the interior at both end points of each interval

We define

jf-'[r} dlr :ff'(r}dr i1y dr (2)

o o

Thus. IF{.’}.{.’.’ 1s a complex number such that

Real part of rf'{r]dr = -ff (r)dr

a

Imaginary part of ‘F(I)d! = [I'(f}dr

Properties on finite integrals :

¢ &

1. IF(r)n’r [I—‘{r]a‘r

"
i [+

2. iF{r]n’r jF[r)dr : jf‘(r]dr a<c<bhb
3. IA F()dr - kle{f]{ff
4. jﬁ'u)n‘r -’:j|f-'[r}dr

a




Definition

» A set of points (%, y) such that x = x(t), v = y(t) (a = t = b) where x(t), y(t) are
continuous functions of the real variable t is called a continuous arc.

~ If no two distinct values of t correspond to the same point (x, y), the arc is called a
Jordan arc.

» If x(a) = x(b), yv(a) = y(b) and if no other two values of t correspond to the same
point (%, y¥), the continuous arc is a simple closed curve. A simple closed curve is also
called a Jordan curve.

=~ Examples of simple closed curves

N @

co | = | O
# If x(t), y(t) have continuous derivatives which do not vanish simultaneously for any

value of t, then the arc has a continuously turning tangent. Then the arc is said to be
smooth. Its length is given by the formula

P ] : ., 174y v
L —J\fl.&(',ll ¢ | 80| dr where &¢) - 0 and ®&r) -

dr

» A contour is a continuous chain of a finite number of smooth arcs

» If a contour is closed and does not intersect itself, it is called a closed contour

AN

% 0 e—— v ol N U\,

Examples of closed comtours




Line integral

Let f(z) be a function of complex variable defined in a domain D
Let C be the arc in the domain joining from z = ato z= B
Let ¢ be defined by x = x(t), y = y(t) (a =t < b) where a = x{a) + iy(a) and B = x(b) +

iv(b).
Let x(t), y(t) be having continuous first order derivatives in [a, b]. Then line integral
can be defined as

[ £2rdz= [ 1 [x0)=iv()] [ )+ )]

Solved Problems

1) Integrate f(z) = x? + i xy from A(1, 1) to B(2, 8) along the straight line AB
Solution :

[Ff.-'m’; j (% +ovv Helx = ich) 0.0l
Equation of ABis (v - 1H2 - Di=ix I8 - D= v="x-6—=dv="Tdx

fﬁ"h'hrf:‘ f b+ i Tx = 6) [ (dvy + Tidy) | = i(7x = 6%)(Ti= Dy

™. ud

A

S P - ey

:[-Iflij (Tee D™ b =(Tie D) (Tis 1) — - 3" |
= B 5

N I
= (Ti= 1) (Ti+DZ-12i-
5

+_=.;"—{'I+Ii| (Ti=1)=-% I—{"t‘+l'H_.'!2{+'}
-

(Ti+1)

.l
pe




2) Integrate f(z) = x? + i xy from the curves c : x =t, y = t* from A(1, 1) to B(2, 8)
Solution :

Along ¢ whose equations are x = t, y = t° . .
dx = dt, dy = 3t° dt

ALY = =1 \.

B8y =r-2

‘IIFII:J.'.’:— [ (v + oKk + ich) l AL 1) :

1l
jf—':‘::rt f (F it )+ 53 db)

- [ 1

(7 +a)widr b = [ ' +3° -3 = [0+ 1+ 30" -3 )
| l

rox o

e RN I L N R T REAT )
'3 5 7 45
-4 ) )
3) Evaluate I ="ct along the parabolax =r. v =+ where I =t =<2
1=t
Solution :

[ (x — v + 20N + idv)

Wehave [ z'dz= [ (ven) (dvidv) -
il

: RREET
- f (x v v 2vdv 4 j Jvvdv s (v )dv
T T

along the parabola x =r.v = ¢ the points (1.1) and (2, 4) corresponds tot =1 and t = 2
Y=Ly r
dv = dr, dv=udr

| zdz= [ (0 )de Er;".!:dr-i.[lrfcr'! (1~ 1N 2edr)

Iy I tm]

e =g

_1'.*" Foary (o w86
RUaer 6 3




-4

4) Evaluate 5 ="d= along the line joining 1+ iand 2 + 4
L

Solution :

+
(4 ) (A ) . R ) ) 4 1.4}
I s = J' x =0 e - 2vey 1+ [ v = (v = v )y 3
i L I 3 .
equation of the line joining (1. 1) and (2. 4) N
~]-_';'T - 'O(t:-:l;- T e
v = 3y v

On substituting, we get
ladl | 86
= [ Gy 2d 20y D3dv i [ - (G- 2) v x - (B :]:}'3ffl‘—?-ﬁj

(b LI

5) Evaluate I::d: along a straight line from1+7to 2+ i andthento 2 +4i

Solution :
[Flap: = [ = [(v* - 3 v~ 2 + (=37 )y

Froml+ito2+i1e(l.])to(2.1)

yv=landdy =0
e 8 s : 4

= | (x ~Ddxti]| 2xde ==+ 3i -(1) '

.j ( ! I 3 y
From2+ito2+4i1e. (2.1)t0(2.4) ol
v=2and dv=04

[ = [~y if (4= 3 ) =-30-9i 5 (2) )

¢ ] .
(l)+(2)gi\'csI:"d::I§~3t‘[+(—30—91)=8—;”-—6i i




8) Evaluate | (3y'=4vi=n")iralong v - v

Solution :
Let z = x + iy so that dz = dx + idy

[ (3x +dvv+ix pi= ' (3¢ =dxv~ix )(dx +idv)-——-=(1)

Along v = v v = 2vdx
On putting the values of v and dy. (1) becomes

'“3.\': s 4y

[ (3x +4xv +ix pdz = cix M+ i2xdx ) = ‘1(3 Fx 4 )

: $ «
[ . . - ; O L - . Y - RS .\-"
= fl(.w:).\" +d3-i)x «i8x kv =|(3+i)—+2(3+i)—+i8—
o : 3 1 il
P 1 8 103
=—(3+1)+ (.sul)o:‘-: | —
3 4 § 2 30

1
I (¥ + v Jdv = 2xrvdh along (1)y = x.(i)x = v

)

9) Evaluate

Solution :

()Along the curve v = v vanes from 0to 1 and & = dv
LG - duvd = | (00 - x e - 2y ) = | O =0
v

(#)Along the curve ovae and v vanes from O to |

'. : S ¥ ‘\: 3
| e d - 2o =) (0 - x ja- 2 N 2vd) = | (x0 -3y nh:l &

1+i2x)dk

1
5 )y 3




Cauchy Theorem
Letf(z)=u(x,y)+iv(x.y) be analytic on and within a simple closed contour ¢ and let /(2) be continuous
there. then | f(2)d& =0
Proof :
Wehave f(z)=u(x.v)+m{x.v)andz=x + i

dz =dv+av
S(2)dz = (0 + iv)ddy + idv) = (udy - vdv) + i(vdx + udy) ek
. [ v cu cu v )
S(2)dz = | (udy - vdv) + vdyx + udv) = — « — |dxdv + i [ — L dvdv
J. '[ ; ' 'U cx ‘ 'U cx Oy )
By using Green's theorem in a plane
Itis given that f (=) = «+ A 1s analytic on and with in ¢
cu cv cu cv
Hence —=— and — =——
éx % cv cx
using C-R equations If(_:)d: = HOdw{r -iHOdmf\- =0
¢ R
Hence the theorem
11) Show that J (324 D)ed-=0
Solution :
fiz)= lis analytic evervwhere. Hence by Cauchy theorem Ijl.l =0

12) Show that ﬁdi: =0. 1<|z|<2
(= +16)

Solution ;
2| = 11is a circle with center (0.0) radius 1
z| =2 is a circle with center (0.0) radius 2
I = z=2isaportion which is in between the outer part of =/ =1 and inner part of |z| =2
1

f(o)=——— t
(= =16) .
Singular points of fiz) are = =0 and = = s

= ¥

These points are outside of the region 1< 7 < 2
o f(2) 1s analytic within the region f_fl_:)d: =0 ) @ E 3
c




13)Show that Il.? + 1idz where ¢ 18 the boundary of the square whose vertices at the points z = 0.z = 1.

z=l+iz=i

Solution ; .
Let] =j.: iDdzthend =1, + 1 o+ da +1on o1 L B B0t
Along OA (0,01 tod 1,00 T
X varies from 0 o 1 : A
vvaries from 0t 0 = v - 01e 7 - v.dr — dx |
I, =Tl.\"11dx= v ~.'4.'-I=l ~1=; - et
24 = ) A [ s (0,0} A(1,00
Along AB (1L.Oyto(1.1) v
xisfromltolx=Ldx=0
v is from O 1o 1
I —i[ll*ﬂ'l*lIfff\'—f:['[-"—nl{h'—I "1'*!L =j "+i.—'.‘1'—l
o ' CE T -2 2
Along BC (1.1) to (0.1)
x varies from 1 1o 0O
v vares fromltwol.v=1.d0 =0
d=z = v
: v _ 1 ' 3
;5{_‘{{.1--:-4}:11-_.:-n«n.r —0 [2-;--1|_ |: ‘|
Adong CO (0 1)y 1o (0, 0)
avares from O o 0, v = 0, ofv = 0
v ovaries from 1 to 0
; ' YR ) i Lo
i, —J‘{Jr:r 3 ]ji.r.fr—fjln ; l}.nf—.-_:'_ PN | =i 0 5 1| = S
] i ] ) - Ay -— —
) ou — p— 3 g l 1 ?' 1 -l'l —
Hence. /= Ao v 1+ dse v deo =5 420 5 I15-:| |5 i|=0

Cauchy Integral Formula

Let f(z) be an analytic function everywhere on and within a closed contour C. Ifz = ais
any point within C then

fla)= : j'f(:} d-

:-*T.f- {:_“}




Generalization of Cauchy's Integral Formula :

If f(z) is analytic on and within a simple closed curve C and a is any point within C
then

I a) - ‘E_N ‘H:%_,dz
2mTift z oay”™

Fa) - 1 ﬂj(:} -

2xit (z—a)

1 f(=)
"(a) — : ~dz
S a ::‘;f.ﬂ: a) ‘
5

2 g SO
a) = : d-
S ) 3.‘?!&:—:;}’

- R TAC S
(@)=~ !_]R,( d-=

- e ﬂ]-

Solved Problems .

=4 : _

14)Evaluate N’— d- where cis [z] =3
23

Solution : (=)

. A o e

Comparing with | d-=
i

— i

LN

c-3-z-a=a-=3f(z)=z"+1

= 5s a circle with center (0.0) and radius 3

a = 3 1s within the circle

[15) e = 2aif (@) = 22if 3) = 271[9 + 4] = 267
-~

-
-

= +4
15)Evaluate N—‘dz where z =2
Y

L. -
L

Solution :

2 1s a crcle with center (0.0) and radius 2

. S+, i
I he function f(z) - = is analytic within ¢

R

By Cauchv's integral formula, f_/'t s)ds=10




e

16)Evaluate : —d=
s —a)

[+

Solution :

T
Consider ﬂ;{f:
Tl oa)

Let C is a closed contour
1) ais within € then bv Cauchv imtegral formula

2 fizy
St l‘r:f:: .r:]l"”;-

f(z)=2 « 2z > fUz)=32"+2 = f =z)=6=

Hﬁi:l\ o = T ey = Tr6er
- oal

23t a is outside the contour. then /(=) is analyvtic = Nf{:}a‘: =0

e . .
—d= where ¢ is a circle |z =3

(=-1)(=2)

17)Evaluate I

Solution :

By partial fractions. ]_ - 1
(z-IH=-2) (=-2)y (=z-D)

o I JETEIN i o
‘[{: 1Mz 3]”':_'[' 2y (= 1}-rf::'|. - .".'J”r: I' I}”,:

s -

fi(=)

= = 1.2 lies inside {'.J- d==(27ie’”) =2rie’ —2ries =2rxi(e’ — )
= =T
18) Evaluate I d- where z+— =2
o+1 2
[
Solution :
. . ra i
The funchon — ] has singular ponts at 7 = =i
do- {2112 =)
The pole z =i hies withm 2+ ~|=2

1 1 - | » 2 .z o A
[ - a | — - l.| - l_i.‘:UUH--l;{.‘.ﬂ}l-r}}
'Ir 'I; TI

7=i 7=i! dic 7= 2i= 2+ 2 2




d= : :
19) Evaluate I*s B where ¢ is a circle |z =

Solution :

Let f(z)= |

-
.-
-

f‘/(f) -I '”:)Q d= —> Here a = 01s inside the circle |-

Cauchy integral formula.
f(a)= 17 J. J(2) =
-4‘ ’ ( s (1)

Takea=0.n=
|n ; L
27”"‘ (z+4)

d= 271 27i =
0) = D |7(=+4
'j:s(__"' g = S R -

Power series

Hence. f7(0) =

Definition of Power Series

» A series of the form X a_z" is called a Power Series

» If 3 a,z" converges at z = z,, then it converges absolutely for all z such that |z| <
|z,

Radius of convergence

» If 3 a,2" converges for |z| < R and diverges for |z|> R, then R is called the
radius of convergence of the power series and |z| = R is called the circle of
convergence of the power series

~ If R is the radius of convergence of the power series 3 a,z", then the power series
converges uniformly for |z|< R, <R

Taylor Series

Let f(z) be analytic at all points within a circle C_ with center at a and radius r. Then at
each point z within C_
~ 7 "(a) z /o (a) i
S = f(a)+ f(axz a)*‘T(: a) + ... ] Gl - ) K
i |77
The expansion of the right hand side of equation (1) is called the Taylor’s series
expansion of f(z) in powers of (z-a) or Taylor’s series expansion of f(z) around z = a.

Co

Taylor’'s Theorem




Solved Problems

1) Obtain the Taylor series expansion of f(z)=1/z about the point z=1in |z -1|< 1
Solution :

Purz 1=
O

1 ]

flz)y=-= “(l+@) =1 - @+ e +. =l (z-D+(z-1) ~(z-1)+

= 1w

2) Expand e® as a Taylor series about z = 1

Solution :
Putz 1=
o=l v @
N . » _1 o 3 t"}‘1 _ ) 1 . _1': ,1,,'* . .II
i =& = K =& i —_— e — = 't = =l t+r—tr—1...
2 3 2 B
[ (-1 (==1) 1
—e l+(2-1 )
|2 3

3) Expand f(z)=1/27 in powers of 2+1

Solution :
Puz+l=mandz=e-1
) ] | |
Ho)= == T = .

D e 1) (e

4) Obtain the Taylor's series to represent the function
Solution :

.- 3 3 3f 37 s
Letfin=— < 1 _p. 7 § . 3 8 33 8
. b 2 b 1 1 > 5 |
2+ 2z 3 2+ z+ 3 ) - - 2 2
{ 1 } 21 | 1
21 71T s
al T 1 1 1 &7 I3 3 - 8 (="
=13 1 1 + =1+ : - E ” <
21 2 4 8 3 o9 2T | 2 2" 3 3
3 £
=1l+=i-1) — .2
2|

120430 ¢ for ler< =142z )+ 3(z 1) 4.




5) Expand log (1-z) when |z | < 1 using Taylor series
Solution :

Let/iz)=1log(l z).f(0)=0

AR ]_—l_._f“:ﬂ] -1

1
Sz = S0 =1
(1-=2)
2
Sz = U0y =2
(1-=zy
By Tavlor's theorenw. abour =z =0
- o - - b I
Sz _ﬂ_ﬂl-:_r"'qﬂ'u-"E_.r‘"i_l)h"Ef'{O'n—G—:u%ul';——-l

6) Expand f(z)= sin z in Taylor series about z = w/4

Solution :
By Taylor’s theorem,

i (7=a) (z=a)”
[Fa) _.F[-r‘l']—E?—ﬂl_f'{a]—/_m_}'"la‘ﬂ— ——ﬂ_r"lm—ull
e
vl i3
Put a 4 in{l) we get
- = - g T
..r‘i."i__.r‘;: - L : f'?'-l—_f';: - -+ s (2)
) N 3 1
Sizy sz f ! i
W
) Joa 1
Sizhy=cosz, [ = 1= —
4! -

) . E 1
JSz)y=—smz. r7 l= ——0
ER N 1
1

S™zy=—cosz. f™ = =

Substituting in (1.

P ;?_4 | 1
f[;‘} | =1 . - . — e
. _"r_: | 1 .5 2 W2 3 f-:




z-1
7} Expand f(z)= ._, in Taylor’s series about the point (i) z = 0, (ii) z = 1
Solution : ’

. . - -
ifin-<dozxl=2 2y, ]

: =1 Z=1 el | + 1
=1-21+2) =1-2-z+2" -2+ .+ 0ifz| <1
= - 1+2z-z"+ 2 +..+.010 |z« 1

—1+2>70=1) |z <

(iiyTo expand f(z) aboutz=1. Putz—-l=w=1z=1+w

"4 ]. W W A1 1 W B
Hence, f(z) =" " = = - =i =
. z+1 l+wsl 24w > " 2l 2
" (L 11 11 . " " 111 111 " .
_ | [ o Y _ N IR R ol
11 b | = 4 | 1 .| J - I = | Y - | "II|“| =
w - 1 1 )
- | = [ ¥ oD
- .z_. 1 ] :| f - f |I - 1| -
Laurent’'s Series Expansion
Let C, and C, be any two circles given by |z'-a |=r, and |2’ - a | = r, respectively.
Let z be any point in the ring shaped region between the circles C, and C, then,
) b
f(oy=Zalz—-a)y =% .
' {=—a) :
where
1 L= ,
a, - [
2T (" a)y™
1 i) A
b=, _| U o ds
2Ti" (= —a)

Laurent’'s Theorem




Solved Problems

1 . .
14)Expand f(z) 5 N the region 0= -1 <1

- T O T

Solution :

S = —

| 1 I
v2 (I 2y (= 2) (=D
= = 1.z = 2 are singular points of /(=)

Put.z - 1=er.z2=1+e

. | | 1 ’ 3 1.
_r’r[:)" = 1— ! [1*(J+{-J'om |____|1f(._;|-';1
z -1l el o ) 4

14

= Sz D ifo<z- 1<l

15) Find the Laurent series expansion of the function f(z)= ]‘_ —6z-1 n
’ (z 1Nz -3)z+2)

Solution
Using Partial fractions
= —6--1 1 1 I 1 1
(=1 (=z-3(=+2) =z-1 -3 =+2 =+2-3 =z+2-5 =z+2
] 1 ] 1 I z +] | z+2
| - s 1. ° 2] z+2 -+2 :+2L 5 s |
A ey s
1 & =20 ) 1 =+2) 1
-."Z‘l-,‘?"zll s ) T oA
- - 0 - - - - - -




16)Find the Laurent series of - inl<z+1<3
(z+1Dz(z-2)
Solution :
T
Letfi(z)= —
{z+1)z(z-2)
e 112 Tw-9

Putzil=e. thenz=e 1= f(2)= =
eXer-Mer-1-2) eadw-1m-3)

By Partial fractions,

: Ter 9 z ] 2 z 1 2
Ifl:}: | - = . | b .= . I
eX e -1 er-3) ® o -3 ' I ®
o 1-=| 3/1-=
\ ) 3
I A N I T A, 0 o )
-—-'-—;'I-— -—ll=-= -—-—l]+———~+...;-: l"'T"_"'"".
e @ o 3 3 o m @ o P339 ]
2 1 1 Az (zely ]
=4 - K + s " ]."_+ ™ EERT |
=+l (z+1y (z+1) 3 3 3 |
.. The senes is validin the region 1 < = +1/ <3
f : . ) e | . .
17)Find the Laurent series expansion of ————— if 2<|z[< 3
(z+2N=+3)
Solution :
1 5247 3 . .
Let f(z) = =]- _ - - ( By partal fractions)
(z+ 20z +3) (z+2)z+3) I+2 43
» -
Given 2<|z/<3 > 7 <land | |I
. - | 3 . =] " - - q'_il 3 ; 5]
» - : l." - - - : I.:-
O T R e R L) B o B - IO B BN
' =l = 3003 z| = |:| |?| 3 3 L3
S 3 6 12 8z 8z 82
- = — o — b — o —
3 - - I 9 27 8l




18) Find the Laurent series of the function fiZi= . about z = -2,

(z+1{z=2

Solution :
fz) = z . 1 1
(z+1)iz+2) |z+1 z+2]
oz z (72+2)-2 (z+1)-1
z+l 242 (z+2)-1  (z+2)
1-’1"'-1_: 3 :_1.-'-""'.:1 2
= 1.. = —_ =
[1-1z+2)]| z2+2 1-(z+2) 742
2 -
-1+ J-[Z—{:u:]][l (z+2)]
-5 . 1 ..
= =1+ '*_-|_2 (z+2)f1+(2+2)y+(z+2)y .. 1if |2+ 2 <]
7o - J

! afor(a) 1< |z]<3(b) |z]<1(c) |z|>3

19) Find the Laurent expansion of

Solution :

, |
Onen T - AD

™
D
~
—
~
‘a2
-—
)
*
»
"
.

1 1 1 1 z 1 1
373 ; Tk gl Wi
Z 4z+3 2312 Bfa- l 6. 3 2 2
1 2 .2 13 1 W 2 2 Iy 4 1
s o R B .;1.-.ﬁ-”‘_--1.~-_- PR T AR
6 3 9 2\ 2z F 6 3 9 N2 & x
which 1s a Laurent's senes.
(b) If |z| < 1, then we write (1) as
] 11 2 o
- —d4r-3 2 3! 3 FAEE)
LN P (1= =z =)
20 A0 3 o
(I [# - 3. then 211 So we write (1) as
1 1 1 1 307 1
- = - — - 1-=| —|1-=]
=S —az+3 0 2| 37 1 2= =/ =)
z|1-=| 1= i
1] 3 1
=—|l1+=+ =+ |1+ -+ = +...|
2=/ = = . z =z




20) Obtain the Laurent’s series expansion of (7} F—T about z = 1.
Solution : 21=32)

To expand f(z) about z = 1, i.e., in powers of z -1, weputz - 1 = w,
Then

- ¢ _ ¢ _ el 13 —_ o | B _
) (1-32)  (1+=w)(2+3w) ¢ [l-u- 2-31-.'_l ¢ [ 1+w 243w
' L3/ 3 Y I o (3 : 1
—ee |[(1yw)’ .E|~1+IE“ ; -e.e“;ll woewT w4 '—:-u.l 'Eu +§u" }|
, : 3 3, 3 9 » 2 v
3 l - 4 - _— - e I_ .' — - -4 - — - —
_Lbl (-1 (z-1) ~(z-1) «.| 211 e e e I ERe VI d

Definitions
Singular points

A singular point (or singularity) of a function f{(z) is the point at which the function
f(z) ceases to be analytic

Singular points are of two types:
1. Regular singular point
2. Irregular singular point

1.Regular singular point :

Consider a second order homogeneous Linear Differential Equation with variable
coefficient in canonical form.

Y+ Px)y + Py(x)y=0------ (1)
Let at least one of the functions P, and P, is not analytic at the singular point x
= x, (P, = = or P, = «) then redefine P,(x) and P,(x) as Q,(x) = (x - x,)P, (x)
and Q.(x) = (x - x,)° P.(x). If Q,(x) and Q,(x) are analytic at x = x, then x = %,
is said to be a regular singular point, otherwise an irregular singular point.

» A singular point x = x_ is said to be a regular singular point if and anly if P, {x)
and P.(x) of the canonical form of second order homogeneous Linear Differential
Equation with variable coefficient have removable discontinuity at x = x, and
become analytic when the discontinuity is removed.

» In other words, after discontinuities are removed at x = x, the functions P,(x) and
P.{x) have Taylor's series expansion about x = x .

2. Irregular singular point

» A singular point x = %, is said to be irregular singular point of homogeneous LDE
of 2™ order with variable coefficients if it is not a singular point.




Isolated singularity :
A point z = a is called an Isolated singularity of an analytic function f(z), if
{a) f{z) is not analytic at the point z = a
(b) f(z) is analytic in the deleted neighbourhood of z = a which contains no other

singularity
Example -
]ftf{:} = _E . then z = : 2i are two isolated singular points of f(z).
If fiz)—— ,thenz = :n, - 2a, - 3n, ...are infinite number of isclated singular

sz

paints of f(z).

Poles of an analytic function :
If z = ais an isolated singular point of an analytic function f(z), then f(z) can be

expanded in Laurent’s series about the point z = a, i.e.
x . = b,
f=>a(z-a) +y ——
- =] { - =l ]
Poles of an analytic function : b

]

= is known as the

N
» The series of negative integral powers of (z-a) namely, ~:-alf

principal part of the Laurent’s series of f(z)

» If the principal part contains a finite number of terms, say m, {i.e. b, = 0 for all n
such that n > m), then the singular point z = a is called a pole of order m of f(z)
Example : ;
If ff:'|-1“‘l—"., then z = 1is a simple pole and z = -2 is a pole of order 2.
Py I4a

Essential singularity:

» If the principal part of f(z) contains an infinite number of terms, i.e. the series
“ h

= (z ) contains a infinite number of terms, then the point z = a is called
essential sinqularity of f(z)

Example :

z = 0 is an essential singularity of e**, since the principal part of e contains infinite
number of terms containing negative powers of (z - 0).




2D)x° v "+ avv'+ by = 0
Solution:

Given x v"+ axv'+ by = 0 (1)

The singular points are given by companng (1) with . 4 (x)v™ 4. (x)v'+ 4.(x)y =0
Here 4,.(v) - \"'..4:( X)=ax.4.(x)=b4

To get singular point. equate 4. (x) =0.x" =0—=x=0

I ; ; ; A . a , b
Expressing (1) in canonical form v"+ —v'+ — v =0
X X

. 1 fr
Here Pi(x) = < and Pix)= —
N o

Fix)and P.(x) are not analvtical at x = 0

Q) Ay —x, JPix) —(x-0)=L - a.Odx) ~(x—x,) PAx) {.t—(]]‘xi, b
s VB - : - : x’

Clearlv, ¢ (x) and @, {x) are both analytic atx =0

~a =0 1is aregular singular point.

Aty =2:
1
Plx)==.Pix)= =
1 5
5 i
OQixy=(x=x )B(x)=(x=-2) =
X

Cix)=0atxy =2
O (x)=(x-x ) Plx)=(x-2) =

g
Chivyaty =21s

SOHx). O, (x) are analvtic
Therefore x = 2 15 a Regular Singular Point.




Atx=0:
B(x)=%.RA(x)=2=

- -
QX)) =(x-0)P(x)=x=x—===
X" X
> Y43 r+3
O.(x¥) =(x=0) ¥ —m— = ">
{x=2) (x=2)

Atx=0.0(x)= =

-
b

O.(x) =
4
SCALY = 0.0,(x).O.(x) are not analyuc.

Sox = 0s arregular singular point.

Residues

Definition:
The coefficient of ;‘n in the expansion of f(z) about the isolated singularityz = ais
called the residue of f(z) at that point. Thus from Laurent’s series, the residue
of f(z)at z = ais b,. From Laurent series, the coefficient b, i5 given by
b, L [;‘l[z]n':r

2mi
r

flzddz = 2nmi by = 2Zni x |Residue of f(2)at z = a | = 2ni [Res f(2)],-,

i.e.,
'L.
where C is a closed curve containing the point z=a ( and such that f is analytic with

inand on'c’)

Residue at a Pole:
If f(z)has singularity (Pole) at the point z — z,and fiz) — Y¥ _a,lz—z,)" isits

Laurent series about z=z, which is convergent in

0< |z zol=r.

Then fiz)

e
"

e
"

aylz —zg)" + 2’ aylz — zg)"

ITET H=—1

= N (2 = 2g)" 4 a2 =z "
2, 2,

=N n=1

o

= gz —z2p)" + la-g(z—20) " +a_s(z—25) *+.. . +a_mlz—25) 3+, ..]

rp= i




If the series with negative powers has a finite number of terms, say

m,(i.e, aLy 20buta_py_y=a =0 pm3=...=0)

then z =z, is called a pole of order m.

A pole of order one is called a simple pole. On the other hand, if the series has an
infinite number of negative terms, then » =z, is called an essential singular point of
flz)

Consider the function f(z) = y;

1 11 1 1

vr=1 4 { T {
’ PR TRFT R TR

This is an infinite series of negative powers of 2-0 and therefore z=0 is an Essential

Singularity.

Cauchy’s Residue Theorem

Statement:
Iff(z) is analytic with in and on a closed curve C, except at a finite number of

poles z,,rz,z;. . .z, withinCand R,R R, be the residues of f(z)at these

poles then

! flzddz =2mi(Ry + R+, . .+ R,)or
&

Jo f(z)dz — 2ni x sum of the residues at the poles with in ¢

Proof:
Suppose r,,r,, . . . m, bethe circle with center at z,,z. .z, respectively and their
radii so small so that they lie entirely within closed curve ¢ and do not overlap.
Let f(z) is analytic within the region enclosed by the curve C between these circles.

~By Cauchy’s theorem for multiple connected regions we have

f{(/)d/- f;(x)¢1/+ fll/)c!/dr . .+ [/(/,)dz




Residue at a pole of order m

Statement: If {(z) is analytic with in a curve C and has a pole of order m atz = z, then
the residue at - — =, is

1 dm
m-1 [(z — 240" fl2)]

S (m— 1) dz
Proof:

Given that f(z) has a pole of order m.

Therefore f(z) is expressible as (z 2,V flz) = O(z)

Where 0 (z) is analyticand 0(z,) « 0

A=)

(2 — zg5)™

L flz) = ~ (1)

Residues of f(z)atz -~ z,isa , where

'lf'['-”'l J‘ 0lx) +
T o f(2)dz 2mi fr—;-*,,]”'f

L L

o 8™ (20 |since f1(ze) = nto( H.’}__.[
=1 zg) |Since fM(z2y) = mi | G- 5"11}"”f F
L

'y 1 dm-1
= zo(m = 1) dzm!

“oa = Res(fi2= 1) or[Res f(7)];a,, [(z = zo)™ f(2)][by(1)]

Residue at Infinity:-

If f(z) has an isolated sinqularity at > -~ @ or is analytic there then the residue at

z=w is defined as

1

Res (f:z — w)or[Res.f(2)),e0, — ——

= o f(z)dz

Note:

1. The residue of f(z) at z - » 1s the negative of the coefficient of : in the expansion

of f(z) for values of z in the neighbourhood of z - »

2. The residue of f(z) at z - = is Lt (~21(z)) provided f(z) is analytic at z = «




Solved Problems

1) Determine the poles of the function (i) ec'"_ (11). cotz

Solution:

(i) The poles of f(z) n— are given by equating denominator to zero

[.e ,cosz 0
i.e.z= (2n + 1) ",.n" being ‘0’ or an integer

b1
n=0%1412

ez (2n + 1)

|

Hence these are simple poles of f(z)

(11). The poles of f(z) - cotz ~ "~ are given by equating denominator to zero

t.e..sinz =0
Le.z=mmn=0,¥+mEt28: - ;

Which are simple poles of f(z)

2) Determine the poles of the function f(z) ~ ————
and the residues at each pole
Solution:
The poles off(z) — # are given by equating denominator to zero i.e., z =

land : = 2 are the zeros of denominator of order 2 and 1

.z =1Iis a pole of order "2’ and : = 2is a pole of order 1 of f(z)

1 rr
[Res f(2)],0, ,1_'-'11:;!g [(z — 1) f(=)

A PR S—_ -4 (E
- :'Flrfz “ (z— 102 (z+2) z'-tl dz \z +2
N (z4+2)2z=-2%1 B 2t 4+ 42 B 5
= z + 2)? A P H B

4) Find the residue at = — 0 of the function f(z) ﬁ
Solution:
The residue of f(z)ar >z — 0 is

14 &F 1 +ef

[
= Lt
=

;I'I.Iu{? A jl"r"jylz'{cuaz . Nir'l..?} o cosz + sinz
a £
2 sin &
2 ! ( E R I}




1— &7 F

5) Find the residues of the function fi(=z) =

——at the poles
Solution:

Given f(z) =

Here : — 0lIs the singular point of f(z)
¢ ar® mgd
. R R
Expanding flz) =~ _, = o
_ 2 2 1 2 )
- I.»J’.e—'+3'.»+:-;+|5‘“ ’ I
4

0is a pole of order 3 because

~ is the highest negative power of (z —0)
Therefore, the residue of f(z)at =

- -
ﬂIST

7) Find the residue of f—ﬂ at these singular points which lie inside the circle |z] - 2
Solution:

Let fiz) =

*+1

Poles of f(z) are obtained by equating the denominator to zeroi.ez*+1 - 0
' s rd * In
orzt= 1lorz=1( 1= (Cosn +isinn)ls =cus('"1 1]+ J'sin( o

. “)Where n=0, 1, 2, 3
~The four values of z are

- T N om - 3w 3T Sm S ’ T-'rr+ _ T
Tos isin ,Cos + Isin LCOS + [sin 1 cos isin
{.r'\l" bt 4 [ LY 1 5 i 1 = 4 ! i O 4 5
e mtom—mmt o m——mand o=—-m
Wi N L Wi e L L w
Hence the simple poles of f(z) are’ '
A
And all these lies within the circle |z| = 2 with center 0 and radius 2.
MNow let
z< @ (=)
I& =1 v
1 + 0
e (- } _
2 ] 1 1 — @(zan)
o [Res flz)] P = i - = - - v Res f(z))zaz,
e wi(lit)  a(lrt) 2Vza+ o vz St lens
w2 w2/

T W(zg)
Here ¥ (=)

4+ 1 and ¥ (=)

4z2
—1 +1
@2 - ]
[Res ()] _ { o2 }: —i _ 1 :{1 + i)
SO e (ﬁ 4{_”(Ljf} 23Z(—1 + i) 42
W2 W2




-1 I
°(~ ) i -1 ~(1-1)
e ”H}I“:' ) .w(l = ) w7170 T2z 40 av2
V2 vZ o

[Res f(2)) 9{1_‘) ' ] -
R T L) R L) SN TR RN

w2

8) Find the residue of (). I.P'_':]_.__;’.”, (it). tan z at each pole
Solution:
Let f{Z} _ -2z _ 3 -2z

(z+1) iz +1) el ¥ (zeiMz—i
~ Poles of f(z)are -1,i,-i

Observe that -1 is a pole of order 2 and poles i are of order one

o d [z -2z
_;'-m! de | 25+ 1

1
“ (Res [,y = L@ @)

(2 — 1) ,]'."'1[d

o P+ 1)(22-2)-(z* -22)22)] -1
- A (224 1)2 -2

2% — 2z IR S B I
r+ 12 (z4+ 0| G+ D20 4

|Res flz)] e = lim[{z —i)f(z)] = IimI[

[Res fF(2)],-_, = ,Il."].[z +1]f(z) = ?IL_!I_I‘

72 — 2z o (=0F+2i 2i-1 21
(z+ 1M(z—i)|] (=i +1¥(=20) (=232 (=204

2i—1 1-2§
I T |

Letf(z) — tanz — o

[

~poles of f(z)are given bycosz =0
T
e, x = (2| I}z_ wheren = 0,41, +2, -3 .

All these poles are simple poles of () and denoting each pole by "a’ we have

(Res f(2))en = ;I‘.tu“ a)f(z) = rL_t“{y —a)sinz ( l]) (z —a)cosz + sinz

= Lt = -1
0

Cos & £ il = Sinz

(Using L Hospital’'s rule and then putting z=a)

Hence residue of f(z2) at each of the poles is 1




Evaluation of integrals using Residue Theorem
Step 1:
Consider the given region
Step 2:
Calculate the pole of the function
Step 3:
Consider the poles which are within the region
Step 4:
Evaluate the residue at each pole within the region

Step 5:

Use the formula |. flz)dz = 2mi (R, + R>+. . .+ R,)

Solved Problems

1) Evaluate

f, e dz where ¢ is the circle |z| =1

s rlzr+2W2x+1)
Solution:
Here

2z — 1
e + 2022+ 1)

fled

has 3 simple poles at = = 0,z = —2and = = ’
But the only poles = — 0and = -

Lies inside the circle |z] = 1Since |z]| -1 < 0for =

2z —1 1 1

o |Res f(2)]eeo = Ltz f(2) = Aoz DEz+ - 21 2

- @ Df() = L ] S
= ,tl Fi izl = ‘ttz[x+2}__ =

F- == L=

[Res f(z) |:= B

Bl =

. By residue thecrem we have

jg 2z -1 Im‘( 1+H) 13 ot
zlz+2)(22z+1) o2 3 3

T




2) Evaluate ¢ tanzd: where c is the circle |z| = 2.

Solution:Given f(z) = tanz = "~

cosr

The poles of f(z) are given by cosz = 0

ez 4 @n+ D5, o012, ..

Qut of these only z — 1~ (11.570) lies inside ¢. |z] - 2

m sine sine + [.‘[ + g-}_q_'ugi;.l_-
-+ Hes )= Lt _(z+ . = Lt _ = -1
Res, f@ = W, (a4,) 00 =, e

(Using L Hospital's rule)

By residue theorem § tanzdz = 2Zmi[ 1 - 1] = —4mi

d E
3) Evaluate § " . wherec: |z =2

Solution:The integrand '_.iq - has double poles z = +2i of these poles only

z — 2i lies inside "'C’ .
Again t

i

}

[ dz ) 1 o
f (< + 4)¢ ff?-“Zi]" (7 — 21—

Since m’.”_. is analytic in ¢ applying Cauchy’s integral formula for derivatives we have
j{ dadz "ZMdI 1 I =2 -2 I _—4miow
Tt T 0 delzv20f), L, T T e 208) L, T 40 T e

5) Evaluate [ “ZZd-rwherecis |z— 1] 1

Solutiomn:

Let f(z) = """"%
(=-2)

i

#z = _is a pole of order 3 of the function fi{:) and it lies within the given circle

1 C fatr s
s ARes [, n =gy B { z=3) [

1 i m 3 roosz
sl e b
z-3)




_ 1. d"____ll d{___
= Z;TE dz? (zcosz)| = 2 1y 4z COsZ Zs5iNz)

Z =3z

o

1 1
= Elil'q'l'— Sinz —(sinz 4+ zoos )] = s I:ru_l-;-: sinz = xcosz|
v
2z 2

- _EI |2 e-.']nn

o Fi 1 " o ) 1
2+zlmz]_—2[zf }+2n}]— -5 @ =1

o By residue theorem

A CUrs 2
J’ —"-i EIY. =
< [z 2)
2mi =Sum of the residues of Fiz) at the interior poles

=2Zni (1) = —2mnt

cot hr

7.Evaluate [~ “dz whereCis |z| = 2
Solution:Let fiz)

cothz cosh oz
T oz=f (# —i)sinhz

The poles of [(z)are givenby (z ()sinhz =0

i.e.z —t+nni, nbeing zero or an integer. Thus out of the many poles z=i and z=0 are
the only poles lying inside the given circle |z] = 2. Hence it is enough if we calculate the

corresponding residues

|Res f(2)]zee — lim [(z = Df ()]

cosh z
lim|{z=i)———— | = limcothz = cothi
=l (z=1i)sinhz -l

0 (0)
Res f(z)],00 = ——

WhEI'E !{E] B .‘rmh: ol

(Z=1l3mh 2 Wizl

cos hz 1

{z~ t)coshz 4+ sinh 2 . i

~ By residue’s theorem

- coth:
e -

dz - 2ni x sum of the residues at z=i and z=0=2ni (r-m‘.hi - 3)




UNIT 111 : BILINEAR TRANSFORMATIONS

Evaluation of Real Definite Integrals by Contour Integration

To evaluate certain types of real definite integrals which often arise in solving physical
problems Cauchy’s Residue theorem is applied as it is simpler than the usual methods
of integration. Contour integration is also another method of evaluating a definite
integral by making the path of integration about a suitable contour (curve) in the
complex plane.

Contour integration is used to evaluate the following types of integrals

1) TYPE-1

To evaluate integral of the type J”"" F (cos 8, sin@)d@
2) TYPE-2

Integrals of the type [ f(x)dx

Type-1: Integral of the type |™ F (cos0.5in0)do
To evaluate Consider the evaluation of the integrals of the type
J:”F[Ens f,sinf)dé, where F is a real rational function of sin# and cos#

Let z=¢" sothat g = ""r-"" and df = °*.

But we know that

cosfl = 3 = 2"" and |z] = |:""| =1

in
1 11 1\ |dz
2| Flcos# sindydd = | F- S R (P | p
II{{ el sin @ )di JP|2(J+£),2I (z z) I f(z) dz (say)
€

u {

Where C is the unit circle |z] = 1.

Since is a rational function therefore by residue theorem

J. f(z)dz = 2ni x (Sum of residues of at its poles inside 'C’)




Solved Problems

1. Show by the method of residues

m
ol 7 ;
f— = — ” fex == B = )
o 4 boosa Wit — pe
(4]
Solution: Consider
Fii xrr
J[ ol & 1 Jr o 7 X
a + heos e 2 1 4 b ocaons 63 (1)
i i
Let C be the circle given as |z|] = 1
Put =z = ¢, So that 4& = 7~ and
I -
rosE — = s 1
Ly b 5 - 2 2;
K4
J‘ il 1 df
") a+hbcost PE +1 iz
H i+ b

S S — "
1]5::*’ b 2az b{

Now the poles of f(z)are the roots of bz

~2at V4o —4b°

—at var

I flzldz

t 2az + b =050

,(11.-:* ¢ 2az + b

_b'.'

2h

5

atva b,
. B =

Let « =

S5ince a = b =0,
We have || > L.
But the product of the
i.e., |lafi| » 150 that

are the poles

a- va- - b*

roots is 1

el < 1




Thus z = « is the only simple pole lies inside C and so
() = 1

fz) = bz —al(z— )

ZRes(f:z a)  |Resfiz)..a II;Tnfz—n)f(:]

Lt (z—a

1 . 2 1
7t ]Thiﬂ—ﬂ}f?_f” i

ey
2 1 2 1 1
ible —f1) hl(z\."u-'h— .‘;l*') i vVal - b?

J, flz)dz = 2ni x (Sum of residues of at its poles inside 'C’)

- . . 1 1
therefore | f(2)dz = 2mi x [(—=3) = =gy
”n as ma
2. Show that], Y E AR a>b >0
Solution:

: - do 1 par dé
ConS'der -‘(.‘ In-hrn<;—l’: : "U lasbrcosk |+
Put z - ¢'” Sothat do - %
whereCis |z]| = 1
"' do I 1 dz
J (a } beos8)? /| 1INy ez
0 Z




whereCis |z| =1

- - i 1 1 ! : {; : i
_T.,‘{_bx’+2ﬂ;f+h}-"x{z |J‘ . 2a 5 - 02 53 J‘Hz}a
s F l':'-(_.l_'-+ ,F Fd ]) p
Where
Z
flz) = :

Here the poles of f(z) are of order 2 )lies within the circle C

which are given by

-+ va‘ = b*

o h
But
ca+ NaT B

b
is the only pole (of order 2) Let this pole represented by « and another by § we get

-+ Va‘ - b¢ : —a — vat — b
f{ - - ., - —
b f b

-1

[Res fz)]z-a= i2-13 fl-'-ll.zdz"

Az —)? f(2)}

:!'1 P ] (e — )51 — 2.2(2 — )

f]-lltlrl'i‘.? [# _ﬁ::"? I;!" {f _ﬁli

Za
I A (e + 1) (%) ahb?
T iaG-p @ p) (2Ya7—57)" agat —biy:
SO

~By Residue theorem we have

2n
ot 1 d 1 4 ,- o
(a+ bcos) 21 (a+hcosd)? 2 ib* flz)dz
' i

i i c

) ah< ma
2m 3 = %
4{af—=»h2 (af —=hi)z

ib?




3) Use method of contour integration to prove that

2n

] de B 2am Do
14+ a2 -2acos@ 1-at' "

0

Solution:

Let

z= e

and ¢ be the unit circle |z| =1
Then

dz
dz= e or do ==
z

1 1 z°+1
and cosf = - (z+-)=
2 z 2z
. . . 1 dz 1 dz
The given lntegral Iis= IC mz.—x. i J'C =i-Giaiata
2z

The poles of the integrand are given by

(1 4+a?)+ J( —a?)? ¢
2a

1
.. —

a
and a

Of these poles only z, =a liesinside € (v a < 1), Residuesat z=ais

1 1 1
= Lt(z—a) =- Lt = -

Za 2_717(2 e a) v X“'ﬂz ==
G

By residue theorem

’_-—12_ a  2an
e L s e T




UNIT Il : EVALUATION OF INTEGRALS & BILINEAR
TRANSFORMATIONS

Integrals of the type | [(x)dx

Integration around semi - circle: To solve these types of integrals we consider

Jo f(2) dz: where C is the closed contour consisting of the semi Circle (g : |z| =
R,together with the real axis from Rto R If there are no poles of f(z) on the real axis,
the circle |z| - R, which is arbitrary can be taken such that there is singularity on its
circumference ¢, inthe upper half of the plane, but some poles may lie inside the
contour C as specified above.

If f(z) has no singular point on the real axis, by Residue theorem, we have.

lr_,R[(z)dz | .]_ka(\ Jdv = 2mi x Sum of residue at interior poles

So we find the value of

|”_f(x)dxProvided I f (2)ldz — ©

making R —+ o

Solved Problems

+

. 4
1 ) Evaluate _'urﬁ

Solution: Here Since

ca: | 2
1 .
.5 saneven function of x we have /’ . \\
X" o | .‘.-

C o dx B C o dr
J (x4 al)d 2 ‘ (xf 4 al)

Here we consider

[ dz »
Jm fruu
i r




Where C is the contour consisting of the semi - circle ¢ of radius R together with the

part of the real axis from - R to R. The integrand has two poles of order 2 at

z=in and z  —ia.

But =

~By residues theorem

ai only lies inside the semi-circle of the contour C

2mi ® [Res flz2)) -

2

(z + ai)?

|- flz)dz = Zni xSum of residues
2 Lt (: ¥ :
= S0 eadz 2T (7 —al)iz +ai)?
= 2mi X ..*I sard g | (2 4 m}"l - ."L-tnu
5 I —2 m
oo :—'-tu:{Em}" T 24t
H
j dx+ [ floriz=)"
i.e., ff.l.(.'li _ f:]rz—zﬁj
-K Cg

H

i, J
"
J‘ i
> — <
(29 + a)
['"

b1

~+nfl

Now

|
= (k2 any2? J Rd6 [ |2*
- 1 -

J{H“Fu ]-._

|ef ]
(24 + a?)?|

Cr

+ a?| = |z|*

T

2a’ =~ (@)

— |—al® and z = Re',|dz| =

Rd#)




- Rn
o (RZ = )2

and this — Das R —

" dz P
- L] & L
Pzt +at)  2a? e

Lr

Hence by making ® — o, eguation (2) becomes

J ilx n
(x4 +af)  2at

dx 1 m "
J (x¢+a?)? 2 {2:13).!:'_141"} " 1a’

[1]

2) Using the method of contour integration prove that

a0

J dx on
41 3
1]

Solution: Here Since the integrand is an even function, we have

{x | dx 17
J ‘.:+ =3 [1"'+ { consider J?: 1 ff{.ar]'uf.-r

r 1] L L

Where C is the contour consisting of the semi-circle ¢,

of radius R together with real axis from —Rto + R

The poles of f(z) % are the roots of the equation z°+1 - 0




lLe.z841=0 = z=1( 1)

1
sz = (cosm + isinm)e

. o 1 (Zn+ 1 (Zn+ 1n
= |eos(Znn + a)+isin(Znn +m)]e = cos ———— + i sin————
Demoiver’s theorem
Where n - 0,1,2,3.4.5 or z— v'h . I
WhE‘r'E Hn=01273 450r z = g'n/® FJm_'b F:E-.'u-t F-'-'I'I--'b F‘!nl,'b Eilm;b

mi 1/ im
r 2 =e« lies inside semi-circle

= = '-J=rT
0
0

Of these poles only z = ¢+

~ Res[f(z)] - = Lt . [2- Elr]'z“'i ll (=

e L
1 . . QL.
Lt Lﬁl By L Hospital's Rule = - e d
Foifn
| = y 3=
Similarly Res [ (z)] s== e ZandRes|f(2)] = € %
JEM b & Tl &
Hence by residue theotem
.fr flz)dz = 2mi = Sum of the residue at the poles with in 'C’
Ay L _ -_:l
—_— |¢- i - q + h ]
m ( L LT T T 'i-.) Mem 25m) n
- — s |~ i — - sn— "‘({::II—' .I.:.n—) W ==
i ¥ fi | d d i L 3
L]
n
i, [Illldl . [ fLrhidr T
iy x

Put | i—-ﬂnsz Re® and R= »

g ¥

w dr IR f“-fe dx )

7 1] in
Mence | f()dv=", ie. f mear 3 0 o w1 T3




3) Evaluate by contour integration _I'n'r' T*

Solution:
Let
d
[ 24 4] [f[z}dz

c L

where C is the contour consisting of semi-circle

', of radius R together with the part of the real axis form - R to R. The integrand has
simple poles at = = + .
The pole z i is inside C and z — —i is outside C

By Cauchy Residue theorem

H
1 "
jf(z):fz = 2mi (_”) =mie. J flx)dx + jﬂx]ldz =n - (1)
¢ B -k €r
Hence by making & - =,

Relation (1) becomes

J flxddy + LA J flelde =n
Py
] i

As R + = for any point on the semi-circle Cglz| + wie fiz) +0

1 dax

Thus | _flxddy — mor | -dv —mor2 | =25 - 1 Since the integrand is an even

ot ey o p#x*

function. Therefare




o0 sin mxy

4. Evaluate || ——dx When m>0using residue theorem

Solution:We know that sin mx is the imaginary part of e‘™*,

P

Therefore, consider the function f(z)

Now [f{(z) has a simple pole at = = 0 which lies on the real axis. This pole will be
avoided by indentation. For this draw a small semi - circle ¢, : |z] = r which contours
the singular point z=0 inside a semi - circle Cy: |z| = R

Now evaluate the integral |, f(z)dz, where C consists of parts of the real axis r to R, the

semi - circle real axis '-R "to '-r" and a small semi-circle C. Since C is the closed

contour has no singularity, we have by Cauchy's theorem.

j fledde =0
R -7 )
(.c.f[(.r)dx + j f(z)dz + [ f(x)dx + ’ f(2)dz=0 -+ (1)
r (g - -‘.v
Consider

om R

Sy pREGILY 6 2z =Re™ ol _ 4z
|(_Akf(z)dz = |, o0 -Rie'” d6 L" Rie'® d()] Put z = ¢'¥ then df = =

He

o n Veaeh T3
= i '0 e!MRcosbicost mRsinG) 19

But I(,nchmmmm mRtm(l:l = |‘,MR(on'4:rcsR mRsinf)| _ e mR Sin 6

n
][(Z)dz < j', misiné 40

Cp 0




Note that when &

increase from 0o """ decreases from 110 |

T osing 2 e
fe ford< 0 <=, > —%infl > —
A m 7
2 .
L L) —1r zemkd  TE T .
= . ’ ! L J ! = p— M
Jf-f.c:l:f.e' = .:'f e” n i Imh‘ e I.r mR (1 —e¢ )
[N o

Which tends to D as B« o

Also If- f{?)di‘.’ i J;?immrojﬂ mi sind) d o

Whichtends to i [ d6 = —imasr 0

Thus , when & + «» and whenr -0 from (1) we have

(] i
fff.t‘]d.r + 0+ ff(). ddx + (—im) =0
'\ —

=

Which gives | L_‘__f'[l. v = in or I'__J-_r_ T dx =in » (2)

X

Equating the imaginary parts of both sides, we get

o o

AL RLIES sinmx m
J dy =m , Hence J' dx = -
X x 2

(1]

Mote: Equating the real parts on both side in (2) we get

COETrY
dx =0
v

- O




Mapping or Transformation

Transformation of z-plane to w-plane by a function

« Ify=f(x)is a real valued function then the equation

» y= [(x) gives a relationship between the points on x -axis and points on y -axis.

This relationship can be represented by a curve drawn in xy - plane. But when f(z) is
complex valued function of a complex vanable z, no such convenient graphical
representation is possible, because z and w require two different planes to represent
them. However by representing z = x + 1y in z - plane and the corresponding

w=u + (v In w-plane we can establish a graphical corresponding between two planes

Conformal Transformation

Definition:

« Suppose under the transformation w = f(z) T
i.eu - u(y,y) and v  v(x,v) the point P(x,v,) of :
the Z-Plane is mapped into the point P(x,,v;).

+ Suppose the mapping takes C, and C, in to the
curves C, and C, which are intersected at (i, 1)
« If the transformation is such that the angles
between C, and C.,at (x,v,) is equal both in
magnitude and sense to the angle between C, and
C,at (v,,v,) then it is said to be Conformal at

( Xa. Vo )- ‘:‘
- If the transformation preserves the magnitudes

but not necessarily sense, then it is

called isogonal.




Bilinear Transformation

Definition:

The transformation w “—‘i’whem a,b,c.d are complex constants and
rEF+EL

ad — bc = 05 known as” bilinear transformation
Properties of Bilinear Transformations

1. A bilinear transformation is conformal:

1xr+ b
We have w =2
cr¥d
. . - credliel=(az+bk g = b
Differentiating P T

Sincead bec =0
We have w' = 0 is nowhere zero

Hence the mapping defined above is conformal.

2) Every bilinear transformation maps the totality of circles and straight lines in the z

- plane onto the totality of circles and straight lines in the w - plane.

+b

Proof: Let w = “"’ is the conformal mapping, which can be written as

vd
az+ b claz+ bh) acz+ bc) acz + ad —ad + bc) a(cz +d)— ad + bc)
“-1AO(Ym('((/bd‘)—((('/0d)— c(cz + d) B c(cz+ d)
@ bc—ad 1
W=—+— T
¢ a* «
(2+%)
This is a combination of the transformation w, - z + =, w, - —.w; -~ ~—w, and

1
w (' + w; by these transformations we pass from Z plane to w, plane then to w,

plane. These transformations are the standard transformation w = z + ¢, w = ¢z and

1
w =




We know that these transformations map the totality of circle and straight lines in

the z - plane onto the totality of circles and straight lines in the w-plane.

L . . ; d | bc—ad
This is a combination of the transformationw, z+> w,  — w, — —

e - Wy =

w, and

[

w o= ; + wy by these transformations we pass from Z plane to w, plane then to w,

plane. These transformations are the standard transformation w =z + c,w = ¢z and

1
w =
r

We know that these transformations map the totality of circle and straight lines in

the z - plane onto the totality of circles and straight lines in the w-plane.

Similarly we can write w; —w,. w; —wyw; — w,

similarly defining relations for other points we get

(wy = wodlwy —wy) (2 = zp)lze — 24)

(wy —wydlwy — wo) (2, — 24025 — 25)

This proves the result.

7) Find the bilinear transformation that maps the points (,,0) into the points (0,i,®)
Solution:

Lletz, = 0,2; —i,z;-0and w; = 0w, =i, wy = @
Let z, = z and w, = w so that z and w are a pair of general points.

Substituting these, the required bilinear transformation is

(2 =z, 02:=2)  (w;—wy)wy —w)

(2, - 2)(z3 - 2;)  (wy — w)(w; — wy)

(0 < M0-2) (0~=i)oo~w)

T (w=2)(0-1) (0-w)(ew—1i)

Here ~ "istakenas land ~  is taken as 1

s

2 i ¢ -1
e E—DWE—=—
rw Z 2




8) Find the bilinear transformation which transform the points ¢,i,0in the z-plane into
0,i,».in the w-plane
Solution: Let 2, = w2, = ,z; =0and wy, = O, w, = i,w; = @

The required transformation is given by

(w=w)lw, = w3) (2-2,)(z; -273)
(wy —w;)(wy —w) = (z2y =2z, )(z3-2)

= e e = B ES)
or (57) im () = (3) lim, () formg
or ( : ) lim (1——1) ( ) lim (x ;) L'Hospital’s rule

now n-o

o (-W)( -1) z(;i)(~ 1)01":' = gm'w - -1

i Z

9) Find the bilinear transformation which maps the points «,:,0in the z-plane
into-1, -i,1inthe w-plane
Solution: Let z, =», 2z, =t.z;=0andw; = 1w, = i,w;=1

The required transformation is

(w—w N w; — \«'.)_(7—7,)(7;—7‘) (w+ 1)(—=1—1) (7—00)(1—0)_ (—l)l (z—-n)
(wy —w,)wy —w)  (z,-7,)(z4— 2" (~1 +i)1-w) (o=-i)0-2) \z e \n — i

op AWt D(a+i) (.}.‘)(:) (7‘)(_1) 1 (applying L’ Hospital’s rule )

(14w 0

1+ w —1(—l+:) 1

or =
l-w (l+1)7 2

Applying componendo and dividendo

(l-w)+(l—u) 142 42 142 'l 1+2

or — 0
N+w)-(1-w) 1=2 2w 1=z w 1-2z

1
Therefore w=""
1+2




10) Find the bilinear transformation which maps the points (—1,0, 1)into the points

(0,i,3i)

Solution: Given z,= 1,2, =0,z;=land w, =0,w; = i,w; = 3

We know that

(w=wydwy = wy) (z=xNzy=23)
(wy = wy lwy = w) - (zy =2, Mz4—2)

(w =001 = 3i) (z+ 1)0-1) 2w z+1
= . = 1 =
(0-D3i-w) (-1-0001-2) 3i-w 1-2z
= (2wl(1l - 2)=(z + 1)(3i — w)
» (2wl —2z) =3z +3i ~wz —-w

=w(Z2-2z42z4+1)=3i(z+1)
_ 3i(z+ 1)
=w-z+3)=3iz+1)=w=———
(3-2)

11) Determine the bilinear transformation that maps the points (1 —2i, 24,2+ 3i) into

the points (2 + .1 + 31, 4)
2+ 3tand

»
-

Solution: Given z, =1 2t.z,=214 1,z3=
wy =24iw, - 14+3iw; -4
Letz, =zandw, w sothatzand w are a pair of general points substituting these in

‘/‘ l:)(l; /.) (H" “‘:)(\94 \V‘)

(/,"Z.)(?i-/_’) (\Vl

- wy)wy —wy)

We get
/)_(20: 1-31)(4 -w)

(1-2i—-2—-1)(2 + 3¢
2+{—w)(4—1—3i)

(1-2i—2)(2+31i—-2—1i)
i w-—4
T32+1-w)

2+ 3t~z 1 4-w
iLe = ( )

1-2i-2z 3\2+i-w

z(10 4 3t) — 7 - 6t
W= qa=T=-T




12) Find the bilinear transformation which maps the points (-, 0,i) into the points

(—1,i, 1)respectively.

Solution: z2;= lz;=0,z3=iand w; = Lw;,=iw;=1

The required transformation is given by

(wy —wodwy —wl (72, — 7,0z —2)

(wy —wllw; —w,)l (&, —zlzy— 73]
Substituting the values we get

1 i1 wl (=i —=0)i—=2z)

(=1 =wl(l =1i) (=i=z)i=10)

{1+ )1 wl il —z) [ — 2z
i.e = = -
(1 P+ w) il +2) [+ 2
1 —w -z 1-—i i—z zi+1
i.e = . - = (-1) = -
1+ w [+2 1+ [+ 2z Z4+i

Applying componendo and dividendo, we get

(1 =w)+ (1 +w) (zi+1)+(z+10) (1 +id(z+ 1)
(1—w)—(1+w) (zi+1)—1(z+1i) (1—i)—z+1)
2 iz + 1) —z+ 1 f—z+ 1)

[. e } = iry W = = =
2w (—#+ 1) i+ 1) i“{z 4+ 1)
w = "'"is the required transformation

UNIT IV : Fourier Series and Fourier Transforms

Suppose that a given function f (X) defined in [—7[, 7r] (or) [O, 27[] (or) in any other interval can be expressed
as

f (X):%—{—i(an cos nx +b, sin nx)

n=1

The above series is known as the Fourier series for f () and the constants a,,a,,b, (n=1,2,3————- ) are

called Fourier coefficients of f (X)

Periodic Functions:-

A function f () is said to be periodic with period T >0 if forall X f(x+T)= f(x) and T is the least of
such values

Example:- SinXx=sin(X+27)=sin(x+4r)=————— the function sin X is periodic with period 27 there is no

positive value T, 0<T < 27 such that sin(x+T)=sinxV x

Euler’s Formula:-
The Fourier series for the function f (X) in the interval c <X <C+ 27 is given by




f (x) =%+ wl(an cos nx +b, sin nx)

1 pc+2x
Where a, = ;L f (x)dx
1 pc+2rz
== f d d
a, EL (x)cosnx.dx an

1 pc+2n .
b,=— f d
) 7,.[0 (x)sin nx.dx

These values of a,,a,,b, are known as Euler’s formula

1N n

Corollary:- if f (X) is to be expanded as a fourier series in the interval 0 <X <27, put ¢ =0 then the formulae (1)

reduces to
—lrﬂf(x)dx
%="J
1 2z
an:;jo f (x)cosnx.dx
12 .
bn:;IO f (x)sin nx.dx

Corollay 2:-if f(X) is to expanded as a fourier series in [-7, 7] put ¢ =—7, the interval becomes —7 < x < 7 and
the formula (1) reduces to

1 or
=" f(x)d
a, HJ'_H (x)dx
1 or
== f d
a, ”LT (x)cos nx.dx
1 .
b=—| f d
\ ”J'_ﬂ (x)sin nx.dx

Conditions For Fourier Expansion:-
Dirichlet has formulated certain conditions known as Dirichlet conditions under which certain functions posses

valid Fourier Expansions.

A given function f (X) has a valid Fourier series expansion of the form % +>" (a, cosnx +b, sinnx)
n=1

Where a,,a,,b, are constants, provided
(1 f (X) is well defined and single — valued except possibly at a finite number of points in the interval of definition
(i) f(x) has afinite number of discontinuities in the interval of definition
(iii) f (X) has al most a finite number of maxima and minima in the interval of definition

Note:- The above conditions are sufficient but not necessary

Functions Having Points of Discontinuity :-
In Euler’s formulae for a,,a,,b, it was assumed that f (X) is continuous. Instead a function may have a finite

1N n

number of discontinuities. Even then such a function is expressible as a Fouries series




Let f(X) be defined by
f(X)=¢(x) c<x<Xx
=¢(X) X, <X<C+27
Where x, is the point of discontinuity in (C,C+27) in such cases also we obtain the Fourier series for f (x) in
the usual way. The values of a,,a,,b, are given by

1T ¢x% c+2m
ao:;_jc ¢(x)dx+J‘XO ¢(x)dx}
17 % ci2r
a =— X)cos nx.dx X)cos nx.dx}
=21 o )osmeaer [ ()
1T ¢x% . c+27 B
b == sinnx.d snn.d}
) ﬂ_L ¢(x)sinnx x+jx0 ¢ (x)sin nx.dx
Note :-
0 for m=n
(i)j_ﬂ cosmx cosnxdx =4 =z, for m=n>0
27z, form=n=0
(i) [ sin mx sin nxdx={o form=nand m=n=0
- 7z, form=n>0
Examples:-
1. Express f (X)z X—7 as Fourier series in the interval —r < X<

Sol Let the function x— be represented by the Fourier series
X—7 =&+Zan cosnx+ > b, sinnx — (1)

n=1 n=1

Then
l i 1 V4
="t (x)dx==[" (x-x)d
a, ,,L; (x)dx ﬂj_”(x 7 ) dx

[ xdx-x j’;dx}

_O—ﬂ.ZJ‘Oﬂde| (- xisodd function)

:_Zﬂ(x)o”}
= —2(7r—0) =-27 and
1

== f d
a, ”'[_” (x)cosnx.dx

R L N

1 or
== " (x- d
”L(x ) cos nx.dx

_1 [ I " X cosnx.dx — nj” cos nx.dx}
X |97 -7

= 1 [O — 27r.[07r cos nx.dx}

T




La, = —2_[0 cos nx.dx

_ _Z[Sin nxj’r
n 0

= _Tz(sin nz —sin0)

=_72(0—o)=o for n=1,2,3.........

b = 1 J.:r f (x)sin nx.dx

R -
T

1 ¢~ .
= — .d
ﬂ.f_”(x 7z )sin nx.dx

N[N YN N[RN[R

f Xsin nx—;zj sin nx.dx}
L Y—7 -

_2_[0” Xsin nx.dx — 7Z'(0):|

[ (—cosnx —sinnx\ |"
(o) =) |
L n n (0]

(o) 0

(- xcosnx is odd function and cosnx is even function)

n

Substituting the values of a,,a,,b, in (1),
We get

X—7=—1+ i(—l)””gsin nx
-1 T

2. Find the Fourier series to represent the function e from x =—x to 7. Deduce from this that
Vid [ 1 1 1 }
. = - t =
sinh 7 2°+1 3F+1 4% +1
Sol.  Letthe function e ® be represented by the Fourier series
e ™ = %+ > (a, cosnx+b, sinnx) — (1)
n=1
Then

1 1(e®)

ao s _aXd ) _( j
T T\ -a)
_1 ea;r _ e—aﬂ'

_ _(e—an _ean) _

ar ar

L3 _|e¥-e |1 sinhar

2 2 ar  an

And




1 _
a,=— J e cos nx.dx
7Z' -

a

1| e :
_;L‘Z e (—acosnx+nsin nx)Lr
ax
Ieax cosbx.dx = ———(acosbx +bsinbx)
a“+b
1 e—ax ar
c.a, :;{a2+n2 (—acosn7r+0)—az+rlz (—acosnfz+0)}
a ar —ar
=————(e*" —e™™ )cosn
ﬂ(a2+n2)( Joosnz

_2acosnzsinhar
7(a”+n?)

- (_Z)zzﬁiis?)aﬁ ( cosnr = (—1)”)

Finally b, = l_[” e ¥ sin nx.dx
T -

T

1 e—ax
==| ——(-asin nx—ncosnx)
z|la’+n

-

_1)e” (0—ncosnz)- e” (0—ncosnr)
Crla’en’ a’+n?

_ncosnze” —e _(-1)" 2nsinhar

ﬂ(a2+n2) ﬂ(a2+n2)

Substituting the values of %,an and b, in (1) we get

' = | (-1)" 2asinha . ' _
e’axzsmha”+z (=Y — % cosnx+(-1) ZnMsmnx
ar < 7[(3. +n ) 72'(8. +n )
2sinhar (1 acosx acos2x acos3x j (sinx 2sin2x  3sin3x J
= oa a2t ot L tTTTTT 12 a2 92,42 a2, a2
Vs 2a 1"+a 2°+a 3 +a I"+a®* 2°+a° 3 +a

Deduction:-

Putting X=0 and a=1 in (2), we get

2sinhz|1 1 1 1 1
1= ST ot Tt T
T 2 2 2741 3 +1 4°+1
T 1 1 1
—— = gt
sinh 2°+1 3F+1 4°+1

3. Find the Fourier series of the periodic function defined as f (X) :{ . O<x
<X<T

- 7z<x<0}




2
Hence deduce that lz+3i2+5—12+ _____ - %

Sol. Let f (x):%+iam cosnx+ibn sinnx — (1)

n=1 n=1

Then

aozlj.;f(x)dx

7r
% _J._Oﬂ(—ﬂ') dx + Joﬂ xdx}
1
T

= iz(cos nr-1)= i[(—1)”“1}

zn n?

-2 -2 -2
ATy R0 =0 E

1 ¢~ ]
b, ___[, f (x)sin nx.dx
72' V4
17 ¢o . T
=— _L(—n)Sln nx.dx+J.0 Xsin nx.dx}
al (cosnx]O ( COS NX sinnxj”}
=—|r +| =x +—
V4 n ). n n> ),
17 T
== —(1—cosn;z)——cosn;r}
zln n
1
==(1-2cosnr)
n
a, _1 j; f (x)cos nx.dx
T
17 ¢o z
=— _.L (= )cosnx.dx + IO X COS nx.dx}
al (sinnx}0 ( sin nx cosnxj”}
=—| -z +| x +—
T n ). n n’
1 1 1
=—|0+—cosnr——
Tl n zn
b =3,b, =_71,b3 =1b, :_Tl and so --- on substituting the values of a,,a, and b, in (1), we get
- 2 cos3X Ccos5Xx . sin2x 3sin3x sin4x
f(X)=———=| cOSX+——+——+——— |+| 3sinx— + — +——
4 r 3 5 2 3 4
Deduction:-

Putting x =0 in (2), we obtain




- 2 1 1

Now f () is discontinuous at x=0
f(0-0)=—xand f(0+0)=0

1 -
f(O):E[f(O—O)+f(0+O)]:7

Now (3) becomes

-r -7 2(1 1 1
— = | Sttt
2 4 7\1I" 3 5
_z
8

Even and Odd Functions:-
A function f (x) is said to be even if f(—x)=f(x) andoddif f(-x)=—f(x)

Example:-  x?,x* + x?+1,e*+e ™ are even functions
x3, X,sin x, cosecx are odd functions

Note:-
1. Product of two even (or) two odd functions will be an even function
2. Product of an even function and an odd function will be an odd function

Note 2:- fa f (x)dx =0 when f (x) is an odd function

= ZIOa f (x)dx when f(x) is even function

Fourier series for even and odd functions

We know that a function f (X) defined in (—7,7) can be represented by the Fourier series
f (x)=%+gan cosnx+ni:‘bn sin nx
1 or
Where a, :;L f (x)dx
1 or
a, = ;Lf f (x)cos nx.dx
1~ .
And b, = ;Lr f (x)sin nx.dx
Case (i):- when f (X) is even function

= [ 1 ()de=2 [ 1 (x)ox

Since cosnx is an even function, f(X)cosnx is also an even function




a, :ij.” f (x)cos nx.dx
Hence 72r -
:;IO f (x)cos nx.dx

Since sinnx is an odd function, f(X)sinnx is an odd function
1~ .
~b==1 f(x)sinnxdx=0
REYRIC
.. Ifafunction f(x) isevenin (—7,7), its Fourier series expansion contains only cosine terms

" f(x)=a—2°+ijl:an cos Nx

Where a, =Er f (x)cosnx.dx,n=0,1,2,—————
/dY

Case 2:- when f () is an odd function in (—7, )
a, :EJ'” f (x)dx=0 since f(Xx) isodd
72' =T
Since cosnx is an even function, f (X)COS nx is an odd function and hence
1 ¢n
a =—| f(x)cosnx.dx=0
SR
Since sinnx is odd function ; f (x)sinnx is an even function

1 ¢n ]
b == f d
) 7['[_” (x)sin nx.dx
2 7 ]
:;IO f (x)sin nx.dx

f(x):ibnsin nx
n=1
2 ¢r .
Where b, :;IO f (x)sin nx.dx

Thus, if a function f (X) defined in (—7,7) s odd, its Fourier expansion contains only sine terms

Examples:-
1. Expand the function f (X)=X" as a Fourier series in (—7, ), hence deduce that
it ot 1. 7
1?2 22 3 42 12
Sol. Since f(-x) =(—x)2 =x"=f(x)
Hence in its Fourier series expansion, the sine terms are absent
X = i+§:an COS NX
n=1

Where




a, = %Lﬂ x%dx

a = %J‘: f (x)cosnx.dx

2 x
=—I x? cos nx.dx
T 0

_ g{xz (sm nxj_z){—cog, nxj+2(—5|r;nxﬂ
T n n n .

= 3{0 127 S8, 2.0}
Ve n
4cosnr 4 n
T2 (_1)
Substituting the values of a, and a, from (2) and (3) in (1) we get

2 0
X% = %+ Zni'z(—l)n COS NX
n=1

2 w [ n+1
:%—42( 2 cos X

7l COS2X C0S3X Ccos4x
= -4l cosX———+————5—+-——— | >(4)
3 2 3 4

Deductions:-
Putting X=0 in (4), we get

2
O:ﬂ-__4[1_i+i_i+___)

3 22 32 4?
1 1 1 7l
:1——2+—2——2+———:—
22 3 4 12

2. Find the Fourier series to represent the function f (X) = |Sin X|,—7z <X<71

Sol Since [sinx| is an even function,
b,=0 for all n
Let f(x)=]sinx|= %+ian cosnx — (1)

n=1

Where




a, = 1'[” |sin x|dx
7Z' -7
:EI”sin x dx
7Z' 0

2 z
:;(—cos x)0

-2 4
-1-1)=— d
( ) ~ an

:—.f cosnxdx——j sin X.cos nx dx

:_jo [ sin(L1+n)x+sin(1-n)x]dx

:i{ cos(1+n)x cos(1-n)x } e
T 1+n 1-n o
:_l[cos(1+n)7z cos(l-n)z 1 1 } il
T 1+n 1-n 1+n 1 n
B __1—(_1)n+1 _1+ (_1)n+1 1
o 1+n 1-n

-1 | 1 1 1 1
=—|(-1) + - +
T 1+n 1-n 1+n 1-n

0 if nisodd

. 4 . .
n if n is even

ﬂ(nz—l)

for n=1a =£J‘”sin X.COS X dx
72' 0

:i.l.”SiHZX dx
T 0

_i[—costj i
T 2 0

-1
= 27-1)=0
~ (cos2z—1)

Substituting the values of a,,a, and a, in (1)




. 2 & 4
We get [sinX| ==+ >’ —— COSNX
7 n=2,4,——7f(n )
2 4 & cosnx
- Z 2
T TagaN°-=1
2 4 & cos2nx
o ; 4an? -1
(replace n by 2n)
Hence [sin zg_i(COSZX | Cos4x +____)
T 3 15

Half —Range Fourier Series:-
1) The sine series:-

f (x):ilbn sin nx

2 ¢r .
where b, = ;IO f (x)sin nx.dx

2) The cosine series:-

f (x)=%+i“arl COS NX

n=1

where a, = EIO” f (x)dx and
T

a, = %J'O” f (x)cosnx.dx

Note:-
1) Suppose f (X) =Xin [0, 7r], it can have Fourier cosine series expansion as well as Fourier sine series

expansion in [0, 7]

2) If f (X) =x%in [O, 7T], can have Fourier cosine series as well as sine series

Examples:-
3
1. Find the half range sine series for f (X)=x(7—X)in 0<x < 7. Deduce that 1%—3%+5—13—%+———— = ;T—z

Ans. The Fourier sine series expansion of f () in (0,7) is
f(x)=x(7—-x) :ibnsin nx
n=1

where b, = %Ioﬁ f (x)sin nx.dx

2 7 .
hence b, :;L X (7 —x)sin nx.dx

- %J‘:(nx —x? )sin nx.dx




0, when n is even

b,=1 8 .
—, When n is odd
zn
Hence
8
X(7z— x = —smnx or
(r=x)= 2, s (o)
8 sin3x sin5x
X(z— x =—(SiNX+—+—+———|>(1
( 72,[ 33 53 ) ( )
Deduction:-

Putting x :% in (1), we get

T T 8 7 1 3r 1 57
= x-= Sin=+—sin—+—sin—+—-
2 2) 2 3 2 5 2

7* 8 1 . Vg 1 . Vs 1 . V4
—=—|1l+sin| 7+ |[+=SIN| 27+~ |+ =5SIN| 37+ |+———
4 r 3 2) 5 2) 7 2

(or)ﬂ_z—l_i+i_i+___
32 3P 5 7
3) Find the half- range sine series for the function f (x) _& —C

Ans. Let f( Zb sin nx




2 (7 :
then b, :;jo f (x)sin nx.dx

—ax

2 cre¥—e

=) W.sm nx.dx
2 B T . T .
= I e™sin nx.dx—j e ™ sin nx.dx
ﬂ_(eazz e—a;z)_ 0 0
_ ) ]
2 e” : e .
=— ——(asinnx—ncosnx) | —| ——(—asinnx—ncosnx)
(e —e*)|[a’+n . lat+b i
2 ealr

= n n e n n
= _ n(_l) +a2+b2 +a2+b2 n(_l) _a2+b2:|

~ 2n (_1)n+1

7r(n2 + az)
Substituting (2) in (1), we get

f(x)=£i%sin nx

74 a’+n
_ 2| sinnx 23in2x+33in3x
rla’+l® a*+2® at+¥

Fourier series of f (X) defined in [c,c+2]

It can be seen that role played by the functions

1,cos X, coSs 2X, oS 3X,.....Sin X, SiN 2X.........

In expanding a function f (X) defined in [Clc+27r] as a Fourier series, will be played by

(IZ'XJ (ZEXJ (37Z'X)

1,cos| — |,cos ,COS -

e e e

. (nx} . (ZHX) . (37rxj

sin| — |,sin| — |,sin| — |,.....
e e e

In expanding a function f (X) defined in [C,C+2I ] it can be verified directly that, when m, n are

integers




LMIsin(mej.co [zijdx 0

0 if m#n

LHZIsin[mej.sin(nTX dx=< lif m=n=0
21 if m=2n=0

0 if m#n

LHZI cos(@j.cos(@jdx: lif m=n=0
2 if m=n=0

Fourier series of f (X) defined in [0,2|] -

Let f (X) be defined in [O, 2|] and be periodic with period 2l . Its Fourier series expansion is defined

as

f(x):%a0 +i[a cosT+b smﬁ}—)(l)

n=1 I

where a, =}.|'02| f (x)cos@dx and — (2)

b, :I.[OZI f (x)sin@dx —(3)

Fourier series of f (X) defined in [—I,I] -

Let f(X) be defined in [,1] and be periodic with period 21 . Its Fourier series expansion is defined

as

= Nz X
:—aO +Z(a cos—+b smTj

1II nzx

where a, ==| f(x)cos de

[ . nxzX
b, :TL f (x)sml—dx
Fourier series for even and odd functions in [—I , I] -

Let f (X)be defined in [—I,I]. If f(x)iseven f (x)cos@ is also even

. 1p nzX
.a, _TL f (x)cosde
:—J' cos—dx and f(x)sinnlixis odd

) :}_[Ilf(x)sm@dx 0vn




Hence if f(X) is defined in [1,1] and is even its Fourier series expansion is given by
1 < nzX
f (X) =5% +Zan cos%
where a, :—j cosde

If f ( ) is defined in [, 1]and its odd its Fourier series expansion is given by

ibn n— where b, _—J. f(x )sdex

n=.

Note:- In the above discussion if we put 2l = 27,| = 7 we get the discussion regarding the intervals [O, 27[]
and [—72',72'] as special cases
Examples:-
1. Express f(Xx)= x* as a Fourier series in [—I , I]
Sol f(—x)=f (—x)2 =x"=f(x)

Therefore f (X) is an even function

Hence the Fourier series of f (x) in [-1,1] is given by

f (x):a—+ a cos@
n=1

Nz X
where a, ——J' cosl—dx

3\ !
henceaozgﬂxzdx:g(x_) _a
| 1I3), 3

nzX
also a, ——J' cosde
nzx
:—I x? cos —— dx
| Jo |
|
nzXx N X . nzX
5 sm( I ] —cosT —smT
== X’ X = — |¥2| =55 —
| nz nz n°z
2 3
I | | .
|
cos X
2 |
=—| 2X -
| n°z

0

Since the first and last terms vanish at both upper and lower limits

L AR n’z’

(-1)" 41?

nz?

Ca _2[ | _cosnz }_4I2cosn7r




Substituting these values in (1), we get

n
2 2 & (—1) 41? nzXx
X' =—+ ——C0S
3 & nrx I

3 722% n
K 4I2{cos(7rxll) cos(2zx/1) cos(3zx/1)

3 7 12 2? 3
2. Find a Fourier series with period 3 to represent f (Xx)=x+x* in (0,3)
Sol.  Let =—+Z(a cos—+b sin@j—)(l)
Here 21 =3, 1=3/2

Hence (1) becomes

f(x)=x+x’

Integrating by parts, we obtain

N TR
" 3| 4n?z% —4n?*2? | 3\ 9n?x? n?z?

Finally b, = IO f(x )sm@dx

= gfo3(x+ xz)sin(znézxjdx
_~12
Cnr

Substituting the values of a’s and b’s in (2) we get

x+x2——+ ZZ —C (anxj—gzlsin[znng

~in T ~=n




Half- Range Expansion of f (x)in[0,1]:-

Some times we will be interested in finding the expansion of f (X) defined in [0, I] in terms of sines only (or)
in terms of cosines only. Suppose we want the expansion of f (X) in terms of sine series only. Define fl(x) =f (X) in
[0.1] and f,(x)=—f,(x)¥n with f,[21+X]=f,(x), f,(X) isan odd function in [I,1]. Hence its Fourier series
expansion is given by

Zb sm%dx

2
where b, == jo f, (x)dx
The above expansion is valid for X in [—I I] in particular for X in [0 I]
f,(x)=f(x) and f,( Zb sml—dx where b, =—_[ sml—dx

This expansion in (3) is called the half- range sine series expansion of f (x) in [0,1]. If we want the half -
range expansion of f (x) in [0,1], only in terms of cosines, define f,(x)= f (x) in [0,1] and f,(—x)= f,(X) for
all x with

f,(x+21)=f,(x).
Then fl(X) is even in [—I,I] and hence its Fourier series expansion is given

By

fl(x):a—20+ a, cos@

2 ¢! nzX
where a, :I—IO fl(x)coslidx

The expansion is valid in [—I,1] and hence in particular on [0,1], f,(x)= f (x) hencein [0,1]

f(x )=—a +S a, cos 22X

n=1 I

Where a, = Ig_[ol f (x)cos@dx

1. The half range sine series expansion of f ( Zb sin m in (0, 2) is given by
Where b, :gjl f (x)sin X i
| Jo |
2. The half range cosine series expansion of (x) in [0,1] is given by

f(x )=%a +) a, cosliX

n=1

where b, :gjl f(x )cos%dx
| Jo I
Examples:-

1. Find the half- range sine series of f(x)=11in [0,1]




Ans.  The Fourier sine series of f(x) in[0,1] isgivenby f (x)=1= Z b, sin — nzx

nzX

here b, =— I sin ——dx
I
:—I 1.sin @dx
cos X
_2 T
I nz/l
0
2 [ nzrx} '
=—|—-C0S—
nz I 4
2
=—(—cosnz +1)
nz
2 n+l
—E[(—l) +1]
-.b, =0 whennis even
= i when n is odd
nz
= 4 . nzxx
Hence the required Fourier series is f (X)= Z 2 sin 22
n-1,35-— N7T
2. Find the half — range cosine series expansion of f (x)=sin (”ij in the range 0 < x <|
Sol
f(xa,)= sm( j +>a, cos—
n=1
2 2 X
WhereaO:TLf( )dx_TI Td

{—comx/l}
ll 0

4
~1)="and
(cosz—1) ﬂan

2
1
2
1

:_I cos—dx

= TIO sin (”ij cos(@]dx

1I[Sin(n +1)7x sin(n—l)”x}dx

cos(n+1)zx
R | cos(n—1)zx/|
1

(D)2l (n-1)z/1




n+l n-1
G G R S
T n+1 n-1 n+1 n-1

When n is odd

-1 1 1 1 ]
+ + -
 n+1 n-1 n+1 n-1]

=0

(11 1 1]
' n+1 n-1 n+1 n-1]
I S
z(n+1)(n-1)
(nxj 2 4{cos(2;rx/l) cos(4zx/1)
ssin| == |==—— +
1.3 3.5

| T T

Fourier Transforms

Fourier Transforms are widely used to solve Partial Differential Equations and in various boundary value
problems of Engineering such as Vibration of Strings, Conduction of heat, Oscillation of an elastic beam, Transmission
lines etc.

Integral Transforms:

The Integral transform of a function f(x) is defined as

i)} =F(s) = [Z f)K(s x)dx
Where K(s,x) is a known function of s & x, called the ‘Kernel” of the transform.
The function f(x) is called the Inverse transform of f(s)

1.Laplace Transform: When K(s,x) = &~

LEF0} = F(s) = [ Flx)e=dx

2.Fourier Transform: When K(s,x) = e
1

FIf00} = F(s) = —= 7 fx)edx

~ 3
W LT

3.Fourier Sine Transform: When K(s,x)=Sinsx

FAf)}=Ff(s) = "u!l-::‘j'; Flx)sinsx dx

4. Fourier Cosine Transform: When K(s,x)=Cossx

FAI00} = F(5) = 217 Flx)cosse dx

5.Mellin Transform: When K(s,x)= x

M=) = Jr;f[:c)xf_idx

6.Hankel Transform: When K(s,X) = X/,,(5x])
H(s) = fls) = Jr,; Fl)=], (sx)dx

Where J,.(sx) is a Bessel function.




Fourier Integral Theorem:- If f(x) satisfies Dirichlet’s conditions for expansion of Fourier series in (-c,c) and
JZ 1f(x)| converges, then

FE) =277 f(cosi(t —x)dt d
Which is known as Fourier Integral of f(x)

Proof: Since f(x) satisfies Dirichlet’s co_nditions in ( ¢,c), Fourier series of f(x) is
fla) =2+ Eia(ascos— +bysin=—) ... (1)

Whereﬂc_zgjfcf(rjdr a, =%jjcf(r)ms%dr, b, =§jjcf(r)gm%dr

Substitute the values of ag, a,, and b,, in (1) , we get

'n"-|"'

1

f) = — [ f(®)dt + T2, [ f(Dcos
Since ji_lf(x)l dx converges i.e., f(x) is absolutely integrable on x-axis,

The first term on R.H.S of (2) approaches to ‘0’ as ¢ —* ==

Since

A IIOL RN VOIS

The second term on R.H.S of (2) tends to

1 1 e % nmit—x)
Lt, - o= j f t)cos— Ldt = Ll“%_.,;_; iy f_xf(fjcas - dt
Let%= dA sothat A —= 0as ¢ = o
Fx) = Ltgguom T2y [0 f(cosn(t —x)6A dt oo, 3)

Thisis of the form Ltz ., Zi=i F(ndd) ie., [FF(A)dA
Thus as ¢ — =0, (3) becomes
flx) ——j j f(r cosA(t — x)dt di

Which is known as Fourier Integral of f(x)

Fourier Sine & Cosine Integrals:-

From Fourier Integral theorem
) == [ 7 f(Bcosh(t —x)dt di oo (1)

w.k.t cosA(t-X) = cosAt cosAx + sinAt sinAx

Sub. This value in eq(1), we get
flx)= 1:]? cosix [ f(t)cosit dt di+ % j; sindx [© f(t)sindtdtdi ... )




when f(t) is odd function, then f(t)cosAt is an odd function while f(t)sinAt is an even function.
then eq(2) becomes

fx) == [ sindx [ f(£)sinit dt dA

This is called “Fourier sine Integral”

when f(t) is even function then f(t) cosAt is an even function, while f(t)sinAt is an odd function
then eq(2) becomes

oo

flx) ——J cosAx J‘xf(r)cagzlr dt dA
) o

This is called “Fourier cosine Integral”

Complex form of Fourier Integral:-
From Fourier Integral theorem

) == [ 7 f(Bcosh(t—x)dt di .o........ 1)
= ;f_x flt)dt {fc cosA(t — x)dAi]
since cos A(t-x) is an even function
flx)= ;’—_ = 7 f(cosi(t —x)dedA ..o (2)
w.k.t sinA(t-X) is an odd function,
J= sinA(t—x)di=0
;:f; JZ F(OsinA(t —x)dtdA=0........... 3)

multiply (3) by i and add it to (2), then

f(x) = ;—_ SO T (D) [cosA(t — x) + isind(t — x)]dt dA
—:f_x f_ (t) e =¥ dr di

which is known as ‘Complex form of Fourier Integral’.

Problems:
1.Express the function f -{l': =t
.Express the function f(x) = 0; x| =1

oo sindcosdx .
o A

sol: The Fourier Integral of f(x) is given by
f0)== [ dA [ f(fcosh(t —x)dt ...oo.......... )
0; —oo <t —1
given thatf(t):[ 1 ;-1=<t<1
l<t<w
f(x) = %J’; o a4 Jl_l casA(t —x)dt

as a Fourier integral and hence evaluate




1 po= mindlt—x)
L[ B
= % ;E ; (sind(1l—x) — sind(—1—x))d4a
= lf:ic % (sind(l—x)+ sindA(1l+x))dA
= 27 AL @)

which is fourier mtegral of f(x)
from (2), —j e dh =f(x)

Jf sindcosix di = :f
A=D A 2 (1)
lac| == 1
iven f(x {
ven T =10, Ixl > 1
Jf’-i E:'."!/.II:DE/_P.' di = ? |3‘-| =<1
se A 0; |x| =1

at |x| = 1i.e., when x=+1
. . . . 1, - —
f(x) is discontinuous & the integral has the value =( = + 0) = -

Jr’ai sir!x'.rtos/'_x di = E ﬂflﬁ.'l =1
A=D A 2
0,0 <x<1
2.Find Fourier Sine Integral representation of f(x) =4 = —1<x <0
0, x=0
sol: Fourier Sine integral of f(x) is given by
f(x) == Jrc_ sindx jc- Flt)sindt dtdd ............... (1)
t, —1<t=<0
0, else where
f(x) == [ sindx ([, tsinit dt} d2

|:.

given that f(t) = {

2 pmm . —toosde sindt
:—f sindx ( _ . ]
\ AT Sem g

f(x) = — i

A




1“ l - cosns CHIT XX

Using Fourier Integral, show that
‘o 5

Solution:
* s F]
Jixy =7 [“ sin .r.tﬁ:_f[’r} sinst d’rd:ﬂ

E_ﬂ*.x«-: i
- e 1)

Let f{x) =
i, x> R

. =T
We know that, Fourier sine Integral is given by | ximsx [-[n7 sin 5f dr]J.a.-

gt

fix) = Iu xim sx Iu F LY sin sr e ds L A2)
1] {1]

e T2 e | - (eers xe) )
= [fix)= 5w Fn sim s [T] ds
o

Substituting (1) in (2), we have

—= _fl;r'i_]— [l—_ lcos 57 }]_\1':1' gl

kY

T
e _ = . b=x iT
1 (eos o7 ) i ax oy - £
0 x = T

- CO0f SX as

Using Fourier Integral, show that ¢ casx = — |
50

t
=5

7 pm
Given ¢ cosx = — | —— cos s ds
5 0 S+4

Since the integrand contains cosine terms, by Fourier cosine integral we have,

j*]'* caos px (1) cos pit di dp

oo

= | ra

fix) =
Replacing 'p’ by 's " in the above equation we have,

f{”—%m f{f}mn.tcas\:nﬂdr let f{x) = e ecosx

& eos | eos st cos s dt ds

eTeosx

I L L
- FF [ e’ (2cost cos st) di |cos sx ds
1] 1]




‘1 ]

| I[ e Tfeos (s+1) ¢ + cos (5-1) dt ‘ms sy ds [ . J“ & ros by dy = 4
i} '

- po ' at+ b

1 « 1 |
Yok sorae mm e 05 §v s
« U7 COSY p [ﬂ[{xlh-‘i[] + If.\'-H:'*-I] cos 5x ds

= L = 2(x +2 ) cos sx or xx de
P ((s2+2)+ 25 W(s? +2) -25) coF 5X ds

- i J-"‘ {(524+2) cos sx .
P % —(.\_. F2) - (25) el

-

44+ 2

cos sx ds

5
et eosx = =] —
P o 544

r

Fourier Transforms:-
Complex form of Fourier Integral of f(x) is

fx) =o= [ [T f(8) e dit di
replace A by s

f)=—= /" e Fds.—= [ f(t)e " dt

Ifwe define  F(s)=—=["_f(r)e " dt

T

then f(x) = — [~ F(s)e "™ ds

F(s) is called Fourier Transform (F.T) of f(x) and f(x) is called inverse Fourier transform of F(s)

Fourier Sine & Cosine transforms:-

The Fourier sine integral of f(x) is defined as

f(x) = :: J;: sinsx j:: flx)sinsx dx ds

[2 e [2 e
f(x) = M';JFI:- sinsx ds. J= fc_ fx)sinsx dx




—
If we define F.(s) = N!Ii jc*c Flac)sinsx dx

—
then f(x) = N!'f _jfl;c F.(s)sinsx ds

here F_(s) is called Fourier sine transform of f(x) and f(x) is called Inverse Fourier
sine transform of F,(s)

similarly, Fourier cosine integral of f(x) is
f(x) =% j; COSSX J:;C flx)cossx dx ds
N —
if we define F_(s) = M!Ii [ flx)cossx dx

—
then f(x) = M!Iij; F.(s)cossx ds

here F.(s) is called Fourier cosine transform of f(x) and f(x) is called Inverse Fourier
cosine transform of F,.(s)

NOTE: 1. Some authors define F.T as follows
H == . . 1 @ —_
) FGs)= [ f(x)e™dx i) ) = = [= F(s)e™*ds

— —
iiFs) = |2 S F)e™ = de W) fe0= |2 [ F(s)e™ds
2.Some authors define Fourier sine & cosine transforms as follows
i) F.(s) = J::f(legiﬂgx dx i) f(x) = ::VI:: F.(s)sinsx ds

iii) F.(s) = [~ f(x)cossxdx V) f(x) = : [ F.(s)cossx ds

Properties of Fourier Transforms:-

1.Linearity Property:- If F,(s) and F, (=) be the Fourier transforms of f; (x) and f,(x)
respectively then f{af;(x) + b f5(x)}= a F,(s) + b F,(s), where a & b are constants

proof:- by definition of Fourier transform,
F{afilx) + b ()} = [T e (afy(x) + b fi(x)) dx

= a.JF_,_c E,.EA'JGE,X:I dx + bJ’_"‘; E,:'s.rf: (lj dx

=a £ (s) + b ()

2.Change of Scale Property:- If F{f(x)} = F(s) then F{f(ax)} = % F(=)

]
[ird

proof:- By definition of F.T,




FIFOO}=F@) = [ ™ flx) dx ....... (1)
F{f(ax)} = [7_ e f(ax) dx

putax =t
then a dx = dt

Fﬁ@m}zﬁleﬂif&jmfa
=—j_ F(t) dt

== F(S) by(1)

3.Shifting Property:- If F{f(x)} = F(s) then F{f(x-a)} = e*“*F (=)

Proof:- By definition of F.T,
F{f(x)} =F(s) = f_i e Flx) dx....... (1)
F{f(x-a)} = [~ e flx —a) dx

put x-a = t
then dx =dt

F{f(xa)} = [T e™l7=) £(t) dt
- E,:'st.' J’_"‘;Eis:‘f(rj dr
= e F(s)  by()

4.Modulation Property:- If F{f(x)} = F(s) then F{f(x)cosax} =¥ {F(s+a)+F(s-a)}

Proof:- By definition of F.T,

F{f(xX)} = F(s) = _jr:; e fx) dx....... (1)
F{f(x)cosax} = f:: e f(x)cosax dx

=7 e f( :lt ":ln’x
=2 { [T e fx)dx + [T e flx)dx)

= {F(s+a) + F(s-a)}

5.Convolution Property:- The convolution of two functions f(t) and g(t) in (-c0,0) is defined

asf(t) *g(t)= [ f(t).g(x—1t) dt

Theorem:- If F{f(t)}=F; (=) and F{g(t)}= F: (s) then F{f(t)*g(t)} = F, (5). F; (s)
Proof:- By definition of F.T we have




FEE 00} = [ (£() = 5(8) e
=7 U7, fFlg(t —wdu} e dt
= [, Fe™ {7 g(t —we ™ d(t ~w)} du

on changing the order of integration,
= [~ fwe'™ F, ()du
= U: fw)e™dul.F, (s)
=F, (). F,(s)

FE*0®)} = £ (). B ()
6.If F{f(x)} = F(s) then F{f(-x)}= F(-s)

Proof: By definition, F{f(x)} = [~ f(x)e™dx ........... (1)
FEFO} = [ F(—x) o™

put —x =t then dx = -dt

as X—»00, t—-00 and as X—-00 , t—00
F{ROOY = 17 F(0)e™ = (—dy)
- =, Fle)emmar
- [, Feoar

=F(-s) (by (1))

7F{FG} = F(—5)

Proof: By definition, F{f(x)} =F(s)= | f(x)e'™dx ............. (1)

F(-s) = _j’_i flx)e =dx
taking complex conjugate on both sides

F=s) = [~ Flme'=ds

=F{f(x)}

8. F{f(—x)} = F(s)
Proof: By definition, F{f(x)} = F(s) = [~ f(x)e'dx
take complex conjugate on both sides

F(s)= [T, Flx)e = dx
put x=-z then dx = -dz

F(s) = [ " f(—2)e'=(—dz)

= f_i f(—z)e'*d=z




=R )

FiF(—x)} = F()
0. F{xf(x)} = S E{f(x))
Proof: By definition of Fourier sine transform
FAF()} = [ flx)sinsx dx
SR} = {7 Fx)sinse dx )
- :i{ f(x)sinsx} dx
= [ f(x).xcossx dx
= [ {xf(x)}eossx dx
= F.{xf(x)}
Note: F.{xf(x)} = —= F.{f(x)}
Problems:

1. Find the F. T of f(x) = e ~/*!

sol: Given f(x) = e~/
_oefix =0
- {E' TEex =0

by definition, F{f(x)} = = [~ _f(x)e**dx

-~ 2
W 0T

= ;—T{jfx f(x:le:'s.rdl. a J’::f(xje:'s.rdx}

-1 {.JF_E,_,C E(‘l—:’s_’-.rdl. L J’E’-“: E(—‘l—:’s_’-.rdl.}

~ 2
v &1T

1 (aeixy D o —laiglay,
- = {( 1+is :J_,I N ( 1-is :J,:, }
_ 1 1,1
T VIm ey frwen)
_ [z 1
B 1“!;'1—‘-'

0= x=<1
2. S.T the Fourier Sine transform of f(x) = {2 —x, 1 << x << 2 js-
O0,x =2

sol: By definition,

FFG)} = [ F(x)sinsx dx

1 oy . - 1 2 P fa - .
= jc- xsinsx dx fi (2 —x)sinsx dx

2gins

= ch'l flx)sinsx dx + Jf flx)sinsx dx + Jr;c flx)sinsx dx




e (22 = (228 + 12— 0. (=) - o (==)E

i
—Coss Fins sinls Coss Sins
E g2 g2 = 5

ins (1-coss)

=2

(1, |x] <a
Find the Fourier Transform of F({x) = *[ and hence evaluate

0, |x]| =

1, |¥] <a l,~a =x =

Given Fix) = { = FAx) = | I | | I

0, |x] >a 0. |x| = a e -a 0 a oo

By definition of Fourier Transform, we have,

FIFEO] = ()= e Fx) dy

X—=-a

=

= [ & Fde +] e Faode +] et Fx) dy
X--a f=-

= I i F(x) dx + {__ e SXF(x) dv + _{l t_,,"'mt Ftx) dv

- ]'." c"'.0££1'+]‘“ e, 1 dx +]‘L- e, 0 dx
- xa]” 1
= ] ety = i = — [e™? -]
x—-a 5 &)

oy _ 2 B e-”-e e
F{F(x)] s sin sa = f(s) [ — =in 5.11
FIRO) =/ =5 | () e ds

..o b *2sinsa el gy = I, x| <a
M . S |x| > a

=2 8in sa

U
al-

(cos sx - i sin sx) ds = F(x) [', e = cos x - 1 sin 3‘.1’]

=

=2 §iR $a.008 5X I = 25in 5 5in 5%
[ ——————-=] ‘_—:,‘-‘{r}

N 5 M=

1 (" 2in sa cos sx ds
- _IM-U:FHI

M w

2% Integral is an odd function & | F(x)dr = 0 if F(x) is odd




[ ]

]x 2 sin 50 cos $X d L Ixl <a
m: 5

=

0, x| >a

2
= $in 58 055X = x|l =4
= | ——— a5 = 2

E 5
) 0. Ix| >a
* sin sa cos sy T x|l <a
= [Ty
e

0, x| >a — M

= o U
puty =0&a=1in(l)weget | W%ds

=
= Jjﬂd_-.-=r:
0 s

&

sins

. is an even function & [ F(x) dx where F(x) is even

@

é l:‘.\'m 5 ds =
Ll

1
5 2

xamples on Infinite Fourier Transform

s 1 xS
Find the Fourier Transform of F{x) = {

Hence evaluate
I(), x| > 1

T-1x1% x| s 1 le, -1sXxs1
Given Fix) = XI5 Ix1

sen (1)
0, x| > 1

By definition of Fourier transforms form, we have, l

-0

FIFG)) = fs) =] _ e Flx)dx

1 ! *
= [ Flx)e" dy+| Fx)e*de +| Flx)e** dx
h - 3 !

xamples on Infinite Fourier Transform

= SN 14 B
Find the Fourier Transform of F(x) =

1 Hence evaluate
10, Ix] > 1

1-1xl% x| <1 ie., -1sx<1
Given Flx) = %1% Il

== (1)
0, x| > 1




xamples on Infinite Fourier Transform

[1-1x13, |x] <1

Find the Fourier Transform of F(x) = Hence evaluate

0, x| >1

1-1x]% |x| <1 ie, -1sx51
Given F(x) = It Il - (1)

0, x| > 1

By definition of Fourier transforms form, we have, I I | |
- -a a o«

FIF(x)) = N(s) = I: e F(x)dx

a1 ! >
= [ Fx)e" dv+| F(x)e* dx +[ F(x) e dx
| 1

‘ -

]

> 1 >
= - I] F(x) ¢ dx + | F(x) e dy + ’: F(x) ¢ * dx
1

- 4 - ’ ‘e
=4[ Fx)evde+| Fx)erde+ | Fx)e*“dx =0 +| I. (1-x)e afFo
1 ] !

On integrating by parts we get, [(I - w‘)'%'] - [ 20 ax
1 s

1]
245 X e 2y o -és -
[(,_,_‘,« EEIEOLT ]H' 2 i
iy s LI AN

Again integrating by parts we have,

1
: 2 i L-is i
= F{F®} =F@= % (l.e“_ e )_(e“)
= is is o P
: 2 is + ~is LIS i
= F{F@} =F@=-7|lZ=—= J+|&£—<
s P8y

2 e &
[ﬂ + —l, (2i sin .\')]
=

9
= FiF@®}=f()=+

is is
is x -is X
« cossx= £ +e
2
d SFIFE)N=f(s)=4 | Scoss
isx_  -iyx § b= £(s) 2 .
Sin sx = Rdbceaind

COS 5 sin s

S F{FXf=fis)=4 [—\- + s ]

=  F{FM) —fs) — 4 [___.__.-__._‘ cos s + sin S]

s

sin s




To evaluate I“M cos - ds
o 5 2

By inversion formula for complex infinite Fourier transform, we have,

1~
FIAs)) = Fo) =55 !, Js) e T ds

1 =4 L -x% |x] =1
= 3= [ — (-scoss +sins)e™ ds = By (2)
<k ’e 5 0, lx] > 1
=1 + _1L -4 ; " it /2 o = 1
putx = X in (2) we get, S _]; o (5 cos 5 - 5in 5) ¢ Iy =1 - "

4 R PP D PR )
=> | r f.\cu.!.)-.ﬁmﬂ[(ﬂﬁi - I 5in ;]d.u-T

-

* (5 cos 5 - 5in 5) ] P ) . % .37
= | 7 cors - sin 3) cos — ds =i | —{scoss-sins)sin — gy = Ce L]
' 5 7 L o 5 8
- ] < . F4
"5 cos 8 - gin §) k] 30 |1 ) . &
= | 1‘+ cos — ds = T‘ [—_‘ (s cos s - sin 5) sin % ds =0, since it is an odd function
~m 5 2 k] 2
- ) (
§ S 8- Sin s § 54 5 COS 5 - SIS .
=2 { — s = ‘T Since —1] is an even function
. 5 2 5
- ([ {scoss-sins) s _ -3=
‘I. — = fes g ds 16
Gi) To evaluate [ Scoss-sins) e~ STn S} e
o
Put x 0 in (2) we get 2;11 [’; % (s cos s - sin s) ds 1
= (s cos s‘- sin s) di = -:x
o R} -
= 2 [‘M ds:= -:r [Since the integral is even]
o 5 -
“"(Scoss-sins) -1
= .I. st ds = 4

xamples on Infinite Fourier Transform

Show that the Fourier transform of F(x) = e /2 js %2 or show that Fourier transform of

is self reciprocal.




By definition of Fourier transform of Fix) we have

F{F Y = Fie™ dx=f(s)

= - 2y 3 22
= F{Fm}i=] et ¥ gim gy = | £ N2 it o (WD W2 gy
b oE - S N
=] & e‘dv=¢1.] €° dx
L =N — T = d - n =
Putﬂl‘.‘r-u}—u. dx V3 = du P [ [ ety = "'Tj|

Limits : L L : when x = -o0, o= o
UL: x=e0, uw=a0 -2
W F{Fx)} = N2m e 2

= FiFl=¢7 [ ¢ ST du Hence the Fourier transform of = e

= " =, F(x) is self reciprocal

} = (s) = [ e F(x)dx

By definition of Fourier transformm, we hawve & § Flx)

=  F{F = [ e Fx) dx [fl-m F(x) dx + [ e _ F(x) dx

T I R T L
L A

=

== F{Fxy =

a|-x|, x| <a

Given F{x) =
0, || = a =

By definition of Fourier transform, we have

FiFx) ) = H(s)




:Jzi_ II-" el Fxds + I[I;c"‘ Fix)ds + IH(‘"' .F'{.r}ds]
T | -= -a -

1 ol 1 - =
= 0+ 2w = ) el + O = a [ e dy -] || e dlx
2n | -!; ] 2 [ -Ja -lﬂ ]
1 [ = o a o %, x =0
= —|af e™dy-[ (-x) e dr o[ xe™dx by definition of |x| =
Fn | ‘e la o xn x>0

L : : : .
FE]'[ i s B 5 s . B [Eq = .

o
L Y Ll Ep e ae 1
_...l":n|:r: - }+[ PRI s ] - [ Y = 'ﬂ:|
1 1 . i
= o— — D . D ox o = —
o |:J: {2 -2 cosx us’][ﬂiu: COF 45 3 ]:|

F {F(x)} = fis) = Fi [1 -.L:;,-m]

Deduction: By definition of inversion formula of infinite Fourier transform, we have

Ff(s)) _Jz% _]: Fx) e dx
I e -
= F(x) =-.,.|"2__11 L E [%] {cossx - isinsx)ds  [e" = cosx - i5in sx]

= Fix) = %’V]f [Ljfm}cns §x s - § I! [ﬂ] 5in 5x d.'i“|
L - 5 - £

Equating real and imaginary parts, we get,

A I, [ﬂ]vﬂj sx oy = Fix) uud’l— ]’ [I"&] sinm sx ds =0
n -a : gt = oa

3
E 2 5

] = ——
= ff [—I - “,J”" '”]L'w sx ds = Fx)

o E

[ x%

= f [ﬂy]c&u’ xx s - % Fix)y

T
- (- x) Ix] < a

= | [ﬂ]cuﬁ' sx s = =
[ 5

u. |_'l'| -

Substituting @ =2 & x =0 in above, we get,




B [I - -'_:.r_\, Es]u&
P

Find the inverse Fourier Transform of f{x)

Given

Fi{sy =

el x

We know that |s] =

—>(1)
x>0

By the inversion formula of complex Fourier transform, we hawve

- 1 = .
Frinsr =Flx) = 357 J e fisy ds = Floy= 571 _e et ds
1 o i . - ) .
== S !'lt" e? ds + [u - e ds
$ 1 J(rt“' ixhe e +I’ L L
2T e - ¥ i
1 oy " I =
& d s P L
= 2 I:n—n’l] [r;rﬂ—nrJ
i
= 1 1
27T

(v - ix)

1 1 2y
v + .-'.l"i] = 27T [_r-‘ + x?

xamples on Infinite Fourier Cosine & Sine Transform

Find the Fourier cosine transform of

Given F(x) = ¢*°

By definition of Fourier cosine transform of F(x), we have

Fo {F(x)}

J(s)

| J(s)cos sx dx

[

Differentiating (2) w.r.t

‘I_’ = i “e*cos sx dx
e ds ds
d = 4 @
= o = 37— cos sx dx
ds o s
df - 3
= - =[ e* (-xsinsx)dx
ds 0
Multiplying & dividing by 2, we get,

>

[ (2x "fmn\d\‘

I
2%

e~ Acos sx) dx

-== (1)

- ()

.t. 's’ we get,

[By Lebnitz’s Rule of Differentiating under integral sign]




1 . . -
= [L' Rt 1 B o8 5 rir]
- amd

= = ]n e’ cas sx ds = ::—_i - ‘__'—‘f

This is a first order differential equation, on solving it using variables separable method, we have

]% = {% ds = logf= % + log ¢ = f=ce 4 == (3]

To find "C” put s = 0 In {(2), we get,

=1 e "dx =E = (f) -0 =E - ()

o
Put 5 = 0in {(3)weget, (e-0=c === (5)

From (4) & (5) we have c = J% fo(s) = f% @ _-:1

Hence F. {e*} = ,l'% e

Find the Fourier c ne transform ol

cosxy, l=x=ga
Given Fix) =

By definition of Fourier Cosine transform, we have

Fe {F(x)} = | cos x cos sx dy
[+

Fo AR} = (=) ]" Fix) cos sy dy ]“F(.ﬂ:u.; svdx + | F(x) cos sx dx

Multiplying & dividing by 2, we get

FAF(x)= L? _[u FeusEX Cosx gy
2%
1 f [:'m’ (x 4+ x +cos(s— l'l.l']dr [ 2eosCoos P =cos(C+D) + cus[('--f}}]
el [E]
1 | &in(s+1)x 4 Sin (s=1)x :|c 1 [.'.'hr (s+1)a | sin (5= l'r;;]
= — - — +
2 5+] s=1 2 i+] s+1]

sin (5+1)a L ==1Da
s41 s+1

FAF) }[




Find the Fourier sine transform of ¢« * and hence evaluate |

Given Fix) = ¢ *!
By definition of Fourier sine transform of Fix), we have

FAFRXx) = 05 (s)= ]f F{x) sinsx dx

e F, {1} = f. (x) —jw('_ Y sirsoc dfv

== f. (x) —_F' e " sinsydx

['-‘ x| = x when x ::-U]

[
= f.(5) = l < — (— s 5x — 5 o8 % t'}]
1 +5°
=
e fe™ sinbxdy = —5—— [a sinbv — & coshy ]]
o T
© o Jn
= f, (5) = T (—sin(s.on) — 5oos (5. =) — T ([~ sin(z.0) — J'.{'(JS{J.“}]
52 g
Sl =0 — 30—
. &
= ————
Selmd= 7

“ X sinmx
Jofind | ————adx
o 1+x

By the inversion formula of Fourier sine transform, we have

F(x)= F ' {f(s)) = 3! /. (s) sinsxdx
T o

> "
= F(x) = sinsxds =e™"

T 0 54

[ F(x)=¢"x >O]

D 40y et .
—- e M= (33nSMm 4 [on replacing x by m]

o l+s°

2 e of
= "= X3nM [where ‘s’ replaced by x]

T o 14+x*

€ o - " il

X Sinmx 2
22 e ==¢"

o 1+x° F 3

nd the Fourier cosine transform of ¢

Given F (x) ¢t cos ax

By definition of Fourier cosine transform, we have,




=2 ' 0 0 ' '

F P F(x)} /- (5) =§ 'I“(.n‘) cos sxdx
o

— () =§ e cosax cos sxdx

<

Multiplying and dividing by “2°, we gert,

— Je G % "'&"'“ (2 cos ax cossyydx
_— 2 o
= L= 7'; j" ¢ [eos (a+s5)x + cos (a—s)x]dx [ =2 cosC cosD = cos (C+D)+ cos (C-
1 a a a :;l~ (3——"): + u:- (s+ n):
L(s) == - T+ — = = LG)== < s =
¢ 2 I:,,‘A (s+a) "‘-(_;_")‘] 2 [[u‘. (s+a) Iu'.(.-r—u)j]

: a 3:920")
. S {¢ Ccosax}= J (s) = (

(s*+2as+2a°) (s°-2as+2a”)

Find the Fourier sine transform of J(x) and hence deduce that

s
sir: sx dx —
@

<

Given ~(x) '_‘,

= — - : - :
Given Flx)==<

A

Bvw definition of Fourier Transform, we hawve,

F AR = f(s) = | Fx)sin sx dx
o

— w1

simevw v —» (1)

= F=j <
(i)

Differentiating (1) both sides with respect to "s°, we get,

wrx
o«

ad

! (s = i]" L. wirr sx glv
e s

o L3

d g 3
== — A (s =] - “i (sim sx)alx
ds " ar
= i{ s =] Me™ cokpidn I‘l.-'_"' cossvdy
s x L]

o & I e "
= —_— {5 = —— o e eossx = ——— (=acossx + scossx)| =
. PE 3 F]

b £ ¥ Ll + §
Mow integrating both sides with respect to s, between 0 to «

= Sl =2

o5 4

== fo (=)= ran " l:—,.‘i -+ £ —» (2Z)
To Fimd O =
Put = = & im the abowe eguation

’ &)

(Fo(5)e_n) = rarnn " | | + <

o E




Put = = O imn the abowe equation

CF.(5De ) = sexwr — " |?—‘| Lo -
CF A=Y cad [ —» 3)

Put = = O i ¢ 1) wwe get,

-

— S =» = - Fer ¥ v o
£ -
—-— L o —a <D

. From (32) & (4) we hawve 7 L4 ]

1 fesy= 1 li] s
J Fos)= texm |Ld —» (5)

P

(2) becomes F,{

B
Deduction : Let F{x) < —=
x

By definition of Fourier sine transform of Flx), we hawve

FoiF(a) =] “F(x) sin sx dx

—ax —ix e

FAF(x)= | ' _— ¢ simsx oy = | M- sinsx — | “e ™ simsx dx
o B 0o x o
- - = Je =1 = e ™
g . le | _ 7. "
FAiF(x)} =0, == [ ie N
= faam ! |:'"—'| — tan"| % [byw (53]
# "
N TEA] TR
= | ——— sinsvdy = tar o | — tan |T |
[} X 3 » )

Find the Fourier cosine transform of Fix)= £—

X

Given Fix)= £
X

By definition of Fourier cosine transform of F(xy), we have,

- .l--h
FAF(EY=is) = | Fix)oossrds = Fin-] "Tm.i.-;m‘.r sl

i

Differentiating (1) w.r.t. "s’,

d d e
—(f(5)) = —| —— cossvdy
ds (L& ds ‘L X B

[By Leibnitz's Rule of differentiating under the integral sign]

= if.-f,"[:f!‘l !’(—1 (-sin sx) x elx
s o X

. [
I e ™ sindx -
]

a +h?

= if Lis)) = f‘r i sx gy = ———
s o

x

On integrating both sides, we get, = E {Fi{x)) =f{s)1=— i.—"_.d_;

L e




= E{F(x)}=- !ngt:i: rn"'}

1
2

Find Fourier c ine and sine tran

{or) hence deduce the integrals (1)

the inw

ion formula

Given Fix)=¢=, a>0

To find Fourier cosine transform:
By the definition of Fourier cosine transform of F{x), we have,

FAF(x)Y =1 (5) —-IYF( x) cos sy dy
i

= e " cossxdyr

ox %
— (—acos sx + 5 sinsx)
a” +h"

x=d¥

[" " e sinbo dy ‘:'J_,i‘ {asinbx — !-cu.l.'!:.ﬂ]

a4+ b

= [:— {—asinw — gecosw) ——— (—a sinld —.n-uﬁ)]]
a’+ 5 -

&

= F (5) _—j
st+a

= T T T T T T

Deduction: (1) By inversion formula of Fourier cosine transform we have,

3 g
F'if ) Fix) T_,J —— cossuds [“F(x) = ]

05+

2a i“
- e
e, _{“ ?

By the inversion formula of Fourier sine transform we have,

y - -
~ =1 N 2 . ) . 2 5 )
FTUI(9)) = Fx)y= = | f{s)ysinsxds = Flx)== | ——sinsxds
T T “os?+al
5 = ;
= e== =) sinsx ds = I =  sinsx dy = Ze
T axi+al (LR Y o 2

Given Fiy)= 1 By the definition of Fourier cosine transform of F (x) we have,

l+x

. .. w |
EAF) =) =] Fix)eossvds= T cossvde =(1)
0 al+Xx

Differentiating (1) w.r.t. 5", we have




J ‘ df " xsinsx
M '—rIL—‘t‘uﬁ‘tsl! = =] —dr
ds ds o 1457 ds 0 14y

Multiplying and dividing by 'x’, we get,

df * rlsingy df e (t1=1)
—== T === sin sy d
= s ‘n x(1+x%) v e & 0 x(1+x3) e
df e (174) v ) T sinsx
B Zaa . ¢ P UL 7
ds o ox(lexd) s j« x(1+x%) s 2 )+ & -0
Differentiating (2) with respect to ‘s’ we get, % =g+ ) ZEE gy
ds* LS
d&*f
= —==f{f)} [by (1))
st
d d'f § g
Lojg =Ljz0 s@-nf=0 -0
dy’ dy’
d
Where D=—
ds

This is a 2/ order Linear differential equation with constant coefficients, its general solution is given by

f=ce' v =)
To find € & (2
put s =0in (4), we get

[fo(3)])e=0=C + C2 - (5)

. 1
Put s~ 0 in(l)weget [7£(] __~I T cosOdx = [ran

T

From (5) & (6). we have, C,+ C, ~ ——

Now differentiating (4) w.r.t “s’, we have

ar e —c et —(8) now put s ~ 0 in (8). we get
ds E

f ‘l \

af = C - L‘_, — (9) also put s = 0 in (2) we get

df T ( df T
las ): 55 %0 =& )2 a9
From (9) & (10). we get, C,— C, == — (11)
Solving (7) & (11). we get, €, -0 & C; ==

substituting C & C: In (4) F{F()) = £ (5)= —e" "

x]

o

My

Deduction: Consider / (s)- T'r -

5
Differentiating w.r.t 's’, we get = ‘”’—I()] = -77- '
das -




Differentiating w.r.t 's’, we get —

o[ =x | _-x
F, [T+~ 2 €
" N N
/ o | T+ 5
Exercise Problems :
e, a<x<bd
1. Find the Fourier transform of F(x) =
0, x<a,x<b
2. Find the Fourier transform of F(x)= {sinx, 0 <x<a and 0, otherwise

3. Find the Fourier sine transform of F(x) =

1 .
o ) and hence deduce the cosine
xXv-

transform of —————
x(x?+ a’)

4. Find the Fourier Cosine & Sine transforms of F(x) = 2¢ % + Se*

X, O<x=<1
2¢i, =
5. Prove that the Fourier sine transform of F(x) = {2 -x,1l<x<2 is M
52
0, x>2

6. Find the inverse Fourier sine transform of f.(s) = l;

FINITE FOURIER TRANSFORMS:-

If f(x) is a function defined in the interval (0,c) then, the Finite Fourier sine transform
of f(x) in 0<x<c is defined as

nm.

(¥4 - .
- dx , where n is an integer.

F.(n)= _J:f(l’:lf.‘iﬂ

The Inverse finite Fourier sine transform of F.(7) is f(x) and is given by

2r F.(n) sin %

f(x) =

| b

The Finite Fourier cosine transform of f(x) in O<x<c is defined as
F.(n) =[] f[x)cas% dx , where n is an integer

The Inverse finite Fourier cosine transform of F. (7] is f(x) and is given by

5

1 2 e
f(x) =< F.(0) + = 2rF.(n) cos

Problems:-

1. Find the Finite Fourier sine and cosine transforms of f(x)=1 in (0,c)

sol: By definition,




F(n) = [ F()sin™ dx

fc sin n:x dx

]

[(5) cos ()15

-
=— (cosnm — 1)

A CR G

0,if nisodd
F.(n) ={z

&6 . .
—,if niseven
nIT

Now, F.(n) = f: f[x]cr;rsn:x dx

c ntx
[ cas dx
Y £

() sin (2506

c

sinn]] =0

nT

xamples on Finite Fourier Sine and Cosine Transforms

- n
Find the finite cosine transform of F(x) = — - 5= where 0

X T Xt
Given F(x):T -x4 T3

By definition of finite cosine transform F {F(s)}=7, (5) ]" F(x)cos —"':“" [herel=x]
o ;
= FAF()i=]" f(x)cossxds
o

~ T -+ ".:7 . b i - X ‘.I. 1
=F, 5 -X X = fe(S) _Io 3 =X ﬂ COS SX dX on intergrating by parts we have

= X |sinsx | = x
Fel5 -x+ 5= == | -1+ =| sinsxdx
2 2n|” s s 4 T

B x| sinsx [=n 07 sin0 1  «[x
= fo(s) = ”: -x+ 7o [3 -0+ ﬁ] = ]— .TI.)[;- |]vm x

1 2 - COSs S$X 1 (- cos sx) 5
= fo(5) =(0-0) - ;l[;-l][ = ] = = d\J
-1 X _y|cossx S S e
R ] 2o | Beseta il AL 5
J(8)= 3 n s s37t
=0
-1 " ‘OS STC 1 =2 * 0 cosO -1 )
= fi(s) = x_[- [;- l] ‘—;) o= = sin .\n] 4 [;- 1 A sinQ
-0

=0 f.(s ;l_ 0+0- .l__(, =3 f.(3) L fs=123..
fe(s) ) ¥ 5

¥




l-cossx
Find the inverse finite sine transform of F(x) if [ (s) — - where 0

S R

-

1-¢oss® jhp<x<x

Given / (s) -
X 2l A

By the inverse foureir sine transform, we have,

y o 2 <« - P
F(x) ?“Z /‘(A)\'l"[’—‘l;—‘] = -T_.\, [l—i;:—;‘n—]xnl.\’\'

s* °

;o —
F(x) %“Z‘ [_14‘:—\:\‘7:]\,"“‘

2 =3

Find the finite cosine transform of F(x) defined by F(x) [i - where 0

b 4 d
Given Fix)= [l - ;] where O0<x<x

! "
By finite Fourier sine transform of F(x), we have, F.{ F(x)} = f(S) I., F(x)sin i%!.l\v

- [.(x)".‘[l - ;!-].vm sxdv [~ 1= m] on integrating by parts, we get
- ! | X Jcos sx § (T oS SX 1 X 1 &
Gl b el I Sl o | g
0

nt|cos sm 0] cos 2 [ x
=3 f.(5)= [— [I-T]T + [LF]T]} — ]“ [l~;]uu,\\ dx




Again integrating by parts we have

| 1 X smsy -1 sinsx
— l._ -[= JRSY gy
u'” n ¥ n 5

X

= (5 5_+ _“ _]ﬁ_ wis'f]
1=}

=/.s)=

E] Jmsn I_ o 11[] -]ﬂ |.]_

ns il nse 11 B

1 2
= fils)= =+ —ﬂ] .

1 [ (-1¢ 0+ I 1 2 .
= fi(s)= =+ F[—‘ J- - N = fi(5) T‘,Ell-{-”-]

Exercise Problems:

1. Find the finite Fourier cosine transform of  F(x) .

. Find the finite Fourier sine & cosine transform of F{v) = x{n-x)in 0 <y <n

(o ]

. " i . X n
3. Find the finite Fourier cosine transform of F{x) TR Dgn

Short Type Question and Answers

Problem 1 Write the formula for finding Euler’s constants of a Fourier series in (0, 27 )

Solution:
Euler’s constants of a Fourier series in( 0, 2 ) 15 given by

y :%_.:f{x}‘tr

S (x)cosnxdx

o |-

f{x}amnxir

= L-—.:; o I—‘!;

ﬁl—l

Problem 2 Write the formula for Fourier constants for fix) in the interval [—:rr,:'r}.

Solution:




au:l:if(x}dx

jlr_

T

1
=— 205 Hvex
a, H_J;f{x]u}s.nx

1§ .
b =— sin mxd
: H__[f{x]amn_rx

Problem 3: Find the constant ao of the Fourier series for the function f(x) =k, [0, 2[]]
1 2]l __1 21 _1 )
Solution : ao—ﬁfo fx)dx = ‘ﬁfo k dx -ﬁ(kx)0 il
=2k.
Problem 4 Iffix)=¢" in -r<x<m, finda,.
Solution:

|
a :—Ie’cnsnxdx
T

"

4

.
x
= {E (LD&FH+H\1I‘HH]}
-x

1+n’
1] & w € n
=— el —(-1
;r{lhn'( ) I+n'( ) }
-1
S ) MR
a(l+n*)! 4
Problem 5 Write the formula’s for Fourier constants for f{x) in (¢, c+2/).
Solution:
].C‘?
el
I c+2
- dx
=7 ! flx)cos nx
1:1 rl
b, =7 .[ S (x)sin nxdx

Problem 6 Write the formulas for Fourier constants for fix) in (-1, /).
Solution:

a, =%If{x]dx
=l{j- _f{_r]{:u:; nx dx

b, =%j-rf{x]sin nx dx

Problem 7 : What is the sum of Fourier series at a point X = Xo , where the function f(x) has a finite discontinuity ?
Solution : Sum of Fourier series at a point X = Xois

f(%)+ /(%)
2




2
Problem 8 1f x* = 7 _4[ SOSX _COS2X_COS3X 4ow| —()
3 1 2 3
| 11
In =r < Xx <. find ]—I+2—:+3—2+ _____________ to w.

Solution:

T ) ..
Put x= 3 a point of continuity

x 1 1
2
H——H—:—4{l,+%+ m}»
4 3 - 2
- 1o
12 =4 12 2° o

1+2_x -Tt<Xx<0
f(x)= T
(x) 2y
1=-— 0O<x<x
T
Solution:
2(-
Far—;fr-::r-r:D,f{—x]=]+ﬂzl—2—x=f[x},where{]-:x-c:rr
T T

= f(x) is an even function.
Problem 10 When an even function f{x) 1s expanded in a Fourier series in the interval
-1 <x< x,showthatb,=0.
Solution:

b, :ijf[x]sin nxdx

Given f {x} 15 even and

sinmx 15 odd function
Even x Odd = Odd .Therefore f( x )sin nx is odd function.
bn=0.

Problem 11 Find the Fourier constant b, for x sinx in =7 <x< x_ when expressed as a

Fourier series.
Solution:

f{.x} = XxsInx

f{—x} =—x sin{—x}
=xsinx= f(x)

Here f [x] 15 an even function

~b =0

Problem 12 If f{x) is a function defined in -2 < x < 2, what 15 the value of b, 7
Solution:




2

b, =%if(x}sin7dx

Problem 13 Explain half range cosine series in (0,7).
Solution:
Half range cosine series in (0,7) is given by

_f{_r} :%+ia"cusmr
zk
a, =;if(x}dx

2 x
= — ® 5 d
a, - .I[_f(x}(,uamr x

Problem 14 Find the sine series of fix) =k in {D,J’r).

Solution:

_f{_r} = ibﬂ sinmx

bﬂ:zjks{nnnix
JT“

1=(=1)"
bﬂﬁ{ ( )}
T H
2k [1—-(-1)"

Therefore f(x) = 2;‘{;17 ] sin nx .

Problem 15 : Write Parseval’s formula in the interval (c , ¢ + 2n)
Solution :

1 “F" 2 a 1y .2 ..
3 _{ (/(x) dx=T”+Ei(a;+b;}

FOURIER TRANSFORMS:

Problem 1 If the Fourier transform of f(x) is F(s) then, what is Fourier transform of

S ax)?
Solution:
Fourier transform of f(x)is

F(s)=F(f(x))= ﬁ jf{_x)emdx
F(f(ux}}= ﬁ jf{ﬁ'-’f)e’“dx

Put f = ax
di = adx

F(/ (@)= = [ 7

f(t)e™"dt

_|||"—\.¥

1
IWJZ?T

&=




- F(7(a)=2F (%)

[ a

X

Problem 2 Find the Fourier sine transform of e~
Solution:

F;(f(ﬂ):E lf[x]sinsx dx
F, (e"‘”‘) = J; -‘[e""‘ sinsx dx

2 7 ssin sx
f(x]=—J‘ T ds
T8 +a
o
T 551N sx
—f(1)=_[ < Itfs
2 35 ta
T T ssinsx
—e_‘“=j T ds
oS +a
Put a=1 x=u
T _s SSINSY
—e :I S ds
2 y 5 +1
Replace “s" by *x~
* 5sin sy T
I dx=—e™.
l+x 2

o
— T

Problem 3  Find the Fourier sine transform of f(x)=e¢™, a>0. Hence deduce that

o -
xXsinex T _
s—dx=—e a
) l+x 2
Solution:

F(f(x))= 2] 1 (x)sin seas

L]

—ax § E T —dr -
F;(e )—,’H -1[3 sin sx dx
_\Iﬂ' st +a

By inverse Sine transform, we get

f(x) ZEEF;{S}SI-HH ds

=\{E_[JE( .,S z]sinsxds
Ty¥m\s +a




Problem 4 Prove that F,.| f(x)cosax |= é'_Ff (s+a)+F.(s—a)|
Solution:

ﬁ{s)=ﬁ[f(x}]=€ [ £ (x)cos.x dx
F([f[x}casax]:‘j% lf(x}cmaxmﬂsxix

]2 r caa[a +3}1+C05[ﬂ—3}1
_\l; !f {I){ 2 ]‘ﬁ
:%{\/% fgof(x)cos(s+a)xdx}+%{\/% f;of(x)cos(s—a)xdx}

=%[F((3+ﬂ}+F([.§‘—ﬂ}]

Problem 5 : Find the Fourier cosine transform of f(x) = {OCOS x x0><ax <a

Solution :

[I;" (x)cossxdx = fjcn@xmsaxdx

:JEJT “'*(Hl}:f;cns{s D],
1 u[ﬂln[.?+1}_r+31n{g_1}x_“

2 s+1 s—1 1,
in(s+1)a sin(s—1)a
= L sin(s+ )ﬂ+mn(3 )a .provided §=1, §=-1.
I 5+1 | |
Problem 6 Find F,.(xe™) and F; (xe
Solution:

F(xe)=<-F[£ (%))
F(xe )= £ [e]

=il\/§_[e'” sinsx:ix}
ds| Vo !




2]
e L [re ][ (7 () =L 7 (1)

= i|:J§J e cos sxfix:|
ds Ty
B i\[g a 3 E 2as
- ods|\Nrst+d | Nr (32+a1)2 -

Problem 7 1If F(s) is the Fourier transform of f(x) . then prove that the Fourier transform of

e f(x) is F(s+a).
Solution:

F(s)=F(f(x))= % [ £(x)ear

( "“f{x J_J e f(x)e*dx
s Er'[u-::l: X dx
L
= F(.’i‘ +a).
Problem 8 : Define Convolution Theorem.

Solution :
If F(s) and G(s) are Fourier transform of f(x)and g(x)respectively, Then the Fourier

transform of the convolutions of f (x)and g (x) is the product of their Fourier transforms.

ie. F[f(x)*g(x)]=F[f(x)]F[g(x)]
Problem 9 : Derive the relation between Fourier transform and Laplace transform.
Solution:

Consider f{r){z_ﬂg[r]“ >0 -(1)

t<

¥

The Fourier transform of f(x)is given by
1 L
Flflt)|=— t)e™dt
[r0]=5 170

t)e*'dt

I 7 —xt
"




— ﬁ .[ E[:‘_x]ig[f]df
] Ie""g{r}dr where p=x—is

NPT

_ ﬁ;(gm{-. L[,f(f] = Te“’f(r)dfﬂ

1
. Fourier transform of f (:} = -J"Z_ » Laplace transform of g(t) where g(t) is defined by (1).
T

Problem 10 : Find the Fourier sine Transform of% .
Solution:

E(f(x) (J,f[x}sinsxaﬂx

)

Let sx=0
sdx=df, 8: 0> xm

(oo
Ll e

Problem 11 : Find the Fourier sine Transform of f(x) = {é 0< ; ; i
Solution: '
The Fourier sine transform of f(x) is given by F, ( f(x))= J7 )sin sx dx

:F{Jsin sx dx +_[ID sin sy dx }: JE[_CHSH}
Ty " T 5 b

3 2 -cc-s:f+1 3 211 coss
o X 5 Tl 5 5 .

UNIT V : Partial Differential Equations

Non- Linear Equations of First order

A partial differential equation of first order but of degree more than one is called a non-linear partial differential
equation.

Standard Form I:

Equations involving only p,q and not x,y,z.
i.ef(p,g) =0 -------- 1




an integral of (1) is given by

z=ax+by+C----------- (2)
where a and b are connected by the relation
f(a,b)=0----(3)
since from (2) p =§ = aand az =b
X

which when substituted in (3) yields (1)
i.e (2) satisfies the given equation
now solving (3) for b, let b =F(a). putting this value of b in (2), the complete integral is given by
z= ax+y F(a)+C ----------- (@)
The singular integral is obtained by eliminating a and ¢ between the complete integral (4) and the equations obtained by
differentiating (4) w.r.t ‘a’ and c.
Standard Form 1V:
Z=px+qy+f(a,b)
Clairaut’s Type:
Equations of this type have form
Z=px+qy+f(p,g)-------- 1)
We can easily verify that a solution 1 is
Z=ax+by+f(a,b)------------- 2
Where a, b are arbitrary constants, therefore it is the complete integral.
Partially differentiating (2) w.r.t a and b in turn and equating to zero the results derived, we have the equations.
0= x+of/oa-------- 3)
And 0= y+of/ob---------------- (@)
Eliminating a and b from the equations (2), (3) and (4) we get singular solution.

To obtain the general integral, we put b = ¢(a) in (2), where ¢ is an arbitrary function.

Then z= ax+y ¢(a)+f[a, ¢(a)] ------------ (5)
Partially differentiating (5) w.r.t a and equating it to zero we get
0= x+y ¢*(a)+f'(a) (6)

The elimination of a between the equations (5) and (6) is the general integral.
Standard Form II:
Equation does not involve x and y
i.e f(z,p,q) =0 ----------m-mmm-- QD
we take g=ap ------------- (2)
where a is an orbitary constant.

Solve (1) and (2) for p in terms of z say, we obtain

dz = pdx+qdy




= pdx+a pdy

=p(ax+ady)
dx+ady = dz/§(z) ----------=------- (4)
integrating (4),

X+ay = _[ ;i) +b (5)

which is the complete integral of (1) working rule of solve f(p,q,z)= 0;
1. Letusassume u = x+ay and using p= dz/du and g = adz/du in the given equation
f(z,p,q) = 0 and which transform into f(z,dz/du, adz/du) = 0.
2. Solve the resulting ordinary differential equation
f(z,dz/du, adz/du) =0
3. Substituting x+ay in place of u.
STANDARD FORM 111. VARIABLES SEPARABLE

Equation of the form f; (x,p) = f2 (y,q) i.e. equations not involving z and the terms containing x and p can be separated

from those containing y and g.

As a trail solution, we assume each side equal to an arbitrary constant a, solve for p and g from the resulting equation.
fi(x,p) = a and f(x,p)=a

Solving for p and g, we obtain
P =Fi(x,a) and g=F2 (y,a)

Since z is a function of x and y, we have

0z oz
dz=—dx+—dy= pdx=qd
o EY y=p qay

~.dz=F(x,a)dx+F,(y,a)dy+b
Integrating z = I F (x,a)dx + I F,(y,a)dy+b

Which is the required complete solution containing two arbitrary constants a and b.
Example : Solve p —q = x?+y?
Solution: Seperating p and x from q and y, the given equation can be written as p-x>=qg+y?=a, (say)
- p—x* =agives p = a+x? and q=y?=a gives q=a-y?
Putting the values of p and q and dz = pdx + qdy, we get
dz= (a=x?) dx+ (a-y?) dy

x° y? 1
Integrating z = ax+ ?+ay—?+b = §(X2 —yH+a(x+y)+b
Which is the desired solution.
Example : Solve p?+g? = x?+y?
Solution:Given equation can be written as

p*-Xx*=y* ¢*=a, say




LpP-xX=a=p=+x*+a
and y°-q°=a=p=,/y’-a

Substituting these values of p and g in dz= pdx + qdy, we get

dz =+/x? +adx+,/y? —ady

Integrating,we get
I dz :.[ VX2 +(\/5)2dx+j VY’ —(\/a)zdy

X [ 2 a.. 1 X Y [ a a X
=z=—+X"4+a+—=sinhh " —=+=,y " —a——cosh™—=+c¢
2 2" a2V 2 Ja

1 2 2 a - - X 1 X
= — — — h R h R
2(X\/X +a+y\/y a)+2(sm \/a COos \/E]-'_C

Which is the required solution

ONE DIMENSIONAL WAVE EQUATION

Let OA be a stretched string of length | with fixed ends O and A. Let us take x-axis along OA and y-axis along
OB perpendicular to OA, with O as origin. Let us assume that the tension T in the string is constant and large when
compares with the string so that the effects of gravity are negligeable. Let us pluck the string in the BOA plane and allow

it to vibrate. Let p be any point of the string at time t. Let there be no external forces acting on the string. Let each point

of the string make small vibrations at right angles to OA in the plane of BOA. Draw pp" perpendicular to OA. Let

op' = xand pp' =Y. Then y is a function of x and t. Under the assumptions, using Newton’s Second Law of motion, it

can be proved that y(x,t) is governed by the equation,

.0 o°
e, =2 )
ot OX
where ¢* =T /m
With T =tension in the string at any point and m is mass per unit length of the string.

Since the points O and A are not disturbed from their original positions for any time t we get

These are referred to as the end conditions or boundary conditions. Further it is possible that, we describe the initial

position of the string as well as the initial velocity at any point of the string at time t =0 through the conditions




y(x,0)=f(x),0<x<l—————— (4)
%(X,O)=g(x),0£xsl _____ (5)

Where f(X) and g(x) are functions such that f (O)=f (I)=0;and g(O)=g(l)=0. Thus to study the subsequent

motion of any point of the string we have to solve following :
Oy_12Yy

Determine y(X,t) such that P (1)
Subject to the condition
O,t)=0 forall t————(2
y( ) ( ) end condtions
y(I,t)=0 for all t——-—(3)
y(x,0) =f(x),0<x<1-—-—(4)

initial condtions

(%Lt_o =g(x),0<x<1-———(5)

The equation (1) is called one dimensional wave equation
Solution of equation (1) to (5)

. .0y 1 d%
Consider the equation —-=—>— —— ——— 1
| ox*>  c® ot? ®
Let us use the method of separation of variables. Here y = y(X,t). Let us take y = X (X)T (t)

As solution of (1). Then

AN _ .62y: 11 .

Lo X (0T (1) L =X ()T (1)

o _ 1. Y 1

2= X (OTH ()2 = X ()T (1)
Using these in (1) we get

11 l 11

XEOT(t)=Z X ()TH(Y)

CXE() 1T
CX(x) ¢ T(t)
Since the left hand side is function of x and right hand side is a function of t the equality is possible if and only if each

side is equal to the same constant (say) A .

Hence we shall take

xll(x) 1 Tll (t)
— == =1
X(x) ¢ T(t)
Let ustake A to be real. Then three cases are possible 1 >0,A=00r A<0

Case 1:- let A>0,then A= pz(p>0)

xll(x)_ l Tll(t)_ ,
Then X(x) Tt "




Hence X" (x)=p>X(x)(ie.) X" (x)-p*X(x)=0
d?X
" dx®
Also TH(t)—p°c®T (t)=0
=T (t)=Ce™ +De™
Hence in this case, a typical solution is like
y(xt)=(Ae™ +Be™)(Ce™ +De ™ )——-——- (S.1)
Where A,B,,C,, D, are arbitary constants

ie

—-p?X =0= X (x)=Ae™ +Be™

Case 2:- let A —0 then
Xll(x) ~ Tll(t)

X(x) CT(t)

SXH(X)=0= X (x)=A, +Byx
TH(t)=0=>T(t)=C,+Dyt
Sy (%) =(A+B,x)(C, + Dt )+ —————~ (S.2)

Where A,,B,,C,, D, are arbitary constants
Case 3:- Let A<0.Then we canwrite A =—p* where p >0 then

Xll(x) _ Tll(t) o
X(x) cT(t)

S XE(X)+ p*X (x)=0

= X (x)=(A,cos px+ B,sin px)
TH(t)+ p*c’T (t)=0

= X (t)=(C, cos pct + D, sin pct)
Hence a typical solution in this case is
y(x,t) =( A, cos px+B,sin px)(C, cos pct + D, sin pct)
Thus the possible solution forms of equation (1) are
y(x,t)= (AlepX - Ble’px)(ClepCt + Dle’p“)————(s.l)

y(xt)=(A, +Bx)(C,+Dyt)=—————— (52)
y(x,t)=(A, cos px+B,sin px)(C, cos pct + D, sin pct)———(S.3)

Consider (S.1) (l.e.,)
y(xt)=(Ae” +Be ™)(Ce™ +De ™)

Using conditions (2) (viz)y(0,t)=0 for all t




(A+B)(Ce™ +De ™ )=0 for all t
- A+B=0
Using condition (3), y(I,t)=0 for all t
~.(Ae” +Be ™ )(Ce™ +De™ ) =0 for all t
- AeP +Be ™ =0
Solving A+B=0
And Ae” +Be ™™ =0
Weget A=B=0
Thus y(x,t)=0
This implies that there is no displacement for any x and for any t. this is impossible. Thus (S.l) is not an appropriate

solution

Consider (S.2):
y(x,t)=(A+Bx)(C+Dt)

Using (2), y(0,t)=0 for all t

Hence A(C+Dt)=0=>A=0

Using (3), y(I,t)=0 for all t
~.(A+BI)(C+Dt)=0 for all t
~.BI(C+Dt)=0Vt since A=0

Here 1% 0;C + Dt # 0Vt Hence B=0

Thus here again y(x,t)=0vx and t
Thus as before, this solution also is not valid

Hence (8.2) is also not appropriate for the present problem
Consider (S.3)
y(x,t)=(Acos px+Bsin px)(C cos pct + Dsin pct) ( using condition 2)

y(x,t)=0vt
= A(Ccos pct+ Dsin pct) =0
= A=0

Using condition 3

y(l,t)=0vt




Bsin pl (C cos pct + Dsin pct) =0

if B=0,y(xt)=0 and this is invalid
Hence sin pl =0

s pl=nz wheren=1,2,3.............

nrz

Thus p:T(n:1,2,3, ....... )
Thus a typical solution of (1) satisfying conditions (2) & (3) is
y(x,t)=sin @{Cn cos 7, D, sinnﬂl—d}

for n=1,2,3......

Since different solutions correspond to different positive integer n.

An Important observation here :

If [yn (x,t)]o::1 are functions satisfying (1) as well as conditions (2) and (3). As the equation (1) is linear. The most

0

general solution of (1) here is y(x,t)=>"y, (xt)

n=1

Thus the most general solution of (1) satisfying (2) & (3) is

y(x,t)=i[cn cosnﬂl—Ct+ Dnsinnﬁl—d}singg(e)

n=1

Where C_ and D, are constants to be determined using (3) and (4)
Let us use condition 4: y(x,0)= f (x),0<x<I
Thus putting t =0 in (6)

icnsin@: f(x),0<x<t
n=1

|
Hence C, =2/1[ f (x)sin@dx n=1,2, ...
0

Thus C, 's are all determined
Let us consider condition (5):




(%Lto =g(x)v0<x<t

-5t e
n=1

ot

att=0

Z( n;rcj. @zg(x),OSXsl

Thus D, are all determined

Hence the displacement y(x,t) at any point x and at any subsequent time t is given by
y(x,t):Z[ ) nTCt . sin nTCthin—nTX —(6)

I!f (x) S|n—dx—>(7)
2

Where C, =

_lN

|
D:n—ﬂc_c[g sdex (8)

TWO DIMENSIONAL WAVE EQUATION:-

Two dimensional wave equation is given by

o°u o’u U
B

Where C* =T /P, for the unknown displacement u(X,y,t) of a point (X,Y) of the vibrating membrane from rest
(#=0) attime t:s

The boundary conditions (membrane fixed along the boundary in the xy- plane for all times t>0, are u=0 on the
boundary ----(2)

And the initial conditions are
U(%Y,0)=f(%¥):4, (% Y,0) =0 (xy)-———(3)

where u, = —

Now we have to find a solution of the partial differential equation (1) satisfying the conditions (2) and (3) . we shall do

this in 3 steps, as follows:

Working rule to solve two — dimensional wave equation :-




Stepl: By the “method of separating variables” setting U (X, y,t) =F (X, y) ,G (t) and later F (X, y) =H (x)Q(y) we

obtain from (1) an ordinary differential equation for G and one partial differential equation for F, two ordinary

differential equations for H & Q.

Step 2: We determine solutions of these equations that satisfy the boundary conditions (2). Step(2) to obtain a solution of

(1) satisfying both (2) and (3). That is the solution of the regular membrane as follows.

The double Fourier series for f [u x Y, 0)] is given by
U(x Y1) = 2 Dt (X, 1:1)
m=1 n=1
u(x,y,t) :ii[an COS Ayt + B, sin 2t ]sin Tsm%
m=1 n=1

Hence B, and B*, are called Fourier co-efficients of f (X, y) and are given by

4 %3 nzx . nzy
B =—/|1f(x, sm—sm dxdy,m=1,2....... n=12...
™ ab M () a b Y
4 4% mz zy
and B" = X, sm—sm—dxd ,m=12.... n=L12....
"™ abA,, Hg( y) a b y
. . . 9u _,0% : . o .
1. Find the solution of the wave equation Fe =C Pl corresponding to the triangular initial deflection
X
f(x):¥where 0<x<l1/2
ok and initial velocity is equal to 0.

:T(I—x) where 1 /2 < x <

Ans.  Tofind u(x,t) we have to solve

Where

Equation (1) can be in the form

u(xt)=T(t) X (x)

The three solutions of (1) are




u(xt)=(Ae™+Be™)(Ce™ +De ™)-—-—(S.1)
u(x,t)=(A,+B,x)(C,+D,t)-———(S.2)
u(x,t)=(A,cos px+B;sin px)(C, cos pct + D, sin pct) ————(S.3)
The appropriate solution is S.3
Hence u(x,t)=(Acos px+Bsin px)(C cos pct + Dsin pct)
Using (2) & (3)
A=0;P:n|—” where n=1,2,3......
.. The most general solution of (1) satisfying (2) & (3) is
(x,t)= Z(C cos—+ D s'nn”TCt)s n@a(G)
Using (4)

u(x,0)=f(x)
=Y C,sin @VX e[0,1]-(7)
Now we can expand the given function f (X) in a half range fourier sine series for 0 < x <|
Ee) |
:ansin@ where b, = Izjf sm—dx—>(8)
n=1 0

Comparing (7) & (8) we get ¢, =b,

:—I sm@dx
1?2k nzx t 2k _ nzx
=— I—x5| n——dx+ I—(I—x)sm—dx
o | | 7o | |
1/2 |
Nz X nzx N x Nz X
—cos A sin —cos 2 —sin| —=
:ﬁ X c0s | 1 ! ( j n (| X) cos I _(_1) | ( | j
2 nz n’z? nz n’z’?

1/2

nz 2 n’z® 2

2
=— Ilzi—cos—+ I sinn—”}

The required solution of (1) is of the form
u(x,t) =(c, cos px+c, sin px)-+(c, cos pat +c, sin pat) — (6)
Using (2) & (3), we have

c,=0 and pznT” where n=1,2,3.....




. General solution of (1) satisfying (2) & (3) is
u(x,t)=c,sin @(CS cosnﬂl—at+c4 sin n;rl_atj —(7)
Now using condition (4) U (X, O) =0 we get
u(x,0)=0=c,sin nl (c;+0)
:czc\?sin@:O:c3 =0-(c,#0)—>(8)
from (7) &(8)

u(xt)=c smnl—(0+c smﬂl—atj

Nz X nrzat
=C, sm—sml— wherec, =c,C,

The most general solution of Q) is

u(xt)= 1c sm#sinnﬁTat————(g)

o(u(xt)) & sinmxcosn”at(n”aJ
! | | |

R S S/ c
=1

ot N
0 s nza . nxzX
—I(x,0 C —sin——-
ot (X )nzzl: "o sm |

From (5) & above result

TX ~_ Nma . nxX
sin® == =>"¢, ——sin——
I~ | |
3. 2x 1. 3zx & nza . naX
—sin——=si —=ch—s —_—
I 4 I ~ I
ra . X 2ra . 27X I nz 1> . nz
=| ¢ —sin—+C,——sin——+————— —|1/2—| —cos— |- ——sin—
I I | I nzx 2 n°z 2
4k . 1> . nx
=—2——sin—
I n°z 2
8 . nx
_nZﬂZSm_

If Nn=2m (anevennumber) c,, =0
If n=2m-+1(an odd number),c,, = Lz -1)"
(2m+1)" *

Thusall c,'s are determined

Using
a =g(x) for 0<x<I
ot
D _ 2 Ig(x)sin%dx
" nzco I

=0 Sinceg (x) =0




Ans.

Ans.

8I§ S (-1) i (m+1)7ct i (2m+1) zx
T m= O(Zm +1) I
Solve the boundary value problem

U, =a’u,,;0<x<I;t>0 with u(O,t)=O,u(|,t)=0&u(x,0):0,ut(x,0)=sin3(ﬂl—x)

Hence, u(x,t)=

tt

u(x,t) is the solution of the wave equation

o°u o°u
oot
Given conditions are

u(0,t)=0vt —(2) and yt(x,O):sin37z|—XVXE[O,I]—>(5)

u(l,t)=0vt—(3)
u(x,0)vo<x<Il—(4)
Comparing the coefficients of like terms,

za 3 3ra) -1
c,—=—,Cc,=0,C =—,C,,c.———C, =0
1 | 4 3( | j 4 415
3l -1
=c¢,=—,,=0c,=—,¢,=0
' 4za’? ° 1/2za’
Hence, satisfying the values in (9)
3l X . srat 1 . 3zx _. 3rat
u(x,t)=——sin=—=sin— -
4ra | |  12za | |
If a string of length | is initially at rest in equillibrium position and each of its points is given the velocity

V, sin® ”TX , find the displacement y(X,t)

with the explained notation, the displacement y(X,t) is given by
o’y 1 8%
ww W
y(0,t) =0Vt —(2)
y(I,t)=0vt—>(3)
y(x,0)=0<x<1-(4)

Y _ysint X 5 (5)
at att=0 I
The most general solution of (1) satlsfylng (2) & (3) is
y(x,t)= Z( I nﬂl—djs'n@%(G)
n=1

Using (4) we get > C, sin @ =0Vx €[0,1] which implies C, =0 for all n

Now, using (5), we get

nzc . nzx 4 7TX
> D, —sin=— =V, sin® ==




Hence D, _ 8 D, = —1V
47Z'CV0 127z¢C

Hence y(x,t)z_glvo in 70t in % IV, . 3zct . 7X

4rc L L 12zc | |

SHORT TYPE QUESTION AND ANSWERS

Problem 1 : Write the standard forms of non — linear PDE.
Solution:
3 Standard Form 1

Equations of the form F(p,q) = 0, not invalving x, y and z are said to be in the

standard form 1
3 Standard form 2

i.e, F(p.q.z) =0

1 Standard form 3:

Equations of the form z=px+qy+fip.q)

d Standard Form 4 :
Equations of the form f,(x,p) = z:(yv,q)

2. Problem 2 : Write the three possible solutions for a one — dimensional heat equation.

Solution:
Let the heat equation is

.

-

gz (_3 O u
ot o
By the method of separation of variables , let u(x , t) =X(x)T(t) ,then we get two ordinary

differential equations
X i x=05(4) and%—ch:T:O

— (1)

=

dv? B
Solving the above equations we get three possible solutions based on the value of k
1) When "k’ is positive and k = p? (say)

~ TPt

X= e +Cre ™ T =Cqe
2YWhen "k’ is negative and k = -p? (say)

XN =Cycos px+Cysinpx.T =Cg e < P!

3) When k" is zero
X=C7x+C3.T=Cq
Problem 3 : Write the three possible solutions for a two— dimensional heat equation.
Solution: The two— dimensional heat equation is given by

2 2 ..
du _ 2 [a_“ + a_“] where ¢2 = Xk _ where thermal conductivityp (cal / cm sec)
at axz = ay? ps

a(cm),density p (%) ,specific heat s (';i: deg)




By the method of separation of variables , let u(x , t) =X(x)T(t) ,then we get two ordinary
differential equations

dix d?y o

Solving the above equations we get three possible solutions based on the value of k
I. When k is positive and k = p?, say, then,

X =ceP*+ce P*, Y = c3cospy + ¢, sinpy

II. When k is negative and k = —p?, say, then,

X =cycospx + cysinpx Y = cgePY + cue™PY

ITII.When k = 0, we have,

X=gx+e , Y=ayt+a

Thus the various possible solutions of Laplace’s equation (1) are:
u = (c,eP* + c;e P*)(c3 cospy + ¢4 sinpy)

u = (¢ cospx + ¢, sin px) (czePY + c4e ™ PY)

u=(c1x+ ¢ )(c3y + ¢c4)

Of these three solutions, we have to choose that solution which is
consistent with the physical nature of the problem and the given
boundary conditions.

Problem 4 : Write the three possible solutions for a two— dimensional wave equation.

Solution: The equation for the vibrations of a tightly stretched membrane with T, tension per unit length, m ,
Mass of the membrane for unit area is given by

d*u _ ,(9*u  0°u
a2 (ﬁ Tay?
By the method of separation of variables , let u(x , t ) =X(x)Y(y)T(t) ,then we get three ordinary

differential equations

1*X > o5 >
X k2x=0, ¥y 2y=0 and
dx* dy=

) where 2 =—

T

A 12)c2T = 0
~+ (k2 + B)e*T =
dt? ( \

The solution of these equations are respectively,
X = ¢y coskx + ¢, sinkx

Y = c3cosly + ¢4 sinly

T = c=-cos \>1\'7 b 12 ct 4 ¢ sin \‘rl\“’ b 12 ct

Problem 5: Explain the method separation of variables.




du 9%u
— =k
dt dx?

3 Let the given partial differential equation be

—»(1)

3 Take the solution of given partial differential equation as U(x,t) = X(x)T(t)

— (2) where x and t are two independent variables.

0 Differentiate (2) partially with respect to "x" and 't
e, = X'T = (3) and 3 = XT' = (4)

3 Substitute (3) and (4) in (1) we get

Xx)T'= k. X"T - (5)

Xrrix)
X{x)

-t
)

»(6)

2 Separate the variables x and t from (5) i.e.,

3 Equate L.H.S and R.H.5 of (&) to some constant and then integrate them

separately.

d Substitute the resultant from the above step in equation (2) to get complete

solution of the given partial differential equation

Problem 6 : What are the conditions assumed in deriving one dimensional wave
equation?

Solution:
I. The motion takes place entirely in one plane.
ii. We consider only transverse vibrations, the horizontal displacement of
the particles of the string is negligible.
ii. The tension T is constant at all times and at all points of the deflected

string.
V. Gravitational force is negligible.
V. The effect of friction is negligible.

Vi. The string is perfectly flexible.

The slope of the deflection curve at all points and at all instants is so small that sina can be replaced by «, wh
the inclination of the tangents to the deflection curve
Problem 7 : State the suitable solution of the one dimensional heat equation.

Solution:
Let the heat equation is
o > 87w
= C‘- = — (1)
ot ("‘.x-

and the suitable solution is u(x,t)=( Acos px+ Bsin px)e™ "'

Problem 8: A string is stretched and fastened to two points | distance apart. Motion _is
started by displacing the string into the form y =y,sin(rrx/l) from which it is released at

ere




time t = 0 . Formulate this problem as a boundary value problem.
Solution : The one dimensional wave equationis

Py _ 2 0
otz dx?
The boundary conditions are i.
y(0,1)=0
ii. y(L,t)=0
dy _
iii. E(X,O) =0

iv.  Y(X0)=Y,sin(mx/1)
Problem 9: A rod of length 20 cm whose one end is kept at 30°C and the other end is
kept at 70°C is maintained so until steady state prevails. Find the steady state temperature.

Solution : In the steady state temperature the temperature will be a function of x alone
o’u
" =0 —
ox*
u(x)=ax+b

when x=0, u(0) =30
when x=20, u(20)=70
u(x)=ax+b
u(0)=a0+b

30=Db

u(20)=a20+30
70 =20a + 30
20a =40
a=2
~u(x)=2a+30
Problem 10: State two dimensional Laplace equation.
Solution : The two dimensional Laplace equation is given by
ou du
+ =0 ___
x> oy
Problem 11:What are the assumptions made before deriving the one dimensional heat
equation?
Solution :Heat flows from a higher to lower temperature.
M The amount of heat required to produce a given temperature change in a body is
proportional to the mass of the body and to the temperature change.

(i) The rate at which heat flows through an area is proportional to the area and to
the temperature gradient normal to the area.




