UNIT I

 Basic Computer Organization and Design
	
	Instruction Code
	

	
	An instruction code is a group of bits that instruct the computer to perform a specific operation.
	

	
	Operation Code
	

	
	The operation code of an instruction is a group of bits that define such operations as add,
	

	
	subtract, multiply, shift, and complement. The number of bits required for the operation code of
	

	
	an instruction depends on the total number of operations available in the computer. The
	

	
	operation code must consist of at least n bits for a given 2n (or less) distinct operations.
	

	
	Accumulator (AC)
	

	
	Computers that have a single-processor register usually assign to it the name accumulator (AC)
	

	
	accumulator and label it AC. The operation is performed with the memory operand and the
	

	
	content of AC.
	

	
	Stored Program Organization
	

	
	  The simplest way to organize a computer is to have one processor register and an
	

	
	instruction code format with two parts.
	

	
	  The first part specifies the operation to be performed and the second specifies an
	

	
	
	

	
	address.
	

	
	  The memory address tells the control where to find an operand in memory.
	

	
	  This operand is read from memory and used as the data to be operated on together with
	

	
	
	

	
	the data stored in the processor register.
	

	
	  The following figure 2.1 shows this type of organization.
	


[image: image126.jpg]Figure 9-7 Four-segment CPU pipeline.




	
	Figure 2.1: Stored Program Organization
	

	
	  Instructions are stored in one section of memory and data in another.
	

	
	  For a memory unit with 4096 words, we need 12 bits to specify an address since 212 =
	

	
	
	

	
	4096.
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Figure 9-6 Pipeline for floating-point addition and subtraction.




· If we store each instruction code in one 16-bit memory word, we have available four bits for operation code (abbreviated opcode) to specify one out of 16 possible operations,
	
	and 12 bits to specify the address of an operand.
	

	
	  The control reads a 16-bit instruction from the program portion of memory.
	

	
	  It uses the 12-bit address part of the instruction to read a 16-bit operand from the data
	

	
	
	

	
	portion of memory.
	

	
	  It then executes the operation specified by the operation code.
	

	
	  Computers that have a single-processor register usually assign to it the name
	

	
	
	

	
	accumulator and label it AC.
	

	
	  If an operation in an instruction code does not need an operand from memory, the rest
	

	
	
	

	
	of the bits in the instruction can be used for other purposes.
	

	
	  For example, operations such as clear AC, complement AC, and increment AC operate on
	

	
	
	

	
	data stored in the AC register. They do not need an operand from memory. For these
	

	
	types of operations, the second part of the instruction code (bits 0 through 11) is not
	

	
	needed for specifying a memory address and can be used to specify other operations for
	

	
	the computer.
	

	
	
	

	
	Direct and Indirect addressing of basic computer.
	


	
	  The second part of an instruction format specifies the address of an operand, the
	

	
	instruction is said to have a direct address.
	

	
	  In Indirect address, the bits in the second part of the instruction designate an address of
	

	
	
	

	
	a memory word in which the address of the operand is found.
	

	
	  One bit of the instruction code can be used to distinguish between a direct and an
	

	
	
	

	
	indirect address.
	

	
	  It consists of a 3-bit operation code, a 12-bit address, and an indirect address mode bit
	

	
	
	

	
	designated by I.
	


· The mode bit is 0 for a direct address and 1 for an indirect address.
· A direct address instruction is shown in Figure 2.2. It is placed in address 22 in memory.
·   The I bit is 0, so the instruction is recognized as a direct address instruction.
· The opcode specifies an ADD instruction, and the address part is the binary equivalent of
	
	457.
	

	
	  The control finds the operand in memory at address 457 and adds it to the content of
	

	
	
	

	
	AC.
	

	
	  The instruction in address 35 shown in Figure 2.3 has a mode bit I = 1, recognized as an
	

	
	
	

	
	indirect address instruction.
	

	
	  The address part is the binary equivalent of 300.
	

	
	  The control goes to address 300 to find the address of the operand. The address of the
	

	
	
	

	
	operand in this case is 1350. The operand found in address 1350 is then added to the
	

	
	content of AC.
	


[image: image128.jpg]Figure 9-4 Space-time diagram for pipeline.
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

The indirect address instruction needs two references to memory to fetch an operand.
1. The first reference is needed to read the address of the operand
2. Second reference is for the operand itself.
· The memory word that holds the address of the operand in an indirect address instruction is used as a pointer to an array of data.
	15
	14
	12
	11
	
	
	
	0
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	I
	
	
	Opcode
	
	
	Address
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	Memory
	
	
	
	
	
	Memory

	
	
	
	
	
	
	
	
	
	
	
	
	

	22
	0
	ADD
	
	457
	
	
	35
	1
	
	ADD
	
	300

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	300
	
	
	
	1350
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	457
	
	
	
	Operand
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	1350
	
	
	
	Operand

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


[image: image129.jpg]Figure 9-2 Example of pipeline processing.

TABLE 9-1 Content of Registers in Pipeline Example

Clock Segment 1 Segment 2 Segment 3
Pulse _—  — —
Number R1 R2 R3 R4 R5
2 Az B, A, *B, C, =
3 A, B Ax*B; C, AxB + G
4 A, B Asz*Bs Cs AxB, + C;
5 As Bs As* By Cy AzxB; + C;
6 As Bﬁ As * BS CS A4 * B4 + C4
7 A, B, Ag*Bs Ce As*Bs + Cs
8 — —— A7* By C; As* Bg + Ce
9 — — — — AxB, + &




	+
	+

	AC
	AC

	Figure 2.2: Direct Address
	Figure 2.3: Indirect Address

	
	

	Direct Address
	Indirect Address

	When the second part of an
	When the second part of an instruction

	instruction code specifies the address
	code specifies the address of a memory

	of an operand, the instruction is said
	word in which the address of the operand,

	to have a direct address.
	the instruction is said to have a direct

	
	address.

	For instance the instruction MOV R0
	For instance the instruction MOV @R0 00H,

	00H. R0, when converted to machine
	when converted to machine language, @R0

	language is the physical address of
	becomes whatever is stored in R0, and that

	register R0. The instruction moves 0
	is the address used to move 0 to. It can be

	to R0.
	whatever is stored in R0.


[image: image130.jpg]Figure 9-1 Processor with multiple functional units.
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	Registers of basic computer
	

	
	  It is necessary to provide a register in the control unit for storing the instruction code
	

	
	after it is read from memory.
	

	
	  The computer needs processor registers for manipulating data and a register for holding
	

	
	
	

	
	a memory address.
	

	
	  These requirements dictate the register configuration shown in Figure 2.4.
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Figure 2.4: Basic Computer Register and Memory




The data register (DR) holds the operand read from memory.
· The accumulator (AC) register is a general purpose processing register.
· The instruction read from memory is placed in the instruction register (IR).
· The temporary register (TR) is used for holding temporary data during the processing.
·   The memory address register (AR) has 12 bits.
· The program counter (PC) also has 12 bits and it holds the address of the next instruction
	
	to be read from memory after the current instruction is executed.
	

	
	  Instruction words are read and executed in sequence unless a branch instruction is
	

	
	
	

	
	encountered. A branch instruction calls for a transfer to a nonconsecutive instruction in
	

	
	the program.
	

	
	  Two registers are used for input and output. The input register (INPR) receives an 8-bit
	

	
	
	

	
	character from an input device. The output register (OUTR) holds an 8-bit character for
	

	
	an output device.
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	Register
	Bits
	Register Name
	Function

	Symbol
	
	
	

	DR
	16
	Data register
	Holds memory operand

	AR
	12
	Address register
	Holds address for memory

	AC
	16
	Accumulator
	Processor register

	IR
	16
	Instruction register
	Holds instruction code

	PC
	12
	Program counter
	Holds address of instruction

	TR
	16
	Temporary register
	Holds temporary data

	INPR
	8
	Input register
	Holds input character

	OUTR
	8
	Output register
	Holds output character

	
	
	Table 2.1: List of Registers for Basic Computer


Common Bus System for basic computer register.
	What is the requirement of common bus System?

	  The basic computer has eight registers, a memory unit and a control unit.
	

	
	  Paths must be provided to transfer information from one register to another and
	

	
	
	

	
	between memory and register.
	

	
	  The number of wires will be excessive if connections are between the outputs of each
	

	
	
	

	
	register and the inputs of the other registers. An efficient scheme for transferring
	

	
	information in a system with many register is to use a common bus.
	

	
	  The connection of the registers and memory of the basic computer to a common bus
	

	
	
	

	
	system is shown in figure 2.5.
	

	
	  The outputs of seven registers and memory are connected to the common bus. The
	

	
	
	

	
	specific output that is selected for the bus lines at any given time is determined from the
	

	
	binary value of the selection variables S2, S1, and S0.
	

	
	  The number along each output shows the decimal equivalent of the required binary
	

	
	
	



selection.
· The particular register whose LD (load) input is enabled receives the data from the bus during the next clock pulse transition. The memory receives the contents of the bus
when its write input is activated. The memory places its 16-bit output onto the bus when the read input is activated and S2 S1 S0 = 1 1 1.
· Four registers, DR, AC, IR, and TR have 16 bits each.
·   Two registers, AR and PC, have 12 bits each since they hold a memory address.
· When the contents of AR or PC are applied to the 16-bit common bus, the four most
	
	significant bits are set to 0’s. When AR and PC receive information from the bus, only the
	

	
	12 least significant bits are transferred into the register.
	

	
	  The input register INPR and the output register OUTR have 8 bits each and communicate
	

	
	
	

	
	with the eight least significant bits in the bus. INPR is connected to provide information
	

	
	to the bus but OUTR can only receive information from the bus.
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	Figure 2.5: Basic computer registers connected to a common bus
	

	
	  Five registers have three control inputs: LD (load), INR (increment), and CLR (clear). Two
	

	
	registers have only a LD input.
	

	
	  AR must always be used to specify a memory address; therefore memory address is
	

	
	
	

	
	connected to AR.
	

	
	  The 16 inputs of AC come from an adder and logic circuit. This circuit has three sets of
	

	
	
	

	
	inputs.
	

	
	1.  Set of 16-bit inputs come from the outputs of AC.
	

	
	2.  Set of 16-bits come from the data register DR.
	

	
	3.  Set of 8-bit inputs come from the input register INPR.
	

	
	  The result of an addition is transferred to AC and the end carry-out of the addition is
	

	
	transferred to flip-flop E (extended AC bit).
	

	
	  The clock transition at the end of the cycle transfers the content of the bus into the
	

	
	
	

	
	designated destination register and the output of the adder and logic circuit into AC.
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Instruction Format with its types.
· The basic computer has three instruction code formats, as shown in figure 2.6.
[image: image136.jpg]



	
	Figure 2.6: Basic computer instruction format
	

	
	  Each format has 16 bits.
	

	
	  The operation code (opcode) part of the instruction contains three bits and the meaning
	

	
	
	

	
	of the remaining 13 bits depends on the operation code encountered.
	

	
	  A memory-reference instruction uses 12 bits to specify an address and one bit to specify
	

	
	
	

	
	the addressing mode I. I is equal to 0 for direct address and to 1 for indirect address.
	

	
	  The register reference instructions are recognized by the operation code 111 with a 0 in
	

	
	
	

	
	the leftmost bit (bit 15) of the instruction. A register-reference instruction specifies an
	

	
	operation on or a test of the AC register. An operand from memory is not needed;
	

	
	therefore, the other 12 bits are used to specify the operation or test to be executed.
	

	
	  An input-output instruction does not need a reference to memory and is recognized by
	

	
	
	

	
	the operation code 111 with a 1 in the leftmost bit of the instruction. The remaining 12
	

	
	bits are used to specify the type of input-output operation or test performed.
	

	
	Control Unit with timing diagram.
	

	
	
	


· The block diagram of the control unit is shown in figure 2.7.
·   Components of Control unit are
1. Two decoders
2. A sequence counter
3. Control logic gates
· An instruction read from memory is placed in the instruction register (IR). In control unit the IR is divided into three parts: I bit, the operation code (12-14)bit, and bits 0 through
	
	
	11.
	

	
	
	  The operation code in bits 12 through 14 are decoded with a 3 X 8 decoder.
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	Figure 2.7: Control unit of basic computer
	

	
	  Bit-15 of the instruction is transferred to a flip-flop designated by the symbol I.
	

	
	  The eight outputs of the decoder are designated by the symbols D0 through D7. Bits 0
	

	
	
	

	
	through 11 are applied to the control logic gates. The 4‐bit sequence counter can count
	

	
	in binary from 0 through 15.The outputs of counter are decoded into 16 timing signals T0
	

	
	through T15.
	

	
	  The sequence counter SC can be incremented or cleared synchronously. Most of the
	

	
	
	

	
	time, the counter is incremented to provide the sequence of timing signals out of 4 X 16
	

	
	decoder. Once in awhile, the counter is cleared to 0, causing the next timing signal to be
	

	
	T0.
	

	
	  As an example, consider the case where SC is incremented to provide timing signals T0,
	

	
	
	

	
	T1, T2, T3 and T4 in sequence. At time T4, SC is cleared to 0 if decoder output D3 is active.
	

	
	This is expressed symbolically by the statement
	

	
	D3T4: SC ← 0
	


Timing Diagram:
· 
· The sequence counter SC responds to the positive transition of the clock.
·   Initially, the CLR input of SC is active.
· The first positive transition of the clock clears SC to 0, which in turn activates the timing T0 out of the decoder. T0 is active during one clock cycle. The positive clock transitionThetimingdiagramfigure2.8showsthetimerelationshipofthecontrolsignals.
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labeled T0 in the diagram will trigger only those registers whose control inputs are connected to timing signal T0.
	
	  SC is incremented with every positive clock transition, unless its CLR input is active.
	

	
	  This procedures the sequence of timing signals T0, T1, T2, T3 and T4, and so on. If SC is not
	

	
	
	

	
	cleared, the timing signals will continue with T5, T6, up to T15 and back to T0.
	

	
	T0
	T1
	T2
	T3
	T4
	T0
	

	
	Clock
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T1
T2
T3
T4
D3
CLR SC
	
	Figure 2.8: Example of control timing signals
	

	
	  The last three waveforms shows how SC is cleared when D3T4 = 1. Output D3 from the
	

	
	operation decoder becomes active at the end of timing signal T2. When timing signal T4
	

	
	becomes active, the output of the AND gate that implements the control function D3T4
	

	
	becomes active.
	

	
	  This signal is applied to the CLR input of SC. On the next positive clock transition the
	

	
	
	

	
	counter is cleared to 0. This causes the timing signal T0 to become active instead of T5
	

	
	that would have been active if SC were incremented instead of cleared.
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Instruction cycle
· A program residing in the memory unit of the computer consists of a sequence of
instructions. In the basic computer each instruction cycle consists of the following phases:
1. Fetch an instruction from memory.
2. Decode the instruction.
3. Read the effective address from memory if the instruction has an indirect address.
4. Execute the instruction.
· After step 4, the control goes back to step 1 to fetch, decode and execute the nex

instruction.
· This process continues unless a HALT instruction is encountered.
[image: image145.jpg]¢





	
	Figure 2.9: Flowchart for instruction cycle (initial configuration)
	

	
	  The flowchart presents an initial configuration for the instruction cycle and shows how
	

	
	the control determines the instruction type after the decoding.
	

	
	  If D7 = 1, the instruction must be register-reference or input-output type. If D7 = 0, the
	

	
	
	

	
	operation code must be one of the other seven values 110, specifying a memory-
	

	
	reference instruction. Control then inspects the value of the first bit of the instruction,
	

	
	which now available in flip-flop I.
	

	
	  If D7 = 0 and I = 1, we have a memory-reference instruction with an indirect address. It is
	

	
	
	

	
	then necessary to read the effective address from memory.
	

	
	  The three instruction types are subdivided into four separate paths. The selected
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D’7 I T3: AR M [AR]
ws:
D’7 I’ T3: Nothing
D7 I’ T3: Execute a register-reference instruction
D7 I T3: Execute an input-output instruction
· When a memory-reference instruction with I = 0 is encountered, it is not necessary to do
	
	
	anything since the effective address is already in AR.
	
	
	

	
	  However, the sequence counter SC must be incremented when D’7 I T3 = 1, so that the
	

	
	
	

	
	
	execution of the memory-reference instruction can be continued with timing variable T4.
	

	
	
	
	
	
	
	
	
	
	

	
	
	A  register-reference  or  input-output  instruction  can  be  executed  with  the  click
	

	
	
	associated with timing signal T3. After the instruction is executed, SC is cleared to 0 and
	

	
	
	control returns to the fetch phase with T0 =1. SC is either incremented or cleared to 0
	

	
	
	with every positive clock transition.
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	Register reference instruction.
	
	
	

	
	
	When the register-reference instruction is decoded, D7 bit is set to 1.
	

	
	  Each control function needs the Boolean relation D7 I' T3
	
	
	

	
	
	15
	12
	11
	0
	
	


	
	
	
	0 1 1 1
	
	
	Register Operation
	
	
	


· There are 12 register-reference instructions listed below:
	
	r:
	SC0
	Clear SC

	CLA
	rB11:
	AC  0
	Clear AC

	CLE
	rB10:
	E  0
	Clear E

	CMA
	rB9:
	AC  AC’
	Complement AC

	CME
	rB8:
	E  E’
	Complement E

	CIR
	rB7:
	AC  shr AC, AC(15)  E, E  AC(0)
	Circular Right

	CIL
	rB6:
	AC  shl AC, AC(0)  E, E  AC(15)
	Circular Left

	INC
	rB5:
	AC  AC + 1
	Increment AC

	SPA
	rB4:
	if (AC(15) = 0) then (PC  PC+1)
	Skip if positive

	SNA
	rB3:
	if (AC(15) = 1) then (PC  PC+1
	Skip if negative

	SZA
	rB2:
	if (AC = 0) then (PC  PC+1)
	Skip if AC is zero

	SZE
	rB1:
	if (E = 0) then (PC  PC+1)
	Skip if E is zero

	HLT
	rB0:
	S  0 (S is a start-stop flip-flop)
	Halt computer
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· These 12 bits are available in IR (0-11). They were also transferred to AR during time T2.
·   These instructions are executed at timing cycle T3.
· The first seven register-reference instructions perform clear, complement, circular shift,
	
	
	and increment microoperations on the AC or E registers.
	

	
	
	  The next four instructions cause a skip of the next instruction in sequence when
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condition is satisfied. The skipping of the instruction is achieved by incrementing PC.
· The condition control statements must be recognized as part of the control conditions. The AC is positive when the sign bit in AC(15) = 0; it is negative when AC(15) = 1. The
	
	content of AC is zero (AC = 0) if all the flip-flops of the register are zero.
	

	
	  The HLT instruction clears a start-stop flip-flop S and stops the sequence counter from
	

	
	
	

	
	counting. To restore the operation of the computer, the start-stop flip-flop must be set
	

	
	manually.
	
	
	
	
	
	
	

	
	Memory reference instructions
	
	
	
	
	

	
	  When the memory-reference instruction is decoded, D7 bit is set to 0.
	

	
	15
	14
	12
	11
	0
	
	

	
	
	I
	
	000~110
	
	Address
	
	
	


· The following table lists seven memory-reference instructions.
	Symbol
	Operation
	Symbolic Description

	
	Decoder
	

	AND
	D0
	AC  AC  M[AR]

	ADD
	D1
	AC  AC + M[AR], E  Cout

	LDA
	D2
	AC  M[AR]

	STA
	D3
	M[AR]  AC

	BUN
	D4
	PC  AR

	BSA
	D5
	M[AR]  PC, PC  AR + 1

	ISZ
	D6
	M[AR]  M[AR] + 1, if M[AR] + 1 = 0 then PC  PC+1


· The effective address of the instruction is in the address register AR and was placed

there during timing signal T2 when I = 0, or during timing signal T3 when I = 1.
· The execution of the memory-reference instructions starts with timing signal T4.
AND to AC
This is an instruction that performs the AND logic operation on pairs of bits in AC and the memory word specified by the effective address. The result of the operation is transferred to AC.
D0T4:
DRM[AR]
D0T5:
AC  AC  DR, SC  0
ADD to AC
This instruction adds the content of the memory word specified by the effective address to the value of AC. The sum is transferred into AC and the output carry Cout is transferred to the E (extended accumulator) flip-flop.
D1T4:
DR  M[AR]
D1T5:
AC  AC + DR, E  Cout, SC  0
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LDA: Load to AC
This instruction transfers the memory word specified by the effective address to AC.
D2T4:
DR  M[AR]
D2T5:
AC  DR, SC  0
STA: Store AC
This instruction stores the content of AC into the memory word specified by the effective address.
D3T4:
M[AR]  AC, SC  0
BUN: Branch Unconditionally
This instruction transfers the program to instruction specified by the effective address. The BUN instruction allows the programmer to specify an instruction out of sequence and the program branches (or jumps) unconditionally.
D4T4:
PC  AR, SC  0
BSA: Branch and Save Return Address
This instruction is useful for branching to a portion of the program called a subroutine or procedure. When executed, the BSA instruction stores the address of the next instruction in sequence (which is available in PC) into a memory location specified by the effective address.
M[AR]  PC, PC  AR + 1
M[135] 21, PC 135 + 1 = 136
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Figure2.10: Example of BSA instruction execution
It is not possible to perform the operation of the BSA instruction in one clock cycle when we use the bus system of the basic computer. To use the memory and the bus properly, the BSA instruction must be executed with a sequence of two microoperations:
D5T4:
M[AR]  PC, AR  AR + 1
D5T5:
PC  AR, SC  0
ISZ: Increment and Skip if Zero
These instruction increments the word specified by the effective address, and if the incremented value is equal to 0, PC is incremented by 1. Since it is not possible to
[image: image153.jpg]
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increment a word inside the memory, it is necessary to read the word into DR, increment DR, and store the word back into memory.
D6T4:
DR  M[AR]
D6T5:
DR  DR + 1
D6T4:
M[AR]  DR, if (DR = 0) then (PC  PC + 1), SC  0
Control Flowchart
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Figure 2.11: Flowchart for memory-reference instructions
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4. STORE: M[address 3]<—R3



[image: image160.jpg]In general, there are three major difficulties that cause the instruction
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1. Resource conflicts caused by access to memory by two segments at the
same time. Most of these conflicts can be resolved by using separate
instruction and data memories.

2. Data dependency conflicts arise when an instruction depends on the
result of a previous instruction, but this result is not yet available.

3. Branch difficulties arise from branch and other instructions that change
the value of PC.
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Input-output configuration of basic computer
	
	
	A computer can serve no useful purpose unless it communicates with the external
	

	
	
	environment.
	

	
	
	To exhibit the most basic requirements for input and output communication, we will use
	

	
	
	
	

	
	
	a terminal unit with a keyboard and printer.
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	Figure 2.12: Input-output configuration
	

	
	  The terminal sends and receives serial information and each quantity of information has
	

	
	eight bits of an alphanumeric code.
	

	
	  The serial information from the keyboard is shifted into the input register INPR.
	

	
	  The serial information for the printer is stored in the output register OUTR.
	

	
	  These two registers communicate with a communication interface serially and with the
	

	
	
	

	
	AC in parallel.
	

	
	  The transmitter interface receives serial information from the keyboard and transmits it
	

	
	
	

	
	to INPR. The receiver interface receives information from OUTR and sends it to the
	

	
	printer serially.
	

	
	  The 1-bit input flag FGI is a control flip-flop. It is set to 1 when new information is
	

	
	
	

	
	available in the input device and is cleared to 0 when the information is accepted by the
	

	
	computer.
	

	
	  The flag is needed to synchronize the timing rate difference between the input device
	

	
	
	

	
	and the computer.
	

	
	  The process of information transfer is as follows:
	


The process of input information transfer:

Initially, the input flag FGI is cleared to 0. When a key is struck in the keyboard, an 8-bit
	
	
	alphanumeric code is shifted into INPR and the input flag FGI is set to 1.
	

	
	
	  As long as the flag is set, the information in INPR cannot be changed by striking another
	

	
	
	
	

	
	
	key. The computer checks the flag bit; if it is 1, the information from INPR is transferred
	

	
	
	in parallel into AC and FGI is cleared to 0.
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· Once the flag is cleared, new information can be shifted into INPR by striking another key.
The process of outputting information:
· The output register OUTR works similarly but the direction of information flow is
	
	reversed.
	

	
	  Initially, the output flag FGO is set to 1. The computer checks the flag bit; if it is 1, the
	

	
	
	

	
	information from AC is transferred in parallel to OUTR and FGO is cleared to 0. The
	

	
	output device accepts the coded information, prints the corresponding character, and
	

	
	when the operation is completed, it sets FGO to 1.
	

	
	  The computer does not load a new character into OUTR when FGO is 0 because this
	

	
	
	

	
	condition indicates that the output device is in the process of printing the character.
	

	
	
	

	
	Input-Output instructions
	


· Input and output instructions are needed for transferring information to and from AC
	
	register, for checking the flag bits, and for controlling the interrupt facility.
	

	
	  Input-output instructions have an operation code 1111 and are recognized by the control
	

	
	
	

	
	when D7 = 1 and I = 1.
	
	
	

	
	  The remaining bits of the instruction specify the particular operation.
	

	
	  The control functions and microoperations for the input-output instructions are listed
	

	
	
	

	
	below.
	
	
	
	

	
	
	INP
	AC(0-7)  INPR, FGI  0
	Input char. to AC
	
	

	
	
	OUT
	OUTR  AC(0-7), FGO  0
	Output char. from AC
	
	

	
	
	SKI
	if(FGI = 1) then (PC  PC + 1)
	Skip on input flag
	
	

	
	
	SKO
	if(FGO = 1) then (PC  PC + 1)
	Skip on output flag
	
	

	
	
	ION
	IEN  1
	Interrupt enable on
	
	

	
	
	IOF
	IEN  0
	Interrupt enable off
	
	


	
	
	Table 2.2: Input Output Instructions
	
	

	
	
	  The INP instruction transfers the input information from INPR into the eight low-order
	
	

	
	
	bits of AC and also clears the input flag to 0.
	
	

	
	
	  The OUT instruction transfers the eight least significant bits of AC into the output
	
	

	
	
	
	
	

	
	
	register OUTR and clears the output flag to 0.
	
	

	
	
	  The next two instructions in Table 2.2 check the status of the flags and cause a skip of
	
	

	
	
	
	
	

	
	
	the next instruction if the flag is 1.
	
	

	
	
	  The instruction that is skipped will normally be a branch instruction to return and check
	
	

	
	
	
	
	

	
	
	the flag again.
	
	

	
	
	  The branch instruction is not skipped if the flag is 0. If the flag is 1, the branch instruction
	
	

	
	
	
	
	

	
	
	is skipped and an input or output instruction is executed.
	
	


	
	
	  The last two instructions set and clear an interrupt enable flip-flop IEN. The purpose of
	
	

	
	
	
	
	

	
	
	IEN is explained in conjunction with the interrupt operation.
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	Interrupt Cycle

	
	The way that the interrupt is handled by the computer can be explained by means of the

	
	flowchart shown in figure 2.13.


· An interrupt flip-flop R is included in the computer.
· When R = 0, the computer goes through an instruction cycle.
·   During the execute phase of the instruction cycle IEN is checked by the control.
· If it is 0, it indicates that the programmer does not want to use the interrupt, so control
	
	continues with the next instruction cycle.
	

	
	  If IEN is 1, control checks the flag bits.
	

	
	  If both flags are 0, it indicates that neither the input nor the output registers are ready
	

	
	
	

	
	for transfer of information.
	

	
	  In this case, control continues with the next instruction cycle. If either flag is set to 1
	

	
	
	

	
	while IEN = 1, flip-flop R is set to 1.
	

	
	  At the end of the execute phase, control checks the value of R, and if it is equal to 1, it
	

	
	
	

	
	goes to an interrupt cycle instead of an instruction cycle.
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Figure 2.13: Flowchart for interrupt cycle
Interrupt Cycle

The interrupt cycle is a hardware implementation of a branch and save return address
	
	operation.
	

	
	  The return address available in PC is stored in a specific location where it can be found
	

	
	
	

	
	later when the program returns to the instruction at which it was interrupted. This
	

	
	location may be a processor register, a memory stack, or a specific memory location.
	

	
	  Here we choose the memory location at address 0 as the place for storing the return
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address.
· Control then inserts address 1 into PC and clears IEN and R so that no more interruptions

can occur until the interrupt request from the flag has been serviced.
· An example that shows what happens during the interrupt cycle is shown in Figure 2.14:
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	Figure 2.14: Demonstration of the interrupt cycle
	

	
	  Suppose that an interrupt occurs and R = 1, while the control is executing the instruction
	

	
	at address 255. At this time, the return address 256 is in PC.
	

	
	  The programmer has previously placed an input-output service program in memory
	

	
	
	

	
	starting from address 1120 and a BUN 1120 instruction at address 1.
	

	
	  The content of PC (256) is stored in memory location 0, PC is set to 1, and R is cleared to
	

	
	
	

	
	0.
	

	
	  At the beginning of the next instruction cycle, the instruction that is read from memory is
	

	
	
	

	
	in address 1 since this is the content of PC. The branch instruction at address 1 causes
	

	
	the program to transfer to the input-output service program at address 1120.
	

	
	  This program checks the flags, determines which flag is set, and then transfers the
	

	
	
	

	
	required input or output information. Once this is done, the instruction ION is executed
	

	
	to set IEN to 1 (to enable further interrupts), and the program returns to the location
	

	
	where it was interrupted.
	

	
	  The instruction that returns the computer to the original place in the main program is a
	

	
	
	

	
	branch indirect instruction with an address part of 0. This instruction is placed at the end
	

	
	of the I/O service program.
	

	
	  The execution of the indirect BUN instruction results in placing into PC the return
	

	
	
	

	
	address from location 0.
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Register transfer statements for the interrupt cycle

The flip-flop is set to 1 if IEN = 1 and either FGI or FGO are equal to 1. This can happen
	
	with any clock transition except when timing signals T0, T1 or T2 are active.
	

	
	  The condition for setting flip-flop R= 1 can be expressed with the following register
	

	
	
	

	
	transfer statement:
	

	
	T0T1T2  (IEN) (FGI + FGO): R  1
	

	
	  The symbol + between FGI and FGO in the control function designates a logic OR
	

	
	operation. This is AND with IEN and T0T1 T2 .
	

	
	  The fetch and decode phases of the instruction cycle must be modified and Replace T0,
	

	
	
	

	
	T1, T2 with R'T0, R'T1, R'T2
	

	
	  Therefore the interrupt cycle statements are :
	

	
	
	

	
	RT0: AR  0, TR  PC
	

	
	RT1:  M[AR]  TR, PC  0
	

	
	RT2:  PC  PC + 1, IEN  0, R  0, SC  0
	

	
	  During the first timing signal AR is cleared to 0, and the content of PC is transferred to
	

	
	
	

	
	the temporary register TR.
	

	
	  With the second timing signal, the return address is stored in memory at location 0 and
	

	
	
	

	
	PC is cleared to 0.
	

	
	  The third timing signal increments PC to 1, clears IEN and R, and control goes back to T0
	

	
	
	

	
	by clearing SC to 0.
	

	
	  The beginning of the next instruction cycle has the condition RT0 and the content of PC is
	

	
	
	

	
	equal to 1. The control then goes through an instruction cycle that fetches and executes
	

	
	the BUN instruction in location 1.
	


	
	Flow chart for computer operation.
	

	
	  The final flowchart of the instruction cycle, including the interrupt cycle for the basic
	

	
	computer, is shown in Figure 2.15.
	

	
	  The interrupt flip-flop R may be set at any time during the indirect or execute phases.
	

	
	  The control returns to timing signal T0 after SC is cleared to 0.
	

	
	  If R = 1, the computer goes through an interrupt cycle. If R = 0, the computer goes
	

	
	
	

	
	through an instruction cycle.
	

	
	  If the instruction is one of the memory-reference instructions, the computer first checks
	

	
	
	

	
	if there is an indirect address and then continues to execute the decoded instruction
	

	
	according to the flowchart.
	

	
	  If the instruction is one of the register-reference instructions, it is executed with one of
	

	
	
	

	
	the microoperations register reference.
	

	
	  If it is an input-output instruction, it is executed with one of the microoperation’s input-
	

	
	
	

	
	output reference.
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Figure 2.15: Flowchart for computer operation
Unit 3 –
Microprogrammed Control
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Hardwired Control Unit:
When the control signals are generated by hardware using conventional logic design techniques, the control unit is said to be hardwired.
Micro programmed control unit:
A control unit whose binary control variables are stored in memory is called a micro programmed control unit.
Dynamic microprogramming:
A more advanced development known as dynamic microprogramming permits a microprogram to be loaded initially from an auxiliary memory such as a magnetic disk. Control units that use dynamic microprogramming employ a writable control memory. This type of memory can be used for writing.
Control Memory:
Control Memory is the storage in the microprogrammed control unit to store the microprogram.
Writeable Control Memory:
Control Storage whose contents can be modified, allow the change in microprogram and Instruction set can be changed or modified is referred as Writeable Control Memory.
Control Word:
The control variables at any given time can be represented by a control word string of 1 's and 0's called a control word.
Microoperation, Microinstruction, Micro program, Microcode.
Microoperations:
In computer central processing units, micro-operations (also known as a micro-ops or μops) are detailed low-level instructions used in some designs to implement complex machine instructions (sometimes termed macro-instructions in this context).

Micro instruction:
A symbolic microprogram can be translated into its binary equivalent by means of an assembler.

Each line of the assembly language microprogram defines a symbolic microinstruction.

Each symbolic microinstruction is divided into five fields: label, microoperations, CD, BR, and AD.
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Micro program:
A sequence of microinstructions constitutes a microprogram.
Since alterations of the microprogram are not needed once the control unit is in operation, the control memory can be a read-only memory (ROM).
ROM words are made permanent during the hardware production of the unit.
The use of a micro program involves placing all control variables in words of ROM for use by the control unit through successive read operations.
The content of the word in ROM at a given address specifies a microinstruction.
Microcode:
Microinstructions can be saved by employing subroutines that use common sections of microcode.
For example, the sequence of micro operations needed to generate the effective address of the operand for an instruction is common to all memory reference instructions.
This sequence could be a subroutine that is called from within many other routines to execute the effective address computation.
Organization of micro programmed control unit
The general configuration of a micro-programmed control unit is demonstrated in the block diagram of Figure 4.1.
The control memory is assumed to be a ROM, within which all control information is permanently stored.
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figure 4.1: Micro-programmed control organization
The control memory address register specifies the address of the microinstruction, and the control data register holds the microinstruction read from memory.
The microinstruction contains a control word that specifies one or more microoperations for the data processor. Once these operations are executed, the control must determine the next address.
The location of the next microinstruction may be the one next in sequence, or it may be located somewhere else in the control memory.
2
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While the microoperations are being executed, the next address is computed in the next address generator circuit and then transferred into the control address register to read the next microinstruction.
Thus a microinstruction contains bits for initiating microoperations in the data processor part and bits that determine the address sequence for the control memory.
The next address generator is sometimes called a micro-program sequencer, as it determines the address sequence that is read from control memory.
Typical functions of a micro-program sequencer are incrementing the control address register by one, loading into the control address register an address from control memory, transferring an external address, or loading an initial address to start the control operations.
The control data register holds the present microinstruction while the next address is computed and read from memory.
The data register is sometimes called a pipeline register.
It allows the execution of the microoperations specified by the control word simultaneously with the generation of the next microinstruction.
This configuration requires a two-phase clock, with one clock applied to the address register and the other to the data register.
The main advantage of the micro programmed control is the fact that once the hardware configuration is established; there should be no need for further hardware or wiring changes.
If we want to establish a different control sequence for the system, all we need to do is specify a different set of microinstructions for control memory.
Address Sequencing
Microinstructions are stored in control memory in groups, with each group specifying a routine.
To appreciate the address sequencing in a micro-program control unit, let us specify the steps that the control must undergo during the execution of a single computer instruction.
Step-1:
An initial address is loaded into the control address register when power is turned on in the computer.
This address is usually the address of the first microinstruction that activates the instruction fetch routine.
The fetch routine may be sequenced by incrementing the control address register through the rest of its microinstructions.
At the end of the fetch routine, the instruction is in the instruction register of the computer.
3
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Step-2:
The control memory next must go through the routine that determines the effective address of the operand.
A machine instruction may have bits that specify various addressing modes, such as indirect address and index registers.
The effective address computation routine in control memory can be reached through a branch microinstruction, which is conditioned on the status of the mode bits of the instruction.
When the effective address computation routine is completed, the address of the operand is available in the memory address register.
Step-3:
The next step is to generate the microoperations that execute the instruction fetched from memory.
The microoperation steps to be generated in processor registers depend on the operation code part of the instruction.
Each instruction has its own micro-program routine stored in a given location of control memory.
The transformation from the instruction code bits to an address in control memory where the routine is located is referred to as a mapping process.
A mapping procedure is a rule that transforms the instruction code into a control memory address.
Step-4:
Once the required routine is reached, the microinstructions that execute the instruction may be sequenced by incrementing the control address register.
Micro-programs that employ subroutines will require an external register for storing the return address.
Return addresses cannot be stored in ROM because the unit has no writing capability.
When the execution of the instruction is completed, control must return to the fetch routine.
This is accomplished by executing an unconditional branch microinstruction to the first address of the fetch routine.
In summary, the address sequencing capabilities required in a control memory are:
1. Incrementing of the control address register.

2. Unconditional branch or conditional branch, depending on status bit conditions.

3. A mapping process from the bits of the instruction to an address for control memory.

4. A facility for subroutine call and return.
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selection of address for control memory
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Figure 4.2: Selection of address for control memory
Above figure 4.2 shows a block diagram of a control memory and the associated hardware needed for selecting the next microinstruction address.
The microinstruction in control memory contains a set of bits to initiate microoperations in computer registers and other bits to specify the method by which the next address is obtained.
The diagram shows four different paths from which the control address register (CAR) receives the address.
The incrementer increments the content of the control address register by one, to select the next microinstruction in sequence.
Branching is achieved by specifying the branch address in one of the fields of the microinstruction.
Conditional branching is obtained by using part of the microinstruction to select a specific status bit in order to determine its condition.
An external address is transferred into control memory via a mapping logic circuit.
The return address for a subroutine is stored in a special register whose value is then used when the micro-program wishes to return from the subroutine.
5
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The branch logic of figure 4.2 provides decision-making capabilities in the control unit.
The status conditions are special bits in the system that provide parameter information such as the carry-out of an adder, the sign bit of a number, the mode bits of an instruction, and input or output status conditions.
The status bits, together with the field in the microinstruction that specifies a branch address, control the conditional branch decisions generated in the branch logic.
A 1 output in the multiplexer generates a control signal to transfer the branch address from the microinstruction into the control address register.
A 0 output in the multiplexer causes the address register to be incremented.
Mapping of an Instruction
A special type of branch exists when a microinstruction specifies a branch to the first word in control memory where a microprogram routine for an instruction is located.
The status bits for this type of branch are the bits in the operation code part of the instruction.
For example, a computer with a simple instruction format as shown in figure 4.3 has an operation code of four bits which can specify up to 16 distinct instructions.
Assume further that the control memory has 128 words, requiring an address of seven bits.
One simple mapping process that converts the 4-bit operation code to a 7-bit address for control memory is shown in figure 4.3.
This mapping consists of placing a 0 in the most significant bit of the address, transferring the four operation code bits, and clearing the two least significant bits of the control address register.
This provides for each computer instruction a microprogram routine with a capacity of four microinstructions.
If the routine needs more than four microinstructions, it can use addresses 1000000 through 1111111. If it uses fewer than four microinstructions, the unused memory locations would be available for other routines.
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Figure 4.3: Mapping from instruction code to microinstruction address
One can extend this concept to a more general mapping rule by using a ROM to specify the mapping function.
The contents of the mapping ROM give the bits for the control address register.
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In this way the microprogram routine that executes the instruction can be placed in any desired location in control memory.
The mapping concept provides flexibility for adding instructions for control memory as the need arises.
Computer Hardware Configuration
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Figure 4.4: Computer hardware configuration The block diagram of the computer is shown in Figure 4.4. It consists of
1. Two memory units:

Main memory -> for storing instructions and data, and Control memory -> for storing the microprogram.

2. Six Registers:

Processor unit register: AC(accumulator),PC(Program Counter), AR(Address Register), DR(Data Register)

Control unit register: CAR (Control Address Register), SBR(Subroutine Register)

3. Multiplexers:

The transfer of information among the registers in the processor is done through multiplexers rather than a common bus.

4. ALU:

The arithmetic, logic, and shift unit performs microoperations with data from AC and DR and places the result in AC.
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Unit 4 – Microprogrammed Control
DR can receive information from AC, PC, or memory. AR can receive information from PC or DR.
PC can receive information only from AR.
Input data written to memory come from DR, and data read from memory can go only to DR.
Microinstruction Format
The microinstruction format for the control memory is shown in figure 4.5. The 20 bits of the microinstruction are divided into four functional parts as follows:
1. The three fields F1, F2, and F3 specify microoperations for the computer.

The microoperations are subdivided into three fields of three bits each. The three bits in each field are encoded to specify seven distinct microoperations. This gives a total of 21 microoperations.

2. The CD field selects status bit conditions.

3. The BR field specifies the type of branch to be used.

4. The AD field contains a branch address. The address field is seven bits wide, since the control memory has 128 = 27 words.
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Figure 4.5: Microinstruction Format
As an example, a microinstruction can specify two simultaneous microoperations from F2 and F3 and none from F1.
DR
M[AR] with F2 = 100
PC
PC + 1 with F3 = 101
The nine bits of the microoperation fields will then be 000 100 101.
The CD (condition) field consists of two bits which are encoded to specify four status bit conditions as listed in Table 4.1.
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Table 4.1: Condition Field
The BR (branch) field consists of two bits. It is used, in conjunction with the address field AD, to choose the address of the next microinstruction shown in Table 4.2.
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Table 4.2: Branch Field
Symbolic Microinstruction.
Each line of the assembly language microprogram defines a symbolic microinstruction.
Each symbolic microinstruction is divided into five fields: label, microoperations, CD, BR, and AD. The fields specify the following Table 4.3.
	1.
	Label
	The label field may be empty or it may specify a symbolic

	
	
	address. A label is terminated with a colon (:).

	2.
	Microoperations
	It consists of one, two, or three symbols, separated by

	
	
	commas, from those defined in Table 5.3. There may be no

	
	
	more than one symbol from each F field. The NOP symbol

	
	
	is used when the microinstruction has no microoperations.

	
	
	This will be translated by the assembler to nine zeros.

	3.
	CD
	The CD field has one of the letters U, I, S, or Z.

	4.
	BR
	The BR field contains one of the four symbols defined in

	
	
	Table 5.2.

	5.
	AD
	The AD field specifies a value for the address field of the

	
	
	microinstruction in one of three possible ways:

	
	
	i.
	With a symbolic address, this must also appear as a

	
	
	
	label.

	
	
	ii.
	With the symbol  NEXT to designate the next

	
	
	
	address in sequence.

	
	
	iii.
	When the BR field contains a RET or MAP symbol,

	
	
	
	the AD field is left empty and is converted to seven

	
	
	
	zeros by the assembler.

	
	
	
	Table 4.3: Symbolic Microinstruction
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Micro programmed sequencer for a control memory
Microprogram sequencer:
The basic components of a microprogrammed control unit are the control memory and the circuits that select the next address.
The address selection part is called a microprogram sequencer.
A microprogram sequencer can be constructed with digital functions to suit a particular application.
To guarantee a wide range of acceptability, an integrated circuit sequencer must provide an internal organization that can be adapted to a wide range of applications.
The purpose of a microprogram sequencer is to present an address to the control memory so that a microinstruction may be read and executed.
Commercial sequencers include within the unit an internal register stack used for temporary storage of addresses during microprogram looping and subroutine calls.
Some sequencers provide an output register which can function as the address register for the control memory.
The block diagram of the microprogram sequencer is shown in figure 4.6. There are two multiplexers in the circuit.
The first multiplexer selects an address from one of four sources and routes it into a control address register CAR.
The second multiplexer tests the value of a selected status bit and the result of the test is applied to an input logic circuit.
The output from CAR provides the address for the control memory.
The content of CAR is incremented and applied to one of the multiplexer inputs and to the subroutine registers SBR.
The other three inputs to multiplexer 1 come from the address field of the present microinstruction, from the output of SBR, and from an external source that maps the instruction.
Although the figure 4.6 shows a single subroutine register, a typical sequencer will have a register stack about four to eight levels deep. In this way, a number of subroutines can be active at the same time.
The CD (condition) field of the microinstruction selects one of the status bits in the second multiplexer.
If the bit selected is equal to 1, the T (test) variable is equal to 1; otherwise, it is equal to 0.
The T value together with the two bits from the BR (branch) field goes to an input logic circuit.
The input logic in a particular sequencer will determine the type of operations that are available in the unit.
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Figure 4.6: Microprogram Sequencer for a control memory
Input Logic : Truth Table
	BR
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	Load SBR
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	I0
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	S0
	L

	0 0
	0
	0
	
	0
	0
	0
	0

	0 0
	0
	0
	
	1
	0
	1
	0

	0 1
	0
	1
	
	0
	0
	0
	0

	0 1
	0
	1
	
	1
	0
	1
	1

	1 0
	1
	0
	
	X
	1
	0
	0

	1 1
	1
	1
	
	X
	1
	1
	0

	
	
	
	11
	
	
	


UNIT -III
Table 4.4: Input Logic Truth Table for Microprogram Sequencer
[image: image197.jpg]


[image: image198.jpg]



Microprogrammed Control
[image: image199.jpg]Hea Address bus
Gomponent address 09 8765 4321
RAM 1 0000 - 007F 00 0xxx xxxx
RAM 2 0080 - 00FF 010! @' x xiw  ¥ %k
RAM 3 0100 - 017F 01 0xxx xxxx
RAM 4 0180 - 01FF 01 1 xxx XxXXxXx
ROM 0200 - 03FF 1x xxxx xxxx





Boolean Function:
S0 = I0
S1 = I0I1 + I0’T
L = I0’I1T
Typical sequencer operations are: increment, branch or jump, call and return from subroutine, load an external address, push or pop the stack, and other address sequencing operations.
With three inputs, the sequencer can provide up to eight address sequencing operations.
Some commercial sequencers have three or four inputs in addition to the T input and thus provide a wider range of operations.
Central Processing Unit
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UNIT-I
INTRODUCTION TO MICROPROCESSOR
A common way of categorizing microprocessors is by the no. of bits that their ALU can work with at a time.
(i) The first commercially available microprocessor was the INTEL 4004, produced in 1971.

It has 3200 PMOS transistors.

It is a 4-bit device used in calculator.

(ii) In 1972, Intel came out with the 8008 which is 8-bit.

(iii) In 1974, Intel announced the 8080, which had a larger instruction set then 8008 8080 used NMOS transistors, so it operated much faster than the 8008.

The 8080 is referred to as a “Second generation Microprocessor”

(iv) Next Motorola came out with the MC6800, another 8-bit CPU

The 6800 had the advantage that it req. only a +5v supply rather than -5v, +5v 5+12 v
(v) Next is the MOS technology 6502 CPU used in Apple II microcomputer, and zilogz80, used as CPU in the Radio shack TRS-80 micro computer

(vi) Dedicated or Embedded controllers:

In 1976, Intel introduced the 8048, which contains an 8-bit CPU, RAM, ROM and some I/O parts all in one 40-pin package. These devices are often referred to as Microcontrollers.
(vii) Bit Slice Processors: An advanced micro devices 2900 family of devices. It includes 4-bit ALUS, MUXS.

The term slice comes from the fact that these parts can be connectd in parallel to work.

(viii) General Purpose CPUS:

After Motorola came out with MC6800, Intel produced the 8085, an up grade of 8080 that required +5V supply.
Motorola then produced MC6809 (8-bit)
In 1978, Intel came out with the 8086, which is16-bit processor.
Next Motorola came out with 16-bit MC68000.
The last evolution s 32-bit processor, Intel 80386, MC68020.
COMPONENTS OF MICROCOMPUTER
Key board: Through which instructions are enters into the microcomputer.
Display Device: displays messages and results.
ROM: Permanent programs are stored.
RAM: temporary or trail programs are written.
Computer uses for storing temporary int. during program execution.
CPU: Manages entire operation
Takes i/ps from permanent programs stored in the ROM or temporary in RAM on the basis of an Instruction set that is recognized by the CPU
It also takes i/p form the keyboard (or from other peripheral devices) or gives o/p to the Display device (or to other peripheral device through appropriate interfaces. CLOCK: (square wave oscillator) which drives the CPU to perform at a certain rate.
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The Keyboard:
It is a set of keys through which a user can enter a program, put in necessary data, and interact with the computer through appropriate commands.
The Keyboard Interface:
The keyboard operation, i.e, pressing of keys (switch closures), does not usually generate signals which can be directly used by the computer, it should be transformed into format that can be recognized by the computer.
This is done by the keyboard Interface which takes the inputs from the keyboard and generates o/ps in suitable format based on information which is characteristic of the key pressed.
The Display:
Through the display element, the computer sends out information, such as results of any calculation it has carried out a cc. to some program, infer on the status of computer. The Display Interface:
Like the keyboard Interface, an appropriate interface is normally necessary for taking information from the computer operation control and making it available to the display device in the appropriate format. This is done by the Display Interface.
Beyond the Display Interface, but before the display element (such as CED) there is oft a need of power amplifying devices, b/c the final display device generally needs a power level not ordinarily available form the interface integrated circuit.
The Read Only Memory (ROM):
The permanent memory device/area is called ROM, because whatever be the memory contents of ROMs, they cannot be over written with some other information.
For a blank ROM, the manufacturer supplies the device without any inf. In it, information can be entered electrically into the memory space. This is called burning a ROM or PROM.
There is a type of PROM whose contents can be erased by shining UV radiation on memory area; these devices are called EROMS – Erasable PROMS.
There is yet another type of PROM which can be erased by giving appropriate electrical signals, these are called E2PROMS (Electrically Erasable PROMS)
Burning can be done by allowing a string of signal pulses into the PROM device and holding a designated IC pin at some prescribed high voltage. Many permanent programs are stored in ROMS.
The Random Access Memory (RAM):
Besides the ROM area, every computer has some memory space for temporary storage of data as well as for programs under development. These memory devices are RAMs or Read – write memory.
The contents of it are not permanent and are altered when power is turned off. So the RAM memory is considered to be volatile memory.
When alternate power, such as in the form of a battery, is provided, the RAM is then said to have a battery back-up.
The Central Processing Unit (CPU):
This device coordinates all operations of a micro computer. It fetches programs stored in ROMs or RAMs and executes the instructions depending one a specific Instructions set, which is characteristic of each type of CPU, and which is recognized by the CPU.
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The process of converging attention onto a certain memory location is done by theDPU by providing specific signals on the address lines that emerge from the CPU and are connected to the memory devices, and data is read by the CPU through asset of data lines that run b/w the memory devices and the CPU
In fact, reading the contents of a certain memory location or writing at a certain memory location is done by the same set of address and data lines, whether the CPU is to do read/write or do an I/O operation depends on the status of control lines that come out of the CPU.
Thus, for a Read operation, the Read line is made active, for a write operation, the write line is made active, and like wise for an I/O operation.
While the CPU is running a program, it can be interrupted, for this purpose the CPU has a no. of Interrupt lines.
An active signal on any one of these lines interrupts the on going CPU operation, and makes it run another program on priority basis, after which it returns to the original program.
Besides the parallel data lines, CPU s also provide serial data input and o/p lines.
ADDRESS lines/ Address Bus:
The address lines originate from the CPU, the exact no. of these lines depends on the specific CPU, the larger the no. of lines, the greater the capacity to provide alternative addresses and hence greater addressing capability.
With n address lines: add. Capability is 2n. For 16 address lines: add. Capability is 216. Besides their use for memory Read /write app., the address lines could be selectively combined through logic ckts. {decoders) to provide outputs only when certain specific addresses are present, which could be used to selectively turn ON specific ICs, these o/p lines then act as chip selects or chip enables.
The set of address lines is also called address bus.
Data Lines/Data Bus:
The no .of data lines, like add. Lines vary with the specific CPU
The set of data lines is database like the add. Bus
Unlike add. Bus, the data bus is bidirectional because while the information on the add. Bus always flows out of the CPU; the data can flow both out of the CPU as well as into the CPU.
Control lines/ control Bus:
The no . of control lines also depends on the specific CPU one is using.
Ex : Read, Write lines are examples of control lines
Status lines:
It provides information about the nature of instruction execution that is being carried out at a given time by the CPU
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CLOCK
The clock is a symmetrical square wave signal that drives the CPU
In many primitive microcomputers, the clock signal had to be generated outside the CPU, but in many CPUs the clock signal gets generated inside the CPU (with a quart and crystal and a few passive components connected externally. Operation:
The clock signal drives the CPU; the address bus, data bus and control bus come out of CPU and go to ROMs, RAM and Display/ Keyboard Interfaces.
The chip selects are generated by decoding the address bus, and the individual chip selects are feeded to all components including the peripheral device.
The interrupt lines go to appropriate pins of the CPU either directly from the keyboard, or from other peripheral devices.
The 8085 CPU
Architecture of a Microprocessor:
The salient features of 8085 μp are:
· It is a 8 bit microprocessor.

· It is manufactured with N-MOS technology.

· It has 16-bit address bus and hence can address up to 216 = 65536 bytes (64KB)

memory locations through A -A .
0 15

· The first 8 lines of address bus and 8 lines of data bus are multiplexed AD – AD .

0
7
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• Data bus is a group of 8 lines D – D .
0 7

· It supports external interrupt request.

· A 16 bit program counter (PC)

· A 16 bit stack pointer (SP)

· Six 8-bit general purpose register arranged in pairs: BC, DE, HL.

· It requires a signal +5V power supply and operates at 3.2 MHZ single phase clock.

· It is enclosed with 40 pins DIP (Dual in line package).
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Functional Description:
The 8085 is an 8-bit up capable of add. up to 64k bytes (216 = 65,536) of memory.
It has 8-addressable 8-bit registers, six of which can also be used as three pairs of 16-bit registers.
There are five H/W Interrupts, in order of decreasing priority:
TRAP
RST 7.5
RST 6.5
RST 5.5
INTR
TRAP is unmaskable
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The FLAG Register:
The sign flag:
The bit 7 (MSB) of the 8-bits is used for the sign of data in the accumulator, then the numbers can be used in the range -128 to +127. „0→ positive
„1→ negative
The zero flag:
If the result obtained after executing an instruction is zero. ZF = 1
Other wise ZF = 0
If result is zero, and carry is present then both ZF=1 and CF = 1
(iii) The carry flag:
In both addition and subtraction involving two 8-bit no.s,
Addition: overflow from higher order bit substation: Borrow
DF is set to 1.
The Auxiliary carry flag (AC):
This flag is used in BCD arithmetic.
This is set for an over flow out of bit 3.
The parity flag:
Parity is defined by the no. of 1s present in the Accumulator.
If parity is even, P →1
If parity is odd, P →0
The Accumulator, the flag reg. and f a few temporary registers constitute the ALU.
INTERNAL CLOCK GENERATOR:
The maximum Frequency of 8085 CPU can operate at is 3.125 MHZ, using a Quartz Crystal oscillator.
Whether it is external or internally generated clock signal, this signal freq is halved
before it is used in the timing operations
INTERRUPTS:
The five H/W interrupts are classified into three types depending on their maskability nd
the way they can be masked.
First: INTR
Second: RST 5.5
RST 6.5
RST 7.5
Third: TRAP
INTR:
This interrupt is maskable.
It can be enabled by the instruction ENABLE INTERRUPT (EI) and disabled by
DISABLE INTERRUPT (DI).
The INTR interrupt requires external H/W to generate a Restart (RST) inst. (There are eight such inst. RST0-RST7, which point to a fixed memory address), which is laced externally on the databus.
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INTR can also be controlled by the peripheral chip 8259 (Programmable Interrupt Controller), in which instead of RSTs, CALL instructions can be generated, which can vector the CPU to specific subroutines at predetermined addresses. RST 5.5, RST 6.5, RST 7.5:
These are also maskable by the use of SIM (Set Interrupt mask) instruction.
To enable or disable the Interrupts, specific data is first loaded into the Accumulator. The status of Interrupt masks at a given time could be read by a RIM instruction. SIM and RIM for interrupts:
The 8085 provide additional masking facility for RST 7.5, RST 6.5 and RST 5.5 using SIM instruction.
The status of these interrupts can be read by executing RIM instruction.
The masking or unmasking of RST 7.5, RST 6.5 and RST 5.5 interrupts can be performed by moving an 8-bit data to accumulator and then executing SIM instruction.
The format of the 8-bit data is shown below.
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SID (Serial Input Data) line
-There is an One bit Input line inside the 8085 CPU (Pin number 5)
-1 bit data can be externally read and stored using this SID line
-The data that is read is stored in the A7th bit of the Accumulator
-RIM instruction is used to read the SID line
Fig1:
Example Pseudocode:
· RIM

· A7 _ (SID)

As seen from the figure 1, if the SID line is connected with +5V and RIM
instruction is executed, then the Accumulators MSB bit will be loaded with a Logic 1
if the SID line is connected with 0V (GND) and RIM instruction is executed, then the
www.smartzworld.com
specworld.in
jntuworldupdates.org
www.jntuhubupdates.com
[image: image206.jpg]Floating Point Addition / Subtraction

‘Shift significand right by
d=| B Eyl

Add significands when signs.
of Xand Yare dentical,
Subtract when different
XY becomes X+(-Y)

Normalization shiftsright by 1 if

there is a carry, or shifts leftby.

the number of leading zeros in
the case of subtraction

Rounding either truncates.
fraction, or adds a 1 toleast
significant fraction bit




www.jntuhubupdates.com
jntuhubupdates
SOD (Serial Output Data) Line
-There is a One bit Output port inside the 8085 CPU (Pin number 4
-1 bit data can be externally written in this port.
-To write data into this port, SIM instruction is used.
-The data that is to be written in this port must be stored in the A7th bit of the Accumulator.
· Bit A6 of the Accumulator is known as SOE (Serial output Enable). This bit Must be set to 1 to enable Serial data output.

Fig: 4

Example Pseudocode:
To write a logic 1 in this SOD line, Load the accumulator with C0H
To write a logic 0 in this SOD line, Load the accumulator with 40H
Pseudocode:
A_40H
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SIM
SOD_ (A7)
Hardware Interrupts on the 8085 CPU:
THE 8086 MICRO PROCESSOR FAMILY
The Intel 8086 is a 16-bit Micro processor. The term 16-bit means that its ALU, its internal registers, and most of its instructions are designed to work with16-bit binary words.
It has 16-bit data bus, so it can read data from or write data to memory and ports either 16 bits or 8-bits at a time.
It has 20-bit address bus, so it can address 220 ( 1,048,576) memory locations. Each of the 1,048,576 memory addresses of the 8086 rep. a byte wide location.
The Intel 8088 has same ALU, the same registers, and the same instruction set as 8086.
(8086: 16-bit add.bus and 8-bit data bus)
The Intel 80186 is an improved version of 8086 and 80188 is an improved version of 8088.
The Intel 80286 is a 16-bit, advanced version of 8086 which was specifically designed for used in a multiuser or multi tasking computer.
Next Intel 80386 is a 32-bit up which can directly address up to 4 GB of memory.
Lastly 80486, is an evolutionary step up from the 80386.
8086 Internal Architecture:
•8086 has two blocks BIU and EU.
•The BIU performs all bus operations such as instruction fetching, reading and writing operands for memory and calculating the addresses of the memory operands. The instruction bytes are transferred to the instruction queue.
•EU executes instructions from the instruction system byte queue.
•Both units operate asynchronously to give the 8086 an overlapping instruction fetch and execution mechanism which is called as Pipelining. This results in efficient use of the system bus and system performance.
•BIU contains Instruction queue, Segment registers, Instruction pointer, Address adder. •EU contains Control circuitry, Instruction decoder, ALU, Pointer and Index register, Flag register.
BUS INTERFACE UNIT:
•It provides a full 16 bit bidirectional data bus and 20 bit address bus.
•The bus interface unit is responsible for performing all external bus operations.
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Specifically it has the following functions:
•Instruction fetch, Instruction queuing, Operand fetch and storage, Address relocation and Bus control.
•The BIU uses a mechanism known as an instruction stream queue to implement a pipeline architecture.
•This queue permits prefetch of up to six bytes of instruction code. When ever the queue of the BIU is not full, it has room for at least two more bytes and at the same time the EU is not requesting it to read or write operands from memory, the BIU is free to look ahead in the program by prefetching the next sequential instruction.
•These prefetching instructions are held in its FIFO queue. With its 16 bit data bus, the BIU fetches two instruction bytes in a single memory cycle.
•After a byte is loaded at the input end of the queue, it automatically shifts up through the FIFO to the empty location nearest the output.
•The EU accesses the queue from the output end. It reads one instruction byte after the other from the output of the queue. If the queue is full and the EU is not requesting access to operand in memory.
•These intervals of no bus activity, which may occur between bus cycles are known as Idle state.
•If the BIU is already in the process of fetching an instruction when the EU request it to read or write operands from memory or I/O, the BIU first completes the instruction fetch bus cycle before initiating the operand read / write cycle.
•The BIU also contains a dedicated adder which is used to generate the 20bit physical address that is output on the address bus. This address is formed by adding an appended 16 bit segment address and a 16 bit offset address.
•For example: The physical address of the next instruction to be fetched is formed by combining the current contents of the code segment CS register and the current contents of the instruction pointer IP register.
•The BIU is also responsible for generating bus control signals such as those for memory read or write and I/O read or write.
EXECUTION UNIT
The Execution unit is responsible for decoding and executing all instructions. •The EU extracts instructions from the top of the queue in the BIU, decodes them, generates operands if necessary, passes them to the BIU and requests it to perform the read or write bys cycles to memory or I/O and perform the operation specified by the instruction on the operands.
•During the execution of the instruction, the EU tests the status and control flags and updates them based on the results of executing the instruction.
•If the queue is empty, the EU waits for the next instruction byte to be fetched and shifted to top of the queue.
•When the EU executes a branch or jump instruction, it transfers control to a location corresponding to another set of sequential instructions.
•Whenever this happens, the BIU automatically resets the queue and then begins to fetch instructions from this new location to refill the queue.
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GENERAL PURPOSE REGISTERS
8086 CPU has 8 general purpose registers, each register has its own name:
AX - the accumulator register (divided into AH / AL):
o Generates shortest machine code

p Arithmetic, logic and data transfer

q One number must be in AL or AX

r Multiplication & Division

s Input & Output

BX - the base address register (divided into BH / BL).
CX - the count register (divided into CH / CL):
· Iterative code segments using the LOOP instruction

· Repetitive operations on strings with the REP command

· Count (in CL) of bits to shift and rotate

DX - the data register (divided into DH / DL):
· DX:AX concatenated into 32-bit register for some MUL and DIV operations

· Specifying ports in some IN and OUT operations
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SI - source index register:
o Can be used for pointer addressing of data

p Used as source in some string processing instructions

q Offset address relative to DS

DI - destination index register:
· Can be used for pointer addressing of data

· Used as destination in some string processing instructions

· Offset address relative to ES

BP - base pointer:
· Primarily used to access parameters passed via the stack

· Offset address relative to SS

SP - stack pointer:
· Always points to top item on the stack

· Offset address relative to SS

· Always points to word (byte at even address)

· An empty stack will had SP = FFFEh
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SEGMENT REGISTERS
CS - points at the segment containing the current program.
DS - generally points at segment where variables are defined.
ES - extra segment register, it's up to a coder to define its usage.
o - points at the segment containing the stack.
Although it is possible to store any data in the segment registers, this is never a good idea. The segment registers have a very special purpose - pointing at accessible blocks of memory.
Segment registers work together with general purpose register to access any memory value. For example if we would like to access memory at the physical
address 12345h(hexadecimal), we could set the DS = 1230h and SI = 0045h. This way we can access much more memory than with a single register, which is limited to 16 bit values.
The CPU makes a calculation of the physical address by multiplying the segment register by 10h and adding the general purpose register to it (1230h * 10h + 45h = 12345h):

	The address formed with 2 registers is called an effective
	address.

	Bydefault BX,SI and DI registersworkwith DS segment
	register;

	BP and SP workwith SS segment
	register.

	Other general purpose registers cannot form an effective
	address.

	Also, although BX can form an effective address, BH and BL cannot.
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Logical And Physical Address:
Addresses within a segment can range from address 00000h to address 0FFFFh. This corresponds to the 64K-byte length of the segment. An address within a segment is called an offset or logical address. A logical address gives the displacement from the address base of the segment to the desired location within it, as opposed to its "real" address, which maps directly anywhere into the 1 MB memory space. This "real" address is called the physical address.
What is the difference between the physical and the logical address?
The physical address is 20 bits long and corresponds to the actual binary code output by the BIU on the address bus lines. The logical address is an offset from location 0 of a

given segment.
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When two segments overlap it is certainly possible for two different logical addresses to map to the same physical address. This can have disastrous results when the data begins to overwrite the subroutine stack area, or vice versa. For this reason you must be very careful when segments are allowed to overlap.
You should also be careful when writing addresses on paper to do so clearly. To specify the logical address XXXX in the stack segment, use the convention SS:XXXX, which is equal to [SS] * 16 + XXXX.
Advantages of Segment Registers:
o Allow the memory capacity to be 1 MB even though the addresses associated with the individual inst. are only 16-bits wide.

p Allow the inst, code, or stack portion of a program to be more than 64 KB long by using more than one segment.

q Facilitate the use of separate memory areas for a program, its data and the stack.

r Permit a program and /or its data to be put into diff. areas of memory each time the program is executed. (Relocation)

The simpler and conventional approach is to let both the code and data reside in one contiguous area in memory and put the stack in some fixed area. This is satisfactory, when one prog, is kept in memory at a time but not in multi programming.

SPECIAL PURPOSE REGISTERS
IP - the instruction pointer:
· Always points to next instruction to be executed

· Offset address relative to CS

IP register always works together with CS segment register and it points to currently executing instruction.
FLAGS REGISTER
Flags Register - determines the current state of the processor. They are modified automatically by CPU after mathematical operations, this allows to determine the type of the result, and to determine conditions to transfer control to other parts of the program. Generallyyoucannotaccesstheseregistersdirectly.
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· Carry Flag (CF) - this flag is set to 1 when there is an unsigned overflow. For example when you add bytes 255 + 1 (result is not in range 0...255). When there is no overflow this flag is set to 0.
· Parity Flag (PF) - this flag is set to 1 when there is even number of one bits in result, and to 0 when there is odd number of one bits.

· Auxiliary Flag (AF) - set to 1 when there is an unsigned overflow for low nibble (4 bits).

· Zero Flag (ZF) - set to 1 when result is zero. For non-zero result this flag is set to 0.
· Sign Flag (SF) - set to 1 when result is negative. When result is positive it is set to0. (This flag takes the value of the most significant bit.)

· Trap Flag (TF) - Used for on-chip debugging.

· Interrupt enable Flag (IF) - when this flag is set to 1 CPU reacts to interrupts from external devices.

· Direction Flag (DF) - this flag is used by some instructions to process data chains, when this flag is set to 0 - the processing is done forward, when this flag is set to 1the processing is done backward.

· Overflow Flag (OF) - set to 1 when there is a signed overflow. For example, when you add bytes 100 + 50 (result is not in range -128...127).

INTRODCUTION TO PROGRAMMING THE 8086:
Machine Language:
Programs can be written as simply a sequence of binary codes for the
instructions that a microcomputer executes.
This binary form of the program is referred to as machine Language, b/c it is the form required by the m/c.
However, it is easy for an error to occur when working with a long series of 0s and 1s.
Therefore, Hexadecimal representation is used for memory addresses. They are easy and compact, every nibble (4-bits) can b converted into Hex from.
	Ex:
	1
	2
	3
	4
	H

	
	0001
	0010
	0011
	0100
	binary


Assembly Language: (Low –Level language) :
To make programming easier, many programmers write programs in assembly language. They then translate it to m/c language so that it can be loaded into memory and run.
Assembly language used two, three or four letter mnemonics to rep. each instruction type.
A mnemonic is just a device to help you remember something.
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	Ex: for sub traction, the mnemonic is SUB
	
	

	To copy data from one location to other, MOV
	
	

	Assembly language Program Statement format:
	
	

	LabelOP codeOperand
	Comment
	

	fieldfieldfield
	
	

	Next:ADDAL, 07 H
	field
	

	
	Add
	

	
	correction
	

	
	factor
	


· Label: It is a symbol or group of symbols used to rep. an address which is not specifically known at the time the statement is written.
Labels are followed by a colon. They are optional.
· OP code field: It contains mnemonic for the instruction to be performed. Instruction mnemonics are also called operation codes.
· Operand field: It contains the data, the memory address, the port address, or the name of the register on which the instruction is to be performed.
It is just another name for the data items acted on the instruction. In the previous example, there are two operands AL and 07H.
· Comment field: (optional)

They start with a semicolon.
There are two ways for translating an assembly language tom/c language. One way is to work out the binary code for each instruction a bit at a time using the templates given in the manufacturers data books. The second method of doing the translation is with an assembler.
High Level languages:
Ex: C, Pascal
An interpreter program or a compiler program is used to translate higher level language statements tom/c codes which are loaded into memory and then executed.
These programs can be written fastly.
However, programs written in HLL execute more slowly and require more memory than the programs written in assembly language.
How to Access Data:
The different ways in which a processor can access data are referred to as its
Addressing Modes.
We will use MOV instruction to illustrate the addressing modes.
MOV destination, source
This inst. copies a word or byte from the source location to destination location.
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The source and destination can be a no. or reg. or memory location, but both cant be memory locations.
For data:
1. Immediate:
MOV reg, immediate data
The immediate hexadecimal no. is put into the 16-bit or 8-bit reg
Ex: MOV CX, 437BH
MOV CL, 48H
Instruction
2. Direct:
MOV reg. [Mem location]
The 16-bit effective address of the data is specified in the instruction.
Ex: MOV AX, [5000n]
This effective add. is added to 1610 times the contents of the appropriate segment reg.
· Register:

MOV reg 1, reg 2
Both the registers should be of same bit length
The data is in the reg. specified by the instruction
Ex: MOV BX, AX
4. Register Indirect:
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The effective add. of the data is in the base reg. BX or an Index reg. that is specified by the instruction i.e,
Initially to access data the starting add. should be moved into base/index reg.
MOV SI, 200 0 H
BX
or
BP
MOV BL, [SI]
or
DI
5. Register Relative:
MOV BX, 4000 H
MOV CL, 10 H + [BX]
The effective add. is the sum of 8-bit or 16-bit displacement and the contents base or Index reg.
BX
8 bit or
BP
EA =16 - bit
SI
displacement
DI
This is also called displacement add. mode.
6. Based Indexed:
Either the source part or destination part is a combination of [BX/BP] + [SI/DI]
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The effective address is the sum of a base reg. and an index reg, both of which are specified by the instruction.
Ex: add [BX] + [SI], AX
7. Relative based Index:
The effective add. is the sum of 8-bit/16-bit displacement and a based Indexed address.
	8 - bit
	
	
	
	

	EA =
	or
	BX
	SI
	

	
	16 - bit
	BP
	DI
	

	
	
	
	
	


displacement
Ex: add 1000 + [BX] + [SI]; AX
An Example for illustrating Add. Modes:
[BX] = 0158
[DI] = 10 A5
Displacement = 1 B57
[DS] = 2100 ( segment reg.)
Direct:
EA = 1234
Physical add. = EA+DS*1610
· 1234+21000

22234

Register:
No effective add. Data is in Reg.
Register Indirect: assume reg. BX EA = BX = 0158
Physical Add. = BX + DS * 1610
· 0158 + 21000

21158

Register Relative: assume BX
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EA = 0158
EA + disp. + DS * 1610
Physical add. = 0158 + 1B 57 + 21000
22 CAF

Based Indexed: Assume BX and Di EA = BX+DI+DS*1610
· 0158 + 10A5 + 21000

221FD

Relative Based Indexed:
Assume BX and DI
EA = BX + DI+ disp. + DS*1610
o 0158+10A5 + 1B57 + 21000

23D54

Exercise:
The contents of different registers are given below. Form the effectiveaddresses for different addressing modes.
16-bit displacement = 5000h
[AX]= 1000H, [BX]=2000H, [SI]= 3000H, [DI]=4000H, [BP]=5000H, [SP] =6000H, [CS]= 0000H, [DS]=1000H, [SS]= 2000H, [IP]= 7000H.
How is the addressing mode of an instruction communicated to the CPU?
„A single instruction may use more than one addressing mode or some
instructions may not require any addressing mode.Explain.
FOR BRANCH ADDRESSES: (PROGRAM MEMORY)
o Direct Program Memory Add: (Inter Segment) These instructions store the address with the OP code. Ex: JMP 10000 H
This Jmp inst. loads CS with 1000 H and IP with 0000 H
An inter segment Jmp is a jump to any memory location with in the entire memory system. The direct jmp is often called a far jump.
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· Relative program Memory Addressing: The term „Relative means relative to IP.
An intra segment jump is a jump any where within the code segment.
· Indirect program Memory Addressing Ex: JMP AX
JMP BX
It can use any registers of 16-bit
(AX, BX, CX, DX, SP, BP, DI or SI);
Any relative register ([BP], [BX], [DI] or [SI]; and any register with a
displacement.
Ex: JMP BX, BX contains 1000 H
The microprocessor jumps to offset address 1000 H in the current code segment.
This jump is near jump. (Intra Segment).
If a relative register holds the address,
Ex: JMP[BX]
This refers to the memory location within the data segment at offset address contains in BX.
At this offset address is a 16-bit no. that is used as offset add. in the intra segment jump. This is called double-indirect jump.
Exercise:
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· Identify the type of addressing mode and calculate the contents of CS and IP for the following branch instructions?

JMP 348A1H

JMP BX

JMP SHORT LABEL JNZ [2000H]

Stack Memory-Addressing Modes:
The stack Memory is a LIFO, which describes the way that data are stored and removed from the stack.
Data are placed onto the stack with a PUSH instruction and removed with POP instruction
The CALL inst. also uses the stack to hold the return address for procedures and a RET instruction to remove the return add. from the stack.
The stack memory is maintained by two reg; SS and SP
PUSH:
Whenever a word of data is pushed on to the stack, the higher order 8-bits are placed in location SP-1 and lower order 8-bits are placed in SP-2.
The SP is then decremented by 2. So that the next word can be stored.
The SP reg. always points to an area of memory located within the SS.
POP:
Whenever data are popped from the stack, the lower order 8-bits are removed from the located addressed by SP.
The high order 8-bits are removed from the location addressed by SP+1.
The SP reg. is then incremented by 2
Ex: PUSH AX
POP BX
8086 INSTRUCTION SET
The complete Instruction set is divided into six categories.
i) Data Transfer Instructions

ii) Arithmetic Instructions

iii) Bit Manipulation Instructions

iv) String Instructions

v) Program Execution Transfer Instructions

vi) Processor control Instructions.
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The following is a brief summary of the 8086 instruction set:
Data Transfer Instructions
MOV Move byte or word to register or memory
IN, OUT Input byte or word from port, output word to port
LEA Load effective address
LDS, LES Load pointer using data segment, extra segment
PUSH, POP Push word onto stack, pop word off stack
XCHG Exchange byte or word
XLAT Translate byte using look-up table
Logical Instructions
NOT Logical NOT of byte or word (one's complement)
AND Logical AND of byte or word
OR Logical OR of byte or word
XOR Logical exclusive-OR of byte or word
TEST Test byte or word (AND without storing)
Shift and Rotate Instructions
SHL, SHR Logical shift left, right byte or word by 1 or CL
SAL, SAR Arithmetic shift left, right byte or word by 1 or CL
ROL, ROR Rotate left, right byte or word by 1 or CL
RCL, RCR Rotate left, right through carry byte or word by 1 or CL
Arithmetic Instructions
ADD, SUB Add, subtract byte or word
ADC, SBB Add, subtract byte or word and carry (borrow)
INC, DEC Increment, decrement byte or word
NEG Negate byte or word (two's complement)
CMP Compare byte or word (subtract without storing)
MUL, DIV Multiply, divide byte or word (unsigned)
IMUL, IDIV Integer multiply, divide byte or word (signed)
CBW, CWD Convert byte to word, word to double word (useful
before multiply/divide)
AAA, AAS, AAM, AAD ASCII adjust for addition, subtraction, multiplication, division (ASCII codes 30-39)
DAA, DAS Decimal adjust for addition, subtraction (binary coded
decimal numbers)
Transfer Instructions
JMP Unconditional jump
JA (JNBE) Jump if above (not below or equal)
JAE (JNB) Jump if above or equal (not below)
JB (JNAE) Jump if below (not above or equal)
JBE (JNA) Jump if below or equal (not above)
JE (JZ) Jump if equal (zero)
JG (JNLE) Jump if greater (not less or equal)
www.smartzworld.com
specworld.in
jntuworldupdates.org
www.jntuhubupdates.com
www.jntuhubupdates.com
jntuhubupdates
JGE (JNL) Jump if greater or equal (not less)
JL (JNGE) Jump if less (not greater nor equal)
JLE (JNG) Jump if less or equal (not greater)
JC, JNC Jump if carry set, carry not set
JO, JNO Jump if overflow, no overflow
JS, JNS Jump if sign, no sign
JNP (JPO) Jump if no parity (parity odd)
JP (JPE) Jump if parity (parity even)
LOOP Loop unconditional, count in CX
LOOPE (LOOPZ) Loop if equal (zero), count in CX
LOOPNE (LOOPNZ) Loop if not equal (not zero), count in CX
JCXZ Jump if CX equals zero
Subroutine and Interrupt Instructions
CALL, RET Call, return from procedure
INT, INTO Software interrupt, interrupt if overflow
IRET Return from interrupt
String Instructions
MOVS Move byte or word string
MOVSB, MOVSW Move byte, word string
CMPS Compare byte or word string
SCAS Scan byte or word string
LODS, STOS Load, store byte or word string
REP Repeat
REPE, REPZ Repeat while equal, zero
REPNE, REPNZ Repeat while not equal (zero)
Processor Control Instructions
STC, CLC, CMC Set, clear, complement carry flag
STD, CLD Set, clear direction flag
STI, CLI Set, clear interrupt enable flag
LAHF, SAHF Load AH from flags, store AH into flags
PUSHF, POPF Push flags onto stack, pop flags off stack
ESC Escape to external processor interface
LOCK Lock bus during next instruction
NOP No operation (do nothing)
WAIT Wait for signal on TEST input
HLT Halt processor
Operand types:
REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL, DI, SI, BP, SP.
SREG: DS, ES, SS, and only as second operand: CS.
memory: [BX], [BX+SI+7], variable, etc).
immediate: 5, -24, 3Fh, 10001101b, etc...
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Notes:
When two operands are required for an instruction they are separated by comma.
For example:
REG, memory
When there are two operands, both operands must have the same size (except shift and rotate instructions). For example:
AL, DL
DX, AX
m1 DB ?
AL, m1
m2 DW ?
AX, m2
Some instructions allow several operand combinations. For example:
memory, immediate
REG, immediate
memory, REG
REG, SREG
Instructions in alphabetical order:
Instruction
Operands

No
AAA
operands



Description
ASCII Adjust after Addition.
Corrects result in AH and AL after addition when working with BCD values.
It works according to the following Algorithm:
if low nibble of AL > 9 or AF = 1 then:
AL = AL + 6
AH = AH + 1
AF = 1
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No
AAD
operands
No
AAM
operands



CF = 1
else
AF = 0
CF = 0
in both cases:
clear the high nibble of AL.
Example:
MOV AX, 15 ; AH = 00, AL = 0Fh
AAA; AH = 01, AL = 05
RET
ASCII Adjust before Division.
Prepares two BCD values for division.
Algorithm:
AL = (AH * 10) + AL
AH = 0
Example:
MOV AX, 0105h ; AH = 01, AL = 05
AAD; AH = 00, AL = 0Fh (15)
RET
ASCII Adjust after Multiplication.
Corrects the result of multiplication of two BCD values.
Algorithm:
AH = AL / 10
AL = remainder
Example:
MOV AL, 15 ; AL = 0Fh
AAM; AH = 01, AL = 05
RET
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REG
ADC
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immediate
REG,
immediate
REG,
memory
ADD
memory,
REG
REG, REG
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ASCII Adjust after Subtraction.
Corrects result in AH and AL after subtraction when working with BCD values.
Algorithm:
if low nibble of AL > 9 or AF = 1 then:
AL = AL - 6
AH = AH - 1
AF = 1
CF = 1
else
AF = 0
CF = 0
in both cases:
clear the high nibble of AL.
Example:
MOV AX, 02FFh ; AH = 02, AL = 0FFh
AAS; AH = 01, AL = 09
RET
Add with Carry.
Algorithm:
operand1 = operand1 + operand2 + CF
Example:
STC; set CF = 1
MOV AL, 5 ; AL = 5
ADC AL, 1 ; AL = 7
RET
Add.
Algorithm:
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operand1 = operand1 + operand2
Example:
MOV AL, 5 ; AL = 5
ADD AL, -3 ; AL = 2
RET
Logical AND between all bits of two operands. Result is stored in operand1.
These rules apply:
1 AND 1 = 1
1 AND 0 = 0
0 AND 1 = 0
0 AND 0 = 0
Example:
MOV AL, 'a'; AL = 01100001b
AND AL, 11011111b ; AL = 01000001b ('A')
RET
procedure
name
label
CALL
4-byte
address



Transfers control to procedure, return address is (IP) is pushed to stack. 4-byte address may be entered in this form: 1234h:5678h, first value is a segment second value is an offset (this is a far call, so CS is also pushed to stack).
Example:
ORG 100h ; for COM file.
CALL p1
ADD AX, 1
RET
; return to OS.
p1 PROC ; procedure declaration.
MOV AX, 1234h
RET ; return to caller.
p1 ENDP
CBW
No
Convert byte into word.
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Algorithm:
if high bit of AL = 1 then:
AH = 255 (0FFh)
else
AH = 0
Example:
MOV AX, 0 ; AH = 0, AL = 0
MOV AL, -5 ; AX = 000FBh (251)
CBW; AX = 0FFFBh (-5)
RET
Clear Carry flag.
Algorithm:
CF = 0
Clear Direction flag. SI and DI will be incremented by chain instructions: CMPSB, CMPSW, LODSB, LODSW, MOVSB, MOVSW, STOSB, STOSW.
Algorithm:
DF = 0
Clear Interrupt enable flag. This disables hardware interrupts.
Algorithm:
IF = 0
Complement Carry flag. Inverts value of CF.
Algorithm:
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if CF = 1 then CF = 0
if CF = 0 then CF = 1
Compare.
Algorithm:
operand1 - operand2
result is not stored anywhere, flags are set (OF, SF, ZF, AF, PF, CF) according to result.
Example:
MOV AL, 5
MOV BL, 5
CMP AL, BL ; AL = 5, ZF = 1 (so equal!)
RET
Compare bytes: ES:[DI] from DS:[SI].
Algorithm:
DS:[SI] - ES:[DI]
set flags according to result:
OF, SF, ZF, AF, PF, CF
if DF = 0 then
2. SI = SI + 1 o DI = DI + 1
else
4. SI = SI - 1
· DI = DI - 1
Example:
see cmpsb.asm in Samples.
Compare words: ES:[DI] from DS:[SI].
Algorithm:
DS:[SI] - ES:[DI]
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set flags according to result:

OF, SF, ZF, AF, PF, CF
if DF = 0 then
iii. SI = SI + 2 o DI = DI + 2
else
i. SI = SI - 2
· DI = DI - 2
Example:
see cmpsw.asm in Samples.
Convert Word to Double word.
Algorithm:
if high bit of AX = 1 then:
DX = 65535 (0FFFFh)
else
DX = 0
Example:
MOV DX, 0 ; DX = 0
MOV AX, 0 ; AX = 0
MOV AX, -5 ; DX AX = 00000h:0FFFBh
CWD; DX AX = 0FFFFh:0FFFBh
RET
	
	
	Decimal adjust After Addition.
	

	
	
	Corrects the result of addition of two packed BCD values.
	

	DAA
	No
	Algorithm:
	

	
	operands
	
	

	
	
	
	

	
	
	if low nibble of AL > 9 or AF = 1 then:
	

	
	
	AL = AL + 6
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AF = 1
if AL > 9Fh or CF = 1 then:
AL = AL + 60h
CF = 1
Example:
MOV AL, 0Fh ; AL = 0Fh (15)
DAA; AL = 15h
RET
Decimal adjust After Subtraction.
Corrects the result of subtraction of two packed BCD values.
Algorithm:
if low nibble of AL > 9 or AF = 1 then:
AL = AL - 6
AF = 1
if AL > 9Fh or CF = 1 then:
AL = AL - 60h
CF = 1
Example:
MOV AL, 0FFh ; AL = 0FFh (-1)
DAS; AL = 99h, CF = 1
RET
Decrement.
Algorithm:
operand = operand - 1
Example:
MOV AL, 255 ; AL = 0FFh (255 or -1)
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DEC AL
; AL = 0FEh (254 or -2)
RET
Unsigned divide.
Algorithm:
when operand is a byte:
AL = AX / operand
AH = remainder (modulus)
when operand is a word:
AX = (DX AX) / operand
DX = remainder (modulus)
Example:
MOV AX, 203 ; AX = 00CBh
MOV BL, 4
DIV BL; AL = 50 (32h), AH = 3
RET
Halt the System.
Example:
MOV AX, 5
HLT
Signed divide.
Algorithm:
when operand is a byte:
AL = AX / operand
AH = remainder (modulus)
when operand is a word:
AX = (DX AX) / operand
DX = remainder (modulus)
Example:
MOV AX, -203 ; AX = 0FF35h
MOV BL, 4
IDIV BL; AL = -50 (0CEh), AH = -3 (0FDh)
RET
IMUL
REG
Signed multiply.
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Algorithm:
when operand is a byte:
AX = AL * operand.
when operand is a word:
(DX AX) = AX * operand.
Example:
MOV AL, -2
MOV BL, -4
IMUL BL; AX = 8
RET
Input from port into AL or AX.
Second operand is a port number. If required to access port number over 255 - DX register should be used. Example:
IN AX, 4 ; get status of traffic lights.
IN AL, 7 ; get status of stepper-motor.
Increment.
Algorithm:
operand = operand + 1
Example:
MOV AL, 4
INC AL; AL = 5
RET
Interrupt numbered by immediate byte (0..255).
Algorithm:
Push to stack:
i flags register
o
CS
o
IP
IF = 0
Transfer control to interrupt procedure
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Example:
MOV AH, 0Eh ; teletype.
MOV AL, 'A'
INT 10h; BIOS interrupt.
RET
Interrupt 4 if Overflow flag is 1.
Algorithm:
if OF = 1 then INT 4
Example:
i. -5 - 127 = -132 (not in -128..127)

ii. the result of SUB is wrong (124),

iii. so OF = 1 is set:

MOV AL, -5
SUB AL, 127 ; AL = 7Ch (124)
INTO; process error.
RET
No
IRET
operands
JA
label



Interrupt Return.
Algorithm:
Pop from stack:
a) IP
o
CS
o
flags register
Short Jump if first operand is Above second operand (as set by CMP instruction). Unsigned.
Algorithm:
if (CF = 0) and (ZF = 0) then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 250
CMP AL, 5
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JA label1
PRINT 'AL is not above 5'
JMP exit
label1:
PRINT 'AL is above 5'
exit:
RET
Short Jump if first operand is Above or Equal to second
operand (as set by CMP instruction). Unsigned.
Algorithm:
if CF = 0 then jump
Example:
include 'emu8086.inc'
ORG 100h
JAE
label
MOV AL, 5
CMP AL, 5
JAE label1
PRINT 'AL is not above or equal to 5'
JMP exit
label1:
PRINT 'AL is above or equal to 5'
exit:
RET
Short Jump if first operand is Below second operand (as set
by CMP instruction). Unsigned.
Algorithm:
if CF = 1 then jump
Example:
include 'emu8086.inc'
ORG 100h
JB
label
MOV AL, 1
CMP AL, 5
JB label1
PRINT 'AL is not below 5'
JMP exit
label1:
PRINT 'AL is below 5'
exit:
RET
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Short Jump if first operand is Below or Equal to second
operand (as set by CMP instruction). Unsigned.
Algorithm:
if CF = 1 or ZF = 1 then jump
Example:
include 'emu8086.inc'
ORG 100h
JBE
label
MOV AL, 5
CMP AL, 5
JBE label1
PRINT 'AL is not below or equal to 5'
JMP exit
label1:
PRINT 'AL is below or equal to 5'
exit:
RET
JC
label
JCXZ
label
www.smartzworld.com



Short Jump if Carry flag is set to 1.
Algorithm:
if CF = 1 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 255
ADD AL, 1
JC label1
PRINT 'no carry.'
JMP exit
label1:
PRINT 'has carry.'
exit:
RET
Short Jump if CX register is 0.
Algorithm:
if CX = 0 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV CX, 0
JCXZ label1
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PRINT 'CX is not zero.'
JMP exit
label1:
PRINT 'CX is zero.'
exit:
RET
Short Jump if first operand is Equal to second operand (as
set by CMP instruction). Signed/Unsigned.
Algorithm:
if ZF = 1 then jump
Example:
include 'emu8086.inc'
ORG 100h
JE
label
MOV AL, 5
CMP AL, 5
JE label1
PRINT 'AL is not equal to 5.'
JMP exit
label1:
PRINT 'AL is equal to 5.'
exit:
RET
Short Jump if first operand is Greater then second operand
(as set by CMP instruction). Signed.
Algorithm:
if (ZF = 0) and (SF = OF) then jump
Example:
include 'emu8086.inc'
ORG 100h
JG
label
MOV AL, 5
CMP AL, -5
JG label1
PRINT 'AL is not greater -5.'
JMP exit
label1:
PRINT 'AL is greater -5.'
exit:
RET
JGE
label
Short Jump if first operand is Greater or Equal to second
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operand (as set by CMP instruction). Signed.
Algorithm:
if SF = OF then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 2
CMP AL, -5
JGE label1
PRINT 'AL < -5'
JMP exit
label1:
PRINT 'AL >= -5'
exit:
RET
Short Jump if first operand is Less then second operand (as set by CMP instruction). Signed.
Algorithm:
if SF <> OF then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, -2
CMP AL, 5
JL label1
PRINT 'AL >= 5.'
JMP exit
label1:
PRINT 'AL < 5.'
exit:
RET
Short Jump if first operand is Less or Equal to second operand (as set by CMP instruction). Signed.
Algorithm:
if SF <> OF or ZF = 1 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, -2
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CMP AL, 5
JLE label1
PRINT 'AL > 5.'
JMP exit
label1:
PRINT 'AL <= 5.'
exit:
RET
Unconditional Jump. Transfers control to another part of the program. 4-byte address may be entered in this
form: 1234h:5678h, first value is a segment second value is an offset.
Algorithm:
always jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 5
JMP label1 ; jump over 2 lines!
PRINT 'Not Jumped!'
MOV AL, 0
label1:
PRINT 'Got Here!'
RET
Short Jump if first operand is Not Above second operand
(as set by CMP instruction). Unsigned.
Algorithm:
if CF = 1 or ZF = 1 then jump
Example:
include 'emu8086.inc'
JNA
label
ORG 100h
MOV AL, 2
CMP AL, 5
JNA label1
PRINT 'AL is above 5.'
JMP exit
label1:
PRINT 'AL is not above 5.'
exit:
RET
www.smartzworld.com
specworld.in
jntuworldupdates.org
www.jntuhubupdates.com
[image: image237.jpg]|
|
|
ALLBCD-BIN
|
|
|
|

BCD-BINPROCNEAR

PUSHF

PUSHAX
PUSHBX
PUSHCX

.get BCD value
From memory

MOV AL, BCD-Input

Do conversion
|
|
1
'

:End of conversion, binary value in AL

MOV BIN-value, AL

POPCX
POPBX
POPAX

POPF

RET
BCD-BINENDP
Codeends

End start




www.jntuhubupdates.com
jntuhubupdates
JNAE
label
JNB
label
JNBE
label
www.smartzworld.com



Short Jump if first operand is Not Above and Not Equal to second operand (as set by CMP instruction). Unsigned.
Algorithm:
if CF = 1 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 2
CMP AL, 5
JNAE label1
PRINT 'AL >= 5.'
JMP exit
label1:
PRINT 'AL < 5.'
exit:
RET
Short Jump if first operand is Not Below second operand (as set by CMP instruction). Unsigned.
Algorithm:
if CF = 0 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 7
CMP AL, 5
JNB label1
PRINT 'AL < 5.'
JMP exit
label1:
PRINT 'AL >= 5.'
exit:
RET
Short Jump if first operand is Not Below and Not Equal to second operand (as set by CMP instruction). Unsigned.
Algorithm:
if (CF = 0) and (ZF = 0) then jump
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Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 7
CMP AL, 5
JNBE label1
PRINT 'AL <= 5.'
JMP exit
label1:
PRINT 'AL > 5.'
exit:
RET
Short Jump if Carry flag is set to 0.
Algorithm:
if CF = 0 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 2
ADD AL, 3
JNC label1
PRINT 'has carry.'
JMP exit
label1:
PRINT 'no carry.'
exit:
RET
Short Jump if first operand is Not Equal to second operand (as set by CMP instruction). Signed/Unsigned.
Algorithm:
if ZF = 0 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 2
CMP AL, 3
JNE label1
PRINT 'AL = 3.'
JMP exit
label1:
PRINT 'Al <> 3.'
exit:
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RET
Short Jump if first operand is Not Greater then second operand (as set by CMP instruction). Signed.
Algorithm:
if (ZF = 1) and (SF <> OF) then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 2
CMP AL, 3
JNG label1
PRINT 'AL > 3.'
JMP exit
label1:
PRINT 'Al <= 3.'
exit:
RET
Short Jump if first operand is Not Greater and Not Equal to second operand (as set by CMP instruction). Signed.
Algorithm:
if SF <> OF then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 2
CMP AL, 3
JNGE label1
PRINT 'AL >= 3.'
JMP exit
label1:
PRINT 'Al < 3.'
exit:
RET
Short Jump if first operand is Not Less then second operand (as set by CMP instruction). Signed.
Algorithm:
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if SF = OF then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 2
CMP AL, -3
JNL label1
PRINT 'AL < -3.'
JMP exit
label1:
PRINT 'Al >= -3.'
exit:
RET
Short Jump if first operand is Not Less and Not Equal to second operand (as set by CMP instruction). Signed.
Algorithm:
if (SF = OF) and (ZF = 0) then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 2
CMP AL, -3
JNLE label1
PRINT 'AL <= -3.'
JMP exit
label1:
PRINT 'Al > -3.'
exit:
RET
Short Jump if Not Overflow.
Algorithm:
if OF = 0 then jump
Example:
ii. -5 - 2 = -7 (inside -128..127)

iii. the result of SUB is correct,

iv. so OF = 0:

include 'emu8086.inc'
ORG 100h
MOV AL, -5
SUB AL, 2 ; AL = 0F9h (-7)
JNO label1
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PRINT 'overflow!'
JMP exit
label1:
PRINT 'no overflow.'
exit:
RET
Short Jump if No Parity (odd). Only 8 low bits of result are
checked. Set by CMP, SUB, ADD, TEST, AND, OR, XOR
instructions.
Algorithm:
if PF = 0 then jump
Example:
include 'emu8086.inc'
JNP
label
ORG 100h
MOV AL, 00000111b ; AL = 7
OR AL, 0; just set flags.
JNP label1
PRINT 'parity even.'
JMP exit
label1:
PRINT 'parity odd.'
exit:
RET
Short Jump if Not Signed (if positive). Set by CMP, SUB,
ADD, TEST, AND, OR, XOR instructions.
Algorithm:
if SF = 0 then jump
Example:
include 'emu8086.inc'
ORG 100h
JNS
label
MOV AL, 00000111b ; AL = 7
OR AL, 0; just set flags.
JNS label1
PRINT 'signed.'
JMP exit
label1:
PRINT 'not signed.'
exit:
RET
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Short Jump if Not Zero (not equal). Set by CMP, SUB,
ADD, TEST, AND, OR, XOR instructions.
Algorithm:
if ZF = 0 then jump
Example:
include 'emu8086.inc'
ORG 100h
JNZ
label
MOV AL, 00000111b ; AL = 7
OR AL, 0; just set flags.
JNZ label1
PRINT 'zero.'
JMP exit
label1:
PRINT 'not zero.'
exit:
RET
	
	
	Short Jump if Overflow.

	
	
	Algorithm:

	
	
	if OF = 1 then jump

	
	
	Example:

	
	
	; -5 - 127 = -132 (not in -128..127)

	
	
	; the result of SUB is wrong (124),

	
	
	; so OF = 1 is set:

	JO
	label
	include 'emu8086.inc'

	
	
	org 100h

	
	
	MOV AL, -5

	
	
	SUB AL, 127 ; AL = 7Ch (124)

	
	
	JO label1

	
	
	PRINT 'no overflow.'

	
	
	JMP exit

	
	
	label1:

	
	
	PRINT 'overflow!'

	
	
	exit:

	
	
	RET


JP
label




Short Jump if Parity (even). Only 8 low bits of result are checked. Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions.
Algorithm:
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if PF = 1 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 00000101b ; AL = 5
OR AL, 0; just set flags.
JP label1
PRINT 'parity odd.'
JMP exit
label1:
PRINT 'parity even.'
exit:
RET
Short Jump if Parity Even. Only 8 low bits of result are
checked. Set by CMP, SUB, ADD, TEST, AND, OR, XOR
instructions.
Algorithm:
if PF = 1 then jump
Example:
include 'emu8086.inc'
JPE
label
ORG 100h
MOV AL, 00000101b ; AL = 5
OR AL, 0; just set flags.
JPE label1
PRINT 'parity odd.'
JMP exit
label1:
PRINT 'parity even.'
exit:
RET
Short Jump if Parity Odd. Only 8 low bits of result are
checked. Set by CMP, SUB, ADD, TEST, AND, OR, XOR
instructions.
	
	
	Algorithm:
	

	JPO
	label
	if PF = 0 then jump
	

	
	
	
	

	
	
	Example:
	

	
	
	include 'emu8086.inc'
	

	
	
	ORG 100h
	

	
	
	MOV AL, 00000111b ; AL = 7
	

	
	
	OR AL, 0; just set flags.
	

	
	
	JPO label1
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PRINT 'parity even.'
JMP exit
label1:
PRINT 'parity odd.'
exit:
RET
Short Jump if Signed (if negative). Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions.
Algorithm:
if SF = 1 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 10000000b ; AL = -128
OR AL, 0; just set flags.
JS label1
PRINT 'not signed.'
JMP exit
label1:
PRINT 'signed.'
exit:
RET
Short Jump if Zero (equal). Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions.
Algorithm:
if ZF = 1 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 5
CMP AL, 5
JZ label1
PRINT 'AL is not equal to 5.'
JMP exit
label1:
PRINT 'AL is equal to 5.'
exit:
RET
LAHF
No
Load AH from 8 low bits of Flags register.
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Algorithm:
AH = flags register
AH bit: 7 6 5 4 3 2 1 0
[SF] [ZF] [0] [AF] [0] [PF] [1] [CF]
bits 1, 3, 5 are reserved.
Load memory double word into word register and DS.
Algorithm:
REG = first word
DS = second word
Example:
ORG 100h
LDS AX, m
RET
m DW 1234h
DW 5678h
END
AX is set to 1234h, DS is set to 5678h.
Load Effective Address.
Algorithm:
REG = address of memory (offset)
Generally this instruction is replaced by MOV when assembling when possible.
Example:
ORG 100h
LEA AX, m
specworld.in
jntuworldupdates.org
www.jntuhubupdates.com
[image: image246.jpg]


www.jntuhubupdates.com
jntuhubupdates
REG,
LES
memory
No
LODSB
operands



RET
m DW 1234h
END
AX is set to: 0104h.
LEA instruction takes 3 bytes, RET takes 1 byte, we start at 100h, so the address of 'm' is 104h.
Load memory double word into word register and ES.
Algorithm:
REG = first word
ES = second word
Example:
ORG 100h
LES AX, m
RET
m DW 1234h
DW 5678h
END
AX is set to 1234h, ES is set to 5678h.
Load byte at DS:[SI] into AL. Update SI.
Algorithm:
AL = DS:[SI]
if DF = 0 then
· SI = SI + 1
else
· SI = SI - 1
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Load word at DS:[SI] into AX. Update SI.
Algorithm:
AX = DS:[SI]
if DF = 0 then
r SI = SI + 2
else
· SI = SI - 2
Decrease CX, jump to label if CX not zero.
Algorithm:
CX = CX - 1
if CX <> 0 then
· jump
else
· no jump, continue
Example:
include 'emu8086.inc'
ORG 100h
MOV CX, 5
label1:
PRINTN 'loop!'
LOOP label1
RET
Decrease CX, jump to label if CX not zero and Equal (ZF
p 1). Algorithm:

CX = CX - 1
if (CX <> 0) and (ZF = 1) then
s jump
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else
· no jump, continue
Example:
· Loop until result fits into AL alone,

· or 5 times. The result will be over 255

· on third loop (100+100+100),

· so loop will exit.

include 'emu8086.inc' ORG 100h
MOV AX, 0

MOV CX, 5
label1:
PUTC '*'
ADD AX, 100
CMP AH, 0
LOOPE label1
RET
Decrease CX, jump to label if CX not zero and Not Equal
(ZF = 0).
Algorithm:
CX = CX - 1
if (CX <> 0) and (ZF = 0) then
· jump
else
· no jump, continue
LOOPNE
label
Example:
· Loop until '7' is found,

· or 5 times.

include 'emu8086.inc' ORG 100h
MOV SI, 0
MOV CX, 5
label1:
PUTC '*'
MOV AL, v1[SI]
INC SI; next byte (SI=SI+1).
CMP AL, 7
LOOPNE label1
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RET
v1 db 9, 8, 7, 6, 5
Decrease CX, jump to label if CX not zero and ZF = 0.
Algorithm:
CX = CX - 1
if (CX <> 0) and (ZF = 0) then
· jump
else
p no jump, continue
Example:
p Loop until '7' is found,

q or 5 times.

include 'emu8086.inc' ORG 100h
MOV SI, 0
MOV CX, 5
label1:
PUTC '*'
MOV AL, v1[SI]
INC SI; next byte (SI=SI+1).
CMP AL, 7
LOOPNZ label1
RET
v1 db 9, 8, 7, 6, 5
Decrease CX, jump to label if CX not zero and ZF = 1.
Algorithm:
CX = CX - 1
if (CX <> 0) and (ZF = 1) then
· jump
else
· no jump, continue
Example:
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· Loop until result fits into AL alone,

· or 5 times. The result will be over 255

· on third loop (100+100+100),

· so loop will exit.

include 'emu8086.inc' ORG 100h
MOV AX, 0

MOV CX, 5
label1:
PUTC '*'
ADD AX, 100
CMP AH, 0
LOOPZ label1
RET
Copy operand2 to operand1.
The MOV instruction cannot:
set the value of the CS and IP registers.
copy value of one segment register to another segment register (should copy to general register first).
copy immediate value to segment register (should copy to general register first).
Algorithm:
operand1 = operand2
Example:
ORG 100h
MOV AX, 0B800h ; set AX = B800h (VGA memory).
MOV DS, AX; copy value of AX to DS.
MOV CL, 'A'; CL = 41h (ASCII code).
MOV CH, 01011111b ; CL = color attribute.
MOV BX, 15Eh; BX = position on screen.
MOV [BX], CX; w.[0B800h:015Eh] = CX.
RET; returns to operating system.
Copy byte at DS:[SI] to ES:[DI]. Update SI and DI.
Algorithm:
ES:[DI] = DS:[SI]
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if DF = 0 then
vii) SI = SI + 1 o DI = DI + 1
else
3. SI = SI - 1
5. DI = DI - 1
Copy byte at DS:[SI] to ES:[DI]. Update SI and DI.
Algorithm:
ES:[DI] = DS:[SI]
if DF = 0 then
· SI = SI + 2 o DI = DI + 2
else
iv. SI = SI - 2
ii. DI = DI - 2
Unsigned multiply.
Algorithm:
when operand is a byte:
AX = AL * operand.
when operand is a word:
(DX AX) = AX * operand.
Example:
MOV AL, 200 ; AL = 0C8h
MOV BL, 4
MUL BL; AX = 0320h (800)
RET
	
	REG
	Negate. Makes operand negative (two's complement).
	

	NEG
	memory
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Algorithm:
Invert all bits of the operand

Add 1 to inverted operand
Example:
MOV AL, 5 ; AL = 05h
NEG AL; AL = 0FBh (-5)
NEG AL; AL = 05h (5)
RET
No Operation.
Algorithm:
Do nothing
Example:
NOP
NOP
NOP
RET
REG,
memory
memory,
REG
OR
REG, REG
memory,
immediate
REG,
immediate



Logical OR between all bits of two operands. Result is stored in first operand.
These rules apply:
1 OR 1 = 1
1 OR 0 = 1
0 OR 1 = 1
0 OR 0 = 0
Example:
MOV AL, 'A'; AL = 01000001b
OR AL, 00100000b ; AL = 01100001b ('a')
RET
	
	im.byte,
	Output from AL or AX to port.
	

	OUT
	AL
	First operand is a port number. If required to access port
	

	
	im.byte,
	number over 255 - DX register should be used.
	

	
	
	
	

	
	AX
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	DX, AL
	Example:

	DX, AX
	MOV AX, 0FFFh ; Turn on all

	
	OUT 4, AX ; traffic lights.

	
	MOV AL, 100b ; Turn on the third

	
	OUT 7, AL ; magnet of the stepper-motor.


REG
POP
SREG
memory
No
POPA
operands
No
POPF
operands
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Get 16 bit value from the stack.
Algorithm:
operand = SS:[SP] (top of the stack)
SP = SP + 2
Example:
MOV AX, 1234h
PUSH AX
POP DX ; DX = 1234h
RET
Pop all general purpose registers DI, SI, BP, SP, BX, DX, CX, AX from the stack.
SP value is ignored, it is Popped but not set to SP register).
Note: this instruction works only on 80186 CPU and later!
Algorithm:
POP DI
POP SI
POP BP
POP xx (SP value ignored)
POP BX
POP DX
POP CX
POP AX
Get flags register from the stack.
Algorithm:
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flags = SS:[SP] (top of the stack)
SP = SP + 2
Store 16 bit value in the stack.
Note: PUSH immediate works only on 80186 CPU and later!
Algorithm:
SP = SP - 2
SS:[SP] (top of the stack) = operand
Example:
MOV AX, 1234h
PUSH AX
POP DX ; DX = 1234h
RET
Push all general purpose registers AX, CX, DX, BX, SP,
BP, SI, DI in the stack.
Original value of SP register (before PUSHA) is used.
Note: this instruction works only on 80186 CPU and later!
Algorithm:
	PUSHA
	No
	PUSH AX
	

	
	operands
	PUSH CX
	

	
	
	
	

	
	
	PUSH DX
	

	
	
	PUSH BX
	

	
	
	PUSH SP
	

	
	
	PUSH BP
	

	
	
	PUSH SI
	

	
	
	PUSH DI
	


	PUSHF
	No
	Store flags register in the stack.
	

	
	operands
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Algorithm:
SP = SP - 2
SS:[SP] (top of the stack) = flags
Rotate operand1 left through Carry Flag. The number of rotates is set by operand2.
When immediate is greater then 1, assembler generates several RCL xx, 1 instructions because 8086 has machine code only for this instruction (the same principle works for all other shift/rotate instructions).
Algorithm:
shift all bits left, the bit that goes off is set to CF and previous value of CF is inserted to the right-most position.
Example:
STC; set carry (CF=1).
MOV AL, 1Ch; AL = 00011100b
RCL AL, 1; AL = 00111001b, CF=0.
RET
memory,
immediate
REG,
immediate
RCR
memory,
CL
REG, CL
chain
REP
instruction
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Rotate operand1 right through Carry Flag. The number of rotates is set by operand2.
Algorithm:
shift all bits right, the bit that goes off is set to CF and previous value of CF is inserted to the left-most position.
Example:
STC; set carry (CF=1).
MOV AL, 1Ch; AL = 00011100b
RCR AL, 1; AL = 10001110b, CF=0.
RET
Repeat following MOVSB, MOVSW, LODSB, LODSW, STOSB, STOSW instructions CX times.
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Algorithm:
check_cx:
if CX <> 0 then
do following chain instruction
CX = CX - 1
go back to check_cx
else
exit from REP cycle
Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 1 (result is Equal), maximum CX times.
Algorithm:
check_cx:
if CX <> 0 then
do following chain instruction
CX = CX - 1
if ZF = 1 then:
· go back to check_cx
else
ii exit from REPE cycle
else
exit from REPE cycle
Example:
see cmpsb.asm in Samples.
Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 0 (result is Not Equal), maximum
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CX times.
Algorithm:
check_cx:
if CX <> 0 then
do following chain instruction
CX = CX - 1
if ZF = 0 then:
iv. go back to check_cx
else
b) exit from REPNE cycle
else
exit from REPNE cycle
Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 0 (result is Not Zero), maximum CX times.
Algorithm:
check_cx:
if CX <> 0 then
do following chain instruction
CX = CX - 1
if ZF = 0 then:
v. go back to check_cx
else
· exit from REPNZ cycle
else
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exit from REPNZ cycle
Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 1 (result is Zero), maximum CX times.
Algorithm:
check_cx:
if CX <> 0 then
do following chain instruction
CX = CX - 1
if ZF = 1 then:
· go back to check_cx
else
· exit from REPZ cycle
else
exit from REPZ cycle
No
operands
RET
or even
immediate




Return from near procedure.
Algorithm:
Pop from stack:
· IP
if immediate operand is present: SP = SP + operand
Example:
ORG 100h ; for COM file.
CALL p1
ADD AX, 1
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RET
; return to OS.
p1 PROC ; procedure declaration.
MOV AX, 1234h
RET ; return to caller.
p1 ENDP
	
	
	Return from Far procedure.
	

	
	
	Algorithm:
	

	
	No
	
	

	RETF
	operands
	Pop from stack:
	

	
	or even
	o IP
	

	
	
	
	

	
	immediate
	o CS
	

	
	
	if immediate operand is present: SP = SP + operand
	


memory,
immediate

REG,
immediate
ROL
memory,
CL
REG, CL
memory,
immediate

REG,
immediate
ROR
memory,
CL
REG, CL



Rotate operand1 left. The number of rotates is set by operand2.
Algorithm:
shift all bits left, the bit that goes off is set to CF and the same bit is inserted to the right-most position.
Example:
MOV AL, 1Ch; AL = 00011100b
ROL AL, 1; AL = 00111000b, CF=0.
RET
Rotate operand1 right. The number of rotates is set by operand2.
Algorithm:
shift all bits right, the bit that goes off is set to CF and the same bit is inserted to the left-most position.
Example:
MOV AL, 1Ch; AL = 00011100b
ROR AL, 1; AL = 00001110b, CF=0.
RET
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Store AH register into low 8 bits of Flags register.
Algorithm:
flags register = AH
AH bit: 7 6 5 4 3 2 1 0
[SF] [ZF] [0] [AF] [0] [PF] [1] [CF]
bits 1, 3, 5 are reserved.
Shift Arithmetic operand1 Left. The number of shifts is set by operand2.
Algorithm:
Shift all bits left, the bit that goes off is set to CF.
Zero bit is inserted to the right-most position.
Example:
MOV AL, 0E0h; AL = 11100000b
SAL AL, 1; AL = 11000000b, CF=1.
RET
Shift Arithmetic operand1 Right. The number of shifts is set by operand2.
Algorithm:
Shift all bits right, the bit that goes off is set to CF. The sign bit that is inserted to the left-most position has the same value as before shift.
Example:
MOV AL, 0E0h; AL = 11100000b
SAR AL, 1; AL = 11110000b, CF=0.
MOV BL, 4Ch; BL = 01001100b
SAR BL, 1; BL = 00100110b, CF=0.
RET
REG,
Subtract with Borrow.
SBB
memory
memory,
Algorithm:
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	REG
	

	REG, REG
	operand1 = operand1 - operand2 - CF

	memory,
	

	immediate
	

	REG,
	

	immediate
	

	
	Compare bytes: AL from ES:[DI].

	
	Algorithm:


	
	ES:[DI] - AL
	

	
	set flags according to result:
	

	No
	OF, SF, ZF, AF, PF, CF
	

	
	if DF = 0 then
	

	operands
	o DI = DI + 1
	

	
	else
	

	
	o   DI = DI - 1
	


	
	Compare words: AX from ES:[DI].
	

	
	Algorithm:
	

	
	ES:[DI] - AX
	

	
	set flags according to result:
	

	No
	OF, SF, ZF, AF, PF, CF
	

	
	if DF = 0 then
	

	operands
	o DI = DI + 2
	

	
	else
	

	
	o   DI = DI - 2
	


	memory,
	Shift operand1 Left. The number of shifts is set by
	

	immediate
	operand2.
	

	REG,
	
	

	immediate
	Algorithm:
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Shift all bits left, the bit that goes off is set to CF.
Zero bit is inserted to the right-most position.
Shift operand1 Right. The number of shifts is set by operand2.
Algorithm:
Shift all bits right, the bit that goes off is set to CF.

Zero bit is inserted to the left-most position.
Set Carry flag.
Algorithm:
CF = 1
No
STD
operands
No
STI
operands
No
STOSB
operands



Set Direction flag. SI and DI will be decremented by chain instructions: CMPSB, CMPSW, LODSB, LODSW, MOVSB, MOVSW, STOSB, STOSW.
Algorithm:
DF = 1
Set Interrupt enable flag. This enables hardware interrupts.
Algorithm:
IF = 1
Store byte in AL into ES:[DI]. Update SI.
Algorithm:
ES:[DI] = AL
if DF = 0 then
· DI = DI + 1
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else
· DI = DI - 1
Store word in AX into ES:[DI]. Update SI.
Algorithm:
ES:[DI] = AX
if DF = 0 then
· DI = DI + 2
else
· DI = DI - 2
Subtract.
Algorithm:
operand1 = operand1 - operand2
Logical AND between all bits of two operands for flags only. These flags are effected: ZF, SF, PF. Result is not stored anywhere.
These rules apply:
1 AND 1 = 1
1 AND 0 = 0
0 AND 1 = 0
0 AND 0 = 0
Exchange values of two operands.
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Algorithm:
operand1 < - > operand2
Translate byte from table.
Set value of AL register to memory byte at DS:[BX + unsigned AL]
Algorithm:
DS:[BX + unsigned AL] = AL
Logical XOR (Exclusive OR) between all bits of two operands. Result is stored in first operand.
These rules apply:
1 XOR 1 = 0
1 XOR 0 = 1
0 XOR 1 = 1
0 XOR 0 = 0
Assembler directives:
Directives are commands that are part of the assembler syntax but are not related to the x86 processor instruction set. All assembler directives begin with a period An assembler needs predefined alphabetical strings called Assembler directives.
i.e the required storage for a particular constant/variable.
Constant/ variable
Logical names of segments
Types of different routines and modules end of file etc.
ASSUME:
The ASSUME directive is used to tell the assembler the name of the logical segment it
should use for a specified segment.
Ex: Assume DS: Data, CS: code
It tells the assembler that, the inst. for a program car in logical segment code and in segment named data.
If Ex: MOV AX, [BX]; after Assume
It will know that the memory location referred by [BX] is in logical segment DATA.
If we used stack in the program, then this statement should be included.
Assume SS: STACK-HERE
For string instructions which use DI, the assembler must be told that about ES ASSUME ES; string Destination
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DB: Define Byte
The DB directive is used to declare a byte –type variable.
Ex:
PRICES DB 49, 98H, 29H Declare array of 3 bytes named PRICES and initialize 3 bytes as shown.
NAME DB „THOMAS; Declare an array of 6 bytes and initialize with ASCII codes for letters in THOMAS.
TEMP DB 100 DUP (?): Set a side 100 bytes of storage in memory named TEMP and leave it uninitialized.
STORE DB 20H DUP (0): put 0 in all 20H locations.
	DD: Define Double word
	
	

	Ex: ARRAY=PTR DD 25629261 H
	
	

	LES DI, ARRAY-PTR
	
	

	The Low word of this double word 9261 is copied to DI, 2562
	ES.
	

	
	
	

	DQ: Define Quad word
	
	

	To reserve 4 words in memory.
	
	

	Ex: STORAGE DQ 100 DUP (0)
	
	


DT: Define Ten Bytes
Ex: RESULTS DT 20H DUP (0): Declares an array of 20H blocks of 10 bytes each and initialize all 320 bits to 00.
DW: Define word
Ex: WORD DW 1234H, 3456 H, 5678 H.
Declare an array of 3 words and initialize with specified values.
END: End program
It is put after the last statement of a program to tell the assembler that this is the end of the program module.
A carriage return is required after the END directive.
ENDP: End Procedure
This is used along with the name of the procedure to indicate the end of a procedure to assembler.
ENDS: End Segment
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EQU: Equate
It is used to give a name to some value or symbol.
Each time the assembler finds the given name in the program, it will replace the name with the value or symbol you equated with that name. Ex:CONTROL – WORD EQU 11001001; Replacement
MOV AL, CONTROL- WORD; Assignment
EVEN: Align on even memory address. The EVEN directive tells the assembler to increment the location counter to the next even address if it is not already at an even address.
The 8086 can read a word from memory in one bus cycle if word is at Even address, two bus cycles, if word is at odd address.
A NOP instruction is inserted in the location incremented over.
Ex:Data Segment
Average DB 9 DUP (?)
EVEN
Record DW 100 DUP (0)
Data ends
EXTRN: External
This is used to tell the assembler that the names or labels following the directive are in some other assembly module
Ex: For calling a procedure which is in a program module assembled at a different time, you must tell the assembler that the procedure is external.
The assembler will then put the information in the object code file so that the linker can connect the two modules together.
For Variables type (should be specified)
Ex: EXTRN DIVISOR: BYTE
For constant ABS
(defined with EQU in another module)
For a Label near/far
Names/ Labels referred to as external in one module must be declared public with the PUBLIC directive.
EXTRN Statements should usually be bracketed with ENDS directive
Ex: PROCEDURE SEGMENT
EXTRN SMART: FAR
PR OCEDURE ENDS
GLOBAL: Declare symbols as PUBLIC or Extern.
The PUBLIC directive is used to tell the assembler that a specified name r label will be accessed from other modules.
Ex: PUBLIC DIVISOR, DIVIDEND
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SEGMENT:
It is used to indicate the start of the segment.
CODE segment word
This statement tells the assembler that we want the contents of this segment located on
the next available word (even) address.
CODE Segment PUBLIC
GROUP: Group Related Segments
The GROUP directive is used to tell the assembler to group the logical segments named after the directive into one logical group segment. Ex:SMALL Group Code, data, stack.
Assume CS: Small, DS: Small,
SS: Small
INCLUDE: Include source code form file.
It is used to tell the assembler to inset a block of source code form the named file into the current source module.
LABEL:
As the assembler assemblers a section of data declarations or inst. statements, it uses a location counter to keep track of how many bytes it is form the start of a statement at any time.
The Label directive is used to give a name to the current value in the location counter.
It should be followed by a term which specifies the type.
Type
Label used as destination:far/near
in jumps call
To refer data item:byte/word
Ex: for Jump address:
Entry- point LABEL far; can jump to here from another segment
For data reference:
Stack Seg segment Stack
DW 100 DUP (0)
Stack – top LABEL word; given name to next location after last word in stack.
Stack-seg Ends.
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NAME:
It is used to give a specific name to each assembly module.
Ex: Name PC-Board
ORG:
It tells the assembler to set the location counter to a desired value at any point in the program.
Ex: ORG 2000 H
Org $ + 100
Current value
PROC: Procedure:
It is used to identify the start of a procedure.
Ex: SMART PROC FAR;
Name ofthe procedure
Procedureis far
For ending it ENDP is used.
OPERATORS:
PTR:
The PTR operator is used to assign a specific type to a variable or to a label.
Ex:
1.INC [BX]
It will not know whether to increment byte/word.
INC BYTE PTR [BX]
2. Array of words:
WORDS DW 437AH, OB927H, 7C41 H for accessing a byte in the array MOV AL, BYTE DTR WORDS
· For Jump Instructions: JMP [BX]

JMP BYTE PTR[BX]
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OFFSET:
It is used to determine the offset/ displacement of a named data or proc form
thestart of the segment.
Ex:MOV BX, OFFSET Prices
ADD AX, [BX]
SHORT:
It is used to tell the assembler that only a 1-byte displacement is needed to code a jump inst.
If the jump destination is after Jump inst, it automatically reserves 2-bytes for the
displacement.
JMP LABEL
PC
2 bytes
JMP Short Label
PC
The short operator saves 1 byte of memory by telling that it needs to reserve only 1 byte for this particular jump.
· byte TYPE:

It tells the assembler to det. The type of a specified variable.
TYPE
Forbyte 1 Word 2 Double Word 4
Ex: MOV AL, TYPE Array
Length: (Not implemented in MASM)
No. of elements in some named data item.
Questions:
What are the assembler directives and pseudo-ops?
Explain all the assembler directives, pseudo-ops and operators withsuitable examples.
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PROCEDURES:
Def: A sub program or a sequence of instructions is called a procedure.
Program flow for
Single Procedures:
When 8086 executes a call inst. the corresponding procedures serviced and returns to main program through RET.
Nested Procedures:
Advantage:
A Large Problem (JOB) can be broken down into several modules, each of which can be individually written, tested and debugged.
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Four forms of CALL instruction:
1. Direct with in Segment Near Call:
It tells 8086 to produce the starting address of the procedure by adding a 16-bit signed displacement contained in the instruction to the contents of IP. Ex:CALL 0158 H
CALL NEAR
· Indirect with in Segment Near Call: When this form of call executes,
IP 16-bit value from Reg /memory location. Ex:CALL BP
CALL WORD PTR [BX]
· Direct Inter Segment Far Call:

If the procedure is in another segment, IP and CS values have to be changed.
OP codeOffset lowOffset high Seg lowSeg high
IP offset
CS segment base.
4. Indirect Inter Segment Far Call:
It replaces IP and CS with new values (two 16-bit values) from memory
IP offset
CSseg. Base
Ex: CALL DWORD PTR [BX]
IP low [BX]
IP high [BX+1]
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CS Low
[BX+2]
CS High
[BX+3]
Example for far call:
Code segment
Note: It a procedure is in CALL inst, you must declare it far with FAR directive.
When the assembler finds that the procedure is declared as far; then the CALL is
automatically coded as inter segment CALLL and return as inter segment return.
At the start of main prog, we use ASSUME directive, ASSUME CS: CODE to tell
the assembler to compute the offsets of the following inst. form the segment base
named CODE.
Similarly use
ASSUME CS: Procedures
(For offsets to start form segment base named procedures)
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When the assembler finally codes the CALL inst; it puts value of procedures
CS
Offset of first inst.
Of proceduresIP.
Passing Parameters to and form Procedures:
The addresses/data values passed back and forth between the main line and the procedure are commonly called parameters.
The four major ways of passing parameters to and from a procedure are:
ii. In registers

iii. In dedicated memory locations accessed by name

iv. With pointers passed in registers

v. With the stack.

i) Passing Parameters in Registers:

The main program may store the parameters to be passed to the procedure in the available CPU register5s and the procedure may use the same register content of execution.
The original contents of the sued CPU register may change during execution of the procedure.
This may be avoided by pushing all the register content to be used to the stack sequentially at the start of the procedure and by popping them at the end of it in an opposite sequence.
Example of BCD (packed) to Binary conversion:
Data Segment
BCD-Input dB 17H
Bin-value dB?
Data ends
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CALL BCD-BIN; Near call
BCD-BIN PROC NEAR
Disadvantage: The no. of registers you use limits the number of parameters passed.
2. Passing Parameters in General Memory:
A main program may store the parameter to be passed at a known memory location and the procedure may sue it for accessing the parameter.

In the pervious example, we can directly access the BCD-input and BIN-value by
name, w/o storing it in registers.
Example:
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The limitation is that its procedure always 100 KS for a memory location named BCD-Input to get its data and will always put the result in BIN-value.
i. It cant be directly used for conversion. (This method makes the procedure non-re entrant)
3.Passing Parameters using pointers:
This method uses registers to pass the procedure pointers to the desired data. For the above prog, use SI and DI to store the offset of BCD-Input and BCD-BIN. MOV SI, offset BCD-Input
MOV DI, offset BIN value
CALL BCD-BIN
BCD-BIN PROC NEAR
PUSH F
PUSH AX
www.smartzworld.com
specworld.in
jntuworldupdates.org
www.jntuhubupdates.com
[image: image276.jpg]


www.jntuhubupdates.com
jntuhubupdates
PUSH BX
PUSH CX
Code ends
End start
This pointer approach is versatile because we can pass the procedure pointers to data any where in memory
i. Passing Parameters using Stack:
To pass parameters to a procedure using the stack, we PUSH. The parameters on the stack (in mainline prog) before calling the procedure.

Inst. in the procedure then read the parameters form the stack as needed. Like wise, parameters to be passed form procedure back to calling program are written to the stack by the inst. in the proc.

Note: This method is used for programs which allow several users to time share a system or those which consist of a mixture of HLL and ALP.

Whenever the Stack is used to pass par; it is very imp. To keep track of what is pushed on the stack and where the SP is at each point in the program.

MOV AL, BCD-Input
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POP BP
POP CX
POP BX
POP AX
POP F
RET
BCD-BIN ENDP
Code ends
End start
One potential problem to watch for when using the stack to pass parameters is stack over flow.
Stack over flow means that the stack fills up and overflows the memory space that is set a side.
To cure this, always number of POPs should be equal to number of pushes or in some other way make sure the stack pointer gets back to its initial position.
Applications:
	Parameters passing using Registers:
	For simple programs with few
	

	parameters to
	
	

	
	Pass
	

	Parameters passing using pointers:
	For passing arrays or other data
	

	
	
	

	structure
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(It is better than accessing directly by
name (using memory)
Parameters passing using stack
:
For procedure in a multi user system,

procedures called form a high level
language program
Questions:
What is the role of stack in calling a subroutine and returning from theroutine?
What is the difference between NEAR and FAR procedure?
How can we pass parameters using stack? Implement the BCD to Binaryconversion by passing parameters to stack.
Define stack overflow?
Re entrant and Recursive Procedures:
Re entrant Procedures:
A procedure must be written in such a way that it can be interrupted, used and “reentered” without losing or writing over anything,. Such type are said to be Re entrant procedures.
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To be re entrant, a procedure must first of all push the flags and all Registers used in the procedure.
To be re entrant, a program should use only
· Registers

· Pointers

· Stack

Why parameters passage using names (general Memory) is not used?
Suppose that 8086 is in the middle of executing the BCD-BIN procedure and an interrupt occurs.
Further, suppose that the interrupt service routine loads a new value in the memory location named BCD-Input and calls BCD-BIN procedure again. The initial value in BCD- Input has now been written over.
When execution returns to BCD-BIN after the Interrupt service procedure, the value used for BCD-Input by Interrupt proc. will be put instead of the desired Initial value.
Recursive Procedures:
A recursive procedure is a procedure which calls itself.
A simple example is to compute factorial of a no l N b/w to 8.
a) Program flow for N=1
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The procedure will call it self again to compute the next (N-1)! Value or 1!.
(c ). Pseudo code for Factorial
Procedure facto
If N=1
Factorial =1
RET
Else
Repeat
Decrement N
CALL FACTO
UNTIL N =1
Multiply (N-1)! * Previous N
RET
We can represent a flow chart also if necessary.
Recursive procedures are implemented using Stack.
Stack –Seg Segment Stack
DW 200 DUP (0)
Stack –TOP Label word
Stack –Seg Ends
Number EQU 08
Code Segment
Assume CS: code, SS: stack-seg
Start: MOV AX, stack-seg
MOV SS, AX
MOV SP, offset stack-top
SUB SP, 0004H; allocate
Space for two words to store the computed factorial
ADD SP, 2;
get over original no. in stack

POP AX;
get low word of the result

POP DX;
get high word of the result

NOP
JMP FIN
FACTO PROC NEAR
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GO-ON: SUB SP, 0004 H; Make space in stack for preliminary factorial
DEC AX
PUSH AX; Save N-1 on stack
CALL FACTO
MOV BP, SP
MOV AX, [BP+2]; Last (N-1)! From stack to AX.
MUL WORD PTR [BP+16]; Multiply by prev. N
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Questions:
What are the different ways to make a program reentrant? Explain eachwith an example.
Can you write two different code segments in a program? If yes supportwith an example.
Implement the program to delete the bytes between 0h and 66h usingreentrant procedures.
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Assembler Macros
Comparison of Macros and Procedures:
Whenever we need to use a group of inst. several times through out a program, there are two ways to write the group of inst.
Procedure:
· One way is to write the group of instructions as a separate procedure.
Adv: The machine codes for the group of inst. in the procedure have to be put in memory only once.
Dis: Need for a stack
Over head time reg. to call the procedure and return to calling program.
· Macro :

A macro is a group of inst. we bracket and give a name to at the start of our program.
For each call of Macro, the assembler will insert the defined group of
inst.
Replacing the macro with inst. is called „Expanding a Macro.
Adv:
Macro Avoids the over head time involved in calling and returning from a procedure. So executes faster.
Dis:
The assembler has to generate machine code each time the macro is called. Generating in-line code each time the macro is called requires more memory for the program than suing a procedure.
Simple Macro Definitions without Parameters:
Syntax:
Macro name MACRO [parameter, list]; define a Macro
[Instructions]; Body of Macro
; End of Macro
END M
The macro definition appears before the coding of any segment.
A simple example which defines two Macros: initialize and finish.
INIT: used for initializing segment registers.
FINISH: Which ends processing
Syntax for Macro call:
Ex: INIT
FINISH
INIT MACRO
MOV AX, data
MOV DS, AX
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MOV ES, AX
ENDM
FINISH MACRO
MOV AX, 4C00H
INT 21H
ENDM
Message DB „Test of Macro, 13, 10, „$
BEGIN PROC FAR
Passing Parameters to Macros:
We can define parameters in the operand as Dummy Arguments.
A dummy argument may contain any valid name; including a register
name such as CX. (up to 120 arguments can be passed)
Ex: A macro definition named PROMT provides for the use of INT 21H function 09H to display messages:
A dummy arg. In a macro definition tells the assembler to match its name with any occurrence of the same name in the macro body.(LEAs operand matches)
When using this macro inst, we have to supply the name of the message; which references a data area terminated by a dollar sign. Message 2 DB „Enter the data; „$.
To display this using PROMPT, supply the name message 2 as a
parameter.
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PROMPT message 2
The parameter (message 2) matches the dummy argument (message) in the original macro definition.
Comments can also be given inside a macro using a semicolon.
INIT MACRO
MOV DS, AX
MOV ES, AX
ENDM
FINISH MACRO
MOV AH, 4 CH
INT 21 H
ENDM
PROMPT MACRO Message
· This macro permits to display massage MOVE AH, 09H

LEA DX, Message INT 21H ENDM

Message 1db „Name?, „$ Message 2 DB „Address?, „$ Begin PROC FAR

INIT

PROMPT Message 1 PROMPT Message 2
FINISH Begin ENDP
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UNIT-I
INTRODUCTION TO MICROPROCESSOR
A common way of categorizing microprocessors is by the no. of bits that their ALU can work with at a time.
(v) The first commercially available microprocessor was the INTEL 4004, produced in 1971.

It has 3200 PMOS transistors.

It is a 4-bit device used in calculator.

(vi) In 1972, Intel came out with the 8008 which is 8-bit.

(vii) In 1974, Intel announced the 8080, which had a larger instruction set then 8008 8080 used NMOS transistors, so it operated much faster than the 8008.

The 8080 is referred to as a “Second generation Microprocessor”

(viii) Next Motorola came out with the MC6800, another 8-bit CPU

The 6800 had the advantage that it req. only a +5v supply rather than -5v, +5v 5+12 v
(vii) Next is the MOS technology 6502 CPU used in Apple II microcomputer, and zilogz80, used as CPU in the Radio shack TRS-80 micro computer

(viii) Dedicated or Embedded controllers:

In 1976, Intel introduced the 8048, which contains an 8-bit CPU, RAM, ROM and some I/O parts all in one 40-pin package. These devices are often referred to as Microcontrollers.
(ix) Bit Slice Processors: An advanced micro devices 2900 family of devices. It includes 4-bit ALUS, MUXS.

The term slice comes from the fact that these parts can be connectd in parallel to work.

(x) General Purpose CPUS:

After Motorola came out with MC6800, Intel produced the 8085, an up grade of 8080 that required +5V supply.
Motorola then produced MC6809 (8-bit)
In 1978, Intel came out with the 8086, which is16-bit processor.
Next Motorola came out with 16-bit MC68000.
The last evolution s 32-bit processor, Intel 80386, MC68020.
COMPONENTS OF MICROCOMPUTER
Key board: Through which instructions are enters into the microcomputer.
Display Device: displays messages and results.
ROM: Permanent programs are stored.
RAM: temporary or trail programs are written.
Computer uses for storing temporary int. during program execution.
CPU: Manages entire operation
Takes i/ps from permanent programs stored in the ROM or temporary in RAM on the basis of an Instruction set that is recognized by the CPU
It also takes i/p form the keyboard (or from other peripheral devices) or gives o/p to the Display device (or to other peripheral device through appropriate interfaces. CLOCK: (square wave oscillator) which drives the CPU to perform at a certain rate.
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The Keyboard:
It is a set of keys through which a user can enter a program, put in necessary data, and interact with the computer through appropriate commands.
The Keyboard Interface:
The keyboard operation, i.e, pressing of keys (switch closures), does not usually generate signals which can be directly used by the computer, it should be transformed into format that can be recognized by the computer.
This is done by the keyboard Interface which takes the inputs from the keyboard and generates o/ps in suitable format based on information which is characteristic of the key pressed.
The Display:
Through the display element, the computer sends out information, such as results of any calculation it has carried out a cc. to some program, infer on the status of computer. The Display Interface:
Like the keyboard Interface, an appropriate interface is normally necessary for taking information from the computer operation control and making it available to the display device in the appropriate format. This is done by the Display Interface.
Beyond the Display Interface, but before the display element (such as CED) there is oft a need of power amplifying devices, b/c the final display device generally needs a power level not ordinarily available form the interface integrated circuit.
The Read Only Memory (ROM):
The permanent memory device/area is called ROM, because whatever be the memory contents of ROMs, they cannot be over written with some other information.
For a blank ROM, the manufacturer supplies the device without any inf. In it, information can be entered electrically into the memory space. This is called burning a ROM or PROM.
There is a type of PROM whose contents can be erased by shining UV radiation on memory area; these devices are called EROMS – Erasable PROMS.
There is yet another type of PROM which can be erased by giving appropriate electrical signals, these are called E2PROMS (Electrically Erasable PROMS)
Burning can be done by allowing a string of signal pulses into the PROM device and holding a designated IC pin at some prescribed high voltage. Many permanent programs are stored in ROMS.
The Random Access Memory (RAM):
Besides the ROM area, every computer has some memory space for temporary storage of data as well as for programs under development. These memory devices are RAMs or Read – write memory.
The contents of it are not permanent and are altered when power is turned off. So the RAM memory is considered to be volatile memory.
When alternate power, such as in the form of a battery, is provided, the RAM is then said to have a battery back-up.
The Central Processing Unit (CPU):
This device coordinates all operations of a micro computer. It fetches programs stored in ROMs or RAMs and executes the instructions depending one a specific Instructions set, which is characteristic of each type of CPU, and which is recognized by the CPU.
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The process of converging attention onto a certain memory location is done by theDPU by providing specific signals on the address lines that emerge from the CPU and are connected to the memory devices, and data is read by the CPU through asset of data lines that run b/w the memory devices and the CPU
In fact, reading the contents of a certain memory location or writing at a certain memory location is done by the same set of address and data lines, whether the CPU is to do read/write or do an I/O operation depends on the status of control lines that come out of the CPU.
Thus, for a Read operation, the Read line is made active, for a write operation, the write line is made active, and like wise for an I/O operation.
While the CPU is running a program, it can be interrupted, for this purpose the CPU has a no. of Interrupt lines.
An active signal on any one of these lines interrupts the on going CPU operation, and makes it run another program on priority basis, after which it returns to the original program.
Besides the parallel data lines, CPU s also provide serial data input and o/p lines.
ADDRESS lines/ Address Bus:
The address lines originate from the CPU, the exact no. of these lines depends on the specific CPU, the larger the no. of lines, the greater the capacity to provide alternative addresses and hence greater addressing capability.
With n address lines: add. Capability is 2n. For 16 address lines: add. Capability is 216. Besides their use for memory Read /write app., the address lines could be selectively combined through logic ckts. {decoders) to provide outputs only when certain specific addresses are present, which could be used to selectively turn ON specific ICs, these o/p lines then act as chip selects or chip enables.
The set of address lines is also called address bus.
Data Lines/Data Bus:
The no .of data lines, like add. Lines vary with the specific CPU
The set of data lines is database like the add. Bus
Unlike add. Bus, the data bus is bidirectional because while the information on the add. Bus always flows out of the CPU; the data can flow both out of the CPU as well as into the CPU.
Control lines/ control Bus:
The no . of control lines also depends on the specific CPU one is using.
Ex : Read, Write lines are examples of control lines
Status lines:
It provides information about the nature of instruction execution that is being carried out at a given time by the CPU
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CLOCK
The clock is a symmetrical square wave signal that drives the CPU
In many primitive microcomputers, the clock signal had to be generated outside the CPU, but in many CPUs the clock signal gets generated inside the CPU (with a quart and crystal and a few passive components connected externally. Operation:
The clock signal drives the CPU; the address bus, data bus and control bus come out of CPU and go to ROMs, RAM and Display/ Keyboard Interfaces.
The chip selects are generated by decoding the address bus, and the individual chip selects are feeded to all components including the peripheral device.
The interrupt lines go to appropriate pins of the CPU either directly from the keyboard, or from other peripheral devices.
The 8085 CPU
Architecture of a Microprocessor:
The salient features of 8085 μp are:
· It is a 8 bit microprocessor.

· It is manufactured with N-MOS technology.

· It has 16-bit address bus and hence can address up to 216 = 65536 bytes (64KB)

memory locations through A -A .
0 15

· The first 8 lines of address bus and 8 lines of data bus are multiplexed AD – AD .

0
7
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• Data bus is a group of 8 lines D – D .
0 7

· It supports external interrupt request.

· A 16 bit program counter (PC)

· A 16 bit stack pointer (SP)

· Six 8-bit general purpose register arranged in pairs: BC, DE, HL.

· It requires a signal +5V power supply and operates at 3.2 MHZ single phase clock.

· It is enclosed with 40 pins DIP (Dual in line package).
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Functional Description:
The 8085 is an 8-bit up capable of add. up to 64k bytes (216 = 65,536) of memory.
It has 8-addressable 8-bit registers, six of which can also be used as three pairs of 16-bit registers.
There are five H/W Interrupts, in order of decreasing priority:
TRAP
RST 7.5
RST 6.5
RST 5.5
INTR
TRAP is unmaskable
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The FLAG Register:
The sign flag:
The bit 7 (MSB) of the 8-bits is used for the sign of data in the accumulator, then the numbers can be used in the range -128 to +127. „0→ positive
„1→ negative
The zero flag:
If the result obtained after executing an instruction is zero. ZF = 1
Other wise ZF = 0
If result is zero, and carry is present then both ZF=1 and CF = 1
(iii) The carry flag:
In both addition and subtraction involving two 8-bit no.s,
Addition: overflow from higher order bit substation: Borrow
DF is set to 1.
The Auxiliary carry flag (AC):
This flag is used in BCD arithmetic.
This is set for an over flow out of bit 3.
The parity flag:
Parity is defined by the no. of 1s present in the Accumulator.
If parity is even, P →1
If parity is odd, P →0
The Accumulator, the flag reg. and f a few temporary registers constitute the ALU.
INTERNAL CLOCK GENERATOR:
The maximum Frequency of 8085 CPU can operate at is 3.125 MHZ, using a Quartz Crystal oscillator.
Whether it is external or internally generated clock signal, this signal freq is halved
before it is used in the timing operations
INTERRUPTS:
The five H/W interrupts are classified into three types depending on their maskability nd
the way they can be masked.
First: INTR
Second: RST 5.5
RST 6.5
RST 7.5
Third: TRAP
INTR:
This interrupt is maskable.
It can be enabled by the instruction ENABLE INTERRUPT (EI) and disabled by
DISABLE INTERRUPT (DI).
The INTR interrupt requires external H/W to generate a Restart (RST) inst. (There are eight such inst. RST0-RST7, which point to a fixed memory address), which is laced externally on the databus.
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INTR can also be controlled by the peripheral chip 8259 (Programmable Interrupt Controller), in which instead of RSTs, CALL instructions can be generated, which can vector the CPU to specific subroutines at predetermined addresses. RST 5.5, RST 6.5, RST 7.5:
These are also maskable by the use of SIM (Set Interrupt mask) instruction.
To enable or disable the Interrupts, specific data is first loaded into the Accumulator. The status of Interrupt masks at a given time could be read by a RIM instruction. SIM and RIM for interrupts:
The 8085 provide additional masking facility for RST 7.5, RST 6.5 and RST 5.5 using SIM instruction.
The status of these interrupts can be read by executing RIM instruction.
The masking or unmasking of RST 7.5, RST 6.5 and RST 5.5 interrupts can be performed by moving an 8-bit data to accumulator and then executing SIM instruction.
The format of the 8-bit data is shown below.
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SID (Serial Input Data) line
-There is an One bit Input line inside the 8085 CPU (Pin number 5)
-1 bit data can be externally read and stored using this SID line
-The data that is read is stored in the A7th bit of the Accumulator
-RIM instruction is used to read the SID line
Fig1:
Example Pseudocode:
· RIM

· A7 _ (SID)

As seen from the figure 1, if the SID line is connected with +5V and RIM
instruction is executed, then the Accumulators MSB bit will be loaded with a Logic 1
if the SID line is connected with 0V (GND) and RIM instruction is executed, then the
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SOD (Serial Output Data) Line
-There is a One bit Output port inside the 8085 CPU (Pin number 4
-1 bit data can be externally written in this port.
-To write data into this port, SIM instruction is used.
-The data that is to be written in this port must be stored in the A7th bit of the Accumulator.
· Bit A6 of the Accumulator is known as SOE (Serial output Enable). This bit Must be set to 1 to enable Serial data output.

Fig: 4

Example Pseudocode:
To write a logic 1 in this SOD line, Load the accumulator with C0H
To write a logic 0 in this SOD line, Load the accumulator with 40H
Pseudocode:
A_40H
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SIM
SOD_ (A7)
Hardware Interrupts on the 8085 CPU:
THE 8086 MICRO PROCESSOR FAMILY
The Intel 8086 is a 16-bit Micro processor. The term 16-bit means that its ALU, its internal registers, and most of its instructions are designed to work with16-bit binary words.
It has 16-bit data bus, so it can read data from or write data to memory and ports either 16 bits or 8-bits at a time.
It has 20-bit address bus, so it can address 220 ( 1,048,576) memory locations. Each of the 1,048,576 memory addresses of the 8086 rep. a byte wide location.
The Intel 8088 has same ALU, the same registers, and the same instruction set as 8086.
(8086: 16-bit add.bus and 8-bit data bus)
The Intel 80186 is an improved version of 8086 and 80188 is an improved version of 8088.
The Intel 80286 is a 16-bit, advanced version of 8086 which was specifically designed for used in a multiuser or multi tasking computer.
Next Intel 80386 is a 32-bit up which can directly address up to 4 GB of memory.
Lastly 80486, is an evolutionary step up from the 80386.
8086 Internal Architecture:
•8086 has two blocks BIU and EU.
•The BIU performs all bus operations such as instruction fetching, reading and writing operands for memory and calculating the addresses of the memory operands. The instruction bytes are transferred to the instruction queue.
•EU executes instructions from the instruction system byte queue.
•Both units operate asynchronously to give the 8086 an overlapping instruction fetch and execution mechanism which is called as Pipelining. This results in efficient use of the system bus and system performance.
•BIU contains Instruction queue, Segment registers, Instruction pointer, Address adder. •EU contains Control circuitry, Instruction decoder, ALU, Pointer and Index register, Flag register.
BUS INTERFACE UNIT:
•It provides a full 16 bit bidirectional data bus and 20 bit address bus.
•The bus interface unit is responsible for performing all external bus operations.
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Specifically it has the following functions:
•Instruction fetch, Instruction queuing, Operand fetch and storage, Address relocation and Bus control.
•The BIU uses a mechanism known as an instruction stream queue to implement a pipeline architecture.
•This queue permits prefetch of up to six bytes of instruction code. When ever the queue of the BIU is not full, it has room for at least two more bytes and at the same time the EU is not requesting it to read or write operands from memory, the BIU is free to look ahead in the program by prefetching the next sequential instruction.
•These prefetching instructions are held in its FIFO queue. With its 16 bit data bus, the BIU fetches two instruction bytes in a single memory cycle.
•After a byte is loaded at the input end of the queue, it automatically shifts up through the FIFO to the empty location nearest the output.
•The EU accesses the queue from the output end. It reads one instruction byte after the other from the output of the queue. If the queue is full and the EU is not requesting access to operand in memory.
•These intervals of no bus activity, which may occur between bus cycles are known as Idle state.
•If the BIU is already in the process of fetching an instruction when the EU request it to read or write operands from memory or I/O, the BIU first completes the instruction fetch bus cycle before initiating the operand read / write cycle.
•The BIU also contains a dedicated adder which is used to generate the 20bit physical address that is output on the address bus. This address is formed by adding an appended 16 bit segment address and a 16 bit offset address.
•For example: The physical address of the next instruction to be fetched is formed by combining the current contents of the code segment CS register and the current contents of the instruction pointer IP register.
•The BIU is also responsible for generating bus control signals such as those for memory read or write and I/O read or write.
EXECUTION UNIT
The Execution unit is responsible for decoding and executing all instructions. •The EU extracts instructions from the top of the queue in the BIU, decodes them, generates operands if necessary, passes them to the BIU and requests it to perform the read or write bys cycles to memory or I/O and perform the operation specified by the instruction on the operands.
•During the execution of the instruction, the EU tests the status and control flags and updates them based on the results of executing the instruction.
•If the queue is empty, the EU waits for the next instruction byte to be fetched and shifted to top of the queue.
•When the EU executes a branch or jump instruction, it transfers control to a location corresponding to another set of sequential instructions.
•Whenever this happens, the BIU automatically resets the queue and then begins to fetch instructions from this new location to refill the queue.
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GENERAL PURPOSE REGISTERS
8086 CPU has 8 general purpose registers, each register has its own name:
AX - the accumulator register (divided into AH / AL):
t Generates shortest machine code

u Arithmetic, logic and data transfer

v One number must be in AL or AX

w Multiplication & Division

x Input & Output

BX - the base address register (divided into BH / BL).
CX - the count register (divided into CH / CL):
· Iterative code segments using the LOOP instruction

· Repetitive operations on strings with the REP command

· Count (in CL) of bits to shift and rotate

DX - the data register (divided into DH / DL):
· DX:AX concatenated into 32-bit register for some MUL and DIV operations

· Specifying ports in some IN and OUT operations
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SI - source index register:
s Can be used for pointer addressing of data

t Used as source in some string processing instructions

u Offset address relative to DS

DI - destination index register:
· Can be used for pointer addressing of data

· Used as destination in some string processing instructions

· Offset address relative to ES

BP - base pointer:
· Primarily used to access parameters passed via the stack

· Offset address relative to SS

SP - stack pointer:
· Always points to top item on the stack

· Offset address relative to SS

· Always points to word (byte at even address)

· An empty stack will had SP = FFFEh
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SEGMENT REGISTERS
CS - points at the segment containing the current program.
DS - generally points at segment where variables are defined.
ES - extra segment register, it's up to a coder to define its usage.
q - points at the segment containing the stack.
Although it is possible to store any data in the segment registers, this is never a good idea. The segment registers have a very special purpose - pointing at accessible blocks of memory.
Segment registers work together with general purpose register to access any memory value. For example if we would like to access memory at the physical
address 12345h(hexadecimal), we could set the DS = 1230h and SI = 0045h. This way we can access much more memory than with a single register, which is limited to 16 bit values.
The CPU makes a calculation of the physical address by multiplying the segment register by 10h and adding the general purpose register to it (1230h * 10h + 45h = 12345h):

	The address formed with 2 registers is called an effective
	address.

	Bydefault BX,SI and DI registersworkwith DS segment
	register;

	BP and SP workwith SS segment
	register.

	Other general purpose registers cannot form an effective
	address.

	Also, although BX can form an effective address, BH and BL cannot.
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Logical And Physical Address:
Addresses within a segment can range from address 00000h to address 0FFFFh. This corresponds to the 64K-byte length of the segment. An address within a segment is called an offset or logical address. A logical address gives the displacement from the address base of the segment to the desired location within it, as opposed to its "real" address, which maps directly anywhere into the 1 MB memory space. This "real" address is called the physical address.
What is the difference between the physical and the logical address?
The physical address is 20 bits long and corresponds to the actual binary code output by the BIU on the address bus lines. The logical address is an offset from location 0 of a

given segment.
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When two segments overlap it is certainly possible for two different logical addresses to map to the same physical address. This can have disastrous results when the data begins to overwrite the subroutine stack area, or vice versa. For this reason you must be very careful when segments are allowed to overlap.
You should also be careful when writing addresses on paper to do so clearly. To specify the logical address XXXX in the stack segment, use the convention SS:XXXX, which is equal to [SS] * 16 + XXXX.
Advantages of Segment Registers:
t Allow the memory capacity to be 1 MB even though the addresses associated with the individual inst. are only 16-bits wide.

u Allow the inst, code, or stack portion of a program to be more than 64 KB long by using more than one segment.

v Facilitate the use of separate memory areas for a program, its data and the stack.

w Permit a program and /or its data to be put into diff. areas of memory each time the program is executed. (Relocation)

The simpler and conventional approach is to let both the code and data reside in one contiguous area in memory and put the stack in some fixed area. This is satisfactory, when one prog, is kept in memory at a time but not in multi programming.

SPECIAL PURPOSE REGISTERS
IP - the instruction pointer:
· Always points to next instruction to be executed

· Offset address relative to CS

IP register always works together with CS segment register and it points to currently executing instruction.
FLAGS REGISTER
Flags Register - determines the current state of the processor. They are modified automatically by CPU after mathematical operations, this allows to determine the type of the result, and to determine conditions to transfer control to other parts of the program. Generallyyoucannotaccesstheseregistersdirectly.
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· Carry Flag (CF) - this flag is set to 1 when there is an unsigned overflow. For example when you add bytes 255 + 1 (result is not in range 0...255). When there is no overflow this flag is set to 0.
· Parity Flag (PF) - this flag is set to 1 when there is even number of one bits in result, and to 0 when there is odd number of one bits.

· Auxiliary Flag (AF) - set to 1 when there is an unsigned overflow for low nibble (4 bits).

· Zero Flag (ZF) - set to 1 when result is zero. For non-zero result this flag is set to 0.
· Sign Flag (SF) - set to 1 when result is negative. When result is positive it is set to0. (This flag takes the value of the most significant bit.)

· Trap Flag (TF) - Used for on-chip debugging.

· Interrupt enable Flag (IF) - when this flag is set to 1 CPU reacts to interrupts from external devices.

· Direction Flag (DF) - this flag is used by some instructions to process data chains, when this flag is set to 0 - the processing is done forward, when this flag is set to 1the processing is done backward.

· Overflow Flag (OF) - set to 1 when there is a signed overflow. For example, when you add bytes 100 + 50 (result is not in range -128...127).

INTRODCUTION TO PROGRAMMING THE 8086:
Machine Language:
Programs can be written as simply a sequence of binary codes for the
instructions that a microcomputer executes.
This binary form of the program is referred to as machine Language, b/c it is the form required by the m/c.
However, it is easy for an error to occur when working with a long series of 0s and 1s.
Therefore, Hexadecimal representation is used for memory addresses. They are easy and compact, every nibble (4-bits) can b converted into Hex from.
	Ex:
	1
	2
	3
	4
	H

	
	0001
	0010
	0011
	0100
	binary


Assembly Language: (Low –Level language) :
To make programming easier, many programmers write programs in assembly language. They then translate it to m/c language so that it can be loaded into memory and run.
Assembly language used two, three or four letter mnemonics to rep. each instruction type.
A mnemonic is just a device to help you remember something.
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	Ex: for sub traction, the mnemonic is SUB
	
	

	To copy data from one location to other, MOV
	
	

	Assembly language Program Statement format:
	
	

	LabelOP codeOperand
	Comment
	

	fieldfieldfield
	
	

	Next:ADDAL, 07 H
	field
	

	
	Add
	

	
	correction
	

	
	factor
	


· Label: It is a symbol or group of symbols used to rep. an address which is not specifically known at the time the statement is written.
Labels are followed by a colon. They are optional.
· OP code field: It contains mnemonic for the instruction to be performed. Instruction mnemonics are also called operation codes.
· Operand field: It contains the data, the memory address, the port address, or the name of the register on which the instruction is to be performed.
It is just another name for the data items acted on the instruction. In the previous example, there are two operands AL and 07H.
· Comment field: (optional)

They start with a semicolon.
There are two ways for translating an assembly language tom/c language. One way is to work out the binary code for each instruction a bit at a time using the templates given in the manufacturers data books. The second method of doing the translation is with an assembler.
High Level languages:
Ex: C, Pascal
An interpreter program or a compiler program is used to translate higher level language statements tom/c codes which are loaded into memory and then executed.
These programs can be written fastly.
However, programs written in HLL execute more slowly and require more memory than the programs written in assembly language.
How to Access Data:
The different ways in which a processor can access data are referred to as its
Addressing Modes.
We will use MOV instruction to illustrate the addressing modes.
MOV destination, source
This inst. copies a word or byte from the source location to destination location.
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The source and destination can be a no. or reg. or memory location, but both cant be memory locations.
For data:
1. Immediate:
MOV reg, immediate data
The immediate hexadecimal no. is put into the 16-bit or 8-bit reg
Ex: MOV CX, 437BH
MOV CL, 48H
Instruction
2. Direct:
MOV reg. [Mem location]
The 16-bit effective address of the data is specified in the instruction.
Ex: MOV AX, [5000n]
This effective add. is added to 1610 times the contents of the appropriate segment reg.
· Register:

MOV reg 1, reg 2
Both the registers should be of same bit length
The data is in the reg. specified by the instruction
Ex: MOV BX, AX
4. Register Indirect:
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The effective add. of the data is in the base reg. BX or an Index reg. that is specified by the instruction i.e,
Initially to access data the starting add. should be moved into base/index reg.
MOV SI, 200 0 H
BX
or
BP
MOV BL, [SI]
or
DI
5. Register Relative:
MOV BX, 4000 H
MOV CL, 10 H + [BX]
The effective add. is the sum of 8-bit or 16-bit displacement and the contents base or Index reg.
BX
8 bit or
BP
EA =16 - bit
SI
displacement
DI
This is also called displacement add. mode.
6. Based Indexed:
Either the source part or destination part is a combination of [BX/BP] + [SI/DI]
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The effective address is the sum of a base reg. and an index reg, both of which are specified by the instruction.
Ex: add [BX] + [SI], AX
7. Relative based Index:
The effective add. is the sum of 8-bit/16-bit displacement and a based Indexed address.
	8 - bit
	
	
	
	

	EA =
	or
	BX
	SI
	

	
	16 - bit
	BP
	DI
	

	
	
	
	
	


displacement
Ex: add 1000 + [BX] + [SI]; AX
An Example for illustrating Add. Modes:
[BX] = 0158
[DI] = 10 A5
Displacement = 1 B57
[DS] = 2100 ( segment reg.)
Direct:
EA = 1234
Physical add. = EA+DS*1610
· 1234+21000

22234

Register:
No effective add. Data is in Reg.
Register Indirect: assume reg. BX EA = BX = 0158
Physical Add. = BX + DS * 1610
· 0158 + 21000

21158

Register Relative: assume BX
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EA = 0158
EA + disp. + DS * 1610
Physical add. = 0158 + 1B 57 + 21000
22 CAF

Based Indexed: Assume BX and Di EA = BX+DI+DS*1610
· 0158 + 10A5 + 21000

221FD

Relative Based Indexed:
Assume BX and DI
EA = BX + DI+ disp. + DS*1610
q 0158+10A5 + 1B57 + 21000

23D54

Exercise:
The contents of different registers are given below. Form the effectiveaddresses for different addressing modes.
16-bit displacement = 5000h
[AX]= 1000H, [BX]=2000H, [SI]= 3000H, [DI]=4000H, [BP]=5000H, [SP] =6000H, [CS]= 0000H, [DS]=1000H, [SS]= 2000H, [IP]= 7000H.
How is the addressing mode of an instruction communicated to the CPU?
„A single instruction may use more than one addressing mode or some
instructions may not require any addressing mode.Explain.
FOR BRANCH ADDRESSES: (PROGRAM MEMORY)
r Direct Program Memory Add: (Inter Segment) These instructions store the address with the OP code. Ex: JMP 10000 H
This Jmp inst. loads CS with 1000 H and IP with 0000 H
An inter segment Jmp is a jump to any memory location with in the entire memory system. The direct jmp is often called a far jump.
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· Relative program Memory Addressing: The term „Relative means relative to IP.
An intra segment jump is a jump any where within the code segment.
· Indirect program Memory Addressing Ex: JMP AX
JMP BX
It can use any registers of 16-bit
(AX, BX, CX, DX, SP, BP, DI or SI);
Any relative register ([BP], [BX], [DI] or [SI]; and any register with a
displacement.
Ex: JMP BX, BX contains 1000 H
The microprocessor jumps to offset address 1000 H in the current code segment.
This jump is near jump. (Intra Segment).
If a relative register holds the address,
Ex: JMP[BX]
This refers to the memory location within the data segment at offset address contains in BX.
At this offset address is a 16-bit no. that is used as offset add. in the intra segment jump. This is called double-indirect jump.
Exercise:
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· Identify the type of addressing mode and calculate the contents of CS and IP for the following branch instructions?

JMP 348A1H

JMP BX

JMP SHORT LABEL JNZ [2000H]

Stack Memory-Addressing Modes:
The stack Memory is a LIFO, which describes the way that data are stored and removed from the stack.
Data are placed onto the stack with a PUSH instruction and removed with POP instruction
The CALL inst. also uses the stack to hold the return address for procedures and a RET instruction to remove the return add. from the stack.
The stack memory is maintained by two reg; SS and SP
PUSH:
Whenever a word of data is pushed on to the stack, the higher order 8-bits are placed in location SP-1 and lower order 8-bits are placed in SP-2.
The SP is then decremented by 2. So that the next word can be stored.
The SP reg. always points to an area of memory located within the SS.
POP:
Whenever data are popped from the stack, the lower order 8-bits are removed from the located addressed by SP.
The high order 8-bits are removed from the location addressed by SP+1.
The SP reg. is then incremented by 2
Ex: PUSH AX
POP BX
8086 INSTRUCTION SET
The complete Instruction set is divided into six categories.
viii) Data Transfer Instructions

ix) Arithmetic Instructions

x) Bit Manipulation Instructions

xi) String Instructions

xii) Program Execution Transfer Instructions

xiii) Processor control Instructions.
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The following is a brief summary of the 8086 instruction set:
Data Transfer Instructions
MOV Move byte or word to register or memory
IN, OUT Input byte or word from port, output word to port
LEA Load effective address
LDS, LES Load pointer using data segment, extra segment
PUSH, POP Push word onto stack, pop word off stack
XCHG Exchange byte or word
XLAT Translate byte using look-up table
Logical Instructions
NOT Logical NOT of byte or word (one's complement)
AND Logical AND of byte or word
OR Logical OR of byte or word
XOR Logical exclusive-OR of byte or word
TEST Test byte or word (AND without storing)
Shift and Rotate Instructions
SHL, SHR Logical shift left, right byte or word by 1 or CL
SAL, SAR Arithmetic shift left, right byte or word by 1 or CL
ROL, ROR Rotate left, right byte or word by 1 or CL
RCL, RCR Rotate left, right through carry byte or word by 1 or CL
Arithmetic Instructions
ADD, SUB Add, subtract byte or word
ADC, SBB Add, subtract byte or word and carry (borrow)
INC, DEC Increment, decrement byte or word
NEG Negate byte or word (two's complement)
CMP Compare byte or word (subtract without storing)
MUL, DIV Multiply, divide byte or word (unsigned)
IMUL, IDIV Integer multiply, divide byte or word (signed)
CBW, CWD Convert byte to word, word to double word (useful
before multiply/divide)
AAA, AAS, AAM, AAD ASCII adjust for addition, subtraction, multiplication, division (ASCII codes 30-39)
DAA, DAS Decimal adjust for addition, subtraction (binary coded
decimal numbers)
Transfer Instructions
JMP Unconditional jump
JA (JNBE) Jump if above (not below or equal)
JAE (JNB) Jump if above or equal (not below)
JB (JNAE) Jump if below (not above or equal)
JBE (JNA) Jump if below or equal (not above)
JE (JZ) Jump if equal (zero)
JG (JNLE) Jump if greater (not less or equal)
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JGE (JNL) Jump if greater or equal (not less)
JL (JNGE) Jump if less (not greater nor equal)
JLE (JNG) Jump if less or equal (not greater)
JC, JNC Jump if carry set, carry not set
JO, JNO Jump if overflow, no overflow
JS, JNS Jump if sign, no sign
JNP (JPO) Jump if no parity (parity odd)
JP (JPE) Jump if parity (parity even)
LOOP Loop unconditional, count in CX
LOOPE (LOOPZ) Loop if equal (zero), count in CX
LOOPNE (LOOPNZ) Loop if not equal (not zero), count in CX
JCXZ Jump if CX equals zero
Subroutine and Interrupt Instructions
CALL, RET Call, return from procedure
INT, INTO Software interrupt, interrupt if overflow
IRET Return from interrupt
String Instructions
MOVS Move byte or word string
MOVSB, MOVSW Move byte, word string
CMPS Compare byte or word string
SCAS Scan byte or word string
LODS, STOS Load, store byte or word string
REP Repeat
REPE, REPZ Repeat while equal, zero
REPNE, REPNZ Repeat while not equal (zero)
Processor Control Instructions
STC, CLC, CMC Set, clear, complement carry flag
STD, CLD Set, clear direction flag
STI, CLI Set, clear interrupt enable flag
LAHF, SAHF Load AH from flags, store AH into flags
PUSHF, POPF Push flags onto stack, pop flags off stack
ESC Escape to external processor interface
LOCK Lock bus during next instruction
NOP No operation (do nothing)
WAIT Wait for signal on TEST input
HLT Halt processor
Operand types:
REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL, DI, SI, BP, SP.
SREG: DS, ES, SS, and only as second operand: CS.
memory: [BX], [BX+SI+7], variable, etc).
immediate: 5, -24, 3Fh, 10001101b, etc...
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Notes:
When two operands are required for an instruction they are separated by comma.
For example:
REG, memory
When there are two operands, both operands must have the same size (except shift and rotate instructions). For example:
AL, DL
DX, AX
m1 DB ?
AL, m1
m2 DW ?
AX, m2
Some instructions allow several operand combinations. For example:
memory, immediate
REG, immediate
memory, REG
REG, SREG
Instructions in alphabetical order:
Instruction
Operands

No
AAA
operands



Description
ASCII Adjust after Addition.
Corrects result in AH and AL after addition when working with BCD values.
It works according to the following Algorithm:
if low nibble of AL > 9 or AF = 1 then:
AL = AL + 6
AH = AH + 1
AF = 1
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CF = 1
else
AF = 0
CF = 0
in both cases:
clear the high nibble of AL.
Example:
MOV AX, 15 ; AH = 00, AL = 0Fh
AAA; AH = 01, AL = 05
RET
ASCII Adjust before Division.
Prepares two BCD values for division.
Algorithm:
AL = (AH * 10) + AL
AH = 0
Example:
MOV AX, 0105h ; AH = 01, AL = 05
AAD; AH = 00, AL = 0Fh (15)
RET
ASCII Adjust after Multiplication.
Corrects the result of multiplication of two BCD values.
Algorithm:
AH = AL / 10
AL = remainder
Example:
MOV AL, 15 ; AL = 0Fh
AAM; AH = 01, AL = 05
RET
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ASCII Adjust after Subtraction.
Corrects result in AH and AL after subtraction when working with BCD values.
Algorithm:
if low nibble of AL > 9 or AF = 1 then:
AL = AL - 6
AH = AH - 1
AF = 1
CF = 1
else
AF = 0
CF = 0
in both cases:
clear the high nibble of AL.
Example:
MOV AX, 02FFh ; AH = 02, AL = 0FFh
AAS; AH = 01, AL = 09
RET
Add with Carry.
Algorithm:
operand1 = operand1 + operand2 + CF
Example:
STC; set CF = 1
MOV AL, 5 ; AL = 5
ADC AL, 1 ; AL = 7
RET
Add.
Algorithm:
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operand1 = operand1 + operand2
Example:
MOV AL, 5 ; AL = 5
ADD AL, -3 ; AL = 2
RET
Logical AND between all bits of two operands. Result is stored in operand1.
These rules apply:
1 AND 1 = 1
1 AND 0 = 0
0 AND 1 = 0
0 AND 0 = 0
Example:
MOV AL, 'a'; AL = 01100001b
AND AL, 11011111b ; AL = 01000001b ('A')
RET
procedure
name
label
CALL
4-byte
address



Transfers control to procedure, return address is (IP) is pushed to stack. 4-byte address may be entered in this form: 1234h:5678h, first value is a segment second value is an offset (this is a far call, so CS is also pushed to stack).
Example:
ORG 100h ; for COM file.
CALL p1
ADD AX, 1
RET
; return to OS.
p1 PROC ; procedure declaration.
MOV AX, 1234h
RET ; return to caller.
p1 ENDP
CBW
No
Convert byte into word.
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Algorithm:
if high bit of AL = 1 then:
AH = 255 (0FFh)
else
AH = 0
Example:
MOV AX, 0 ; AH = 0, AL = 0
MOV AL, -5 ; AX = 000FBh (251)
CBW; AX = 0FFFBh (-5)
RET
Clear Carry flag.
Algorithm:
CF = 0
Clear Direction flag. SI and DI will be incremented by chain instructions: CMPSB, CMPSW, LODSB, LODSW, MOVSB, MOVSW, STOSB, STOSW.
Algorithm:
DF = 0
Clear Interrupt enable flag. This disables hardware interrupts.
Algorithm:
IF = 0
Complement Carry flag. Inverts value of CF.
Algorithm:
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if CF = 1 then CF = 0
if CF = 0 then CF = 1
Compare.
Algorithm:
operand1 - operand2
result is not stored anywhere, flags are set (OF, SF, ZF, AF, PF, CF) according to result.
Example:
MOV AL, 5
MOV BL, 5
CMP AL, BL ; AL = 5, ZF = 1 (so equal!)
RET
Compare bytes: ES:[DI] from DS:[SI].
Algorithm:
DS:[SI] - ES:[DI]
set flags according to result:
OF, SF, ZF, AF, PF, CF
if DF = 0 then
4. SI = SI + 1 o DI = DI + 1
else
6. SI = SI - 1
· DI = DI - 1
Example:
see cmpsb.asm in Samples.
Compare words: ES:[DI] from DS:[SI].
Algorithm:
DS:[SI] - ES:[DI]
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set flags according to result:

OF, SF, ZF, AF, PF, CF
if DF = 0 then
v. SI = SI + 2 o DI = DI + 2
else
iii. SI = SI - 2
· DI = DI - 2
Example:
see cmpsw.asm in Samples.
Convert Word to Double word.
Algorithm:
if high bit of AX = 1 then:
DX = 65535 (0FFFFh)
else
DX = 0
Example:
MOV DX, 0 ; DX = 0
MOV AX, 0 ; AX = 0
MOV AX, -5 ; DX AX = 00000h:0FFFBh
CWD; DX AX = 0FFFFh:0FFFBh
RET
	
	
	Decimal adjust After Addition.
	

	
	
	Corrects the result of addition of two packed BCD values.
	

	DAA
	No
	Algorithm:
	

	
	operands
	
	

	
	
	
	

	
	
	if low nibble of AL > 9 or AF = 1 then:
	

	
	
	AL = AL + 6
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AF = 1
if AL > 9Fh or CF = 1 then:
AL = AL + 60h
CF = 1
Example:
MOV AL, 0Fh ; AL = 0Fh (15)
DAA; AL = 15h
RET
Decimal adjust After Subtraction.
Corrects the result of subtraction of two packed BCD values.
Algorithm:
if low nibble of AL > 9 or AF = 1 then:
AL = AL - 6
AF = 1
if AL > 9Fh or CF = 1 then:
AL = AL - 60h
CF = 1
Example:
MOV AL, 0FFh ; AL = 0FFh (-1)
DAS; AL = 99h, CF = 1
RET
Decrement.
Algorithm:
operand = operand - 1
Example:
MOV AL, 255 ; AL = 0FFh (255 or -1)
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DEC AL
; AL = 0FEh (254 or -2)
RET
Unsigned divide.
Algorithm:
when operand is a byte:
AL = AX / operand
AH = remainder (modulus)
when operand is a word:
AX = (DX AX) / operand
DX = remainder (modulus)
Example:
MOV AX, 203 ; AX = 00CBh
MOV BL, 4
DIV BL; AL = 50 (32h), AH = 3
RET
Halt the System.
Example:
MOV AX, 5
HLT
Signed divide.
Algorithm:
when operand is a byte:
AL = AX / operand
AH = remainder (modulus)
when operand is a word:
AX = (DX AX) / operand
DX = remainder (modulus)
Example:
MOV AX, -203 ; AX = 0FF35h
MOV BL, 4
IDIV BL; AL = -50 (0CEh), AH = -3 (0FDh)
RET
IMUL
REG
Signed multiply.
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Algorithm:
when operand is a byte:
AX = AL * operand.
when operand is a word:
(DX AX) = AX * operand.
Example:
MOV AL, -2
MOV BL, -4
IMUL BL; AX = 8
RET
Input from port into AL or AX.
Second operand is a port number. If required to access port number over 255 - DX register should be used. Example:
IN AX, 4 ; get status of traffic lights.
IN AL, 7 ; get status of stepper-motor.
Increment.
Algorithm:
operand = operand + 1
Example:
MOV AL, 4
INC AL; AL = 5
RET
Interrupt numbered by immediate byte (0..255).
Algorithm:
Push to stack:
iii flags register
o
CS
o
IP
IF = 0
Transfer control to interrupt procedure
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Example:
MOV AH, 0Eh ; teletype.
MOV AL, 'A'
INT 10h; BIOS interrupt.
RET
Interrupt 4 if Overflow flag is 1.
Algorithm:
if OF = 1 then INT 4
Example:
v. -5 - 127 = -132 (not in -128..127)

vi. the result of SUB is wrong (124),

vii. so OF = 1 is set:

MOV AL, -5
SUB AL, 127 ; AL = 7Ch (124)
INTO; process error.
RET
No
IRET
operands
JA
label



Interrupt Return.
Algorithm:
Pop from stack:
c) IP
o
CS
o
flags register
Short Jump if first operand is Above second operand (as set by CMP instruction). Unsigned.
Algorithm:
if (CF = 0) and (ZF = 0) then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 250
CMP AL, 5
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JA label1
PRINT 'AL is not above 5'
JMP exit
label1:
PRINT 'AL is above 5'
exit:
RET
Short Jump if first operand is Above or Equal to second
operand (as set by CMP instruction). Unsigned.
Algorithm:
if CF = 0 then jump
Example:
include 'emu8086.inc'
ORG 100h
JAE
label
MOV AL, 5
CMP AL, 5
JAE label1
PRINT 'AL is not above or equal to 5'
JMP exit
label1:
PRINT 'AL is above or equal to 5'
exit:
RET
Short Jump if first operand is Below second operand (as set
by CMP instruction). Unsigned.
Algorithm:
if CF = 1 then jump
Example:
include 'emu8086.inc'
ORG 100h
JB
label
MOV AL, 1
CMP AL, 5
JB label1
PRINT 'AL is not below 5'
JMP exit
label1:
PRINT 'AL is below 5'
exit:
RET
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Short Jump if first operand is Below or Equal to second
operand (as set by CMP instruction). Unsigned.
Algorithm:
if CF = 1 or ZF = 1 then jump
Example:
include 'emu8086.inc'
ORG 100h
JBE
label
MOV AL, 5
CMP AL, 5
JBE label1
PRINT 'AL is not below or equal to 5'
JMP exit
label1:
PRINT 'AL is below or equal to 5'
exit:
RET
JC
label
JCXZ
label
www.smartzworld.com



Short Jump if Carry flag is set to 1.
Algorithm:
if CF = 1 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 255
ADD AL, 1
JC label1
PRINT 'no carry.'
JMP exit
label1:
PRINT 'has carry.'
exit:
RET
Short Jump if CX register is 0.
Algorithm:
if CX = 0 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV CX, 0
JCXZ label1
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PRINT 'CX is not zero.'
JMP exit
label1:
PRINT 'CX is zero.'
exit:
RET
Short Jump if first operand is Equal to second operand (as
set by CMP instruction). Signed/Unsigned.
Algorithm:
if ZF = 1 then jump
Example:
include 'emu8086.inc'
ORG 100h
JE
label
MOV AL, 5
CMP AL, 5
JE label1
PRINT 'AL is not equal to 5.'
JMP exit
label1:
PRINT 'AL is equal to 5.'
exit:
RET
Short Jump if first operand is Greater then second operand
(as set by CMP instruction). Signed.
Algorithm:
if (ZF = 0) and (SF = OF) then jump
Example:
include 'emu8086.inc'
ORG 100h
JG
label
MOV AL, 5
CMP AL, -5
JG label1
PRINT 'AL is not greater -5.'
JMP exit
label1:
PRINT 'AL is greater -5.'
exit:
RET
JGE
label
Short Jump if first operand is Greater or Equal to second
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operand (as set by CMP instruction). Signed.
Algorithm:
if SF = OF then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 2
CMP AL, -5
JGE label1
PRINT 'AL < -5'
JMP exit
label1:
PRINT 'AL >= -5'
exit:
RET
Short Jump if first operand is Less then second operand (as set by CMP instruction). Signed.
Algorithm:
if SF <> OF then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, -2
CMP AL, 5
JL label1
PRINT 'AL >= 5.'
JMP exit
label1:
PRINT 'AL < 5.'
exit:
RET
Short Jump if first operand is Less or Equal to second operand (as set by CMP instruction). Signed.
Algorithm:
if SF <> OF or ZF = 1 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, -2
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CMP AL, 5
JLE label1
PRINT 'AL > 5.'
JMP exit
label1:
PRINT 'AL <= 5.'
exit:
RET
Unconditional Jump. Transfers control to another part of the program. 4-byte address may be entered in this
form: 1234h:5678h, first value is a segment second value is an offset.
Algorithm:
always jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 5
JMP label1 ; jump over 2 lines!
PRINT 'Not Jumped!'
MOV AL, 0
label1:
PRINT 'Got Here!'
RET
Short Jump if first operand is Not Above second operand
(as set by CMP instruction). Unsigned.
Algorithm:
if CF = 1 or ZF = 1 then jump
Example:
include 'emu8086.inc'
JNA
label
ORG 100h
MOV AL, 2
CMP AL, 5
JNA label1
PRINT 'AL is above 5.'
JMP exit
label1:
PRINT 'AL is not above 5.'
exit:
RET
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Short Jump if first operand is Not Above and Not Equal to second operand (as set by CMP instruction). Unsigned.
Algorithm:
if CF = 1 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 2
CMP AL, 5
JNAE label1
PRINT 'AL >= 5.'
JMP exit
label1:
PRINT 'AL < 5.'
exit:
RET
Short Jump if first operand is Not Below second operand (as set by CMP instruction). Unsigned.
Algorithm:
if CF = 0 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 7
CMP AL, 5
JNB label1
PRINT 'AL < 5.'
JMP exit
label1:
PRINT 'AL >= 5.'
exit:
RET
Short Jump if first operand is Not Below and Not Equal to second operand (as set by CMP instruction). Unsigned.
Algorithm:
if (CF = 0) and (ZF = 0) then jump
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Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 7
CMP AL, 5
JNBE label1
PRINT 'AL <= 5.'
JMP exit
label1:
PRINT 'AL > 5.'
exit:
RET
Short Jump if Carry flag is set to 0.
Algorithm:
if CF = 0 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 2
ADD AL, 3
JNC label1
PRINT 'has carry.'
JMP exit
label1:
PRINT 'no carry.'
exit:
RET
Short Jump if first operand is Not Equal to second operand (as set by CMP instruction). Signed/Unsigned.
Algorithm:
if ZF = 0 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 2
CMP AL, 3
JNE label1
PRINT 'AL = 3.'
JMP exit
label1:
PRINT 'Al <> 3.'
exit:
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RET
Short Jump if first operand is Not Greater then second operand (as set by CMP instruction). Signed.
Algorithm:
if (ZF = 1) and (SF <> OF) then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 2
CMP AL, 3
JNG label1
PRINT 'AL > 3.'
JMP exit
label1:
PRINT 'Al <= 3.'
exit:
RET
Short Jump if first operand is Not Greater and Not Equal to second operand (as set by CMP instruction). Signed.
Algorithm:
if SF <> OF then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 2
CMP AL, 3
JNGE label1
PRINT 'AL >= 3.'
JMP exit
label1:
PRINT 'Al < 3.'
exit:
RET
Short Jump if first operand is Not Less then second operand (as set by CMP instruction). Signed.
Algorithm:
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if SF = OF then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 2
CMP AL, -3
JNL label1
PRINT 'AL < -3.'
JMP exit
label1:
PRINT 'Al >= -3.'
exit:
RET
Short Jump if first operand is Not Less and Not Equal to second operand (as set by CMP instruction). Signed.
Algorithm:
if (SF = OF) and (ZF = 0) then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 2
CMP AL, -3
JNLE label1
PRINT 'AL <= -3.'
JMP exit
label1:
PRINT 'Al > -3.'
exit:
RET
Short Jump if Not Overflow.
Algorithm:
if OF = 0 then jump
Example:
vi. -5 - 2 = -7 (inside -128..127)

vii. the result of SUB is correct,

viii. so OF = 0:

include 'emu8086.inc'
ORG 100h
MOV AL, -5
SUB AL, 2 ; AL = 0F9h (-7)
JNO label1
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PRINT 'overflow!'
JMP exit
label1:
PRINT 'no overflow.'
exit:
RET
Short Jump if No Parity (odd). Only 8 low bits of result are
checked. Set by CMP, SUB, ADD, TEST, AND, OR, XOR
instructions.
Algorithm:
if PF = 0 then jump
Example:
include 'emu8086.inc'
JNP
label
ORG 100h
MOV AL, 00000111b ; AL = 7
OR AL, 0; just set flags.
JNP label1
PRINT 'parity even.'
JMP exit
label1:
PRINT 'parity odd.'
exit:
RET
Short Jump if Not Signed (if positive). Set by CMP, SUB,
ADD, TEST, AND, OR, XOR instructions.
Algorithm:
if SF = 0 then jump
Example:
include 'emu8086.inc'
ORG 100h
JNS
label
MOV AL, 00000111b ; AL = 7
OR AL, 0; just set flags.
JNS label1
PRINT 'signed.'
JMP exit
label1:
PRINT 'not signed.'
exit:
RET
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Short Jump if Not Zero (not equal). Set by CMP, SUB,
ADD, TEST, AND, OR, XOR instructions.
Algorithm:
if ZF = 0 then jump
Example:
include 'emu8086.inc'
ORG 100h
JNZ
label
MOV AL, 00000111b ; AL = 7
OR AL, 0; just set flags.
JNZ label1
PRINT 'zero.'
JMP exit
label1:
PRINT 'not zero.'
exit:
RET
	
	
	Short Jump if Overflow.

	
	
	Algorithm:

	
	
	if OF = 1 then jump

	
	
	Example:

	
	
	; -5 - 127 = -132 (not in -128..127)

	
	
	; the result of SUB is wrong (124),

	
	
	; so OF = 1 is set:

	JO
	label
	include 'emu8086.inc'

	
	
	org 100h

	
	
	MOV AL, -5

	
	
	SUB AL, 127 ; AL = 7Ch (124)

	
	
	JO label1

	
	
	PRINT 'no overflow.'

	
	
	JMP exit

	
	
	label1:

	
	
	PRINT 'overflow!'

	
	
	exit:

	
	
	RET


JP
label




Short Jump if Parity (even). Only 8 low bits of result are checked. Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions.
Algorithm:
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if PF = 1 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 00000101b ; AL = 5
OR AL, 0; just set flags.
JP label1
PRINT 'parity odd.'
JMP exit
label1:
PRINT 'parity even.'
exit:
RET
Short Jump if Parity Even. Only 8 low bits of result are
checked. Set by CMP, SUB, ADD, TEST, AND, OR, XOR
instructions.
Algorithm:
if PF = 1 then jump
Example:
include 'emu8086.inc'
JPE
label
ORG 100h
MOV AL, 00000101b ; AL = 5
OR AL, 0; just set flags.
JPE label1
PRINT 'parity odd.'
JMP exit
label1:
PRINT 'parity even.'
exit:
RET
Short Jump if Parity Odd. Only 8 low bits of result are
checked. Set by CMP, SUB, ADD, TEST, AND, OR, XOR
instructions.
	
	
	Algorithm:
	

	JPO
	label
	if PF = 0 then jump
	

	
	
	
	

	
	
	Example:
	

	
	
	include 'emu8086.inc'
	

	
	
	ORG 100h
	

	
	
	MOV AL, 00000111b ; AL = 7
	

	
	
	OR AL, 0; just set flags.
	

	
	
	JPO label1
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label

JZ
label




PRINT 'parity even.'
JMP exit
label1:
PRINT 'parity odd.'
exit:
RET
Short Jump if Signed (if negative). Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions.
Algorithm:
if SF = 1 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 10000000b ; AL = -128
OR AL, 0; just set flags.
JS label1
PRINT 'not signed.'
JMP exit
label1:
PRINT 'signed.'
exit:
RET
Short Jump if Zero (equal). Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions.
Algorithm:
if ZF = 1 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 5
CMP AL, 5
JZ label1
PRINT 'AL is not equal to 5.'
JMP exit
label1:
PRINT 'AL is equal to 5.'
exit:
RET
LAHF
No
Load AH from 8 low bits of Flags register.
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Algorithm:
AH = flags register
AH bit: 7 6 5 4 3 2 1 0
[SF] [ZF] [0] [AF] [0] [PF] [1] [CF]
bits 1, 3, 5 are reserved.
Load memory double word into word register and DS.
Algorithm:
REG = first word
DS = second word
Example:
ORG 100h
LDS AX, m
RET
m DW 1234h
DW 5678h
END
AX is set to 1234h, DS is set to 5678h.
Load Effective Address.
Algorithm:
REG = address of memory (offset)
Generally this instruction is replaced by MOV when assembling when possible.
Example:
ORG 100h
LEA AX, m
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RET
m DW 1234h
END
AX is set to: 0104h.
LEA instruction takes 3 bytes, RET takes 1 byte, we start at 100h, so the address of 'm' is 104h.
Load memory double word into word register and ES.
Algorithm:
REG = first word
ES = second word
Example:
ORG 100h
LES AX, m
RET
m DW 1234h
DW 5678h
END
AX is set to 1234h, ES is set to 5678h.
Load byte at DS:[SI] into AL. Update SI.
Algorithm:
AL = DS:[SI]
if DF = 0 then
· SI = SI + 1
else
· SI = SI - 1
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Load word at DS:[SI] into AX. Update SI.
Algorithm:
AX = DS:[SI]
if DF = 0 then
v SI = SI + 2
else
· SI = SI - 2
Decrease CX, jump to label if CX not zero.
Algorithm:
CX = CX - 1
if CX <> 0 then
· jump
else
· no jump, continue
Example:
include 'emu8086.inc'
ORG 100h
MOV CX, 5
label1:
PRINTN 'loop!'
LOOP label1
RET
Decrease CX, jump to label if CX not zero and Equal (ZF
r 1). Algorithm:

CX = CX - 1
if (CX <> 0) and (ZF = 1) then
x jump
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else
· no jump, continue
Example:
· Loop until result fits into AL alone,

· or 5 times. The result will be over 255

· on third loop (100+100+100),

· so loop will exit.

include 'emu8086.inc' ORG 100h
MOV AX, 0

MOV CX, 5
label1:
PUTC '*'
ADD AX, 100
CMP AH, 0
LOOPE label1
RET
Decrease CX, jump to label if CX not zero and Not Equal
(ZF = 0).
Algorithm:
CX = CX - 1
if (CX <> 0) and (ZF = 0) then
· jump
else
· no jump, continue
LOOPNE
label
Example:
· Loop until '7' is found,

· or 5 times.

include 'emu8086.inc' ORG 100h
MOV SI, 0
MOV CX, 5
label1:
PUTC '*'
MOV AL, v1[SI]
INC SI; next byte (SI=SI+1).
CMP AL, 7
LOOPNE label1
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LOOPNZ
label
LOOPZ
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RET
v1 db 9, 8, 7, 6, 5
Decrease CX, jump to label if CX not zero and ZF = 0.
Algorithm:
CX = CX - 1
if (CX <> 0) and (ZF = 0) then
· jump
else
r no jump, continue
Example:
s Loop until '7' is found,

t or 5 times.

include 'emu8086.inc' ORG 100h
MOV SI, 0
MOV CX, 5
label1:
PUTC '*'
MOV AL, v1[SI]
INC SI; next byte (SI=SI+1).
CMP AL, 7
LOOPNZ label1
RET
v1 db 9, 8, 7, 6, 5
Decrease CX, jump to label if CX not zero and ZF = 1.
Algorithm:
CX = CX - 1
if (CX <> 0) and (ZF = 1) then
· jump
else
· no jump, continue
Example:


MOV
MOVSB




REG,
memory
memory,
REG
REG, REG

memory,
immediate
REG,
immediate
SREG,
memory
memory,
SREG
REG,
SREG
SREG,
REG
No
operands



· Loop until result fits into AL alone,

· or 5 times. The result will be over 255

· on third loop (100+100+100),

· so loop will exit.

include 'emu8086.inc' ORG 100h
MOV AX, 0

MOV CX, 5
label1:
PUTC '*'
ADD AX, 100
CMP AH, 0
LOOPZ label1
RET
Copy operand2 to operand1.
The MOV instruction cannot:
set the value of the CS and IP registers.
copy value of one segment register to another segment register (should copy to general register first).
copy immediate value to segment register (should copy to general register first).
Algorithm:
operand1 = operand2
Example:
ORG 100h
MOV AX, 0B800h ; set AX = B800h (VGA memory).
MOV DS, AX; copy value of AX to DS.
MOV CL, 'A'; CL = 41h (ASCII code).
MOV CH, 01011111b ; CL = color attribute.
MOV BX, 15Eh; BX = position on screen.
MOV [BX], CX; w.[0B800h:015Eh] = CX.
RET; returns to operating system.
Copy byte at DS:[SI] to ES:[DI]. Update SI and DI.
Algorithm:
ES:[DI] = DS:[


No
MOVSW
operands
REG
MUL
memory



if DF = 0 then
xiv) SI = SI + 1 o DI = DI + 1
else
5. SI = SI - 1
7. DI = DI - 1
Copy byte at DS:[SI] to ES:[DI]. Update SI and DI.
Algorithm:
ES:[DI] = DS:[SI]
if DF = 0 then
· SI = SI + 2 o DI = DI + 2
else
vi. SI = SI - 2
iv. DI = DI - 2
Unsigned multiply.
Algorithm:
when operand is a byte:
AX = AL * operand.
when operand is a word:
(DX AX) = AX * operand.
Example:
MOV AL, 200 ; AL = 0C8h
MOV BL, 4
MUL BL; AX = 0320h (800)
RET
	
	REG
	Negate. Makes operand negative (two's complement).
	

	NEG
	memory
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Algorithm:
Invert all bits of the operand

Add 1 to inverted operand
Example:
MOV AL, 5 ; AL = 05h
NEG AL; AL = 0FBh (-5)
NEG AL; AL = 05h (5)
RET
No Operation.
Algorithm:
Do nothing
Example:
NOP
NOP
NOP
RET
REG,
memory
memory,
REG
OR
REG, REG
memory,
immediate
REG,
immediate



Logical OR between all bits of two operands. Result is stored in first operand.
These rules apply:
1 OR 1 = 1
1 OR 0 = 1
0 OR 1 = 1
0 OR 0 = 0
Example:
MOV AL, 'A'; AL = 01000001b
OR AL, 00100000b ; AL = 01100001b ('a')
RET
	
	im.byte,
	Output from AL or AX to port.
	

	OUT
	AL
	First operand is a port number. If required to access port
	

	
	im.byte,
	number over 255 - DX register should be used.
	

	
	
	
	

	
	AX
	
	


www.smartzworld.com
specworld.in
jntuworldupdates.org
www.jntuhubupdates.com
www.jntuhubupdates.com
jntuhubupdates
	DX, AL
	Example:

	DX, AX
	MOV AX, 0FFFh ; Turn on all

	
	OUT 4, AX ; traffic lights.

	
	MOV AL, 100b ; Turn on the third

	
	OUT 7, AL ; magnet of the stepper-motor.


REG
POP
SREG
memory
No
POPA
operands
No
POPF
operands
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Get 16 bit value from the stack.
Algorithm:
operand = SS:[SP] (top of the stack)
SP = SP + 2
Example:
MOV AX, 1234h
PUSH AX
POP DX ; DX = 1234h
RET
Pop all general purpose registers DI, SI, BP, SP, BX, DX, CX, AX from the stack.
SP value is ignored, it is Popped but not set to SP register).
Note: this instruction works only on 80186 CPU and later!
Algorithm:
POP DI
POP SI
POP BP
POP xx (SP value ignored)
POP BX
POP DX
POP CX
POP AX
Get flags register from the stack.
Algorithm:
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PUSH
memory
immediate




flags = SS:[SP] (top of the stack)
SP = SP + 2
Store 16 bit value in the stack.
Note: PUSH immediate works only on 80186 CPU and later!
Algorithm:
SP = SP - 2
SS:[SP] (top of the stack) = operand
Example:
MOV AX, 1234h
PUSH AX
POP DX ; DX = 1234h
RET
Push all general purpose registers AX, CX, DX, BX, SP,
BP, SI, DI in the stack.
Original value of SP register (before PUSHA) is used.
Note: this instruction works only on 80186 CPU and later!
Algorithm:
	PUSHA
	No
	PUSH AX
	

	
	operands
	PUSH CX
	

	
	
	
	

	
	
	PUSH DX
	

	
	
	PUSH BX
	

	
	
	PUSH SP
	

	
	
	PUSH BP
	

	
	
	PUSH SI
	

	
	
	PUSH DI
	


	PUSHF
	No
	Store flags register in the stack.
	

	
	operands
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Algorithm:
SP = SP - 2
SS:[SP] (top of the stack) = flags
Rotate operand1 left through Carry Flag. The number of rotates is set by operand2.
When immediate is greater then 1, assembler generates several RCL xx, 1 instructions because 8086 has machine code only for this instruction (the same principle works for all other shift/rotate instructions).
Algorithm:
shift all bits left, the bit that goes off is set to CF and previous value of CF is inserted to the right-most position.
Example:
STC; set carry (CF=1).
MOV AL, 1Ch; AL = 00011100b
RCL AL, 1; AL = 00111001b, CF=0.
RET
memory,
immediate
REG,
immediate
RCR
memory,
CL
REG, CL
chain
REP
instruction
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Rotate operand1 right through Carry Flag. The number of rotates is set by operand2.
Algorithm:
shift all bits right, the bit that goes off is set to CF and previous value of CF is inserted to the left-most position.
Example:
STC; set carry (CF=1).
MOV AL, 1Ch; AL = 00011100b
RCR AL, 1; AL = 10001110b, CF=0.
RET
Repeat following MOVSB, MOVSW, LODSB, LODSW, STOSB, STOSW instructions CX times.
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Algorithm:
check_cx:
if CX <> 0 then
do following chain instruction
CX = CX - 1
go back to check_cx
else
exit from REP cycle
Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 1 (result is Equal), maximum CX times.
Algorithm:
check_cx:
if CX <> 0 then
do following chain instruction
CX = CX - 1
if ZF = 1 then:
· go back to check_cx
else
iv exit from REPE cycle
else
exit from REPE cycle
Example:
see cmpsb.asm in Samples.
Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 0 (result is Not Equal), maximum
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CX times.
Algorithm:
check_cx:
if CX <> 0 then
do following chain instruction
CX = CX - 1
if ZF = 0 then:
viii. go back to check_cx
else
d) exit from REPNE cycle
else
exit from REPNE cycle
Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 0 (result is Not Zero), maximum CX times.
Algorithm:
check_cx:
if CX <> 0 then
do following chain instruction
CX = CX - 1
if ZF = 0 then:
ix. go back to check_cx
else
· exit from REPNZ cycle
else
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exit from REPNZ cycle
Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 1 (result is Zero), maximum CX times.
Algorithm:
check_cx:
if CX <> 0 then
do following chain instruction
CX = CX - 1
if ZF = 1 then:
· go back to check_cx
else
· exit from REPZ cycle
else
exit from REPZ cycle
No
operands
RET
or even
immediate




Return from near procedure.
Algorithm:
Pop from stack:
· IP
if immediate operand is present: SP = SP + operand
Example:
ORG 100h ; for COM file.
CALL p1
ADD AX, 1
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RET
; return to OS.
p1 PROC ; procedure declaration.
MOV AX, 1234h
RET ; return to caller.
p1 ENDP
	
	
	Return from Far procedure.
	

	
	
	Algorithm:
	

	
	No
	
	

	RETF
	operands
	Pop from stack:
	

	
	or even
	o IP
	

	
	
	
	

	
	immediate
	o CS
	

	
	
	if immediate operand is present: SP = SP + operand
	


memory,
immediate

REG,
immediate
ROL
memory,
CL
REG, CL
memory,
immediate

REG,
immediate
ROR
memory,
CL
REG, CL



Rotate operand1 left. The number of rotates is set by operand2.
Algorithm:
shift all bits left, the bit that goes off is set to CF and the same bit is inserted to the right-most position.
Example:
MOV AL, 1Ch; AL = 00011100b
ROL AL, 1; AL = 00111000b, CF=0.
RET
Rotate operand1 right. The number of rotates is set by operand2.
Algorithm:
shift all bits right, the bit that goes off is set to CF and the same bit is inserted to the left-most position.
Example:
MOV AL, 1Ch; AL = 00011100b
ROR AL, 1; AL = 00001110b, CF=0.
RET
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No
operands
memory,
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immediate
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memory,
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Store AH register into low 8 bits of Flags register.
Algorithm:
flags register = AH
AH bit: 7 6 5 4 3 2 1 0
[SF] [ZF] [0] [AF] [0] [PF] [1] [CF]
bits 1, 3, 5 are reserved.
Shift Arithmetic operand1 Left. The number of shifts is set by operand2.
Algorithm:
Shift all bits left, the bit that goes off is set to CF.
Zero bit is inserted to the right-most position.
Example:
MOV AL, 0E0h; AL = 11100000b
SAL AL, 1; AL = 11000000b, CF=1.
RET
Shift Arithmetic operand1 Right. The number of shifts is set by operand2.
Algorithm:
Shift all bits right, the bit that goes off is set to CF. The sign bit that is inserted to the left-most position has the same value as before shift.
Example:
MOV AL, 0E0h; AL = 11100000b
SAR AL, 1; AL = 11110000b, CF=0.
MOV BL, 4Ch; BL = 01001100b
SAR BL, 1; BL = 00100110b, CF=0.
RET
REG,
Subtract with Borrow.
SBB
memory
memory,
Algorithm:
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SCASB
SCASW

SHL



	REG
	

	REG, REG
	operand1 = operand1 - operand2 - CF

	memory,
	

	immediate
	

	REG,
	

	immediate
	

	
	Compare bytes: AL from ES:[DI].

	
	Algorithm:


	
	ES:[DI] - AL
	

	
	set flags according to result:
	

	No
	OF, SF, ZF, AF, PF, CF
	

	
	if DF = 0 then
	

	operands
	o DI = DI + 1
	

	
	else
	

	
	o   DI = DI - 1
	


	
	Compare words: AX from ES:[DI].
	

	
	Algorithm:
	

	
	ES:[DI] - AX
	

	
	set flags according to result:
	

	No
	OF, SF, ZF, AF, PF, CF
	

	
	if DF = 0 then
	

	operands
	o DI = DI + 2
	

	
	else
	

	
	o   DI = DI - 2
	


	memory,
	Shift operand1 Left. The number of shifts is set by
	

	immediate
	operand2.
	

	REG,
	
	

	immediate
	Algorithm:
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REG,
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Shift all bits left, the bit that goes off is set to CF.
Zero bit is inserted to the right-most position.
Shift operand1 Right. The number of shifts is set by operand2.
Algorithm:
Shift all bits right, the bit that goes off is set to CF.

Zero bit is inserted to the left-most position.
Set Carry flag.
Algorithm:
CF = 1
No
STD
operands
No
STI
operands
No
STOSB
operands



Set Direction flag. SI and DI will be decremented by chain instructions: CMPSB, CMPSW, LODSB, LODSW, MOVSB, MOVSW, STOSB, STOSW.
Algorithm:
DF = 1
Set Interrupt enable flag. This enables hardware interrupts.
Algorithm:
IF = 1
Store byte in AL into ES:[DI]. Update SI.
Algorithm:
ES:[DI] = AL
if DF = 0 then
· DI = DI + 1
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memory,
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SUB
REG, REG memory,
immediate
REG,
immediate
REG,
memory
memory,
REG
TEST
REG, REG memory,
immediate
REG,
immediate
REG,
XCHG
memory
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else
· DI = DI - 1
Store word in AX into ES:[DI]. Update SI.
Algorithm:
ES:[DI] = AX
if DF = 0 then
· DI = DI + 2
else
· DI = DI - 2
Subtract.
Algorithm:
operand1 = operand1 - operand2
Logical AND between all bits of two operands for flags only. These flags are effected: ZF, SF, PF. Result is not stored anywhere.
These rules apply:
1 AND 1 = 1
1 AND 0 = 0
0 AND 1 = 0
0 AND 0 = 0
Exchange values of two operands.
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No
XLATB
operands
REG,
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memory,
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immediate
REG,
immediate



Algorithm:
operand1 < - > operand2
Translate byte from table.
Set value of AL register to memory byte at DS:[BX + unsigned AL]
Algorithm:
DS:[BX + unsigned AL] = AL
Logical XOR (Exclusive OR) between all bits of two operands. Result is stored in first operand.
These rules apply:
1 XOR 1 = 0
1 XOR 0 = 1
0 XOR 1 = 1
0 XOR 0 = 0
Assembler directives:
Directives are commands that are part of the assembler syntax but are not related to the x86 processor instruction set. All assembler directives begin with a period An assembler needs predefined alphabetical strings called Assembler directives.
i.e the required storage for a particular constant/variable.
Constant/ variable
Logical names of segments
Types of different routines and modules end of file etc.
ASSUME:
The ASSUME directive is used to tell the assembler the name of the logical segment it
should use for a specified segment.
Ex: Assume DS: Data, CS: code
It tells the assembler that, the inst. for a program car in logical segment code and in segment named data.
If Ex: MOV AX, [BX]; after Assume
It will know that the memory location referred by [BX] is in logical segment DATA.
If we used stack in the program, then this statement should be included.
Assume SS: STACK-HERE
For string instructions which use DI, the assembler must be told that about ES ASSUME ES; string Destination
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DB: Define Byte
The DB directive is used to declare a byte –type variable.
Ex:
PRICES DB 49, 98H, 29H Declare array of 3 bytes named PRICES and initialize 3 bytes as shown.
NAME DB „THOMAS; Declare an array of 6 bytes and initialize with ASCII codes for letters in THOMAS.
TEMP DB 100 DUP (?): Set a side 100 bytes of storage in memory named TEMP and leave it uninitialized.
STORE DB 20H DUP (0): put 0 in all 20H locations.
	DD: Define Double word
	
	

	Ex: ARRAY=PTR DD 25629261 H
	
	

	LES DI, ARRAY-PTR
	
	

	The Low word of this double word 9261 is copied to DI, 2562
	ES.
	

	
	
	

	DQ: Define Quad word
	
	

	To reserve 4 words in memory.
	
	

	Ex: STORAGE DQ 100 DUP (0)
	
	


DT: Define Ten Bytes
Ex: RESULTS DT 20H DUP (0): Declares an array of 20H blocks of 10 bytes each and initialize all 320 bits to 00.
DW: Define word
Ex: WORD DW 1234H, 3456 H, 5678 H.
Declare an array of 3 words and initialize with specified values.
END: End program
It is put after the last statement of a program to tell the assembler that this is the end of the program module.
A carriage return is required after the END directive.
ENDP: End Procedure
This is used along with the name of the procedure to indicate the end of a procedure to assembler.
ENDS: End Segment
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EQU: Equate
It is used to give a name to some value or symbol.
Each time the assembler finds the given name in the program, it will replace the name with the value or symbol you equated with that name. Ex:CONTROL – WORD EQU 11001001; Replacement
MOV AL, CONTROL- WORD; Assignment
EVEN: Align on even memory address. The EVEN directive tells the assembler to increment the location counter to the next even address if it is not already at an even address.
The 8086 can read a word from memory in one bus cycle if word is at Even address, two bus cycles, if word is at odd address.
A NOP instruction is inserted in the location incremented over.
Ex:Data Segment
Average DB 9 DUP (?)
EVEN
Record DW 100 DUP (0)
Data ends
EXTRN: External
This is used to tell the assembler that the names or labels following the directive are in some other assembly module
Ex: For calling a procedure which is in a program module assembled at a different time, you must tell the assembler that the procedure is external.
The assembler will then put the information in the object code file so that the linker can connect the two modules together.
For Variables type (should be specified)
Ex: EXTRN DIVISOR: BYTE
For constant ABS
(defined with EQU in another module)
For a Label near/far
Names/ Labels referred to as external in one module must be declared public with the PUBLIC directive.
EXTRN Statements should usually be bracketed with ENDS directive
Ex: PROCEDURE SEGMENT
EXTRN SMART: FAR
PR OCEDURE ENDS
GLOBAL: Declare symbols as PUBLIC or Extern.
The PUBLIC directive is used to tell the assembler that a specified name r label will be accessed from other modules.
Ex: PUBLIC DIVISOR, DIVIDEND
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SEGMENT:
It is used to indicate the start of the segment.
CODE segment word
This statement tells the assembler that we want the contents of this segment located on
the next available word (even) address.
CODE Segment PUBLIC
GROUP: Group Related Segments
The GROUP directive is used to tell the assembler to group the logical segments named after the directive into one logical group segment. Ex:SMALL Group Code, data, stack.
Assume CS: Small, DS: Small,
SS: Small
INCLUDE: Include source code form file.
It is used to tell the assembler to inset a block of source code form the named file into the current source module.
LABEL:
As the assembler assemblers a section of data declarations or inst. statements, it uses a location counter to keep track of how many bytes it is form the start of a statement at any time.
The Label directive is used to give a name to the current value in the location counter.
It should be followed by a term which specifies the type.
Type
Label used as destination:far/near
in jumps call
To refer data item:byte/word
Ex: for Jump address:
Entry- point LABEL far; can jump to here from another segment
For data reference:
Stack Seg segment Stack
DW 100 DUP (0)
Stack – top LABEL word; given name to next location after last word in stack.
Stack-seg Ends.
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NAME:
It is used to give a specific name to each assembly module.
Ex: Name PC-Board
ORG:
It tells the assembler to set the location counter to a desired value at any point in the program.
Ex: ORG 2000 H
Org $ + 100
Current value
PROC: Procedure:
It is used to identify the start of a procedure.
Ex: SMART PROC FAR;
Name ofthe procedure
Procedureis far
For ending it ENDP is used.
OPERATORS:
PTR:
The PTR operator is used to assign a specific type to a variable or to a label.
Ex:
1.INC [BX]
It will not know whether to increment byte/word.
INC BYTE PTR [BX]
2. Array of words:
WORDS DW 437AH, OB927H, 7C41 H for accessing a byte in the array MOV AL, BYTE DTR WORDS
· For Jump Instructions: JMP [BX]

JMP BYTE PTR[BX]
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OFFSET:
It is used to determine the offset/ displacement of a named data or proc form
thestart of the segment.
Ex:MOV BX, OFFSET Prices
ADD AX, [BX]
SHORT:
It is used to tell the assembler that only a 1-byte displacement is needed to code a jump inst.
If the jump destination is after Jump inst, it automatically reserves 2-bytes for the
displacement.
JMP LABEL
PC
2 bytes
JMP Short Label
PC
The short operator saves 1 byte of memory by telling that it needs to reserve only 1 byte for this particular jump.
· byte TYPE:

It tells the assembler to det. The type of a specified variable.
TYPE
Forbyte 1 Word 2 Double Word 4
Ex: MOV AL, TYPE Array
Length: (Not implemented in MASM)
No. of elements in some named data item.
Questions:
What are the assembler directives and pseudo-ops?
Explain all the assembler directives, pseudo-ops and operators withsuitable examples.
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PROCEDURES:
Def: A sub program or a sequence of instructions is called a procedure.
Program flow for
Single Procedures:
When 8086 executes a call inst. the corresponding procedures serviced and returns to main program through RET.
Nested Procedures:
Advantage:
A Large Problem (JOB) can be broken down into several modules, each of which can be individually written, tested and debugged.
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Four forms of CALL instruction:
1. Direct with in Segment Near Call:
It tells 8086 to produce the starting address of the procedure by adding a 16-bit signed displacement contained in the instruction to the contents of IP. Ex:CALL 0158 H
CALL NEAR
· Indirect with in Segment Near Call: When this form of call executes,
IP 16-bit value from Reg /memory location. Ex:CALL BP
CALL WORD PTR [BX]
· Direct Inter Segment Far Call:

If the procedure is in another segment, IP and CS values have to be changed.
OP codeOffset lowOffset high Seg lowSeg high
IP offset
CS segment base.
4. Indirect Inter Segment Far Call:
It replaces IP and CS with new values (two 16-bit values) from memory
IP offset
CSseg. Base
Ex: CALL DWORD PTR [BX]
IP low [BX]
IP high [BX+1]
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CS Low
[BX+2]
CS High
[BX+3]
Example for far call:
Code segment
Note: It a procedure is in CALL inst, you must declare it far with FAR directive.
When the assembler finds that the procedure is declared as far; then the CALL is
automatically coded as inter segment CALLL and return as inter segment return.
At the start of main prog, we use ASSUME directive, ASSUME CS: CODE to tell
the assembler to compute the offsets of the following inst. form the segment base
named CODE.
Similarly use
ASSUME CS: Procedures
(For offsets to start form segment base named procedures)
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When the assembler finally codes the CALL inst; it puts value of procedures
CS
Offset of first inst.
Of proceduresIP.
Passing Parameters to and form Procedures:
The addresses/data values passed back and forth between the main line and the procedure are commonly called parameters.
The four major ways of passing parameters to and from a procedure are:
vi. In registers

vii. In dedicated memory locations accessed by name

viii. With pointers passed in registers

ix. With the stack.

ii) Passing Parameters in Registers:

The main program may store the parameters to be passed to the procedure in the available CPU register5s and the procedure may use the same register content of execution.
The original contents of the sued CPU register may change during execution of the procedure.
This may be avoided by pushing all the register content to be used to the stack sequentially at the start of the procedure and by popping them at the end of it in an opposite sequence.
Example of BCD (packed) to Binary conversion:
Data Segment
BCD-Input dB 17H
Bin-value dB?
Data ends
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CALL BCD-BIN; Near call
BCD-BIN PROC NEAR
Disadvantage: The no. of registers you use limits the number of parameters passed.
2. Passing Parameters in General Memory:
A main program may store the parameter to be passed at a known memory location and the procedure may sue it for accessing the parameter.

In the pervious example, we can directly access the BCD-input and BIN-value by
name, w/o storing it in registers.
Example:
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The limitation is that its procedure always 100 KS for a memory location named BCD-Input to get its data and will always put the result in BIN-value.
ii. It cant be directly used for conversion. (This method makes the procedure non-re entrant)
3.Passing Parameters using pointers:
This method uses registers to pass the procedure pointers to the desired data. For the above prog, use SI and DI to store the offset of BCD-Input and BCD-BIN. MOV SI, offset BCD-Input
MOV DI, offset BIN value
CALL BCD-BIN
BCD-BIN PROC NEAR
PUSH F
PUSH AX
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PUSH BX
PUSH CX
Code ends
End start
This pointer approach is versatile because we can pass the procedure pointers to data any where in memory
ii. Passing Parameters using Stack:
To pass parameters to a procedure using the stack, we PUSH. The parameters on the stack (in mainline prog) before calling the procedure.

Inst. in the procedure then read the parameters form the stack as needed. Like wise, parameters to be passed form procedure back to calling program are written to the stack by the inst. in the proc.

Note: This method is used for programs which allow several users to time share a system or those which consist of a mixture of HLL and ALP.

Whenever the Stack is used to pass par; it is very imp. To keep track of what is pushed on the stack and where the SP is at each point in the program.

MOV AL, BCD-Input
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POP BP
POP CX
POP BX
POP AX
POP F
RET
BCD-BIN ENDP
Code ends
End start
One potential problem to watch for when using the stack to pass parameters is stack over flow.
Stack over flow means that the stack fills up and overflows the memory space that is set a side.
To cure this, always number of POPs should be equal to number of pushes or in some other way make sure the stack pointer gets back to its initial position.
Applications:
	Parameters passing using Registers:
	For simple programs with few
	

	parameters to
	
	

	
	Pass
	

	Parameters passing using pointers:
	For passing arrays or other data
	

	
	
	

	structure
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(It is better than accessing directly by
name (using memory)
Parameters passing using stack
:
For procedure in a multi user system,

procedures called form a high level
language program
Questions:
What is the role of stack in calling a subroutine and returning from theroutine?
What is the difference between NEAR and FAR procedure?
How can we pass parameters using stack? Implement the BCD to Binaryconversion by passing parameters to stack.
Define stack overflow?
Re entrant and Recursive Procedures:
Re entrant Procedures:
A procedure must be written in such a way that it can be interrupted, used and “reentered” without losing or writing over anything,. Such type are said to be Re entrant procedures.
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To be re entrant, a procedure must first of all push the flags and all Registers used in the procedure.
To be re entrant, a program should use only
· Registers

· Pointers

· Stack

Why parameters passage using names (general Memory) is not used?
Suppose that 8086 is in the middle of executing the BCD-BIN procedure and an interrupt occurs.
Further, suppose that the interrupt service routine loads a new value in the memory location named BCD-Input and calls BCD-BIN procedure again. The initial value in BCD- Input has now been written over.
When execution returns to BCD-BIN after the Interrupt service procedure, the value used for BCD-Input by Interrupt proc. will be put instead of the desired Initial value.
Recursive Procedures:
A recursive procedure is a procedure which calls itself.
A simple example is to compute factorial of a no l N b/w to 8.
a) Program flow for N=1
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The procedure will call it self again to compute the next (N-1)! Value or 1!.
(c ). Pseudo code for Factorial
Procedure facto
If N=1
Factorial =1
RET
Else
Repeat
Decrement N
CALL FACTO
UNTIL N =1
Multiply (N-1)! * Previous N
RET
We can represent a flow chart also if necessary.
Recursive procedures are implemented using Stack.
Stack –Seg Segment Stack
DW 200 DUP (0)
Stack –TOP Label word
Stack –Seg Ends
Number EQU 08
Code Segment
Assume CS: code, SS: stack-seg
Start: MOV AX, stack-seg
MOV SS, AX
MOV SP, offset stack-top
SUB SP, 0004H; allocate
Space for two words to store the computed factorial
ADD SP, 2;
get over original no. in stack

POP AX;
get low word of the result

POP DX;
get high word of the result

NOP
JMP FIN
FACTO PROC NEAR
www.smartzworld.com
specworld.in
jntuworldupdates.org
www.jntuhubupdates.com
www.jntuhubupdates.com
jntuhubupdates
GO-ON: SUB SP, 0004 H; Make space in stack for preliminary factorial
DEC AX
PUSH AX; Save N-1 on stack
CALL FACTO
MOV BP, SP
MOV AX, [BP+2]; Last (N-1)! From stack to AX.
MUL WORD PTR [BP+16]; Multiply by prev. N
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Questions:
What are the different ways to make a program reentrant? Explain eachwith an example.
Can you write two different code segments in a program? If yes supportwith an example.
Implement the program to delete the bytes between 0h and 66h usingreentrant procedures.
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Assembler Macros
Comparison of Macros and Procedures:
Whenever we need to use a group of inst. several times through out a program, there are two ways to write the group of inst.
Procedure:
· One way is to write the group of instructions as a separate procedure.
Adv: The machine codes for the group of inst. in the procedure have to be put in memory only once.
Dis: Need for a stack
Over head time reg. to call the procedure and return to calling program.
· Macro :

A macro is a group of inst. we bracket and give a name to at the start of our program.
For each call of Macro, the assembler will insert the defined group of
inst.
Replacing the macro with inst. is called „Expanding a Macro.
Adv:
Macro Avoids the over head time involved in calling and returning from a procedure. So executes faster.
Dis:
The assembler has to generate machine code each time the macro is called. Generating in-line code each time the macro is called requires more memory for the program than suing a procedure.
Simple Macro Definitions without Parameters:
Syntax:
Macro name MACRO [parameter, list]; define a Macro
[Instructions]; Body of Macro
; End of Macro
END M
The macro definition appears before the coding of any segment.
A simple example which defines two Macros: initialize and finish.
INIT: used for initializing segment registers.
FINISH: Which ends processing
Syntax for Macro call:
Ex: INIT
FINISH
INIT MACRO
MOV AX, data
MOV DS, AX
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MOV ES, AX
ENDM
FINISH MACRO
MOV AX, 4C00H
INT 21H
ENDM
Message DB „Test of Macro, 13, 10, „$
BEGIN PROC FAR
Passing Parameters to Macros:
We can define parameters in the operand as Dummy Arguments.
A dummy argument may contain any valid name; including a register
name such as CX. (up to 120 arguments can be passed)
Ex: A macro definition named PROMT provides for the use of INT 21H function 09H to display messages:
A dummy arg. In a macro definition tells the assembler to match its name with any occurrence of the same name in the macro body.(LEAs operand matches)
When using this macro inst, we have to supply the name of the message; which references a data area terminated by a dollar sign. Message 2 DB „Enter the data; „$.
To display this using PROMPT, supply the name message 2 as a
parameter.
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PROMPT message 2
The parameter (message 2) matches the dummy argument (message) in the original macro definition.
Comments can also be given inside a macro using a semicolon.
INIT MACRO
MOV DS, AX
MOV ES, AX
ENDM
FINISH MACRO
MOV AH, 4 CH
INT 21 H
ENDM
PROMPT MACRO Message
· This macro permits to display massage MOVE AH, 09H

LEA DX, Message INT 21H ENDM

Message 1db „Name?, „$ Message 2 DB „Address?, „$ Begin PROC FAR

INIT

PROMPT Message 1 PROMPT Message 2
FINISH Begin ENDP
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UNIT-IV
COMPUTER ARITHMETIC
Introduction:
Data is manipulated by using the arithmetic instructions in digital computers. Data is manipulated to produce results necessary to give solution for the computation problems. The Addition, subtraction, multiplication and division are the four basic arithmetic operations. If we want then we can derive other operations by using these four operations.
To execute arithmetic operations there is a separate section called arithmetic processing unit in central processing unit. The arithmetic instructions are performed generally on binary or decimal data. Fixed-point numbers are used to represent integers or fractions. We can have signed or unsigned negative numbers. Fixed-point addition is the simplest arithmetic operation.
If we want to solve a problem then we use a sequence of well-defined steps. These steps are collectively called algorithm. To solve various problems we give algorithms.
In order to solve the computational problems, arithmetic instructions are used in digital computers that manipulate data. These instructions perform arithmetic calculations.
And these instructions perform a great activity in processing data in a digital computer. As we already stated that with the four basic arithmetic operations addition, subtraction, multiplication and division, it is possible to derive other arithmetic operations and solve scientific problems by means of numerical analysis methods.
A processor has an arithmetic processor(as a sub part of it) that executes arithmetic operations. The data type, assumed to reside in processor, registers during the execution of an arithmetic instruction. Negative numbers may be in a signed magnitude or signed complement representation. There are three ways of representing negative fixed point - binary numbers signed magnitude, signed 1’s complement or signed 2’s complement. Most computers use the signed magnitude representation for the mantissa.
Addition and Subtraction :
Addition and Subtraction with Signed –Magnitude Data
We designate the magnitude of the two numbers by A and B. Where the signed numbers are added or subtracted, we find that there are eight different conditions to consider, depending on the sign of the numbers and the operation performed. These conditions are listed in the first column of Table 4.1. The other columns in the table show the actual operation to be performed with the magnitude of the numbers. The last column is needed to present a negative zero. In other words, when two equal numbers are subtracted, the result should be +0 not -0.
The algorithms for addition and subtraction are derived from the table and can be stated as follows (the words parentheses should be used for the subtraction algorithm)
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Algorithm:
[image: image1.jpg]


 The flowchart is shown in Figure 7.1. The two signs A, and B, are compared by an exclusive-OR gate.
If the output of the gate is 0 the signs are
identical; If it is 1, the signs are different.
[image: image2.jpg]


 For an add operation, identical signs dictate that the magnitudes be added. For a subtract operation, different signs dictate that the magnitudes be added.

The magnitudes are added with a microoperation EA A + B, where EA is a register that combines E and A. The carry in E after the addition constitutes an overflow if it is equal to 1. The value of E is transferred into the add-overflow flip-flop AVF.
[image: image3.jpg]


 The two magnitudes are subtracted if the signs are different for an add operation or identical for a subtract operation. The magnitudes are subtracted by adding A to the 2's complemented B. No overflow can occur if the numbers are subtracted so AVF is cleared to 0.
[image: image4.jpg]


 1 in E indicates that A >= B and the number in A is the correct result. If this numbs is zero, the sign A must be made positive to avoid a negative zero.

0 in E indicates that A < B. For this case it is necessary to take the 2's complement of the value in A. The operation can be done with one microoperation A A' +1.

[image: image5.jpg]


 However, we assume that the A register has circuits for microoperations complement and increment, so the 2's complement is obtained from these two microoperations.
[image: image6.jpg]


 In other paths of the flowchart, the sign of the result is the same as the sign of A. so no change in A is required. However, when A < B, the sign of the result is the complement of the original sign of A. It is then necessary to complement A, to obtain the correct sign.
[image: image7.jpg]


 The final result is found in register A and its sign in As. The value in AVF provides an overflow indication. The final value of E is immaterial.
[image: image8.jpg]


Figure 7.2 shows a block diagram of the hardware for implementing the addition and subtraction operations.
[image: image9.jpg]


It consists of registers A and B and sign flip-flops As and Bs.
[image: image10.jpg]


Subtraction is done by adding A to the 2's complement of B.
[image: image11.jpg]


The output carry is transferred to flip-flop E , where it can be checked to determine the relative magnitudes of two numbers.
[image: image12.jpg]


The add-overflow flip-flop AVF holds the overflow bit when A and B are added.
[image: image13.jpg]


The A register provides other microoperations that may be needed when we specify the sequence of steps in the algorithm.
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Multiplication Algorithm:
In the beginning, the multiplicand is in B and the multiplier in Q. Their corresponding signs are in Bs and Qs respectively. We compare the signs of both A and Q and set to corresponding sign of the product since a double-length product will be stored in registers A and Q. Registers A and E are cleared and the sequence counter SC is set to the number of bits of the multiplier. Since an operand must be stored with its sign, one bit of the word will be occupied by the sign and the magnitude will consist of n-1 bits.
Now, the low order bit of the multiplier in Qn is tested. If it is 1, the multiplicand (B) is added to present partial product (A), 0 otherwise. Register EAQ is then shifted once to the right to form the new partial product. The sequence counter is decremented by 1 and its new value checked. If it is not equal to zero, the process is repeated and a new partial product is formed. When SC = 0 we stops the process.
	UNIT-IV
	4



Booth’s algorithm :
[image: image14.jpg]


Booth algorithm gives a procedure for multiplying binary integers in signed- 2’s complement representation.
[image: image15.jpg]


It operates on the fact that strings of 0’s in the multiplier require no addition but just
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shifting, and a string of 1’s in the multiplier from bit weight 2k to weight 2m can be treated as 2k+1 – 2m.
For example, the binary number 001110 (+14) has a string 1’s from 23 to 21 (k=3, m=1). The number can be represented as 2k+1 – 2m. = 24 – 21 = 16 – 2 = 14. Therefore,


the multiplication M X 14, where M is the multiplicand and 14 the multiplier, can be done as M X 24 – M X 21.

Thus the product can be obtained by shifting the binary multiplicand M four times to the left and subtracting M shifted left once.

As in all multiplication schemes, booth algorithm requires examination of the multiplier bits and shifting of partial product.

Prior to the shifting, the multiplicand may be added to the partial product, subtracted from the partial, or left unchanged according to the following rules:
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1. The multiplicand is subtracted from the partial product upon encountering the first least significant 1 in a string of 1’s in the multiplier.

2. The multiplicand is added to the partial product upon encountering the first 0 in a string of 0’s in the multiplier.

3. The partial product does not change when multiplier bit is identical to the previous multiplier bit.

[image: image16.jpg]


The algorithm works for positive or negative multipliers in 2’s complement representation.
[image: image17.jpg]


This is because a negative multiplier ends with a string of 1’s and the last operation will be a subtraction of the appropriate weight.
[image: image18.jpg]


The two bits of the multiplier in Qn and Qn+1 are inspected.
[image: image19.jpg]


If the two bits are equal to 10, it means that the first 1 in a string of 1 's has been encountered. This requires a subtraction of the multiplicand from the partial product in AC.
[image: image20.jpg]


If the two bits are equal to 01, it means that the first 0 in a string of 0's has been encountered. This requires the addition of the multiplicand to the partial product in AC.
[image: image21.jpg]


When the two bits are equal, the partial product does not change.
Division Algorithms
Division of two fixed-point binary numbers in signed magnitude representation is performed with paper and pencil by a process of successive compare, shift and subtract operations. Binary division is much simpler than decimal division because here the quotient digits are either 0 or 1 and there is no need to estimate how many times the dividend or partial remainder fits into the divisor. The division process is described in Figure

The devisor is compared with the five most significant bits of the dividend. Since the 5-bit number is smaller than B, we again repeat the same process. Now the 6-bit number is greater than B, so we place a 1 for the quotient bit in the sixth position above the dividend. Now we shift the divisor once to the right and subtract it from the dividend. The difference is known as a partial remainder because the division could have stopped here to obtain a quotient of 1 and a remainder equal to the partial
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remainder. Comparing a partial remainder with the divisor continues the process. If the partial remainder is greater than or equal to the divisor, the quotient bit is equal to
1. The divisor is then shifted right and subtracted from the partial remainder. If the partial remainder is smaller than the divisor, the quotient bit is 0 and no subtraction is needed. The divisor is shifted once to the right in any case. Obviously the result gives both a quotient and a remainder.

Hardware Implementation for Signed-Magnitude Data
In hardware implementation for signed-magnitude data in a digital computer, it is convenient to change the process slightly. Instead of shifting the divisor to the right, two dividends, or partial remainders, are shifted to the left, thus leaving the two numbers in the required relative position. Subtraction is achieved by adding A to the 2's complement of B. End carry gives the information about the relative magnitudes.
The hardware required is identical to that of multiplication. Register EAQ is now shifted to the left with 0 inserted into Qn and the previous value of E is lost. The example is given in Figure 4.10 to clear the proposed division process. The divisor is stored in the B register and the double-length dividend is stored in registers A and Q. The dividend is shifted to the left and the divisor is subtracted by adding its 2's complement value. E

Hardware Implementation for Signed-Magnitude Data
Algorithm:
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Example of Binary Division with Digital Hardware

Floating-point Arithmetic operations :
	UNIT-IV
	9


In many high-level programming languages we have a facility for specifying floating-point numbers. The most common way is by a real declaration statement. High level programming languages must have a provision for handling floating-point arithmetic operations. The operations are generally built in the internal hardware. If no hardware is available, the compiler must be designed with a package of floating-point software subroutine. Although the hardware method is more expensive, it is much more efficient than the software method. Therefore, floating- point hardware is included in most computers and is omitted only in very small ones.
Basic Considerations :
There are two part of a floating-point number in a computer - a mantissa m and an exponent e. The two parts represent a number generated from multiplying m times a radix r raised to the value of e. Thus
m x re
The mantissa may be a fraction or an integer. The position of the radix point and the value of the radix r are not included in the registers. For example, assume a fraction representation and a radix
10. The decimal number 537.25 is represented in a register with m = 53725 and e = 3 and is interpreted to represent the floating-point number

.53725 x 103
A floating-point number is said to be normalized if the most significant digit of the mantissa in nonzero. So the mantissa contains the maximum possible number of significant digits. We cannot normalize a zero because it does not have a nonzero digit. It is represented in floating-point by all 0’s in the mantissa and exponent.
Floating-point representation increases the range of numbers for a given register. Consider a computer with 48-bit words. Since one bit must be reserved for the sign, the range of fixed-point integer numbers will be + (247 – 1), which is approximately + 1014. The 48 bits can be used to represent a floating-point number with 36 bits for the mantissa and 12 bits for the exponent. Assuming fraction representation for the mantissa and taking the two sign bits into consideration, the range of numbers that can be represented is
· (1 – 2-35) x 22047
This number is derived from a fraction that contains 35 1’s, an exponent of 11 bits (excluding its sign), and because 211–1 = 2047. The largest number that can be accommodated is approximately 10615. The mantissa that can accommodated is 35 bits (excluding the sign) and if considered as an integer it can store a number as large as (235 –1). This is approximately equal to 1010, which is equivalent to a decimal number of 10 digits.
Computers with shorter word lengths use two or more words to represent a floating-point number. An 8-bit microcomputer uses four words to represent one floating-point number. One word of 8 bits are reserved for the exponent and the 24 bits of the other three words are used in the mantissa.
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Arithmetic operations with floating-point numbers are more complicated than with fixed-point numbers. Their execution also takes longer time and requires more complex hardware. Adding or subtracting two numbers requires first an alignment of the radix point since the exponent parts must be made equal before adding or subtracting the mantissas. We do this alignment by shifting one mantissa while its exponent is adjusted until it becomes equal to the other exponent. Consider the sum of the following floating-point numbers:
.5372400 x 102
+ .1580000 x 10-1
Floating-point multiplication and division need not do an alignment of the mantissas. Multiplying the two mantissas and adding the exponents can form the product. Dividing the mantissas and subtracting the exponents perform division.
The operations done with the mantissas are the same as in fixed-point numbers, so the two can share the same registers and circuits. The operations performed with the exponents are compared and incremented (for aligning the mantissas), added and subtracted (for multiplication) and division), and decremented (to normalize the result). We can represent the exponent in any one of the three representations - signed-magnitude, signed 2’s complement or signed 1’s complement.
Biased exponents have the advantage that they contain only positive numbers. Now it becomes simpler to compare their relative magnitude without bothering about their signs. Another advantage is that the smallest possible biased exponent contains all zeros. The floating-point representation of zero is then a zero mantissa and the smallest possible exponent.
Register Configuration
The register configuration for floating-point operations is shown in figure 4.13. As a rule, the same registers and adder used for fixed-point arithmetic are used for processing the mantissas. The difference lies in the way the exponents are handled.
The register organization for floating-point operations is shown in Fig. 4.13. Three registers are there, BR, AC, and QR. Each register is subdivided into two parts. The mantissa part has the same uppercase letter symbols as in fixed-point representation. The exponent part may use corresponding lower-case letter symbol.
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Floating Point Arithmetic

FLOATING POINT ARITHMETIC OPERATIONS
F = m x re
where m: Mantissa
r:
Radix
e: Exponent

Registers for Floating Point Arithmetic
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Figure 4.13: Registers for Floating Point arithmetic operations
Assuming that each floating-point number has a mantissa in signed-magnitude representation and a biased exponent. Thus the AC has a mantissa whose sign is in As, and a magnitude that is in A. The diagram shows the most significant bit of A, labeled by A1. The bit in his position must be a 1 to normalize the number. Note that the symbol AC represents the entire register, that is, the concatenation of As, A and a.
In the similar way, register BR is subdivided into Bs, B, and b and QR into Qs, Q and q. A parallel-adder adds the two mantissas and loads the sum into A and the carry into E. A separate parallel adder can be used for the exponents. The exponents do not have a district sign bit because they are biased but are represented as a biased positive quantity. It is assumed that the floating-point number are so large that the chance of an exponent overflow is very remote and so the exponent overflow will be neglected. The exponents are also connected to a magnitude comparator that provides three binary outputs to indicate their relative magnitude.
The number in the mantissa will be taken as a fraction, so they binary point is assumed to reside to the left of the magnitude part. Integer representation for floating point causes certain scaling problems during multiplication and division. To avoid these problems, we adopt a fraction representation.
The numbers in the registers should initially be normalized. After each arithmetic operation, the result will be normalized. Thus all floating-point operands are always normalized.
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Addition and Subtraction of Floating Point Numbers
During addition or subtraction, the two floating-point operands are kept in AC and BR. The sum or difference is formed in the AC. The algorithm can be divided into four consecutive parts:
1. Check for zeros.

2. Align the mantissas.

3. Add or subtract the mantissas

4. Normalize the result

A floating-point number cannot be normalized, if it is 0. If this number is used for computation, the result may also be zero. Instead of checking for zeros during the normalization process we check for zeros at the beginning and terminate the process if necessary. The alignment of the mantissas must be carried out prior to their operation. After the mantissas are added or subtracted, the result may be un-normalized. The normalization procedure ensures that the result is normalized before it is transferred to memory.
If the magnitudes were subtracted, there may be zero or may have an underflow in the result. If the mantissa is equal to zero the entire floating-point number in the AC is cleared to zero. Otherwise, the mantissa must have at least one bit that is equal to 1. The mantissa has an underflow if the most significant bit in position A1, is 0. In that case, the mantissa is shifted left and the exponent decremented. The bit in A1 is checked again and the process is repeated until A1 = 1. When A1 = 1, the mantissa is normalized and the operation is completed.
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Algorithm for Floating Point Addition and Subtraction
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· Memory Hierarchy, Main Memory, Auxiliary memory, Associative Memory, Cache Memory, Virtual Memory

Memory Hierarchy :
	Memory Organization
	2
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memory address map of RAM and ROM.
Main Memory
[image: image22.jpg]


The main memory is the central storage unit in a computer system.
[image: image23.jpg]


Primary memory holds only those data and instructions on which computer is currently working.

It has limited capacity and data is lost when power is switched off.

It is generally made up of semiconductor device.

These memories are not as fast as registers.

The data and instruction required to be processed reside in main memory.

It is divided into two subcategories RAM and ROM.
Memory address map of RAM and ROM
[image: image24.jpg]


The designer of a computer system must calculate the amount of memory required for the particular application and assign it to either RAM or ROM.
[image: image25.jpg]


The interconnection between memory and processor is then established from knowledge of the size of memory needed and the type of RAM and ROM chips available.
[image: image26.jpg]


The addressing of memory can be established by means of a table that specifies the memory address assigned to each chip.
[image: image27.jpg]


The table, called a memory address map, is a pictorial representation of assigned address space for each chip in the system, shown in table 9.1.
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[image: image28.jpg]


To demonstrate with a particular example, assume that a computer system needs 512 bytes of RAM and 512 bytes of ROM.
[image: image29.jpg]


The RAM and ROM chips to be used are specified in figure 9.1 and figure 9.2.
Memory address map of RAM and ROM

Figure 9.1: Typical RAM chip

Figure 9.2: Typical ROM chip

[image: image30.jpg]


The component column specifies whether a RAM or a ROM chip is used.
[image: image31.jpg]


The hexadecimal address column assigns a range of hexadecimal equivalent addresses for each chip.
[image: image32.jpg]


The address bus lines are listed in the third column.
[image: image33.jpg]


Although there are 16 lines in the address bus, the table shows only 10 lines because the other 6 are not used in this example and are assumed to be zero.
[image: image34.jpg]


The small x's under the address bus lines designate those lines that must be connected to the address inputs in each chip.
[image: image35.jpg]


The RAM chips have 128 bytes and need seven address lines. The ROM chip has 512 bytes and needs 9 address lines.
[image: image36.jpg]


The x's are always assigned to the low-order bus lines: lines 1 through 7 for the RAM and lines 1 through 9 for the ROM.
	UNIT-IV
	17


[image: image37.jpg]


It is now necessary to distinguish between four RAM chips by assigning to each a different address. For this particular example we choose bus lines 8 and 9 to represent four distinct binary combinations.

The table clearly shows that the nine low-order bus lines constitute a memory space for RAM equal to 29 = 512 bytes.
[image: image38.jpg]


The distinction between a RAM and ROM address is done with another bus line. Here we choose line 10 for this purpose.
When line 10 is 0, the CPU selects a RAM, and when this line is equal to 1, it selects the ROM
Memory connections to CPU :
- RAM and ROM chips are connected to a CPU



through the data and address buses
- The low-order lines in the address bus select



the byte within the chips and other lines in the address bus select a
particular chip through its chip select inputs.
Memory Organization
5
Main Memory

CONNECTION OF MEMORY TO CPU
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Auxiliary Memory :
· Magnetic Tape: Magnetic tapes are used for large computers like mainframe computers where large volume of data is stored for a longer time. In PC also you can use tapes in the form of cassettes. The cost of storing data in tapes is inexpensive. Tapes consist of magnetic materials that store data permanently. It can be 12.5 mm to 25 mm wide plastic film-type and 500 meter to 1200 meter long which is coated with magnetic material. The deck is connected to the central processor and information is fed into or read from the tape through the processor. It’s similar to cassette tape recorder.
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Magnetic tape is an information storage medium consisting of a magnetisable coating on a thin plastic strip. Nearly all recording tape is of this type, whether used for video with a video cassette recorder, audio storage (reel-to-reel tape, compact audio cassette, digital audio tape (DAT), digital linear tape (DLT) and other formats including 8-track cartridges) or general purpose digital data storage using a computer (specialized tape formats, as well as the above-mentioned compact audio cassette, used with home computers of the 1980s, and DAT, used for backup in workstation installations of the 1990s).
· Magneto-optical and optical tape storage products have been developed using many of the same concepts as magnetic storage, but have achieved little commercial success.
· Magnetic Disk: You might have seen the gramophone record, which is circular like a disk and coated with magnetic material. Magnetic disks used in computer are made on the same principle. It rotates with very high speed inside the computer drive. Data is stored on both the surface of the disk. Magnetic disks are most popular for direct access storage device. Each disk consists of a number of invisible concentric circles called tracks. Information is recorded on tracks of a disk surface in the form of tiny magnetic spots. The presence of a magnetic spot represents one bit and its absence represents zero bit. The information stored in a disk can be read many times without affecting the stored data. So the reading operation is non-destructive. But if you want to write a new data, then the existing data is erased from the disk and new data is recorded. For Example-Floppy Disk.
The primary computer storage device. Like tape, it is magnetically recorded and can be re-recorded over and over. Disks are rotating platters with a mechanical arm that moves a read/write head between the outer and inner edges of the platter's surface. It can take as long as one second to find a location on a floppy disk to as little as a couple of milliseconds on a fast hard disk. See hard disk for more details.
The disk surface is divided into concentric tracks (circles within circles). The thinner the tracks, the more storage. The data bits are recorded as tiny magnetic spots on the tracks. The smaller the spot, the more bits per inch and the greater the storage.
Sectors
Tracks are further divided into sectors, which hold a block of data that is read or written at one time; for example, READ SECTOR 782, WRITE SECTOR 5448. In order to update the disk, one or more sectors are read into the computer, changed and written back to disk. The operating system figures out how to fit data into these fixed spaces. Modern disks have more sectors in the outer tracks than the inner ones because the outer radius of the platter is greater than the inner radius

Block diagram of Magnetic Disk
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Optical Disk: With every new application and software there is greater demand for memory capacity. It is the necessity to store large volume of data that has led to the development of optical disk storage medium. Optical disks can be divided into the following categories:
1. Compact Disk/ Read Only Memory (CD-ROM
2. Write Once, Read Many (WORM)
3. Erasable Optical Disk
Associative Memory :Content Addressable Memory (CAM).
[image: image39.jpg]


The time required to find an item stored in memory can be reduced considerably if stored data can be identified for access by the content of the data itself rather than by an address.
[image: image40.jpg]


A memory unit accessed by content is called an associative memory or content addressable memory (CAM).
[image: image41.jpg]


This type of memory is accessed simultaneously and in parallel on the basis of data content rather than by specific address or location.
[image: image42.jpg]


The block diagram of an associative memory is shown in figure 9.3.

It consists of a memory array and logic form words with n bits per word.

The argument register A and key register K each have n bits, one for each bit of a word.

The match register M has m bits, one for each memory word.

Each word in memory is compared in parallel with the content of the argument register.
[image: image43.jpg]


The words that match the bits of the argument register set a corresponding bit in the match register.
[image: image44.jpg]


After the matching process, those bits in the match register that have been set indicate the fact that their corresponding words have been matched.
[image: image45.jpg]


Reading is accomplished by a sequential access to memory for those words whose corresponding bits in the match register have been set.
Hardware Organization
[image: image46.jpg]


The key register provides a mask for choosing a particular field or key in the argument word.
[image: image47.jpg]


The entire argument is compared with each memory word if the key register contains all 1's.
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Otherwise, only those bits in the argument that have 1st in their corresponding position of the key register are compared.

[image: image48.jpg]


Thus the key provides a mask or identifying piece of information which specifies how the reference to memory is made.
[image: image49.jpg]


To illustrate with a numerical example, suppose that the argument register A and the key register K have the bit configuration shown below.
[image: image50.jpg]


Only the three leftmost bits of A are compared with memory words because K has 1's in these position.
	A
	101 111100
	

	K
	111 000000
	

	Word1
	100 111100
	no match

	Word2
	101 000001
	match



Word 2 matches the unmasked argument field because the three leftmost bits of the argument and the word are equal.

Figure 9.4: Associative memory of m word, n cells per word.
[image: image51.jpg]


The relation between the memory array and external registers in an associative memory is shown in figure 9.4.
[image: image52.jpg]


The cells in the array are marked by the letter C with two subscripts.
[image: image53.jpg]


The first subscript gives the word number and the second specifies the bit position in the word.
[image: image54.jpg]


Thus cell Cij is the cell for bit j in words i.
[image: image55.jpg]


A bit Aj in the argument register is compared with all the bits in column j of the array provided that Kj =1.
[image: image56.jpg]


This is done for all columns j = 1, 2... n.
[image: image57.jpg]


If a match occurs between all the unmasked bits of the argument and the bits in word i, the corresponding bit Mi in the match register is set to 1.
[image: image58.jpg]


If one or more unmasked bits of the argument and the word do not match, Mi is cleared to 0.
Cache Memory :
[image: image59.jpg]


Cache is a fast small capacity memory that should hold those information which are most likely to be accessed.
	UNIT-IV
	21


[image: image60.jpg]


The basic operation of the cache is, when the CPU needs to access memory, the cache is examined.
[image: image61.jpg]


If the word is found in the cache, it is read from the fast memory. If the word addressed by the CPU is not found in the cache, the main memory is accessed to read the word.
[image: image62.jpg]


The transformation of data from main memory to cache memory is referred to as a mapping process.
Associative mapping

Consider the main memory can store 32K words of 12 bits each.

The cache is capable of storing 512 of these words at any given time.

For every word stored in cache, there is a duplicate copy in main memory.

The CPU communicates with both memories.
It first sends a 15-bit address to cache. If there is a hit, the CPU accepts the 12-bit data from cache, if there is miss, the CPU reads the word from main memory and the word is then transferred to cache.
Figure 9.5: Associative mapping cache
(all numbers in octal)

[image: image63.jpg]


The associative memory stores both the address and content (data) of the memory word.
[image: image64.jpg]


This permits any location in cache to store any word from main memory.
[image: image65.jpg]


The figure 9.5 shows three words presently stored in the cache. The address value of 15 bits is shown as a five-digit octal number and its corresponding 12-bit word is shown as a four-digit octal number.
[image: image66.jpg]


A CPU address of 15 bits is placed in the argument register and the associative memory is searched for a matching address.

If the address is found the corresponding 12-bit data is read and sent to CPU.

If no match occurs, the main memory is accessed for the word.

The address data pairs then transferred to the associative cache memory.
[image: image67.jpg]


If the cache is full, an address data pair must be displaced to make room for a pair that is needed and not presently in the cache.
[image: image68.jpg]


This constitutes a first-in first-one (FIFO) replacement policy.
direct mapping in organization of cache memory:
[image: image69.jpg]


The CPU address of 15 bits is divided into two fields.
[image: image70.jpg]


The nine least significant bits constitute the index field and the remaining six bits from the tag field.
[image: image71.jpg]


The figure 9.6 shows that main memory needs an address that includes both the tag and the index.

UNIT-IV
Figure 9.6: Addressing relationships between main and cache memories
[image: image72.jpg]


The number of bits in the index field is equal to the number of address bits required to access the cache memory.
[image: image73.jpg]


The internal organization of the words in the cache memory is as shown in figure 9.7.

Figure 9.7: Direct mapping cache organization
[image: image74.jpg]


Each word in cache consists of the data word and its associated tag.
[image: image75.jpg]


When a new word is first brought into the cache, the tag bits are stored alongside the data bits.
[image: image76.jpg]


When the CPU generates a memory request the index field is used for the address to access the cache.
[image: image77.jpg]


The tag field of the CPU address is compared with the tag in the word read from the cache.

If the two tags match, there is a hit and the desired data word is in cache.

If there is no match, there is a miss and the required word is read from main memory.

It is then stored in the cache together with the new tag, replacing the previous value.
[image: image78.jpg]


The word at address zero is presently stored in the cache (index = 000, tag = 00, data = 1220).
Suppose that the CPU now wants to access the word at address 02000.
The index address is 000, so it is used to access the cache. The two tags are then compared.
The cache tag is 00 but the address tag is 02, which does not produce a match.
Therefore, the main memory is accessed and the data word 5670 is transferred to the CPU.
The cache word at index address 000 is then replaced with a tag of 02 and data of 5670.
The disadvantage of direct mapping is that two words with the same index in their address but with different tag values cannot reside in cache memory at the same time.
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The comparison logic is done by an associative search of the tags in the set similar to an associative memory search: thus the name "set-associative”.
When a miss occurs in a set-associative cache and the set is full, it is necessary to replace one of the tag-data items with a new value.
The most common replacement algorithms used are: random replacement, first-in first-out (FIFO), and least recently used (LRU).
Write-through and Write-back cache write method.
Write Through
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The simplest and most commonly used procedure is to update main memory with every memory write operation.
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The cache memory being updated in parallel if it contains the word at the specified address. This is called the write-through method.
[image: image81.jpg]


This method has the advantage that main memory always contains the same data as the cache.
This characteristic is important in systems with direct memory access transfers.
[image: image82.jpg]


It ensures that the data residing in main memory are valid at all times so that an I/O device communicating through DMA would receive the most recent updated data.
Write-Back (Copy-Back)
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The second procedure is called the write-back method.
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In this method only the cache location is updated during a write operation.
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The location is then marked by a flag so that later when the word is removed from the cache it is copied into main memory.
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The reason for the write-back method is that during the time a word resides in the cache, it may be updated several times.
[image: image87.jpg]


However, as long as the word remains in the cache, it does not matter whether the copy in main memory is out of date, since requests from the word are filled from the cache.
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It is only when the word is displaced from the cache that an accurate copy need be rewritten into main memory.
Virtual Memory
[image: image89.jpg]


Virtual memory is used to give programmers the illusion that they have a very large memory at their disposal, even though the computer actually has a relatively small main memory.
[image: image90.jpg]


A virtual memory system provides a mechanism for translating program-generated addresses into correct main memory locations.
Address space
An address used by a programmer will be called a virtual address, and the set of such addresses is known as address space.
Memory space
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An address in main memory is called a location or physical address. The set of such locations is called the memory space.

Auxiliary Memory
Main Memory 32k=
Program 1
Data 1,1
Data 1,2
Program 2
Data 2,1
Address space 1024k=210
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As an illustration, consider a computer with a main-memory capacity of 32K words (K = 1024). Fifteen bits are needed to specify a physical address in memory since 32K = 215.
Suppose that the computer has available auxiliary memory for storing 220 = 1024K words.

[image: image91.jpg]


Thus auxiliary memory has a capacity for storing information equivalent to the capacity of 32 main memories.
[image: image92.jpg]


Denoting the address space by N and the memory space by M, we then have for this example N = 1024K and M = 32K.
[image: image93.jpg]


In a multiprogramming computer system, programs and data are transferred to and from auxiliary memory and main memory based on demands imposed by the CPU.
[image: image94.jpg]


Suppose that program 1 is currently being executed in the CPU. Program 1 and a portion of its associated data are moved from auxiliary memory into main memory as shown in figure 9.9.
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Portions of programs and data need not be in contiguous locations in memory since information is being moved in and out, and empty spaces may be available in scattered locations in memory.
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In our example, the address field of an instruction code will consist of 20 bits but physical memory addresses must be specified with only 15 bits.
[image: image97.jpg]


Thus CPU will reference instructions and data with a 20-bit address, but the information at this address must be taken from physical memory because access to auxiliary storage for individual words will be too long.
Address mapping using pages.
[image: image98.jpg]


AThe table implementation of the address mapping is simplified if the information in the address space and the memory space are each divided into groups of fixed size.
[image: image99.jpg]


The physical memory is broken down into groups of equal size called blocks, which may range from 64 to 4096 words each.
[image: image100.jpg]


The term page refers to groups of address space of the same size.
[image: image101.jpg]


Consider a computer with an address space of 8K and a memory space of 4K.
[image: image102.jpg]


If we split each into groups of 1K words we obtain eight pages and four blocks as shown in figure 9.9
[image: image103.jpg]


At any given time, up to four pages of address space may reside in main memory in any one of the four blocks.

Figure 9.10 Address and Memory space split into group of 1K words
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Figure 9.11: Memory table in paged system
[image: image104.jpg]


The organization of the memory mapping table in a paged system is shown in figure 9.10.
[image: image105.jpg]


The memory-page table consists of eight words, one for each page.
[image: image106.jpg]


The address in the page table denotes the page number and the content of the word give the block number where that page is stored in main memory.
[image: image107.jpg]


The table shows that pages 1, 2, 5, and 6 are now available in main memory in blocks 3, 0, 1, and 2, respectively.
[image: image108.jpg]


A presence bit in each location indicates whether the page has been transferred from auxiliary memory into main memory.
[image: image109.jpg]


A 0 in the presence bit indicates that this page is not available in main memory.
The CPU references a word in memory with a virtual address of 13 bits.
The three high-order bits of the virtual address specify a page number and also an address for the memory-page table.
The content of the word in the memory page table at the page number address is read out into the memory table buffer register.
If the presence bit is a 1, the block number thus read is transferred to the two high-order bits of the main memory address register.
The line number from the virtual address is transferred into the 10 low-order bits of the memory address register.
A read signal to main memory transfers the content of the word to the main memory buffer register ready to be used by the CPU.
If the presence bit in the word read from the page table is 0, it signifies that the content of the word referenced by the virtual address does not reside in main memory.
Segment
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A segment is a set of logically related instructions or data elements associated with a given name.
Logical address
The address generated by segmented program is called a logical address.
Segmented page mapping
[image: image110.jpg]


The length of each segment is allowed to grow and contract according to the needs of the program being executed. Consider logical address shown in figure 9.12.
Figure 9.12: Logical to physical address mapping
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 The logical address is partitioned into three fields.
[image: image112.jpg]


 The segment field specifies a segment number.
[image: image113.jpg]


The page field specifies the page within the segment and word field gives specific word within the page.
[image: image114.jpg]


A page field of k bits can specify up to 2k pages.
[image: image115.jpg]


A segment number may be associated with just one page or with as many as 2k pages.
[image: image116.jpg]


Thus the length of a segment would vary according to the number of pages that are assigned to it.
[image: image117.jpg]


The mapping of the logical address into a physical address is done by means of two tables, as shown in figure 9.12.
[image: image118.jpg]


The segment number of the logical address specifies the address for the segment table.
[image: image119.jpg]


The entry in the segment table is a pointer address for a page table base.
[image: image120.jpg]


The page table base is added to the page number given in the logical address.
[image: image121.jpg]


The sum produces a pointer address to an entry in the page table.
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UNIT-V
INPUT-OUTPUT ORGANIZATION
Peripheral Devices:
The Input / output organization of computer depends upon the size of computer and the peripherals connected to it. The I/O Subsystem of the computer, provides an efficient mode of communication between the central system and the outside environment
The most common input output devices are:
xv) Monitor

xvi) Keyboard

xvii) Mouse

xviii) Printer

xix) Magnetic tapes

The devices that are under the direct control of the computer are said to be connected online.
Input - Output Interface
Input Output Interface provides a method for transferring information between internal storage and external I/O devices.
Peripherals connected to a computer need special communication links for interfacing them with the central processing unit.
The purpose of communication link is to resolve the differences that exist between the central computer and each peripheral.
The Major Differences are:-
1.
Peripherals are electromechnical and electromagnetic devices and CPU and memory are electronic devices. Therefore, a conversion of signal values may be needed.
6. The data transfer rate of peripherals is usually slower than the transfer rate of CPU and consequently, a synchronization mechanism may be needed.

7. Data codes and formats in the peripherals differ from the word format in the CPU and memory.
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8. The operating modes of peripherals are different from each other and must be controlled so as not to disturb the operation of other peripherals connected to the CPU.

To Resolve these differences, computer systems include special hardware components between the CPU and Peripherals to supervises and synchronizes all input and out transfers
· These components are called Interface Units because they interface between the processor bus and the peripheral devices.
I/O BUS and Interface Module
It defines the typical link between the processor and several peripherals.
The I/O Bus consists of data lines, address lines and control lines.
The I/O bus from the processor is attached to all peripherals interface.
To communicate with a particular device, the processor places a device address on address lines.
Each Interface decodes the address and control received from the I/O bus, interprets them for peripherals and provides signals for the peripheral controller.
It is also synchronizes the data flow and supervises the transfer between peripheral and processor.
Each peripheral has its own controller.
For example, the printer controller controls the paper motion, the print timing
The control lines are referred as I/O command. The commands are as following:
Control command- A control command is issued to activate the peripheral and to inform it what to do.
Status command- A status command is used to test various status conditions in the interface and the peripheral.
Data Output command- A data output command causes the interface to respond by transferring data from the bus into one of its registers.
Data Input command- The data input command is the opposite of the data output.
In this case the interface receives on item of data from the peripheral and places it in its buffer register. I/O Versus Memory Bus
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To communicate with I/O, the processor must communicate with the memory unit. Like the I/O bus, the memory bus contains data, address and read/write control lines. There are 3 ways that computer buses can be used to communicate with memory and I/O:
i.
Use two Separate buses , one for memory and other for I/O.
ii. Use one common bus for both memory and I/O but separate
control lines for each.
vii. Use one common bus for memory and I/O with common control lines. I/O Processor

In the first method, the computer has independent sets of data, address and control buses one for accessing memory and other for I/O. This is done in computers that provides a separate I/O processor (IOP). The purpose of IOP is to provide an independent pathway for the transfer of information between external device and internal memory.
Asynchronous Data Transfer :
This Scheme is used when speed of I/O devices do not match with microprocessor, and timing characteristics of I/O devices is not predictable. In this method, process initiates the device and check its status. As a result, CPU has to wait till I/O device is ready to transfer data. When device is ready CPU issues instruction for I/O transfer. In this method two types of techniques are used based on signals before data transfer.
v. Strobe Control

vi. Handshaking
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Strobe Signal :
The strobe control method of Asynchronous data transfer employs a single control line to time each transfer. The strobe may be activated by either the source or the destination unit.
Data Transfer Initiated by Source Unit:

In the block diagram fig. (a), the data bus carries the binary information from source to destination unit. Typically, the bus has multiple lines to transfer an entire byte or word. The strobe is a single line that informs the destination unit when a valid data word is available.
The timing diagram fig. (b) the source unit first places the data on the data bus. The information on the data bus and strobe signal remain in the active state to allow the destination unit to receive the data.
Data Transfer Initiated by Destination Unit:
In this method, the destination unit activates the strobe pulse, to informing the source to provide the data. The source will respond by placing the requested binary information on the data bus.
The data must be valid and remain in the bus long enough for the destination unit to accept it. When accepted the destination unit then disables the strobe and the source unit removes the data from the bus.
4
UNIT-V

Disadvantage of Strobe Signal :
The disadvantage of the strobe method is that, the source unit initiates the transfer has no way of knowing whether the destination unit has actually received the data item that was places in the bus. Similarly, a destination unit that initiates the transfer has no way of knowing whether the source unit has actually placed the data on bus. The Handshaking method solves this problem.
Handshaking:
The handshaking method solves the problem of strobe method by introducing a second control signal that provides a reply to the unit that initiates the transfer.
Principle of Handshaking:
The basic principle of the two-wire handshaking method of data transfer is as follow:
One control line is in the same direction as the data flows in the bus from the source to destination. It is used by source unit to inform the destination unit whether there a valid data in the bus. The other control line is in the other direction from the destination to the source. It is used by the destination unit to inform the source whether it can accept the data. The sequence of control during the transfer depends on the unit that initiates the transfer.
Source Initiated Transfer using Handshaking:
The sequence of events shows four possible states that the system can be at any given time. The source unit initiates the transfer by placing the data on the bus and enabling its data valid signal. The data accepted signal is activated by the destination unit after it accepts the data from the bus. The source unit then disables its data accepted signal and the system goes into its initial state.
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Destination Initiated Transfer Using Handshaking:
The name of the signal generated by the destination unit has been changed to ready for data to reflects its new meaning. The source unit in this case does not place data on the bus until after it receives the ready for data signal from the destination unit. From there on, the handshaking procedure follows the same pattern as in the source initiated case.
The only difference between the Source Initiated and the Destination Initiated transfer is in their choice of Initial sate.
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Advantage of the Handshaking method:
· The Handshaking scheme provides degree of flexibility and reliability because the successful completion of data transfer relies on active participation by both units.
· If any of one unit is faulty, the data transfer will not be completed. Such an error can be detected by means of a Timeout mechanism which provides an alarm if the data is not completed within time.
Asynchronous Serial Transmission:
The transfer of data between two units is serial or parallel. In parallel data transmission, n bit in the message must be transmitted through n separate conductor path. In serial transmission, each bit in the message is sent in sequence one at a time.
Parallel transmission is faster but it requires many wires. It is used for short distances and where speed is important. Serial transmission is slower but is less expensive.
In Asynchronous serial transfer, each bit of message is sent a sequence at a time, and binary information is transferred only when it is available. When there is no information to be transferred, line remains idle.
In this technique each character consists of three points :
i. Start bit
ii. Character bit

iii. Stop bit

ix. Start Bit- First bit, called start bit is always zero and used to indicate the beginning character.

x. Stop Bit- Last bit, called stop bit is always one and used to indicate end of characters. Stop bit is always in the 1- state and frame the end of the characters to signify the idle or wait state.

xi. Character Bit- Bits in between the start bit and the stop bit are known as character bits. The character bits always follow the start bit.


Serial Transmission of Asynchronous is done by two ways:
7
UNIT-V
e) Asynchronous Communication Interface

b) First In First out Buffer

Asynchronous Communication Interface:
It works as both a receiver and a transmitter. Its operation is initialized by CPU by sending a byte to the control register.
The transmitter register accepts a data byte from CPU through the data bus and transferred to a shift register for serial transmission.
The receive portion receives information into another shift register, and when a complete data byte is received it is transferred to receiver register.
CPU can select the receiver register to read the byte through the data bus. Data in the status register is used for input and output flags.
First In First Out Buffer (FIFO):
A First In First Out (FIFO) Buffer is a memory unit that stores information in such a manner that the first item is in the item first out. A FIFO buffer comes with separate input and output terminals. The important feature of this buffer is that it can input data and output data at two different rates.
When placed between two units, the FIFO can accept data from the source unit at one rate, rate of transfer and deliver the data to the destination unit at another rate.
If the source is faster than the destination, the FIFO is useful for source data arrive in bursts that fills out the buffer. FIFO is useful in some applications when data are transferred asynchronously.
Modes of Data Transfer :
Transfer of data is required between CPU and peripherals or memory or sometimes between any two devices or units of your computer system. To transfer a data from one unit to another one should be sure that both units have proper connection and at the time of data transfer the receiving unit is not busy. This data transfer with the computer is Internal Operation.
All the internal operations in a digital system are synchronized by means of clock pulses supplied by a common clock pulse Generator. The data transfer can be
i. Synchronous or
ii. Asynchronous
When both the transmitting and receiving units use same clock pulse then such a data transfer is called Synchronous process. On the other hand, if the there is not concept of clock pulses
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and the sender operates at different moment than the receiver then such a data transfer is called Asynchronous data transfer.
The data transfer can be handled by various modes. some of the modes use CPU as an intermediate path, others transfer the data directly to and from the memory unit and this can be handled by 3 following ways:
i. Programmed I/O
x. Interrupt-Initiated I/O

xi. Direct Memory Access (DMA)

Programmed I/O Mode:
In this mode of data transfer the operations are the results in I/O instructions which is a part of computer program. Each data transfer is initiated by a instruction in the program. Normally the transfer is from a CPU register to peripheral device or vice-versa.
Once the data is initiated the CPU starts monitoring the interface to see when next transfer can made. The instructions of the program keep close tabs on everything that takes place in the interface unit and the I/O devices.

· The transfer of data requires three instructions:
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In this technique CPU is responsible for executing data from the memory for output and storing data in memory for executing of Programmed I/O as shown in Flowchart-:

Drawback of the Programmed I/O :
The main drawback of the Program Initiated I/O was that the CPU has to monitor the units all the times when the program is executing. Thus the CPU stays in a program loop until the I/O unit indicates that it is ready for data transfer. This is a time consuming process and the CPU time is wasted a lot in keeping an eye to the executing of program.
To remove this problem an Interrupt facility and special commands are used.
Interrupt-Initiated I/O :
In this method an interrupt facility an interrupt command is used to inform the device about the start and end of transfer. In the meantime the CPU executes other program. When the interface determines that the device is ready for data transfer it generates an Interrupt Request and sends it to the computer.
When the CPU receives such an signal, it temporarily stops the execution of the program and branches to a service program to process the I/O transfer and after completing it returns back to task, what it was originally performing.
· In this type of IO, computer does not check the flag. It continue to perform its task.
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· Whenever any device wants the attention, it sends the interrupt signal to the CPU.
· CPU then deviates from what it was doing, store the return address from PC and branch to the address of the subroutine.
· There are two ways of choosing the branch address:
· Vectored Interrupt
· Non-vectored Interrupt
· In vectored interrupt the source that interrupt the CPU provides the branch information. This information is called interrupt vectored.
· In non-vectored interrupt, the branch address is assigned to the fixed address in the memory.
Priority Interrupt:
· There are number of IO devices attached to the computer.
· They are all capable of generating the interrupt.
· When the interrupt is generated from more than one device, priority interrupt system is used to determine which device is to be serviced first.
· Devices with high speed transfer are given higher priority and slow devices are given lower priority.
· Establishing the priority can be done in two ways:
· Using Software
· Using Hardware
· A pooling procedure is used to identify highest priority in software means.
Polling Procedure :
· There is one common branch address for all interrupts.
· Branch address contain the code that polls the interrupt sources in sequence. The highest priority is tested first.
· The particular service routine of the highest priority device is served.
· The disadvantage is that time required to poll them can exceed the time to serve them in large number of IO devices.
Using Hardware:
· Hardware priority system function as an overall manager.
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· It accepts interrupt request and determine the priorities.
· To speed up the operation each interrupting devices has its own interrupt vector.
· No polling is required, all decision are established by hardware priority interrupt unit.
· It can be established by serial or parallel connection of interrupt lines.
Serial or Daisy Chaining Priority:
· Device with highest priority is placed first.
· Device that wants the attention send the interrupt request to the CPU.
· CPU then sends the INTACK signal which is applied to PI(priority in) of the first device.
· If it had requested the attention, it place its VAD(vector address) on the bus. And it block the signal by placing 0 in PO(priority out)
· If not it pass the signal to next device through PO(priority out) by placing 1.
· This process is continued until appropriate device is found.
· The device whose PI is 1 and PO is 0 is the device that send the interrupt request.

Parallel Priority Interrupt :
· It consist of interrupt register whose bits are set separately by the interrupting devices.
· Priority is established according to the position of the bits in the register.
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· Mask register is used to provide facility for the higher priority devices to interrupt when lower priority device is being serviced or disable all lower priority devices when higher is being serviced.
· Corresponding interrupt bit and mask bit are ANDed and applied to priority encoder.
· Priority encoder generates two bits of vector address.
· Another output from it sets IST(interrupt status flip flop).

The Execution process of  Interrupt–Initiated I/O is represented in the flowchart:
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Direct Memory Access (DMA):
In the Direct Memory Access (DMA) the interface transfer the data into and out of the memory unit through the memory bus. The transfer of data between a fast storage device such as magnetic disk and memory is often limited by the speed of the CPU. Removing the CPU from the path and letting the peripheral device manage the memory buses directly would improve the speed of transfer. This transfer technique is called Direct Memory Access (DMA).
During the DMA transfer, the CPU is idle and has no control of the memory buses. A DMA Controller takes over the buses to manage the transfer directly between the I/O device and memory.
The CPU may be placed in an idle state in a variety of ways. One common method extensively used in microprocessor is to disable the buses through special control signals such as:
· Bus Request (BR)
· Bus Grant (BG)
These two control signals in the CPU that facilitates the DMA transfer. The Bus Request (BR) input is used by the DMA controller to request the CPU. When this input is active, the CPU terminates the execution of the current instruction and places the address bus, data bus
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and read write lines into a high Impedance state. High Impedance state means that the output is disconnected.

The CPU activates the Bus Grant (BG) output to inform the external DMA that the Bus Request (BR) can now take control of the buses to conduct memory transfer without processor.
When the DMA terminates the transfer, it disables the Bus Request (BR) line. The CPU disables the Bus Grant (BG), takes control of the buses and return to its normal operation.
The transfer can be made in several ways that are:
i. DMA Burst
x. Cycle Stealing

iii) DMA Burst :- In DMA Burst transfer, a block sequence consisting of a number of memory words is transferred in continuous burst while the DMA controller is master of the memory buses.

iv) Cycle Stealing :- Cycle stealing allows the DMA controller to transfer one data word at a time, after which it must returns control of the buses to the CPU.

DMA Controller:

The DMA controller needs the usual circuits of an interface to communicate with the CPU and I/O device. The DMA controller has three registers:

i. Address Register

ii. Word Count Register

iii. Control Register
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iii. Address Register :- Address Register contains an address to specify the desired location in memory.

iv. Word Count Register :- WC holds the number of words to be transferred. The register is incre/decre by one after each word transfer and internally tested for zero.

iii. Control Register :- Control Register specifies the mode of transfer

The unit communicates with the CPU via the data bus and control lines. The registers in the DMA are selected by the CPU through the address bus by enabling the DS (DMA select) and RS (Register select) inputs. The RD (read) and WR (write) inputs are bidirectional.
When the BG (Bus Grant) input is 0, the CPU can communicate with the DMA registers through the data bus to read from or write to the DMA registers. When BG =1, the DMA can communicate directly with the memory by specifying an address in the address bus and activating the RD or WR control.

DMA Transfer:
The CPU communicates with the DMA through the address and data buses as with any interface unit. The DMA has its own address, which activates the DS and RS lines. The CPU initializes the DMA through the data bus. Once the DMA receives the start control command, it can transfer between the peripheral and the memory.
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When BG = 0 the RD and WR are input lines allowing the CPU to communicate with the internal DMA registers. When BG=1, the RD and WR are output lines from the DMA controller to the random access memory to specify the read or write operation of data.
Summary :
· Interface is the point where a connection is made between two different parts of a system.
· The strobe control method of Asynchronous data transfer employs a single control line to time each transfer.
· The handshaking method solves the problem of strobe method by introducing a second control signal that provides a reply to the unit that initiates the transfer.
· Programmed I/O mode of data transfer the operations are the results in I/O instructions which is a part of computer program.
· In the Interrupt Initiated I/O method an interrupt facility an interrupt command is used to inform the device about the start and end of transfer.
· In the Direct Memory Access (DMA) the interface transfer the data into and out of the memory unit through the memory bus.
Input-Output Processor:
· It is a processor with direct memory access capability that communicates with IO devices.
· IOP is similar to CPU except that it is designed to handle the details of IO operation.
· Unlike DMA which is initialized by CPU, IOP can fetch and execute its own instructions.
· IOP instruction are specially designed to handle IO operation.
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· Memory occupies the central position and can communicate with each processor by DMA.
· CPU is responsible for processing data.
· IOP provides the path for transfer of data between various peripheral devices and memory.
· Data formats of peripherals differ from CPU and memory. IOP maintain such problems.
· Data are transfer from IOP to memory by stealing one memory cycle.
· Instructions that are read from memory by IOP are called commands to distinguish them from instructions that are read by the CPU.

Instruction that are read from memory by an IOP
· Distinguish from instructions that are read by the CPU

· Commands are prepared by experienced programmers and are stored in memory

· Command word = IOP program
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PIPELINE AND VECTOR PROCESSING
Parallel processing:
· Parallel processing is a term used for a large class of techniques that
are used to provide simultaneous data-processing tasks for the purpose of increasing the computational speed of a computer system.
· It refers to techniques that are used to provide simultaneous data processing.
· The system may have two or more ALUs to be able to execute two or more instruction at the same time.
· The system may have two or more processors operating concurrently.
· It can be achieved by having multiple functional units that perform same or different operation simultaneously.
· Example of parallel Processing:

–   Multiple Functional Unit:
Separate the execution unit into eight functional units operating in parallel.
· There are variety of ways in which the parallel processing can be classified
· Internal Organization of Processor
· Interconnection structure between processors
· Flow of information through system
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Architectural Classification:
–   Flynn's classification
· Based on the multiplicity of Instruction Streams and Data Streams
· Instruction Stream

· Sequence of Instructions read from memory

· Data Stream

· Operations performed on the data in the processor


· SISD represents the organization containing single control unit, a processor unit and a memory unit. Instruction are executed sequentially and system may or may not have internal parallel processing capabilities.
· SIMD represents an organization that includes many processing units under the supervision of a common control unit.
· MISD structure is of only theoretical interest since no practical system has been constructed using this organization.
· MIMD organization refers to a computer system capable of processing several programs at the same time.
The main difference between multicomputer system and multiprocessor system is that the multiprocessor system is controlled by one operating system that provides interaction between processors and all the component of the system cooperate in the solution of a problem.
· Parallel Processing can be discussed under following topics:
· Pipeline Processing
· Vector Processing
· Array Processors
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PIPELINING:
· A technique of decomposing a sequential process into suboperations, with each subprocess being executed in a special dedicated segment that operates concurrently with all other segments.
· It is a technique of decomposing a sequential process into sub operations, with each sub process being executed in a special dedicated segments that operates concurrently with all other segments.
· Each segment performs partial processing dictated by the way task is partitioned.
· The result obtained from each segment is transferred to next segment.
· The final result is obtained when data have passed through all segments.
· Suppose we have to perform the following task:
· Each sub operation is to be performed in a segment within a pipeline. Each segment has one or two registers and a combinational circuit.
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OPERATIONS  IN EACH PIPELINE STAGE:

· General Structure of a 4-Segment Pipeline

· Space-Time Diagram
The following diagram shows 6 tasks T1 through T6 executed in 4segments.

PIPELINE SPEEDUP:
Consider the case where a k-segment pipeline used to execute n tasks.
· n = 6 in previous example
22
UNIT-V
· k = 4 in previous example
· Pipelined Machine (k stages, n tasks)
· The first task t1 requires k clock cycles to complete its operation since there are k segments
· The remaining n-1 tasks require n-1 clock cycles
· The n tasks clock cycles = k+(n-1)  (9 in previous example)
· Conventional Machine (Non-Pipelined)
· Cycles to complete each task in nonpipeline = k
· For n tasks, n cycles required is
· Speedup (S)
· S = Nonpipeline time /Pipeline time
· For n tasks:   S = nk/(k+n-1)
· As n becomes much larger than k-1; Therefore, S = nk/n = k
PIPELINE AND MULTIPLE FUNCTION UNITS: Example:
· 4-stage pipeline

· 100 tasks to be executed

· 1 task in non-pipelined system;  4 clock cycles

Pipelined System :   k + n - 1 = 4 + 99 = 103 clock cycles

Non-Pipelined System :  n*k = 100 * 4 = 400 clock cycles

Speedup :Sk = 400 / 103 = 3.88
· Arithmetic Pipeline

· Instruction Pipeline

ARITHMETIC PIPELINE:
· Pipeline arithmetic units are usually found in very high speed computers.
· They are used to implement floating point operations.
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· We will now discuss the pipeline unit for the floating point addition and subtraction.
· The inputs to floating point adder pipeline are two normalized floating point numbers.
· A and B are mantissas and a and b are the exponents.
· The floating point addition and subtraction can be performed in four segments. Floating-point adder:
[1] Compare the exponents

[2] Align the mantissa

[3] Add/sub the mantissa

[4] Normalize the result

1) Compare exponents : 3 - 2 = 1

2) Align mantissas

X = 0.9504 x 103
Y = 0.08200 x 103
3) Add mantissas
Z = 1.0324 x 103
4) Normalize result
Z = 0.10324 x 104
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Instruction Pipeline:
· Pipeline processing can occur not only in the data stream but in the instruction stream as well.
· An instruction pipeline reads consecutive instruction from memory while previous instruction are being executed in other segments.
· This caused the instruction fetch and execute segments to overlap and perform simultaneous operation.
Four Segment CPU Pipeline:
· FI segment fetches the instruction.
· DA segment decodes the instruction and calculate the effective address.
· FO segment fetches the operand.
· EX segment executes the instruction.
25
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INSTRUCTION CYCLE:
Pipeline processing can occur also in the instruction stream. An instruction pipeline reads consecutive instructions from memory while previous instructions are being executed in other segments. Six Phases* in an Instruction Cycle
[1] Fetch an instruction from memory

[2] Decode the instruction
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[3] Calculate the effective address of the operand

[4] Fetch the operands from memory

[5] Execute the operation

[6] Store the result in the proper place

· Some instructions skip some phases

· Effective address calculation can be done in the part of the decoding phase

· Storage of the operation result into a register is done automatically in the execution phase ==> 4-Stage Pipeline

[1]  FI:   Fetch an instruction from memory

[2]  DA: Decode the instruction and calculate the effective address of the operand

[3]  FO: Fetch the operand

[4]  EX: Execute the operation

Pipeline Conflicts :
–   Pipeline Conflicts : 3 major difficulties

–
1) Resource conflicts: memory access by two segments at the same time. Most of these conflicts can be resolved by using separate instruction and data memories.

2) Data dependency: when an instruction depend on the result of a previous instruction, but this result is not yet available.
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Example: an instruction with register indirect mode cannot proceed to fetch the operand if the previous instruction is loading the address into the register.
3) Branch difficulties: branch and other instruction (interrupt, ret, ..) that change the value of PC.

Handling Data Dependency:
· This problem can be solved in the following ways:
· Hardware interlocks: It is the circuit that detects the conflict situation and delayed the instruction by sufficient cycles to resolve the conflict.
· Operand Forwarding: It uses the special hardware to detect the conflict and avoid it by routing the data through the special path between pipeline segments.
· Delayed Loads: The compiler detects the data conflict and reorder the instruction as necessary to delay the loading of the conflicting data by inserting no operation instruction.
Handling of Branch Instruction:
· Pre fetch the target instruction.
· Branch target buffer(BTB) included in the fetch segment of the pipeline
· Branch Prediction
· Delayed Branch
RISC Pipeline:
· Simplicity of instruction set is utilized to implement an instruction pipeline using small number of sub-operation, with each being executed in single clock cycle.
Since all operation are performed in the register, there is no need of effective address calculation.
Three Segment Instruction Pipeline:
· I: Instruction Fetch
· A: ALU Operation
· E: Execute Instruction Delayed Load:
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Delayed Branch:
Let us consider the program having the following 5 instructions
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Organization of Intel 8085 Micro-Processor:
The microprocessors that are available today came with a wide variety of capabilities and architectural features. All of them, regardless of their diversity, are provided with at least the following functional components, which form the central processing unit (CPU) of a classical computer.
1. Register Section : A set of registers for temporary storage of instructions, data and address of data .
2. Arithmetic and Logic Unit : Hardware for performing primitive arithmetic and logical operations .
3. Interface Section : Input and output lines through which the microprocessor communicates with the outside world .
4. Timing and Control Section : Hardware for coordinating and controlling the activities of the various sections within the microprocessor and other devices connected to the interface section .
The block diagram of the microprocessor along with the memory and Input/Output (I/O) devices is shown in the Figure 11.1.

Figure 11.1: Block diagram of Micorprocessor with memory and I/O.
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Intel Microprocessors:
Intel 4004 is the first 4-bit microprocessor introduced by Intel in 1971. After that Intel introduced its first 8-bit microprocessor 8088 in 1972.
These microprocessors could not last long as general-purpose microprocessors due to their design and performance limitations.
In 1974, Intel introduced the first general purpose 8-bit microprocessor 8080 and this is the first step of Intel towards the development of advanced microprocessor.
After 8080, Intel launched microprocessor 8085 with a few more features added to its architecture, and it is considered to be the first functionally complete microprocessor.
The main limitations of the 8-bit microprocessors were their low speed, low memory capacity, limited number of general purpose registers and a less powerful instruction set .
To overcome these limitations Intel moves from 8-bit microprocessor to 16-bit microprocessor.
In the family of 16-bit microprocessors, Intel's 8086 was the first one introduced in 1978 .
8086 microprocessor has a much powerful instruction set along with the architectural developments, which imparted substantial programming flexibility and improvement over the 8-bit microprocessor.
Microprocessor Intel 8085 :
Intel 8085 is the first popular microprocessor used by many vendors. Due to its simple architecture and organization, it is easy to understand the working principle of a microprocessor.
Register in the Intel 8085:
The programmable registers of 8085 are as follows -
· One 8-bit accumulator A.
· Six 8-bit general purpose register (GPR’s)
B, C, D , E , H and L.
· The GPR’s are also accessible as three 16-bit register pairs BC, DE and HL.
· There is a 16-bit program counter(PC), one 16-bit stack pointer(SP) and 8-bit flag register . Out of 8 bits of the flag register , only 5 bits are in use.
The programmable registers of the 8085 are shown in the Figure 11.2-
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Figure 11.2: Register Organisation of 8085
Apart from these programmable registers , some other registers are also available which are not accessible to the programmer . These registers include -
· Instruction Register(IR).
· Memory address and data buffers(MAR & MDR). o MAR: Memory Address Register.
o  MDR: Memory Data Register.
· Temporary register for ALU use.
ALU of 8085 :
The 8-bit parallel ALU of 8085 is capable of performing the following operations –
Arithmetic : Addition, Subtraction, Increment, Decrement, Compare.
Logical : AND, OR, EXOR, NOT, SHIFT / ROTATE, CLEAR.
Because of limited chip area , complex operations like multiplication, division, etc are not available, in earlier processors like 8085.
The operations performed on binary 2's complement data.
The five flag bits give the status of the microprocessor after an ALU operation.
The carry (C) flag bit indicates whether there is any overflow from the MSB.
The parity (P) flag bit is set if the parity of the accumulater is even.
The Auxiliary Carry (AC) flag bit indicates overflow out of bit –3 ( lower nibble) in the same manner, as the C-flag indicates the overflow out of the bit-7.
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The Zero (Z) flag bit is set if the content of the accumulator after any ALU operations is zero.
The Sign(S) flag bit is set to the condition of bit-7 of the accumulator as per the sign of the contents of the accumulator(positive or negative ).
The Interface Section:
Microprocessor chips are equipped with a number of pins for communication with the outside world. This is known as the system bus.
The interface lines of the Intel 8085 microprocessor are shown in the Figure 11.3 –
Address and Data Bus
The AD0 - AD7 lines are used as lower order 8-bit address bus and data bus , in time division multiplexed manner .
The A8 - A15 lines are used for higher order 8 bit of address bus.
There are seven memory and I/O control lines -
RD : indicates a READ operation when the signal is LOW .
WR : indicates a WRITE operation when the signal is LOW .
IO/M : indicates memory access for LOW and I/O access for HIGH .

ALE : ALE is an address latch enable signal , this signal is HIGH when address information is present in AD0-AD7 . The falling edge of ALU can be used to latch the address into an external buffer to de-multiples the address bus .
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READY : READY line is used for communication with slow memory and I/O devices .
S0 and S1 : The status of the system bus is difined by the S0 and S1 lines as follows -

	S1
	S0
	Operation Specified

	0
	0
	Halt



0 1Memory or I/O WRITE
1 0Memory or I/O READ

	1
	1
	Instruction Fetch



There are ten lines associated with CPU and bus control-
· TRAP , RST7.5 , RST6.5 , RST5.5 and INTR are the Interrupt lines.
· INTA: Interrupt acknowledge line.
· RESET IN : This is the reset input signal to the 8085.
· RESET OUT : The 8085 generates the RESET-OUT signal in response to RESET-IN signal , which can be used as a system reset signal .
· HOLD : HOLD signal is used for DMA request.
· HLDA : HLDA signal is used for DMA grant .
· Clock and Utility Lines :
X1 and X2: X1 and X2 are provided to connect a crystal or a RC network for generating theclockinternaltothe chip.
Sid: input line for serial data communication.
Sod: output line for serial data communication.
Vcc and vss: power supply.
· The block diagram of the Intel 8085 is shown in the Figure 11.4 -
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Addressing Modes :
The 8085 has four different modes for addressing data stored in memory or in registers -
Direct: Bytes 2 and 3 of the instruction contains the exact memory address of the data item( the low-order bits of the address are in byte 2 , the high-order bits in byte 3 ).
Register: The instruction specifies the register or register pair in which the data are located.
Register Indirect: The instruction specifies a register pair which contains the memory address where the data are located .( the high-order bits of the address are in the first register of the pair and the low order bits in the second ).
Immediate: The instruction contains the data itself . This is either and 8-bit quantity or a 16-bit quantity (least significant byte first , most significant byte second ).
Unless directed by an interrupt or branch instruction the execution of instructions proceeds through consecutively increasing memory locations.
A branch instruction can specify the address of the next instruction to be executed in one of
two
ways
-
Direct: The branch instruction contains the address of the next instruction to be executed .
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8.1  MULTIPROCESSORS
A shared-memory multiprocessor (or just multiprocessor henceforth) is a computer system in which two or more CPUs share full access to a common RAM. A program running on any of the CPUs sees a normal (usually paged) vir-tual address space. The only unusual property this system has is that the CPU can write some value into a memory word and then read the word back and get a dif-ferent value (because another CPU has changed it). When organized correctly, this property forms the basis of interprocessor communication: one CPU writes some data into memory and another one reads the data out.
For the most part, multiprocessor operating systems are just regular operating systems. They handle system calls, do memory management, provide a file sys-tem, and manage I/O devices. Nevertheless, there are some areas in which they have unique features. These include process synchronization, resource manage-ment, and scheduling. Below we will first take a brief look at multiprocessor hardware and then move on to these operating systems issues.
8.1.1 Multiprocessor Hardware
Although all multiprocessors have the property that every CPU can address all of memory, some multiprocessors have the additional property that every memory word can be read as fast as every other memory word. These machines are called UMA (Uniform Memory Access) multiprocessors. In contrast, NUMA (Nonun-iform Memory Access) multiprocessors do not have this property. Why this dif-ference exists will become clear later. We will first examine UMA multiproces-sors and then move on to NUMA multiprocessors.
UMA Bus-Based SMP Architectures
The simplest multiprocessors are based on a single bus, as illustrated in Fig. 8-1(a). Two or more CPUs and one or more memory modules all use the same bus for communication. When a CPU wants to read a memory word, it first checks to see if the bus is busy. If the bus is idle, the CPU puts the address of the word it wants on the bus, asserts a few control signals, and waits until the memory puts the desired word on the bus.
If the bus is busy when a CPU wants to read or write memory, the CPU just waits until the bus becomes idle. Herein lies the problem with this design. With two or three CPUs, contention for the bus will be manageable; with 32 or 64 it will be unbearable. The system will be totally limited by the bandwidth of the bus, and most of the CPUs will be idle most of the time.
The solution to this problem is to add a cache to each CPU, as depicted in Fig. 8-1(b). The cache can be inside the CPU chip, next to the CPU chip, on the processor board, or some combination of all three. Since many reads can now be
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Figure 8-1. Three bus-based multiprocessors. (a) Without caching. (b) With caching. (c) With caching and private memories.
satisfied out of the local cache, there will be much less bus traffic, and the system can support more CPUs. In general, caching is not done on an individual word basis but on the basis of 32- or 64-byte blocks. When a word is referenced, its entire block is fetched into the cache of the CPU touching it.
Each cache block is marked as being either read-only (in which case it can be present in multiple caches at the same time), or as read-write (in which case it may not be present in any other caches). If a CPU attempts to write a word that is in one or more remote caches, the bus hardware detects the write and puts a signal on the bus informing all other caches of the write. If other caches have a ‘‘clean’’ copy, that is, an exact copy of what is in memory, they can just discard their copies and let the writer fetch the cache block from memory before modifying it. If some other cache has a ‘‘dirty’’ (i.e., modified) copy, it must either write it back to memory before the write can proceed or transfer it directly to the writer over the bus. Many cache transfer protocols exist.
Yet another possibility is the design of Fig. 8-1(c), in which each CPU has not only a cache, but also a local, private memory which it accesses over a dedicated (private) bus. To use this configuration optimally, the compiler should place all the program text, strings, constants and other read-only data, stacks, and local variables in the private memories. The shared memory is then only used for writ-able shared variables. In most cases, this careful placement will greatly reduce bus traffic, but it does require active cooperation from the compiler.
UMA Multiprocessors Using Crossbar Switches
Even with the best caching, the use of a single bus limits the size of a UMA multiprocessor to about 16 or 32 CPUs. To go beyond that, a different kind of interconnection network is needed. The simplest circuit for connecting n CPUs to k memories is the crossbar switch, shown in Fig. 8-2. Crossbar switches have been used for decades within telephone switching exchanges to connect a group of incoming lines to a set of outgoing lines in an arbitrary way.
At each intersection of a horizontal (incoming) and vertical (outgoing) line is
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a crosspoint. A crosspoint is a small switch that can be electrically opened or closed, depending on whether the horizontal and vertical lines are to be connected or not. In Fig. 8-2(a) we see three crosspoints closed simultaneously, allowing connections between the (CPU, memory) pairs (001, 000), (101, 101), and (110,
10) at the same time. Many other combinations are also possible. In fact, the number of combinations is equal to the number of different ways eight rooks can be safely placed on a chess board.
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Figure 8-2. (a) An 8  8 crossbar switch. (b) An open crosspoint. (c) A closed crosspoint.
One of the nicest properties of the crossbar switch is that it is a nonblocking network, meaning that no CPU is ever denied the connection it needs because some crosspoint or line is already occupied (assuming the memory module itself is available). Furthermore, no advance planning is needed. Even if seven arbi-trary connections are already set up, it is always possible to connect the remaining CPU to the remaining memory.
One of the worst properties of the crossbar switch is the fact that the number of crosspoints grows as n 2 . With 1000 CPUs and 1000 memory modules we need a million crosspoints. Such a large crossbar switch is not feasible. Nevertheless, for medium-sized systems, a crossbar design is workable.
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UMA Multiprocessors Using Multistage Switching Networks
A completely different multiprocessor design is based on the humble 2  2 switch shown in Fig. 8-3(a). This switch has two inputs and two outputs. Mes-sages arriving on either input line can be switched to either output line. For our purposes, messages will contain up to four parts, as shown in Fig. 8-3(b). The Module field tells which memory to use. The Address specifies an address within a module. The Opcode gives the operation, such as READ or WRITE. Finally, the optional Value field may contain an operand, such as a 32-bit word to be written on a WRITE. The switch inspects the Module field and uses it to determine if the message should be sent on X or on Y.

A
X

Module
Address
Opcode
Value
B
Y
(a)
(b)
Figure 8-3.  (a) A 2  2 switch. (b) A message format.
Our 2  2 switches can be arranged in many ways to build larger multistage switching networks (Adams et al., 1987; Bhuyan et al., 1989; and Kumar and Reddy, 1987). One possibility is the no-frills, economy class omega network, illustrated in Fig. 8-4. Here we have connected eight CPUs to eight memories using 12 switches. More generally, for n CPUs and n memories we would need log2 n stages, with n / 2 switches per stage, for a total of (n / 2)log2 n switches, which is a lot better than n 2 crosspoints, especially for large values of n.
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Figure 8-4.  An omega switching network.
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The wiring pattern of the omega network is often called the perfect shuffle, since the mixing of the signals at each stage resembles a deck of cards being cut in half and then mixed card-for-card. To see how the omega network works, sup-pose that CPU 011 wants to read a word from memory module 110. The CPU sends a READ message to switch 1D containing 110 in the Module field. The switch takes the first (i.e., leftmost) bit of 110 and uses it for routing. A 0 routes to the upper output and a 1 routes to the lower one. Since this bit is a 1, the mes-sage is routed via the lower output to 2D.
All the second-stage switches, including 2D, use the second bit for routing. This, too, is a 1, so the message is now forwarded via the lower output to 3D. Here the third bit is tested and found to be a 0. Consequently, the message goes out on the upper output and arrives at memory 110, as desired. The path followed by this message is marked in Fig. 8-4 by the letter a.
As the message moves through the switching network, the bits at the left-hand end of the module number are no longer needed. They can be put to good use by recording the incoming line number there, so the reply can find its way back. For path a, the incoming lines are 0 (upper input to 1D), 1 (lower input to 2D), and 1 (lower input to 3D), respectively. The reply is routed back using 011, only read-ing it from right to left this time.
At the same time all this is going on, CPU 001 wants to write a word to memory module 001. An analogous process happens here, with the message routed via the upper, upper, and lower outputs, respectively, marked by the letter b. When it arrives, its Module field reads 001, representing the path it took. Since these two requests do not use any of the same switches, lines, or memory modules, they can proceed in parallel.
Now consider what would happen if CPU 000 simultaneously wanted to ac-cess memory module 000. Its request would come into conflict with CPU 001’s request at switch 3A. One of them would have to wait. Unlike the crossbar switch, the omega network is a blocking network. Not every set of requests can be processed simultaneously. Conflicts can occur over the use of a wire or a switch, as well as between requests to memory and replies from memory.
It is clearly desirable to spread the memory references uniformly across the modules. One common technique is to use the low-order bits as the module num-ber. Consider, for example, a byte-oriented address space for a computer that mostly accesses 32-bit words. The 2 low-order bits will usually be 00, but the next 3 bits will be uniformly distributed. By using these 3 bits as the module number, consecutively addressed words will be in consecutive modules. A mem-ory system in which consecutive words are in different modules is said to be interleaved. Interleaved memories maximize parallelism because most memory references are to consecutive addresses. It is also possible to design switching networks that are nonblocking and which offer multiple paths from each CPU to each memory module, to spread the traffic better.
SEC.  8.1
MULTIPROCESSORS
511
NUMA Multiprocessors
Single-bus UMA multiprocessors are generally limited to no more than a few dozen CPUs and crossbar or switched multiprocessors need a lot of (expensive) hardware and are not that much bigger. To get to more than 100 CPUs, some-thing has to give. Usually, what gives is the idea that all memory modules have the same access time. This concession leads to the idea of NUMA multiproces-sors, as mentioned above. Like their UMA cousins, they provide a single address space across all the CPUs, but unlike the UMA machines, access to local memory modules is faster than access to remote ones. Thus all UMA programs will run without change on NUMA machines, but the performance will be worse than on a UMA machine at the same clock speed.
NUMA machines have three key characteristics that all of them possess and which together distinguish them from other multiprocessors:
1. There is a single address space visible to all CPUs.

2. Access to remote memory is via LOAD and STORE instructions.

3. Access to remote memory is slower than access to local memory.

When the access time to remote memory is not hidden (because there is no cach-ing), the system is called NC-NUMA. When coherent caches are present, the sys-tem is called CC-NUMA (Cache-Coherent NUMA).
The most popular approach for building large CC-NUMA multiprocessors currently is the directory-based multiprocessor. The idea is to maintain a data-base telling where each cache line is and what its status is. When a cache line is referenced, the database is queried to find out where it is and whether it is clean or dirty (modified). Since this database must be queried on every instruction that references memory, it must be kept in extremely-fast special-purpose hardware that can respond in a fraction of a bus cycle.
To make the idea of a directory-based multiprocessor somewhat more con-crete, let us consider as a simple (hypothetical) example, a 256-node system, each node consisting of one CPU and 16 MB of RAM connected to the CPU via a local bus. The total memory is 232 bytes, divided up into 226 cache lines of 64 bytes each. The memory is statically allocated among the nodes, with 0–16M in node 0, 16M–32M in node 1, and so on. The nodes are connected by an interconnection network, as shown in Fig. 8-5(a). Each node also holds the directory entries for the 218 64-byte cache lines comprising its 224 byte memory. For the moment, we will assume that a line can be held in at most one cache.
To see how the directory works, let us trace a LOAD instruction from CPU 20 that references a cached line. First the CPU issuing the instruction presents it to its MMU, which translates it to a physical address, say, 0x24000108. The MMU splits this address into the three parts shown in Fig. 8-5(b). In decimal, the three
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Figure 8-5. (a) A 256-node directory-based multiprocessor. (b) Division of a 32-bit memory address into fields. (c) The directory at node 36.
parts are node 36, line 4, and offset 8. The MMU sees that the memory word referenced is from node 36, not node 20, so it sends a request message through the interconnection network to the line’s home node, 36, asking whether its line 4 is cached, and if so, where.
When the request arrives at node 36 over the interconnection network, it is routed to the directory hardware. The hardware indexes into its table of 218 entries, one for each of its cache lines and extracts entry 4. From Fig. 8-5(c) we see that the line is not cached, so the hardware fetches line 4 from the local RAM, sends it back to node 20, and updates directory entry 4 to indicate that the line is now cached at node 20.
Now let us consider a second request, this time asking about node 36’s line 2. From Fig. 8-5(c) we see that this line is cached at node 82. At this point the hardware could update directory entry 2 to say that the line is now at node 20 and then send a message to node 82 instructing it to pass the line to node 20 and invalidate its cache. Note that even a so-called ‘‘shared-memory multiprocessor’’ has a lot of message passing going on under the hood.
As a quick aside, let us calculate how much memory is being taken up by the directories. Each node has 16 MB of RAM and 218 9-bit entries to keep track of that RAM. Thus the directory overhead is about 9  218 bits divided by 16 MB or
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about 1.76 percent, which is generally acceptable (although it has to be high-speed memory, which increases its cost). Even with 32-byte cache lines the over-head would only be 4 percent. With 128-byte cache lines, it would be under 1 percent.
An obvious limitation of this design is that a line can be cached at only one node. To allow lines to be cached at multiple nodes, we would need some way of locating all of them, for example, to invalidate or update them on a write. Various options are possible to allow caching at several nodes at the same time, but a dis-cussion of these is beyond the scope of this book.
8.1.2 Multiprocessor Operating System Types
Let us now turn from multiprocessor hardware to multiprocessor software, in particular, multiprocessor operating systems. Various organizations are possible. Below we will study three of them.
Each CPU Has Its Own Operating System
The simplest possible way to organize a multiprocessor operating system is to statically divide memory into as many partitions as there are CPUs and give each CPU its own private memory and its own private copy of the operating system. In effect, the n CPUs then operate as n independent computers. One obvious optimi-zation is to allow all the CPUs to share the operating system code and make private copies of only the data, as shown in Fig. 8-6.
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Bus
Figure 8-6. Partitioning multiprocessor memory among four CPUs, but sharing a single copy of the operating system code. The boxes marked Data are the operating system’s private data for each CPU.
This scheme is still better than having n separate computers since it allows all the machines to share a set of disks and other I/O devices, and it also allows the memory to be shared flexibly. For example, if one day an unusually large pro-gram has to be run, one of the CPUs can be allocated an extra large portion of memory for the duration of that program. In addition, processes can efficiently communicate with one another by having, say a producer be able to write data into memory and have a consumer fetch it from the place the producer wrote it.
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Still, from an operating systems’ perspective, having each CPU have its own operating system is as primitive as it gets.
It is worth explicitly mentioning four aspects of this design that may not be obvious. First, when a process makes a system call, the system call is caught and handled on its own CPU using the data structures in that operating system’s tables.
Second, since each operating system has its own tables, it also has its own set of processes that it schedules by itself. There is no sharing of processes. If a user logs into CPU 1, all of his processes run on CPU 1. As a consequence, it can hap-pen that CPU 1 is idle while CPU 2 is loaded with work.
Third, there is no sharing of pages. It can happen that CPU 1 has pages to spare while CPU 2 is paging continuously. There is no way for CPU 2 to borrow some pages from CPU 1 since the memory allocation is fixed.
Fourth, and worst, if the operating system maintains a buffer cache of recently used disk blocks, each operating system does this independently of the other ones. Thus it can happen that a certain disk block is present and dirty in multiple buffer caches at the same time, leading to inconsistent results. The only way to avoid this problem is to eliminate the buffer caches. Doing so is not hard, but it hurts performance considerably.
Master-Slave Multiprocessors
For these reasons, this model is rarely used any more, although it was used in the early days of multiprocessors, when the goal was to port existing operating systems to some new multiprocessor as fast as possible. A second model is shown in Fig. 8-7. Here, one copy of the operating system and its tables are present on CPU 1 and not on any of the others. All system calls are redirected to CPU 1 for processing there. CPU 1 may also run user processes if there is CPU time left over. This model is called master-slave since CPU 1 is the master and all the others are slaves.
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Figure 8-7.  A master-slave multiprocessor model.
The master-slave model solves most of the problems of the first model. There is a single data structure (e.g., one list or a set of prioritized lists) that keeps track
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of ready processes. When a CPU goes idle, it asks the operating system for a process to run and it is assigned one. Thus it can never happen that one CPU is idle while another is overloaded. Similarly, pages can be allocated among all the processes dynamically and there is only one buffer cache, so inconsistencies never occur.
The problem with this model is that with many CPUs, the master will become a bottleneck. After all, it must handle all system calls from all CPUs. If, say, 10% of all time is spent handling system calls, then 10 CPUs will pretty much saturate the master, and with 20 CPUs it will be completely overloaded. Thus this model is simple and workable for small multiprocessors, but for large ones it fails.
Symmetric Multiprocessors
Our third model, the SMP (Symmetric MultiProcessor ), eliminates this asymmetry. There is one copy of the operating system in memory, but any CPU can run it. When a system call is made, the CPU on which the system call was made traps to the kernel and processes the system call. The SMP model is illus-trated in Fig. 8-8.
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Figure 8-8.  The SMP multiprocessor model.
This model balances processes and memory dynamically, since there is only one set of operating system tables. It also eliminates the master CPU bottleneck, since there is no master, but it introduces its own problems. In particular, if two or more CPUs are running operating system code at the same time, disaster will result. Imagine two CPUs simultaneously picking the same process to run or claiming the same free memory page. The simplest way around these problems is to associate a mutex (i.e., lock) with the operating system, making the whole sys-tem one big critical region. When a CPU wants to run operating system code, it must first acquire the mutex. If the mutex is locked, it just waits. In this way, any CPU can run the operating system, but only one at a time.
This model works, but is almost as bad as the master-slave model. Again, suppose that 10% of all run time is spent inside the operating system. With 20 CPUs, there will be long queues of CPUs waiting to get in. Fortunately, it is easy
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to improve. Many parts of the operating system are independent of one another. For example, there is no problem with one CPU running the scheduler while another CPU is handling a file system call and a third one is processing a page fault.
This observation leads to splitting the operating system up into independent critical regions that do not interact with one another. Each critical region is pro-tected by its own mutex, so only one CPU at a time can execute it. In this way, far more parallelism can be achieved. However, it may well happen that some tables, such as the process table, are used by multiple critical regions. For exam-ple, the process table is needed for scheduling, but also for the fork system call and also for signal handling. Each table that may be used by multiple critical regions needs its own mutex. In this way, each critical region can be executed by only one CPU at a time and each critical table can be accessed by only one CPU at a time.
Most modern multiprocessors use this arrangement. The hard part about writ-ing the operating system for such a machine is not that the actual code is so dif-ferent from a regular operating system. It is not. The hard part is splitting it into critical regions that can be executed concurrently by different CPUs without interfering with one another, not even in subtle, indirect ways. In addition, every table used by two or more critical regions must be separately protected by a mutex and all code using the table must use the mutex correctly.
Furthermore, great care must be taken to avoid deadlocks. If two critical regions both need table A and table B, and one of them claims A first and the other claims B first, sooner or later a deadlock will occur and nobody will know why. In theory, all the tables could be assigned integer values and all the critical regions could be required to acquire tables in increasing order. This strategy avoids deadlocks, but it requires the programmer to think very carefully which tables each critical region needs to make the requests in the right order.
As the code evolves over time, a critical region may need a new table it did not previously need. If the programmer is new and does not understand the full logic of the system, then the temptation will be to just grab the mutex on the table at the point it is needed and release it when it is no longer needed. However rea-sonable this may appear, it may lead to deadlocks, which the user will perceive as the system freezing. Getting it right is not easy and keeping it right over a period of years in the face of changing programmers is very difficult.
8.1.3 Multiprocessor Synchronization
The CPUs in a multiprocessor frequently need to synchronize. We just saw the case in which kernel critical regions and tables have to be protected by mutexes. Let us now take a close look at how this synchronization actually works in a multiprocessor. It is far from trivial, as we will soon see.
To  start
with,  proper  synchronization
primitives  are
really
needed.
If  a
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process on a uniprocessor makes a system call that requires accessing some criti-cal kernel table, the kernel code can just disable interrupts before touching the table. It can then do its work knowing that it will be able to finish without any other process sneaking in and touching the table before it is finished. On a mul-tiprocessor, disabling interrupts affects only the CPU doing the disable. Other CPUs continue to run and can still touch the critical table. As a consequence, a proper mutex protocol must be used and respected by all CPUs to guarantee that mutual exclusion works.
The heart of any practical mutex protocol is an instruction that allows a memory word to be inspected and set in one indivisible operation. We saw how TSL (Test and Set Lock) was used in Fig. 2-22 to implement critical regions. As we discussed earlier, what this instruction does is read out a memory word and store it in a register. Simultaneously, it writes a 1 (or some other nonzero value) into the memory word. Of course, it takes two separate bus cycles to perform the memory read and memory write. On a uniprocessor, as long as the instruction cannot be broken off halfway, TSL always works as expected.
Now think about what could happen on a multiprocessor. In Fig. 8-9 we see the worst case timing, in which memory word 1000, being used as a lock is ini-tially 0. In step 1, CPU 1 reads out the word and gets a 0. In step 2, before CPU 1 has a chance to rewrite the word to 1, CPU 2 gets in and also reads the word out as a 0. In step 3, CPU 1 writes a 1 into the word. In step 4, CPU 2 also writes a 1 into the word. Both CPUs got a 0 back from the TSL instruction, so both of them now have access to the critical region and the mutual exclusion fails.
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Figure 8-9. The TSL instruction can fail if the bus cannot be locked. These four steps show a sequence of events where the failure is demonstrated.
To prevent this problem, the TSL instruction must first lock the bus, prevent-ing other CPUs from accessing it, then do both memory accesses, then unlock the bus. Typically, locking the bus is done by requesting the bus using the usual bus request protocol, then asserting (i.e., setting to a logical 1) some special bus line until both cycles have been completed. As long as this special line is being asserted, no other CPU will be granted bus access. This instruction can only be implemented on a bus that has the necessary lines and (hardware) protocol for
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using them. Modern buses have these facilities, but on earlier ones that did not, it was not possible to implement TSL correctly. This is why Peterson’s protocol was invented, to synchronize entirely in software (Peterson, 1981).
If TSL is correctly implemented and used, it guarantees that mutual exclusion can be made to work. However, this mutual exclusion method uses a spin lock because the requesting CPU just sits in a tight loop testing the lock as fast as it can. Not only does it completely waste the time of the requesting CPU (or CPUs), but it may also put a massive load on the bus or memory, seriously slowing down all other CPUs trying to do their normal work.
At first glance, it might appear that the presence of caching should eliminate the problem of bus contention, but it does not. In theory, once the requesting CPU has read the lock word, it should get a copy in its cache. As long as no other CPU attempts to use the lock, the requesting CPU should be able to run out of its cache. When the CPU owning the lock writes a 1 to it to release it, the cache protocol automatically invalidates all copies of it in remote caches requiring the correct value to be fetched again.
The problem is that caches operate in blocks of 32 or 64 bytes. Usually, the words surrounding the lock are needed by the CPU holding the lock. Since the TSL instruction is a write (because it modifies the lock), it needs exclusive access to the cache block containing the lock. Therefore every TSL invalidates the block in the lock holder’s cache and fetches a private, exclusive copy for the requesting CPU. As soon as the lock holder touches a word adjacent to the lock, the cache block is moved to its machine. Consequently, the entire cache block containing the lock is constantly being shuttled between the lock owner and the lock reques-ter, generating even more bus traffic than individual reads on the lock word would have.
If we could get rid of all the TSL-induced writes on the requesting side, we could reduce cache thrashing appreciably. This goal can be accomplished by hav-ing the requesting CPU first do a pure read to see if the lock is free. Only if the lock appears to be free does it do a TSL to actually acquire it. The result of this small change is that most of the polls are now reads instead of writes. If the CPU holding the lock is only reading the variables in the same cache block, they can each have a copy of the cache block in shared read-only mode, eliminating all the cache block transfers. When the lock is finally freed, the owner does a write, which requires exclusive access, thus invalidating all the other copies in remote caches. On the next read by the requesting CPU, the cache block will be re-loaded. Note that if two or more CPUs are contending for the same lock, it can happen that both see that it is free simultaneously, and both do a TSL simultane-ously to acquire it. Only one of these will succeed, so there is no race condition here because the real acquisition is done by the TSL instruction, and this instruc-tion is atomic. Seeing that the lock is free and then trying to grab it immediately with a CX u TSL does not guarantee that you get it. Someone else might win.
Another way to reduce bus traffic is to use the Ethernet binary exponential
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backoff algorithm (Anderson, 1990). Instead of continuously polling, as in Fig. 2-22, a delay loop can be inserted between polls. Initially the delay is one instruction. If the lock is still busy, the delay is doubled to two instructions, then four instructions and so on up to some maximum. A low maximum gives fast response when the lock is released, but wastes more bus cycles on cache thrash-ing. A high maximum reduces cache thrashing at the expense of not noticing that the lock is free so quickly. Binary exponential backoff can be used with or without the pure reads preceding the TSL instruction.
An even better idea is to give each CPU wishing to acquire the mutex its own private lock variable to test, as illustrated in Fig. 8-10 (Mellor-Crummey and Scott, 1991). The variable should reside in an otherwise unused cache block to avoid conflicts. The algorithm works by having a CPU that fails to acquire the lock allocate a lock variable and attach itself to the end of a list of CPUs waiting for the lock. When the current lock holder exits the critical region, it frees the private lock that the first CPU on the list is testing (in its own cache). This CPU then enters the critical region. When it is done, it frees the lock its successor is using, and so on. Although the protocol is somewhat complicated (to avoid hav-ing two CPUs attach themselves to the end of the list simultaneously), it is effi-cient and starvation free. For all the details, readers should consult the paper.
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Figure 8-10.  Use of multiple locks to avoid cache thrashing.
Spinning versus Switching
So far we have assumed that a CPU needing a locked mutex just waits for it, either by polling continuously, polling intermittently, or attaching itself to a list of waiting CPUs. In some cases, there is no real alternative for the requesting CPU to just waiting. For example, suppose that some CPU is idle and needs to access the shared ready list to pick a process to run. If the ready list is locked, the CPU cannot just decide to suspend what it is doing and run another process, because
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doing that would require access to the ready list. It must wait until it can acquire the ready list.
However, in other cases, there is a choice. For example, if some thread on a CPU needs to access the file system buffer cache and that is currently locked, the CPU can decide to switch to a different thread instead of waiting. The issue of whether to spin or whether to do a thread switch has been a matter of much research, some of which will be discussed below. Note that this issue does not occur on a uniprocessor because spinning does not make much sense when there is no other CPU to release the lock. If a thread tries to acquire a lock and fails, it is always blocked to give the lock owner a chance to run and release the lock.
Assuming that spinning and doing a thread switch are both feasible options, the trade-off is as follows. Spinning wastes CPU cycles directly. Testing a lock repeatedly is not productive work. Switching, however, also wastes CPU cycles, since the current thread’s state must be saved, the lock on the ready list must be acquired, a thread must be selected, its state must be loaded, and it must be started. Furthermore, the CPU cache will contain all the wrong blocks, so many expensive cache misses will occur as the new thread starts running. TLB faults are also likely. Eventually, a switch back to the original thread must take place, with more cache misses following it. The cycles spent doing these two context switches plus all the cache misses are wasted.
If it is known that mutexes are generally held for, say, 50  sec and it takes 1 msec to switch from the current thread and 1 msec to switch back later, it is more efficient just to spin on the mutex. On the other hand, if the average mutex is held for 10 msec, it is worth the trouble of making the two context switches. The trou-ble is that critical regions can vary considerably in their duration, so which approach is better?
One design is to always spin. A second design is to always switch. But a third design is to make a separate decision each time a locked mutex is encoun-tered. At the time the decision has to be made, it is not known whether it is better to spin or switch, but for any given system, it is possible to make a trace of all activity and analyze it later offline. Then it can be said in retrospect which deci-sion was the best one and how much time was wasted in the best case. This hind-sight algorithm then becomes a benchmark against which feasible algorithms can be measured.
This problem has been studied by researchers (Karlin et al., 1989; Karlin et al., 1991; and Ousterhout, 1982). Most work uses a model in which a thread fail-ing to acquire a mutex spins for some period of time. If this threshold is ex-ceeded, it switches. In some cases the threshold is fixed, typically the known overhead for switching to another thread and then switching back. In other cases it is dynamic, depending on the observed history of the mutex being waited on.
The best results are achieved when the system keeps track of the last few observed spin times and assumes that this one will be similar to the previous ones. For example, assuming a 1-msec context switch time again, a thread would spin
SEC.  8.1
MULTIPROCESSORS
521
for a maximum of 2 msec, but observe how long it actually spun. If it fails to acquire a lock and sees that on the previous three runs it waited an average of 200
· sec, it should spin for 2 msec before switching. However, it if sees that it spun for the full 2 msec on each of the previous attempts, it should switch immediately and not spin at all. More details can be found in (Karlin et al., 1991).
8.1.4 Multiprocessor Scheduling
On a uniprocessor, scheduling is one dimensional. The only question that must be answered (repeatedly) is: ‘‘Which process should be run next?’’ On a multiprocessor, scheduling is two dimensional. The scheduler has to decide which process to run and which CPU to run it on. This extra dimension greatly complicates scheduling on multiprocessors.
Another complicating factor is that in some systems, all the processes are unrelated whereas in others they come in groups. An example of the former situa-tion is a timesharing system in which independent users start up independent processes. The processes are unrelated and each one can be scheduled without regard to the other ones.
An example of the latter situation occurs regularly in program development environments. Large systems often consist of some number of header files con-taining macros, type definitions, and variable declarations that are used by the actual code files. When a header file is changed, all the code files that include it must be recompiled. The program make is commonly used to manage develop-ment. When make is invoked, it starts the compilation of only those code files that must be recompiled on account of changes to the header or code files. Object files that are still valid are not regenerated.
The original version of make did its work sequentially, but newer versions designed for multiprocessors can start up all the compilations at once. If 10 com-pilations are needed, it does not make sense to schedule 9 of them quickly and leave the last one until much later since the user will not perceive the work as completed until the last one finishes. In this case it makes sense to regard the processes as a group and to take that into account when scheduling them.
Timesharing
Let us first address the case of scheduling independent processes; later we will consider how to schedule related processes. The simplest scheduling algo-rithm for dealing with unrelated processes (or threads) is to have a single system-wide data structure for ready processes, possibly just a list, but more likely a set of lists for processes at different priorities as depicted in Fig. 8-11(a). Here the 16 CPUs are all currently busy, and a prioritized set of 14 processes are waiting to run. The first CPU to finish its current work (or have its process block) is CPU 4, which then locks the scheduling queues and selects the highest priority process, A,
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as shown in Fig. 8-11(b). Next, CPU 12 goes idle and chooses process B, as illus-trated in Fig. 8-11(c). As long as the processes are completely unrelated, doing scheduling this way is a reasonable choice.
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Figure 8-11.  Using a single data structure for scheduling a multiprocessor.
Having a single scheduling data structure used by all CPUs timeshares the CPUs, much as they would be in a uniprocessor system. It also provides auto-matic load balancing because it can never happen that one CPU is idle while oth-ers are overloaded. Two disadvantages of this approach are the potential conten-tion for the scheduling data structure as the numbers of CPUs grows and the usual overhead in doing a context switch when a process blocks for I/O.
It is also possible that a context switch happens when a process’ quantum expires. On a multiprocessor, that has certain properties not present on a unipro-cessor. Suppose that the process holds a spin lock, not unusual on multiproces-sors, as discussed above. Other CPUs waiting on the spin lock just waste their time spinning until that process is scheduled again and releases the lock. On a uniprocessor, spin locks are rarely used so if a process is suspended while it holds a mutex, and another process starts and tries to acquire the mutex, it will be immediately blocked, so little time is wasted.
To get around this anomaly, some systems use smart scheduling, in which a process acquiring a spin lock sets a process-wide flag to show that it currently has a spin lock (Zahorjan et al., 1991). When it releases the lock, it clears the flag. The scheduler then does not stop a process holding a spin lock, but instead gives it a little more time to complete its critical region and release the lock.
Another issue that plays a role in scheduling is the fact that while all CPUs are equal, some CPUs are more equal. In particular, when process A has run for a long time on CPU k, CPU k’s cache will be full of A’s blocks. If A gets to run again soon, it may perform better if it is run on CPU k, because k’s cache may still
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contain some of A’s blocks. Having cache blocks preloaded will increase the cache hit rate and thus the process’ speed. In addition, the TLB may also contain the right pages, reducing TLB faults.
Some multiprocessors take this effect into account and use what is called affinity scheduling (Vaswani and Zahorjan, 1991). The basic idea here is to make a serious effort to have a process run on the same CPU it ran on last time. One way to create this affinity is to use a two-level scheduling algorithm. When a process is created, it is assigned to a CPU, for example based on which one has the smallest load at that moment. This assignment of processes to CPUs is the top level of the algorithm. As a result, each CPU acquires its own collection of processes.
The actual scheduling of the processes is the bottom level of the algorithm. It is done by each CPU separately, using priorities or some other means. By trying to keep a process on the same CPU, cache affinity is maximized. However, if a CPU has no processes to run, it takes one from another CPU rather than go idle.
Two-level scheduling has three benefits. First, it distributes the load roughly evenly over the available CPUs. Second, advantage is taken of cache affinity where possible. Third, by giving each CPU its own ready list, contention for the ready lists is minimized because attempts to use another CPU’s ready list are rela-tively infrequent.
Space Sharing
The other general approach to multiprocessor scheduling can be used when processes are related to one another in some way. Earlier we mentioned the example of parallel make as one case. It also often occurs that a single process creates multiple threads that work together. For our purposes, a job consisting of multiple related processes or a process consisting of multiple kernel threads are essentially the same thing. We will refer to the schedulable entities as threads here, but the material holds for processes as well. Scheduling multiple threads at the same time across multiple CPUs is called space sharing.
The simplest space sharing algorithm works like this. Assume that an entire group of related threads is created at once. At the time it is created, the scheduler checks to see if there are as many free CPUs as there are threads. If there are, each thread is given its own dedicated (i.e., nonmultiprogrammed) CPU and they all start. If there are not enough CPUs, none of the threads are started until enough CPUs are available. Each thread holds onto its CPU until it terminates, at which time the CPU is put back into the pool of available CPUs. If a thread blocks on I/O, it continues to hold the CPU, which is simply idle until the thread wakes up. When the next batch of threads appears, the same algorithm is applied.
At any instant of time, the set of CPUs is statically partitioned into some number of partitions, each one running the threads of one process. In Fig. 8-12, we have partitions of sizes 4, 6, 8, and 12 CPUs, with 2 CPUs unassigned, for
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example. As time goes on, the number and size of the partitions will change as processes come and go.
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Figure 8-12. A set of 32 CPUs split into four partitions, with two CPUs available.
Periodically, scheduling decisions have to be made. In uniprocessor systems, shortest job first is a well-known algorithm for batch scheduling. The analogous algorithm for a multiprocessor is to choose the process needing the smallest number of CPU cycles, that is the process whose CPU-count  run-time is the smallest of the candidates. However, in practice, this information is rarely avail-able, so the algorithm is hard to carry out. In fact, studies have shown that, in practice, beating first-come, first-served is hard to do (Krueger et al., 1994).
In this simple partitioning model, a process just asks for some number of CPUs and either gets them all or has to wait until they are available. A different approach is for processes to actively manage the degree of parallelism. One way to do manage the parallelism is to have a central server that keeps track of which processes are running and want to run and what their minimum and maximum CPU requirements are (Tucker and Gupta, 1989). Periodically, each CPU polls the central server to ask how many CPUs it may use. It then adjusts the number of processes or threads up or down to match what is available. For example, a Web server can have 1, 2, 5, 10, 20, or any other number of threads running in parallel. If it currently has 10 threads and there is suddenly more demand for CPUs and it is told to drop to 5, when the next 5 threads finish their current work, they are told to exit instead of being given new work. This scheme allows the partition sizes to vary dynamically to match the current workload better than the fixed system of Fig. 8-12.
Gang Scheduling
A clear advantage of space sharing is the elimination of multiprogramming, which eliminates the context switching overhead. However, an equally clear disadvantage is the time wasted when a CPU blocks and has nothing at all to do until it becomes ready again. Consequently, people have looked for algorithms that attempt to schedule in both time and space together, especially for processes
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that create multiple threads, which usually need to communicate with one another. To see the kind of problem that can occur when the threads of a process (or processes of a job) are independently scheduled, consider a system with threads
A 0  and A 1  belonging to process A and threads B 0  and B 1  belonging to process B.
threads A 0 and B 0 are timeshared on CPU 0; threads A 1 and B 1 are timeshared on CPU 1. threads A 0 and A 1 need to communicate often. The communication pattern is that A 0 sends A 1 a message, with A 1 then sending back a reply to A 0 , followed by another such sequence. Suppose that luck has it that A 0 and B 1 start first, as shown in Fig. 8-13.
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Figure 8-13. Communication between two threads belonging to process A that are running out of phase.
In time slice 0, A 0 sends A 1 a request, but A 1 does not get it until it runs in time slice 1 starting at 100 msec. It sends the reply immediately, but A 0 does not get the reply until it runs again at 200 msec. The net result is one request-reply sequence every 200 msec. Not very good.
The solution to this problem is gang scheduling, which is an outgrowth of co-scheduling (Ousterhout, 1982). Gang scheduling has three parts:
1. Groups of related threads are scheduled as a unit, a gang.

2. All members of a gang run simultaneously, on different timeshared CPUs.

3. All gang members start and end their time slices together.

The trick that makes gang scheduling work is that all CPUs are scheduled syn-chronously. This means that time is divided into discrete quanta as we had in Fig. 8-13. At the start of each new quantum, all the CPUs are rescheduled, with a new thread being started on each one. At the start of the following quantum, another scheduling event happens. In between, no scheduling is done. If a thread blocks, its CPU stays idle until the end of the quantum.
An example of how gang scheduling works is given in Fig. 8-14. Here we have a multiprocessor with six CPUs being used by five processes, A through E, with a total of 24 ready threads. During time slot 0, threads A 0 through A 6 are
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scheduled and run. During time slot 1, Threads B 0 , B 1 , B 2 , C 0 , C 1 , and C 2 are scheduled and run. During time slot 2, D’s five threads and E 0 get to run. The remaining six threads belonging to process E run in time slot 3. Then the cycle repeats, with slot 4 being the same as slot 0 and so on.
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Figure 8-14.  Gang scheduling.
The idea of gang scheduling is to have all the threads of a process run together, so that if one of them sends a request to another one, it will get the mes-sage almost immediately and be able to reply almost immediately. In Fig. 8-14, since all the A threads are running together, during one quantum, they may send and receive a very large number of messages in one quantum, thus eliminating the problem of Fig. 8-13.
Chapter 9 – Pipeline and Vector Processing
Section 9.1 – Parallel Processing
· A parallel processing system is able to perform concurrent data processing to achieve faster execution time
· The system may have two or more ALUs and be able to execute two or more instructions at the same time
· Also, the system may have two or more processors operating concurrently
· Goal is to increase the throughput – the amount of processing that can be accomplished during a given interval of time
· Parallel processing increases the amount of hardware required
· Example: the ALU can be separated into three units and the operands diverted to each unit under the supervision of a control unit
· All units are independent of each other
· A multifunctional organization is usually associated with a complex control unit to coordinate all the activities among the various components

· Parallel processing can be classified from:
y The internal organization of the processors
o The interconnection structure between processors o The flow of information through the system
o The number of instructions and data items that are manipulated simultaneously
· The sequence of instructions read from memory is the instruction stream
· The operations performed on the data in the processor is the data stream
· Parallel processing may occur in the instruction stream, the data stream, or both
· Computer classification:
w Single instruction stream, single data stream – SISD
o Single instruction stream, multiple data stream – SIMD
o Multiple instruction stream, single data stream – MISD
o Multiple instruction stream, multiple data stream – MIMD
· SISD – Instructions are executed sequentially. Parallel processing may be achieved by means of multiple functional units or by pipeline processing
· SIMD – Includes multiple processing units with a single control unit. All processors receive the same instruction, but operate on different data.
· MIMD – A computer system capable of processing several programs at the same time.
· We will consider parallel processing under the following main topics:
o Pipeline processing
s Vector processing
y Array processors
Section 9.2 -- Pipelining
· Pipelining is a technique of decomposing a sequential process into suboperations, with each subprocess being executed in a special dedicated segment that operates concurrently with all other segments
· Each segment performs partial processing dictated by the way the task is partitioned
· The result obtained from the computation in each segment is transferred to the next segment in the pipeline
· The final result is obtained after the data have passed through all segments
· Can imagine that each segment consists of an input register followed by an combinational circuit
· A clock is applied to all registers after enough time has elapsed to perform all segment activity
· The information flows through the pipeline one step at a time

Example: Ai * Bi + Ci
for i = 1, 2, 3, …, 7
· The suboperations performed in each segment are:
R1 ← Ai , R2 ← Bi
R3 ← R1 * R2, R4 ← Ci
R5 ← R3 + R4

· Any operation that can be decomposed into a sequence of suboperations of about the same complexity can be implemented by a pipeline processor
· The technique is efficient for those applications that need to repeat the same task many time with different sets of data
· A task is the total operation performed going through all segments of a pipeline
· The behavior of a pipeline can be illustrated with a space-time diagram
· This shows the segment utilization as a function of time
· Once the pipeline is full, it takes only one clock period to obtain an output

· Consider a k-segment pipeline with a clock cycle time tp to execute n tasks
· The first task T1 requires time ktp to complete
· The remaining n – 1 tasks finish at the rate of one task per clock cycle and will be completed after time (n – 1)tp
· The total time to complete the n tasks is [k + n – 1]tp
· The example of Figure 9-4 requires [4 + 6 – 1] clock cycles to finish
· Consider a nonpipeline unit that performs the same operation and takes tn time to complete each task
· The total time to complete n tasks would be ntn
· The speedup of a pipeline processing over an equivalent nonpipeline processing is defined by the ratio
S =
ntn
.

(k + n – 1)tp
· As the number of tasks increase, the speedup becomes S = tn
tp
· If we assume that the time to process a task is the same in both circuits, tn =k tp S = ktn = k
tp
· Therefore, the theoretical maximum speedup that a pipeline can provide is k
· Example:
s Cycle time = tp = 20 ns o # of segments = k = 4
u # of tasks = n = 100
The pipeline system will take (k + n – 1)tp = (4 + 100 –1)20ns = 2060 ns
Assuming that tn = ktp = 4 * 20 = 80 ns,
A nonpipeline system requires nktp = 100 * 80 = 8000 ns The speedup ratio = 8000/2060 = 3.88
· The pipeline cannot operate at its maximum theoretical rate
· One reason is that the clock cycle must be chosen to equal the time delay of the segment with the maximum propagation time
· Pipeline organization is applicable for arithmetic operations and fetching instructions
Section 9.3 – Arithmetic Pipeline
· Pipeline arithmetic units are usually found in very high speed computers
· They are used to implement floating-point operations, multiplication of fixed-point numbers, and similar computations encountered in scientific problems
· Example for floating-point addition and subtraction
· Inputs are two normalized floating-point binary numbers
X = A x 2a
Y = B x 2b
· A and B are two fractions that represent the mantissas
· a and b are the exponents
· Four segments are used to perform the following:
xx) Compare the exponents o Align the mantissas
o  Add or subtract the mantissas
8. Normalize the result

9. X = 0.9504 x 103 and Y = 0.8200 x 102
10. The two exponents are subtracted in the first segment to obtain 3-2=1
11. The larger exponent 3 is chosen as the exponent of the result
12. Segment 2 shifts the mantissa of Y to the right to obtain Y = 0.0820 x 103
13. The mantissas are now aligned
14. Segment 3 produces the sum Z = 1.0324 x 103
15. Segment 4 normalizes the result by shifting the mantissa once to the right and incrementing the exponent by one to obtain Z = 0.10324 x 104
Section 9.4 – Instruction Pipeline
· An instruction pipeline reads consecutive instructions from memory while previous instructions are being executed in other segments
· This causes the instruction fetch and execute phases to overlap and perform simultaneous operations
· If a branch out of sequence occurs, the pipeline must be emptied and all the instructions that have been read from memory after the branch instruction must be discarded
· Consider a computer with an instruction fetch unit and an instruction execution unit forming a two segment pipeline
· A FIFO buffer can be used for the fetch segment
· Thus, an instruction stream can be placed in a queue, waiting for decoding and processing by the execution segment
· This reduces the average access time to memory for reading instructions
· Whenever there is space in the buffer, the control unit initiates the next instruction fetch phase
· The following steps are needed to process each instruction:
Fetch the instruction from memory
Decode the instruction
Calculate the effective address
iv. Fetch the operands from memory
i Execute the instruction
c) Store the result in the proper place
f) The pipeline may not perform at its maximum rate due to:
b) Different segments taking different times to operate
Some segment being skipped for certain operations
Memory access conflicts
· Example: Four-segment instruction pipeline
· Assume that the decoding can be combined with calculating the EA in one segment
· Assume that most of the instructions store the result in a register so that the execution and storing of the result can be combined in one segment

· Up to four suboperations in the instruction cycle can overlap and up to four different instructions can be in progress of being processed at the same time
· It is assumed that the processor has separate instruction and data memories
· Reasons for the pipeline to deviate from its normal operation are:
· Resource conflicts caused by access to memory by two segments at the
same time.
· Data dependency conflicts arise when an instruction depends on the result of a previous instruction, but his result is not yet available
Branch difficulties arise from program control instructions that may change the value of PC
· Methods to handle data dependency:
Hardware interlocks are circuits that detect instructions whose source operands are destinations of prior instructions. Detection causes the hardware to insert the required delays without altering the program sequence.
· Operand forwarding uses special hardware to detect a conflict and then avoid it by routing the data through special paths between pipeline segments. This requires additional hardware paths through multiplexers as well as the circuit to detect the conflict.
Delayed load is a procedure that gives the responsibility for solving data conflicts to the compiler. The compiler is designed to detect a data conflict and reorder the instructions as necessary to delay the loading of the conflicting data by inserting no-operation instructions.
· Methods to handle branch instructions:
Prefetching the target instruction in addition to the next instruction allows either instruction to be available.
· A branch target buffer is an associative memory included in the fetch segment of the branch instruction that stores the target instruction for a previously executed branch. It also stores the next few instructions after the branch target instruction. This way, the branch instructions that have occurred previously are readily available in the pipeline without interruption.
· The loop buffer is a variation of the BTB. It is a small very high speed register file maintained by the instruction fetch segment of the pipeline. Stores all branches within a loop segment.
· Branch prediction uses some additional logic to guess the outcome of a conditional branch instruction before it is executed. The pipeline then begins prefetching instructions from the predicted path.
ii Delayed branch is used in most RISC processors so that the compiler rearranges the instructions to delay the branch.
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The concatenation of the block field with the word field produces the final physical mapped address.
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The two mapping tables may be stored in two separate small memories or in main memory.
[image: image124.jpg]


In either case, memory reference from the CPU will require three accesses to memory: one from the segment table, one from the page table and the third from main memory.
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This would slow the system significantly when compared to a conventional system that requires only one reference to memory.
	
	


