

LECTURE NOTES

ON

CLOUD COMPUTING

Unit-1

INTRODUCTION TO CLOUD
COMPUTING

CLOUD COMPUTING IN A NUTSHELL

Computing itself, to be considered fully virtualized, must allow computers to

be built from distributed components such as processing, storage, data, and

software resources.

Technologies such as cluster, grid, and now, cloud computing, have all

aimed at allowing access to large amounts of computing power in a fully

virtualized manner, by aggregating resources and offering a single system

view. Utility computing describes a business model for on-demand delivery of

computing power; consumers pay providers based on usage (“payas-you-

go”), similar to the way in which we currently obtain services from traditional

public utility services such as water, electricity, gas, and telephony.

Cloud computing has been coined as an umbrella term to describe a

category of sophisticated on-demand computing services initially offered by

commercial providers, such as Amazon, Google, and Microsoft. It denotes a

model on which a computing infrastructure is viewed as a “cloud,” from which

businesses and individuals access applications from anywhere in the world on

demand . The main principle behind this model is offering computing, storage,

and software “as a service.”

Many practitioners in the commercial and academic spheres have attempted

to define exactly what “cloud computing” is and what unique characteristics it

presents. Buyya et al. have defined it as follows: “Cloud is a parallel and

distributed computing system consisting of a collection of inter-connected

and virtualised computers that are dynamically provisioned and presented as one

or more unified computing resources based on service-level agreements (SLA)

established through negotiation between the service provider and consumers.”

Vaquero et al. have stated “clouds are a large pool of easily usable and

accessible virtualized resources (such as hardware, development platforms

and/or services). These resources can be dynamically reconfigured to adjust

to a variable load (scale), allowing also for an optimum resource utilization.

This pool of resources is typically exploited by a pay-per-use model in which

guarantees are offered by the Infrastructure Provider by means of customized

Service Level Agreements.”

A recent McKinsey and Co. report claims that “Clouds are

hardwarebased services offering compute, network, and storage capacity

where: Hardware management is highly abstracted from the buyer, buyers

incur infrastructure costs as variable OPEX, and infrastructure capacity is

highly elastic.”

A report from the University of California Berkeley summarized the key

characteristics of cloud computing as: “(1) the illusion of infinite computing

resources; (2) the elimination of an up-front commitment by cloud users; and

(3) the ability to pay for use ... as needed .. .”

The National Institute of Standards and Technology (NIST) characterizes

cloud computing as “... a pay-per-use model for enabling available,

convenient, on-demand network access to a shared pool of configurable

computing resources (e.g. networks, servers, storage, applications, services)

that can be rapidly provisioned and released with minimal management effort

or service provider interaction.”

In a more generic definition, Armbrust et al. define cloud as the “data

center hardware and software that provide services.” Similarly, Sotomayor

et al. point out that “cloud” is more often used to refer to the IT infrastructure

deployed on an Infrastructure as a Service provider data center. While there are

countless other definitions, there seems to be common characteristics between

the most notable ones listed above, which a cloud should have: (i) pay-per-use

(no ongoing commitment, utility prices); (ii) elastic capacity and the illusion of

infinite resources; (iii) self-service interface; and (iv) resources that are

abstracted or virtualised.

ROOTS OF CLOUD COMPUTING

We can track the roots of clouds computing by observing the advancement of

several technologies, especially in hardware (virtualization, multi-core chips),

Internet technologies (Web services, service-oriented architectures, Web 2.0),

distributed computing (clusters, grids), and systems management (autonomic

computing, data center automation). Figure 1.1 shows the convergence of

technology fields that significantly advanced and contributed to the advent

of cloud computing.

Some of these technologies have been tagged as hype in their early stages

of development; however, they later received significant attention from

academia and were sanctioned by major industry players. Consequently, a

specification and standardization process followed, leading to maturity and

wide adoption. The emergence of cloud computing itself is closely linked to

the maturity of such technologies. We present a closer look at the technol ogies

that form the base of cloud computing, with the aim of providing a clearer

picture of the cloud ecosystem as a whole.

From Mainframes to Clouds

We are currently experiencing a switch in the IT world, from in-house

generated computing power into utility-supplied computing resources delivered

over the Internet as Web services. This trend is similar to what occurred about a

century ago when factories, which used to generate their own electric power,

realized that it is was cheaper just plugging their machines into the newly

formed electric power grid .

Computing delivered as a utility can be defined as “on demand delivery of

infrastructure, applications, and business processes in a security-rich, shared,

scalable, and based computer environment over the Internet for a fee” .

Hardware

Systems Management

FIGURE 1.1. Convergence of various advances leading to the advent of

cloud computing.

This model brings benefits to both consumers and providers of IT services.

Consumers can attain reduction on IT-related costs by choosing to obtain

cheaper services from external providers as opposed to heavily investing on IT

infrastructure and personnel hiring. The “on-demand” component of this

model allows consumers to adapt their IT usage to rapidly increasing or

unpredictable computing needs.

Providers of IT services achieve better operational costs; hardware and

software infrastructures are built to provide multiple solutions and serve many

users, thus increasing efficiency and ultimately leading to faster return on

investment (ROI) as well as lower total cost of ownership (TCO).

The mainframe era collapsed with the advent of fast and inexpensive

microprocessors and IT data centers moved to collections of commodity servers.

The advent of increasingly fast fiber-optics networks has relit the fire, and

new technologies for enabling sharing of computing power over great distances

have appeared.

SOA, Web Services, Web 2.0, and Mashups

• Web Service

• applications running on different messaging product platforms

• enabling information from one application to be made available to

others

• enabling internal applications to be made available over the Internet

• SOA

• address requirements of loosely coupled, standards-based, and

Hardware Virtualization
Multi-core chips

Utility &
Grid

Computing

Cloud
Computing

SOA
Web 2.0

Web Services

Mashups

Autonomic Computing
Data Center Automation

In
tern

et T
ech

n
o
lo

g
ies D

is
tr

ib
u
te

d
 C

o
m

p
u

ti
n
g

protocol-independent distributed computing

• WS ,HTTP, XML

• Common mechanism for delivering service

• applications is a collection of services that together perform

complex business logic

• Building block in IaaS

• User authentication, payroll management, calender

Grid Computing

Grid computing enables aggregation of distributed resources and transparently

access to them. Most production grids such as TeraGrid and EGEE seek to

share compute and storage resources distributed across different administrative

domains, with their main focus being speeding up a broad range of scientific

applications, such as climate modeling, drug design, and protein analysis.

Globus Toolkit is a middleware that implements several standard Grid

services and over the years has aided the deployment of several service-oriented

Grid infrastructures and applications. An ecosystem of tools is available to

interact with service grids, including grid brokers, which facilitate user

interaction with multiple middleware and implement policies to meet QoS

needs.

Virtualization technology has been identified as the perfect fit to issues that

have caused frustration when using grids, such as hosting many dissimilar

software applications on a single physical platform. In this direction, some

research projects.

Utility Computing

In utility computing environments, users assign a “utility” value to their jobs,

where utility is a fixed or time-varying valuation that captures various QoS

constraints (deadline, importance, satisfaction). The valuation is the amount

they are willing to pay a service provider to satisfy their demands. The service

providers then attempt to maximize their own utility, where said utility may

directly correlate with their profit. Providers can choose to prioritize high yield

(i.e., profit per unit of resource) user jobs, leading to a scenario where shared

systems are viewed as a marketplace, where users compete for resources based

on the perceived utility or value of their jobs.

Hardware Virtualization

The idea of virtualizing a computer system’s resources, including processors,

memory, and I/O devices, has been well established for decades, aiming at

improving sharing and utilization of computer systems . Hardware

virtualization allows running multiple operating systems and software stacks on

a single physical platform. As depicted in Figure 1.2, a software layer, the

virtual machine monitor (VMM), also called a hypervisor, mediates access to

the physical hardware presenting to each guest operating system a virtual

machine (VM), which is a set of virtual platform interfaces .

FIGURE 1.2. A hardware virtualized server hosting three virtual machines, each one

running distinct operating system and user level software stack.

Virtual Machine 1

User software

Email Server

Virtual Machine 2

User software

Facebook App

Virtual Machine N

User software

App A App X

Data
base

Web
Server

Java
Ruby on

Rails App B App Y

Linux Guest OS

Virtual Machine Monitor (Hypervisor)

Hardware

Workload isolation is achieved since all program instructions are fully

confined inside a VM, which leads to improvements in security. Better

reliability is also achieved because software failures inside one VM do not

affect others . Moreover, better performance control is attained since execution

of one VM should not affect the performance of another VM .

VMWare ESXi. VMware is a pioneer in the virtualization market. Its ecosystem

of tools ranges from server and desktop virtualization to high-level

management tools . ESXi is a VMM from VMWare. It is a bare-metal

hypervisor, meaning that it installs directly on the physical server, whereas

others may require a host operating system.

Xen. The Xen hypervisor started as an open-source project and has served as a

base to other virtualization products, both commercial and open-source.In

addition to an open-source distribution , Xen currently forms the base of

commercial hypervisors of a number of vendors, most notably Citrix

XenServer and Oracle VM.

KVM. The kernel-based virtual machine (KVM) is a Linux virtualization

subsystem. Is has been part of the mainline Linux kernel since version 2.6.20,

thus being natively supported by several distributions. In addition, activities

such as memory management and scheduling are carried out by existing kernel

features, thus making KVM simpler and smaller than hypervisors that take

control of the entire machine .

KVM leverages hardware-assisted virtualization, which improves

performance and allows it to support unmodified guest operating systems ;

currently, it supports several versions of Windows, Linux, and UNIX .

Virtual Appliances and the Open Virtualization Format

An application combined with the environment needed to run it (operating

system, libraries, compilers, databases, application containers, and so forth) is

referred to as a “virtual appliance.” Packaging application environments in the

shape of virtual appliances eases software customization, configuration, and

patching and improves portability. Most commonly, an appliance is shaped as

a VM disk image associated with hardware requirements, and it can be readily

deployed in a hypervisor.

In a multitude of hypervisors, where each one supports a different VM image

format and the formats are incompatible with one another, a great deal of

interoperability issues arises. For instance, Amazon has its Amazon machine

image (AMI) format, made popular on the Amazon EC2 public cloud. Other

formats are used by Citrix XenServer, several Linux distributions that ship with

KVM, Microsoft Hyper-V, and VMware ESX.

OVF’s extensibility has encouraged additions relevant to management of

data centers and clouds. Mathews et al. have devised virtual machine contracts

(VMC) as an extension to OVF. A VMC aids in communicating and managing

the complex expectations that VMs have of their runtime environment and vice

versa.

Autonomic Computing

The increasing complexity of computing systems has motivated research on

autonomic computing, which seeks to improve systems by decreasing human

involvement in their operation. In other words, systems should manage

themselves, with high-level guidance from humans .

In this sense, the concepts of autonomic computing inspire software

technologies for data center automation, which may perform tasks such as:

management of service levels of running applications; management of data

center capacity; proactive disaster recovery; and automation of VM

provisioning .

LAYERS AND TYPES OF CLOUDS

Cloud computing services are divided into three classes, according to the

abstraction level of the capability provided and the service model of providers,

namely: (1) Infrastructure as a Service, (2) Platform as a Service, and (3) Software

as a Service . Figure 1.3 depicts the layered organization of the cloud stack

from physical infrastructure to applications.

These abstraction levels can also be viewed as a layered architecture where

services of a higher layer can be composed from services of the underlying

layer.

Infrastructure as a Service

Offering virtualized resources (computation, storage, and communication) on

demand is known as Infrastructure as a Service (IaaS) . A cloud infrastructure

FIGURE 1.3. The cloud computing stack.

Service
Class

Main Access &
Management Tool Service content

Cloud Applications

Web Browser

SaaS

Social networks, Office suites, CRM,
Video processing

Cloud Platform

PaaS

Cloud
Development

Environment Programming languages, Frameworks,
Mashups editors, Structured data

Cloud Infrastructure

IaaS

Virtual
Infrastructure

Manager
17

Compute Servers, Data Storage,
Firewall, Load Balancer

enables on-demand provisioning of servers running several choices of operating

systems and a customized software stack. Infrastructure services are considered

to be the bottom layer of cloud computing systems .

Platform as a Service

In addition to infrastructure-oriented clouds that provide raw computing and

storage services, another approach is to offer a higher level of abstraction to

make a cloud easily programmable, known as Platform as a Service (PaaS)..

Google AppEngine, an example of Platform as a Service, offers a scalable

environment for developing and hosting Web applications, which should

be written in specific programming languages such as Python or Java, and use

the services’ own proprietary structured object data store.

Software as a Service

Applications reside on the top of the cloud stack. Services provided by this

layer can be accessed by end users through Web portals. Therefore, consumers

are increasingly shifting from locally installed computer programs to on-line

software services that offer the same functionally. Traditional desktop

applications such as word processing and spreadsheet can now be accessed as a

service in the Web.

Deployment Models

Although cloud computing has emerged mainly from the appearance of public

computing utilities. In this sense, regardless of its service class, a cloud can be

classified as public, private, community, or hybrid based on model of

deployment as shown in Figure 1.4.

Mixed usage of
private and public

Clouds:
Leasing public
cloud services

when private cloud
capacity is
insufficient

Cloud computing
model run

within a company’s

own Data Center/

infrastructure for

internal and/or

partners use.

3rd party,
multi-tenant Cloud

infrastructure
& services:

* available on
subscription basis
(pay as you go)

Public/Internet

Clouds

Private/Enterprise
Clouds

Hybrid/Mixed Clouds

FIGURE 1.4. Types of clouds based on deployment models.

Armbrust propose definitions for public cloud as a “cloud made available in

a pay-as-you-go manner to the general public” and private cloud as “internal

data center of a business or other organization, not made available to the

general public.”

A community cloud is “shared by several organizations and supports a

specific community that has shared concerns (e.g., mission, security

requirements, policy, and compliance considerations) .”

A hybrid cloud takes shape when a private cloud is supplemented with

computing capacity from public clouds . The approach of temporarily renting

capacity to handle spikes in load is known as “cloud-bursting” .

DESIRED FEATURES OF A CLOUD

Certain features of a cloud are essential to enable services that truly represent

the cloud computing model and satisfy expectations of consumers, and cloud

offerings must be (i) self-service, (ii) per-usage metered and billed, (iii) elastic,

and (iv) customizable.

Self-Service

Consumers of cloud computing services expect on-demand, nearly instant

access to resources. To support this expectation, clouds must allow self-service

access so that customers can request, customize, pay, and use services without

intervention of human operators .

Per-Usage Metering and Billing

Cloud computing eliminates up-front commitment by users, allowing them to

request and use only the necessary amount. Services must be priced on a

shortterm basis (e.g., by the hour), allowing users to release (and not pay for)

resources as soon as they are not needed.

Elasticity

Cloud computing gives the illusion of infinite computing resources available on

demand . Therefore users expect clouds to rapidly provide resources in any

quantity at any time. In particular, it is expected that the additional resources

can be (a) provisioned, possibly automatically, when an application load

increases and (b) released when load decreases (scale up and down) .

Customization

In a multi-tenant cloud a great disparity between user needs is often the case.

Thus, resources rented from the cloud must be highly customizable. In the case

of infrastructure services, customization means allowing users to deploy

specialized virtual appliances and to be given privileged (root) access to the

virtual servers. Other service classes (PaaS and SaaS) offer less flexibility and

are not suitable for general-purpose computing , but still are expected to

provide a certain level of customization.

CLOUD INFRASTRUCTURE MANAGEMENT

A key challenge IaaS providers face when building a cloud infrastructure is

managing physical and virtual resources, namely servers, storage, and

networks, in a holistic fashion . The orchestration of resources must be

performed in a way to rapidly and dynamically provision resources to

applications .

The availability of a remote cloud-like interface and the ability of managing

many users and their permissions are the primary features that would

distinguish “cloud toolkits” from “VIMs.” However, in this chapter, we place

both categories of tools under the same group (of the VIMs) and, when

applicable, we highlight the availability of a remote interface as a feature.

Virtually all VIMs we investigated present a set of basic features related to

managing the life cycle of VMs, including networking groups of VMs together

and setting up virtual disks for VMs. These basic features pretty much define

whether a tool can be used in practical cloud deployments or not. On the other

hand, only a handful of software present advanced features (e.g., high

availability) which allow them to be used in large-scale production clouds.

Features

We now present a list of both basic and advanced features that are usually

available in VIMs.

Virtualization Support. The multi-tenancy aspect of clouds requires multiple

customers with disparate requirements to be served by a single hardware

infrastructure.

Self-Service, On-Demand Resource Provisioning. Self-service access to

resources has been perceived as one the most attractive features of clouds. This

feature enables users to directly obtain services from clouds.

Multiple Backend Hypervisors. Different virtualization models and tools offer

different benefits, drawbacks, and limitations. Thus, some VI managers

provide a uniform management layer regardless of the virtualization

technology used.

Storage Virtualization. Virtualizing storage means abstracting logical storage

from physical storage. By consolidating all available storage devices in a data

center, it allows creating virtual disks independent from device and location.

In the VI management sphere, storage virtualization support is often

restricted to commercial products of companies such as VMWare and Citrix.

Other products feature ways of pooling and managing storage devices, but

administrators are still aware of each individual device.

Interface to Public Clouds. Researchers have perceived that extending the

capacity of a local in-house computing infrastructure by borrowing resources

from public clouds is advantageous. In this fashion, institutions can make good

use of their available resources and, in case of spikes in demand, extra load can

be offloaded to rented resources .

Virtual Networking. Virtual networks allow creating an isolated network on

top of a physical infrastructure independently from physical topology and

locations. A virtual LAN (VLAN) allows isolating traffic that shares a

switched network, allowing VMs to be grouped into the same broadcast

domain.

Dynamic Resource Allocation. Increased awareness of energy consumption in

data centers has encouraged the practice of dynamic consolidating VMs in a

fewer number of servers. In cloud infrastructures, where applications

have variable and dynamic needs, capacity management and demand

prediction are especially complicated. This fact triggers the need for dynamic

resource allocation aiming at obtaining a timely match of supply and

demand.

Virtual Clusters. Several VI managers can holistically manage groups of VMs.

This feature is useful for provisioning computing virtual clusters on demand,

and interconnected VMs for multi-tier Internet applications.

Reservation and Negotiation Mechanism. When users request computational

resources to available at a specific time, requests are termed advance

reservations (AR), in contrast to best-effort requests, when users request

resources whenever available .

Additionally, leases may be negotiated and renegotiated, allowing provider

and consumer to modify a lease or present counter proposals until an

agreement is reached.

High Availability and Data Recovery. The high availability (HA) feature of VI

managers aims at minimizing application downtime and preventing business

disruption.

For mission critical applications, when a failover solution involving

restarting VMs does not suffice, additional levels of fault tolerance that rely on

redundancy of VMs are implemented.

Data backup in clouds should take into account the high data volume

involved in VM management.

Case Studies

In this section, we describe the main features of the most popular VI managers

available. Only the most prominent and distinguishing features of each tool are

discussed in detail. A detailed side-by-side feature comparison of VI managers

is presented in Table 1.1.

Apache VCL. The Virtual Computing Lab [60, 61] project has been incepted in

2004 by researchers at the North Carolina State University as a way to provide

customized environments to computer lab users. The software components that

support NCSU’s initiative have been released as open-source and incorporated

by the Apache Foundation.

AppLogic. AppLogic is a commercial VI manager, the flagship product of

3tera Inc. from California, USA. The company has labeled this product as a

Grid Operating System.

AppLogic provides a fabric to manage clusters of virtualized servers,

focusing on managing multi-tier Web applications. It views an entire

application as a collection of components that must be managed as a single

entity.

In summary, 3tera AppLogic provides the following features: Linux-based

controller; CLI and GUI interfaces; Xen backend; Global Volume Store (GVS)

storage virtualization; virtual networks; virtual clusters; dynamic resource

allocation; high availability; and data protection.

TABLE 1.1. Feature Comparison of Virtual Infrastructure Managers

License

Installation

Platform of

Controller

Client UI,

API, Language

Bindings

Backend

Hypervisor(s)

Storage

Virtualization

Interface to

Public Cloud

Virtual

Networks

Dynamic Resource

Allocation

Advance

Reservation of

Capacity

High

Availability

Data

Protection

Apache

VCL

Apache v2 Multi-

platform

(Apache/

PHP)

Portal,

XML-RPC

VMware

ESX, ESXi,

Server

No No Yes No Yes No No

AppLogic Proprietary Linux GUI, CLI Xen Global

Volume

Store (GVS)

No Yes Yes No Yes Yes

Citrix Essentials Proprietary Windows GUI, CLI,

Portal,

XML-RPC

XenServer,

Hyper-V

Citrix

Storage

Link

No Yes Yes No Yes Yes

Enomaly ECP GPL v3 Linux Portal, WS Xen No Amazon EC2 Yes No No No No

Eucalyptus BSD Linux EC2 WS, CLI Xen, KVM No EC2 Yes No No No No

Nimbus Apache v2 Linux EC2 WS, Xen, KVM No EC2 Yes Via Yes (via No No

WSRF, CLI integration with

OpenNebula

integration with

OpenNebula)

OpenNEbula Apache v2 Linux XML-RPC,

CLI, Java

Xen, KVM No Amazon EC2,

Elastic Hosts

Yes Yes Yes

(via Haizea)

No No

(Java)

OpenPEX GPL v2 Multiplatform Portal, WS XenServer No No No No Yes No No

oVirt GPL v2 Fedora Linux Portal KVM No No No No No No No

Platform

ISF

Proprietary Linux Portal Hyper-V

XenServer,

VMWare ESX

No EC2, IBM CoD,

HP Enterprise

Services

Yes Yes Yes Unclear Unclear

Platform VMO Proprietary Linux, Portal XenServer No No Yes Yes No Yes No

Windows

VMWare

vSphere

Proprietary Linux,

Windows

CLI, GUI,

Portal, WS

VMware

ESX, ESXi

VMware

vStorage

VMFS

VMware

vCloud partners

Yes VMware

DRM

No Yes Yes

Citrix Essentials. The Citrix Essentials suite is one the most feature complete

VI management software available, focusing on management and automation

of data centers. It is essentially a hypervisor-agnostic solution, currently

supporting Citrix XenServer and Microsoft Hyper-V.

Enomaly ECP. The Enomaly Elastic Computing Platform, in its most complete

edition, offers most features a service provider needs to build an IaaS cloud.

In summary, Enomaly ECP provides the following features: Linux-based

controller; Web portal and Web services (REST) interfaces; Xen back-end;

interface to the Amazon EC2 public cloud; virtual networks; virtual clusters

(ElasticValet).

Eucalyptus. The Eucalyptus framework was one of the first open-source

projects to focus on building IaaS clouds. It has been developed with the intent

of providing an open-source implementation nearly identical in functionality to

Amazon Web Services APIs.

Nimbus3. The Nimbus toolkit is built on top of the Globus framework. Nimbus

provides most features in common with other open-source VI managers, such

as an EC2-compatible front-end API, support to Xen, and a backend interface

to Amazon EC2.

Nimbus’ core was engineered around the Spring framework to be easily

extensible, thus allowing several internal components to be replaced and also

eases the integration with other systems.

In summary, Nimbus provides the following features: Linux-based

controller; EC2-compatible (SOAP) and WSRF interfaces; Xen and KVM

backend and a Pilot program to spawn VMs through an LRM; interface to the

Amazon EC2 public cloud; virtual networks; one-click virtual clusters.

OpenNebula. OpenNebula is one of the most feature-rich open-source VI

managers. It was initially conceived to manage local virtual infrastructure, but

has also included remote interfaces that make it viable to build public clouds.

Altogether, four programming APIs are available: XML-RPC and libvirt for

local interaction; a subset of EC2 (Query) APIs and the OpenNebula Cloud

API (OCA) for public access [7, 65].

(Amazon EC2, ElasticHosts); virtual networks; dynamic resource

allocation; advance reservation of capacity.

OpenPEX. OpenPEX (Open Provisioning and EXecution Environment) was

constructed around the notion of using advance reservations as the primary

method for allocating VM instances.

oVirt. oVirt is an open-source VI manager, sponsored by Red Hat’s Emergent

Technology group. It provides most of the basic features of other VI managers,

including support for managing physical server pools, storage pools, user

accounts, and VMs. All features are accessible through a Web interface.

Platform ISF. Infrastructure Sharing Facility (ISF) is the VI manager offering

from Platform Computing [68]. The company, mainly through its LSF family

of products, has been serving the HPC market for several years.

ISF is built upon Platform’s VM Orchestrator, which, as a standalone

product, aims at speeding up delivery of VMs to end users. It also provides high

availability by restarting VMs when hosts fail and duplicating the VM that

hosts the VMO controller.

VMWare vSphere and vCloud. vSphere is VMware’s suite of tools aimed at

transforming IT infrastructures into private clouds. It distinguishes from other

VI managers as one of the most feature-rich, due to the company’s several

offerings in all levels the architecture.

In the vSphere architecture, servers run on the ESXi platform. A separate

server runs vCenter Server, which centralizes control over the entire virtual

infrastructure. Through the vSphere Client software, administrators connect to

vCenter Server to perform various tasks.

VMware ESX, ESXi backend; VMware vStorage VMFS storage

virtualization; interface to external clouds (VMware vCloud partners); virtual

networks (VMWare Distributed Switch); dynamic resource allocation

(VMware DRM); high availability; data protection (VMWare Consolidated

Backup).

INFRASTRUCTURE AS A SERVICE PROVIDERS

Public Infrastructure as a Service providers commonly offer virtual servers

containing one or more CPUs, running several choices of operating systems

and a customized software stack. In addition, storage space and

communication facilities are often provided.

Features

In spite of being based on a common set of features, IaaS offerings can be

distinguished by the availability of specialized features that influence the

cost—benefit ratio to be experienced by user applications when moved to

the cloud. The most relevant features are: (i) geographic distribution of data

centers; (ii) variety of user interfaces and APIs to access the system; (iii)

specialized components and services that aid particular applications (e.g.,

loadbalancers, firewalls); (iv) choice of virtualization platform and operating

systems; and (v) different billing methods and period (e.g., prepaid vs. post-

paid, hourly vs. monthly).

Geographic Presence. To improve availability and responsiveness, a provider

of worldwide services would typically build several data centers distributed

around the world. For example, Amazon Web Services presents the concept of

“availability zones” and “regions” for its EC2 service.

User Interfaces and Access to Servers. Ideally, a public IaaS provider must

provide multiple access means to its cloud, thus catering for various users and

their preferences. Different types of user interfaces (UI) provide different levels

of abstraction, the most common being graphical user interfaces (GUI),

command-line tools (CLI), and Web service (WS) APIs.

GUIs are preferred by end users who need to launch, customize, and

monitor a few virtual servers and do not necessary need to repeat the process

several times. On the other hand, CLIs offer more flexibility and the possibility

of automating repetitive tasks via scripts.

Advance Reservation of Capacity. Advance reservations allow users to request

for an IaaS provider to reserve resources for a specific time frame in the future,

thus ensuring that cloud resources will be available at that time. However, most

clouds only support best-effort requests; that is, users requests are server

whenever resources are available.

Automatic Scaling and Load Balancing. As mentioned earlier in this chapter,

elasticity is a key characteristic of the cloud computing model. Applications

often need to scale up and down to meet varying load conditions. Automatic

scaling is a highly desirable feature of IaaS clouds.

Service-Level Agreement. Service-level agreements (SLAs) are offered by IaaS

providers to express their commitment to delivery of a certain QoS. To

customers it serves as a warranty. An SLA usually include availability and

performance guarantees. Additionally, metrics must be agreed upon by all

parties as well as penalties for violating these expectations.

Hypervisor and Operating System Choice. Traditionally, IaaS offerings have

been based on heavily customized open-source Xen deployments. IaaS

providers needed expertise in Linux, networking, virtualization, metering,

resource management, and many other low-level aspects to successfully deploy

and maintain their cloud offerings.

Case Studies

In this section, we describe the main features of the most popular public IaaS

clouds. Only the most prominent and distinguishing features of each one are

discussed in detail. A detailed side-by-side feature comparison of IaaS offerings

is presented in Table 1.2.

Amazon Web Services. Amazon WS (AWS) is one of the major players in the

cloud computing market. It pioneered the introduction of IaaS clouds in

2006.

The Elastic Compute Cloud (EC2) offers Xen-based virtual servers (instances)

that can be instantiated from Amazon Machine Images (AMIs). Instances are

available in a variety of sizes, operating systems, architectures, and price. CPU

capacity of instances is measured in Amazon Compute Units and, although fixed

for each instance, vary among instance types from 1 (small instance) to 20 (high

CPU instance).

In summary, Amazon EC2 provides the following features: multiple data

centers available in the United States (East and West) and Europe; CLI, Web

services (SOAP and Query), Web-based console user interfaces; access to

instance mainly via SSH (Linux) and Remote Desktop (Windows); advanced

reservation of capacity (aka reserved instances) that guarantees availability for

periods of 1 and 3 years; 99.5% availability SLA; per hour pricing; Linux and

Windows operating systems; automatic scaling; load balancing.

TABLE 1.2. Feature Comparison Public Cloud Offerings (Infrastructure as a Service)

Geographic

Presence

Client UI

APILanguage

Bindings

Primary

Access to

Server

Advance

Reservation of

Capacity

SLA

Uptime

Smallest

Billing

Unit Hypervisor

Guest

Operating

Systems

Automated

Horizontal

Scaling

Load

Balancing

Runtime

Server

Resizing/

Vertical

Scaling

Instance Hardware Capacity

Processor Memory Storage

loadbalancing (requires

reboot)

GoGrid REST, Java, SSH

PHP, Python,

Ruby

No 100% Hour Xen Linux, No

Windows

Hardware No 1—6 CPUs 0.5—8 3G0B—480

(F5) GB

Joyent

Cloud

US

(Emeryville,

CA; San

Diego,

CA; Andover,

MA; Dallas,

TX)

SSH,

VirtualMin

(Web-based

system

administration)

No 100% Month OS Level

(Solaris

Containers)

OpenSolaris No Both Automatic 1/16—8 CPUs 0.25—32 5—100 GB

hardware CPU bursting GB

(F5 networks) (up to 8

and software CPUs)

(Zeus)

Rackspace

Cloud

Servers

US

(Dallas, TX)

Portal, REST, SSH

Python, PHP,

Java, C#/.

NET

No 100% Hour Xen Linux No No Memory, disk Quad-core 0.25—1610—620 GB

(requires CPU (CPU GB

reboot) power is

Automatic weighed

CPU bursting

(up to 100%

of available

CPU power

of physical

host)

proportionally

to memory

size)

Amazon

EC2

US East,

Europe

CLI, WS,

Portal

SSH (Linux),

Remote

Desktop

Amazon

reserved

instances

99.95% Hour Xen Linux,

Windows

Available

with

Amazon

Elastic Load

Balancing

No 1—20 EC2

compute

units

1.7—15 160—1690 GB

GB 1 GB—1 TB

(per EBS

 (Windows) (Available in CloudWatch volume)

 1 or 3 years
 terms, starting
 from reservation
 time)
Flexiscale UK Web Console SSH No 100% Hour Xen Linux, No Zeus Processors, 1—4 CPUs 0.5—16 20—270 GB

 Windows software memory GB

Flexiscale. Flexiscale is a UK-based provider offering services similar in

nature to Amazon Web Services. However, its virtual servers offer some

distinct features, most notably: persistent storage by default, fixed IP addresses,

dedicated VLAN, a wider range of server sizes, and runtime adjustment of CPU

capacity (aka CPU bursting/vertical scaling). Similar to the clouds, this service

is also priced by the hour.

Joyent. Joyent’s Public Cloud offers servers based on Solaris containers

virtualization technology. These servers, dubbed accelerators, allow deploying

various specialized software-stack based on a customized version of

OpenSolaris operating system, which include by default a Web-based

configuration tool and several pre-installed software, such as Apache, MySQL,

PHP, Ruby on Rails, and Java. Software load balancing is available as an

accelerator in addition to hardware load balancers.

In summary, the Joyent public cloud offers the following features: multiple

geographic locations in the United States; Web-based user interface; access to

virtual server via SSH and Web-based administration tool; 100% availability

SLA; per month pricing; OS-level virtualization Solaris containers;

OpenSolaris operating systems; automatic scaling (vertical).

GoGrid. GoGrid, like many other IaaS providers, allows its customers to

utilize a range of pre-made Windows and Linux images, in a range of fixed

instance sizes. GoGrid also offers “value-added” stacks on top for applications

such as high-volume Web serving, e-Commerce, and database stores.

Rackspace Cloud Servers. Rackspace Cloud Servers is an IaaS solution that

provides fixed size instances in the cloud. Cloud Servers offers a range of

Linux-based pre-made images. A user can request different-sized images, where

the size is measured by requested RAM, not CPU.

PLATFORM AS A SERVICE PROVIDERS

Public Platform as a Service providers commonly offer a development and

deployment environment that allow users to create and run their applications

with little or no concern to low-level details of the platform. In addition,

specific programming languages and frameworks are made available in the

platform, as well as other services such as persistent data storage and

inmemory caches.

Features

Programming Models, Languages, and Frameworks. Programming models

made available by IaaS providers define how users can express their

applications using higher levels of abstraction and efficiently run them on the

cloud platform. Each model aims at efficiently solving a particular problem. In

the cloud computing domain, the most common activities that require

specialized models are: processing of large dataset in clusters of computers

(MapReduce model), development of request-based Web services and

applications;

Persistence Options. A persistence layer is essential to allow applications to

record their state and recover it in case of crashes, as well as to store user data.

Traditionally, Web and enterprise application developers have chosen

relational databases as the preferred persistence method. These databases offer

fast and reliable structured data storage and transaction processing, but may

lack scalability to handle several petabytes of data stored in commodity

computers .

Case Studies

In this section, we describe the main features of some Platform as Service

(PaaS) offerings. A more detailed side-by-side feature comparison of VI

managers is presented in Table 1.3.

Aneka. Aneka is a .NET-based service-oriented resource management and

development platform. Each server in an Aneka deployment (dubbed Aneka

cloud node) hosts the Aneka container, which provides the base infrastructure

that consists of services for persistence, security (authorization, authentication

and auditing), and communication (message handling and dispatching).

Several programming models are supported by such task models to enable

execution of legacy HPC applications and MapReduce, which enables a variety

of data-mining and search applications.

App Engine. Google App Engine lets you run your Python and Java Web

applications on elastic infrastructure supplied by Google. The App Engine

serving architecture is notable in that it allows real-time auto-scaling

without virtualization for many common types of Web applications.

However, such auto-scaling is dependent on the

TABLE 1.3. Feature Comparison of Platform-as-a-Service Cloud Offerings

Target Use

Programming

Language,

Frameworks

Developer

Tools

Programming

Models

Persistence

Options

Automatic

Scaling

Backend

Infrastructure

Providers

Aneka .Net enterprise

applications,

HPC

.NET Standalone

SDK

Threads, Task,

MapReduce

Flat files,

RDBMS, HDFS

No Amazon EC2

AppEngine Web

applications

Python, Java Eclipse-based

IDE

Request-based

Web

programming

BigTable Yes Own data

centers

Force.com Enterprise

applications

(esp. CRM)

Apex Eclipse-based

IDE, Web-

based wizard

Workflow,

Excel-like

formula

language,

Request-based

web

programming

Own object

database

Unclear Own data

centers

Microsoft

Windows

Azure

Enterprise and

Web

applications

.NET Azure tools for

Microsoft

Visual Studio

Unrestricted Table/BLOB/

queue storage,

SQL services

Yes Own data

centers

Heroku Web

applications

Ruby on Rails Command-line

tools

Requestbased

web

programming

PostgreSQL,

Amazon RDS

Yes Amazon EC2

Amazon

Elastic

MapReduce

Data processing Hive and Pig,

Cascading,

Java, Ruby,

Perl, Python,

PHP, R,

C++

Karmasphere

Studio for

Hadoop

(NetBeans-

based)

MapReduce Amazon S3 No Amazon EC2

3
3

application developer using a limited subset of the native APIs on each

platform, and in some instances you need to use specific Google APIs such

as URLFetch, Datastore, and memcache in place of certain native API calls.

Microsoft Azure. Microsoft Azure Cloud Services offers developers a hosted .

NET Stack (C#, VB.Net, ASP.NET). In addition, a Java & Ruby SDK for

.NET Services is also available. The Azure system consists of a number of

elements.

Force.com. In conjunction with the Salesforce.com service, the Force.com

PaaS allows developers to create add-on functionality that integrates into main

Salesforce CRM SaaS application.

Heroku. Heroku is a platform for instant deployment of Ruby on Rails Web

applications. In the Heroku system, servers are invisibly managed by the

platform and are never exposed to users.

CHALLENGES AND RISKS

Despite the initial success and popularity of the cloud computing paradigm and

the extensive availability of providers and tools, a significant number of

challenges and risks are inherent to this new model of computing. Providers,

developers, and end users must consider these challenges and risks to take good

advantage of cloud computing.

Security, Privacy, andTrust

Ambrust et al. cite information security as a main issue: “current cloud

offerings are essentially public ... exposing the system to more attacks.” For

this reason there are potentially additional challenges to make cloud computing

environments as secure as in-house IT systems. At the same time, existing,

wellunderstood technologies can be leveraged, such as data encryption,

VLANs, and firewalls.

Data Lock-In and Standardization

A major concern of cloud computing users is about having their data locked-in

by a certain provider. Users may want to move data and applications out from

a provider that does not meet their requirements. However, in their current

form, cloud computing infrastructures and platforms do not employ standard

methods of storing user data and applications. Consequently, they do not

interoperate and user data are not portable.

Availability, Fault-Tolerance, and Disaster Recovery

It is expected that users will have certain expectations about the service level to

be provided once their applications are moved to the cloud. These expectations

include availability of the service, its overall performance, and what measures

are to be taken when something goes wrong in the system or its components. In

summary, users seek for a warranty before they can comfortably move their

business to the cloud.

Resource Management and Energy-Efficiency

One important challenge faced by providers of cloud computing services is the

efficient management of virtualized resource pools. Physical resources such as

CPU cores, disk space, and network bandwidth must be sliced and shared

among virtual machines running potentially heterogeneous workloads.

Another challenge concerns the outstanding amount of data to be managed

in various VM management activities. Such data amount is a result of

particular abilities of virtual machines, including the ability of traveling through

space (i.e., migration) and time (i.e., checkpointing and rewinding), operations

that may be required in load balancing, backup, and recovery scenarios. In

addition, dynamic provisioning of new VMs and replicating existing VMs

require efficient mechanisms to make VM block storage devices (e.g., image

files) quickly available at selected hosts.

 MIGRATING INTO A CLOUD

The promise of cloud computing has raised the IT expectations of small and

medium enterprises beyond measure. Large companies are deeply debating it.

Cloud computing is a disruptive model of IT whose innovation is part

technology and part business model—in short a “disruptive techno-commercial

model” of IT. This tutorial chapter focuses on the key issues and associated

dilemmas faced by decision makers, architects, and systems managers in trying

to understand and leverage cloud computing for their IT needs. Questions

asked and discussed in this chapter include: when and how to migrate one’s

application into a cloud; what part or component of the IT application to

migrate into a cloud and what not to migrate into a cloud; what kind of

customers really benefit from migrating their IT into the cloud; and so on. We

describe the key factors underlying each of the above questions and share a

Seven-Step Model of Migration into the Cloud.

Several efforts have been made in the recent past to define the term “cloud

computing” and many have not been able to provide a comprehensive one This

has been more challenging given the scorching pace of the technological

advances as well as the newer business model formulations for the cloud services

being offered.

The Promise of the Cloud

Most users of cloud computing services offered by some of the large-scale data

centers are least bothered about the complexities of the underlying systems or

their functioning. More so given the heterogeneity of either the systems or the

software running on them.

FIGURE 2.1. The promise of the cloud computing services.

.

As shown in Figure 2.1, the promise of the cloud both on the business front

(the attractive cloudonomics) and the technology front widely aided the CxOs

to spawn out several non-mission critical IT needs from the ambit of their

captive traditional data centers to the appropriate cloud service. Invariably,

these IT needs had some common features: They were typically Web-oriented;

they represented seasonal IT demands; they were amenable to parallel batch

processing; they were non-mission critical and therefore did not have high

security demands.

The Cloud Service Offerings and Deployment Models

Cloud computing has been an attractive proposition both for the CFO and the

CTO of an enterprise primarily due its ease of usage. This has been achieved

by large data center service vendors or now better known as cloud service

vendors again primarily due to their scale of operations. Google, Amazon,

Cloudonomics

• ‘Pay per use’ – Lower Cost Barriers
• On Demand Resources –Autoscaling

• Capex vs OPEX – No capital expenses (CAPEX) and only operational expenses OPEX.

• SLA driven operations – Much Lower TCO

• Attractive NFR support: Availability, Reliability

Technology

• ‘Infinite’ Elastic availability – Compute/Storage/Bandwidth
• Automatic Usage Monitoring and Metering

• Jobs/ Tasks Virtualized and Transparently ‘Movable’

• Integration and interoperability ‘support’ for hybrid ops

• Transparently encapsulated & abstracted IT features.

FIGURE 2.2. The cloud computing service offering and deployment models.

Microsoft, and a few others have been the key players apart from open source

Hadoop built around the Apache ecosystem. As shown in Figure 2.2, the cloud

service offerings from these vendors can broadly be classified into three major

streams: the Infrastructure as a Service (IaaS), the Platform as a Service (PaaS),

and the Software as a Service (SaaS). While IT managers and system

administrators preferred IaaS as offered by Amazon for many of their

virtualized IT needs, the programmers preferred PaaS offerings like Google

AppEngine (Java/Python programming) or Microsoft Azure (.Net

programming). Users of large-scale enterprise software invariably found that

if they had been using the cloud, it was because their usage of the specific

software package was available as a service—it was, in essence, a SaaS

offering. Salesforce.com was an exemplary SaaS offering on the Internet.

From a technology viewpoint, as of today, the IaaS type of cloud offerings

have been the most successful and widespread in usage. Invariably these

reflect the cloud underneath, where storage (most do not know on which

system it is) is easily scalable or for that matter where it is stored or located.

Challenges in the Cloud

While the cloud service offerings present a simplistic view of IT in case of IaaS

or a simplistic view of programming in case PaaS or a simplistic view of

resources usage in case of SaaS, the underlying systems level support challenges

are huge and highly complex. These stem from the need to offer a uniformly

consistent and robustly simplistic view of computing while the underlying

systems are highly failure-prone, heterogeneous, resource hogging, and

exhibiting serious security shortcomings. As observed in Figure 2.3, the

promise of the cloud seems very similar to the typical distributed systems

properties that most would prefer to have.

IaaS
IT Folks

• Abstract Compute/Storage/Bandwidth Resources
• Amazon Web Services[10,9] – EC2, S3, SDB, CDN, CloudWatch

PaaS
Programmers

• Abstracted Programming Platform with encapsulated infrastructure
• Google Apps Engine(Java/Python), Microsoft Azure, Aneka[13]

SaaS
Architects & Users

• Application with encapsulated infrastructure & platform
• Salesforce.com; Gmail; Yahoo Mail; Facebook; Twitter

Cloud Application Deployment & Consumption Models

Public Clouds Hybrid Clouds Private Clouds

FIGURE 2.3. ‘Under the hood’ challenges of the cloud computing services implementations.

Many of them are listed in Figure 2.3. Prime amongst these are the challenges

of security. The Cloud Security Alliance seeks to address many of these issues .

BROAD APPROACHES TO MIGRATING INTO THE CLOUD

Given that cloud computing is a “techno-business disruptive model” and is on

the top of the top 10 strategic technologies to watch for 2010 according to

Gartner, migrating into the cloud is poised to become a large-scale effort in

leveraging the cloud in several enterprises. “Cloudonomics” deals with the

economic rationale for leveraging the cloud and is central to the success of

cloud-based enterprise usage.

Why Migrate?

There are economic and business reasons why an enterprise application can be

migrated into the cloud, and there are also a number of technological reasons.

Many of these efforts come up as initiatives in adoption of cloud technologies

in the enterprise, resulting in integration of enterprise applications running off

the captive data centers with the new ones that have been developed on the

cloud. Adoption of or integration with cloud computing services is a use case of

migration.

Distributed System Fallacies
and the Promise of the Cloud

Challenges in Cloud Technologies

Full Network Reliability

Zero Network Latency

Infinite Bandwidth

Secure Network

No Topology changes

Centralized Administration

Zero Transport Costs

Homogeneous Networks & Systems

Security

Performance Monitoring

Consistent & Robust Service abstractions

Meta Scheduling

Energy efficient load balancing

Scale management

SLA & QoS Architectures

Interoperability & Portability

Green IT

l

l

With due simplification, the migration of an enterprise application is best

captured by the following:

P-P0 1 P0-P0 1 P0

C l OFC

where P is the application before migration running in captive data center, P0 is

the application part after migration either into a (hybrid) cloud, P0
lis the paCrt of

application being run in the captive local data center, and P0
OFC is the

application part optimized for cloud. If an enterprise application cannot be

migrated fully, it could result in some parts being run on the captive local data

center while the rest are being migrated into the cloud—essentially a case of a

hybrid cloud usage. However, when the entire application is migrated onto the

cloud, then P0 is null. Indeed, the migration of the enterprise application P can

happen at the five levels of application, code, design, architecture, and usage. It
0 0

can be that the P C migration happens at any of the five levels without any P l
component. Compound this with the kind of cloud computing service offering

being applied—the IaaS model or PaaS or SaaS model—and we have a variety

of migration use cases that need to be thought through thoroughly by the

migration architects.

Cloudonomics. Invariably, migrating into the cloud is driven by economic

reasons of cost cutting in both the IT capital expenses (Capex) as well as

operational expenses (Opex). There are both the short-term benefits of

opportunistic migration to offset seasonal and highly variable IT loads as well

as the long-term benefits to leverage the cloud. For the long-term sustained

usage, as of 2009, several impediments and shortcomings of the cloud

computing services need to be addressed.

Deciding on the Cloud Migration

In fact, several proof of concepts and prototypes of the enterprise application

are experimented on the cloud to take help in making a sound decision on

migrating into the cloud. Post migration, the ROI on the migration should be

positive for a broad range of pricing variability. Assume that in the M classes

of questions, there was a class with a maximum of N questions. We can then

model the weightage-based decision making as M 3 N weightage matrix as

follows:

Cl #

XM NX
Bi

!

AijXij # Ch

i51 j51

where Cl is the lower weightage threshold and Ch is the higher weightage

threshold while Aij is the specific constant assigned for a question and Xij is the

fraction between 0 and 1 that represents the degree to which that answer to

the question is relevant and applicable.

THE SEVEN-STEP MODEL OF MIGRATION INTO A CLOUD

Typically migration initiatives into the cloud are implemented in phases or in

stages. A structured and process-oriented approach to migration into a cloud has

several advantages of capturing within itself the best practices of many migration

projects. While migration has been a difficult and vague subject—of not much

interest to the academics and left to the industry practitioners—not many efforts

across the industry have been put in to consolidate what has been found to be

both a top revenue earner and a long standing customer pain. After due study

and practice, we share the Seven-Step Model of Migration into the Cloud aspart

of our efforts in understanding and leveraging the cloud computing service

offerings in the enterprise context. In a succinct way, Figure 2.4 captures the

essence of the steps in the model of migration into the cloud, while Figure 2.5

captures the iterative process of the seven-step migration into the cloud.

The first step of the iterative process of the seven-step model of migration is

basically at the assessment level. Proof of concepts or prototypes for various

approaches to the migration along with the leveraging of pricing

parameters enables one to make appropriate assessments.

FIGURE 2.4. The Seven-Step Model of Migration into the Cloud. (Source: Infosys

Research.)

1. Conduct Cloud Migration Assessments

2. Isolate the Dependencies

3. Map the Messaging & Environment

4. Re-architect & Implement the lost Functionalities

5. Leverage Cloud Functionalities & Features

6. Test the Migration

7. Iterate and Optimize

FIGURE 2.5. The iterative Seven-step Model of Migration into the Cloud. (Source:

Infosys Research.)

Having done the augmentation, we validate and test the new form of the

enterprise application with an extensive test suite that comprises testing the

components of the enterprise application on the cloud as well. These test results

could be positive or mixed. In the latter case, we iterate and optimize as

appropriate. After several such optimizing iterations, the migration is deemed

successful. Our best practices indicate that it is best to iterate through this

Seven-Step Model process for optimizing and ensuring that the migration into

the cloud is both robust and comprehensive. Figure 2.6 captures the typical

components of the best practices accumulated in the practice of the Seven-Step

Model of Migration into the Cloud. Though not comprehensive in enumeration,

it is representative.

START

Assess

Optimize Isolate

END

The Iterative Seven Step

Migration Model

Test Map

Augment
Re-

architect

Assess

• Cloudonomics

Isolate

• Runtime

Map

• Messages

Re-Architect

• Approximate

Augment

• Exploit

Test

• Augment Test

Optimize

• Optimize–

• Migration Environment mapping: lost additional Cases and rework and
Costs • Licensing marshalling & functionality cloud features Test iterate

• Recurring • Libraries de-marshalling using cloud • Seek Low-cost Automation • Significantly
Costs Dependency • Mapping runtime augmentations • Run Proof-of- satisfy

• Database data • Applications Environments support API • Autoscaling Concepts cloudonomics
segmentation Dependency • Mapping • New • Storage • Test Migration of migration

• Database • Latencies libraries & Usecases • Bandwidth strategy • Optimize
Migration Bottlenecks runtime • Analysis • Security • Test new compliance

• Functionality • Performance approximations • Design

testcases due with standards

migration bottlenecks

to cloud and
• NFR Support • Architectural

augmentation governance

Dependencies

• Test for • Deliver best

Production migration ROI

Loads • Develop

roadmap for

leveraging new

cloud features

FIGURE 2.6. Some details of the iterative Seven-Step Model of Migration into the

Cloud.

Compared with the typical approach to migration into the Amazon AWS, our

Seven-step model is more generic, versatile, and comprehensive. The typical

migration into the Amazon AWS is a phased over several steps. It is about six

steps as discussed in several white papers in the Amazon website and is as

follows: The first phase is the cloud migration assessment phase wherein

dependencies are isolated and strategies worked out to handle these

dependencies. The next phase is in trying out proof of concepts to build a

reference migration architecture. The third phase is the data migration phase

wherein database data segmentation and cleansing is completed. This phase

also tries to leverage the various cloud storage options as best suited. The

fourth phase comprises the application migration wherein either a “forklift

strategy” of migrating the key enterprise application along with its

dependencies (other applications) into the cloud is pursued.

Migration Risks and Mitigation

The biggest challenge to any cloud migration project is how effectively the

migration risks are identified and mitigated. In the Seven-Step Model of

Migration into the Cloud, the process step of testing and validating includes

efforts to identify the key migration risks. In the optimization step, we address

various approaches to mitigate the identified migration risks.

There are issues of consistent identity management as well. These and

several of the issues are discussed in Section 2.1. Issues and challenges listed in

Figure 2.3 continue to be the persistent research and engineering challenges in

coming up with appropriate cloud computing implementations.

 ENRICHING THE ‘INTEGRATION AS A

SERVICE’ PARADIGM FOR THE CLOUD ERA

AN INTRODUCTION

The trend-setting cloud paradigm actually represents the cool

conglomeration of a number of proven and promising Web and enterprise

technologies. Cloud Infrastructure providers are establishing cloud centers

to host a variety of ICT services and platforms of worldwide individuals,

innovators, and institutions. Cloud service providers (CSPs) are very

aggressive in experimenting and embracing the cool cloud ideas and today

every business and technical services are being hosted in clouds to be

delivered to global customers, clients and consumers over the Internet

communication infrastructure. For example, security as a service (SaaS) is

a prominent cloud-hosted security service that can be subscribed by a

spectrum of users of any connected device and the users just pay for the

exact amount or time of usage. In a nutshell, on-premise and local

applications are becoming online, remote, hosted, on-demand and

offpremise applications.

Business-to-business (B2B). It is logical to take the integration

middleware to clouds to simplify and streamline the enterprise-toenterprise

(E2E), enterprise-to-cloud (E2C) and cloud-to-cloud (C2C) integration.

THE EVOLUTION OF SaaS

SaaS paradigm is on fast track due to its innate powers and potentials.

Executives, entrepreneurs, and end-users are ecstatic about the tactic as

well as strategic success of the emerging and evolving SaaS paradigm.

A number of positive and progressive developments started to grip this

model. Newer resources and activities are being consistently readied

to be delivered as a service. Experts and evangelists are in unison

that cloud is to rock the total IT community as the best possible

infrastructural solution for effective service delivery.

IT as a Service (ITaaS) is the most recent and efficient delivery

method in the decisive IT landscape. With the meteoric and

mesmerizing rise of the service orientation principles, every single IT

resource, activity and infrastructure is being viewed and visualized as a

service that sets the tone for the grand unfolding of the dreamt service

era. Integration as a service (IaaS) is the budding and distinctive

capability of clouds in fulfilling the business integration requirements.

Increasingly business applications are deployed in clouds to reap the

business and technical benefits. On the other hand, there are still

innumerable applications and data sources locally stationed and

sustained primarily due to the security reason.

B2B systems are capable of driving this new on-demand integration

model because they are traditionally employed to automate business

processes between manufacturers and their trading partners. That

means they provide application-to-application connectivity along with

the functionality that is very crucial for linking internal and external

software securely.

The use of hub & spoke (H&S) architecture further simplifies the

implementation and avoids placing an excessive processing burden on

the customer sides. The hub is installed at the SaaS provider’s cloud

center to do the heavy lifting such as reformatting files. The Web is the

largest digital information superhighway

1. The Web is the largest repository of all kinds of resources such as

web pages, applications comprising enterprise components, business

services, beans, POJOs, blogs, corporate data, etc.

2. The Web is turning out to be the open, cost-effective and generic

business execution platform (E-commerce, business, auction, etc.

happen in the web for global users) comprising a wider variety of

containers, adaptors, drivers, connectors, etc.

3. The Web is the global-scale communication infrastructure (VoIP,

Video conferencing, IP TV etc,)

4. The Web is the next-generation discovery, Connectivity, and

integration middleware

Thus the unprecedented absorption and adoption of the Internet is the

key driver for the continued success of the cloud computing.

THE CHALLENGES OF SaaS PARADIGM

As with any new technology, SaaS and cloud concepts too suffer a

number of limitations. These technologies are being diligently examined

for specific situations and scenarios. The prickling and tricky issues in

different layers and levels are being looked into. The overall views are

listed out below. Loss or lack of the following features deters the

massive adoption of clouds

1. Controllability

2. Visibility & flexibility

3. Security and Privacy

4. High Performance and Availability

5. Integration and Composition

6. Standards

A number of approaches are being investigated for resolving the

identified issues and flaws. Private cloud, hybrid and the latest

community cloud are being prescribed as the solution for most of these

inefficiencies and deficiencies. As rightly pointed out by someone in his

weblogs, still there are miles to go. There are several companies

focusing on this issue. Boomi (http://www.dell.com/) is one among

them. This company has published several well-written white papers

elaborating the issues confronting those enterprises thinking and trying

to embrace the third-party public clouds for hosting their services

and applications.

Integration Conundrum. While SaaS applications offer outstanding

value in terms of features and functionalities relative to cost, they have

introduced several challenges specific to integration.

APIs are Insufficient. Many SaaS providers have responded to the

integration challenge by developing application programming interfaces

(APIs). Unfortunately, accessing and managing data via an API requires

a significant amount of coding as well as maintenance due to frequent

API modifications and updates.

Data Transmission Security. SaaS providers go to great length to

ensure that customer data is secure within the hosted environment.

However, the need to transfer data from on-premise systems or

applications behind the firewall with SaaS applications.

For any relocated application to provide the promised value for

businesses and users, the minimum requirement is the interoperability

between SaaS applications and on-premise enterprise packages.

The Impacts of Clouds. On the infrastructural front, in the recent past,

the clouds have arrived onto the scene powerfully and have extended

the horizon and the boundary of business applications, events and data.

Thus there is a clarion call for adaptive integration engines that

seamlessly and spontaneously connect enterprise applications with

cloud applications. Integration is being stretched further to the level of

the expanding Internet and this is really a litmus test for system

architects and integrators.

The perpetual integration puzzle has to be solved meticulously for the

originally visualised success of SaaS style.

APPROACHING THE SaaS INTEGRATION ENIGMA

http://www.dell.com/)

Integration as a Service (IaaS) is all about the migration of the

functionality of a typical enterprise application integration (EAI) hub /

enterprise service bus (ESB) into the cloud for providing for smooth

data transport between any enterprise and SaaS applications. Users

subscribe to IaaS as they would do for any other SaaS application.

Cloud middleware is the next logical evolution of traditional

middleware solutions.

Service orchestration and choreography enables process integration.

Service interaction through ESB integrates loosely coupled systems

whereas CEP connects decoupled systems.

With the unprecedented rise in cloud usage, all these integration

software are bound to move to clouds. SQS also doesn’t promise in-

order and exactly-once delivery. These simplifications let Amazon

make SQS more scalable, but they also mean that developers must use

SQS differently from an on-premise message queuing technology.

As per one of the David Linthicum’s white papers, approaching

SaaS-toenterprise integration is really a matter of making informed and

intelligent choices.The need for integration between remote cloud

platforms with on-premise enterprise platforms.

Why SaaS Integration is hard?. As indicated in the white paper, there is

a mid-sized paper company that recently became a Salesforce.com

CRM customer. The company currently leverages an on-premise

custom system that uses an Oracle database to track inventory and sales.

The use of the Salesforce.com system provides the company with a

significant value in terms of customer and sales management.

Having understood and defined the “to be” state, data

synchronization technology is proposed as the best fit between the

source, meaning Salesforce. com, and the target, meaning the existing

legacy system that leverages Oracle. First of all, we need to gain the

insights about the special traits and tenets of SaaS applications in order

to arrive at a suitable integration route. The constraining attributes of

SaaS applications are

● Dynamic nature of the SaaS interfaces that constantly change

● Dynamic nature of the metadata native to a SaaS provider such as

Salesforce.com

● Managing assets that exist outside of the firewall

● Massive amounts of information that need to move between

SaaS and on-premise systems daily and the need to maintain data

quality and integrity.

As SaaS are being deposited in cloud infrastructures vigorously, we

need to ponder about the obstructions being imposed by clouds and

prescribe proven solutions. If we face difficulty with local integration,

then the cloud integration is bound to be more complicated. The most

probable reasons are

● New integration scenarios

● Access to the cloud may be limited

● Dynamic resources

● Performance

Limited Access. Access to cloud resources (SaaS, PaaS, and the

infrastructures) is more limited than local applications. Accessing local

applications is quite simple and faster. Imbedding integration points in

local as well as custom applications is easier.

Dynamic Resources. Cloud resources are virtualized and service-

oriented. That is, everything is expressed and exposed as a service. Due

to the dynamism factor that is sweeping the whole could ecosystem,

application versioning and infrastructural changes are liable for

dynamic changes.

Performance. Clouds support application scalability and resource

elasticity. However the network distances between elements in the

cloud are no longer under our control.

NEW INTEGRATION SCENARIOS

Before the cloud model, we had to stitch and tie local systems together.

With the shift to a cloud model is on the anvil, we now have to connect

local applications to the cloud, and we also have to connect cloud

applications to each other, which add new permutations to the complex

integration channel matrix.All of this means integration must criss-cross

firewalls somewhere.

Cloud Integration Scenarios. We have identified three major integration

scenarios as discussed below.

Within a Public Cloud (figure 3.1). Two different applications are

hosted in a cloud. The role of the cloud integration middleware (say

cloud-based ESB or internet service bus (ISB)) is to seamlessly enable

these applications to talk to each other. The possible sub-scenarios

include these applications can be owned

App1 ISB
App2

FIGURE 3.1. Within a Public Cloud.

FIGURE 3.2. Across Homogeneous Clouds.

FIGURE 3.3. Across Heterogeneous Clouds.

by two different companies. They may live in a single physical server

but run on different virtual machines.

Homogeneous Clouds (figure 3.2). The applications to be integrated are

posited in two geographically separated cloud infrastructures. The

integration middleware can be in cloud 1 or 2 or in a separate cloud.

There is a need for data and protocol transformation and they get

done by the ISB. The approach is more or less compatible to

enterprise application integration procedure.

Heterogeneous Clouds (figure 3.3). One application is in public cloud

and the other application is private cloud.

Cloud 1 ISB Cloud 2

Public Cloud

ISB

Private Cloud

THE INTEGRATION METHODOLOGIES

Excluding the custom integration through hand-coding, there are three

types for cloud integration

1. Traditional Enterprise Integration Tools can be empowered with

special connectors to access Cloud-located Applications—This is

the most likely approach for IT organizations, which have already

invested a lot in integration suite for their application integration

needs.

2. Traditional Enterprise Integration Tools are hosted in the

Cloud—This approach is similar to the first option except that

the integration software suite is now hosted in any third-party

cloud infrastructures so that the enterprise does not worry

about procuring and managing the hardware or installing the

integration software.

3. Integration-as-a-Service (IaaS) or On-Demand Integration

Offerings— These are SaaS applications that are designed to

deliver the integration service securely over the Internet and

are able to integrate cloud applications with the on-premise

systems, cloud-to-cloud applications.

In a nutshell, the integration requirements can be realised using

any one of the following methods and middleware products.

1. Hosted and extended ESB (Internet service bus / cloud integration

bus)

2. Online Message Queues, Brokers and Hubs

3. Wizard and configuration-based integration platforms (Niche

integration solutions)

4. Integration Service Portfolio Approach

5. Appliance-based Integration (Standalone or Hosted)

With the emergence of the cloud space, the integration scope grows

further and hence people are looking out for robust and resilient

solutions and services that would speed up and simplify the whole

process of integration.

Characteristics of Integration Solutions and Products. The key

attributes of integration platforms and backbones gleaned and gained

from integration projects experience are connectivity, semantic

mediation, Data mediation, integrity, security, governance etc

● Connectivity refers to the ability of the integration engine to engage

with both the source and target systems using available native

interfaces.

● Semantic Mediation refers to the ability to account for the

differences between application semantics between two or more

systems.

● Data Mediation converts data from a source data format into

destination data format.
● Data Migration is the process of transferring data between storage

types, formats, or systems.

● Data Security means the ability to insure that information extracted

from the source systems has to securely be placed into target

systems.

● Data Integrity means data is complete and consistent. Thus, integrity

has to be guaranteed when data is getting mapped and maintained

during integration operations, such as data synchronization between

on-premise and SaaS-based systems.

● Governance refers to the processes and technologies that surround a

system or systems, which control how those systems are accessed

and leveraged.

These are the prominent qualities carefully and critically analyzed for

when deciding the cloud / SaaS integration providers.

Data Integration Engineering Lifecycle. As business data are still

stored and sustained in local and on-premise server and storage

machines, it is imperative for a lean data integration lifecycle. The

pivotal phases, as per Mr. David Linthicum, a world-renowned

integration expert, are understanding, definition, design,

implementation, and testing.

1. Understanding the existing problem domain means defining the

metadata that is native within the source system (say

Salesforce.com) and the target system.

2. Definition refers to the process of taking the information culled

during the previous step and defining it at a high level including

what the information represents, ownership, and physical

attributes.

3. Design the integration solution around the movement of data from

one point to another accounting for the differences in the

semantics using the underlying data transformation and

mediation layer by mapping one schema from the source to the

schema of the target.

4. Implementation refers to actually implementing the data

integration solution within the selected technology.

5. Testing refers to assuring that the integration is properly

designed and implemented and that the data synchronizes

properly between the involved systems.

SaaS INTEGRATION PRODUCTS AND PLATFORMS

Cloud-centric integration solutions are being developed and

demonstrated for showcasing their capabilities for integrating enterprise

and cloud applications. The integration puzzle has been the toughest

assignment for long due to heterogeneity and multiplicity-induced

complexity.

Jitterbit

Force.com is a Platform as a Service (PaaS), enabling developers to

create and deliver any kind of on-demand business application.

FIGURE 3.4. The Smooth and Spontaneous Cloud Interaction via

Open Clouds.

Until now, integrating force.com applications with other on-demand

applications and systems within an enterprise has seemed like a

daunting and doughty task that required too much time, money, and

expertise.

Jitterbit is a fully graphical integration solution that provides users a

versatile platform and a suite of productivity tools to reduce the

Salesforce

Google Microsoft

THE CLOUD

Zoho Amazon
Yahoo

integration efforts sharply. Jitterbit is comprised of two major

components:

● Jitterbit Integration Environment An intuitive point-and-click

graphical UI that enables to quickly configure, test, deploy and

manage integration projects on the Jitterbit server.

● Jitterbit Integration Server A powerful and scalable run-time engine

that processes all the integration operations, fully configurable and

manageable from the Jitterbit application.

Jitterbit is making integration easier, faster, and more affordable

than ever before. Using Jitterbit, one can connect force.com with a

wide variety

FIGURE 3.5. Linkage of On-Premise with Online and On-Demand

Applications.

of on-premise systems including ERP, databases, flat files and

custom applications. The figure 3.5 vividly illustrates how Jitterbit

links a number of functional and vertical enterprise systems with

on-demand applications

Boomi Software
Boomi AtomSphere is an integration service that is completely on-

demand and connects any combination of SaaS, PaaS, cloud, and on-

premise applications without the burden of installing and maintaining

software packages or appliances. Anyone can securely build, deploy

and manage simple to complex integration processes using only a web

browser. Whether connecting SaaS applications found in various lines

of business or integrating across geographic boundaries,

PROBLEM SOLUTION

Manufacturing
Manufacturing Consumer

Sales
Consumer Sales

R & D Marketing
R & D Marketing

Bungee Connect

For professional developers, Bungee Connect enables cloud computing

by offering an application development and deployment platform

that enables highly interactive applications integrating multiple data

sources and facilitating instant deployment.

OpSource Connect

Expands on the OpSource Services Bus (OSB) by providing the

infrastructure for two-way web services interactions, allowing

customers to consume and publish applications across a common web

services infrastructure.

The Platform Architecture. OpSource Connect is made up of key

features including

● OpSource Services Bus

● OpSource Service Connectors

● OpSource Connect Certified Integrator Program

● OpSource Connect ServiceXchange

● OpSource Web Services Enablement Program

The OpSource Services Bus (OSB) is the foundation for OpSource’s

turnkey development and delivery environment for SaaS and web

companies.

SnapLogic

SnapLogic is a capable, clean, and uncluttered solution for data

integration that can be deployed in enterprise as well as in cloud

landscapes. The free community edition can be used for the most

common point-to-point data integration tasks, giving a huge

productivity boost beyond custom code.

● Changing data sources. SaaS and on-premise applications, Web

APIs, and RSS feeds

● Changing deployment options. On-premise, hosted, private and

public cloud platforms

● Changing delivery needs. Databases, files, and data services

Transformation Engine and Repository. SnapLogic is a single data

integration platform designed to meet data integration needs. The

SnapLogic server is built on a core of connectivity and transformation

components, which can be used to solve even the most complex data

integration scenarios.

The SnapLogic designer provides an initial hint of the web principles

at work behind the scenes. The SnapLogic server is based on the web

architecture and exposes all its capabilities through web interfaces to

outside world.

The Pervasive DataCloud

Platform (figure 3.6) is unique multi-tenant platform. It provides

dynamic “compute capacity in the sky” for deploying on-demand

integration and other

Scalable Computing Cluster

SaaS

Applic

ation

SaaS

Applic

ation

Managem
ent

Resources

Schedule Events

eCommerce

Users Load Balancer

&

Message Queues

Engine

Queue

Listen

er

Engine

Queue

Listen

er

Engine

Queue

Listen

er

Engine

Queue

Listen

er

Engine Queue

Listener

Customer Customer

FIGURE 3.6. Pervasive Integrator Connects Different

Resources.

data-centric applications. Pervasive DataCloud is the first multi-tenant

platform for delivering the following.

1. Integration as a Service (IaaS) for both hosted and on-premises

applications and data sources

2. Packaged turnkey integration

3. Integration that supports every integration scenario

4. Connectivity to hundreds of different applications and data

sources

Pervasive DataCloud hosts Pervasive and its partners’ data-centric

applications. Pervasive uses Pervasive DataCloud as a platform for

deploying on-demand integration via

● The Pervasive DataSynch family of packaged integrations. These

are highly affordable, subscription-based, and packaged integration

solutions.

● Pervasive Data Integrator. This runs on the Cloud or on-premises

and is a design-once and deploy anywhere solution to support

every integration scenario

● Data migration, consolidation and conversion

● ETL / Data warehouse

● B2B / EDI integration

● Application integration (EAI)

● SaaS /Cloud integration

● SOA / ESB / Web Services

● Data Quality/Governance

● Hubs

Pervasive DataCloud provides multi-tenant, multi-application and

multicustomer deployment. Pervasive DataCloud is a platform to deploy

applications that are

● Scalable—Its multi-tenant architecture can support multiple users

and applications for delivery of diverse data-centric solutions

such as data integration. The applications themselves scale to

handle fluctuating data volumes.

● Flexible—Pervasive DataCloud supports SaaS-to-SaaS, SaaS-to-on

premise or on-premise to on-premise integration.

● Easy to Access and Configure—Customers can access, configure

and run Pervasive DataCloud-based integration solutions via a

browser.

● Robust—Provides automatic delivery of updates as well as

monitoring activity by account, application or user, allowing

effortless result tracking.

● Secure—Uses the best technologies in the market coupled with the

best data centers and hosting services to ensure that the service

remains secure and available.

● Affordable—The platform enables delivery of packaged solutions

in a SaaS-friendly pay-as-you-go model.

Bluewolf

Has announced its expanded “Integration-as-a-Service” solution, the

first to offer ongoing support of integration projects guaranteeing

successful integration between diverse SaaS solutions, such as

salesforce.com, BigMachines, eAutomate, OpenAir and back office

systems (e.g. Oracle, SAP, Great Plains, SQL Service and MySQL).

Called the Integrator, the solution is the only one to include proactive

monitoring and consulting services to ensure integration success. With

remote monitoring of integration jobs via a dashboard included as part

of the Integrator solution, Bluewolf proactively alerts its customers of

any issues with integration and helps to solves them quickly.

Online MQ

Online MQ is an Internet-based queuing system. It is a complete and

secure online messaging solution for sending and receiving messages

over any network. It is a cloud messaging queuing service.

● Ease of Use. It is an easy way for programs that may each be

running on different platforms, in different systems and different

networks, to communicate with each other without having to write

any low-level communication code.

● No Maintenance. No need to install any queuing software/server

and no need to be concerned with MQ server uptime, upgrades and

maintenance.

● Load Balancing and High Availability. Load balancing can be

achieved on a busy system by arranging for more than one program

instance to service a queue. The performance and availability

features are being met through clustering. That is, if one system

fails, then the second system can take care of users’ requests

without any delay.

● Easy Integration. Online MQ can be used as a web-service (SOAP)

and as a REST service. It is fully JMS-compatible and can hence

integrate easily with any Java EE application servers. Online MQ is

not limited to any specific platform, programming language or

communication protocol.

CloudMQ

This leverages the power of Amazon Cloud to provide enterprise-grade

message queuing capabilities on demand. Messaging allows us to

reliably break up a single process into several parts which can then be

executed asynchronously.

Linxter

Linxter is a cloud messaging framework for connecting all kinds of

applications, devices, and systems. Linxter is a behind-the-scenes,

messageoriented and cloud-based middleware technology and smoothly

automates the complex tasks that developers face when creating

communication-based products and services.

Online MQ, CloudMQ and Linxter are all accomplishing message-

based application and service integration. As these suites are being

hosted in clouds, messaging is being provided as a service to hundreds

of distributed and enterprise applications using the much-maligned

multi-tenancy property. “Messaging middleware as a service (MMaaS)”

is the grand derivative of the SaaS paradigm.

SaaS INTEGRATION SERVICES

We have seen the state-of-the-art cloud-based data integration

platforms for real-time data sharing among enterprise information

systems and cloud applications.

There are fresh endeavours in order to achieve service composition in

cloud ecosystem. Existing frameworks such as service component

architecture (SCA) are being revitalised for making it fit for cloud

environments. Composite applications, services, data, views and

processes will be become cloud-centric and hosted in order to support

spatially separated and heterogeneous systems.

Informatica On-Demand

Informatica offers a set of innovative on-demand data integration

solutions called Informatica On-Demand Services. This is a cluster of

easy-to-use SaaS offerings, which facilitate integrating data in SaaS

applications, seamlessly and securely across the Internet with data in

on-premise applications. There are a few key benefits to leveraging this

maturing technology.

● Rapid development and deployment with zero maintenance of the

integration technology.

● Automatically upgraded and continuously enhanced by vendor.

● Proven SaaS integration solutions, such as integration with

Salesforce

.com, meaning that the connections and the metadata

understanding are provided.

● Proven data transfer and translation technology, meaning that

core integration services such as connectivity and semantic

mediation are built into the technology.

Informatica On-Demand has taken the unique approach of moving

its industry leading PowerCenter Data Integration Platform to the

hosted model and then configuring it to be a true multi-tenant

solution.

Microsoft Internet Service Bus (ISB)

Azure is an upcoming cloud operating system from Microsoft. This

makes development, depositing and delivering Web and Windows

application on cloud centers easier and cost-effective.

Microsoft .NET Services. is a set of Microsoft-built and hosted cloud

infrastructure services for building Internet-enabled applications and the

ISB acts as the cloud middleware providing diverse applications with a

common infrastructure to name, discover, expose, secure and

orchestrate web services. The following are the three broad areas.

.NET Service Bus. The .NET Service Bus (figure 3.7) provides a hosted,

secure, and broadly accessible infrastructure for pervasive

communication,

Console Application Exposing Web Services

via Service Bus

FIGURE 3.7. .NET Service Bus.

End Users End Users

Google App Engine
Application

Azure Service Platform
.Net Services Service Bus

 Windows Azure
Applications

large-scale event distribution, naming, and service publishing. Services

can be exposed through the Service Bus Relay, providing connectivity

options for service endpoints that would otherwise be difficult or

impossible to reach.

.NET Access Control Service. The .NET Access Control Service is a

hosted, secure, standards-based infrastructure for multiparty, federated

authentication, rules-driven, and claims-based authorization.

.NET Workflow Service. The .NET Workflow Service provide a hosted

environment for service orchestration based on the familiar Windows

Workflow Foundation (WWF) development experience.

The most important part of the Azure is actually the service bus

represented as a WCF architecture. The key capabilities of the Service

Bus are

● A federated namespace model that provides a shared, hierarchical

namespace into which services can be mapped.

● A service registry service that provides an opt-in model for

publishing service endpoints into a lightweight, hierarchical, and

RSS-based discovery mechanism.

● A lightweight and scalable publish/subscribe event bus.

● A relay and connectivity service with advanced NAT traversal and

pullmode message delivery capabilities acting as a “perimeter

network (also known as DMZ, demilitarized zone, and screened

subnet) in the sky”

Relay Services. Often when we connect a service, it is located behind

the firewall and behind the load balancer. Its address is dynamic

and can be

Relay Service

Client Service

FIGURE 3.8. The .NET Relay Service.

resolved only on local network. When we are having the service call-

backs to the client, the connectivity challenges lead to scalability,

availability and security issues. The solution to Internet connectivity

challenges is instead of connecting client directly to the service we can

use a relay service as pictorially represented in the relay service figure

3.8.

BUSINESSES-TO-BUSINESS INTEGRATION (B2Bi) SERVICES

B2Bi has been a mainstream activity for connecting geographically

distributed businesses for purposeful and beneficial cooperation.

Products vendors have come out with competent B2B hubs and suites

for enabling smooth data sharing in standards-compliant manner among

the participating enterprises.

Just as these abilities ensure smooth communication between

manufacturers and their external suppliers or customers, they also

enable reliable interchange between hosted and installed applications.

The IaaS model also leverages the adapter libraries developed by

B2Bi vendors to provide rapid integration with various business

systems.

Cloudbased Enterprise Mashup Integration Services for B2B Scenarios

. There is a vast need for infrequent, situational and ad-hoc B2B

applications desired by the mass of business end-users..

Especially in the area of applications to support B2B collaborations,

current offerings are characterized by a high richness but low reach,

like B2B hubs that focus on many features enabling electronic

collaboration, but lack availability for especially small organizations

or even individuals.

Enterprise Mashups, a kind of new-generation Web-based

applications, seem to adequately fulfill the individual and

heterogeneous requirements of end-users and foster End User

Development (EUD).

Another challenge in B2B integration is the ownership of and

responsibility for processes. In many inter-organizational settings,

business processes are only sparsely structured and formalized, rather

loosely coupled and/or based on ad-hoc cooperation. Inter-

organizational collaborations tend to involve more and more

participants and the growing number of participants also draws a huge

amount of differing requirements.

Now, in supporting supplier and partner co-innovation and customer

cocreation, the focus is shifting to collaboration which has to embrace

the participants, who are influenced yet restricted by multiple domains

of control and disparate processes and practices.

Both Electronic data interchange translators (EDI) and Managed file

transfer (MFT) have a longer history, while B2B gateways only have

emerged during the last decade.

Enterprise Mashup Platforms and Tools.

Mashups are the adept combination of different and distributed

resources including content, data or application functionality. Resources

represent the core building blocks for mashups. Resources can be

accessed through APIs, which encapsulate the resources and describe

the interface through which they are made available. Widgets or gadgets

primarily put a face on the underlying resources by providing a

graphical representation for them and piping the data received from the

resources. Piping can include operators like aggregation, merging or

filtering. Mashup platform is a Web based tool that allows the creation

of Mashups by piping resources into Gadgets and wiring Gadgets

together.

The Mashup integration services are being implemented as a

prototype in the FAST project. The layers of the prototype are

illustrated in figure 3.9 illustrating the architecture, which describes

how these services work together. The authors of this framework have

given an outlook on the technical realization of the services using cloud

infrastructures and services.

COMPANY A COMPANY B

FIGURE 3.9. Cloudbased Enterprise Mashup Integration Platform

Architecture.

To simplify this, a Gadget could be provided for the end-user. The

routing engine is also connected to a message queue via an API. Thus,

different message queue engines are attachable. The message queue is

responsible for storing and forwarding the messages controlled by the

routing engine. Beneath the message queue, a persistent storage, also

connected via an API to allow exchangeability, is available to store

large data. The error handling and monitoring service allows tracking

the message-flow to detect errors and to collect statistical data. The

HTTP

Browser

HTTP

Browser

HTTP

Browser

HTTP

Browser

HTTP

Browser

HTTP

Browser

Enterprise Mashup Platform

(i.e. FAST)

Enterprise Mashup Platform

(i.e. SAP Research Rooftop)

R

REST

Integration Service Logic

Identity

Management

Routing Engine

Error Handling

and Monitoring
Persistent

Storage
Organization

Cloud Based

Services

R R R R R R

R

REST

Mashup
Integration

Services

Platform

(i.e., Google

App. Engine)

R

Translation

Engine
Semantic

R R

Message

Queue
Infrastructure

R R

O
p

en
ID

/O
au

th

M
u

le

o
n

D
em

an
d

M
u

le

o
n

D
em

an
d

A
m

az
o

n
 S

3

A
m

az
o

n
 S

Q
S

Mashup integration service is hosted as a cloud-based service. Also,

there are cloud-based services available which provide the functionality

required by the integration service. In this way, the Mashup integration

service can reuse and leverage the existing cloud services to speed up

the implementation.

Message Queue. The message queue could be realized by using

Amazon’s Simple Queue Service (SQS). SQS is a web-service which

provides a queue for messages and stores them until they can be

processed. The Mashup integration services, especially the routing

engine, can put messages into the queue and recall them when they are

needed.

Persistent Storage. Amazon Simple Storage Service5 (S3) is also a

webservice. The routing engine can use this service to store large files.

Translation Engine. This is primarily focused on translating between

different protocols which the Mashup platforms it connects can

understand, e.g. REST or SOAP web services. However, if the need of

translation of the objects transferred arises, this could be attached to the

translation engine.

Interaction between the Services. The diagram describes the process of

a message being delivered and handled by the Mashup Integration

Services Platform. The precondition for this process is that a user

already established a route to a recipient.

A FRAMEWORK OF SENSOR—CLOUD INTEGRATION

In the past few years, wireless sensor networks (WSNs) have been

gaining significant attention because of their potentials of enabling of

novel and attractive solutions in areas such as industrial automation,

environmental monitoring, transportation business, health-care etc.

With the faster adoption of micro and nano technologies, everyday

things are destined to become digitally empowered and smart in their

operations and offerings. Thus the goal is to link smart materials,

appliances, devices, federated messaging middleware, enterprise

information systems and packages, ubiquitous services, handhelds, and

sensors with one another smartly to build and sustain cool, charismatic

and catalytic situation-aware applications.

Traditional HPC approach like Sensor-Grid model can be used in this

case, but setting up the infrastructure to deploy it so that it can scale out

quickly is not easy in this environment. However, the cloud paradigm is

an excellent move.

Here, the researchers need to register their interests to get various

patients’ state (blood pressure, temperature, pulse rate etc.) from bio-

sensors for largescale parallel analysis and to share this information

with each other to find useful solution for the problem. So the sensor

data needs to be aggregated, processed and disseminated based on

subscriptions.

To integrate sensor networks to cloud, the authors have proposed a

contentbased pub-sub model. In this framework, like MQTT-S, all of

the system complexities reside on the broker’s side but it differs from

MQTT-S in that it uses content-based pubsub broker rather than topic-

based which is suitable for the application scenarios considered.

To deliver published sensor data or events to subscribers, an efficient

and scalable event matching algorithm is required by the pub-sub

broker.

Moreover, several SaaS applications may have an interest in the same

sensor data but for different purposes. In this case, the SA nodes would

need to manage and maintain communication means with multiple

applications in parallel. This might exceed the limited capabilities of the

simple and low-cost SA devices. So pub-sub broker is needed and it is

located in the cloud side because of its higher performance in terms of

bandwidth and capabilities. It has four components describes as

follows:

Avirtualcommunity consistingofteam of researchers havecome togetherto

solve a complex problem and they need data storage, compute capability,

security; and they need it all provided now. For example, this team is

working on an outbreak of a new virus strain moving through a population.

This requires more than a Wiki or other social organization tool. They

deploy bio-sensors on patient body to monitor patient condition

continuously and to use this data for large and multi-scale simulations to

track the spread of infection as well as the virus mutation and possible cures.

This may require computational resources and a platform for sharing data

and results that are not immediately available to the team.

FIGURE 3.10. The Framework Architecture of Sensor—Cloud

Integration.

Stream monitoring and processing component (SMPC). The sensor

stream comes in many different forms. In some cases, it is raw data that

must be captured, filtered and analyzed on the fly and in other cases, it is

stored or cached. The style of computation required depends on the

nature of the streams. So the SMPC component running on the

cloud monitors the event streams and invokes correct analysis method.

Depending on the data rates and the amount of processing that is

required, SMP manages parallel execution framework on cloud.

Registry component (RC). Different SaaS applications register to pub-sub

broker for various sensor data required by the community user.

Analyzer component (AC). When sensor data or events come to the pub-

sub broker, analyzer component determines which applications they are

belongs to and whether they need periodic or emergency deliver.

Disseminator component (DC). For each SaaS application, it disseminates

sensor data or events to subscribed users using the event matching

algorithm. It can utilize cloud’s parallel execution framework for fast event

delivery. The pub-sub components workflow in the framework is as

Application Specific

Services

(SaaS)

Servers

Mediator
Service

Registry

WSN 1
1 1 1 1

Gateway

3

2

System

Manager 3
Provisioning

Manager

3

Actuator Gateway
2

3

Monitoring

and Metering

4

Sensor
4

Pub/Sub Broker

4

Registry
WSN 2

Event
Gateway

3

Monitoring Analyzer
and

Processing Dissem-
inator

Sensor

Policy

Repository

Actuator Gateway
Sensor

WSN 2

Collaborator
Agent

Cloud Provider (CLP)

Social Network

of doctors for

monitoring

patient

healthcare for

virusinfection

Environmental

data analysis

and

sharingportal

Urban Trafic

prediction

and

analysisnetwork

Other data

analysis or

socialnetwork

follows:

Users register their information and subscriptions to various SaaS

applications which then transfer all this information to pub/sub broker

registry. When sensor data reaches to the system from gateways,

event/stream monitoring and processing component (SMPC) in the pub/sub

broker determines whether it needs processing or just store for periodic

send or for immediate delivery.

Mediator. The (resource) mediator is a policy-driven entity within a VO to

ensure that the participating entities are able to adapt to changing

circumstances and are able to achieve their objectives in a dynamic and

uncertain environment.

Policy Repository (PR). The PR virtualizes all of the policies within the

VO. It includes the mediator policies, VO creation policies along with any

policies for resources delegated to the VO as a result of a collaborating

arrangement.

Collaborating Agent (CA). The CA is a policy-driven resource discovery

module for VO creation and is used as a conduit by the mediator to

exchange policy and resource information with other CLPs.

SaaS INTEGRATION APPLIANCES

Appliances are a good fit for high-performance requirements. Clouds too

have gone in the same path and today there are cloud appliances (also

termed as “cloud in a box”). In this section, we are to see an

integration appliance.

Cast Iron Systems . This is quite different from the above-mentioned

schemes. Appliances with relevant software etched inside are being

established as a high-performance and hardware-centric solution for several

IT needs.

Cast Iron Systems (www.ibm.com) provides pre-configured solutions for

each of today’s leading enterprise and On-Demand applications. These

solutions, built using the Cast Iron product offerings offer out-of-the-box

connectivity to specific applications, and template integration processes

(TIPs) for the most common integration scenarios.

 THE ENTERPRISE CLOUD COMPUTING

PARADIGM

Cloud computing is still in its early stages and constantly undergoing

changes as new vendors, offers, services appear in the cloud market.

Enterprises will place stringent requirements on cloud providers to pave

the way for more widespread adoption of cloud computing, leading

to what is known as the enterprise cloud paradigm computing.

Enterprise cloud computing is the alignment of a cloud computing

model with an organization’s business objectives (profit, return on

investment, reduction of operations costs) and processes. This chapter

explores this paradigm with respect to its motivations, objectives,

strategies and methods.

Section 4.2 describes a selection of deployment models and strategies

for enterprise cloud computing, while Section 4.3 discusses the issues of

moving [traditional] enterprise applications to the cloud. Section 4.4

describes the technical and market evolution for enterprise cloud

computing, describing some potential opportunities for multiple

stakeholders in the provision of enterprise cloud computing.

BACKGROUND

According to NIST [1], cloud computing is composed of five essential

characteristics: on-demand self-service, broad network access, resource

pooling, rapid elasticity, and measured service. The ways in which these

characteristics are manifested in an enterprise context vary according to the

deployment model employed.

Relevant Deployment Models for Enterprise Cloud Computing

There are some general cloud deployment models that are accepted by the

majority of cloud stakeholders today, as suggested by the references [1] and

and discussed in the following:

● Public clouds are provided by a designated service provider for general

public under a utility based pay-per-use consumption model.

● Private clouds are built, operated, and managed by an organization for its

internal use only to support its business operations exclusively.

● Virtual private clouds are a derivative of the private cloud deployment

model but are further characterized by an isolated and secure segment

of resources, created as an overlay on top of public cloud infrastructure

using advanced network virtualization capabilities..

● Community clouds are shared by several organizations and support a

specific community that has shared concerns (e.g., mission, security

requirements, policy, and compliance considerations).

● Managed clouds arise when the physical infrastructure is owned by and/or

physically located in the organization’s data centers with an extension of

management and security control plane controlled by the managed service

provider .

● Hybrid clouds are a composition of two or more clouds (private,

community, or public) that remain unique entities but are bound

together by standardized or proprietary technology that enables data

and application portability (e.g., cloud bursting for load-balancing

between clouds).

Adoption and Consumption Strategies

The selection of strategies for enterprise cloud computing is critical for IT

capability as well as for the earnings and costs the organization experiences,

motivating efforts toward convergence of business strategies and IT. Some

critical questions toward this convergence in the enterprise cloud paradigm are

asfollows:

● Will an enterprise cloud strategy increase overall business value?

● Are the effort and risks associated with transitioning to an enterprise

cloud strategy worth it?

● Which areas of business and IT capability should be considered for the

enterprise cloud?

● Which cloud offerings are relevant for the purposes of an organization?

● How can the process of transitioning to an enterprise cloud strategy be

piloted and systematically executed?

These questions are addressed from two strategic perspectives: (1) adoption

and (2) consumption. Figure 4.1 illustrates a framework for enterprise cloud

adoption strategies, where an organization makes a decision to adopt a

cloud computing model based on fundamental drivers for cloud computing—

scalability, availability, cost and convenience. The notion of a Cloud Data

Center (CDC) is used, where the CDC could be an external, internal or

federated provider of infrastructure, platform or software services.

An optimal adoption decision cannot be established for all cases because the

types of resources (infrastructure, storage, software) obtained from a CDC

depend on the size of the organisation understanding of IT impact on business,

predictability of workloads, flexibility of existing IT landscape and available

budget/resources for testing and piloting. The strategic decisions using these

four basic drivers are described in following, stating objectives, conditions and

actions.

Cloud Data Center(s)

(CDC)

Scalability-driven: Use of cloud

resources to support additional

load or as back-up.

Availability-driven:

Use of load-balanced

and localised cloud

resources to increase

availability and

reduce response time

Market-driven:

Users and

providers of

cloud resources

make decisions

based on the

potential saving

and profit

Conveniencedriv

en: Use cloud

resources so that

there is no need to

maintain local

resources.

FIGURE 4.1. Enterprise cloud adoption strategies using fundamental cloud drivers.

1. Scalability-Driven Strategy. The objective is to support increasing

workloads of the organization without investment and expenses

exceeding returns.

2. Availability-Driven Strategy. Availability has close relations to scalability

but is more concerned with the assurance that IT capabilities and functions

are accessible, usable and acceptable by the standards of users.

3. Market-Driven Strategy. This strategy is more attractive and viable for

small, agile organizations that do not have (or wish to have) massive

investments in their IT infrastructure.

(1) Software Provision: Cloud provides instances

of software but data is maintained within user’s

data center

(2) Storage Provision: Cloud provides data

management and software accesses data

remotely from user’s data center

(3) Solution Provision: Software and storage

are maintained in cloud and the user does not

maintain a data center

(4) Redundancy Services: Cloud is used as an

alternative or extension of user’s data center

for software and storage

FIGURE 4.2. Enterprise cloud consumption strategies.

on their profiles and requests service requirements .

4. Convenience-Driven Strategy. The objective is to reduce the load and

need for dedicated system administrators and to make access to IT

capabilities by users easier, regardless of their location and connectivity

(e.g. over the Internet).

There are four consumptions strategies identified, where the differences in

objectives, conditions and actions reflect the decision of an organization to

trade-off hosting costs, controllability and resource elasticity of IT resources

for software and data. These are discussed in the following.

1. Software Provision. This strategy is relevant when the elasticity

requirement is high for software and low for data, the controllability

concerns are low for software and high for data, and the cost reduction

concerns for software are high, while cost reduction is not a priority for

data, given the high controllability concerns for data, that is, data are

highly sensitive.

2. Storage Provision. This strategy is relevant when the elasticity

requirements is high for data and low for software, while the

controllability of software is more critical than for data. This can be the

case for data intensive applications, where the results from processing in

the application are more critical and sensitive than the data itself.

3. Solution Provision. This strategy is relevant when the elasticity and cost

reduction requirements are high for software and data, but the

controllability requirements can be entrusted to the CDC.

4. Redundancy Services. This strategy can be considered as a hybrid

enterprise cloud strategy, where the organization switches between

traditional, software, storage or solution management based on changes

in its operational conditions and business demands.

Even though an organization may find a strategy that appears to provide it

significant benefits, this does not mean that immediate adoption of the strategy

is advised or that the returns on investment will be observed immediately.

ISSUES FOR ENTERPRISE APPLICATIONS ON THE CLOUD

Enterprise Resource Planning (ERP) is the most comprehensive definition of

enterprise application today. For these reasons, ERP solutions have emerged as

the core of successful information management and the enterprise

backbone of nearly any organization . Organizations that have successfully

implemented the ERP systems are reaping the benefits of having integrating

working environment, standardized process and operational benefits to the

organization .

One of the first issues is that of infrastructure availability. Al-Mashari and

Yasser argued that adequate IT infrastructure, hardware and networking are

crucial for an ERP system’s success.

One of the ongoing discussions concerning future scenarios considers varying

infrastructure requirements and constraints given different workloads and

development phases. Recent surveys among companies in North America

and Europe with enterprise-wide IT systems showed that nearly all kinds of

workloads are seen to be suitable to be transferred to IaaS offerings.

Considering Transactional and Analytical Capabilities

Transactional type of applications or so-called OLTP (On-line Transaction

Processing) applications, refer to a class of systems that manage

transactionoriented applications, typically using relational databases. These

applications rely on strong ACID (atomicity, consistency, isolation,

durability) properties and are relatively write/update-intensive. Typical OLTP-

type ERP components are sales and distributions (SD), banking and financials,

customer relationship management (CRM) and supply chain management

(SCM).

One can conclude that analytical applications will benefit more than their

transactional counterparts from the opportunities created by cloud computing,

especially on compute elasticity and efficiency.

 TRANSITION CHALLENGES

The very concept of cloud represents a leap from traditional approach for IT to

deliver mission critical services. With any leap comes the gap of risk and

challenges to overcome. These challenges can be classified in five different

categories, which are the five aspects of the enterprise cloud stages: build,

develop, migrate, run, and consume (Figure 4.3).

The requirement for a company-wide cloud approach should then become

the number one priority of the CIO, especially when it comes to having a

coherent and cost effective development and migration of services on this

architecture.

Develop

Build Run Consume

Migrate

FIGURE 4.3. Five stages of the cloud.

A second challenge is migration of existing or “legacy” applications to “the

cloud.” The expected average lifetime of ERP product is B15 years, which

means that companies will need to face this aspect sooner than later as they try

to evolve toward the new IT paradigm.

The ownership of enterprise data conjugated with the integration with others

applications integration in and from outside the cloud is one of the key

challenges. Future enterprise application development frameworks will need to

enable the separation of data management from ownership. From this, it can

be extrapolated that SOA, as a style, underlies the architecture and, moreover,

the operation of the enterprise cloud.

One of these has been notoriously hard to upgrade: the human factor;

bringing staff up to speed on the requirements of cloud computing with respect

to architecture, implementation, and operation has always been a tedious task.

Once the IT organization has either been upgraded to provide cloud or is

able to tap into cloud resource, they face the difficulty of maintaining the

services in the cloud. The first one will be to maintain interoperability between

in-house infrastructure and service and the CDC (Cloud Data Center).

Before leveraging such features, much more basic functionalities are

problematic: monitoring, troubleshooting, and comprehensive capacity

planning are actually missing in most offers. Without such features it becomes

very hard to gain visibility into the return on investment and the consumption

of cloud services.

Today there are two major cloud pricing models: Allocation based and

Usage based . The first one is provided by the poster child of cloud computing,

namely, Amazon. The principle relies on allocation of resource for a fixed

amount of time. As companies need to evaluate the offers they need to also

include the hidden costs such as lost IP, risk, migration, delays and provider

overheads. This combination can be compared to trying to choose a new mobile

with carrier plan.The market dynamics will hence evolve alongside the

technology for the enterprise cloud computing paradigm.

ENTERPRISE CLOUD TECHNOLOGY AND MARKET EVOLUTION

This section discusses the potential factors which will influence this evolution of

cloud computing and today’s enterprise landscapes to the enterprise computing

paradigm, featuring the convergence of business and IT and an open, service

oriented marketplace.

Technology Drivers for Enterprise Cloud Computing Evolution

This will put pressure on cloud providers to build their offering on open

interoperable standards to be considered as a candidate by enterprises. There

have been a number initiatives emerging in this space. Amazon, Google, and

Microsoft, who currently do not actively participate in these efforts. True

interoperabilityacross

the board in the near future seems unlikely. However, if achieved, it could lead

to facilitation of advanced scenarios and thus drive the mainstream adoption of

the enterprise cloud computing paradigm.

Part of preserving investments is maintaining the assurance that cloud

resources and services powering the business operations perform according

to the business requirements. Underperforming resources or service disruptions

lead to business and financial loss, reduced business credibility, reputation,

and marginalized user productivity. Another important factor in this regard is

lack of insights into the performance and health of the resources and service

deployed on the cloud, such that this is another area of technology evolution

that will be pushed.

This would prove to be a critical capability empowering third-party

organizations to act as independent auditors especially with respect to SLA

compliance auditing and for mediating the SLA penalty related issues.

Emerging trend in the cloud application space is the divergence from the

traditional RDBMS based data store backend. Cloud computing has given rise

to alternative data storage technologies (Amazon Dynamo, Facebook

Cassandra, Google BigTable, etc.) based on key-type storage models as

compared to the relational model, which has been the mainstream choice for

data storage for enterprise applications.

As these technologies evolve into maturity, the PaaS market will consolidate

into a smaller number of service providers. Moreover, big traditional software

vendors will also join this market which will potentially trigger this

consolidation through acquisitions and mergers. These views are along the

lines of the research published by Gartner. Gartner predicts that from 2011 to

2015 market competition and maturing developer practises will drive

consolidation around a small group of industry-dominant cloud technology

providers.

A recent report published by Gartner presents an interesting perspective on

cloud evolution. The report argues that as cloud services proliferate, services

would become complex to be handled directly by the consumers. To cope

with these scenarios, meta-services or cloud brokerage services will emerge.

These brokerages will use several types of brokers and platforms to enhance

service delivery and, ultimately service value. According to Gartner, before

these scenarios can be enabled, there is a need for brokerage business to use

these brokers and platforms. According to Gartner, the following types of cloud

service brokerages (CSB) are foreseen:

● Cloud Service Intermediation. An intermediation broker providers a

service that directly enhances a given service delivered one or more service

consumers, essentially on top of a given service to enhance a specific

capability.

● Aggregation. An aggregation brokerage service combines multiple

services into one or more new services.

● Cloud Service Arbitrage. These services will provide flexibility and

opportunistic choices for the service aggregator.

The above shows that there is potential for various large, medium, and

small organizations to become players in the enterprise cloud marketplace.

The dynamics of such a marketplace are still to be explored as the enabling

technologies and standards continue to mature.

BUSINESS DRIVERS TOWARD A MARKETPLACE FOR

ENTERPRISE CLOUD COMPUTING

In order to create an overview of offerings and consuming players on the

market, it is important to understand the forces on the market and motivations

of each player.

The Porter model consists of five influencing factors/views (forces) on the

market (Figure 4.4). The intensity of rivalry on the market is traditionally

influenced by industry-specific characteristics :

● Rivalry: The amount of companies dealing with cloud and virtualization

technology is quite high at the moment; this might be a sign for high

FIGURE 4.4. Porter’s five forces market model (adjusted for the cloud market) .

New Market Entrants

• Geographical factors

• Entrant strategy

• Routes to market

Suppliers

• Level of quality

• Supplier’s size

• Bidding processes/

capabilities

Buyers (Consumers)

• Buyer size

• Buyers number

• Product/service

• Requirements

Technology Development

• Substitutes

• Trends

• Legislative effects

Cloud Market

• Cost structure

• Product/service ranges

• Differentiation, strategy

• Number/size of players

BUSINESS DRIVERS TOWARD A MARKETPLACE FOR ENTERPRISE 113

rivalry. But also the products and offers are quite various, so many niche

products tend to become established.

● Obviously, the cloud-virtualization market is presently booming and will

keep growing during the next years. Therefore the fight for customers and

struggle for market share will begin once the market becomes saturated

and companies start offering comparable products.

● The initial costs for huge data centers are enormous. By building up

federations of computing and storing utilities, smaller companies can try

to make use of this scale effect as well.

● Low switching costs or high exit barriers influence rivalry. When a

customer can freely switch from one product to another, there is a greater

struggle to capture customers. From the opposite point of view high exit

barriers discourage customers to buy into a new technology. The trends

towards standardization of formats and architectures try to face this

problem and tackle it. Most current cloud providers are only paying

attention to standards related to the interaction with the end user.

However, standards for clouds interoperability are still to be developed .

FIGURE 4.5. Dynamic business models (based on [49] extend by

influence factors identified by[50]).

Market

Regulations Business Model Hype
Cycle Phase

Market

Technology

.

THE CLOUD SUPPLY CHAIN

One indicator of what such a business model would look like is in the complexity

of deploying, securing, interconnecting and maintaining enterprise landscapes

and solutions such as ERP, as discussed in Section 4.3. The concept of a Cloud

Supply Chain (C-SC) and hence Cloud Supply Chain Management (C-SCM)

appear to be viable future business models for the enterprise cloud computing

paradigm. The idea of C-SCM represents the management of a network of

interconnected businesses involved in the end-to-end provision of product and

service packages required by customers. The established understanding of a

supply chain is two or more parties linked by a flow of goods, information,

and funds [55], [56] A specific definition for a C-SC is hence: “two or more

parties linked by the provision of cloud services, related information

and funds.” Figure 4.6 represents a concept for the C-SC, showing the flow

of products along different organizations such as hardware suppliers, software

component suppliers, data center operators, distributors and the end customer.

Figure 4.6 also makes a distinction between innovative and functional

products in the C-SC. Fisher classifies products primarily on the basis of their

demand patterns into two categories: primarily functional or primarily

innovative [57]. Due to their stability, functional products favor competition,

which leads to low profit margins and, as a consequence of their properties, to

low inventory costs, low product variety, low stockout costs, and low

obsolescence [58], [57]. Innovative products are characterized by additional

(other) reasons for a customer in addition to basic needs that lead to purchase,

unpredictable demand (that is high uncertainties, difficult to forecast and

variable demand), and short product life cycles (typically 3 months to 1

year). Cloud services

Cloud services, information, funds

Fuctional

Data center

operator Distributor

Product Cloud supply chain
End

customer

Innovative
Hardware

supplier

Component

supplier

Potential Closed Loop Cooperation

FIGURE 4.6. Cloud supply chain (C-SC).

should fulfill basic needs of customers and favor competition due to their

reproducibility. Table 4.1 presents a comparison of Traditional

TABLE 4.1. Comparison of Traditional and Emerging ICT Supply Chainsa

Emerging ICT

Traditional Supply Chain Concepts Concepts

Efficient SC Responsive SC Cloud SC

Primary goal Supply demand at

Product design

strategy

the lowest level of

cost

Maximize

performance at the

minimum product

cost

Respond quickly
to demand

(changes)

Create modularity

to allow

postponement

of product

differentiation

Supply demand at the
lowest level of costs

and respond quickly

to demand

Create modularity to

allow individual

setting while

maximizing the

performance of

services

Pricing strategy Lower margins

because price is a

prime customer

driver

Higher margins,

because price is

not a prime

customer driver

Lower margins, as

high competition and

comparable products

Manufacturing

strategy

Inventory

strategy

Lead time

strategy

Supplier

strategy

Transportation

strategy

Lower costs

through high

utilization

Minimize

inventory to

lower cost

Reduce but not

at the expense of

costs

Select based on

cost and quality

Greater reliance

on low cost modes

Maintain capacity

flexibility to meet

unexpected

demand

Maintain buffer

inventory to meet

unexpected

demand

Aggressively

reduce even if the

costs are

significant

Select based on

speed, flexibility,

and quantity

Greater reliance

on responsive

modes

High utilization while

flexible reaction on

demand

Optimize of buffer for

unpredicted demand,

and best utilization

Strong service-level

agreements (SLA) for

ad hoc provision

Select on complex

optimum of speed,

cost, and flexibility

Implement highly

responsive and low

cost modes

a Based on references 54 and 57.

Supply Chain concepts such as the efficient SC and responsive SC and a new

concept for emerging ICT as the cloud computing area with cloud services as

traded products.

UNIT – 4
MONITORING, MANAGEMENT AND

APPLICATIONS

AN ARCHITECTURE FOR FEDERATED CLOUD COMPUTING

Utility computing, a concept envisioned back in the 1960s, is finally becoming

a reality. Just as we can power a variety of devices, ranging from a simple

light bulb to complex machinery, by plugging them into the wall, today we

can satisfy, by connecting to the Internet, many of our computing needs,

ranging from full pledge productivity applications to raw compute power in

the form of virtual machines. Cloud computing, in all its different forms, is

rapidly gaining momentum as an alternative to traditional IT, and the

reasons for this are clear: In principle, it allows individuals and companies to

fulfill all their IT needs with minimal investment and controlled expenses

(both capital and operational).

While cloud computing holds a lot of promise for enterprise computing

there are a number of inherent deficiencies in current offerings such as:

● Inherently Limited Scalability of Single-Provider Clouds. Although most

infrastructure cloud providers today claim infinite scalability, in reality it

is reasonable to assume that even the largest players may start facing

scalability problems as cloud computing usage rate increases.

● Lack of Interoperability Among Cloud Providers. Contemporary cloud

technologies have not been designed with interoperability in mind. This

results in an inability to scale through business partnerships across clouds

providers.

● No Built-In Business Service Management Support. Business Service

Management (BSM) is a management strategy that allows businesses to

align their IT management with their high-level business goals.

To address these issues, we present in this chapter a model for business-driven

federation of cloud computing providers, where each provider can buy and sell,

on-demand, capacity from other providers (see Figure 4.1.1).

In this chapter we analyze the requirements for an enterprise-grade cloud

computing offering and identify the main functional components that should

be part of such offering. In addition, we develop from the requirement the basic

principles that we believe are the cornerstone of future cloud computing

offerings. The remainder of this chapter is organized as follows: In Section

 we will present use cases and requirements, and in Section 4.1.3 we

expand on the principles of cloud computing derived from these requirements.

In Section 4.1.4 we will present a model for federated cloud computing

infrastructure and provide definitions of the concepts used and in Section 4.1.5

we describe the seurity considerations for such system. We conclude with a

summary in Section 4.1.6.

A TYPICAL USE CASE

As a representative of an enterprise-grade application, we have chosen to

analyze SAPt systems and to derive from them general requirements that such

application might have from a cloud computing provider.

FIGURE 4.1.1. Model for federated cloud computing: (a) Different cloud providers

collaborate by sharing their resources while keeping thick walls in between them; that is,

each is an independent autonomous entity. (b) Applications running in this cloud of

clouds should be unaware of location; that is, virtual local networks are needed for the

inter-application components to communicate. (c) Cloud providers differentiate from

each in terms of cost and trust level; for example, while a public cloud maybe cheap,

companies will be reluctant to put in there sensitive services.

SAP Systems

SAP systems are used for a variety of business applications that differ by

version and functionality [such as customer relationship management (CRM)

and enterprise resource planning (ERP)].

An SAP system is a typical three-tier system (see Figure 4.1.2) as follows:

● Requests are handled by the SAP Web dispatcher.

● In the middle tier, there are two types of components: multiple stateful

(a)

(b)
A Public Cloud

(c)

M
y
 P

riv
ate C

lo
u
d

dialog instances (DIs) and a single central instance (CI) that performs

central services.

● A single database management system (DBMS) serves the SAP system.

Storage

FIGURE 4.1.2. Abstraction of an SAP system.

The components can be arranged in a variety of configurations, from a minimal

configuration where all components run on a single machine, to larger ones

where there are several DIs, each running on a separate machine, and a

separate machine with the CI and the DBMS (see Figure 4.1.3)

The Virtualized Data Center Use Case

Consider a data center that consolidates the operation of different types of SAP

applications and all their respective environments (e.g., test, production) using

virtualization technology. The applications are offered as a service to external

customers, or, alternatively, the data center is operated by the IT department of

an enterprise for internal users (i.e., enterprise employees).

We briefly mention here a few aspects that are typical of virtualized data

centers:

(a)

DI/CI

DBMS

DI/CI

DBMS

DI/CI

DBMS

Virtual Execution Environment Host

Browser

Web Dispatcher

DI CI DI

DBMS

Presentation Layer

Application Layer

Database Layer

(b)

FIGURE 4.1.3. Sample SAP system deployments. (a) All components run in the same

virtual execution environment (represented as rounded rectangles); (b) the large

components (CI and DBMS) run each on a dedicated virtual execution environment.

The virtual execution environment host refers to the set of components managing the

virtual environments.

● The infrastructure provider must manage the life cycle of the application

for hundreds or thousands of tenants while keeping a very low total cost

of ownership (TCO).

● Setting up a new tenant in the SaaS for SMBs case is completely

automated by a Web-based wizard.

● The customers are billed a fixed monthly subscription fee or a variable fee

based on their usage of the application.
● There are several well-known approaches to multi-tenancy of the same

database schema .

In summary, the key challenges in all these use cases from the point of view

of the infrastructure provider are:

● Managing thousands of different service components that comprise a

variety of service applications executed by thousands of virtual execution

environments,.

● Consolidating many applications on the same infrastructure, thereby

increasing HW utilization and optimizing power consumption, while

keeping the operational cost at minimum.

● Guaranteeing the individual SLAs of the many customers of the data

center who face different and fluctuating workloads.

Primary Requirements

From the use case discussed in the previous section, we derived the following

main requirements from a cloud computing infrastructure:

● Automated and Fast Deployment. The cloud should support automated

provisioning of complex service applications based on a formal contract

specifying theinfrastructure SLAs.

● Dynamic Elasticity. The cloud should dynamically adjust resource

CI

DBMS

Virtual Execution Environment Host

DI DI

allocation parameters .

● Automated Continuous Optimization. The cloud should continuously

optimize alignment of infrastructure resources management with the high-

level business goals.

THE BASIC PRINCIPLES OF CLOUD COMPUTING

In this section we unravel a set of principles that enable Internet scale cloud

computing services.

Federation

All cloud computing providers, regardless of how big they are, have a finite

capacity. To grow beyond this capacity, cloud computing providers should be

able to form federations of providers such that they can collaborate and share

their resources.

Any federation of cloud computing providers should allow virtual application

to be deployed across federated sites.

Independence

Just as in other utilities, where we get service without knowing the internals

of the utility provider and with standard equipment not specific to any provider

(e.g., telephones), for cloud computing services to really fulfill the computing as

a utility vision, we need to offer cloud computing users full independence.

Isolation

Cloud computing services are, by definition, hosted by a provider that will

simultaneously host applications from many different users. For these users to

move their computing into the cloud, they need warranties from the cloud

computing provider that their stuff is completely isolated from others.

Elasticity

One of the main advantages of cloud computing is the capability to provide, or

release, resources on-demand.

The ability of users to grow their applications when facing an increase of

real-life demand need to be complemented by the ability to scale

Business Orientation

Before enterprises move their mission critical applications to the cloud, cloud

computing providers will need to develop the mechanisms to ensure quality of

service (QoS) and proper support for service-level agreements (SLAs).

Mechanisms to build and maintain trust between cloud computing consumers

V
M

I
S

M
I

and cloud computing providers, as well as between cloud computing providers

among themselves, are essential for the success of any cloud computing

offering.

A MODEL FOR FEDERATED CLOUD COMPUTING

In our model for federated cloud computing we identify two major types of

actors: Service Providers (SPs) are the entities that need computational

resources to offer some service.

To create the illusion of an infinite pool of resources, IPs shared their unused

capacity with each other to create a federation cloud. A Framework Agreement

FIGURE 4.1.4. The RESERVOIR architecture: major components and

interfaces.

We refer to the virtualized computational resources, alongside the

virtualization layer and all the management enablement

components, as the Virtual Execution enviroment Host (VEEH).

With these concepts in mind, we can proceed to define a

reference architecture for federated cloud computing. The design

and implementation of such architecure are the main goals of the

RESERVOIR European research project.The rationale behind this

particular layering is to keep a clear separation of concerns and

responsibilities and to hide low-level infrastructure details and

decisions from high-level management and service providers.

● The Service Manager is the only component within an IP

S

LA

S

A

VMI VMI

Infrastructure Provider (IP)

Service Provider (SP)

Manifest

Service Manager

VEE Manager (VEEM)

VEE Host (VEEH)

(e.g., Hypervisor)

V
M

I

that interacts with SPs. It receives Service Manifests,

negotiates pricing, and handles billing. Its two most
complex tasks are (1) deploying and provisioning VEEs
based on the Service Manifest and (2) monitoring and
enforcing SLA compliance by throttling a service
application’s capacity.

● The Virtual Execution Environment Manager (VEEM) is responsible for

the optimal placement of VEEs into VEE Hosts subject to constraints

determined by the Service Manager. The continuous optimization process is

driven by a site-specific programmable utility function.

● The Virtual Execution Environment Host (VEEH) is responsible for the

basic control and monitoring of VEEs and their resources. Moreover,

VEEHs must support transparent VEE migration to any compatible VEEH

within the federated cloud, regardless of site location or network and

storage configurations.

Features of Federation Types

Federations of clouds may be constructed in various ways, with disparate

feature sets offered by the underlying implementation architecture. This section

is devoted to present these differentiating features. Using these features as a

base, a number of federation scenarios are defined, comprised of subsets of this

feature set.

The first feature to consider is the framework agreement support:

Framework agreements, as defined in the previous section, may either be

supported by the architecture or not.

The ability to migrate machines across sites defines the federated migration

support. There are two types of migration: cold and hot (or live). In cold

migration, the VEE is suspended and experiences a certain amount of

downtime while it is being transferred.

Focusing on networks, there can be cross-site virtual network support: VEEs

belonging to a service are potentially connected to virtual networks, should this

be requested by the SP.

Information disclosure within the federation has also to be taken into account.

The sites in the federation may provide information to different degrees

.Information regarding deployed VEEs will be primarily via the monitoring

system, whereas some information may also potentially be exposed via the

VMI as response to a VEE deployment request.

Federation Scenarios

In this section, a number of federation scenarios are presented, ranging from a

baseline case to a full-featured federation. These scenarios have various

requirements on the underlying architecture, and we use the features presented

in previous section as the basis for differentiating among them.

The baseline federation scenario provides only the very basic required for

supporting opportunistic placement of VEEs at a remote site. The basic

federation scenario includes a number of features that the baseline federation

does not, such as framework agreements, cold migration, and retention of

public IP addresses. Notably missing is (a) support for hot migration and (b)

cross-site virtual network functionality.The fullfeatured federation scenario

offers the most complete set of features, including hot migration of VEEs.

Layers Enhancement for Federation

Taking into account the different types of federation, a summary of the features

needed in the different layers of the RESERVOIR architecture to achieve

federation is presented.

Service Manager. The baseline federation is the most basic federation

scenario, but even here the SM must be allowed to specify placement

restrictions when a service is deployed. Deployment restrictions are associated

to an specific VEE and passed down to the VEEM along with any other

specific VEE metadata when the VEE is issued for creation through VMI. Two

kinds of deployment restrictions are envisioned: First, there are affinity

restrictions, related to the relations between VEEs; and second, there can be

site restrictions, related to sites.

In the basic federation scenario, federation uses framework agreement (FA)

between organizations to set the terms and conditions for federation.

Framework agreements are negotiated and defined by individuals, but they are

encoded at the end in the service manager (SM)—in particular, within the

business information data base (BIDB). On the other hand, no additional

functionality is needed from the service manager to implement the full-

featured federation.

Virtual Execution Environment Manager. Very little is needed in the

baseline federation scenario of the VEEM. Regarding advance resource

reservation support, the policy engine must be capable of reserving capacity in the

physical infrastructure given a timeframe for certain VEEs. Therefore, the VEEM

needs to correctly interface with the VAN and be able to express the virtual

network characteristics in a VEEM-to-VEEM connection.

Virtual Execution Environment Host. The ability to monitor a federation is

needed. The RESERVOIR monitoring service supports the asynchronous

monitoring of a cloud data centers0 VEEHs, their VEEs, and the applications

running inside the VEEs. To support federation, the originating data center

must be able to monitor VEEs and their applications running at a remote site.

No further functionality is required for the basic federation in the VEEH

apart from the features described for the baseline scenario. On the other hand,

for the advanced federation one, several features are needed.

Regarding the full-featured federation scenario, hot migration is the

functionality that affects the most what is demanded from VEEH in this

scenario. RESERVOIR’s separation principle requires that each RESERVOIR

site be an autonomous entity. Site configuration, topology, and so on, are not

shared between sites.

SECURITY CONSIDERATIONS

As previously reported, virtualized service-oriented infrastructures provide

computing as a commodity for today’s competitive businesses. Besides

costeffectiveness, .The higher stakes and broader scope of the security

requirements of virtualization infrastructures require comprehensive security

solutions because they are critical to ensure the anticipated adoption of

virtualization solutions by their users and providers. The conception of a

comprehensive security model requires a realistic threat model. Without such a

threat model, security designers risk wasting time and effort implementing

safeguards that do not address any realistic threat.

External Threats

Some threats, related to communication, can be classified as: menin-the-middle,

TCP hijacking (spoofing), service manifest attacks (malicious manifest/SLA

format injection), migration and security policies and identity

theft/impersonation (SP or RESERVOIR site pretends to be someone else), and

so on. The main goals of these threats are to gain unauthorized access to systems

and to impersonate another entity on the network. These techniques allow

the attackers to eavesdrop as well as to change, delete, or divert data. All the

interfaces could be instead exposed to the following attacks: denial of service

(DoS or distributed DoS), flooding, buffer overflow, p2p-attacks, and so on.

Internal Threats

Each RESERVOIR site has a logical representation with three different layers,

but these layers can be compounded by one or more hardware components.

Figure 4.1.5 gives an overview of these entities and relative mapping with a

simplified view of the hardware. It is possible to split the site in two different

virtual zones: control and execution zone; in the control zone the components

are: Service Manager (SM), VEEM (in bridge configuration between control

SP SP

VM image

1 - SMI

2 - VMI SITE: Control zone
VM image

Remote Storage

Remote Storage

Router

S

Switch

Server

Service

Manager

VHI

VEE

Manager

Internet
VH

Manager

Front-End Web
HOST

Router

Switch

VM image

Local Storage

3- SI
Interface for VM image VM image

SITE: Execution zone

FIGURE 4.1.5. RESERVOIR site: internal representation.

and execution zone), network components (router, switch, cable, etc.), SMI/

VMI interfaces, and VHI internal interface.

In the execution zone instead there are: VEEH, VEEM (in-bridge

configuration between control and execution zone), VHI internal interface,

network components (router, switch, cable, etc.), network storage (NAS,

databases, etc.), and SI (user access interfaces).

The control zone can be considered a trusted area. Some threats can appear

through the SMI and VEEM interfaces, since they fall into the same cases of

external threats. The internal threats related to these phases can be classified

as follows: (1) threats linked to authentication/communication of SPs and

other RESERVOIR site;

(2) threats related to misbehavior of service resource allocation—to alter the

agreement (manifest) during the translation between service manager and

VEEM malicious component on SM; (3) data export control legislation—on

an international cloud or between two clouds; (4) threats linked to fake

command for placement of VEEs and compromising the data integrity of

the distributed file system (NFS, SAMBA, CIFS); (5) storage data

compromising (fake VEE image); (6) threats linked to compromise data

privacy; (7) threats linked to the underlying hypervisor and OS (VEE could

break hypervisor/ underlying OS security and access other VEE); and (8) data

partitioning between VEE.

To avoid any fraudulent access, the VEEH has to verify authentication/

communication of SPs and other RESERVOIR sites. Thus, the same behavior is

analyzed for all the communications in external threats.

Runtime isolation resolves all the security problems with the underlying OS.

The hypervisor security mechanisms need to be used to provide the isolation.

Network isolation is addressed via the dynamic configuration of network

policies and via virtual circuits that involve routers and switches.

To avoid fake VEE image loading and do not compromise data privacy,

storage isolation has to be performed and secure protocols has to be used.

Protocols like NFS, SAMBA, and CIFS are not secure.

Virtual execution environment, downloaded from any generic SP, can expose

the infrastructure toward back door threats, spoofing threats and malicious code

execution (virus, worm, and Trojan horse). The RESERVOIR site administrator

needs to know at any time the state of threats, with a strong monitoring of the

execution zone, through the runtime intrusion detection.

 SLA MANAGEMENT IN CLOUD COMPUTING:

A SERVICE PROVIDER’S PERSPECTIVE

In the early days of web-application deployment, performance of the applica-

tion at peak load was a single important criterion for provisioning server

resources. The capacity buildup was to cater to the estimated peak load

experienced by the application. The activity of determining the number of

servers and their capacity that could satisfactorily serve the application end-user

requests at peak loads is called capacity planning .

An example scenario where two web applications, application A and

application B, are hosted on a separate set of dedicated servers within the

enterprise-owned server rooms is shown in Figure 4.2.1.These data centers

were owned and managed by the enterprises

themselves.

FIGURE 4.2.1. Hosting of applications on servers within enterprise’s data centers.

Furthermore, over the course of time, the number of web applications and

their complexity have grown. Accordingly, enterprises realized that it was

economical to outsource the application hosting activity to third-party

infrastructure providers because:

● The enterprises need not invest in procuring expensive hardware upfront

without knowing the viability of the business.

● The hardware and application maintenance were non-core activities of

their business.

● As the number of web applications grew, the level of sophistication

required to manage the data centers increased manyfold—hence the cost

of maintaining them.

Enterprises developed the web applications and deployed on the infrastruc-

ture of the third-party service providers. These providers get the required

Enterprise Data Centre – Geographically Locked
(Managed by Enterprise IT)

Enterprise Data Centre I

Response with certain
response time => SLO

Application Service
Request

Application I

Application II

User
Application III

Enterprise Data Centre II

User

Application Service
Request

Application I

Application II

Response with certain
response time => SLO

Application III

hardware and make it available for application hosting. Typically, the QoS parameters are related to the availability of the

system CPU, data storage, and network for efficient execution of the application at peak loads. This legal agreement is

known as the service-level agreement (SLA). For example, assume that application A is required to use more quantity of a

resource than originally allocated to it for duration of time t. For that duration the amount of the same resource available to

application B is decreased. This could adversely affect the performance of application B. Similarly, one application should

not access and destroy the data

FIGURE 4.2.2. Dedicated hosting of applications in third party datacenters.

Application Service Provider(ASP)

Enterprise

User
Enterprise I
Applications

Enterprise II
Applications

User

Response with certain
response time => SLO

Enterprise III
Applications Check for Infrastructure

Availability?

Application Service

Request
Service-Level Agreement

R
es

o
u

rc
e

Time Time

Time Time

FIGURE 4.2.3. Service consumer and service provider perspective before and after the MSP’s hosting platforms are

virtualized and cloud-enabled. (a) Service consumer perspective earlier. (b) Service consumer perspective now. (c)

Service provider perspec- tive earlier. (d) Service provider perspective now.

and other information of co-located applications. Hence, appropriate measures are needed to guarantee

security and performance isolation. These challenges prevented ASPs from fully realizing the benefits of

co-hosting.

Adoption of virtualization technologies required ASPs to get more detailed insight into the application runtime

characteristics with high accuracy. Based on these characteristics, ASPs can allocate system resources more

efficiently to these applications on-demand, so that application-level metrics can be mon- itored and met

(c)
Capacity

Resource usage (App-A)

(a)
Capacity

Resource usage (App-A)

(b)

Capacity

Resource usage (App-A)

(d)
Capacity

Resource usage (App-B)

Resource usage (App-A)

R
es

o
u

rc
e

R
es

o
u

rc
e

R
es

o
u

rc
e

effectively.

TRADITIONAL APPROACHES TO SLO MANAGEMENT

Traditionally, load balancing techniques and admission control mechanisms have been used to provide guaranteed

quality of service (QoS) for hosted web applications.

Load Balancing

The objective of a load balancing is to distribute the incoming requests onto a set of physical machines, each

hosting a replica of an application.

FIGURE 4.2.4. Shared hosting of applications on virtualized servers within ASP’s data centers.

Application Service
Request

Application Service Provider(ASP)

Enterprise-I Enterprise-N

App App

Enterprise

Virtualized

Enterprise-I Enterprise-N

User
App App

Server-I

Virtualized

User

Response with certain
response time => SLO Server-N

Check for Infrastructure
Availability?

Service Level Agreement

Load Balancing Algorithms

Class-agnostic Class-aware

Client-aware Content-aware Client plus

Content aware

FIGURE 4.2.5. General taxonomy of load-balancing algorithms.

load on the machines is equally distributed . Typically, the algorithm executing

on the front-end node is agnostic to the nature of the request. This means that

the front-end node is neither aware of the type of client from which the request

originates nor aware of the category (e.g., browsing, selling, payment, etc.) to

which the request belongs to. This category of load balancing algorithms is

known as class-agnostic. There is a second category of load balancing

algorithms that is known as class-aware.Figure 4.2.5 shows the general

taxonomy of different load- balancing algorithms.

Admission Control

Admission control algorithms play an important role in deciding the set of

requests that should be admitted into the application server when the server

experiences “very” heavy loads [5, 6]. Figure 4.2.6 shows the general

taxonomy of the admission control mechanisms. The algorithms proposed in

the literature are broadly categorized

Admission Control Mechanisms

Request Based Session Based

QoS Agnostic

(Plain Vanilla)
QoS Aware

(Class Based)

FIGURE 4.2.6. General taxonomy for admission control mechanisms.

into two types: (1) request-based algorithms and (2) session-based algorithms.

Request-based admission control algorithms reject new requests if the servers

are running to their capacity. The disadvantage with this approach is that a

client’s session may consist of multiple requests that are not necessarily

unrelated.

TYPES OF SLA

Service-level agreement provides a framework within which both seller and

buyer of a service can pursue a profitable service business relationship. It

outlines the broad understanding between the service provider and the service

consumer for conducting business and forms the basis for maintaining a

mutually beneficial relationship.

SLA can be modeled using web service-level agreement (WSLA) language

specification . Although WSLA is intended for web-service-based applica-

tions, it is equally applicable for hosting of applications. Service-level para-

meter, metric, function, measurement directive, service-level objective, and

penalty are some of the important components of WSLA and are described in

Table 4.2.1.

TABLE 4.2.1. Key Components of a Service-Level Agreement

Service-Level

Parameter

Describes an observable property of a service whose value is

measurable.

Metrics These are definitions of values of service properties that are

measured from a service-providing system or computed from other

metrics and constants. Metrics are the key instrument to describe

exactly what SLA parameters mean by specifying how to measure or

compute the parameter values.

Function A function specifies how to compute a metric’s value from the values

of other metrics and constants. Functions are central to describing

exactly how SLA parameters are computed from resource metrics.

Measurement

directives

These specify how to measure a metric.

There are two types of SLAs from the perspective of application hosting. These

are described in detail here.

Infrastructure SLA. The infrastructure provider manages and offers guaran-

tees on availability of the infrastructure, namely, server machine, power,

network connectivity, and so on. In such dedicated hosting environments, a

practical example of service-level guarantees offered by infrastructure

providers is shown in Table 4.2.2.

Application SLA. In the application co-location hosting model, the server

capacity is available to the applications based solely on their resource demands.

Therefore, the service

TABLE 4.2.2. Key Contractual Elements of an Infrastructural SLA

Hardware availability ● 99% uptime in a calendar month

Power availability ● 99.99% of the time in a calendar month

Data center network

availability

Backbone network

availability

Service credit for

unavailability

Outage notification

guarantee

Internet latency

guarantee

● 99.99% of the time in a calendar month

● 99.999% of the time in a calendar month

● Refund of service credit prorated on downtime period

● Notification of customer within 1 hr of complete downtime

● When latency is measured at 5-min intervals to an upstream

provider, the average doesn’t exceed 60 msec

Packet loss guarantee ● Shall not exceed 1% in a calendar month

TABLE 4.2.3. Key contractual components of an application SLA

Service-level

parameter metric

● Web site response time (e.g., max of 3.5 sec per user request)

● Latency of web server (WS) (e.g., max of 0.2 sec per request)

● Latency of DB (e.g., max of 0.5 sec per query)

Function ● Average latency of WS = (latency of web server 1 +latency of

web server 2) /2
● Websiteresponsetime= Averagelatencyofwebserver+

latency ofdatabase

Measurement

directive

Service-level

objective

● DB latency available via http://mgmtserver/em/latency

● WS latency available via http://mgmtserver/ws/instanceno/

latency

● Service assurance

● website latency, 1sec whenconcurrent connection, 1000

Penalty ● 1000 USD for every minute while the SLO was breached

providers are also responsible for ensuring to meet their customer’s application

SLOs. For example, an enterprise can have the following application SLA with

a service provider for one of its application, as shown in Table 4.2.3.

However, from the SLA perspective there are multiple challenges for

provisioning the infrastructure on demand. These challenges are as follows:

a. The application is a black box to the MSP and the MSP has virtually no

knowledge about the application runtime characteristics.

b. The MSP needs to understand the performance bottlenecks and the

scalability of the application.

c. The MSP analyzes the application before it goes on-live. However,

subsequent operations/enhancements by the customer’s to their applica-

tions or auto updates beside others can impact the performance of the

applications, thereby making the application SLA at risk.

d. The risk of capacity planning is with the service provider instead of the

customer.

http://mgmtserver/em/latency
http://mgmtserver/ws/instanceno/

LIFE CYCLE OF SLA

Each SLA goes through a sequence of steps starting from identification of terms and

conditions, activation and monitoring of the stated terms and conditions, and eventual

termination of contract once the hosting relationship ceases to exist. Such a sequence of

steps is called SLA life cycle and consists of the following five phases:

1. Contract definition

2. Publishing and discovery

3. Negotiation

4. Operationalization

5. De-commissioning

Here, we explain in detail each of these phases of SLA life cycle.

Contract Definition. Generally, service providers define a set of service offerings and

corresponding SLAs using standard templates.

Publication and Discovery. Service provider advertises these base service offerings

through standard publication media, and the customers should be able to locate the service

provider by searching the catalog.

Negotiation. Once the customer has discovered a service provider who can meet their

application hosting need, the SLA terms and conditions needs to be mutually agreed upon

before signing the agreement for hosting the application.

Operationalization. SLA operation consists of SLA monitoring, SLA ac- counting, and

SLA enforcement. SLA monitoring involves measuring parameter values and calculating

the metrics defined as a part of SLA and determining the deviations.

De-commissioning. SLA decommissioning involves termination of all activ- ities

performed under a particular SLA when the hosting relationship between the service

provider and the service consumer has ended.

SLA MANAGEMENT IN CLOUD

SLA management of applications hosted on cloud platforms involves five phases.

1. Feasibility

2. On-boarding

3. Pre-production

4. Production

5. Termination

Different activities performed under each of these phases are shown in Figure 4.2.7. These

activities are explained in detail in the following subsections.

Feasibility Analysis

MSP conducts the feasibility study of hosting an application on their cloud platforms. This

study involves three kinds of feasibility: (1) technical feasibility, infrastructure feasibility,

and (3) financial feasibility. The technical feasibility of an application implies determining

the following:

Application Lifecycle through Service Provider Platform

Obtain customer app Perform Technical

feasibility

Perform financial

feasibility

Package application Performance analysis

Estimate cost for each

SLA

Identify possible SLAs

SLA acceptable to

customer?

Cost is acceptable to

customer?

Create/recreate policies (BP/

OP/PP) for each of the SLA

Validated policies wrt to

SLAs

Stage the app to pre-prod env

Customer validation of app

against SLA

Choose different SLA?

Stage the app to prod env and Repeated SLA

made live
SLA violation?

Customer request for new/

modification of SLA

violation?

Decline application

P
ro

d
u

ct
io

n

P
re

-P
ro

d
u

ct
io

n

O
n

b
o

ar
d

in
g

F

ea
si

b
il

it
y
 A

n
al

y
si

s

Rollback the app from prod env Transfer files to customer

Application cease

FIGURE 4.2.7. Flowchart of the SLA management in cloud.

1. Ability of an application to scale out.

2. Compatibility of the application with the cloud platform being used

within the MSP’s data center.

3. The need and availability of a specific hardware and software required for

hosting and running of the application.

4. Preliminary information about the application performance and whether

they can be met by the MSP.

Performing the infrastructure feasibility involves determining the availability of

infrastructural resources in sufficient quantity so that the projected demands

of the application can be met.

On-Boarding of Application

Once the customer and the MSP agree in principle to host the application based

on the findings of the feasibility study, the application is moved from the

customer servers to the hosting platform.The application is accessible to its end

users only after the on- boarding activity is completed.

On-boarding activity consists of the following steps:

a. Packing of the application for deploying on physical or virtual environ-

ments. Application packaging is the process of creating deployable

components on the hosting platform (could be physical or virtual).

Open Virtualization Format (OVF) standard is used for packaging the

application for cloud platform .

b. The packaged application is executed directly on the physical servers to

capture and analyze the application performance characteristics.

c. The application is executed on a virtualized platform and the application

performance characteristics are noted again.

d. Based on the measured performance characteristics, different possible

SLAs are identified. The resources required and the costs involved for

each SLA are also computed.

e. Once the customer agrees to the set of SLOs and the cost, the MSP starts

creating different policies required by the data center for automated

management of the application.These policies are of three types: (1)

business, (2) operational, and (3) provisioning. Business policies help

prioritize access to the resources in case of contentions. Operational

policies (OP) are represented in the following format:

C
ea

se

OP 5 collection of hCondition, Actioni

Here the action could be workflow defining the sequence of actions to be

undertaken. For example, one OP is

OP 5 haveragelatencyofwebserver. 0.8sec,scale-outtheweb-servertieri

It means, if average latency of the web server is more than 0.8 sec then

automatically scale out the web-server tier.

Scale-out, scale-in, start, stop, suspend, resume are some of the examples of

provisioning actions. A provisioning policy (PP) is represented as

PP 5 collection of hRequest, Actioni

For example, a provisioning policy to start a web site consists of the following

sequence: start database server, start web-server instance 1, followed by start the

web-server instance 2, and so on.

Preproduction

Once the determination of policies is completed as discussed in previous phase,

the application is hosted in a simulated production environment. Once both

parties agree on the cost and the terms and conditions of the SLA, the customer

sign-off is obtained. On successful completion of this phase the MSP allows

the applica- tion to go on-live.

Production

In this phase, the application is made accessible to its end users under the

agreed SLA. In the case of the former, on-boarding activity is repeated to

analyze the application and its policies with respect to SLA fulfillment. In

case of the latter, a new set of policies are formulated to meet the fresh terms

and conditions of the SLA.

Termination

When the customer wishes to withdraw the hosted application and does not

wish to continue to avail the services of the MSP for managing the hosting of its

application, the termination activity is initiated.

AUTOMATED POLICY-BASED MANAGEMENT

This section explains in detail the operationalization of the “Operational” and

“Provisioning” policies defined as part of the on-boarding activity. The policies

specify the sequence of actions to be performed under different circumstances.

Operational policies specify the functional relationship between the system-

level infrastructural attributes and the business level SLA goals. attributes at

various workloads, workload compositions, and operating conditions, so that

the SLA goals are met. Figure 4.2.8 explains the importance of such a

relationship. For example, consider a three-tier web application consisting of

web server, application server, and database server. The effect of varying the

system resources (such as CPU) on the SLO, which in this case is the average

response time for customer requests, is shown in Figure 4.2.8.

20

15

10

5

20 50 90

Percentage of CPU assigned to Application Server

FIGURE 4.2.8. Performance of a multi-tier application for varied CPU allocation.

SLO

A
v
er

ag
e

R
es

p
o
n

se
 T

im
e

(s
ec

)

Some of the parameters often used to prioritize action and perform resource

contention resolution are:

● The SLA class (Platinum, Gold, Silver, etc.) to which the application

belongs to.

● The amount of penalty associated with SLA breach.

● Whether the application is at the threshold of breaching the SLA.

● Whether the application has already breached the SLA.

● The number of applications belonging to the same customer that has

breached SLA.

● The number of applications belonging to the same customer about to

breach SLA.

● The type of action to be performed to rectify the situation.

Priority ranking algorithms use these parameters to derive scores. These

scores are used to rank each of the actions that contend for the same resources.

Actions having high scores get higher priority and hence, receive access to the

contended resources.

Furthermore, automatic operationalization of these policies consists of a set

of components as shown in Figure 4.2.9. The basic functionality of these

components is described below:

1. Prioritization Engine. Requests from different customers’ web applica-

tions contending for the same resource are identified, and accordingly

their execution is prioritized.

2. Provisioning Engine. Every user request of an application will be enacted

by the system.

3. Rules Engine. The operation policy defines a sequence of actions to be

enacted under different conditions/trigger points.

4. Monitoring System. Monitoring system collects the defined metrics in

SLA. These metrics are used for monitoring resource failures, evaluating

operational policies, and auditing and billing purpose.

5. Auditing. The adherence to the predefined SLA needs to be monitored

and recorded. It is essential to monitor the compliance of SLA because

A
p

p
1

FIGURE 4.2.9. Component diagram of policy-based automated management system.

any noncompliance leads to strict penalties. The audit report forms the basis for

strategizing and long-term planning for the MSP.

6. Accounting/Billing System. Based on the payment model, chargebacks could be

made based on the resource utilized by the process during the operation. The fixed

cost and recurring costs are computed and billed accordingly.

The interactions among these components are shown in Figure 4.2.9 and described below.

Alternatively, the monitoring system can interact with the rules engine

through an optimization engine, as shown in Figure 4.2.10. The following

example highlights the importance of the optimization engine within a policy

based management system .

Assume an initial assignment of seven virtual machines (VM) to the three

physical machines (PM) at time t1 as shown in Figure 4.2.11.

«subsystem»

Customer Access Layer

«subsystem»

System Administrator

Dashboard

«subsystem»

Authentication and

Authorization

«subsystem»

Access Layer

«subsystem»

Accounting/Billing

System

«subsystem»

Auditing

«subsystem»

Monitoring System

«subsystem»

Prioritization

Engine

«subsystem»

Provisioning

Engine

«subsystem»

Rules Engine

«subsystem»

VM Provisioning

«subsystem»

Bare Metal

Provisioning

«subsystem»

Storage Manager

«subsystem»

NW Manager

«subsystem»

Data Center

Engine Engine Engine System

PM0 PM1 PM3

FIGURE 4.2.10. Importance of optimization in the policy-based management system.

 A

p
p

1

A
p

p
2

 VM0 VM1

VMM

 A

p
p

1

A
p

p
2

VM0 VM1
VMM

 A

p
p

1

A
p

p
2

 VM0 VM1

VMM

VM0

VMM

Similarly, at time t1 the CPU and memory requirements of VM4, VM5, and VM6

on PMB are 20, 10, 40 and 20, 40, 20, respectively. VM7 only consumes 20%

of CPU and 20% of memory on PMC. Thus, PMB and PMC are underloaded but

PMA is overloaded. Assume VM1 is the cause of the overload situation in

PMA.

CPU

Mem

CPU

Mem

FIGURE 4.2.11. (a) Initial configuration of the VMs and the PMs at time t1. (b)

Configuration resulting from event-based migration of VM1 at time t1. (c) Resource

requirement situation at time t2 . t1. (d) Configuration resulting from “event-based”

migration of VM4 at time t2 . t1. (e) Alternate configuration resulting from optimiza-

tion-based migration at time t2 . t1.

A

2 3

CPU 40 20

Mem 10 40

4

B

5

6

20 10 40

20 40 20

7

C

1

20 40

20 20

A

2 3

CPU 40 20

Mem 10 40

4

B

5

6

20 10 40

20 40 20

7

C

1

20 40

20 20

A

2 3

CPU 40 20

Mem 10 40

B

5

6

 10 40

40 20

7

C

1

4

20 40 20

20 20 40

1

A

2

3

40 40 20

20 10 40

4

B

5

6

20 10 40

20 40 20

C

7

20
20

1

A

2

3

40 40 20

20 10 40

4

B

5

6

20 10 40

20 40 20

C

7

20
20

In the above scenario, event-based migration will result in migration of

VM1 out of PMA to PMC. Furthermore, consider that at time t2 (t2 . t1),

PMB is overloaded as the memory requirement of VM4 increases to 40.

Consequently, an event-based scheme results in migration of VM4 to PMC. At

time t3 (t3 . t2), a new VM, VM8, with CPU and memory requirements of 70

each, needs to be allocated to one of the PMs; then a new PM, PMD, needs to

be switched on for hosting it. In such a scenario, VM8 cannot be hosted on any

of the three existing PMs: PMA, PMB, and PMC. However, assume that the

duration of the time window t2 - t1 is such that the QoS and SLA violations due

to the continued hosting of VM1 on PMA are well within the permissible limits.

In such a case, the migration of both VMs—VM1 to PMB and VM4 to PMA—

at time t2 ensures lesser number of PM are switched on. This results in a global

resource assignment that may be better than local resource management.

 PERFORMANCE PREDICTION FOR HPC ON CLOUDS

INTRODUCTION

High-performance computing (HPC) is one of the contexts in which the

adoption of the cloud computing paradigm is debated.

As outlined in other chapters of this book, cloud computing may be

exploited at three different levels: IaaS (Infrastructure as a Service), PaaS

(Platform as a Service), and AaaS (Application as a Service). In one way or

another, all of them can be useful for HPC. However, nowadays the most

common solution is the adoption of the IaaS paradigm. IaaS lets users run

applications on fast pay-per-use machines they don’t want to buy, to manage,

or to maintain. Furthermore, the total computational power can be easily

increased (by additional charge). For the sporadic HPC user, this solution is

undoubtedly attractive: no investment in rapidly-obsolescing machines, no

power and cooling nightmares, and no system software updates.

At the state of the art, there exist many solutions for building up a cloud

environment. VMWare cloud OS is integrated in the VMWare virtualization

solutions. Opennebula [4, 26], Enomaly , and Eucalyptus are open-source

software layers that provide a service-oriented interface on the top of existing

virtual engines (mainly, VMWare and Xen). Virtual workspaces [7, 16, 27], and

related projects (Nimbus, Kupa, WISPY) build up the service-oriented inter-

face for the virtual engines by exploiting a grid infrastructure (see Section 4.3.2

for further details).

Another source of confusion for most users is the relationship between

clouds and grids. But this is obtained following two different approaches:

centralized for clouds and distributed for grids. It is easy to find on the net

many open (and often useless) discussions comparing the two paradigms. In

this chapter we will not deal further with the problem, limiting ourselves to

discuss the profitability of the two paradigms in the HPC context and to point

out the possibility to integrate both of them in a unified view.

Many applications have strict requirements for their execution

environments. Often the applications’ environment requirements are mutually

incompatible, and it is not reasonable to modify or to re-install system software

on-the-fly to make applications work. Moreover, partitioning the computing

hardware into closed environments with different characteristics is not

decidedly an efficient solution.

In light of the above, it is reasonable to think that, notwithstanding the

inevitable performance loss, cloud techniques will progressively spread into

HPC environments. As an example, Rocks, the widely used Linux distribution

for HPC clusters, provides support for virtual clusters starting from release 5.1 .

As pointed out above, the performance problem is hard due to the intrinsically

“intangible” and flexible nature of cloud systems. This makes difficult (and

maybe useless) to compare the performance of a given application that executes

in two different virtual environments received from a cloud. So, given the

extreme simplicity to ask from a cloud for additional computing resources

(with additional costs), it is almost impossible to make a choice that maximizes

the performance/cost ratio.

The presentation is organized as follows: The next section (4.3.2) introduces

the fundamentals of cloud computing paradigm applied to HPC, aiming at

defining the concepts and terminology concerning virtual clusters. Section

 instead focuses on the relationship between grid and cloud, highlighting

their similarities and differences, the opportunity of their integration, and

the approaches proposed to this end. Section 4.3.4 focuses on

performance-related problems, which affect the adoption of cloud

computing for HPC, pointing out the need for methods, techniques, and

tools for performance prediction of clouds. The final section (4.3.5)

presents our conclusions.

BACKGROUND

As outlined in the introduction, the main question related to the adoption of

the cloud paradigm in HPC is related to the evaluation (and, possibly, to the

reduction) ofpossibleperformancelossescomparedtophysical HPChardware.

In clouds, performance penalties may appear at two different levels:

● Virtual Engine (VE). These are related to the performance loss introduced

by the virtualization mechanism. They are strictly related to the VE

technology adopted.

● Cloud Environment (CE). These are the losses introduced at a higher level

by the cloud environment, and they are mainly due to overheads and to

the sharing of computing and communication resources.

Additional considerations on the cloud hardware and its impact on the

performance of HPC applications will be presented in Section 4.3.3.

VFE

VN

VN

VN

VFE

VN

VN

…

VN

VFE

VN

VN

…

VN

FE PN PN PN

FE PN PN … PN

…

VLAN

VLAN

VLAN

NETWORK NETWORK

FIGURE 4.3.1. Physical and virtual cluster.

The configuration and performance analysis of virtual clusters poses

problems that are considerably more complex than those involved in the

use of physical clusters. The objective of this section is to present the main

problems and to introduce a clear and sound terminology, which is still lacking

in the literature.

A traditional cluster—that is, a physical cluster—can be schematized as in

Figure 4.3.1. It is essentially made up of a front-end (typically used only for

administration purposes, often the only node with a public IP address) and a

number of (physical) processing nodes. These are, turn, provided with a single

CPU or with multiple CPUs sharing a common memory and I/O resources. The

multiple CPUs may be multiple cores on a single processor chip, a traditional

single-core CPUs working in SMP mode, a “fictitious” CPU obtained by

hyperthreading, or a mixture of all the above.

A physical cluster can execute multiple jobs in parallel, by assigning to every

job a subset of the total number of CPUs. Usually the choice is to use non-

overlapping subsets of CPUs, in order to avoid processor sharing among

multiple jobs. But, even doing so, the interconnection network (and the front-

end) are inevitably shared.

This may, or may not, introduce significant overheads, depending on the

type of computations and their communication requirements and, above all, on

the characteristics of the interconnect. Anyway, very often this overhead is

tolerable.

A parallel application running in a physical cluster is composed of processes.

To exploit all the available computing resources, the application should use at

least a number of processes equal to the number of available CPUs (or, in the

case of concurrent jobs, equal to the number of CPU exclusively reserved for

the job). Redundant application decompositions (i.e., applications made up of

a number of processes higher than the number of CPUs) are possible and, in

some cases, they may even be more efficient.

The main problem with physical clusters is that all jobs running on the cluster,

whether concurrent or non-concurrent, have to share the same operating system

(OS), the system and application libraries, and the operating

environment (system applications and tools). The frequently recurring

requirements for mutually exclusive or incompatible libraries and support

software make physical cluster management a nightmare for system

administrators.

Basically, a virtual cluster is made up of a virtual front-end and a number of

virtual nodes (see Figure 4.3.1). Virtual front-ends are obtained by virtualiza-

tion of a physical front-end machine, and virtual nodes are obtained by

virtualization of physical processing nodes.

Even if, strictly speaking, in a virtual cluster the front-end could be

virtualized as compute nodes, a simpler and less resource-demanding solution

is to use a physical front-end. Both with physical or virtual front-ends, virtual

cluster may have an execution environment of its own (OS, libraries, tools, etc.)

that is loaded and initialized when the cluster is created. The advantages of

cluster virtualization are clear: Every application can set up a proper execution

environment, which does not interfere with all other applications and virtual

clusters running on the hardware. Moreover, the network traffic of every

virtual cluster is encapsulated in a separate VLAN. However, most likely all

VLANs will share the physical network resources.

As shown in Figure 4.3.1, every virtual processing node can host one or

several virtual machines (VMs), each running a private OS instance. These may

belong to the same or to different virtual clusters. At least in theory, the number

of VMs is limited only by resource consumption (typically, physical memory).

In turn, each VM is provided with several virtual CPUs (VCPUs). A virtual

machine manager running in every node makes it possible to share the physical

CPUs among the VCPUs defined on the node (which may belong to a single

virtual cluster or to several virtual clusters). Typically, it is possible to define

VCPU affinity and to force every VCPU to run on a subset of the physical

CPUs available.

It is worth noting that, given a physical node provided with n CPUs, there

are two possibilities to exploit all the computing resources available:

● Using n VMs (each running its OS instance) with one, or even several,

VCPUs;

● Using a single VM with at least n VCPUs.

On the other hand, the use in a node of v VCPUs, with v . n, whether in a

single or in multiple VMs, leads to a fictitious multiplication of computing

resources. In nodes where CPU resources are multiplied, the virtual clusters

not only share memory, communication hardware, and the virtual machine

manager, but also share CPU cycles, with a more direct effect on overall

computing performance.

GRID AND CLOUD

“Grid vs Cloud” is the title of an incredible number of recent Web blogs and

articles in on-line forums and magazines, where many HPC users express their

own opinion on the relationship between the two paradigms [11, 28, 29, 40].

Cloud is simply presented, by its supporters, as an evolution of the grid. Some

consider grids and clouds as alternative options to do the same thing in a different

way. However, there are very few clouds on which one can build, test, or run

compute-intensive applications. In fact it still necessary to deal with some open

issues. One is when, in term of performance, a cloud is better than a grid to run a

specific application. Another problem to be addressed concerns the effort to port

a grid application to a cloud. In the following it will be discussed how these and

other arguments suggest that we investigate the integration of grids and clouds to

improve the exploitation of computing resources in HPC.

Grid and Cloud as Alternatives

Both grid and cloud are technologies that have been conceived to provide users

with handy computing resources according to their specific requirements.

Grid was designed with a bottom-up approach [9, 30, 31, 39]. Its goal is to

share a hardware or a software among different organizations by means of

common protocols and policies. The idea is to deploy interoperable services in

order to allow the access to physical resources (CPU, memory, mass storage,

etc.) and to available software utilities. Users get access to a real machine. Grid

resources are administrated by their owners. Authorized users can invoke grid

services on remote machines without paying and without service level guaran-

tees. A grid middleware provides a set of API (actually services) to program a

heterogeneous, geographically distributed system.

On the other hand, cloud technology was designed using a top-down

approach. It aims at providing its users with a specific high-level functionality:

a storage, a computing platform, a specialized service. They get virtual

resources from the cloud. The underlying hardware/software infrastructure is

not exposed. The only information the user needs to know is the quality of

service (QoS) of the services he is paying for. Bandwidth, computing power,

and storage represent parameters that are used for specifying the QoS and for

billing. Cloud users ask for a high-level functionality (service, platform,

infrastructure), pay for it, and become owners of a virtual machine. From a

technological point of view, virtualization is exploited to build an insulated

environment, which is configured to meet users’ requirements and is exploited

for easy reconfiguration and backup. A single enterprise is the owner of the

cloud platform (software and underlying hardware), whereas customers be-

come owners of the virtual resources they pay for.

Cloud supporters claim that the cloud is easy to be used [9], is scalable , and

always gives users exactly what they want. On the other hand, grid is difficult

to be used, does not give performance guarantees, is used by narrow

communities of scientists to solve specific problems, and does not actually

support interoperability [9].

Grid fans answer that grid users do not need a credit card, that around

the world there are many examples of successful projects, and that a

great number of computing nodes connected across the net execute large-

scale scientific applications, addressing problems that could not be solved

otherwise. Grid users can use a reduced set of functionalities and can develop

simple applications, or they can get, theoretically, an infinite amount of

resources.

As always, truth is in the middle. Some users prefer to pay since they need a

specific service with strict requirements and require a guaranteed QoS. Cloud

can provide this. Many users of the scientific community look for some sort of

supercomputing architecture to solve intensive computations that process a

huge amount of data, and they do not care about getting a guaranteed

performance level. The grid can provide it. But, even on this last point, there

are divergent opinions.

Grid and Cloud Integration

To understand why grids and clouds should be integrated, we have to start by

considering what the users want and what these two technologies can provide.

Then we can try to understand how cloud and grid can complement each other

and why their integration is the goal of intensive research activities . We know

that a supercomputer runs faster than a virtualized resource. For example, a

LU benchmark on EC2 (the cloud platform provided by Amazon) runs slower,

and some overhead is added to start VMs [13]. On the other hand, the

probability to execute an application in fixed time on a grid resource depends

on many parameters and cannot be guaranteed. As experimented in Foster [13],

if 400 msec is the time that an EC2 requires to execute an LU benchmark, then

the probability of obtaining a grid resource in less that 400 msec is very low

(34%), even if the same benchmark can take less than 100 msec to complete.

If you want to get your results as soon as possible, you are adopting the

cloud end-user perspective. If you want to look for the optimum resources that

solve the problem, overcoming the boundaries of a single enterprise, you are

using the grid perspective that aims at optimizing resources sharing and system

utilization.

The integration of cloud and grid, or at least their integrated utilization, has

been proposed since there is a trade-off between application turnaround and

system utilization, and sometimes it is useful to choose the right compromise

between them.

Some issues to be investigated have been pointed out:

● Integration of virtualization into existing e-infrastructures

● Deployment of grid services on top of virtual infrastructures

● Integration of cloud-base services in e-infrastructures

● Promotion of open-source components to build clouds

● Grid technology for cloud federation

In light of the above, the integration of the two environments is a debated issue

[9]. At the state of the art, two main approaches have been proposed:

● Grid on Cloud. A cloud IaaS (Infrastructure as a Service) approach is

adopted to build up and to manage a flexible grid system . Doing so, the

grid middleware runs on a virtual machine. Hence the main drawback of

this approach is performance. Virtualization inevitably entails perfor-

mance losses as compared to the direct use of physical resources.

● Cloud on Grid: The stable grid infrastructure is exploited to build up a

cloud environment. This solution is usually preferred [7, 16] because the

cloud approach mitigates the inherent complexity of the grid. In this case,

a set of grid services is offered to manage (create, migrate, etc.) virtual

machines. The use of Globus workspaces , along with a set of grid

services for the Globus Toolkit 4, is the prominent solution, as in the

Nimbus project .

The integration could simplify the task of the HPC user to select, to configure,

and to manage resources according to the application requirements. It adds

flexibility to exploit available resources, but both of the above-presented

approaches have serious problems for overall system management, due to the

complexity of the resulting architectures. Performance prediction, application

tuning, and benchmarking are some of the relevant activities that become

critical and that cannot be performed in the absence of performance evaluation

of clouds.

HPC IN THE CLOUD: PERFORMANCE-RELATED ISSUES

This section will discuss the issues linked to the adoption of the cloud paradigm

in the HPC context. In particular, we will focus on three different issues:

1. The difference between typical HPC paradigms and those of current

cloud environments, especially in terms of performance evaluation.

2. A comparison of the two approaches in order to point out their

advantages and drawbacks, as far as performance is concerned.

3. New performance evaluation techniques and tools to support HPC in

cloud systems.

As outlined in the previous sections, the adoption of the cloud paradigm for

HPC is a flexible way to deploy (virtual) clusters dedicated to execute HPC

applications. The switch from a physical to a virtual cluster is completely

transparent for the majority of HPC users, who have just terminal access to the

cluster and limit themselves to “launch” their tasks.

The first and well-known difference between HPC and cloud environments

is the different economic approach: (a) buy-and-maintain for HPC and

(b) pay-per-use in cloud systems. In the latter, every time that a task is started,

the user will be charged for the used resources. But it is very hard to know in

advance which will be the resource usage and hence the cost. On the other hand,

even if the global expense for a physical cluster is higher, once the system has

been acquired, all the costs are fixed and predictable (in fact, they are so until

the system is not faulty). It would be great to predict, albeit approximately, the

resource usage of a target application in a cloud, in order to estimate the cost of

its execution.

These two issues above are strictly related, and a performance problem

becomes an economic problem. Let us assume that a given application is well-

optimized for a physical cluster. If it behaves on a virtual cluster as on the

physical one, it will use the cloud resources in an efficient way, and its execution

will be relatively cheap. This is not so trivial as it may seem, as the pay-per-use

paradigm commonly used in commercial clouds (see Table 4.3.1) charges the

user for virtual cluster up-time, not for CPU usage. Almost surprisingly, this

means that processor idle time has a cost for cloud users.

For clarity’s sake, it is worth presenting a simple but interesting example

regarding performance and cost. Let us consider two different virtual clusters

with two and four nodes, respectively. Let us assume that the application is

well-optimized and that, at least for a small number of processors, it gets linear

speed-up. The target application will be executed in two hours in the first cluster

and in one hour in the second one. Let the execution cost be X dollars per hour

per machine instance (virtual node). This is similar to the charging scheme of

EC2. The total cost is given by

hcost per hour per instancei m hnumberofinstancesi m hhoursi

In the first case (two-node cluster) the cost will be X*2*2, whereas in the second

one it will be X*1*4. It turns out that the two configurations have the same cost

for the final user, even if the first execution is slower than the second. Now if we

consider an application that is not well-optimized and has a speed-up less than

the ideal one, the running time on the large virtual cluster will be longer than

two hours; as a consequence, the cost of the run of the second virtual cluster

TABLE 4.3.1. Example of Cost Criteria

Cloud Provide r Index Description

Amazon $/hour Cost (in $) per hour of activity of the virtual

 machines.

Amazon $/GB Cost (in $) per Gigabyte transferred outside

 the cloud zone (transfers inside the same

 zone have no price)

GoGrid $*RAM/hour Cost (in $) by RAM memory allocated per

 hour

will be higher than that on the small one. In conclusion: In clouds, performance

counts two times. Low performance means not only long waiting times, but

also high costs. The use of alternative cost factors (e.g., the RAM memory

allocated, as for GoGrid in Table 4.3.1) leads to completely different considera-

tions and requires different application optimizations to reduce the final cost of

execution.

In light of the above, it is clear that the typical HPC user would like to know

how long his application will run on the target cluster and which configuration

has the highest performance/cost ratio. The advanced user, on the other hand,

would also know if there is a way to optimize its application so as to reduce the

cost of its run without sacrificing performance. The high-end user, who cares

more for performance than for the cost to be sustained, would like instead to

know how to choose the best configuration to maximize the performance of his

application. In other words, in the cloud world the hardware configuration is

not fixed, and it is not the starting point for optimization decisions. Config-

urations can be easily changed in order to fit the user needs. All the three classes

of users should resort to performance analysis and prediction tools. But,

unfortunately, prediction tools for virtual environments are not available, and

the literature presents only partial results on the performance analysis of such

systems.

An additional consequence of the different way that HPC users exploit a

virtual cluster is that the cloud concept makes very different the system

dimensioning—that is, the choice of the system configuration fit for the user

purposes (cost, maximum response time, etc.). An HPC machine is chosen and

acquired, aiming to be at the top of available technology (under inevitable

money constraints) and to be able to sustain the highest system usage that may

eventually be required. This can be measured in terms of GFLOPS, in terms of

number of runnable jobs, or by other indexes depending on the HPC

applications that will be actually executed. In other words, the dimensioning

is made by considering the peak system usage. It takes place at system

acquisition time, by examining the machine specifications or by assembling it

using hardware components of known performance. In this phase, simple and

global performance indexes are used (e.g., bandwidth and latency for the

interconnect, peak FLOPS for the computing nodes, etc.).

In clouds, instead, the system must be dimensioned by finding out an

optimal trade-off between application performance and used resources. As

mentioned above, the optimality is a concept that is fairly different, depending

on the class of users. Someone would like to obtain high performance at any

cost, whereas others would privilege economic factors. In any case, as the

choice of the system is not done once and for all, the dimensioning of the virtual

clusters takes place every time the HPC applications have to be executed on

new datasets. In clouds, the system dimensioning is a task under the control of

the user, not of the system administrator. This completely changes the scenario

and makes the dimensioning a complex activity, eager for performance data

and indexes that can be measured fairly easily in the HPC world on physical

TABLE 4.3.2. Differences Between “Classical” HPC and HPC in Cloud Environments

Problem HPC HPC in Clouds

Cost Buy-and-maintain

paradigm

Pay-per-use paradigm

Performance

optimization

Tuning of the application

to the hardware

Joint tuning of application

and system

System dimensioning At system acquisition time,

using global performance

indexes under system ad-

ministrator control

At every application

execution, using application

oriented performance

indexes, under user control

systems, but that are not generally available for complex and rapidly changing

systems as virtual clusters.

Table 4.3.2 summarizes the differences between HPC classical

environments and HPC in clouds. To summarize the above discussion, in

systems (the clouds) where the availability of performance data is crucial to

know how fast your applications will run and how much you will pay, there is

great uncertainty about what to measure and how to measure, and there are

great difficulties when attempting to interpret the meaning of measured data.

HPC Systems and HPC on Clouds: A Performance

Comparison

The second step of our analysis is a performance comparison between classical

HPC systems and the new cloud paradigm. This will make it possible to point

out the advantages and disadvantages of the two approaches and will enable us

to understand if and when clouds can be useful for HPC.

The performance characterization of HPC systems is usually carried out by

executing benchmarks. However, the only ones that make measurements of

virtual clusters at different levels and provide available results in the literature

[18—22, 33, 34, 36] are the following:

● The LINPACK benchmark, a so-called kernel benchmark, which aims at

measuring the peak performance (in FLOPSs) of the target environment.

● The NAS Parallel Benchmarks (NPB), a set of eight programs designed to

help to evaluate the performance of parallel supercomputers, derived from

computational fluid dynamics (CFD) applications and consisting of five

kernels and three pseudo-applications. As performance index, together

with FLOPS, it measures response time, network bandwidth usage, and

latency.

● mpptest, a microbenchmark that measures the performance of some of the

basic MPI message passing routines in a variety of different conditions. It

measures (average) response time, network bandwidth usage and latency.

When these benchmarks are executed on physical machines (whether clusters

or other types of parallel hardware), they give a coarse-level indication of the

system potentialities. In the HPC world, these benchmarks are of common use

and widely diffused, but their utility is limited. Users usually have an in-depth

knowledge of the target hardware used for executing their applications, and a

comparison between two different (physical) clusters makes sense only for

Top500 classification or when they are acquired. HPC users usually outline the

potentiality and the main features of their system through (a) a brief description

of the hardware and (b) a few performance indexes obtained using some of the

above-presented benchmarks. In any case, these descriptions are considered

useless for application performance optimization, because they only aim at

providing a rough classification of the hardware.

Recently, the benchmarking technique has been adopted in a similar way,

tackling also the problem of the utility of the cloud paradigm for scientific

applications. In particular, the papers focusing on the development of applica-

tions executed in virtual clusters propose the use of a few benchmarks to outline

the hardware potentialities [22, 23]. These results are of little interest for our

comparison. On the other hand, papers that present comparisons between

virtual and physical clusters [18, 20—22, 36, 37] use benchmarks to find out the

limits of cloud environments, as discussed below. In the following, we will focus

on these results.

We can start our analysis from benchmark-based comparison of virtual

clusters and physical HPC systems. In the literature there are results on all three

types of benchmarks mentioned above, even if the only cloud provider

considered is Amazon EC2 (there are also results on private clusters, but in

those cases the analysis focuses on virtual engine level and neglects the effects of

the cloud environment, and so it is outside the scope of this chapter).

Napper and Bientinesi [20] and Ostermann et al. [21] adopted the LINPACK

benchmark, measuring the GFLOPS provided by virtual clusters composed of

Amazon EC2 virtual machines. Both studies point out that the values obtained

in the VCs are an order of magnitude lower than equivalent solutions on physical

clusters. The best result found in the literature is about 176 GFLOPS, to be

compared to 37.64 TFLOPS of the last (worst) machine in Top500 list. Even if it

is reasonable that VCs peak performances are far from the supercomputer ones,

it is worth noting that the GFLOPS tends to decrease (being fixed the memory

load) when the number of nodes increases. In other words, virtual clusters are

not so efficient as physical clusters, at least for this benchmark. As shown later,

the main cause of this behavior is the inadequate internal interconnect.

An analysis by real-world codes, using the NPB (NAS parallel benchmark)

benchmark suite, was proposed in Walker , Ostermann et al. [21]. NPBs are a

collection of MPI-based HPC applications. The suite is organized so as to

stress different aspects of an HPC systems—for example, computation, com-

munication, or I/O.

Walker compared a virtual EC2 cluster to a physical cluster composed of

TeraGrid machines with similar hardware configuration (i.e., the hardware

under the virtual cluster was the same adopted by the physical cluster). This

comparison pointed out that the overheads introduced by the virtualization

layer and the cloud environment level were fairly high. It should be noted that

Walker adopted for his analysis two virtual clusters made up of a very limited

number of nodes (two and four). But, even for such small systems, the

applications did not scale well with the number of nodes.

The last kind of benchmark widely adopted in the literature is the MPI kernel

benchmark, which measures response time, bandwidth, and latency for MPI

communication primitives. These tests, proposed by almost all the authors who

tried to run scientific applications on cloud-based virtual clusters, are coherent

with the results presented above. In all the cases in the literature, bandwidth

and, above all, latency have unacceptable values for HPC applications.

In the literature, at the best of the authors’ knowledge, there are currently no

other examples of virtual cluster benchmarking, even if the ongoing diffusion of

the paradigm will lead probably to a fast growth of this kind of results in the

next years. As mentioned above, the benchmarking technique is able to put in

evidence the main drawback linked to the adoption of cloud systems for HPC:

the unsatisfactory performance of the network connection between virtual

clusters. In any case, the performance offered by virtual clusters is not

comparable to the one offered by physical clusters.

Even if the results briefly reported above are of great interest and can be of

help to get insight on the problem, they do not take into account the differences

between HPC machines and HPC in the cloud, which we have summarized at

the start of this section. Stated another way, the mentioned analyses simply

measure global performance indexes. But the scenario can drastically change if

different performance indexes are measured.

Just to start, the application response time is perhaps the performance index

of great importance in a cloud context. In fact, it is a measurement of interest

for the final user and, above all, has a direct impact on the cost of the

applicationexecution. Aninterestingconsiderationlinkedtoresponsetimewas

proposed by Ian Foster in his blog . The overall application response time

(RT) is given by the formula RT 5 h job submission timei 1 hexecution timei.

In common HPC environments (HPC system with batch queue, grids, etc.)

the job submission time may be fairly long (even minutes or hours, due to

necessity to get all the required computing resources together). On the other

hand, in a cloud used to run HPC workload (a virtual cluster dedicated to the

HPC user), queues (and waiting time) simply disappear. The result is that, even

if the virtual cluster may offer a much lower computational power, the final

response time may be comparable to that of (physical) HPC systems.

In order to take into account this important difference between physical and

virtual environments, Foster suggests to evaluate the response time in terms of

probability of completion, which is a stochastic function of time, and represents

the probability that the job will be completed before that time. Note that the

stochastic behavior mainly depends on the job submission time, whereas

execution time is usually a deterministic value. So in a VC the probability of

completion is a threshold function (it is zero before the value corresponding to

execution time of actual task, and one after). In a typical HPC environment,

which involves batch and queuing systems, the job submission time is stochastic

and fairly long, thus leading to a global completion time higher than the one

measured on the VC.

This phenomenon opens the way to a large adoption of the cloud approach,

at least for middle- or small-dimension HPC applications, where the computa-

tion power loss due to the use of the cloud is more tolerable. In Jha et al. [9] and

in the on-line discussion [13] it is well shown that the cloud approach could be

very interesting for substituting the ecosystem of HPC clusters that are usually

adopted for solving middle-dimension problems. This is a context in which the

grid paradigm was never largely adopted because of the high startup overhead.

Supporting HPC in the Cloud

The above-presented analysis shows how the cloud approach has good chances to

be widely adopted for HPC [32, 35, 38], even if there are limits one should be aware

of, before trying to switch to virtualized systems. Moreover, the differences

between “physical computing” and “virtual computing,” along with their impact

on performance evaluation, clearly show that common performance indexes,

techniques, and tools for performance analysis and prediction should be suitably

adapted to comply with the new computing paradigm.

To support HPC applications, a fundamental requirement from a cloud

provider is that an adequate service-level agreement (SLA) is granted. For HPC

applications, the SLA should be different from the ones currently offered for

the most common uses of cloud systems, oriented at transactional Web

applications. The SLA should offer guarantees useful for the HPC user to

predict his application performance behavior and hence to give formal (or semi-

formal) statements about the parameters involved. At the state of the art, cloud

providers offer their SLAs in the form of a contract (hence in natural language,

with no formal specification). Two interesting examples are Amazon EC2

(http://aws.amazon.com/ec2-sla/) and GoGrid (http://www.gogrid.com/legal/

sla.php).

The first one (Amazon) stresses fault tolerance parameters (such as service

uptime), offering guarantees about system availability. There are instead no

guarantees about network behavior (for both internal and external network),

except that it will “work” 95% of the time. Moreover, Amazon guarantees that

the virtual machine instances will run using a dedicated memory (i.e., there will

be no other VM allocated to on the physical machine using the same memory).

This statement is particularly relevant for HPC users, because it is of great help

for the performance predictability of applications.

On the other hand, GoGrid, in addition to the availability parameters, offers

a clear set of guarantees on network parameters, as shown in Table 4.3.3. This

kind of information is of great interest, even if the guaranteed network latency

(order of milliseconds) is clearly unacceptable for HPC applications. GoGrid

http://aws.amazon.com/ec2-sla/)
http://www.gogrid.com/legal/

TABLE 4.3.3. Service-Level Agreement of GoGrid Network

Parameter Description GoGrid SLA

Jitter Variation in latency ,0.5msec

Latency Amount of time it takes for a packet to

travel from one point to another

,5 msec

Maximum

jitter

Network

outage

Highest permissible jitter within a given

period when there is no network outage

Unscheduled period during which IP

services are not useable due to capacity-

constraints or hardware failures

10 msec within any 15-min

period

None

Packet loss Latency in excess of 10 seconds , 0.1%

does not offer guarantees about the sharing of physical computing resources

with other virtual machines.

In conclusion, even if the adoption of SLA could be (part of) a solution for

HPC performance tuning, giving a clear reference for the offered virtual cluster

performances, current solutions offer too generic SLA contracts or too poor

values for the controlled parameters.

As regards performance measurement techniques and tools, along with their

adaption for virtualized environments, it should be noted that very few

performance-oriented services are offered by cloud providers or by third parties.

Usually these services simply consist of more or less detailed performance

monitoring tools, such as CloudWatch offered by Amazon, or CloudStatus,

offered by Hyperic (and integrated in Amazon). These tools essentially measure

the performance of the cloud internal or external network and should help the

cloud user to tune his applications. In exactly the same way as SLAs, they can be

useful only for the transactional applications that are the primary objective of

cloud systems, since, at the state of the art, they do not offer any features to

predict the behavior of long-running applications, such as HPC codes.

An interesting approach, although still experimental, is the one offered by

solutions as C-meter [21] and PerfCloud [24], which offer frameworks that

dynamically benchmark the target VMs or VCs offered by the cloud. The idea

is to provide a benchmark-on-demand service to take into account the extreme

variability of the cloud load and to evaluate frequently its actual state. The first

framework [25] supports the GrenchMark benchmark (which generates syn-

thetic workloads) and is oriented to Web applications. The second one, instead,

supports many different benchmarks typical of the HPC environment (the

above-mentioned NPB and MPP tests, the SkaMPI benchmark, etc.). More

detailed, the PerfCloud project aims at providing performance evaluation and

prediction services in grid-based clouds. Besides providing services for on-

demand benchmarking of virtual clusters, the PerfCloud framework uses the

benchmarking results to tune a simulator used for predict the performance of

PC applications.

BEST PRACTICES IN ARCHITECTING CLOUD

APPLICATIONS IN THE AWS CLOUD

INTRODUCTION

For several years, software architects have discovered and implemented several

concepts and best practices to build highly scalable applications. In today’s

“era of tera,” these concepts are even more applicable because of ever-growing

datasets, unpredictable traffic patterns, and the demand for faster response

times. This chapter will reinforce and reiterate some of these traditional

concepts and discuss how they may evolve in the context of cloud computing.

It will also discuss some unprecedented concepts, such as elasticity, that have

emerged due to the dynamic nature of the cloud.

This chapter is targeted toward cloud architects who are gearing up to move

an enterprise-class application from a fixed physical environment to a virtua-

lized cloud environment. The focus of this chapter is to highlight concepts,

principles, and best practices in creating new cloud applications or migrating

existing applications to the cloud.

BACKGROUND

As a cloud architect, it is important to understand the benefits of cloud

computing. In this section, you will learn some of the business and technical

benefits of cloud computing and different Amazon Web services (AWS)

available today.
.

Business Benefits of Cloud Computing

There are some clear business benefits to building applications in the cloud. A

few of these are listed here:

Almost Zero Upfront Infrastructure Investment. If you have to build a large-

scale system, it may cost a fortune to invest in real estate, physical

security, hardware (racks, servers, routers, backup power supplies),

hardware management (power management, cooling), and operations

personnel. Because of the high upfront costs, the project would typically

require several rounds of management approvals before the project could

even get started. Now, with utility-style cloud computing, there is no fixed

cost or startup cost.

Just-in-Time Infrastructure. In the past, if your application became popular

and your systems or your infrastructure did not scale, you became a victim

of your own success. Conversely, if you invested heavily and did not get

popular, you became a victim of your failure. By deploying applications

in-the-cloud with just-in-time self-provisioning, you do not have to worry

about pre-procuring capacity for large-scale systems. This increases agility,

lowers risk, and lowers operational cost because you scale only as you grow

and only pay for what you use.

More Efficient Resource Utilization. System administrators usually worry

about procuring hardware (when they run out of capacity) and higher

infrastructure utilization (when they have excess and idle capacity). With

the cloud, they can manage resources more effectively and efficiently by

having the applications request and relinquish resources on-demand.

Usage-Based Costing. With utility-style pricing, you are billed only for the

infrastructure that has been used. You are not paying for allocated

infrastructure but instead for unused infrastructure. This adds a new

dimension to cost savings. You can see immediate cost savings (some-

times as early as your next month’s bill) when you deploy an optimization

patch to update your cloud application. For example, if a caching layer

can reduce your data requests by 70%, the savings begin to accrue

immediately and you see the reward right in the next bill. Moreover,

if you are building platforms on the top of the cloud, you can pass on

the same flexible, variable usage-based cost structure to your own

customers.

Reduced Time to Market. Parallelization is one of the great ways to speed up

processing. If one compute-intensive or data-intensive job that can be run

in parallel takes 500 hours to process on one machine, with cloud

architectures , it would be possible to spawn and launch 500 instances and

process the same job in 1 hour. Having available an elastic infrastructure

provides the application with the ability to exploit paralle- lization in a

cost-effective manner reducing time to market.

Technical Benefits of Cloud Computing

Some of the technical benefits of cloud computing includes:

Automation—“Scriptable Infrastructure”: You can create repeatable build

and deployment systems by leveraging programmable (API-driven)

infrastructure.

Auto-scaling: You can scale your applications up and down to match your

unexpected demand without any human intervention. Auto-scaling

encourages automation and drives more efficiency.

Proactive Scaling: Scale your application up and down to meet your

anticipated demand with proper planning understanding of your traffic

patterns so that you keep your costs low while scaling.

More Efficient Development Life Cycle: Production systems may be easily

cloned for use as development and test environments. Staging environ-

ments may be easily promoted to production.

Amazon

RDS

Amazon Elastic

MapReduce JobFlows

Amazon

Cloud

Front

Amazon EC2 Instances

(On-Demand, Spot, Reserved)

Amazon S3

Objects and

Buckets

EBS

Volumes Snapshots

Amazon

Virtual Private Cloud

Amazon WorldWide Physical Infrastructure

(Geographical Regions, Availability Zones, Edge Locations)

Improved Testability: Never run out of hardware for testing. Inject and

automate testing at every stage during the development process. You can

spawn up an “instant test lab” with preconfigured environments only for

the duration of testing phase.

Disaster Recovery and Business Continuity: The cloud provides a lower cost

option for maintaining a fleet of DR servers and data storage. With

the cloud, you can take advantage of geo-distribution and replicate the

environment in other location within minutes.

“Overflow” the Traffic to the Cloud: With a few clicks and effective load

balancing tactics, you can create a complete overflow-proof application

by routing excess traffic to the cloud.

Understanding the Amazon Web Services Cloud

The Amazon Web Services (AWS) cloud provides a highly reliable and scalable

infrastructure for deploying Web-scale solutions, with minimal support and

administration costs, and more flexibility than you’ve come to expect from your

own infrastructure, either on-premise or at a datacenter facility. AWS offers

variety of infrastructure services today. The diagram below will introduce you

to the AWS terminology and help you understand how your application can

interact with different Amazon Web Services (Figure 4.4.1) and how different

services interact with each other. Amazon Elastic Compute Cloud (Amazon

EC2) is a Web service that provides resizable compute capacity in the cloud.

You can bundle the operating system, application software, and associated

configuration settings into an Amazon machine image (AMI). You can then use

these AMIs to provision multiple virtualized instances as well as decommission

them using simple Web service calls to scale capacity up and down quickly, as

your capacity requirement changes. You can purchase either (a) on-demand

Auto-

Scaling

Elastic

LB

Cloud

Watch

FIGURE 4.4.1. Amazon Web Services.

Your Application

P
ay

m
en

t:
 A

m
az

o
n

 F
P

S
/D

ev
P

ay

A
m

az
o
n
 S

im
p

le
D

B
 D

o
m

ai
n
s

A
m

az
o
n
 S

N
S

 T
o

p
ic

s

A
m

az
o
n
 S

Q
S

 Q
u

eu
es

instances, in which you pay for the instances by the hour, or (b) reserved

instances, in which you pay a low, one-time payment and receive a lower usage

rate to run the instance than with an on-demand instance or spot instances

where you can bid for unused capacity and further reduce your cost. Instances

can be launched in one or more geographical regions. Each region has multiple

availability zones. Availability zones are distinct locations that are engineered

to be insulated from failures in other availability zones and provide inexpen-

sive, low-latency network connectivity to other availability zones in the same

region.

Elastic IP addresses allow you to allocate a static IP address and program-

matically assign it to an instance. You can enable monitoring on an Amazon

EC2 instance using Amazon CloudWatch in order to gain visibility into

resource utilization, operational performance, and overall demand patterns

(including metrics such as CPU utilization, disk reads and writes, and network

traffic). You can create an auto-scaling group using the auto-scaling feature to

automati- cally scale your capacity on certain conditions based on metric that

Amazon CloudWatch collects. You can also distribute incoming traffic by

creating an elastic load balancer using the Elastic Load Balancing service .

Amazon Elastic Block Storage (EBS) volumes provide network-attached

persistent storage to Amazon EC2 instances. Point-in-time consistent snapshots

of EBS volumes can be created and stored on Amazon Simple Storage Service

(Amazon S3).

Amazon S3 is highly durable and distributed data store. With a simple Web

services interface, you can store and retrieve large amounts of data as objects in

buckets (containers) at any time, from anywhere on the Web using standard

HTTP verbs. Copies of objects can be distributed and cached at 14 edge

locations around the world by creating a distribution using Amazon Cloud-

Front service , a Web service for content delivery (static or streaming content).

Amazon SimpleDB[9] is a Web service that provides the core functionality of a

database—real-time lookup and simple querying of struc- tured data—without

the operational complexity. You can organize the dataset into domains and can

run queries across all of the data stored in a particular domain. Domains are

collections of items that are described by attribute—value pairs. Amazon

Relational Database Service (Amazon RDS) provides an easy way to set up,

operate, and scale a relational database in the cloud. You can launch a DB

instance and get access to a full-featured MySQL database and not worry about

common database administration tasks like backups, patch management, and so

on.

Amazon Simple Queue Service (Amazon SQS) is a reliable, highly scalable,

hosted distributed queue for storing messages as they travel between computers

and application components.

Amazon Elastic MapReduce provides a hosted Hadoop framework running

on the web-scale infrastructure of Amazon Elastic Compute Cloud (Amazon

EC2) and Amazon Simple Storage Service (Amazon S3) and allows you to create

customized JobFlows. JobFlow is a sequence of MapReduce steps.

Amazon Simple Notifications Service (Amazon SNS) provides a simple way

to notify applications or people from the cloud by creating Topics and using a

publish-subscribe protocol.

Amazon Virtual Private Cloud (Amazon VPC)[13] allows you to extend

your corporate network into a private cloud contained within AWS. Amazon

VPC uses an IPSec tunnel mode that enables you to create a secure connection

between a gateway in your data center and a gateway in AWS.

AWS also offers various payment and billing services that leverages

Amazon’s payment infrastructure.

All AWS infrastructure services offer utility-style pricing that require no long-

term commitments or contracts. For example, you pay by the hour for Amazon

EC2 instance usage and pay by the gigabyte for storage and data transfer in the

case of Amazon S3. More information about each of these services and their pay-

as-you-go pricing is available on the AWS Web site.

CLOUD CONCEPTS

The cloud reinforces some old concepts of building highly scalable Internet

architectures and introduces some new concepts that entirely change the way

applications are built and deployed. Hence, when you progress from concept to

implementation, you might get the feeling that “Everything’s changed, yet

nothing’s different.” The cloud changes several processes, pat- terns, practices,

and philosophies and reinforces some traditional service- oriented architectural

principles that you have learned because they are even more important than

before. In this section, you will see some of those new cloud concepts and

reiterated SOA concepts.

Traditional applications were built with some pre-conceived mindsets that

made economic and architectural-sense at the time they were developed. The

cloud brings some new philosophies that you need to understand, and these are

discussed below.

Building Scalable Architectures

It is critical to build a scalable architecture in order to take advantage of a

scalable infrastructure.

The cloud is designed to provide conceptually infinite scalability. However,

you cannot leverage all that scalability in infrastructure if your architecture is

not scalable. Both have to work together. You will have to identify the

monolithic components and bottlenecks in your architecture, identify the areas

where you cannot leverage the on-demand provisioning capabilities in your

architecture, and work to refactor your application in order to leverage the

scalable infrastructure and take advantage of the cloud.

Characteristics of a truly scalable application:

● Increasing resources results in a proportional increase in performance.

● A scalable service is capable of handling heterogeneity.

● A scalable service is operationally efficient.

● A scalable service is resilient.

● A scalable service should become more cost effective when it grows (cost

per unit reduces as the number of units increases).

These are things that should become an inherent part of your application; and

if you design your architecture with the above characteristics in mind, then

both your architecture and infrastructure will work together to give you the

scalability you are looking for.

Understanding Elasticity

Figure 4.4.2 illustrates the different approaches a cloud architect can take to

scale their applications to meet the demand.

Scale-Up Approach. Not worrying about the scalable application architec-

ture and investing heavily in larger and more powerful computers

(vertical scaling) to accommodate the demand. This approach usually

works to a point, but either it could cost a fortune (see “Huge capital

expenditure” in Figure 4.4.2) or the demand could outgrow capacity

before the new “big iron” is deployed (see “You just lost your customers”

in diagram).

Too much excess capacity

“Opportunity cost”

Huge capital

expenditure You just lost your
customers

 Predicted demand

 Actual demand

 Scale-up approach

 Traditional scale-out
approach

 Automated elasticity

Time t

Automated Elasticity + Scalability

FIGURE 4.4.2. Automated elasticity.

The Traditional Scale-Out Approach. Creating an architecture that scales

horizontally and investing in infrastructure in small chunks. Most of the

businesses and large-scale Web applications follow this pattern by

distributing their application components, federating their datasets, and

employing a service-oriented design. This approach is often more effective

than a scale-up approach. However, this still requires predicting the

In
fr

as
tr

ct
u

re
 C

o
st

 $
$

demand at regular intervals and then deploying infrastructure in chunks

to meet the demand. This often leads to excess capacity (“burning cash”)

and constant manual monitoring (“burning human cycles”). Moreover, it

usually does not work if the application is a victim of a viral fire (often

referred to as the Slashdot Effect).

Note: Both approaches have initial startup costs, and both

approaches are reactive in nature.

Traditional infrastructure generally necessitates predicting the amount of

computing resources your application will use over a period of several years. If

you underestimate, your applications will not have the horsepower to handle

unexpected traffic, potentially resulting in customer dissatisfaction. If you

overestimate, you’re wasting money with superfluous resources.

The on-demand and elastic nature of the cloud approach (automated

elasticity), however, enables the infrastructure to be closely aligned (as it

expands and contracts) with the actual demand, thereby increasing overall

utilization and reducing cost.

Elasticity is one of the fundamental properties of the cloud. Elasticity is the

power to scale computing resources up and down easily and with minimal

friction. It is important to understand that elasticity will ultimately drive most

of the benefits of the cloud. As a cloud architect, you need to internalize this

concept and work it into your application architecture in order to take

maximum benefit of the cloud.

Traditionally, applications have been built for fixed, rigid, and pre-

provisioned infrastructure. Companies never had the need to provision and

install servers on a daily basis. As a result, most software architectures do not

address the rapid deployment or reduction of hardware. Since the provisioning

time and upfront investment for acquiring new resources was too high,

software architects never invested time and resources in optimizing for hard-

ware utilization. It was acceptable if the hardware on which the application is

running was underutilized. The notion of “elasticity” within an architecture

was overlooked because the idea of having new resources in minutes was not

possible.

With the cloud, this mindset needs to change. Cloud computing streamlines

the process of acquiring the necessary resources; there is no longer any need to

place orders ahead of time and to hold unused hardware captive. Instead, cloud

architects can request what they need mere minutes before they need it or

automate the procurement process, taking advantage of the vast scale and rapid

response time of the cloud. The same is applicable to releasing the unneeded or

underutilized resources when you don’t need them. If you cannot embrace the

change and implement elasticity in your application architecture, you might not

be able to take the full advantage of the cloud. As a cloud architect, you should

think creatively and think about ways you can implement elasticity in your

application. For example, infrastructure that used to run daily nightly builds

and performs regression and unit tests every night at 2:00 AM for two hours

(often termed as the “QA/Build box”) was sitting idle for rest of the day. Now,

with elastic infrastructure, one can run nightly builds on boxes that are “alive”

and being paid for only for 2 hours in the night. Likewise, an internal trouble

ticketing Web application that always used to run on peak capacity (5 servers

24 3 7 3365) to meet the demand during the day can now be provisioned to

run on-demand (five servers from 9 AM to 5 PM and two servers for 5 PM to 9 AM)

based on the traffic pattern.

Designing intelligent elastic cloud architectures, so that infrastructure runs

only when you need it, is an art in itself. Elasticity should be one of the

architectural design requirements or a system property. The questions that you

need to ask are as follows: What components or layers in my application

architecture can become elastic? What will it take to make that component

elastic? What will be the impact of implementing elasticity to my overall system

architecture?

In the next section, you will see specific techniques to implement elasticity in

your applications. To effectively leverage the cloud benefits, it is important to

architect with this mindset.

Not Fearing Constraints

When you decide to move your applications to the cloud and try to map your

system specifications to those available in the cloud, you will notice that cloud

might not have the exact specification of the resource that you have on-premise.

For example, “Cloud does not provide X amount of RAM in a server” or “My

database needs to have more IOPS than what I can get in a single instance.”

You should understand that cloud provides abstract resources that become

powerful when you combine them with the on-demand provisioning model.

You should not be afraid and constrained when using cloud resources because

it is important to understand that even if you might not get an exact replica

of your hardware in the cloud environment, you have the ability to get more of

those resources in the cloud to compensate that need.

For example, if the cloud does not provide you with exact or greater amount

of RAM in a server, try using a distributed cache like memcached or

partitioning your data across multiple servers. If your databases need more

IOPS and it does not directly map to that of the cloud, there are several

recommendations that you can choose from depending on your type of data

and use case. If it is a read-heavy application, you can distribute the read load

across a fleet of synchronized slaves. Alternatively, you can use a sharding

algorithm that routes the data where it needs to be or you can use various

database clustering solutions.

In retrospect, when you combine the on-demand provisioning capabilities

with the flexibility, you will realize that apparent constraints can actually be

broken in ways that will actually improve the scalability and overall perfor-

mance of the system.

Virtual Administration

The advent of cloud has changed the role of System Administrator to a “Virtual

System Administrator.” This simply means that daily tasks performed by these

administrators have now become even more interesting as the administrators

learn more about applications and decide what’s best for the business as a

whole. The System Administrator no longer has a need to provision servers and

install software and wire up network devices since all of that grunt work is

replaced by few clicks and command line calls. The cloud encourages automa-

tion because the infrastructure is programmable. System administrators need to

move up the technology stack and learn how to manage abstract cloud

resources using scripts.

Likewise, the role of Database Administrator is changed into a “Virtual

Database Administrator” (DBA) in which he/she manages resources through a

Web-based console, executes scripts that add new capacity programmatically if

the database hardware runs out of capacity, and automates the day-to-day

processes. The virtual DBA has to now learn new deployment methods (virtual

machine images), embrace new models (query parallelization, geo-redundancy,

and asynchronous replication [19]), rethink the architectural approach for data

(sharding [20], horizontal partitioning , federating [21]), and leverage different

storage options available in the cloud for different types of datasets. In the

traditional enterprise company, application developers may not work closely

with the network administrators and network administrators may not have a

clue about the application. As a result, several possible optimizations in the

network layer and application architecture layer are overlooked. With the

cloud, the two roles have merged into one to some extent. When architecting

future applications, companies need to encourage more cross-pollination of

knowledge between the two roles and understand that they are merging.

CLOUD BEST PRACTICES

In this section, you will learn about best practices that will help you build an

application in the cloud.

Design for Failure and Nothing Will Fail

Rule of Thumb: Be a pessimist when designing architectures in the cloud;

assume things will fail. In other words, always design, implement, and deploy

for automated recovery from failure.

In particular, assume that your hardware will fail. Assume that outages will

occur. Assume that some disaster will strike your application. Assume that you

will be slammed with more than the expected number of requests per second

some day. Assume that with time your application software will fail too. By

being a pessimist, you end up thinking about recovery strategies during design

time, which helps in designing an overall system better.

If you realize that things fail over time and incorporate that thinking into

your architecture, as well as build mechanisms to handle that failure before

disaster strikes to deal with a scalable infrastructure, you will end up creating a

fault-tolerant architecture that is optimized for the cloud.

Questions that you need to ask: What happens if a node in your system fails?

How do you recognize that failure? How do I replace that node? What kind of

scenarios do I have to plan for? What are my single points of failure? If a load

balancer is sitting in front of an array of application servers, what if that

load balancer fails? If there are master and slaves in your architecture, what if

the master node fails? How does the failover occur and how is a new slave

instantiated and brought into sync with the master?

Just like designing for hardware failure, you have to also design for software

failure. Questions that you need to ask: What happens to my application if the

dependent services changes its interface? What if downstream service times out

or returns an exception? What if the cache keys grow beyond memory limit of

an instance?

Build mechanisms to handle that failure. For example, the following

strategies can help in event of failure:

1. Haveacoherent backupandrestorestrategyforyourdataandautomateit.

2. Build process threads that resume on reboot.

3. Allow the state of the system to re-sync by reloading messages from

queues.

4. Keep preconfigured and preoptimized virtual images to support strategies

2 and 3 on launch/boot.

5. Avoid in-memory sessions or stateful user context; move that to data

stores.

Good cloud architectures should be impervious to reboots and re-launches. In

GrepTheWeb (discussed in the next section), by using a combination of

Amazon SQS and Amazon SimpleDB, the overall controller architecture is

very resilient to the types of failures listed in this section. For instance, if the

instance on which controller thread was running dies, it can be brought up and

resume the previous state as if nothing had happened. This was accomplished

by creating a preconfigured Amazon machine image, which, when launched,

dequeues all the messages from the Amazon SQS queue and reads their states

from an Amazon SimpleDB domain on reboot.

Designing with an assumption that underlying hardware will fail will prepare

you for the future when it actually fails.

This design principle will help you design operations-friendly applications,

as also highlighted in Hamilton’s paper [19]. If you can extend this principle to

proactively measure and balance load dynamically, you might be able to deal

with variance in network and disk performance that exists due to the multi-

tenant nature of the cloud.

AWS-Specific Tactics for Implementing This Best Practice

1. Failover gracefully using Elastic IPs: Elastic IP is a static IP that is

dynamically remappable. You can quickly remap and failover to

another set of servers so that your traffic is routed to the new servers.

It works great when you want to upgrade from old to new versions or

in case of hardware failures.

2. Utilize multiple availability zones: Availability zones are conceptually

like logical datacenters. By deploying your architecture to multiple

availability zones, you can ensure high availability.

3. Maintain an Amazon Machine Image so that you can restore and

clone environments very easily in a different availability zone; main-

tain multiple database slaves across availability zones and set up hot

replication.

Decouple your Components

The cloud reinforces the SOA design principle that the more loosely coupled the

components of the system, the bigger and better it scales.

The key is to build components that do not have tight dependencies on each

other, so that if one component were to die (fail), sleep (not respond), or remain

busy (slow to respond) for some reason, the other components in the system are

built so as to continue to work as if no failure is happening. In essence, loose

coupling isolates the various layers and components of your application so that

each component interacts asynchronously with the others and treats them as a

“black box.” For example, in the case of Web application architecture, you can

isolate the app server from the Web server and from the database. The app

server does not know about your Web server and vice versa; this gives

decoupling between these layers, and there are no dependencies code-wise

nor functional perspectives. In the case of batch-processing architecture, you

can create asynchronous components that are independent of each other.

Questions you need to ask: Which business component or feature could be

isolated from current monolithic application and can run stand-alone sepa-

rately? And then how can I add more instances of that component without

breaking my current system and at the same time serve more users? How much

effort will it take to encapsulate the component so that it can interact with other

components asynchronously?

Decoupling your components, building asynchronous systems, and scaling

horizontally become very important in the context of the cloud. It will not only

allow you to scale out by adding more instances of same component but will

also allow you to design innovative hybrid models in which a few components

continue to run in on-premise while other components can take advantage of

the cloudscale and use the cloud for additional compute-power and bandwidth.

That way with minimal effort, you can “overflow” excess traffic to the cloud by

implementing smart load balancing tactics.

One can build a loosely coupled system using messaging queues. If a queue/

buffer is used to connect any two components together (as shown in Figure

 under Loose Coupling), it can support concurrency, high availability,

and load

4. Utilize Amazon CloudWatch (or various real-time open source mon-

itoring tools) to get more visibility and take appropriate actions in case

of hardware failure or performance degradation. Set up an Auto

scaling group to maintain a fixed fleet size so that it replaces unhealthy

Amazon EC2 instances by new ones.

5. Utilize Amazon EBS and set up cron jobs so that incremental snap-

shots are automatically uploaded to Amazon S3 and data are persisted

independent of your instances.

6. Utilize Amazon RDS and set the retention period for backups, so that

it can perform automated backups.

Controller A

Controller B

Call a

Method in

B from A

Call a

Method in

C from B

Tight coupling (procedural programming)

Loose coupling (independent phases using queues)

FIGURE 4.4.3. Decoupling components using Queues.

spikes. As a result, the overall system continues to perform even if parts of

components are momentarily unavailable. If one component dies or becomes

temporarily unavailable, the system will buffer the messages and get them

processed when the component comes back up.

You will see heavy use of queues in GrepTheWeb architecture epitomized in

the next section. In GrepTheWeb, if lots of requests suddenly reach the server

(an Internet-induced overload situation) or the processing of regular expres-

sions takes a longer time than the median (slow response rate of a component),

the Amazon SQS queues buffer the requests in a durable fashion so that those

delays do not affect other components.

Queue
A

Queue
B

Queue
C

AWS Specific Tactics for Implementing This Best Practice

1. Use Amazon SQS to isolate components [22].

2. Use Amazon SQS as buffers between components [22].

3. Design every component such that it expose a service interface and is

responsible for its own scalability in all appropriate dimensions and

interacts with other components asynchronously.

4. Bundle the logical construct of a component into an Amazon Machine

Image so that it can be deployed more often.

5. Make your applications as stateless as possible. Store session state

outside of component (in Amazon SimpleDB, if appropriate).

Controller C

Controller A

Controller B

Controller C

Implement Elasticity

The cloud brings a new concept of elasticity in your applications. Elasticity can

be implemented in three ways:

1. Proactive Cyclic Scaling. Periodic scaling that occurs at fixed interval

(daily, weekly, monthly, quarterly).

2. Proactive Event-Based Scaling. Scaling just when you are expecting a big

surge of traffic requests due to a scheduled business event (new product

launch, marketing campaigns).

3. Auto-scaling Based on Demand. By using a monitoring service, your

system can send triggers to take appropriate actions so that it scales up or

down based on metrics (utilization of the servers or network i/o, for

instance).

To implement elasticity, one has to first automate the deployment process

and streamline the configuration and build process. This will ensure that the

system can scale without any human intervention.

This will result in immediate cost benefits as the overall utilization is

increased by ensuring your resources are closely aligned with demand rather

than potentially running servers that are underutilized.

Automate your Infrastructure. One of the most important benefits of using

a cloud environment is the ability to use the cloud’s APIs to automate your

deployment process. It is recommended that you take the time to create an

automated deployment process early on during the migration process and not

wait until the end. Creating an automated and repeatable deployment process

will help reduce errors and facilitate an efficient and scalable update process.

To automate the deployment process:

● Create a library of “recipes”—that is, small frequently used scripts (for

installation and configuration).

● Manage the configuration and deployment process using agents bundled

inside an AMI.

● Bootstrap yourinstances.

Bootstrap Your Instances. Let your instances ask you a question at boot:

“Who am I and what is my role?” Every instance should have a role (“DB server,”

“app server,” “slave server” in the case of a Web application) to play in the

environment. This role may be passed in as an argument during launch that

instructs the AMI when instantiated the steps to take after it has booted. On

boot, instances should grab the necessary resources (code, scripts, configuration)

based on the role and “attach” itself to a cluster to serve its function.

Benefits of bootstrapping your instances:

1. It re-creates the (Dev, staging, Production) environment with few clicks

and minimal effort.

2. It affords more control over your abstract cloud-based resources.

3. It reduces human-induced deployment errors.

4. It creates a self-healing and self-discoverable environment which is more

resilient to hardware failure.

AWS-Specific Tactics to Automate Your Infrastructure

1. Define auto-scaling groups for different clusters using the Amazon

auto-scaling feature in Amazon EC2.

2. Monitor your system metrics (CPU, memory, disk I/O, network I/O)

using Amazon CloudWatch and take appropriate actions (launching

new AMIs dynamically using the auto-scaling service) or send

notifications.

3. Store and retrieve machine configuration information dynamically:

Utilize Amazon SimpleDB to fetch config data during the boot-time of

an instance (e.g., database connection strings). SimpleDB may also be

used to store information about an instance such as its IP address,

machine name, and role.

4. Design a build process such that it dumps the latest builds to a bucket

in Amazon S3; download the latest version of an application from

during system startup.

5. Invest in building resource management tools (automated scripts,

preconfigured images) or use smart open source configuration man-

agement tools like Chef [23], Puppet [24], CFEngine [25], or Genome

[26].

6. Bundle Just Enough Operating System (JeOS [27]) and your software

dependencies into an Amazon Machine Image so that it is easier to

manage and maintain. Pass configuration files or parameters at launch

time and retrieve user data [28] and instance metadata after launch.

7. Reduce bundling and launch time by booting from Amazon EBS

volumes [29] and attaching multiple Amazon EBS volumes to an

instance. Create snapshots of common volumes and share snapshots

[30] amongaccounts wherever appropriate.

8. Application components should not assume health or location of

hardware it is running on. For example, dynamically attach the IP

address of a new node to the cluster. Automatically failover to the new

cloned instance in case of a failure.

Think Parallel

The cloud makes parallelization effortless. Whether it is requesting data from

the cloud, storing data to the cloud, or processing data (or executing jobs)

in the cloud, as a cloud architect you need to internalize the concept of

parallelization when designing architectures in the cloud. It is advisable to not

only implement parallelization wherever possible but also automate it because

the cloud allows you to create a repeatable process every easily.

When it comes to accessing (retrieving and storing) data, the cloud is

designed to handle massively parallel operations. In order to achieve maximum

performance and throughput, you should leverage request parallelization.

Multi-threading your requests by using multiple concurrent threads will store

or fetch the data faster than requesting it sequentially. Hence, wherever

possible, the processes of a cloud application should be made thread-safe

through a share-nothing philosophy and leverage multi-threading.

When it comes to processing or executing requests in the cloud, it becomes

even more important to leverage parallelization. A general best practice, in the

case of a Web application, is to distribute the incoming requests across multiple

Web servers using load balancer. In the case of a batch processing application,

your master node can spawn up multiple slave worker nodes that process a task

in parallel (as in distributed processing frameworks like Hadoop [31]).

The beauty of the cloud shines when you combine elasticity and parallelization.

Your cloud application can bring up a cluster of compute instances that are

provisioned within minutes with just a few API calls, perform a job by

executing tasks in parallel, store the results, and terminate all the instances.

The GrepTheWeb application discussed in the next section is one such example.

Keep Dynamic Data Closer to the Compute and

Static Data Closer to the End User

In general it’s a good practice to keep your data as close as possible to your

compute or processing elements to reduce latency. In the cloud, this best

AWS Specific Tactics for Parallelization

1. Multi-thread your Amazon S3 requests as detailed in a best practices

paper [32] [62].

2. Multi-thread your Amazon SimpleDB GET and BATCHPUT re-

quests [33—35].

3. Create a JobFlow using the Amazon Elastic MapReduce Service for

each of your daily batch processes (indexing, log analysis, etc.) which

will compute the job in parallel and save time.

4. Use the Elastic Load Balancing service and spread your load across

multiple Web app servers dynamically.

practice is even more relevant and important because you often have to deal

with Internet latencies. Moreover, in the cloud, you are paying for bandwidth

in and out of the cloud by the gigabyte of data transfer, and the cost can add up

very quickly.

If a large quantity of data that need to be processed resides outside of

the cloud, it might be cheaper and faster to “ship” and transfer the data to the

cloud first and then perform the computation. For example, in the case of a data

warehousing application, it is advisable to move the dataset to the cloud and

then perform parallel queries against the dataset. In the case of Web applica-

tions that store and retrieve data from relational databases, it is advisable to

move the database as well as the app server into the cloud all at once.

If the data are generated in the cloud, then the applications that consume the

data should also be deployed in the cloud so that they can take advantage of in-

cloud free data transfer and lower latencies. For example, in the case of an e-

commerce Web application that generates logs and clickstream data, it is

advisable to run the log analyzer and reporting engines in the cloud.

Conversely, if the data are static and not going to change often (e.g., images,

video, audio, PDFs, JS, CSS files), it is advisable to take advantage of a content

delivery service so that the static data are cached at an edge location closer to

the end user (requester), thereby lowering the access latency. Due to the

caching, a content delivery service provides faster access to popular objects.

Security Best Practices

In a multi-tenant environment, cloud architects often express concerns about

security. Security should be implemented in every layer of the cloud application

architecture.

Physical security is typically handled by your service provider (Security

Whitepaper [38]), which is an additional benefit of using the cloud. Network

and application-level security is your responsibility, and you should implement

the best practices as applicable to your business. In this section, you will learn

about some specific tools, features, and guidelines on how to secure your cloud

application in the AWS environment. It is recommended to take advantage of

AWS-Specific Tactics for Implementing This Best Practice

1. Ship your data drives to Amazon using the Import/Export service [36].

It may be cheaper and faster to move large amounts of data using the

sneakernet [37] than to upload using the Internet.

2. Utilize the same availability zone to launch a cluster of machines.

3. Create a distribution of your Amazon S3 bucket and let Amazon

CloudFront caches content in that bucket across all the 14 edge

locations around the world.

these tools and features mentioned to implement basic security and then

implement additional security best practices using standard methods as

appropriate or as they see fit.

Protect Your Data in Transit. If you need to exchange sensitive or con-

fidential information between a browser and a Web server, configure SSL on

your server instance. You’ll need a certificate from an external certification

authority like VeriSign [39] or Entrust [40]. The public key included in the

certificate authenticates your server to the browser and serves as the basis for

creating the shared session key used to encrypt the data in both directions.

Create a virtual private cloud by making a few command line calls (using

Amazon VPC). This will enable you to use your own logically isolated resources

within the AWS cloud, and then connect those resources directly to your own

data center using industry-standard encrypted IPSec VPN connections.

You can also set up [41] an OpenVPN server on an Amazon EC2 instance

and install the OpenVPN client on all user PCs.

Protect your Data at Rest. If you are concerned about storing sensitive and

confidential data in the cloud, you should encrypt the data (individual files)

before uploading it to the cloud. For example, encrypt the data using any open

source [42] or commercial [43] PGP-based tools before storing it as Amazon S3

objects and decrypt it after download. This is often a good practice when

building HIPPA-compliant applications [44] that need to store protected health

information (PHI).

On Amazon EC2, file encryption depends on the operating system. Amazon

EC2 instances running Windows can use the built-in Encrypting File System

(EFS) feature [45] available in Windows. This feature will handle the encryption

and decryption of files and folders automatically and make the process

transparent to the users [46]. However, despite its name, EFS doesn’t encrypt

the entire file system; instead, it encrypts individual files. If you need a full

encrypted volume, consider using the open-source TrueCrypt [47] product;

this will integrate very well with NTFS-formatted EBS volumes. Amazon EC2

instances running Linux can mount EBS volumes using encrypted file systems

using a variety of approaches (EncFS [48], Loop-AES [49], dm-crypt [50],

TrueCrypt [51]). Likewise, Amazon EC2 instances running OpenSolaris can take

advantage of ZFS [52] encryption support [53]. Regardless of which approach

youchoose, encryptingfilesandvolumesin Amazon EC2helpsprotectfilesand

log data so that only the users and processes on the server can see the data in

clear text, but anything or anyone outside the server sees only encrypted data.

No matter which operating system or technology you choose, encrypting

data at rest presents a challenge: managing the keys used to encrypt the data.

If you lose the keys, you will lose your data forever; and if your keys become

compromised, the data may be at risk. Therefore, be sure to study the key

management capabilities of any products you choose and establish a procedure

that minimizes the risk of losing keys.

Besides protecting your data from eavesdropping, also consider how to

protect it from disaster. Take periodic snapshots of Amazon EBS volumes

to ensure that it is highly durable and available. Snapshots are incremental in

nature and stored on Amazon S3 (separate geo-location) and can be restored

back with a few clicks or command line calls.

Manage Multiple Users and their permissions with IAM. AWS Identity

and Access Management (IAM) enables you to create multiple Users and

manage the permissions for each of these Users within your AWS Account. A

Userisanidentity(withinyour AWS Account) withuniquesecurity credentials

that can be used to access AWS Services. IAM eliminates the need to share

passwords or access keys, and makes it easy to enable or disable a User’s access

as appropriate.

IAM enables you to implement security best practices, such as least privi-

lege, by granting unique credentials to every User within your AWS account

and only grant permission to access the AWS Services and resources required

for the Users to perform their job. IAM is secure by default; new Users have

no access to AWS until permissions are explicitly granted.

IAM is natively integrated into most AWS Services. No service APIs have

changed to support IAM, and applications and tools built on top of the AWS

service APIs will continue to work when using IAM. Applications only need to

begin using the access keys generated for a new User.

You should minimize the use of your AWS Account credentials as much as

possible when interacting with your AWS Services and take advantage of IAM

User credentials to access AWS Services and resources.

Protect your AWS Credentials. AWS supplies two types of security

credentials: AWS access keys and X.509 certificates. Your AWS access key

has two parts: your access key ID and your secret access key. When using the

REST or Query API, you have to use your secret access key to calculate a

signature to include in your request for authentication. To prevent in-flight

tampering, all requests should be sent over HTTPS.

If your Amazon Machine Image (AMI) is running processes that need to

communicate with other AWS Web services (for polling the Amazon SQS

queue or for reading objects from Amazon S3, for example), one common

design mistake is embedding the AWS credentials in the AMI. Instead of

embedding the credentials, they should be passed in as arguments during

launch and encrypted before being sent over the wire [54].

If your secret access key becomes compromised, you should obtain a new

one by rotating [55] to a new access key ID. As a good practice, it is

recommended that you incorporate a key rotation mechanism into your

application architecture so that you can use it on a regular basis or occasionally

(when an disgruntled employee leaves the company) to ensure that compro-

mised keys can’t last forever.

WWeebb

SSeerrvveerr

AApppp

SSeerrvveerr

DBDB

SSeerrvveerr

Web

Server

Alternately, you can use X.509 certificates for authentication to certain

AWS services. The certificate file contains your public key in a base64-encoded

DER certificate body. A separate file contains the corresponding base64-

encoded PKCS#8 private key. AWS supports multi-factor authentication [56]

as an additional protector for working with your account information on aws.

Amazon.com and AWS Management Console [57].

Secure Your Application. Every Amazon EC2 instance is protected by one

or more security groups [58]—that is, named sets of rules that specify which

ingress (i.e., incoming) network traffic should be delivered to your instance.

You can specify TCP and UDP ports, ICMP types and codes, and source

addresses. Security groups give you basic firewall-like protection for running

instances. For example, instances that belong to a Web application can have

the security group settings shown in Figure 4.4.4.

Amazon EC2

Security Group

Firewall

Only Permit

Web layer

access to

App Layer

Only Permit

App layer

access to

DB Layer

Port 80 (HTTP)

and 443 (HTTPS)

of Web Layer

open to Internet

Only Port 22

(SSH) of App layer

open to only

developers in

corporate office

network

 All other

traffic denied

EBS

Volume

FIGURE 4.4.4. Securing your Web application using Amazon EC2 security groups.

App

Server

DB

Server

Another way to restrict incoming traffic is to configure software-based

firewalls on your instances. Windows instances can use the built-in firewall [59].

Linux instances can use netfilter [60] and iptables.

Over time, errors in software are discovered and require patches to fix. You

should ensure the following basic guidelines to maximize security of your

application:

● Regularly download patches from the vendor’s Web site and update your

AMIs.

● Redeploy instances from the new AMIs and test your applications to

ensure that the patches don’t break anything. Ensure that the latest AMI

is deployed across all instances.

● Invest in test scripts so that you can run security checks periodically and

automate the process.

● Ensure that the third-party software is configured to the most secure

settings.

● Never run your processes as root or Administrator login unless absolutely

necessary.

All the standard security practices in the pre-cloud era, such as adopting

good coding practices and isolating sensitive data, are still applicable and

should be implemented.

In retrospect, the cloud abstracts the complexity of the physical security

from you and gives you the control through tools and features so that you can

secure your application.

 GREPTHEWEB CASE STUDY

The Alexa Web Search
1

Web service allows developers to build customized

search engines against the massive data that Alexa generates (using a Web

crawl) every night. One of the features of their Web service allows users to

query the Alexa search index and get Million Search Results (MSR) back as

output. Developers can run queries that return up to 10 million results.

The resulting set, which represents a small subset of all the documents on the

Web, can then be processed further using a regular expression language. This

allows developers to filter their search results using criteria that are not indexed

by Alexa, thereby giving the developer power to do more sophisticated

searches. Developers can run regular expressions against the actual documents,

even when there are millions of them, to search for patterns and retrieve the

subset of documents that matched that regular expression. This application is

1The service has been deprecated for business reasons; however, the architecture and design

principles are still relevant.

currently in production at Amazon.com and is code-named GrepTheWeb

because it can “grep” (a popular Unix command-line utility to search pat-

terns) the actual Web documents. GrepTheWeb allows developers to either

(a) perform specialized searches such as selecting documents that have a

particular HTML tag or META tag, (b) find documents with particular

punctuations (“Hey!P”, he said. “Why Wait?”), or (c) search for mathematical
equations (“f(x) 5 x 1 W”), source code, e-mail addresses, or other pat-

terns such as “(dis)integration of life.”

The functionality is impressive, but even more impressive was GrepThe-

Web’s architecture and implementation. In the next section, you will zoom in to

see different levels of the architecture of GrepTheWeb.

Architecture

Figure 4.4.5 shows a high-level depiction of the architecture. The output of the

Million Search Results Service, which is a sorted list of links gzipped (com-

pressed using the Unix gzip utility) into a single file, is given to GrepTheWeb

as input. It takes a regular expression as a second input. It then returns a filtered

subset of document links sorted and gzipped into a single file. Since the overall

process is asynchronous, developers can get the status of their jobs by calling

GetStatus() to see whether the execution is completed.

Matching a regular expression against millions of documents is not trivial.

Different factors could combine to cause the processing to take a lot of time:

● Regular expressions could be complex.

● Dataset could be large, even hundreds of terabytes.

● There could be unknown request patterns; for example, any number of

people can access the application at any given point in time.

Hence, the design goals of GrepTheWeb included the ability to scale in all

dimensions (more powerful pattern-matching languages, more concurrent users

Input dataset (List of Document Urls)

Subset of

document

Urls that

matched the

RegEx

FIGURE 4.4.5. GrepTheWeb Architecture—Zoom Level 1.

RegEx

GetStatus

Grep The Web

Application

of common datasets, larger datasets, better result quality) while keeping the

costs of processing as low as possible.

The approach was to build an application that scales not only with demand,

but also without a heavy upfront investment and without the cost of maintaining

idle machines. To get a response in a reasonable amount of time, it was

important to distribute the job into multiple tasks and to perform a distributed

Grep operation that runs those tasks on multiple nodes in parallel.

Zooming in further, GrepTheWeb architecture is as shown in Figure 4.4.6. It

uses the following AWS components:

● Amazon S3. For retrieving input datasets and for storing the output

dataset.

● Amazon SQS. For durably buffering requests acting as a “glue” between

controllers.

● Amazon SimpleDB. For storing intermediate status, for storing log, and

for user data about tasks.

● Amazon EC2. For running a large distributed processing Hadoop cluster

on-demand.

● Hadoop. For distributed processing, automatic parallelization, and job

scheduling.

FIGURE 4.4.6. GrepTheWeb Architecture—Zoom Level 2.

Controller

Input Files
(Alexa Crawl)

StartGrep
RegEx Amazon

SQS

Manage phases

User info,
Job status info

Launch, Monitor,
Shutdown

GetStatus Get Output

Amazon
SimpleDB

Input
Output

Amazon
S3

Amazon

EC2

Cluster

Monitor

Phase

Shutdown

Phase

Launch

Phase

FIGURE 4.4.7. Phases of GrepTheWeb architecture.

Workflow

GrepTheWeb is modular. It does its processing in four phases as shown in

Figure 4.4.7. The launch phase is responsible for validating and initiating the

processing of a GrepTheWeb request, instantiating Amazon EC2 instances,

launching the Hadoop cluster on them, and starting all the job processes. The

monitor phase is responsible for monitoring the EC2 cluster; it also maps,

reduces, and checks for success and failure. The shutdown phase is responsible

for billing and shutting down all Hadoop processes and Amazon EC2

instances, while the cleanup phase deletes Amazon SimpleDB transient data.

Detailed Workflow for Figure 4.4.8

1. On application start, queues are created if not already created and all

the controller threads are started. Each controller thread starts polling

their respective queues for any messages.

2. When a StartGrep user request is received, a launch message is

enqueued in the launch queue.

3. Launch Phase: Thelaunchcontrollerthreadpicksupthelaunchmessage,

executes the launch task, updates the status and timestamps in the

Amazon SimpleDB domain, enqueues a new message in the monitor

queue, and deletes the message from the launch queue after processing.

a. The launch task starts Amazon EC2 instances using a JRE pre-

installed AMI, deploys required Hadoop libraries, and starts a

Hadoop Job (run Map/Reduce tasks).

b. Hadooprunsmaptaskson Amazon EC2 slave nodesinparallel. Each

map task takes files (multithreadedin background) from Amazon S3,

runsaregularexpression(Queue Message Attribute) againstthefile

from Amazon S3, and writes the match results along with a descrip-

tion of up to five matches locally, and then the combine/reduce task

combines and sorts the results and consolidates the output.

c. The final results are stored on Amazon S3 in the output bucket.

4. Monitor Phase: The monitor controller thread picks up this message,

validates the status/error in Amazon SimpleDB, executes the monitor

task, updates the status in the Amazon SimpleDB domain, enqueues a

new message in the shutdown queue and billing queue, and deletes the

message from monitor queue after processing.

Cleanup

Phase

FIGURE 4.4.8. GrepTheWeb Architecture—Zoom Level 3.

a. The monitor task checks for the Hadoop status (JobTracker

success/failure) in regular intervals, and it updates the SimpleDB

items with status/error and Amazon S3 output file.

5. Shutdown Phase: The shutdown controller thread picks up this message

from the shutdown queue, executes the shutdown task, updates the status

and timestamps in Amazon SimpleDB domain, and deletes the message

from the shutdown queue after processing. Likewise, the billing controller

threadpicks up the message from the billing queue and executesthe billing

task of sending usage information to the billing service.

a. The shutdown task kills the Hadoop processes, terminates the EC2

instances after getting EC2 topology information from Amazon

SimpleDB, and disposes of the infrastructure.

b. The billing task gets EC2 topology information, SimpleDB Box

Usage, and Amazon S3 file and query input and calculates the

billing and passes it to the billing service.

6. Cleanup Phase: Archives the SimpleDB data with user info.

7. Users can execute GetStatus on the service endpoint to get the status of

the overall system (all controllers and Hadoop) and download the

filtered results from Amazon S3 after completion.

Launch

Controller

Amazon SQS
Billing
Queue

Launch
Queue

Monitor
Queue

Shutdown
Queue

Billing

Service

Controller

Shutdown

Controller

Launch
Get EC2
Info

Ping

Insert
JobID,

Status

Insert
Amazon EC2

info

Check for results

Shutdown

Master M
Slaves N

Status
DB

Put

File

Output

HDFS

Get
File

Input

Amazon SimpleDB

Hadoop Cluster on

Amazon EC2
Amazon S3

Monitor

Controller

Billing

Controller

Implementing Best Practices

In the next four subsections, you will see how GrepTheWeb implements the

best practices using different Amazon Web Services.

Elastic Storage Provided by Amazon S3. In GrepTheWeb, Amazon S3

acts as an input as well as an output data store. The input to GrepTheWeb is

the Web itself (compressed form of Alexa’s Web Crawl), stored on Amazon S3

as objects and updated frequently. Because the Web Crawl dataset can be huge

(usually in terabytes) and always growing, there was a need for a distributed,

elastic, persistent storage. Amazon S3 proved to be a perfect fit.

Loose Coupling Using Amazon SQS. Amazon SQS was used as message-

passing mechanism between components. It acts as “glue” that wired different

functional components together. This not only helped in making the different

components loosely coupled, but also helped in building an overall more failure

resilient system.

Buffer. If one component is receiving and processing requests faster than other

components (an unbalanced producer consumer situation), buffering will help

make the overall system more resilient to bursts of traffic (or load). Amazon

SQS acts as a transient buffer between two components (controllers) of the

GrepTheWeb system. If a message is sent directly to a component, the receiver

will need to consume it at a rate dictated by the sender. For example, if the

billing system was slow or if the launch time of the Hadoop cluster was more

than expected, the overall system would slow down, because it would just have

to wait. With message queues, sender and receiver are decoupled and the queue

service smooths out any “spiky” message traffic.

Isolation. Interaction between any two controllers in GrepTheWeb is through

messages in the queue, and no controller directly calls any other controller. All

communication and interaction happens by storing messages in the queue (en-

queue) and retrieving messages from the queue (de-queue). This makes the

entire system loosely coupled and makes the interfaces simple and clean.

Amazon SQS provided a uniform way of transferring information between

the different application components. Each controller’s function is to retrieve the

message, process the message (execute the function), and store the message in

another queue while they are completely isolated from others.

Asynchrony. Because it was difficult to know how much time each phase

would take to execute (e.g., the launch phase decides dynamically how many

instances need to start based on the request and hence execution time is

unknown), Amazon SQS helped by making the system behave in an

asynchronous fashion. Now, if the launch phase takes more time to process or

the monitor phase fails, the other components of the system are not affected

and the overall system is more stable and highly available.

Storing Statuses in Amazon SimpleDB. One use for a database in cloud

applications is to track statuses. Since the components of the system run

asynchronously, there is a need to obtain the status of the system at any given

point in time. Moreover, since all components are autonomous and discrete,

there is a need for a query-able data store that captures the state of the system.

Because Amazon SimpleDB is schema-less, there is no need to define the

structure of a record beforehand. Every controller can define its own structure

and append data to a “job” item. For example: For a given job, “run email

address regex over 10 million documents,” the launch controller will add/

update the “launch_status” attribute along with the “launch_starttime,” while

the monitor controller will add/update the “monitor_status” and “hadoop_

status” attributes with enumeration values (running, completed, error, none). A

GetStatus() call will query Amazon SimpleDB and return the state of each

controller and also the overall status of the system.

Component services can query Amazon SimpleDB anytime because

controllers independently store their states—one more nice way to create

asynchronous highly available services. Although a simplistic approach was

used in implementing the use of Amazon SimpleDB in GrepTheWeb, a more

sophisticated approach, where there was complete, almost real-time monitor-

ing, would also be possible—For example, storing the Hadoop JobTracker

status to show how many maps have been performed at a given moment.

Amazon SimpleDB is also used to store active Request IDs for historical and

auditing/billing purposes.

In summary, Amazon SimpleDB is used as a status database to store the

different states of the components and a historical/log database for querying

high-performance data.

Intelligent Elasticity Implemented Using Amazon EC2. In GrepTheWeb,

the controller code runs on Amazon EC2 instances. The launch controller

spawns master and slave instances using a preconfigured Amazon machine

image (AMI). Since the dynamic provisioning and decommissioning happens

using simple Web service calls, GrepTheWeb knows how many master and

slave instances need to be launched.

The launch controller makes an educated guess, based on reservation logic,

of how many slaves are needed to perform a particular job. The reservation

logic is based on the complexity of the query (number of predicates, etc.) and

the size of the input dataset (number of documents to be searched). This was

also kept configurable so that overall processing time can be reduced by simply

specifying the number of instances to launch. After launching the instances and

starting the Hadoop cluster on those instances, Hadoop will appoint a master

 Example

Regular Expression

“A(.*)zon”

Format of the line in the Input dataset

[URL] [Title] [charset] [size] [S3 Object Key of .gz file] [offset]
http://www.amazon.com/gp/browse.html?node=3435361 Amazon Web us-ascii 3509

/2008/01/08/51/1/51_1_20080108072442_crawl100.arc.gz 70150864

Mapper Implementation

Key = line number and value = line in the input dataset

Create a signed URL (using Amazon AWS credentials) using the contents of key-value
Read (fetch) Amazon S3 Object (file) into a buffer
Run regular expression on that buffer
If there is match, collect the output in new set of key-value pairs (key = line, value = up to 5 matches)

Reducer Implementation Pass-through (Built-in Identity Function) and write the results back to S3.

FIGURE 4.4.9. Map reduce operation (in GrepTheWeb).

and slaves, handles the negotiating, handshaking, and security token distribu-

tion (SSH keys, certificates), and runs the grep job.

GrepTheWeb Hadoop implementation

Hadoop is an open source distributed processing framework that allows

computation of large datasets by splitting the dataset into manageable chunks,

spreading it across a fleet of machines and managing the overall process by

launching jobs, processing the job no matter where the data are physically

located and, at the end, aggregating the job output into a final result.

Hadoop is a good fit for the GrepTheWeb application. Because each grep

task can be run in parallel independently of other grep tasks, using the parallel

approach embodied in Hadoop is a perfect fit.

For GrepTheWeb, the actual documents (the web) are crawled ahead of time

and stored on Amazon S3. Each user starts a grep job by calling the StartGrep

function at the service endpoint. When triggered, masters and slave nodes

(Hadoop cluster) are started on Amazon EC2 instances. Hadoop splits the input

(document with pointers to Amazon S3 objects) into multiple manageable

chunks of 100 lines each and assign the chunk to a slave node to run the map

task [61]. The map task reads these lines and is responsible for fetching the files

from Amazon S3, running the regular expression on them and writing the results

locally. If there is no match, there is no output. The map tasks then passes the

results to the reduce phase, which is an identity function (pass through) to

aggregate all the outputs. The “final” output is written back to Amazon S3.

FUTURE RESEARCH DIRECTIONS

The day is not too far when applications will cease to be aware of physical

hardware. Much like plugging in a microwave in order to power it doesn’t

require any knowledge of electricity, one should be able to plug in an

http://www.amazon.com/gp/browse.html?node=3435361

application to the cloud in order to receive the power it needs to run, just like a

utility. As an architect, you will manage abstract compute, storage, and

network resources instead of physical servers. Applications will continue to

function even if the underlying physical hardware fails or is removed or

replaced. Applications will adapt themselves to fluctuating demand patterns

by deploying resources instantaneously and automatically, thereby achieving

highest utilization levels at all times. Scalability, security, high availability,

fault-tolerance, testability, and elasticity will be configurable properties of

the application architecture and will be an automated and intrinsic part of the

platform on which they are built.

However, we are not there yet. Today, you can build applications in the

cloud with some of these qualities by implementing the best practices high-

lighted in the chapter. Best practices in cloud computing architectures will

continue to evolve, and as researchers we should focus not only on enhancing

the cloud but also on building tools, technologies, and processes that will make

it easier for developers and architects to plug in applications to the cloud easily.

BUILDING CONTENT DELIVERY NETWORKS

USING CLOUDS

INTRODUCTION

Numerous “storage cloud” providers (or “Storage as a Service”) have recently

emerged that can provide Internet-enabled content storage and delivery

capabilities in several continents, offering service-level agreement (SLA)-

backed performance and uptime promises for their services. Customers are

charged only for their utilization of storage and transfer of content (i.e., a utility

computing model), which is typically on the order of cents per gigabyte. This

represents a large paradigm shift away from typical hosting arrangements that

were prevalent in the past, where average customers were locked into hosting

contracts (with set monthly/yearly fees and excess data charges) on shared

hosting services like DreamHost . Larger enterprise customers typically

utilized pervasive and high-performing Content Delivery Networks (CDNs)

like Akamai [3, 4] and Limelight, who operate extensive networks of “edge”

servers that deliver content across the globe. In recent years it has become

increasingly difficult for competitors to build and maintain competing CDN

infrastructure, and a once healthy landscape of CDN companies has been

reduced to a handful via mergers, acquisitions, and failed companies .

However, far from democratizing the delivery of content, the most pervasive

remaining CDN provider (Akamai) is priced out of the reach of most small to

medium-sized enterprises (SMEs), government agencies, universities, and

charities . As a result, the idea of utilizing storage clouds as a poor man’s CDN

is very enticing. At face value, these storage providers promise the ability to

rapidly and cheaply “scale-out” to meet both flash crowds (which is the dream

and the nightmare of most Web-site operators) and anticipated increases in

demand. Economies of scale, in terms of

cost effectiveness and performance for both providers and end users, could be

achieved by leveraging existing “storage cloud” infrastructure, instead of

investing large amounts of money in their own content delivery platform or

utilizing one of the incumbent operators like Akamai. In Section 4.5.2, we

analyze the services provided by these storage providers, and well as their

respective cost structures, to ascertain if they are a good fit for basic content

delivery needs.

These emerging services have reduced the cost of content storage and delivery

by several orders of magnitude, but they can be difficult to use for nondevelopers,

because each service is best utilized via unique Web services or programmer APIs

and have their own unique quirks. Many Web sites have utilized individual

storage clouds to deliver some or all of their content , most notably the New

York Times and SmugMug [9]; however, there is no general-purpose, reusable

framework to interact with multiple storage cloud providers and leverage their

services as a content delivery network. Most “storage cloud” providers are

merely basic file storage and delivery services and do not offer the capabilities of a

fully featured CDN such as automatic replication, fail-over, geographical load

redirection, and load balancing. Furthermore, a customer may need coverage in

more locations than offered by a single provider. To address this, in Section

4.5.3 we introduce MetaCDN, a system that utilizes numerous storage

providers in order to create an overlay network that can be used as a high-

performance, reliable, and redundant geographically distributed CDN.

However, in order to utilize storage and file delivery from these providers in

MetaCDN as a Content Delivery Network, we want to ensure that they provide

sufficient performance (i.e., predictable and sufficient response time and

throughput) and reliability (i.e., redundancy, file consistency). While individual

storage clouds have been trialed successfully for application domains such as

science grids [10, 11] and offsite file backup [23], their utility for

generalpurpose content delivery, which requires low latency and high

throughput, has not been evaluated rigorously. In Section 4.5.4 we summarize

the performance findings to date for popular storage clouds as well as for the

MetaCDN overlay itself. In Section 4.5.5 we consider the future directions of

MetaCDN and identify potential enhancements for the service. Finally, in

Section 4.5.6 we offer some concluding remarks and summarize our

contribution.

BACKGROUND/RELATED WORK

In order to ascertain the feasibility of building a content delivery network service

from storage clouds, it is important to ascertain whether the storage clouds used

possess the necessary features, performance, and reliability characteristics to act

as CDN replica servers. While performance is crucial for content delivery, we also

need to examine the cost structures of the different providers. At face value these

services may appear ludicrously cheap; however, they have subtle differences in

pricing and the type of services billed to the end user, and as a result a user could

get a nasty surprise if they have not understood what they will be charged for.

For the purposes of this chapter, we chose to analyze the four most prominent

storage cloud providers: Amazon Simple Storage Service (S3) and CloudFront

(CF), Nirvanix Storage Delivery Network (SDN), Rackspace Cloud Files, and

Microsoft Azure Storage, described in Sections 4.5.2.1, 4.5.2.2, 4.5.2.3 and

4.5.2.4, respectively. At the time of writing, Amazon offers storage nodes in

the United States and Europe (specifically, Ireland) while Nirvanix has storage

nodes in the United States (over three separate sites in California, Texas, and

New Jersey), Germany, and Japan. Another storage cloud provider of note is

Rackspace Cloud Files, located in Dallas, Texas, which recently launched in

late 2008. Microsoft has also announced their cloud storage offering, Azure

Storage Service, which has data centers in Asia, Europe, and the United States

and formally launched as an SLA-backed commercial service in April 2010.

An enterprise class CDN service typically offers audio and video encoding and

adaptive delivery, so we will consider cloud-based encoding services such as

encoding.com that offer similar capability in Section 4.5.2.5.

Amazon Simple Storage and CloudFront

Amazon S3 was launched in the United States in March 2006 and in Europe in

November 2007, opening up the huge infrastructure that Amazon themselves

utilize to run their highly successful e-commerce company, Amazon.com. In

November 2008, Amazon launched CloudFront, a content delivery service that

added 14 edge locations (8 in the United States, 4 in Europe, and 2 in Asia).

However, unlike S3, CloudFront does not offer persistent storage. Rather, it is

analogous to a proxy cache, with files deployed to the different CloudFront

locations based on demand and removed automatically when no longer

required. CloudFront also offers “streaming distributions” that can distribute

audio and video content in real time, using the Real-Time Messaging Protocol

(RTMP) instead of the HTTP protocol.

Amazon provides REST and SOAP interfaces to its storage resources,

allowing users the ability to read, write, or delete an unlimited amount

of objects, with sizes ranging from 1 byte to 5 gigabytes each. As noted in

Table 4.5.1, Amazon S3 has a storage cost of $0.15 per GB/month in their

standard U.S. and EU data centers, or $0.165 per GB/month in their North

California data center. Incoming traffic (i.e., uploads) are charged at $0.10 per

GB/month, and outgoing traffic (i.e., downloads) are charged at $0.15 per GB/

month, from the U.S. or EU sites. For larger customers, Amazon S3 has a

sliding scale pricing scheme, which is depicted in Figure 4.5.1. Discounts for

outgoing data occur after 10TB, 50 TB and 150 TB of data a month has been

transferred, resulting in a subtly sublinear pricing response that is depicted

in the figure. As a point of comparison, we have included the “average” cost of

the top four to five major incumbent CDN providers. An important facet of

TABLE 4.5.1. Pricing Comparison of Cloud Storage

Vendors

Amazon

Microsoft Microsoft

Cost

Type

Nirvanix

SDNa

S3

U.S./EU

Standardb

Amazon

S3 U.S.

N. Californiab

Rackspace

Cloud

Files

Azure

Storage

NA/EU

Azure

Storage

Asia Pacific

Incoming

data

($/GB)

Outgoing

data

($/GB)

Storage

($/GB)

Requests

($/1000

PUT)

Requests

($/10,000

GET)

0.18 0.10 0.10 0.08 0.10 0.30

0.18 0.15 0.15 0.22 0.15 0.45

0.25 0.15 0.165 0.15 0.15 0.15

0.00 0.01 0.011 0.02 0.001 0.001

0.00 0.01 0.011 0.00 0.01 0.01

a Pricing valid for storage, uploads, and download usage under 2 TB/month.
b Pricing valid for first 50 TB/month of storage used and first 1 GB/month data transfer out.

120000

100000

80000

60000

40000

20000

0

0 50000 100000 150000 200000 250000

Outgoing TB Data/month

FIGURE 4.5.1. Pricing comparison of cloud storage vendors based on usage.

Amazon S3 (all)

Amazon CF US/EU

Amazon CF HK/SING

Amazon CF JAP

Nirvarix SDN

Rackspace Cloud Files

Windows Azure Storage NA/EU

Windows Azure Storage APAC

Traditional CDN (avg.)

$
U

S
D

/m
o
n
th

Amazon’s pricing that should be noted by users (but is not captured by Figure

4.5.1) is the additional cost per 1000 PUT/POST/LIST or 10,000 GET HTTP

requests, which can add up depending on the type of content a user places on

Amazon S3. While these costs are negligible if a user is utilizing Amazon S3 to

primarily distribute very large files, if they are storing and serving smaller files,

a user could see significant extra costs on their bill. For users serving content

with a lower average file size (e.g., 100 kB), a larger cost is incurred.

Nirvanix Storage Delivery Network

Nirvanix launched its Amazon S3 competitor, the Nirvanix Storage Delivery

Network (SDN), on September 2007. The Nirvanix service was notable in that

it had an SLA-backed uptime guarantee at a time when Amazon S3 was simply

operated on a best-effort service basis. Unsurprisingly, shortly after Nirvanix

launched its SDN, Amazon added their own SLA-backed uptime guarantees.

Nirvanix differentiates itself in several ways (depicted in Table 4.5.2), notably

by having coverage in four regions, offering automatic file replication over

sites in the SDN for performance and redundancy, and supporting file sizes up

to 256 GB. Nirvanix is priced slightly higher than Amazon’s service, and they

do not publish their pricing rates for larger customers (2 TB/month). Nirvanix

provides access to their resources via SOAP or REST interfaces, as well as

providing SDK’s in Java, PHP Zend, Python, and C#.

Rackspace Cloud Files

Rackspace (formerly Mosso) Cloud Files provides a self-serve storage and

deliveryserviceinafashionsimilartothatoftheAmazonandNirvanixofferings.

Thecore Cloud Filesofferingisservedfromamultizoned, redundantdatacenter

in Dallas, Texas. The service is notable in that it also provides CDN integration.

Rather than building their own CDN extension to the Cloud Files platform as

TABLE 4.5.2. Feature Comparison of Cloud Storage Vendors

Feature

Nirvanix

SDN

Amazon

S3

Amazon

Cloud Front

Rackspace

Cloud

Files

Microsoft

Azure

Storage

SLA 99.9 99.9 99.9 99.9 99.9

Max. size 256 GB 5 GB 5 Gb 5 GB 50 GB

U.S. PoP Yes Yes Yes Yes Yes

EU PoP Yes Yes Yes Yes Yes

Asia PoP Yes No Yes Yes Yes

Aus PoP No No No Yes No

File ACL Yes Yes Yes Yes Yes

Replication Yes No Yes Yes No

API Yes Yes Yes Yes Yes

Amazon has done for S3, Rackspace has partnered with a traditional CDN

service, Limelight, to distribute files stored on the Cloud Files platform to edge

nodes operated by Limelight. Unlike Amazon CloudFront, Rackspace does not

charge for moving data from the core Cloud Files servers to the CDN edge

locations.RackspaceprovidesRESTfulAPIsaswellasAPIbindingsforpopular

languages such as PHP, Python, Ruby, Java, and .NET.

Azure Storage Service

Microsoft’s Windows Azure platform offers a comparable storage and delivery

platform called Azure Storage, which provides persistent and redundant

storage in the cloud. For delivering files, the Blob service is used to store files

up to 50 GB in size. On a per storage account basis, the files can be stored and

delivered from data centers in Asia (East and South East), the United States

(North Central and South Central), and Europe (North and West). Azure

Storage accounts can also be extended by a CDN service that provides an

additional 18 locations globally across the United States, Europe, Asia,

Australia, and South America. This CDN extension is still under testing and

is currently being offered to customers as a Community Technology Preview

(CTP) at no charge.

Encoding Services

Video and audio encoding services are also individually available from cloud

vendors. Two notable providers are encoding.com and Nirvanix (previously

discussed in Section 4.5.2.2). The endoing.com service is a cloud-based video

encoding platform that can take a raw video file and generate an encoded file

suitable for streaming. The service supports a number of video output formats

that are suitable for smartphones (e.g., iPhone) right up to high-quality H.264

desktop streaming. A variety of integration services are available, allowing the

encoded file to be placed on a private server, Amazon S3 bucket, or Rackspace

Cloud Files folder. Nirvanix also offers video encoding as a service, offering a

limited number of H.263 and H.264 encoding profiles in a Flash (flv) or MPEG-4

(mp4) container. The resulting encodes are stored on the Nirvanix SDN.

4.5.3 METACDN: HARNESSING STORAGE CLOUDS FOR

LOW-COST, HIGH-PERFORMANCE CONTENT DELIVERY

In this section we introduce MetaCDN, a system that leverages the existing

storage clouds and encoding services described in Section 4.5.2, creating an

integrated overlay network that aims to provide a low-cost, high-performance,

easy-to-use content delivery network for content creators and consumers.

The MetaCDN service (depicted in Figure 4.5.2) is presented to end users in

two ways. First, it can be presented as a Web portal, which was developed using

Amazon S3 &

CloudFront

JetS3t toolkit

Java SDK

Open Source

Niranix SDN

Nirvanix SDK

Java SDK

Nirvanix, Inc

Mosso Cloud

Files CDN

Cloud Files SDK

Java SDK

Mosso, Inc

Microsoft Azure

Storage Service

AzureConnector

Java stub

MetaCDN.org

Shared/Private

Host

WebDAVConnector

Java stub

MetaCDN.org

SCPConnector

Java stub

AmazonS3Connector NirvanixConnector CloudFilesConnector MetaCDN.org

Java stub

MetaCDN.org

Java stub

MetaCDN.org

Java stub

MetaCDN.org

FTPConnector
Java stub

MetaCDN.org

MetaCDN

Manager

MetaCDN

MetaCDN QoS

Monitor

MetaCDN

Allocator

MetaCDN

Database

EncodingEncoder

Java stub

MetaCDN.org

NirvanixEncoder

Java stub

MetaCDN.org

Encoding.com

Nirvanix

Web Portal Web Service Load Redirector
Java (JSF/EJB) based portal
Support HTTP POST

New/view/modify deployment

SOAP Web Service
RESTful Web Service

Programmatic access

Random redirection
Geographical redirection

Least cost redirection

FFmpegEncoder

Java stub

MetaCDN.org

Shared/Private

Host

<uses> <uses> <uses> <uses> <uses> <uses>

User 1 User 2 User n Consumer 1 Consumer 2 Consumer n

FIGURE 4.5.2. The MetaCDN architecture.

(a) Java Enterprise and Java Server Faces (JSF) technologies, with a MySQL

back-end to store user accounts and deployments, and (b) the capabilities,

pricing, and historical performance of service providers. The Web portal acts as

the entry point to the system and also functions as an application-level load

balancer for end users that wish to download content that has been deployed

by MetaCDN. Using the Web portal, users can sign up for an account on the

MetaCDN system (depicted in Figure 4.5.3) and enter credentials for any cloud

storage or other provider they have an account with. Once this simple step has

been performed, they can utilize the MetaCDN system to intelligently deploy

content onto storage providers according to their performance requirements

and budget limitations. The Web portal is most suited for small or ad hoc

deployments and is especially useful for less technically inclined content

creators.

FIGURE 4.5.3. Registering storage vendors in the MetaCDN GUI.

The second method of accessing the MetaCDN service is via RESTful Web

Services. These Web Services expose all of the functionality of the MetaCDN

system. This access method is most suited for customers with more complex

and frequently changing content delivery needs, allowing them to integrate

the MetaCDN service in their own origin Web sites and content creation

workflows.

Integrating “Cloud Storage” Providers

The MetaCDN system works by integrating with each storage provider via

connectors (shown in Figures 4.5.2 and 4.5.4) that provides an abstraction to

hide the complexity arising from the differences in how each provider allows

access to their systems. An abstract class, DefaultConnector, prescribes the

basic functionality that each provider could be expected to support, and it must

be implemented for all existing and future connectors. These include basic

operations like creation, deletion, and renaming of replicated files and folders.

If an operation is not supported on a particular service, then the connector for

that service throws a FeatureNotSupportedException. This is crucial, because

while the providers themselves have very similar functionality, there are some

key differences, such as the largest allowable file size or the coverage footprint.

Figure 4.5.4 shows two connectors (for Amazon S3 and Nirvanix SDN,

respectively), highlighting one of Amazon’s most well-known limitations—

that you cannot rename a file, which should result in a

FeatureNotSupportedException if called. Instead, you must delete the file and

re-upload it. The Nirvanix connector throws a FeatureNotSupportedException

when you try and create a Bittorrent deployment, because it does not support

this functionality, unlike Amazon S3. Connectors are also available for (a)

shared or private hosts via connectors for commonly available FTP-accessible

shared Web hosting (shown in Figure 4.5.4) and (b) privately operated Web

hosting that may be available via SSH/SCP or WebDAV protocols.

AmazonS3Connector
createFolder(foldername, location)
deleteFolder(foldername)
createFile(file, foldername,

location, date)
createFile(fileURL, foldername,

location, date)
renameFile(filename, newname,

location) throws
FeatureNetSupportedException

createTorrent(file)
createTOrrent(fileURL)
deleteFile(file, location)
listFilesAndFolders()
deleteFilesAndFolders()

<<exception>>

FeatureNotSupportedException

FeatureNotSupportedException(msg)

DefaultConnector

DEPLOY_USA
DEPLOY_EU
DEPLOY_ASIA
DEPLOY_AUS
createFolder(foldername, location)
deleteFolder(foldername)
createFile(file, foldername,

location, date)
createFile(fileURL, foldername,

locatrion, date)
renameFile(filename, newname,

location)
createTorrent(file)
createTorrent(fileURL)
deleteFile(file, location)
listFilesAndFolders()
deleteFilesAndFolders()

NirvanixConnector
createFolder(foldername, location)
deleteFolder(foldername)
createFile(file, foldername,

location, date)
createFile(fileURL, foldername,

locatrion, date)
renameFile(filename, newname,

location)
createTorrent(file) throws

FeatureNotSupportedException
createTorrent(fileURL) throws

FeatureNotSupportedException
deleteFile(file, location)
listFilesAndFolders()
deleteFilesAndFolders()

FIGURE 4.5.4. Design of the MetaCDN connectors.

Overall Design and Architecture of the System

The MetaCDN service has a number of core components that contain the logic

and management layers required to encapsulate the functionality of different

upstream storage providers and present a consistent, unified view of the services

available to end users. These components include the MetaCDN Allocator,

which (a) selects the optimal providers to deploy content to and (b) performs

the actual physical deployment. The MetaCDN QoS monitor tracks the current

and historical performance of participating storage providers, and the

MetaCDN Manager tracks each user’s current deployment and performs

various housekeeping tasks. The MetaCDN Database stores crucial

information needed by the MetaCDN portal, ensuring reli1able and persistent

operation of the system. The MetaCDN Load Redirector is responsible for

directing MetaCDN end users (i.e., content consumers) to the most appropriate

file replica, ensuring good performance at all times.

The MetaCDN Database stores crucial information needed by the MetaCDN

system, such as MetaCDN user details, their credentials for various storage

cloud and other providers, and information tracking their (origin) content and

any replicas made of such content. Usage information for each replica (e.g.,

download count and last access) is recorded in order to track the cost incurred

for specific content, ensuring that it remains within budget if one has been

specified. The database also tracks logistical details regarding the content

storage and delivery providers utilized in MetaCDN, such as their pricing, SLA

offered, historical performance, and their coverage locations. The MetaCDN

Database Entity Relationship is depicted in Figure 4.5.5, giving a high-level

semantic data model of the MetaCDN system.

The MetaCDN Allocator allows users to deploy files either directly

(uploading a file from their local file system) or from an already publicly

accessible origin Web site (sideloading the file, where the backend storage

provider pulls the file). It is important to note that not all back-end

providers support

FIGURE 4.5.5. Entity relationship diagram for the MetaCDN database.

MetaCDN

User

CDN

Credentials

CDN

Provider

Content
MetaCDN

Replica

Coverage

locations

QoS Monitor

1
has

0 : M 1
for

1

1 1 1

has hosted
by

has

M

1
M M

1
deployed

as

0 : M M
hosted

at

1 1
measures

sideloading, and this is naturally indicated to users as appropriate. MetaCDN

users are given a number of different deployment options depending on their

needs, regardless of whether they access the service via the Web portal or via

Web services. It is important to note that the deployment option chosen also

dictates the load redirection policy that directs end users (consumers) to a

specific replica. The available deployment options include:

● Maximize coverage and performance, where MetaCDN deploys as many

replicas as possible to all available locations. The replicas used for the

experiments in previous performance studies [12, 13] were deployed by

MetaCDN using this option. The MetaCDN Load Redirector directs end

users to the closest physical replica.

● Deploy content in specific locations, where a user nominates regions and

MetaCDN matches the requested regions with providers that service those

areas. The MetaCDNLoad Redirectordirectsenduserstotheclosestphysical

replica.

● Cost-optimized deployment, where MetaCDN deploys as many replicas in

the locations requested by the user as their storage and transfer budget will

allow, keeping them active until that budget is exhausted. The MetaCDN

Load Redirector directs enduserstothe cheapestreplicatominimizecostand

maximize the lifetime of the deployment.

● Quality of service (QoS)-optimized deployment, where MetaCDN deploys

to providers that match specific QoS targets that a user specifies, such

as average throughput or response time from a particular location, which

is tracked by persistent probing from the MetaCDN QoS monitor. The

MetaCDN Load Redirector directs end users to the best-performing replica

for their specific region based on historical measurements from the QoS

monitor.

After MetaCDN deploys replicas using one of the above options, it stores

pertinent details such as the provider used, the URL of the replica, the desired

lifetime of the replica, and the physical location (latitude and longitude) of that

deployment in the MetaCDN Database. A geolocation service (either free
2

or

commercial
3
) is used to find the latitude and longitude of where the file is

stored.

The MetaCDN QoS Monitor tracks the performance of participating

providers (and their available storage and delivery locations) periodically,

monitoring and recording performance and reliability metrics from a variety of

locations, which is used for QoS-optimized deployment matching. Specifically,

this component tracks the historical response time, throughput, hops and HTTP

2Hostip.info is a community-based project to geolocate IP addresses, and it makes the database

freely available.
3MaxMind GeoIP is a commercial IP geolocation service that can determine information such as

country, region, city, postal code, area code, and longitude/latitude.

response codes (e.g., 2XX, 3XX, 4XX, or 5XX, which denotes success,

redirection/proxying, client error, or server error) of replicas located at each

coverage location. This information is utilized when performing a QoS-

optimized deployment (described previously).

This component also ensures that upstream providers are meeting their

service-level agreements (SLAs), and it provides a logging audit trail to allow

end users to claim credit in the event that the SLA is broken. This is crucial,

because you cannot depend on the back-end service providers themselves to

voluntarily provide credit or admit fault in the event of an outage. In effect, this

keeps the providers “honest”; and due to the agile and fluid nature of the

system, MetaCDN can redeploy content with minimal effort to alternative

providers that can satisfy the QoS constraints, if available.

The MetaCDN Manager has a number of housekeeping responsibilities.

First, it ensures that all current deployments are meeting QoS targets of users

that have made QoS optimized deployments. Second, it ensures that replicas

are removed when no longer required (i.e., the “deploy until” date set by the

user has expired), ensuring that storage costs are minimized at all times. Third,

for users that have made cost-optimized deployments, it ensures that a user’s

budget has not been exceeded, by tracking usage (i.e., storage and downloads)

from auditing information provided by upstream providers.

Integration of Geo-IP Services and Google Maps

Cloud storage offerings are already available from providers located across the

globe. The principle of cloud computing and storage is that you shouldn’t need

to care where the processing occurs or where your data are stored—the services

are essentially a black box. However, your software and data are subject to the

laws of the nations they are executed and stored in. Cloud storage users could

find themselves inadvertently running afoul of the Digital Millennium

Copyright Act (DMCA)
4

or Cryptography Export laws that may not apply to

them in their own home nations. As such, it is important for cloud storage

users to know precisely where their data are stored. Furthermore, this

information is crucial for MetaCDN load balancing purposes, so end users are

redirected to the closest replica, to maximize their download speeds and

minimize latency. To address this issue, MetaCDN offers its users the ability to

pinpoint exactly where their data are stored via geolocation services and

Google Maps integration. When MetaCDN deploys replicas to different cloud

storage providers, they each return a URL pointing to the location of the

replica. MetaCDN then utilizes a geolocation service to find the latitude and

longitude of where the file is stored. This information is stored in the

MetaCDN database

and can be overlaid onto a Google Maps view (see Figure 4.5.6) inside the

MetaCDN portal, giving users a bird’s-eye view of where their data are

currently being stored (depicted in Figure 4.5.6).

4Available at http://www.copyright.gov/legislation/dmca.pdf.

http://www.copyright.gov/legislation/dmca.pdf

FIGURE 4.5.6. Storage providers overlaid onto a Google Map view.

Load Balancing via DNS and HTTP

The MetaCDN Load Redirector is responsible for directing MetaCDN end users

(i.e., content consumers) to the most appropriate file replica. When a MetaCDN

user deploys content, they are given a single URL, in the format http://www.

metacdn.org/MetaCDN/FileMapper?itemid 5 {item_id}, where item_id is a

unique key associated with the deployed content. This provides a single

namespace, which is more convenient for both MetaCDN users (content

deployers) and end users (content consumers), and offers automatic and totally

transparent load balancing for the latter.

Different load balancing and redirection policies can be utilized, including

simple random allocation, where end users are redirected to a random replica;

geographically aware redirection, where end users are redirected to their

physically closest replica; least-cost redirection, where end users are directed

to the cheapest replica from the content deployer’s perspective; and QoS-aware

redirection, where end users are directed to replicas that meet certain

performance criteria, such as response time and throughput.

http://www/
http://www/

MetaCDN end user

Resolve www.metacdn.org

Return IP of closest MetaCDN gateway,

www-na.metacdn.org

DNS Server MetaCDN gateway

GET http://metacdn.org/MetaCDN/FileMapper?itemid=1

HTTP 302 Redirect to

http://metacdn-us-username.s3.amazonaws.com/filename.pdf

Resolve metacdn-us-username.s3.amazonaws.com

Return IP of metacdn-us-username-s3.amazonaws.com

processRequest ()

geoRedirect ()

Amazon S3 USA

GET http://metacdn-us-username.s3.amazonaws.com/filename.pdf

Return replica

FIGURE 4.5.7. MetaCDN Load Redirector.

The load balancing and redirection mechanism is depicted in Figure 4.5.7,

for an example scenario where an end user on the East Coast of the United

States wishes to download a file. The user requests a MetaCDN URL such as

http://www.metacdn.org/MetaCDN/FileMapper?itemid 5 1, and the browser

attempts to resolve the base hostname, www.metacdn.org. The authoritative

DNS (A-DNS) server for this domain resolves this request to the IP address

of the closest copy of the MetaCDN portal—in this case www-na.metacdn.org.

The user (or more typically their Web browser) then makes a HTTP GET

request for the desired content on the MetaCDN gateway. In the case of

geographically aware redirection, the MetaCDN load redirector is triggered to

select the closest replica for the end user, in an effort to maximize performance

and minimize latency. MetaCDN utilizes a geolocation service (mentioned

previously) to find the geographical location (latitude and longitude) of the end

user, and it measures their distance from each matching replica using a simple

spherical law of cosines, or a more accurate approach such as the Vincenty

formula for distance between two latitude/longitude points , in order to find the

closest replica. While there is a strong correlation between the performance

experienced by the end user and their locality to replicas (which was found in

previous work [12, 13] and summarized in Section 4.5.4), there is no guarantee

that the closest replica is always the best choice, due to cyclical and transient

fluctuations in load on the network path. As such, we intend to investigate the

effectiveness of more sophisticated active measurement approaches such as

CDN-based relative network positioning (CRP) , IDMaps , or OASIS to

ensure that end users are always directed to the best-performing replica.

http://www.metacdn.org/
http://metacdn.org/MetaCDN/FileMapper?itemid=1
http://metacdn-us-username.s3.amazonaws.com/filename.pdf
http://metacdn-us-username.s3.amazonaws.com/filename.pdf
http://www.metacdn.org/MetaCDN/FileMapper?itemid
http://www.metacdn.org/

PERFORMANCE OF THE METACDN OVERLAY

In order to evaluate the potential of using storage cloud providers for content

delivery, in prior work [12, 13] we evaluated the major provider nodes currently

available to us, in order to test the throughput and response time of these data

sources. We also looked at the effectiveness of the MetaCDN overlay in

choosing the most appropriate replica. The files in these experiments were

deployed by the MetaCDN Allocator, which was instructed to maximize

coverage and performance, and consequently the test files were deployed on

all available nodes. As noted in the previous section, the default MetaCDN

load redirection policy for this deployment option is to redirect end users to the

physically closest replica. At the time of the first experiment, we could utilize

one node in the United States (Seattle, WA) and one node in Ireland (Dublin).

Nirvanix provides two nodes in the United States (both in California), one

node in Singapore, and one node in Germany. The test files were also cached

where possible using Coral CDN [22]. Coral replicates the file to participating

Coral proxy nodes on an as-needed basis, depending on where the file is

accessed. The second experiment included storage nodes offered by Amazon

CloudFront and Rackspace Cloud Files (described in Section 4.5.2).

For the first experiment, we deployed clients in Australia (Melbourne), France

(Sophia Antipolis), Austria (Vienna), the United States (New York and San

Diego), and South Korea (Seoul). Each location had a high-speed connection to

major Internet backbones to minimize the chance of the client being the

bottleneck during this experiment. The experiment was run simultaneously at

each client location over a 24-hour period, during the middle of the week. As the

test spans 24 hours, it experiences localized peak times in each of the geographical

regions. Each hour, the client sequentially downloads each test file from each

available node a total of 30 times, for statistical significance. The file is

downloaded using the Unix utility, wget, with the no-cache and no-dns-cache

options to ensure that for each download a fresh file is always downloaded (and

not sourced from any intermediary cache) and that the DNS lookup is not

cached either.

In the interests of brevity, we present a summarized set of results. The first

set of results (depicted in Table 4.5.3) shows the transfer speed to download

each replicated 10-MB test file from all client locations. The file is large enough

to have some confidence that a steady-state transfer rate has been achieved. The

second set of results (depicted in Table 4.5.4) captures the end-to-end response

time when downloading each replica of a 1-kB file from all client locations.

Due to the size of the file being negligible, the response time is dominated by the

time taken to look up the DNS record and establish the HTTP connection.

After performing this experiment, we were confident that cloud storage

providers delivered the necessary raw performance to be utilized for reliable

content delivery. Performance was especially good when there was a high

degree of locality between the client and the replica servers, which was evident

from client nodes in Europe, the United States, and Korea. The client in

Australia had reasonable throughput and response time but would certainly

benefit from more

TABLE 4.5.3. Average Response Time (seconds) over 24 Hours from Six Client

Locations

S3 US S3 EU SDN #1 SDN #2 SDN #3 SDN #4 Coral

Melbourne, Australia 264.3 389.1 30 366.8 408.4 405.5 173.7

Paris, France 703.1 2116 483.8 2948 44.2.8 1042 530.2

Vienna, Austria 490.7 1347 288.4 2271 211 538.7 453.4

Seoul, South Korea 312.8 376.1 466.5 411.8 2456 588.2 152

San Diego, CA, USA 1234 323.5 5946 380.1 506.1 84.5.4 338.5

Secaucus, NJ, USA 2381 1949 860.8 967.1 572.8 4230 636.4

TABLE 4.5.4. Average Throughput (KB/s) over 24 Hours from Six Client Locations

S3 US

S3 EU

SDN

#1

SDN

#2

SDN

#3

SDN

#4

Coral

Melbourne, Australia 1.378 1.458 0.663 0.703 1.195 0.816 5.452

Paris, France 0.533 0.2 0.538 0.099 1.078 0.316 3.11

Vienna, Austria 0.723 0.442 0.585 0.099 1.088 0.406 3.171

Seoul, South Korea 1.135 1.21 0.856 0.896 1 0.848 3.318

San Diego, USA 0.232 0.455 0.23 0.361 0.775 0.319 4.655

Secaucus, NJ, USA 0.532 0.491 0.621 0.475 1.263 0.516 1.916

localized storage resources. In all, we found the results to be consistent (and in

some cases better) in terms of response time and throughput with previous studies

of dedicated (and costly) content delivery networks [4, 18, 19]. However, further

and longer-term evaluation is needed before we can make any categorical claims.

The second experiment (described in Pathan et al. [13]) tested a number of

different load redirection policies operating in the MetaCDN overlay. The

policies tested were as follows:

● Random (RAN): End users were directed to a random replica.

● Geolocation (GEO): End users were directed to the closest physical replica

(as described in 4.5.3.4).

● Cost (COST): End users were directed to the cheapest replica.

● Utility aware (UTIL): End users were directed to the replica with the

highest utility, where utility depends on the weighted throughput for

requests, the user-perceived response times from direct replica access and

via MetaCDN, the unit replication cost, and the content size. This policy

is described in detail in Pathan et al. [13].

TABLE 4.5.5. Average Throughput (kB/sec) over 48 Hours from Eight Client Locations

 Atlanta,

USA

California,

USA

Beijing,

China

Melbourne,

Australia

Rio,

Brazil

Vienna,

Austria

Poznan,

Poland

Paris,

France

RAN 6170 4412 281 3594 800 2033 7519 1486

GEO 6448 2757 229 6519 521 2192 9008 2138

COST 3275 471 117 402 1149 523 1740 265

UTIL 3350 505 177 411 1132 519 1809 280

Measurements were from eight clients in five continents: Paris (France),

Innsbruck (Austria), and Poznan (Poland) in Europe; Beijing (China) and

Melbourne (Australia) in Asia/Australia; Atlanta, GA, Irvine, CA (USA) in

North America, and Rio de Janeiro (Brazil) in South America. The testing

methodology was identical to the first experiment described in this section,

with the exception that the test ran for 48 hours instead of 24. Unsurpris ingly

in nearly all client locations, the highest throughput was achieved from end

users being redirected to the geographically closest replica (depicted in Table

4.5.5). There were instances where this was not the case, such as for the client

in California, suggesting that the closest physical replica did not necessarily

have the best network path, performing worse than random redirection.

From an end-user perspective, most clients (with the exception of Rio de

Janeiro) perform much worse with a utility policy compared to a geoloca tion

policy. Given that the utility-aware redirection emphasizes maximizing

MetaCDN’s utility rather than the experience of an individual user, it is

understandable that end-user perceived performance has been sacrificed to

some extent. For Rio de Janeiro, the geolocation policy leads to the closest

Rackspace node in the United States, whereas the utility-aware redirection

results in a higher-utility replica, which is Amazon’s node in the United States.

In this instance, Amazon’s node betters the Rackspace node in terms of its

service capability, network path, internal overlay routing, and request traffic

strain, which are captured by the utility calculation metric used.

FUTURE DIRECTIONS

MetaCDN is currently under active testing and development and is rapidly

evolving. Additional storage cloud resources are rapidly coming online now

and in the near future, improving performance and expanding the coverage

footprint of MetaCDN further. Rackspace’s storage cloud offering, Cloud

Files, has recently launched, while Amazon has expanded their content delivery

footprint to additional locations in the United States, Europe, and Asia via

their CloudFront service. Microsoft has also officially launched their cloud

storage offering, Azure Storage Service. MetaCDN was rapidly updated to

support each of these new services as they formally launched. Due to the

flexible and adaptable nature of MetaCDN, it is well-poised to support any

changes in existing storage cloud services as well as incorporating support for

new providers as they appear.

However, it is likely that many locations on the so-called “edges” of the

Internet may not have local storage cloud facilities available to them for some

time, or any time in the foreseeable future. So far, most storage cloud

infrastructure has been located in Europe, North America, and Asia. However,

MetaCDN users can supplement these “black spots” by adding storage for

commercial shared hosting providers (available in most countries) as well as

privately run Web hosting facilities thanks to the MetaCDN connectors for

FTP, SCP/SSH, and WebDAV accessible Web hosting providers. These

noncloud providers can be seamlessly integrated into a MetaCDN user’s

resource pool and utilized by the MetaCDN system, increasing the footprint

of the MetaCDN service and improving the experience of end users via

increased locality of file replicas in these areas.

In future work we intend to better harness the usage and quality of service

(QoS) metrics that the system records in order to make the MetaCDN system

truly autonomic, improving the utility for content deployers and end users.

MetaCDN tracks the usage of content deployed using the service at the

content and replica level, tracking the number of times that replicas are

downloaded and the last access time of each replica. We intend to harness this

information to optimize the management of deployed content, expanding the

deployment when and where it is needed to meet increases in demand (which

are tracked by MetaCDN). Conversely, we can remove under-utilized replicas

during quiet periods in order to minimize cost while still meeting a baseline

QoS level. From the end-users (consumers) perspective, we have expanded

the QoS tracking to include data gathered from probes or agents deployed

across the Internet to improve end-users’ experience. These agents operate at

a variety of geographically disparate locations, tracking the performance

(response time, throughput, reliability) they experienced from their locale

when downloading replicas from each available coverage location. This

information is reported back to their closest MetaCDN gateway. Such

information can assist the MetaCDN load redirector in making QoS-aware

redirections, because the client’s position can be mapped to that of a nearby

agent in order to approximate the performance they will experience when

downloading from specific coverage locations. As mentioned in Section

4.5.3.4, we are also investigating other active measurement approaches for

QoS-aware client redirection.

4.6. RESOURCE CLOUD MASHUPS

Outsourcing computation and/or storage away from the local infrastructure is

not a new concept itself: Already the grid and Web service domain presented

(and uses) concepts that allow integration of remote resource for seemingly

local usage. Nonetheless, the introduction of the cloud concept via such

providers as Amazon proved to be a much bigger success than, for example,

Platform’s Grid Support —or at least a much more visible success. However,

the configuration and management overhead of grids greatly exceeds one of

the well-known cloud providers and therefore encourages, in particular,

average users to use the system. Furthermore, clouds address an essential

economical factor, namely, elastic scaling according to need, thereby

theoretically reducing unnecessary resource loads.

Cloud systems are thereby by no means introducing a new technology—just

the opposite in fact, because many of the initial cloud providers simply opened

their existing infrastructure to the customers and thus exploited their

respective proprietary solutions. Implicitly, the offered services and hence the

according API are specific to the service provider and can not be used in other

environments. This, however, poses major issues for customers, as well as for

future providers.

Interoperability and Vendor Lock-In. Since most cloud offerings are

proprietary, customers adopting the according services or adapting their

respective applications to these environments are implicitly bound to

the respective

provider. Movement between providers is restricted by the effort the user wants

to vest into porting the capabilities to another environment, implying in most

cases reprogramming of the according applications. This makes the user

dependent not only on the provider’s decisions, but also on his/her failures:

As the example of the Google crash on the May 14, 2009 showed, relying too

much on a specific provider can lead to serious problems with service

consumption .

This example also shows how serious problems can arise for the respective

provider regarding his market position, in particular if he/she makes certain

quality guarantees with the service provided—that is, is contractually obliged

to ensure provisioning. Even the cloud-based Google App Engine experiences

recurring downtimes, making the usage of the applications unreliable and thus

reducing uptake unnecessarily [4—6].

Since the solutions and systems are proprietary, neither customer nor provider

can cross the boundary of the infrastructure and can thus not compensate the

issues by making use of additional external resources. However, since providers

who have already established a (comparatively strong) market position fear

competition, the success of standardization attempts, such as the Open Cloud

Manifesto , is still dubious . On the other hand, new cloud providers too

would profit from such standards, because it would allow them to offer

competitive products.

In this chapter we will elaborate the means necessary to bring together cloud

infrastructures so as to allow customers a transparent usage across multiple cloud

providers while maintaining the interests of the individual business entities

involved. As will be shown, interoperability is only one of the few concerns

besides information security, data privacy, and trustworthiness in bridging cloud

boundaries, and particular challenges are posed by data management and

scheduling. We will thereby focus specifically on storage (data) clouds, because

they form the basis for more advanced features related to provisioning of full

computational environments, be that as infrastructure, platform, or service.

 A Need for Cloud Mashups

Obviously by integrating multiple cloud infrastructures into a single platform,

reliability and scalability is extended by the degree of the added system(s).

Platform as a Service (PaaS) providers often offer specialized capabilities to their

users via a dedicated API, such as Google App Engine providing additional

features for handling (Google) documents, and MS Azure is focusing particularly

on deployment and provisioning of Web services, and so on. Through

aggregation of these special features, additional, extended capabilities can be

achieved (given a certain degree of interoperability), ranging from extended

storage and computation facilities (IaaS) to combined functions, such as

analytics and functionalities. The Cloud Computing Expert Working Group

refers to such integrated cloud systems with aggregated capabilities across the

individual infrastructures as Meta-Clouds and Meta-Services, respectively[9].
It can be safely assumed that functionalities of cloud systems will specialize

even further in the near future, thus exploiting dedicated knowledge and

expertise in the target area. This is not only attractive for new clientele of that

respective domain, but may also come as a natural evolution from supporting

recurring customers better in their day-to-day tasks (e.g., Google’s financial

services). While there is no “general-purpose platform (as a service),”

aggregation could increase the capability scope of individual cloud systems, thus

covering a wider range of customers and requirements; this follows the same

principle as in service composition.

The following two use cases may exemplify this feature and its specific

benefit in more detail.

User-Centric Clouds. Most cloud provisioning is userand context-agnostic; in

other words, the user will always get the same type of service, access route, and

so on. As clouds develop into application platforms (see, e.g., MS Azure and

the Google Chrome OS [13]), context such as user device properties or location

becomes more and more relevant: Device types designate the execution

capabilities (even if remote), their connectivity requirements and restrictions,

and the location . Each of these aspects has a direct impact on how the cloud

needs to handle data and application location, communication, and so on.

Single cloud providers can typically not handle such a wide scope of

requirements, because they are in most cases bound to a specific location and

sometimes even to specific application and/or device models. As of the end of

2008, even Amazon did not host data centers all across the world, so that

specific local requirements of Spain, for example, could not be explicitly met .

By offering such capabilities across cloud infrastructures, the service provider

will be able to support, in particular, mobile users in a better way. Similar issues

and benefits apply as for roaming. Along the same way, the systems need to be

able to communicate content and authentication information to allow users to

connect equally from any location. Notably, legislation and contractual

restrictions may prevent unlimited data replication, access, and shifting between

locations.

Multimedia Streaming. The tighter the coupling between user and the

application/service in the cloud, the more complicated the maintenance of the

data connectivity—even more so if data are combined from different sources so

as to build up new information sets or offer enhanced media experiences. In such

cases, not only the location of the user matters in order to ensure availability of

data, but also the combination features offered by a third-party aggregator and its

relative location.

In order to maintain and provide data as a stream, the platform provider must

furthermore ensure that data availability is guaranteed without disruptions. In

addition to the previous use case, this implies that not only data location is

reallocated dynamically according to the elasticity paradigm [9, 16],but also the

data stream—potentially taking the user context into consideration again.

Enhanced media provisioning is a growing field of interest for more and

more market players. Recently, Amazon has extended its storage capabilities

(Amazon S3) with Wowza Media Systems so as to offer liver streams over the

cloud , and OnLive is currently launching a service to provide gaming as media

streams over the Web by exploiting cloud scalability . While large companies

create and aggregate information in-house, in particular new business entries

rely on existing data providers so as to compose their new information set(s)

[19, 20].

Such business entities must hence not only aggregate information in

potentially a user-specific way, but also identify the best sources, handle the

streams of these sources, and redirect them according to user context. We can

thereby assume that the same strategies as for user-centric clouds are

employed.

CONCEPTS OF A CLOUD MASHUP

Cloud mashups can be realized in many different ways, just as they can cover

differing scopes, depending on their actual purpose [21—23]. Most current

considerations thereby assume that the definition of standard interfaces and

protocols will ensure interoperability between providers, thus allowing

consumers to control and use different existing cloud systems in a coherent

fashion. In theory, this will enable SOA (Service-oriented Architecture)-like

composition of capabilities by integrating the respective functions into meta-

capabilities that can act across various cloud systems/platforms/infrastructures

[9].

The Problem of Interoperability

The Web service domain has already shown that interoperability cannot be readily

achieved through the definition of common interfaces or specifications [9]:

● The standardization process is too slow to capture the development in

academy andindustry.

● Specifications (as predecessors to standards) tend to diverge quickly with

the standardization process being too slow.

● “Competing” standardization bodies with different opinions prefer

different specifications.

● And so on.

What is more, clouds typically do not expose interfaces in the same way as

Web services, so interoperability on this level is not the only obstacle to

overcome. With the main focus of cloud-based services being “underneath” the

typical Web service level—that is, more related to resources and platforms—

key interoperability issues relate to compatible data structures, related

programming models, interoperable operating images, and so on. Thus, to

realize a mashup requires at least:

● A compatible API/programming model, respectively an engine that can

parse the APIs of the cloud platforms to be combined (PaaS).

● A compatible virtual machine, respectively an image format that all

according cloud infrastructures can host (IaaS).

● Interoperable or transferrable data structures that can be interpreted by

all engines and read by all virtual machines involved. This comes as a side

effect to the compatibility aspects mentioned above.

Note that services offered on top of a cloud (SaaS) do indeed pose classical

Web-service-related interoperability issues, where the actual interface needs to

provide identical or at least similar methods to allow provider swapping on-

thefly [24, 25].

By addressing interoperability from bottom up—that is, from an

infrastructure layer first—resources in a PaaS and SaaS cloud mashup could

principally shift the whole image rather than the service/module. In other

words, the actual programming engine running on the PaaS cloud, respectively

the software exposed as services, could be shifted within an IaaS cloud as

complete virtual machines (cf. Figure 4.6.1), given that all resources can read

the according image format. In other words, virtualize the data center’s

resources including the appropriate system (platform or service engine) and

thus create a virtual cloud environment rather than a real one. Amazon

already provides virtual rather than true machines, so as to handle the user’s

environment in a scalable fashion [26].

While this sounds like a simple general-purpose solution, this approach is

obviously overly simplified, because actual application will pose a set of

obstacles:

FIGURE 4.6.1. Encapsulated virtual environments.

Applications
and Services

APIs and

Engines

Software

Platform

Virtual

Services

Virtual

Engine

Scale out

Scale out

Hardware,

Storage

Image

Infrastructure
Replicated

Server Scale out

● Most platform engines and services currently offered are based on

proprietary environments and are constructed so as to shift the status

rather than the full software. In other words, not the full software or engine

is replicated, but rather only the information relevant to execute the tasks—

typically, the engine or the base software will be preinstalled on all servers,

thus reducing the scaling overhead.

● Moving/replicating an image including the data takes more bandwidth

and time than moving a potentially very small applet.

● The size requirements of an image are less easily adapted than that of an

applet/service; in other words, an image occupies more space more

statically.

● This is particularly true, if the same engine can be used for multiple applets

at the same time, as is generally the case; by default, each image will serve

only one customer, thus increasing space requirement exponentially.

● Distributed applications and (data) links between them are more difficult

to handle across images than in environments specifically laid out for that.

● The logic for scaling behavior is typically implemented in the engine or

service sandbox, rather than in the underlying infrastructure; because not

in all cases of service scaling does the image need to be scaled out, the logic

differs quite essentially.

As has been noted, to achieve interoperability on the infrastructure layer has

completely different implications than trying to realize interoperability on any

higher layers. In fact, interoperability would imply that all images are identical

in structure, which is generally not the case. With different well-established

virtualization solutions (Xen, VMWare, HyperV, etc.) there exists a certain

degree of defacto standards, yet at the cost of bad convertibility between them.

Notably, there do exist efforts to standardize the virtual machine image format,

too, such as the Open Virtualization Format (OVF) [27] which is supported by

most of the virtualization solutions and as of 2009 even by a dedicated cloud

computing platform [28]. Nonetheless, in all cases a converter is necessary to

actually execute the transformation, and the resulting image may not always

work correctly (e.g., [40]).

The main obstacles thus remain in performance issues, resource cost (with a

virtual image consuming more resources than a small engine or even applet),

and manageability. These are still main reasons why more storage providers

than computational providers exist, even though the number of computing

IaaS hosts continually grows, as cloud systems reduce the effort for the

administration.

However, it may be noted that an image can host the engine, respectively

the necessary service environment, thus leaving the cloud to handle the

applets and services in a similar fashion to the PaaS and SaaS approach. This

requires, however, that data, application, and image are treated in a new

fashion.

Intelligent Image Handling

A straightforward cloud environment management system would replicate any

hosted system in a different location the moment the resources become

insufficient—for example, when too many users access the system concurrently

and execute a load balance between the two locations. Similarly, an ideal system

would down-scale the replicated units once the resource load is reduced again.

However, what is being replicated differs between cloud types and as such

requires different handling. As noted, in the IaaS clouds, images and datasets are

typically replicated as whole, leading to performance issues during replication;

what is more, in particular in the case of storage clouds, not the full dataset may

be required in all locations (see next section). As opposed to this, applets in a

PaaS environment are typically re-instantiated independent of the environment,

because it can be safely assumed that the appropriate engine (and so on) is

already made available in other locations.

In order to treat any cloud type as essentially an infrastructure environ ment,

the system requires additional information about how to segment the exposed

service(s) and thus how to replicate it (them). Implicitly, the system needs to be

aware of the environment available in other locations. In order to reduce full

replication overhead, resources that already host most of the environment

should be preferred over “clean slate” ones—which may lead to serious

scheduling issues if, for example, a more widely distributed environment

occupies the resource where a less frequently accessed service is hosted, but

due to recent access rates, the latter gets more attention (and so on). In

this chapter, we will assume though that such a scheduling mechanism exists.

Segmenting the Service. Any process exploiting the capabilities of the cloud

essentially consists of the following parts: the user-specific data (state), the

scalable application logic, the not-scalable underlying engine or supporting

logic, the central dataset, and the execution environment (cf. Figure 4.6.3).

Notably there may be overlaps between these elements; for example, the engine

and execution environment may be quite identical as is the case with the

Internet Information Service and the typical Windows installation.

The general behavior consists in instantiating a new service per requestor,

along with the respective state dataset, until the resource exceeds itscapabilities

(bandwidth, memory, etc.) and a new resource is required to satisfy availability.

Note that in the case of shared environments, such as Google Documents, the

dataset may not be replicated each time. In a PaaS and a SaaS cloud, each

resource already hosts the environment necessary to execute the customer’s

service(s)—for example, in Google Docs, the Google App Engine, and so on—

so that they can be instantiated easily on any other machine in the cloud

environment. This replication requires not only moving a copy of the

customerspecific application logic, but also the base dataset associated with it.

New instances can now grow on this machine like on the first resource. In the

caseof

FIGURE 4.6.2. Hierarchical scale out in an encapsulated, virtual cloud environment.

IaaS platforms, the general scaling behavior tends toward replicating the whole

image or consumer-specific dataset in new resources (cf. Figure 4.6.2).

In order to allow infrastructure clouds to handle (platform) services in a

(more) efficient manner, the management system must be able to identify which

parts are needed and can be replicated in order to scale out, respectively

which ones can and should be destroyed during scale-down; for example, it

would not be sensible to destroy the whole image if only one user (of many) logs

out from the machine.

Life Cycle of a Segmented Cloud Image. With segmented main services in

an IaaS environment, the system can now scale up and down in a (more)

efficient manner across several resource providers: Any service requires that its

base environment is available on the machines it gets replicated to. In essence,

this means the virtual machine image—yet more particularly this involves all

“non scalable” parts, such as execution/hosting engine and central dataset. Any

services, applications, or applets normally scaled out can essentially be scaled

out in the virtual environment just like a real environment. To this end, the

virtual machines need to be linked to each other in the same fashion as if

the engines would be hosted on physical machines.

As soon as the hosted engine wants to scale beyond the boundaries of the

local machine, a new physical machine has to be identified ready to host

the new instances—in the simplest case, another machine will already prov ide

the respective hosting image. More likely, however, other machines with the

same image will be blocked or will simply not host the image—in these cases, a

new resource must be identified to upload the base image to. The base image

Collaboration

Image1

App
1

App
2

App
let

3

let let

New Image

App

let

Applications

and Services

APIs and

Engines

Data Set Data Data

4
Scale out

Engine Engine
Scale out

Hardware,

Storage

5

Infrastructure Infrastructure ut

Resource limitations (e.g. memory)

thereby consists (in particular) of all nonscalable, not user-specific information

to allow for new user instances; it must thereby be respected that different

scaleouts can occur, depending also on the usage type of the cloud (see

below).

Intelligent Data Management

Next to the segmentation of the image, management of the amount of data and

thus the distribution in particular during replication (i.e., scale out) is a major

challenge for future cloud systems—not alone because the digital contents will

exceed the capacity of today’s storage capabilities, and data are growing

extremely rapidly and even faster than the bandwidth and the processing power

of modern computer systems, too [29]. Implicitly and at the same time the size of

single datasets increase irresistibly and obviously faster than networks and

platforms can deal with. In particular, analysis and search of data is getting

more and more timeand power-consuming [30]—as such, applications that

require only part of the data typically have to handle the full dataset(s) first.

Much research in the field of efficient data management for large-scale

environments has been done recently. The Hadoop Distributed File System

(HDFS) [31], the Google File System (GFS) [32], or Microsoft’s Dryad/SCOPE

[33], for instance, provide highly fault-tolerant virtual file systems on top of the

physical one, which enable high-throughput access of large datasets within

distributed (cluster) environments. However, with all these efforts, there is still a

big gap between the meaningful structure and annotation of file/data contents

and the appropriate distribution of particular file/data chunks throughout the

environment; that is, files are more or less randomly partitioned into smaller

pieces (blocks) and spread across several machines without explicitly considering

the context and requirements, respectively, of certain users/applications and thus

their interest in different parts of particular datasets only.

To overcome this obstacle, the currently used random segmentation and

distribution of data files need to be replaced by a new strategy which takes (1) the

semantic contents of the datasets and (2) the requirements of users/applications

into account (i.e., data shall be distributed according to the interest in the data/

information). For this reason, users, devices, and applications need to be

modeled by capturing relevant context parameters (e.g., the actual position

and network properties) as well as analyzing application states with respect to

upcoming data retrieval and/or processing needs [34]. In addition, storage

resources, platforms, and infrastructures (i.e., entire virtual images) shall also

be continuously monitored, so as to react on sudden bottlenecks immediately.

While broadcasting such relevant information (actual user and resource needs)—

not frequently but in fact as soon as new requirements essentially differ from

previous ones—among infrastructure and platform providers, necessary data

could be replicated and stored sensibly near to the consumption point, so as to

reduce bottlenecks and to overcome latency problems. Apart from distributing

entire data records, this concept would also allow for segmenting large amounts

of data more accurately by just releasing the relevant portion of the dataset only.

Assuming that certain parts of a database or file are more interesting than others

(obtained from access statistics or user preferences), these subsets could be, for

instance, extracted and replicated at the most frequently visited site as applied in

content delivery networks for quite a long time [35] in order to improve scalability

and performance of certain resources, too. Particular mechanisms (as applied

in traditional service-oriented architectures) both on user and provider sites

need to guarantee that running applications/workflows are still retrieving the

correct pieces of data while shifting them among different platforms,

infrastructures, and/or locations (e.g., Berbner et al. [36]). This redeployment

should be completely transparent for users; they should be unaware if accessing

the virtual resource X or Y as long as security, privacy, and legal issues are

respected.

Theoretically, two alternatives might be considered to realize the efficient

distribution of interesting datasets. First of all, in case of underperforming

resources (e.g., due to limited bandwidth) and of course depending on the size of

data/contents, providers could think of duplicating the entire virtual resource

(image). This concept is similar to known load-balancing strategies [37] being

applied if the access load of a single machine exceeds its own capacities and

multiple instances of the same source are required to process requests

accordingly. However, this only makes sense if local data sizes are larger than the

size of the complete virtual image. The second option generally applies for large

datasets which are permanently requested and accessed and, thus, exceeding

the entire capacity of a single resource. In that case, the datasets might be

transferred closer toward the user(s) (insofar as possible) in order to overcome

latency problems by replicating the most relevant parts or at least the minimal

required ones onto a second instance of the same virtual image (the same type

of engine) which not necessarily runs on the same infrastructure as the original

one. The latter case could yield to so-called virtual swarms (a cluster of

resources of closely related data) among which datasets are actively and

continuously exchanged and/or replicated. These swarms could furthermore

help to speed up the handling of large files in terms of discovery and

processing and might enhance the quality of results, too.

4.6.3 REALIZING RESOURCE MASHUPS

In order to realize efficient cloud mashups on an infrastructure level,

distributed data and segmented image management have to be combined in

order to handle the additional size created by virtualizing the machine (i.e., by

handling images instead of applets and services). As noted above, we can

distinguish between the base image set consisting of (a) the setup environment

and any engine (if required), (b) the base dataset that may be customer-specific

(but not user-specific), such as general data that are provided to the user, but

also and more importantly the applet or service base that is provided to each

user equally, and (c) the user-specific information which may differ per access

and which may only be available on a single machine.

necessitates

User Data

(Base) Services ne

Applet

Base Dataset

Base Image

P
a

a
S

cessitates

FIGURE 4.6.3. The relationship between IaaS, SaaS, and PaaS during scaling.

Scale-out behavior now depends on the type of application/cloud service

running (Figure 4.6.3).

IaaS Provisioning. Infrastructures are typically provided in the form of an

image containing the full computational environment or consist of a dynamic

dataset, which is typically made available to all users equally. Scaling out involves

either replication of the image/data set (horizontal scaling) or increasing the

available storage size (vertical scale). Horizontal scaling thereby typically implies

that the full dataset is replicated, while vertical scaling may lead to data

segmentation and distribution.

However, as noted in the preceding section, different users may require

different parts of the data, so that replication of the whole dataset every time

the machine boundaries become insufficient may not be necessary, thus saving

bandwidth and storage.

SaaS Provisioning. Unlike the typical charts related to the complexity of

cloud types, Software as a Service (SaaS) does pose fewer issues on an

infrastructure than does Platform provisioning. This is mostly because provided

services scale-out simply by instantiating new services and state data. In most

cases, the base environment for SaaS cloud types is fairly simple and can be

(re)used for various different processes—for example, a .NET environment

with IIS as a hosting engine.

Implicitly, several resources in the cloud environment can host the base

image and allow different SaaS customers to make use of these machines. In

other words, machines with the respective compatible base image (e.g., hosting

S
a

a
S

Ia
a

S

a compatible IIS component) can host the replicated service instances, rather

than having to duplicate the full image all the time. Notably, when no machine

with a compatible base image is available anymore, a new resource has to be

loaded with an image that meets the current scale-out requirements best. These

may not be defined by a single service alone, but by multiple concurrent

processes that have similar and opposing requirements. The same principles as

for intelligent data management may be applied here, too. However, the

maintenance of replicated datasets in SaaS environments requires more efforts

and carefulness because synchronization between multiple instances of the

same dataset on the same image might result in inconsistent states, and thus

supervision of duplicated data sets is highly recommended. Particular services

as applied in Microsoft’s Live Mesh [38] could help taking control over this.

PaaS Provisioning. The most complex case with respect to instance

management, and hence with respect to elasticity, consists in Platform as a

Service provisioning: In this case, multiple different sets have to be

managed during scale-out, depending on the original cause to increase the

resource load. We can distinguish between the following triggers with this

respect: (1) The number of customers exceeds the resource limits or (2) the

number of users leads to resource problems. The actual content being replicated

differs between these two cases: When another customer wants to host more

applets than the resource can manage, the additional applet will be

instantiated on a new resource that executes the relevant base image (see also

SaaS Provisioning above). In case no such machine exists, the backed-up base

image can be used to instantiate a new resource or a running image is

duplicated without customer and user-specific data. This can be effectively

considered horizontal scalability [39].

In case, however, a customer’s applet is taking away more resources than

available due to too many users accessing the applet, respectively the

appropriate data, a scale-out needs to replicate also the customer-specific data

and code. This way, the new machine will have the full environment required

from the user perspective.

4.6.3.1 Distributed Decision Making

The main management task for maintaining IaaS platforms for resource

mashups hence consists in deciding which parts of image and data to replicate,

which ones to duplicate, and which ones to retain. As discussed in the preceding

sections, such information must be provided by and with the provisioning type

and the appropriate usage of the cloud system.

UNIT – V

GOVERNANCE AND CASE STUDIES

 ORGANIZATIONAL READINESS AND

CHANGE MANAGEMENT IN THE CLOUD

AGE

Studies for Organization for Economic Co-operation and Development

(OECD) economies in 2002 demonstrated that there is a strong correlation

between changes in organization and workplace practices and investment in

information technologies . This finding is also further confirmed in Canadian

government studies, which indicate that the frequency and intensity of

organizational changes is positively correlated with the amount and extent

of information technologies investment. It means that the incidence of

organizational change is much higher in the firms that invest in information

technologies (IT) than is the case in the firms that do not invest in IT, or those

that invest less than the competitors in the respective industry.

In order to effectively enable and support enterprise business goals and

strategies, information technology (IT) must adapt and continually change. IT

must adopt emerging technologies to facilitate business to leverage the new

technologies to create new opportunities, or to gain productivity and reduce

cost. Sometimes emerging technology (e.g., cloud computing: IaaS, PaaS, SaaS)

is quite disruptive to the existing business process, including core IT services—

for example, IT service strategy, service design, service transition, service

operation, and continual service improvement—and requires fundamental re-

thinking of how to minimize the negative impact to the business, particularly

the potential impact on morale and productivity of the organization.

The Context

The adaptation of cloud computing has forced many companies to recognize

that clarity of ownership of the data is of paramount importance. The protection

of intellectual property (IP) and other copyright issues is of big concern and

needs to be addressed carefully.

The Take Away

Transition the organization to a desirable level of change management maturity

level by enhancing the following key domain of knowledge and competencies:

Domain 1. Managing the Environment: Understand the organization (peo-

ple, process, and culture).

Domain 2. Recognizing and Analyzing the Trends (Business and Technol-

ogy): Observe the key driver for changes.

Domain 3. Leading for Results: Assess organizational readiness and archi-

tect solution that delivers definite business values.

BASIC CONCEPT OF ORGANIZATIONAL READINESS

Change can be challenging; it brings out the fear of having to deal with

uncertainties. This is the FUD syndrome: Fear, Uncertainty, and Doubt.

Employees understand and get used to their roles and responsibility and are

able to leverage their strength.

It is a common, observable human behavior that people tend to become

comfortable in an unchanging and stable environment, and will become uncom-

fortable and excited when any change occurs, regardless the level and intensity of

the change.

A survey done by Forrester in June 2009 suggested that large enterprises are

going to gravitate toward private clouds. The three reasons most often ad-

vanced for this are:

1. Protect Existing Investment: By building a private cloud to leverage

existing infrastructure.

2. Manage Security Risk: Placing private cloud computing inside the

company reduces some of the fear (e.g., data integrity and privacy issues)

usually associated with public cloud.

A Case Study: Waiting in Line for a Special Concert Ticket

It is a Saturday morning in the winter, the temperature is 212○C outside, and

you have been waiting in line outside the arena since 5:00 AM this morning for

concert tickets to see a performance by Supertramp. What is your reaction?

What should you do now without the tickets? Do you need to change the

plan? Your reaction would most likely be something like this:

● Denial. You are in total disbelief, and the first thing you do is to reject the

fact that the concert has been sold out.

● Anger. You probably want to blame the weather; you could have come

here 10 minutes earlier.

● Bargaining. You try to convince the clerk to check again for any available

seats.

● Depression. You are very disappointed and do not know what to do next.

● Acceptance. Finally accepting the inevitable fate, you go to plan B if you

have one.

The five-stage process illustrated above was originally proposed by Dr. Elizabeth

Ku¨ bler-Ross to deal with catastrophic news. There are times in which people

receive news that can seem catastrophic; for example; company merger, right-

sizing, and so on.

What Do People Fear?

Let’s look at this from a different perspective and try to listen to and

understand what people are saying when they first encounter change.

“That is not the way we do things here; or it is different in here... .”

People are afraid of change because they feel far more comfortable and safe by

not going outside their comfort zone, by not rocking the boat and staying in the

unchanged state.

“It is too risky.. .”

People are also afraid of losing their position, power, benefits, or even their jobs

in some instances. It is natural for people to try to defend and protect their

work and practice.

The more common concerns are related to cloud computing, and some of

them are truly legitimate and require further study, including:

● Security and privacy protection

● Loss of control (i.e., paradigm shift)

● New model of vendor relationship management

● More stringent contract negotiation and service-level agreement (SLA)

● Availability of an executable exit strategy

DRIVERS FOR CHANGES: A FRAMEWORK TO COMPREHEND THE

COMPETITIVE ENVIRONMENT

The Framework. The five driving factors for change encapsulated by the

framework are:

● Economic (global and local, external and internal)

● Legal, political, and regulatory compliance

● Environmental (industry structure and trends)

● Technology developments and innovation

● Sociocultural (markets and customers)

The five driving factors for change is an approach to investigate, analyze,

and forecast the emerging trends of a plausible future, by studying and

understanding the five categories of drivers for change. The results will help

the business to make better decisions, and it will also help shape the short- and

long-term strategies of that business.

Every organization’s decisions are influenced by particular key factors, some

of them are within the organization’s control, such as (a) internal financial

weakness and strength and (b) technology development and innovation,

and therefore the organization has more control. The others, such as legal

compliance issues, competitor capabilities, and strategies, are all external

factors over which the organization has little or no control. In a business

setting, it helps us to visualize and familiarize ourselves with future

possibilities (opportunities and threats).

Economic (Global and Local, External and Internal)

Following are sample questions that could help to provoke further discussion:

● What is the current economic situation?

● What will the economy looks lik in 1 year, 2 years, 3 years, 5 years, and so on?

● What are some of the factors that will influence the future economic

outlook?

● Is capital easy to access?

● How does this technology transcend the existing business model?

● Buy vs. build? Which is the right way?

● What is the total cost of ownership (TCO)?

Legal, Political, and Regulatory Compliance

This section deals with issues of transparency, compliance, and conformity. The

objective is to be a good corporate citizen and industry leader and to avoid the

potential cost of legal threats from external factors.

The following are sample questions that could help to provoke further

discussion:

● What are the regulatory compliance requirements?

● What is the implication of noncompliance?

● What are the global geopolitical issues?

Environmental (Industry Structure and Trends)

Environmental factors usually deal with the quality of the natural environment,

human health, and safety. The following are sample questions that could help

to provoke further discussion:

● What is the implication of global warming concern?

● Is a green data center over-hyped?

● How can IT initiatives help and support organizational initiatives to

reduce carbonfootprint?

● Can organizations and corporations leverage information technology,

including cloud computing to pursue sustainable development?

Technology Developments and Innovation

Scientific discoveries are seen to be key drivers of economic growth; leading

economists have identified technological innovations as the single most

important contributing factor in sustained economic growth.

The following are sample questions that could help to provoke further

discussion:

● When will the IT industry standards be finalized? By who? Institute of

Electrical and Electronics Engineers (IEEE)?

● Who is involved in the standardization process?

● Who is the leader in cloud computing technology?

● What about virtualization of application—operating system (platform)

pair (i.e., write once, run anywhere)?

● How does this emerging technology (cloud computing) open up new areas

for innovation?

● How can an application be built once so it can configure dynamically

in real time to operate most effectively, based on the situational constraint

(e.g., out in the cloud somewhere, you might have bandwidth constraint to

transfer needed data)?

● What is the guarantee from X Service Providers (XSP) that the existing

applications will still be compatible with the future infrastructure (IaaS)?

Will the data still be executed correctly?

Sociocultural (Markets and Customers)

Societal factors usually deal with the intimate understanding of the human side

of changes and with the quality of life in general. A case in point: The companies

that make up the U.S. defense industry have seen more than 50% of their market

disappear.

The following are sample questions that could help to provoke further

discussion:

● What are the shifting societal expectations and trends?

● What are the shifting demographic trends?

● How does this technology change the user experience?

● Is the customer the king?

● Buy vs. build? Which is the right way?

● How does cloud computing change the world?

● Is cloud computing over-hyped?

Creating a Winning Environment

At the cultural level of an organization, change too often requires a lot of

planning and resource. In order to overcome this, executives must articulate

a new vision and must communicate aggressively and extensively to make

sure that every employee understands :

1. The new direction of the firm (where we want to go today)

2. The urgency of the change needed

3. What the risks are to

a. Maintain status quote

b. Making the change

4. What the new role of the employee will be

5. What the potential rewards are

● Build a business savvy IT organization.

● Are software and hardware infrastructure an unnecessary burden?

● What kind of things does IT do that matter most to business?

● Would the IT professional be better off focusing on highly valued

product issues?

● Cultivate an IT savvy business organization.

● Do users require new skill and expertise?

One of the important value propositions of cloud computing should be to

explain to the decision maker and the users the benefits of:

● Buy and not build

● No need for a large amount of up-front capital investment

● Opportunity to relieve your smartest people from costly data-center

operational activities; and switch to focus on value-added activities

● Keep integration (technologies) simple

COMMON CHANGE MANAGEMENT MODELS

There are many different change management approaches and models, and we

will discuss two of the more common models and one proposed working model

(CROPS) here; the Lewin’s Change Management Model, the Deming Cycle (Plan,

Do, Study, Act) and the proposed CROPS Change Management Framework.

Lewin’s Change Management Model

Kurt Lewin, a psychologist by training, created this change model in the 1950s.

Lewin observed that there are three stages of change, which are: Unfreeze,

Transition, and Refreeze. It is recognized that people tend to become compla-

cent or comfortable in this “freeze” or “unchanging/stable” environment, and

they wish to remain in this “safe/comfort” zone. Any disturbance/disruption to

this unchanging state will cause pain and become uncomfortable.

The transition phase is when the change (plan) is executed and actual change

is being implemented. Since these “activities” take time to be completed, the

process and organizational structure may also need to change, specific jobs may

also change. The most resistance to change may be experienced during this

transition period. This is when leadership is critical for the change process to

succeed, and motivational factors are paramount to project success.

The last phase is Refreeze; this is the stage when the organization once again

becomes unchanging/frozen until the next time a change is initiated.

UNFREEZE TRANSITION REFREEZE

Deming Cycle (Plan, Do, Study, Act)

The Deming cycle is also known as the PDCA cycle; it is a continuous

improvement (CI) model comprised of four sequential subprocesses; Plan,

Do, Check, and Act.

Edward Deming proposed in the 1950s that business processes and systems

should be monitored, measured, and analyzed continuously to identify varia-

tions and substandard products and services, so that corrective actions can be

taken to improve on the quality of the products or services delivered to the

customers.

● PLAN: Recognize an opportunity and plan achange.

● DO: Execute the plan in a small scale to prove the concept.

● CHECK: Evaluate the performance of the change and report the results

to sponsor.

● ACT: Decide on accepting the change and standardizing it as part of

the process.

Incorporate what has been learned from the previous steps to plan new

improvements, and begin a new cycle.

Deming’s PDCA cycle is illustrated in Fig 5.1.1: Deming’s PDCA cycle.

FIGURE 5.1.1. Deming’s PDCA cycle.

Source: http://www.gdrc.org/uem/iso14001/pdca-cycle.gif.

Study the result; redesign
systems to reflect learning –

change standards and

regulations where

necessary; communicate it

broadly; retrain …

Understand the gap between
residents’ expectations and what

is being delivered; set priorities

for closing gaps; develop

an action plan to

close the gaps

ACT PLAN

BETTER
ENVIRONMENT

FOR CITIES

CHECK DO

Observe the effects of the
change and test – analyze data

and pinpoint problems …

Implement changes;
collect data to determine

if gaps are closing …

http://www.gdrc.org/uem/iso14001/pdca-cycle.gif

A Proposed Working Model: CROPS Change

Management Framework

For many organizations, change management focuses on the project manage- ment aspects

of change. There are a good number of vendors offering products that are intended to help

organizations manage projects and project changes, including the Project Portfolio

Management Systems (PPMS). PPMS groups projects so they can be managed as a

portfolio, much as an investor would manage his/her stock investment portfolio to reduce

risks.

Culture. Corporate culture is a reflection of organizational (management and employees)

values and belief. Edgar Schein, one of the most prominent theorists of organizational

culture, gave the following very general definition [9, 10]:

The culture of a group can now be defined as: A pattern of shared basic assumptions that the

group learned as it solved its problems of external adapta- tion and internal integration, that

has worked well enough to be considered valid and, therefore, to be taught to new members as

the correct way to perceive, think, and feel in relation to those problems.

Elements of organizational culture may include:

● Stated values and belief

● Expectations for member behavior

● Customs and rituals

● Stories and myths about the history of the organization

FIGURE 5.1.2. CROPS framework.

● Norms—the feelings evoked by the way members interact with each other, with

outsiders, and with their environment

● Metaphors and symbols—found embodied in other cultural elements

Rewards and Management System. This management system focuses on how

employees are trained to ensure that they have the right skills and tools to do the job right.

Processes

Organization
and Structures

Skills and
Competencies

Rewards and
Management

Systems
Culture

Organization and Structures. How the organization is structured is largely influenced

by what the jobs are and how the jobs are performed. The design of the business processes

govern what the jobs are, and when and where they get done.

Process. Thomas Davenport defined a business process or business method as a

collection of related, structured activities or tasks that produce a specific service or

product (serve a particular goal) for a particular customer or customers.

Hammer and Champy’s definition can be considered as a subset of Davenport’s. They

define a process as “a collection of activities that takes one or more kinds of input and

creates an output that is of value to the customer.”

Skills and Competencies. Specialized skills that become part of the organi-

zational core competency enable innovation and create a competitive edge.

Organizations that invest in research and development which emphasize

investing in people’s training and well-being will shape a winning strategy.

The CROPS model is illustrated in Figure 5.1.2.

CHANGE MANAGEMENT MATURITY MODEL (CMMM)

A Change Management Maturity Model (CMMM) helps organizations to (a)

analyze, understand, and visualize the strength and weakness of the firm’s

change management process and (b) identify opportunities for improvement

and building competitiveness. The model should be simple enough to use and

flexible to adapt to different situations. The working model in Table 5.1.1 is

based on CMM (Capability Maturity Model), originally developed by Amer-

ican Software Engineering Institute (SEI) in cooperation with Mitre Corpora-

tion. CMM is a model of process maturity for software development, but it has

since been adapted to different domains. The CMM model describes a five-level

process maturity continuum, depicted in Table 5.1.1.

How does CMMM help organizations to adopt new technology, including

cloud computing, successfully? The business value of CMMM can be expressed

in terms of improvements in business efficiency and effectiveness. All organiza-

tional investments are business investments, including IT investments. The

resulting benefits should be measured in terms of business returns. Therefore,

CMMM value can be articulated as the ratio of business performance to CMMM

investment; for example

ROITðCMMMÞ 5
Estimated total business performance improvement

Total CMMM investmentð TCOÞ

whereas

● ROIT: Observed business value or total return on investment from IT

initiative (CMMM)

● Business performance improvement

● Reduce error rate

TABLE 5.1.1. A Working Model: Change Management Maturity Model (CMMM)

Description

CROPS

Practice Specific to CMMM Characteristics of Organization Path to Next Higher Level

Key Results and Benefits (or, the

Lack There of)

Level 5 Optimized P 1 R AT this level of process maturity,

the focus is on improving process

performance.

Level 4 Managed CROPS Adopted specific change manage-

ment methodology and process.

Centralized and standardized

change management control and

tracking to manage risks and sus-

tain quality of products and

services.

Level 3 Defined CROPS Standardizing change manage-

ment processes and practices.

Level 2 Repeatable COPS Accept the importance of change

management process.

No standardization/centralization

of change management process

and practice.

Poor change authorization and

tracking scheme.

Operational excellence/organiza-

tional competency

Change management as part of the

core competency.

Culturally, employee accepts that

change is constant and in a rapid

rate.

Organization and management

can find ways to change, evolve,

and adapt the process to particular

project needs; with minimal or no

impact to quality of products or

services being delivered as mea-

sured against SLA.

Processes at this level are defined

and documented.

Some process improvement pro-

jects initiate overtime.

It is characteristic of processes at

this level that some processes are

repeatable.

Achieve strategic/operational ex-

cellence.

Extensive training exists at all level

of organization.

Continuous process improvement.

Effective business and IT strategic

alignment.

Standardize and centralize change

management process.

Better business and IT strategic

alignment.

Enabling innovation.

Create competitiveness.

Achieve higher level of quality.

Higher degree of customer/user

satisfaction.

Reduce costs.

Higher profitability.

Increase revenue and market

share.

Better appreciation of value of IT.

Better business and IT integration.

Project failure rate is still too high.

Changes are still very disruptive to

business operation.

Level 1 Ad hoc

(disruptive)

None No change management processes.

No specific or informal change

management process and practice

exist anywhere.

Change can be made with no con-

trol at all; there is no approval

mechanism, no track record and

no single party accountable for the

failure.

Chaotic

Reactive

Disruptive

Uncontrolled

Unstable

Constantly operate in a

firefighting mode.

Adopt formal change management

practice.

No awareness of the benefits of

adopting change management and

best practice.

Project failures are too often and

too costly.

No understanding of risk man-

agement, and do not have the

capacity to manage and minimize

disruption to IT and business due

to change and/or the failure of the

uncontrolled changes.

● Increase customer/user satisfaction
● Customer retention

● Employee retention

● Increase market share and revenue

● Increase sales from existing customer

● Improve productivity

● And others

● CMMM investment

● Initial capital investment

● Total cost of ownership (TCO) over the life of the investment (solution)

A Case Study: AML Services Inc.

AML (A Medical Laboratory Services Inc.) is one of the medical laboratory

service providers for a city with a population of one million, and AML is a

technology-driven company with 150 employees serving the city and surround-

ing municipalities. Although the barrier to entry is high—the field requires a lot

of startup investment for equipment and technologies (e.g., laboratory testing,

X ray, MRI, and information technologies), as well as highly skilled staff—

there is some competition in this segment of the health care industry.

Tom Cusack, the CIO of AML, decides to hire a consulting firm to help him

architect the right solution for AML. Potential discussion questions could be as

follows:

● Should AML consider cloud computing part of the solution?

● Is AML ready for cloud computing?

● What does “done” look like?

● How can the organization overcome these challenges of change?

ORGANIZATIONAL READINESS SELF-ASSESSMENT: (WHO,

WHEN, WHERE, AND HOW)

An organizational assessment is a process intending to seek a better under-

standing of the as-is (current) state of the organization. It also defines the

roadmap (strategies and tactics) required to fill the gap and to get the organiza-

tion moving toward where it wants to go (future state) from its current state.

The process implies that the organization needs to complete the strategy

analysis process first and to formulate the future goals and objectives that

support the future direction of the business organization.

During an effective organization readiness assessment, it is desirable to

achieve the following:

● Articulate and reinforce the reason for change.

● Determine the as-is state.

● Identify the gap (between future and current state).

● Anticipate and assess barriers to change.

● Establish action plan to remove barriers.

Involve the right people to enhance buy-in:

● It is critical to involve all the right people (stakeholders) across the

organization, and not just management and decision-makers, as partici-

pants in any organization assessment.

Asking the “right questions” is also essential. The assessment should provide

insight into your challenges and help determine some of these key questions:

● How big is the gap?

● Does your organization have the capacity to execute and implement

changes?

● How will your employees respond to the changes?

● Are all your employees in your organization ready to adopt changes that

help realize the vision?

● What are the critical barriers to success?

● Are you business partners ready to support the changes?

Are you ready? Table 5.1.2 shows a working assessment template.

TABLE 5.1.2. Working Assessment Template

Nontechnical

Agree

Don’t

Know

Disagree

Does your organization have a good common un-

derstanding of why business objectives have been met

or missed in the past?

Does your organization have a good common un-

derstanding of why projects have succeeded or failed

in the past?

Does your organization have a change champion?

Does your organization perceive change as unneces-

sary disruption to business?

Does your organization view changes as the man-

agement fad of the day?

Does your organization adopt an industry standard

change management best practice and methodology

approach?

Does your organization adopt and adapt learning

organization philosophy and practice?

How familiar is your organization with service pro-

visioning with an external service provider?

Technical

Does your organization implement any industry

management standards?

● ITIL

● COBIT

● ITSM

● others

Does your organization have a well-established pol-

icy to classify and manage the full lifecycle of all

corporate data?

Can you tell which percentage of your applications is

CPU-intensive, and which percentage of your appli-

cations is data-intensive?

DISCUSSION

Gartner Research has just released the Hype Cycle report for 2009, which

evaluates the maturity of over 1500 technologies and 501 technology

trends.

The report suggests that the cloud computing is the latest growing trend in the

IT industry. According to Gartner Research, cloud computing is expected to

hit the peak of the “inflated expectations” in the next few years. It is expected

that cloud computing data security and integrity issues will be refined over time

as the technology matured. The pay-as-you-go business model will mature with

the technology over time; it will become more transparent and will behave more

like a true utility model, such that you can easily work with a service provider

without worrying about the security of the data. To summarize what we have

learned, one can entertain to leverage the formula developed by management

consultant David Gleicher:

Dissatisfaction 3 Vision of future possibilities 3 Achievable first stepÞ

cResistance to change

This means that any component that is equal to zero or near zero will make the

left-hand side of the equation equal to or approaching zero. In order to make

the change initiative successful, the product of the left-hand side equation must

be a lot greater than that of the right-hand side of the equation (pain or

resistancetochange).

Case Study: ENCANA CORP.

EnCana Corp, Canada’s biggest energy company, announced early Sunday

afternoon—on Mother’s Day—its plans to split into two discrete companies,

an oil company and a natural gas company, in an effort to wring out more

shareholder value with crude prices at record highs. This has all the DNA of the

company’s chairman, David O’Brien: In 2001, under O’Brien’s visionary

leadership, tremendous value was created when CP Limited was split up into

five separate companies and one of them was PanCanadian Petroleum. The

challenge is to quickly establish a corporate culture that would bridge

the somewhat divergent cultures of its two predecessor companies [13, 14].

EnCana, a $65 billion energy producer formed in 2002 in a $27 billion

merger of PanCanadian Petroleum (which focused on oil) and Alberta Energy

Corporation (which focused on gas production), said the move should help

investors better gauge and appreciate the real value of the business of the

respective products and remove a so-called “holding company discount” it

suffers in the stockmarket.

It is expected that the proposed split of EnCana would be similar to the CP

Enterprise split in 2001; the reorganization of EnCana should have the same

impact on the two new companies being created. It should result in (a) better

market valuations because of greater transparency for shareholders and (b)

greater clarity when it comes to allocating capital for expenditures within each

entity.

2008 Highlights (As Published on Their Web Site): Financial (US$)

● Cash flow increased 13% per share to $12.48, or $9.4 billion.

● Operating earnings were up 9% per share to $5.86, or $4.4 billion.

● Net earnings were up 53% per share to $7.91, or $5.9 billion, primarily

due to an after-tax unrealized mark-to-market hedging gain of $1.8 billion

in 2008 compared to an after-tax loss of $811 million in 2007.

● Capital investment, excluding acquisitions and divestitures, was up 17%

to $7.1 billion.

● Generated $2.3 billion of free cash flow (as defined in Note 1 on page 10),

down $112 million from 2007.

● Operating cash flow nearly doubled to $421 million from the company’s

Foster Creek and Christina Lake upstream projects, whereas lower

refining margins and higher purchased product costs resulted in a $241

million loss in operating cash flow for the downstream business. As a

result, EnCana’s integrated oil business venture with ConocoPhillips

generated $180 million of operating cash flow.

In October 2008, EnCana announced that its plan to split into two

companies has been put on hold because of the current global financial crisis:

“The unprecedented uncertainty in the debt and credit markets has certainly

become more difficult and this kind of extraordinary time we’ve decided to

wait,” says Alan Boras, a spokesperson for EnCana.

“However, there is currently too much uncertainty in the global debt and

equity markets to proceed . . . at this time. We cannot predict when the

appropriate financial and market conditions will return, but EnCana will be

prepared to advance the proposed transaction when it determines that the

market conditions are appropriate,” Eresman said.

The discussion questions could be as follows:

1. How would cloud computing be a part of the solution to facilitate the

splitting of the company into two effectively and efficiently and with

minimal disruption to the business?

2. What would you advise EnCana executives to do at the 2008 worldwide

financial market meltdown and the subsequent economic recession?

3. What would your advice be from a business and IT strategic alignment

perspective if you were brought in to advise EnCana IT executives?

4. What were the risks if EnCana went ahead with the split?

5. What were the risks if EnCana put the split onhold?

6. If EnCana is successful in its maneuver, could its peers and competitors

consider splitting their assets into distinct companies to create greater

shareholder value?

7. What IT migration strategy would you recommend EnCana to adopt in

order to achieve the highest flexibility and adaptability to changes?

8. Would you recommend that EnCana buy or build a duplicate IT

infrastructure for each distinct organization as the most efficient way to

align and support the business organization, both the new and the old?

9. Would you recommend cloud computing or utility computing as the

solution to EnCana’s business problem?

10. How would you assess the organizational readiness for EnCana?

11. Would it make any difference if IT can accommodate all the necessary

changes to facilitate the split up of the firm into two distinct entities one-

third of the planned required time?

 DATA SECURITY IN THE CLOUD

Taking information and making it secure, so that only yourself or certain

others can see it, is obviously not a new concept. However, it is one that we

have struggled with in both the real world and the digital world. In the real

world, even information under lock and key, is subject to theft and is certainly

open to accidental or malicious misuse. In the digital world, this analogy of

lock-and-key protection of information has persisted, most often in the form of

container-based encryption. But even our digital attempt at protecting infor-

mation has proved less than robust, because of the limitations inherent in

protecting a container rather than in the content of that container. This

limitation has become more evident as we move into the era of cloud

computing: Information in a cloud environment has much more dynamism

and fluidity than information that is static on a desktop or in a network folder,

so we now need to start to think of a new way to protect information.

If we can start off our view of data security as more of a risk mitigation

exercise and build systems that will work with humans (i.e., human-centric),

then perhaps the software we design for securing data in the cloud will be

successful.

THE CURRENT STATE OF DATA SECURITY IN THE CLOUD

At the time of writing, cloud computing is at a tipping point: It has many

arguing for its use because of the improved interoperability and cost savings it

offers. On the other side of the argument are those who are saying that cloud

computing cannot be used in any type of pervasive manner until we resolve the

security issues inherent when we allow a third party to control our information.

These security issues began life by focusing on the securing of access to the

datacenters that cloud-based information resides in.

As I write, the IT industry is beginning to wake up to the idea of content-

centric or information-centric protection, being an inherent part of a data

object. This new view of data security has not developed out of cloud computing,

but instead is a development out of the idea of the “de-perimerization” of

the enterprise. This idea was put forward by a group of Chief Information

Officers (CIOs) who formed an organization called the Jericho Forum .

HOMO SAPIENS AND DIGITAL INFORMATION

Cloud computing offers individuals and organizations a much more fluid and

open way of communicating information. This is a very positive move forward

in communication technology, because it provides a more accurate mimic of the

natural way that information is communicated between individuals and groups

of human beings. Human discourse, including the written word, is, by nature,

an open transaction: I have this snippet of information and I will tell you, verbally

or in written form, what that information is. If the information is sensitive, it may

be whispered, or, if written on paper, passed only to those allowed to read it.

The result is that human-to-human information communication will result in a

very fluid discourse. Cloud computing is a platform for creating the digital

equivalent of this fluid, human-to-human information flow, which is something

that internal computing networks have never quite achieved. In this respect,

cloud computing should be seen as a revolutionary move forward in the use of

technology to enhance human communications.

CLOUD COMPUTING AND DATA SECURITY RISK

Thecloudcomputingmodelopens up oldandnewdatasecurityrisks. Byitsvery

definition, Cloud computing is a development that is meant to allow more open

accessibility and easier and improved data sharing. A user uploading or

creating cloud-based data include those data that are stored and maintained

by a third-party cloud provider such as Google, Amazon, Microsoft, and so on.

This action has several risks associated with it: Firstly, it is necessary to protect

the data during upload into the data center to ensure that the data do not get

hijacked on the way into the database. Secondly, it is necessary to the stores

the data in the data center to ensure that they are encrypted at all times.

Thirdly, andperhaps lessobvious, theaccesstothosedataneedto be controlled;

this control should also be applied to the hosting company, including the

administrators of the data center.

A recent survey by Citrix which polled UK IT directors and managers

showed that two-thirds of UK companies were computing in the cloud. Of

those polled, one-third said they thought there were security risks and 22% said

they had concerns over the control of their data in the cloud .

The development of Web 2.0 technologies has created a new and more

dynamic method of communicating information; blogs, social networking sites,

Web conferencing, wikis, podcasts and ultimately cloud computing itself offer

new and novel methods of getting information from a to b; unfortunately, this

can also often be via x, y, and z.

Compliance with data security directives and acts still needs to be met, no

matter what platform for communication is being used. The lack of security

and privacy within a cloud computing environment is hotly debated over

whether this problem is perceived or real. However, reports by IT industry

analysts suggest that this is a real problem and must be overcome to allow full

utilization of cloud computing. A recent report by IDC which surveyed 244

respondents identified security as the main challenge for cloud computing, with

74.6% of the vote stating this as a stumbling block to the uptake of the

technology . Reports by Gartner and Gigacom, specifically on cloud security,

also confirms this [9, 10].

We can thus conclude that the risk profile of an organization, or individual,

using the cloud to store, manage, distribute, and share its information has

several layers. Each layer can be seen as a separate, but tied, level of risk that

can be viewed independently, but these risks should be approached as a whole,

to make sure that areas constituting a “weakest link” do not end up built into

the system.

CLOUD COMPUTING AND IDENTITY

Digital identity holds the key to flexible data security within a cloud environ-

ment. This is a bold statement, but nonetheless appears to be the method of

choice by a number of industry leaders. However, as well as being a perceived

panacea for the ills of data security, it is also one of the most difficult

technological methods to get right. Identity, of all the components of informa-

tion technology, is perhaps the most closest to the heart of the individual. After

all, our identity is our most personal possession and a digital identity represents

who we are and how we interact with others on-line.

The developments seen in the area of a cloud-based digital identity layer

have been focused on creating a “user-centric” identity mechanism. User-

centric identity, as opposed to enterprise-centric identity, is a laudable design

goal for something that is ultimately owned by the user. However, the Internet

tenet of “I am who I say I am” cannot support the security requirements of a

data protection methodology based on digital identity, therefore digital identity,

in the context of a security system backbone, must be a verified identity by

some trusted third party: It is worth noting that even if your identity is verified

by a trusted host, it can still be under an individual’s management and control.

Identity, Reputation, and Trust

One of the other less considered areas of digital identity is the link between the

identity and the reputation of the individual identity owner. Reputation is a

real-world commodity that is a basic requirement of human-to-human relation-

ships: Our basic societal communication structure is built upon the idea of

reputation and trust. Reputation and its counter value, trust, is easily

transferable to a digital realm: eBay, for example, having partly built a

successful business model on the strength of a ratings system, builds up the

reputation of its buyers and sellers through successful (or unsuccessful)

transactions. These types of reputation systems can be extremely useful when

used with a digital identity. They can be used to associate varying levels of trust

with that identity, which in turn can be used to define the level (granular

variations) of security policy applied to data resources that the individual

wishes to access.

Identity for Identity’s Sake

An aspect of identity that again is part of our real world and needs to be

mimicked in the digital world is that of “multiple identities,” because in the

cloud you may find that you need a different “identity” or set of identifiers to

access resources or perform different tasks.

Cloud Identity: User-Centric and Open-Identity Systems

As the use of the Internet and cloud computing increases, the risks associated

with identifying yourself, via this medium, have also increased. Identity fraud

and theft are a real threat to the uptake and acceptance of cloud computing;

and as already stated, a robust digital identity can be the backbone of data

security in the cloud.

Internet identities such as information cards were originally designed to

overcome the problem of “password fatigue,” which is an increasing problem

for users needing to remember multiple log-on credentials for Web site access.

Similarly, OpenID was developed for the purpose of an easier logon into

multiple Web sites, negating the need to remember username/logon creden-

tials. Information cards differ from OpenID in a fundamental manner in that

information cards have an architecture built on the principle of “claims,”

claims being pieces of information that can be used to identify the card holder.

At this juncture it is worth pointing out that, although OpenID can use claims,

the architecture behind OpenID makes this use of claims less flexible—and,

more importantly, less dynamic in nature—than those offered by information

cards.

The Philosophy of User-Centric Identity

Digital identities are a still evolving mechanism for identifying an individual,

particularly within a cloud environment; and, as such, the philosophy behind

the idea is also still being formed. However, one area that is being recognized as

a basic component of an identity is that of identity ownership being placed upon

the individual (user-centric). Placing ownership with an individual then sets in

place a protocol around the use of the identity.

User-Centric but Manageable

In situations that require a degree of nonrepudiation and verification, where a

user is who they say they are—that is, situations that require a digital identity

to provide access control and security—user-centric identities can still be under

user control and thus user-centric (the user choosing which identity and which

identity claims to send across a transaction path) but must be issued and

managed by a trusted host able to verify the user (for example, the users bank).

This may seem like a security paradox, but it is actually a balanced way of

using a digital identity to assign security policies and control while retaining a

high measure of privacy and user choice.

What Is an Information Card?

Information cards permit a user to present to a Web site or other service

(relying party) one or more claims, in the form of a software token, which may

be used to uniquely identify that user. They can be used in place of user name/

passwords, digital certificates, and other identification systems, when user

identity needs to be established to control access to a Web site or other

resource, or to permit digital signing.

Information cards are part of an identity meta-system consisting of:

1. Identity providers (IdP), who provision and manage information cards,

with specific claims, to users.

2. Users who own and utilize the cards to gain access to Web sites and other

resources that support information cards.

3. An identity selector/service, which is a piece of software on the user’s

desktop or in the cloud that allows a user to select and manage their

cards.

4. Relying parties. These are the applications, services, and so on, that can

use an information card to authenticate a person and to then authorize an

action such as logging onto a Web site, accessing a document, signing

content, and so on.

Each information card is associated with a set of claims which can be used to

identify the user. These claims include identifiers such as name, email address,

post code, and so on. Almost any information may be used as a claim, if

supported by the identity provider/relying party; for example, a security

clearance level could be used as a claim, as well as a method of assigning a

security policy.

One of the most positive aspects of an information card is the user-centric

nature of the card. An information card IdP can be set up so that the end

users themselves can self-issue a card, based on the required claims that they

themselves input—the claims being validated if needed. Alternatively, the

claims can be programmatically input by the IdP via a Web service or similar,

allowing the end user to simply enter the information card site and download

the card.

Using Information Cards to Protect Data

Information cards are built around a set of open standards devised by a

consortium that includes Microsoft, IBM, Novell, and so on.

The original remit of the cards was to create a type of single sign on system

for the Internet, to help users to move away from the need to remember

multiple passwords. However, the information card system can be used in many

more ways. Because an information card is a type of digital identity, it can be

used in the same way that other digital identities can be used. For example, an

information card can be used to digitally sign data and content and to control

access to data and content. One of the more sophisticated uses of an

information card is the advantage given to the cards by way of the claims

system. Claims are the building blocks of the card and are dynamic in that they

can be changed either manually or programmatically, and this

change occurs in real time: As soon as the change is made, it can be

reflected when the card is used, for example, by a subsequent

change in the access or content usage policy of the resource

requiring the information card. This feature can be used by

applications that rely on the claims within an information card to

perform a task (such as control access to a cloud-based data

resource such as a document). A security policy could be applied to

a data resource that will be enacted when a specific information card

claim is presented to it: If this claim changes, the policy can

subsequently change.

For example, a policy could be applied to a Google Apps document

specifying that access is allowed for user A when they present their information

card with claim “security clearance level 5 3” and that post access, this user

will be able to view this document for 5 days and be allowed to edit it. The same

policy could also reflect a different security setting if the claim changes, say to a

security clearance level 5 1; in this instance the user could be disallowed access

or allowed access with very limited usage rights.

Weakness and Strengths of Information Cards

The dynamic nature of information cards is the strength of the system, but the

weakness of information cards lies in the authentication. The current informa-

tion card identity provisioning services on offer include Microsoft Geneva,

Parity, Azigo, Higgins Project, Bandit, and Avoco Secure. Each offers varying

levels of card authentication and are chosen from Username and password,

Kerberos token, x509 digital certificate, and personal card. Each of these

methods has drawbacks.

Cross-Border Aspects of Information Cards

Cloud computing brings with it certain problems that are specific to a widely

distributed computing system. These problems stem from the cross-border

nature of cloud computing and the types of compliance issues arising out of

such a situation.

The use of information cards as a method of digitally identifying an

individual within the cloud (as well as on the desktop) will gain ground, as

its usage model extends with increased support for information cards, from

relying parties and as usability through the use of cloud-based selectors

becomes more mainstream.

 THE CLOUD, DIGITAL IDENTITY, AND DATA SECURITY

When we look at protecting data, irrespective of whether that protection is

achieved on a desktop, on a network drive, on a remote laptop, or in a cloud,

we need to remember certain things about data and human beings. Data are

most often information that needs to be used; it may be unfinished and require

to be passed through several hands for collaboration for completion, or it could

be a finished document needing to be sent onto many organizations and then

passed through multiple users to inform. It may also be part of an elaborate

workflow, across multiple document management systems, working on plat-

forms that cross the desktop and cloud domain. Ultimately, that information

may end up in storage in a data center on a third-party server within the cloud,

but even then it is likely to be re-used from time to time. This means that the

idea of “static” data is not entirely true and it is much better (certainly in terms

of securing that data) to think of it as highly fluid, but intermittently static.
One of the other aspects of data security we need to assess before embarking

on creating a security model for data in the cloud is the levels of need; that is,

how secure do you want that data to be? The levels of security of any data

object should be thought of as concentric layers of increasingly pervasive

security, which I have broken down here into their component parts to show

the increasing granularity of this pervasiveness:

Level 1: Transmission of the file using encryption protocols

Level 2: Access control to the file itself, but without encryption of the content

Level 3: Access control (including encryption of the content of a data object)

Level 4: Access control (including encryption of the content of a data object)

also including rights management options (for example, no copying

content, no printing content, date restrictions, etc.)

Other options that can be included in securing data could also include

watermarking or red-acting of content, but these would come under level 4

above as additional options.

You can see from the increasing granularity laid out here that security,

especially within highly distributed environments like cloud computing, is not

an on/off scenario. This way of thinking about security is crucial to the

successful creation of cloud security models. Content level application of data

security gives you the opportunity to ensure that all four levels can be met by a

single architecture, instead of multiple models of operation which can cause

interoperability issues and, as previously mentioned, can add additional

elements of human error, leading to loss of security.

 CONTENT LEVEL SECURITY—PROS AND CONS

Much of the substance of this chapter has described a new way of thinking

about securing data, so that data within a cloud can remain fluid, accessible on

multiple nodes and yet remain protected throughout its life cycle. The basis of

this new security model has been described as “content or information-centric.”

What this means in reality is that the content that makes up any given data

object (for example, a Word document) is protected, as opposed to the file—

that is, the carrier of that information being protected. This subtle difference in

approach gives us a major advantage in terms of granularity and choice of

protection level, as well as persistence of protection. We will take a Word

document as our example here to outline the main pros and cons of this type of

security approach.

You can easily see the advantages that are conferred on data protected at the

content level: greater control, more focused access control, increased granular

protection over content, and assurance within a cloud-hosted system. But what,

if any, disadvantages come with this type of methodology?

Transfer of the data between application and database, or human-to-human

transfer, can protect the data as an encrypted package, decrypted when access is

granted. Content-centric security measures need to be compatible with both

database security and secure transfer of data within a cloud environment.

Protecting the content of our Word document needs to be done in such a

manner that it does not impact the storage of that data.

 FUTURE RESEARCH DIRECTIONS

This chapter has spent some time discussing digital identity within a cloud

framework. The reason for this emphasis was to show the possibilities that can

be achieved, in terms of data security, when using digital identity as the

backbone for that security. Digital identity is an area that is, as I write,

undergoing some revolutionary changes in what an identity stands for and how

it can be leveraged. As a means of controlling access to information within a

cloud environment, the idea of using a person’s digital identity to do this, as

opposed to using authentication alone, or some sort of access control list setup,

opens up new opportunities, not only from a technological standpoint but also

from the viewpoint that ownership of information and privacy of that

information are often inherently linked to individuals and groups. And, as

such, how they access this information becomes much more natural when that

access is by means of truly and digitally identifying themselves.

Currently there are methods of creating more private identity transactions

which can hide or obfuscate an identity attribute (a social security number, for

example) such as zero-knowledge technology (sometimes called minimal

disclosure) or similar Privacy Enhancing Technologies (PETs) ; however, these

methods are still not used in a pervasive manner, and this may be because of

the need to build more user control into the technologies and to add greater

granularity into such systems.

Another area that warrants research is auditing of the access to and use of

information in the cloud. In particular, because of the cross-border nature of

cloud computing, there is likely to be a greater need for location-aware security

restrictions to be used. However, one area that does need further work is that of

locking data access to a geographic location. How that geographic location is

assessed is the salient area for research, because currently GPS systems are little

used and come with inherent technical difficulties such as the ability to receive

GPS coordinates when inside a building.

 LEGAL ISSUES IN CLOUD COMPUTING

“Even before the blades in the data center went down, I knew we had a

problem. That little warning voice in the back of my head had become an

ambulance siren screaming right into my ears. We had all our customers’

applications and data in there, everything from the trivial to the mission

critical. I mumbled one of those prayers that only God and IT types hear,

hoping our decisions on redundancy were the right ones. We had a disaster

recovery plan, but it had never really been battle-tested. Now we were in

trouble; and the viability of not just our enterprise, but also that of many of our

customers, hung in the balance. I can take the hits associated with my own

business, but when someone else’s business could sink... it’s different.

I looked over at Mike and Nihkil, our resident miracle workers. The color

had drained from both of their faces. ‘I’ve given you all she’s got, Captain,’

Nikhil said in his best Scotty from Star Trek voice. Looking over at Mike and

sinking even lower into my seat, I knew it was going to be a long and painful

day... .”

Definition of Cloud Computing

This chapter assumes that the reader is familiar with the manner in which cloud

computing is defined as set forth by the National Institute of Standards and

Technology , a federal agency of the United States Government.

In brief, cloud computing is a model for enabling convenient, on-demand

network access to a shared pool of configurable computing resources (e.g.,

networks, servers, storage, applications, and services) that can be rapidly

provisioned and released. This cloud model is composed of five essential

characteristics, three service models, and four deployment models.

Overview of Legal Issues

The legal issues that arise in cloud computing are wide ranging. Significant

issues regarding privacy of data and data security exist, specifically as they

relate to protecting personally identifiable information of individuals, but also

as they relate to protection of sensitive and potentially confidential business

information either directly accessible through or gleaned from the cloud

systems (e.g., identification of a company’s customer by evaluating traffic

across the network). Additionally, there are multiple contracting models under

which cloud services may be offered to customers (e.g., licensing, service

agreements, on-line agreements, etc. Finally, commercial and business

considerations require some attention. What happens to customer

information, applications, and data when a cloud provider is acquired? What

are the implications for that same set of informa- tion, applications, and data

when a cloud provider is files bankruptcy or ceases to do business? All of these

issues will be explored.

Distinguishing Cloud Computing from Outsourcing and

Provision of Application Services

Cloud computing is different from traditional outsourcing and the application

service provider (ASP) model in the following ways:

● In general, outsourcers tend to take an entire business or IT process of a

customer organization and completely run the business for the benefit of

the customer.

● In the ASP model, the service provided is a software service. The software

application may have been used previously in-house by the customer, or it

may be a new value-added offering. The ASP offering is a precursor to

what is now called “software as a service.” The transaction is negotiated,

though typically it is not as complex and highly negotiated as a traditional

outsourcing arrangement.

● Cloud computing covers multiple service models (i.e, software, infrastruc-

ture, and platform as a service). As of this writing, access to cloud

computing services are (at least in the public cloud computing frame-

work), for the most part, one-size-fits-all ‘click here to accept’ agreements,

not negotiated arrangements.

DATA PRIVACY AND SECURITY ISSUES

U.S. Data Breach Notification Requirements

Generally speaking, data breach is a loss of unencrypted electronically stored

personal information. This information is usually some combination of name

and financial information (e.g., credit card number, Social Security Number).

Almost all 50 states in the United States now require notification of affected

persons (i.e., residents of the individual state), upon the occurrence of a data

breach. As of this writing, the European Union was considering data breach

legislation.

 Federal Law Compliance

Gramm—Leach—Bliley Act: Financial Privacy Rule. The Gramm— Leach—

Bliley Act (GLB) requires, among other things, that financial institutions

implement procedures to ensure the confidentiality of personal information and

to protect against unauthorized access to the information. Various United

States government agencies are charged with enforcing GLB, and those agencies

have implemented and currently enforce standards .

The implications to the cloud provider that is providing services to financial

institutions are that the cloud provider will, to some degree, have to (1) comply

with the relevant portions of GLB by demonstrating how it prevents un-

authorized access to information, (2) contractually agree to prevent unauthor-

ized access, or (3) both of the above.

The Role of the FTC: Safeguards Rule and Red Flags Rule. At the

United States federal level, the Federal Trade Commission (FTC) working

under the auspices of the FTC Act has been given authority to protect

consumers and their personal information. The Safeguards Rule mandated by

GLB and enforced by the FTC requires that all businesses significantly

involved in the provision of financial services and products have a written

security plan to protect customer information. The plan must include the

following elements :

● Designation of one or more employees to coordinate its information

security program;

● Identification and assessment of the risks to customer information in each

relevant area of the company’s operation, and evaluation of the effective-

ness of the current safeguards for controlling these risks;

● Designing and implementing a safeguards program, and regularly mon-

itoring and testing it;

● Selection of service providers that can maintain appropriate safeguards;

and

● Evaluation and adjustment of the program in light of relevant circum-

stances, including (a) changes in the firm’s business or operations or

(a) the results of security testing and monitoring.

In 2007, as part of the Fair and Accurate Credit Transaction Act of 2003

(FACT) , the FTC promulgated the Red Flag Rules
1

(these rules were

scheduled to go into effect in November 2009, but have been delayed several

times). These rules are intended to curb identity theft by having financial

institutions identify potential “red flags” for activities conducted through the

organization’s systems that could lead to identity theft.

Health Insurance Portability and Accountability Act & HITECH Act. The

Health Information Technology for Economic and Clinical Health Act

(HITECH ACT) requires notification of a breach of unencrypted health

records (similar to that under state data breach notification requirements

previously discussed) for all covered entitites that are required to comply with

the Health insurance Portability and Accountability Act of 1996 (HIPAA) .

USA PATRIOT Act. Shortly after September 11, 2001, the United States

Congress passed the “Uniting and Strengthening America by Providing

Appropriate Tools Required to Intercept and Obstruct Terrorism Act” (USA

PATRIOT Act) of 2001. Neither the cloud user nor its customer likely has

much recourse in such an instance.

International Data Privacy Compliance

European Union Data Privacy Directive. In 1995, the European Union

(EU) passed the “European Union Directive on the Protection of Individuals

with Regard to the Processing of Personal Data and the Movement of Such

Data Privacy Directive”(Directive)

Article 17 of the Directive requires that a data controller (i.e., the person or

organization who determines the purposes and means of processing of the

personal data) “implement appropriate technical and organizational controls to

protect personal data against accidental or unlawful destruction or acci- dental

loss, alteration, unauthorized disclosure or access... .” Article 17 also mandates

that there be a written contract between a data controller and a data processor

(i.e., anyone who processes data for the controller) that requires, among other

things, that the data processor act only on instructions from the data controller.

Since a cloud provider will likely be a data processor, Article 17 is particularly

important. The language of the cloud provider’s contract is also particularly

important if the cloud provider resides in the EU.

If a cloud provider wishes to conduct business in the EU, place data in its

possession in the EU, or otherwise access the personal information of those in

the EU, there are compliance obligations under the Directive that must be

studied and followed. The cloud user must ask questions regarding geographic

placement of data, compliance methods, and so on, and get satisfactory

answers prior to placing its personal data (whether through software, platform,

or infrastructure as a service) into a cloud that might include data center

operations in an EU member country.

A Sampling of Other Jurisdictions: Canada and Australia. Many coun-

tries have data protection or data privacy regimes in place, but the coverage

and effect of such regimes is varied. For example, Argentina’s regime is similar

to the EU approach. Brazil, like many countries, has a constitutional right to

privacy.

Canada’s Personal Information Protection and Electronic Documents Act

(PIPEDA). PIPEDA is intended to “support and promote electronic commerce

by protecting personal information that is collected, used, or disclosed in

certain circumstances.. .” . Canada, unlike the EU with its state-to-state

approach, has taken an organization-to-organization approach to privacy. In

essence, organizations are held accountable for the protection of personal

information it transfers to third parties, whether such parties are inside or

outside of Canada.

Australia Privacy Act. Australia’s Privacy Act is based on (a) 11 “In-

formation Privacy Principles” that apply to the public sector and (b) 10

“National Privacy Principles” that apply to the private sector. Australian

entities may send personal data abroad, so long as (1) the entity believes the

recipient will uphold the principles, it has consent from the data subject, or (3)

the transfer is necessary to comply with contractual obligations.

The Office of the Privacy Commissioner expects that Australian organiza-

tions will ensure that cloud providers that collect and handle personal

information comply with National Privacy Principles 4 and 9. They require

that an organization (1) take steps to ensure that the personal information it

holds is accurate, up-to-date, and secure and (2) protect personal information

that it transfers outside Australia.

CLOUD CONTRACTING MODELS

Licensing Agreements Versus Services Agreements

Summary of Terms of a License Agreement. A traditional software license

agreement is used when a licensor is providing a copy of software to a licensee for

its use (which is usually non-exclusive). This copy is not being sold or transferred

to the licensee, but a physical copy is being conveyed to the licensee. The software

license is important because it sets forth the terms under which the software may

be used by the licensee. The license protects the licensor against the inadvertent

transfer of ownership of the software to the person or company that holds the

copy. It also provides a mechanism for the licensor of the software to (among

other things) retrieve the copy it provided to the licensee in the event that the

licensee (a) stops complying with the terms of the license agreement or (b) stops

paying the fee the licensee charges for the license.

Summary of Terms of a Service Agreement. A service agreement, on the

other hand, is not designed to protect against the perils of providing a copy of

software to a user. It is primarily designed to provide the terms under which a

service can be accessed or used by a customer. The service agreement may also set

forth quality parameters around which the service will be provided to the users.

Value of Using a Service Agreement in Cloud Arrangements. In each of

the three permutations of cloud computing (SaaS, PaaS, and IaaS), the access

to the cloud-based technology is provided as a service to the cloud user. The

control and access points are provided by the cloud provider.

On-Line Agreements Versus Standard Contracts

There are two contracting models under which a cloud provider will grant

access to its services. The first, the on-line agreement, is a click wrap agreement

with which a cloud user will be presented before initially accessing the service. A

click wrap is the agreement the user enters into when he/she checks an “I Agree”

box, or something similar at the initiation of the service relationship. The

agreement is not subject to negotiation and is generally thought to be a contract

of adhesion (i.e., a contract that heavily restricts one party while leaving the

other relatively free).

The Importance of Privacy Policies Terms and Conditions

The privacy policy of a cloud provider is an important contractual document

for the cloud user to read and understand. Why? In its privacy policy the cloud

provider will discuss, in some detail, what it is doing (or not doing, as the case

may be) to protect and secure the personal information of a cloud user and its

customers.

The cloud provider should be explicit in its privacy policy and fully describe

what privacy security, safety mechanisms, and safety features it is implement-

ing. As further incentive for the cloud provider to employ a “do what we say we

do” approach to the privacy policy, the privacy policy is usually where the FTC

begins its review of a company’s privacy practices as part of its enforcement

actions. If the FTC discovers anomalies between a provider’s practices and its

policies, then sanctions and consent decrees may follow.

Risk Allocation and Limitations of Liability. Simply stated, the limitation

of liability in an agreement sets forth the maximum amount the parties will

agree to pay one another should there be a reason to bring some sort of legal

claim under the agreement. The cloud user will pay a fee premium for shifting

the liability and contractual risk to the cloud provider. The cloud provider’s

challenge, as it sees the risk and liability profile shift requiring it to assume

heightened provider obligations, will be to appropriately mitigate contract risk

using technological or other types of solutions where possible. Examples of

mitigation could include implementation of robust and demonstrable informa-

tion security programs, implementing standards or best practices, developing

next generation security protocols, and enhancing employee training.

JURISDICTIONAL ISSUES RAISED BY VIRTUALIZATION AND DATA

LOCATION

Jurisdiction is defined as a court’s authority to judge acts committed in a certain

territory. The geographical location of the data in a cloud computing

environment will have a significant impact on the legal requirements for

protection and handling of the data. This section highlights those issues.

Virtualization and Multi-tenancy

Virtualization. Computer virtualization in its simplest form is where one

physical server simulates being several separate servers. For example, in an

enterprisesetting, insteadofhavingasingleserverdedicatedtopayrollsystems,

another one dedicated to sales support systems, and still a third dedicated to

asset management systems, virtualization allows one server to handle all of

these functions. A single server can simulate being all three. Each one of these

simulated servers is called a virtual machine.

Virtualization across a single or multiple data centers makes it difficult for

the cloud user or the cloud provider to know what information is housed on

various machines at any given time. The emphasis in the virtualized environ-

ment is on maximizing usage of available resources no matter where they reside.

Multi-tenancy. Multi-tenancy refers to the ability of a cloud provider to

deliver software as-a-service solutions to multiple client organizations (or

tenants) from a single, shared instance of the software. The cloud user’s

information is virtually, not physically, separated from other users. The major

benefit of this model is cost-effectiveness for the cloud provider. Some risks or

issues with the model for the cloud user include (a) the potential for one user to

be able to access data belonging to another user and (b) difficulty to back up

and restore data .

The Issues Associated with the Flexibility of Data-Location

One of the benefits of cloud computing from the cloud provider’s perspective is

the ability of the cloud provider to move data among its available data center

resources as necessary to maximize the efficiencies of it overall system. From a

technology perspective, this ability to move data is a reasonably good solution

to the problem of under utilized machines.

Data Protection. In fact, in the cloud environment it is possible that the same

data may be stored in multiple locations at the same time. For example, real

time-transaction data may be in one geographic location while the backup or

disaster recovery systems may be elsewhere. It is also likely that the agreement

governing the services says nothing about data location. There are exceptions,

however. In fact, a few cloud providers (of which Amazon.com is one) are

allowing cloud customers of certain service offerings to choose whether their

data are kept in a U.S. or European data center .

Examples of the issues raised by data location are highlighted by Robert

Gellman of the World Privacy Forum:

The European Union’s Data Protection Directive offers an example of the

importance of location on legal rights and obligations. Under Article 4 . . . [O]nce

EU law applies to the personal data, the data remains subject to the law, and the

export of that data will thereafter be subject to EU rules limiting transfers to a third

country. Once an EU Member State’s data protection law attaches to personal

information, thereisnoclearway to removetheapplicabilityofthelawto thedata .

Other Jurisdiction Issues

Confidentiality and Government Access to Data. Each jurisdiction (and

perhaps states or provinces within a jurisdiction) has its own regime to protect

the confidentiality of information. In the cloud environment, given the

potential movement of data among multiple jurisdictions, the data housed in

a jurisdiction is subject to the laws of that jurisdiction, even if its owner resides

elsewhere. Given the inconsistency of confidentiality protection in various

jurisdictions, a cloud user may find that its sensitive data are not entitled to the

protection with which the cloud user may be familiar, or that to which it

contractually agreed.

Subcontracting. A cloud provider’s use of a third-party subcontractor to

carry out its business may also create jurisdictional issues. The existence or

nature of a subcontracting relationship is most likely invisible to the cloud user.

International Conflicts of Laws

The body of law known as “conflict of laws” acknowledges that the laws of

different countries may operate in opposition to each other, even as those laws

relate to the same subject matter. In such an event, it is necessary to decide

which country’s law will be applied.

In a cloud environment, the conflicts of laws issues make the cloud provider’s

decisions regarding cross-geography virtualization and multi-tenancy, the cloud

user’s lack of information regarding data location, and the potential issues with

geographically diverse subcontractors highly relevant.

COMMERCIAL AND BUSINESS CONSIDERATIONS—A CLOUD USER’S

VIEWPOINT

As potential cloud users assess whether to utilize cloud computing, there

are several commercial and business considerations that may influence the

decision-making. Many of the considerations presented below may manifest in

the contractual arrangements between the cloud provider and cloud user.

Minimizing Risk

Maintaining Data Integrity. Data integrity ensures that data at rest are not

subject to corruption. Multi-tenancy is a core technological approach to

creating efficiencies in the cloud, but the technology, if implemented or

maintained improperly, can put a cloud user’s data at risk of corruption,

contamination, or unauthorized access. A cloud user should expect contractual

provisions obligating a cloud provider to protect its data, and the user

ultimately may be entitled to some sort of contract remedy if data integrity is

not maintained.

Accessibility and Availability of Data/SLAs. The service-level agreement

(SLA) is the cloud provider’s contractually agreed-to level of performance for

certain aspects of the services. The SLA, specifically as it relates to availability

of services and data, should be high (i.e., better than 99.7%), with minimal

scheduled downtime (scheduled downtime is outside the SLA). Regardless of

the contract terms, the cloud user should get a clear understanding of the cloud

provider’s performance record regarding accessibility and availability of

services and data. A cloud provider’s long-term viability will be connected to

its ability to provide its customers with almost continual access to their services

and data. The SLAs, along with remedies for failure to meet them (e.g., credits

against fees), are typically in the agreement between the cloud provider and

cloud user.

Disaster Recovery. For the cloud user that has outsourced the processing of

its data to a cloud provider, a relevant question is, What is the cloud provider’s

disaster recovery plan? What happens when the unanticipated, catastrophic

eventaffectsthedatacenter(s) wherethecloudservicesarebeingprovided? Itis

important for both parties to have an understanding of the cloud provider’s

disasterrecovery plan.

Viability of the Cloud Provider

In light of the wide diversity of companies offering cloud services, from early

stage and startup companies to global, publicly traded companies, the cloud

provider’s ability to survive as business is an important consideration for the

cloud user. A potential cloud user should seek to get some understanding about

the viability of the cloud provider, particularly early-stage cloud providers.

Why is this important? A cloud user will make an investment in (1)

integrating the cloud services into its business processes and (2) migrating the

data from its environment into the cloud environment.

Does Escrow Help?. Software escrow is the provision of a copy of the source

code by the owner or licensor of the source code to a neutral third party (an

escrow agent) for safekeeping for the benefit of a licensee or user of the code

(the user is a beneficiary). The escrow agent releases the software to the

beneficiary upon the occurrence of certain predefined events—for example,

bankruptcy of the owner. So, at least for SaaS cloud users, escrow is an option.

But escrow is not available to the cloud user unless expressly offered by the

cloud provider in its agreement.

What is a cloud user to do? Assuming that the cloud user has some flexibility

to negotiate contract terms, the reasoned approach is for the cloud user to get

contractual assurances that in the event of cessation of business, or some lesser

event (e.g., bankruptcy), it will at least have access to its data and information

without penalty or without being subject to the bankruptcy laws of a

jurisdiction as a prerequisite. If the contract does not provide such a right, a

user must determine whether to simply run the risk regarding the provider’s

viability. Equally as important, the cloud user should consider having a

business continuity plan that contemplates a cloud provider no longer being

able to provide a service.

Protecting a Cloud User’s Access to Its Data

Though the ability for the cloud user to have continual access to the cloud

service is a top consideration, a close second, at least from a business continuity

standpoint, is keeping access to its data. This section introduces three scenarios

that a cloud user should contemplate when placing its data into the cloud.

There are no clear answers in any scenario. The most conservative or risk-

averse cloud user may consider having a plan to keep a copy of its cloud-stored

dataset in a location not affiliated with the cloud provider.

Scenario 1: Cloud Provider Files for Bankruptcy. In a bankruptcy

proceeding, data are treated as a non-intellectual asset and under Section 363

of the U.S. Bankruptcy Code, and it is subject to disposition in a manner

similar to other non-intellectual assets. Data may be consumer-type data, or it

may be the business-level transaction data of the bankrupt cloud provider’s

business customers.

The cloud user is probably equally concerned about keeping its data

(regardless of type) private and out of third-party hands without its consent.

The cloud user’s options are closely tied to the language of the privacy policy of

the cloud provider. That language, along with an analysis by a “consumer

privacy ombudsman,” if one is appointed, will likely determine the fate of

personally identifiable information. The ombudsman uses a multi-factor

assessment that includes a review of (a) the potential gains or losses to

consumers if the sale was approved and (b) potential mitigating alternatives.
6

Any transfer is likely to be under privacy terms similar to those of the cloud

provider. There is no equivalent analysis undertaken by the ombudsman for

business-level transaction data. Business data are likely to be handled at the will

of the bankruptcy court. The good news is that a cloud user probably will not

lose access to its data. However, a third-party suitor to the bankrupt cloud

provider may gain access to such data in the process.

Scenario 2: Cloud Provider Merges or Is Acquired. Any number of

situations could lead to the transfer of the cloud provider’s operation and

the information associated with it, to a third party. The most likely scenarios

include the merger or acquisition of the business, or the sale of a business unit

or service line. Since a cloud user is unlikely to be notified prior to the closing of

a transaction, once again the privacy policy is the best place to look to

determine what would happen to user data in such an event. The click wrap

agreement will clarify the termination options available to the cloud user

should it be dissatisfied with the new ownership.

Scenario 3: Cloud Provider Ceases to Do Business. As a best case, if

there is an orderly shutdown of a cloud provider as part of its cessation

activities, the cloud user may have the ability to retrieve its data as

part of the shut-down activities. In the event that a cloud provider
simply walks away and shuts down the business, cloud users are most

likely left with only legal remedies, filing suit, for example, to attempt
to get access to its data.

SPECIAL TOPICS

The Cloud Open-Source Movement

In Spring 2009 a group of companies, both technology companies and users of

technology, released the Open Cloud Manifesto [25]. The manifesto’s basic

premise is that cloud computing should be as open like other IT technologies.

The manifesto sets forth five challenges that it suggests must be overcome

before the value of cloud computing can be maximized in the marketplace.

These challenges are (1) security, (2) data and applications interoperability,

(2) data and applications portability, (4) governance and management, and

(5) metering and monitoring. The manifesto suggests that open standards and

transparency are methods to overcome these challenges. It then suggests that

openness will benefit business by providing (a) an easier experience transition-

ing to a new provider, (b) the ability for organizations to work together,

(b) speed and ease of integration, and (d) a more available, cloud-savvy talent

pool from which to hire.

Litigation Issues/e-Discovery

From a U.S. law perspective, a significant effort must be made during the

course of litigation to produce electronically stored information (ESI). This

production of ESI is called “e-discovery.” The overall e-discovery process has

three basic components: (1) information management, where a company

decides where and how its information is processed and retained, (2) identify-

ing, preserving, collecting, and processing ESI once litigation has been

threatened or started, and (3) review, processing, analysis, and production of

the ESI for opposing counsel [26]. The Federal Rules of Civil Procedure require

a party to produce information within its “possession, custody, or control.”

Courts will likely recognize that the ESI may not be within a cloud user’s

possession, but courts will suggest, and maybe assume, that ESI is within its

control.

 ACHIEVING PRODUCTION READINESS FOR

CLOUD SERVICES

The latest paradigm that has emerged is that of cloud computing where new

evolution of operating model enables IT services to be delivered through next-

generation data-center infrastructures consisting of compute, storage, applica-

tions and databases, built over virtualization technology .

Cloud service providers who are planning to build infrastructure to support

cloud services should first justify their plans through a strategic and business

planning process. Designing, building, implementing, and commissioning an

underlying technology infrastructure to offer cloud services to a target market

segment is merely a transformation process that the service provider must

undertake to prepare for supporting the processes, management tools, technol-

ogy architectures, and foundation to deliver and support their cloud services.

These foundation elements will be used to produce the cloud service that will

be ready for consumption.

SERVICE MANAGEMENT

The term service management has been defined in many ways by analysts and

business practitioners.

The Stationery Office defines service management as follows:

Service management is more than just a set of capabilities. It is also a professional

practice supported by an extensive body of knowledge, experience, and skill.

Van Bon et al. and van der Veen describe service management as:

The capacity of an organization to deliver services to customers.

Based on analysis and research of service management definitions, we define

service management as a set of specialized organizational capabilities for

providing value to customers in the form of services. The practice of service

management have expanded over time, from traditional value-added service

such as banks, hotels, and airlines into IT provider model that intends to adopt

service-oriented approach in managing and delivering IT services.

This delivery model of IT services to the masses, where assets, resources, and

capabilities are pooled together, is what we would term a form of cloud service.

The lure of cloud services is its ubiquity, pervasiveness, elasticity, and flexibility

of paying only for what you use.

PRODUCER—CONSUMER RELATIONSHIP

As we contemplate on the new paradigm of delivering services, we can reflect

upon the closely knit underlying concept of the classical producer—consumer

relationship in the design, implementation, and production of the service as

well as in the consumption of the service. The producer—consumer relationship

diagram is shown in Figure 5.4.1.

The producer, also known as cloud service provider, refers to the party who

strategizes, designs, invests, implements, transitions, and operates the under-

lying infrastructure that supplies the assets and resources to be delivered as a

cloud service. The objective of the producer is to provide value-add as a cloud

service, which will deliver value to their customers by facilitating outcomes

customers want to achieve.

The consumer does not want to be accountable for all associated costs and

risks, real or nominal, actual or perceived, such as

FIGURE 5.4.1. The producer—consumer relationship diagram.

designing the technology architectures, management tools, processes, and all

the resources to manage, deliver, and support the service.

The law of demand and supply will provide an efficient ecosystem in which

the consumer with specific needs will be able to locate and find available service

providers in the market that meet the required service demands and at the right

price.

Business Mindset

Broker/

Agent

Wholesaler/

Distributor

Producer/
Service Provider

Indirect Direct

Consumer

Retailer/

Dealer

• Market Recommendation

• Customer Needs

• Value of Service

Expected

Quality

Quality of Service/

Perceived Quality

From a producer’s perspective, it is critical to understand what would be the

right and desired outcome. Rather than focusing on the production of services,

it is important to view from the customer’s perspective. In order for producers

to provide the desired cloud services, some of the questions that the service

provider should address are:

● Nature of business (What is the core business?)

● Target consumer segments (Who are the customers?)

● Cloud service value (What does the consumer desire? How is the service

valuable to consumer?)

● The service usage and charge-back (How does the consumer use the

services? What are the charges?)

Direct Versus Indirect Distribution

As shown in Figure 5.4.1, the arrow lines depict the cloud services that can be

offered by the cloud service provider through two different distribution

channels: direct or indirect. Channel selection is often a choice and like any

other business decisions is highly dependent on the service providers0 strategy,

targeted consumers of the service (internal or external), and the outlook of the

relative profitability of the two distribution channel. Typically, direct channel is

more appropriate than indirect channel in the context of a private cloud service

and where quality assurance matters.

Quality of Service and Value Composition
One characteristic of services in general is the intangibility of the service.

Perception plays a heavier role in assessments of quality in this case than it does

with manufactured products. Figure 5.4.2 shows a diagram of perception of

quality. Value perception is typically derived from two components: expected

quality and experienced quality. Expected quality refers to level of service that

FIGURE 5.4.2. Perception of quality.

Value of
Service

Functional
Quality: What?

(Utility)

Service
Quality: How?

(Warranty)

Experienced

Quality

the customer expects when engaging with a service provider (e.g., market

communication, customer needs, etc.), whereas, experienced quality refers

value of service based on customer’s experience.

The value of a service consists of two primary elements : utility (fitness for

purpose) and warranty (fitness for use).

● Utility (fitness for purpose), or functional quality attribute, is perceived by

customers from the attributes of the service with positive effect on

performance of tasks associated with desired outcomes.

● Warranty (fitness for use), or service quality attribute, is derived from the

positive effect of being available when needed, in sufficient capacity and

magnitude, and dependable in terms of continuity and security.

Charging Model

In the 1990s, value pricing was the key phrase in pricing decisions. It was used

widely by many service industries: airlines, supermarkets, car rentals, and other

consumer services industry. It started with Taco Bell offering a value menu with

several entries, such as tacos, for very low prices. With their successes, other

fast-food chains picked up on the concept and started offering their value-

priced menu entries. The early 1990s recession caused industries to pick up on

the value pricing concept, whose utilization was spread across many service

industries. However, we would be careful to distinguish between (a) value

pricing and (b) pricing to value. Pricing to value relies on value estimates of the

dollar customers associates with the service. When coupled with an estimate of

the variable and the fixed costs of producing and delivering a service, this

determines ranges of possible price points that can be charged. Deciding on the

charging model and pricing strategy is a key business strategy that should not

be neglected.

There are several charging models as describe in Gartner report by Plummer

et al. , however the below two charging model are the preferred model by the

Cloud service provider:

● Utility Model. Pay-per-use model where consumer is charged on the

quantity of cloud services usage and utilization. This model is similar to

traditional electricity charges. Forexample, aconsumer uses secured storage

to support its private work documentation. The consumer is charged $0.50

for every 10 gigabytes of storage that is used. This model provides a lower

startup cost option for a customer in translating TCO to actual utilization.

● Subscription Model. Here the consumer is charged based on time-based

cloud services usage. For example, the consumer is charged a yearly fee for

a dedicated storage of 10 gigabytes to host the company Web site. This

model provides predictable cost outlay and provides a steady stream of

revenue for the services provider.

CLOUD SERVICE LIFE CYCLE

The input to the production of a cloud services are all the resources and assets

that will compose the cloud service (i.e., in the form of hardware, software, man

power required from developer to the management level and cost). The

outcome of the cloud services production is an acceptable and marketable

cloud service, which will provide a measurable value to the business objectives

and outcomes. The sets of inputs are transformed to derive the outcome by

using the cloud service life cycle. The cloud service life cycle consists of five

phases as shown in Figure 5.4.3 and Table 5.4.1 summarizes each of the phase

in cloud service life-cycle.

At the core of the cloud service life cycle is service strategy, which is the

fundamental phase in defining the service principles. The main core of the cloud

FIGURE 5.4.3. Cloud service lifecycle.

Service

Strategy

Service

Design

Continuous Service

Improvement

Service

Transition

Service

Operation

TABLE 5.4.1. Cloud Service Life Cycle

Service Phase

Service Strategy

Service Design

Service Transition

Service Operation

Continuous Service

Improvement

Description Defines the business

strategies, policies,

objectives

Design of the cloud

services, processes,

and capabilities

Develop the cloud

services for the tran-

sition of services to

production

Production of cloud

services and service

operational support

Maintain and Improve

value of cloud service

to consumer

Objectives Determines the busi-

ness decision

Design the new/

improved cloud

service to meet busi-

ness requirements

Development, deploy-

ment and validation to

ensure that the cloud

service has correct

capabilities

Ensure the cloud

service value to

consumer

Continuously main-

tain and improve the

value of cloud service

to meet business

needs

Outcome Business require-

ments and cloud

service descriptions

Cloud service blue-

print or Service

Design Package

(SDP)

Production of the

cloud servicesthat is

ready to golive

Monitoring report,

cloud service

feedback

Cloud services

improvement

6
2

1

service life cycle is the key principle that all services must provide measurable

value to business objectives and outcomes, which is reinforced in ITIL service

management as its primary focus [2, 3].

The cloud service life-cycle approach mimics reality of most organizations

where effective management requires uses of multiple control perspectives.

Service Strategy

Service strategy is the core of the service life cycle. It signifies the birth of the

service. This is the phase where the business defines the strategies, policies, and

objectives and establishes an understanding of the constraints, requirements,

and business values. Figure 5.4.4 illustrates the inputs and outcomes of the

service strategy phase.

The service strategy phase involves a business decision to determine if the

cloud service provider has sufficient resources to develop this type of service

FIGURE 5.4.4. Service strategy.

and also to determine if production of a cloud service has a business value. The

service strategy is comprised of the following key concepts:

● Value creation

● Service provider types

● Defining the service market

● Demand management

● Financial management

● Return of investment

● Service assets, assessment, and portfolios

● Service capabilities and resources

● Service structures and developing service offerings

The outcome of the service strategy phase is service strategy documentation,

which includes the following components:

● Business requirements—target consumer market and stakeholders

● Risks involved

● Resources required (man-power and budget)

Business Requirements/

Customers

Objectives
Resources and

Constrains
Policies

Strategies

Service

Strategy

● Functional service requirements

● Service descriptions

● New/improved service timeline

Service Design

The second phase in the cloud service life cycle is service design. The main purpose

of the service design stage of the life cycle is the design of new or improved service

for introduction into the live environment. Figure 5.4.5 shows the input and the

outcome of the service design phase. In this phase, the service requirements and

specification are translated into a detailed cloud service design including the

detailed desired outcome. The main objectives of service design are:

● Aspects of service design

● Service catalogue management

● Service requirements

● Service design models

● Capacity, availability, and service-level management

The key concepts of service design revolve around the five design aspects, the

design of services, service processes and service capabilities to meet business

demand. The five key aspects of service design are:

● The design of the services, including all of the functional requirements,

resources, and capabilities needed and agreed.

FIGURE 5.4.5. Service design.

● The design of service management systems and tools, for the control and

management of sustainable services through the life cycle.

● The design of the technology architectures, hardware and software,

required to form the underlying technical aspects to provide the services.

● The design of the policies and processes needed to design, transition,

operate, and improve the services, the architectures and the processes.

● The design of key measurement methods, performance metrics for the

service, cloud service architectures, and their constituent components and

the processes.

Service Strategy

SDPs

Standards

Architectures

Solution
Designs

Service

Design

The key output of the service design phase is a blueprint of the service

solution, architectures, and standards. This output is what ITIL would term the

service design package (SDP) . The SDP defines the following with respect to

the service:

● Service-level requirements

● Service design and topology

● Service and operational management requirements

● Organizational readiness assessment plan

● Service program

● Service transition plan

● Service operational acceptance plan

● Service acceptance criteria

Service Transition

The service transition phase intends to implement and deploy what has been

designed and planned. As shown in Figure 5.4.6, the service transition phase

takes knowledge formulated out of the service design phase, and uses it to plan

for the validation, release and deployment of the service to production. Key

disciplines in service transition are:

● Service development or service change is service built according to service

design package (SDP).

● Service release and deployment ensures the correct release in live

environment.

● Service validation and test ensures that the service has validated correct

capabilities and functionalities.

● Service knowledge management is to share information within the organi-

zation to avoid rediscovering of cloud service capabilities.

Service transition provides a consistent and rigorous framework for evalu-

ating the service capability and risk profile before a new or a changed service is

released or deployed. The key output of the service transition is production of

the services that is ready to go live, which includes:

● Approved service release package and associated deployment packages.

● Updated service package or bundle that defines end-to-end service(s)

offered to customers.

● Updated service portfolio and service catalogue.

● Updated contract portfolio.

● Documentation for a transferred service.

Service Operation

Service operation is the stage in the cloud service life cycle to provide the

SKMS

Transition
Plans

Tested
Solutions

production of the cloud service and the service operational support. Service

operation spans the execution and business performance of processes to

continually strike the balance between cost optimization and quality of services.

It is responsible for effective functioning of components that support services.

FIGURE 5.4.6. Service transition.

Effective service operation relies on the ability to know the status of the

infrastructure and to detect any deviation from normal or expected operation.

This is provided by good monitoring and control systems, which are based on

two types oftools:

● Active monitoring tools that poll key configuration items (CIs) to deter-

mine their status and availability. Any exceptions will generate an alert

that needs to be communicated to the appropriate tool or team for action.

● Passive monitoring tools that detect and correlate operational alerts or

communications generated by CIs.

Continuous Service Improvement

As business demand increases, customer requirement changes, market land-

scape fluctuates, and the service needs to adapt to these changing conditions to

improvise and compete. Buyya et al. mentioned that: “Quality of service

requirements cannot be static and need to be dynamically updated over time due to

continuing changes in business operations.” The continuous service improvement

phase is to ensure that the service remains appealing to meet the business needs.

This is achieved by continuously maintaining and improving the value of

service to consumers through better design, transition, and operation.

PRODUCTION READINESS

An authorization to commence service transition is considered one of the key

outputs from service design to initiate the transitioning activities. In the cloud

service life-cycle point of view, production readiness refers to the successful

conclusion of the service transition phase and the production of the required

outputs from service transition to service operation. Reaching the state where a

service is ready to be transitioned into service operation is what we term

production readiness.

Service Design

Service

Transition

ASSESSING PRODUCTION READINESS

The underlying IT infrastructure supporting the cloud service is similar to the

ecosystem of compute resources, data, and software applications, which need to

be managed, measured, and monitored continuously to ensure that it is function-

ing asexpected. The healthy functioning of this ecosystem is what we would refer

to as operational health of the service. Operational health is determined by the

execution of this ecosystem in delivery of the services and is dependent on the

ability to prevent incidents and problems, achieve availability targets and service-

level objectives, and minimize any impact to the value of the service.

Several key criteria that the cloud service provider needs to assess before the

service is ready for production is what we term assessing production readiness.

The main objective in assessing production readiness is to achieve a successful

transition from development of cloud service into the service operational phase.

The secondary objective is to ensure that the cloud service is healthy function-

ing. The readiness of a service for operation is to ensure that the following key

assessments are in place.

● Service Facilities Readiness. Facilities to build and sustain a cloud service

have been established.

● Service Infrastructure Readiness. Hardware components (servers, storages,

and network components) have been delivered and meet the requirements.

● Service Technology Readiness. Software components and other necessary

components have been installed and deployed on the infrastructure.

● Monitoring Readiness. Track the conditions, events, and anomalities on

the cloud infrastructure.

● Service Measurement Readiness. Evaluate the service utilization and

validate that the charge-back amount is accurate.

● Service Documentation. Define service procedure, manual, and instruction

to ensure that the service is well-defined, structured, maintained, and

supported.

● Communication Readiness. Identify all activities related tocommunication

issues related to service operation.

● Service Operational Readiness. Ready to support operations and main-

tenance of the services.

● Key Performance Indicators (KPI). Effective metric of measurement for

the service has been developed.

● Acceptance Testing. The service is considered to be ready for production

when it has passed an adequate level of measurement set in KPI metrics.

The nature of each production readiness assessment is described in more

detail below.

Service Facilities Readiness

At the core of all components required to build and sustain a cloud service is a

data-center facility. Facilities refer to the physical real-estate housing infra-

structure that is required to host cloud infrastructure for the cloud service.

Cloud services boast advantages of elasticity and capabilities to allow con-

sumers to increase or decrease their resource consumption; therefore, it can be

implied that there will be a need for constructing excess capacity in terms of the

IT infrastructure. This translates to more requirements for hosting space to

accommodate more assets, requirement for better facility (i.e., more cooling

capacity, power consumption, floor loading).

The facility to host cloud infrastructure plays an important role in cloud

service design. Some of the considerations that a cloud service provider should

take into account are:

● Physically Secured Environment. The cloud infrastructure facility should

be reasonably secured and protected. For example, facility space has

adequate access controls to permit entry for authorized personnel only.

● Free or Mitigated from Natural Disaster. Design of the facility should

include mitigation features against common natural disasters known to

the area.

● Cooling and Power Availability. The facility design should be at the right

size to maintain adequate level of redundancy and availability to meet

required service levels for the cloud service.

● Network Connectivity Bandwidth. Cloud services are likely to be delivered

to consumers over the network, therefore bandwidth availability and

capacity play an important role.

Service Infrastructure Readiness

Service infrastructure readiness is to ensure that all the hardware components

have been delivered and meet the requirements of the service design. Hardware

components refer to the physical IT assets of the cloud infrastructure, which will

fulfill the compute and storage resources. Hardware components include

compute servers, disk storages, network devices, and appliances that are

collectively used in the makeup of the technology architecture and configured as

the cloud infrastructure. The challenges and considerations for hardware are:

● Compute Servers. The following factors influence the decision of compute

server selection:

● Proprietary hardware components and ease of replacement. Because

compute resources should be easily provisioned from a collective group

of server hardware, proprietary hardware components and ease of

replacement or acquisition of the servers should be high in order to

easily acquire and grow.

● Hardware reliability is less of a concern, depending on the ability of the

software architecture to automatically re-deploy compute resources

whenever there is a fault.

Assessing production readiness in terms of service facilities readiness means:

Facilities to build and sustain a cloud service have been established.

● Platform or operating systems compatibility. Compute servers should

be able to operate on a hypervisor or abstraction layer that can support

most of the common platforms or operating systems without compat-

ibility issues.

● Disks Storages. The following factors influence the decision of disk

storage selection:

● Virtualization layer that can encapsulate the underlying disk storage

arrays. With the design of this layer, it would enable provisioning of

lower-cost storage arrays to accommodate storage capacity demands.

● Proprietary hardware components and ease of replacement. Similar to

compute resources, hard disks should be easily provisioned from a

collective group of storage pool. Hence, storage architecture should be

open and replacement of additional storage should be easily acquired

without incurring exorbitant marginal costs.

● Hardware reliability is less of a concern, depending on the level of data

protection in the design.

● Networking Infrastructure. Selection and choice of networking devices will

be dependent on the topology, architecture design, data flow, and

anticipated usage patterns.

The major risks or challenges involved in hardware components is the risk of

the hardware failure beyond the tolerance of the acceptable service levels. The

design of the cloud service architecture and infrastructure as well as the service

strategy is crucial to ensure right-sized infrastructure. To offer a higher-end

service level and to prevent the risks of unplanned outages or service-level

breaches, some cloud service providers adopts “fail-over” functionality, where

it will replace the faulty compute servers or disks storages with the available

servers/disks that has similar configuration.

Assessing production readinessin terms of service infrastructure readiness means:

Hardware components have been delivered and are right-sized.

Service Technology Readiness

As cloud services are predominantly IT services, the underlying infrastructure are often delivered within

the governance of a set of software logic. While the hardware components provide the resources

available to the customer, the software components control, manage, and allow the actual usage of these

resources by the consumers.

In terms of software components, the challenges faced by the cloud service providers are:

● Data Corruption. Cloud services which host consumers’ data are usually burdened with the

responsibility of ensuring the integrity and availability of these data, depending on the subscribed

service level.

● Logical Security. In terms of information security, an appropriate control of logical security should

be adopted by the producer to ensure adequate confidentiality (i.e., data and transactions are open

only to those who are authorized to view or access them).

● Data Interoperability. Producer should follow the interoperability stan- dards in order for the

consumers to be able to combine any of the cloud services into their solutions.

● Software Vulnerability and Breaches. There are occasions when the public community discovers

vulnerabilities of specific software, middleware, Web services, or other network services

components in the software compo- nents. The producer should ensure that a proper strategy and

processes are in place to address such vulnerabilities and fixed to prevent breaches.

Monitoring Readiness

Monitoring readiness refers to having the ability and functions to monitor and track the conditions,

events, and anomalities on the cloud infrastructure during the consumption of the cloud services. In the

context of service operation, the measurement and control of services is based on a continual cycle of

monitor- ing, reporting, and subsequently remedial action. While monitoring capability takes place

during service operation, it is fundamental to predefine the strategic basis requiring this capability,

designing it, and testing this capability to ensure its functional fulfillment. The monitoring readiness

should at least include the following features:

● Status tracking on key configuration items (CIs) and key operational activities.

● Detect anomality in the service operations and notify the key personnel in charge.

● Ensure that performance and utilization of key service components are within specified operating

condition.

● Ensure compliance with the service provider’s policies.

Service Measurement Readiness

The purpose of the service measurement readiness criteria is to evaluate the service utilization and validate

that the service charge-back amount to the consumer is accurate. It becomes necessary for the service

provider to monitor, measure, and report on component levels to the point that is granular enough that

provides a meaningful view of the service as the consumer experiences the value of service.

Assessing production readiness in term of Service technology readiness means:

Software components have been installed, configured, and deployed.

Assessing production readiness in terms of monitoring readiness means:

Capability totrackthe conditionsandanomalities onthe Cloudinfrastructure.

Service Documentation

Established service portfolio, service catalogue, design blueprints, service-level agreements, operational

level agreements, process manuals, technical proce- dures, work instructions, and other service

documentation are necessary to ensure that the service is well-defined, structured, and able to be

maintained and supported. When the service undergoes some changes, the service doc- umentation

needs to be updated.

Communication Readiness

The purpose of communication readiness is to identify all the activities related to communication issues

related to the service operation (e.g., identify medium, format, key personnel to be notified for customer

support or during critical message). Communication readiness criteria include customer support scenar-

ios, frequently asked questions (FAQs), help-desk personnel, and key personnel when there are

abnormalities in the service operations.

Service Operational Readiness

Being production ready also requires a certain level of maturity in operational processes. Operational

processes include the technology and management tools implementation to ensure the smooth running of

the cloud infrastructure. These operational processes are broadly categorized into the following:

● Event management is a process that monitors all events occurring through the IT infrastructure to

allow for normal operation, as well as to detect and escalate exception conditions.

● Incident management is a process that focuses on restoring, as quickly as possible, the service to

normal operating conditions in the event of an exception, in order to minimize business impact.

● Problem management is a process that drives root-cause analysis to determine and resolve the

cause of events and incidents (reactive), and activities to determine patterns based on service

behavior to prevent future events or incidents (proactive).

● Request fulfillment is a process that involves the management of customer or user requests that are

not generated as an incident from an unexpected service delay or disruption.

● Security Management is a process to allow authorized users to use the service while restricting

access to nonauthorized users (access control).

● Provisioning management is a process that allows the cloud service provider to configure and

maintain the infrastructure remotely. Advantages include ease of use, speed in provisioning, and

ease of maintenance of the cloud infrastructure.

Assessing production readiness in terms of service measurement readiness

means:

Evaluate the service usage and validate that the charge-back amount is

accurate.

Assessing production readiness in terms of Service documentation means:

Service documentation (e.g., procedure, manual) are well-defined and

maintained.

Assessing production readiness in terms of communication readiness means:

Identify all the activities related to communication issues related to service

operation.

Assessing production readiness in terms of service operational readiness

means:

Ready to support the operations and maintenance of the services.

Key Performance Indicators (KPIs)

KPIs should be set and defined as part of the service design to develop an effective metric of

measurement for the service. An effectiveness service metric can be achieved by focusing on a few vital,

meaningful indicators that are economical and useful for measuring results of the service performance.

Some of the examples of KPIs that can be established are:

● Metrics measuring performance of the service against the strategic business and IT plans

● Metrics on risks and compliance against regulatory, security, and corpo- rate governance

requirements for the service

● Metrics measuring financial contributions of the service to the business

● Metrics monitoring the key IT processes supporting the service

● Service-level reporting

● Metrics measuring customer satisfaction

Acceptance Testing

The last criteria before a cloud service is ready for production is an adequate level of measurement set in

the KPI metrics. There are several tests that should be planned and carried out:

● Load Testing. Simulating expected and stretched loads for stress testing

● User Testing. Simulating user activities, including provisioning, transac- tional, and other usage

patterns.

● Fault Tolerance Testing. Fault tolerance testing is to stress test the service architecture in the event

of an unexpected fault.

● Recovery Testing. Testing of recovery procedures in the event of failure to determine the accuracy

of recovery procedures and the effects of failure on the consumers.

● Network Testing. Assessment of network readiness and latency require- ments to determine if the

cloud infrastructure is capable of allowing the maximum number of concurrent consumers (under

planned maximum load).

● Charging and Billing Testing. Validate charging, billing and invoicing for the use of a cloud

services.

Assessing production readiness in terms of key performance indicators

means:

Effective metric of measurement for the service has been developed.

